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Introduction

The latest “Status Report in Alcohol and health” from the World Health 

Organization (WHO) Regional Office of Europe reveals that Alcohol Use 

Disorder (AUD) is the third leading risk of burden of disease in Europe and 

is very resistant to pharmacological or other kinds of treatment, specially in 
certain clinical situations. The WHO Regional Office for Europe points to the 

need of more research effort to clarify which are these special clinical situations 

that increase the risk of suffering AUD. 

On the other hand, chronic pain is a major health problem affecting to 
20-30% of the general European population. Notably, persistent pain 

conditions are often accompanied by comorbid affective and emotional 

disorders, which are very difficult to treat. Recent human and animal studies 

revealed that pain negatively impacts on the motivational and reward 

processing, via altering the normal function of the mesocorticolimbic system 
(MCLS). This system is responsible for the expression of motivated behavior 

and reinforcement learning triggered by natural and drug rewards and also for 

aversive stimuli encoding. Therefore, the effects of persistent pain in the MCLS 

not only might affect the quality of life of patients (e.g., provoking anhedonia, 

depression, negative affect state), but also it might have an important impact 
on vulnerability to drug abuse. 
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Multiple clinical and epidemiological studies have revealed that the 
presence of chronic pain is closely related to AUD. All this evidence points to 

chronic pain as a factor increasing the risk of suffering AUD, predicting heavy 

drinking behavior and relapse in those patients with a previous history of 

alcohol abuse. However, and despite the clinical relevance of this evidence in 

the selection and design of pain and AUD treatment strategies, few studies have 
examined the neural mechanisms and circuits underlying this relationship.  

All efforts to reduce AUD prevalence are needed, including research in 

understanding the factors promoting heavy drinking and relapse. Specially, 

during the last years research has focused on finding new strategies for the 
prevention of relapse, as it constitutes the main clinical problem in alcohol-

dependent patients. The better understanding of the possible pain-induced 

effects on AUD and relapse will lead to relevant results with an extremely 

applicability in the early detection and prevention of AUD in pain patients. 

Moreover, it should also help to the development of novel and safer therapeutic 
strategies for treating pain and AUD.  

The present Thesis is devoted to explore the influence of pain on the 

modulatory role of the mu opioid receptor (MOR) on the MCLS and the 

possible pain-induced effect on the motivational properties of alcohol. In 
addition, this Thesis also shows relevant data regarding the effect of pain on 

alcohol relapse.  

 6



Introduction1.1 MCLS: A KEY BRAIN NETWORK IN ADDICTION 

Drug addiction is a very complex pathology that encompasses different 

brain regions involved in reward, emotion, decision making and habit. It is 

now widely accepted that all drugs of abuse are reinforcing, that is, they 

increase the likelihood of responses that produce them (Everitt and Robins 

2015). Their reinforcing properties are mediated by the drug action on the 
MCLS. This system, that is normally activated by natural reinforces such as 

food, water or sex, is composed by a set of interconnected forebrain structures.  

In this way, the MCLS is a heterogeneous brain network that encompasses not 

only several structures but also a diversity of neurotransmitters. Concretely, 

those structures include the nucleus accumbens (NAc) (the major component 
of the ventral striatum), the extended amygdala (NAc shell, bed nucleus of the 

stria terminalis (BNST) and central amygdala (CeA)), hippocampus, 

hypothalamus, and frontal regions of the cerebral cortex. All this regions receive 

dopaminergic innervation from the ventral tegmental area (VTA) of the 

midbrain (reviewed in Fields et al., 2007). The dopamine (DA) neurons are key 
elements in the function of the MCLS; however, other neuron types and 

neurotransmitters also play a modulatory role. A simplified representation of 

the structures that constitute the MCLS can be found in Figure 1.1. 
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Figure 1.1 Neural reward circuits implicated in drug addiction (including 
ethanol). The main important brain areas involved in drug addiction and their main 
connections (black arrows) are represented in the picture (adapted from Everitt and 
Robbins 2005). Abbreviations: Amy, amygdala; Hipp, hippocampus; Thal, thalamus; 
DS, dorsal striatum, VS, ventral striatum; OFC, orbitofrontal cortex; mPFC, medial 
prefrontal cortex. 

Under normal circumstances, natural reinforcers activate DA neurons in 
the MCLS and consequently DA release is enhanced. This mechanism is the 

key to produce the reinforcement of behaviors that are necessary for survival 

and reproduction (Fields et al., 2007). Drugs of abuse overstimulate the same 

DA circuits, what constitutes the initial step for the development of addiction 

disorders (a detailed review of the different phases of addiction can be found in 
Koob and Le Moal 2006). Given the important role of the neurotransmitter 

DA and the DA neurons in the MCLS in reinforcing behaviors and addiction 

disorders, a more detailed description of this group of neurons will be provided 

in section 1.1.  
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IntroductionThe VTA is the midbrain region that includes dopaminergic neurons of 
the A10 cell group (Dahlstroem and Fuxe 1964). It is situated medial and 

contiguous to the substantia nigra (SN), immediately ventral to the red nucleus 

and caudal to the hypothalamus (Björklund and Dunnett 2007). Based on the 

heterogeneity of the morphology and orientation of cells, the VTA can be 

subdivided in five regions: two lateral nuclei (the paranigral nucleus (PN) and 
the parabrachial pigmented nucleus (PBP)) and three median nuclei (the 

interfascicular, the rostral linear and the caudal linear nuclei) (for a recent 

review of the VTA anatomy see Sánchez-Catalán et al., 2014). This definition 

slightly differs from the original description by Tsai (Tsai 1925) that did not 

include midline nuclei; however, it is widely accepted that all five nuclei 
include DA neurons from the A10 cathecolaminergic group (Sánchez-Catalán 

et al., 2014).  

Traditionally, VTA DA midbrain neurons have been identified by 

pharmacological and electrophysiological criteria, considering them as a 
homogeneous and well characterized population. Concretely, the identification 

of putative DA cells by electrophysiological means has been based on low-

frequency pacemaker activity, broad action potentials, hyperpolarization by DA 

via D2 receptors or the presence of the so-called hyperpolarization-activated 

slow inward current (Ih current) (Kitai et al., 1999; Lammel 2014). However, 
several studies have found neurons immunohistochemically defined as DA (i.e., 

identified tyrosine hydroxylase (TH) positive) among this area that do not 

share these same properties (Lammel et al., 2008; Margolis et al., 2006; 2008; 

Nair-Roberts et al., 2008; Swanson 1982; Ungless and Grace 2012). These 

studies have shown that VTA DA neurons constitute a heterogeneous 

population with variable molecular and electrophysiological properties 

depending on their projecting area (Lammel et al., 2008; Margolis et al., 
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2008). In fact, some authors have suggested that VTA DA neurons should be 
classified into two different subpopulations (Lammel et al., 2014), consisting 

in: (i) DA neurons mainly located in the lateral posterior and anterior VTA 

(lateral PBP), that project to the NAc lateral shell. This subpopulation would 

exhibit the electrophysiological properties that were classically attributed to DA 

neurons such as a low firing frequency and a large Ih current (Lammel et al., 
2008; Lammel et al., 2014; Ungless and Grace 2012; Zhang et al., 2010). 

Functionally, DA neurons projecting to NAc lateral shell seem to be 

particularly involved in reward-related behaviors (Lammel et al., 2012; Morales 

et al., 2017). And (ii), a later identified second subpopulation of DA neurons 

localized in the medial posterior VTA (PN and medial PBP) that project to the 
prefrontal cortex (PFC), BLA and the NAc medial shell and core. These 

neurons, immunohistochemically defined as DA, showed a “non-conventional” 

electrophysiological profile characterized by a small Ih current and a high firing 

frequency (Lammel et al., 2014). In this case, the functional implication of 

these neurons in reward or aversive behaviors appears to be more complex and 
is also determined by the different neuronal inputs and outputs of these DA 

neurons (Bariselli et al., 2016; Morales et al., 2017).  

As pointed out, the VTA has been classically defined as a dopaminergic 

region; although, in the rat brain, only around 60% of its containing neurons 
are DA neurons (Swanson 1982; Margolis et al., 2006; Nair-Roberts 2008). 

The majority of the resting neural population (around 30%) can be 

cytochemically identified to GABA neurons (Carr and Sesack 2000, Margolis 

et al. 2006, Van Bockstaele and Pickel 1995). There is also evidence that 2-3% 

of the neurons release glutamate (Glu neurons) (Chuhma et al., 2004; Lavin et 
al., 2005). It is also important to consider that many types of neurons, 

including DA, release more than one neurotransmitter. In this way, recent 
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Introductionoptogenetic studies have shown that DA neurons can release glutamate and 
GABA to varying extents, in addition to DA (reviewed in Britt and Bonci 

2013). 

The activity of DA neurons in the VTA is mainly under the control of 

GABAergic and glutamatergic afferents originating in very different brain areas. 
Following, the main afferents that arrive into the VTA, as well as the different 

VTA outputs have been briefly described. Also Figure 1.2 shows an extremely 

simplified scheme of the neural organization of the VTA, including the main 

inputs that regulate the activity of the DA neurons and the main projection 

areas. 

Figure 1.2 Schematic representation of the neural organization of the VTA. The 
projections from and to the VTA are represented in color (different in base to the 
fibers content in DA) and in black. Other connections are represented in grey 
(adapted from Fields et al. 2007). Abbreviations: Amy, amygdala; Hipp, hippocampus; 
LH, lateral hypothalamus; LDT, laterodorsal tegmental nucleus; NAc, nucleus 
accumbens;, PPTg, pedunculopontine tegmental nucleus; SC, superior colliculus; VP, 
ventral pallidum. 
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1.1.1 VTA INPUTS 

The VTA receives projections from multiple brain regions (Geisler and 

Zahm 2005; Phillipson 1979; Yetnikoff et al., 2014).  

It receives excitatory glutamatergic inputs from: 

• PFC (Sesack and Pickel 1992) 
• Lateral hypothalamus (Rosin et al., 2003) 

• BNST (Georges and Aston-Jones 2002) 

• Superior colliculus (Geisler and Zahm 2005) 

• Mesopontine tegmental area (Semba and Fibiger 1992; Paxinos and 

Watson 2007), concretely from the pedunculopontine tegmental nucleus 
and the laterodorsal tegmental nucleus. 

The VTA receives as well inhibitory GABA inputs from: 

• The ventral pallidum (VP) (Geisler and Zahm 2005) 

• The NAc (Conrad and Pfaff 1976) 

Other relevant inputs to the VTA are the noradrenergic from the locus 

coeruleus and the serotonergic from the dorsal raphe nucleus (Geisler and 

Zahm 2005; Phillipson 1976). 
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Introduction1.1.2 VTA OUTPUTS 

Dopaminergic neurons in the VTA project to different central nervous 

system (CNS) targets. The projection to the NAc is the richest in dopaminergic 

neurons (65%–85%, e.g. 65-85% of the  projections from the VTA to the NAc 

are dopaminergic), followed by those to the lateral septal area (72%), amygdala 

(53%), entorhinal cortex (46%), PFC (30%–40%), and hippocampus (6%–
18%) (Fallon et al., 1984, Gasbarri et al., 1994, Margolis et al., 2006, Swanson 

1982). It is also important to highlight that the electrophysiological and 

neurochemical properties of this DA neurons can differ based on their 

projection target (Ford et al., 2006; Lammel et al., 2008; Margolis et al., 2006; 

Margolis et al., 2008).  

In addition, a significant number of GABA and Glu neurons in the VTA 

project to the PFC and the NAc (Carr and Sesack 2000; Chuhma et al., 2004; 

Lavin et al.,2005; Margolis et al., 2006; Van Bockstaele and Pickel 1995). 

Importantly, diverse studies using different retrograde markers have 

shown that each target receives input from a distinct subgroup of VTA neurons 

and rarely a subgroup of neurons sends projections to more than one single 

target (Fallon et al., 1984; Margolis et al., 2006; Swanson 1982). Therefore, 

there is growing evidence that not only the molecular phenotype of VTA 
neurons, but also their specific connectivity, determines the distinct part that 

these neurons play in reward and aversion (Brischoux et al., 2009; Morales and 

Margolis 2017; Salamone 2016). 
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1.2. OPIOIDERGIC CONTROL OF DA IN THE MCLS 

The activity of DA neurons in the VTA is under the control, not only of 

the glutamatergic and GABAergic afferents aforementioned, but also of the 

endogenous opioid system (EOS). The EOS has a critical role in mood 
regulation, reinforcement codification and also in the development of drug 

abuse (Gerrits et al., 2003). This system comprises three homologous G 

protein-coupled receptors (GPCRs) known as mu-, delta- and kappa- opioid 

receptors (MORs, DORs and KORs, respectively) and opioid receptor like-1 

(ORL1), which are selectively activated by three groups of endogenous peptidic 
molecules: endorphins, enkephalins and dynorphins (Lord et al., 1977). Apart 

from their endogenous ligands, opioid receptors (ORs) can be also activated by 

several drugs. For example, morphine-like opiates have been demonstrated to 

bind preferentially to the MOR (Matthes et al., 1996).  

It is now generally accepted that MORs are the site were opiate drugs 

exert their reinforcing properties (reviewed in Van Ree 1999, Le Merrer 2009). 

In fact, several studies using either pharmacological manipulations or knockout 

(KO) mice for the MOR have evidenced the critical role of this receptor in 

opiate addiction (Charbogne et al., 2014, Darcq and Kieffer 2018, Kieffer and 
Gavériaux-Ruff 2002). Very interestingly,  the reinforcing properties of alcohol, 

cannabinoids, and nicotine are also strongly diminished in these MOR KO 

mice. A possible explanation for this involvement of MORs could be that those 

drugs would primarily activate their non-opiate targets, what would, in turn, 

trigger the release of endogenous opiates at appropriate MOR expressing sites 
in the brain. The genetic approach data also from MOR KO mice are less clear 

for cocaine and amphetamine, and it appears that MOR is not essential for the 

reinforcing properties of these drugs but it may play a modulatory role 
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Introduction(Charbogne et al., 2014). All these data underlie MORs as mediators of drug 

reinforcement by a direct (opiates) or indirect (non-opiates) activation.  

Given this crucial role and the dense expression of MORs in the VTA  

(Bausch et al., 1995; Garzon and Pickel 2001; Sesack and Pickel 1992), 

numerous initial studies have been performed to evaluate the ability of MORs 

to control DA neurons activity and to mediate positive reinforcement. 

Different approaches have been used to address this issue.  

For instance, self-administration paradigms have been traditionally used 

to study the reinforcing properties of drugs (for a deep review in behavioral 
paradigms used in the field see Sanchís-Segura and Spanagel 2006 and Belin-

Rauscent et al., 2016). In these paradigms, animals usually learn to perform a 

task (e.g., press a lever) in order to receive an acute dose of a chosen drug. In a 

simple view, when the drug is able to increase DA activity, the animal will be 

reinforced to repeatedly perform the task (Di Chiara, 1998; Wise 2004). A 
wide number of studies using this paradigm have shown that animals 

intracranially self-administer MORs agonists into the VTA (reviewed in Wise 

2004). Moreover, this behavior can be blocked by previously administering an 

antagonist for the  MOR (Bozarth and Wise 1981). 

Another widely used behavioral paradigm is the conditioned place 

preference (CPP). In this case, animals receive the drug and they are 

immediately after confined in a specific context for repeated sessions. 

Thereafter, the preference of the animal for the drug-associated context in 

comparison to a neutral context is measured. The development of this drug-
induced place preference is also considered a DA dependent behavior (Bozarth 

and Wise 1981; Spyraki et al., 1983; Wise 2004). Studies using this paradigm 
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have classically showed that both systemic and local microinjections of MOR 
agonists intra-VTA produce CPP (Hand et al., 1989; Shippenberg and Herz 

1987). In the same manner as in self-administration studies, this intra-VTA 

CPP can be suppressed by a prior infusion of an antagonist of the MOR 

(Terashvili et al., 2004).  

 In addition, changes in exploratory locomotion in rats have been used 

as an indirect measure of DA neurons activation (Ikemoto 2010; Wise 2002).  

In general, drugs and natural reinforcers activate a common biological 

mechanism associated with approach behaviors and this, in the rodent model, 

results in the exploration of the environment and, therefore, in the increase in 
locomotion activity (Wise and Bozarth 1987). Numerous studies demonstrate 

that local administration of morphine into the VTA increases locomotor 

activity in rats (Bontempi and Sharp 1997; Devine and Wise 1994; Joyce and 

Iversen 1979). 

A more direct analysis of DA activation can be performed by directly 

measuring changes in DA levels at dopaminergic terminal level in the MCLS. 

In this way, several studies also show an increase in DA release in the NAc after 

systemic or intra-VTA administration of MOR agonists (Devine et al., 1993; 

Gysling and Wang 1983). Finally, electrophysiological studies have also 
analyzed the effect of MOR agonists in DA activity. Ex vivo studies show that 

bath application of a MOR agonist activates putative VTA DA neurons 

(Johnson and North 1992; Matthews and German 1984). In accordance,  

systemic or intra-VTA morphine injection also increases putative DA neurons 

firing in vivo (Gysling and Wang 1983; Jalabert et al., 2011; Melis et al., 2000). 
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IntroductionIt is hence now clear that MOR agonism increases the activity of VTA 
DA neurons by activating local MORs. However, MORs are linked to Gi/o 

family of G proteins and therefore their activation results in the 

hyperpolarization of the MOR expressing neurons (Williams et al., 2001). 

For that reason it was logical to assume that MORs are not located in DA cells, 

hence if so MORs agonism would reduce DA neurons activity. Early studies 
form Johnson and North 1992 aimed to study which neurons are directly 

responding to this MOR agonism. In this in vitro study, they showed that 

neurons that were directly hyperpolarized by MOR agonists were not identified 

as DA neurons. In turn, opioids induce the hyperpolarization of secondary 

(GABA-containging) interneurons in the VTA. Therefore, the direct action of 
opioids in these neurons results in a reduction of the spontaneous GABA-

mediated synaptic input to the DA cells. Many electrophysiological studies 

both ex vivo and in vivo in anesthetized and freely behaving rats have further 

confirmed this observation (Steffensen et al., 2006; Xiao et al., 2007). In this 

way, MOR agonism in the VTA, acting through an indirect mechanism, would 
disinhibit DA neurons by removing the GABAergic tone.  

Despite the aforementioned mechanism is nowadays generally accepted, 

alternative hypothesis have also been proposed to explain the action of local 

MOR agonism in the VTA. One of those suggests that the increase in DA 
release in the NAc induced by VTA MORs activation would occur via an 

indirect pathway. For example, some studies have shown that MOR agonists 

also inhibit the GABAergic neurons in the VTA that project to the NAc. The 

decrease in this GABAergic tone would, in second term, disinhibit the 

cholinergic neurons present in the NAc that receive this GABA afferents. 
Therefore, the increase in acetylcholine would increase DA release in the 

NAc through nicotinic acetylcholine receptors present on the striatal terminals 
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of DA neurons. (Cachope et al., 2012; Threlfell et al., 2012). Finally, there is 
also data suggesting that the synaptic action of MORs in the VTA is more 

diverse. In this way, a study carried out by Margolis and collaborators (Margolis 

et al., 2014) deeply explored the effect of MOR agonism across a large sample 

of neurons throughout the VTA. In this case, the authors evidenced an 

alternative mechanism by which MORs would induce direct neuronal 

activation through the opening of somatodendritic calcium channels. And, 

what is more intriguing, this mechanism was found in both DA and nonDA 

neurons. Moreover, this study, in contrast with the previous findings by 

Johnson and North 1992, also showed that MOR agonism induced both direct 

postsynaptic excitation and inhibition in VTA DA neurons.  

All in all, it is of high importance to remember that, although the 

disinhibition model is the most commonly accepted, MOR effect on VTA 

neurons is a complex process and alternate mechanisms may contribute. 
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Introduction1.3 ETHANOL ACTION ON THE MCLS 

Despite the fact that ethanol consumption represents an important 

contributor to the world burden of disease (Rehm et al., 2011; Rehm and 

Shield 2013; WHO 2018), the neurobiological mechanisms underlying its 
motivational properties still remain not fully discern. This fact is basically due 

to the particularity of ethanol physicochemical properties: it has a really simple 

chemical structure, with an ideal partition coefficient n-octane/water for 

crossing cellular membranes (including the blood-brain barrier) and also highly 

reactive. Given all those characteristics, the study of ethanol interactions with 
cellular elements as possible targets for its neurophysiological and behavioral 

effects has been a challenging task. Therefore, several hypothesis have emerged, 

not only implying ethanol direct action but also involving its metabolic 

products. In the following sections it can be found a brief compilation of the 

relevant aspects in this topic for the better understanding of the present work.  

1.3.1 DOES ETHANOL ACTIVATE THE VTA DA 
NEURONS? 

Ethanol is a CNS depressant that shares some behavioral effects with 

sedative-hypnotic drugs. Besides, ethanol is clearly reinforcing and addictive 

and these properties have been widely described both in humans and animals. 

Therefore, as other drugs of abuse, ethanol brain action results in the 

stimulation of DA neurons in the MCLS. In fact, intragastric (i.g.) (Enrico et 
al., 2009), intraperitoneal (i.p.) (Imperato and Di Chiara 1986) and 

intravenous (i.v.)  (Howard et al., 2008) ethanol administration enhances DA 

transmission in the NAc. Moreover, several researches point to the fact that 

ethanol exerts its action in the VTA. In this line, the administration of ethanol 

directly into the VTA triggers an increase in the DA release into the NAc (Di 
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Chiara and Imperato 1988; Gonzales et al., 2004; Howard et al., 2008; 
Imperato and Di Chiara 1986). There are also a wide number of studies 

showing that this local action of ethanol induces excitation of VTA DA 

neurons in vitro (Brodie et al., 1990; Brodie et al., 1999b; Melis et al., 2009; 

Xiao et al., 2007), as well as in vivo (Foddai et al., 2004; Gessa et al., 1985; 

Mereu and Gessa 1984). However, the exact mechanism through which 
ethanol exerts this DA activation is still not clear and so far different hypothesis 

have been postulated. Among those, it has been reported that ethanol interacts 

with different neurochemical and endocrine systems of the CNS such as the 

GABAercgic, glutamatergic, dopaminergic, opioidergic, cannabinoid or 

corticotropin releasing factor (CRF). In addition, ethanol can also act on 
different ion channels (calcium, potassium) and modulate cytoplasmatic 

components such as second messengers (Erdozain and Callado 2014; 

Morikawa and Morrisett 2010). Not only it is not yet clear which of those is 

the mechanism that is activating DA neurons, but also it is in doubt if it 

constitutes a direct or indirect process.  

Regarding ethanol direct action, electrophysiological studies have shown 

that local application of ethanol results in the activation of VTA DA neurons 

by acting on the ionic channels that modulate their activity. Concretely, it 

increases the Ih current (mixed Na+/K+ conductance) and reduces the 

voltage-gated transient K+ current (Brodie et al., 1990; Brodie and Appel 

1998; Brodie et al., 1999a; 1999b; Koyama et al., 2007; Okamoto et al., 

2006). It should be taken into account, that increases in Ih current result in 

neuronal activation, whereas increases in voltage transient K+ current result in 

neuronal inhibition. Therefore, the previously mentioned ethanol direct action 
on those two mechanisms would result in an increase in DA neuron firing.  
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IntroductionApart from its direct action, it has been suggested that other indirect 

mechanisms should be contributing to the ethanol-induced activation of DA 

neurons. This idea is based on the differences found between in vitro and in 

vivo electrophysiological studies, such as the magnitude of the effect of ethanol 

on DA neurons (that appears to be larger in vivo (Gessa et al., 1985; Mereu and 

Gessa 1984; Stobbs et al., 2004) than in vitro (Brodie et al., 1990; Brodie et al., 
1999b; Brodie and Appel 1998; Brodie and Appel 2000; Okamoto et al., 

2006)) or the different sensitivity to ethanol between VTA and SN DA neurons 

that is manifested in vivo (Gessa et al., 1985) but not in vitro (Okamoto et al., 

2006). Thus, ethanol has been proposed to interact with the different afferents 

that innervate the VTA DA neurons, mainly the glutamatergic and GABAergic 
(Lovinger 1997; Morikawa and Morrisett 2010; Vengeliene et al., 2008).  

In the case of glutamatergic afferents, it has been reported that acute 

ethanol exposure can indirectly enhance glutamatergic transmission onto 

VTA DA neurons. The proposed mechanism is based on the fact that systemic 
or local brain administration of ethanol increases DA levels in the VTA 

(Campbel et al., 1996; Kohl et al., 1998; Yan et al., 1996). This 

somatodendritic release of DA activates presynaptic DA type 1 (D1) receptors 

located in the glutamatergic afferents in the VTA and consequently increases 

glutamate release (Deng et al., 2009, Xiao et al., 2009). Then, the activation of 
ionotropic glutamate receptors in DA neurons would stimulate VTA DA 

neuron firing (Christoffersen and Meltzer 1995, Zhang et al., 1997).  

On the other hand, VTA GABA neurons have been also implicated as a 

possible mediator of ethanol action on VTA DA firing. In fact, it has been 
shown that ethanol can inhibit GABA neurons (Gallegos et al., 1999; 

Steffensen et al., 2000; 2009; Stobbs et al., 2004) and, consequently, disinhibit 
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DA neurons (see section 1.2) (Johnson and North 1992; Mereu and Gessa 
1985; Xiao et al., 2007). As commented in section 1.2, the activity of GABA 

neurons is controlled by MORs and MOR agonism inhibits these neurons, 

resulting in the activation of DA neurons. According to this, some authors have 

demonstrated that ethanol action on DA activity is mediated by MORs. Both 

in vivo and in vitro electrophysiological studies show that ethanol alters the 
GABAergic transmission onto VTA DA neurons, and this action requires 

MORs (Guan and Ye 2010; Xiao et al., 2007; Xiao and Ye 2008). Moreover, 

behavioral studies have also reported that ethanol-induced DA-dependent 

behaviors are decreased or prevented by the blockade of local MORs in the 

VTA (Gajbhiye et al., 2017; Gibula-Bruzda et al., 2015; Quintanilla et al., 
2014; Sánchez-Catalán et al., 2009). Finally, there is also a large body of 

literature demonstrating that the blockade of the opioidergic system by 

antagonists of the ORs is highly correlated with the reduction in ethanol 

consumption in rodents and also in humans (Samson and Doyle 1985; 

Hubbell et al., 1986; Reid et al., 1991; O'Malley et al., 1992; Volpicelli et al., 
1992).  
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Introduction1.3.2 HOW DOES ETHANOL ACTIVATE VTA 
MORS? ROLE OF ETHANOL METABOLITES 

As previously mentioned, MORs are involved in ethanol effects, and this  

interplay has been widely explored for several decades (see Nutt 2014 for 

review). Given that the ethanol molecule per se is not considered an opioid-like 

agonist, there should be an indirect mechanism that ultimately activates MORs 

after ethanol administration. Previous studies have proposed that the balance 

between the presence of ethanol molecule and its metabolic products in the 

MCLS would determinate these final activating and reinforcing ethanol 

properties (metabolites hypothesis). 

According to the metabolites hypothesis, enzymatic systems responsible 
for the biotransformation of ethanol in the brain, play a crucial role in ethanol 

regulation of VTA DA neurons activity. The ethanol molecule is able to easily 

cross the blood-brain barrier and be metabolized in the brain to acetaldehyde 

(ACD), its first metabolite (Cohen et al., 1980; Raskin and Sokoloff 1970). 

ACD is a highly reactive compound that can easily condensate with diverse 
endogenous molecules, such as biogenic amines, to produce different biological 

active compounds, including salsolinol (SAL) (derived from the condensation 

of ACD and DA) (Cohen and Collins 1970; Cohen 1976; David and Walsh 

1970; Walsh et al., 1970). Based on this fact, it is possible that the activation of 

VTA DA neurons observed after ethanol administration is, in turn, elicited by 
its metabolic products in the brain. In fact, it is difficult to discern wether the 

aforementioned described events following ethanol administration in the VTA 

(section 1.3.1) derive from a direct action of the ethanol molecule or from the 

action of ethanol metabolites. In this last possibility, depending on the 

administered dose and, therefore, on the relative saturation of the enzymes and 
the balance in the ratio ethanol/metabolites concentration, we will observe 
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activation (Figure 1.3), inhibition (Figure 1.4) or, even, no effect on the activity 
of the DA neurons of the MCLS. Following, a schematic representation of the 

ethanol dual action on VTA DA neurons is presented in Figure 1.3 and Figure 

1.4 for the better understanding of the metabolites hypothesis: 

Figure 1.3 Activating effect of ethanol metabolized fraction on the VTA DA 
neurons. According to the aforementioned metabolites hypothesis, ethanol reinforcing 
properties would be the result of ethanol dual action over the MCLS DA neurons. 
Thus, ethanol metabolite, salsolinol, is the responsible for the DA neurons activation. 
This excitation seems a consequence of the reduction of GABA release derived from 
the activation of the mu-opioid receptors by salsolinol. Abbreviations: NAc, nucleus 
accumbens; VTA, ventral tegmental area. 
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Introduction

Figure 1.4 Inhibitory effect of ethanol non-metabolized fraction on the VTA DA 
neurons. According to the aforementioned metabolites hypothesis, ethanol reinforcing 
properties would be the result of ethanol dual action over the MCLS DA neurons. 
Thus, the ethanol molecule itself (non-metabolized fraction), acting on the GABAA 
receptors, promotes the enhancement of GABA release, and consequently, the 
inhibition of DA neurons. Abbreviations: NAc, nucleus accumbens; VTA, ventral 
tegmental area. 

The metabolites hypothesis has been confirmed by previous studies in 

our group by Martí-Prats and collaborators (Martí-Prats et al., 2013; Martí-

Prats et al., 2015). In those studies, changes in exploratory locomotion in rats 

were measured, as this phenomenon is considered the behavioral reflection of 

the activation of VTA DA neurons (Wise 2002).  In a very elegant approach, 
the authors selected an inactive ethanol dose that did not produce changes in 

locomotor activity when administered into the VTA. Thereafter, different 

pharmacological strategies were designed to preferentially test either the effects 

of the metabolized or non-metabolized ethanol fraction (see Figure 1.3 and 

Figure 1.4): (i) To test the non-ethanol metabolized fraction effect, the selected 
pharmacological approach was to decrease the presence of the ethanol 
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metabolites, either by inhibiting the enzyme responsible for the ACD 
formation, or by sequestering the ACD with D-penicillamine. In this case, this 

ethanol inactive dose produced a decrease in the rats locomotor activity (Martí-

Prats et al., 2013). Moreover, the same effect was found when blocking MORs, 

further supporting the role of these receptors on the activating effects of 

ethanol (Martí-Prats et al., 2015). And (ii), to identify the metabolized fraction 
effect, the selected strategy was, in this case, to increase ethanol metabolites in 

situ production by inhibiting ACD degradation. This manipulation converted 

the inactive ethanol dose into a stimulating one.  

All this data point to ethanol-metabolized fraction as the responsible 
for the activating effect of ethanol on VTA DA neurons. One of the ethanol 

metabolites that appear to be the latest responsible for this effect is SAL 

(Hipólito et al., 2012), the product of the condensation of ACD and DA 

(Haber et al., 1996; Melis et al., 2015). Several findings support the idea that 

ethanol-derived SAL activates MORs in the VTA and, therefore, disinhibits 
VTA DA neurons (see Figure 1.3). First, SAL presents structural similarities 

with isoquinoline alkaloids (such as morphine) (Davis and Walsh 1970). 

Second, SAL can bind to ORs and produces opiate-like effects (Berríos-

Cárcamo et al., 2016; Fertel et al., 1980; Lucchi et al., 1982). And, third, SAL 

is able to increase both NAc DA extracellular levels and the firing rate of DA 
neurons, effects that are mediated through MOR activation (Hipólito et al., 

2010; Xie et al., 2012). Finally, there is also electrophysiological evidence 

supporting the key role of SAL in ethanol action on the VTA (Melis et al., 

2015). In this study, the in situ formation of SAL, derived from the local 

application of ethanol or ACD in VTA slices, was impaired by removing DA 
content, a chemical substrate of this reaction. As a result, when restricting SAL 

formation, neither ethanol nor ACD aimed to stimulate VTA DA neurons. 
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IntroductionAlthough these gathered evidences point to SAL to exert the excitatory effects 
of ethanol on VTA DA neurons, we are still lacking the direct confirmation of 

the SAL formation in the VTA that would definitively confirm this hypothesis. 

On the other hand and according to the aforementioned study from 

Martí-Prats and collaborators, ethanol (more specifically, the non-metabolized 

fraction of ethanol) would, by its own, exert a depressant effect on animal 

motor behavior (Martí-Prats et al., 2013). This depressant effect has been 

proposed to be the result of ethanol direct action on GABA neurons (see Figure 

1.4) (Xiao et al., 2009). Actually, the inhibition of GABAA-Rs by the 

administration of the antagonist bicuculline was able to convert the previously 
inactive ethanol dose into an activating one (Martí-Prats et al., 2013). This 

phenomenon has been evidenced not only by this behavioral approach but also 

electrophysiological studies have endorsed this ethanol depressant action 

(Theile et al., 2011, 2009, 2008). 

Despite the evidence described above, there are alternative hypothesis to 

explain the ethanol derived activation of MORs in the VTA. The most 

extended is the theory that points to the endogenous peptide β-endorphin as 

the main responsible for this action (Sanchís-Segura et al., 2005; Xiao et al., 

2007; Xiao and Ye 2008). This hypothesis is based on the fact that systemic 

ethanol administration induces the release of this endogenous peptide in the 

VTA (Rasmussen et al., 1998; Jarjour et al., 2009). Moreover, local application 
of ethanol in slices from the hypothalamic arcuate nucleus (a region that sends 

projections to the VTA) increases β-endorphin synthesis (Gianoulakis 1990). 

In addition, it has been reported that the ability of ethanol to stimulate β-

endorphin release is mediated by ethanol metabolized fraction in the 

hypothalamic arcuate nucleus and that ACD exposure in this region also 
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promotes β-endorphin release even more potently than ethanol (Reddy and 

Sarkar 1993, Sanchís-Segura et al., 2005). However, it should be pointed that 

there is no direct evidence that the administration of ethanol or its derivatives 

into the VTA elicits the local release of β-endorphin, so this theory might not 

be able yet to explain all the behavioral and electrophysiological results 

described above derived from intra-VTA ethanol administrations.  

1.3.3 ETHANOL-INDUCED ADAPTATIONS IN THE 
MCLS  

As previously mentioned, ethanol, like other drugs, activates the DA 

neurons in the MCLS. One of the consequences of the continuous activation 

of the DA neurons is the development of glutamatergic neuroadaptative 

responses in the NAc at pre- and post-synaptic level (reviewed in Hearing et al., 
2018) but also in other brain areas like for example the hippocampus (Fakira et 

al., 2014; Portugal et al., 2014). These adaptations in synaptic function play a 

crucial role in associations between the drug and the drug administration 

environment and can lead to cravings that promote continued use of the drug 

and can facilitate relapse (Daglish et al., 2001; See 2002). 

Glutamate receptors comprise two large families, ligand-gated ion 

channels (ionotropic receptors) and GPCR (metabotropic receptors). 

Ionotropic receptors are, in turn, divided into three classes: 𝛂-amino-3-

hydroxi-5-methyl-4-isoxazole propionic acid receptors (AMPARs), kainate 

receptor and N-methlyd-D-aspartate receptors (NMDARs). Concretely, 

NMDARs play an important role in synaptic plasticity. These receptors 

show an important biophysical property: they allow calcium entry only if the 
cell is depolarized. This means that NMDARs act as synaptic coincidence 
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Introductiondetectors to facilitate plasticity. Postsynaptic (or presynaptic) Ca2+ influx 
through NMDARs, in turn, activates intracellular singling cascades that 

ultimately are responsible for changes in synaptic efficiency. NMDARs are 

heterotetramers mainly composed by two subunit classes: two NR1 subunits 

and two NR2 subunits. (Lüscher and Malenka 2012). The subtype of NR2 

subunit (NR2A-D) can influence the biophysical and pharmacological 
properties of endogenous NMDARs (Cull-Candy et al., 2001; Monyer et al., 

1994). From those, NR2A and NR2B are the most common NR2 subunits in 

the adult forebrain. NR2B is the most common also in the early postnatal 

forebrain and it is replaced to some extent by NR2A during development 

(Aizeman and Cline 2007; Cline et al., 1996; Tovar and Westbrook 1999). 
Within all neuronal types, NMDAR complexes are found at the synapse and in 

extra synaptic locations, with the later made up mainly of NR1-NR2B and 

NR1-NR2D (Gereau and Swanson 2008). 

Local NMDARs in the NAc play an important role in the development 

of context-learned associations driven by both natural rewards (Brigman et 

al., 2013; Dang et al., 2006; Parker et al., 2011; Yin et al., 2008) and drugs of 

abuse (Beutler et al., 2011; Hearing et al., 2017; Heusner and Palmiter 2005). 

It is now widely accepted that this region is fundamental in drug-seeking 

behaviors, including alcohol (Chaudhri et al., 2008, Fuchs et al., 2008). In the 
NAc, synaptic plasticity mechanisms take place in the glutamatergic synapses. 

These glutamatergic afferents arise from limbic areas such as prefrontal cortex, 

hippocampus and BLA (Brog et  al., 1993, Sesack and Grace 2010). The 

excitatory input acts onto the GABAergic medium-spiny neurons (MSNs), 

that constitute the majority (∼95%) of all neurons in the NAc. Given the 
importance of NAc glutamatergic changes for drug-induced learned 

associations, several studies have deeply analyzed the involvement of local 
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NMDAR subunits in these processes. Unfortunately, not many of those studies 
have focused their attention on ethanol-induced changes in accumbal 

NMDAR. Concretely, a study by Sikora and colleagues shows that the NR1 

subunit is necessary for the development of associations between context and 

ethanol (and other drugs of abuse) (Siroka et al., 2016). This study uses a 

genetic strategy to selectively inactivate the NR1 subunit in neurons expressing 
D1 receptors. Therefore, in the NAc of the mutant mice, only neurons that are 

activated by DA (D1 containing) did not expressed the NR1 subunit. And, 

hence, those mutant mice did not develop a preference for a context associated 

with the administration of ethanol or other drugs. Moreover, the local 

administration of a non-specific NMDAR antagonist (AP-5) intra-accumbens 
also blocks ethanol-induced CPP (Gremel et al., 2009). From those studies it 

appears that accumbal NMDARs play an important role in associations 

between ethanol and specific environments, what may have critical 

consequences in seeking behaviors. Therefore, it is of high relevance to further 

explore how these receptors modulate context-learned associations induced by 
ethanol and which is the specific role of the different NMDAR subunits.  

Finally, chronic ethanol exposure has also been shown to induce NAc 

glutamatergic adaptations. In ethanol-dependent rats, NAc neurons show an 

increase in NMDAR sensitivity (Siggins et al., 2003). In the same way, 

glutamatergic transmission onto D1 MSN has been reported to be enhanced 
after chronic ethanol exposure (Renteria et al., 2017). Moreover, withdrawal 

from chronic ethanol increases the expression of NR1 and NR2B subunits in 

the NAc (Zorumski et al., 2014).  

On the other hand, there is also great evidence that repeated drug 
treatment induces synaptic plasticity in the hippocampus and that those 

changes are involved in drug-context associations. Plenty of work supports the 
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Introductionfact that several forms of hippocampal synaptic plasticity, such as long-term 
potentiation (LTP), are mediated by NMDAR signalling (Muller et al., 1988; 

Shapiro and Eichenbaum 1999; Miyamoto 2006). Therefore, hippocampal 

changes in NMDARs may be crucial for contextual driven memories, what 

finally implies consequences in drug dependence and craving (Daglish et al., 

2001; Ersche et al., 2006; Prosser et al., 2006). However, as it has been 
previously commented for the NAc, very few studies have explored this role of 

hippocampal NMDAR in ethanol-derived context association. Given that 

ethanol action is mediated by ORs, it would be logical to assume that opioid-

induced glutamatergic changes in the hippocampus could also take place in the 

case of ethanol. Expression of opiate-induced CPP has been associated with 
increased basal hippocampal synaptic transmission, impaired hippocampal LTP, 

and increased synaptic expression of the NR1 and NR2B subunits in the 

hippocampus (Portugal et al., 2014). Unfortunately, wether those adaptations 

are also elicited in ethanol-induced context associations remains unknown. In a 

similar manner as in the NAc (see above), it has been reported that chronic 

ethanol exposure also induces changes in hippocampal NMDAR expression. 

In particular, ethanol chronic ingestion up-regulates NR1 receptor subunit 

expression in the hippocampus (Kalluri et al., 1998; Spencer et al., 2016; 

Trevisan et al., 1994). Additionally, some studies have explored changes in NR2 

subunits after repeated ethanol exposure and they have reported an increase in 
hippocampal NR2A and NR2B subunits expression (Carpenter‐Hyland et al., 

2004; Chandler et al., 2006; Hendricson et al., 2007; Kalluri et al., 1998; Snell 

et al., 1996; Spencer et al., 2016). However, it is still not clear if those changes 

may differ depending on timing and/or administration pattern differences.  
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1.3 ALCOHOL USE DISORDER AND PAIN 

Chronic pain affects millions of people in the world and chronic pain 

patients usually suffer comorbid emotional  disorders (e.g., anxiety,  depression)  
and cognitive deficits (e.g., memory impairment) (Bair et al., 2003; Bushnell et 

al., 2013; Fine 2011). Also the presence of pain has been reported to alter drug 

consumption, probably increasing the vulnerability of pain patients to suffer 

substance use disorders (SUDs) (Rosenblum et al., 2003; Potter et al., 2008). 

In fact, the interplay between pain and opioid abuse is nowadays profoundly 
studied due to the alarming data reporting an emerging opioid crisis, specially 

in the USA (Elman and Borsook 2016; Volkow and McLellan 2016). 

Moreover, clinical data have shown a positive correlation between persistent 

pain with an increased risk of developing AUD (Witkiewitz et al., 2015a). 

Therefore, this section gives first a general view of the AUD problematic, 
focusing on relapse. Following, it provides a brief description of pain effect on 

drugs motivational action on the MCLS and, finally the interaction between 

pain and AUD is analyzed.  
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Introduction1.3.1 ALCOHOL USE DISORDER: A RELAPSING 
DISEASE 

SUDs are chronic recurring diseases with a multifactorial etiology 

including genetic, neurobiological, psychological and environmental factors 

(Jupp and Lawrence 2010; Koob and Le Moal 2006). According to the 

Diagnostic and Statistical Manual of Mental Disorders (DSM, 5th edition), 

AUD is a problematic pattern of alcohol use leading to clinically significant 
impairment or distress. In Europe, AUD is highly prevalent (World Health 

Organization, WHO, regional office for Europe) and very resistant to 

pharmacological treatment (for detailed review see Litten et al., 2012).  

Data from latest EDADES study in Spain (2017), represented in Figure 
1.5, shows that the prevalence of alcohol consumption remains steady and 

greater to other drugs (75% of the population has consumed alcohol in the last 

year) and it sets the high-risk consumers prevalence in 5.7%. Also data form 

the WHO reveals that total amount of alcohol consumption per capita has not 

changed during the last 10 years (10 liters/year) and that data in Spain are 
equivalent to the average in Europe (Global status report on alcohol and health 

2018, WHO). Finally, it has been reported that approximately 200,000 of the 

population in Spain suffer from AUD (1.2% of men and 0.2% of women) 

(Rehm et al., 2012). These data are equivalent to other treatable chronic 

medical conditions such as schizophrenia (0.3-0.8%) (Ayuso-Mateos et al., 
2006). 
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Figure 1.5. Percentage of drug users (15-65 years) in Spain. Graphical 
representation adapted from the alcohol and drug survey in Spain by "Plan Nacional 
sobre Drogas” (Ministerio de Sanidad, Servicios Sociales e Igualdad 2017). 

Moreover, alcohol consumption not only constitutes a health problem by 
itself, but it has also been identified as an important risk factor for chronic 

disease and injury (Lim et al., 2012; Rehm et al., 2009). Data from the 

Global status report on alcohol and health 2018 (WHO) shows that the 

harmful use of alcohol resulted in an estimated 3 million deaths (5.3% of all 

deaths) globally in 2016. The leading contributors to those alcohol-attributable 
deaths were digestive diseases, unintentional injuries and cardiovascular 

diseases, being individually responsible for 21.3%, 20.9% and 19.0% of these 

deaths, respectively (Global status report on alcohol and health 2018, WHO). 

Finally, the costs associated with alcohol amount to more than 1% of the gross 

national product in high-income and middle-income countries, with the costs 
of social harm constituting a major proportion in addition to health costs 

(Rehm et al., 2009). 
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Introduction1.3.1.a Alcohol relapse is a crucial factor for AUD treatment 

Plenty of researches have described SUDs as chronic relapsing disorders 

characterized by alternating cycles of remission and relapse (Gossop et al., 

2003; Hser et al., 1993; White et al., 2002). Alcohol and, in general, drugs of 

abuse, induce changes in gene expression regulation, molecular alterations, and 

synaptic and cellular changes, being some of them persistent even after 
detoxification (Noori et al., 2012, Spanagel et al., 2013). Those alterations are, 

in part, responsible for a permanent risk of relapse in alcohol-dependent 

individuals. In fact, preventing relapse during long abstinence periods is 

nowadays the main clinical challenge that undergoes the therapeutical 

strategies for treating alcohol-dependent patients after detoxification 
(Johnson 2008).  

According to the WHO recommendations, prevention of relapse may 

involve psychosocial (a combination of psychological and social) and 

pharmacological interventions. Pharmacological interventions used in alcohol 
dependence for prevention of relapse include acamprosate, disulfiram, 

cyanamide, naltrexone and nalmefene (this last only in Europe). However, 

recent data reveal that there is still low efficacy of current interventions, hence 

at most 50% of treated people do not achieve remission after long follow up 

periods (Fleury et al., 2016).  

As prev ious ly ment ioned, AUD undergoes wi th severa l 

neuroadaptations derived from the excessive engagement of the reward 

system. The EOS plays an important role among those, being, therefore, the 

target for some of the existing pharmacological treatment for relapse and for 
the possible new ones still under preclinical and clinical investigations. 

Concretely, continued regular alcohol use can lead to (i) a decreased reward 
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function and (ii) an increased activation of brain stress systems, which 
motivates compulsive alcohol intake (Koob 2014). Regarding the first, several 

data confirmed a dysregulation of DA and EOS during abstinence both in 

alcohol dependent humans and rats (for a recent review see Hansson et al., 

2019). Precisely, a downregulation of MORs can be found during 

abstinence (Hermann et al., 2017; Hirth et al., 2016; Laukkanen et al., 2015; 
Oliva and Manzanares 2007). In fact, naltrexone and nalmefene produce their 

anti-relapse effects through the MOR (Heilig et al., 2011; Palpacuer et al., 

2015), although it is still not clear why they do not have a high impact in the 

clinical practice (Jonas et al., 2014; Palpacuer et al., 2018). Parallel to the 

decreased function of the reward system is the increase in stress related 
behaviors and negative affect, in which KORs and their endogenous ligand 

dynorphin play a critical role (Bruchas et al., 2010; Koob 2014). Prolonged 

alcohol exposure is related with an increased KOR sensitivity that facilitates 

negative affective states (Heilig et al., 2010; Meinhardt and Sommer 2015), as 

well as escalated alcohol consumption (Berger et al., 2013; Kissler et al., 2014; 
Walker and Koob 2008). For that, kappa antagonists also appear to be good 

candidates for pharmacologically prevention of alcohol relapse and they have 

shown to be effective in a preclinical setting (Domi et al., 2018; Harshberger et 

al., 2016; Walker et al., 2011). Unfortunately, the clinical development of this 

pharmacological strategy has not been achieved yet.  

After all, there is a general agreement about the necessity of deeper 

understanding the neurological mechanisms that mediate relapsing behaviors 

and the risk factors that could increase the vulnerability to relapse. A better 

insight of this phenomenon would, therefore, lead to the development of new 
pharmacological treatments that, together with psychotherapeutic 

interventions, would reduce the rate of alcohol relapse prevention. 
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Introduction1.3.1.b The ADE preclinical model for studying relapse behavior 

Nowadays, preclinical studies with appropriate animal models are still 

needed to investigate the neurobiology of relapse behaviors. These models are, 
obviously, not able to fully reproduce the complexity of the entire spectrum of 

AUD. However, decades of research support the hypothesis that animal models 

constitute an excellent platform for the development on new pharmacological 

treatments (Belin-Rauscent et al., 2016; Bell et al., 2012; Bossert et al., 2013; 

Ciccocioppo 2013; Vengeliene et al., 2008).  

Regarding the study of relapse, the Alcohol Deprivation Effect (ADE) is 

one of the most frequently explored relapse-related behaviors. Sinclair and 

Senter first reported in 1968 that rats exposed to long periods of voluntary 

access to ethanol, showed a robust but transitory increase in drug intake 

after a forced abstinence period, a phenomenon referred to as ADE (Sinclair 

and Senter 1968). Since then, the ADE has been so far described in rats (Herz 

1997; McKinzie et al., 2000; Rodd-Henricks et al., 2000; Sinclair and Li 1989; 

Spanagel and Holter 1999), but also in mice (Salimov and Salimova 1993), 

monkeys (Kornet et al., 1991) and even humans (Burish et al., 1981).  
However, in rats and mice, the occurrence and magnitude, as well as the 

duration, of the ADE are strongly dependent on the genetic background and 

thus a huge variability among strains is observed (Rosenwasser et  al., 2013, 

Vengeliene et al., 2003). Moreover, this phenomenon has been observed both 

in operant and non-operant self-administration paradigms (Martin-Fardon and 
Weiss 2013; Martí-Prats et al., 2015; Orrico et al., 2013). All this data further 

support that the ADE has a strong construct validity to be used in alcohol-

relapse research. In addition, current treatments used to treat AUD, such as 

acamprosate and naltrexone, are able to reduce or impair the ADE (Sinclair and 

Sheaff 1973; Spanagel and Holter 1999; Spanagel and Kiefer 2008). These 
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pharmacological confirmation provides prediction validity to this model for the 
development of new treatments.   

Another characteristic of this model is that, together with the increase of 

ethanol intake, the ADE has been reported to be resistant to manipulations of 

ethanol concentration, taste, and environmental factors (Spanagel et al., 1996; 
Wolffgramm and Heyne 1995; Vengeliene et al., 2009). This fact supports the 

idea that after an abstinence period, animals display a compulsive drinking 

behavior, which constitutes one of the main diagnostic criteria for AUD. This 

has been demonstrated by showing a resistance of the ADE to modification by 

changes in the palatability of ethanol via quinine or sucrose addition, or by 
manipulation of environmental and social conditions (Spanagel et al., 1996; 

Vengeliene et al., 2009).  

For all that, several recent studies in rodents have selected the ADE for 

studying the neurobiological mechanisms that mediate alcohol relapse as ell as a 
preclinical model for the development of new anti-relapse pharmacological 

treatments (Fredriksson et al., 2019; Gajbhiye et al., 2018; Quintanilla et al., 

2019; Martí-Prats et al., 2015a; Orrico et al., 2013; Söderpalm et al., 2019; 

Uhari-Väänänen et al., 2019; Zhou and Kreek 2019).   

 38



Introduction1.3.2 PAIN AND THE MCLS 

The International Association for the Study of Pain (IASP) defines pain 

as “an unpleasant sensory and emotional experience associated with actual 

or potential tissue damage, or described in terms of such damage” (http://

www.iasp-pain.org). The aversive emotions associated with pain are essential for 

its adaptive role. In healthy subjects, these alerting and aversive components 
trigger escape from danger and avoidance of future harm. When it becomes 

chronic, however, pain loses its survival value and becomes a medical problem. 

The MCLS plays an important role in the emotional aspects of pain and it 

has been reported that persistent pain can induce changes in this system. 

Therefore, this section starts by providing a general view of pain processing 
mechanisms and then describes the impact of pain on both the EOS and the 

motivational and reward processing (for a complete review see Taylor 2017).  

1.3.2.a Central mechanisms of pain 

The ascending nociceptive pathway begins with peripheral primary 

nociceptors. Primary nociceptors are bipolar neurons with one of their axonal 

branches innervating peripheral tissues (skin, muscles, joints, viscera). The 
primary nociceptors that innervate the body have their cell body located in the 

dorsal root ganglia (DRG), whereas the ones that innervate the face have their 

cell body located in the trigeminal ganglion. As specialized primary afferents, 

they are activated by noxious stimuli and transduce them into action potentials. 

Then, they conduct the generated action potential to the dorsal horn of the 
spinal cord through their second axonal branch. The nociceptive information is 

carried to the brainstem (spinoreticulothalamic tract) and to the thalamus 

(spinothalamic tract), constituting the ascending pathway. From these 

brainstem and thalamic loci, information reaches cortical structures (Fields 
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2004; Nestler et al., 2009). A simplified representation of pain ascending 
pathways can be found in Figure 1.6. Many brain areas are activated by pain, 

being some of them generally associated with the sensory-discriminative 

properties (such as the somatosensory cortex) and others with the emotional 

aspects (such as the anterior cingulate gyrus and insular cortex) (Basbaum et al., 

2009; Willis and Coggeshall 1991). 

Figure 1.6. Schematic representation of afferent pathways underlying the 
sensation of pain. Injury activates the primary afferent nociceptor, which transmits 
information to the dorsal horn of the spinal cord and activates the second order 
neurons. The axons of nociceptive dorsal horn neurons cross to the contralateral 
anterolateral quadrant to form an ascending tract, which terminates in the brainstem 
and several distinct areas of the thalamus. The thalamus contains higher order neurons 
that project to various cortical regions that mediate different aspects of the pain 
experience. These regions include somatosensory, anterior cingulate and insular 
cortices. (Adapted from Fields 2004) 
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IntroductionPain-associated cortical areas send descending axons to many brainstem 
regions that ultimately terminate in the spinal and trigeminal dorsal horn. This 

descending projections act as a modulatory system that regulates the output 

from the spinal cord, thereby inhibiting or amplifying the flow of painful 

stimuli. Initial work from Reynolds 1969 followed by Liebeskind and 

colleagues (Mayer et al., 1971; Mayer and Liebeskind 1974; Reynolds 1969) 
pointed to a specific region of the midbrain — the periaqueductal grey (PAG) 

as a key area in these top-down processes (reviewed in Baskin et al., 1986; 

Hosobuchi et al., 1977). The PAG receives direct inputs from the 

hypothalamus and from the limbic forebrain, including several regions of the 

frontal neocortex and the CeA. Afferents from the PAG arrive to the rostral 
ventromedial medulla (RVM) and the dorsolateral pontine tegmentum 

(DLPT), that, in turn, project to the spinal cord. A simplified representation of 

this descending pathway can be found in Figure 1.7. According to this 

circuitry, the PAG can indirectly control pain transmission by inhibiting or 

enhancing the activity of dorsal horn neurons that respond to noxious 
stimulation (Fields 2004). In addition, the RMV also plays an important role 

in pain regulation. Curiously, the activation of RMV neurons can both 

facilitate or inhibit pain transmission (Porreca et al., 2002; Urban and Gebhart 

1999). This mechanism is derived from the activity of two neuronal 

subpopulations: “on cells” and “off cells”, both present in the RMV that, 
respectively, facilitate or inhibit nociceptive transmission at the level of the 

dorsal horn (Fields et al., 1995; Fields 2004). 

It is now widely accepted that analgesic action of opioids is mediated by 

their action on this circuitry. At spinal level, MOR agonists can act on primary 
afferents (Stein et al., 2003) or nociceptive neurons in the spinal cord (Glaum, 

et al., 1994; Grudt and Williams 1994) and, therefore, directly inhibit pain 
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transmission. On the other hand, MORs are present in all the 

aforementioned supraspinal components of the pain-modulation circuit 

including the insular cortex, amygdala, hypothalamus, PAG, DLPT, RVM and 

spinal cord dorsal horn (Akil et al., 1998; Arvidsson et al., 1995; Mansour et 

al., 1988; Mansour et al., 1995). In fact, local microinjection of MOR agonists 

administered into all those regions has been shown to inhibit noxious 
stimulation (Burkey et al., 1996; Fields et al., 1991; Manning et al., 1994; 

Yaksh and Rudy 1978). In addition, endogenous opioid release is also involved 

in this pain-modulation mechanism. Indeed, the microinjection of an opioid 

antagonist at a downstream site in the pathway is able to block the effect 

produced by the local activation at a different level (Kiefel et al., 1993; 
Roychowdhury and Fields 1996; Tershner and Helmstetter 2000). 
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Introduction

Figure 1.7. Outline of opioid-sensitive pain-modulating circuit. This constitutes a 
top–down pathway that can be activated by both exteroceptive stimuli and certain 
motivational states. Limbic forebrain areas, including the ACC, other frontal cortical 
areas, the H and the amygdala project to the midbrain PAG, which can be considered 
as a main output pathway of the limbic system. The PAG, in turn, indirectly controls 
pain transmission in the dorsal horn through the RVM. This pathway can exert both 
inhibitory (blue) and facilitatory (red) control (Adapted from Fields 2004). 
Abbreviations: ACC, anterior cingulate cortex; H, hypothalamus; PAG, 
periaqueductal grey ; RVM, rostral ventromedial medulla; T, thalamus. 
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1.3.2.b Impact of chronic pain on the function of the EOS 

Chronic pain is considered a disease state that is mechanistically distinct 

from acute pain (Tracey and Bushnell 2009). Concretely, chronic pain is 

defined as pain that persists beyond normal healing time and therefore, has lost 

its physiological survival function (Treede et al., 2015).   

As commented above, the EOS plays an important role in pain 

modulation and its activation can inhibit pain sensation. However, several 

studies have shown that chronic pain correlates with changes in the EOS. 

Concretely, in humans, the positron emission tomography (PET) technique has 

been widely used to measure the availability of ORs in the brain of pain 
suffering patients. The most used tracer, [11C]diprenorphine, binds to MORs, 

DORs and KORsƒ with equal affinity, therefore the reported changes cannot 

be attributed to a concrete receptor type. In these studies, patients under 

different classes of chronic pain show a decrease of OR availability in many 

regions involved in pain processing when compared to healthy subjects. 
Those regions include the thalamus, PAG, anterior cingulate cortex (ACC), 

insular cortex and other cortical regions (Jones et al., 2004; Maarrawi et al., 

2007; Willoch et al., 2004). However, in human cross-sectional studies, 

findings cannot be directly attributed to the effect of the pain condition. In 

turn, the observed reduction in opioid binding could also be caused by the pain 
opioidergic treatment itself or even represent an intrinsic brain difference in 

people who might be prone to develop chronic pain.  

In addition, studies using animal models have reported a decrease of the 

antinociceptive effect of MOR agonists in DRG neurons, locus ceruleus, and 
the spinal cord (Aoki et al., 2014; Hurley and Hammond 2001; Jongeling et 

al., 2009; Shaqura et al., 2004; Zhang et al., 2004). As animals were not 
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Introductionreceiving any analgesic treatment, these loss of MOR function is therefore 
induced by the persistence of pain. Unfortunately, it is still not clear which 

are the neurobiological mechanism of this decrease in OR (or, concretely, 

MOR) function. One proposed explanation is that the reduced receptor 

availability is caused by an increase in the release of endogenous opioids that 

would be occupying the receptors (Porro et al., 1991; Zangen et al., 1998; 
Zubieta et al., 2001).  Another possibility is that pain induces a decrease in the 

expression of OR. Indeed, several data from animal studies further support this 

second hypothesis. Concretely, a decrease in both mRNA levels and protein 

expression of MORs has been found in the DRG and spinal cord of animals 

under different pain conditions (Obara et al., 2009; Obara et al., 2010; Pol et 
al., 2006; Zhang et al., 1998). 

Besides its role in pain processing, the EOS is also a key component of 

brain response to addictive drugs and natural reinforcers (see section 1.2). 

Therefore, it is logical to infer that chronic pain may extent its effects beyond 
the nociceptive processing system and somehow alter the normal function of 

the reward system. Unfortunately, until now this hypothesis has only been 

partially explored. Human PET studies have shown that chronic pain 

correlates with a decrease in OR availability in the striatum and, more precisely, 

a decrease in MOR availability in the NAc and amygdala (Brown et al., 
2015; Dossantos et al., 2012; Harris et al., 2007). Also a recent PET study in 

rats reported less OR binding in similar areas of chronic pain animals 

(Thomson et al., 2018). In this study, Thomson and collaborators also explored 

MOR expression in the striatum, that was reduced by the presence of chronic 

pain. Nevertheless, the concrete mechanism that elicits this pain-induced 
alterations remains poorly understood. 
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1.3.2.c Impact of pain on motivational and reward processing 

As previously mentioned, the MCLS is responsible for the expression of 

motivated behavior and reinforcement learning triggered by natural and drug 
rewards, but also for aversive stimuli encoding (Everitt and Robbins 2005; 

Koob and Volkow 2016; Salamone 2016). Since chronic pain, as previously 

described (section 1.3.2.b), is able to change the EOS function and the EOS 

plays an important regulatory function on MCLS DA neurons activity, it is 

logical to suppose that chronic pain could have an important impact in MCLS 
function.   

Latest human and animal studies have revealed that persistent pain 

negatively impacts on the motivational and reward processing, via altering the 

normal function of the MCLS (for a recent review see Taylor 2017). Studies 

in patients undergoing different pain conditions (chronic back pain, 
neuropathic pain, fibromyalgia, irritable bowel syndrome, headache, complex 

regional pain syndrome and osteoarthritis) and in rats with experimental pain, 

have reported functional, anatomical or molecular alterations in this system 

related to the presence of pain (Seminowicz et al., 2009). These investigations 

identified extensive changes in gray matter (Geha et al., 2008; May 2008), 
abnormalities in the white matter connectivity (Geha et al., 2008), and 

neurochemical modifications in glutamate, opioid and DA neurotransmission 

(Apkarian et al., 2009; Harris et al., 2007; Wood et al., 2007). Precisely, 

chronic pain states exhibit a reduced phasic DA singling (reviewed in Taylor 

et al., 2016) as reported by human imagining studies (Loggia et al., 2014) and 
in in vivo recordings (Ozaki et al., 2002; Ren et al., 2015; Taylor et al., 2015).  

In addition, human fMRI studies have revealed alterations in cortico-striatal 

connections in back pain suffering patients. In this longitudinal study, authors 

reported that, when pain persisted, brain gray matter density decreased. The 
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Introductionstudy also showed an increased functional connectivity between the ventral 
striatum (NAc) and PFC in subjects with persistence of pain (Baliki et al., 

2012).  

Moreover, pain condition has also been related to alterations in drug 

seeking behavior in preclinical studies (reviewed in Massaly et al., 2016). In 
fact, opiate-rewarding effects at regular doses were decreased by the presence of 

pain (Lyness et al., 1989; Narita et al., 2005; Ozaki et al., 2002; Taylor et al., 

2015; Wade et al., 2013) This effect appears to be mediated by a decrease in 

drug-induced DA release. Thus, morphine administration neither increased 

accumbal DA levels nor induced CPP in pain suffering animals (Narita et al., 
2005). Moreover, rats under neuropathic pain showed an altered opioid self-

administration profile when compared with the sham group, suggesting that 

pain was suppressing the positive reinforcing properties of these drugs (Martin 

et al., 2007), So, initially, the presence of pain could have been considered as a 

protective factor against the reinforcing effect of opioids. However, another 
self-administration study reported that, when using higher doses than the ones 

selected by Martin et al., 2007, rats under inflammatory pain significantly 

increased their intake only in the case of this higher dose (Hipólito et al., 

2015). And the increase was not related to changes in the analgesic effect of the 

different doses. This observation means that the presence of pain could 

promote an escalation in opioid consumption. In this way, pain-suffering 

subjects would seek higher doses of opioids to obtain the same DA levels as 

lower doses of drug provoke in healthy subjects. Unfortunately, the exact 

mechanism that could be mediating this phenomenon remains unknown. 

Moreover, it has neither been deeply examined, in a preclinical setting, wether 
this phenomena also occurs with other drugs of abuse, including alcohol.  
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Finally, motivation for natural rewards is also decreased in animals 
under pain condition. In this way, reward consumption was not altered when a 

natural reward was easily available (i.e., sucrose self-administration under a 

fixed-ratio operant responding task) (Okun et al. 2016; Schwartz et al., 2014). 

In this type of tasks animals do not need to invest a high amount of energy to 

perform the task and, therefore, obtain the reward. However, when the 
required effort increases, pain suffering animals showed less motivation for 

sucrose pellets (measured as a decrease in the progressive ratio breakpoint, PR) 

(Massaly et al., 2019; Schwartz et al., 2014). The PR schedule is frequently 

used in preclinical studies to measure motivation. In this type of studies, 

animals are required to press the lever a higher number of times (exponentially 
increasing) to obtain the next sucrose pellet. Concretely, animals under pain 

conditions showed a lower PR breakpoint, which means that they are less 

motivated to obtain a natural reward.  

The aforementioned data evidence that motivation and reward processes 
are altered in pain suffering individuals. However, the neurobiological basis of 

these alterations remain poorly discern. On the one hand, and given the 

previously described changes induced by pain in the EOS (section 1.3.2.b), it 

could be possible that pain is directly inducing changes in the local opioidergic 

control of the DA neurons activity. In this way, the dysregulation of MORs in 
the  MCLS, and, more concretely, in the VTA would induce changes in MORs 

modulation of VTA DA firing. On the other hand, it is also plausible that 

alterations in pain-processing pathways could indirectly alter the normal 

function of DA singling within this reinforcing pathways, without inducing 

local alterations. Finally, it could also occur that those two mechanisms 
simultaneously take place, increasing the complexity of pain effect on the 

MCLS.  
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Introduction1.3.3 EFFECT OF PAIN ON AUD 

During the last decades, there has been an increase in data evidencing the 

interrelation between pain and alcohol abuse (for review see Zale et al., 2015). 

Concretely, epidemiological data have reported the co-ocurrence of pain 

and alcohol use. Larson and colleagues showed, in a study with persons 

seeking treatment for AUD, that 75% of patients (from alcohol preferred 
group) reported moderate-to-severe past-month pain at least once during the 2-

year study period (Larson et al., 2007). Moreover, another study performed in 

older adults showed similar results. In this case, the prevalence of pain among 

problem drinkers (those that reported one or more drinking problems in the  

Drinking Problem Index) was higher (43%) that the observed among non-
problem drinkers (30%) (Brennan et al., 2005). Furthermore, an interesting 

correlation can be found in a study from Von Korff and colleagues that 

investigates comorbidity between chronic back and neck pain and other 

physical and mental disorders in the USA population. One of their findings 

was that patients with chronic spinal pain were at significantly increased risk of 
alcohol abuse and dependence (Von Korff et al., 2005).  

It has been reported that the presence of pain may alter alcohol 

consumption patterns. In fact, the presence of persistent pain is directly 

correlated with an increment in alcohol consumption and an increased risk 

of developing an AUD. Concretely, Witkiewitz and colleagues reported that 

the percentage of population that developed an AUD increased from 15% in 

the general population to 40-50% in chronic pain patients (Witkiewitz et al., 

2015a). Additionally, greater levels of pain intensity and unpleasantness are 

associated with increases in alcohol consumption and rates of hazardous 
drinking (Lawton and Simpson 2009). Evidence also indicates that pain could 
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act as a stressing factor and, hence, motivate alcohol abuse. Greater levels of 
alcohol consumption and an increase in the frequency of drinking problems 

have been detected in patients that report an stress-coping motivation for 

drinking (Holahan et al., 2001). In this line, patients under both chronic pain 

and SUDs reported pain as their primary reason for initiating alcohol or drug 

misuse (Sheu et al., 2008). Despite all this clinical evidence, very few studies 
have explored pain effect on alcohol consumption in a preclinical setting. The 

only existing results, though, appear to be in accordance with clinical data, as 

the presence of pain increased ethanol consumption in non-operant self-

administration models in mice (Butler et al. 2017; Yu et al., 2018). 

On the opposite, several researches have evidenced that an excessive 

alcohol consumption can be related with the appearance of pain problems. 

In fact, a long exposure to alcohol undergoes with functional and structural 

changes of many brain areas, what appears to contribute to the development of 

chronic pain among persons with AUD (Egli et al., 2012). Another pain 
problem derived from excessive alcohol consumption is the presence of 

hyperalgesia, that is an abnormally increased sensitivity to pain. This 

phenomenon has been reported to appear during abstinence periods in both 

human and animal studies (Gatch 2009; Jochum et al., 2010). On the 

opposite, it is important to note that animal and human studies have also 
showed that alcohol may have a pain-inhibitory effect (Ibironke and 

Oyekunle 2012; Perrino et al., 2008). This analgesic effect of alcohol has been 

suggested to be mediated by the opioid system (Campbell et al., 2007). 

However, this would represent a short-term effect, as it tends to diminish 

following 10-12 days of alcohol administration (Gatch and Lal 1999). 
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IntroductionAs previously highlighted, relapse constitutes one of the main obstacles 
that hampers the correct treatment of AUDs (see section 1.3.1). In this line, it 

is also important to highlight a clinical study showing that higher levels of 

pain correlated with a higher risk of relapse (Jakubczyk et al., 2016). One of 

the main characteristics of AUD is the abnormal persistence of negative 

affective states during withdrawal, that can promote drug seeking and relapse 
(Edwards and Koob 2010). Similar negative affective states are also frequently 

elicited by pain, driving to alterations in reward evaluation, decision making 

and motivation (Apkarian et al., 2013) (see section 1.3.2). Therefore, it would 

be possible that the presence of pain in AUD patients may exacerbate this 

negative affective state and constitute an important risk factor for relapse. 
Unfortunately, there is still a lack of studies that further deep in the 

mechanisms underlying the impact of pain on alcohol relapse.  
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The general aim of the present Thesis is to explore inflammatory pain-

induced alterations of the EOS modulation over the dopaminergic MCLS and 

to investigate wether those alterations could impact on ethanol relapse in 
animal models. Different experiments have been designed in order to achieve 

the following concrete objectives: 

 O1  To investigate the effect of inflammatory pain on MORs  

  function in the MCLS. 

 O2 To study the neurochemical and behavioral consequences  

  elicited by inflammatory pain on ethanol reinforcing properties. 

 O3 To explore the effect of inflammatory pain on alcohol relapse,  
  concretely in the ADE in long-term experienced animals. 
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3.1 ANIMALS 

Male albino Wistar rats (Envigo, n=20) were used for long term non-

operant ethanol self-administration and Sprague-Dawley (Envigo, n=183) were 

used for immunohistochemical, neurochemical and behavioral studies, all 
weighting between 300 and 340 g at the time of surgery. Rats were housed in 

plastic cages (48 x 38 x 21 cm3) with controlled humidity and temperature 

(22°C), a 12/12-h light/dark cycle (on 08:00, off 20:00), and free access to 

food and water before starting the experiment. After surgery and/or during 

experiments, rats were housed in individual rectangular plastic cages (48 x 38 x 
21 cm3), located side by side in order to prevent the influence of chronic stress 

on performance due to isolation, with free access to regular chow and water. All 

the procedures were carried out in strict accordance with the EEC Council 

Directive 86/609, Spanish laws (RD 53/2013) and animal protection policies. 

Experiments were approved by the Animal Care Committee of the University 
of Valencia and authorized by the Regional Government. 

3.2 DRUGS AND CHEMICALS 

Artificial Cerebrospinal Fluid (aCSF) 

All the experiments with intra-VTA drug administration were performed 

using aCSF solutions as vehicle. Two kinds of aCSF solution were prepared due 

to the different needs of the experimental techniques (microdialysis and 

microinjection procedures). The aCSF solution for microdialysis consisted of 

0.1 mM aqueous phosphate buffer containing 147 mM NaCl, 3 mM KCl, 1.3 
mM CaCl2, 1 mM MgCl2. The pH of the solution was adjusted to 7.4 

(Santiago and Westerink 1990). The composition of the aCSF for intracranial 

microinjections consisted of 120.0 mM NaCl, 4.8 mM KCl, 1.2 mM 
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KH2PO4, 1.2 mM MgCl2, 25.0 mM NaHCO3, 1.2 mM CaCl2, 10.0 mM D-
glucose and 0.2 mM ascorbate. In this case, the pH of the solution was 

adjusted to 6.5 (Martí-Prats et al., 2015b). 

DAMGO 

DAMGO (D-Ala2, N-MePhe4, Glyol5-enkephalin, Sigma Chemical Co) 
is an OR agonist with specific selectivity for the MOR (Gillan and Kosterlits, 

1982). Its chemical structure can be found in Figure 3.1. The DAMGO     

powder was dissolved in distilled water to obtain a 1 mM solution. This stock 

solution was kept frozen at -20°C as aliquots until use. Prior to use, aliquots 

were conveniently diluted with aCSF to the appropriate concentration (see 
experiment I in section 3.6, and experiment II and experiment III in section 

3.7) (Hipolito et al., 2015). 

 Figure 3.1 DAMGO chemical structure (Molecular Weight: 513.5 g/mol). 

β-Funaltrexamine hydrochloride (β-FNA) 

Stock solutions of the irreversible MORs antagonist, β-FNA ((E)-4-

[[(5α,6β)-17-(Cyclopropylmethyl)-4,5-epoxy-3,14-dihydroxymorphinan-6-
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yl]amino]-4-oxo-2-butenoic acid methyl ester hydrochloride) (Sigma), were 
prepared by dissolving the compound in the correct volume of distilled water 

to obtain a 13.6 mM concentration of β-FNA. Aliquots of these solutions were 

then kept frozen at −20°C until use. Prior to use, aliquots of the stock solutions 

were conveniently diluted with aCSF solution to the appropriate concentration 

(8.3 mM) (Sánchez-Catalán et al., 2009). β-FNA hydrochloride chemical 

structure can be found in Figure 3.2. 
 

Figure 3.2 β-FNA hydrochloride chemical structure (Molecular Weight: 491 g/
mol). 

Ethanol 

The solution used, 96% v/v ethanol, was purchased from Scharlau. For 

subcutaneous administration ethanol was conveniently diluted with sterile 

normal saline to the appropriate concentration (1.5 g/kg in 2 mL). For non-

operant self-administration experiment, ethanol was diluted with tap water to 

three different concentrations (5%, 10% and 20% (v/v)). 

Other reagents 

All other reagents needed for the different experimental procedures used 

in the present work were of the highest commercially available grade. 
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3.3 SURGICAL AND POST-SURGICAL CARE 

Rats were anaesthetized with ketamine hydrocloride/xylazine 

hydrochloride (Esteve veterinary) (80 mg/kg of ketamine and 10 mg/kg of 
xylazine, i.p.) or isoflurane (Esteve veterinary) (1.5 MAC, inhalatory, VetMet) 

depending on the experiment. The anesthetic drugs used were changed over the 

period of time during the course of experiments in order to both reduce animal 

suffering (e.g., faster recovery with the inhalators anesthesia and more control 

of effect duration) and to improve the method (e.g., reduce the surgery time). 
Once deeply anaesthetized, rats were placed in a stereotaxic apparatus 

(Stoelting, USA). The skin was disinfected with povidone-iodine complex 

solution (10%) and, following, an incision was made over the skull (8-10 mm), 

covering the wounds with lidocaine gel (3%) (compounded) (see Figure 3.3). 

The surgical procedure was necessary for three different experimental protocols 
(immunohistochemical, microdialysis and CPP studies) that will be described 

in sections 3.6, 3.7 and 3.8.1.  

For microdialysis experiment II and experiment III, rats were 

implanted with bilateral vertical concentric-style microdialysis probes into the 
NAc (anteroposterior: +1.5 mm, mediolateral: ±1.6 mm and dorsoventral: -8.0 

mm from bregma, according to Paxinos and Watson 2007). They contained 2 

mm of active membrane (Hospal AN69; molecular cutoff 60,000 Da) and were 

constructed according to Santiago and Westerink 1990 (described in section 

3.7.1). Then, probes assemblies were secured in place with dental cement. 

For immunohistochemical and CPP studies, the surgery was performed 

with the objective of implanting one (for immunohistochemical experiment I) 

or two (for CPP experiment V, experiment VI and experiment VII) guide 
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cannulae for intra-VTA drug administration. In this way, animals were 
implanted with 28-gauge guide cannulae (Plastics One) aimed at 1.0 mm 

above the VTA. The coordinates relating to bregma and skull surface (Paxinos 

and Watson 2007) were as follows: anteroposterior: −6.0 mm; mediolateral: 

±1.9 mm; dorsoventral: −7.8 mm. Cannulae were angled toward the midline at 

10º from the vertical (all the measurements in the dorsal-ventral plane refer to 
distances along the track at 10º from the vertical). Cannulae assemblies were 

secured in place with dental cement. A stainless-steel stylet (33-gauge, Plastics 

One), extending 1.0 mm beyond the tip of the guide cannula, was put in place 

at the time of surgery and removed at the time of testing. 

Figure 3.3 Surgical implantation of the microdialysis probe  
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3.4 INFLAMMATORY PAIN MODEL 

The Complete Freund Adjuvant (CFA) model of inflammatory pain 

was selected. The CFA consists of heat-killed Mycobacterium tuberculosis in 

non-metabolizable oils (paraffin oil and mannide monooleate). CFA 
(Calbiochem) was diluted in the same volume of sterile saline before its 

subcutaneous injection (0.1 mL) in the plantar surface of the hindpaw 

(Hipólito et al. 2015). The CFA injection induces local inflammation, paw 

swelling, and pain (see Figure 3.4), which persist for at least 2 weeks after 

injection (Chang et al., 2010). 

With the objective to assess the level of inflammation induced by CFA 

injection, the dorsoventral distance of the rats injected hindpaw was measured 

and compared to the contralateral hindpaw distance. This measurement was 

performed right before sacrifice. 
 

For the CPP experiment, we tested the nociception thresholds before 

and after 2 and 9 days of intraplantar injections. Following 20 min of 

habituation to the apparatus, nociception thresholds were measured by the 

manual application of five filaments (Aesthesio®) with a simplified up-down 
method, as described in Bonin 2014 (Bonin et al., 2014). Results were 

expressed by the mean of nociception threshold (in grams, g). 
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ethodsFigure 3.4 CFA inflammatory pain model. CFA treated hindpaw (left) and 

contralateral (right) 48 hours after the s.c. injection  

3.5 MICROINJECTION PROCEDURE 

All the intra-VTA drug microinjections were carried out with 33-gauge 

stainless steel injectors (Plastics One), extending 1.0 mm below the tip of the 
guide cannulae. Injectors were attached to a 25 mL Hamilton syringe by using 

PE-10 tubing. Microinjections were performed using a syringe pump (Kd 

Scientific) which was programmed to deliver a total volume of 200 nL in 20 s 

(flow rate of 0.6 mL/min) with the exception of the β-FNA injections in which 

the syringe pump was programmed to deliver a total volume of 300 nL in 2 

min (flow rate of 0.15 μL/min). Following the infusion, the injector remained 

in place for 1.5 min to allow the diffusion of the drugs, and then it was 
removed. All the injections were carried out in the experimental room. 
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3.6 IMMUNOHISTOCHEMICAL STUDIES 

A immunohistochemical procedure was selected to measure cFos 

expression, an immediate early gene traditionally used as an indicator of 

neural activation (Kovacs 2008). There are several reasons that make cFos the 

most widely used functional anatomical marker of activated neurons within the 

central nervous system: (i) at basal condition it is expressed at low levels all over 

the brain; (ii) several extracellular signals have been shown to induce its 

expression; (iv) cFos expression (mRNA or protein) detection can be easily 
carried out; (v) its expression detection can be combined with other markers. 

In experiment I, cFos induction was measured in different brain regions 

to achieve part of the concrete objective O1, investigate the effect of 

inflammatory pain on MORs function in the MCLS. For that, experiment I 
was divided in two parts: 

i. Experiment Ia: Study of the effect of the activation of VTA 

MORs by an agonist (DAMGO) on cFos expression in projection 

areas. The different groups planned for this experiment, depending on 
the VTA treatment, were: saline + aCSF (n=6), saline + DAMGO 7ng 

(n=6) and saline + DAMGO 14ng (n=6).  

ii. Experiment Ib: Study of the impact of inflammatory pain on 

the effect of DAMGO intra-VTA injected on cFos expression in 

projection areas. The different groups planned for this experiment, 

depending on the VTA treatment, were: CFA + aCSF (n=6), CFA + 

DAMGO 7 ng (n= 6) and CFA + DAMGO 14 ng (n= 6). 
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3.6.1 WORKING SOLUTIONS 

The following solutions were used for the perfusion procedure. 

Phosphate Buffer (PB) and Phosphate Buffer Saline 10x (PBS 10x) were stored 

at room temperature and Phosphate Buffer Saline 1x (PBS) and 

Paraformaldehyde (PFA) 4% in PB were freshly prepared before each perfusion.  

Phosphate Buffer (PB) 0.4M

Sodium phosphate dihydrate 13.8 g

Disodium phosphate 42.58 g

Distilled water q.s. 1 L

pH 7.4

Paraformaldehyde (PFA) 4% in PB 0.1 M

Paraformaldehyde 37% 100 mL

PB 0.4M 250 mL

Distilled water q.s. 1 L

Phosphate Buffer Saline 10x (PBS 10x)

Sodium phosphate dihydrate 3.9 g

Disodium phosphate 10.65 g

Sodium chloride 83 g

Distilled water q.s. 1 L
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For the immunohistochemical procedure the following solutions were 

prepared and  stored at 4°C until use: 

  

Phosphate Buffer Saline 1x (PBS)

PBS 10x 100 mL

Distilled water q.s. 1L

Sucrose 30% in PB

Sucrose 300 g

PB 0.4M q.s. 1 L

Tris 0.5 M

Trizma® base 60.55 g

Distilled water q.s. 1 L

Trizma Buffer (TB) 0.05M

Tris 0.5M 100 mL

Distilled water q.s. 1 L

pH 7.6

Trizma Buffer Saline (TBS)

Sodium chloride 9 g

TB 0.05M q.s. 1 L
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3.6.2 EXPERIMENTAL PROCEDURE 

3.6.2.a Perfusion and tissue obtention 

48 hours after surgery rats were unilaterally microinjected with 200 nL of 
aCSF or one of the two DAMGO doses into the VTA. 90 minutes after the 

drug microinjection, animals were deeply anaesthetized with isoflurane and 

transcardially perfused through the left ventricle with 200 mL of PBS followed 

by 300 mL of 4% PFA in PB 0.1M. Following, brain was extracted, 

maintained in PFA solution for 20 hours at 4°C and then transferred to a 30% 
sucrose solution in PB for 4 more days at 4°C before freezing them at -80°C 

until sectioning. Finally, 40 mm sections were obtained with a microtome and 

collected in 30% sucrose solution in PB in 4 parallel series, as described in 

Zornoza et al., 2005. 

3.6.2.b cFos immunohistochemistry 

The immunohistochemistry was the technique selected for the 

determination and quantification of the cFos protein expression among the 

brain regions selected for the study. Sections for the different areas were selected 

according to the rat brain atlas (Paxinos and Watson 2007). 

TBS-Tx100 (10%)

Triton-Tx 100 10 mL

TBS 90 mL
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Sections selected were transferred to TBS and sequentially incubated 
(including 3x5 min TBS rising between incubations) in: 1) 1% hydrogen 

peroxide in TBS (30 min), 2) 5% goat serum (Sigma) in TBS-0.3%TX (90 

min), 3) anti-cFos polyclonal antibody (1:1000, Santa Cruz) overnight at 4ºC, 

4) biotinylated anti-rabbit antibody (1:200; Vector Labs) (120 min), 5) avidin–

biotinylated peroxidase complex (1:200; ABC Elite Kit; Vector Labs) (30 min). 
Then the reaction was visualized by incubating with diaminobenzidine 

(SigmaFAST, Sigma) (30 min). Finally, sections were mounted on slides with 

0.2% gelatin in TB, dehydrated in alcohols, cleared and coverslipped with 

Eukitt® for microscopical examination. The schedule of the experiment I is 

showed in schematic manner in Figure 3.5. 

Figure 3.5 Scheme diagram of the experimental procedure experiment I. 

3.6.3 IMAGE ANALYSIS  

Quantification of the cFos immunoreactive cells (cFos-IR) was 

performed in the following brain regions: NAc, BLA, ACC, prelimbic cortex 
(PL), infralimbic cortex (IL), BNST and VP (Paxinos and Watson 2007). A 

schematic diagram of the different brain areas selected for study is shown in 

Figure 3.6. Two sections per each animal and area were selected and images 

were digitalized by using a microscope (Leica) equipped with a CCD camera. 
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The 10x objective was selected to obtain frames of 1026 x 769 mm and the 
counting of the stained nuclei per frame was carried out using the Multipoint 

plugin of the software Image J (NIH). The experimenter was blind to 

experimental grouping throughout images acquisition and processing. 

 

Figure 3.6 Schematic diagram of the brain areas selected for the 
immunohistochemical study. Numbers indicate distance from anterior to bregma. 
Abbreviations: ACC: anterior cingulate cortex, PL: prelimbic cortex, IL: infralimbic 
cortex, NAc: nucleus accumbens, VP: ventral pallidum, BNST: bed nucleus of the 
stria terminalis, BLA: basolateral amygdala. Adapted from Paxinos and Watson 2007. 
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3.6.4 DATA ANALYSIS 

Data from experiment Ia and experiment Ib were analyzed independently 

since they were performed at different timing and consequently 

immunohistochemistry experiment was run separately. After testing for 

normality with the Shapiro-Wilk test, the average number of cFos-IR under 

different conditions (experiment, brain area and intra-VTA treatment) was 
calculated. Data are expressed as mean ± SEM and were analyzed using a one-

way ANOVA, followed by Tukey’s test. Homogeneity of variance was tested 

before the ANOVA was performed, and the significance level was always set at 

p=0.05. When the assumption of the homogeneity of variances was violated, 

number of cFos-IR were analyzed using Brown-Forsythe test of equality of 
means, followed by Games-Howell. Differences between dorsoventral 

measurements of both hindpaw of the CFA-treated animals were analyzed 

using a t-test for paired samples. Statistical analyses were performed with IBM 

SPSS statistics 19 software. 

3.7 NEUROCHEMICAL STUDIES 

The study of the effect of different treatments on the dopamine (DA) 
levels in NAc of the rats was performed using the in vivo microdialysis 

technique. This method allows us the measurement of the changes in the DA 

levels in the extracellular space without significant disturbance of the 

intracellular/extracellular volumes of the brain area studied. Moreover, 

microdialysis allows the local administration through the dialysis membrane of 
different pharmacologic agents (retrodialysis application of drug) (Cano-

Cebrian et al., 2005). This technique has been set up and validated in our 
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experimental conditions while it has been continuously used for our group in 
the last decades. 

3.7.1 MICRODIALYSIS PROBES 

As it has been explained above, microdialysis allows the continuous 

measurement and the administration of substances due to the implantation, in 
a concrete brain area, of a probe provided with a dialysis membrane with 

permeability for water and some small size molecules depending on the nature 

of the membrane (Cano-Cebrian et al., 2005).  The dialysis membrane is 

situated between two liquid compartments: the extracellular space and the 

perfusion liquid (aCSF) that is constantly flowing, in a well-known rate, inside 
the probe. An interchange of molecules between the extracellular water and the 

perfusion liquid is taking place through the dialysis membrane as a 

consequence of the concentrations gradient.  

In the present work, DAMGO will reach the brain tissue through the 
dialysis membrane whereas DA will diffuse inside the probe making possible 

the sampling of the extracellular levels in real time. These phenomena are 

schematically represented in the Figure 3.7. 
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Figure 3.7 Schematic representation of the microdialysis fundament. 
Abbreviations: C1drug: inflowing drug (for example, DAMGO) concentration, 
C2drug: outflowing (dialysate) drug concentration (C1>C2), Cdrug: drug 
concentration that reach the brain tissue, CDA: dialysate DA concentration 

The vertical concentric-style microdialysis probes with 2 mm of active 

membrane were hand-manufactured (Figure 3.8) according to the protocol of 

Santiago and Westerink 1990. The materials selected for constructing the 

microdialysis probes were: 

• Dialysis membranes: poliacrilonitril membranes Hospal® (AN69), with 

a 60000 Da molecular cutoff (Bologne, Italy). The inlet diameter size was 

220 µm and the outlet 300 µm. 

• Silica tube: 75 µm of inlet diameter and 150 µm of outlet diameter. 

• Polietilen tube: non-sterile polyethylene tubing (Portex limited, 
England) with 0.38 mm of inlet diameter and 1.09 mm of outlet diameter. 
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• Needles:   25 G y 20 mm long needles were used to construct the inlet 
tube of the probe. 

• Cyanoacrylate (Loctite ©) glue and Araldit © and Poxipol © resins 

were employed. 

Figure 3.8 Assembling of the microdialysis probe parts (left) and photography of 
a microdialysis probe (right) 

3.7.2 EXPERIMENTAL PROCEDURE 

Forty-eight hours after the stereotaxic surgery, animals were placed in 

Plexiglass bowls. A PE10 inlet tubing was attached to a 2.5  mL syringe 

(Hamilton) mounted on a syringe pump (Harvard instruments, South Natick, 

MA, USA) and connected to the probes. Probes were continuously perfused 
with aCSF at a flow rate of 3.5 µL/min. Following a minimum stabilization 

period of 1 hour, samples were collected every 20 min and extracellular DA 

levels were determined by using offline HPLC with electrochemical detection. 

The HPLC system consisted of a Waters 510 series isocratic pump in 

conjunction with an electrochemical detector (Mod. Decade, Antec, Leyden, 
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The Netherlands). The applied potential was  =  0.55  V (ISAAC cell, Antec, 
Leyden, The Netherlands). Dialysates were injected into a 2.1  mm RP-18 

column (Phenomenex, Gemini-NX 3  µm, 100  ×  2.00  mm) with a 65 µL  

sample loop. The mobile phase consisted of a sodium acetate/acetic acid buffer 

(0.05 mol/L, pH = 6) containing 140 mmol/L of sodium chloride, 200 mg/L 

of 1-octanesulfonic acid, 100 mg/L of EDTA and 150 mL/L of methanol. The 
mobile phase was pumped through the column at a flow rate of 0.06 mL/min. 

Chromatograms were analyzed and compared with standards run separately on 

each experimental day, using the AZUR 4.2 software (Datalys, France). Once 

the baseline (defined as three consecutive samples with less than 10% of 

variation) was established, drugs were administered by retrodialysis in NAc, by 
microinjection into the VTA or by subcutaneous injection depending on the 

considered experiment. Treatments by retrodialysis were applied for 20 min in 

order to minimize the concentration gradient around the probe and, therefore, 

to maximize the anatomical specificity of the pharmacological treatments (i.e., 

to reduce the spread of the perfused drug to distant sites to the desired brain 
region). After treatments, DA levels in dialysates were monitored each 20 min 

for no less than 100 min. 

3.7.3 EXPERIMENTAL DESIGN 

Microdialysis experiments were conducted in order to achieve part of the 
two concrete objectives of the present work:  

O1, to investigate the effect of inflammatory pain on MORs function in 

the MCLS. Concretely by testing pain modulation of DAMGO-evoked DA 

release over the VTA-NAc pathway. 
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O2, to study the “neurochemical" and “behavioral” consequences elicited 
by inflammatory pain on ethanol reinforcing properties. Concretely, by testing 

pain modulation of ethanol-evoked DA release in the NAc. 

Toward this end three microdialysis studies were planned: 

A. Experiment II: Study of the effect of inflammatory pain on 

DAMGO-evoked DA release in the NAc. The DAMGO dose (10 µM), 

selected from previous work conducted by our group and others (Hipólito 

et al., 2008; Hirose et al., 2005), was perfused during 20 min through the 

microdialysis probe into the NAc. A schematic diagram of the procedure 
can be found in Figure 3.9A. Therefore, two experimental groups (n=5/

group) were planned: saline + DAMGO 10 µM and CFA + DAMGO 10 

µM 

B. Experiment III: Study of the effect of inflammatory pain on VTA 

DAMGO-evoked DA release in NAc Two different DAMGO doses (7ng/

200nL or 67ng/200nL) were selected to be administered directly into the 

VTA with the objective of studying DA release in the NAc. With this 

purpose 4 experimental groups (n=5/group) were planned: saline + 

DAMGO 7ng; saline + DAMGO 67ng; CFA + DAMGO 7ng and CFA + 
DAMGO 67 ng. A schematic diagram of the procedure can be found in 

Figure 3.9B. 

C. Experiment IV: Study of the effect of inflammatory pain on 

systemic ethanol-evoked DA release in NAc. In this experiment ethanol 
was subcutaneously administered at a dose (1.5 g/kg) that has previously 

shown to elicit DA release in the NAc (Peters et al., 2017). However, as 
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acute stressful stimuli can also increase DA levels in the NAc (Abercrombie 
et al., 1989), in this study we first administered 2 mL of saline (s.c.) and 

DA levels were analyzed every 20 min for 100 min as a control for the 

possible effect of the s.c.  injection itself. Right after, a single s.c. ethanol 

dose (1.5 g/kg diluted in 2mL of saline) was administered and DA levels in 

the dialysates were analyzed for 160 min more. Following this protocol, 
two experimental groups (n=9/group) were planned: saline + saline + 

ethanol and CFA + saline + ethanol. Figure 3.9C shows the experimental 

protocol in a schematic view.  

Figure 3.9 Schematic diagram of the experimental procedure in experiment II (A), 
experiment III (B) and experiment IV (C). 
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3.7.4 DATA ANALYSIS 

In all experiments, basal levels of DA (mean ± SEM) were expressed as 

fmol in 65 µl. Four basal values were averaged to obtain a basal level for each 

animal. Differences in basal levels between groups (pain and pain-free animals) 
were evaluated using the unpaired Student's t-test.  

DA levels were also transformed to percentages of baseline (defined as the 

average value of DA level in three consecutive samples differing in less than 

10% in DA content) for each individual rat  and were statistically analyzed by a 
mixed two-way ANOVA for repeated measures, with group (saline or CFA 

injection) taken as the between factor and time as the within-subjects factor. 

Significant interaction time x group was further analyzed by means of a 

Bonferroni correction for multiple comparisons. Significant effects of time in 

each individual group were analyzed by one-way ANOVA with repeated 
measures per each group followed by Bonferroni multiple-comparisons test and 

post-treatment values were compared to the last baseline measure. 

In experiment II and experiment III areas under the curve (AUC) were 

calculated from 0 to 80 min for each rat from percentage data and statistically 
analyzed by using the unpaired Student's t-test. In experiment IV, AUC values 

were calculated from 0 to 100 min for the post-saline effect and from 100 to 

200 min for the post-ethanol effect for each rat from percentage data. These 

values were statistically analyzed by mixed two-way ANOVA with repeated 

measures with group as a between-subjects factor and treatment (saline and 
ethanol) as a within-subjects factor followed by Bonferroni corrections for 

multiple comparisons when interactions were found to be significant. In all 

cases, homogeneity of variance was tested before the ANOVA was performed, 

and the significance level was always set at p=0.05. 
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3.8 BEHAVIORAL STUDIES 

3.8.1 CONDITIONED PLACE PREFERENCE 

In the preclinical set up, one of the paradigms widely accepted to 

approach context-drug associations is the CPP. Rats can develop a preference 

for an environment due to the association of this context with the reinforcing 
properties elicited by the drug through its activation of the MCLS. Therefore, 

it constitutes an appropriate paradigm to study the possible effects of pain on 

ethanol reinforcing properties and it has also been used to study these pain-

induced alterations on opioid mesolimbic activation (Narita  et al., 2005; 

Ozaki et al., 2002). For all that, CPP experiments were planned to achieve the 
second part of the concrete objective O2, to study the “neurochemical" and 

“behavioral” consequences elicited by inflammatory pain on ethanol 

reinforcing properties. And, more precisely, to  test the effect of inflammatory 

pain on intra-VTA ethanol induced CPP. Nonetheless, it is important to 

highlight  that in the previous existing literature there is a lack of CPP studies 
with focal administration of ethanol into the VTA. Due to this fact, initial 

experiments were planned in order to characterize the ability of ethanol 

administered directly into the VTA to induce CPP and to test the role of 

MORs in this behavior. 

3.8.1.a Experimental procedure 

The CPP test was performed in a home-made two-compartment box 

connected by a removal barrier with an open door in the middle. The two 

compartments  (30 x 30 x 30 cm) differed by the wall color: black and white 
vertical stripes (vertical compartment) and black and white horizontal stripes 

(horizontal compartment) (Figure 3.10). Previous studies performed in our 
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laboratory with naïve Wistar rats showed no innate preference of rats for any of 
the two compartments, clearly suggesting the non-biased character of the 

apparatus. All the experiments were conducted in an isolated room with soft 

white light illumination.  

Figure 3.10 Picture of the CPP apparatus used in the present experiments 

Prior and posterior to the surgery, animals were handled every day for 4 
days. After recovery of surgery, animals were exposed to the CPP box for 5 min 

in order to habituate them to the apparatus. The day prior to the conditioning, 

animal natural preference for the compartments was tested during 15 min 

(Pretest). During the conditioning phase, rats received bilateral intra-VTA  

(aCSF or ethanol) infusions before placing them in the compartment 
associated to the drug or to aCSF administration (time out less than 30 sec). 

All conditioning phases consisted on 8 sessions (2 sessions/day: morning 

session and afternoon session) of 30 min distributed in 4 days. Animals were 

randomly assigned to the experimental or control group and the exposure to 

conditioning compartments was counterbalanced in both groups. After the last 
conditioning session, each animal was tested for its place preference (Test): the 

rat was placed in the open door of the barrier, and the time spent in each 
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compartment was recorded over 15 min. The present protocol has been 
previously used in our group by Hipólito and collaborators (Hipólito et al., 

2011). 

As a control for the effect of ethanol administration by itself, an 

additional group, the so-called ethanol-unpaired control group, was designed. 
In animals belonging to this group, the association of 70 nmol ethanol 

administration with the compartment was alternated between days (i.e., 

horizontal compartment on day 1, vertical compartment on day 2 and so on).  

Place preference scores were calculated as Test minus Pretest time spent 
(in seconds) on the ethanol-paired compartment. 

3.8.1.b Experimental design 

To achieve the previously described objectives the following CPP 

experiments were conducted: 

A. Experiment V: Intra-VTA ethanol dose response for CPP 

Following the previously described procedure, 37 rats (n=7-8 per 

group) were randomly assigned to one of the four experimental groups 

receiving after a bilateral intra-VTA infusion (20 sec) a total ethanol 

dose of: 35 nmol, 70 nmol, 150 nmol and 300 nmol. Doses were 

selected from our previous published experiments covering from low to 
high doses (Martí-Prats et al., 2013, Sánchez-Catalán et al., 2009). 

Control group animals (n=7) received 8 administrations (20 sec) of the 

equivalent volume of aCSF meanwhile the other groups received 

ethanol or aCSF on alternate sessions (Figure 3.11A). Therefore, all the 
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planned experimental groups were: aCSF, 35 mol, 70 nmol, 150 nmol, 
300 mol and unpaired 70 mol. 

B. Experiment VI: MORs role in ethanol CPP acquisition 

In this study, 29 animals received two bilateral intra-VTA pre-

treatments with 2.5  nmol of the MORs selective antagonist β-FNA or 

aCSF on the days prior to the first and third conditioning sessions (as 

previously used in Sánchez-Catalán 2009 (Sánchez-Catalán et al.,  

2009). Then, during conditioning, rats received either 70 nmol of 

ethanol and aCSF (experimental group) or only aCSF (control group). 
(Figure 3.11B). Hence, the different groups planned for this 

experiment were: aCSF + aCSF, aCSF + ethanol 70 nmol, β-FNA + 

aCSF and β-FNA + ethanol 70 nmol. 

C. Experiment VII: Effect of inflammatory pain on intra-VTA 

ethanol-induced CPP 

In this study, 27 rats (n=5-7 per group) were randomly assigned to one 

of the two hindpaw treatments (saline or CFA) and one of the two 

intra-VTA ethanol doses (52 nmol and 70 nmol). Control group 
animals (n=7) with no hindpaw treatment received 8 administrations 

of the equivalent volume of aCSF meanwhile the other groups received 

ethanol or aCSF on alternate sessions (Figure 3.11C). According to 

that, the different groups planned for this experiment were: control 

(aCSF), saline + ethanol 52 nmol, CFA + ethanol 52 nmol, saline + 
ethanol 70 nmol and CFA + ethanol 70 nmol. 
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Figure 3.11 Schematic diagram of the experimental procedure for experiment V 
(A), experiment VI (B) and experiment VII (C). 
 

3.8.1.c Data analysis  

Results are expressed in preference score, calculated as time spent in 

ethanol paired compartment during Test minus time spent in the same 
compartment during Pretest. Preference scores are expressed as mean ± SEM 

and were analyzed using one-way ANOVA, followed by Tukey’s (experiment V 
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and VI) or LSD (experiment VII) adjustment for multiple comparisons. 
Homogeneity of variance was tested before the ANOVA, and the significance 

level was always set at p=0.05. When the assumption of the homogeneity of 

variances was violated, preference scores were analyzed using Brown-Forsythe 

test of equality of means, followed by Games-Howell test. 

For the Von Frey test results are expressed as mechanical nociceptive 

threshold in grams. Nociceptive thresholds are expressed as mean ± SEM and 

were statistically analyzed by mixed two-way ANOVA with repeated measures 

with group (CFA or saline) as a between-subjects factor and time as a within-

subjects factor followed by Bonferroni corrections for multiple comparisons. 
Homogeneity of variance was tested before the ANOVA, and the significance 

level was always set at p=0.05. 

3.8.2 LONG TERM NON-OPERANT ETHANOL 
SELF-ADMINISTRATION 

With the objective of reproducing the relapse phenomenon we selected 

the protocol designed by Spanagel and collaborators (Spanagel et al., 1999) and 

previously set up and validated in our laboratory (Orrico et al., 2013), 
performing the appropriated modifications to adapt it to our experimental 

conditions. It constitutes a long-term protocol that includes abstinence periods 

randomly distributed along the experimental protocol. This alternation allows 

both to strongly reproduce the relapse phenomenon that occurs after each 

ethanol reintroduction and to evaluate it through the measurement of the 
ADE. 
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3.8.2.a Experimental procedure 

In experiment VIII, 20 rats were used to examine the effect of 

inflammatory pain on ethanol relapse. First, rats were habituated to the animal 
room for two weeks. Next, animals were given continuous access to 4 bottles 

filled with tap water and 5 %, 10 %, and 20 % (v/v) ethanol solutions in their 

home cages. These concentrations are selected to mimic the most commonly 

used alcoholic drinks (beer, wine and spirits). Every week we weighed the 

animals, renewed all drinking solutions and changed the positions of the four 
bottles to avoid location preferences. After 8 weeks of continuous ethanol 

availability, the first 2-week deprivation period was introduced in which rats 

had only access to the water bottle. Following, rats were given access to alcohol 

again. Three more deprivation periods were performed in a random manner. 

The duration of these drinking and deprivation periods was irregular: 6  ± 

2 weeks and 2 ± 1 weeks, respectively, in order to prevent behavioral adaptations 

(Orrico et al., 2013; Vengeliene et al., 2007). The total volume of liquid intake 
(mL/day) and the total amount of ethanol intake (g/kg/day) were recorded 

during the whole experiment by weighing the bottles. Animals were randomly 

assigned to one of the two experimental groups. The baseline drinking for each 

group was considered as the average of the measurements of the three last days 

prior to the 4th abstinence period. During this last abstinence period, and 48h 
before re-introduction of the ethanol solutions, rats received a subcutaneous 

administration in the hindpaw of 0.1 ml saline or 0.1 mL CFA. After the re-

introduction of the ethanol solutions, the daily weighing routine was restored 

during the three post-abstinence days in order to assess the ADE. A schematic 

of the procedure can be found in Figure 3.12. 
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Figure 3.12 Schematic diagram of the experimental procedure 

3.8.2.b Data analysis 

For the evolution of rats weight and intake of liquids data are expressed 

as  total animal weight (kg) and total volume of liquid (mL/day), respectively. 

Weekly or daily weight or total volume are expressed as mean ± SEM and were 

statistically analyzed by mixed two-way ANOVA with repeated measures with 

group as a between-subjects factor and time as a within-subjects factor followed 
by Bonferroni corrections for multiple comparisons when interactions were 

found to be significant.  

Experiment data are expressed as total amount of ethanol intake (g/kg/

day). Weekly ethanol intake prior to the 4th abstinence period data are 
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expressed as mean ± SEM and were statistically analyzed by mixed two-way 
ANOVA with repeated measures with group as a between-subjects factor and 

period (basal and post-abstinence) as a within-subjects factor followed by 

Bonferroni corrections for multiple comparisons when interactions were found 

to be significant. For the analysis of the first three cycles of exposure, basal and 

post-abstinence ethanol intake are expressed as mean ± SEM and were 
statistically analyzed by mixed two-way ANOVA with repeated measures with 

cycle as a between-subjects factor and period (basal and post-abstinence) as a 

within-subjects. Differences between basal and post-abstinence ethanol intake 

for each cycle were analyzed by performing a paired t-test. For the analyses of 

the last cycle, basal and post-abstinence ethanol intake are expressed as mean ± 
SEM and were statistically analyzed by mixed two-way ANOVA with repeated 

measures with group as a between-subjects factor and period (basal and post-

abstinence) as a within-subjects factor followed by Bonferroni corrections for 

multiple comparisons when interactions were found to be significant.  

In all cases, homogeneity of variance was tested before the ANOVA, and 

the significance level was always set at p=0.05. 
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3.9 BIOCHEMICAL STUDIES 

3.9.1 WESTERN-BLOT 

The western blot technique was selected to analyze the expression of the 

NMDA receptor subunits NR1 and NR2A in the brain tissue obtained from 

the experiments V and VI.  

3.9.1.a Working solutions 

The following solutions were used to perform all the western blotting 

assays: 

Homogenizing sucrose buffer 

This buffer was used as vehicle for protease inhibitors for the cells lysate 

and for the protein quantification (see experimental procedure). 

The protease inhibitor mix, purchased from Roche Biochemical, was 
added to the sucrose buffer at 1% concentration immediately before tissue 

homogenization.  

Sucrose buffer 

Tris 1M 1 mL

EGTA 0.25M 0.4 mL

MgCl2 1M 0.05 mL

Sucrose 4.028 g

Distilled water q.s. 50 mL

pH 7.4
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Loading buffer 

This buffer was used as a vehicle to load the samples into the 

electrophoresis gel. The solution was prepared in a 4x concentration, filtered 

through 0.2µm pore filter, aliquoted and stored at -20 °C until use.  

Tris/Glycine/SDS (TGS) buffer 

This buffer was used to perform the electrophoresis and it was directly 
purchased from Bio Rad in a 10x concentration and it was diluted in distilled 

water prior to use. The composition of the TGS 10x buffer was the following: 

Loading buffer 4x

Tris 0.5M 5 mL

Glycerol 4 mL

Sodium Dodecyl Sulphate 0.8 g

β-mercaptoethanol 1 mL

Bromophenol blue 4 mg

Tris/Glycine/SDS buffer (TGS) 10x

Tris 25 nM

Glycine 192 mM

Sodium Dodecyl Sulphate 0.1 %

Distilled water q.s. 1 L

pH 8.3
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Transfer buffer 
This buffer was used to carry out the transference from the gels to the 

nitrocellulose membrane. It was prepared at a 10x concentration and stored at 

4°C. 

Trizma Buffer Saline Tween 0.1% (TBS-T 0.1%) 

This solution was used to wash the membranes between incubations. 

Transfer buffer 10x

Trizma® base 60.5 g

Glycine 288.4 g

Distilled water q.s. 2L

Transfer buffer 

Transfer buffer 10x 100 mL

Methanol 200 mL

Distilled water q.s. 1L

Trizma Buffer Saline 10x (TBS 10x)

Trizma® base 24.4 g

Sodium chloride 80 g

Distilled water q.s. 1 L

pH 7.6

Trizma Buffer Saline 1x (TBS)

TBS 10x 100 mL

Distilled water q.s. 1 L
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5% non-fat dried milk in TBS-T 0.1% 

This solution was used to block the nonspecific binding sites in the 

membrane and to dilute the antibodies for incubation. 

Molecular weight marker 

The Dual Color Precision Plus Protein Standard (Bio-Rad) was used as a 

molecular weight marker. This standard provides a migration pattern, with 

three high-intensity reference bands (25, 50, and 75 kD). 7µL of the standard 

were loaded into the first well of each gel.  

TBS Tween 0.1% (TBS-T 0.1%)

Tween 20 1 mL

TBS q.s. 1 L

5% non-fat dried milk in TBS-T 0.1%

Non-fat dried milk 2.5 g

TBS-T 0.1% q.s.  50 mL
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Figure 3.13 Dual Color Standard molecular weight marker code.  

Antibodies 

All antibodies were diluted to the appropriate concentration in 5% milk 

TBS-T 0.1%. The primary and secondary antibodies used were 

Antibody Organism Dillution Producer

NMDA R2A Rabbit 1:1000 Merck KGaA

NMDA R1 Rabbit 1:1000 Merck KGaA

Actine Mouse 1:1000 Thermofisher

HRP-IgG-
rabbit

Goat 1:1000 Bio-Rad

HRP-IgG2b-

mouse

Goat 1:1000 Invitrogen
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3.9.1.b Experimental procedure 

Lysate and protein concentration determination 

Serial frontal sections (40 μm) were cut on a cryostat, achieving the brain 

area to be studied. The anteroposterior stereotaxic coordinates of each area 

(NAc and hippocampus) were established previously according to the atlas of 

Paxinos and Watson (Paxinos and Watson 2007). Samples were obtained by 
punching a portion from an approximately 1-mm-thick coronal slice that 

included the tested areas. Each of the portions obtained were then 

homogenized in sucrose buffer containing the protease inhibitor mix by using a 

dispersing tool (Ultra Turrax T-25 Basic). Thereafter, the homogenates were 

centrifuged at 13,200× g for 10 min at 4°C to eliminate large cells debris. The 
supernatant was used as total protein sample. 

For protein quantification a standard curve was prepared by diluting a  

20g/mL BSA solution (0.5, 0.25, 0.125 and 0.0625 mg/mL). Samples were, 

then, appropriately diluted in distilled water and both standards and samples 
were incubated with Bradford Protein Assay reagent (Bio-Rad) for 5 min and 

the absorbance at 595 nm was measured in a iMark Microplat Reader (Bio-

rad).  Finally, the protein concentration in each sample was calculated.  

Immunoelectrotransference 

The appropriate volume of samples was calculated to obtain an equal 

amount of protein (8 µg for NAc and 15 µg for hippocampus) and together 

with the loading buffer they were heated for 20 min at 70°C. Proteins were 

separated by SDS–polyacrylamide gel electrophoresis (PAGE) gels (4.5% 

acrylamide stacking gel and 10% acrylamide resolving gel) prepared with the 
TGX FastCast premixed acrylamide solutions (Bio-rad). Then, proteins were 
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transferred to 0.45 µm nitrocellulose membranes (Bio-Rad) using a semi-dry 
transfer system (Trans-Blot Turbo, Bio-Rad) for 30 minutes at 25V. 

Membranes were then blocked in 5% non-fat dried milk in TBS-T 0.1% and 

incubated overnight at 4°C with the primary antibody. After three washes in 

TBS-T 0.1%, the blots were incubated for 1 hour with secondary antibody. 

Finally, blots were developed using the enhanced chemiluminescence system 
(Clarity Max ECL, Bio-rad) according to the manufacturer's protocol. Digital 

images of the immunoblots were obtained in a ChemiDoc Imaging system 

(Bio-rad) and further analyzed using Image J software (NIH). 

3.9.1.c Data analysis 

The intensity of the bands was expressed as arbitrary units and 

normalized by actin expression. The experimental groups were determined by 
setting the control group (aCSF conditioned animals) to 100% and calculating 

the respective percentages, expressed as mean ± SEM. Differences in NR1 and 

NR2A expression levels were analyzed using one-way ANOVA, followed by 

Tukey’s test. Homogeneity of variance was tested before the ANOVA was 

performed. 
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3.9.2 RNASCOPE IN SITU HYBRIDIZATION  

Levels of NR1 and N2A mRNA expression were examined by RNA in 

situ hybridization using the RNAscope® Fluorescent Multiplex Assay (Advanced 

Cell Diagnostics, ACD). This technique uses a novel and proprietary method 

of in situ hybridization to simultaneously visualize up to three different RNA 

targets per cell in samples mounted on slides.  The assays are based on ACD’s 
patented signal amplification and background suppression technology. 

Proprietary RNA specific probes are hybridized to target RNA, and are, then, 

bound to a cascade of signal amplification molecules culminating in signal 

detection (Figure 3.14). 

3.9.2.a Experimental procedure 

Tissue obtention 

Between 1.5 and 2 hours after the beginning of the test in the CPP 

experiment, rats were anaesthetized using isoflurane and brains were removed 

and quickly frozen. Brains were stored at -80°C until sectioning. Following, 

15µm sections were obtained by using a cryostat (Leica Biosystems) and they 

were directly mounted into Superfrost® Plus slides. Slides were then stored for 
less than 3 months in slide boxes wrapped in air-tight with zip-lock bags at 

-80°C  until use.  

RNAscope® Fluorescent Multiplex Assay 

First, sections were fixed in 4% PFA in PBS and dehydrated in alcohols. 
Following and after creating a hydrophobic barrier around each section, a 

pretreatment with Protease IV (ACD) was applied. Immediately after, the assay 

was run by performing the following incubations in a regular incubator at 40°C 

and alternating with two washes (Washing Buffer, ACD): (1) hybridization 
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with the Rn-Grin-C3 (317021-C3, ACD) (for NR1 mRNA) and Rn-Grin2a 
(414621, ACD) (for NR2A mRNA) probes, 2 hours; (2) hybridization with 

Amp 1-FL (ACD), 30 minutes; (3) hybridization with Amp 2-FL (ACD), 15 

minutes; (4) hybridization with Amp 3-FL (ACD), 30 minutes; and (4) 

hybridization with Amp 4-FL-Alt A (ACD), 15 minutes. Finally, slides were 

counterstained with (4 ',6-diamidino-2-fenilindol) DAPI (ACD) for nuclei 
staining, coverslipped with Vectashield Mounting Medium for fluorescence 

(Vector Laboratories) for confocal microscopy examination (Leica Biosystems). 

A scheme of the assay can be found in Figure 3.14. 

 

Figure 3.14 Procedure overview. Adapted from the RNAscope® Sample Preparation 
and Pretreatment Guide for Fresh Frozen Tissue, Part 1 (Document No. 320513-
USM). 
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3.9.2.b Image analysis 

The quantification was carried out using the software FIJI (NIH) over 

merging files composed by 110 or 165 images (NAc and hippocampus, 
respectively) per hemisphere obtained with a 40x objective. First, for each file, 

the region of interest was selected (ROI). Next, each fluorophore channel was 

separately analyzed to obtain the number of signal dots per ROI. For that, the 

procedure consisted in (1) quantifying the Average Intensity per Single Dot by 

selecting at least 20 single signal dots and measuring the Area and Integrated 
Intensity per Single Dot (Total Intensity) (Figure 3.15). The Area of each dot 

was used to screen whether the dot was a true single dot. Then the Average 

Intensity per Single Dot was calculated as: 

  

Following, the Total Dot Number per ROI was calculated by using the 

Total Intensity per ROI as follow: 

  

Finally, the DAPI positive nuclei were counted and used to calculate the 
Average Dot Number per cell: 

  

Aver age In ten si t y per Single Dot  =
∑  Tota l In ten si t y Single Dot

Nu m ber Single Dots

Tota l Dot Nu m ber per ROI  =
Tota l In ten si t y per ROI

Aver age In ten si t y per Single Dot

Aver age Dot Nu m ber per cel l  =
Tota l Dot Nu m ber per ROI

DA PI posit ive nuclei per ROI
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As drug administration was bilateral in all the experiments, the measure 
for each animal was the average resulting from the two-hemisphere counting. 

 
Figure 3.15. Schematic representation of the image quantification. The image was 
amplified and cropped to facilitate the exemplification of the selection of single dots of 
Rn-Grin-C3 (NR1 mRNA) in red and Rn-Grin2a (NR2A mRNA) in green to 
calculate Average Intensity per Single Dot and the Average Dot Number per cell. 

3.9.2.c Data analysis 

 Experimental data are expressed as mean ± SEM dot number per cell. 

Differences between groups were analyzed by using an unpaired t-test, and the 

significance level was always set at p =0.05. 
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3.10 HISTOLOGY AND PROBE PLACEMENT 
VALIDATION 

A carefully evaluation of the probe and injection cannulae placements 

was histologically performed at the end of all the experiments. Rats were 

overdosed with isoflurane and brains were quickly removed and immediately 

frozen in isopentane. Once the brains were extracted and frozen, they were 

conserved at -25 °C until histological analysis. To do that, brains were cut in a 
cryostate (40 µm thick) and slices were collected directly on gelatinized slides. 

These slides were subjected to a standard Cresyl Violet staining protocol to 

verify probe and cannulae tip placement under optical microscopy. Paxinos and 

Watson (Paxinos and Watson 2007) Rat Brain Atlas was used as reference for 

all probe validations. 
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4.1 EFFECT OF INFLAMMATORY PAIN ON MORS IN 
THE MCLS 

4.1.1 STUDY OF INFLAMMATORY PAIN IMPACT 
ON cFos EXPRESSION ON VTA-PROJECTING 
AREAS 

4.1.1.a Experiment Ia: Effect of DAMGO injected intra-VTA on cFos 
expression in projection areas 

Cannulae placement validation 

At the end of all experiments, a histological evaluation was carefully 

performed to ensure the placement of the injection cannulae. In experiment Ia, 
one animal showed cannula placement outside of the VTA. That animal was 

excluded from the statistical analysis, leaving the DAMGO 7ng group with five 

animals each, instead of the originally planned six. The tip cannulae placements 

of the rats included in this experiment are depicted in Figure 4.1. 
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Figure 4.1 Schematic representation of the tip of the cannulae positions in 
animals belonging to experiment Ia. Experimental groups are: aCSF (light grey); 
DAMGO 7 ng (dark grey); and DAMGO 14 ng (black). Dots could represent more 
than one cannula placement. Numbers indicate distance from bregma. Adapted from 
Paxinos and Watson 2007. 

cFos-IR cells counting 

In this experiment we evaluated the effect of MORs activation in cFos 

expression in VTA-recipient areas, by comparing the groups receiving a focal 

injection of aCSF or DAMGO (7 ng or 14 ng) in the VTA. Data on cFos-IR 

cells and the corresponding statistical analysis are summarized in Table 4.1. In 

the NAc and BLA, the one-way ANOVA detected significant differences 
between groups (F(2,13)=5,180, p=0.022, n= 4-6   and F(2,13)=3.894, p=0.047, 

respectively). The Tukey’s test showed that for both areas only DAMGO 14 ng 

significantly increased cFos expression compared to the aCSF treated group 

(NAc: 43 ± 10 vs 80 ± 7, p=0.022; BLA: 28 ± 7 vs 47 ± 4, p=0.046), although 
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a trend to increase the cFos-IR was observed in this two areas when the 7 ng 
DAMGO was administered (NAc: 43 ± 10 vs 73 ± 10 vs, p=0.108; BLA: 28 ± 

7 vs 44 ± 5 IR cells, p=0,140). In prefrontal regions, the one-way ANOVA 

revealed significant differences between groups in the ACC (F(2,14)=3.738, 

p=0.050), but not in PL or IL (F(2,14)=0.800, p=0.469 and F(2,14)=0.776, 

p=0.479). Post-hoc analysis showed that cFos-IR was significantly higher in the 
DAMGO 7 ng group than in aCSF group (141±16 vs 72 ± 20 IR cells, 

p=0.040). However, no significant differences were found for the 14 ng 

DAMGO group compared to control (aCSF) or between the two different 

DAMGO doses (p=0.442 and p=0.305). Similarly, for the BNST, the one-way 

ANOVA showed significant differences between groups (F(2,13)=5.036, 
p=0.024) and the post-hoc analysis revealed that there was a significant 

difference only between the aCSF and the 7 ng DAMGO groups (p=0.025). 

Finally, the analysis of the VP cFos counting by one-way ANOVA clearly did 

not show significant differences between groups in cFos-IR (F(2,13)=0.021, 

p=0.979). 

All In all, data from experiment Ia showed that the administration of 

DAMGO into the VTA significantly increased cFos-IR counting in the ACC 

and BNTS at the dose of 7 ng and in the BLA and NAc at the dose of 14 ng.  
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Table 4.1 Effect of DAMGO injected intra-VTA on cFos expression in projection 
areas in experiment Ia. cFos-IR cells counting per frame after the administration of 
aCSF (n= 5-6), DAMGO 7 ng (n= 4-5) or DAMGO 14 ng (n= 5-6) intra-VTA in 
experiment Ia. Data are expressed as mean ± SEM. Bold font and *:   p ≤ 0.05 
compared with aCSF treated group by Tukey’s test. 

Area
VTA treatment

aCSF DAMGO 7ng DAMGO 14ng

BLA 28 ± 7 44 ± 5 47 ± 4 *

NAc 43 ± 10 73 ± 10 80 ± 7 *

ACC 72 ± 20 141 ± 16 * 103 ± 16

PL 162 ± 32 213 ± 32 179 ± 20

IL 157 ± 20 189 ± 23 165 ± 11

BNST 24 ± 4 48 ± 8 * 30 ± 3

VP 19 ± 5 20 ± 3 19 ± 2
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4.1.1.b Experiment Ib: Impact of inflammatory pain on the effect of DAMGO 
injected intra-VTA on cFos expression in projection areas 

CFA-induced inflammation validation  

The dorsoventral measurements of the rats hindpaw injected with CFA 

were significantly different from the non-treated hindpaw confirming the 
presence of inflammation (CFA treated paw 7.5 ± 0.2 mm vs. non-treated paw 

4.1 ± 0.1 mm, t-test for paired samples p< 0.001, Figure 4.2) 

 

Figure 4.2 Validation of CFA-induced inflammation in the hind paw Dorsoventral 
distance (mm) of both contralateral (blue) and CFA-injected (red) hind paws of 
inflammatory pain animals (n=17, *: p<0.001, t-test for paired samples). 
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Cannulae placement validation 

One animal in this experiment showed cannula placement outside of the 

VTA. That animal was excluded from the statistical analysis, leaving the 7 ng of 
DAMGO receiving group with five animals each, instead of the originally 

planned six. The tip cannulae placements of the rats included in this 

experiment are depicted in Figure 4.3. 

Figure 4.3 Schematic representation of the tip of the cannulae positions in 
animals belonging to experiment Ib (CFA-treated). Experimental groups are: aCSF 
(light orange); DAMGO 7 ng (dark orange); and DAMGO 14 ng (red). Dots could 
represent more than one cannula placement. Numbers indicate distance from bregma. 
Adapted from Paxinos and Watson 2007. 

cFos-IR cells counting 

In this second experiment, we evaluated how inflammatory pain affected 

the previously described MORs activation pattern by comparing the expression 

of cFos following the administration of DAMGO intra-VTA in rats 

administered with CFA in the hind paw (Table 4.2).  
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Regarding the NAc, the Brown-Forsythe test showed significant 
differences for the cFos-IR cells counting (p=0.023) concretely between the 

highest dose treated group, 14 ng of DAMGO, and aCSF treated group (46 ± 

13 vs 93 ± 3; p=0.011). By contrast, after the administration of 7 or 14 ng of 

DAMGO none of the other areas of the study showed a significant increase of 

the cFos-IR cell counting. Indeed, the statistical analysis performed for each 
area failed to find significant differences between groups: BLA (one-way 

ANOVA F(2,13)=0.904, p=0.429); ACC (Brown-Forsythe test p=0.508); PL 

(one-way ANOVA F(2,14)=0.995, p=0.394); IL (one-way ANOVA F(2,14)=0.075, 

p=0.929); BNST (one-way ANOVA F(2,13)=0.458, p=0.642); VP (one-way 

ANOVA F(2,13)=0.365, p=0.701). All together, these data showed that, in CFA 

rats, DAMGO administered into the VTA does not increase cFos-IR 

counting in the areas that were previously activated in experiment Ia, 

except from the NAc. 

Table 4.2 Effect of DAMGO injected intra-VTA on cFos expression in projection 
areas in CFA rats from experiment Ib. cFos-IR cells counting per frame after the 
administration of aCSF (n=5-6), DAMGO 7 ng (n=4-5) or DAMGO 14 ng (n=5-6) 
intra-VTA in experiment Ib. Data are expressed as mean ± SEM. Bold font and *:  
p≤0.05 compared with aCSF treated group by Tukey’s test.  

Area

VTA treatment

aCSF DAMGO 7ng DAMGO 14ng

BLA 25 ± 6 38 ± 9 39 ±5

NAc 46 ± 13 67 ± 11 93 ± 3 *

ACC 99 ± 38 120 ± 19 74 ± 15

PL 148 ± 33 209 ± 18 175 ± 33

IL 148 ± 23 161 ± 31 150 ± 22
BNST 29 ± 4 36 ± 7 32 ± 2

VP 19 ± 4 21 ± 7 31 ± 4

 109



4.1.2 STUDY OF INFLAMMATORY PAIN IMPACT 
ON DAMGO-EVOKED DOPAMINE RELEASE OVER 
THE VTA-NAC PATHWAY 

4.1.2.a Experiment II: Effect of inflammatory pain on local DAMGO-evoked 
DA release in the NAc 

Probe placement validation 

The probe placements within the NAc were carefully confirmed by 

histological analysis. Figure 4.4 schematically depicts the location of the active 

portion of the microdialysis probes in the NAc for all the rats included in the 
present study. Only the data of the experiments in which probes were correctly 

placed were included in the statistical comparisons. 

Figure 4.4 Schematic representation of the active membrane of the microdialysis 
probes into the NAc in animals belonging to experiment II. Experimental groups 
are: saline rats (black) and CFA rats (red). Plotted lines could represent more than one 
probe placement. Numbers indicate distance from bregma. Adapted from Paxinos and 
Watson 2007. 
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DA baseline levels 

Baseline DA levels (mean ± SEM), calculated from a standard curve, 

were 71.8 ± 18.9 fmol/65µl and 73.1 ± 13.1 fmol/65µl for the pain-free and 

pain groups, respectively. These results indicate that the presence of 

inflammatory pain does not have a significant effect on basal extracellular DA 
levels (n=10, t-test, p=0.957). 

Effect of DAMGO application in the NAc on DA levels 

As expected (Hipólito et al., 2008), in saline rats, the retrodialysis 
administration of  DAMGO (10 µM) in the NAc triggered a significant 

increase in DA release up to 140% form 60 min to 80 min (one-way 

ANOVA, F(10,50)=5.044; p<0.001, Bonferroni multiple comparisons versus the 

last basal time point, t=0 min: p60=0.046 and p80=0.043; Figure 4.5, left). 

However, the effect of DAMGO was reduced in CFA rats. Although intra-
NAc DAMGO triggered an increase up to 118% from baseline, no significant 

differences were found with respect to baseline (one-way ANOVA, 

F(10,50)=1.937; p=0.062) or compared to saline rats (mixed two-way ANOVA, 

between-subjects effect of group: F(1,10) =3.542, p=0.089, within-subjects effect 

of time: F(10,100)=6.288; p<0.001, interaction time x group: F(10,100)=1.064; 

p=0.397; Figure 4.5, left). 

To further study the effect of DAMGO on DA release in both pain and 

saline rats, we calculated the AUC between 0 and 80 min for each group 

(Figure 4.5, right). This measure allowed us to compare the total effect on 

extracellular DA levels in the NAc, that was not significantly different 

between pain-free group and pain group (n=10, t-test p=0.148). 
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Overall, results from experiment II showed that the effect of local 

DAMGO 10 µM administration into the NAc on DA extracellular levels is 

not statistically different between the CFA and the saline groups.  

Figure 4.5. Effect of DAMGO 10µM infused in the NAc on DA extracellular levels 
in the NAc. Left panel: Data are mean ± SEM represented as percentage from baseline 
DA levels in black dots for saline rats and red squares for CFA rats (n=5 per group). 
*=p<0.05, significant differences in the within-subjects effect of time for animals 
treated with saline (Bonferroni multiple comparisons). Right panel: Data are mean ± 
SEM of AUC from 0 to 80 min, in black for saline rats and red for CFA rats (n=5 per 
group). 

4.1.2.b Experiment III: Effect of inflammatory pain on intra-VTA DAMGO-
evoked DA release in the NAc 

Probe and cannulae placement validation 

The probe and cannulae placements within the NAc and VTA were 

carefully confirmed by histological analysis. Figure 4.6 schematically depicts the 

location of the active portion of the microdialysis probes in the NAc (left) and 

the tip of the injection cannulae in the VTA (right) for all the rats included in 

the present study. Only the data of the experiments in which both probes and 
cannulae were correctly placed were included in the statistical comparisons. 
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Figure 4.6 Schematic representation of the active membrane of the microdialysis 
probes into the NAc (left) and cannula tips into the VTA (right) in animals 
belonging to experiment III. Experimental groups are: saline rats (black) and CFA 
rats (red). Lines and dots could represent more than one probe or cannula placement. 
Numbers indicate distance from bregma. Adapted from Paxinos and Watson 2007. 

DA baseline levels 

Baseline DA levels (mean ± SEM), calculated from a standard curve, 

were 61.1 ± 15.4 fmol/65µl and 66.3 ± 11.4 fmol/65µl for the saline and CFA 

rats, respectively. These results indicate that the presence of inflammatory pain 

does not have a significant effect on basal extracellular DA levels (n=10, t-test, 

p=0.793). 
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Effect of DAMGO application in the VTA on DA levels in the NAc 

As shown in Figure 4.7 (upper panel), intra-VTA administration of 7 ng 

DAMGO elicited a significant release of DA in the NAc in saline rats, and 
this effect was blunted in CFA rats. Indeed, mixed two-way ANOVA analysis 

detected differences between the two groups (between-subjects group effect: 

F(1,8)=12.133, p=0.008 and interaction time x group: F(7,56)=3.241, p=0.006), 

and also a significant effect of time (within-subjects effect of time: F(7,56)= 

16.855, p<0.001). Saline rats showed a significant increase in DA release in 

the NAc up to 125%–140% from baseline, which was initiated 20 min 

following DAMGO administration and lasted until the end of the experiment 

(Bonferroni multiple comparisons versus baseline, p20=0.044, p40=0.018, 

p60=0.018, p80=0.004). In CFA rats, the administration of DAMGO intra-

VTA induced a much smaller increase in DA release that was not 

significantly different from the respective baseline (Bonferroni multiple 

comparisons versus baseline from 20 to 80 min p>0.05). This loss of DAMGO 

effect was especially relevant 20 and 40 min following the administration of 

DAMGO locally in the VTA (mixed two-way ANOVA, Bonferroni multiple 

comparisons between groups, p20=0.044 and p40=0.004 vs saline rats).  

In order to deeply investigate the plausible desensitization of the MOR 

in the VTA in CFA rats, we administered a close to 10x higher dose of 

DAMGO (67 ng) in the VTA and monitored the DA release in the NAc. 

Results are shown in Figure 4.7 (lower panel). As can be seen, both saline and 

CFA rats experienced a similar and significant increase of DA extracellular 

levels from baseline after DAMGO administration (mixed two-way ANOVA 

within-subjects effect of time: F(7,56)=18.392, p<0.001). When analyzing 

individually, DAMGO 67 ng increased DA levels compared to baseline at time 

40 min and 60 min in saline rats (Bonferroni multiple comparisons from 
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baseline: p40=0.013 and p60=0.032) and at time 40 min in CFA rats 
(Bonferroni multiple comparisons from baseline: p40=0.018). More 

interestingly, the mixed two-way ANOVA analysis did not detect differences 

between the two groups (between-subject effect of group: F(1,8)=0.241, 

p=0.636, and interaction time x group: F(7,56)=0.488, p=0.839), supporting the 

notion that the increase in the DAMGO dose reverses the pain-induced effects. 

To further study the effect of the two doses of DAMGO on DA release 

in both CFA and saline rats, we calculated the AUC between 0 and 80 min for 

each group (Figure 4.7, upper right panel for 7 ng dose and lower right panel 

for 67 ng dose). This measure allowed us to compare the total effect on 
extracellular DA levels in the NAc. In accordance with the individual analysis, 

the total increase induced by DAMGO 7 ng was significantly higher in 

saline rats compared to CFA rats (n=10, t-test p=0.007), whereas no 

differences were found when the 67 ng DAMGO dose was administered 

(n=10, t-test p=0.700).  

As a whole, experiment III showed that the effect of intra-VTA 
DAMGO 7 ng on accumbal DA levels is blunted in CFA rats. Interestingly, 
when using a higher dose of DAMGO (67 ng) there are no statistical 
differences in DA levels the NAc between saline and CFA rats.  
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Figure 4.7. Effect of DAMGO administered into the VTA on DA extracellular 
levels in the NAc. Left panels: Data are mean ± SEM represented as percentage from 
baseline in black dots for saline rats group and red squares for CFA rats; n=5 per 
group. #=p<0.05, significant differences between groups at the time points indicated 
(Bonferroni multiple comparisons); * and *=p<0.05, significant differences at the 
indicated points relative to the respective baseline (Bonferroni multiple comparisons). 
Right panels: Data are mean ± SEM of AUC from 0 to 80 min; in black for saline rats 
and red for CFA rats; n=5 per group; *=p<0.05, significant differences (t-test). 
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4.2 EFFECT OF INFLAMMATORY PAIN ON ETHANOL 
REINFORCING PROPERTIES 

4.2.1 STUDY OF INFLAMMATORY PAIN IMPACT 
ON SYSTEMIC ETHANOL-EVOKED DA RELEASE 
IN NAC 

Experiment IV 

Probe placement validation 

The probe placements within the NAc were carefully confirmed by 

histological analysis. Figure 4.8 schematically depicts the location of the active 

portion of the microdialysis probes in the NAc for all the rats included in the 
present study. Only the data from animals in which probes were correctly 

placed were included in the statistical comparisons. 
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Figure 4.8 Schematic representation of the active membrane of the microdialysis 
probes into the NAc in animals belonging to experiment IV. Experimental groups 
are: saline rats (black) and CFA rats (red). Lines could represent more than one probe 
placement. Numbers indicate distance from bregma. Adapted from Paxinos and 
Watson 2007. 

DA baseline levels 

Baseline DA levels (mean ± SEM), calculated from a standard curve, were 
51.8 ± 9.8 fmol/65 µl and 62.8 ± 8.4 fmol/65 µl for the saline and CFA rats, 

respectively. Our results indicate that the presence of inflammatory pain does 

not have a significant effect on basal extracellular DA levels (n=17, t-test, 

p=0.517). 
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Effect of ethanol subcutaneous administration on DA levels in the NAc 

The objective of this experiment was to analyze whether inflammatory 

pain affects ethanol-evoked DA release within the NAc. Once a stable baseline 

for DA was achieved (<10% variation in three consecutive samples), rats 

received a first saline s.c. injection to discriminate the possible effect of the 
manipulation/injection itself on the NAc DA levels. Next, a single ethanol dose 

was administered (1.5 g/kg, s.c.) and DA levels were monitored until the end of 

the experiment for a total of 260 min.  

The mixed ANOVA for repeated measures detected a significant effect 

in the within-subject variable. Indeed, both the time (F(16,240)= 4.195, 

p<0.001), in the interaction time x group (F(16,240)=3.506, p<0.001), but not in 

the effect of group (F(1,15)=1.140, p=0.302). The analysis of the effect in the 

within-subject variable time was further analyzed by means of a one-way 

ANOVA for repeated measures. As can be seen in Figure 4.9, in saline rats 1.5 

g/kg ethanol dose induced a significant increase in DA release up to 135% 

from 80 min to 120 min (180 to 220 min time points in Figure 4.9) after its 

administration (one-way ANOVA for repeated measures, within-subjects effect 

of time F(16,112)=7.631, p<0.001; Bonferroni multiple comparisons versus the 

last basal time point, t=0 min: p180=0.023, p200=0.017, p220=0.015). 
Interestingly, although CFA rats experienced an ethanol-induced DA release 

(136% from baseline), this increase was not significantly higher compared to 

last value of baseline (one-way ANOVA for repeated measures, within-

subjects effect of time F(16,128)=3.081 p=0.0001, Bonferroni multiple 

comparisons versus t=0 min: p<0.001, from 20 to 260 min p>0.05). Indeed, 
ethanol-evoked DA levels in CFA rats were significantly lower than in saline 

rats at 60, 80 and 100 min after 1.5 g/kg ethanol administration (Figure 1B; 
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two-way ANOVA for repeated measures, interaction time x group 
F(16,240)=3.506, p<0.001; Bonferroni correction for multiple comparisons, 

p60=0.048, p80=0.001, p100=0.002). Finally, it is important to mention that 

saline s.c. injection induced a slight increase up to 127% and 119% in DA 

release (at 20 min time point) both in CFA and saline rats, respectively, 

although this increase in DA levels was no statistically significant (CFA rats: 
p20=0.688, saline rats: p20=0.896; compared to last baseline point t=0). 

 

Figure 4.9 Effect of subcutaneous administration of saline and 1.5 g/kg of ethanol 
on DA extracellular levels in the NAc. Data are mean ± SEM represented as 
percentage from baseline in black dots for saline rats and red squares for CFA rats; 
n=8/9 per group. #=p<0.05, significant differences between groups at the time points 
indicated (Bonferroni multiple comparison). *=p<0.05, significant differences relative 
to the respective baseline (t=0)  (Bonferroni multiple comparisons).  
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To further quantify this inflammatory pain-induced effect on the 
ethanol-evoked DA release, we calculated the AUC from the above curves of 

DA level vs time for the following 100 min after each administration (saline or 

ethanol) in both CFA and saline rats (Figure 4.10). Mean AUC values were 

significantly different between saline and CFA rats (two-way ANOVA for 

repeated measures, within-subjects interaction treatment x group F(1,15)=6.384, 
p=0.023). Moreover, the ethanol-induced total effect in the saline rats was 

significantly higher than the total effect induced by the saline injection 

(Bonferroni correction for multiple comparisons, saline (0-100 min) versus 

saline (100-200 min): p=0.013), whereas no significant differences were 

found between saline and ethanol treatments in CFA rats (Bonferroni 
correction for multiple comparisons, CFA (0-100 min) versus CFA (100-200 

min): p=0.502). Finally, when comparing between groups, the ethanol-induced 

total effect showed a tendency to be higher in saline rats compared to CFA rats, 

whereas no significant differences were found between saline-induced total 

effect (Bonferroni correction for multiple comparisons, saline (100-200 min) 
versus CFA (100-200 min): p=0.060; and saline (0-100 min) versus CFA 

(0-100 min): p=0.301). 

All in all, data from experiment IV showed that the increase in 

accumbal DA release elicited by systemic ethanol administration (1.5 g/kg 

s.c.) is blunted by the presence of inflammatory pain.  
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Figure 4.10 Global change in DA levels induced by saline (0 -100 min, empty bar) 
and ethanol (100-200 min, filled bar) calculated as AUC. Data are mean ± SEM in 
black dots for saline rats and in red squares for CFA rats *=p<0.05, significant 
differences (two-way ANOVA for repeated measures followed by Bonferroni multiple 
comparisons, p<0.05). 
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4.2.2 STUDY OF INFLAMMATORY PAIN IMPACT 
ON INTRA-VTA ETHANOL-INDUCED CPP 

4.2.2.a Characterization of the CPP elicited by ethanol intra-VTA 

Experiment V: Intra-VTA ethanol dose-response for CPP 

Cannulae placement validation 

The cannulae placements within the VTA were carefully confirmed by 

histological analysis. Figure 4.11 schematically depicts the location of the tip of 

the cannulae placements in the VTA for all the rats included in the present 

study. Only the data of the experiments in which the two cannulae were 

correctly placed were included in the statistical comparisons. 

Figure 4.11 Schematic representation of the tip of the cannulae positions in 
animals belonging to experiment V. Due to the large number of animals it is 
represented, in orange, the area occupied by all the cannulae tips of the experimental 
groups: aCSF, 35 nmol, 70 nmol, 150 nmol, 300 mol and unpaired 70 nmol. 
Numbers indicate distance from  bregma. Adapted from Paxinos and Watson 2007. 
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Intra-VTA ethanol dose-response for CPP 

The mean values of the preference score for each intra-VTA ethanol dose 

group are shown in Figure 4.12. These preference scores were calculated by 

subtracting the time spent in the drug-paired side during Pretest from the time 

spent in the drug-paired side during Test. Results showed that ethanol 

significantly modifies the time spent in the drug-paired compartment 

during the test session compared with the pretest (Brown-Forsythe test, 

p<0.001). Both, the group administered with 70 and 150 nmol of ethanol 

showed a significant increase in the preference score for the drug-paired 

compartment as compared with the control group (aCSF) (Games-Howell 
adjustment for multiple comparisons, p=0.006 and p=0.042, respectively), 

indicating the expression of CPP.   The animals receiving 70 nmol of ethanol 

showed the highest preference (200 ± 26 seconds vs   145 ± 20 seconds for the 

150 nmol group). On the other hand, the lowest dose administered (35 

nmol) did not induce any preference. Interestingly, the highest dose (300 

nmol) induced a significant decrease in the preference score relative to the 

control group (Games-Howell adjustment for multiple comparisons, 

p=0.023), suggesting the expression of CPA for this dose. The mean score for 

this dose was also significantly lower compared with that observed for animals 

treated with 70 nmol dose (Games-Howell adjustment for multiple 
comparisons, p<0.001). Additionally, the preference score from the unpaired 

group conditioned with the 70 nmol dose did not differ from the control 

group (aCSF) (Games-Howell adjustment for multiple comparisons, p=1.000). 

Altogether, results in experiment V showed that either reinforcing 

(CPP) or aversive (CPA) ethanol properties are dependent on the dose 

directly administered into the VTA  (ranging here from 35 to 300 nmol). 
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Figure 4.12 Dose-response relationship for the CPP elicited by the 
administration of intra-VTA ethanol. Data are mean ± SEM of the preference score 
(test minus pretest time spent in ethanol-paired compartment) in grey for aCSF, beige 
for 35 nmol, red for 70 nmol, orange for 150 nmol, blue for 300 mol and brown for 
unpaired 70 nmol treated animals. *=p<0.05, **=p<0.01, significant differences 
relative to the control group (aCSF); #=p<0.01, ##=p<0.001, significant differences 
relative to the 70 nmol treated group (Brown-Forsythe followed by Games-Howell 
test).  
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Expression of NR1 and NR2A NMDA receptor subunits after ethanol induced 
CPP or CPA 

Western blot technique was selected to explore changes in NMDAR 

NR1 and NR2A subunits in the NAc and dorsal hippocampus and results are 

shown in Figures 4.13 and 4.14, respectively. The analysis was performed in 

brain tissue extracted from animals belonging to the groups that showed the 
highest preference or aversion (70 nmol and 300 nmol). We also analyze brains 

from animals belonging to both the unpaired and the control group.  

The expression of NR1 in the NAc did not significantly change  

between groups (one-way ANOVA, F(3,12)=2.050; p=0.161) although levels for 
the group conditioned with 70 nmol of ethanol were tend to be higher relative 

to controls (143 ± 12 %, expressed as percentage of change from controls). 

Also, this same group (70 nmol treated) showed the highest level of NR2A 

(166 ± 27 %, expressed as percentage of change from controls); however, the 

statistical analysis also showed no significant differences between groups 

(Kruskal-Wallis test, p=0.126).  

In the hippocampus, the level of expression of both NR1 and NR2A 

did not differ among groups (one-way ANOVA, F(3,11)=2.078; p=0.131 and 

F(3,12)=1.066; p=0.403, respectively). 
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Figure 4.13 NMDA subunit expression in NAc after ethanol induced CPP or 
CPA. Data are represented as mean ± SEM of the percentage from control group in 
grey for aCSF, brown for unpaired 70 nmol, red for 70 nmol and blue for 300 nmol 
treated animals. 
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Figure 4.14 NMDA subunit expression in the hippocampus after ethanol induced 
CPP or CPA. Data are represented as mean ± SEM of the percentage from control 
group in grey for aCSF, brown for unpaired 70 nmol, red for 70 nmol and blue for 
300 nmol treated animals. 

To further analyze the tendency in the changes of NR2A expression, a 
different cohort of animals was conditioned with 70 nmol and aCSF as control 

group. The objective was to replicate the previous behavioral results and 

perform a more precise analysis of the NR1 and NR2A mRNA expression 

through the use of the in situ hybridization technique. Again, only the data of 

the experiments in which the two cannulae were correctly placed were included 
in the statistical comparisons and a schematic representation for the location of 

the cannula tips in the VTA can be found in Figure 4.15.  
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Figure 4.15 Schematic representation of the tip of the cannulae positions in 
animals belonging to the new cohort of experiment V. In orange, the area occupied 
by all the cannulae tips of the experimental groups: aCSF and 70 nmol. Numbers 
indicate distance from bregma. Adapted from Paxinos and Watson 2007. 

As shown in Figure 4.16 and in accordance with the previous data, 70 

nmol of ethanol significantly increased the time spent in the drug-paired 

compartment (p=0.009, t-test).  
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Figure 4.16 Place preference elicited by the administration of intra-VTA ethanol. 
Data are mean ± SEM of the preference score (test minus pretest time spent in 
ethanol-paired compartment) in grey for aCSF, and red for 70 nmol treated animals. 
*=p<0.01, t-test. 

The in situ hybridization quantifications are represented in Figure 4.17 

and 4.18 for the NAc and hippocampus, respectively. Also, representative 

pictures of the images obtained by the in situ RNAscope technique can be 

found in Figure 4.19, Figure 4.20 and Figure 4.21. The results revealed that, in 

the NAc, the group that expressed CPP after ethanol treatment has 

significantly higher mRNA levels of NR2A (5.64 ± 0.54 dots/cell) as 

compared with the control group (3.62 ± 0.03 dots/cell) (t-test, p=0.014). 

However, the t-test did not reveal significant difference for NR1 mRNA 

levels between the two groups (p=0.316). Besides, in the hippocampus, the 

levels of NR1 and NR2A mRNA expression were not different between 
ethanol conditioned and control animals, as shown by the t-test (p=0.896 and 

p=0.698). 

 130

-200

-100

0

100

200

300

CP
P s

co
re

 (s
ec

)

aCSF (n=4)

70 nmol (n=6)

*



R
esults

Figure 4.17 Expression of mRNA from NMDA subunits NR1 (Grin 1) and NR2A  
(Grin 2A) in the NAc after ethanol induced CPP. Data are mean ± SEM represented 
as number of dots (mRNA molecules) per cell in grey for aCSF, and red for 70 nmol 
treated animals. *=p<0.05, t-test. 

Figure 4.18 Expression of mRNA from NMDA subunits NR1 (Grin 1) and NR2A 
(Grin 2A) in the hippocampus after ethanol induced CPP.  Data are mean ± SEM 
represented as number of dots (mRNA molecules) per cell in grey for aCSF, and red 
for 70 nmol treated animals. *=p<0.05, t-test. 
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Figure 4.19 Representative pictures of the compilation files obtained in the 
mRNA in situ Hybridization Assay used for the quantification of mRNA from 
NR1 and NR2A subunits in NAc (left) and hippocampus (right) after ethanol 
induced CPP. Squares delimit the area of the amplified pictures shown in Figure 4.20 
for the NAc and in Figure 4.21 for the hippocampus. Abbrevietions: Aca, anterior 
commissure; CA3, field CA3 of hippocampus; DG, dentate gyrus; CA1, field CA1 of 
hippocampus. 
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Figure 4.20 Representative amplified pictures obtained in the mRNA in situ 
Hybridization Assay used for the quantification of mRNA from NR1 and NR2A 
subunits in NAc. Amplified pictures from one animal of each group (aCSF on the left 
and ethanol 70 nmol on the right) were selected.   
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Figure 4.21 Representative amplified pictures obtained in the mRNA in situ 
Hybridization Assay used for the quantification of mRNA from NR1 and NR2A 
subunits in hippocampus. Amplified pictures from one animal of each group (aCSF 
on the left and ethanol 70 nmol on the right) were selected.   
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In whole, the analysis of NMDA expression in experiment V showed that 
the expression of CPP induced by 70 nmol correlates with increased levels 

of mRNA from NR2A subunit in the NAc, whereas no changes are observed 

in the hippocampus. 

Experiment VI: MORs role in ethanol CPP acquisition 

Cannulae placement validation 

The cannulae placements within the VTA were carefully confirmed by 

histological analysis. Figure 4.21 schematically depicts the location of the tip of 

the cannulae in the VTA for all the rats included in the present study. Only the 
data from rats in which the two cannulae were correctly placed were included 

in the statistical comparisons. 

Figure 4.22 Schematic representation of the tip of the cannulae positions in 
animals belonging to experiment V. In orange, the area occupied by all the cannulae 
tips of the experimental groups: aCSF-aCSF, β-FNA+aCSF, aCFS+70nmol and β-
FNA+70nmol. Numbers indicate distance from bregma. Adapted from Paxinos and 
Watson 2007. 
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Effect of MORs blockade on ethanol CPP acquisition 

The mean values of the preference score for each group, calculated by 

subtracting the time spent in the drug-paired side during Pretest from the time 
spent in the drug-paired side during Test, are shown in Figure 4.23. Results 

show that the pretreatment with β-FNA was able to block the acquisition of 

the CPP induced by the ethanol dose that previously produced the highest 
preference score (70 nmol). The statistical analysis confirmed that only the 

group pretreated with aCSF and conditioned with 70 nmol of ethanol 

presented a significantly higher score (204 ± 19 sec) compared to the control 

groups treated with aCSF and pretreated with aCSF (20 ± 29 sec) or with β-

FNA (-2 ± 36 sec). Also, and more importantly, the score obtained for this 

group also significantly differed from that obtained in the group pretreated 

with β-FNA and receiving ethanol 70 mol (25 ± 38 sec) (Kruskal-Wallis, 

p=0.002; pairwise comparisons with Bonferroni adjustment, p<0.005). 
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Figure 4.23 Effect of MORs blockade on ethanol CPP acquisition. Data are mean 
± SEM represented as preference score (test minus pretest time spent in ethanol-paired 
compartment) in light grey for aCSF+aCFS, dark grey for β-FNA+aCSF, red for 
aCFS+70nmol and light orange for β-FNA+70nmol treated groups. *=p<0.05, 
significant differences relative to aCFS+70nmol group (Kruskal-Wallis followed by 
Bonferroni adjustment). 

Besides, tissue samples from brains belonging to animals from the aCSF 

+ aCSF and β-FNA + ethanol groups were analyzed for NR1 and NR2A 

subunits expression.  Results that can be found in Figure 4.24. As can be seen, 
the levels of NR1 and NR2A subunits were not significantly different 

between groups (t-test, p=0.72 and non-parametric test p=0.670, respectively). 
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Figure 4.24 NMDA subunit expression in the NAc after blockade of ethanol CPP 
acquisition. Data are represented as mean ± SEM of the percentage from control 
group light grey for aCSF+aCFS and light orange for β-FNA+70nmol treated 
groups. 

Overall, results from experiment VI showed that the blockade of VTA 

MORs with β-FNA impairs the development of ethanol induced CPP at 

the dose of 70 nmol. In addition, in this group there is no change in the 

expression of NMDA subunits in the NAc.  
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4.2.2.b Experiment VII: Effect of inflammatory pain on intra-VTA ethanol-
induced CPP 

Cannulae placement validation 

The cannulae placements within the VTA were carefully confirmed by 

histological analysis. Figure 4.25 schematically depicts the location of the tip of 
the cannulae in the VTA for all the rats included in the present study. Only the 

data from animals in which the two cannulae were correctly positioned were 

included in the statistical comparisons. 

Figure 4.25 Schematic representation of the tip of the cannulae positions in 
animals belonging to experiment VII. Experimental groups are: aCSF (blue); 
saline-52nmol (empty black); saline-70nmol (filled black); CFA-52nmol (empty 
red); CFA-70nmol (filled red). Dots could represent more than one cannula 
placement. Numbers indicate distance from bregma. Adapted from Paxinos and 
Watson 2007. 
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Mechanical nociception evaluation 

The Von Frey test was performed to measure the changes in mechanical 

nociception throughout the CPP experiment VII (see section 3.8.1) The results 
of the Von Frey test are represented in Figure 4.26 and confirmed that saline 

rats maintained the mechanical nociceptive threshold as the one measured in 

the baseline session. On the contrary, CFA rats showed a significant decrease in 

the mechanical nociceptive threshold that was maintained until the 

performance of the CPP Test session (two-way ANOVA for repeated measures, 
within-subjects interaction time x group F(2,44)=16.299, p<0.001; Bonferroni 

correction for multiple comparisons, differences between groups: pD2<0.001 

and pD9<0.001, differences from baseline, saline: pD2=1.000 and pD9=1.000, 

CFA: pD2<0.001 and pD9<0.001). 

Figure 4.26 Von Frey test performed during experiment VII. Data are mean ± SEM 
and represent the paw withdrawal thresholds measurements in black dots for saline 
rats (n=9) and in red squares for CFA rats (n=13). *=p<0.001, significant differences 
between groups; #=p<0.001, significant differences relative to baseline (B) (two-way 
ANOVA for repeated measurements followed by Bonferroni multiple comparisons). 
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Effect of inflammatory pain on intra-VTA ethanol-induced CPP 

In this experiment, we analyzed the ability of two different ethanol doses 

directly administered into the VTA to induce CPP in animals under pain and 
pain-free conditions. Results show that inflammatory pain causes significant 

alterations on ethanol-induced CPP (one-way ANOVA F(4,23)=3.685, 

p=0.018, Figure 4.27). Concretely, saline rats that received the lowest 

ethanol dose (52 nmol) showed a preference score significantly higher than 

the control group (146 ± 26 vs -12 ± 36, LSD test, p=0.040), whereas CFA 

rats did not developed a preference for the ethanol paired compartment when 

compared to control group (-18 ± 49 vs -12 ± 36, LSD test, p=0.920). 

Interestingly, the higher ethanol dose used (70 nmol) induced CPP in both 

saline and CFA rats, shown as preference scores significantly higher than the 

control group (saline rats: 165 ± 54, p=0.016; CFA rats: 140 ± 44, LSD test, 
p=0.024). Moreover, the statistical analysis showed significant difference 

between doses only in CFA rats (saline rats: p=0.804, CFA rats: p=0.019, LSD 

test). 

In summary, results from experiment VII showed that, in comparison 
with the saline group, the ability of ethanol administered into the VTA to 

induce CPP is impaired in CFA animals the case of the lower dose of 

ethanol (52 nmol) but not when using a higher dose (70 nmol).  
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Figure 4.27 Effect of inflammatory pain on intra-VTA ethanol-induced CPP. Data 
are mean ± SEM and represent preference scores, calculated as test minus pretest time 
spent on the ethanol-paired compartment in blue for aCSF (n=6), empty black for 
saline-52nmol (n=4), empty red for CFA-52nmol (n=6), filled black for 
saline-70nmol (n=5) and filled red for CFA-70nmol (n=7) treated groups. *=p<0.05, 
significant differences relative to the control group (aCSF); #=p<0.05, significant 
differences relative to the CFA-52nmol group (one-way ANOVA followed by LSD 
test). 
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4.3 EFFECT OF INFLAMMATORY PAIN ON ETHANOL 
RELAPSE 

As previously described in section 3.8.3, in experiment VIII the effect of 

inflammatory pain on ethanol relapse was studied by selecting a non-operant 

self-administration paradigm in which periods of continuous access to 4 
different bottles (water and 5%, 10% and 20% (v/v) ethanol) were alternate 

with forced abstinence periods (access only to water). The saline or CFA 

injection was conducted forty-eight hours before the reintroduction of ethanol 

bottles after the last abstinence period. 

During the whole experiment animals were regularly weighted to ensure 

their correct growth despite the long exposure to ethanol solutions. The 

temporary evolution of weight for the two groups can be found in Figure 

4.28. As expected, no significant differences were found between the two 

groups prior to the saline or CFA injection (two-way ANOVA for repeated 
measures, within subjects effect of time F(24,432)=502.327, p<0.001; interaction 

time x group F(24,432)=0.432, p=0.992; between subjects effect of group 

F(1,18)=0.071, p=0.793). Moreover, as can be seen in Figure 4.29, when 

analyzing rats weigh during the last cycle (e.g., prior and after to the saline or 

CFA injection) no significant effects are found between these two groups 
(two-way ANOVA for repeated measures, within subjects effect of time 

F(3,54)=112.224, p<0.001; interaction time x group F(3,54)=1.869, p=0.146; 

between subjects effect of group F(1,18)=0.019, p=0.891). 

Therefore, nor the continuous ethanol intake neither the induction of 

an inflammatory pain condition seemed to alter rats weight during 

experiment VIII. 
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Figure 4.28 Weekly evolution of the rats weight prior to the 4th abstinence 
period. Data are mean ± SEM of animals weight (kg) shown in black dots for saline 
rats (n= 10) and in red squares for CFA rats (n=10). 

Figure 4.29 Mean of rats weight during the last three basal days (B) and for the 
three post-abstinence days after the last abstinence period. Data are mean ± SEM 
of animals weight (kg) shown in black dots for saline rats (n= 10) and in red squares 
for CFA rats (n=10). 
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Moreover, another interesting parameter that was monitored during the 

whole experiment VIII was the total intake of liquid, as all the bottles (water, 

5%, 10% and 20% (v/v) ethanol) were regularly weighted. Again, no 

significant differences were found between saline and CFA selected rats 

during the whole timeframe previous to the last abstinence period (two-way 

ANOVA for repeated measures, within subjects effect of time F(24,432)=17.174, 
p<0.001; interaction time x group F(24,432)=1.011, p=0.450; between subjects 

effect of group F(1,18)=0.015, p=0.905) (Figure 4.30). In the case of the last 

abstinence period, levels of total intake of liquid during baseline and after 

ethanol reintroduction (and, therefore, after saline or CFA injection), were 

not significantly different between saline and CFA rats (two-way ANOVA for 
repeated measures, within subjects effect of time F(3,54)=4.895, p<0.001; 

interaction time x group F(3,54)=0.348, p=0791; between subjects effect of 

group F(1,18)=0.590, p=0.453) (Figure 4.31). 

Figure 4.30 Weekly evolution of the rats total volume intake prior to the 4th 
abstinence period. Data are mean ± SEM of total volume (mL/day) shown in black 
dots for saline rats (n= 10) and in red squares for CFA rats (n=10). 

 

 145

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Saline (n=10)
CFA (n=10)To

ta
l v

olu
me

 (m
L/

da
y)

Weeks

Asbtinence 1 Asbtinence 2 Asbtinence 3



Figure 4.31 Mean of rats total volume intake during the last three basal days (B) 
and for the three post-abstinence days after the last abstinence period. Data are 
mean ± SEM of total volume (mL/day) shown in black dots for saline rats (n=10) and 
in red squares for CFA rats (n=10). 

In addition, in Figure 4.32 it is represented the total amount of ethanol 

intake for each group along the whole ethanol exposure period previous to the 

last abstinence phase. As expected, before the injection of saline or CFA, 

there were no significant differences in total ethanol intake between the two 

experimental groups (two-way ANOVA for repeated measures, within subjects 
effect of time F(24,432)=4.361, p<0.001; interaction time x group F(24,432)=0.562, 

p=0.955; between subjects effect of group F(1,18)=1.589, p=0.224).  

 

 146

5

10

15

20

25

B 1 2 3

Saline (n=10)
CFA (n=10)To

ta
l v

olu
me

 (m
L/

da
y)

Days



R
esults

Figure 4.32 Weekly evolution of the rats total ethanol intake prior to the 4th 
abstinence period. Data are mean ± SEM of total ethanol intake (g/kg/day) shown in 
black dots for saline rats (n= 10) and in red squares for CFA rats (n=10). 

For each cycle of exposure, basal and post-abstinence ethanol intake was 
measured as the mean of the three days before and after to the abstinence 

period, respectively. In the case of the three first cycles of exposure prior to the 

saline or CFA injection, no significant differences were found between cycles 

in both saline (two-way ANOVA for repeated measures, within subjects effect 

of period F(1,27)=13.217, p=0.001; interaction period x cycle F(2,27)=1.029, 
p=0.371; between subjects effect of cycle F(2,27)=1.163, p=0.328) (Figure 4.33, 

left) and CFA groups (two-way ANOVA for repeated measures, within subjects 

effect of period F(1,27)=41.348, p<0.001; interaction period x cycle 

F(2,27)=1.338, p=0.281; between subjects effect of cycle F(2,27)=0.663, p=0.523) 

(Figure 4.33, right). Furthermore, both saline and CFA selected rats showed 

an increase in total ethanol intake after the first three abstinence periods 

(prior to the saline or CFA injection). This increase was statistically significant 

in two of the three cycles for saline and CFA selected rats (e.g., the ADE 

occurs after two of the three abstinence periods) and, also, both groups 
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showed an ADE after the third abstinence period, that was the last one 
before the saline or CFA injection (paired t-test, saline: p1stcycle=0.005, 

p2ndcycle=0.401, p3rdcycle=0.010; CFA: p1stcycle=0.056, p2ndcycle<0.001, 

p3rdcycle=0.007). 

Figure 4.33 Total ethanol intake before and after the first three abstinence periods. 
Data are mean ± SEM of total alcohol intake (g/kg/day) of the 3 days pre- (basal) and 
post-abstinence shown in light grey (1st cycle), grey (2nd cycle) and dark grey for the 
saline selected rats (left, n=10) and in light orange (1st cycle), red (2nd cycle) and 
dark red (3rd cycle) for the CFA selected rats (right, n=10). *=p<0.05, significant 
differences between respective basal and post-abstinence consumptions (paired t-test). 

During the last abstinence period and forty-eight hours before ethanol 

reintroduction, animals were injected with saline or CFA in the hindpaw. ADE 

was analyzed by measuring ethanol consumption during the three days after 
reintroduction and comparing them to ethanol consumption during the three 

days before the abstinence period (basal), as can be found in Figure 4.34. After 

the reintroduction of alcohol solutions, both CFA and saline rats showed an 

increase in alcohol consumption. No significant differences were found 

between groups (two-way ANOVA for repeated measures, within subjects 
effect of time F(1,18)=45.599, p<0.001; interaction time x group F(1,18)=0.536, 
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p=0.474; between subjects effect of group F(1,18)=1.647, p=0.216). Bonferroni 
correction for multiple comparisons showed significant differences between 

basal and post-abstinence ethanol consumption for both groups (p(saline)<0.001, 

p(CFA)=0.001) indicating the occurrence of ADE.  

The total ethanol intake for each of the three post-abstinence days 
was also analyzed (Figure 4.35). Statistical analysis revealed a significant 

increase in ethanol intake after ethanol reintroduction both in CFA and saline 

rats, but there were no significant differences in intake between groups (two-

way ANOVA for repeated measures, within subjects effect of time 

F(3,54)=15.268, p<0.001; interaction time x group F(3,54)=0.306, p=0.821; 
between subjects effect of group F(1,18)=0.206,  p=0.087). Concretely, in saline 

rats, total ethanol intake was significantly higher the 3 post-abstinence days 

compared to baseline (Bonferroni correction for multiple comparisons, 

p(day1)=0.001, p(day2)=0.019, p(day3)=0.026), whereas in CFA rats there were only 

significant differences in total ethanol intake in the post-abstinence day 1 
compared to that observed in baseline (Bonferroni correction for multiple 

comparisons, p(day1)=0.001, p(day2)=0.061, p(day3)=1.000).
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Figure 4.34 Total ethanol intake before and after the last abstinence period. Data 
are mean ± SEM of total alcohol intake (g/kg/day) of the 3 days pre- (basal, empty 
bar) and post-abstinence (filled bars) shown in black for saline rats (n= 10) and in red 
for CFA rats (n=10). *=p<0.001, significant differences between respective basal and 
post-abstinence consumptions (two-way ANOVA for repeated measures followed by 
Bonferroni correction for multiple comparisons). 
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Figure 4.35 Mean of basal intake and post-abstinence ethanol intake per day after 
the last abstinence period. Data are mean ± SEM of total alcohol intake (g/kg/day) 
for basal (empty) and for each of the three post-abstinence days (filled) shown in black 
dots for saline rats (n= 10) and in red squares for CFA rats (n=10). *=p<0.05, 
significant differences relative to basal (two-way ANOVA for repeated measures 
followed by Bonferroni correction for multiple comparisons). 
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Globally, the results presented in this Thesis highlight the effects that 

inflammatory pain induces over the regulatory control that the EOS exerts on 

MCLS and, consequently, the impact of inflammatory pain in the ethanol 
reinforcing properties. In this way, inflammatory pain induces a 

desensitization of local MORs in the VTA, which results in changes in the 

ethanol actions on the activity of DA neurons in the MCLS. Concretely, 

inflammatory pain reduces ethanol-evoked DA release in the NAc. One 

important behavioral consequence is that pain blunts the CPP elicited by 
direct ethanol administration into the VTA. Finally, in the long-term ethanol 

exposure paradigm employed to evaluate the influence of inflammatory pain on 

relapse, the ADE is manifested in pain suffering animals, although no changes 

are observed in its magnitude compared to control animals. 

Given the results obtained in the present Thesis, three main questions 

can be derived, which will be the focus to discuss in the following section: (1) 

Is the function of MORs in the MCLS altered by the presence of inflammatory 

pain? (2) Does inflammatory pain alter the ethanol-induced actions in the 

MCLS? (3) How does inflammatory pain impact on the ADE in long-term 
experienced animals? 
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5.1 IS THE FUNCTION OF MORS IN THE MCLS 
ALTERED BY THE PRESENCE OF INFLAMMATORY 
PAIN? 

MORs are essential for reward processing of both natural stimuli and 

drugs of abuse (reviewed in Le Merrer 2009). The activation of MORs located 

in the VTA increases DA release in its projecting regions, a mechanism that has 

been traditionally implicated in the reinforcing properties of drugs, including 
ethanol (Charbogne et al., 2014, Darcq and Kieffer 2018; Hipólito et al., 

2009; Kieffer and Gavériaux-Ruff 2002; Martí-Prats et al., 2015; Melis et al., 

2009; Xiao and Ye 2008; Xie et al., 2012).  

In addition, previous studies suggest that pain induces plastic changes 

in the MCLS (section 1.3.2.c) (Navratilova and Porreca 2014; Taylor 2017). 

Precisely, several studies analyzing this connection have revealed that subjects 

under persistent pain show an increase in the functional cortico-striatal 

connectivity in humans (Baliki et al., 2012) and a reduced phasic DA singling 

in both humans (Loggia et al., 2014) and rodents (Ozaki et al., 2002; Ren et 
al., 2015; Taylor et al., 2015). Also, persistent pain has been showed to modify 

motivational behavior for drugs (especially studied in opioids) (Massaly et al., 

2016; Martin et al., 2007) and for natural rewards (Massaly et al., 2019; 

Schwartz et al., 2014). A possible mechanism contributing to these events 

could be a decrease in MOR function in the MCLS. In fact, a decrease in 
MOR function in many other regions involved in pain processing has been 

widely reported (see section 1.3.2.b) (Aoki et al., 2014; Hurley and Hammond 

2001; Jongeling et al., 2009; Shaqura et al., 2004; Zhang et al., 2004). 

Therefore, it could be possible that local MOR function in the VTA is also 
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decreased by the presence of pain and, consequently, changes in the regulation 
of VTA DA neurons would take place.  

For all that, the first group of experiments in this Thesis analyzed the 

effect of inflammatory pain on the responsiveness of VTA MORs to acute 

administration of a pure agonist. With this purpose, the expression of cFos 
was selected as an indirect measure of cell activation. The detection of this 

protein has been frequently used since the late 1980 (Bullitt 1990; Dragunow 

and Faull 1989) for mapping groups of neurons that display changes in their 

activity. Changes in  neuronal activity lead to second messenger signaling 

cascades that induce the expression of the immediate early gene c-fos, which 

induces the production of the transcription factor cFos (Curran et al., 1984; 

Herdegen and Leah 1998). Therefore, in the first group of experiments, cFos 
expression was chosen to map the activation of VTA projecting areas after local 

MOR stimulation. This technique was considered the most appropriate 

because: i) it is a rapid and validated method to indirectly measure neuronal 

activation ii) cFos expression occurs after an acute activation such as intra VTA 

MOR agonist infusion and iii) this method allows to simultaneously analyze 
different brain regions. 

Results from experiment I showed that the cFos expression in 

projecting areas of the VTA after intra-VTA administration of DAMGO (an 

agonist of MORs) is reduced or suppressed in the majority of regions by 

the presence of inflammatory pain. In control rats (no pain condition), 

(experiment Ia), local MOR agonism in the VTA increases cFos expression in 

the majority of its projection areas (NAc, BLA, ACC and BNST), with the 

exception of PL, IL and VP. However, when rats were under an inflammatory 
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pain condition (CFA rats, experiment Ib), this response was significantly 
diminished in the majority of regions (BLA, ACC and BNST).   

Results obtained in experiment Ia also reveal the complexity of the 

opioidergic control of the activity of VTA projections (Table 4.1). For example, 

in the case of NAc and BLA, the administration of DAMGO 14 ng, but not 
DAMGO 7 ng, significantly increased cFos-IR counting as compared to 

aCSF administration. This increase may be due to a higher proportion of VTA 

DA neurons in the projections from the VTA to the NAc and BLA (Juarez and 

Han 2016; Lammel et al., 2014). Conversely, in the ACC, cFos-IR counting 

was increased when administering DAMGO 7 ng in the VTA but not when 
DAMGO 14 ng was injected. By contrast, neither PL nor IL were significantly 

activated by either dose. These observations are in agreement with previous data 

showing that the activation of MORs in the VTA increases DA release in the 

ACC but not in other prefrontal areas (Narita et al., 2010). Similarly to ACC, 

the low dose of DAMGO increased cFos-IR counts in the BNST. Although 
they have received less attention, there is also evidence that the BNST receives 

dopaminergic input from the VTA (Badiani et al., 2011), that could be 

activated by focal injections of the MOR agonist. However, the lack of effect of 

the higher dose of DAMGO in both ACC and BNST suggests that the 

opioidergic control of the VTA over these projecting regions is certainly 
complex. In this sense, the inhibitory GABAergic projections that the VTA also 

sends onto the PFC (Carr and Sesack 2000), might counteract the activation 

induced by dopaminergic projections, adding complexity to the opioidergic 

modulation of VTA efferences. Moreover, the DA effect on the PFC neuronal 

activity has been shown to have an inverted U-shape dose-response curve, as 
shown by electrophysiological recordings of PFC and VTA co-cultured cells.  

(Kroener et al., 2009). Therefore, even if DAMGO 14 ng induces higher levels 
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of DA in the ACC, the resulting effect could be a reduction of the cFos-IR 

cells. Finally, in the case of the VP, the activation of MORs in the VTA does 

not increase cFos expression. Although a possible lack of effect of the 
employed doses of DAMGO should not be discarded, our results suggest that 

the VTA projections to the VP could not be under MORs control (Lammel et 

al., 2014; Yoo et al., 2016). 

Very interestingly, results from experiment Ib show that the presence of 
inflammatory pain impaired the above-described increase of cFos 

expression induced by intra-VTA DAMGO in all areas analyzed, except in 

NAc (Table 4.2). Previous studies have already shown that pain-induced 

desensitization of VTA MORs has an effect on the NAc activity (Ozaki et al., 

2002). Concretely, in these studies authors showed that neuropathic pain 
decreases the opioid receptor-mediated G-protein activation induced by local 

MOR agonist in the VTA. Furthermore, the enhancement of DA release in the 

NAc stimulated by systemic morphine administration was significantly 

suppressed by sciatic nerve ligation. Surprisingly, in the present study, cFos-IR 

in the NAc was higher after the administration of 14 ng of DAMGO in 

both saline and CFA rats. Given the previously mentioned findings, a more 

expected result would have been to find that the dose that significantly 

increases cFos-IR counting in the NAc of control animals (14 ng of DAMGO) 

does not induce such an increase in CFA rats. This would have supported the 

fact that local MORs desensitization in the VTA has consequences in opioid 
induced activation of DA neurons projecting to the NAc. Several reasons may 

prevent to observe a shift in the dose response curve in this experiment. 

First of all, we may notice that it was not possible to detect an effect for the 

lower dose of DAMGO in the experiment Ia (saline rats). As commented 

above, in saline rats, the administration of DAMGO 7 ng elicited an increase 
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of cFos-IR in the NAc very similar to the one elicited by the DAMGO 14 ng 
dose. In fact, when compared to the aCSF counting, the lower DAMGO dose 

(7 ng) increased cFos-IR up to 169% in saline rats whereas this increase was 

not so noteworthy in CFA rats (145%) Nevertheless, these increases were not 

statistically significant when compared to aCSF counting in neither of the two 

experimental conditions (saline nor CFA). Second, it is possible that 14 ng is 
already a high dose that activates the dense projections from VTA to NAc, 

overcoming the lack of MORs effect. In this case, it is possible that an 

intermediate DAMGO dose would be useful to detect an increase of cFos 

expression only in saline treated animals. And third, it is important to note that 

cFos expression is the result of several events occurring during a long period of 
time, not only a direct consequence of the increase in DA release. Thus, the 

current result may show that, in CFA rats, 14 ng of DAMGO administered 

intra-VTA can induce similar overall activation than in saline rats, although 

behavioral outputs could radically differ. 

Contrary, in the other regions studied, inflammatory pain altered the 

pattern of cFos-IR observed in experiment Ia after the administration of 7 or 

14 ng of DAMGO. In fact, in the presence of inflammatory pain, intra-VTA 

DAMGO did not induce an activation of the BLA, ACC and BNST. 

Therefore, the DAMGO doses that induce cFos expression in the 
aforementioned projecting regions in experiment Ia are insufficient to induce 

cFos expression in pain rats. 

In the light of these previous results, experiment II and experiment III 

were designed with the aim of further exploring the effect of inflammatory pain 
on the modulatory function of local MORs (both in the NAc and the VTA), 

by measuring accumbal DA release. DA release in the VTA-NAc pathway 
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mediates the reinforcing properties of drugs and natural reinforcers and this 
DA release is tightly regulated by MORs in this pathway (see section 1.2.1) 

(Devine et al., 1993; Johnson and North 1992; Le Merrer et al., 2009; 

Olszewski et al., 2011; Wassum et al., 2009; Wise et al., 1995). Although 

results in experiment Ib did not show significant changes in cFos expression in 

NAc in pain-suffering rats after VTA MORs activation, there was, as 
mentioned above, bibliographic evidence suggesting that pain alters MORs 

function in the MCLS thus blunting MORs-evoked accumbal activation 

(Ozaki et al., 2002). Therefore, despite not observing pain-induced changes on 

MORs activation of this circuit by cFos expression measure (experiment I, 

results in NAc), it would be still possible to find differences in DA release 
evoked by agonists of MORs. In this way, results from experiment III revealed 

a reduced ability of DAMGO (7 ng in the VTA) to increase DA release in 

the NAc of pain-suffering rats, suggesting a decrease in MOR function 

(Figure 4.7, top panels). These findings are in accordance with previous 

researches in other laboratories that have reported a pain-induced impairment 
of mesolimbic DA activity. Concretely, imaging studies in humans with 

chronic pain have found lowered responsiveness within the DA MCLS in 

response to reinforcing stimuli when compared to healthy subjects (Loggia et 

al., 2014; Taylor et al., 2016). Also, animal studies corroborate this fact by 

reporting decreases in opioid-evoked DA release in pain suffering rodents 
(Ozaki et al., 2002; Taylor et al., 2015). 

Very interestingly, the intra-VTA administration of a close to 10× 

higher dose of DAMGO (67ng) significantly increased accumbal DA 

release in both saline and CFA rats (Figure 4.7, bottom panels). This finding 
points to a possible shift in the dose-response curve effect of DAMGO, what 

further supports the fact that CFA-treated rats show a decreased function of 
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VTA MORs. Actually, several studies have described a pain-induced decrease of 
MORs function in brain regions involved in nociception (Aoki et al., 2014; 

Hurley and Hammond 2001; Jongeling et al., 2009). In addition, Ozaki et al., 

2002, by combining the microdialysis and GTP𝛾S techniques, concluded that, 

in the presence of neuropathic pain, rats showed a loss of morphine-induced 

DA release in the NAc due to reduced MORs function in the VTA. Therefore, 

higher doses of agonist were needed to overcome the pain-induced 

desensitization of MORs in the VTA and to elicit similar increases in DA 

release as in control animals (as we observe in our experiment III). Also in vivo 
electrophysiological studies have shown that inflammatory pain alters MOR-

mediated GABA transmission in the VTA (Hipólito et al., 2015). Concretely, 

in neurons from CFA-treated rats, the lower DAMGO dose was unable to 

decrease GABA release in the VTA, whereas a higher dose was able to overcome 

that MOR desensitization. 

On the other hand, results obtained in experiment II showed that NAc 

DA release evoked by the intra-NAc administration of DAMGO 10µM  did 

not show significant differences between saline and CFA groups (Figure 

4.5). These results would suggest that pain-induced loss of MOR-mediated 

modulation of DA transmission was mainly localized in the VTA, and not in 

the NAc. However, it is important to notice that different results can be found 

when analyzing the individual effect of DAMGO 10µM on accumbal DA 

levels in each experimental group (saline or CFA-treated rats). In this way, in 

the saline group, the perfusion of DAMGO 10µM into the NAc was able to 
increase DA levels comparing to baseline. But, interestingly, the statistical 

analysis did not revealed an increase in DA levels in the CFA group after this 

same treatment. Thus, it could be that the effect of pain on local MORs 

regulation of DA levels in the NAc is not as robust as in the case of VTA 
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MORs. Finally, it is also possible that the dose selected in experiment II is not 
the appropriate to observe differences between groups. In this case, it is likely 

that, if using a lower DAMGO dose, significant difference between groups 

would be manifested, in a similar manner as in experiment III. 

Altogether, these results demonstrate that VTA MORs are desensitized 

by the presence of inflammatory pain and, thus, the regulation of VTA DA 

neurons innervating different projecting areas is altered in pain suffering 

animals. Those findings set up the point for the next experiments to deeply 

examine whether this pain-induced desensitization is somehow altering ethanol 

action on the MCLS.  
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5.2 DOES INFLAMMATORY PAIN ALTER THE 
ETHANOL-INDUCED ACTIONS IN THE MCLS? 

There is evidence that ethanol reinforcing properties are, at least in part, 

mediated by MORs in the MCLS (Guan and Ye 2010; Sánchez-Catalán et al., 

2009 Xiao et al., 2007; Xiao and Ye 2008). This fact, together with the 

previous findings that demonstrate a loss of VTA MORs function in CFA rats, 

gave rise to the second concrete objective of this Thesis. In this way, results 
from experiment IV and experiment VII revealed that both ethanol-evoked 

DA release in the NAc and ethanol-induced place preference, respectively, 

are reduced by the presence of inflammatory pain. In addition, an initial 

study previous to experiment VII was performed to characterize the behavioral 

paradigm, as it was the first ethanol-induced CPP performed with the local 
administration of this drug into the VTA. Concretely, experiment V and 

experiment VI were carried out and they evidenced, not only a dose-response 

relationship for the CPP elicited by intra-VTA ethanol, but also the critical 

role of MORs in this behavior, as well as the involvement of the NR2A 

NMDAR subunit. 

5.2.1 EFFECT ON ETHANOL-EVOKED ACCUMBAL 
DA RELEASE  

In experiment IV, the systemic administration of ethanol did not 

provoke a significant increase in NAc DA levels in CFA rats whereas a clear 
DA release increase was observed in the case of saline-treated rats (Figures 4.9 

and 4.10). This finding further supports the fact that inflammatory pain alters 

the neurochemical response of the MCLS elicited by ethanol. Moreover, this 

fact would be a direct consequence of the previous results showing a pain-
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induced loss of MOR function in the VTA, considering that this receptor has 
an important role in ethanol reinforcing properties (Guan and Ye 2010; 

Sánchez-Catalán et al., 2009 Xiao et al., 2007; Xiao and Ye 2008). In fact, 

previous researches similarly showed a decrease in opioid-evoked DA release in 

the NAc in rats under pain condition (Hipólito et al., 2015; Ozaki et al., 

2002). Concretely, by using the same inflammatory pain model as the one 
selected in the present work, Hipólito and collaborators showed that the i.v. 

heroin-evoked DA release in the NAc is blunted in CFA rats (Hipólito et al., 

2015). Curiously, the heroin-evoked increases of DA release described by 

Hipólito and collaborators started 15 min after heroin administration and 

differences between pain-free and CFA-treated groups were found 30 and 45 
min after this administration. According to the present results, ethanol-evoked 

increases and differences between groups appear later on time. It is important 

to highlight, that acute stressful stimuli also increase DA levels in the NAc 

(Abercrombie et al., 1989). For that reason, in this experiment, rats received a 

previous saline s.c. injection with the objective of discriminating this stress-
induced effect. Although DA levels after this prior injection were higher than 

baseline in both saline and CFA rats, that increase was not statistically 

significant for none of the groups. In addition, the global effect elicited by 

ethanol in saline rats was significantly higher than the saline-induced total 

effect (Figure 4.10). On the contrary, saline and ethanol-induced total effect 

were not statistically different in CFA rats (Figure 4.10), confirming that the 

current results are derived from the drug pharmacological properties and not by 

the injection procedure itself. After all, these microdialysis results clearly show 

that inflammatory pain blocks ethanol-evoked DA release in the NAc, which 

may have an effect on the reinforcing properties of this drug.  
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5.2.2.a Characterization of the CPP elicited by ethanol intra-VTA 

It is classically accepted that drug-reward related behaviors (such as CPP) 

(Spyraki et al., 1983; Young et al., 2014) are mediated by DA transmission 

within the NAc. Therefore, the CPP was the selected paradigm in the present 

Thesis, with the objective to show if altered neurochemical function in the 

MCLS could be translated into abnormal changes in this behavior.  

CPP paradigm has been previously used to study pain-induced 

alterations on opioid mesolimbic activation (Narita et al., 2005; Ozaki et al., 

2002). Nonetheless, when the drug administered is ethanol, the existing 
literature yields paradoxical CPP results. In fact, previous studies in rats have 

reported both CPP, CPA or no changes in the preference when ethanol is 

administered by systemic routes (Bahi and Dreyer 2012; Becker et al., 2006; 

Peana et al., 2008; Zarrindast et al., 2010). Furthermore, Walker and Ettenberg 

showed that intracerebroventricular (icv) ethanol administration was able to 
induce CPP at the dose of 180 nmol, whereas 120 or 240 nmol did not induce 

changes in the preference (Walker and Ettenberg 2007). However, in none of 

these or other previous studies using the CPP paradigm ethanol has been 

administered directly into discrete regions of the MCLS.  

In addition, the development and expression of drug-context learning 

associations has also been classically related to glutamatergic transmission and 

glutamatergic dependent forms of neural plasticity induced by drugs (Hearing 

et al., 2018). As explained in section 1.3.3, NMDARs play an important role 

in the development of contextual driven behaviors for both natural rewards 
(Brigman et al., 2013; Dang et al., 2006; Parker et al., 2011; Yin et al., 2008) 
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and drugs (Beutler et al., 2011; Daglish et al., 2001; Ersche et al., 2006; 
Hearing et al., 2017; Heusner and Palmiter 2005; Prosser et al., 2006). 

Nonetheless, very few studies have focused on the concrete role of NMDARs 

subunits that mediate ethanol evoked CPP.  

Derived from the lack of CPP studies analyzing the dose-response effect 
of local ethanol administration into the VTA, it was necessary to design an 

initial set of experiments prior to the introduction of the inflammatory 

pain variable. Although alternative routes of administration could have also 

been explored, the intra-VTA was the selected one, because the aforementioned 

results from this Thesis and other related works have already shown a pain-
induced desensitization of local MORs in the VTA (see section 5.2.1). For all 

that, these experiments were planned with the objective of (i) demonstrating 

whether local administration of ethanol into the VTA is able to induce CPP in 

rats (ii) finding the appropriate intra-VTA ethanol dose that elicits CPP in a 

robust manner, (iii) exploring the implication of MORs in the CPP induced by 
intra-VTA ethanol and (iv) analyzing the changes in NMDARs subunits 

expression in ethanol conditioned animals.  

In this way, results from experiment V show, for the first time, that the 

intra-VTA administration of 70 and 150 nmol doses of ethanol paired with a 
specific context, results in a preference for that drug-associated environment 

(Figure 4.12). As explained in section 3.8.1, the score measurement was 

selected as the analysis method in these experiments. The reason for this 

decision was that the score is a within-subject measure, allowing to compare the 

different ethanol doses with a control (aCFS) group. In the very extensive 
review on CPP methods by Tzschentke (Tzschentke 2007), the author stated 

that ethanol preference or aversion results were equal across 4 different methods 
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for analyzing the CPP data, one of those being the present score measurement.  
In addition, previous studies exploring ethanol-induced CPP have selected the 

score measurement and similar scores (between 150 and 200 seconds in a 15 

min Test) have been reported for the conditioned groups (Gibula-Bruzda et al., 

2015; Walker and Ettenberg 2007). 

It is important to note, that, in experiment V, only the intermediate 

doses assayed elicit ethanol CPP, a fact that is in accordance with previous 

findings. For example, studies using medium to high doses of ethanol such as 1 

or 1.5 g/kg i.p. and similar experimental design to the one followed in this 

study, have reported ethanol-place preference (Bahi and Dreyer 2012; Peana et 
al., 2008). Also, the aforementioned icv study by Walker and Ettenberg points 

to a similar dose-response curve of ethanol CPP (Walker and Ettenberg 2007). 

Very impressively, ethanol administration not only can induce CPP but 

also can result in an aversion (CPA) to the drug-paired compartment when 

a higher dose is administered. That is the effect observed in experiment V in 

the 300 nmol ethanol treated animals, which show a clear negative preference 

score (Figure 4.12). There is also previous evidence of ethanol-induced CPA in 

the literature. Concretely, some studies reported aversion to the ethanol 

compartment when high systemic ethanol doses (2 g/kg) were administered in 
both rats (Becker et al., 2006; Zarrindast et al., 2010) and mice (Cunningham 

and Henderson 2000). According to the metabolites hypothesis on the role of 

ethanol metabolites in ethanol-derived actions in the MCLS (see section 1.3.2), 

this ethanol-induced place aversion could be a consequence of the direct 

action of the ethanol molecule itself (i.e., the non-metabolized fraction of the 
administered dose) on the VTA. As exposed in section 1.3.2, from a kinetic 

point of view, the percentage of the ethanol administered converted into its 
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metabolites will depend on the dose. Larger doses, exceeding the capacity of the 
metabolic system, will render higher levels of the non-metabolized ethanol 

fraction. 

As previously mentioned, this initial set of CPP studies was designed to 

characterize the ability of intra-VTA ethanol to elicit CPP, with the objective of 
using this behavioral paradigm to explore the possible effect of inflammatory 

pain. Nonetheless, given the interesting CPP and CPA obtained results, a 

deeper analysis of these ethanol context learned associations was also carried 

out in the present Thesis. Thus, the critical role of local MORs in the VTA and 

the involvement of the NMDAR subunits in ethanol CPP was explored. In this 
way, results from experiment VI show that the blockade of local VTA MORs 

during the conditioning phase impaired the acquisition of ethanol place 

preference. This points to the fact that MORs in the VTA have a key role in 

the development of ethanol induced context-learned associations. 

Furthermore, these results are in accordance with previous studies that have 
also showed that acquisition of ethanol-induced CPP (i.p. or icv) can be 

prevented by inhibiting MORs (Gajbhiye et al., 2017; Gibula-Bruzda et al., 

2015; Quintanilla et al., 2014). As explained in section 1.3.2, the activating 

effects of ethanol could be the result of the direct action of the ethanol 

metabolites (and, concretely, salsolinol) on the VTA MORs. According to this 
metabolites hypothesis, the products derived from the ethanol metabolism 

(i.e., salsolinol) would be the responsible for the induction of the place 

preference (see section 1.3.2). 

Current data together with our and other previous data clearly indicate 
that understanding the ethanol mechanism of action in the VTA to produce 

reinforcement or aversion is still unknown and more efforts are needed to shed 
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light on this important issue. Finally, results from experiment V and 
experiment VI confirm that the CPP paradigm is appropriate for the study of 

the effect of pain-induced changes in VTA MORs on DA-dependent behaviors 

induced by ethanol 

Regarding the involvement of the NMDAR subunits, the results from 
experiment V indicate an increase in NR2A mRNA dots/cell counts (Figure 

4.17), together with a tendency to increased NR2A protein levels expression 

(Figure 4.13) in the NAc of animals that showed ethanol place preference (70 

nmol). These changes could be attributed to the establishment of an 

association between the ethanol effects and a specific drug-conditioning 

compartment, since ethanol-unpaired 70 nmol rats exhibit no changes in 

NMDAR expression (Figure 4.13). Thus, it could be possible that accumbal 

NR2A have a key role in the development of the association between ethanol 

and the environment. In fact, NR2A knockout mice are not able to develop 

morphine or ethanol CPP (Boyce-Rustay and Holmes 2006; Miyamoto et al., 
2004), whereas the blockade of NR2B by administering a selective antagonist 

does not alter ethanol place preference (Boyce-Rustay and Cunningham 2004). 

In addition, local antagonism of NMDARs in the NAc before the test session 

blocks the expression of ethanol induced CPP (Gremel and Cunningham 

2009). Unfortunately, the current lack of a specific NR2A antagonist, 
complicates the study of the concrete role of this subunit in drug-induced 

context learned associations.  

Interestingly, and in line with results in the hippocampus, ethanol 

place preference does not seem to correlate with changes in the expression 

of NR1 nor NR2A subunits (or their corresponding mRNA) in this region 

(Figure 4.14). This is an intriguing result because previous data have shown 
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that morphine CPP in mice is related to an increase of NR1 subunit in the 
hippocampus (Portugal et al., 2014). In addition, the local antagonism of 

NMDA receptors in the hippocampus has also been able to prevent the 

acquisition but not the expression of morphine-induced place preference 

(Zarrindast et al., 2007). However, it is important to note that in these 

experiments morphine was administered systemically paired to a context, in 
contrast to the current experiment in which ethanol was locally administered 

into the VTA paired to the context. Unfortunately, there are no previous 

studies analyzing the expression of these NMDA subunits in the hippocampus 

after the development of ethanol CPP. It could be possible then, that these 

changes in the hippocampus that may occur as a consequence of the association 
of ethanol to a concrete context could differ from those elicited by other 

opioidergic drugs or may be related to the drug induced activation of MORs 

located in other brain areas. Further investigation may help to understand the 

role of hippocampal NMDAR in the expression of ethanol-induced CPP. 

5.2.2.b Effect of inflammatory pain on ethanol-induced CPP 

All in all, experiment V and experiment VI succeed to characterize the 

CPP elicited by the local VTA administration of ethanol, in which local VTA 

MORs showed to have a critical role. The next question, then, was: does 

inflammatory pain alter that ethanol-induced CPP? Results from experiment 

VII show that local administration of 52 nmol of ethanol intra-VTA is able to 

induce preference for the ethanol-paired compartment only in saline rats, 

but not in CFA rats (Figure 4.27). And very interestingly, it shows that a 

higher ethanol dose of 70 nmol is able to overcome this pain-induced 

blockade of ethanol place preference (Figure 4.27), hence resulting in similar 
preference scores in both saline and CFA rats. Moreover, the Von Frey test data 

confirms the validity of our inflammatory pain model and that no changes in 
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the nociception were observed neither in CFA nor saline rats through the CPP 
experimental process (Figure 4.26). These crucial data allowed us to rule out 

the possibility of unspecific behavioral effects derived from changes in 

mechanical nociception. The shift to the right in the dose-response of intra-

VTA ethanol CPP provides more evidence that dopamine-dependent 

behaviors are altered in CFA rats and higher ethanol doses are needed to 
elicit comparable effects as in saline rats.  

Similar results to these have been previously reported for other drugs of 

abuse. Concretely, Narita and collaborators showed a blockade of morphine-

induced CPP (8 mg/kg, i.p.) in rats suffering inflammatory pain (Narita et al., 
2005). This behavior was also correlated with a decrease of morphine-evoked 

DA release in the NAc in the presence of inflammatory pain. However, in this 

study none of the two morphine doses administered were able to induce 

morphine place preference in the inflammatory pain group. Another study, also 

using a morphine CPP paradigm, does, indeed, report a shift in the dose-

response of the drug induced place preference (Wu et al., 2014). In this case, 

the development of neuropathic pain in rats only blocked morphine-induced 

CPP at the lower dose (3.5 mg/kg, s.c.), but not at higher doses (5 mg/kg or 7 

mg/kg, s.c.). Very interestingly, the same effect was reported when the selective 

agonist DAMGO was administered into the VTA in another CPP study 
(Taylor et al., 2015). Concretely, Taylor and collaborators showed that the 

place preference elicited by intra-VTA administration of DAMGO was blocked 

in animals under neuropathic pain only at low doses of DAMGO. Thus, an 

abnormal function of MORs in the VTA of pain animals appears to be the 

responsible for the shift in drugs dose-response for CPP. All these observed 
phenomena are, likewise, consistent with other interesting findings reported in 

Hipolito et al., 2015. In that study, higher doses of heroin (i.v.) were necessary 
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to elicit heroin self-administration in CFA-treated rats (Hipolito et al., 2015). 
This self-administration data are of high importance because they show that 

animals, when developing a pain condition, change their pattern of 

consumption and self-administer opioids only when higher doses are 

presented. Therefore, it could be possible that pain condition induces a shift in 

the dose-response of opioidergic drugs and ethanol, what may be translated 
into a higher dose drug consumption in pain-suffering patients.  

Taken together, results from experiment VII show that inflammatory 

pain alters ethanol reinforcing action on the MCLS which may have 

consequences in alcohol consumption patterns.  
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5.3 HOW DOES INFLAMMATORY PAIN IMPACT ON 
THE ADE IN LONG-TERM EXPERIENCED ANIMALS? 

The last concrete objective of the present Thesis was to study whether this 

previous reported alteration in ethanol-evoked neurochemical responses and 

dopamine-dependent behaviors induced by inflammatory pain could have an 

effect on AUDs related behaviors. Pain condition frequently elicits negative 

affective states driving to alterations in reward evaluation, decision making and 
motivation (Apkarian et al., 2013; Verdejo-Garcia et al., 2009). A similar 

negative affective state is also present in AUD. Concretely, this state is 

characteristic of withdrawal phases, and it is related with drug seeking and 

relapse (Edwards and Koob 2010). Thereupon, the development of a pain 

condition during withdrawal could facilitate a negative affective state and 

thus increase the risk of alcohol seeking and relapse. Given the recent 

epidemiological data showing that higher levels of pain correlate with a higher 

risk of alcohol relapse (Jakubczyk et al., 2016), an alcohol relapse behavioral 

approach was chosen to investigate this connexion between pain and relapse in 

a preclinical setting.  

The long-term non-operant self-administration paradigm was selected, 

since it has been widely employed for the study of alcohol relapse-like behaviors 

in rodents by our and other groups and it has been proved to provide predictive 

validity (see section 1.3.1.b) (McKinzie et al., 2000; Orrico et al., 2013; 
Vengeliene et al., 2008).  

First, the paradigm was characterized to ensure that the correct growth 

and the normal behavior of the animals was not modified by neither the long 

exposure to ethanol nor the development of the inflammatory pain condition. 
With this purpose, animals weight was measured and no significant differences 
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between groups were found before (Figure 4.28) or after (Figure 4.29) the CFA 
or saline s.c. injection. Moreover, the two selected groups did not differ in total   

volume of liquid intake during the whole exposure prior to CFA or saline 

injection (Figure 4.30), or after the development of the inflammatory pain 

condition (Figure 4.31). Finally, the patterns of total ethanol intake were also 

analyzed during the first three cycles of exposure and abstinence to be sure that  
the possible changes observed after the 4th abstinence period are not derived 

from differences between the two groups before the injection of CFA or saline. 

In this way, both groups did not show significant differences in the total 

ethanol intake before the 4th abstinence period (Figure 4.32). When analyzing 

the development of an ADE after each ethanol reintroduction (Figure 4.33), 
results also showed that the two groups significantly increased their total 

ethanol  intake after two of the first three abstinence periods. And, what is 

more important, both groups developed this ADE during the third cycle, e.g., 

both groups showed similar relapse-like behavior before the development of the 

inflammatory pain condition in the CFA selected rats. All this data are of high 
importance, as they provide evidence that the methodology of the long-term 

alcohol exposure is not affecting the obtained results. 

Thereafter, during the 4th abstinence and post-abstinence periods, the 

effect of inflammatory pain on relapse was analyzed. As expected, our results 
indicate that alcohol-deprived CFA rats developed ADE after alcohol 

reintroduction (Figure 4.34 and Figure 4.35). However, the magnitude of the 

ADE did not change relative to control rats.  

The fact that there were no differences in alcohol intake between saline 
and CFA rats may be considered as surprisingly contradictory to the previous 

clinical data. The existing literature in humans shows that the presence of pain 
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is correlated with higher risk of alcohol relapse (Jakubczyk et al., 2016) and it 
also predicts heavy drinking (Witkiewitz et al., 2015b). Thereupon, the 

expected result in this experiment would have been to observe higher levels of 

alcohol consumption after the abstinence period in pain suffering animals. 

Although the present study does not provide a pain-derived effect in ADE, it is 

difficult, however, to infer that pain does not alter in any way rats relapse-

related behaviors. It is important to consider that relapse is a complex 

phenomenon and animal models try to reproduce a specific aspect of this 

behavior. The paradigm chosen for the present Thesis has been used by 

numerous preclinical studies to test different pharmacological strategies aimed 

to suppress or reduce ethanol relapse, but it has never been used to show an 
increase of the risk of relapse (McKinzie et al., 2000; Orrico et al., 2013). The 

ADE is defined as an increase in total ethanol intake that occurs during the first 

days after an abstinence period. As this increase normally occurs in the general 

rat population (control rats in experiment VIII), one possible result for this 

experiment could have been that the rats treated with CFA had shown an 
increase in alcohol intake (an ADE) greater than the increase exhibited by the 

control rats. However, experiment VIII failed to display such increase: rats in 

both groups showed similar increases in alcohol intake. Apparently, these 

results would suggest that pain did not change the relapse-like behavior in rats 

as measured in our ADE paradigm. 

However, the absence of changes in the magnitude of the ADE could 

not fully exclude the existence of changes in alcohol relapse vulnerability. 

Another interesting possibility, unfortunately not explored in this Thesis, is that 

pain does induce an increase in the vulnerability to relapse. In this case, the 
variable that should have been analyzed should have been the relapse rate, that 

is, the percentage of animals that show ADE after the period of forced 
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abstinence. Then, if chronic pain has any effect on relapse rate, CFA-treated 
animals should have shown a higher rate of relapse than that observed in 

control animals. Therefore, further behavioral studies involving a greater 

number of animals (that allow to investigate alcohol drinking behavior in the 

face of vulnerability to relapse) are needed and would shed more light in this 

aspect. 

It also is important to consider that pain-induced changes may 

differently affect addictive behaviors depending on the different stages of 

the AUD. In fact, recent studies using a two-bottle choice paradigm show that 

pain induction prior to alcohol exposure significantly increases total intake in 
mice (Butler et al., 2017; Yu et al., 2019). Thus, it may be plausible that pain 

increases alcohol intake during acquisition without modifying the magnitude 

of the ADE. On the other hand, there is a recent study in which neuropathic 

pain induced prior to a two-bottle choice ethanol exposure did not change the 

total ethanol consumption in mice (Bilbao et al., 2019). Although these three 
studies were performed under very similar conditions (same mice strain and 

ethanol exposure paradigm), the ethanol concentration in the two studies that 

report an increase in ethanol consumption is higher (20% ethanol) (Butler et 

al., 2017; Yu et al., 2019) that the one used by Bilbao and collaborators (12% 

ethanol) (Bilbao et al., 2019). This further supports the fact that despite results 
from experiment VIII do not show differences between saline and CFA rats in 

the magnitude of the ADE, many methodological factors could be masking a 

possible pain-induced effect on relapse. 

In any case, data from experiment VIII highlight the necessity of finding 
the appropriate animal model that reflects the existing clinical evidence and 

allows us to study the alcohol-related behavioral implication of pain-induced 
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alterations of the MCLS. Moreover, the present research provides relevant data 
as it analyses, for the first time, the effect of inflammatory pain on alcohol 

relapse in animal models and therefore constitutes an important contribution 

to the study of pain and AUD.  
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The most relevant conclusions derived from the data obtained in the 
present Thesis are: 

1. Intra-VTA DAMGO doses that induce cFos expression in the BLA, 
ACC and BNST are insufficient to activate MORs in CFA-treated 

animals, suggesting that inflammatory pain desensitizes local MORs in 

the VTA . 

2. Inflammatory pain decreases the ability of the MORs agonist 
DAMGO in the VTA to increase DA release in the NAc. This effect 

can be restored with higher doses of the agonist, further supporting 

pain-induced desensitization of MORs. 

3. Inflammatory pain impairs ethanol-evoked DA release in the NAc. 

4. Ethanol administration into the VTA is able to induce CPP or CPA 

depending on the selected dose. The development of the ethanol-

context preference necessarily involves the activation of the MORs 

within the pVTA and modifies the mRNA levels of NR2A in the NAc. 
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5. Inflammatory pain alters the CPP elicited by ethanol administered into 
the VTA. Higher doses of ethanol are required to observe a preference 

for the ethanol associated context in pain suffering animals. 

6. Alcohol-deprived rats under inflammatory pain develop ADE after 

alcohol reintroduction. The magnitude of the ADE, however, does not 
differ from the control group.
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Segons l’últim "Informe sobre l’estat de l’alcohol i la salut" de 

l’Organització Mundial de la Salut (OMS), el trastorn per consum d'alcohol 

(AUD de les sigles en anglés Alcohol Use Disorder) és el tercer principal risc 

de malaltia a Europa i és molt resistent a tractaments tant farmacològics com 

d'altres tipus, especialment en certes situacions clíniques (Litten et al., 2012). 
L'Oficina Regional de l'OMS a Europa fa èmfasis en la necessitat d'emprar un 

major esforç en la recerca per aclarir quines són aquestes situacions clíniques 

especials que augmenten el risc de patir AUD. 

  

D'altra banda, el dolor crònic és un problema de salut molt important, 
que afecta el 20-30% de la població europea en general. A més, el dolor crònic 

sovint va acompanyat de trastorns afectius i emocionals, que són molt difícils 

de tractar (Bair et al., 2013; Bushnell et al., 2013; Fine 2011). Estudis recents 

en humans i animals van revelar que el dolor impacta negativament en el 

processament motivacional i de recompensa, ja que altera el normal 

funcionament de sistema mesocorticolímbic (SMCL) (Taylor 2017). Aquest 

sistema s'encarrega tant de la regulació del comportament de motivació i 

l'aprenentatge de reforç per recompenses naturals i drogues, com també de la 

codificació d'estímuls aversius (Everitt and Robbins 2005; Koob and Volkow 

2016 ; Salamone 2016). Per tant, és possible que els efectes del dolor al SMCL 

no sols afecten a la qualitat de vida dels pacients (per exemple, provocant 

anhedonia, depressió, estats afectius negatiu), sinó que també tinguen un 

impacte important en la vulnerabilitat a l'abús de drogues. 

  

Múltiples estudis clínics i epidemiològics han posat de manifest que la 
presència de dolor crònic està estretament relacionada a amb l’AUD 

(Witkiewitz et al., 2015). Tota aquesta evidència apunta al dolor crònic com 
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un factor que augmenta el risc de patir AUD i en pacients amb antecedents 
d'abús d'alcohol sembla que promou el consum excessiu d'alcohol i la 

recaiguda (Jakubczyk et al., 2016 ; Witkiewitz et al., 2015b). No obstant això, i 

malgrat la rellevància clínica d’aquest fet en la selecció i el disseny de les 

estratègies per al tractament del dolor i de l’AUD, pocs estudis han examinat els 

mecanismes i circuits neuronals subjacents a aquesta relació. 
  

Tots els esforços per reduir la prevalença de l’AUD són necessaris, 

inclosa la recerca per comprendre els factors que promouen el consum excessiu 

d'alcohol i les recaigudes. Especialment, durant els últims anys, la recerca s'ha 

centrat en trobar noves estratègies per a la prevenció de la recaiguda, ja que 
constitueix el principal repte per al tractament dels pacients dependents a 

alcohol. Per tant, és de gran importància ampliar els coneixements respecte als 

efectes que el dolor provoca en la recaiguda i, en general, a l’AUD. A més, 

aquests resultats tindrien una aplicabilitat extrema a la detecció primerenca i la 

prevenció d'AUDs en pacients amb dolor. Per últim, també podrien ajudar al 
desenvolupament d'estratègies terapèutiques noves i més segures per tractar el 

dolor i l’AUD. 

  

Per tot això, l’objectiu general de la present Tesi és explorar les 

alteracions induïdes pel dolor inflamatori en la modulació de sistema 

opioide endogen sobre el SMCL dopaminèrgic i investigar si aquestes 

alteracions podrien afectar a la recaiguda en el consum d'alcohol en models 

de comportament animal. 

  

L’addicció a les drogues és una patologia molt complexa, que compren 
diferents regions de cervell involucrades en la recompensa, la emoció, la presa 

de decisions i l’hàbit. Concretament, l'efecte reforçant tant dels reforçadors 
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naturals com de les drogues està controlat pel SMCL. Aquest és un sistema 
heterogeni, format pel nucli accumbens (NAc), el nucli del llit de l’estria 

terminal (BNST), l’amígdala central (CeA), l'hipocamp i les regions corticals 

frontals. Tots ells reben innervació dopaminèrgica de l'àrea tegmental ventral 

(VTA) del mesencèfal (revisat en Fields et al., 2007). Al SMCL, la senyalització 

a través de sistema opioide endogen juga un paper clau en la regulació de 
l'activitat de les neurones de dopamina (DA) del VTA que projecten al NAc. 

Aquest sistema comprén tres tipus de receptors acoblats a proteïnes G: els 

receptors mu (MOR), delta (DOR) i kappa (KOR). Concretament, els MORs 

són essencials per al processament de recompenses tant de estímuls naturals 

com de drogues d'abús (revisat a Le Merrer 2009). L’activació dels MORs 
ubicats al VTA augmenta l’alliberament de DA a les seues regions de projecció, 

un mecanisme que tradicionalment s'ha implicat en les propietats de reforç de 

les drogues, inclòs l'etanol (Charbogne et al., 2014, Darcq i Kieffer 2018; 

Hipólito et al., 2009; Kieffer i Gavériaux-Ruff 2002; Martí-Prats et al., 2015; 

Melis et al., 2009; Xiao i Ye 2000; Xie et al., 2012). 
  

Estudis previs suggereixen que el dolor indueix canvis plàstics al 

SMCL (Navratilova i Porreca 2014; Taylor 2017). Concretament, diversos 

estudis en aquest camp han revelat que en els pacients amb dolor persistent hi 

ha un augment en la connectivitat corticoestriatal funcional (Baliki et al., 2012) 
i que tant en humans (Loggia et al., 2014) com en rosegadors (Ozaki et al., 

2002; Ren et al., 2015; Taylor et al., 2015), la presència de dolor es 

correlaciona amb una reducció de la funció dopaminèrgica. També s'ha 

demostrat que el dolor persistent modifica el comportament motivacional per 

les drogues (especialment estudiat en opioides) (Massaly et al., 2016; Martin et 
al., 2007) i per les recompenses naturals (Massaly et al. , 2019; Schwartz et al., 

2014). Un dels possibles mecanismes contribuents a aquests esdeveniments 
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podria ser la disminució en la funció MOR al SMCL. De fet, un gran nombre 
d'estudis han descrit una disminució a la funció MOR en moltes regions 

involucrades en el processament del dolor (Aoki et al., 2014; Hurley i 

Hammond 2001; Jongeling et al., 2009; Shaqura et al., 2004; Zhang et al., 

2004). Seria, per tant, lògic, pensar que la presència de dolor puga comportar 

també una disminució de la funció dels MORs al SMCL i, concretament, al 
VTA.   

  

Per tot això, el primer objectiu concret d'aquesta Tesi (O1) va ser 

investigar l'efecte del dolor inflamatori en la funció MOR al SMCL. Amb 

aquest propòsit, es va seleccionar el model de dolor inflamatori de l'Adjuvant 
Complet de Freund (CFA) i l'expressió de cFos com una mesura indirecta de 

l’activació cel·lular. El CFA està compost per Mycobacterium tuberculosi 

inactivat per calor i suspés en olis no metabolitzables (oli de parafina i 

monooleat de cacauet). La injecció intraplantar de CFA diluït 50:50 en solució 

salina a la pota posterior de l'animal indueix inflamació local, tumefacció de les 
potes i dolor, que persisteixen durant 2-4 setmanes després de la injecció 

(Chang et al., 2010). La injecció de CFA va ser el model de dolor inflamatori 

que es va utilitzar en tots els experiments plantejats en la present Tesi. En 

relació a l'expressió de cFos, és important recalcar que la detecció d'aquesta 

proteïna s'ha utilitzat amb freqüència des de finals de 1980 (Bullitt 1990; 
Dragunow i Faull 1989) per mapificar grups de neurones que mostren canvis 

en la seua activitat. Per tant, en el primer grup d'experiments, es va triar 

l’expressió de cFos per mapificar l’activació d'àrees de projecció del VTA 

després de l’estimulació local dels MORs.   

  
 Els resultats de l’experiment I (Taula 4.1 i Taula 4.2) van mostrar que 

l’expressió de cFos a les àrees de projecció del VTA després de 

 188



R
esum

l'administració intra-VTA de DAMGO (un agonista dels MOR) es redueix 

o se suprimeix en la majoria de les regions per la presència de dolor 

inflamatori. En rates control (sense condició dolorosa) (experiment Ia), 

l'agonisme de MOR localitzat al VTA va augmentar l'expressió de cFos en la 

majoria de les seues àrees de projecció (NAc, amígdala basolateral (BLA), 

escorça cingulada anterior (ACC) i BNST), amb l’excepció de l’escorça 
prelímbica (PL), escorça infralímbica (IL) i pàlid ventral (VP). No obstant això, 

en les rates sotmeses a la condició de dolor inflamatori (rates CFA, experiment 

Ib), aquesta resposta va disminuir en la majoria de les regions (BLA, ACC i 

BNST).   

  
Els resultats obtinguts en l' experiment Ia (Taula 4.1) també revelen la 

complexitat del control opioidèrgic de l'activitat de les projeccions de VTA. Per 

exemple, en el cas de NAc i BLA , l'administració de DAMGO 14 ng, però no 

DAMGO 7 ng, va augmentar significativament el recompte de cèl·lules 

immunoreactives per cFos (cFos-IR) en comparació amb l'administració de 
fluid cerebral espinal artificial (aCSF). Per contra, en l’ACC, el recompte de 

cFos-IR va augmentar quan es va administrar DAMGO 7 ng al VTA però no 

quan es va injectar DAMGO 14 ng. Per contra, ni PL ni IL es van activar 

significativament després de l’administració de cap de les 2 dosis. De manera 

similar a l’ACC, la dosi baixa de DAMGO va augmentar els recomptes de 
cFos-IR al BNST. Finalment, en el cas del VP, l’activació dels MORs al VTA 

no va augmentar l'expressió de cFos. 

  

Curiosament, els resultats de l'experiment Ib (Taula 4.2) mostren que 

la presència de dolor inflamatori altera l'augment anteriorment descrit de 
l'expressió de cFos induïda per DAMGO intra-VTA en totes les àrees 

analitzades, excepte en el NAc. Estudis previs ja han demostrat que la 
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dessensibilització induïda pel dolor en els MORs del VTA té un efecte sobre 
l'activitat del NAc (Ozaki et al., 2002). Sorprenentment, en el present estudi, 

l’administració de 14 ng de DAMGO tant en rates control com en rates CFA 

va produir un augment en el recompte de cFos-IR en el NAc. Donats les 

troballes esmentades anteriorment, un resultat més esperat hauria estat que la 

dosi que augmenta significativament el recompte de cFos-IR en el NAc dels 
animals de control (14 ng de DAMGO) no induïsca aquest augment en les 

rates CFA. Això hauria recolzat el fet que la dessensibilització dels MORs locals 

en el VTA té conseqüències en l’activació, induïda per opioides, de les neurones 

de DA que projecten al NAc. 

  
Diverses raons poden ser les que ens impedeixen observar un canvi en 

la corba dosi-resposta en el NAc en aquest experiment. En primer lloc, el fet de 

no haver detectat un efecte per a la dosi més baixa de DAMGO en l'experiment 

Ia (rates control) és prou rellevant. En aquest grup, l'administració de 

DAMGO 7 ng va provocar un augment de cFos-IR en el NAc molt similar al 
provocat per la dosi de DAMGO 14 ng, la qual cosa no passa en el grup amb 

dolor. No obstant això, aquests augments no van ser estadísticament 

significatius en cap de les dues condicions experimentals (rates control o CFA). 

En segon lloc, és possible que 14 ng ja siga una dosi prou alta per activar les 

denses projeccions del VTA al NAc en animals amb dolor, tot i havent una 
menor funció dels MORs en el VTA. En aquest cas, és possible que una dosi 

intermèdia de DAMGO siga útil per detectar un augment de l'expressió de 

cFos sols en animals control. I tercer, és important tindre en compte que 

l'expressió de cFos és el resultat de diversos esdeveniments que tenen lloc 

durant un llarg període de temps, i no només una conseqüència directa de 
l'augment en l'alliberament de DA. Per tant, és també possible que, en rates 

CFA, 14 ng de DAMGO administrat intra-VTA resulte en una activació al 
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NAc similar a la de les rates control, encara que els resultats de comportament 
podrien diferir radicalment. 

  

Per contra, en les altres regions estudiades, el dolor inflamatori si que va 

alterar el patró de recompte de cFos-IR observat en l'experiment Ia després de 

l’administració de 7 o 14 ng de DAMGO. De fet, en presència de dolor 
inflamatori, l'administració de DAMGO intra-VTA no va induir una 

activació de BLA, ACC i BNST. Per tant, les dosis de DAMGO que 

augmenten l'expressió de cFos a les regions de projecció en l'experiment Ia són 

insuficients per induir l'expressió de cFos en rates CFA . 

  
A la llum d'aquests resultats, l’experiment II i l’experiment III es van 

dissenyar amb l'objectiu d'explorar més a fons l'efecte del dolor inflamatori 

en la funció moduladora dels MORs locals (tant en el NAc com en el VTA), 

mesurant l'alliberament de DA al NAc. Per a això, es van realitzar estudis de 

microdiàlisi in vivo, ja que aquesta tècnica permetia mesurar l'efecte de 
diferents tractaments sobre els nivells de DA en el NAc de les rates. 

L’alliberament de DA a la via VTA-NAc es clau en les propietats de reforç de 

drogues i reforçadors naturals i aquest alliberament de DA està estrictament 

regulat pels MORs en aquesta via (Devine et al., 1993; Johnson i North 1992; 

Le Merrer et al., 2009; Olszewski et al., 2011; Wassum et al., 2009; Wise et al., 
1995). Com s’ha comentat amb anteriorment, hi ha evidències que suggereixen 

que el dolor altera la funció dels MORs al SMCL, de manera que els 

increments de DA al NAc induïts per morfina no es produeixen en animals 

amb dolor neuropàtic (Ozaki et al., 2002). Per tant, tot i no observar canvis 

induïts pel dolor a la activació dels MOR d'aquest circuit per la mesura 
d'expressió de cFos (experiment I, resultats en NAc), encara seria possible 

trobar diferències en l'alliberament de DA provocada pels agonistes del MOR. 
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D'aquesta manera, els resultats de l'experiment III (Figura 4.7) van revelar que, 
en animals amb dolor, el DAMGO (7 ng en el VTA) té reduïda la capacitat 

d’augmentar l'alliberament de DA al NAc, la qual cosa suggereix una 

disminució de la funció dels MORs. Aquestes troballes concorden amb 

investigacions prèvies que han mostrat que el dolor indueix un deteriorament 

d’activitat dopaminèrgica mesolímbica. Concretament, estudis d'imatge en 
humans amb dolor crònic han trobat que la resposta del SMCL dopaminèrgic a 

estímuls de reforç és menor en comparació amb subjectes sans (Loggia et al., 

2014; Taylor et al., 2016). També estudis en animals corroboren aquest fet, ja 

que mostren disminucions en l'alliberament de DA provocat per opioides en 

rosegadors que pateixen dolor (Ozaki et al. 2002; Taylor et al., 2015). 
  

Interessantment, l’administració intra-VTA d'una dosi prop a 10 

vegades més gran de DAMGO (67 ng) va augmentar significativament 

l'alliberament de DA tant en rates control com en rates CFA (Figura 4.7). 

Aquesta troballa apunta a un possible canvi en l'efecte del DAMGO dependent 
de la dosi, la qual cosa dóna encara més suport al fet que les rates CFA tenen 

disminuïda la funció dels MORs locals del VTA. De fet, aquest efecte ja s’havia 

mostrat prèviament en les regions cerebrals involucrades en la nocicepció (Aoki 

et al., 2014; Hurley i Hammond 2001; Jongeling et al., 2009). A més, Ozaki i 

col·laboradors (Ozaki et al., 2002), al combinar les tècniques de microdiàlisi i 

GTPγS, van concloure que, en presència de dolor neuropàtic, les rates van 

mostrar una pèrdua de l’alliberament de DA induïda per morfina en el NAc, a 
causa de la reducció en la funció dels MORs al VTA. Per tant, com ocorre a 

l'experiment III, en el VTA es necessiten dosis més altes d'agonista per 

superar la dessensibilització induïda pel dolor dels MORs i provocar 

augments similars a l'alliberament de DA als quals es produeixen en els 

animals control . 
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D'altra banda, en l’experiment II també es va estudiar l'efecte de 

l’administració intra-NAc de DAMGO 10 μM. Els resultats, en aquest cas, 

no van mostrar diferències significatives en els nivells de DA entre els grups 

control i CFA (Figura 4.5). Aquests resultats suggeririen que l’alteració de la 

modulació dels MORs sobre la transmissió de DA que indueix el dolor es va 

localitzar principalment en el VTA, i no en el NAc. Per contra, també és 

possible que la dosi seleccionada en aquest cas no siga l'adequada per observar 
diferències entre grups. De fet, en les rates control aquesta dosi de DAMGO 

produeix augments significatius en els nivells de DA respecte els seus nivells 

basals. No obstant això, en els animals sense dolor, cap dels valors de nivell de 

DA posteriors a l'administració de DAMGO 10 μM va augmentar 

significativament en comparació al nivell basal. És curiós com, d'altra banda,   

l’anàlisi estadístic no va mostrar diferències entre els dos grups. Per tant, és 
probable que, usant una dosi menor de DAMGO, si que es produïsca una 

diferència significativa entre els grups, de manera semblant a l’experiment III. 

  

En conjunt, aquests resultats demostren que el dolor inflamatori 

produeix una dessensibilització dels MORs del VTA i, per tant, que la 

regulació de les neurones de DA del VTA que innerven diferents àrees de 

projecció està alterada en els animals amb dolor. 

  

Diverses investigacions realitzades en les darreres dècades evidencien 

que les propietats de reforç d'etanol estan, al menys en part, regulades pels 
MORs del SMCL (Guan i Ye 2010; Sánchez-Catalán et al., 2009 Xiao et al., 

2007; Xiao i Ye 2008). Aquest fet, juntament amb les troballes prèvies que 

demostren una pèrdua de la funció dels MOR del VTA en rates CFA, va donar 

lloc al segon objectiu concret d'aquesta Tesi (O2): estudiar les conseqüències 
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neuroquímiques i conductuals provocades pel dolor inflamatori en les 

propietats de reforç de l'etanol . 

  

Per a això es va plantejar, en primer lloc, un experiment de 

microdiàlisi (experiment IV) per estudiar l'efecte del dolor inflamatori sobre 

l'alliberament de DA al NAc induït per l'administració d'etanol sistèmic 

(1.5 g/kg, subcutani (s.c.)). Com a resultat, aquesta administració sistèmica 

d’etanol, que si que va produir un augment significatiu en els nivells de DA 

en el NAc de les rates control, no va aconseguir provocar l'augment de 

l'alliberament de DA en el cas de les rates CFA (Figura 4.9). És important 

destacar que els estímuls estressants aguts també augmenten els nivells de DA 
en el NAc (Abercrombie et al., 1989). Per aquesta raó, en aquest experiment, 

les rates van rebre una injecció prèvia de solució salina (s.c.) amb l'objectiu de 

discriminar aquest efecte induït per l’estrés. Tot i que els nivells de DA després 

d'aquesta injecció prèvia van ser més alts que els valors inicials tant en rates 

control com en rates CFA, aquest augment no va ser estadísticament 
significatiu per a cap dels grups (Figura 4.9). A més, l'efecte global provocat 

per l'etanol en rates control va ser significativament més gran que l'efecte 

total induït per solució salina (Figura 4.10). Per contra, l'efecte total induït 

per solució salina i per etanol no van ser estadísticament diferents en les 

rates CFA, la qual cosa confirma que els resultats d'aquest experiment deriven 
de les propietats farmacològiques de la droga. 

  

Els resultats de l'experiment IV, donen encara més suport al fet que el 

dolor inflamatori altera la resposta neuroquímica del SMCL provocada per les 

drogues i, concretament, per l'etanol. De manera similar, investigacions prèvies 
han mostrat una disminució en l'alliberament de DA evocada per opioides en el 

NAc de rates en condicions de dolor (Hipólito et al., 2015; Ozaki et al., 2002). 
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Concretament, Hipólito i col·laboradors, mitjançant l'ús del mateix model de 
dolor inflamatori que el present treball, van demostrar que l'augment de 

l'alliberament de DA al NAc provocat per heroïna intravenosa (i.v.) disminueix 

a les rates CFA (Hipolito et al., 2015). En conjunt, aquests resultats de 

microdiàlisi mostren clarament que el dolor inflamatori bloqueja 

l'alliberament de DA provocada per etanol en el NAc, la qual cosa pot tenir 
un efecte sobre les propietats reforçants d'aquesta droga.   

  

Està tradicionalment acceptat que els comportaments relacionats amb 

la recompensa de drogues (com la preferència de lloc condicionada (CPP)) 

estan regulats per la transmissió de DA dins del NAc (Spyraki et al., 1983; 
Young et al. , 2014). En aquest paradigma, els animals reben una dosi de la 

droga i immediatament se'ls confina en un context específic; aquest procés es 

repeteix durant diverses sessions consecutives. Posteriorment, es mesura la 

preferència de l'animal pel context associat amb la droga en comparació amb 

un context neutral. Considerant que l’alteració de la funció neuroquímica del 

SMCL podria traduir-se en canvis anormals d'aquest comportament, el 

CPP va ser el paradigma seleccionat per continuar amb l’O2 . A més, aquest 

paradigma s'ha utilitzat prèviament per estudiar les alteracions induïdes pel 

dolor en l’activació mesolímbica dels opioides (Narita et al., 2005; Ozaki et al., 

2002). No obstant això, quan s'ha avaluat la preferència associada a 
l’administració d'etanol, els resultats han estat paradoxals. De fet, estudis previs 

en rates han reportat CPP, aversió de lloc condicionada (CPA) o cap canvi en la 

preferència quan l'etanol es va administrar per rutes sistèmiques (Bahi i Dreyer 

2012; Becker et al., 2006; Peana et al., 2008; Zarrindast et al., 2010). A més, 

Walker i Ettenberg van mostrar que l 'administració d’etanol 
intracerebroventricular (icv.) va ser capaç d'induir CPP a la dosi de 180 nmol, 

mentre que 120 o 240 nmol no van induir canvis en la preferència (Walker i 
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Ettenberg 2007). S'accepta clàssicament que l'acció reforçant de les drogues 
que provoca la preferència per l'entorn associat requereix l’augment de 

l'activitat neuronal dopaminèrgica del VTA (Bozarth i Wise 1981; Spyraki et 

al., 1983; Wise 2004). No obstant això, cap d'aquests o altres estudis previs 

que utilitzen el paradigma CPP ha administrat etanol directament en 

regions concretes del SMCL . 
  

D'altra banda, el desenvolupament i l'expressió d'associacions 

apreses entre droga i context s'ha relacionat clàssicament amb la 

transmissió glutamatèrgica i les formes de plasticitat neural dependents de 

glutamat induïdes per drogues (Hearing et al., 2018). Els receptors de 
glutamat comprenen dues grans famílies, els canals iònics dependents de lligand 

(receptors ionotròpics) i els receptors dependents de proteïnes G (receptors 

metabotròpics). Els receptors ionotròpics es divideixen, al seu torn, en tres 

classes: receptors d’àcid amino-3-hidroxi-5-metil-4-isoxazol propiònic 

(AMPAR), receptor de kainat i receptors de N -metil-D-aspartat (NMDAR). 
Els NMDARs, els quals juguen un paper important en la plasticitat sinàptica, 

són heterotetràmers compostos per dues classes de subunitats: dues subunitats 

NR1 i dues subunitats NR2. (Lüscher i Malenka 2012). Concretament, els 

NMDAR participen en el desenvolupament de comportaments induïts pel 

context tant en el cas de recompenses naturals (Brigman et al., 2013; Dang et 
al., 2006; Parker et al., 2011; Yin et al., 2008) com en el de les drogues (Beutler 

et al., 2011b; Daglish et al., 2001; Ersche et al., 2006; Hearing et al., 2017; 

Heusner i Palmiter 2005; Prosser et al., 2006). No obstant això, molt pocs 

estudis han avaluat què paper juga la composició en subunitats del 

NMDAR en el CPP induït per etanol . 
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Derivat de la falta d'estudis de CPP que analitzen l'efecte dosi-resposta 
de l’administració local d'etanol al VTA, va ser necessari dissenyar un conjunt 

inicial d'experiments abans de la introducció de la variable de dolor 

inflamatori. Encara que es podria haver seleccionat una altra ruta, es va triar 

l'administració localitzada al VTA, ja que els resultats abans esmentats 

d'aquesta Tesi i altres treballs relacionats ja havien demostrat una 
dessensibilització dels MOR locals de l’VTA induïda per dolor. Per tot això, es 

van planificar uns estudis inicials amb l'objectiu de (i) demostrar si 

l'administració local d'etanol al VTA pot induir CPP en rates (ii) trobar la dosi 

adequada d'etanol intra-VTA que provoca CPP, (iii) explorar la implicació dels 

MORs al CPP induït per etanol intra-VTA i (iv) analitzar els canvis en 
l'expressió de subunitats NMDAR en animals condicionats amb etanol. 

  

D'aquesta manera, es va realitzar un primer experiment (experiment 

V) per a l’estudi de la corba dosi-resposta de l'etanol (intra-VTA) per al 

desenvolupament de CPP. Els resultats mostren, per primera vegada, que 
l'administració intra-VTA de 70 i 150 nmol de dosi d'etanol en un context 

específic dóna com a resultat la preferència per aquest entorn associat a la 

droga (Figura 4.12) . 

  

És important tindre en compte que, en l'experiment V, sols les dosis 
intermèdies d’etanol provoquen CPP, la qual cosa està d'acord amb les troballes 

anteriors que han emprat aquest paradigma però administrant l'etanol a nivell 

sistèmic. De fet, els estudis que fan servir dosis mitjanes d'etanol, com 1.5 g/kg 

intraperitoneal (i.p.) i un disseny experimental semblant a què es va seguir en 

aquest estudi, mostren una preferència de lloc induïda per etanol (Bahi i Dreyer 
2012; Peana et al., 2008). A més, l'estudi icv. esmentat anteriorment per 
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Walker i Ettenberg apunta a una corba de dosi-resposta similar de CPP d'etanol 
(Walker i Ettenberg 2007). 

  

Sorprenentment, l'administració d’etanol no sols indueix CPP sinó 

que també pot donar lloc a una aversió (CPA) al compartiment associat 

amb la droga quan s'administra una dosi més alta. Aquest és l'efecte observat 
en l'experiment V en els animals tractats amb 300 nmols d'etanol (Figura 

4.12), que mostren una clara puntuació de CPP negativa. També la literatura 

presenta evidències prèvies de CPA induït per etanol. Concretament, en alguns 

estudis, les rates mostren una aversió al compartiment d'etanol quan se les va 

administrar altes dosis d'etanol sistèmic (2 g/kg) (Becker et al., 2006; 
Zarrindast et al., 2010). 

  

Totes aquestes dades recolzen una hipòtesi prèviament explorada en el 

nostre laboratori, segons la qual l’equilibri entre la presència de la molècula 

d'etanol i els seus productes metabòlics al SMCL determinaria les 

propietats activants i reforçants de l'etanol. Així doncs, sembla que l‘activació 

de les neurones de DA del VTA que s'observa després de l'administració 

d'etanol és, al seu torn, provocada pels seus productes metabòlics en el cervell 

(concretament per un seus metabòlits, el salsolinol). D'aquesta manera, els 

productes derivats del metabolisme de l'etanol (com ara el salsolinol) serien 

els responsables de la inducció de la preferència de lloc. De manera oposada, 

el CPA induït per etanol podria ser una conseqüència de l’acció directa de la 

pròpia molècula d'etanol (és a dir, la fracció no metabolitzada de la dosi 

administrada) al VTA . Des d’un punt de vista cinètic, el percentatge de l'etanol 

administrat convertit en els seus metabòlits dependrà de la dosi. Dosis més 
grans, que excedeixen la capacitat del sistema metabòlic, produiran nivells més 

alts de la fracció d'etanol no metabolitzada. 
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Com s’ha comentat anteriorment, aquest conjunt inicial d'estudis de 

CPP va ser dissenyat per a caracteritzar la capacitat de l'etanol intra-VTA de 

provocar CPP, amb l'objectiu d'utilitzar aquest paradigma conductual per 

explorar el possible efecte del dolor inflamatori. No obstant això, considerant 

l'elevat interés dels resultats obtinguts de CPP i CPA, en la present Tesi també  
es va realitzar una anàlisi més profunda d'aquestes associacions amb el context 

induïdes per etanol. Concretament, es va explorar el paper dels MORs locals en 

el VTA i la participació de les subunitats del NMDAR en el CPP induït per 

etanol. 

  
D'aquesta manera, els resultats de l'experiment VI mostren que el 

bloqueig dels MOR locals del VTA (mitjançant l'administració de 𝛃-FNA, un 

antagonista MOR) durant la fase de condicionament va impedir l'adquisició 

del CPP induït per etanol (Figura 4.23). Això apunta el fet que els MORs al 

VTA tenen un paper clau en el desenvolupament d'associacions amb el context 

induïdes per etanol. A més, aquests resultats concorden amb estudis previs que 

també han demostrat que l'adquisició de CPP induïda per etanol (i.p. o icv.) 

pot prevenir-se inhibint els MORs (Gajbhiye et al., 2017; Gibula-Bruzda et al., 
2015; Quintanilla et al., 2014). A més, aquests resultats confirmen que el 

paradigma de CPP és apropiat per a l'estudi de l'efecte dels canvis induïts pel 

dolor en els MOR del VTA en els comportaments dependents de DA induïts 

per etanol. 

   
Com s'ha comentat anteriorment, els NMDAR i les seues diferents 

subunitats semblen tindre un paper important en els comportaments 

d'aprenentatge d'associacions entre els efectes de les drogues i l'entorn. Per això, 

el teixit cerebral dels animals dels experiments V i VI es va analitzar per 
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western blot amb l'objectiu de mesurar els nivells d'expressió de les subunitats 
NR1 i NR2A en àrees cerebrals d'interés (Figura 4.13, Figura 4.14 i Figura 

4.24). A l’experiment V, els animals que van adquirir una preferència pel lloc 

associat a etanol (70 nmol) van mostrar una tendència d'augment en l'expressió 

de la subunitat NR2A en el NAc, que, però, no era estadísticament significativa 

al comparar-la amb els animals control (aCSF). A la llum d'aquest resultat es va 
repetir una cohort d'animals que es van condicionar de nou amb etanol 70 

nmol i aCSF (grup control) (Figura 4.16) amb l'objectiu d'utilitzar la nova 

tècnica de hibridació  in situ per RNAscope i quantificar els nivells d’ARNm 

d'aquestes subunitats. Els resultats d'aquesta anàlisi van mostrar que en les rates 

condicionades amb etanol 70 nmol es va produir un augment del nºpunts/
cèl·lula de l'ARNm de NR2A en el NAc (Figura 4.17). És notable que aquests 

canvis són atribuïbles a l'establiment d'una associació entre els efectes de 

l'etanol i un compartiment específic, ja que el western blot no va mostrar cap 

canvi en l'expressió NMDA en animals que van rebre etanol 70 nmol associat 

en cada sessió a un compartiment diferent (grup desemparellat). Per tant, 
podria ser que el possible increment en els nivells de NR2A en el NAc tinga un 

paper clau en el desenvolupament de l'associació entre l'etanol i l’entorn. 

De fet, els ratolins knockout NR2A no desenvolupen CPP per morfina o etanol 

(Boyce-Rustay i Holmes 2006; Miyamoto et al., 2004), mentre que el bloqueig 

de NR2B mitjançant l'administració d'un antagonista selectiu no altera la 
preferència de lloc de l'etanol (Boyce-Rustay i Cunningham 2004). A més, 

l'antagonisme local dels NMDAR en el NAc abans de la sessió de test bloqueja 

l’expressió de CPP induït per etanol (Gremel i Cunningham 2009). 

Desafortunadament, la manca actual d'un antagonista específic per a NR2A 

complica l'estudi del paper concret d'aquesta subunitat en l'aprenentatge 
d'associacions entre droga i context . 
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Curiosament i en línia amb els resultats obtinguts en l'hipocamp, la 
preferència de lloc d'etanol no sembla induir canvis en l'expressió de les 

subunitats NR1 ni NR2A (o el seu ARNm corresponent) en aquesta regió 

(Figura 4.14 i Figura 4.18). Aquest resultat és prou interessant, ja que dades 

prèvies han demostrat que el CPP de morfina en ratolins està relacionat o amb 

un augment de la subunitat NR1 en l'hipocamp (Portugal et al., 2014). A més, 
l'antagonisme local dels receptors NMDA en l'hipocamp també ha estat capaç 

de prevenir l'adquisició, però no l'expressió de la preferència de lloc induïda per 

morfina (Zarrindast et al., 2007). No obstant això, és important tindre en 

compte que en aquests experiments l'aparellament de la morfina amb un 

context es va realitzar mitjançant administració sistèmica, la qual cosa contrasta 
amb el present experiment en què l'etanol es va administrar de manera 

localitzada en el VTA. Malauradament, no hi ha estudis previs que analitzen 

l'expressió d'aquestes subunitats NMDA en l'hipocamp després del 

desenvolupament de CPP per etanol. És possible, llavors, que els canvis que es 

puguen esdevenir en l'hipocamp com a conseqüència de l'associació de l'etanol 
a un context concret diferisquen dels provocats per altres drogues 

opioidèrgiques o que estiguen relacionats amb l’activació induïda per drogues 

sobre els MORs ubicats a altres àrees del cervell. El desenvolupament d'estudis 

addicionals ajudaria a comprendre el paper dels NMDAR de l'hipocamp en 

l'expressió de CPP induïda per etanol. 
  

En conjunt, l'experiment V i l'experiment VI van aconseguir 

caracteritzar el CPP provocat per l'administració local d'etanol al VTA i 

demostrar el paper essencial dels MORs en aquest comportament dependent de 

DA. La següent pregunta, llavors, va ser: el dolor inflamatori altera aquest 

CPP induït per etanol? Per a això es va plantejar l'experiment VII que 

utilitzava el mateix paradigma que els experiments anteriors, administrant 
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etanol al VTA però incloent, a més, la variable dolor inflamatori. Els resultats 
de l'experiment VII mostren que l'administració local de 52 nmol d'etanol 

intra-VTA pot induir preferència pel compartiment associat a etanol sols en 

rates control, però no en rates CFA (Figura 4.27). I el que és més interessant, 

una dosi més alta d'etanol de 70 nmol és capaç de revertir aquest bloqueig 

induït pel dolor de la preferència de lloc d'etanol, resultant en puntuacions  
de CPP similars en rates control i CFA. A més, les dades de la prova de Von 

Frey (prova per mesurar els nivells de dolor mecànic en rata) confirmen que no 

es van observar canvis en la nocicepció en rates CFA o control al llarg de tot el 

procés experimental de CPP (Figura 4.26), descartant la possibilitat d'efectes de 

comportament inespecífics derivats de canvis en la nocicepció mecànica. El 
canvi en la corba dosi-resposta de l’etanol intra-VTA per produir CPP  

proporciona més evidència de que els comportaments dependents de la DA 

estan alterats en rates CFA i es necessiten dosis més altes d'etanol per provocar 

efectes comparables als que es produeixen en rates control. 

  
Prèviament s'han reportat resultats similars a aquests per a altres 

drogues d'abús. Concretament, Narita i col·laboradors van mostrar un bloqueig 

del CPP induït per morfina (8 mg/kg, i.p.) en rates amb dolor inflamatori 

(Narita et al., 2005). Aquest comportament també es va correlacionar amb una 

disminució de l'alliberament de DA al NAc evocat per morfina en presència de 
dolor inflamatori. No obstant això, en aquest estudi cap de les dues dosis de 

morfina administrades van ser capaces d'induir preferència pel lloc associat a 

morfina en el grup de dolor inflamatori. Un altre estudi, que també utilitza un 

paradigma de CPP de morfina, mostra, de fet, un canvi en la resposta de 

preferència induïda per drogues segons la dosi (Wu et al., 2014). En aquest cas, 
la presència de dolor neuropàtic va bloquejar el CPP induït per morfina 

únicament per a la dosi més baixa (3,5 mg/kg, s.c.), però no en el cas de dosis 
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més altes (5 mg/kg o 7 mg/kg, s.c.). Cal ressaltar també que el mateix efecte en 
el CPP es va observar per a l’administració de l'agonista selectiu dels MORs, 

DAMGO, al VTA (Taylor et al., 2015). Concretament, Taylor i col·laboradors 

van mostrar que la preferència de lloc provocada per l'administració intra-VTA 

de DAMGO no es va produir en animals amb dolor neuropàtic sols en les dosis 

baixes de DAMGO. Per tant, la funció anormal dels MOR al VTA en animals 
amb dolor sembla ser la responsable del canvi en la resposta de CPP per a 

diferents dosis de la droga. Tots aquests fenòmens són, al seu torn, consistents 

amb altres troballes interessants reportades per Hipólito i col·laboradors. En 

aquest estudi, es van necessitar dosis més altes d’heroïna (i.v.) per provocar 

l’autoadministració d’heroïna en rates tractades amb CFA (Hipólito et al., 
2015). Aquestes dades d’autoadministració són de gran importància perquè 

mostren que els animals, quan desenvolupen una condició de dolor, canvien el 

seu patró de consum i s'autoadministren opioides només quan es presenten 

dosis més altes. Per tant, podria ser que la condició de dolor induïsca un 

canvi en la dosi-resposta de les drogues opioidèrgiques i l'etanol, la qual 

cosa pot traduir-se en un consum de dosis més altes de drogues en pacients 

amb dolor .  

  

En conjunt, els resultats de l'experiment VII mostren que el dolor 

inflamatori altera l'efecte reforçant de l'etanol sobre el SMCL, la qual cosa pot 
tindre conseqüències en els patrons de consum d'alcohol. Tant aquests resultats 

com els obtinguts en els estudis neuroquímics apunten que el dolor podria 

tindre un efecte en els comportaments d'AUD. Per tant, el tercer objectiu (O3) 

d'aquesta tesi va ser el d’explorar l'efecte del dolor inflamatori en la 

recaiguda en el consum d'alcohol, concretament a l’Efecte de Privació 

d'Alcohol (ADE) en animals exposats a llargs períodes d’alcoholització. 
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La condició de dolor freqüentment provoca estats afectius negatius 

que condueixen a alteracions en l'avaluació de recompenses, la presa de 

decisions i la motivació (Apkarian et al., 2013; Verdejo-Garcia et al., 2009). 

També l’AUD es caracteritza per la presència d’estats afectius negatius similars. 

Concretament, aquest estat és característic de les fases d'abstinència, i està 

relacionat amb la cerca i la recaiguda en el consum de drogues (Edwards i Koob 
2010). Així, el desenvolupament d'una condició de dolor durant l'abstinència 

podria facilitar un estat afectiu negatiu i, per tant, augmentar el risc de cerca 

d'alcohol i recaiguda. La prevenció de la recaiguda durant llargs períodes 

d'abstinència és avui dia el principal problema clínic al qual s’enfronten les 

estratègies terapèutiques per al tractament de pacients dependents de l'alcohol 
després de la desintoxicació (Johnson 2008). Per això, i considerant les recents 

dades epidemiològiques que mostren que els nivells més alts de dolor es 

correlacionen amb un major risc de recaiguda en l'alcohol (Jakubczyk et al., 

2016), es va triar un model animal de recaiguda d'alcohol per investigar aquesta 

connexió entre el dolor i la recaiguda en un entorn preclínic. Concretament, es 
va seleccionar l'estudi de l'ADE a un model d’autoadministració no operant a 

llarg termini, ja que ha estat àmpliament utilitzat per a l'estudi de 

comportaments similars de recaiguda a alcohol en rosegadors, tant al nostre 

laboratori com en altres grups, i s'ha demostrat que proporciona validesa 

predictiva (McKinzie et al., 2000; Orrico et al., 2013; Vengeliene et al., 2014). 
L'ADE és un comportament característic de la recaiguda que es defineix com 

un augment robust però transitori en la ingesta de la droga després d'un 

període d'abstinència forçada. A l’experiment VIII, les rates es van sotmetre a 

un protocol a llarg termini que va incloure períodes de consum i períodes 

d’abstinència distribuïts a l’atzar al llarg del protocol experimental. Aquesta 
alternança permet reproduir fortament el fenòmen de recaiguda que ocorre 
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després de cada reintroducció de l'etanol i avaluar-ho a través del mesurament 
de l'ADE. 

  

En primer lloc, es va realitzar la caracterització del paradigma per 

garantir que ni la llarga exposició a etanol ni la inducció del dolor inflamatori 

van alterar el creixement o el comportament normal dels animals. Com 
s'esperava, el pes dels animals, el qual es va registrar al llarg de tot l’experiment, 

va incrementar de manera gradual i no es van observar diferències entre els dos 

grups experimentals abans o després de la injecció de CFA o solució salina per 

les rates control (Figura 4.28 i Figura 4.29). A més, tampoc abans o després de 

la inducció de dolor es van observar canvis en la ingesta total de líquid entre els 
dos grups seleccionats (Figura 4.30 i Figura 4.31). Finalment, els patrons 

d'ingesta total d'etanol també es van analitzar durant els primers tres cicles de 

exposició i abstinència, per assegurar que els possibles canvis observats després 

del quart període d'abstinència no foren derivats les diferències entre els dos 

grups abans de la inducció del dolor. D'aquesta manera, els dos grups no van 
mostrar diferències significatives en la ingesta total d'etanol abans del quart 

període d'abstinència (Figura 4.32). Respecte a l’anàlisi del desenvolupament 

del fenòmen ADE després de cada reintroducció d’etanol, els resultats també 

van mostrar que els dos grups van augmentar significativament el seu consum 

total d'etanol després de dos dels tres primers períodes d’abstinència (Figura 
4.33). I, el que és més important, els dos grups van desenvolupar aquest ADE 

durant el tercer cicle. 

  

Finalment, durant l’últim període d'abstinència es va induir la 

condició dolorosa en la meitat de les rates per estudiar l'efecte del dolor 
inflamatori en el desenvolupament de l'ADE. Com s'esperava, els nostres 

resultats indiquen que les rates CFA privades d'alcohol van desenvolupar 
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ADE després de la reintroducció d’alcohol (Figura 4.34 i Figura 4.35). No 
obstant això, la magnitud de l'ADE no va canviar en relació amb les rates 

control. 

  

El fet que no hi va haver diferències en la ingesta d'alcohol entre les 

rates control i CFA pot considerar-se sorprenentment contradictori amb les 
dades clíniques anteriors. La literatura existent en humans mostra que la 

presència de dolor está correlacionada amb un major risc de recaiguda en el 

consum d'alcohol (Jakubczyk et al., 2016) i que també prediu el consum 

excessiu d'alcohol (Witkiewitz et al. 2015b). Per això, el resultat esperat en 

aquest experiment hauria estat que els animals amb dolor presentaren nivells 
més alts de consum d'alcohol després del període d'abstinència. Tot i que el 

present estudi no proporciona un efecte derivat del dolor en l’ADE, és 

difícil, però, inferir que el dolor no altera de cap manera els 

comportaments relacionats amb la recaiguda en rates. És important recordar 

que la recaiguda és un fenòmen complex i els models animals intenten 
reproduir un aspecte específic d'aquest comportament. El paradigma triat per a 

la present Tesi ha estat utilitzat per nombrosos estudis preclínics per provar 

diferents estratègies farmacològiques destinades a suprimir o reduir la recaiguda 

en el consum d'alcohol, però mai s'ha utilitzat per mostrar un augment del risc 

de recaiguda (McKinzie et al., 2000; Orrico et al., 2013). L’ADE es defineix 
com un augment en la ingesta total d'etanol que passa durant els primers dies 

després d'un període d'abstinència. Com aquest augment passa normalment en 

la població general de rates, en aquest estudi un comportament recaiguda més 

intens deuria haver-se manifestat com nivells més alts de consum en rates CFA, 

en comparació amb el grup control. No obstant això, l'experiment VIII no va 
mostrar tals diferències. També és cert que en aquest estudi tots els animals, 

tant en el grup control com en l'experimental, presenten un comportament 
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característic de recaiguda, és a dir, tots dos grups mostren un ADE. D'aquesta 
manera, els canvis en la magnitud d'aquest ADE no serien del tot 

representatius dels canvis en la vulnerabilitat a la recaiguda en el consum 

d'alcohol. És possible que el dolor no induïsca una ingesta encara més elevada 

d'etanol, però si que augmente la vulnerabilitat o el risc de recaiguda. En aquest 

cas, tot i no produir diferències en el consum, seria plausible esperar majors 
taxes de recaiguda en animals que pateixen dolor. Per tant, es necessari dur a 

terme estudis de comportament que permeten investigar la vulnerabilitat a la 

recaiguda en el consum d'alcohol i que puguen llançar més llum en aquest 

aspecte. 

  
També és important tindre en compte que els canvis induïts pel dolor 

poden afectar de manera diferent els comportaments addictius depenent de les 

diferents etapes de l'AUD. De fet, estudis recents que utilitzen un paradigma 

de dues botelles mostren que la inducció del dolor abans de l'exposició a 

l'alcohol augmenta significativament la ingesta total en ratolins (Butler et al., 
2017; Yu et al., 2019). Per tant, pot ser plausible que el dolor augmente la 

ingesta d'alcohol durant l'adquisició sense modificar la magnitud de 

l’ADE. D'altra banda, hi ha un estudi recent en què el dolor neuropàtic induït 

abans d'una exposició etanol en un paradigma de de dues botelles no va canviar 

el consum total d'etanol en ratolins (Bilbao et al., 2019). Encara que aquests 
tres estudis es van realitzar en condicions molt similars (mateixa soca de ratolins 

i mateix paradigma de exposició a l'etanol), la concentració d'etanol en els dos 

estudis que mostren un augment en el consum d'etanol és més gran (20 % 

d'etanol) (Butler et al., 2017; Yu et al., 2019) que la utilitzada per Bilbao i 

col·laboradors (12% d'etanol) (Bilbao et al., 2019). Això dóna suport al fet 
que, tot i que els resultats de l'experiment VIII no mostren diferències entre les 

rates control i CFA, molts factors metodològics podrien estar emmascarant un 
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possible efecte induït pel dolor a la recaiguda. A més, cap dels estudis esmentats 
analitza el dolor com un factor de risc de recaiguda. 

  

En qualsevol cas, les dades de l'experiment VIII destaquen la necessitat 

de trobar el model animal apropiat que reflectisca l'evidència clínica existent i 

ens permeta estudiar la implicació de les alteracions induïdes per dolor del 
SMCL en les conductes relacionades amb l’AUD. A més, la present Tesi 

proporciona dades rellevants, ja que analitza, per primera vegada, l'efecte del 

dolor inflamatori sobre la recaiguda en el consum d'alcohol en models 

animals i, per tant, constitueix una contribució important a l'estudi del dolor i 

l’AUD. 
  

En conjunt, els resultats presentats en aquesta Tesi destaquen els efectes 

que el dolor inflamatori indueix sobre el control regulador que sistema 

opioide endogen exerceix sobre SMCL i, en conseqüència, l'impacte del dolor 

inflamatori en les propietats reforçants de l’etanol. D'aquesta manera, el 
dolor inflamatori indueix una dessensibilització dels MORs locals en el VTA, la 

qual cosa resulta en canvis en les accions d'etanol sobre l'activitat de les 

neurones de DA al SMCL. En aquest sentit, el dolor inflamatori redueix 

l'alliberament de DA provocat per etanol en el NAc. Una conseqüència 

conductual important és que el dolor redueix el CPP provocat per 
l'administració directa d'etanol al VTA. Finalment, en el paradigma d’exposició 

a l'etanol a llarg termini emprat per avaluar la influència de el dolor inflamatori 

en la recaiguda, els animals amb dolor desenvolupen l’ADE, encara que no 

s'observen canvis en la seua magnitud en comparació amb els animals control. 
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