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sé si me hubiera atrevido a empezarla, pero una vez hecha me he dado cuenta de
que con trabajo e ilusión, casi todo se consigue, y ahora me siento muchı́simo más
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“Strength does not come from physical capacity.
It comes from indomitable will.”

Mahatma Gandhi

“It is not the strongest or the most intelligent
species who will survive but those

who can best manage change.”

Charles Darwin
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UNIVERSITAT DE VALÈNCIA

Resumen
Facultad de Ciencias Matemáticas

Departamento de Estadı́stica e Investigación Operativa

Programa de Doctorado en Estadı́stica y Optimización

La fauna silvestre está asediada. Y ésta no es solo una frase impactante con la que em-
pezar una tesis, tristemente, es una realidad. En el último siglo, muchas especies han dis-
minuido drásticamente, mientras que otras afrontan su extinción debido, principalmente, a
los rápidos cambios (y a gran escala) ocurridos tanto en hábitats como en ecosistemas. El
cambio climático, las especies invasoras, la caza ilegal y la sobrepesca son sólo algunas de
las principales amenazas que afectan a las poblaciones de animales silvestres en la actuali-
dad. Para abordar este problema, se requiere de un compromiso a todos los niveles, desde
las comunidades locales hasta los gobiernos, pasando por los expertos, la educación y la
investigación. De hecho, la investigación es una herramienta fundamental para la conser-
vación de las poblaciones silvestres. Entender los factores que afectan a las poblaciones
nos permite mejorar su gestión ası́ como su seguimiento, y por lo tanto, su conservación.

En las últimas décadas ha habido un gran aumento en la cantidad (y la variedad) de
datos recogidos en los sistemas ecológicos, lo que ha conducido al desarrollo de modelos
estadı́sticos más complejos. Esta complejidad hace que el proceso inferencial sea difı́cil de
llevar a cabo. La perspectiva de la estadı́stica Bayesiana aparece como una buena alterna-
tiva para realizar dicho proceso inferencial debido a los avances computacionales ocurridos
en las últimas décadas. Además, permite incorporar de manera sencilla la información ini-
cial (si existe y está diponible) ası́ como tiene en cuenta la incertidumbre relativa tanto a
los modelos como a los parámetros.

En este trabajo investigamos las probabilidades de supervivencia, de recaptura, de
recuperación y las probabilidades de migración en el contexto de los modelos de captura-
recaptura(-recuperación). Estos modelos tienen en cuenta la detección imperfecta de los
individuos, algo muy habitual en los sistemas ecológicos. De hecho, si la detección imper-
fecta no se tiene en consideración en el modelo puede causar sesgos en las estimaciones
de los parámetros.

http://www.uv.es
http://www.uv.es/matematiques
http://www.uv.es/eio
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Este trabajo se enmarca en un contexto real, en concreto, el estudio de una colonia de
aves marina, el Arao común (Uria aalge). Las aves marinas se consideran centinelas del
mar. Los cambios en sus poblaciones reflejan los cambios producidos en el mar, por lo
que se consideran bioindicadoras de cambios medioambientales. Asimismo, el cálculo de
las probabilidades de supervivencia juvenil en aves marinas es difı́cil debido a la ecologı́a
de las especies. Por todo ello, esta tesis no solo supone un reto a nivel estadı́stico sino
también a nivel ecológico.

Con todo esto en mente, la estructura de la tesis es la siguiente. El Capı́tulo 1 ofrece
la motivación ası́ como una revisión general de los métodos de captura-recaptura(-recupe-
ración) y los modelos estadı́sticos asociados. En este Capı́tulo presentamos en detalle
los dos modelos utilizados: los modelos de Cormack-Jolly-Seber (CJS) y los modelos de
marcaje-recaptura-recuperación (modelos integrados). Además, este capı́tulo ofrece una
introducción a la estadı́stica Bayesiana, ası́ como una descripción de uno de los princi-
pales métodos para llevarla a cabo, los métodos Markov chain Monte Carlo (MCMC). Por
último, concluimos este Capı́tulo con una breve explicación de los dos algoritmos de si-
mulación básicos basados en Métodos Monte Carlo de cadenas de Markov más conocidos
(Metropolis-Hastings y Gibbs sampler), junto con una relación de programas y páginas
web para la implementación de una gran variedad de modelos de captura-recaptura(-
recuperación).

El Capı́tulo 2 ofrece el contexto ecológico de esta tesis. Para ello, presentamos la
especie objeto de estudio, el Arao común, ası́ como la colonia de estudio, Stora Karlsö
(Gotland, Suecia). En este capı́tulo destacamos algunas de sus principales caracterı́sticas
ecológicas, caracterı́sticas que necesitaremos conocer para el desarrollo de modelos es-
tadı́sticos biológicamente motivados. La parte principal de este Capı́tulo consiste en una
descripción de las dos bases de datos que han motivado el desarrollo metodológico rea-
lizado en esta tesis: una base de datos de captura-recaptura y otra de marcaje-recaptura-
recuperación.

En los Capı́tulos 3, 4 y 5 presentamos los estudios desarrollados a lo largo de esta
tesis. En particular, el Capı́tulo 3 ofrece estimaciones fiables de supervivencia juvenil para
el Arao común. La novedad de este trabajo radica en que los individuos inmaduros de esta
especie (y en general, de las aves marinas) no pueden ser observados debido a que pasan
largas temporadas en el mar. Sin embargo, esta colonia tiene una caracterı́stica especial:
una elevada proporción de individuos inmaduros son observados, lo que permite obtener
dichas estimaciones fiables de supervivencia juvenil. Además, este trabajo representa una
primera aproximación al problema del monitoreo parcial, el cual causa sesgos en las esti-
maciones de los parámetros de interés. Para ello, adoptamos una aproximación subjetiva
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Bayesiana, de manera que incorporamos información previa acerca de las áreas donde el
problema de monitoreo parcial está presente.

El Capı́tulo 4 incorpora una metodologı́a comúnmente utilizada en los estudios médi-
cos de supervivencia en el contexto de los modelos de captura-recaptura en ecologı́a. En
particular, mostramos cómo las historias de captura se presentan de manera diferente de-
pendiendo de la escala temporal escogida. Además, en este Capı́tulo presentamos cómo el
uso de la escala temporal alternativa presentada (la edad) permite una mejor interpretación
de los parámetros del modelo cuando la edad es el principal interés en el estudio.

Finalmente, en el Capı́tulo 5 ofrecemos un contexto integrado de marcaje-recaptura-
recuperación para estudios parcialmente monitorizados. La información suministrada por
los datos de anillamiento-recuperación permite corregir los sesgos en las estimaciones de
supervivencia obtenidos con datos (solo) de captura-recaptura debido al monitoreo par-
cial. Además, debido al gran tamaño de la base de datos, el modelo lo presentamos en
formulación multinomial, de manera que ofrecemos la expresión explı́cita y eficiente de
la verosimilitud ası́ como los estadı́sticos suficientes asociados del modelo integrado pro-
puesto. Tanto la corrección del problema de monitoreo parcial (muy extendido en es-
pecies coloniales), como la construcción de las m-arrays integradas y la eficiente verosi-
militud suponen un paso adelante en este área, tanto desde un punto de vista aplicado como
metodológico.

Esta tesis concluye con el Capı́tulo 6, donde se presentan las conclusiones y algunas
lı́neas futuras de investigación, seguido de la bibliografı́a utilizada.
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Introduction

Wildlife is under siege. And this is not only a fancy sentence to start a thesis, sadly,
it is a fact. Over the last century, many wildlife species have seriously declined and
many others face their extinction due to rapid and large-scale changes in habitats
and ecosystems. Climate change, invasive species, illegal hunting and overfish-
ing are only some of the main threats affecting animal populations nowadays. To
address these concerns will require commitment at all levels, from local communi-
ties to governments, as well as experts, education and research. Indeed, research is
a fundamental tool for conservation. Understanding the factors affecting wildlife
populations allow us to improve the management of animal populations and there-
fore, their conservation.

The recently increase in the amount (and variety) of data collected on ecolog-
ical systems has led to the development of more complex statistical models. This
complexity has made the inferential process challenging to perform. The Bayesian
approach arises as an alternative to address these issues due to the computational
advances occurred in the last decades. Further, prior information (if available) can
be easily incorporated as well as this approach takes fuller account of the uncer-
tainties related to models and parameters.

In this work we investigate survival, recapture, recovery and migration prob-
abilities in the context of capture-recapture(-recovery) models. These models ac-
count for imperfect detection, a common issue in ecological systems. Indeed, if

xxix
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imperfect detection is not taken into account, it may cause biases in estimated de-
mographic parameters of interest.

The context of this work is a real one, in particular, a seabird species, the com-
mon guillemot (Uria aalge). Seabirds are sentinels of the sea. Their populations
reflect conditions over large spatial and long term scales, making them bioindica-
tors of environmental change. Further, the estimation of juvenile survival probabil-
ities in seabirds is far from simple, mainly due to their ecological characteristics.
Therefore, this thesis supposes not only a challenge from statistical perspective but
also from ecological one.

With all this in mind, this thesis is structured as follows. Chapter 1 is de-
voted to provide the motivation along with an overview of the capture-recapture
methods and associated statistical models. After that, we explain in detail the two
models used: Cormack-Jolly-Seber (CJS) models and mark-recapture-recovery
(MRR) models. Furthermore, we give an introduction of Bayesian inference, be-
fore describing the Markov chain Monte Carlo (MCMC) methods. Lastly, we
conclude with a brief explanation of the two basic Markov chain simulation algo-
rithms (Metropolis-Hastings and Gibbs sampler), as well as we provide useful soft-
ware packages and web pages to implement a large variety of capture-recapture(-
recovery) models.

Chapter 2 takes a brief look at the ecological context of this thesis. To do so,
we introduce the species focus of this research, the common guillemot, as well
as the study colony, Stora Karlsö (Gotland, Sweden). We briefly provide some
of its main ecological characteristics that will be necessary to know in order to fit
statistical models biologically motivated. The main part of this Chapter consists
in a detailed description of the two data sets that motivated the methodological
developments performed in this thesis, a capture-recapture and a mark-recapture-
recovery database.

Chapters 3, 4 and 5 are dedicated to display the studies performed along this
thesis. In particular, Chapter 3 is devoted to provide reliable juvenile survival es-
timates for common guillemots. The novelty of this work lies in the difficulty
on the assessment of juvenile survival due to in this species (and in general, in
most seabird species) young birds spend large periods at sea, remaining hence
unobservable. However, the study colony has an special feature: a big propor-
tion of immature birds are resighted allowing so to provide those reliable juvenile
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survival estimates. Further, this work represents a first approximation to the prob-
lem of partial monitoring that causes bias in parameter estimates. In particular,
we adopt a subjective Bayesian approach so that we incorporate prior information
corresponding to the areas where the partial monitoring is affecting.

Chapter 4 incorporates a methodology commonly performed in medical sur-
vival studies in the context of ecological capture-recapture framework. In parti-
cular, we show how differently the capture histories are presented depending on
the selected temporal scale. Further, the use of the alternative temporal scale pre-
sented (the age) may allow a better interpretation of model parameters when age is
the primary interest.

Finally, in Chapter 5 we provide an integrated mark-recapture-recovery fra-
mework for partially monitored studies. The information gathered by the ring-
recovery data allows to correct the bias in survival estimates obtained with only
capture-recapture data due to partial monitoring. Moreover, due to the (big) size
of the database, we present it in multinomial formulation, so that we provide the
explicit efficient likelihood expression along with the associated sufficient statis-
tics of the integrated model proposed. Both the correction of partial monitoring
problem (widespread in colonial species) and the construction of the integrated
m-arrays along with the efficient likelihood suppose an step forward on this area,
either from a practical or methodological perspective.

Chapter 6 provides some conclusions and future lines of research, and finally
a generic bibliography used along this work is presented.
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CHAPTER 1

SURVIVAL ANALYSIS IN

ECOLOGY

1.1 Motivation

There are only few places left on the planet where the impact of human people has
not been felt. Major threats to wildlife come from many different kinds of human
activities such as habitat destruction, degradation or fragmentation, overexploita-
tion, hunting, illegal wildlife trade, overfishing, invasive alien species and climate
change.

The recent fires in the Amazon and Australia rightly drew attention to how
fragile the most important ecosystems on the planet are. Half of the world’s orig-
inal forests are gone, and what remains is being cut down ten times faster than it
can be replaced (Keenan et al., 2015). Animals which need large areas to live, are
being squeezed in small areas, and one of the consequences is the increasing of
human-wildlife conflicts. For example, in Kenya, elephants feed on crops on their
migratory routes; in Nepal, tigers and leopards turn to livestock for an easy meal;
in Spain, grizzly bears also feed on crops due to habitat destruction.

1
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2 1.1. Motivation

A recent United Nations scientific report documents the ‘unprecedented’ de-
cline in global biodiversity that has alarming implications for human health, pros-
perity and long-term survival (Dı́az et al., 2019). Indeed, the IUCN (Interna-
tional Union for Conservation of Nature) Red List of Threatened Species (http:
//www.iucnredlist.org) estimates that 28,000 species are at risk of extinc-
tion. In particular, 40% of amphibian species, almost 33% of reef corals, 25% of
mammal species, 14% of bird species and 30% of sharks and rays.

All these threats are causing unnatural and fast environmental changes which
require a rapid adaptation from wild animals. In this unsteady scenario, the study
of populations turns out of crucial importance for wildlife conservation and statis-
tics, an essential tool to perform it.

The main objective of population ecology is the analysis of the factors that
affect population dynamics through the study of key demographic characteristics
(such as survival, movement and productivity). The knowledge of these charac-
teristics which allow us to predict how the populations will develop in the future.
Indeed, survival is one of the fundamental processes governing animal population
dynamics.

Although the interest is often to estimate survival probabilities, there has been
an increased interest also in describing the reasons underneath those estimations.
Indeed, several studies have analysed how survival can vary with age (Crespin
et al., 2006; Lee et al., 2008; Reynolds et al., 2009; Sanz-Aguilar et al., 2016;
Meade et al., 2013), between individuals (Harris et al., 1992; Cam et al., 2002;
Royle, 2008; Giménez and Choquet, 2010), between sexes (Aebischer and Coul-
son, 1990; Owens, 2002; Hastings et al., 2012), in relation to environmental co-
variates (Schaub et al., 2005; Votier et al., 2008; Hegg et al., 2012; Ramos et al.,
2012), to density-dependence (Milner et al., 1999; Frederiksen and Bregnballe,
2000; Barker et al., 2002) and time (Hastings et al., 1999; Harris et al., 2007).

Among other factors, longevity in wild animals can vary with body mass (large
species tend to live longer than smaller species), but it can be also associated with
the extrinsic mortality, i.e. the risk of death due to external causes. Clearly, species
with low extrinsic mortality are generally long-lived. This is due to the fact that,
when premature death is not likely, investment in long-term maintenance and sur-
vival is favoured in contrast to an early and frequent reproduction. That is tipically
the case for seabirds.

http://www.iucnredlist.org
http://www.iucnredlist.org
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1. Survival analysis in Ecology 3

Seabirds comprise several different families of birds inhabiting marine ecosys-
tems, but most of them share several life history traits: a high adult survival, a
progressive access to reproduction at relatively old ages, a low reproductive rate
and a low number of predators. Adult survival, but also juvenile survival, are
considered important traits that influence population dynamics in seabird species.
However, juvenile survival is difficult to estimate due to this group of species have
long periods of immaturity spending several years at sea before returning to the
colonies. Indeed, less than 2% of seabird species have juvenile survival estimates
(Lewison et al., 2012).

The survival estimation in ecology is far for simple. Ideally, to analyse survival
probabilities in the wild, individuals must be followed from birth to death over a
study period, but clearly, this is rarely possible in wild populations. The problem
arises since we cannot always make a direct measurement of the state variable of
interest (i.e. alive or dead). Hence in the wild, if an individual is not observed
two options are possible: (i) it is dead, or (ii) it is still alive (but it has not been
observed). Nevertheless, this common problem is resolved using the methods of
capture-mark-recapture (CMR).

Capture-mark-recapture methods (also referred to as mark-recapture methods)
were originally first used in s.XVIII (see Seber and Schofield, 2019, and references
therein) and they were developed to accommodate the chance that a not observed
individual may be not dead but has simply been overlooked. Indeed, CMR models
model the probability of observing each individual as a product of its survival rate
and the probability of observing the individual given that it has survived.

Next Section is devoted to present the CMR methods as well as to provide
a general review of the main CMR models and to describe the two models imple-
mented along this thesis, the Cormack-Jolly-Seber (CJS) models and the integrated
models.

1.2 Capture-mark-recapture models (and methods)

CMR models are a large class of models that have become increasingly used in
ecological applications of statistical modeling. Over the past decades, a body of
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4 1.2. Capture-mark-recapture models (and methods)

theory and methods have been developed for the analysis of capture-recapture(-
recovery) data, and the area remains in active research (Lebreton et al., 1992;
Royle and Dorazio, 2008; King et al., 2010; McCrea and Morgan, 2015; Seber
and Schofield, 2019). The key concept behind the CMR models relays on the fact
that they account for imperfect detection through the estimation of detection prob-
abilities, which provide the link between what we observe and the true population
parameters. Indeed, if imperfect detection is not accounted for in the modeling
of ecological systems, this leads to biased parameter estimates (Kéry et al., 2009;
Kéry and Schaub, 2011).

CMR methods use data collection protocols where observers go into the field
at a series of capture events, denoted t = 1, . . . , T . At each capture event, the ob-
server marks the new individuals, records all observed individuals (already marked)
and releases them back into the population. It is mandatory to ensure that ani-
mals can be identified uniquely, therefore, animals are uniquely marked and hence,
uniquely identifiable. When individuals are only recaptured alive, this is referred
to capture-recapture data. However, if individuals are recovered dead, it is called
ring-recovery data and finally, if individuals are both recaptured (alive) and recov-
ered (dead), it is referred to mark-recapture-recovery (MRR, capture-recapture-
recovery or integrated) data.

Historically, recapture meant physical capture of the animals, but in the last
decades new methods have been developed that do not require physical capture
(e.g. traps). Further, the type of tag or mark used depends very much on the
species of interest, although some methods can be used across different species. In
ecology is widespread the use of rings (metallic and/or plastic), collars, ear rings,
camera traps, acoustic recording devices, etc. (Royle et al., 2014, and references
therein).

Standard capture-recapture data (also referred as mark-recapture data) are typ-
ically displayed in the form of individual capture histories for each individual ob-
served along the study period. Each individual capture history is a sequence of 1s
and 0s, denoting if an individual was encountered (or not) at each occasion over
the study period. For example, the encounter history:

1 0 0 1 0 1
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1. Survival analysis in Ecology 5

indicates that the individual is first marked at occasion t = 1, observed again at
occasions t = 4, 6 and not observed at occasions t = 2, 3, 5.

However, in the case of ring-recovery data (also referred to as mark-recovery),
the corresponding capture histories are a combination of the first 1 (marking), 0s
(not recovered) and 2s (recovered dead). For example:

1 0 0 0 2 0

indicates the individual is marked at occasion t = 1, and recovered dead at occa-
sion t = 5.

Finally, if both recaptures and recoveries are available, then we work with in-
tegrated data. In this case, the encounter histories are a combination of 0s, 1s and
2s. For example, the encounter history:

0 1 1 1 0 2

indicates that the individual is first marked at occasion t = 2, observed (alive)
again at occasions t = 3, 4, recovered (dead) at t = 6, and not observed at occasion
t = 5.

The associated models for capture-recapture(-recovery) data and their corre-
sponding statistical analysis clearly depend on the exact form of the data collec-
tion process. There are two general classes of models depending on the type of
populations (closed or open). A population is called closed if, within the study
period, there are not births, deaths or migration. One can say that in reality, the
populations are far from closed, and he/she would be right. However, if popu-
lation changes related to births, deaths or migration are small enough, we may
consider a population as closed (over that study period). Additionally, if studies
are performed over a short time period (e.g. weeks), the population can also be
considered as closed (Borchers et al., 2002). Alternatively, open populations do
change due to births, deaths or migration (over the study period). As everyone can
imagine, this is often the case for wildlife populations, and that is why the devel-
opment of capture-recapture models for open populations has had a exponential
increase from the first models presented (Amstrup et al., 2005; King et al., 2010;
King, 2014).
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6 1.2. Capture-mark-recapture models (and methods)

The different CMR models can also be divided into those primarily associated
with estimating demographic parameters (survival, recapture and recovery proba-
bilities, migration probability, recruitment, etc.) and those that estimate abundance.
Here we present a review of the main open CMR models before presenting in detail
the ones used in this thesis.

Let us start with the Cormack-Jolly-Seber (CJS) models (Cormack, 1964; Jolly,
1965; Seber, 1965) that are considered a general framework for several number of
extensions. They are conditional on the initial capture of each individual, how-
ever, if we do not condition on first capture (and hence, we can use the complete
capture histories), we then have the Jolly-Seber (JS) model (Jolly, 1965; Seber,
1965). JS model assumes that individuals either marked or unmarked have the
same probability of being caught. In other words, newly captured individuals must
be a random sample of all unmarked individuals of the population. Pledger et al.
(2009) extended the JS model by specifying the survival probability of an individ-
ual as dependent on its time of arrival to the study (recruitment). These models,
also called stop-over models, allow the estimation of the survival, the arrival times
and the retention probabilities (stop-over).

In the last two decades CJS models have been also extended to allow for addi-
tional data calling them integrated models (Burnham, 1993; Barker, 1997; Catch-
pole et al., 1998; King and Brooks, 2003; Abadi et al., 2010). Additional data
can vary from ring-recovery, populations counts, reproductive data, etc. An addi-
tional extension to CJS models are the so called Multistate models (Arnason, 1973;
Schwarz et al., 1993) where individuals can move between states (i.e. geographical
sites, behavioral or physiological conditions) according to the transition probabili-
ties between those states. Multistate models assume first-order Markov process for
movement between states, however, King and Langrock (2016) extended them to
allow for more flexible transitions via Semi-Markov models. Additionally, Multi-
state models can also be extended to Multievent models (Pradel, 2005) that allow
accommodating uncertainty in state assignment.

A recent development in capture-mark-recapture models are the spatial ex-
plicit capture-recapture (SECR) models (Efford, 2004; Borchers and Efford, 2008;
Royle and Young, 2008) in which multiple traps are arranged in an array within
a given area for each capture occasion. SECR models extend standard capture-
mark-recapture models incorporating the spatial information. Therefore, the data
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1. Survival analysis in Ecology 7

comprise the encounter histories and, given that an individual is observed, the cor-
responding trap(s) over each capture occasion.

Finally, it is worth to mention the occupancy models (MacKenzie et al., 2002,
2003; Tyre et al., 2003). Occupancy data can be seen as a form of capture-recapture
data. In particular, these data comprise the presence-absence of the species in
several sites over a number of visits. Occupancy models have a similar structure
to CMR models, allowing to jointly model the probability of occupancy and the
detection in animals (or plants).

Table 1.1 presents a summary of the main CMR models reviewed as well as the
population parameters of interest, the kind of data and type of population regarding
each model.

Parameter(s) of interest Data Population Model
Apparent Survival CR Open Cormack-Jolly-Seber
True Survival RR Open Cormack-Jolly-Seber
True Survival, migration, recovery prob. MRR Open Integrated models
True Survival, migration, recovery prob. MRR Open Multistate/Multievent
Apparent survival and movement CR Open Multistate/Multievent
Apparent survival, recruitment, population size CR Open Jolly-Seber
Apparent survival, recruitment, retention probability CR Open Stop over
Abundance, movement, resource selection SCR Open/Closed Spatial Explicit CR
Occupancy, species distribution Presence/Absence Open Occupancy models

TABLE 1.1: Summary of the main capture-mark-recapture models indicating
the parameters of interest, type of data and type of population. CR: capture-
recapture; RR: ring-recovery; MRR: mark-recapture-recovery; and SCR: spatial

capture-recapture.

1.3 Cormack-Jolly-Seber models

Cormack–Jolly–Seber models consider capture-recapture(-recovery) data and are
formulated conditional on the initial capture of each individual. These models
can be interpreted as partially observed hidden Markov models and can be ex-
pressed using either multinomial or state-space formulation (King, 2012; McCrea
and Morgan, 2015). CJS models make important assumptions which violation may
bias parameter estimates: (i) marks must not be lost, (ii) identity of the individuals
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8 1.3. Cormack-Jolly-Seber models

must always be recorded without errors, and (iii) captured and recaptured individ-
uals are regarded as a random sample from the study population.

The estimated parameters differ depending on the kind of data used (i.e. captu-
re-recapture or ring-recovery). When working with capture-recapture data, CJS
models allow us to estimate the apparent survival probability (denoted by φ) and
the recapture probability (denoted by p). The adjective apparent comes from the
fact that it is the product of the probabilities of the true survival (denoted by S) and
the fidelity to the study area (denoted by F ). Note that, assuming that migration is
permanent, this implies that dead and migration are confounded. It is also worth
mentioning that survival probability is commonly reported as annual due to wild
animals experience a natural yearly life cycle and data are collected annually.

Alternatively, when we work with ring-recovery data the estimated parameters
are: the true survival probability (S) and the recovery probability (denoted by λ).
The recovery probability (instead of the recapture probability) represents the prob-
ability that an individual is found dead. Alternatively, the true survival probability
is the probability that an individual survives from time t to t+ 1.

We next introduce the general notation as well as we describe in detail both
state-space and multinomial formulations for CJS models to the case of capture-
recapture and ring-recovery data. For illustration, here we only present the case
of time-dependent parameters (allowing for individual heterogeneity). However,
further extensions of dependence structure can easily be applied. For the full back-
ground of the CJS models see for example Lebreton et al. (1992), Brooks et al.
(2000), Pledger et al. (2003), Giménez et al. (2007), Royle (2008), Giménez et al.
(2009), King et al. (2010), Kéry and Schaub (2011), King (2012), King (2014),
McCrea and Morgan (2015) and Seber and Schofield (2019).

1.3.1 State Space formulation

State-space models are models for two discrete time processes running in parallel:
the state and the observation process. This is a common scenario for ecological
studies where there are two linked stochastic processes, one corresponding to the
underlying biological state (that it is normally latent), and the other being the ob-
servation process (observed with error) (Kéry et al., 2009; Kéry and Schaub, 2011;
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1. Survival analysis in Ecology 9

King, 2012). Although for an ecologist the primary interest is often based on the
state model, the observation model provides the essential link with the underlying
state model.

State-space models are first-order hidden Markov models, hence, the probabil-
ity of a particular state depends only on the previous state (Figure 1.1). From now
on, we denote by i = 1, . . . , N the marked individuals, t = 1, . . . , T represents
the capture occasions and f ∈ {f1, . . . , fN} is the vector that contains the year in
which each individual is marked, so that fi ∈ {1, . . . , T − 1}. Let zi,t denote the
latent variable that describes the true state of individual i at time t = fi, . . . , T .
The possible states that the variable zi,t can take (indicating the true state of in-
dividual i at time t) are equivalent for both capture-recapture and ring-recovery
data:

zi,t =

{
0 individual i is dead at time t;

1 individual i is alive at time t.

Similarly, let yi,t denote the binary variable that describes whether individual
i is observed or not at time t = fi + 1, . . . , T ; being the possible states that this
binary variable can take:

yi,t =

{
0 individual i is not observed at time t;

1 individual i is observed at time t.

Finally, xi,t stands for the binary variable that describes whether individual i is
recovered (dead) or not at time t = fi + 1, . . . , T . The possible states are:

xi,t =

{
0 individual i is not recovered dead at time t;

1 individual i is recovered dead at time t.

We note that for both capture-recapture and ring-recovery data, yi,fi = xi,fi = 1

for all individuals due to CJS models are conditional on the first time an individual
is observed alive (i.e. first capture).
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State process

Observation
process

yi,t−1 yi,t yi,t+1

zi,t−1 zi,t zi,t+1

FIGURE 1.1: Diagram of a state-space model (SSM).

We initially describe the state and observation processes regarding capture-
recapture data. The state and observation equations can be written as:

zi,t+1|zi,t =zi,t ∼ Bernoulli(zi,tφi,t), for t = fi, . . . , T − 1, (1.1)

yi,t|zi,t =zi,t ∼ Bernoulli(zi,tpi,t), for t = fi + 1, . . . , T, (1.2)

for i = 1, . . . , N and being φi,t the apparent survival probability of individual i
from time t to t + 1, and pi,t the recapture probability of individual i at time t
(given alive).

Alternatively, the state and observation equations regarding ring-recovery data
are given by:

zi,t+1|zi,t =zi,t ∼ Bernoulli(zi,tSi,t), for t = fi, . . . , T − 1, (1.3)

xi,t|zi,t =zi,t ∼ Bernoulli(λi,t(1− zi,t)zi,t−1), for t = fi + 1, . . . , T, (1.4)

for i = 1, . . . , N and being Si,t the true survival probability of individual i from
time t to t + 1. Further, if an individual is recovered dead at time t it is often
assumed that the individual died in the interval (t− 1, t] due to marks degradation
(although it is possible to relax this assumption, see Catchpole et al., 2001). The
product (1− zi,t)zi,t−1 ensures this assumption. Finally, λi,t denotes the recovery
probability of individual i at time t given dies in (t− 1, t].

For both kind of data, assuming independence of individuals and conditional
on the first capture, the resulting complete data likelihood is given by the product
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1. Survival analysis in Ecology 11

of all individual likelihood components,

`(y, z|θ) ∝
N∏
i=1

{(
pzfi (zi,fi |θ)

T−1∏
t=fi

pz(zi,t+1|zi,t,θ)

)
︸ ︷︷ ︸

`state(z|θ)

×

(
T∏

t=fi+1

py(yi,t|zi,t,θ)

)
︸ ︷︷ ︸

`obs(y|z,θ)

}
,

(1.5)
where θ represents the vector of all the parameters of the model. Also, the term
pzfi denotes the probability function for the initial state (marking time); while pz
and py (or alternatively px for ring-recovery data) are the (Bernoulli) probability
functions of the state and observation processes, respectively. Finally, `state and
`obs represent the likelihood terms related to the state and observation process, re-
spectively. Note that the observed data likelihood, `(y|θ), is obtained by summing
out over the z values.

1.3.2 Multinomial formulation

Although state-space formulation is easy to interpret as well as flexible, the likeli-
hood becomes large and complex, requiring significant computational effort when
proceeding to the inferential process, especially when dealing with large databases.
The underneath reason is that all the capture histories are analysed individually,
further, every unknown latent state needs to be estimated. Nevertheless, capture-
recapture(-recovery) data can be efficiently condensed in the so-called reduced m-
array (Lebreton et al., 1992) which summarizes the number of individuals released
at occasion j = 1, . . . , T − 1 (denoted by Rj), and subsequently next observed (or
recovered dead) at occasion t = 2, . . . , T . The m-arrays reduce importantly the
computational cost in the inferential process, however, an important disadvantage
is that models with individual effects can no longer be fitted due to full individual
histories are not retained.

Next paragraphs are devoted to explain in detail the m-arrays, cell probabili-
ties and the complete data likelihood for capture-recapture and ring-recovery data
separately, considering full time dependence on model parameters.
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1.3.2.1 Capture-recapture data

For capture-recapture data under consideration, an m-array is an upper triangular
matrix where rows correspond to release occasions (denoted by j), and columns
represent first recapture occasions (denoted by t). There is an additional column
(T +1) corresponding to individuals never recaptured. Let denotemj,t the number
of individuals released at time j and next captured in time t+1, for j = 1, . . . , T−1

and t = 1, . . . , T − 1, then by definition, mj,t = 0 for t < j. In other words,
the lower triangular elements of the m-array are structural zeros (i.e. impossible
events). χj denotes the probability of an individual released at time j is not ob-
served again during the study, and mj,T+1 represents the corresponding number of
individuals.

Let Rj denote the number of individuals released at time j. This number rep-
resents either the individuals newly marked and released at time j or those already
marked and first recaptured at time t and then ‘released’ at occasion j = t. In
other words, once an individual is first recaptured at time t, it is then released as
a member of a new cohort at release occasion j = t. Therefore, under this model
formulation individuals cannot be recaptured more than once in a given release
occasion j.

The expected values of the entries of the m-array are given on the underlying
model parameters and the number of released individuals. All of them define the
cell probabilities of the multinomial distributions, one for each release occasion.
As an example, the probability associated with the (j = 1, t = 3) cell (denoted
qj,t) corresponds to the probability of surviving from occasion t = 1 to t = 2 (φ1),
and from occasion t = 2 to t = 3 (φ2), multiplied by the probability of not being
recaptured at occasion t = 2 (1− p2), and recaptured at occasion t = 3 (p3):

q1,3 = φ1(1− p2)φ2p3.

Additionally, the probability of never observing an individual is defined: χj =

1−
∑T

t=j+1 qj,t.

To better understand, in Table 1.2 we present the expected and observed values
considering the duration of the study is T = 4. For the sake of simplicity, p̃t
denotes the probability of not being observed, that is, p̃t = (1− pt).
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First Recapture occasions (t)

2 3 4 Never recaptured

1
R1 R1φ1p2 R1φ1p̃2φ2p3 R1φ1p̃2φ2p̃3φ3p4 R1χ1

(m1,2) (m1,3) (m1,4) (m1,5)

2
R2 - R2φ2p3 R2φ2p̃3φ3p4 R2χ2

(m2,3) (m2,4) (m2,5)

R
el

ea
se

oc
c.

(j
)

3
R3 - - R3φ3p4 R3χ3

(m3,4) (m3,5)

TABLE 1.2: Example of m-array for capture-recapture data. Individuals re-
leased (Rj), expected and observed (parenthesis) individuals in an study with

T = 4.

Conditional on the numbers released and assuming independence between in-
dividuals, the CJS model likelihood can be written as a product of multinomial
probability distributions corresponding to each row of the m-arrays. The general
likelihood of CJS model for capture-recapture data takes the form:

`(θ) ∝
T−1∏
j=1


T∏

t=j+1

φt−1pt t−2∏
k=j

φk(1− pk+1)

mj,t

χ
mj,T+1

j

 , (1.6)

where θ represents the vector of all the parameters involved in the model and

χj = 1−
T∑

t=j+1

φt−1pt t−2∏
k=j

φk(1− pk+1)

 .

1.3.2.2 Ring-recovery data

Alternatively for ring-recovery data, the rows of the m-array correspond to release
occasions (denoted by j), and columns represent recovery occasions (denoted by
t). There is also an additional column (T + 1) corresponding to never recovered
individuals. Let denote mj,t the number of individuals released at time j and
recovered dead in time t + 1, for j = 1, . . . , T − 1 and t = 1, . . . , T − 1, again
by definition, mj,t = 0 for t < j. The lower triangular elements of the m-array



“tesis” — 2020/3/7 — 12:16 — page 14 — #46i
i

i
i

i
i

i
i
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are also structural zeros (i.e. impossible events). χj denotes the probability of
an individual released at time j is not recovered during the study, and mj,T+1

represents the corresponding number of individuals.

Rj denotes the number of individuals released at time j. For ring-recovery
data, this number comprises only the released individuals at time j, due to just one
further observation is possible, i.e. the dead recovery.

Following the example presented above, the probability associated with the
(j = 1, t = 3) cell (denoted qj,t) for the ring-recovery m-array corresponds to
the probability of surviving from occasion t = 1 to t = 2 (S1), and dying from
occasion t = 2 to t = 3 (1− S2), multiplied by the probability of being recovered
at occasion t = 3 (λ3):

q1,3 = S1(1− S2)λ3.

Similarly, the probability of never observing an individual in the ring-recovery m-
array is defined: χj = 1 −

∑T
t=j+1 qj,t. To better understand, in Table 1.3 we

present the expected and observed values considering the duration of the study is
T = 4 for ring-recovery data.

Recovery occasions (t)

2 3 4 Never recovered

1
R1 R1(1− S1)λ2 R1S1(1− S2)λ3 R1S1S2(1− S3)λ4 R1χ1

(m1,2) (m1,3) (m1,4) (m1,5)

2
R2 - R2(1− S2)λ3 R2S2(1− S3)λ4 R2χ2

(m2,3) (m2,4) (m2,5)

R
el

ea
se

oc
c.

(j
)

3
R3 - - R3(1− S3)λ4 R3χ3

(m3,4) (m3,5)

TABLE 1.3: Example of m-array for ring-recovery data. Individuals released
(Rj), expected and observed (parenthesis) individuals in an study with T = 4.

It is worth pointing out (and as it can be appreciated in Tables 1.2 and 1.3) the
different information gathered for each kind of data. For example, the main diago-
nal of the m-arrays represents, for capture-recapture data, the probability of surviv-
ing and being recaptured, φtpt+1, while for ring-recovery data the main diagonal
is indicating the probability of dying and being recovered dead, (1− St)λt+1.
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Conditional on the numbers released and assuming independence between in-
dividuals, the CJS model likelihood for ring-recovery data can be written as a
product of multinomial probability distributions corresponding to each row of the
m-arrays. The general likelihood takes the form:

`(θ) ∝
T−1∏
j=1


T∏

t=j+1

(1− St−1)λt
t−2∏
k=j

Sk

mj,t

χ
mj,T+1

j

 , (1.7)

where θ represents the vector of all the parameters involved in the model and

χj = 1−
T∑

t=j+1

(1− St−1)λt
t−2∏
k=j

Sk

 .

1.4 Integrated models

Integrated models are designed to analyze multiple data sources simultaneously
within a single robust analysis. By doing so, the information can be shared across
data sets. In the ecological context this feature is particularly relevant, mainly due
to ecological data are generally incomplete, or there may be biases because of the
study design. In this scenario, integrated models allow to fill the gaps through the
combination of the information gathered by the different data sets. Some clear
advantages of these models are that the precision of parameter estimates usually
increases, but more importantly, that they allow to estimate other demographic
parameters not possible to be estimated otherwise due to parameter redundancy
issues (Besbeas et al., 2005; McCrea and Morgan, 2015).

Two types of integrated models can be distinguished depending on whether
independent or nonindependent data sets are used. Integrated models for nonin-
dependent data sets are typically more complex (see McCrea and Morgan, 2015
for more details). However, integrated models for independent data sets can be
easily constructed by decomposing the joint likelihood of the different data sets
into a product of the corresponding likelihoods for each individual data set (given
the relevant parameter values). A key element of this modelling is that one (or
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several) parameters are common in several components of the likelihood. If we
let {D1, . . . ,Dn} denote the different data sets, as stated in King (2014), the inte-
grated likelihood is then:

f(D1, . . . ,Dn|θ) =
n∏
i=1

f(Di|θ).

The integrated approach has been applied to a wide range of data combina-
tions: capture-recapture and ring-recovery data (nonindependent data sets); popu-
lation counts, productivity and capture-recapture data; population counts and ring-
recovery data; and distance sampling and capture-recapture data; among many
others (Lebreton et al., 1995; Barker et al., 2004; McCrea et al., 2010; Kéry and
Schaub, 2011; Schaub and Abadi, 2011; King, 2014; McCrea and Morgan, 2015).

In this thesis (Chapter 5), we have implemented a particular integrated model
where capture-recapture and ring-recovery data from the same individuals were
analysed simultaneously. The following paragraphs give a brief introduction of the
mark-recapture-recovery (MRR) models but in Chapter 5 we present them in detail
to the particular case of a colony of common guillemot.

Mark-recapture-recovery models (MRR)

The joint analysis of live recaptures and ring-recovery data was first presented by
Burnham (1993). This study was focused on time-dependent model parameters,
considering both random and permanent migration. This model was lately gen-
eralised by Barker (1997), allowing for the joint analysis of live-recapture, dead
recovery and live resighting data in the special case of random temporary migra-
tion, which was further extended to age-dependence and temporary marking effect
in another work by Barker (1999). Further, Catchpole et al. (1998) extended Burn-
ham’s model to incorporate age dependent parameters.

Recent developments have extended the model of Catchpole et al. (1998), and
have included a state-space formulation (Bonner et al., 2010; Colchero and Clark,
2012; King, 2012), multi-site/multi-state MRR models (Lebreton et al., 1999; King
and Brooks, 2003; McCrea et al., 2012; King, 2014; McCrea and Morgan, 2015)
and incorporated individual time-varying continuous covariates (Cathpole et al.,
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2008; King et al., 2008; Bonner et al., 2010; Langrock and King, 2013; Worthing-
ton et al., 2015; King et al., 2010).

The data collection protocol for integrated mark-recapture-recovery (MRR)
studies consists of a repeated population sampling at a series of capture occa-
sions, denoted by t = 1, . . . , T . At each sampling occasion t, new individuals
are marked, and recaptures and recoveries are performed. Thus, mark-recapture-
recovery data are commonly presented in the form of individual encounter histo-
ries describing whether the individual has been observed alive or dead, or it has
not been observed for each capture occasion t. We let i = 1, . . . , N denote the
marked individuals and t = 1, . . . , T the associated capture occasions. We let y
denote the N × T matrix such that,

yi,t =


0 individual i is not resighted at time t;

1 individual i is resighted alive at time t;

2 individual i is recovered dead in the interval (t− 1, t].

As for standard ring-recovery models the distinction of individuals recovered dead
in the interval (t− 1, t] is a general assumption to MRR models due to the degen-
eration of the marks once the animal has died (Langrock and King, 2013). Hence,
only individuals dead at time t but alive at time t−1 (recently dead individuals) can
be recovered; conversely to those individuals recovered dead at time t but which
were already dead at time t− 1 (long dead individuals).

Capture-recapture data alone allow the estimation of apparent survival prob-
abilities, denoted by φ, and recapture probabilities, denoted by p. It is called ap-
parent due to true survival is confounded with migration (denoted by γ) from
the study site. However, ring-recovery data alone contain information about true
survival probabilities, denoted by S, and recovery probabilities, denoted by λ. In-
tegrated models allow the estimation of parameters not estimable otherwise. This
is the case for migration probability for MRR data. In what follows we consider
the case of full time dependence on model parameters.

In ecological studies there are three options when dealing with migration: (i)
migration is permanent, (ii) migration is random, (iii) there is no migration. We
consider the case where migration is permanent, so that if an individual alive at
time t, migrates with probability γt and it is not at risk of capture in subsequent
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times t+ 1, . . . , T . However, when migration is random, individuals alive at time
t can migrate at any time and they are available for capture at subsequent times
t+ 1, . . . , T (i.e. they can return). Therefore, when migration is random, the prob-
ability that an animal is at risk of capture at time t does not depend on whether
it was at risk of capture on earlier occasions (Barker and White, 2001). Further-
more, when random or permanent migration is present, we can reparameterize the
apparent survival probability as φt = (1 − γt)St, or equivalently, φt = Ft × St,
denoting by Ft the fidelity to the study site at time t. In case there is no migra-
tion, the apparent and the true survival are equal, φt = St, namely, complete site
fidelity. Finally, we also need to account for the probability of not observing an
individual again (either alive or dead), this χt term can be defined recursively as,

1− χt = (1− St)λt + St1− (1− pt+1)χt+1,

for t < T , and being χT = 1.

Following McCrea and Morgan (2015), in Table 1.4 we present an example
of the corresponding probabilities to four capture histories in an study of T = 4,
considering full time-dependence in model parameters and assuming no migration
in the study (i.e. φt = St).

t = 1 t = 2 t = 3 t = 4 Probabilities of encounter histories

1 1 2 0 S1p2(1− S2)λ2
1 0 0 2 S1(1− p2)S2(1− p3)(1− S3)λ3
1 1 0 1 S1p2S2(1− p3)S3p4
1 0 0 0 χ1

TABLE 1.4: Example of four encounter histories and their associated probabili-
ties in an MRR study assuming no migration (i.e. φt = St).

1.5 Inference

Once the model is selected the next step is the inference. CMR models can be
fitted using either a Bayesian or a classical approach. Classical inference assumes
that parameters are fixed and data are random observations. Parameters can be
estimated using, for example, maximum likelihood, i.e. the value of the parameters
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that maximize the associated likelihood function of the given model. Alternatively,
the Bayesian reasoning is based on the assumption that parameters are random
variables. Moreover, in the Bayesian paradigm all types of uncertainty are always
expressed in terms of probability distributions.

Although both perspectives are equally valid to make inference, in this thesis
the inference has been performed within the Bayesian framework mainly due to
two reasons. Firstly, the hierarchical structure of the Bayesian approach provides
a natural framework to combine data from different sources into a single analy-
sis. And secondly, the Bayesian paradigm allows us to explicitly incorporate all
the available prior knowledge about the unknown parameters into the inferential
process, an important feature for ecological studies (King et al., 2010; Christensen
et al., 2011; Martı́nez-Abraı́n et al., 2014).

In what follows we introduce the Bayesian paradigm, before describing Markov
chain Monte Carlo (MCMC) methods (Robert and Casella, 2011) which allow us
to apply such methods in those cases in which posterior distributions are not ana-
lytical (which is the case with the models here described). To conclude, we also
provide computing programs, R packages and web pages that we consider relevant
in the capture-recapture framework. Finally, for a detailed explanation of classical
inference in the capture-recapture framework the reader can refer to McCrea and
Morgan (2015).

1.5.1 Bayesian inference

The Bayesian approach to inference dates from s.XVIII, when Thomas Bayes pre-
sented a mathematical treatment of statistical data analysis named the inverse prob-
ability and that we know as Bayes’ Theorem:

π(θ|y) =
f(y|θ) · p(θ)

f(y)
∝ f(y|θ) · p(θ), (1.8)

where θ denotes the parameters on which we want to make inference and y denotes
the observations from a known probability density function (data).

In the above expression of Bayes theorem, f(y|θ) represents the likelihood,
containing the information given by the data under the model parameters. Also, the
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current knowledge about the parameters is expressed by the prior distribution, p(θ).
Note that if there is no previous knowledge about them, prior distribution should
be as less informative as possible. The term f(y) is known as the normalisation
constant that assures that the distribution integrates to one. Finally, the term π(θ|y)

refers to the posterior distribution of model parameters which reflects the updated
knowledge, balancing prior knowledge with observed data. In other words, the key
of the Bayesian paradigm is the ‘learning process’, namely, initial beliefs could be
evaluated, updated and modified with new information. Therefore, given a set of
observed data and a model that relates them with the parameters, the knowledge
about these parameters can be updated through Bayes’ Theorem.

Historically, Bayesian methods were restricted by the need to perform integra-
tions analytically to obtain the marginal posterior distributions of parameters of
interest. Hence, although the basis of the Bayesian methodology is simple and
intuitive, its application to complex real problems does not have an analytic closed
expression.

In the late 80s and beginning of the 90s of the last century all this changed
due to the development of different algorithms that allowed to simulate or approx-
imate (instead of analytically integrating) the posterior distributions. The most
popular ways to approximate (via simulation) those posterior distributions are the
Markov chain Monte Carlo (MCMC) methods (Gelfand and Smith, 1990; Smith
and Gelfand, 1992), the sequential Monte Carlo methods (Del Moral, 1996; Liu
and Cheng, 1998) and importance sampling. But there are other good ways to
approximate posterior distributions such as the integrated nested Laplace approxi-
mation methodology (Rue et al., 2009, www.r-inla.org) and the Approximate
Bayesian Computation methods (Tavaré et al., 1997).

In our case, we have used the MCMC approach to approximate the posterior
distributions. Next Section is devoted to explain it, as well as to present the two ba-
sic Markov chain simulation algorithms: Metropolis-Hastings sampling (Metropo-
lis et al., 1953; Hastings, 1970) and Gibbs sampler (Gelfand and Smith, 1990).

1.5.2 Markov chain Monte Carlo (MCMC) methods

MCMC methods perform Monte Carlo integration using a Markov chain to gen-
erate observations from the posterior distribution of interest, π(θ|y). A Markov

www.r-inla.org
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chain is a sequence of random numbers (θt, θt+1, . . .) for which, for any t, the dis-
tribution of θt given all the values of θ depends only on the previous value θt−1.
MCMC methods construct a Markov chain whose values are updated at each it-
eration t such that, if the chain is running for long enough, the distribution of the
chain converges to the posterior distribution of interest. In other words, the sta-
tionary distribution of the Markov chain is then the posterior distribution of inter-
est. Therefore, when the posterior distribution is analytically intractable, MCMC
methods allow us to sample iteratively so that in each step of the process we ex-
pect to draw from a distribution that becomes closer to the posterior distribution of
interest.

Once the chain has converged to the stationary distribution (our posterior dis-
tribution of interest), we can obtain empirical (Monte Carlo) estimates of any pos-
terior summaries of interest. However, it is necessary to check the convergence of
the simulated sequences (i.e. ensure that the Markov chain has reached the station-
ary distribution). To that end, we need to use only the realisations (simulations)
once the chain has converged, discarding then the early ones (period called burn-
in). There are many issues regarding the application of these MCMC methods that
we do not discuss here, such as the length of the burn-in period, the number of
iterations of the chains, the thinning period and the number of chains. For more
information to this respect see for example Christensen et al. (2011) and Gelman
et al. (2014).

Metropolis-Hastings algorithm

The way of constructing MCMC samplers is similar to the acceptance-rejection
sampling algorithm: values are drawn from a proposal distribution and are cor-
rected so that they behave as random observations from the target distribution.
One of the most populars MCMC algorithms is the Metropolis Hastings,in which
the draws are conditional only upon the last observation (Markov chain property).

The Metropolis Hastings algorithm starts with an initial value θ0 from some
arbitrary distribution. We then generate a new value θt+1 dependent only upon
θt:

θt+1|θt ∼ K(θt, θ),
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where K is the transition kernel of the Markov chain and only describes the dy-
namics of the chain. The algorithm can be described as:

STEP 0. Initialization. Generate an arbitrary point θ0 and choose a proposal
density q(θ∗, θ0).

STEP 1. At each iteration t generate a candidate θ∗ from the proposal density
and a random number u ∼ U [0, 1].

STEP 2. Calculate the acceptance ratio α(θt, θ∗):

• If u ≤ α(θt, θ∗), θ∗ is accepted→ θt+1 = θ∗.

• If u > α(θt, θ∗), θ∗ is rejected (there is no move)→ θt+1 = θt.

The standard choice of α(θt, θ∗) which minimizes the probability of rejection is:

α(θt, θ∗) = min
{
π(θt+1|y)q(θt+1, θt)

π(θt|y)q(θt, θt+1)

}
.

STEP 3. Return to STEP 1.

It is worth noting that Metropolis Hastings algorithm updates all the parameters
at the same time, however, parameters can be updated one at a time, it is called
single-update Metropolis Hastings (for more details see King et al., 2010).

Gibbs sampler

The Gibbs sampler is a special case of Metropolis Hastings algorithm, where the
acceptance probabilities are equal to 1, so that the acceptance-rejection step can
be omitted. In the Gibbs sampler algorithm the proposal distribution for any pa-
rameter is the conditional posterior distribution of that parameter given the current
value of the others. The sampling is done successively from each conditional dis-
tribution, in order.

Given the parameters θ = {θ1, . . . , θp}, with distribution π(θ), the Gibbs sam-
pler uses the set of full conditional distributions of π to sample from the marginal
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distributions π(θi|θ(i)), being θ(i) = {θi, . . . , θi−1, θi+1, . . . , θp}. The algorithm
can be described as:

STEP 0. We start with an arbitrary vector θ0 = {θ01, . . . , θ0p}.

STEP 1. At each iteration t simulate:

• θt+1
1 from sample π(θ1|θt(1));

• θt+1
2 from sample π(θ2|θt(2));

...

• θt+1
p from sample π(θp|θt(p)).

STEP 3. Return to STEP 1.

Finally, note that conditional distributions may (or may not) have an standard
form. If they do have it, the implementation of MCMC methods are straightfor-
ward. However, when conditional distributions are non-standard it can be used
the Metropolis Hastings algorithm. It is called Metropolis-within-Gibbs (for more
details see Tierney, 1994).

1.5.3 Computing

The software most frequently used to implement MCMC algorithms in Bayesian
framework are WinBUGS and OpenBUGS (Lunn et al., 2000), JAGS (Plummer,
2003), STAN (Carpenter et al., 2017), NIMBLE (Valpine et al., 2017), and BayesX
(Umlauf et al., 2015). All the inference presented in this thesis was performed with
JAGS software, although WinBUGS, OpenBUGS, STAN and NIMBLE have also
been used. Further, MCMC methods can also be programmed in computational
languages such as R (R Core Team, 2019) or C++ (Stroustrup, 2013).

Additionally, the capture-recapture(-recovery) models reviewed in this Chapter
(and many others) can be implemented in comprehensive software packages such
as the program Mark (White and Burnham, 1999), Presence (that estimates
patch occupancy rates), M-SURGE (for Multistate models), E-SURGE (Mutievent
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models) and Density (for spatial explicit capture-recapture models). There are
also available R packages as: RMark (Laake, 2013), a convenient R package with
interface to program Mark; marked (Laake et al., 2013), an R package for clas-
sical and Bayesian analyses of capture-recapture data; secr, an R package for
spatially explicit capture-recapture; Rcaptured, that estimates demographic pa-
rameters using log-linear models; BaSTA (Colchero et al., 2012), that performs
age-specific survival analysis from incomplete capture-recapture(-recovery) data
in Bayesian framework; unmarked (Fiske and Chandler, 2011), that models vari-
ation in abundance for capture-recapture data; and multimark (McClintock,
2015), that analyses capture-recapture data using non-invasive marks.

Finally, some web pages provide useful R code examples to fit capture-recap-
ture(-recovery) models such as: www.capturerecapture.co.uk (based on
the book by McCrea and Morgan, 2015); the web page: www.vogelwarte.ch/
de/projekte/publikationen/bpa/, is based on the book by Kéry and
Schaub, 2011 and provides the necessary R code to implement these models both
in WinBUGS and JAGS languages; and lastly, www.montana.edu/rotella/
502/Schedule.html, gathers several and comprehensive examples of RMark
code.

www.capturerecapture.co.uk
www.vogelwarte.ch/de/projekte/publikationen/bpa/
www.vogelwarte.ch/de/projekte/publikationen/bpa/
www.montana.edu/rotella/502/Schedule.html
www.montana.edu/rotella/502/Schedule.html
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CHAPTER 2

ANALYSING THE SURVIVAL OF

COMMON GUILLEMOT: THE

CASE OF STORA KARLSÖ

The data used along this thesis come from the largest colony of a seabird species,
the common guillemot (Uria aalge). When we first met the researchers from the
Baltic Seabird Project (http://www.balticseabird.com), they reported
us their interest on the analysis of juvenile survival of the common guillemot
colony in Stora Karlsö (Sweden). Previous studies in this colony had already per-
formed analysis of adult survival probabilities but more importantly, they told us
about an special characteristic of this colony. In contrast with other colonies, in
Stora Karlsö a ‘big’ proportion of young birds (1 and 2 years old individuals)
were resighted. Furthermore, they had an extensive ringing protocol that started at
1913, but with an annual ringing from the 40s, with recaptures taking place from
year 2002. The size of the resulting capture-recapture database (uncommonly big)
as well as the topic of interest (only less than 2% of seabird species have juvenile
survival estimates) encouraged us to start this project.

Nevertheless, we found several problems regarding the size of the database
and its study design. In particular, after the first analysis was performed (Chap-
ter 3), we realised that parameters estimated from the capture-recapture database
were biased in older age classes due to a partial monitoring problem at breeding

25

http://www.balticseabird.com
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ledges (explained in detail in Chapter 5). In ecological studies it is often the case
that only a fraction of the colony is monitored, and these monitored areas are as-
sumed to be representative of the whole population. However, this assumption
does not held true when partial monitoring is present. To overcome this problem
we needed information about the ‘invisible’ individuals, i.e. individuals settled
in non-monitored areas. Hence, we incorporated into the analysis a second data
set, in particular, a ring-recovery data set from the same individuals. This ring-
recovery database provided information about individuals recovered dead all over
the island, and so, that information shed light to the individuals settled in non-
monitored ledges.

The main objective of this Chapter is twofold. First, we introduce the species
of interest (the common guillemot) as well as we explain in detail the colony of
Stora Karlsö. The knowledge of some of the main ecological characteristics of
this species is relevant in order to to implement the statistical models. Second, we
present a detailed description of the two data sets above mentioned.

2.1 The species

Seabirds are top predators in marine ecosystems. Their populations tend to reflect
conditions over large spatial and long term scales, making them bioindicators of
environmental change. Adult survival is an important life-history trait in long-lived
species and determinant for the sustainability of the populations. Juvenile survival
is also a very important but unknown characteristic due to seabirds have long peri-
ods of immaturity spending several years at sea before returning to colonies when
they reach the sexual maturity (Croxall and Rothery, 1991). Consequently, under-
standing survival probabilities is crucial for modelling population dynamics. In-
deed, changes in survival over time could provide insight into the possible effects
of changes in climate and anthropogenic perturbations.

The common guillemot (also called common murre) is a long-lived, pursuit-
diving and widespread in the Northern hemisphere, being one of the few auk
species that breed in both Atlantic and Pacific oceans (Nettleship and Birkhead,
1985). This species is one of the most widely studied seabirds and its monitoring
is part of many national monitoring programmes.
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Historically, this species has been considered as an important source of eggs
and meat for humans. Due to this fact, the species was almost extinct at the end of
the 19th century in the Baltic Sea (only ≈20 pairs remained, Olsson et al., 2000).
At present, the main threats affecting guillemots vary from legal hunting in Canada
and Greenland (Merkel and Barry, 2008), oil pollution (Hatchwell and Birkhead,
1991; Votier et al., 2008), incidental captures in fishing gear (bycatch) (Österblom
et al., 2002), overfishing (Österblom et al., 2006) and climate change (Sandvik
et al., 2005, 2012).

The common guillemot (hereafter guillemots) forage for food by swimming
underwater using its wings for propulsion, usually diving to depths of 20-50m
(although depths up to 150 m have been recorded). It is a highly specialized feeder
and a single-prey loader. During the chick rearing, only a single prey item is
brought to the chick by parent. In the Baltic Sea, its main prey is sprat (Spratus
spratus) (Hedgren and Linnman, 1979; Österblom et al., 2006).

Seabirds, and in particular the guillemots, are philopatric to both the breeding
colony and the sub-colony where they were born (Halley et al., 1995; Harris et al.,
1996a,b). Further, it is a social species and usually breeds in large colonies at
very high densities, being the main advantage of this high density nesting an anti-
predator strategy. There have been recorded a variety of breeding areas: low-lying
islands and stacks, broad and narrow cliff ledges and occasionally under boul-
ders and in caves. However, maximum densities are achieved on broad, flat areas
(Parslow, 1966; Birkhead and Hudson, 1977a). This species has a complex life
history with a long prospecting behavior that caused that its population modelling
is challenging.

The guillemots do not make nest and lay only one egg that incubate for ≈32
days. The fledging age is around 20 days (Hedgren and Linnman, 1979; Nettle-
ship and Birkhead, 1985). They are sexually monomorphic and both sexes invest
heavily in reproduction, being after fledging when the roles of both sexes are re-
markable different. Indeed, the male parent takes the chick to sea and feeds it for
many weeks until it completes its development; conversely the female continues to
visit the breeding site (Wanless and Harris, 1986).
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28 2.2. Available information

FIGURE 2.1: Guillemot chick at fledging time (left) and adult incubating its
egg (right).

The island of Stora Karlsö, west of the island of Gotland (Sweden), holds the
largest guillemot colony on the Baltic Sea, with 15,700 pairs in 2014, i.e. ≈2/3 of
the Baltic Sea population (Olsson and Hentati-Sundberg, 2017). The main threats
that affect guillemots in this area are bycatch, overfishing and climate change. In
fact, large-scale and long-term changes in the ecosystem have been recorded in the
Baltic Sea which have affected the abundance of sprat, the main prey for guillemots
in this area (Hedgren, 1976; Lyngs and Durinck, 1998; Österblom et al., 2006).

To sum up, seabirds have been proposed as valuable indicators of changes in
marine ecosystems. Nowadays when climate change arises as a crude reality, the
species will have to show their ability to adapt in order to face the currently chang-
ing environmental conditions. Furthermore, specialist species (as the guillemots)
are particularly challenged by rapid and directional changes. Therefore, the study
of this species turns out of special relevance in order to understand how these
changes are affecting specialist species keeping always in mind an ultimate goal:
to conserve them.

2.2 Available information

This Section is devoted to present a detailed description of the two data sets used
along this thesis: a capture-recapture database that comprises years 2006 to 2016,
and a mark-recapture-recovery (MRR) database regarding years 1992 to 2018.
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2.2.1 Capture-recapture database (2006-2016)

Within the period 2006 to 2016, a total of 28, 930 chicks were ringed (with metallic
and plastic rings) in late June and early July after jumping from the ledges at an age
of 20 days. Mean ringing effort was 2, 893 by year, with a maximum of 4, 956 in-
dividuals ringed (related to year 2015) and a minimum of 1, 965 individuals ringed
(related to year 2007). Along the study period, a total of 7, 625 resightings were
made in the reproductive period (May to July) with minimal disturbance. Resight-
ings were performed in five different areas of the island, three breeding ledges
and two clubs (aggregations of birds on rocks in the water beneath the breeding
ledges) (Figure 2.2). The mean resigting effort was 82.80 hours by year, with a
maximum of 1, 284 individuals resighted (related to year 2016) and a minimum of
174 individuals resighted (year 2007). The total number of individuals resighted
corresponds to 5, 493 different individuals (19% of the ringed birds).

FIGURE 2.2: Location of the large guillemot (Uria aalge) breeding colony on
the island of Stora Karlsö in the Baltic Sea (left), where chicks were captured,
banded, and resighted from 2006-2016. Map of the island (right) shows the
location of the main breeding ledges used by guillemots (areas A, B and C) and
locations that were monitored to resight marked birds (indicated with asterisks).

Chicks were captured and banded in area A.

Figure 2.3 on the left shows the annual number of resightings, while Figure
2.3 on the right displays the annual number of ringed individuals within the study
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period 2006-2016. As it can be appreciated, there has been an increasing effort
along the study period both in the number of resightings and the number of ringed
birds.
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FIGURE 2.3: Annual number of ringed (left) and resighted individuals (right)
in the capture-recapture database (2006-2016).

Furthermore, Table 2.1 presents the annual number, the cumulative number
of the ringed individuals and the resighted individuals in this capture-recapture
database. The proportion of marked individuals observed one or more times over
the study period was (5, 493/28, 930)= 0.1898, and consequently about the 81.10%

of the ringed individuals have never been seen again. Note that this high value of
never seen individuals is common for capture-recapture studies.
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Year Ringed Cumulative Resighted
ringed

2006 1,999 1,999 −
2007 1,965 3,964 174
2008 1,989 5,953 491
2009 2,993 8,946 686
2010 2,993 11,939 791
2011 3,000 14,939 601
2012 2,847 17,786 760
2013 3,104 20,890 754
2014 3,084 23,974 1,011
2015 4,956 28,930 1,073
2016 − − 1,284

TABLE 2.1: Ringed individuals, cumulative number of ringed individuals and
resighted individuals from 2006 to 2016.

As it can be appreciated in Figure 2.4, the most resighted age is two years old
(36% of the resighted individuals), followed by three years old (25%), four years
old (14%), five-ten years old (13%) and one year old (12%). It is worth noting
that in this case an individual can be included at different ages. The wide-spread
colony attendance of 1 and 2 year old birds in Stora Karlsö colony is an aspect
which appears unique among guillemot colonies.
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FIGURE 2.4: Absolute number of resighted individuals by age in the capture-
recapture database (2006-2016).

Note that older ages (from 5 to 10 years old) do not seem to be represented in
this capture-recapture database, the reason underneath being that the study was de-
signed for the analysis of juvenile survival probabilities. As previously mentioned,
the study was performed on five different areas of the colony (Figure 2.2), where
resightings with telescopes and binoculars were made from above. Along that in-
terval of time, observers tried to read as many plastic or metal rings as possible,
resighting mostly juveniles (until age 4). This is due to experienced breeders (5+

aged individuals) are usually settled in the ‘best areas’, i.e. the central areas of the
ledges, making their resighting difficult. On the contrary, the youngest birds are
usually at peripheral areas which are unsuitable for breeding but are really helpful
for resightings.

The maximum of times that an individual has been observed in this capture-
recapture database is ten times. However, as it can be appreciated in Figure 2.5,
the major part of the individuals have been never resighted, followed by once, two
times, three, . . ., up to those ten times. Further, each individual was observed an
average of 1.3881 times.
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FIGURE 2.5: Proportion of individuals resighted from zero to ten times in the
capture-recapture database (2006-2016).

In order to get insight about their age when animals were last resighted, Figure
2.6 displays the absolute number of individuals seen at their last resighting occa-
sion by age, while Table 2.2 shows the proportion of individuals seen at their last
resighting occasion by age. Again, age two is the most observed at the time of
their last resighting occasion, followed by three, four and one. Moreover, the 87%
of the individuals were last resighted at an age of 1-4 years. These results are in
line with those presented in Figure 2.4.
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FIGURE 2.6: Age of the individuals at their last resighting occasion in the
capture-recapture database (2006-2016).

Age Proportion of
individuals (N = 5493)

1 0.1202
2 0.3627
3 0.2575
4 0.1304
5 0.0630
6 0.0305
7 0.0142
8 0.0098
9 0.0071
10 0.0043

TABLE 2.2: Age and proportions of individuals at their last resighting occasion
in the capture-recapture database (2006-2016).

To sum up, this capture-recapture database contains information about 28, 930

individuals ringed as chicks and 5, 493 resighted individuals along the period 2006-
2016. Further, this guillemot colony from Stora Karlsö has the unique feature that
many 1 year old individuals return to the colony (12%), being the most resighted
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age two years old. Moreover, this database gathers scarce information about the
adult classes (from 5 to 10 years old) mainly due to study design. To conclude,
nowadays databases are becoming more complex in terms of the volume and va-
riety of the data, and this is the case for this capture-recapture database, whose
unusual (big) dimensions made the inference challenging.

2.2.2 Mark-recapture-recovery (MRR) database (1992-2018)

Integrated models are based in the joint analysis of different databases. In this
thesis, we present an integrated model where an extended version of the previous
capture-recapture database is jointly analyzed with a ring-recovery database from
the same individuals.

The ringing program in Stora Karlsö has a long history, with the first ringing
campaign performed in 1913 (Olsson et al., 2000). However, over the first years
a low number of birds were ringed as well as at some years no ringing was per-
formed. Therefore, and due to the above exposed, our MRR database comprise
the period 1992-2015 and contains information about 39, 681 individuals ringed as
chicks (Figure 2.7 on the right).

In ring-recovery studies, it is often the case that a small proportion of the in-
dividuals are found dead. Indeed, dead animals may be recovered physically but,
most of the times, is the ring itself which is recovered. Further, far from all re-
coveries are reported, specially those from animals caught in fishing gears, one of
the main threats for this species in the Baltic Sea (Žydelis et al., 2009). All the
information about dead individuals is frequently stored in national recovery data
sets. Indeed, for this colony, the recovery information has been provided by the
Bird Ringing Centre (Swedish Museum of Natural History).

For this integrated database, the ring-recovery data gathers information about
957 individuals recovered dead along all the study period 1993-2018 (Figure 2.7
on the left), while the capture-recapture data includes recaptures events between
2002-2016, with a total of 6, 477 unique individuals observed (Figure 2.7 on the
left). Therefore, within the period 1993 to 2001 and 2017-18 no resightings were
performed. Finally, the number of individuals seen at both databases (either re-
sighted alive or recovered dead) were 47.
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As it can be appreciated in Figure 2.7 on the left, during the capture-recapture
study period there were two different observational regimes. From 2002-6 resight-
ing effort was generally low (mean seasonal resighting effort of 35.80 hours by
year), and significantly lower than the effort in later years between 2007-16 (mean
seasonal resighting effort of 82.80 hours by year).
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FIGURE 2.7: Annual number of recovered individuals (grey bars, on the left),
resighted individuals (blue line, on the centre) and ringed individuals (red bars,

on the right) in the MRR database.

Figure 2.8 displays the number of individuals recaptured by age in this capture-
recapture database. Note that, although this data set contains ‘extra’ information
due to years 2002-2006, the pattern is equivalent to that observed in the previously
presented capture-recapture database (Figure 2.4). Indeed, the age most resighted
is two years old (34% of the resighted individuals), followed by three years old
(27%), four years old (14%), five-ten years old (13%) and one year old (12%)
(Figure 2.8). Similarly, the maximum of times that an individual has been observed
is again ten times and the proportion of never seen individuals is the biggest one
(corresponding to 33, 204 individuals), followed by once, two, . . ., up to those
ten (Figure 2.9). Further, the number of times that one individual is observed is
slightly bigger, 1.4269 times (compared to 1.3881).
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FIGURE 2.8: Number of individuals resighted by age in the MRR database.
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FIGURE 2.9: Proportion of individuals resighted from zero to ten times in the
MRR database.

In the ring-recovery database (as expected) only a small proportion of individ-
uals were recovered dead (2.41%). Further, as it can be appreciated in Figure 2.10,
most of the recovered individuals were 1 year old birds (61%), followed by 2 years
old (19%), 3 years old (6%), . . ., up to 19 years old. These results are in line with
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previous studies that state that in many species, as seabirds, survival at first year of
life is lower than later (Harris et al., 2007).
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FIGURE 2.10: Absolute number of recovered individuals by age.

Additionally, and similarly to what happened in the capture-recapture data set
presented in previous Section, this ring-recovery database gathers scarce infor-
mation about adult individuals (5+) (Figure 2.10). Indeed, only the 13% of the
individuals recovered dead were 5-19 years old. The underneath reason is not now
related to the study design, it is much simpler: guillemots are long-lived species.
The oldest guillemot seen alive was resighted in this colony and it was 47 years
old (Swedish Museum of Natural History). For long-lived species, adult survival
is considered an important trait for the maintenance of the populations. Indeed, in
natural circumstances, the probability that an adult guillemot dies is very low (adult
survival estimates vary between [0.9, 1], Harris et al., 2000). Further, the guille-
mot colony from Stora Karlsö has almost tripled from 1980 until present (Hentati-
Sundberg and Olsson, 2016; Olsson and Hentati-Sundberg, 2017). Therefore the
fact that adult ages are not represented in the ring-recovery database is what we
expected in these circumstances of colony increase.

In conclusion, capture-recapture and ring-recovery databases gather different
temporal information. Whereas ring-recovery data set contains information about
all the study period (1992-2018), capture-recapture information is limited to years
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2002-2016, with a different recapture effort between years 2002-06 and 2007-16.
Further, we have shown that this capture-recapture database has a similar pattern
that the corresponding to years 2006-2016. Finally, it is worth pointing out that
while recaptures are performed in the monitored areas (presented in Figure 2.2),
recoveries (for this database) take place at colony level (monitored and not moni-
tored areas), the Baltic Sea and Atlantic Ocean.
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CHAPTER 3

SUBJECTIVE BAYESIAN

JUVENILE SURVIVAL ANALYSIS

Up to this point, all the tools required to develop this thesis have been described.
Next Chapters are devoted to give a more detailed explanation of the studies per-
formed, giving an introduction to the problem, describing concisely the methodol-
ogy employed, and finally depicting the results.

In particular, in this Chapter we present our first analysis performed in the
guillemot colony from Stora Karlsö. To that end, we used the capture-recapture
database explained in Chapter 2 (Section 2.2.1). The main objective of this work
was to provide reliable juvenile survival and recapture probabilities estimates by
means of Cormack-Jolly-Seber models. The novelty of this work lies in the use
of a subjective Bayesian approach to try to correct the partial monitoring problem
detected at breeding ledges. Indeed, we incorporate relevant information (expert
opinion) about recapture probabilities for the oldest age class via subjective prior
distribution.

This study depicts a first approximation to the problem of partial monitoring.
Nevertheless, in Chapter 5 we go further, and we present an integrated model
that reduces the corresponding bias obtained in the estimated survival probabili-
ties from capture-recapture data only.

41
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3.1 Introduction

It is well known that seabirds are of particular conservation concern due to their
vulnerability to human activities, including climate change, bycatch, invasive spe-
cies and oil spills (Sandvik et al., 2005; Martı́nez-Abraı́n et al., 2006; Lewison
et al., 2012). According to the IUCN Red List of Threatened Species, seabirds are
the group of birds more threatened, having the 43% of the seabird species some
category of threat (Crowall et al., 2012).

In long lived species, such as seabirds, population dynamics are sensitive to
changes in adult survival, reproductive success and juvenile survival (Lewison
et al., 2012). For seabirds, estimation of age or stage- specific demographic param-
eters is particularly important because decline in breeding populations can be influ-
enced by non-breeders and juvenile birds (Votier et al., 2008). However, seabirds
often have long periods of immaturity, remaining unobservable at sea for several
years until they come back to the colony (Croxall and Rothery, 1991; Sandvik
et al., 2008), making estimation of the juvenile stage difficult (Lee et al., 2008;
Votier et al., 2008). In particular, less than 2% of seabird species have estimates of
juvenile survival (Lewison et al., 2012).

The guillemot colony from Stora Karlsö (Baltic Sea, Sweden), in contrast with
other colonies, has the unique feature that many one-year-old birds return to the
colony (12%). This colony shows an important behavioural heterogeneity, involv-
ing several phases of club attendance, ledge attendance, pair bonding and ledge
establishment. Indeed, in this colony, one year old individuals are almost exclu-
sively resighted at clubs (flat boulders 2-5 m in diameter beneath the breeding cliffs
in the water 10-20 m off the shore, holding aggregations of non-breeding birds),
while at the following ages they gradually shift over to almost only being observed
at breeding ledges. Other studies have reported this behaviour heterogeneity in
several colonies (Nettleship and Birkhead, 1985; Halley et al., 1995) but so far few
studies have considered it as a factor in survival models (Crespin et al., 2008; Lee
et al., 2008; Votier et al., 2008).

Additionally, age is an important factor affecting survival and recapture prob-
abilities in animal populations (Crespin et al., 2006; Harris et al., 2007; Morrison
et al., 2009) and commonly, in most species, the first-year survival is lower than
in later ages (Harris et al., 2007). In order to incorporate any possible differences
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in survival along age classes, in this work we used Cormack-Jolly-Seber (CJS)
model with age effects to jointly estimate survival and recapture probabilities of
juvenile guillemots, always taking into account that CJS models estimate appar-
ent (instead of true) survival probabilities, as dead and permanent emigration is
confounded (King et al., 2010; Kéry and Schaub, 2011). Finally, we modelled
recapture probabilities as age and time dependent in order to take into account
different detectabilities caused by the different rings used along the study.

A strong assumption of capture-recapture models is that animals remain faith-
ful to the study area (Newman et al., 2014). Seabirds, and in particular the guille-
mots, are philopatric to the breeding colony, but also to the sub-colony where they
were born (Halley et al., 1995; Harris et al., 1996a,b). As juvenile birds get older,
they are increasingly present on breeding ledges, reflecting the prospecting be-
haviour in preparation for breeding (Oro and Pradel, 2000; Kadin, 2007). Hence,
individuals hatched on the monitored breeding ledges will have a higher recapture
probability than birds hatched outside them.

To deal with the partial monitoring problem, in this Chapter we used a subjec-
tive Bayesian approach in birds older than 2 years old incorporating former knowl-
edge about the proportion of breeding birds in monitored ledges in the area of study
(Olsson and Hentati-Sundberg, 2017). The elicitation of informative prior distribu-
tions has been (and still is) a controversial issue in Bayesian inference (King et al.,
2010; Golchi, 2016). However, when relevant information is available, informa-
tive prior distributions are the appropriate way of introducing expert opinion or
information related to the study (McCarthy and Masters, 2005; King et al., 2010;
Christensen et al., 2011; Martı́nez-Abraı́n et al., 2014; Golchi, 2016).

3.2 Database

Between 2006 and 2015, 28, 930 chicks were marked in late June and early July
on a beach under the cliffs from the largest sub-colony of the island. Through-
out the study, it was used the official triangular stainless steel ring with a unique
ID code on one leg, provided by the Ringing Centre at the Swedish Museum of
Natural History and manufactured by IÖ Mekaniska, Bankeryd, Sweden. Addi-
tionally, were used the following complementary rings with IDs and colour codes
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on the other leg: round plastic rings (Protouch Engraving and Signage, Saskatoon,
Saskatchewan, Canada) 2006-2008 and 2013-2015, round aluminium rings (IÖ
Mekaniska, Bankeryd, Sweden) 2009 and large triangular steel rings 2010-2012
(IÖ Mekaniska, Bankeryd, Sweden). All types of rings were possible to read with
a telescope at a distance at all monitoring sites.

Resightings were made in 10 consecutive breeding seasons (from 2007 to
2016) and in five different locations of the colony: two clubs and three breed-
ing ledges (Figure 3.1). During the breeding period (May to July) resightings
were performed with telescopes from above, resulting in minimal disturbance. We
determined the birds’ ID from both the official stainless steel rings and the comple-
mentary rings. Mean seasonal resighting effort was 82.80 h/yr, with a maximum
of 138 h/yr (year 2015), and a minimum of 57 h/yr (year 2008).

FIGURE 3.1: Island of Stora Karlsö with the location of the main breeding
ledges used by guillemots (areas A, B and C) and locations that were monitored
to resight marked birds (indicated with asterisks). Chicks were captured and

banded in area A.
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3.3 Survival Modelling

We estimated annual survival and annual resighting probabilities using the well-
known multinomial formulation for computational reasons due to the big size of
the database (Lebreton et al., 1992; Kéry and Schaub, 2011; King et al., 2010). Our
main aim was to establish robust, stage-specific demographic parameter estimates
for the colony. Although survival can be year dependent (due to variation in food
availability or extreme weather events; Votier et al., 2008; Harris et al., 2007), in
this study we modelled survival probability age dependent due to previous stud-
ies performed in this colony suggested that the population trajectory is both stable
and positive (Hentati-Sundberg and Olsson, 2016; Olsson and Hentati-Sundberg,
2017). However, the use of different quality of the complementary rings (plas-
tic/aluminium/steel) during the study could affect annual resighting probabilities,
therefore, we modelled recapture probability as age and time dependent (in logistic
scale).

We initially describe the model parameters and notation before explaining the
inferential process. Let be i the marked individuals, i = 1, . . . , N , and t the
capture occasions, t = 1, . . . , T , being each one of these values related to the
study years (2006-2016). Let f be the vector that indicates the year in which an
individual enters into the study (marking occasion), being fi ∈ {1, . . . , T − 1},
and f ∈ {f1, . . . , fN}. φa,t represents the apparent survival probability, and it
is the probability that an individual i survives at age a from time t to t + 1. In
this study we consider survival probability is only age dependent, not considering
differences between individuals or years. Let pa,t be the recapture probability of
individual i at time t and at age a, given alive at time t. Due to the different rings
used along the study, we model recapture probabilities age and time dependent (in
logit scale). Therefore, if we denote by a = 1, . . . , A, the age classes, the survival
and recapture probabilities can be expressed as:

φa,t = φa, for a = 1, . . . , A; t = fi, . . . , T − 1;

logit(pa,t) = αa + βt, for a = 2, . . . , A; t = fi + 1, . . . , T.

In this study we establish four age classes, a = 1, 2, 3, 4+, being the underneath
reasons mainly two. First, the main focus of this study is to analyze juvenile sur-
vival and recapture probabilities. And second, in this colony individuals aged 3+
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became less resighted due to their movement to unobserved (i.e. not monitored)
areas of the colony.

The full set of parameters regarding to the recapture probabilities are: αa =

{α1, α2, α3, α4+}, corresponding to one year old, two years old, three years old
and 4+ years old individuals; and βt = {β1, β2, . . . , β10}, corresponding to the
study years 2007-2016. However, due to in this colony individuals 3+ are primary
observed at breeding ledges, we set α3 = α4+, which we denote by α3+. Further,
time dependent CJS models have identifiability problems in the last two parameters
(King et al., 2010). Therefore, in order to avoid this lack of identifiability we set
α1 = 0. Alternatively, the full set of parameters regarding the survival probabilities
are φ = {φ1;φ2;φ3;φ4+}, corresponding to one, two, three, and 4+ years old
individuals.

3.4 Posterior Inference

Bayesian statistics allows to incorporate not only the data but also all the available
prior knowledge about the unknown parameters into the inferential process. This
information needs to be expressed in probabilistic language in the so-called prior
distributions. Bayes’ theorem combines both types of information and provides
the posterior distribution, which contains all the relevant knowledge about the pa-
rameters of interest (McCarthy and Masters, 2005; King et al., 2010; Christensen
et al., 2011; Kruschke, 2011).

Most of the time, Bayesian inferential processes are based in vague or non-
informative prior distributions, the reason being that no information is available.
Nevertheless, as stated in Martı́nez-Abraı́n et al. (2014), “ecologists should make a
greater effort to make use of available prior information because this is their most
legitimate contribution to the inferential process”. In other words, when informa-
tion about the parameters is available, we should try to incorporate it.

In our case, we incorporated expert prior information about the partial moni-
toring of this colony in the CJS model. Based on a recent census of the colony,
Olsson and Hentati-Sundberg (2017) stated that the size of the monitored breeding
ledges represented 19% of breeding pairs in the A area (Figure 3.1). Furthermore,
individuals of age class three were mainly observed at breeding ledges, not at the
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clubs, due to the gradual settlement of the prospecting individuals on breeding
ledges (Kadin (2007); this study). Therefore, we used informative prior distribu-
tions but only for the recapture probabilities for individuals three-ten- years old
(p3+), as we used non-informative prior distributions for the remaining parameters
of the model, in particular, Uniform (0, 1).

The probability of seeing an individual that is alive, P(pi,t = 1|zi,t = 1), can
be expressed as:

P(pi,t = 1|zi,t = 1) = P(pi,t = 1,M |zi,t = 1) + P(pi,t = 1,M |zi,t = 1) =

P(pi,t = 1|M, zi,t = 1)× P(M |zi,t = 1)+

P(pi,t = 1|M, zi,t = 1)× P(M |zi,t = 1) =

P(pi,t = 1|M, zi,t = 1)× 0.19.

Where the event M indicates that the individual is in a monitored breeding ledge
and M indicates the opposite. Additionally, even though a bird is present at a
ledge, it is not certain that its ring could be read, mainly because individuals are
standing close to each other and not always showing their rings. Anyway, in order
to be the less informative, we considered that we could see all the individuals,
which is far from reality, and so, the recapture probabilities should not be greater
than 0.19. In other words, we used informative prior distributions that constrained
the parametric space for the recapture probabilities in age class 3+ in order not to
exceed that 0.19 value.

As usual in this context, the resulting posterior distributions containing all the
information about the system have no closed expression, so we need numerical
approaches to approximate them. A feasible possibility is to use Markov chain
Monte Carlo (MCMC) methods (Robert and Casella, 2011). In this study, we
used MCMC through the jags software (Plummer, 2003) implemented in the R
software (R Core Team, 2019). We obtained the final approximate random sample
using three chains, 200, 000 iterations, discarding the first 20, 000 and saving 1 of
every 300 of the remaining for the memory storage purposes and to reduce auto
correlation.
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3.5 Results

One year old birds were almost exclusively resighted at the clubs and only a few
(5%) on the ledges (Table 3.1). In the following age categories there was a clear
trend that share of birds only seen at the breeding ledges were increasing drastically
with age, observing 89% of 3-10 years old birds only at breeding ledges (Table
3.1).

Age Clubs Breeding ledges Both
1 704 (95%) 32 (4.31%) 5 (0.68%)
2 1183 (52.77%) 930 (41.48%) 129 (5.75%)
3 285 (17.71%) 1306 (81.17%) 18 (1.12%)
4 57 (6.38%) 830 (92.95%) 6 (0.67%)
5 8 (1.65%) 477 (98.35%) 0 (0.00%)
6 4 (1.62%) 243 (98.38%) 0 (0.00%)
7 1 (0.78%) 127 (99.22%) 0 (0.00%)
8 1 (1.39%) 71 (98.61%) 0 (0.00%)
9 1 (2.17%) 45 (97.83%) 0 (0.00%)
10 1 (4.76%) 20 (95.24%) 0 (0.00%)

TABLE 3.1: Age and number (with percentage) of banded guillemots (Uria
aalge) resighted at clubs, breeding ledges, and both areas in the large breeding

colony on the island of Stora Karlsö in the Baltic Sea, Sweden.

In Figure 3.2 we present the simulated values of the marginal posterior distribu-
tion of the annual survival probabilities with their corresponding 95% symmetric
credible intervals. Survival probabilities differed among age classes, being highest
for age classes 2 and 3. As expected, survival at first year of life was the mini-
mum estimate. Recapture probability showed interannual variations among years,
but it is important to remark that all the age classes show the same variability pat-
tern between years (Fig. 3.3). Resighting probability for 1 year old birds (p1,t:
t = 2, . . . , T ) was extremely low, peaking at 2 years old (p2,t: t = 2, . . . , T ),
and being around to the informative value provided for the older age class (p3+,t:
t = 2, . . . , T ).
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Furthermore, to illustrate the effect of the use of the informative prior distri-
bution to recapture probabilities corresponding to 3+ individuals, Figure 3.4 dis-
plays the simulated values of the three Markov chains regarding those parameters.
A mere look at those chains shows that most of those parameters are in the upper
limit of the informative prior distribution specified. With the use of informative
prior distributions we are constraining the parametric space for recapture probabil-
ities regarding 3+ years old individuals so that they can not be greater than 0.19
(i.e. our prior knowledge about the colony).
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3.6 Discussion

Through the use of Bayesian CJS models, we provide new estimations of annual
survival and resighting probabilities of young birds at the largest common guille-
mot colony in the Baltic Sea. The large number of ringed and resighted birds
offered a robust database to obtain relevant inferences.

Unique among guillemot colonies, a number of birds returned to this colony in
their first summer, i.e. when 1 year old (Kadin, 2007). Our results showed that 1
year old individuals were almost exclusively observed at clubs, but the following
age classes gradually shift over to almost only being observed at breeding ledges.
The clubs help youngest birds to learn social and sexual behaviours without the
risk of being attacked by breeding birds as well as to gain experience in location
of fishing grounds near the colony (Halley et al., 1995). We considered that re-
sightings in clubs were not biased due to the fact that birds used these boulders
randomly, that is, all the individuals that belonged to this sub-colony where we
ringed them had the same probability of being resighted there. This assumption
did, however, not held true in monitored breeding ledges. Birds that are more than
one years old begin to prospect the breeding ledges in order to learn the compe-
tences for breeding (Halley et al., 1995; Harris et al., 1996b). Seabirds, and in
particular the common guillemot, are philopatric to natal colony, but also to the
sub-colony where they hatched (Halley et al., 1995; Harris et al., 1996a,b). Hence,
individuals that settle in monitored breeding ledges will have a higher resighting
probability compared to individuals settling in other ledges in the same sub-colony
- risking underestimation of survival estimates (Lebreton et al., 1992; Sanz-Aguilar
et al., 2016).

Keeping in mind differences with regard to data sources and statistical method-
ology, in Table 3.2 we compare our annual survival estimates with the ones ob-
tained in other studies at the Isle of May (Scotland; Crespin et al., 2006; Harris
et al., 2007; Reynolds et al., 2009), Skomer island (Wales; Birkhead and Hudson,
1977a; Votier et al., 2008; Meade et al., 2013) and Farallon island (California; Lee
et al., 2008). As we can observe, our estimate of survival at first year of life is the
lowest value reported for guillemots, whereas for 2 years old birds is the highest
value reported. This may be caused by the fact that in the other studies no one year
old individuals were seen alive, and so, inference in first year survival probability
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was done without that information. In our study, however, 12% and 35% of 1 year
old and 2 years old individuals respectively were resighted. The fact that birds in
our study had higher mortality during their first winter than during the second, con-
firms earlier studies that highlight the first winter as a critical period for common
guillemots, as indicated e.g. as an over representation in bycatch recoveries (Ols-
son et al., 2000). Other comparable outputs are those for the survival up to 2 years
old, that we can easily calculate combining survival of the 1 year and 2 years age
classes. In particular, this calculated survival probability up to 2 years old is 0.34
(0.582) in Crespin et al. (2006), while it is 0.49 (0.702) in Votier et al. (2008), and
it is 0.41 (0.54× 0.76) in Reynolds et al. (2009). In our study, the posterior mean
and 95% credible interval of surviving until 2 years old was 0.46 and [0.44,0.49],
i.e. close to those estimations.
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Colonies, Studies, Time period Survival estimates Age class Banded chicks

Farallon Is., Lee et al. (2008). 1986-2004 0.59 1-yr 375
0.67 2-yrs
0.75 3-yrs
0.80 4-yrs

May Is., Crespin et al. (2006). 1983-2001 0.58[0.44, 0.71] 1-2-yrs −
0.86[0.81, 0.91] 3-4-yrs
0.70[0.65, 0.73] 5-18-yrs

May Is., Harris et al. (2007). 1983-2002 0.56[0.54, 0.59] 1-yr 96-237 year−1

0.79[0.72, 0.85] 2-yrs
0.92[0.87, 0.95] 3-yrs
0.94[0.87, 0.98] 4-yrs
0.97[0.94, 0.98] 5+ yrs

May Is., Reynolds et al. (2009). 1983-2003 0.54 1-yr 5,594
0.76[0.72, 0.81] 2-yrs
0.93[0.89, 0.96] 3-yrs
0.91[0.87, 0.94] 4-yrs

Skomer Is., Birkhead and Hudson (1977a). 1972-1977 0.26** 1-3-yrs 279
0.21** 1-5-yrs

Skomer Is., Votier et al. (2008). 1985-2005 0.70± 0.04 1-2-yrs 1,522
0.95± 0.08 3-yrs
0.87± 0.06 4-yrs
0.78± 0.05 5-20-yrs

Skoner Is., Meade et al. (2013). 1985-2004 0.43** 1-3-yrs 5,943
Stora Karlsö, this study. 2006-2016 0.53[0.49, 0.58] 1-yr 28,930

0.87[0.79, 0.96] 2-yrs
0.96[0.90, 0.99] 3-yrs
0.63[0.61, 0.64] 4-10-yrs

TABLE 3.2: Previously reported survival probability estimates for guillemots
from various colonies (expressed in terms of the mean, the mean and 95% cred-
ible intervals, or the mean and SD; estimates are for annual survival probability
except Skomer Island studies, which report cumulative survival probabilities).

With respect to 3 years old survival, our estimate was also in line with other
studies. In particular, the posterior mean was close to the estimations obtained by
Votier et al. (2008) and Reynolds et al. (2009). Also, and previously mentioned,
in order to compare our results with those by Birkhead and Hudson (1977a) and
Meade et al. (2013) (in which the estimations were for individuals until three years
old), we have to consider the calculated posterior probability of the cumulative
survival up to three years. Concretely, in our case the posterior mean and 95%
credible interval of surviving until three years in Stora Karlsö colony was 0.44
[0.43,0.46], which was a similar result to the one from Meade et al. (2013).
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Our final age class correspond to young adult birds (4-10 years). Adult sur-
vival in seabirds is the life-history characteristic of greatest importance for popu-
lation growth and it is crucial for the colony maintenance (Sandvik et al., 2012).
The study by Österblom et al. (2004) suggested high adult survival estimates in
this colony (0.937 excluding one year with a cholera outbreak). Additionally,
the guillemot colony of Stora Karlsö has almost tripled from 1980 until present
(Hentati-Sundberg and Olsson, 2016; Olsson and Hentati-Sundberg, 2017).

Given the relatively low annual survival estimation for birds aged 4-10 years
old, and the current breeding success, which is in the range between 0.6 and 0.7
(Berglund, 2016), there would not be a strong population increase without a strong
immigration to the colony. But, as Stora Karlsö is by far the largest colony in the
Baltic Sea (Olsson and Hentati-Sundberg, 2017), and due to the fact that no ringed
birds from other colonies have been observed at Stora Karlsö, we can rule out the
possibility of a strong immigration. There is though evidence of emigration, as
birds ringed at Stora Karlsö are breeding at several other locations, mainly in the
Baltic Sea but also in the Atlantic Ocean.

Rather, we consider that our annual survival estimation was underestimated
despite our correction for limited resighting through the use of prior information
about the colony. A potential reason for this situation could be that this database
provided very little information about adult survival (indeed, it was designed to
analyse juvenile survival). Interestingly, Votier et al. (2008) and Crespin et al.
(2006) reported a similar survival decline with age both in annual survival from
ages 4 to 5, and from age classes 3-4 to 5-18 (respectively). Both studies suggested
an over representation of non-breeders with low individual quality as a possible
explanation to this survival decline.

We however think that the main explanation may be the clearly observable
age variation in prospecting behaviour: individuals at a later stage of prospecting
become increasingly difficult to be observed when they recruit at non-observable
ledges, and thus they become decreasingly likely to show up at monitored ones.
Another complementary explanation could be that emigration takes place after ini-
tial prospection in the natal colony (Harris et al., 2007). Future studies involving
resighting data from other colonies could help to clarify these hypotheses.

Although the official triangular stainless steel ring has remained the same thro-
ughout the study, wear of the complementary rings has been a difficult practical
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issue in this study and none of the rings types used has been without drawbacks.
The coloured plastic rings used for most years (2006-2008, 2013-2015) were ini-
tially clearly readable, even at large distances, but tended to wear heavily after a
few seasons in the colony, and eventually become unreadable. Hence those rings
are best suited for observing young birds at clubs and less optimal for longer-term
studies. The ID-codes of the aluminium rings (2009) were worn out very quickly,
and those rings can therefore not be recommended. The large triangular steel rings
(2010-2012) had a good durability but were less easy to read at longer distances.
The fact that a large proportion of the resightings were based on reading the offi-
cial stainless steel rings lessen the problem with different ring types. Our estimate
of the recapture probabilities revealed that the 2011-2013 had the lowest recap-
ture probabilities. These years corresponds to one year after the use of the large
steel rings (2010-2012) suggesting a link between recapture probabilities and ring
readability.

In conclusion, in this study we present the first results from an extensive study
carried out in the largest guillemot colony from the Baltic Sea on Stora Karlsö.
The wide-spread colony attendance of one and two years old birds reported in
this study is an aspect which appears unique among common guillemot colonies.
Continued research is needed to investigate the drivers behind the strong positive
population trends in Stora Karlsö. In addition, in this work we provide a first ap-
proximation to the partial monitoring problem by incorporating expert knowledge
to the inferential process through the use of prior distributions. One of the factors
that can surely affect recapture probabilities is behavioral heterogeneity. An excit-
ing way forward to obtain more accurate pre-breeding survival estimates would be
to implement models that better account for the complex prospecting behavior in
common guillemot.

The study presented in this Chapter has been published in the following
paper:

• Sarzo, B., Armero, C., Conesa, D., Hentati-Sundberg, J. and Olsson,
O. (2019). Bayesian immature survival analysis of the largest colony of
common murre Uria aalge in the Baltic Sea. Waterbirds, 42(3): 304-313.
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CHAPTER 4

CORMACK-JOLLY-SEBER

MODELS: TIME AND AGE

PERSPECTIVES

This Chapter is devoted to compare two different temporal scales, (i) calendar (or
capture occasion) and (ii) age (or time within study), in terms of the way the data
may be represented and in relation to the ecological Cormack-Jolly-Seber-type
model.

The elicitation of the temporal scale is a methodology commonly performed
in medical survival studies. However, in ecological framework the temporal scale
is often primarily specified at the capture occasion level. In this study we present
how considering the different temporal scales provides insights into the different
underlying structures, which can then be combined into a joint dependence model.
Finally, in this Chapter we provide an example of a data representation, model and
associated results for a capture-recapture study relating to guillemots.

57
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58 4.1. Introduction

4.1 Introduction

Survival analysis is an area of research of special relevance in many fields such
as agronomy, ecology, engineering and medicine (among others). Although in
all these fields the final objective consists of assessing time to the occurrence of
events, differences on the way data are gathered often result in different models
and methods. Taking into account that the final objective is primarily the same, it
should be the case that ideas would move from one field to the others. But this not
always happens.

In the context of medical survival studies, one of the main requirements which
is commonly performed at the beginning of the experiment is that the origin time
(time zero) must be unambiguously defined for each individual. The time scale
of the study needs also to be determined (see Table 4.1 for different choices of
origin time and time scales). Indeed, the use of different temporal scales may
result in different inferences and interpretations (Kom et al., 1997; Lamarca et al.,
1998; Cheung et al., 2003; Westreich et al., 2010). In particular, Lamarca et al.
(1998) showed that in the study of the aging process, the results obtained for some
parameters were different when working with age scale or with the standard time-
on-study scale.

Time zero Time scale
Birth Age
Diagnosis of disease Duration
Entry into state Waiting time
Bleeding Duration of pregnancy
Start of treatment Length of treatment
Baseline measurement Calendar time

TABLE 4.1: Examples of possible choices of origin time and time scales in
medical studies extracted from Hougaard (2000).

In ecological studies, time to death is often the main interest and (although
other options are possible), monitoring data are frequently obtained using a capture-
recapture protocol. This involves a series of capture occasions whereby at each oc-
casion individuals are observed, uniquely identified (possibly by artificial means
such as tag or ring) and released. For simplicity, we assume a single capture oc-
casion each calendar year. The data correspond to the capture histories of each
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individual observed in the study. In the associated model, survival is commonly
expressed in terms of annual survival (or survival between capture occasions) due
to in general, wild animals experience a natural yearly life-cycle. But more im-
portantly, the elicitation of the temporal scale is not always addressed in capture-
recapture studies, the standard choice often being the capture-occasion (or calen-
dar) scale. In this context, the time zero naturally corresponds to the calendar year
in which each individual enters into the study at a given capture occasion.

In line with this, here we present a comparison between two different temporal
scales (age and calendar) in the context of ecological capture-recapture models. We
illustrate the usefulness of the not-so-commonly age scale in this context as well as
emphasize both the differences and similarities in the notation and interpretation
of parameters depending on the scale used. Among other capture-recapture mod-
els, our choice to perform this comparison are one of the most common statistical
models used to jointly estimate annual survival and resighting probabilities in ecol-
ogy in the presence of imperfect detection, the well-known Cormack-Jolly-Seber
(CJS) models (Cormack, 1964; Jolly, 1965; Seber, 1965). In particular, we present
a CJS model in age scale that allows incorporating both age and time dependence
(both in state-space and multinomial formulation), and then we use it to analyse
the juvenile survival of the largest colony of common guillemot (Uria aalge) in the
Baltic Sea (Stora Karlsö, Sweden).

After this introduction, the remaining of the Chapter is as follows. Section 4.2
presents the notation associated with capture-recapture studies and the different
parameterisations depending on the scales, while in Section 4.3 we extend the
dependence structure to age and time and discuss the general expression of the CJS
models in both state-space and multinomial formulations. Section 5.1 presents the
application of the model in a real example, and finally Section 4.5 concludes.

4.2 Notation

In this section we present the notation associated with capture-recapture studies,
and in particular focus on the different parameterisations based on the different
temporal scales of the model parameters (i.e. capture occasion or age). Further we
discuss the associated representation of the data for the different temporal scales.
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60 4.2. Notation

Let i = 1, . . . , N denote the individuals who are observed within the study pe-
riod; and t = 1, . . . , T the associated capture occasions. For notational simplicity
we assume that the capture occasions correspond to an occasion within a calendar
year, so that we refer to the temporal scale of the capture occasion to be (calendar)
year (but this is clearly more general). Further, we let a = 0, . . . , A correspond
to the possible ages of an individual within the study period. Note that in practice
(as for our case study) the upper limit A will often correspond to an individual of
at least age A (for example when it becomes an adult). If all individuals are ob-
served at age a = 0 in the study, then a corresponds to length of time an individual
is in the study, akin to the temporal scale of medical studies of time (assuming
A = T − 1).

4.2.1 Data representation

The data corresponds to the observed capture histories of every individual observed
within the study. This is typically expressed in terms of the capture occasion as the
temporal scale. We let:

yit =

{
0 individual i is not observed at capture occasion t;
1 individual i is observed at capture occasion t.

The capture history of individual i is then denoted yi = {yit : t = 1, . . . , T};
and full set of capture histories by y. In addition, if individuals can be observed
at different ages, this is also recorded as an observed (discrete) covariate. For
example, we let ai0 denote the age of individual i at first capture; and a0 = {ai0 :

i = 1, . . . , N} the set of age covariate values. Further we let fi denote the capture
occasion on which individual i is first observed; and set f = {f1, . . . , fN}. Finally
we introduce the idea of cohort w = 1, . . . , T − 1 such that individual i belongs
to cohort w if fi = w (i.e. individual i is observed for the first time on capture
occasion w). Thus, cohort is defined on the capture occasion (or calendar year)
scale. We consider the general case where individuals may enter into the study at
different ages so that individuals belonging to the same cohort may be of different
ages; if all individuals are observed at the same age at initial capture, then cohort
and age are interchangeable.
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Alternatively, and akin to how such studies are recorded within medical stud-
ies, we can present the data in terms of the age of an individual (which in turn can
be sub-divided into the initial age of an individual combined with length of time in
the study). This represents a focus on the age of an individual as a primary factor
within the study, for example, due to the life cycle of the given species. We note
that the transforming of the data to the age scale, if this is the relevant temporal
scale within the study, provides a more useful representation. For example, the cap-
ture histories can be regarded as simply the observations following initial capture,
corresponding to yi = {yit : t = fi, . . . , T : i = 1, . . . , N}, combined with the
initial age ai0. We note that the capture histories will then be of different lengths,
dependent on time of first capture. The difference in representations between the
calendar year and age temporal scales of the capture histories is illustrated in the
toy example presented in Figures 4.1 and 4.2.

Figure 4.1 on the left shows capture-histories in the standard calendar scale,
and on the right the same individual histories but in age scale. In order to highlight
the differences between the temporal scales, in this simple case we assume that all
individuals are age 0 at their initial capture. If individuals differ in age at initial
capture then there will be additional “steps” observed in the right hand plot of
Figure 4.1 with age and “time in study” not equivalent to each other. Figure 4.2
shows cohorts 1, 2 and 3 in age (top) and calendar scale (bottom) corresponding to
the same individuals in Figure 4.1. Note that the later the cohort, the smaller the
number of occasions or the maximum “time in study” value (in calendar and age
scale, respectively). This can be explained since as the cohort number increases,
the number of possible capture occasions after initial capture decreases. Moreover,
the individuals represented in cohort 1 (Figure 4.2) correspond to those individuals
in the first rows (first “step”) of Figure 4.1. Similarly, cohorts 2 and 3 correspond
to those individuals in the second and third “step” of Figure 4.1, respectively.

4.2.2 Parameter dependence

The commonly used Cormack-Jolly-Seber model has two sets of parameters cor-
responding to the survival probabilities and observation (or capture) probabilities.
These parameters are typically assumed to be dependent on the capture occasion.
In particular the model parameters (allowing for additional individual heterogene-
ity) are given by:
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FIGURE 4.1: Toy example representing the different structure of the same in-
dividual capture-recapture histories in calendar (on the left) and age scale (on
the right) assuming all individuals have age zero at the beginning of the study.
Rows represent individuals (n=300), orange lines represent non information, red
lines indicate that individual has not been seen, and black lines represent that the

individual has been seen.

φi,t = P(individual i is alive at time t+ 1 | alive at time t); and

pi,t+1 = P(individual i observed at time t+ 1 | alive at time t+ 1),

for i = 1, . . . , N and t = 1, . . . , T − 1. Survival from one capture occasion to the
next may change temporally due to, for example, weather conditions, food avail-
ability, etc. Similarly, the capture probability may be dependent on the effort at the
given occasion, or local conditions for observing individuals. For a more detailed
explanation of the CJS models in calendar scale, see for example, Lebreton et al.
(1992), Brooks et al. (2000), Giménez et al. (2007), King et al. (2010), McCrea
and Morgan (2015) and Seber and Schofield (2019), among many others.

Alternatively, the age (or time in study) scale suggests the analogous parame-
ters given by:

ψi,a = P(individual i is alive at age a+ 1 | alive at age a); and

ηi,a+1 = P(individual i observed at age a+ 1 | alive at age a+ 1),
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Cohort 1

Time into the study/Age

In
di

vi
du

al
s

0 2 4 6 8 10

Cohort 2

Time into the study/Age

In
di

vi
du

al
s

0 2 4 6 8 10

Cohort 3

Time into the study/Age

In
di

vi
du

al
s

0 2 4 6 8 10

Cohort 1

Calendar years/Occasions

In
di

vi
du

al
s

2006 2009 2012 2015

Cohort 2

Calendar years/Occasions

In
di

vi
du

al
s

2006 2009 2012 2015

Cohort 3

Calendar years/Occasions

In
di

vi
du

al
s

2006 2009 2012 2015

FIGURE 4.2: Capture-histories of cohorts 1, 2 and 3 in age (top) and calendar
scale (bottom) of individuals of the toy example in Figure 4.1. Rows represent
individuals, orange lines represent non information, red lines indicate that indi-
vidual has not been seen, and black lines represent that the individual has been

seen.

for i = 1, . . . , N and a = 0, . . . , A − 1. The parameters typically reflect the life
cycle of an individual, for example, from juvenile to breeding adult where the dif-
ferent life stages (i.e. ages) may affect both their survival and capture probabilities
based on age-related behaviour. Age has been incorporated into capture-recapture
analyses, with the first-year survival probability often a key component for realistic
models (Freeman and Morgan, 1992; Catchpole and Morgan, 1996).

The differences between both scales can be easily visualised in Table 4.2,
where we present a particular example of an individual marked as a chick in 2009
(i.e., ai0 = 0), observed in years 2011, 2012 and 2014 (red = observed, orange =
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not observed), that dies in 2016 (green = alive, black = dead). Table 4.2 includes
both scales and the associated model parameters along with the different values
that t and a take. As mentioned above, the age scale provides a more intuitive
interpretation of the parameters when age is the main focus, as they are directly
indicating the age of the individual: the probability that an individual aged a sur-
vives one year (instead of the probability that an individual in year t survives until
the next year) and the probability that an alive individual aged a is seen (instead of
the probability that an alive individual is seen on occasion t).

Clearly parameterising the model parameters in terms of the different tempo-
ral scales leads to very different interpretations (as it can be appreciated at Table
4.2). Both forms of dependence may be appropriate dependent on the system;
and in particular both temporal scales may be important. We describe how we
can incorporate both temporal scales by extending the dependence structure of the
parameters (and also consider the implications for the data representation).

4.3 CJS models with year and age temporal scales

We present the general formulation of the CJS models with combined year and
age as the reference temporal scales. The year-only or age-only models can then
be seen as special cases of this general case. We present two (equivalent) for-
mulations: state-space and multinomial. The state-space formulation provides an
intuitive model formulation (Royle, 2008; King and McCrea, 2014); whereas the
multinomial formulation is mathematically efficient and permits additional abso-
lute goodness-of-fit tests to be applied (McCrea and Morgan, 2015).

State-Space formulation

Assuming that capture occasions are annual, let zi,a,t be the latent variable that
describes the true state of individual i at age a and time t, for a = ai0, . . . , T −
fi + ai0, for t = 1, . . . , T and all i. The possible states are alive and available for
capture, zi,a,t = 1, and dead and not available for capture (i.e. dead or migrated
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from study), zi,a,t = 0. The corresponding survival process is given by,

zi,a+1,t+1|zi,a,t ∼ Bernoulli(zi,a,tψi,a,t), (4.1)

for i = 1, . . . , N , t = fi, . . . , T −1 and a = ai0, . . . , T −fi+ai0−1, where ψi,a,t
denotes the annual survival probability of individual i aged a at time t to time t+1.
When the interest is focused on the survival at different ages, this parameter has an
intuitive interpretation, as it represents the probability that an individual aged a at
time t survives one year.

Let yi,a,t denote a binary variable that describes whether individual i is ob-
served or not at age a and time t, given it is alive and available for capture, for
a = ai0 + 1, . . . , T − fi + ai0, t = fi + 1, . . . , T and all i. The possible obser-
vations are seen (Yi,a,t = 1), and not seen (Yi,a,t = 0). The observation process is
then given by,

Yi,a,t|zi,a,t ∼ Bernoulli(zi,a,tηi,a,t), (4.2)

for i = 1, . . . , N , t = fi + 1, . . . , T and a = ai0 + 1, . . . , T − fi + ai0, where
ηi,a,t denotes the recapture probability of individual i at age a and time t given it
is alive (i.e. available for capture).

Assuming independence between individuals and conditional on the first cap-
ture, the resulting likelihood is given by the product over each individual likelihood
component (state and observation):

`(y, z|θ) =

N∏
i=1

[
A∏

ai0=0

{(
T−1∏
t=fi

T−fi+ai0+1∏
a=ai0

pz(zi,a+1,t+1|zi,a,t,θ)

)
︸ ︷︷ ︸

`state

×

(
T∏

t=fi+1

T−fi+ai0∏
a=ai0+1

py(yi,a,t|zi,a,t,θ)︸ ︷︷ ︸
`obs

)}]
,

(4.3)

where θ = {ψ,η} represents the vector of all the parameters of the model, pz and
py are the (Bernoulli) probability functions of the state and observation processes
respectively, and `state and `obs the likelihood terms related to the state and ob-
servation process for each individual, respectively. The observed data likelihood,
`(y|θ), is obtained by summing out over the z values.
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Alternatively in calendar scale, if we extend the dependence structure to in-
corporate both temporal scales (age and time), model parameters have the same
interpretation as in age scale:

φi,t,a = P(individual i is alive at time t+ 1 at age a+ 1 | alive at time t

at age a);

pi,t+1,a+1 = P(individual i observed at time t+ 1 at age a+ 1 |
alive at time t+ 1 at age a+ 1),

for i = 1, . . . , N , t = fi, . . . , T − 1 and a = a0, . . . , T − fi + a0 − 1. Therefore,
in contrast to what happens when parameters are year-only or age-only dependent,
when we extend the parameter dependence to time and age, model parameters are
equivalent for both temporal scales.

Multinomial formulation

Capture-recapture data are often summarised in the form of m- arrays (McCrea and
Morgan, 2015). The m-array summarizes the number of individuals released and
subsequently observed again leading to efficient multinomial rather than Bernoulli
likelihoods, with a significant reduction in computing time (Lebreton et al., 1992).
However, an important disadvantage of this formulation is that models with indi-
vidual effects can no longer be fitted due to the individual capture histories are
broken up.

An m-array in age scale summarizes, in the form of sufficient statistics, the
number of individuals released at certain age that are next captured at each subse-
quent age. The corresponding summary statistics correspond to an upper triangular
matrix in which rows (denoted by a) correspond to age of release and columns (de-
noted by c) to age at next recapture.

When age and time dependence are included, model parameters are equivalent
for both temporal scales. However, if we work in multinomial formulation one of
the main differences between scales appears: the number of m-arrays needed when
they are specified on the natural scale. In age scale, the number of m-arrays needed
will differ depending on whether individuals enter into the study at different ages
(general scenario) or they have a common initial age (simplest case), independently
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of the model used. In calendar scale, only one m-array per age is required. For
the alternative age scale and considering the general scenario where individuals
may have different ages at the beginning of the study, we need to construct one
age m-array for each initial age per cohort. Therefore, each cohort will have as
many m-arrays as there are initial ages observed in the study. Nevertheless, if we
consider the simplest scenario where all the individuals have a common initial age,
the number of m-arrays needed and their construction is simpler, namely, we only
need to construct one m-array for each cohort.

The number of rows and columns of each cohort age m-array in age scale (or
each cohort m-array in the simplest scenario where a common initial age for all
individuals is considered) depend on the cohort we are working with. Therefore,
for cohort w = 1, . . . , T − 1, the rows can vary in a = a0, . . . , T − w + a0 − 1,
while the number of columns varies in c = a0+1, . . . , T−w+a0. Hence, the later
the cohort the smaller the number of rows and columns of the associated m-array.
As usual, each m-array contains an additional column corresponding to individuals
never recaptured (column number T − w + a0 + 1 in age scale).

By contrast, in calendar scale the rows (denoted by j) and the columns (denoted
by t) of the m-array correspond to release occasions and first recapture occasions,
respectively. Furthermore, in calendar scale their limits are j = 1, . . . , T − 1 and
t = 2, . . . , T ; representing the number of rows and columns, respectively. Finally,
there is also an additional column, (T+1), corresponding to never seen individuals.
If age dependence is included, we need one m-array for each age a and hence, the
number of rows and columns of each age a m-array will be j = a, . . . , T − 1 and
t = a+ 1, . . . , T .

In age scale, the element (a, c) of the age m-array of cohort w and initial age
a0, denoted ma,c,w,a0 , represents the number of individuals with initial age a0
that belong to cohort w and which were released at age a and next captured at
age c + 1, for a = a0, . . . , T − w − 1 + a0 and c = a0, . . . , T − w − 1 + a0.
By construction, ma,c,w,a0 = 0 for a ≤ c (the matrix is upper triangular). Fur-
ther, ma,(T−w+1+a0),w,a0 denotes the number of individuals that enter the study
at initial age a0 that belong to cohort w that were released at age a and subse-
quently not observed again during the study (final column of the m-array). Further
Ra,w,a0 =

∑
c ma,c,w,a0 represents the number of individuals with initial age a0

that belong to cohort w, which were released at age a (i.e. Ra,w,a0 correspond
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to the sum of the elements in row a from cohort w and initial age a0). Clearly,
ma,(T−w+1+a0),w,a0 = Ra,w,a0 −

∑T−w+a0
c=a0+1 ma,c,w,a0 , for a = a0, . . . , T − w −

1 + a0 and for c = a0 + 1, . . . , T − w + a0.

Denoting qa,c,w,a0 the cell probabilities of the m-arrays, the expected values of
the entries of the m-array (Ra,w,a0qa,c,w,a0) are a function of the model parameters
and the number of released individuals (Ra,w,a0). Finally, the probability that an
individual with initial age a0 that belong to cohortw which was released at age a is
not observed again during the study can be obtained as, χa,w,a0 = 1−

∑
c qa,c,w,a0 .

In order to clarify concepts, Tables 4.3 and 4.4 present the m-arrays corre-
sponding to individuals with initial age a0 = 0 of cohorts 1 and 2, respectively,
in a toy example where individuals can have different initial ages, and the number
of study years is T = 6. For comparison, Tables 4.5 and 4.6 present m-arrays
corresponding to individuals of cohort 1 in an example where all the individuals
have a common initial age of 1 (a0 = 1) or 2 (a0 = 2) years, respectively, and the
same study duration. Finally, in Table 4.7 we present the corresponding m-array in
calendar scale.

The multinomial cell probabilities differ depending on the model considered.
Here we present the likelihood related to the CJS model with age and time de-
pendent model parameters. Conditional on the numbers released and assuming
independence between individuals the likelihood is,

`(y|θ) ∝
T−1∏
w=1

[
T−w+a0∏

a0=0

[
T−w+a0−1∏

a=a0

{(
qa,c,w,ao

)ma,c,w,a0

χ
ma,T−w+1+a0,w,a0
a,w,a0

}]]
,

(4.4)
where,

qa,c,w,ao =


∏T−w+a0
c=a+1

(
ψc−a+a0−1,c−a+w−1ηc−a+a0,c−a+w

×
∏c−a+a0−2
k=a0

ψk,k+w−a0
(
1− ηk+1,k+w−a0+1

))
;

0 for a ≤ c.
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The probability of an individual released at age a that belong to cohort w with
initial age a0 is not observed again can be expressed as,

χa,w,a0 = 1−
T−w+a0∑
c=a+1

(qa,c,w,ao).

We note that, in equation (4.4) when k = a0 and c = a + 1, the product is
over the null set and

∏c+a0−a−2
k=a0

≡ 1. Further, we note that in equation (4.4), the
t terms (calendar time) can be expressed as a function of the initial age (a0), the
age of release (rows of the m-array, a) (or the age at first recapture, i.e. columns of
the m-arrays, c) and cohort (w). Finally we note that, further restrictions may be
specified on these parameters to represent age classes, denoted by a.

Therefore, in capture-recapture framework this model can be fitted in both cal-
endar and/or age scales. However, working with this model and under multinomial
formulation, the differences between scales are more remarkable regarding the pre-
sentation of the data on the natural age or time scales (i.e. number of m-arrays
needed).

We note that when time dependence is included, these models have an intrin-
sic identifiability problem in the last two parameters (King et al., 2010; Giménez
et al., 2009). This lack of identifiability results in estimating the product of both
parameters but not each one separately (i.e. they are confounded). Nevertheless,
it is important to mention that although a model may be unidentifiable, it can be
still adequate to describe the data via its identifiable parameters (Garrett and Zeger,
2000).
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Cohort 1 (a0 = 0)

Age at first recapture

1 2 3 4 5 Never seen

0
R0,1,0 m0,1,1,0 m0,2,1,0 m0,3,1,0 m0,4,1,0 m0,5,1,0 m0,6,1,0

(q0,1,1,0) (q0,2,1,0) (q0,3,1,0) (q0,4,1,0) (q0,5,1,0) (χ0,1,0)

1
R1,1,0 − m1,2,1,0 m1,3,1,0 m1,4,1,0 m1,5,1,0 m1,6,1,0

(q1,2,1,0) (q1,3,1,0) (q1,4,1,0) (q1,5,1,0) (χ1,1,0)
...

...
...

A
ge

of
re

le
as

e

4
R4,1,0 − − − − m4,5,1,0 m4,6,1,0

(q4,5,1,0) (χ4,1,0)

TABLE 4.3: M-array for initial age a0 = 1 and cohort 1 for an study where indi-
viduals can have different initial ages. Released individuals (Ra,w,a0 ), observed

individuals (ma,c,w,a0 ) and cell probabilities (qa,c,w,a0 and χa,w,a0 ).

Cohort 2 (a0 = 0)

Age at first recapture

1 2 3 4 − Never seen

0
R0,2,0 m0,1,2,0 m0,2,2,0 m0,3,2,0 m0,4,2,0 − m0,5,2,0

(q0,1,2,0) (q0,2,2,0) (q0,3,2,0) (q0,4,2,0) − (χ0,2,0)

1
R1,2,0 − m1,2,2,0 m1,3,2,0 m1,4,2,0 − m1,5,2,0

(q1,2,2,0) (q1,3,2,0) (q1,4,2,0) − (χ1,2,0)
...

...
...

A
ge

of
re

le
as

e

3
R3,2,0 − − − m3,4,2,0 − m3,5,2,0

(q3,4,2,0) − (χ3,2,0)
− − − − − − − −

TABLE 4.4: M-array for initial age a0 = 1 and cohort 2 for an study where indi-
viduals can have different initial ages. Released individuals (Ra,w,a0 ), observed

individuals (ma,c,w,a0
) and cell probabilities (qa,c,w,a0

and χa,w,a0
).
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Cohort 1 (common a0 = 1)

Age at first recapture

2 3 4 5 6 Never seen

1
R1,1,1 m1,2,1,1 m1,3,1,1 m1,4,1,1 m1,5,1,1 m1,6,1,1 m1,7,1,1

(q1,2,1,1) (q1,3,1,1) (q1,4,1,1) (q1,5,1,1) (q1,6,1,1) (χ1,1,1)

2
R2,1,1 − m2,3,1,1 m2,4,1,1 m2,5,1,1 m2,6,1,1 m2,7,1,1

(q2,3,1,1) (q2,4,1,1) (q2,5,1,1) (q2,6,1,1) (χ2,1,1)
...

...
...

A
ge

of
re

le
as

e

5
R5,1,1 − − − − m5,6,1,1 m5,7,1,1

(q5,6,1,1) (q5,7,1,1)

TABLE 4.5: M-array for initial age a0 = 1 and cohort 1 in an study where all the
individuals have a common initial age a0 = 1. Released individuals (Ra,w,a0 ),
observed individuals (ma,c,w,a0

) and cell probabilities (qa,c,w,a0
and χa,w,a0

).

Cohort 1 (common a0 = 2)

Age at first recapture

3 4 5 6 7 Never seen

2
R2,1,2 m2,3,1,2 m2,4,1,2 m2,5,1,2 m2,6,1,2 m2,7,1,2 m2,8,1,2

(q2,3,1,2) (q2,4,1,2) (q2,5,1,2) (q2,6,1,2) (q2,7,1,2) (χ2,1,2)

3
R3,1,2 − m3,4,1,2 m3,5,1,2 m3,6,1,2 m3,7,1,2 m3,8,1,2

(q3,4,1,2) (q3,5,1,2) (q3,6,1,2) (q3,7,1,2) (χ3,1,2)
...

...
...

A
ge

of
re

le
as

e

6
R6,1,2 − − m6,5,1,2 m6,6,1,2 m6,7,1,2 m6,8,1,2

(q6,5,1,2) (q6,6,1,2) (q6,7,1,2) (χ6,1,2)

TABLE 4.6: M-array for initial age a0 = 2 and cohort 1 in an study where all the
individuals have a common initial age a0 = 2. Released individuals (Ra,w,a0 ),
observed individuals (ma,c,w,a0

) and cell probabilities (qa,c,w,a0
and χa,w,a0

).

4.4 Survival analysis of a colony of common guillemot

In order to illustrate differences and similarities between both temporal scales, in
what follows we implement two models in a real data set: (i) the year-only and
age-only model in calendar and age scale, respectively, and (ii) the time and age
dependent model in age scale (due to in calendar scale both models are equivalent).

In particular, we present the analysis of a database obtained from monitoring
programs carried out by the Baltic Seabird Project from 2006 until 2016 in the
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First Recapture occasion

2 3 4 5 6 Never seen

1 R1 m1,2 m1,3 m1,4 m1,5 m1,6 m1,7

(q1,2) (q1,3) (q1,4) (q1,5) (q1,6) (χ1)

2 R2 − m2,3 m2,4 m2,5 m2,6 m2,7

(q2,3) (q2,4) (q2,5) (q2,6) (χ2)

R
el

ea
se

oc
c.

...
...

...

5 R5 − − − − m3,6 m3,7

(q3,6) (χ5)

TABLE 4.7: General m-array in calendar scale: released (Rt), observed individ-
uals (mt,j) and cell probabilities (qt,j and χt)

largest colony of common guillemot in the Baltic Sea (Stora Karlsö, Sweden).
Each year chicks were captured and ringed individually (with metallic and plastic
rings) after jumping from the ledges at an age of about 20 days. The total number of
individuals ringed is N = 28 930. During their reproductive period (May to July),
resightings with telescopes and binoculars were made from above the breeding
ledges with minimal disturbance in order to identify marked individuals through
the reading of the metallic and/or plastic ring codes (recaptures). Hence, all the
individuals were ringed at a common initial age of zero years old.

It is worth noting that in this real example we work with the simplest scenario
where we construct only one m-array per cohort (working with age scale). To
emphasize differences in data presentation when using both temporal scales and
for reproducibility issues, in Appendix 4.6 we present the cohort m-arrays and the
age m-arrays related to age and calendar scales, respectively.

In order to highlight differences between temporal scales, we will not establish
age classes in the age-only or time-only CJS models and therefore, we will have as
many parameters as possible ages within the study (in age scale) or alternatively, as
many parameters as study years minus one (in calendar scale). Nevertheless, we do
establish age classes in the CJS model where both temporal scales are considered.
Indeed, we let denote a = 0, 1, 2, 3+ the age classes, being those related to individ-
uals in their first year of life, second, third and finally, individuals which are four or
more years old (adults), respectively. Age and time effects are additive (on the logit
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scale) for both survival and recapture probabilities. We set logit(ψa,t) = αa + βt,
for a = 0, . . . , 3+ and t = 1, . . . , T − 1, and alternatively, logit(ηa,t) = α′a + β′t,
for a = 1, . . . , 3+ and t = 2, . . . , T .

Therefore, the full set of parameters will differ for each model proposed and
the temporal scale considered. The model parameters of the full time (or age)
dependent CJS models are, ψ = {ψ0, ψ1, . . . , ψ9} and η = {η1, η2, . . . , η10},
in age scale; and φ = {φ1, φ2, . . . , φ10} and p = {p2, p3, . . . , p11}, in calendar
time scale. However, parameters ψ9 and η10 in age scale; and similarly, φ10 and
p11 in calendar scale, are not identifiable. Alternatively, the corresponding set
of model parameters for the CJS model with age and time dependence are, α =

{α0, . . . , α3+} and β = {β1, . . . , β10} (regarding survival probabilities) andα′ =

{α′1, . . . , α′3+} and β′ = {β′1, . . . , β′10} (regarding capture probabilities). We have
to point out that α′a for a = 1, 2, 3+ is interpreted as the age effect relative to age 1,
2, and age 3+. Finally, further comments on the identifiability of these parameters
are given in next Section.

Bayesian inference

Once the models are fully specified, the next step is to make inference on their cor-
responding parameters. Maximum likelihood estimation or Bayesian methods can
be used to perform inference in capture-recapture data (King et al., 2010; Newman
et al., 2014; McCrea and Morgan, 2015; Seber and Schofield, 2019, and references
therein).

In our case, inference on these parameters is performed within the Bayesian
framework, as we can benefit from the advantages of this approach: probabilistic
statements about the veracity of hypotheses or relationships can be made given the
data, and it is possible to explicitly incorporate all the available prior knowledge
about the unknown parameters into the inferential process (McCarthy and Masters,
2005; King et al., 2010; Christensen et al., 2011; Golchi, 2016).

As usual in this context, the resulting posterior distributions containing all the
information about the system have no closed expression, so we need numerical ap-
proaches to approximate them. We consider Markov chain Monte Carlo (MCMC)
methods (Robert and Casella, 2011). In this work, MCMC methods have been
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implemented via the jags software (Plummer, 2003) with the R program (R
Core Team, 2019). As no prior knowledge about the parameters was available,
we elicited non informative prior distributions for all the parameters of the model.
In particular, Uniform(0,1) distributions for all survival and recapture probabilities
in the CJS model with only-time or only-age dependence, φt and pt). Further,
we specify Normal(0,10) distributions for age (αa and α′a) and time (βt and β′t)
parameters in CJS model with age and time dependence. Finally, to avoid identifi-
ability issues, we set α1 = α′1 = 0.

The final approximate random sample was obtained using three chains, 200,000
iterations, discarding the first 20,000 (to ensure that the Markov chain has reached
the stationary distribution) and thinning every 300 of the iterations for the memory
storage purposes and to reduce auto correlation.

Results

Figure 4.3 displays a graphical representation of posterior distribution of survival
(cyan) and recapture (blue) probabilities for both temporal scales considering full
time dependence (age or time). Due to the identifiability problem mentioned, in
this Figure we only present the estimable parameters.

As it can be appreciated in Figure 4.3 (and highlighted in Table 4.2) if we only
incorporate time or age dependence the model parameters differ between temporal
scales. In particular, while in age scale model parameters represent differences in
survival and recapture probabilities regarding the age of individuals, in calendar
scale they indicate interannual variations in survival and resighting probabilities.
Note that credible intervals for older ages (5+) are wider than those corresponding
to later times (from time t = 6) as there are fewer older individuals observed within
the study.

However, if we extend the dependence to age and time, model parameters are
equivalent in both temporal scales. Hence, Figure 4.4 displays the simulated val-
ues for each posterior survival distributions (on the left) and posterior recapture
distributions (on the right) along the study period by age classes. Note that the
lowest survival estimate corresponds to one year old individuals. These results
are in line with previous studies that stated first year survival is lower than later
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FIGURE 4.3: Graphical representation of the approximated posterior marginal
distributions associated to annual survival (cyan) and resighting probabilities
(blue) probabilities in the full time dependent CJS model in age scale (left) and

calendar time scale (right).

(Harris et al., 2007). Additionally, survival estimate for 2 years old individuals is
extremely high (and unrealistic for this species). Finally, recapture probabilities
show a strong age-dependence, increasing with age. The lowest estimate corre-
sponds to one year old individuals due to the limited number of individuals that
come back to the colony at this age.

4.5 Conclusions

Measuring time to the occurrence of events, also called survival analysis, is a major
focus on statistics. In this study we try to connect two distant areas in the context of
survival analysis: human demography and population ecology. The development
of this work was motivated for the different emphasis given to the elicitation of the
temporal scale in survival studies performed in the context of ecology or public
health. Indeed, in medical studies the origin time and consequently, the tempo-
ral scale, must be defined at the beginning of the study. In this context, there are
several time scales defined in relation to the possible times zero (Hougaard, 2000).
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FIGURE 4.4: Mean and 95% symmetric credible intervals of the approximated
posterior marginal distributions associated to annual survival probabilities (left)

and recapture probabilities (right) along the study period by age classes.

However, in ecology these procedures are not performed, being the standard choice
the capture-occasion (or calendar) scale. In this work, we adopt the approach and
data presentation used in medical studies to ecological capture-recapture frame-
work. By doing so we present the individual capture-histories in an alternative
temporal scale, the age. Age is an important factor affecting survival probabilities
in animal populations and consequently, several studies have been focused in esti-
mating age dependent survival and recapture probabilities. Additionally, in several
capture-recapture protocols (as the real example presented in this work) the indi-
viduals are marked days after they were born being the time zero the birth time.
Thus, from medical framework perspective, if time zero is birth time the ‘natural’
temporal scale is then the age.

In ecology, different models can be used to estimate survival and recapture
probabilities from capture-recapture data. Although it can be easily extended to
other models, we have used the well known Cormack-Jolly-Seber (CJS) mod-
els. We present the general notation of the CJS models allowing for age and time
dependence on model parameters in both formulations (state-space and multino-
mial) using the age as the temporal scale. Additionally, we present the results
obtained through two different CJS models implemented in a real database, the
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largest colony of common guillemot in the Baltic Sea: (i) CJS model with full
time dependence (being age or time, depending on the temporal scale used), and
(ii) CJS model with age and time dependence in model parameters. Furthermore in
this work we also provide the general notation of the CJS models for two common
scenarios. First, considering the individuals may enter into the study at different
ages; and second, the simplest one, where all the individuals have a common initial
age at the beginning of the study.

One of the more remarkable differences between temporal scales is the num-
ber of m-arrays needed in multinomial formulation. In particular in calendar scale,
when no age dependence is present in any of the parameters of the model, we only
need to construct one general m-array to summarize the whole data set; alterna-
tively, if age-dependence is present, we need a m-array for each age class. How-
ever, working with the age scale, the number of m-arrays depends on the initial age
of the individuals, irrespective of whether or not the parameters are age dependent.
Particularly, if the individuals have different ages at the beginning of the study,
this natural scale leads to one m-array for each initial age per cohort, therefore, we
have as many m-arrays as possible initial ages (per cohort). Nevertheless, if all the
individuals have a common initial age, only one m-array per cohort is needed.

In this Chapter we present how changing the temporal scale, the same individ-
ual capture-histories are presented differently. Indeed, whereas the length of the
capture-histories depends on the cohort of the individual in both scales, its meaning
is slightly different. In calendar scale, the later the cohort the smaller the number
of capture occasions (years) after initial capture. However, in age scale, as cohort
increases, the number of possible ages that the individual can take along the study,
decreases.

In the medical framework, it is well known that changes in temporal scales may
lead to different inferences and parameter interpretations (Lamarca et al., 1998;
Cheung et al., 2003; Westreich et al., 2010). In the ecological capture-recapture
framework, differences appear in the data representation. Further, when model
parameters are only time or age dependent they have a different interpretation de-
pending on the temporal scale used. However, if we generalize this model, ex-
tending the temporal structure to age and time, the model can be fitted in both
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temporal scales and it does not result in different inferences since model parame-
ters are equivalent. This special case of age or time only dependence is obtained
by specifying given restrictions on the parameters.

The alternative temporal scale presented in this work directly takes into ac-
count the age effect in survival and resighting probabilities, providing a more un-
derstandable interpretation of the age-dependent model parameters. Indeed, the
data are more naturally associated with the model on the same temporal scale and
hence, we propose the selection of one temporal scale or another depending on
the main interest of the study. Therefore, this aspect may be particularly useful in
studies where age is one of the main concerns or whether inter-annual variations
in survival are not considered (e.g. in cases where the population trajectory is sta-
ble). Finally, although the methodology presented in this study is general, it can
be easily extended to any particular model within capture-recapture framework.

To conclude, medical and ecological survival studies are often assumed very
distant areas particularly in terms of temporal scales but in this work we have tried
to bring both together. Particularly, we want to remark that the similarities found
may help to borrow ideas in order to develop models further in both frameworks
and thereby, providing the possibility of a room of improvement in both areas.

4.6 M-arrays

In order to highlight differences in data presentation when using both temporal
scales and for reproducibility issues, here we present the ten cohort m-arrays in
age scale (Tables 4.8 to 4.17) and the four age m-arrays in calendar scale (Tables
4.18 to 4.21), corresponding to the study database.

The study presented in this Chapter has been submitted to an indexed
journal with the title: “Cormack-Jolly-Seber models: time and age perspec-
tives”.
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C
ohort1

A
ge

atfirstrecapture

1
2

3
4

5
6

7
8

9
10

N
everseen

0
174

361
100

62
21

7
3

5
1

0
1265

1
0
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0
0

1
0

0
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2
0

0
163

35
6

2
1

2
1

1
230

3
0

0
0

96
23

6
2

0
0

2
154

4
0

0
0

0
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8
4

2
1

0
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CHAPTER 5

BEYOND INTEGRATED MODELS:
CORRECTING BIAS IN

PARTIALLY MONITORED

POPULATIONS

This Chapter is devoted to present the last study performed within this Thesis. This
work arose with a challenging goal: to correct the bias in parameter estimates due
to the partial monitoring problem (already mentioned in Chapter 3). To that end,
two research visits were made with Professor Ruth King (University of Edinburgh).

In this study we provide an integrated mark-recapture-recovery framework for
partially monitored recapture studies. In these studies live resightings are only ob-
servable at a set of monitored locations, so that if an individual leaves these loca-
tions they become unavailable for capture. However, the additional ring-recovery
data reduces the corresponding bias obtained in the survival probability estimates
obtained from capture-recapture data only due to the confounding with colony
dispersal. We derive an explicit efficient likelihood expression, and state the asso-
ciated sufficient statistics. In this Chapter we demonstrate the significant improve-
ments in the estimation of the survival probabilities for a colony of guillemots,
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86 5.1. Introduction

where we additionally specify a hierarchical approach to deal with low sample
size over the early period of the study.

5.1 Introduction

Capture-recapture studies are frequently used to study wild animal populations,
often with a particular focus on estimating survival probabilities. These involve bi-
ologists going into the field at a series of capture occasions to observe live resight-
ings of uniquely marked individuals. For an overview of capture-recapture studies
and associated statistical models, see for example, King et al. (2010); McCrea and
Morgan (2015); Seber and Schofield (2019). However, such studies are generally
limited with mortality confounded with dispersal from the study area. The associ-
ated apparent survival estimates are negatively biased with regard to true survival
probabilities. The greater the dispersal from the study area, the greater the level of
bias.

We consider partially monitored populations where only a limited number of
locations are monitored at the study site. The problem is motivated by a long-
term study of a colony of common guillemots (Uria aalge), hereafter guillemots.
Individuals are marked as young at the monitored sites, but due to the life cycle of
the species they may disperse (at natal or breeding stage) to unmonitored sites and
become unavailable at subsequent capture occasions. Due to this dispersal, fitting
standard capture-recapture models leads to significantly biased survival estimates
(Sarzo et al., 2019). Previous attempts to correct for the partial monitoring have
included the use of external estimates of the probability that individuals recruit into
the monitored sites (Sanz-Aguilar et al., 2016). Alternatively, integrating capture-
recapture data (of live resightings) with ring-recovery data (of dead recoveries) also
permits the disentangling of survival from dispersal, assuming that all individuals
remain available to be recovered dead within the study (irrespective of whether
or not they are available for resighting). The joint analysis of live resightings
and ring-recovery (MRR) data was first presented by Burnham (1993), allowing
for time-dependent model parameters, and extended by Barker (1999) to include
age-dependent parameters. Catchpole et al. (1998) included both time and age
dependent model parameters, and deduced a set of sufficient statistics (though we
note that these cannot be used for goodness-of-fit as they are non-independent).
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Recent developments have focused on extending the model of Catchpole et al.
(1998), and have included developing a state-space formulation (Bonner et al.,
2010; King, 2012), and incorporating time-varying individual covariates, which are
either discrete (King and Brooks, 2003; McCrea et al., 2012; McCrea and Morgan,
2015) or continuous (Cathpole et al., 2008; Bonner et al., 2010; Langrock and
King, 2013).

We consider the particular case of MRR data where all individuals are able
to be recovered dead, but not all individuals are available to be resighted, if they
move to an unmonitored site. We provide an efficient likelihood expression, and
associated (independent) sufficient statistics, for MRR data for partially monitored
populations in the presence of both age and time parameter dependence. We de-
velop the model further by specifying a hierarchical model formulation to permit
additional borrowing of information over time leading to increased precision of
the model parameters, particularly for early years of the study where sample size
is small. We fit the model to the guillemot data using a Bayesian approach, permit-
ting prior information to be specified on relative resighting probabilities over time
given the study design.

In Section 5.2 we present a description of the data. Section 5.3 provides the
model formulation of the integrated likelihood for partial monitored populations,
including the efficient m-array formulation and associated summary statistics. In
Section 5.4 we describe the hierarchical model and fit the model to the guillemot
data, comparing the results to the capture-recapture-only case. Finally we conclude
with a discussion in Section 5.5.

5.2 Data

We consider data relating to the largest guillemot colony in the Baltic Sea, on the
island of Stora Karlsö (Sweden), with a recorded breeding population of 15,700
pairs in 2014, corresponding to ≈2/3 of the Baltic Sea population (Olsson and
Hentati-Sundberg, 2017). Over the study period a total of 39,681 chicks are ringed
between late June and early July after jumping from the ledges on to a beach under
the cliffs in the largest sub-colony of the island. We consider resightings of indi-
viduals carried out at five different monitored locations: two clubs (aggregations of
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88 5.2. Data

FIGURE 5.1: Location of the Stora Karlsö guillemot colony in the Baltic Sea
(left). Map of the island (right) shows the location of the main breeding ledges
used by guillemots (areas A, B and C) and monitored areas (indicated with as-
terisks). Chicks were captured and banded in area A. Recoveries take place over
the whole colony and elsewhere (mainly in Baltic Sea but also in the Atlantic

Ocean).

birds at rocks beneath the breeding ledges) and three breeding ledges. Long-ranged
telescopes are used to record the unique ring identifiers of birds at the monitored
locations to minimise disturbance. Recoveries of dead individuals occur at both
the colony level and further afield. The capture-recapture data are collected over
the period 2002 to 2016, while the ring-recovery database spans 1992 to 2018. A
total of 6,477 unique individuals are resighted within the study period and 937 in-
dividuals recovered dead. The data (in form of m-arrays) are provided at the end
of this Chapter.

Previous studies have shown that one and two year old birds are mainly re-
sighted at rocks while individuals aged more than two years old are mainly re-
sighted at the monitored breeding ledges (≈89% of the >2 year old individuals
observed; Kadin, 2007; Sarzo et al., 2019). The location of the birds is related
to their life cycle. Guillemots are philopatric to both their breeding colony, and
also to the sub-colony where they are born (Halley et al., 1995). Younger birds
generally move around the colony and hence are observable, but as immature birds
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get older, they are increasingly present on breeding ledges, reflecting the prospect-
ing behaviour in preparation for breeding (Oro and Pradel, 2000), and due to their
philopatric behaviour remain at their chosen ledge. This latter behaviour leads
to capture heterogeneity dependent on whether or not an individual settles at a
monitored breeding ledge or not. Sarzo et al. (2019) showed that this behaviour
combined with the given monitoring regime consequently leads to biased capture-
recapture parameter estimates, with reduced survival probabilities for older ages
(related to those resighted at the monitored breeding ledges) and increased cap-
ture probabilities at the monitored breeding ledges for the older ages. Additional
ring-recovery data of (dead) individuals are collected by the Bird Ringing Centre
mainly at the colony level and in the Baltic Sea so that recoveries are not affected
by the partial monitoring as for the live resightings.

5.3 Methods

We initially describe the notation and model parameters before providing a de-
scription of the associatedm-array summary statistics for MRR data and (efficient)
likelihood function.

5.3.1 Notation

MRR data are typically displayed in the form of individual capture histories for
each individual observed (alive or dead) within the study period. We let i =

1, . . . , N denote the individuals marked in the study and t = 1, . . . , T the as-
sociated capture occasions. We let y denote the N × T observed data matrix such
that,

yi,t =


0 individual i is not resighted at time t;

1 individual i is resighted alive at time t;

2 individual i is recovered dead in the interval (t− 1, t].

Therefore, yi = {yi,t : t = 1, . . . , T} (i.e. the ith row of y) corresponds to
the capture history of individual i. We note that when an individual is recovered
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dead in the interval (t − 1, t], it is recorded as recovered at time t. For example
consider the following two capture histories: y1 = {1, 0, 0, 1, 0, 2} and y2 =

{0, 1, 1, 0, 1, 0}.

The first capture history (y1) represents an individual first marked at occasion
1, subsequently observed at occasion 4 (they are unobserved at occasions 2, 3 and
5) before being recovered dead at occasion 6. The second history (y2) corresponds
to an individual first marked at time 2, subsequently observed at times 3 and 5,
(they are unobserved at occasions 4 and 6). For our case study, all the resighted
individuals are observed only in monitored areas, however, individuals may be
recovered dead (if they die) irrespective of whether or not they are in the monitored
areas.

5.3.2 Model parameters

We initially describe the model parameters associated with the standard capture-
recapture model and ring-recovery model in turn, before considering the integrated
case. For capture-recapture data we define:

φa,t = P(an individual aged a at time t is alive and available for capture at

time t+ 1 | alive and available for capture at time t);

pa,t+1 = P(an individual aged a at time t+ 1 is observed | alive and available

for capture at time t+ 1),

for t = 1, . . . , T − 1 and a = 1, . . . , A. We note that available for capture equates
to the individual being present at the monitored colony locations. We note that
φa,t is often referred to as the survival probability - however this is the apparent
survival probability (death and availability/dispersal are confounded).

For ring-recovery data, we define the associated model parameters:

Sa,t = P(an individual aged a at time t is alive at time t+ 1 | alive at

time t);

λa,t+1 = P(an individual aged a is recovered dead in the interval (t, t+ 1] |
dies in the interval (t, t+ 1]),
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for t = 1, . . . , T − 1 and a = 1, . . . , A. Again Sa,t is often referred to as the
survival probability, but in this case recovered individuals are known to be dead
(rather than unavailable, which may include dispersal), and so this corresponds to
the true survival probability.

Combining the capture-recapture data with the ring-recovery data we note the
difference in interpretation between φa,t and Sa,t in terms of apparent (including
dispersal) and true survival, respectively. This directly permits us to estimate the
dispersal probability, i.e. the probability an individual moves from a monitored
site to an unmonitored site (where they are unavailable for resighting but available
to recover, if they die). In particular we have the relationship φa,t = Sa,t(1−γa,t),
such that,

γa,t = P(an individual aged a is at an unmonitored site at time t+ 1 | alive

at time t+ 1 and in a monitored site at time t),

for t = 1, . . . , T − 1 and a = 1, . . . , A. For notational convenience we let
S = {Sa,t : a = 1, . . . , A; t = 1, . . . , T − 1}, and analogously for p,λ and
γ. Finally the set of all model parameters is denoted by θ = {S,p,λ,γ}. This
ability to estimate additional parameters from integrated models (in our case γ),
which are inestimable in the individual models due to confounding, has been noted
many times within the literature for different types of data (see for example, Burn-
ham, 1993; Reynolds et al., 2009; McCrea et al., 2010; King and McCrea, 2014;
McCrea and Morgan, 2015). Finally we note that a full age and time dependence
on the model parameters may lead to parameter redundancy (Hubbard et al., 2014).
We discuss in Section 5.4.1 the particular dependence structure we impose on the
model parameters for our case study, based on biological knowledge, for which no
such issues are identified.

5.3.3 Sufficient statistics

Capture-recapture data and ring-recovery data can each be usefully summarised
in terms of m-arrays (Lebreton et al., 1992; McCrea and Morgan, 2015). The m-
arrays summarize the number of individuals released at occasion j = 1, . . . , T − 1

and subsequently next observed alive (for capture-recapture data), or recorded
to have been recovered dead (for ring-recovery data) at capture occasion t =
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2, . . . , T . Often, instead of recording the number of individuals released in a given
year, the m-arrays are given with the (equivalent) number of individuals never ob-
served again. We use this latter approach in the presentation of the m-arrays. We
present the combined, or extended, m-array formulation for the combined MRR
data before using these to form the efficient likelihood specification. With the ad-
ditional age dependence this extends the data to a three-dimensional m-array, or
alternatively, where we specify a separate extended m-array for each age that an
individual may be released.

We define an A × (T − 1) × (2T − 1) extended (or integrated) m-array with
cell entries denoted by ma,j,t such that the cells are indexed by a = 1, . . . , A,
j = 1, . . . , T − 1 and t = 2, . . . , 2T . For simplicity we condition on age, a,
and consider the associated (T − 1) × (2T − 1) array. The first T − 1 columns
(labelled t = 2, . . . , T ) correspond to the capture-recapture components (i.e. live
resightings), with cell entries, ma,j,t, equal to the number of individuals that are
observed at time j = 1, . . . , T −1 (aged a) that are next observed alive at time t =

2, . . . , T . The following T−1 columns (labelled t = T+1, . . . , 2T−1) correspond
to the ring-recovery components (i.e. dead recoveries) with cell entries, ma,j,t,
equal to the number of individuals that are observed at the time j = 1, . . . , T − 1

(aged a) that are next observed as a dead recovery at time t∗ = t − (T − 1), for
t = T +1, . . . , 2T −1 (so that t∗ = 2, . . . , T ). The final column (labelled t = 2T )
has cell entries, ma,j,2T , corresponding to the number of individuals last observed
at time j = 1, . . . , T − 1 (aged a) that are never observed again within the study
(either alive or dead). Finally, we let qa,j,t denote the associated cell probabilities
of the integrated m-array, for a = 1, . . . , A, j = 1, . . . , T − 1 and t = 2, . . . , 2T .
Finally, for notational purposes we let the set of sufficient statistics be denoted by
m = {ma,j,t : a = 1, . . . , A; j = 1, . . . , T ; t = 2, . . . , 2T}, and similarly for q
(the set of cell probabilities).

For illustration, we provide a toy numerical example where T = 5 and there
is a single age for all individuals (e.g. all individuals are ringed and observed
as adults), so that A = 1. Table 5.1 provides the capture histories of a set of
individuals; while Table 5.2 the corresponding set of m-arrays associated with
only capture-recapture data (no dead recoveries); only ring-recovery data (no live
resightings); and the combined MRR data.
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Capture occasion Capture occasion
1 2 3 4 5 Number 1 2 3 4 5 Number
1 0 0 0 0 1466 0 1 1 1 0 25
1 1 0 0 0 101 0 1 1 1 2 2
1 2 0 0 0 13 0 1 0 1 0 43
1 1 1 0 0 15 0 1 0 2 0 10
1 1 2 0 0 1 0 1 0 0 1 5
1 1 0 1 0 13 0 0 1 0 0 1251
1 1 0 0 2 1 0 0 1 1 0 98
1 0 1 0 0 76 0 0 1 2 0 17
1 0 2 0 0 9 0 0 1 1 1 23
1 0 1 1 0 8 0 0 1 1 2 2
1 0 0 1 0 42 0 0 1 0 1 15
1 0 0 0 1 12 0 0 1 0 2 5
0 1 0 0 0 1001 0 0 0 1 0 1235
0 1 1 0 0 94 0 0 0 1 1 68
0 1 2 0 0 18 0 0 0 1 2 10

TABLE 5.1: Toy example capture histories, where 0 denotes unobserved; 1 ob-
served alive; and 2 recovered dead; and associated number of individuals with

given history.

In general we note that the observed m-array cell entries associated with the
resighting of individuals do not change between the capture-recapture only m-
array and the integrated MRR m-array (corresponding to columns labelled t =

2, . . . , T ). However, for the m-array cells corresponding to the recovery of in-
dividuals, these do differ between the ring-recovery only data and the integrated
MRR data (corresponding to columns labelled t = T + 1, . . . , 2T − 1), as this
is dependent on whether an individual is resighted prior to recovery. If a bird is
resighted, then the year of release for the individual will differ between the ring-
recovery only m-array and integrated m-array; alternatively if the individual is not
resighted alive within the study the contribution to the ring-recovery component of
the integrated m-arrays remains the same. Similarly the number of individuals not
observed again following release will differ in the integrated MMR m-array to the
individualm-arrays to take into account the additional resightings or recoveries not
observed within the individual ring-recovery and capture-recapture only m-arrays,
respectively (columns headed “Never seen” in the example m-arrays in Table 5.2).



“tesis” — 2020/3/7 — 12:16 — page 94 — #126i
i

i
i

i
i

i
i

94 5.3. Methods

Capture-recapture only m-array

Capture occasion

2 3 4 5 Never seen

1 131 84 42 12 1488

2 − 136 56 5 1132

3 − − 158 15 1458

4 − − − 91 1478

Ring recovery only m-array

Capture occasion

2 3 4 5 Never seen

1 13 10 0 1 1733

2 − 18 10 2 1168

3 − − 17 7 1387

4 − − − 10 1303

Integrated m-array

Capture-recapture component Ring recovery component

Capture occasion

2 3 4 5 2 3 4 5 Never seen

1 131 84 42 12 13 9 0 0 1466
(q1,1,2) (q1,1,3) (q1,1,4) (q1,1,5) (q1,1,6) (q1,1,7) (q1,1,8) (q1,1,9) (χ1,1)

2 − 136 56 5 − 19 10 1 1102
(q1,2,3) (q1,2,4) (q1,2,5) (q1,2,7) (q1,2,8) (q1,2,9) (χ1,2)

3 − − 158 15 − − 17 5 1436
(q1,3,4) (q1,3,5) (q1,3,8) (q1,3,9) (χ1,3)

4 − − − 91 − − − 12 1464
(q1,4,5) (q1,4,9) (χ1,4)

Column label (t)
2 3 4 5 6 7 8 9 10

TABLE 5.2: Example of m-arrays for capture-recapture (top left), ring-recovery
(top right) data and the resulting integrated m-array (bottom) with the observed
individuals and cell probabilities (parenthesis) for T = 5 and a single adult age
category. A ‘−’ denotes a structural zero entry (and hence cell probability is

equal to 0).

Finally we also note that the number of individuals released each year (equal to
the row sums) differs between the capture-recapture only m-array and the ring-
recovery only m-array as birds that are resighted in year t, say, are then counted
within the number of birds released in year t. However, for the ring-recovery only
m-array there are no resightings, and so all releases correspond to initial captures.
The row sums for the capture-recapture only and integrated m-arrays are however
equal, with the difference between these m-arrays corresponding to what happens
following release in terms of whether dead recoveries are recorded or not.
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5.3.4 Likelihood

The likelihood is calculated as a product over multinomial terms. Each row, j =

2, . . . , T of the integrated m-array (for a given age, a = 1, . . . , A) has a multi-
nomial distribution, with sample size equal to the number of individuals released
at time j, denoted Ra,j , and associated cell probabilities qa,j = {qa,j,t : t =

2, . . . , 2T}. We note that Ra,j =
∑2T

t=2ma,j,t. Thus, the likelihood can be ex-
pressed in the form:

f(m;θ) =

A∏
a=1

T−1∏
j=1

Ra,j !(∏2T
t=2ma,j,t!

)( 2T−1∏
t=j+1

q
ma,j,t

a,j,t

)
χ
ma,j,2T

a,j . (5.1)

To specify the cell probabilities we initially consider two separate cases cor-
responding to the resightings and recoveries, before we consider the final column
corresponding to those individuals not observed again following their release (the
final term in Equation (5.1)).

Case I: Columns t = 2, . . . , T (live resightings)

We initially consider the probability an individual released at time j = 1, . . . , T −
1, aged a = 1, . . . , A is next observed alive again at time t = 2, . . . , T , denoted
by qa,j,t. In this case the individual must survive each time between release to
resighting, remain available for capture, not be observed at times j + 1, . . . , t− 1,
before being resighted again at time t, so that,

qa,j,t =

t−1∏
k=j

{Sa+k−j,k(1− γa+k−j,k)} ×
t−2∏
k=j

(1− pa+k−j+1,k+1)× pa+t−j,t,

where we use the convention throughout that the null product
∏j−1
k=j ≡ 1. The first

product corresponds to individuals surviving and remaining available for capture
within the monitored areas from time j to t; the second product corresponds to
the observation process (not being observed between times j + 1 to t − 1 before
being observed at time t). Recall that, apparent survival, φa,t, can be expressed as
a simple function of the true survival probability, Sa,t, and dispersal probability,
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γa,t, such that φa,t = Sa,t(1− γa,t). Substituting this relationship into the expres-
sion for qa,j,t gives the “standard” capture-recapture only m-array cell probability.
Finally, we note that as is common in capture-recapture studies, we assume that
there is no temporary dispersal, so that once an individual leaves the monitored
sites (monitored rocks or breeding ledges) they are not able to return. This seems
reasonable for the given case study with the philopatric nature of individuals once
they settle at a given location within their life cycle.

Case II: Columns t = T + 1, . . . , 2T − 1 (dead recoveries)

We now consider the dead recovery component. We note that the column labels
t = T + 1, . . . , 2T − 1 correspond to the capture occasions 2, . . . , T . Thus, we
define t∗ to be the capture occasion associated with column label t, such that t∗ =

t− T + 1, for t = T + 1, . . . , 2T − 1. Now, consider the probability an individual
observed at time j = 1, . . . , T − 1 at age a = 1, . . . , A is unseen until recovered
dead in the interval (t∗ − 1, t∗]. This means that an individual survives between
times j to t∗ − 1 before dying within the interval (t∗ − 1, t∗] and is recovered
at this time (we make the standard ring-recovery assumption that an animal that
dies in the interval (t∗ − 1, t∗] can only be recovered in the same interval, due to
mark loss after this period). To account for not observing the individual at times
j + 1, . . . , t∗ − 1 we also need to take into account that an individual may move
away from the monitored locations, where they are not observable via the capture-
recapture study, but still available to be recovered dead if they die. Accounting for
these different processes, the cell probabilities can be expressed in the form,

qa,j,t = (1− Sa+t∗−1−j,t∗−1)λa+t∗−j,t∗ ×

t∗−2∏
k=j

Sa+k−j,k


×


t∗−2∑
k=j

(γa+k−j,k)

k−1∏
n=j

(1− γa+n−j,n)(1− pa+n−j+1,n+1)


+

t∗−2∏
n=j

(1− γa+n−j,n)(1− pa+n−j+1,n+1)

 ,
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where t∗ = j−T+1. The first line corresponds to the probability that an individual
released at time j aged a survives until time t∗ − 1, before subsequently dying in
the interval (t∗−1, t∗] and being recovered. The second and third lines correspond
to the probability an individual released at time j aged a is not observed alive
prior to being recovered dead at time t∗. However, for such an individual that is
not resighted we need to account for the partial monitoring - an individual may
move to an unmonitored site at each capture occasion. While they remain at the
monitored sites they are available for capture (but are not observed); once they
disperse to an unmomitored site they are no longer available for capture. Thus the
associated probability of the resighting process is calculated by summing over all
possible times an individual may disperse to an unmonitored site following release
(line 2), or remains throughout at the monitored site (line 3), until its death.

Case III: Columns t = 2T (not observed again)

We first note that the lower triangular elements of the resighting and recovery com-
ponents are structural zeros (i.e. impossible events - an individual cannot be re-
sighted or recovered again prior to or at its time of release). This means that for
each j = 1, . . . , T −1, and t = 1, . . . , j, T, . . . , T −1+j, we have that, qa,j,t = 0.
Then, since an individual released at time j must either be observed again (either
alive or dead), or not observed, the row cell probabilities must sum to unity. Thus,
the probability of an individual released at time j, aged a, is not observed again
can be expressed as,

χa,j = 1−
2T−1∑
t=2

qa,j,t.

Substituting the qa,j,t and χa,j terms into Equation (5.1) provides an explicit
expression for the likelihood function. We note that setting γa,j,t = 0 for all
a = 1, . . . , A, j = 1, . . . , T − 1 and t = 2, . . . , T reduces the likelihood to the
standard (non partial monitoring) MRR likelihood where the survival probabilities
are assumed to be equal for the capture-recapture and ring-recovery components
(see for example, Catchpole et al., 1998, though the likelihood specified is not
expressed using the multinomial form).
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5.4 Case Study

We consider the data relating to guillemots described in Section 5.2. The MRR
data are collected from 1992-2018 (so that T = 27), where the live resightings only
occur within the period 2002-2016; and dead recoveries are available throughout
the whole study duration, 1993-2018.

5.4.1 Model

We initially consider the dependence of the model parameters on age and time,
based on biological knowledge and study protocols. Due to the life cycle of guille-
mots we consider the maximum set of distinct ages, 1, 2, 3, 4, 5+, where age cor-
responds to “year of life” and 5+ corresponds to (adult) individuals of at least age
5.

Firstly we consider the observation processes. The capture-recapture database
includes resighting events between 2002-2016. Thus for years where there are no
resightings possible, we set the resighting probability equal to 0, i.e. pa,t = 0

for t = 2, . . . , 10, 26, 27, corresponding to years 1993, . . . , 2001; 2017, 2018, for
a = 2, . . . , 5+. During the capture-recapture study period resightings occurred
during the breeding season (May to July) but under two different intensity regimes
of low and high effort. The low effort regime lasted from 2002-6 (mean resighting
effort of 35.80 hours per year); while from 2007-16 a higher effort was used (mean
resighting effort of 82.8 hours per year). Thus we consider two distinct resighting
probability regimes relating to the different effort periods. Further, the behaviour
of individuals is such that most juveniles (ages 1 and 2) are generally observed on
rocks (48% of resightings), while ages 3+ are increasingly present on the breeding
ledges, first to learn competencies for breeding and when they reach sexual matu-
rity, to breed. Thus to allow for the differing proportions of individuals who may
use the rocks/ledges in early adulthood, the resighting probabilities are assumed
to be fully age dependent. Thus we specify the capture probabilities such that
pa,t = p∗a for t = 11, . . . , 15 (i.e. years 2002-6) and pa,t = pa for t = 16, . . . , 25

(i.e. years 2007-16); for a = 2, . . . , 5+. In contrast, the recovery effort was con-
stant throughout the period, and with no rationale to suggest the age of the death
of an individual would influence whether or not they are recovered, we assume a
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constant recovery probability across all ages and time, such that λa,t = λ for all a
and t. For the survival probabilities, it is well understood that these typically vary
inter-annually due to variation in food availability and environmental conditions
(Votier et al., 2008). Similarly, age is generally a very important factor affecting
survival (see for example, Crespin et al., 2006; Harris et al., 2007). We assume the
presence of both age and time effects, where they are additive (on the logit scale)
and set logit(Sa,t) = αa + βt for a = 1, . . . , 5+ and t = 1, . . . , T − 1. How-
ever, we note that sexual maturity of guillemots occurs at ages 4-6 (Birkhead and
Hudson, 1977b), and so we consider the reduced age structure and set α4 = α5+,
which we denote by α4+.

Finally, for the dispersal probabilities it is expected that the majority of these
will occur as individuals begin to increase their use of breeding ledges (i.e. breed-
ing dispersal), although there will also be some additional natal dispersal in younger
birds. For the given colony, individuals generally start to visit breeding ledges from
3 years of age, so that for the dispersal probabilities we consider the ages structure,
1, 2, 3+ (where ages 1 and 2 we refer to as natal dispersal; and for age 3+ as breed-
ing dispersal). We note that we assume dispersal from the monitored locations are
permanent, as individuals once settled are philopatric.

Thus, the full set of model parameters in the proposed integrated model is:
α = {α1, . . . , α4+}, β = {β1, . . . , βT−1}, p = {p∗2, . . . , p∗5+, p2, . . . , p5+},
γ = {γ1, γ2, γ3+} and λ. Note that we comment further on the given dependence
structure in Section 5.4.3.

5.4.2 Bayesian modeling

We consider a Bayesian modelling approach, which permits us to formally incor-
porate some (weak) prior information on the structure of the capture probabilities.
We have no prior information on the resighting probabilities for the period 2007-
16, or the recovery probabilities so that we specify pa ∼ U [0, 1] for a = 2, . . . , 5+

and λ ∼ U [0, 1], respectively. However, for the earlier period 2002-6, with the
significantly lower number of resighting hours, we expect the associated resight-
ing probabilities to be less than the later study years, and so specify the conditional
prior distribution, p∗a|pa ∼ U [0, pa], for a = 2, . . . , 5+.
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For the survival parameters, there are several years with relatively limited
amount of data. For birds ringed prior to 2006, there are very few individuals
resighted (a total of 986 individuals, corresponding to an average of 66 individu-
als per year), and few recoveries in future years. Thus, we consider a hierarchical
structure to model the time effects, so that information can be borrowed across
the whole study period and specify, βt ∼ N(µ, σ2), where µ ∼ N(0, 10) and
σ2 ∼ Γ−1(0.001, 0.001). For the age effects, for identifiability, we set α1 = 0,
and specify non-informative priors on the remaining terms, such that αa ∼ N(0, 5)

for a = 2, . . . , 4+. Thus we note that αa is interpreted as the age effect relative
to age, for a = 2, . . . , 4+. A summary of the priors specified on the parameters is
provided in Table 5.3

Bayesian inference was performed using Markov chain Monte Carlo (MCMC)
(Robert and Casella, 2011) using the jags software (Plummer, 2003) within R

(R Core Team, 2019). The simulations were run for 400,000 iterations using three
chains, and over-dispersed starting values. A conservative burn-in of 40,000 itera-
tions were discarded. Essentially identical results were obtained from each chain
and no convergence issues identified using the BGR statistic (Gelman et al., 2014).

Parameter Prior distribution

pa U [0, 1]

p∗a|pa U [0, pa]

λ U [0, 1]

αa N(0, 5)

βt|µ, σ2 N(µ, σ2)

γa U [0, 1]

Hyperparameter

µ N(0, 10)

σ2 Γ−1(0.001, 0.001)

TABLE 5.3: Prior distributions specified on the model parameters and associated
hyperparameters.
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5.4.3 Results

We consider both the integrated MRR data and the capture-recapture only data for
comparison. Figure 5.2 provides the posterior mean and associated 95% symmet-
ric credible intervals for the survival probabilities, Sa,t, for a = 1, . . . , 4+ and
t = 1, . . . , T − 1. Table 5.4 provides the associated posterior mean and 95%
symmetric credible intervals (CIs) for the αa (for a = 2, . . . , 4+) and βt (for
t = 1, . . . , T − 1) parameters. We note that for the capture-recapture analysis we
only use the data from 2006-2016, due to very few individuals released prior to
2006. Further the estimates for the capture-recapture only data refer to apparent
survival, whereas for the integrated data these correspond to true survival, correct-
ing the biases present in the capture-recapture data due to the partial monitoring of
the study site. We observe that the survival probabilities are very similar for ages 3
and 4+ for the integrated analysis. Further, the difference between the apparent sur-
vival and true survival estimates are most marked for ages 3+. This is unsurprising
as this is the age where the partial monitoring has most impact, when individu-
als are more likely to move to breeding ledges away from the monitored locations
(i.e. move from the resighting monitored sites). We note that for the capture-
recapture-only analysis the apparent survival probabilities for age 2 individuals
are unrealistically high (and higher than the true survival probability estimates in
the integrated analysis). For the capture-recapture data relatively few individuals
are observed at the first year of life (i.e. p2); while a significantly greater num-
ber of individuals are observed aged 2 (i.e. p3). This leads to a reduced (apparent)
first-year survival probability (and hence expected number of birds at age 2), which
to then account for the large number of birds observed at age 2 leads to the very
large (and unrealistic) second-year survival probabilities. However, including the
additional dead recoveries provides additional information in relation to the sur-
vival probabilities, leading to an increased first-year survival probability which in
turn leads to more realistic age 2 survival probabilities to fit the large number of
observed individuals at age 2. Further we note that for the integrated analysis, as
would be expected biologically, Eπ(αi) < Eπ(αj) for i < j, so that survival is
increasing with age for younger birds until adulthood. Finally, we observe that all
the survival probabilities are significantly reduced in 1999. This is likely due to in
1998 there was an avian cholera outbreak in this colony (Österblom et al., 2004).
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Parameters Mean 95% CI

α2 1.3229 [1.0159, 1.6301]
α3 1.5851 [1.2645, 1.9234]
α4+ 1.9186 [1.6415, 2.2036]
β1 1.4285 [0.2798, 2.7788]
β2 0.7833 [-0.3613, 2.0526]
β3 1.8220 [0.5949, 3.3563]
β4 0.8539 [-0.0682, 1.8581]
β5 -0.6996 [-1.5265, 0.1897]
β6 0.3576 [-0.5183, 1.3265]
β7 0.5759 [-0.1960, 1.4469]
β8 -1.5185 [-2.1863, -0.8935]
β9 0.4803 [-0.0374, 1.0392]
β10 -0.1640 [-0.5435, 0.2349]
β11 -0.1342 [-0.5579, 0.3236]
β12 0.0278 [-0.3023, 0.3688]
β13 -0.0850 [-0.3432, 0.1936]
β14 0.4477 [0.2123, 0.7101]
β15 1.7642 [1.3515, 2.2043]
β16 1.1945 [0.8500, 1.5895]
β17 1.4474 [1.0163, 1.9279]
β18 -0.3267 [-0.5151, -0.1226]
β19 0.6430 [0.3839, 0.9215]
β20 0.2781 [0.0460, 0.5254]
β21 0.3693 [0.1213, 0.6277]
β22 0.6018 [0.3418, 0.8869]
β23 0.9734 [0.6005, 1.3947]
β24 1.3904 [0.8441, 1.9976]
β25 0.8114 [0.1824, 1.4674]
β26 2.5583 [1.4207, 4.0125]

TABLE 5.4: Mean and 95% symmetric credible intervals (CIs) for αa (a =
2, . . . , 4+; α1 = 0) and βt (t = 1, . . . , T − 1) parameters obtained through the

integrated model.
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FIGURE 5.2: Posterior mean and 95% symmetric credible intervals (CIs) for
the survival probabilities by age classes (a = 1, . . . , 4+) for the study period,
obtained through capture-recapture (CR) data only (grey) and integrated MRR

data (black).

We note that we can compare the estimated adult (true) survival probabili-
ties with previous estimates for guillemot colonies. For example, for this colony,
Österblom et al. (2004) suggested high adult survival estimates, of 0.937 (0.91,
0.96). Alternatively, for the Isle of May guillemot colony, adult (age 4+) survival
probabilities were estimated to have a posterior mean of 0.912 with 95% poste-
rior credible interval (0.872, 0.941) (Reynolds et al., 2009). Thus, the survival
estimates obtained from this integrated MRR study are comparable; however, as
expected (and noted above), the capture-recapture only estimates are significantly
lower (except for two year old individuals) as these are apparent survival proba-
bilities and are confounded with dispersal.

The posterior mean and 95% posterior credible intervals for the resighting,
recovery and dispersal parameters are given in Table 5.5. The resighting probabil-
ities for the early years of the study (with low resighting effort) are all estimated
to be very small, as expected. For the later years (with increased resighting effort)
there is clear, strong, age dependence across the resighting probabilities in the
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later years. Age 1 individuals are significantly less likely to be resighted within the
study. The resighting probability increases for age 2 birds and again for individ-
uals of ages 3 onwards, for the integrated analysis. There is very little difference
in the resighting probabilities for those aged 3 and 4+, suggesting that individuals
are equally observable from the age of 3, if they remain in the monitored locations.
This is most likely due to young guillemots (mainly 1 and 2 years old) spending
time at sea, so that, the proportion of individuals resighted at these ages is com-
monly low (specially for first year old individuals, Harris et al., 2007). Comparing
the resighting probabilities between the integrated model and capture-recapture
only model it is noticeable that the estimates are generally smaller in the capture-
recapture only model (the exception is for age 1). In particular, we note that the
largest difference is for adult birds (aged 4+), where the credible intervals between
the integrated analysis, and capture-recapture only analysis, are non-overlapping.
For capture-recapture(-recovery) studies the survival probabilities are negatively
correlated with the resighting probabilities: lower resighting probabilities lead to
higher survival probabilities (if the probability of seeing an individual lower, this
means that more individuals are alive in the study area but not seen, hence leading
to an increased survival probability). Conversely, higher resighting probabilities
(as for the capture-recapture only analysis) generally leads to lower survival esti-
mates. Finally we note that the recovery probability is relatively small, as is often
the case with ring-recovery studies.

As noted previously, one common advantage of integrated models is that they
permit the estimation of parameters not otherwise estimable from the data. In our
case, combining the capture-recapture data with the ring-recovery data permits the
estimation of the dispersal probabilities, γa, to an unmonitored areas. Harris et al.
(2007) and Crespin et al. (2006) suggested that prospecting for breeding sites is
biased towards the natal colony; and prebreeders who decide to disperse do so if
conditions are poor at their natal site or if they are unable to secure a site. From
Table 5.5 it is clear that dispersal is most pronounced for individuals aged age 3+,
as expected, given their general behaviour. In general, individuals aged 1 and 2
temporarily visit rocks; individuals aged 2 and 3 will start to visit breeding ledges;
while individuals aged 3 or more are more likely to be at breeding ledges and start
pair-bonding after which they are philopatric to the given ledge. While individuals
at the monitored rocks are more likely to be observable, not all breeding ledges
are monitored, and so if an individual settles at one of these they are no longer
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Integrated Capture-recapture only

Parameter Mean 95% CI Mean 95% CI
p∗2 0.0191 [0.0143, 0.0246] − −
p∗3 0.0328 [0.0245, 0.0424] − −
p∗4 0.0290 [0.0179, 0.0434] − −
p∗5+ 0.0209 [0.0110, 0.0337] − −
p2 0.0612 [0.0552, 0.0673] 0.0717 [0.0662, 0.0774]
p3 0.2699 [0.2569, 0.2831] 0.2471 [0.2332, 0.2623]
p4 0.3787 [0.3616, 0.3965] 0.3520 [0.3303, 0.3740]
p5+ 0.3658 [0.3483, 0.3837] 0.4070 [0.3840, 0.4300]
λ 0.0153 [0.0132, 0.0176] − −
γ1 0.1958 [0.1057, 0.2725] − −
γ2 0.0717 [0.0066, 0.1526] − −
γ3+ 0.3187 [0.2967, 0.3397] − −

TABLE 5.5: Posterior mean and 95% symmetric credible intervals (CIs) for the
resighting probabilities (p∗a and pa, for a = 2, . . . , 5+), recovery probability (λ)
and dispersal probabilities (γa, for a = 1, . . . , 3+) for the integrated model; and

capture-recapture only model.

available for resighting (but are available for recovery if they die). Extending the
model with separate age-dependent dispersal probabilities, 3, 4+ led to similar
probabilities for the specific ages.

Finally, we note that we conducted a prior sensitivity analysis. The corre-
sponding results were generally robust to different uninformative priors, with the
interpretation remaining consistent throughout.

5.5 Discussion

Reliable estimates of demographic parameters are essential to understand dynam-
ics of wildlife populations. Capture-recapture (and/or ring-recovery) are com-
monly used across a wide range of species to study populations, often with the
aim of estimating survival probabilities, which can be important for conservation
and/or management. Within such studies there can be many different practical is-
sues within the data collection process. We focus on the particular issue of partial
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monitoring populations, where live resightings are only observed at a small subset
of the given colony. The approach developed is motivated by a colony of guille-
mots on the island of Stora Karlsö, the largest colony in the Baltic Sea (Olsson
and Hentati-Sundberg, 2017). For this colony, the birds are ringed as chicks and
are highly philopatric to their ledges, once they reach maturity. Thus, individuals
may permanently move to locations that are outside the monitored locations, at
which they point they are no longer able to be observed. This typically leads to
biased estimates of survival (Sanz-Aguilar et al., 2016; Sarzo et al., 2019), with
true survival and movement away from the monitored locations confounded.

To address the issue, we use additional ring-recovery data within an integrated
modelling framework to permit the estimation of both dispersal and true survival
probabilities, where the majority of dispersal is assumed to be within-colony with
few birds recovered long-distances from the colony. We derive the associated effi-
cient integrated MMR m-array likelihood expression in the presence of dispersal,
corresponding to a product of multinomial distributions where the model parame-
ters are both age and time dependent. This likelihood formulation also permits the
use of standard goodness-of-fit tests to be applied (McCrea et al., 2010).

Further, for these data, additional modelling considerations are specified, due
to the particular structure of the guillemot study and resulting small sample size of
the data within time periods of the study. In particular, for the early years of the
study (1993-2001) there are no live resightings, and the number of birds released
(and recovered) are generally low. Thus, we use a hierarchical structure for the year
effects for the survival probabilities which permits the borrowing of information
across years, significantly improving the precision of the estimated survival proba-
bilities for the earlier years. The corresponding adult survival estimates for the in-
tegrated MRR analysis are significantly higher than for the capture-recapture only
data, reflecting the different between true survival, compared to apparent survival,
and correcting for the additional dispersal from the monitored locations. In addi-
tion the integrated analysis led to biologically plausible survival estimates for age 2
individuals, whose estimates are unrealistically high for the capture-recapture only
data (as discussed in Section 5.4.3). The newly derived true survival estimates are
comparable to other studies of guillemot colonies (for example, Reynolds et al.,
2009; Österblom et al., 2004). Further, the survival probabilities vary over years,
which may be related to additional factors, such as prey availability and/or en-
vironmental conditions. Investigating such relationships is the focus of current
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research. Finally we note that the age-specific dispersal probabilities of interest
which largely distinguishes between natal and breeding dispersal, with the largest
dispersal estimated to be for ages 3+ corresponding to when individuals start to
reach maturity (breeding dispersal).

Long-term studies are essential for assessing trends over time and/or permit-
ting the identification of relationships with possible factors. Combining studies of
differing lengths can extend the possible inferences, and a hierarchical modelling
structure permits borrowing of information where less information is available to
improve the precision of the estimates over these periods of time. We use a hier-
archical structure to model year effects due to the heterogeneity in the amount of
information contained in the data over the years due to periods of low sample size.
Individual heterogeneity can also be an important biological modelling compo-
nent, and hierarchical structures are often implemented to model these. However,
for these data (with approximately 30,000 individuals), fitting these individual het-
erogeneity models using standard techniques, such as Bayesian data augmentation
(often referred to as a complete data likelihood approach), leads to significant,
and potentially infeasible, computational expense. Consequently, further compu-
tational techniques are needed for such analyses, which is an area of current focus.

5.6 Integrated m-arrays

In Tables 5.6 to 5.9 we present the four integrated age m-arrays for the mark-
recapture-recovery database, relating to guillemots.

The study presented in this Chapter has been submitted to an indexed
journal with title: “Correcting bias in survival probabilities for partially mon-
itored populations via integrated models”.
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CHAPTER 6

FINAL REMARKS AND FUTURE

WORK

In this thesis we have intended to offer three specific contributions to the field of
the statistical methods for capture-recapture(-recovery) data from a Bayesian per-
spective. Firstly, we have provided reliable juvenile survival estimates for common
guillemots, a difficult issue to assess in seabird species. Further, we have detected
a problem of partial monitoring in this colony which leads to biased survival pa-
rameter estimates. Partial monitoring is widespread in colonial species but up to
now, there were not statistical models to correct it. We have presented a first ap-
proximation to this problem adopting a Bayesian subjective approach so that prior
information about the colony is incorporated. The results obtained improve the
parameter estimation, however, adult survival probabilities are still underestimated
despite our correction.

The second big aim of this thesis came naturally, and it was to correct the
problem of partial monitoring in colonial species. We went a step further and we
analysed jointly two data sets from the same individuals via integrated models.
The information gathered by the ring-recovery database have shed light to individ-
uals settled both at monitored areas and not monitored. Therefore, this additional
information about dead individuals reduces the corresponding bias obtained in the
survival probability estimates obtained from capture-recapture data only due to the
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confounding with migration. Further, we have derived an explicit efficient likeli-
hood expression to the integrated model proposed and have stated the associated
sufficient statistics.

Finally, the last aim of this thesis was to bring together two (a priori) differ-
ent areas with a common primary goal, the survival analysis. In these two areas
(human demography and population ecology) it is often the case that data collec-
tion protocols are different, resulting in different models and methods of analysis.
In this thesis we have adopted a methodology commonly performed in medical
survival studies in the ecological capture-recapture framework, the elicitation of
the temporal scale. Hence, we have presented the Cormack-Jolly-Seber model (al-
though it can be extended to other models) in an alternative temporal scale, the
age. Moreover, we have also discussed differences and similarities regarding data
presentation, model parameters, model formulation and results.

Once again we point out that using Bayesian inference has allowed us to make
inference with relative ease on these models. The results in Chapter 3 also un-
derline the usefulness of Bayesian methods when incorporating prior information.
Further, the Bayesian hierarchical modelling performed in Chapter 5 has allowed
to borrow the different temporal information gathered by two databases. To con-
clude, the posterior probabilities obtained through Bayesian paradigm provide a
full picture of what is known about each parameter based on the model and the
data, together with any prior information in form of probability distributions.

In overall, in this PhD, we have proposed a number of models that have quite
effectively tackled some challenges in population ecology. However, the scope
of research is still extensive. In what follows we provide a list of topics that we
consider of special interest in this context:

1. Relating survival with prey abundance. We want to investigate factors
affecting the temporal variation in survival probabilities observed in the in-
tegrated model presented in this thesis. In particular, our main focus is to
associate those changes in relation to the abundance of sprat, the main prey
of common guillemots in the Baltic Sea.

2. Individual heterogeneity. The size of the databases has been a constant ‘is-
sue’ along this thesis. For these kind of data (big), the inclusion of individual
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heterogeneity using standard techniques, such as Bayesian data augmenta-
tion, leads to significant, and potentially infeasible, computational expense.
Therefore, one of our proposals (and an area of current research), is to de-
velop computationally efficient approaches for such models via importance
sampling approach (a joint work with Professor Ruth King, University of
Edinburgh).

3. Modelling communities. Conservation cannot be focused in one species at
a time, however, it requires the adoption of multispecies or entire-community
approaches. Community-level modelling offers an opportunity to move be-
yond species-level predictions and to predict broader impacts of environ-
mental changes. This is a recent research area that we consider must become
an important focus to further research.
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