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Resumen

Quien lee estas páginas podría preguntarse qué es un neutrino y cuál es el interés que
presenta la confirmación de que el neutrino es masivo. El neutrino es una partícula
fermiónica, eléctricamente neutra, que viaja casi a la velocidad de la luz y que es
muy difícil de detectar debido a que interacciona muy débilmente con la materia.
De hecho, aunque el neutrino fue propuesto en 1929 por Wolfgang Pauli, hubo que
esperar 23 años para su primera observación experimental. Ahora sabemos que el
neutrino inunda todo el universo; de hecho, es la segunda partícula más numerosa,
solo después del fotón. Entonces, si todavía no había sido observado, ¿qué motivó
a Pauli a proponer el neutrino?

A principios de siglo pasado, los científicos estaban dando sus primeros pasos
para comprender el mundo microscópico. Uno de los procesos físicos en el que
centraban sus esfuerzos era la desintegración beta. Este proceso consiste en la tran-
sición espontánea de un elemento inestable de la tabla periódica en otro con número
atómico una unidad más grande, pero manteniendo el número de nucleones. Dentro
del núcleo, esta desintegración implica que un neutrón se convierte en un protón,
cuya carga es una unidad mayor. La carga eléctrica es una cantidad conservada
y por tanto en el camino ha de emitirse una partícula de carga negativa que com-
pense el aumento positivo de carga; esta partícula es el electrón, y era observada
en cada desintegración beta. Sin embargo, había un gran problema relacionado con
la energía de los electrones emitidos. Debido a que es una partícula mucho más
ligera que el protón, el electrón se lleva casi toda la energía cinética liberada en la
desintegración. Además debería estar fijada a un valor Te determinado por la con-
servación de la energía. Pero al momento de realizar el experimento, se observaba
que el electrón tenía una energía diferente en cada desintegración; en otras palabras,
la distribución de la energía del electrón era continua. Es más, en todos los casos la
energía medida era menor que Te, por lo que aparentemente la energía total no se
conservaba. La solución fue imaginar que el producto de la desintegración incluía
una tercera partícula que escapaba de los detectores. Esta partícula se llevaría la
energía perdida, por lo que la conservación de la energía quedaría protegida. Además
debería ser eléctricamente neutra y tener espín 1/2 para no romper la invariancia
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Resumen

electromagnética y de momento angular. Con el tiempo, esta partícula llegaría a ser
conocida como neutrino.

Además, la distribución continua de la energía de los electrones mostraba otro
aspecto interesante: la energía liberada en las desintegraciones beta era de orden
1 MeV y algunos de los electrones emitidos se observaban con energías cinéticas
muy próximas a este valor (aunque siempre menor). La conclusión es que la masa
del neutrino debía ser muy pequeña, o incluso nula. Años más tarde se produjo
un sorprendente descubrimiento que reforzaría la idea de que los neutrinos podrían
ser partículas sin masa. Los neutrinos parecían interaccionar con la materia de
una forma en la que la paridad no se conservaba; dicho de otra forma, solo se
observaban neutrinos cuyo momento tenía una dirección opuesta a la de su espín
(estados de helicidad levógira) y antineutrinos para los que su momento y su espín
estaban alineados (helicidad dextrógira). Con únicamente estos dos objetos no es
posible formar Lagrangianos que describan masas sin romper la invariancia bajo
transformaciones de Lorentz. Por ejemplo, si el neutrino tiene masa, se podría
imaginar un observador que viaje más rápido que un neutrino levógiro; en estas
condiciones el observador vería que el neutrino se mueve en dirección opuesta a su
espín y por tanto su helicidad es dextrógira. Sin embargo, no existían neutrinos
dextrógiros. La conclusión es que la hipótesis original de neutrinos masivos no
podía ser cierta. Por tanto, los neutrinos experimentalmente parecían tener masa
nula y teóricamente este modelo encajaba. El modelo estándar de las partículas
elementales, que le da un marco teórico a las interacciones electrodébiles, incluye
esta idea y predice neutrinos sin masa.

Sin embargo, había voces dentro de la comunidad científica que sugerían la posi-
bilidad de que los neutrinos tuvieran masas no nulas (aunque muy pequeñas) y que
por tanto pudieran mezclar sus sabores, en semejanza con la idea de mezclas de
quarks, bien establecida en el modelo estándar. Así, por ejemplo, algunos de los
neutrinos provenientes de una fuente de neutrinos electrónicos (es decir, el neutrino
que es producido en asociación con un electrón en una desintegración beta) podrían
ser detectados con un sabor muónico o tauónico. Este tipo de fenómenos obtiene
el nombre de oscilación de neutrinos. Varios experimentos se pusieron en marcha
para examinar esta posibilidad hasta que finalmente, en 1998, fue observada por
primera vez por la colaboración Super-Kamiokande. Este descubrimiento consti-
tuyó la primera confirmación de la existencia de masas de neutrinos, cambiando por
completo el paradigma de la física de partículas elementales. A día de hoy, gran
cantidad de datos sobre oscilaciones de neutrinos han sido recogidos, dando lugar a
nuevas posibilidades alrededor de las masas de neutrinos.

En primer lugar, la cuestión sobre el mecanismo responsable de la generación de
las masas de neutrinos debe ser abordada. Antes hemos dicho que la generación de
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masas con un neutrino levógiro y un antineutrino dextrógiro no es posible porque
rompe la invariancia bajo transformaciones de Lorentz. Pero si además de estas
dos componentes existieran un neutrino dextrógiro y un antineutrino levógiro, sería
posible inducir masas de neutrinos manteniendo la simetría Lorentz. Así, el ob-
servador viajando a más velocidad que el neutrino levógiro, no entraría en ninguna
paradoja al interpretarlo como dextrógiro. Entonces una posibilidad es darle al neu-
trino dos nuevos grados de libertad, correspondientes al nuevo neutrino dextrógiro
y su antipartícula. En este caso, los neutrinos tienen el mismo número de grados
de libertad que el resto de los fermiones del modelo estándar, y sus masas reciben
la denominación de masas de Dirac. Sin embargo, debido a que los neutrinos son
fermiones eléctricamente neutros (a diferencia del resto de los fermiones del modelo
estándar), existe una segunda posibilidad que consiste en que el neutrino y el anti-
neutrino sean en realidad un mismo objeto. En otras palabras, el neutrino sería su
propia antipartícula. Entonces, cuando el observador acelerado observa un objeto
que se comporta de manera dextrógira podría afirmar que se trata nada más y nada
menos que del antineutrino dextrógiro. En este caso, no sería necesario agregar
nuevos neutrinos: los neutrinos descritos por solo dos grados de libertad se llaman
neutrinos de Majorana. No obstante, los Lagrangianos de masas construidos con
neutrinos de Majorana todavía rompen las simetrías locales del modelo estándar,
por lo que es necesario introducir nuevos mecanismos que generen sus masas. En
el Capítulo 2 revisamos algunos de los mecanismos más simples y famosos, tanto
con nuevos campos escalares y fermiónicos como con teorías efectivas del modelo
estándar.

Sin embargo, diseñar modelos de masas de neutrinos presenta una gran dificultad
añadida, que consiste en la falta de un conocimiento completo de los parámetros que
entran en la matriz de masas. Estos parámetros pueden ser escritos en términos de
aquellos que describen las oscilaciones de neutrinos. Para neutrinos de Dirac hay seis
parámetros de oscilaciones (tres ángulos de mezcla, dos cuadrados de diferencias de
masas y una fase de Dirac) además de la escala absoluta de los neutrinos, dada por la
masa del neutrino más ligero. En el caso de que los neutrinos sean de Majorana, hay
un total de nueve variables: las siete de los neutrinos de Dirac sumadas a dos fases
denominadas de Majorana. A día de hoy solo dos ángulos de mezcla y una diferencia
de masas han sido medidos con precisión. El valor absoluto de la segunda diferen-
cia de masas también es conocido, mientras que su signo relativo permanece oculto
(aunque en los últimos años se está logrado un notable avance en sus medidas).
Pese a que el restante ángulo de mezcla y la fase de Dirac todavía presentan grandes
incertidumbres experimentales, se espera que en los años venideros estas puedan ser
reducidas. Por otro lado, las fases de Majorana, a las que los experimentos de oscila-
ciones de neutrino-neutrino no tienen acceso, y la masa del neutrino más ligero se
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mantienen sin (casi) restricciones experimentales. Es decir, no conocemos los valores
numéricos de la matriz de masas de neutrinos. Si todas estas variables estuvieran
bien medidas podríamos intentar predecir con mejor éxito qué tipo de ingredientes
necesitamos añadir a nuestros modelos de masas de neutrinos. Lo contrario también
es posible: uno siempre puede evaluar cuáles serían las predicciones de un modelo
en concreto y compararlas con los resultados experimentales. No obstante este es un
programa de trabajosa realización, dado el enorme número de modelos disponible.
Otra posibilidad, siguiendo esta idea, es sondear diferentes estructuras o patrones
comunes a una variedad de modelos. Por ejemplo, entre otras razones, podría ser
que detrás de estos modelos exista una simetría. En este caso, los posibles patrones
darían lugar a relaciones entre las variables de la matriz de masas, reduciendo el
número de parámetros independientes a través de correlaciones que pueden ser in-
vestigadas en el laboratorio. De esta forma es posible imaginar diferentes patrones
y, si alguno de ellos es compatible con los datos experimentales, podrían indicar el
camino hacia la descripción de la masa de neutrinos.

En este sentido, patrones de ceros, llamados comúnmente texturas de ceros,
pueden ser de mucha utilidad. Puesto que la matriz de masas es compleja, cada
cero implica dos ligaduras que relacionan los diferentes parámetros. De hecho, en el
caso en concreto de neutrinos de Majorana, descrita por nueve parámetros, fijar solo
dos elementos de matriz a cero permitiría realizar predicciones de estos parámetros,
incluyendo aquellos cuyos valores son hasta ahora desconocidos. En la literatura se
ha trabajado bastante en esta dirección, tanto a través de métodos analíticos como
numéricos.

En el capítulo 3 damos continuidad a esta línea de investigación. Primero intro-
ducimos una nueva técnica numérica que no necesita de trabajo analítico previo y
que es aplicable a cualquier tipo de patrones. Luego, por medio de dicha técnica,
revisamos el caso de texturas con dos ceros en la matriz de masas de neutrinos de Ma-
jorana. Utilizando técnicas numéricas (simulaciones Montecarlo y rutinas numéricas
de minimización) exploramos las texturas compatibles con los datos experimentales,
obtenidos a partir de los más recientes análisis globales de datos de experimentos
de oscilaciones. Así, encontramos predicciones de los parámetros cuyos valores son
aún desconocidos. Nuestro método además permite estudiar patrones aproximados.
Por ejemplo, en el caso de las texturas, se podría imaginar que los elementos de
matriz de masas a los que se les ha fijado valores igual a cero sufrieran pequeñas
perturbaciones de tal forma que ahora presenten valores pequeños. Esto tiene in-
teresantes implicaciones, relacionadas con la estabilidad de los resultados obtenidos
y con la posibilidad de que patrones incompatibles con los resultados experimen-
tales pasen a ser compatibles. Para estudiar este fenómeno, primero revisamos el
caso de una textura cuyo espacio de parámetros permitido es pequeño; en este caso,
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encontramos que las conclusiones principales no desaparecen a la vez que el espa-
cio de parámetros permitido aumenta de tamaño. Por otro lado, en el caso de las
texturas excluidas, estudiamos qué conclusiones se pueden obtener si exigimos que
las texturas solo sean aproximadas. En este contexto, encontramos que la mayoría
de ellas continúan siendo incompatibles con los datos experimentales. Sin embargo,
una de ellas pasa a ser compatible bajo ciertas condiciones; finalmente presentamos
sus predicciones.

En los últimos párrafos hemos hablado bastante de neutrinos de Majorana. Es
de central interés remarcar que si los neutrinos son de tipo Majorana, es decir que
neutrino y antineutrino son el mismo concepto, el número leptónico no puede ser
una simetría del sistema. En el modelo estándar, a un leptón puede asignársele por
convención número leptónico −1 de tal forma que si un antileptón tiene número
leptónico +1, el número leptónico se conserva siempre. Pero esta no es más que una
simetría global que se cumple por mero accidente. En cambio, no es posible asignar
un número leptónico a neutrinos de Majorana de forma consistente. Abandonar la
idea de conservación de número leptónico no supone ningún drama desde el punto
de vista teórico. De hecho, observar violación de número leptónico en el sector
de neutrinos podría implicar que los neutrinos son de Majorana, con importantes
consecuencias de nueva física. Hasta la fecha no hay ninguna evidencia experimental
que sugiera que este es el caso, pero existe la posibilidad de que simplemente los
procesos con violación de número leptónico ocurran de manera muy poco probable
en la naturaleza. Es entonces menester hacer grandes esfuerzos para investigar
experimentalmente este tipo de procesos.

El más importante de estos procesos recibe el nombre de doble desintegración
beta sin neutrinos. Este proceso es una variación de la doble desintegración beta,
que tiene lugar cuando se producen dos desintegraciones beta de manera simultánea.
En su forma más simple, llamada mecanismo de largo alcance, el neutrino emitido
por una desintegración beta es reabsorbido como un antineutrino por la segunda
desintegración beta. Obviamente este proceso solo puede ocurrir cuando los neutri-
nos son de Majorana. El producto final consiste en los nuevos núcleos atómicos y
dos electrones, por lo que se viola el número leptónico.

Existen otros mecanismos (típicamente incluyen nuevas partículas pesadas y por
ello se conocen como mecanismos de corto alcance) que pueden dar lugar a nuevas
contribuciones de doble desintegración beta sin neutrinos. Sin embargo, todas ellas
implican que el número leptónico no es una cantidad conservada y que los neutrinos
son de Majorana. En algunos casos, estas nuevas contribuciones pueden ser más
importantes que aquella con intercambio de neutrinos, descrita más arriba. Esto es
importante, porque la contribución con intercambio de neutrinos es proporcional a
la matriz de masas de neutrinos. Si esta última toma valores muy pequeños, existe
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la posibilidad de que la tasa de desintegración de la doble desintegración beta sin
neutrinos se mantenga experimentalmente inaccesible durante mucho tiempo.

En el Capítulo 4 desarrollamos un modelo de masas de neutrinos capaz de in-
ducir estos dos mecanismos de doble desintegración beta sin neutrinos. Para ello,
nos basamos en las predicciones de operadores efectivos de una teoría efectiva del
modelo estándar (es decir sin incluir nuevas simetrías locales y considerando solo
los campos del modelo estándar) de dimensión nueve que incluyen dos electrones
dextrógiros y varios dobletes de Higgs. Estos operadores, correspondientes a una
escala de nueva física del orden de 1 TeV, generan masas de neutrinos naturalmente
pequeñas a través de diagramas a tres lazos (normalmente conocidos como loops
en inglés), y nuevos mecanismos de doble desintegración beta sin neutrinos por
medio de diagramas a nivel árbol (el correspondiente mecanismo con intercambio
de neutrinos siempre puede generarse insertando la masa generada a tres lazos en el
propagador del neutrino).

El desarrollo del modelo empieza con encontrar un conjunto de escalares capaz de
inducir los operadores de dimensión nueve descritos arriba. En primer lugar consid-
eramos un escalar doblemente cargado que acople con los dos electrones dextrógiros
a través de un vértice renormalizable. Adicionalmente introducimos un triplete es-
calar con hipercarga +2 y un escalar real. Luego, el conjunto irreducible de estos
tres escalares prohíbe la asignación consistente de número leptónico, como es nece-
sario para generar masas de neutrinos de Majorana y la doble desintegración beta
sin neutrinos. Adicionalmente, los elementos de la matriz de masas de neutrinos,
(Mν)ab, son proporcionales al producto de masas de leptones cargados mamb, siendo
a, b = e, µ, τ . Por este motivo, el mecanismo de largas distancias está suprimido
en nuestro modelo, para masas de los correspondientes escalares de nueva física en
la escala del TeV, es decir, accesibles en búsquedas del LHC. Además, esta pro-
porcionalidad implica una jerarquía entre los elementos de la matriz de masas: en
concreto los elementos ee y eµ son mucho más pequeños que el resto de entradas
de la matriz. En la práctica pueden tomarse iguales a cero de tal forma que esta
jerarquía genera una textura de dos ceros para la matriz de masas de neutrinos que
es compatible con los datos experimentales de oscilaciones de neutrinos y que se
estudia en el Capítulo 3.

De esta forma, en el Capitulo 4, desarrollamos todos estos conceptos. Asimismo,
con el uso de técnicas analíticas y numéricas, calculamos las integrales provenientes
de los diagramas de doble desintegración beta sin neutrinos y de la matriz de masas
de neutrinos. Por último, calculamos las contribuciones del modelo a procesos con
violación de sabor leptónico y a búsquedas de materia oscura. El modelo presentado
en el Capítulo 4, al igual que cualquier otro marco teórico, tiene que ser capaz de
explicar los datos experimentales. Al ser un modelo de masas de neutrinos, debe
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ser compatible con los datos de oscilaciones de neutrinos. Si no fuera así, el modelo
es descartado por no poder describir la naturaleza, aunque todavía pudiera tener
interés teórico. En cualquier caso, es el experimento quien marca el camino. Otros
experimentos también pueden ser imprescindibles para poner límites a los posibles
valores que toman los parámetros del modelo, o incluso para excluirlo. Algunos de
estos experimentos incluyen búsquedas de doble desintegración beta sin neutrinos,
medidas de precisión del modelo estándar, búsquedas de materia oscura, búsquedas
de procesos con violación de sabor leptónico o búsquedas directas de escalares en el
LHC. Excepto la última, todas ellas son abordadas en el Capítulo 4. Nos centramos
a continuación, por tanto, en las búsquedas de escalares en el LHC.

Un ingrediente frecuentemente utilizado a la hora de construir marcos teóri-
cos motivados por diferentes propiedades físicas, como son las masas de neutrinos,
son nuevos campos escalares no incluidos en el modelo estándar. De hecho, mu-
chos de estos escalares son comunes a una amplia variedad de modelos de física
de partículas por lo que, independientemente de su motivación particular, es im-
prescindible realizar búsquedas directas en colisionadores de alta energía, como es
el LHC. Volviendo a la generación de masas de neutrinos de Majorana, especial-
mente importantes son los escalares que inducen procesos con violación de número
leptónico. Estas partículas suelen tener acoplamientos renormalizables a pares de
leptones, de tal forma que se les asigne un número leptónico. Luego es posible añadir
nuevos campos y por tanto nuevos términos en el Lagrangiano que rompan explíci-
tamente la simetría de número leptónico. En estos casos, la asignación de número
leptónico al escalar cargado no es consistente y decimos que estos escalares rompen
el número leptónico.

Estos escalares se espera que se encuentren en la escala del TeV (porque típi-
camente aparecen en modelos de masas inducidas a nivel lazo) y se producen en
interacciones electrodébiles dando lugar posteriormente a desintegraciones en lep-
tones. Por tanto, las colisiones de protones del LHC son un buen lugar donde
buscarlos. En el Capítulo 5 discutimos y proponemos nuevas búsquedas de escalares
simple y doblemente cargados en el LHC.

Búsquedas de escalares doblemente cargados (llamados simplemente k) con
acoplamientos a pares de leptones cargados, han sido realizadas en la literatura.
Suelen están basadas en modelos de masas de neutrinos denominados normalmente
como seesaw tipo-II, en cuyo caso k solo se desintegra leptónicamente. Así, la masa
invariante de k es fácilmente reconstruible por lo que constituye un buen observable.
No obstante, en cuanto k tenga otro tipo de interacciones que puedan repercutir en
nuevos canales de desintegración, especialmente con fuentes de energía perdida, la
distribución de su masa invariante se aplana y es más difícil obtener resultados
concluyentes. Para remediar dicha situación, proponemos nuevas estrategias de
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búsqueda con diferentes regiones de señal y distintos observables. A continuación
demostramos la utilidad de esta estrategia en la búsquedas de escalares cargados, por
medio de la aplicación a modelos concretos de masas de neutrinos de Majorana como
son el Zee-Babu y el modelo desarrollado en el Capítulo 4. En concreto, utilizando
simulaciones numéricas, generamos tanto la señal que dichos modelos producirían en
el LHC como el fondo dado por el modelo estándar. Finalmente, estudiamos cómo
de compatible serían la señal de nueva física con el fondo del modelo estándar y
obtenemos perspectivas de restricciones a los parámetros de los modelos estudiados
para las energías y luminosidades de las fases actuales y futuras del LHC.

Además, también se han realizado varias búsquedas de nuevos escalares sim-
plemente cargados (que denominaremos h por brevedad) en el LHC. Típicamente,
están motivadas en contextos de supersimetría, o en modelos para los que el canal
de desintegración dominante incluye un tau y un neutrino (como el modelo de dos
dobletes de Higgs); sin embargo no existen búsquedas con leptones ligeros (elec-
trones y muones) como productos de desintegración de h. A diferencia de los τ ,
estas partículas no hadronizan y pueden ser directamente observadas en los detec-
tores del LHC. En la segunda parte del Capítulo 5 proponemos una búsqueda de h
con leptones cargados ligeros y energía perdida en el LHC, que incluye la estrategia
planteada en la primera parte del capítulo. Finalmente, evaluamos las posibilidades
que tendrían estas búsquedas de restringir los valores permitidos de los parámetros
que aparecen en el Lagrangiano de h.

Por otro lado, una manera diferente de atacar el problema de generación de
masas de neutrinos, y de hecho cualquier problema de física de partículas, es por
medio del uso de teorías efectivas. Este tipo de enfoque asume que procesos a
una energía dada reciben efectos de física a una escala de energía mucho mayor.
Sin embargo, no es necesario conocer los detalles de la física de altas energías (es
decir, qué campos hay exactamente) sino que estos efectos pueden ser descritos por
una serie de operadores efectivos con dimensiones de energía mayores a cuatro. Esta
serie incluye todos los posibles operadores que están construidos utilizando todos los
campos menos masivos que la escala de nueva física, y que son compatibles con las
simetrías del sistema. Para que esto sea posible, es necesario que exista un salto de
energía entre los procesos a bajas energías y los campos de nueva física. Finalmente,
los detalles de la nueva física quedan ocultos en los coeficientes que preceden a cada
operador efectivo y en la escala de nueva física.

La teoría efectiva más simple que es capaz de generar masas de neutrinos in-
cluye únicamente a los campos del modelo estándar. Entonces, el operador efectivo
de menor dimensión, de dimensión cinco, genera masas de neutrinos de Majorana.
En este contexto, operadores de dimensión mayor también dan contribuciones a las
masas de neutrinos de Majorana. El operador de dimensión cinco dará la contribu-
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ción más importante, pero pueden encontrarse modelos cuyos campos sean tales
que el operador de dimensión cinco no exista; en dicho caso, uno tiene que buscar
el operador de menor dimensión que genere las masas de neutrinos.

Sin embargo, también existe la posibilidad de que existan partículas aún descono-
cidas por debajo de la escala de nueva física. Este sería el caso de, por ejemplo, un
neutrino dextrógiro masivo, necesario para inducir masas de Dirac. En tal situación,
cabe imaginar una teoría efectiva que incluya tanto los campos del modelo estándar
así como el nuevo neutrino. A esta teoría efectiva se la conoce como νSMEFT, por
sus siglas en inglés. Igual que antes, los operadores de esta teoría darían nuevas
contribuciones a procesos a bajas energías. Aunque en general estas contribuciones
estarán suprimidas por la escala de nueva física, en muchos casos pueden compararse
con los experimentos. Esto es muy importante porque serviría para buscar señales
de nueva física. Con este objetivo, en el Capítulo 6 ponemos límites a los posibles
valores que pueden tomar los coeficientes de los operadores efectivos y la escala de
nueva física. Los operadores débilmente restringidos (o incluso sin restringir en abso-
luto) podrían indicar nuevas direcciones en donde hallar nueva física. En particular,
nos centramos en los operadores de dimensión seis con cuatro fermiones. Este tipo
de operadores son muy interesantes porque pueden inducir observables que pueden
ser comparados con los resultados experimentales obtenidos en el LHC a partir de
búsquedas de un leptón y energía perdida, búsquedas con solo un jet, además de en
desintegraciones de piones y taus. Para alcanzar dicha finalidad, utilizamos tanto
cálculos analíticos como simulaciones numéricas. Además, algunos de estos oper-
adores también darían nuevas contribuciones a desintegraciones de quarks top. Sin
embargo, estas contribuciones implicarían nuevas señales que no pueden ser anal-
izadas con la metodología hasta ahora utilizada por las colaboraciones del LHC.
Así, proponemos una nueva estrategia, más adecuada para estudiar dichas señales.
Finalmente, utilizando todos los procesos hasta ahora descritos, efectuamos un análi-
sis global con el objetivo de obtener los límites más restrictivos de los parámetros
considerados de la νSMEFT.

En todos estos temas se centra la tesis que sucede a las presentes páginas. En ella
se discuten variadas implicaciones de las masas de neutrinos, con procesos con vio-
lación de número leptónico jugando un rol predominante, y de la figura del neutrino
en general.
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Abstract

Neutrino oscillations constitute the first experimental evidence of new physics. Con-
trary to the prediction of the Standard Model, neutrinos are now well-established as
particles with mass. In this thesis we study four topics related to neutrino masses.
We examine a class of patterns of Majorana neutrino mass matrices, called two-zero
textures, that could lead to the building of the underlying flavour theory. Using a
purely numerical technique, we compare the constraints given by the textures with
the most updated data of oscillation parameters. We find that the most promising
textures are those of class A with normal ordering. Further, we revisit the case
of excluded textures and study the stability of the results when the textures are
only approximate. Then, we present a new model of neutrino masses that is able
to generate an A class texture. Due to the form of the mass matrix, the standard
neutrino exchange mechanism is suppressed; however, a neutrinoless double beta
decay rate large enough to be tested in the near future is induced through a short
range mechanism. Moreover, this model belongs to a broad variety of frameworks
that are based on the interaction of a lepton number violating charged scalar with
light leptons. The signatures of such scalars, often accompanied by missing energy,
are not currently being probed at high-energy accelerators. We propose a search
strategy and examine the prospects for their signatures at the Large Hadron Col-
lider. Finally, we consider the possibility that neutrinos are Dirac particles. In this
context, right-handed neutrinos need to be properly included in the effective field
theory of the Standard Model. Some of the resulting effective operators would show
interesting phenomenological impact that can be addressed with current experimen-
tal data. Furthermore, our results would indicate how further investigations should
be designed in the future in order to test the unbounded operators to shed light on
possible new physics. Accordingly, we propose a new search in the context of rare
top decays.
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CHAPTER 1
Introduction

At the beginning of the 19th century, the Maxwell theory of electrodynamics was
well-established and physicists were taking the first steps towards a quantum de-
scription of the atom and the subatomic particles. The discovery of radioactivity
was originally made by Becquerel in 1896. At first, only two types of radioactive
processes were known. The first one consists of an excited atom that decays into a
state of lower energy by the emission of a gamma particle, which then came to be
established as an energetic photon. The second type occurs when a given atomic
element transits into a more stable element, through the emission of some particle.
Rutherford realised that there were two of these processes, and he classified them
based on the penetration of the emitting particle into target objects: they were
called alpha and beta decays. In alpha decays, the unstable atom emits a particle
(by the time called alpha particle and then identified as the He2+ ion) consisting of
two neutrons and two protons, and hence electrically charged. This process releases
a large amount of energy carried by the alpha particle, making it short-lived and
very ionising. On the other hand, in beta decays there is a nuclear transition from
an element of atomic number Z to one with atomic number Z + 1. In the process,
a so-called beta particle is emitted by the unstable nucleus. Now we know that the
beta particle is no other than an electron or a positron, and thus is more penetrating
and less ionising than the alpha particle.

The beta decay has had a central role in the development of the theory of par-
ticle physics. When experimentalists began measuring the energy of the particles
resulting from a beta decay they found something they did not expect: a continuous
spectrum. Owing to energy conservation, the energy of the daughter particles adds
up to the energy of the original atom. Provided there are only two particles, the en-
ergy of the electron would then be well-defined, and measurements of its distribution
should show a peak. In order to explain this discrepancy, in 1930 Pauli proposes the
existence of a mysterious electrically neutral particle of spin 1/2 that would carry
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this extra energy. A couple of years later this particle was named neutrino.
Particle physicists had to wait until 1956 for the first experimental confirmation

of the existence of the eluding neutrino. But it was not until 1957 that another
shocking discovery took place [1]. Interactions involving neutrinos do not conserve
parity! In other words, only the left-handed component of the neutrino was observed.
Moreover, a right-handed neutrino remains unobserved nowadays.

With these considerations, the four-fermion Fermi theory describing beta decays
was constructed. Earliest versions involved electrons (e), neutrinos (ν), protons (p)
and neutrons (n). The modern expression of the four-fermion interaction involves
quark fields (where u and d are the up-type and down-type quarks, respectively),
which are fundamental particles, in contrast to neutrons and protons, which are
hadronic states. Additionally, in order to describe left-handed fields, it includes
both vector (V) and axial (A) currents.

− LV−A =
GF√
2
[eγµ(1− γ5)νe][uγµ(1− γ5)d]. (1.1)

GF is the Fermi coupling constant, whose expression will be described in the upcom-
ing sections. In 1955, Gershtein and Zeldovich proposed that the Fermi interaction
should also work for explaining the muon decay into electrons and neutrinos [2], and
this is indeed what experiments have found. Subsequent experiments reported the
same behaviour for the tau decay [3]. The universality of the Fermi constant led
physicists to believe there is an underlying symmetry involving the interactions of
these particles. Over time, the mechanism responsible for beta decays and other
processes at subatomic distances became to be known as the theory of the weak
interactions.

The observation of the half-life of the muon decay gives the most precise mea-
surement of the Fermi coupling constant [4]

GF = 1.1663787(6)× 10−5 GeV−2 ≃ 1

(293 GeV)2
, (1.2)

which reveals that the Fermi interaction works for physics up to a scale of∼ 300 GeV.
Nevertheless, despite describing low-energy physics with great accuracy, this model
breaks down at high-energy scales. Within the Fermi theory, the cross section of
weak processes like e−ν̄e −→ µ−ν̄µ grows with the energy, σ ∼ (pe + pν)

2G2
F , where

pe and pν are the four-momenta of the electron and the neutrino, respectively. The
reason for this behaviour is purely dimensional, since GF has dimensions of E−2.
However the cross section describes the probability of a process to happen and it
cannot grow arbitrarily. In other words, the cross section needs to satisfy unitarity
bounds or otherwise the theory falls apart. This became a problem. Thus, in the
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Chapter 1. Introduction

sixties, physicists began a journey to try to find a solution for this puzzle, until they
came up with the gauge theories.

The idea is as follows. When considering the kinetic Lagrangian of some
fermionic field, it can be easily seen that this Lagrangian is invariant under some
redefinition of the field under the action of some symmetry. This redefinition is
induced by some arbitrary phase with no physical meaning. In principle, it can
be anything but, in order for the Lagrangian to remain invariant, it must depend
on the space-time coordinates so that its values in different points are related. We
often say that this transformation is local or gauge. To do so, we must add some
new gauge boson field that carries the information of the phase from some point
in space-time to others. Mathematically, one adds a new term to the derivative
of the field and the shape of this addition is completely determined by the gauge
transformation. The new derivative, called covariant derivative, is invariant under
the gauge transformation and induces the interactions of the gauge bosons with the
fermions.

Physicists promptly realised that U(1) was a symmetry of the Dirac Lagrangian
that describes electrons. They understood that, within this model, the equations of
motion are no others than the Maxwell equations of the electromagnetic interactions.
This allowed them to identify the gauge field as the photon. Furthermore, Noether
Theorem tells us that whenever there is a symmetry of the equations of motion, a
quantity is conserved. This is the electric charge. Of course one needs to include
a kinetic term for the photon field in order for it to be able to propagate, but,
remarkably, a mass term would break gauge invariance. Therefore, a massless photon
is a consequence of the symmetry of the theory.

Despite the success of the quantum description of the electromagnetism (QED),
a larger symmetry was still needed to explain weak interactions and the beta decay.
In 1961, Glashow proposed an SU(2) × U(1) local symmetry, which would unify
the weak interactions with the electromagnetism [5]. Along with the photon of
the electromagnetism, the model introduces two charged vector bosons W± and a
neutral one, Z. These new additions are the mediators of the weak interactions
among left-handed fields. On the downside, this model predicted the fermions to be
exactly massless, as a mass term would break the gauge invariance.

It was not until 1965 that this problem was resolved, when Higgs, Brout, Englert,
Guralnik, Hagen and Kibble [6–10] introduced a mechanism that spontaneously
breaks the symmetry allowing for the generation of masses. This mechanism has
come to be known as the Higgs mechanism. We will further talk about it at the end
of this chapter. Weinberg in 1967, and Salam in 1968 applied the Higgs mechanism
to Glashow’s model [11]. The extension that includes quarks came a couple of
years later [12]. This concludes the modern version of the Glashow-Weinberg-Salam
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theory of the electroweak interactions.
Yet, gauge theories with spontaneous symmetry breaking have ultraviolet diver-

gences. This was an important burden for the electroweak theory and the scientific
community was reluctant to accept the Glashow-Weinberg-Salam model until, in
1971, t’Hooft solved the problem of renormalisation [13]. It became clear that op-
erators with dimension four or less were renormalizable, while those with larger
dimensions had problems at high-energies scales. This clarified the problems with
the Fermi theory and allowed for radiative calculations.

Regarding the theory of hadrons, the first consistent description was the quark
model, proposed independently by Gell-Mann and Zweig in 1964 [14–16]. This clas-
sification implies that quarks, that come in three flavours, carry a new quantum
number called colour. Accordingly, baryons and mesons are combinations of quarks
that make color singlets states. In 1973, Fritzsch, Leutwyler and Gell-Mann devel-
oped the SU(3)c theory of the strong interactions based on new non-abelian gauge
fields (known as gluons) and governed by an universal strong coupling constant [17].
Finally, that same year, Gross, Wilczek and Politzer discovered the asymptotic
freedom, meaning that strong interactions decreases at short distances (and hence
allowing for perturbation calculations) and increases at long distances (confinement
of quarks within hadrons) [18, 19]. This completed the theoretical basis for the
Standard Model (SM) of the electroweak and strong interactions.

At that point, the theoretical predictions of the Standard Model started to guide
the experimental work. The discovery of the muon neutrino [20] was made in 1962,
leaving no doubts about the existence of more than one type of neutrinos. Moreover,
the discovery of the tau lepton in 1975 [21] as well as measurements of the Z boson
decay suggested the existence of a third neutrino [22]. Finally, in 2000, the discovery
of the tau neutrino was announced by Fermilab [23], which allowed to dispose of
three families (also called generations) with the charged leptons and quarks:

(u, d, e, νe)

(c, s, µ, νµ)

(t, b, τ, ντ ).

(1.3)

Each generation is a copy of the original family, with the same quantum numbers,
but with heavier masses. Finally, in 2012, with the discovery of the Higgs boson,
predicted more than 40 years in advance, the Standard Model was completed.
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Chapter 1. Introduction

1.1 The theory of electroweak interactions

Let us start building the theory of electroweak interactions. A theory of fermions
that is invariant under an U(1) gauge symmetry is perfectly able to describe the
electromagnetism, but is not enough for also explaining the weak interactions. On
the other hand, an SU(2) theory would give no massless gauge boson, and we need
one (the photon). So we use the product of these two symmetries, SU(2)L×U(1)Y .
Under the action of the group, a field φ transforms as:

φ(x) −→ UL(x)UY (x)φ(x), (1.4)

where
UL(x) = exp

(
iθi(x)Ti

)
(1.5)

UY (x) = exp
(
iθ0(x)Y

)
(1.6)

are the matrix representations of the SU(2)L and U(1)Y groups, respectively. The
index i runs on i = 1, 2, 3, and we expect a sum among them when repeated. The
parameters θ0 and θi are unphysical phases, while Ti and Y are the generators of
the gauge groups1.

The kinematic part of a renormalizable Lagrangian describing a fermion field,
ψ, follows the Dirac equation and reads:

L = iψ̄γµ∂µψ. (1.8)

However, this Lagrangian is not invariant under gauge transformations. Indeed,
from Eq. (1.4), one can see that the derivative of the field gives two additional con-
tributions:

∂µψ(x) −→ exp
(
iY θ0

)
exp

(
iθiTi

) (
∂µ + iY ∂µθ

0 + iTi∂µθ
i
)
ψ(x). (1.9)

So we need to introduce some new terms that cancel these extra pieces. Because we
have a Lorentz index coming from the partial derivative, the new terms involve new
vector fields, Bµ and W i

µ, transforming as

Bµ −→ Bµ −
1

g′
∂µθ

0 (1.10)

1The generators of SU(2) in the 1/2 representation can be defined as Ti = σi/2, in terms of the
three Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.7)
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1.1. The theory of electroweak interactions

and
Wµ −→ ULWµU

†
L −

1

ig
(∂µUL)U

†
L, (1.11)

where we have defined
Wµ =

σi

2
W i
µ. (1.12)

The parameters g and g′ are called the weak coupling constants and, since they
control the strength of the interactions, are a property of the gauge fields. Now we
can construct a covariant derivative

Dµ = ∂µ + igW i
µTi + ig′Y Bµ, (1.13)

which transforms under SU(2)L×U(1)Y in the same way as ψ in Eq. (1.4). Therefore,
after replacing the partial derivative in Eq. (1.8) with the covariant derivative in
Eq. (1.13), the renormalizable Lagrangian becomes invariant under SU(2)L×U(1)Y
transformations.

Having the covariant derivative in our toolbox, we still need to define the gauge
charges of the fermionic fields. As said above, charged gauge bosons only couple to
left-handed fermions. By making use of the chirality projectors2 we can decompose
the fermion field in its left-handed and right-handed chiral components

ψ = ψL + ψR. (1.18)

We will simply call them the LH and RH components of the fermionic field. Each of
them will correspond to different representations of the gauge group, with definite
quantum numbers. We can then group fields with similar properties together into
multiplets of SU(2)L. In particular, we demand the left-handed fields to be members
of doublets (which requires T3 = 1/2) and the right-handed fields to be singlets
(T3 = 0). Likewise, we let the hypercharge Y take the value that reproduces the

2The chirality projectors are defined as

PL,R =
1∓ γ5

2
(1.14)

and follows the usual properties of projectors:

PLψ = ψL, PRψ = ψR, (1.15)

1 = PL + PR, (1.16)

P 2
L,R = PL,R, PLPR = 0, PRPL = 0. (1.17)
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correct electric charge of each field after the relationship3

Q = T3 + Y. (1.19)

There are five fermionic multiplets in the Standard Model. The lepton fields trans-
form under the SU(2)L × U(1)Y gauge group as follows:

ℓL =

(
ν

e

)
L

∼ (1/2,−1/2), eR ∼ (0,−1), (1.20)

while the quark fields as

qL =

(
u

d

)
L

∼ (1/2, 1/6), uR ∼ (0, 2/3), dR ∼ (0,−1/3). (1.21)

When coupling to gauge fields, each fermion multiplet has a specific covariant deriva-
tive, controlled by the corresponding quantum numbers.

At this point we have everything we need to begin working out the interactions of
the leptons with the weak gauge bosons. To start with, we separate the Lagrangian
into its purely left- and right-handed parts, which for the case of the leptons gives

L = LLL + LRR = i(ℓ̄Lγ
µDµℓL) + i(eRγ

µDµeR). (1.22)

We then plug the expression of the covariant derivative in Eq. (1.22) and expand.
The Lagrangian with the left-handed leptons gives

−LLL =
1

2
ν̄Lγ

µ(gW3µ − g′Bµ)νL −
1

2
(gW3µ + g′Bµ)ēLγ

µeL

+g
1√
2
(ν̄Lγ

µeL)
W1µ − iW2µ√

2
+ g

1√
2
(ēLγ

µνL)
W1µ + iW2µ√

2
.

(1.23)

Neutrinos carry no electric charge and thus cannot couple to photons. Hence, in the
first term, neither W3µ nor Bµ can be identified as the photon field, Aµ. The only
way out is to define a new neutral field, Zµ, to which neutrinos can indeed couple:

Zµ =
1√

g2 + g′2
(gW3µ − g′Bµ). (1.24)

The fields W3µ and Bµ in the neutral sector are connected with the fields Zµ and

3This equation follows from an straightforward rearrangement of the covariant derivative in the
Dirac Lagrangian and then identifying the electric charge Q as the quantum number associated to
the interactions of the fermions with the photon.
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Aµ through a rotation:

W3µ = cos θWZµ + sin θWAµ, (1.25)

Bµ = − sin θWZµ + cos θWAµ, (1.26)

where θW is the weak mixing angle that changes the basis. We will see that Zµ and
Aµ are actually the mass eigenstates. Combining Eq. (1.25) and Eq. (1.26) with
Eq. (1.24) and identifing the coefficients, we find:

g sin θW = g′ cos θW , (1.27)

so that the interaction of the neutrinos with the Z gauge boson is:

− LννZ =
1

2

g

cos θW
(ν̄Lγ

µνL)Zµ. (1.28)

Now, we can investigate the interactions of the electron-positron pair in the purely
left-handed Lagrangian, Eq. (1.23). Plugging in Eq. (1.25) and Eq. (1.26) we find
after some rearranging:

1

2
(gW3µ + g′Bµ) = Aµ

g sin θW + g′ cos θW
2

+ Zµ
g cos θW − g′ sin θW

2
. (1.29)

The electromagnetic interaction of the electon-positron pair with the photon hap-
pens via the electric charge, e. So we can redefine the coupling constants:

e = g sin θW = g′ cos θW (1.30)

and hence the interactions of the left-handed electrons with the gauge bosons become

− LeLeL = (ēLγ
µeL)

[
Zµ

g

cos θW

(
−1

2
+ sin2 θW

)
− eAµ

]
. (1.31)

On the other hand, the interactions of the right-handed electrons with the gauge
bosons are

LRR = i(ēRγ
µDµeR) = iēR(∂µ − ig′Bµ)eR. (1.32)

After changing basis and using the redefinition of the coupling constants, Eq. (1.30),
the interaction terms are

− LRR = ēRγ
µeR

(
g sin2 θW
cos θW

Zµ − eAµ
)
, (1.33)

which of course sets the same electric charge for both chiralities of electrons, as ex-
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pected since electromagnetic interactions are not chiral. This completes the neutral
currents for the leptons.

Finally, let us build up the charged current interactions. From Eq. (1.23) we see
that the last two terms are just the conjugate version of each other. Moreover, they
involve electrons (or positrons) which are electrically charged particles. For these
reasons, we can redefine the fields W1 and W2 into charged gauge bosons, in the
following way

W±
µ =

W1µ ∓ iW2µ√
2

, (1.34)

so that the terms in the Lagrangian do not break the electric charge. With this, the
interactions of the leptons with the charged gauge bosons read

− LeνW =
g√
2
(ν̄Lγ

µeL)W
+
µ +

g√
2
(ēLγ

µνL)W
−
µ . (1.35)

We can repeat the complete procedure for the quarks, obtaining

− Lquarks =
g√
2
(W+

µ j
µ
+ +W−

µ j
µ
−) +

g

cos θW
Zµj

µ
Z + eAµj

µ
A, (1.36)

with the charged currents being

jµ+ = ūLγ
µdL, jµ− = d̄Lγ

µuL, (1.37)

and the neutral currents

jµZ = [ūLγ
µ

(
1

2
− 2

3
sin2 θW

)
uL + ūRγ

µ

(
−2

3
sin2 θW

)
uR

+ d̄Lγ
µ

(
−1

2
+

1

3
sin2 θW

)
dL + d̄Rγ

µ

(
1

3
sin2 θW

)
dR],

(1.38)

jµA =
2

3
ūγµu− 1

3
d̄γµd. (1.39)

1.2 The mass of the gauge bosons

Certainly, we would like the gauge boson fields to propagate and for that we need
to add the corresponding kinetic terms. These are completely fixed by the gauge
invariance. The only quadratic structure available reads

Lkin = −1

4
BµνB

µν − 1

4
W i
µνW

µν
i , (1.40)

where
Bµν = ∂µBν − ∂νBµ (1.41)
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Figure 1.1: (a) Triple and (b) quartic gauge boson self interactions

is the tensor invariant under U(1)Y and

W i
µν = ∂µW

i
ν − ∂νW i

µ − gϵijkW j
µW

k
ν (1.42)

is the object covariant under SU(2)L transformations. After expanding this kinetic
Lagrangian, the gauge boson self-interactions are found (see Figure 1.1). These can
be triple interactions, which always include a W pair and a photon or a Z boson.
No triplet interaction involves only photons and Z bosons, as photons only couple
to charged particles. Finally, there can also be quartic interactions, involving all
types of gauge bosons.

However, a gauge boson mass term would break the gauge invariance. Hence
the gauge bosons seem to be massless. This is a problem, as we know that the weak
interactions are short range interactions.

In order to generate a mass for the gauge bosons we need to somehow break the
symmetry that forbids the mass terms. Let us begin with a set of scalar fields ϕi
that transforms under a continuous gauge group G as

ϕi −→ Uijϕj = exp[iθa(Ta)ij]ϕj
≃ [1 + iθaTa]ijϕj

≃ ϕi + iθa(Ta)ijϕj,

(1.43)

where there is generator Ta for each symmetry of the model. In the second line we
have expanded the transformation for the infinitesimal parameter θa and kept only
the leading terms. In other words, the field ϕi gets transformed by a small shift.

Now consider a potential, V (ϕ), with a minimum v given by the condition

∂V

∂ϕi

∣∣∣∣
ϕ=v

= 0. (1.44)

Whenever there are more than one minimum, the arbitrary choice of one of them
as the ground state makes the symmetry to be spontaneously broken. The selected
ground state v is then called vacuum expectation value (VEV) and may not be
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invariant under the gauge transformation G.
We expect the potential to be invariant under gauge transformations, and then,

for small perturbations, it reads

V (ϕi) = V (Uijϕj) = V (ϕi + iθa(Ta)ijϕj)

≃ V (ϕi) + iθa(Ta)ijϕj
∂

ϕi
V (ϕ) =⇒ (Ta)ijϕj

∂

∂ϕi
V (ϕ) = 0.

(1.45)

Expanding around the minimum ϕ = v:

(Ta)ij
∂ϕj
∂ϕk�

�
�
��>

0
∂V

∂ϕi

∣∣∣∣
ϕ=v

+ [(Ta)ijvj]
∂2

∂ϕi∂ϕk
V (ϕ) = 0 (1.46)

The first term vanishes because of the minimisation condition. Note that an expres-
sion of the form

m2
ij =

∂2V

∂ϕi∂ϕj
(1.47)

would generate a mass term and thus the second term is the product of the action
of the group on the vacuum and a squared mass. When T av = 0, the selected
ground state is still invariant under the gauge transformation and the mass mij is
not necessarily zero. Otherwise, whenever T av ̸= 0, the symmetry is spontaneously
broken by the vacuum and a set of massless scalar modes, called Goldstone bosons,
appears. The number of Goldstone bosons is the same as the number of generators
broken by the vacuum. The unbroken generators are left as the generators of a
remaining symmetry of the theory.

Now we promote the derivative in the kinetic term of the scalar Lagrangian to
be covariant, and upon expansion, it reads

Lkin =
1

2
(∂µϕi)

2 + gAaµ(∂µϕiT
a
ijϕj) +

1

2
g2AaµA

bµ(T aϕi)(T
bϕi), (1.48)

where Aaµ are the (vector) gauge bosons corresponding to the gauge transforma-
tion G. After spontaneous symmetry breaking, the field ϕi acquires a VEV, vi, and
the last term of the previous Lagrangian becomes a mass term for the gauge bosons,

Lmass =
1

2
g2AaµA

bµ(T avi)(T
bvi). (1.49)

Thus, if the VEV does not respect the symmetry, or in other words, whenever
a generator does not annihilates the vacuum, T av ̸= 0, the corresponding gauge
boson acquires a mass. In other words, only the gauge bosons associated with a
generator spontaneously broken by the vacuum are massive.
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1.2. The mass of the gauge bosons

As a result of the invariant nature of the scalar field under the group transfor-
mations, there is always a way to reabsorb the massless modes into a redefinition
of the field. Then, the degrees of freedom apparently lost get eaten by the gauge
bosons, giving them the longitudinal polarisation needed to be massive.

Nevertheless, the unphysical Goldstone modes still affect the physical observ-
ables. At high energy, as a consequence of the gauge invariance of the theory, the
amplitude for a scattering of a gauge boson is equivalent to the amplitude of emis-
sion of absorption of the Goldstone boson eaten by the gauge boson. This is the
Goldstone equivalence theorem.

So let us apply this formalism to the case of the Standard Model. So far we
only had a fermion sector that got accompanied by a set of gauge bosons when the
derivative was promoted to be covariant. We now add a scalar sector with only a
complex doublet,

ϕ =

(
ϕ+

ϕ0

)
, (1.50)

having four degrees of freedom. Under SU(2)L × U(1)Y transformations the scalar
doublet has the following quantum numbers:

ϕ ∼
(
1

2
,
1

2

)
. (1.51)

The gauge invariant Lagrangian describing the scalar sector, up to dimension four,
is given by

L = ∂µϕ
†∂µϕ− V (ϕ), V (ϕ) = m2

ϕ|ϕ|2 + λϕ|ϕ|4. (1.52)

In order to avoid a potential not bounded from below, we let the parameter λϕ take
only positive values. On the other hand, the parameter with dimensions of mass,
mϕ, may be of either sign. If m2

ϕ > 0 the potential has a single ground state at
ϕ = 0 and the system describes a scalar field of mass mϕ. Conversely, when m2

ϕ < 0,
the potential has an infinite number of possible degenerate ground states, which are
apart from the origin by a distance

|⟨ϕ⟩| = v√
2
=

√
−m2

ϕ

2λ
. (1.53)

In this case, there are three fields describing excitations into states with the same
energy as the ground state.

The next step is to spontaneously break the symmetry, which will make the field
ϕ develop a VEV. Due to the freedom of SU(2) rotations, there are multiple ways
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to do this. We want to break the symmetry in the following manner

SU(2)L × U(1)Y −→ U(1)QED, (1.54)

leaving the electromagnetic group as a symmetry of the vacuum and the electric
charge as a conserved quantity. Only the neutral part of the scalar doublet can get
a VEV, or otherwise QED would also be broken by the vacuum, and then

⟨ϕ⟩ = 1√
2

(
0

v

)
, (1.55)

where v is given by Eq. (1.53).
In general, we can parametrise the scalar doublet in terms of a neutral field h

shifted from the origin by the VEV, and three real Goldstone bosons, θi, as follows

ϕ = exp
(
i
σi
2
θi
) 1√

2

(
0

v + h

)
. (1.56)

In this parametrisation, it is straightforward to see that, after expanding the po-
tential in Eq. (1.52), the field h is the only one that gets a quadratic term and
hence become massive, while the three Goldstone bosons remain massless. More-
over, because the Lagrangian is invariant under local SU(2)L transformations, we
can reabsorb the three massless Goldstone bosons into a redefinition of ϕ:

ϕ −→ exp
(
−iσi

2
θi
)
ϕ =

1√
2

(
0

v + h

)
. (1.57)

The remaining physical field, h, is the so-called Higgs boson. When using this
particular parametrisation of ϕ after spontaneous symmetry breaking, we say that
we are working in the unitary gauge. As described above, the three degrees of
freedom, θi, now become the longitudinal polarisation of W± and Z, allowing the
gauge bosons to get a mass.

We can now see how this affects the physical states of the gauge bosons associated
with the gauge symmetries. We promote the derivatives in the kinetic term of the
scalar Lagrangian to be covariant derivatives, and take into account the quantum
numbers of ϕ. After spontaneous symmetry breaking, the piece of the Lagrangian
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1.2. The mass of the gauge bosons

describing the masses of the gauge bosons reads

L =
1

2

(
0 v

)(
−ig

2
W i
µσi −

ig′

2
Bµ1

)(
ig

2
W µ
i σ

i +
ig′

2
Bµ1

)(
0

v

)

=
v2

8

[
g2(W µ

1 − iW
µ
2 )(W

1
µ + iW 2

µ) + (g′Bµ − gW 3
µ)

2
]

=
v2

4

[
g2W+µW−

µ + (g2 + g′2)ZµZ
µ
]
.

(1.58)

In the second step, we have used the change of basis in Eq. (1.24) and Eq. (1.34).
To this extent, we find the masses of the gauge bosons

m2
W =

v2g2

4
(1.59)

and
m2
Z =

v2(g2 + g′2)

4
=

m2
W

cos2 θW
. (1.60)

Hence, the Z boson is slightly heavier than the W boson. Specifically, the ob-
served values of their masses are mW = 80.379 ± 0.012 GeV and mZ = 91.1876 ±
0.0021 GeV [4]. On the other hand, the photon remains massless, as expected.

In addition, from the expression of the Fermi constant, Eq. (1.79), and the mass
of the charged gauge boson, we find the value of the VEV of the scalar field, which
defines the so-called electroweak scale, v ≃ 246 GeV.

Finally, the interactions of the Higgs boson with the gauge bosons can be found
from Eq. (1.58) and the expression of the scalar field ϕ in the unitary gauge, i.e.,
Eq. (1.57). Provided the interacting Lagrangian involves products of the form (v +

h)2 and pairs of gauge bosons, all the following interactions occur: hWW , hZZ,
hhWW , hhZZ.

Moreover, we can plug Eq. (1.57) in Eq. (1.52) and find the Higgs boson self-
interactions, as well as the form of the mass of the Higgs boson. In terms of physical
parameters, the Higgs Lagrangian reads

Lh =
1

2
(∂µh)(∂

µh)− 1

2
m2
hh

2 − m2
h

2v
h3 − m2

h

8v2
h4, (1.61)

where the mass of the Higgs boson is given by

m2
h = −2m2

ϕ = 2λϕv
2. (1.62)

In 2012, the LHC reported the discovery of the Higgs boson [24]. The most updated
value for its mass is mh = 125.10± 0.14 GeV [4].
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1.3 Fermion masses

We now move on to describe the mass of the fermions. The most straightforward
idea one might try is to write a mass term for the electrons as

−meēe = −meē(PL + PR)(PL + PR)e

= −meē(P
2
L + P 2

R)e

= −me(eReL + eLeR).

(1.63)

However, both terms break the gauge invariance, as eR and eL belong to different
representation of SU(2)L. Moreover, they carry different U(1)Y charges. Quark
mass terms suffer the same obstacle. Thus we are not allowed to explicitly write
fermion mass terms.

Another possibility is to generate them dynamically. In the previous section we
have introduced a scalar doublet ϕ with just the correct quantum numbers to couple
to a fermion doublet and a fermion singlet. Indeed, for the case of the leptons,

LY = −yeℓ̄Lϕ eR. (1.64)

Since this is a trilinear interaction, it is called the Yukawa interaction of the elec-
trons with the Higgs doublet. After spontaneous symmetry breaking, the Yukawa
Lagrangian reads

LY = −ye
v√
2
eLeR − ye

1√
2
heLeR. (1.65)

The second term gives the interaction of the Higgs boson with the pair of electrons.
On the other hand, the first term results in a mass term for the electrons, whose
expression is

me = ye
v√
2
. (1.66)

This allows to actually measure the Yukawa couplings in terms of the fermion masses.
Additionally, since the Standard Model has no right-handed neutrinos, we cannot

write a Yukawa interaction that give mass to neutrinos in the same fashion as to
electrons and quarks. So the Standard Model predicts neutrinos to be massless.

We note that, generating fermion masses in this fashion, the Dirac Lagrangian
for the leptons,

L = ℓ̄(iγµ∂µ −m)ℓ, (1.67)

remains invariant under an U(1) symmetry:

ℓ(x) −→ exp(−iLθ)ℓ(x), ℓ̄(x) −→ exp(+iLθ)ℓ̄(x). (1.68)
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1.3. Fermion masses

The associated conserved charge is L and is simply called lepton number. With this
convention, leptons carry L = −1 and antileptons L = 1, while the rest of the SM
particles, L = 0.

Up until now, we have worked with only one generation of quarks and fermions.
But we know there are at least three families. Every member of a new generation
is an exact copy of those of the first family, with the same gauge charges, but with
larger mass. In order to implement this modification we let the fields carry an index
that runs over the three families. With this, the mass terms of the three charged
leptons and the three families of quarks read

Lm = −(ēLaM e
abeRb + ūLaM

u
abuRb + d̄LaM

d
abdRb), (1.69)

where a and b are the indexes running on the three families. Thus, the mass matrices
are not necessarily diagonal and the fields may not be the mass eigenstates. In order
to diagonalise the mass matrix we need to change the basis of the fields with some
unitary transformation. Since the left- and right-handed components are actually
different fields, they will typically transform differently. In general, they follow

ψR −→ Uψ
RψR, ψ̄L −→ ψ̄LU

ψ†
L , (1.70)

where ψ are either leptons or quarks. After this change of basis, we obtain a diagonal
mass matrix upon the following transformation:

MD
ψ = Uψ

LMψU
ψ†
R . (1.71)

There is some freedom to select an appropriate lepton and quark basis, but ulti-
mately the form of the unitary transformations depend on the interactions among
different fields, which are mediated by the W± gauge boson. Recalling Eq. (1.35),

− LI =
g√
2
(ν̄Lγ

µeL + ūLγ
µdL)W

+
µ + h.c. (1.35)

For instance, let us first focus on the unitary transformation for the charged leptons.
We can always choose the mass of the charged leptons to be described by a diagonal
matrix. Then, the lepton bilinear in the first term in Eq. (1.35) gets transformed by

νLeL −→ νLU
e
LeL. (1.72)

However, as there is no neutrino mass term in the Standard Model, we can always
redefine the neutrinos so that they reabsorb the unitary transformation and the
interactions become diagonal in flavour, νLeL −→ νLeL. This situation changes
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when there is new physics describing the mass of neutrinos. We will see more about
this in the next chapters when we address neutrino mixing.

The case of the quarks is different, as in the Standard Model both u- and d-type
quarks are massive. Like for the charged leptons, we are free to choose the u-type
quarks to have a diagonal mass matrix. Then the quarks part of the interaction in
Eq. (1.35) transforms following

ūLdL −→ ūLU
u†
L U

d
LdL. (1.73)

But now we are not able to reabsorb the transformation with a redefinition of the dL
field and the mass matrix of the d-type quarks remains complex and non-diagonal.
Moreover, because in general Uu†

L U
d
L ̸= 1, the change of basis remains as a residue

in the interaction in Eq. (1.35). So we define a new mixing matrix

VCKM = Uu†
L U

d
L =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 (1.74)

called after Cabibbo, Kobayashi and Maskawa [25, 26]. The CKM matrix is unitary
and gives information about the transitions of quarks with different flavours in the
interaction with the W boson:

LI =
g√
2
(ν̄Laγ

µeLa + ūLaγ
µV ab

CKMdLb)W
+
µ + h.c. (1.75)

An n×n unitary matrix has n2 real parameters: n(n−1)/2 moduli and n(n+1)/2

phases. However, many of these phases can be reabsorbed into a redefinition of the
fields. Ultimately, there are (n− 1)(n− 2)/2 phases. With n = 2 families of quarks
and leptons, the CKM matrix is described by only one module, called the Cabibbo
angle. In this case, there is no CP-violating phase. This led physicists to think
there are more than two generations of quarks. After introducing a third family, the
CKM matrix is characterised with three moduli and one phase.

There are several ways of parametrising the CKM matrix. The standard
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parametrisation is in terms of three Euler angles and one phase, and reads

VCKM =

1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e

−iδCP

0 1 0

−s13eiδCP 0 c13


 c12 s12 0

−s12 c12 0

0 0 1



=

 c12c13 s12c13 s13e
−iδCP

−s12c23 − c12c23s13eiδCP c12c23 − s12s23s13eiδCP s23c13

s12s23 − c12c23s13eiδCP −c12s23 − s12c23s13eiδCP c23c13

 ,

(1.76)

where cij = cos θij and sij = sin θij are trigonometric functions of the three angles,
and δCP is the only complex phase in the Standard Model, and thus the only source
of CP violation. The values of the parameters are collected by various experiments
and make use of the unitarity properties of the CKM matrix. The particle data group
collaboration [27] gives the following values for the entries of the CKM matrix:

VCKM =

0.97420(21) 0.2243(5) 0.00394(36)

0.218(4) 0.997(17) 0.00422(8)

0.0081(5) 0.00394(23) 1.019(25)

 , (1.77)

where values in parentheses are uncertainties in the significant figures. We see that
the elements of the main diagonal are much larger than the off-diagonal entries.

Finally, the interactions of the leptons remain diagonal and there is no term in
the Lagrangian connecting different flavours of leptons. For this reason, we often
say that lepton flavour is a global symmetry of the Standard Model. Indeed, lepton
flavour conservation is observed with great precision [4], but it is imperative to
note that this symmetry is no more than an accident of the theory and there is no
strong theoretical argument that leads us to think it cannot be broken by heavier
new physics.

So far, we have been considering neutrinos to be massless. This is a prediction of
the Standard Model and, owing to the elusive nature of neutrinos, a suggestion of the
experiments for long time. But in recent years, there has been plenty of experimental
evidence of neutrino oscillations, which implies not only that neutrinos are massive
but also that they are not degenerated. This opens up a window for processes that
change lepton flavor, the most significant instance of which is the generation of
neutrino masses. We will talk about all this in the next chapter.
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Figure 1.2: Feynman diagrams describing the beta decay within the Standard Model (a)
and the Fermi theory (b). In the second case, the propagator of W+ shrinks to a point,
and the process becomes a contact interaction.

1.4 The Standard Model as an effective field the-
ory

Having outlined the interactions of the fermions with the gauge bosons in the Stan-
dard Model, we can revisit the study of the beta decay. We know that the Fermi
theory describes this type of processes with great precision by means of a four-
fermion operator. However, for large enough energies, this simple model breaks.
The obvious questions are whether the Standard Model is able to handle the beta
decay and if so, what is the connection between the two pictures. Feynman diagrams
within both the Standard Model and the Fermi theory are displayed in Figure 1.2.
In the Standard Model, the relevant piece of the Lagrangian reads

− LW =
g

2
√
2
W−
µ (ēγ

µ(1− γ5)νe) +
g

2
√
2
W+
µ (ūγ

µ(1− γ5)d) + h.c. (1.35)

The total energy of the beta decay is driven by the mass of the neutron, which
lies around 1 GeV. The mass of the charged gauge boson W± is much heavier than
this value and indeed than the momentum q2 = (pu − pd)2 = (pe − pν)2 transferred
between the two fermionic currents. Then, the propagator of W± reduces to a point:

1

q2 −M2
W

= − 1

M2
W

+O(q2/M4
W ). (1.78)

Keeping only the leading term in the 1/M2
W expansion, the resulting Lagrangian is

the V − A four-fermion contact interaction of the Fermi theory,

LF = −GF√
2
[ēγµ(1− γ5)νe][ūγµ(1− γ5)d], (1.1)
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where we have reformulated the weak coupling constant in terms of the Fermi con-
stant as

GF√
2
=

g2

8M2
W

. (1.79)

The Lagrangian in Eq. (1.1) represents a contact interaction among light fields
(in this case, the quarks and leptons) that approximately replaces the non-local
exchanges of a heavy particle (e.g. the W gauge boson) in the complete picture.

The conclusion is that the Fermi theory is what is called an effective field theory
(EFT) of the Standard Model at low energies. The idea is that whenever we are
interested in phenomena at a certain energy, there are objects at much heavier scales
and we might get an approximate but useful picture of the low-energy physics by
ignoring the details of such objects. In particle physics terms, the explicit depen-
dence of those particles too heavy to be produced can be left out of the Lagrangian
describing long-distance physics, and we often say that in an effective field theory
they have been integrated out. However, the influence of the removed heavy degrees
of freedom remains hidden in the new coupling constants, as seen in Eq. (1.79).

So far we were focusing on one specific effective operator, namely, the Fermi
interaction. We can generalise this framework and list all possible operators con-
structed with a set of fields and respecting some chosen symmetries, at any energy
dimension d. For a field theory in four dimensions, the general effective Lagrangian
reads

L =
∞∑
n=2

1

Λn−4

∑
i

αiO(n)
i , (1.80)

where Λ is a heavy scale associated with the operator O, and α is some coupling
constant that is taken to be dimensionless. For every dimension, these operators
will have different influence on physical phenomena, depending on the energy scale
E of the process described by these operators.

First, operators of dimension d = 4, like some interactions in the Standard
Model, are equally relevant at all energy scales. For dimension less than four, like
mass terms, the corresponding operators are relevant at scales similar to the mass
of the particles involved; at high energies their influence rapidly become negligible.

For d > 4, the effects of the contact interactions are suppressed by the scale of the
heavy physics, which makes them weak at low energies. If the energy gap between Λ

and the energy scale E is arbitrarily large, their effects would be negligible. In fact,
the great success of the Fermi theory is only due to the lightness of the W gauge
boson; if MW was much heavier, beta decay would remain unobserved.

In fact, when Λ is much larger than E and the influence of higher dimensional
operators are suppressed by powers of E/Λ, we can build an EFT that is renormal-
izable using only operators of dimension less or equal to four.
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Following this idea, we can describe the Standard Model as an EFT constructed
out of all operators of dimension four or less, invariant under SU(3)c × SU(2)L ×
U(1)Y , with the fermion fields of Eq. (1.3), the gauge bosons associated with these
symmetries, and the Higgs boson. The Standard Model has become a remarkably
successful EFT describing physics below the TeV scale. However, we know it is not
the complete picture because it fails to provide a theoretical interpretation for the
experimental evidence regarding dark matter and neutrino masses.

In order to tackle these problems in the context of an EFT, we can go further
and consider operators of higher dimensions. If we restrain to a framework with
the same local symmetries and field content of the Standard Model, the EFT that
generalise the Standard Model is called the Standard Model Effective Field Theory
(SMEFT). The fundamental assumption is that there is some degree of decoupling
of the new physics particles with the SM fields. Then, the relevant scale of new
physics will be above the electroweak scale, given by the VEV of the SM Higgs
doublet. In fact, this decoupling is strongly suggested by the increasingly large data
set collected by the LHC and other experiments.

A complete basis of independent operators of the SMEFT can be found in
Ref. [28] for dimension five (in fact, there is only one dimension-five operator, often
called Weinberg operator), in Ref. [29] for dimension six and in Ref. [30] for dimen-
sion seven. It is important to note that when looking for these operators, one can
come upon redundancies, which can be handled with the aid of equations of motion,
integration by parts or Fierz transformations. In recent years a systematic approach
was developed to find all operators at a given order [31–34]. Of particular interest is
Ref. [34], in which authors obtained that this algorithm can be programmed, making
it very appealing for practical uses.

To sum up, unless a new particle lighter than the electroweak scale is found, the
SMEFT is a powerful framework for approximately describing low energy phenom-
ena. The great amount of empirical information obtained by the LHC, along with
current and future precision measurements, can be used for setting bounds on the
parameters of the effective operators. Moreover, if any of these local interactions is
found to be consistent with data, it could become a building block of an ultraviolet
completion of the Standard Model. The SMEFT will play an important role in the
development of this thesis.
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CHAPTER 2
Neutrino masses

Before the development of the Standard Model, the following main characteristics
of neutrinos were known:

• Neutrinos interact very weakly with matter. This makes observations of neu-
trinos extremely hard.

• Neutrinos are very light, so light that for long time they were thought to
be massless.

• Only two degrees of freedom of neutrinos were ever observed: one particle-
state that behaves like a left-handed object and an antiparticle counterpart
corresponding to a right-handed object.

So it was natural that, when building the Standard Model, physicists included solely
a left-handed neutrino and its antiparticle counterpart. Within this framework,
neutrinos do not have a mass, in agreement with the experimental knowledge at
the time. From a purely theoretical perspective, however, this was cumbersome
because there is no strong reason (e.g. a fundamental symmetry, like in the case of
the photon) to force neutrinos to be massless. But then neutrino oscillations were
observed, and this is only possible if neutrinos are massive: now neutrino mass is a
fact, with no controversy among the scientific community. This opened up plenty
of new physics possibilities.

The first attempt to explain neutrino masses consisted in considering neutrinos
to have four degrees of freedom, in similarity with the electron. The two extra
degrees of freedom would correspond to an additional right-handed neutrino. Then,
just as in the Standard Model, the Higgs mechanism would make neutrinos massive.
Moreover, this would put neutrinos in a similar footing to the rest of the fermions
in the Standard Model. Not only they would have the same number of degrees of
freedom, but also the generation of masses would be given by the same mechanism
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for all fermions. However, there is still an important difference that makes physicists
struggle: neutrinos seem to be much lighter than the other fermions. Any theory that
is proud of generating neutrino masses needs to explain the smallness of neutrino
masses in a convincing way, and a model that adds only a right-handed neutrino
fails to do so without proper fine-tuning.

Another possibility for generating neutrino masses consists in giving up on de-
manding neutrinos to have four degrees of freedom. Neutrinos are fundamentally
different from the charged leptons and quarks, as they are electrically neutral par-
ticles. Because of this reason, it is possible to generate Majorana neutrino masses
without the inclusion of new neutrino degrees of freedom. However, further ingre-
dients are still needed. In any case, and irrespective of the mechanism inducing the
Majorana masses, it is worth pointing out that lepton number would no longer be a
good symmetry. This would have interesting consequences regarding lepton number
violating (LNV) processes.

In this chapter, we will briefly review some of the implications of the mass
of neutrinos.

2.1 Dirac or Majorana nature?

The lowest-dimensional faithful irreducible representations of the Lorentz group,
SU(2) × SU(2) are the two-dimensional ψL chiral field and its conjugate counter-
part ψcL1. They are called Weyl spinors and describe massless fermions. The goal is
to build Lorentz invariant mass terms using chiral fields.

One possibility is to consider only one independent chiral field. Then, we can
construct only one type of mass terms, called Majorana mass terms, following:

Majorana: ψcLψL + ψLψ
c
L. (2.1)

The bilinears in the previous equation relate two particle states (or two antiparti-
cle states), forbidding the conservation of any global symmetry. For this reason,
only electrically neutral fermions, such as neutrinos, can have Majorana masses.
Furthermore, following the same argument, we see that fermion number cannot be
conserved either. This feature is expected: an observer travelling faster than a ψL
will see it as its right-handed counterpart, ψcL, which is an antiparticle state. In this
scenario, fermion number, which is the only symmetry that could help distinguish-
ing ψL from ψcL, cannot be established. The conclusion is that Majorana fermions
are their own antiparticle. Finally, the mass eigenstates are two-component fields,

1The conjugate of a field ψ is defined as ψc = Cψ̄t, where C = iγ2γ0 is the charge conjugation
operator.
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called Majorana fields, given by ψ = ψL + ψcL.
The second possibility is that the mass terms are built using two independent

chiral fields, ψL and ψR. Then, two sets of mass terms can arise: those obtained
with only one chiral field (and its conjugate), which are Majorana mass terms, and
those realised using the two distinct chiral fields. The latter are called Dirac mass
terms and read:

Dirac: ψLψR + ψRψL. (2.2)

If only Dirac masses are present, global symmetries can be conserved. Then, fermion
number can be assigned to fermions in a consistent way. In this case, the mass
eigenstates are four-component fermions, defined by ψ = ψL + ψR. They are called
Dirac fields.

Either of these two formalisms allows a description of neutrino masses. However,
in similarity to quarks and charged leptons, the addition of neutrino mass terms
(both Dirac and Majorana) breaks the gauge invariance of the Standard Model.
Dirac neutrino masses can be generated by the Higgs mechanism, and thus including
a right-handed neutrino that acts as the right-handed component of the SM neutrino
would be enough to induce neutrino masses. However, Majorana masses cannot be
obtained in the same way, and new ingredients are needed (for instance, the inclusion
of additional heavy fields that at low energies generate effective Majorana mass terms
after spontaneous symmetry breaking).

2.2 Flavours in the neutrino mass matrix
In this section we describe the implications of the existence of three families of
neutrinos for the neutrino mass matrix. Let us begin with the general Lagrangian
involving charged leptons and neutrinos:

L = −(Mℓ)abℓ̄aℓb − (Mν)abν̄aνb −
g√
2

[
W−
µ

(∑
ab

ℓaγ
µPLνb

)
+ h.c.

]
. (2.3)

where Mℓ and Mν are the 3 × 3 lepton and neutrino mass matrices, respectively.
Throughout the text, sometimes when referring to specific matrix elements of the
neutrino mass matrix we will simply write Mab (instead of (Mν)ab).

The subindices a, b denote interaction eigenstates and need not correspond to
the mass eigenstates, as there is no reason for Mℓ or Mν to be diagonal matrices.
However, one can diagonalise the lepton mass matrix without loss of generality.
This transformation can then be reabsorbed in a redefinition of the ν field, in the
weak interaction terms. But then there is no longer freedom to diagonalise Mν

as in general the two mass matrices are different; it seems Mℓ and Mν cannot be
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2.2. Flavours in the neutrino mass matrix

simultaneously diagonal and one of them will introduce mixing among its fields.
(Of course one could always choose to make the neutrino mass matrix diagonal at
the expense of charged lepton mixing. The convention is to keep the lepton basis
diagonal and let neutrinos mix. Here we follow this approach.)

In order to find the physical basis for neutrinos, we rotate them with

νa =
∑
i

Uaiνi. (2.4)

The neutrinos νa (with a = e, µ, τ) are expressed in the flavour basis (also called
interaction basis) whereas νi (with i = 1, 2, 3) correspond to the mass basis. The
matrix U ≡ UPMNS is often called Pontecorvo–Maki–Nakagawa–Sakata matrix.
Then, the weak interaction terms in Eq. (2.3) become:

Lint =
g√
2
W−
µ

(
e µ τ

)
γµPL UPMNS

 ν1

ν2

ν3

+ h.c. (2.5)

From here we can start to find a parametrisation for the leptonic mixing ma-
trix UPMNS. With n = 3 lepton flavours, UPMNS is a 3 × 3 unitary matrix and,
as such, it has n2 = 9 real parameters, with n(n − 1)/2 = 3 Euler angles and
n(n+ 1)/2 = 6 phases. Then, it can be described by

UPMNS = Pℓ V Pν , (2.6)

where Pℓ = diag(eiϕe , eiϕµ , eiϕτ ) carries three phases and Pν = diag(eiα/2, eiβ/2, 1),
two phases. The form of the last matrix will be obvious in a moment. Also, assuming
unitarity, the V matrix can be parametrised by rotations in three planes:

V =

 1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e

−iδ

0 1 0

s13e
−iδ 0 c13


 c12 s12 0

−s12 c12 0

0 0 1



=

 c12c13 c13s12 s13e
−iδ

c23s12 + s23s13c12e
−iδ c23c12 + s23s12s13e

−iδ c13s23

c23c12e
−iδ − s23s12 c23s13s12e

−iδ − c12s23 c13c23

 , (2.7)

where δ is a CP-violating phase and s23 ≡ sin θ23, s13 ≡ sin θ13 and s12 ≡ sin θ12 are
three Euler angles.

Now, if we go back to the interaction term of the Lagrangian in Eq. (2.3) and plug
in the expression for UPMNS we see that Pℓ can be rotated away by a redefinition of
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the charged lepton fields, 
e −→ e−iϕe e

µ −→ e−iϕµ µ

τ −→ e−iϕτ τ.

(2.8)

so that the PMNS matrix becomes

UPMNS = V Pν . (2.9)

The Dirac or Majorana nature of neutrinos did not play any role in this discussion
yet. If neutrinos are Dirac, then the two phases in Pν can also be reabsorbed by the
ν fields in the same way as in Pℓ, leaving three angles and only one CP-violating
phase. In this case, UPMNS is identically equal to V . However, if neutrinos are
Majorana, the phases in Pν cannot be rotated away. This is because the effective
Majorana mass term is not invariant under a redefinition of the phase, ν −→ e−iϕν:

Mννcν −→ e−i2ϕMννcν. (2.10)

Because of this reason, for Majorana neutrinos there are still three phases. Now,
UPMNS = V Pν with three angles, one Dirac phase, δ, and two Majorana phases, α
and β2.

Finally, δ cannot be included in Pν . This is because a redefinition of all the
phases by a constant will leave the UPMNS matrix invariant; one of them is not
independent and can be always eliminated by a redefinition. Indeed, imagine we let
the Dirac phase δ to be part of Pν . Then UPMNS is written as

UPMNS =

 eiϕe 0 0

0 eiϕµ 0

0 0 eiϕτ

V

 e−iα 0 0

0 e−iβ 0

0 0 e−iδ

 . (2.11)

But if we shift all the phases by the same constant, UPMNS remains the same. We

2Note that δ is called ‘Dirac phase’ because it is the only phase remaining if neutrinos are Dirac;
similarly, α and β are the ‘Majorana phases’ as they are only present when neutrinos are Majorana.
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can choose this constant to be one of the six phases, in this case δ:

UPMNS =

 ei(ϕe−δ) 0 0

0 ei(ϕµ−δ) 0

0 0 ei(ϕτ−δ)

 e+iδV e−iδ

 e−i(α−δ) 0 0

0 e−i(β−δ) 0

0 0 e−i(δ−δ)



=

 eiϕ
′
e 0 0

0 eiϕ
′
µ 0

0 0 eiϕ
′
τ

V

 e−iα
′

0 0

0 e−iβ
′

0

0 0 1

 .

(2.12)

One of the phases is now gone and we redefine the remaining five phases which are
now independent. But a 3× 3 unitary matrix is parametrised with six independent
phases, and hence one of them has to be inside V , which reduces to three Euler
angles and one CP-violating phase.

We have constructed the mixing matrix for neutrinos. Now we can again focus
our attention on the mass matrix. We need to distinguish two different scenarios:
Dirac and Majorana masses. For Dirac neutrinos the two chiral fields are different
degrees of freedom. In order to build a mass term using Dirac neutrinos one needs
both right- and left-handed neutrinos. Then:

L = −(Mν)ab νaLνbR, (2.13)

where neutrinos are in the flavor basis, and of course Mν is not diagonal. Now we
want to find the physical eigenstates of neutrinos so we change basis with Eq. (2.4).
The mass matrix transforms as

Mν −→ UPMNSM
D
ν U

†
PMNS, (2.14)

where MD
ν is a diagonal matrix. For Dirac neutrinos, the mass matrix is hermitian.

What happens when neutrinos are Majorana? In this case, RH neutrinos are not
independent degrees of freedom. The mass Lagrangian is built using the neutrino ν
and its charge conjugate counterpart, νc:

L = −1

2
(Mν)abνaν

c
b + h.c. (2.15)

If we plug the transformation (2.4) in the last equation we find that the mass matrix
is diagonalised by

Mν −→ UPMNSM
D
ν U

t
PMNS. (2.16)

Now it is clear that the Majorana mass matrix is not hermitian. However Mν is
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symmetric, (Mν)
t =Mν , and out of its 9 complex parameters (18 real parameters),

only 6 are independent (12). After rotating away the three charged-lepton Dirac
phases we are left with 9 real parameters; they are those of the Majorana neutrino
PMNS mixing matrix (three angles, one Dirac phase and two Majorana phases) and
the three physical masses.

Experimentally, neutrino masses are not easy to measure. Instead, via neutrino
oscillation, neutrino mass differences (∆m2

ij = m2
i − m2

j) are observed so a good
idea is to change the independent parameters of the diagonal mass matrix to be
the mass of the lightest neutrino (hereafter called mℓ for lightest) and two mass
differences. Another experimental issue is that we are still missing information
regarding the correct hierarchy among the masses. One of the mass differences
(∆m2

21) is currently well known, while for the other (∆m2
3i) only the modulus is

constrained but not its sign. Two different scenarios arise. When m1 < m2 < m3

holds, the mass ordering is called normal (NO, with ∆m2
32 > 0), while if neutrino

masses are such that m3 < m1 < m2, then they have an inverted ordering (IO, with
∆m2

31 < 0).

2.3 Implications of neutrino masses

The existence of non-vanishing neutrino masses has interesting phenomenological
implications. Here we review some of the most important ones.

Neutrino oscillations

This is the most obvious consequence of neutrinos being massive, and the first
(and only) experimental confirmation of this feature. As a result of the charged
current weak interactions, three flavour states of neutrinos interact with the charged
leptons. Each of these flavour states is a superposition of different mass eigenstates.
As the neutrino propagates through space, the physical states evolve with different
frequencies so that the probability of detecting a given neutrino flavour changes with
time.

The time evolution of the flavour state νa, which is superposition of the physical
states νi, reads:

|νa(t)⟩ =
∑
i

e−iEit Uai|νi⟩, (2.17)

where the energy of the i mass eigenstate is given by

Ei =
√
|p⃗i|2 +m2

i ≈ |p⃗i|+
m2
i

2|p⃗i|
≈ E +

m2
i

2E
. (2.18)
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We have made the approximation for relativistic neutrinos, |p⃗i| ≫ mi, and |p⃗i| = E,
where E is the total energy of the neutrino. With this, the evolution of νa after a
time t = T is

|νa(t = T )⟩ =
∑
i

e−i
m2

i T

2E Uai|νi⟩, (2.19)

where the phase e−iET has been dropped that is common to all νi, because ob-
servables are not sensitive to it. Then, the probability for a neutrino with original
flavour a to be detected with flavour b, after a time t = T , reads

Pab = |⟨νb(t = T )|νa⟩|2 =
∑
ij

UbjU
∗
ajU

∗
biUaie

−i
(m2

i−m2
j )T

2E . (2.20)

It depends on the parameters entering the neutrino mixing matrix and the differ-
ences of squared masses which, for three families of neutrinos, there are only two.
Moreover, in Pab the Majorana phases disappear; neutrino-neutrino oscillations give
no information regarding Majorana phases.

Currently, there are several neutrino oscillation experiments. Some of them look
for disappearance of νe neutrinos produced in nuclear reactions in the sun (e.g.
Super-Kamiokande [35]). Other experiments detect the probability of νµ disappear-
ance from neutrinos originated after collisions of cosmic rays with atmospheric par-
ticles (for instance Super-Kamiokande [36], IceCube [37]). Finally, there are experi-
ments that use neutrinos obtained from nuclear reactors (Daya Bay [38], RENO [39],
Double Chooz [40]) and particle accelerators (T2K [41], MINOS [42], NOνA [43]).
In Table 2.1 we present the current experimental status of three-flavour neutrino
oscillation parameters.

Normal Ordering Inverted Ordering (∆χ2 = 10.4)

sin2 θ12 0.31+0.013
−0.012 0.31+0.013

−0.012

sin2 θ23 0.563+0.018
−0.024 0.565+0.017

−0.022

sin2 θ13 0.02237+0.00066
−0.00065 0.02259+0.00065

−0.00065

δ/◦ 221+39
−28 282+23

−25

∆m2
21

10−5 eV 7.39+0.21
−0.20 7.39+0.21

0.20

∆m2
3ℓ

10−3 eV +2.528+0.029
−0.031 −2.510+0.030

−0.031

Table 2.1: Best fit values of the oscillation parameters and their ±1σ uncertainties
obtained with the global analysis performed by the nuFIT collaboration [44]. In the
last row, ∆m2

3ℓ = ∆m2
31 > 0 for NO while ∆m2

3ℓ = ∆m2
32 < 0 for IO. Values of IO are

disfavoured respect to those of NO with ∆χ2 = 10.4.
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Neutrinoless double beta decay

Similar to conventional double beta decay, neutrinoless double beta decay (0νββ)
involves a simultaneous conversion of two neutrons into two protons and the emission
of two electrons. However, in this case, the neutrinos emitted by the two beta decays
are reabsorbed. Then,

0νββ : n+ n −→ p+ p+ e+ e. (2.21)

This is only possible if neutrinos are Majorana as, in this case, particle and antipar-
ticle are the same object. Further, because the final products of this process involve
two electrons, it breaks lepton number in two units, which is forbidden for Dirac
neutrinos. For this reason, an observation of 0νββ would undoubtedly lead to the
confirmation of the Majorana nature of neutrinos.

This process could also shed light on the scale of neutrino masses. Because it
involves interactions of electrons and the three families of neutrinos, this processes
is also sensitive to the following observable:

mββ =

∣∣∣∣∣∑
i

U2
ei mi

∣∣∣∣∣ . (2.22)

This observable can also be identified withMee, the eematrix element of the neutrino
mass matrix. But the form of this matrix entry receives restrictions from oscillation
data, so that, for a given range of values, it correlates with the mass of the lightest
neutrino. The conclusion is that detecting 0νββ could also give information about
the mass of the lightest neutrino.

Neutrino decays

In the Standard Model, neutrinos are massless and hence stable particles. As soon
as neutrinos become massive, they start to decay into lighter particles, given that
there is no symmetry that forbids it. Heavier neutrinos would decay into lighter par-
ticles, while only the lightest neutrino would be stable. Depending on the particular
framework considered, different decay modes could occur in nature. One possibility
is a loop-mediated decay channel with a two-body final state involving a photon and
a light neutrino:

νa −→ νbγ. (2.23)

In some contexts, in which heavier neutrinos are included, three-body final states
also become possible, including:
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• two light jets and a light neutrino:

νa −→ νbuū, νbdd̄, (2.24)

• two light jets and a charged lepton:

νa −→ eud̄, (2.25)

• and three lighter neutrinos:

νa −→ νbνcνd. (2.26)

2.4 Generation of neutrino masses

With the purpose of illustrating how neutrino masses can be generated, we will
restrict to scenarios preserving the local symmetries of the Standard Model, provided
so far there is no evidence of new fundamental forces. The SM local group fixes only
the gauge bosons of the framework, while the fermion and scalar contents have to
be chosen somewhat arbitrarily. Then, one can conjecture extra fermions or Higgs
bosons so that the new physics model predicts massive neutrinos.

2.4.1 Right-handed neutrinos

The Standard Model contains left- and right-handed components of all fermions
except neutrinos. One can choose to include right-handed neutrinos N (with n fam-
ilies), so that the chirality of neutrinos behaves in a similar manner as for the rest of
the SM particles. Only left-handed particles take part of the weak interactions, and
thus N must be a singlet under SU(2)L. Moreover, because neutrinos are chargeless,
N would also be a singlet under U(1)Y . In summary, N has no renormalizable inter-
actions with the SM gauge bosons; we say that it is a sterile neutrino (accordingly,
the SM neutrinos are also known as active neutrinos).

The main aspect of insisting on treating N in the same footing as the rest of the
SM fermions is that it allows us to generate neutrino mass terms through the Higgs
mechanism. Indeed, when N is included in the field content, the following Yukawa
interaction takes place:

L = −f ℓLϕ̃ N + h.c., (2.27)

where families indices have been omitted for simplicity, f is a Yukawa coupling
matrix and ψ̃ = iσ2ψ

∗. After spontaneous symmetry breaking, the SM doublet
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develops a VEV and a Dirac mass term for the neutrinos is dynamically induced:

MD = fv. (2.28)

Moreover, we can also write a Majorana mass term, that reads:

Lbare = −
1

2
MM NN c, (2.29)

where MM is a bare mass matrix. Once again we have omitted families indices.
Consequently, the neutrino mass matrix becomes

Lmass = −
1

2

(
νL N c

)( 0 MD

M t
D MM

)(
νcL

N

)
. (2.30)

After diagonalisation, 3+n Majorana eigenvalues appear3. In the particular case in
which MM ≫ MD, the masses of the active neutrinos are given by m1 ≈ M2

D/MM ,
which of course is very suppressed, while heavy neutrinos have a mass m2 ≈ MM .
Because a heavy MM pulls down the masses of the active neutrinos while rising
the masses of the sterile neutrinos, this mechanism is commonly known as seesaw.
(There are several seesaw models; the one just described is referred as type-I [45–
47]).

Depending of the values of the Majorana mass matrix, several scenarios arise.
MM ∼ 1014 GeV leads to very heavy sterile neutrinos, but the mass of the ac-
tive neutrinos (which should be below the eV scale) are obtained with MD at the
electroweak scale (that is, Yukawa couplings of order 1).

On the other hand, MM can also lie at or below the electroweak scale if the
Yukawa couplings f are very fine-tuned (for instance, MM = 100 GeV would require
f ∼ 10−7). In that case, the sterile neutrinos could be at the reach of the LHC or
even low energy experiments. In fact, several anomalies in short-baseline oscillation
experiments have been reported (see Ref. [48] for a review), which could lead to the
existence of a sterile neutrino in the eV range [49].

Finally, MM could be zero. Then, if n = 3, neutrinos are Dirac particles because
the right-handed neutrinos could be combined with the left-handed neutrinos to form
Dirac spinors. This means that there are no additional particles in the model, but
rather N constitute the right-handed components of the SM neutrinos. There would
be only three neutrinos and MD would describe their mass. In this scenario, the
Yukawa couplings f need to be very suppressed (f ∼ 10−12) so that the eigenvalues

3Each N gives mass to a left-handed neutrino, which implies that at least n = 2 families of N
are needed in order to reproduce the observed values of the neutrino mass splittings. In that case,
the lightest active neutrino would be massless.
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of MD are lighter than 0.1 eV. However, for the moment there is no fundamental
reason, like a gauge symmetry, forbidding an explicit Majorana mass term.

2.4.2 Adding scalar fields

Without adding new fermionic degrees of freedom, we cannot generate Dirac neu-
trino masses, and only Majorana masses are possible.

Let us begin studying this scenario within an EFT framework. In Chapter 1
we constructed an effective theory with the SM field content and local symmetries,
called SMEFT. However, in the Standard Model there is no actual theoretical ar-
gument to enforce the global symmetries, like lepton or baryon number; they were
there just by accident. So, unless someday we come upon a strong reason for keep-
ing global symmetries, we might as well avoid them when considering the possible
operators of the SMEFT. As a matter of fact, the only dimension-five effective inter-
action given by the SMEFT breaks lepton number in two units [28]. This operator,
now called Weinberg operator, involves a lepton bilinear and two units of the SM
Higgs doublet:

O(5)
W = (ℓ̃Lϕ)(ϕ̃

†ℓL). (2.31)

More importantly, the Weinberg operator generates a neutrino mass. In this context,
neutrinos are predicted to be Majorana-type.

Of course, this effective Lagrangian can be realised with an appropriate enlarge-
ment of the scalar sector. Just as an illustration, here we restrict to simple models
introducing only one scalar that breaks lepton number. In order to give the scalars
some lepton number, we need them to couple to a lepton bilinear. But the only lep-
ton bilinears with a net quantum number are those composed by either two leptons
or by two antileptons, otherwise they will carry a vanishing lepton number. Hence,
there are two possibilities. First, by making use of left-handed leptons, transforming
under SU(2)L × U(1)Y as

ℓLℓL ∼ (1/2,−1/2)× (1/2,−1/2) = (0,−1) + (1,−1), (2.32)

we see that we can couple a singly-charged singlet or a triplet, both with hyper-
charge +1. On the other hand, if we consider right-handed charged leptons we get
a lepton bilinear that transforms as

eReR ∼ (0,−1)× (0,−1) = (0,−2). (2.33)

This lepton bilinear can couple with a doubly-charged singlet.
For instance, the addition of a triplet leads to the scenario commonly known as
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seesaw type-II [50–54]. The Yukawa interactions with leptons reads

L = −fab ℓ̃La χ ℓLb + h.c., (2.34)

where the triplet χ is in its 2 × 2 matrix representation and the Yukawa coupling
fab is symmetric. Because of this interaction, χ carries a net lepton number. The
potential is given by:

V = −m2
ϕ|ϕ|2 +m2

χTr(χ†χ) + λϕ|ϕ|4 + λχTr(χ†χ)2 + λ′χTr[(χ†χ)2]

+λϕχ|ϕ|2Tr(χ†χ) + λ′ϕχϕ
†χχ†ϕ+ (µϕ†χiσ2ϕ

∗ + h.c.).
(2.35)

After spontaneous symmetry breaking, not only the SM scalar acquires a VEV, but
also does χ; we denote the VEV of the triplet by vχ. In particular, vχ breaks lepton
number in two units and induces a Majorana mass term through Eq. (2.34):

M = fab
vχ√
2
. (2.36)

Interestingly enough, because of the trilinear term in the potential, vχ can be ex-
pressed in terms of v with vχ = µv2/m2

χ. Accordingly, this simple model would
explain the smallness of neutrino masses when the triplet is massive enough. For
µ ∼ 1 TeV and fab ∼ 1, the mass of the triplet should be above the 108 GeV scale,
but this would make it well beyond the reach of current experiments.

2.5 Open questions regarding neutrino masses
The thesis presented in these pages attempts to account for several implications of
the massive nature of neutrinos.

The most straightforward topic is related to the mechanism responsible for giving
a mass to neutrinos. A great amount of models have been designed for this purpose
but they typically include new fields or fundamental symmetries of nature; so far
none of them has been experimentally confirmed. Moreover, although we know
neutrinos are massive, we are still lacking of a precise numerical characterisation of
the variables of the neutrino mass matrix, namely the neutrino mixing parameters.
While measurements of some of these parameters are rapidly being improved, others
still show large uncertainties or are even completely undetermined. Such is the case
of the mass of the lightest neutrino and, if neutrinos are Majorana, the two Majorana
phases.

A more complete knowledge of the numerical values of the entries of the neutrino
mass matrix would lead to possible realisations of the underlying flavour theory.
Therefore, instead of building new models, one could adopt a more modest approach
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and look for patterns of neutrino masses; these would then give relations among the
neutrino mixing parameters that could be tested in the laboratory. Among the
various patterns one could imagine, Majorana mass matrices with some vanishing
entries, called textures zeros, show interesting prospects. We study the case of
textures with two zeros in Chapter 3.

Another fundamental question that needs to be addressed is whether neutrinos
are Majorana particles. The experiment that is able to test this possibility searches
for neutrinoless double beta decay. In its simplest realisation (within the SMEFT
framework), the neutrino emitted by one beta decay is reabsorbed as an antineutrino
by the other beta decay; this is only possible if the chirality is flipped in mid flight,
and this implies that the process is proportional to the neutrino mass, which might
be very suppressed. In fact, the inverse relation is also true: if neutrinoless double
beta decay is observed, a Majorana mass term can always be generated at the
quantum level with a 0νββ-like diagram [55]. In Chapter 4 we build a model of
neutrino masses, with the aim of inducing a testable neutrinoless double beta decay
rate. The new ingredients, introduced by the model, consist of additional scalars,
one of which is responsible for breaking lepton number.

In fact, multiple models of Majorana neutrino masses are based on new LNV
scalars. The simplest instances of these models, like seesaw scenarios or the Zee-
Babu model, require scalars whose quantum numbers are determined by how they
couple to the SM lepton bilinears. In some cases, these interactions give signatures
so far not explored at particle colliders. In Chapter 5 we study the prospects for new
strategies designed for probing singly- and doubly-charged LNV scalars at the LHC.

Finally, we address the possibility that neutrino masses are of Dirac type, induced
by the inclusion of right-handed neutrinos. Moreover, one can motivate different
scenarios in which additional heavy fields are introduced. If there is a decoupling
of the heavy fields, the resulting EFT describing low energy physics is the SMEFT
extended with the right-handed neutrino. This new EFT is called νSMEFT and
would help us gain a broader knowledge of possible new physics descriptions. In
Chapter 6 we study how to set constraints to the parameters of different operators
within this framework. Some operators remain unbounded and, accordingly, new
strategies are to be designed in order to look for new physics in those directions. As
an illustration, we propose one such analysis in searches of new rare top decays.
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In the recent years, significant progress has been achieved in measuring the neutrino
oscillation parameters. For instance, sin2 θ13 is known with good accuracy only
nine years after the first observation of its non-vanishing value [56]. Moreover,
the absolute values of the neutrino mass splittings are well determined, and so is
sin2 θ12. Current open questions include the neutrino mass ordering, the octant
problem regarding the atmospheric angle and the value of the Dirac CP phase, δ.
However, the latest global analyses on oscillation parameters suggest that the first
two of these issues are on the verge of being solved, while δ is gradually being
constrained [57]. Other type of experiments could shed light on the parameters of
the neutrino mass matrix in the upcoming years. For instance, great efforts have
been made in the direction of measuring neutrinoless double beta decay. Although
so far there has been no more than null results, if neutrinoless double beta decay
is observed in the near future, we will obtain a great deal of information regarding
the scale of the neutrino masses. However, and despite all these great achievements,
the two remaining phases, provided neutrinos are Majorana-type, seem to be hardly
measurable. Indeed, Majorana phases can be looked for in CP violating processes,
such as neutrino-anti neutrino oscillation. However, this process is very rare [58].
Thus a complete numerical description of the Majorana neutrino mass matrix is not
expected to be achieved in the imminent future.

Traditionally, physicists would try to find models that succeed in explaining
the mechanism responsible for neutrino masses. They typically include several new
massive fields or symmetries, like a S3 permutation or a µ − τ symmetry [59–61].
In some cases these symmetries are further dynamically broken, as it would be
the case if one desires to predict a small non-zero sin2 θ13 [62, 63]. However, until
experimental data give us a more complete knowledge of the neutrino parameters, we
can look for patterns that help to arrive to a better theoretical comprehension of the
neutrino mass matrix. These patterns would give relations between the parameters
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that can be confronted with experimental data. Moreover, they might have a hidden
fundamental origin which would lead to the building of the flavor theory.

In this chapter we will discuss patterns of zeros in the neutrino mass matrix,
which are simply called texture zeros [64]. There are several ways to implement
texture zeros. For instance, one could imagine an underlying theory whose additional
symmetries are such that impose zero values in some entries of the neutrino mass
matrix. Typically, these symmetries are based on Abelian groups. For instance, in
Refs. [65, 66], the different textures were realised with discrete Zn cyclic symmetry,
where the dimension n depends on the specific texture considered. In Ref. [67] the
authors constructed the minimal Abelian symmetry realisations of two-zero textures.
Continuous Abelian symmetries were also considered, as in Ref. [68] where a Lµ−Lτ
symmetry was softly broken in the context of a seesaw model with three right-handed
neutrinos. Other possible symmetry realisations were obtained with A4 [69–71] or
S3 permutation groups [72].

In the following section we will present the details of textures with two zeros.

3.1 Two-zero textures

Texture zeros are matrices with some number of vanishing matrix elements. Here
we will concentrate on the Majorana neutrino mass matrix with only three families
of light neutrinos, and use the parametrisation of the neutrino mixing matrix in
Eq. (2.9) and Eq. (2.7). Then, the matrix is symmetric with six independent complex
matrix elements. Zeros in pairs of symmetric elements are counted only once. For a

generic n-zero texture, there are
(
6

n

)
= 6!

n!(6−n)! possible ways of placing n zeros in

six matrix entries. Since the neutrino mass matrix is a complex matrix, each texture
gives two phenomenological relations among the parameters of the model. In fact,
when Mab = 0 holds, we get the following complex constraint:

Ua1 Ub1 m1 e
iα/2 + Ua2 Ub2 m2 e

iβ/2 + Ua3 Ub3 m3 = 0. (3.1)

We can then use these relationships to explore the parameter space. For instance,
the case of one-zero textures has been studied in the literature [73, 74]. All of
the six possible matrices are compatible with data. But, as a matter of fact, two
conditions give too weak constraints. For a Majorana neutrino mass matrix that
depends on nine parameters, five of which are well measured, one-zero textures
leave two parameters unbounded. So, should we be interested in making predictions
in the context of one-zero textures, we will need to introduce more constraints.
One such approach would be to additionally consider a vanishing trace [75, 76] or
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determinant [77]. In this chapter, though, we take a different approach.
Here, we consider textures with two zeros. Two complex constraints allow us

to make predictions for the still unobserved non-oscillation parameters, namely the
mass of the lightest neutrino and the two Majorana phases. Hence, two-zero textures
are of much interest.

There are 15 possible textures, which are grouped in classes A, B, C, D, E
and F . Within each class, we can go from one texture to another by means of
some transformation. For this reason, textures belonging to the same category give
related constraints. Depending on the experimental data, they could also lead to
similar phenomenological implications.

By the time two-zero textures were proposed [64], only classes A, B and C were
allowed by experimental data. Hereafter these textures will be denoted by the term
‘allowed’. They are defined as

A1 :

0 0 ×
0 × ×
× × ×

 , A2 :

0 × 0

× × ×
0 × ×

 , (3.2)

B1 :

× × 0

× 0 ×
0 × ×

 , B2 :

× 0 ×
0 × ×
× × 0

 , B3 :

× 0 ×
0 0 ×
× × ×

 , B4 :

× × 0

× × ×
0 × 0

 ,

(3.3)

C :

× × ×
× 0 ×
× × 0

 . (3.4)

As stated above, textures within the same category are connected by some kind of
transformation [78]. For instance, it is straightforward to see that the A2 texture is
obtained from A1 by interchanging rows 2 and 3 (and hence, because the neutrino
mass matrix is symmetric, also columns 2 and 3). The same happens for textures B1
with B2, and B3 with B4. This transformation can be described by a permutation
matrix1

P23 =

1 0 0

0 0 1

0 1 0

 , with MA2
ν = P23M

A1
ν P23. (3.5)

Then the PMNS matrix associated with texture A2 is obtained from that of texture
A1 following UA2

PMNS = P23U
A1
PMNS. Using the standard parametrisation of the

neutrino mass matrix, outlined in Chapter 2, the following transformation for the

1We have written the transformation in terms of A1 and A2 just to illustrate this computation
with the aid of labels. The transformation for textures B is completely equivalent.
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oscillation parameters is easily obtained:

sin2 θ23 −→ 1− sin2 θ23, δ −→ δ + 180◦, (3.6)

while the rest of the oscillation parameters remains invariant. We will see in the
upcoming sections the impact of this transformation on the textures of the same
category.

On the other hand, the textures incompatible with data, which we are going to
denote by the term ‘excluded’, are

D1 :

× × ×
× 0 0

× 0 ×

 , D2 :

× × ×
× × 0

× 0 0

 , (3.7)

E1 :

0 × ×
× 0 ×
× × ×

 , E2 :

0 × ×
× × ×
× × 0

 , E3 :

0 × ×
× × 0

× 0 ×

 , (3.8)

F1 :

× 0 0

0 × ×
0 × ×

 , F2 :

× 0 ×
0 × 0

× 0 ×

 , F3 :

× × 0

× × 0

0 0 ×

 . (3.9)

Significant efforts have been made to find analytical solutions to the constraints
given by each texture in terms of the oscillation parameters. For instance, in Ref. [78]
the authors found, after expanding for small values of sin2 θ13, the scale of the neu-
trino mass in textures A to be of order

√
∆m2

31 ∼ meV. Furthermore, textures
of category B would give very degenerated neutrino masses and Majorana phases
highly correlated with the Dirac phase, following α ∼ β ∼ δ − 90◦. For the case
of texture C-NO, the authors in Ref. [66] found sin2 θ23 = 0.5 with extremely high
degree of accuracy, using the experimental information on sin2 θ13. Moreover, they
predicted the lightest neutrino to show a weaker mass or, in other words, a degener-
ated neutrino mass spectrum. In the case of the ‘excluded’ textures it is easy to find
solutions, all of which are incompatible with data. For instance, textures F1 and
F2 can be obtained by setting sin θ13 = 0. Likewise, sin θ23 = 0 leads to textures F2
and F3. Textures of category D cannot simultaneously give small sin2 θ13 and large
sin2 θ23 [79].

Here we will solve the equations in a numerical and systematic manner.
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3.2 Fitting the constraints

As said in Chapter 2, several collaborations have fitted all available neutrino os-
cillation data. Some of them, like nuFIT [80] and Neutrino Global Fit [44], have
released their 1D and 2D χ2 profiles, as function of the Dirac δ phase and the five
oscillation parameters, sin2 θ13, sin2 θ12, sin2 θ23, ∆m2

21 and ∆m2
31 (∆m2

32). Here we
will make use of the most updated χ2 functions provided by the nuFIT collabora-
tion [81]. They give their results with or without the inclusion of the atmospheric
neutrino data provided by the Super-Kamiokande collaboration [82]. In the study
presented here2, we will take into consideration the Super-Kamiokande results.

As things stand, there is a great preference for normal mass ordering over in-
verted ordering. In fact, the minimum value of the χ2 function in the IO relative
to the NO is ∆χ2

min = 10.4. We have also looked at all 2D profiles and concluded
that all correlations are small except in the sin2 θ23 − δ plane, for which the octant
ambiguity has not been resolved yet. Hence, we are safe to consider the rest of the
parameters described by their 1D profiles and to approximately construct the χ2

function describing data as

χ2
data ≈ ∆χ2(s223, δ) + ∆χ2(s213) + ∆χ2(s212) + ∆χ2(∆m2

21) + ∆χ2(∆m2
31)− 4χ2

min.

(3.10)
in NO, and substituting ∆χ2(∆m2

31) for ∆χ2(∆m2
32) in IO. Each profile gives its

values relative to χ2
min; there are five profiles so we needed to subtract four times the

minimum value of χ2 so that the global function is relative to only one unit of χ2
min.

We have the data and now we would like to impose the constraints. We can do
so with Lagrange multipliers. In the particular context of two-zero textures, this is
realised by

χ2 = χ2
data +

1

λ21
|Mab|2 +

1

λ22
|Mcd|2, (3.11)

where the two entries of the neutrino mass matrix, Mab and Mcd are forced to be
zero for values of λ1,2 −→ 0. In practice, one cannot exactly set λ = 0, but as long
as λ1 ≪ |Mab| (and λ2 ≪ |Mcd|), the new terms give sizeable contributions and the
results are guaranteed. On the other hand, when λ −→ ∞ the new terms vanish,
no condition is enforced, and we are left with just the original data.

Furthermore, when the values of the Lagrange multipliers are just below those
of the matrix elements, λ1 < |Mab| and λ2 < |Mcd|, the constraints are only approx-
imately enforced. This will permit us to revisit the case of the excluded two-zero
textures and study whether they show interesting prospects in those cases in which

2The work described in this chapter was originally published by the author of this thesis and
collaborators in Ref. [83].
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data A1 A2 B1 B2 B3 B4 C
NO 0 2.7 1.9 3.6 1.5 3.7 1.3 3
IO 10.4 - - 10.7 15.7 10.7 15.4 12.4

Table 3.1: Minimum value of the complete χ2 function obtained for the data (first
column) and for each ‘allowed’ texture (columns 2 − 8). Values in the IO row include
χ2
data = 10.4 and therefore are typically larger.

the textures are not exact.
Before moving on to obtaining results, it is important to note that this technique

is completely general and can be applied to any interesting constraint on the neutrino
mass matrix elements. For instance, we could demand the neutrino mass matrix to
be traceless by adding a term 1

λ2
|Mee+Mµµ+Mττ |2, which would give two additional

conditions on the neutrino parameters. Moreover, the method needs no previous
algebraic work, which makes it very appealing for numerical calculations.

3.3 Allowed textures

We are going to work with textures that can accommodate the experimental data on
the oscillation parameters. The first thing to check is the value at the global mini-
mum of the complete χ2 function involving data along with the theoretical condition.
For this, we vary all oscillation parameters in their 3σ values, the Majorana phases
for all possible angles and with the mass of the lightest neutrino being mℓ < 1 eV.
In Table 3.1 we show the values obtained for the ‘allowed’ textures, while in Ta-
ble 3.2 we give the same but for the ‘excluded’ textures. In those cases where χ2

min

is larger than 9 relative to the minimum χ2 of the data alone (from now on called
simply χ2

data), the predictions of the constraint are at least 3σ away from the best
fit of the data in the ordering in consideration, and hence texture and data are not
compatible. For instance, texture C-IO shows a χ2

min − χ2
data = 2.4 which indicates

that is ∼ 1.5σ away from the best value of the data alone. In this section we will
study the ‘allowed’ textures, all of which still meet the previous condition. However,
note that, when also performing the minimisation respect to the ordering, almost
all textures in the IO become incompatible with data, because of the stringent value
(χ2

data)IO = 10.4.
Notice that the texture F1 shows small values of χ2

min in both orderings. However,
these results correspond to the limit mℓ −→ 1 eV, the highest value of the range
considered for the mass of the lightest neutrino, which is in tension with cosmological
data. As soon as we demand mℓ to take lower values, (χ2

min)F1 grows abruptly and
texture F1 becomes incompatible with the experimental data again. We will study
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data D1 D2 E1 E2 E3 F1 F2 F2
NO 0 > 100 > 100 > 100 > 100 > 100 3.4 ∼ 60 ∼ 40
IO 10.4 > 100 > 100 > 100 > 100 > 100 13.8 ∼ 50 ∼ 50

Table 3.2: Minimum value of the complete χ2 function obtained for the data (first
column) and for each ‘excluded’ texture (columns 2− 9). As before, values in the IO row
include χ2

data = 10.4.

the case of texture F1 in more detail in the next section.
Next off, we compare the constraints with the nuFIT data, which will assist to

estimate the size of the resulting parameter space. In the present circumstances, the
less bounded parameters are sin2 θ23 and, in particular, δ. Thus, we will show the
constraints as a superposition over the data in the sin2 θ23−δ plane. Furthermore, we
will compute the predictions on the unknown parameters against δ. In order to build
the superposition plots we turn off the pieces of the χ2 functions regarding data and
scan the sin2 θ23− δ plane using the constraints alone. For each point (sin2 θ23, δ) we
minimise the χ2 function with respect to the rest of the parameters. For this we make
use of homemade routines in python with the differential evolution minimisation
function of the scipy library. In order to get reliable results it is enough to take
λ1 = λ2 = 0.1 meV, while using lower values does not improve the results. We
have checked this by redoing some of our calculations with λ1 = λ2 = 0.05 meV.
Consequently, we plot 1σ contours over the nuFIT data. The overlapping regions
describe those points for which the constraint is compatible with the data.

Finally, we obtain the fit with the complete χ2 function in the sin2 θ23− δ plane,
along with the predictions for the mass of the lightest neutrino and the two Majorana
phases. Contours correspond to regions with 68%, 95% and 99.7% confidence level
(CL). In two dimensions, this means χ2−χ2

min = 2.3, 5.99 and 11.83. Here, as stated
before, χ2

min denotes the global minimum obtained for the texture and ordering in
consideration.

Before performing the explicit minimisation on every point of the plane of in-
terest, it may be useful to carry out a scan of the complete parameter space with a
nested sampling algorithm. This type of algorithms is very efficient in exploring the
parameter space, and will give us information about what we should expect around
the minimum. The particular code we have used for this purpose is Multinest [84,
85].

Textures A

Textures of class A require Mee = 0 which is also the parameter that controls the
standard neutrino exchange source of neutrinoless double beta decay. Any model
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Figure 3.1: Results for the texture A1 in NO. Darker blue, blue and green colours
correspond to 1σ, 2σ and 3σ contours. Upper left panel: 1σ contour of the constraint
(yellow) superimposed over the contours of the data in the sin2 θ23− δ plane. Upper right
panel: contours of the fit, in the same plane as before. Lower left, central and right panels:
contours of the fit for mℓ, α and β against δ.

whose neutrino mass matrix is described by a texture A will induce a very suppressed
contribution to 0νββ through this mechanism. However this poses no problem as
there could be other new physics mechanisms responsible for the production of a
sizeable 0νββ decay rate.

Moreover, it is well known that Mee in IO is bounded from below by neutrino
oscillation data, with Mee > 10 meV [86]. We have stated above that exact textures
correspond to Mab < 0.1 meV, which is clearly incompatible with this experimental
bound. For this reason, class A is only allowed in the NO case.

In Figure 3.1 we present the results for the A1 texture following the methodology
described above. The two upper plots depict the sin2 θ23 − δ plane. On the left we
see what we expect to obtain when the constraint (yellow) is applied over the data
and, on the right, the result after the minimisation of the complete χ2. Darker
blue, blue and green colours correspond to 1σ, 2σ and 3σ contours. Here, we are
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Figure 3.2: Same as Figure 3.1 but for the texture A2 in NO.

not performing a model comparison and therefore we always subtract the minimum
value of the χ2 obtained for the texture in consideration. For this reason, although
(χ2

min)A1 = 2.7, the plot still shows a 1σ region. Finally, the lower plots show the
results for the mass of the lightest neutrino and the two Majorana phases. We see a
large available parameter space, as the constraints from this class of textures show
a great overlapping area respect to the data. In particular, mℓ takes values of order
1 meV while the three phases are strongly correlated.

Results for A2 texture are shown in Figure 3.2. In general, the predictions
regarding the unknown parameters are qualitatively similar to those of A1. The
values of sin2 θ23 allowed by the constraint of the texture are shifted to the right,
as suggested by the transformation in Eq. (3.6). Moreover, when compared with
experimental data, the shift in the atmospheric angle translates into a prediction
of δ closer to 270◦, for which CP violation is maximal. The mass of the lightest
neutrino remains of order 1 meV and the phases highly correlated.

Both textures give a low minimum value of χ2. In particular, A2 has the lowest
value of all textures. Moreover, when comparing to the model with no texture
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Figure 3.3: χ2 profiles of sin2 θ23, δ, mℓ, α and β for textures A1 (upper panel) and A2
(lower panel). Grey grid lines correspond to χ2 = 1 (1σ CL) and χ2 = 9 (3σ CL).

(only data) A2 is the only texture that still returns a 1σ region. Older versions
of the global analyses of the data showed an octant problem [87], which consisted
in the existence of two minimums, for sin2 θ23 < 0.5 and sin2 θ23 > 0.5. Since the
constraints from A1 and A2 respectively lie on those regions, both textures were
fairly as favoured (although A1 gave a somewhat smaller value of χ2

min). As things
stands regarding present data, the octant problem is starting to become resolved,
with a preference for sin2 θ23 > 0.5. For these reasons, A2 is currently the most
promising texture.

In Figure 3.3 we show χ2 profiles for sin2 θ23 and δ along with the unknown pa-
rameters. As in the 2D contour plots, the minimum value of χ2 has been subtracted.
The best fit values and intervals of 1σ and 3σ CL correspond to those points of the
profile for which χ2 = 0, χ2 = 1 and χ2 = 9, respectively.

Textures B

All B textures show very similar predictions, as suggested by the overlap of the
constraints over the data seen in Figure 3.4. In general, the results split into two
main cases: those for which the constraint allows for values with sin2 θ23 > 0.5, and
those where sin2 θ23 < 0.5 holds. When comparing to data, the former take smaller
overall values of χ2, while the latter ones give larger χ2. In Figure 3.5 we show the
results for texture B4-NO only, which has the lowest χ2, as a paradigmatic case of
textures B. The parameter space is highly constrained, as values of the phases are
essentially fixed to δ = 270◦ and α = β = 180◦ in every class B texture. There are
more subtle differences regarding the phases, but they only imply tiny deviations
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Figure 3.4: Constraints imposed by the B textures on the sin2 θ23 − δ plane. The upper
panel correspond to textures B1, B2, B3 and B4 for NO, while in the lower panel we show
the same but in the IO.

from these values and are expected by the transformation in Eq. (3.6).
Finally, the best value for the mass of the lightest neutrino can take values as

low as ∼ 50 meV for textures B2-NO, B4-NO, B1-IO and B3-IO (see Figures 3.6
and 3.7). This is because the constraint from these textures overlaps well near the
best fit of the data. At a scale of ∼ 50 meV, the mass splittings ∆m2

21 and ∆m2
31 are

negligible compared to the mass of the lightest neutrino so that the three neutrinos
are very degenerated.

On the other hand, the χ2
min in the remaining B textures is obtained in the

vicinity of sin2 θ23 ≈ 0.5 which, in turn, correspond to large values of mℓ. For this
reason, textures B1-NO, B3-NO, B2-IO and B4-IO show a larger lower bound on the
mass of the lightest neutrino. Moreover, they might be in tension with Cosmology
measurements of the absolute neutrino mass scale, defined as the sum of the masses
of the mass of the three light neutrinos. Indeed, the authors of Ref. [88], combining
CMB and baryonic acoustic oscillation data, obtained a 95% CL upper bound on the
sum of the three neutrinos to be 0.151 eV. At this scale we can approximate the upper
bound of the mass of the lightest neutrino to be mℓ ≲ (m1+m2+m3)/3 ≲ 50 meV,
which lies below the preferred values of mℓ in B1-NO, B3-NO, B2-IO and B4-IO.

In summary, the predictions from class B are practically identical which makes
textures within this class almost experimentally indiscernible.
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Figure 3.5: Results for the texture B4-NO, for sin2 θ23, mℓ, α and β against δ.

Textures C

There is only one texture in this class. In NO, depicted in Figure 3.8, we see that
the constraint demands sin2 θ23 = 0.5 with extremely high precision, as anticipated
in Ref. [66]. Despite exhibiting relative low values of χ2, the results avoid values
near δ = 270◦ which is reached only for increasingly larger values of mℓ. This is the
general behaviour, making texture C-NO to possibly be in tension with Cosmology
data (see textures B). Finally, this texture fixes the values of the Majorana phases
to be very closed to 180◦.

On the other hand, C-IO shows an available parameter space slightly larger.
For this reason, the predictions of the unknown parameters are somewhat less con-
strained. Results are collected in Figure 3.9. Another important improvement with
respect to C-NO is that the mass of the lightest neutrino could take smaller values,
as low as ∼ 40 meV, so that it escapes from the bounds of Cosmology data. However
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Figure 3.6: χ2 profiles of sin2 θ23, δ, mℓ, α and β for textures B1-NO, B2-NO, B3-NO
and B4-NO. Grey grid lines correspond to χ2 = 1 (1σ CL) and χ2 = 9 (3σ CL).

it is important to keep in mind that, belonging to the inverted mass ordering, this
texture still shows a large value of χ2

min ≈ 12 when compared to the model with null
hypothesis (only data).

3.4 Approximate textures
Exact texture zeros are very interesting from a theoretical point of view as they
allow us to learn things about the neutrino mass matrix without developing any
specific model. However, the details of an underlying theory could be such that the
texture is not exact. For instance, this could happen if the symmetry that induces
the texture is slightly broken, or when the neutrino mass matrix is proportional
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Figure 3.7: χ2 profiles of sin2 θ23, δ, mℓ, α and β for textures B1-IO, B2-IO, B3-IO and
B4-IO. Grey grid lines correspond to χ2 = 1 (1σ CL) and χ2 = 9 (3σ CL).

to tiny non-vanishing couplings. The model presented in the next chapter is an
illustration of this last case. Moreover, exact textures could get filled to some degree
by radiative corrections [89]. Here we will study whether the results are stable even
when textures are only approximate.

In the context of exact textures we have worked with λ = 0.1 meV which, in turn,
only implied that |Mab|, |Mcd| < 0.1 meV. We can relax this condition and demand
λ = 1 meV. In order to check whether the main predictions of the textures survive we
examine the paradigmatic case of class B textures, for which the available parameter
space is highly constrained. In Figure 3.11 we compare the results obtained for
the two different values of λ, concerning the B4-NO texture. It is clear that the
parameter space is greatly enlarged, while the predictions are kept stable. Another

70



Chapter 3. Texture zeros

0.48 0.49 0.50 0.51 0.52

sin2 θ23

0

90

180

270

360
δ

0.3 0.4 0.5 0.6 0.7

sin2 θ23

0

90

180

270

360

0 100 200 300 400 500

m` [meV]

0

90

180

270

360

δ

0 90 180 270 360

α

0

90

180

270

360

0 90 180 270 360

β

0

90

180

270

360

Figure 3.8: Same as Figure 3.1 but for the texture C in NO.

interesting feature one can check is the change of χ2
min when the textures are only

approximate. In such a case, the constraint overlaps with larger regions of the
original data and one may expect that these regions could show lower values of χ2.
As an illustration, we have computed the values of χ2

min (with λ = 1 meV) in the
cases of A1 and A2 textures, and obtained 0.29 and 0.46, respectively. This is a
great improvement respect to the scenario of exact textures and implies that both
textures are still very promising.

Furthermore, by using the formalism of approximate texture, we can investigate
what happens to the ‘excluded’ textures when the constraint gets relaxed. Because
F1-NO has the lowest χ2

min of all ‘excluded’ textures, it is only natural to consider it
as a paradigmatic case of study. When applying the procedure described above to
the texture F1-NO, with a relaxed condition (λ = 1 meV), we find that the constraint
covers the whole oscillation parameter space. The constraint from the texture does
not favour any particular values and hence the information about the oscillation
parameters is given completely by the experimental data. Notwithstanding, the
texture does give predictions on the unknown parameters. In Figure 3.12 we show
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maximally enforced with λ = 0.1 meV, while in green the constraint is more relaxed, with
λ = 1 meV.

0 250 500 750 1000

m` [meV]

0
3

10

20

30

40

50

χ
2 m
in

λ = 0.1 meV

λ = 1 meV

0 90 180 270 360

α

0

90

180

270

360

δ

0 90 180 270 360

β

0

90

180

270

360

δ
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phases for texture F1-NO. We show the results in two different cases, for which the con-
straints have been applied for different values of the Lagrange multiplier λ.

73



3.5. Summary

the predictions on the mass of the lightest neutrino and the two Majorana phases
given by texture F1-NO. For the sake of evaluating the impact of a relaxed constraint,
we depicted the results for two different values of λ. We see that the phases are highly
correlated, even when the constraint is weakened. More importantly, the goodness
of the fit strongly depends on the mass of the neutrinos. For an exact texture,
χ2
min takes small values only in the limit of massive neutrinos. This implies that

neutrinos are also degenerated, a possibility rejected by data. Therefore, an exact
F1-NO texture is forbidden. From Figure 3.12 we also observe that as soon as the
texture becomes approximate, small values of χ2

min are obtained, while also keeping
the mass of the lightest neutrino low. For this reason, texture approximate F1-NO
texture has interesting prospects.

3.5 Summary
• Constraints on the neutrino mass matrix give relationships among the neu-

trino parameters. These conditions can be motivated by different theoretical
frameworks, and among them, two-zero textures allow us to make predictions
on the parameters that remain unmeasured.

• The most promising texture is A2, giving the lowest χ2
min and the largest

available parameter space. The A1 texture gives a slightly worse χ2
min (less

than 1σ away from the best value of A2) and in fact when the constraints from
the textures are relaxed, both textures are almost as favoured.

• B and C textures have very constrained parameter space and give larger values
of χ2

min.

• As things stand with current data, the case of inverted mass ordering is dis-
favoured by more than 3σ. This translates to a larger complete χ2 obtained
with the textures in IO.

• Approximate textures could be a more real-world scenario. They could be
induced by the dynamics of the model or when the symmetry that enforced
the texture is slightly broken. With the method of Lagrange multipliers, ap-
proximate texture can be easily addressed. In particular, we see that the
predictions of the textures do not change much but the parameter space is
highly enhanced.

• ‘Excluded’ textures were also revisited, in the framework of approximate tex-
tures. In particular, we have studied the case of the F1-NO texture. For
strong constraints, the solutions giving the lowest values of χ2

min imply that
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the neutrino masses are very degenerated, which is in tension with experi-
mental data. However, when the texture is approximate, it gives interesting
results with lower values of mℓ.

75



3.5. Summary

76



CHAPTER 4
Implications for neutrinoless dou-
ble beta decay

In the Standard Model, the following reaction can take place within a nucleus:

ββ : n+ n −→ p+ p+ e+ e+ ν̄ + ν̄. (4.1)

This process implies the simultaneous occurrence of two beta decays, as shown in
Figure 4.1a, and consequently it is called double beta decay. The probability of this
process is proportional to G4

F , making it a very suppressed decay. Despite being a
very rare process, the double beta decay was observed many times for different nuclei
since it was first suggested by Maria Goeppert-Mayer in 1935 [90]. It should be noted
that the ββ decay conserves lepton number and portrays another confirmation of
the predictions of the Standard Model.

Consider now the possibility that neutrinos are of Majorana type. Then, neutri-
nos and antineutrinos are the same object, and the neutrino emitted by a nucleon
could be reabsorbed by another nucleon. At the end, we are left with a double beta
decay with no neutrinos in the final state:

0νββ : n+ n −→ p+ p+ e+ e (4.2)

or, simpler, a neutrinoless double beta decay. In contrast with the ββ decay, the
absence of emitted antineutrinos leads to a total lepton number violation in two
units. In Figure 4.1b we show the (light) neutrino exchange mechanism of the 0νββ

decay, responsible for the process described above. Owing to the propagator of the
virtual neutrino, the decay rate is proportional to mββ, defined as

mββ ≡

∣∣∣∣∣
3∑
i=1

U2
ei mi

∣∣∣∣∣ = |Mee|, (4.3)
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Figure 4.1: Feynman diagrams representing mechanisms of ββ (subfigure a) and 0νββ
(subfigure b) decays.

where the sum runs over the three light neutrinos of the Standard Model, Uei are
elements of the PMNS matrix describing neutrino mixing and defined in Chapter 3,
and mi are the masses of the neutrinos. We see that mββ can be identified with Mee,
the ee element of the neutrino mass matrix. This feature will have a central role in
the development of the current chapter.

Moreover, the PMNS matrix is a complex matrix and there might be extensions
of the Standard Model for which the terms in Eq. (4.3) cancel and mββ vanishes,
even when the masses of the neutrinos take non-zero values. Such scenarios pose
no problem for the prospects for observation of the 0νββ decay, as the neutrino
exchange mechanism might not be its only source. Lepton number violation is still
a requirement but it might be induced by the couplings of the SM extension, giving
another source of 0νββ with no intervention of Majorana neutrino masses. However,
these couplings will still generate Majorana neutrino masses at a higher loop level, as
stated by the black box theorem [55]. This assures the connection between Majorana
neutrino masses and 0νββ, irrespective of the mechanism that induces the latter.

Several experiments have searched for 0νββ, so far with null results. The
Heidelberg-Moscow collaboration [91] took data until the year 2001, using 76Ge
isotopes. Current experiments include, among others, GERDA in the same isotope
[92], EXO-200 [93], KamLAND-Zen [94] and NEXT [95], using 136Xe. Such experi-
ments typically set bounds on the allowed values of mββ, as shown in Figure 4.2

4.1 Effective Lagrangian approach

We proceed to start building models that explain neutrino masses and 0νββ. As a
result of being low energy processes, we can describe them by making use of effective
Lagrangians, following the work by del Aguila, Aparici, Bhattacharya, Santamaria
and Wudka [96]. Hereafter, we assume that the new physics does not couple to the
quark sector, so that quark interactions are only mediated by electroweak gauge
bosons. In addition, we restrain to the field content and the local symmetries of
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Figure 4.2: Bounds on mββ as a function of the mass of the lightest neutrino mℓ, set by
0νββ experiments. For this plot, limits obtained by the KamLAND-Zen collaboration are
shown in blue (mββ < 61−165 meV) [86]. Regions with 1σ and 3σ CL (darker and lighter
colours) for normal and inverted neutrino mass ordering allowed by neutrino oscillation
data [81] are depicted for comparison.

the Standard Model; in this context, our EFT is just the SMEFT. LNV operators
giving contributions to 0νββ must involve two leptons of either chirality, a certain
number of the SM scalar doublet to preserve the gauge symmetry and some covariant
derivatives. Restricting to operators with the lowest possible dimension, only three
arise: O(5)

LL, O(7)
LR and O(9)

RR, where the subindices represent the chirality of the leptons
they involve.

With these considerations in mind and in order to illustrate the process, we start
with the LL operator. Left-handed charged leptons belong to a lepton doublet of
SU(2)L. Then, a bilinear with two left-handed charged leptons transforms as

ℓLℓL ∼ (1/2,−1/2)× (1/2,−1/2) = (0,−1) + (1,−1). (4.4)

For the sake of keeping all interactions gauge invariant, the LL bilinear needs to
couple with objects that are either a singlet or a triplet under SU(2)L, with hyper-
charge Y = 1. This can be achieved by means of some even number of SM scalar
doublets. In particular and restricting to the lowest possible dimension, we need
two of them, since the hypercharges add. The only possibility with dimension five
is the Weinberg operator, given by

O(5)
LL = (ℓ̃Lϕ)(ϕ̃

†ℓL). (4.5)
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After spontaneous symmetry breaking, O(5)
LL induces a neutrino mass matrix with

the insertion of two VEVs and a 0νββ with a standard neutrino exchange mecha-
nism, as seen in Figure 4.3. Note that the Weinberg operator generates the seesaw
mechanisms of neutrino masses.

Figure 4.3: Neutrino mass (left) and 0νββ (right) generated with the dimension-five
Weinberg operator.

Let us now concentrate on the RR operator1. The lepton bilinear has the fol-
lowing net gauge quantum numbers:

eReR −→ (0,−1)× (0,−1) = (0,−2). (4.6)

In other words, the bilinear with two right-handed charged leptons couples with four
SM scalar doublets. This combination of fields leads to a dimension-seven operator.
However, it turns out that said operator vanishes as it includes the scalar product
ϕ†ϕ̃ = 0. Adding a covariant derivative between the scalars, which does not change
the quantum numbers, remedies this problem, at the expense of rising the dimension
of the operator. There are two scalar products, hence two covariant derivatives are
needed. The lowest operator then has dimension nine and reads

O(9)
RR = eRe

c
R(ϕ

†Dµϕ̃)(ϕ†Dµϕ̃). (4.7)

The RR operator induces a 0νββ at tree level (see left panel of Figure 4.4), which is a
very low energy process. Thus, the use of a high dimension operator is justified, and
it translates into a description with a scale of new physics, Λ, of the order of the TeV.
In contrast with the LL and LR operators, the TeV scale arises naturally. Moreover,
O(9)
RR generates neutrino masses at the two-loop level (right panel of Figure 4.4).

Because it involves two chirality flips, the neutrino mass matrix will be proportional
to the mass of the charged leptons, ma,b. Indeed,

Mab ∝
1

(4π)4Λ
C

(9)
ab mamb, (4.8)

1Additionally, there is a LR operator of dimension seven, constructed in a similar way than the
LL and RR operators.
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which will let us make predictions of the neutrino oscillation parameters in terms of
the A1 texture of Chapter 3.

Owing to its interesting implications for neutrino masses and 0νββ, in this chap-
ter we will build an ultraviolet completion of the dimension-nine operator.

Figure 4.4: 0νββ (left) and neutrino masses (right) generated with the dimension-nine
operator.

4.2 The model
The model presented here2 extends the scalar field content of the Standard Model
without adding new local symmetries. The enlarged scalar sector includes a doubly
charged scalar singlet k±±, a scalar triplet χ with hypercharge +1 and a real scalar
singlet σ. For the sake of keeping the Yukawa interactions restricted to those with
right-handed charged leptons, we impose a discrete Z2 parity symmetry, under which
the doubly charged singlet is even while the triplet and the real singlet are odd. The
singlet σ will be responsible for preventing the discrete symmetry from breaking
spontaneously, which would allow the triplet to couple to SM fermions, and will
have a central role in inducing lepton number violation.

Under SU(2)L×U(1)Y the fields in the scalar sector have the following quantum
numbers:

ϕ ∼ (1/2, 1/2), χ ∼ (1, 1), k±± ∼ (0, 2), σ ∼ (0, 0), (4.9)

where, as usual, ϕ is the SM Higgs doublet.
The Yukawa interactions are given by

LY = −yaℓ̄LaϕeRa + fabecRaeRbk
++ + h.c., (4.10)

where ecR = CeR and C is the charge conjugation operator. The first term is the
Yukawa interactions of the Standard Model, where the Yukawa matrix ya is diagonal

2The model was published by the author of this thesis and collaborators in Ref. [97]. In the
following, it will be referred as ‘the three-loop model’ for reasons that will be clear later on.
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in flavour. The new physics is represented in the second term. As a result of the
Z2 symmetry, only k±± is allowed to couple to the SM fermions. The form of this
interaction is governed by the gauge quantum numbers of k±± in Eq. (4.9), and this
makes the fermion bilinear to necessary be composed of two right-handed charged
leptons. Finally, the Yukawa matrix fab is a symmetric complex matrix. There are
two eR and for this reason the entire combination must obey Fermi statistics and
thus be antisymmetric. The charge conjugation operator is antisymmetric which
requires the generation indices a and b to be symmetric. Hence fab = fba.

The gauge invariant potential reads

V =−m2
ϕ|ϕ|2 +m2

χTr(χ†χ) +m2
k|k|2 +

1

2
m2
σσ

2 + λϕ|ϕ|4 + λχTr(χ†χ)2

+ λ′χTr[(χ†χ)2] + λk|k|4 + λσσ
4 + λϕχ|ϕ|2Tr(χ†χ) + λ′ϕχTr(ϕ†χ†χϕ)

+ λϕk|k|2|ϕ|2 + λϕσσ
2|ϕ|2 + λkχ|k|2Tr(χ†χ) + λσχσ

2Tr(χ†χ)

+ λσkσ
2|k|2 +

[
µkk

++Tr(χ†χ†) + λ6σϕ
†χϕ̃+ h.c.

]
,

(4.11)

where ϕ̃ = iσ2ϕ
∗. We choose to use the 2× 2 matrix representation of the triplet,

χ =

(
χ+/
√
2 χ++

χ0 −χ+/
√
2

)
(4.12)

where χ0 = (χ0
R + iA)/

√
2. Then ‘Tr’ represents the trace over a matrix. All

parameters in the potential are set to be real without any loss of generality.
It is important to note that this model breaks lepton number, in particular, by

the combined presence of the following terms:

yaℓLaϕeRa, fabeRaeRbk
++, µkk

++Tr(χ†χ†), λ6σϕ
†χϕ̃. (4.13)

As said in Chapter 1, the Standard Model conserves lepton number. This allows us
to define the lepton number of the leptons to be −1, and, due to the SM Yukawa
interactions (first term in the list above), to set the lepton number of the SM scalar
doublet to zero. Then, from the second and third terms, the lepton number of
k±± and χ are +2 and +1. Had the potential conserved lepton number, σ would
have had lepton number −1, but it is impossible to assign to it a lepton number
different than zero, as it is a real scalar. In other words, lepton number is broken
in one unit. Furthermore, whenever any of these four couplings vanishes, lepton
number is automatically conserved, which indicates that any process breaking lepton
number within this model should be proportional to the joint combination of the
four parameters. We will discuss more about this in the upcoming sections.

After spontaneous symmetry breaking, the particles in the extended scalar sector
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get their masses shifted by some new term, due to their interactions with the SM
scalar doublet. Starting with the doubly-charged particles, the mass of the singlet is

m2
k±± = m2

k +
1

2
λϕkv

2, (4.14)

while the mass of χ±± reads:

m2
χ±± = m2

χ +
1

2
λϕχv

2. (4.15)

The mass of the singly-charged component of the triplet reads

m2
χ± = m2

χ +
1

2
(λϕχ +

1

2
λ′ϕχ)v

2, (4.16)

while the mass the pseudoscalar particle is:

m2
A = m2

χ +
1

2
(λϕχ + λ′ϕχ)v

2. (4.17)

Moreover, owing to the interaction with ϕ, the masses of χ±±, χ± and A are corre-
lated. The mass splittings are controlled by the parameter λ′ϕχ,

m2
χ± −m2

χ±± = m2
A −m2

χ± =
1

4
λ′ϕχv

2, (4.18)

which means that the three scalars become degenerated when setting λ′ϕχ = 0.
We will see at the end of this chapter that these masses get further constrained
by electroweak precision data. We can also rearrange the previous relation in the
following way:

m2
χ± =

1

2
(m2

A +m2
χ±±). (4.19)

The CP-even neutral scalars mix through the following mass matrix:

∆Vmass =
1

2

(
σ χ0

R

)(m2
σσ m2

σχ

m2
σχ m2

χχ

)(
σ

χ0
R

)
, (4.20)

where

m2
σσ = m2

σ + λϕσv
2, m2

σχ =
1√
2
λ6v

2, m2
χχ = m2

χ +
1

2
(λϕχ + λ′ϕχ)v

2 = m2
A.

(4.21)

When λ6 = 0, the mass matrix is diagonal and there is no mixing between the
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neutral scalars. Otherwise, we need to change basis with an orthogonal matrix,(
S

H

)
=

(
cosα − sinα
sinα cosα

)(
σ

χ0
R

)
, (4.22)

so that the Lagrangian becomes diagonal:

∆Vmass =
1

2

(
S H

)(m2
S 0

0 m2
H

)(
S

H

)
. (4.23)

Since we are arbitrarily defining S and H, there is no preferred hierarchy among
them. Inserting Eq. (4.22) in the last expression we find the parameters m2

σσ, m2
σχ

and m2
χχ in terms of the physical masses and the mixing angle,

m2
σσ = m2

H sin2 α +m2
S cos2 α,

m2
σχ =

1

2
sin 2α(m2

H −m2
S),

m2
χχ = m2

H cos2 α +m2
S sin2 α.

(4.24)

The last relation, combined with Eq. (4.21), gives

m2
A = m2

H cos2 α +m2
S sin2 α, (4.25)

which makes the mass of A to lie between the masses of S and H. In particular, we
choose S to be the lightest particle, and hence

mS < mA < mH . (4.26)

It is also useful to put λ6 in terms of physical parameters. Joining the two expressions
of m2

σχ together, we arrive at

λ6 =
sin 2α√
2v2

(m2
H −m2

S), (4.27)

which leads to an indispensable result: should S andH be degenerate, lepton number
will remain unbroken and the model will not be able to generate neutrino masses.

4.3 The neutrino mass

The Lagrangian describing the mass of neutrinos reads

− Lmass =
1

2
νcLaMabνLb + h.c. (4.28)
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Figure 4.5: Three-loop flavour diagrams contributing to neutrino masses. There are two
VEV insertions in each diagrams which, together with ya,b, give rise to the charged lepton
masses ma,b.

and the problem consists in obtaining the form of Mab.
In order to arrive at a better understanding of the generation of the mass and the

topic of lepton number violation we will start by working within the mass insertion
approach in the so-called gaugeless limit. This technique requires that we depict
the Feynman diagrams using the fields in the gauge invariant Lagrangian, before
symmetry breaking and diagonalisation into physical states. Accordingly, in this
limit the gauge bosons are massless and have vanishing external momenta. Moreover,
drawn this way, the diagrams are called flavour diagrams. Both left- and right-
handed components of the fermions are shown explicitly and so do VEVs ⟨ϕ⟩, whose
insertion into the diagram represents the annihilation of ϕ into the vacuum. Then,
one can easily estimate the main contribution to the amplitude of the process as the
product of the couplings entering the diagram. Later on, we can check the goodness
of the gaugeless limit approximation by setting g → 0 (or equivalently MW → 0)
in the complete calculation in the unitary gauge. Further, the inspection of lepton
number violation becomes obvious in the flavor basis, as parameters and physical
particles tend to hide their nature after diagonalisation. We will see this explicitly
when working out the neutrino mass in the unitary gauge.

The model generates neutrino masses at the three-loop level. In the flavour basis,
the two Feynman diagrams are shown in Figure 4.5. It is straightforward to realise
that the only interactions entering the process are the following:

fabeRaeRbk
++, yaℓLaϕeRa, µkk

++Tr(χ†χ†), λ6σϕ
†χϕ̃. (4.29)

As said above, the generation of neutrino mass revolves around the scalar interaction
with the right-handed charged leptons, which is the first term. Next off, we need to
introduce neutrinos into the mix. This is achieved with the second vertex. Finally,
the connection to the doubly charged singlet is carried out through the interactions
with the triplet and the real singlet.

More importantly, these are the same four interactions required for lepton num-

85



4.3. The neutrino mass

ber violation. In particular, the last term is included twice in both diagrams, making
lepton number to be broken by two units, which is exactly what Majorana neutrinos
mass terms need.

With this considerations, the neutrino mass matrix is given by

Mab = 8
µkλ

2
6(yav)(ybv)fab
(4π)6m2

k

Iν

= 8
µkλ

2
6mambfab

(4π)6m2
k

Iν

(4.30)

with
Iν ≡ I1 + I2, (4.31)

and where ma,b = ya,bv are the masses of the charged leptons with flavours a and
b. The integrals I1,2 correspond to each diagram in Figure 4.5. The suppression by
(4π)6 is due to the three-loop topology and have been factorised out of the integrals.
The mass mk was included in the denominator to prevent the integrals from having
dimensions of energy. Finally, the factor of 8 is common to the two diagrams and
appears from the combination of all the relevant terms entering each diagram.

In Euclidean space the momentum gets rotated with q0 → iq0, and then the
integrals read

I1 = −(4π)6m2
k

∫
q

q1 · q2
q41q

4
2((q1 + q2)2 +m2

k)(q
2
3 +m2

σ)((q1 + q3)2 +m2
χ±)((q2 − q3)2 +m2

χ±)

(4.32)
and

I2 = (4π)6m2
k

∫
q

q1 · q2
q41q

4
2((q1 + q2)2 +m2

k)(q
2
3 +m2

σ)(q
2
3 +m2

χ0)((q1 + q2 + q3)2 +m2
χ±±)

,

(4.33)
where∫

q

=

∫ 3∏
i=1

dqiq
3
i

(2π)4
dϕidθi sin θidψi sin2 ψi, ϕi ∈ [0, 2π], θi ∈ [0, π], ψi ∈ [0, π].

(4.34)
There is a relative sign between the two integrals because each diagram involves a
different term in the expansion of the λ6 interactions:

λ6σϕ
†χϕ̃ = λ6σ(χ

0ϕ0∗ϕ0∗ +
√
2χ+ϕ0∗ϕ− − χ++ϕ−ϕ−). (4.35)

We note that in the limit in which the masses of the triplet are degenerated and
much heavier than the masses of the singlets, the two integrals are identical and
cancel exactly, because of the relative sign. In that limit one can integrate out
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the triplet. Then, the interactions in both diagrams collapse to an unique effective
vertex:

(k−−χ+χ+)(σχ−ϕ†ϕ̃)(σχ−ϕ†ϕ̃) −→ k−−σ2(ϕ†ϕ̃)2,

(k−−χ++χ0)(σχ−−ϕ†ϕ̃)(σχ0∗ϕ†ϕ̃) −→ k−−σ2(ϕ†ϕ̃)2.
(4.36)

However the combination ϕ†ϕ̃ is exactly zero and the effective vertex vanishes. The
conclusion is that, for the sake of keeping a non-vanishing neutrino mass, there
cannot be a large gap between the scalar masses of the model.

Both integrals are convergent and expected to be of order 1. In order to perform
the numerical evaluation, we take the momenta to be

qµ3 = q3(1, 0, 0, 0), qµ2 = q2(cosψ2, sinψ2, 0, 0),

qµ1 = q1(cosψ1, sinψ1 cos θ1, sinψ1 sin θ1, 0).
(4.37)

With this choice, the products of momenta will depend on only three of the angles:

q1 · q2 = q1 q2(cosψ2 cosψ1 + sinψ2 sinψ1 cos θ1),

q1 · q3 = q1 q3 cosψ1,

q2 · q3 = q2 q3 cosψ2.

(4.38)

Then we can integrate the remaining angles, and thus Eq. (4.34) becomes∫
q

= (2π)4
∫
dq1 dq2 dq3 dθ1 dψ1 dψ2

(2π)12
q31 q

3
2 q

3
3 sin θ1 sin2 ψ1 sin2 ψ2. (4.39)

With these manipulations, we numerically evaluate the integrals in the gaugeless
limit. In Figure 4.6 we depict the results for some reference values of the masses.
We see that, for the ranges of masses considered, we can safely take Iν ≈ 1.

4.3.1 The effective propagator

Before proceeding to the complete calculation in the unitary gauge, we note that
there are some contractions of the fields that cannot be straightforwardly performed.
For instance, owing to the form of the Lagrangian, the following contraction between
the χ0 neutral fields is needed:

(W+W+χ−−χ0)(k−−χ++χ0). (4.40)

However, χ0 is a complex field and can only contract with its conjugate counter-
part. Indeed, when decomposing into its real and imaginary part, the only possible
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Figure 4.6: Numerical evaluation of the neutrino mass matrix integral Iν calculated
in the gaugeless limit for some representative points, and where we have taken mχ± =
mχ±± = mχ0 ≡ mχ.

contractions go with

χ0(x)χ0(y) =
1

2

[
χR(x)χR(y)− A(x)A(y)

]
. (4.41)

Without mixing, χR and A are degenerated and the propagator vanishes. This looks
terrible, as this propagator enters each and every one of the diagrams; thus it seems
impossible to generate neutrino masses. But mixing does happen within the model,
the interaction with σ induces lepton number violation and neutrino masses should
be guaranteed. Consider the mixing of χR in Eq. (4.22). Then, after diagonalisation,
the contractions become

χ0(x)χ0(y) =
1

2

[
cos2 α H(x)H(y) + sin2 α S(x)S(y)− A(x)A(y)

]
, (4.42)

and as long as H and S have different masses, the propagator survives. But there is
another interesting point to make. When we insert the expression of the propagator
of each physical particle, we get

χ0χ0 =
1

2

(
cos2 α 1

p2 −m2
H

+ sin2 α
1

p2 −m2
S

− 1

p2 −m2
A

)
=

1

2

sin2 α cos2 α(m2
H −m2

S)
2

(p2 −m2
H)(p

2 −m2
S)(p

2 −m2
A)

=
1

4

λ26v
4

(p2 −m2
H)(p

2 −m2
S)(p

2 −m2
A)
,

(4.43)
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where in the last step we have used Eq. (4.27). The conclusion is that the contraction
of the χ0 fields gives an effective operator that goes with 1/p6 which will allow all
integrals to be finite, even in the unitary gauge. Moreover, because it is proportional
to λ26, the effective operator induces the breaking of lepton number in two units.

We can also understand the behaviour of the effective operator before symmetry
breaking in terms of the propagator matrix, provided there is mixing with σ. Before
diagonalisation, the propagator matrix reads

Pαβ = (p2δαβ −M2
αβ)

−1, (4.44)

where M2 is the mass matrix of the CP-even scalars in Eq. (4.20). Then,

P =

(
p2 −m2

σσ −m2
σχ

−m2
σχ p2 −m2

χχ

)−1

=
1

(p2 −m2
σσ)(p

2 −m2
χχ)−m4

σχ

(
p2 −m2

χχ m2
σχ

m2
σχ p2 −m2

σσ

)
.

(4.45)

The factor before the resulting matrix is just the inverse of its determinant. The
contraction χRχR in Eq. (4.41) is obtained from the χχ element of the matrix. With
this, the contraction in Eq. (4.41) becomes

χ0χ0 =
1

2

(
p2 −m2

σσ

(p2 −m2
σσ)(p

2 −m2
χχ)−m4

σχ

− 1

p2 −m2
A

)
. (4.46)

But because m2
χχ = m2

A, we can combine the two terms in the following way:

χ0χ0 =
1

2

(
m4
σχ

((p2 −m2
σσ)(p

2 −m2
A)−m4

σχ)(p
2 −m2

A)

)
, (4.47)

making the effective operator to go with 1/p6. Finally we can write the effective
operator in terms of the physical parameters. Using Eqs. (4.24) and the invariance
of the determinant, which in the diagonal basis is simply (p2 −m2

H)(p
2 −m2

S), the
propagator turns out to be

χ0χ0 =
1

2

sin2 α cos2 α(m2
H −m2

S)
2

(p2 −m2
H)(p

2 −m2
S)(p

2 −m2
A)

=
1

4

λ26v
4

(p2 −m2
H)(p

2 −m2
S)(p

2 −m2
A)
,

(4.48)

where once again the breaking of lepton number in two units has become explicit.
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Figure 4.7: Three-loop diagrams contributing to neutrino masses in the unitary gauge.

4.3.2 The complete calculation

The generation of the neutrino mass revolves around the scalar interaction with the
right-handed charged leptons,

fabeRaeRbk
++. (4.49)

The connection to neutrinos is governed by the interactions involving gauge bosons
coming from the covariant derivative of the SM Higgs doublet in Eq. (1.13) of Chap-
ter 1. However, k±± has no interactions with the W± gauge bosons and there is no
way to directly couple these two last vertices. The situation changes when consider-
ing the other scalars of the model. The triplet has the following relevant interactions
with the gauge bosons:

−g2W+
µ W

+µχ−−χ0, −igW+
µ (χ

−−∂µχ+ − ∂µχ−−χ+),

igW+
µ (χ

−∂µχ0 − ∂µχ−χ0),
(4.50)

where, as in the last section, χ0 = (−S sinα +H cosα + iA)/
√
2. The breaking of

lepton number in two units is guaranteed by the effective operator.
In Figure 4.7 we depict the four diagrams generating neutrino masses in the

unitary gauge. Diagrams (c) and (d) can be obtained from each other by changing
q1 ↔ q2. Using the same normalisation as in the gaugeless limit calculation, we get

Mab =
8µkλ

2
6mafabmb

(4π)6m2
k

Iν . (4.51)
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The loop functions associated with each diagram are:

Iν ≡ IU1 + IU2 + IU34, (4.52)

with

IU1 = (4π)6m2
k

∫
q

Pc
V1 · V2

((q1 + q3)2 +m2
χ±)((q2 − q3)2 +m2

χ±)
, (4.53)

IU2 = −2(4π)6m2
k

∫
q

Pc
4M4

W +M2
W (q21 + q22) + (q1q2)

2

(q1 + q2 + q3)2 +m2
χ±±

, (4.54)

IU34 = 2(4π)6m2
k

∫
q

Pc
V1 · V3

((q1 + q2 + q3)2 +m2
χ±±)((q1 + q3)2 +m2

χ±)
, (4.55)

(4.56)

where

Pc =
1

q21q
2
2(q

2
1 +M2

W )(q22 +M2
W )((q1 + q2)2 +m2

k±±)(q23 +m2
H)(q

2
3 +m2

S)(q
2
3 +m2

A)
(4.57)

is a common factor of every loop function, and

V µ
1 =M2

W (q1 + 2q3)
µ + (q21 + 2q1q3)q

µ
1 , (4.58)

V µ
2 =M2

W (2q3 − q2)µ + (2q2q3 − q22)q
µ
2 , (4.59)

V µ
3 =M2

W (2q1 + q2 + 2q3)
µ + (2q1q2 + q22 + 2q2q3)q

µ
2 . (4.60)

Using the same methods discussed for the calculation in the gaugeless limit, we
numerically evaluate the integrals. We have checked that in the limit MW −→ 0,
mH = mA = mχ±± = mχ± ≡ mχ and mS ≡ mσ we get the same results. Moreover,
even in the complete result with MW ≃ 80 GeV, we see in Figure 4.8 that the
integrals in the unitary gauge are mainly dominated by the gaugeless part.

4.4 Neutrinoless double beta decay

In this section we will discuss the two mechanisms of 0νββ. The standard source
is induced by a Majorana neutrino exchange between two vector-axial SM vertices.
This contribution, often called long-range mechanism, is proportional to the mass of
the neutrinos. On the other hand, short-range mechanisms involve particles much
heavier than the typical separation between the nucleons. For this reason, effective
operators are a common approach for describing these new physics contributions.
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4.4. Neutrinoless double beta decay

Figure 4.8: Comparison of the numerical evaluation of the integrals calculated in the
unitary gauge (dashed lines) and in the gaugeless limit (solid lines) for two reference points.

4.4.1 Neutrino exchange contribution

Figure 4.9: Contribution to the standard neutrino exchange mechanism for the genera-
tion of neutrinoless double beta decay with two left-handed electrons.

In this type of mechanisms, the 0νββ rate is proportional to Mee, which depends
on the details of the model (see Figure 4.9). Very often, as in the case of the
model presented here, the description is such that Mee takes small values. Then,
the observation of 0νββ could be difficult, provided the long range mechanism is
preferred. Indeed, in our model, the neutrino mass matrix is proportional to the
mass of the charged leptons so it is natural that the ee and eµ entries are suppressed.
Just to illustrate this behaviour, we can see the form of squared mass matrix of the
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W

W

χ0

χ−−

χ0 σ

d

u

u

d
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eR

Figure 4.10: One-loop diagram contributing to the short-range source of neutrinoless
double beta decay with two right-handed electrons.

charged leptons: ∑
a,b

mamb ≈

10−7 10−4 10−3

10−4 10−2 10−1

10−3 10−1 1

 eV, (4.61)

where me ≈ 0.5 × 10−3 GeV, mµ ≈ 0.1 GeV and mτ ≈ 2 GeV. Then, the previous
matrix leads to the following hierarchy among the elements of the neutrino mass
matrix:

Mee,Meµ ≪Meτ ,Mµµ,Mµτ ,Mττ . (4.62)

This will be sufficient to accommodate neutrino oscillation data in terms of texture
zeros in the neutrino mass matrix, as seen in Chapter 3, but points to a difficult ob-
servation of 0νββ when the standard neutrino exchange mechanism is the dominant
source of 0νββ, as Mee ≈ 0. Fortunately, the model also provides a short-distance
mechanism which is successful to give a large 0νββ rate, while keeping the ee neu-
trino mass matrix element small. Contrary to seesaw models [98], the short-range
mechanism will be the dominant source of 0νββ for low scalar masses, as we will
see.

4.4.2 New physics contribution

In Figure 4.10 we show one of the diagrams contributing to the short-range source
of 0νββ with two right-handed electrons. When the scalars running in the loop are
much heavier than all the momenta exchanged in the process, we can perform the
calculation from the effective Lagrangian perspective described in Section 4.1. The
effective operator responsible for the short-range contributions reads

OkWW = k−−W+
µ W

µ+ + h.c., (4.63)
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Figure 4.11: One-loop diagrams giving contributions to the kWW effective vertex in the
unitary gauge.

which comes from the gauge invariant operator

Okϕ4 = k++(ϕ†Dµϕ̃)(ϕ†Dµϕ̃) + h.c. (4.64)

Now, we can integrate out k±± and obtain

OeeWW = (eRe
c
R)(ϕ

†Dµϕ̃)(ϕ†Dµϕ̃) + h.c., (4.65)

which is the dimension-nine RR operator of Section 4.1. Finally, we can further inte-
grate out the gauge boson with the SM charged current interactions. The resulting
effective operator describes the 0νββ within our model:

O0νββ =
[
ūγµ(1− γ5)d

][
ūγµ(1− γ5)d

][
ē(1− γ5)ec

]
. (4.66)

We compute the effective kWW vertex at one-loop level with all external mo-
menta set to zero. The reason for this choice is that all transferred momenta in
0νββ are typically around 100 MeV [98], which we assume to be much smaller than
the masses of the exchanged particles in the diagram. In Figure 4.11 we show the
three topologies that give contributions to the effective vertex.

As for the generation of neutrino masses, the computation in the unitary gauge
hides the connection to lepton number violation in the effective neutral scalar prop-
agator. What is more, when rudely inspecting each of the topologies in Figure 4.11,
one might arrive at the conclusion that every diagram individually diverges and
hope for huge cancellations between diagrams. Of course, one needs to remember
that each topology actually involves three diagrams, one for each physical neutral
scalar (S, H and A). Then, one would add the propagators of the three scalars
and obtain the effective operator in Eq. (4.43), whose behaviour goes with 1/p6 and
hence cancelling the divergences. Moreover, the effective propagator recovers the
parameter λ6, responsible for lepton number violation.

With these considerations, we obtain the following Wilson coefficient of the
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kWW effective operator:

CkWW =
g2v4

4

µkλ
2
6

(4π)2m4
A

Iβ, (4.67)

where Iβ is a dimensionless function of the masses of the scalar particles running in
the loop.

As stated above, we can further integrate out k±± and W± using the equations
of motion, leading to the six-fermion effective operator in Eq. (4.66). The Wilson
coefficient describing 0νββ then becomes

C0νββ = 2
f ∗
ee

(4π)2
µkλ

2
6

m2
k±±m4

A

Iβ. (4.68)

Regarding the function Iβ, there are three contributions, corresponding to each
of the diagrams in Figure 4.11:

Iβ = I1β + I2β + I3β, (4.69)

with

I1β = m4
A

∫ ∞

0

dqq3
q2

(q2 +m2
χ±)2(q2 +m2

S)(q
2 +m2

H)(q
2 +m2

A)
, (4.70)

I2β = −2m4
A

∫ ∞

0

dqq3
1

(q2 +m2
χ±±)(q2 +m2

S)(q
2 +m2

H)(q
2 +m2

A)
, (4.71)

I3β = 2m4
A

∫ ∞

0

dqq3
q2

(q2 +m2
χ±±)(q2 +m2

χ±)(q2 +m2
S)(q

2 +m2
H)(q

2 +m2
A)
. (4.72)

The integrals are represented in Euclidean space and the angular variables have
already been integrated. At the end, the sum of the three integrals gives

Iβ = m4
A

∫ ∞

0

dq q3
q4 + q2(m2

χ±± − 2m2
χ±)− 2m4

χ±±

(q2 +m2
χ±±)(q2 +m2

χ±)2(q2 +m2
S)(q

2 +m2
H)(q

2 +m2
A)
. (4.73)

We have checked that we arrive at the same result when using the Goldstone boson
equivalence theorem, in which the SM Golstone bosons before symmetry breaking
are used instead of the gauge bosons.

In Figure 4.12 we present the numerical evaluations of the integral Iβ for some
representative cases. We have made use of Eq. (4.19) and Eq. (4.25) to write the
integral only in terms of sinα, mS, mH , mχ±± .

Finally, we can check the numerical results by evaluating the integral in two
limits:

• In the limit of small mixing, and in which the masses satisfy
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(a) sinα = 0.05 (b) sinα = 0.25

Figure 4.12: Numerical evaluation of the 0νββ integral, Iβ, as a function of mS . We
have fixed sinα for two representative values, and mH = mχ±± .

mχ±± ≃ mχ± ≃ mA ≃ mH ≡M and mS ≡ m, the integral reduces to

Iβ = −M4

∫ ∞

0

dq q3
q4 − q2M2 − 2M4

(q2 +M2)5(q2 +m2)

= −M4

∫ ∞

0

dq q3
q2 − 2M2

(q2 +M2)4(q2 +m2)
.

(4.74)

Now the integral is straightforward to calculate. In the limit in which the
lightest scalar is much lighter than the other scalars, m ≪ M , the function
equals Iβ ≈ 1/4.

• When all the masses are degenerated, the integral becomes

Iβ = −m4

∫ ∞

0

dq q3
q2 − 2m2

(q2 +m2)5
=

1

24
. (4.75)

With this in mind, we will work in a regime of small mixing and in which S is
somewhat lighter than all remaining scalars. The integral should give values between
those of the cases above. In the following, we will take

Iβ ≃ 1/8 (4.76)

in our estimations.

4.4.3 Comparison with the experiment: long and short
range bounds

The question remains regarding how to use experimental bounds on 0νββ rates to set
limits on the parameters of the model. KamLAND-Zen reported two interchangeable
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bounds on 0νββ [86]. First, in terms of the half-life of the decay:

T 0νββ
1/2 (136Xe) > 1.07× 1026 yrs, (4.77)

or, equivalently, in terms of the ee matrix element of the neutrino mass matrix:

Mmax
ee < 0.1 eV. (4.78)

In the case that neutrino exchange is the dominant source of 0νββ, we can use the
above experimental limit to set bounds on the parameters of the model without any
further manipulation.

To set bounds on short range mechanisms, such as the new physics contribution,
is a more delicate task. We will follow an effective Lagrangian approach developed
by Deppisch, Hirsch and Päs [99]. In their work, they have characterised all pos-
sible hadronic and leptonic currents entering the effective contact interaction that
generates the 0νββ. The most general six-fermion effective Lagrangian reads

L =
G2
F

2mp

{
ϵ1 JJj + ϵ2 J

µνJµνj + ϵ3 J
µJµj + ϵ4 J

µJµνj
ν + ϵ5 J

µJjµ

}
, (4.79)

where the scalar, vector and tensor hadronic currents are given by

J = ū (1±γ5) d, Jµ = ū γµ(1±γ5) d, Jµν = ū
i

2
[γµ, γν ] (1±γ5) d, (4.80)

while
j = ē (1± γ5) ec, jµ = ē γµ(1± γ5) ec (4.81)

are scalar and vector leptonic currents. The parameters ϵi encode the new physics
information for each effective contribution.

In our particular model, we need the ϵ3 term, with two vector-axial hadronic
currents and two scalar leptonic currents describing right-handed electrons:

L0νββ =
G2
F

2mp

ϵ3

[
ūγµ(1− γ5)d

][
ūγµ(1− γ5)d

][
ē(1− γ5)ec

]
. (4.82)

Rearranging Eq. (4.68), we get

ϵ3 =
mp

2G2
F

f ∗
ee

(4π)2
µkλ

2
6

m2
k±±m4

A

Iβ. (4.83)

Using standard nuclear physics methods, the authors of Ref. [99] put limits on each
ϵi by calculating the half-life of the 0νββ rate. For instance, regarding the parameter
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we need for our model, they found the following expression

[T 0νββ
1/2 ]−1 = G01|ϵ3M3|2, (4.84)

where G01 is a phase space factor andM3 is a nuclear matrix element that depends
on the isotope on which the experiment is based. The values of G01 andM3 can be
obtained from [99] and [100] for different nuclei. Finally, they set upper limits on the
ϵ3 parameter, describing the new physics contributions to short range mechanisms,
which makes the two equivalent bounds by KamLAND-ZEN to be

Mmax
ee < 0.1 eV and ϵmax3 < 4× 10−9 (90% CL) (4.85)

for the long- and short-range mechanisms, respectively. One can compare both
contributions and find the leading source of 0νββ. Both sources compete when the
following relation holds

x3|ϵmax3 |2 = xee|Mmax
ee |2, (4.86)

where x3 and xee include the phase factors and hadronic matrix elements correspond-
ing to the short-range operator and the neutrino exchange mechanism. Obviously,
one source of 0νββ will dominate when one is larger than the other. In particular,
the short-range source is dominant when

x3|ϵ3|2 > xee|Mee|2. (4.87)

Plugging the formulas for ϵ3 and Mee in the last expression, we find

mA < 4π

(
0.1 eV
4× 10−9

Iβ
Iν

mp

16m2
eG

2
F

)1/4

∼ 15 TeV, (4.88)

where we have assumed Iβ/Iν ≈ 0.1. Since the masses of the heaviest scalars are
correlated and very degenerated by electroweak precision data, this result suggests
that all the scalars should be lighter than ∼ 15 TeV in order for the short-range
mechanism to be the dominant source of 0νββ. However, one needs to keep in
mind that the model predicts Mee to be much more suppressed. In practice, the
short-range source of 0νββ could be tested provided the scalars are rather light.

Moreover, the next round of experiments are expected to be sensitive to half-lives
of order 1027 − 1028 years [101]. Because of Eq (4.84), this traduces to a reduction
of the bound on ϵ3 by one to two orders of magnitude, making the expected limit
by the upcoming experiments to be ϵ3 < 4 × 10−10. Taking fee = 1, λ6 = 1,
µk = mA = mk±± = 1 TeV and Iβ = 0.1 in Eq. (4.83), we obtain ϵ3 ∼ 10−9 which
would allow the observation of 0νββ in future experiments.
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Figure 4.13: Correlation plots for mχ±± −mH (left) and mχ±± −mA (right) obtained
from weak precision test data and scanning the complete range of values of the mixing
angle and all the scalar masses between 0−1000 GeV. The dashed line represents the case
in which the scalars are completely degenerated. The splitting between the masses of the
scalars is typically smaller than ∼ 100− 200 GeV.

4.5 Constraints from other processes

4.5.1 Electroweak precision data

The most obvious way to discover new phenomena is high-energy physics. However,
precision measurements of low energy properties of electroweak bosons, such as decay
rates and masses, can be also used to investigate new physics scenarios. There are
several parameters encoding this information, but the most relevant ones are the
oblique parameters S, T and U describing the self-energy of the gauge bosons [102,
103], along with the related parameter ρ. In the Standard Model, they are exactly
zero (ρ = 1), and deviations from this value point towards new physics.

Here we will concentrate on the T parameter, which is proportional to the dif-
ference of the self-energies of the W and Z gauge bosons. Indeed, it is defined
as

∆T =
4π

g2 sin2 θWM2
W

(ΠWW − Π33), (4.89)

where the self-energies of the W boson, ΠWW , and of the W3 boson, Π33, are calcu-
lated at p2 = 0.
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Figure 4.14: Feynman diagrams for the most relevant LFV processes. Subfigure (a)
shows ℓ±a −→ ℓ∓b ℓ

±
c ℓ

±
d , while ℓ±a −→ ℓ±b γ is displayed in (b).

The new physics contribution to the T parameter, predicted by our model, reads

∆T =
1

4π sin2 θWM2
W

(
F (m2

χ±± ,m2
χ±) +

1

2
F (m2

χ± ,m2
A)

+
1

2
cos2 α

[
F (m2

χ± ,m2
H)− 2F (m2

A,m
2
H)
]

+
1

2
sin2 α

[
F (m2

χ± ,m2
S)− 2F (m2

A,m
2
S)
])
,

(4.90)

where

F (A,B) = 8π2

∫
dk

(2π)4
k2
(

1

k2 + A
− 1

k2 +B

)2

=
A+B

2
− AB

A−B
log
(
A

B

)
.

(4.91)
The measured value of the T parameter is ∆T = 0.05 ± 0.12 [104]. Using the 2σ

uncertainty of this measurement we can explore the parameter space of the scalar
masses. We allow the mixing angle to take any value and vary the masses between
0 − 1000 GeV. In Figure 4.13 we show the correlation plots for mχ±± − mH and
mχ±±−mA. We see that in general the splitting is smaller than ∼ 200 GeV, although
for small mixing the splitting reduces to be smaller than ∼ 100 GeV.

4.5.2 Lepton flavour violating processes

Until now we elaborated significantly on the breaking of total lepton number, but
did not mention lepton flavour violation (LFV). Nothing in the model prevents
the doubly-charged scalar from changing the lepton flavour of the charged leptons
via their Yukawa interactions. Indeed, had the Yukawa couplings conserved lepton
flavour, we would have generated a diagonal neutrino mass matrix, which is unable
to accommodate neutrino oscillation data. We can use processes involving lepton
flavour violation in order to further constrain the couplings and masses of the model.
These processes will be associated with k±±, and thus will set bounds on its mass and
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the Yukawa couplings. The main LFV constraints in the model come from ℓ±a −→
ℓ∓b ℓ

±
c ℓ

±
d and ℓ±a −→ ℓ±b γ, displayed in Figure 4.14. While the latter is generated

at the one-loop level, the former happen at tree-level via the exchange of a k±±,
which will make it more relevant for our case. These processes have been studied in
Ref. [105] in the context of the Zee-Babu model, which has a doubly-charged singlet
with the same quantum numbers and hence the same Yukawa interactions with the
charged leptons. Table 4.1 summarises the experimental data and the corresponding
bounds on the parameters of the model.

Experimental data (90% CL) Bounds (90% CL)
BR(µ− −→ e+e−e−) < 1.0× 10−12 |f ∗

eefeµ| < 2.3× 10−5
(mk±±

TeV
)2

BR(τ− −→ e+e−e−) < 2.7× 10−8 |f ∗
eefeτ | < 0.009

(mk±±
TeV

)2
BR(τ− −→ e+e−µ−) < 1.8× 10−8 |f ∗

eµfeτ | < 0.005
(mk±±

TeV
)2

BR(τ− −→ e+µ−µ−) < 1.7× 10−8 |f ∗
µµfeτ | < 0.007

(mk±±
TeV

)2
BR(µ− −→ eγ) < 5.7× 10−13 |f ∗

eefeµ + f ∗
eµfµµ + f ∗

eτfµτ |2 < 10−7
(mk±±

TeV
)4

Table 4.1: Relevant constraints from LFV processes. Only processes that give the most
stringent bounds on the parameters of the model has been displayed. Experimental data
is shown in the left column [106, 107]. Limits on the parameters of the model, in the right
column, are obtained using Eq. (4.92) and Eq. (4.93).

The branching ratio of the process l±a −→ l∓b l
±
c l

±
d , shown in Figure 4.14a, reads

BR(ℓ−a −→ ℓ+b ℓ
−
c ℓ

−
d ) =

1

2(1 + δcd)

∣∣∣∣ fabf
∗
cd

GFm2
k±±

∣∣∣∣2 BR(ℓ−a −→ ℓ−b νν̄). (4.92)

The branching ratio of a lepton decaying into a lighter lepton and a pair of
neutrinos, BR(ℓ−a −→ ℓ−b νν̄), is well measured and gives BR(µ −→ eνν̄) = 1,
BR(τ −→ eνν̄) ≈ 0.1784 and BR(τ −→ µνν̄) ≈ 0.1736. When there are two
identical particles in the final state, 1+ δcd gives a factor of 2. For instance, despite
of the weaker bound on the corresponding branching ratio, line 4 in Table 4.1 gives
a stronger bound on the Yukawa couplings than line 3, because of the factor of the
two identical muons.

Other low-energy processes give weaker bounds. In particular, µ −→ eγ, dis-
played in Figure 4.14b, is generated at the one-loop level and is suppressed by the
loop factor. The branching ratio of this process is given by

BR(ℓa −→ ℓbγ) =
α

3πG2
F

∣∣∣∣∑i f
∗
bifia

m2
k±±

∣∣∣∣2 BR(ℓa −→ ℓbνν), (4.93)

where α ≈ 1/137 is the fine-structure constant of the electromagnetic interactions.
In addition, µ − e conversion in nuclei does not generate tree-level amplitudes as
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the doubly-charged scalar cannot couple to quarks. The amplitude of this type of
processes is obtained by coupling the photon in µ −→ eγ to a quark neutral current.
Finally, processes like µ+e− −→ µ−e+ also give less severe bounds. Here, we will
restrict to the processes listed in Table 4.1.

Note that in order to have a sizeable 0νββ we need a somewhat large value of
fee, which in turn will require feµ to be insignificantly small to keep the bounds from
µ −→ eee under control.

Additionally, we can use the constraints on τ −→ eµµ and the relations among
the Yukawa couplings coming from the texture zeros to put bounds on fττ and,
consequently, to feτ and fµτ . Indeed, the predictions of texture A1 imply

3Meτ ∼Mµµ ∼Mµτ ∼Mττ ∼ 0.02 eV, (4.94)

which allows us to put the Yukawa couplings in terms of fττ as

feτ ∼ fττ

(
mτ

3me

)
, fµµ ∼ fττ

(
mτ

mµ

)2

, fµτ ∼ fττ

(
mτ

mµ

)
. (4.95)

After the relevant substitutions, we get

|fττ | < 1.1× 10−4
(mk±±

TeV

)
. (4.96)

For a k±± with mass of order 1 TeV and |fττ | = 10−4, the Yukawa matrix reads

fab ≈


fee 0 10−1

0 10−2 10−3

10−1 10−3 10−4

 , (4.97)

where we have left fee unfixed as it gets limits also from the 0νββ data.
Moreover, we can use the bound on fττ in Eq. (4.96) to further constrain the

parameters entering the neutrino mass matrix. Using Mττ ≃ 0.02 eV together with
Eq. (4.96), this feature leads to a large µk and/or large somewhat splitting between
mS and mH .

4.5.3 Dark matter

The model includes an unbroken Z2 parity symmetry that divides the spectrum in
two sectors. The even sector includes the Standard Model and the doubly charged
scalar. The neutral scalars as well as χ± and χ±± are odd particles and hence
constitute the so-called dark sector. Moreover, a good dark matter (DM) candidate
will be stable as long as it is the lightest neutral particle of the dark sector. For our
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Figure 4.15: Some of the relevant annihilation channels. The first three diagrams cor-
respond to the standard pure Higgs portal scenario. In the last diagram, the pair of DM
particles annihilates into gauge bosons, provided the mixing angle between the singlet and
the triplet scalars is larger than zero.
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Figure 4.16: Regions corresponding to the observed dark matter relic abundance [108]
in the mS − λS plane for several values of sinα. We have chosen mH = mχ±± = mk±± =
800 GeV as a benchmark scenario. Current [109, 110] and future [111] exclusion bounds
from direct detection experiments are also presented.
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choice of hierarchies, mS < mA < mH , the scalar S meets the previous requirement
and therefore will be a DM candidate.

As a result of the parity symmetry, the scalars in the dark sector are not
allowed to couple to the SM fermions. However, interactions of a pair of odd
scalars with an even boson are not forbidden. This opens up new annihilation
diagrams into gauge bosons, as we will see. The main annihilation channels are
SS −→ ff̄ ,WW,ZZ, hh, kk, provided the daughter particles are lighter than the
DM candidate.

In the following, we will parametrise the interactions of the DM candidate with
the SM Higgs boson and consider deviations from the pure Higgs portal scenario.
In the Higgs portal scenario, the DM candidate is a singlet of SU(2)L and has no
interactions with the gauge bosons. The main annihilation channels are shown in
Figure 4.15. All of them are mediated by a s-channel SM Higgs exchange, except
the hh channel, which can also be generated with a contact interaction. This simple
model is very constrained by direct detection data for mS < 350 − 400 GeV [112,
113], and has no flexibility for evading the bounds. Note that, when sinα = 0,
the dark matter description of our model corresponds to the Higgs portal scenario.
Indeed, the renormalizable interactions of the DM candidate, S, with the SM Higgs
boson read

L ⊃ −1

2
λSS

2

(
vh+

1

2
h2
)
, (4.98)

where the Higgs portal coupling is given by

λS =
1

2

[
2λϕσ cos2 α−

√
2λ6 sin 2α + (λϕχ + λ′ϕχ) sin2 α

]
. (4.99)

However, as we slowly turn on the mixing angle, new annihilation diagrams with
gauge bosons in the final state start to open. These consist of contact interactions
of the type SSV V (with V = W,Z) whose strength depends on g2 sin2 α. When
λS > 0, the new contact interactions interfere constructively with the original an-
nihilation diagrams to gauge bosons of the pure Higgs portal scenario, and thus
require smaller values of λS to reproduce the same dark matter relic abundance, as
it scales with the cross section.

In Figure 4.16 we present curves of allowed dark matter relic density,
ΩDMh

2 = 0.12 [108], in the mS − λS plane for several values of the mixing angle.
Here, we have assumed mH = mχ±± = mk±± = 800 GeV and used the MicrOMEGAs
package [114] to compute the relic abundance. Exclusion limits from current [109,
110] and future [111] direct detection experiments have also been plotted. The rele-
vant parameters of direct detection are the mass of the dark matter candidate and
the coupling constant λS. We see that the new contact interactions strongly enhance
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the dark matter annihilations, even for small values of the mixing angle.
Finally, the case λS < 0, although not considered here, is perfectly allowed by the

model. At first, all annihilations should still be purely dominated by Higgs portal
diagrams. But as soon as the mixing angle is turned on, the situation changes.
Because of the negative values of λS, the contact interaction diagrams will have a
destructive interference relative to the Higgs portal diagrams with gauge bosons in
the final state. When the gauge boson annihilation channels are strongly suppressed,
the main contribution comes from the hh channel and λS can take even larger values
than in the pure Higgs portal scenario, given that now there are fewer annihilations.
The opposite case happens when the destructive interference is not strong enough
and λS is allowed to take lower values, as in the case of λS > 0. However, more
quantitative work in this direction is needed.

4.6 Some final considerations

The analysis of the effective Lagrangian approach suggests that the model would
induce 0νββ and Majorana neutrino masses by new physics at the TeV scale. More-
over, the form of the neutrino mass matrix would be dictated by the hierarchy among
the masses of the charged leptons. For this reason, the details of the oscillation pa-
rameters are described by an A1 texture zero that perfectly accommodates the most
updated neutrino oscillation data. In addition, and despite predicting Mee ≈ 0,
the model gives a sizeable 0νββ rate through a short-range mechanism, with the
interesting possibility of an observation in the upcoming experiments. In fact, if a
detection of 0νββ does happen, the measurement of the polarisation of the emit-
ted electrons would help to discern this mechanism from the the standard neutrino
exchange mechanism into left-handed electrons.

The analysis of the viability of the dark matter candidate showed that the
mixing angle between the neutral scalars should be small for the sake of keep-
ing the annihilation into gauge bosons through contact interactions under control.
Moreover, limits on the oblique T parameter require the scalar masses to satisfy
|mχ±± −mH | < 100 GeV, which implies that, for small mixing, the masses of those
particles are also close to mA and mχ± . Finally, bounds on LFV processes, and in
particular on fττ , lead to a somewhat large value of µk.

In Table 4.2 we present benchmark values for the independent parameters of the
model, as well as for some relevant quantities that are derived from these inputs. We
have checked that these numbers satisfy all constraints from the low energy processes
and experiments seeking for dark matter, as well as being able to accommodate
neutrino oscillation data while generating a 0νββ rate large enough to be seen in
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the upcoming rounds of experiments.

mχ±± mk±± sinα mH mS µκ |fee| |fττ | |feµ|
800 800 0.08 800 200 20000 0.01 10−4 0

mχ± mA Iβ Iν ϵ3 |feτ | |fµµ| |fµτ |
799 798 0.165 0.84 3.5× 10−9 0.12 0.03 1.7× 10−3

Table 4.2: Benchmark values for the input parameters (first row) and other relevant
quantities (second row) calculated from the numbers of the first row. All parameters with
dimensions of mass are in units of GeV.

Finally, the scalars of the model could have masses below the TeV scale, and
could therefore be searched at colliders. In particular, k±± has interactions with the
SM particles. This enables to probe its decay into light charged leptons in the LHC,
which has been already investigated in the literature (see for instance Ref. [115]). On
the other hand, χ±± and χ±, despite being odd particles, can be explored through
more exotic decay channels. For instance, χ±± could decay into k±± plus missing
energy. In such a case, the production pattern of the doubly-charged singlet is mod-
ified and consequently so is the LHC analysis. These possibilities will be explored
in the next chapter, where we discuss LHC prospects for LNV scalars.

4.7 Summary
• Neutrinoless double beta decay and the generation of neutrino masses are very

low energy processes and therefore they can be described by higher-dimension
effective operators, within the framework of the SMEFT.

• In particular the RR dimension-nine operator induces 0νββ at tree level and
neutrino masses at the two-loop level, with a new physics scale arising natu-
rally at the TeV scale.

• In this chapter we have designed a model of neutrino masses that realises
the RR dimension-nine effective operator, using the same local group of the
Standard Model, with three new heavy scalars and a parity symmetry that
splits the field content into a visible and a dark sector.

• We have computed the contributions given by the new diagrams to neutrino
masses and the short-range mechanism of 0νββ, in the gaugeless limit as well
as in the unitary gauge.

106



Chapter 4. Implications for neutrinoless double beta decay

• Both the rows and the columns of the neutrino mass matrix are proportional to
the masses of the charged leptons, which translates to the following hierarchy
among the elements of the neutrino mass matrix:

Mee,Meµ ≪Meτ ,Mµµ,Mµτ ,Mττ .

It follows that the predictions of the A1 pattern of two-zero textures can be
applied to the model.

• Because Mee ≈ 0, the standard neutrino exchange source of 0νββ is very
suppressed. However, we have found that upcoming 0νββ experiments can be
sensitive to the short range mechanism provided the new scalars are lighter
than around 15 TeV.

• Finally, we have discussed a benchmark point for the input parameters of the
model, using constrains from electroweak precision data and lepton flavour
violating processes along with an analysis of the viability of the DM candidate.
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CHAPTER 5
LHC prospects for lepton number
violating scalars

In previous chapters we discussed different extensions of the Standard Model that
attempt to describe neutrino masses with the addition of exotic scalars. For instance,
in Chapter 2 we described the seesaw type-II model, the simplest extension of the
Standard Model generating Majorana neutrino masses, with the only inclusion of a
new scalar triplet. In this context, the mass of the scalar could lie above the 108 GeV
scale, well above the scope of current accelerators. However, it is only one of the
three possible scalars that have renormalizable interactions with a lepton bilinear
carrying a net lepton number.

The second possibility is a singly-charged scalar singlet. The Yukawa interaction
with the lepton doublets requires the singlet to have a net lepton number. However,
we cannot rely upon spontaneous symmetry breaking for breaking lepton number
as the VEV of the singlet would also break the electromagnetic symmetry. So this
Lagrangian alone is not sufficient to induce Majorana neutrino masses and we need
more ingredients. There are several possibilities. Adding a second Higgs doublet
leads to the Zee model [116], which generates neutrino masses at the one-loop level.
In this case, lepton number violation is achieved by a trilinear interaction in the
scalar sector. Although this model is interesting in many aspects, in its simplest
version, it is incompatible with oscillation data (it predicts three-zero textures, which
is ruled out by the experiments [117]).

The last scalar of this list is a doubly-charged singlet. But, as for the case of
the singly-charged singlet, we cannot spontaneously break lepton number with this
scalar alone. However, we can still use the doubly-charged singlet as the bedrock
for the generation of neutrino masses, and there are lots of models following this ap-
proach. An interesting scenario, called Zee-Babu model, consists of simultaneously
considering the two singlets [118, 119]. Then, as in the Zee model, lepton number
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is broken by a trilinear term in the potential and neutrino masses are induced at
the one-loop level. Another much more involved example was introduced in Chap-
ter 4. Along with the doubly-charged singlet, this framework included two additional
scalar multiplets and has a number of interesting phenomenological implications.

In contrast with the seesaw type-II model, models of loop-produced neutrino
masses predict the scalar masses to lie in the TeV scale. This makes these scalars
ideal candidates for being investigated at high-energy facilities. However, and al-
though there are several searches for LNV scalars currently being performed at
the LHC, none of them take into account the rich decay chains that these scalars
would exhibit.

In this chapter we will study the possibility of probing at the LHC some of the
scalars named above that are needed to break lepton number so that neutrinos can
become massive.

5.1 Large Hadron Collider

Massive exotic particles typically exhibit very large decay rates. They are unstable
and very rare in nature. Moreover, as they get larger masses they also become
increasingly harder to produce in the laboratory. The most common technique to
search for novel particles consists of accelerating known particles to very high kinetic
energies and colliding them with other particles. The experiment is called a collider
if its setup involves two beams of particles travelling in opposite direction at high
velocities. Then, after the collision, the kinetic energy can be transformed into mass
so that more massive particles could be produced. (Of course, the mass of the new
particles cannot be larger than the total energy of the process.) For this reason,
high-energy colliders are extremely useful tools for probing new exotic particles as
well as to test the dynamics and the structure of matter.

Modern colliders can be categorised by shape and by the type of particles that
each beam carries. Colliders can take either circular or linear shapes. In circular
colliders, even though the rate of collision is very small, the beams can be used over
and over, which translates into a rapid recollection of data. However, this type of
accelerator suffers from energy losses from synchrotron radiation. Linear colliders
have different properties. In fact, because of its straight shape there is no losses
from synchrotron radiation (although it has other types of losses), but the collection
of data is more demanding as the colliding particles cannot be reused.

Some colliders are based on beams of hadrons. The best feature of hadrons is that
they are relatively heavy, which makes them easier to accelerate to large energies. On
the negative side, they are compound particles and show more complicated collision
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events. Other colliders utilise leptons, which give clean signals. Moreover, being
elementary particles, initial states are well known. However, leptons are lighter
than hadrons and therefore harder to accelerate to high energies. This is because
losses from synchrotron radiation scales inversely with the fourth power of the mass
of the travelling particle. The electron is 2000 times lighter than the proton, so that
it losses energy 1013 times faster. For this reason, hadron colliders are usually more
fitted for searching for new heavy particles, while lepton colliders are usually used
for precision measurements of known particles.

Among all particle accelerators ever built, the Large Hadron Collider (LHC) is
the most powerful one. Indeed, expectations for observing new particles are placed in
the remarkable technological development that the LHC has achieved. It is a circular
collider that (mainly) accelerates beams of protons with an energy of 6.5 TeV. In
other words, collisions occur with a total centre of mass energy of 13 TeV. Although
there are several experiments being conducted, the main two are CMS and ATLAS,
which are design for general purposes. They typically search for new particles.

The detectors of these experiments include several layers that target different
particles. An inner detector tracks charged particles, by curving them with a mag-
netic field, and plays an important role in identifying the particles and their collision
point. A set of electromagnetic and hadronic calorimeters absorbs the energy of eas-
ily stopped particles, such as photons, light charged leptons and hadrons. Then, by
sampling the form of the particle shower, they deduce the energy of the parent
particle. The muon detectors, placed at the boundary of the experiments, make
additional measurements of the momenta of highly penetrating muons. Finally, the
magnetic systems trace the curvature of the path of the particles in order to measure
their momentum.

Since the first collisions took placed in 2010, the LHC has collected an out-
standing amount of data. Up until 2017, the total integrated luminosity jointly
obtained by ATLAS and CMS was of 70 fb−1. At the end of run 2, it increased to
∼ 270 fb−1, counting 135 fb−1 for each experiment. An upgrade that will improve
the potential of the LHC has already been started. The new phase will be called
High-Luminosity LHC and it is expected to boost the luminosity by a factor of 10
in the upcoming years.

Before performing the actual experiments, with all the complications they in-
volve, it is useful to study what we expect to see from the signal if the pursued
particle exists in nature. This is done by means of computer simulations. There are
several codes implementing each step; only those that we use are listed here. The
first step is to implement the relevant particles and its interactions. This is done
with the FeynRules package [120] that exports an UFO model. This file is then
imported to MadGraph [121], which is able to generate both background and signal
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events. Initial and final state radiation as well as parton showering and hadronisa-
tion is performed by Pythia [122, 123]. Finally, the events are selected and analyse
with home-made routines based on MadAnalysis [124].

Throughout this chapter we will concentrate in the current phase of the LHC with
13 TeV of centre of mass energy and with the integrated luminosity so far collected,
as well as with the luminosity expected in the near future. In the next section we
present a search strategy containing several signal regions with light leptons in the
final state, that will allow us to test scenarios of singly- and doubly-charged lepton
number violating scalars.

5.2 Search strategy

In the following, we consider only electrons and muons as they show similar cut
efficiencies at the LHC. Taus, with lower identification efficiency, are excluded of
our analysis. Thus, throughout this chapter we will use the term lepton to denote
exclusively electrons and muons. We define three orthogonal signal regions:

1. SR1, which contains events with two leptons in the final state.

2. SR2, with three leptons in the final state.

3. SR3, with four leptons in the final state.

The precise details of each signal region depend upon the analysis considered. For
instance, in order to explore scenarios with doubly-charged scalars, the signal regions
should contain leptons with the same sign. On the other hand, this requirement is
somewhat more relaxed in the analyses of models with singly-charged scalars, for
which the SR1 will consist of pairs of leptons with opposite sign.

In our search strategy we will make use of a set of three observables. First, every
signal region considered here involves at least a pair of leptons. Then the following
observable is useful:

1. The invariant mass of the lepton pair, mℓℓ.

Charged leptons are often accompanied by neutrinos, which we identify as sources of
missing energy. Moreover, in more exotic decay channels, the particle that is being
probed can be produced in association with particles belonging to a dark sector or
with long-lived unstable particles; all these particles would escape the detectors. It
is then natural to consider an observable that takes in consideration this missing
energy:
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2. The transverse mass of a lepton object L, defined as

m2
T = m2

L + 2(EL
TE

miss
T − p⃗LT · p⃗ miss

T ), (5.1)

where L can be a single lepton, L = ℓ, and then all kinematic variables are
defined as usual; or a lepton pair, in which case L = ℓℓ, mℓℓ is the invariant
mass above, p⃗ ℓℓT = p⃗ ℓ1T + p⃗ ℓ2T and Eℓℓ

T =
√
|p⃗ ℓℓT |2 +m2

ℓℓ.

Very often, the parent particle is produced in pairs, and then its decay will give two
invisible particles. The following observable takes advantage of that scenario:

3. The stransverse mass, mT2, defined as

mT2 = minq⃗miss
L1 +q⃗miss

L2 =p⃗miss
T

{
max

[
mT (p⃗

L1
T , q⃗ miss

L1 ),mT (p⃗
L2
T , q⃗ miss

L2 )
]}
, (5.2)

with mT (p⃗
X
T , q⃗

miss
X ) =

√
m2
X + 2(EX

T q
miss
X − p⃗XT · q⃗ miss

X ), where X denotes a
visible particle, EX

T and p⃗XT its transverse energy and momentum, respectively,
while q⃗miss

X is the part of the missing transverse momentum associated with X
(and not the total missing energy). In general, we will be able to set mX = 0

in the definition of mT as all momenta will be much heavier than the lepton
masses.

Throughout this chapter, L1 and L2 will be either a lepton or a lepton pair.
In the upcoming sections we will explicitly discuss each case.

As for the signal regions, the exact definition of each observable depends on the
analysis in consideration. We group the three observables together in the set
O = mℓℓ,mT ,mT2. It is interesting to note that the stransverse mass will be bounded
from above by the mass of the parent particle. For the background, this implies that
mT2 should show values below the mass of the top quark. Then, for values beyond
the mass of the top quark, the distributions of mT2 will be dominated by the signal.

Finally, we will also consider the observable ST , defined as the scalar sum of the
pT of all the leptons in the signal region. This observable will allow us to bin the
variables in two dimensions. Indeed, for each signal region, we consider 81 different
categories defined by ST > X and O > Y , with X,Y = 100, ..., 900 GeV, in steps of
100 GeV.

5.3 Application to searches of doubly-charged
scalars

In this section we will apply the strategy to the case of searches for doubly-charged
scalars within the framework of two different extensions of the Standard Model
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describing Majorana neutrino masses1. In order to break lepton number in two units,
these models introduce a doubly-charged scalar, k±±, among with other new fields.
To be precise, we will call χ±±, h± and S any additional doubly-charged, singly-
charged or neutral scalar, respectively. Then, besides the production patterns and
decay modes in which k±± directly couples to the SM particles, the doubly-charged
scalar may also show new exotic decay channels. In the following we list the decay
modes we consider. If not explicitly stated otherwise, k±± is produced in pairs
through an s-channel mediated by neutral gauge bosons.

• k±± −→ ℓ±ℓ±. This is a decay channel that very often appears in models of
neutrino masses, like in seesaw type-II, Zee-Babu, or the three-loop model of
Chapter 4. It is based on the renormalizable interaction k±±ℓ∓ℓ∓ that gives
k±± a net lepton number.

• k±± −→ W±W±. This decay channel is present in models in which k±± is
member of a non-trivial SU(2)L multiplet. For instance, in the seesaw type-II
model of neutrino masses, k±± belongs to a triplet of SU(2)L. In fact, when
the VEV of the triplet is large enough, this decay channel is dominant.

• k±± −→ h±h±, with h± −→ ℓ±ν. Again, the simplest model of neutrino
masses showing this decay pattern is the Zee-Babu.

• k±± −→ h±h±, with h± −→ W±S. Models in which h± and S belong to the
same multiplet show this decay chain. Moreover, when the aforementioned
multiplet is odd under a Z2 parity symmetry2, S is a dark matter particle and
can therefore be treated as missing energy. The three-loop model of Chapter 4
is an example of this class of models.

• χ±± −→ k±±S, with k±± −→ ℓ±ℓ±. When the conditions of the previous
decay channel are met, this decay mode also comes along. As a matter of fact,
this decay channel enhances the production of k±± and hence the sensitivity
to mk. Finally, after being produced in association with S, the doubly-charged
scalar can still decay through any of the channels above, but an analysis
considering them goes beyond the scope of this study.

Of much interest are the possibilities opened up by the exotic interactions. Any
dedicated search of doubly-charged scalars needs to take into consideration that
the exotic decay channels will significantly change the signature of the observables.
Indeed, in Figure 5.1 we show how much the distribution of the invariant mass of

1The work presented in this section was published by the author of this thesis and collaborators
in Ref. [125]

2k±± should be even under Z2, or otherwise this decay mode does not occur.
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Figure 5.1: Distributions of the invariant mass of pair of same-sign leptons in events gen-
erated with pp −→ kk followed by k −→ ℓℓ (orange) and followed by k −→ hh −→ ℓℓνν
(green). For illustration, we show in red the cut imposed by the experimental collabora-
tion [129].

pairs of same-sign leptons might vary when considering the exotic decay pattern of
the Zee-Babu model above.

Both ATLAS and CMS collaborations have performed searches of doubly-charged
scalars [126–129]. These analyses have been inspired by the seesaw type-II model,
and therefore look for the leptonic decay of k±± (orange curves in Figure 5.1). The
reconstruction of the invariant mass of k±± in this class of models poses no diffi-
culties. But as soon as more exotic decay modes are opened up, especially in the
presence of missing energy, the distributions of the invariant mass starts to flatten.
In this regard, more involved observables, as those listed in the previous section,
may become useful to obtain information about the scalar that is being tested.

So, in the context of doubly-charged scalar searches, we will inclusively consider
the set of observables described above, with the lepton pair being always of the same
sign. Then, the invariant mass is constructed for every same-sign lepton pair. The
transverse mass is also built for each same-sign lepton pair, as well as for the third
lepton in SR2. Finally, in the SR1, the indices L1 and L2 in the definition of the
stransverse mass stand for the harder and softer lepton, respectively. In the SR2, L1
corresponds to the vectorial sum of the two same-sign leptons, while L2 stands for
the third lepton. In the SR3, L1 amounts for the vectorial sum of the two positive
leptons and L2 for the vectorial sum of the negative ones.

5.3.1 Background for same-sign leptons

Taking into consideration the decay modes of k±± and the search strategy described
above, we need to generate a multi-lepton background, whose events have at least
two same-sign leptons. Although the estimation of the background is inspired in
models of doubly-charged scalars, it is still useful for other LHC analyses containing
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same-sign leptons. For instance, we will make use of it in the search we propose
regarding singly-charged scalar singlets, as we will see in Section 5.4.

We generate the background events with MadGraph 5 [121] at NLO in αs, with
parton showering performed by Pythia 6 [122]. At generator level we impose
the following cuts. Electrons (muons) are require to have pℓT > 20(10) GeV and
|ηℓ| < 2.5(2.6). Jets, defined to have pjT > 20 GeV and |ηj| < 2.4, are clustered us-
ing the anti-kt algorithm [130] with R = 0.4. We have fixed the b-tagging efficiency
to be 0.7 and the τ -tagging efficiency to 0.5. Furthermore, the correct estimation of
the background depends upon the mis-identification of electrons. In Ref. [128] the
charge mis-identification probability was parametrised by P (|ηℓ|, pℓT ) = f(|ηℓ|)σ(pℓT ),
where

f(x) =



0.03 if 0 < x < 0.4,

0.04 if 0.4 < x < 0.8,

0.08 if 0.8 < x < 1.1,

0.15 if 1.1 < x < 1.4,

0.3 if 1.5 < x < 1.7,

0.6 if 1.7 < x < 1.9,

0.7 if 1.9 < x < 2.1,

1 if 2.1 < x < 2.3,

2 if x > 2.3

and σ(x) =


0.02 if x < 70,

0.035 if 70 < x < 100,

0.05 if x > 100.

(5.3)
The following processes give sizeable contributions to the background: Drell-Yan,
tt̄, WZ, WW , ZZ, WWW , WWZ, WZZ, ZZZ, tt̄W and tt̄Z. The Drell-Yan
background was generated with mℓℓ > 100 GeV for the sake of reducing the running
time of the simulation. In Table 5.1 we show the cross section and number of
generated events for each process giving contributions to the background.

As said above, both ATLAS and CMS have performed searches of doubly-charged
scalars in the context of the seesaw type-II model. We can make use of their results
to check the validity of the background generated in this section. In Figure 5.2, we
depict the minimum cross section on pair production of k±± followed by a leptonic
decay with 100% branching ratio that can be excluded at the 95% CL (dashed black
line) using our background. Then, we compare these values with the theoretical
cross sections obtained with the seesaw type-II model (red line). The results are in
very good agreement with those obtained by the experimental collaborations.

Finally, we have computed the number of background events in each of the
categories of the signal regions defined above. In the following, we will see to what
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Background Cross section [pb] Simulated events
Drell-Yan 220± 20 108

tt̄ 660± 70 108

WW 102± 4 107

WZ 45± 2 106

ZZ 13.6± 0.5 106

WWW 0.21± 0.01 106

WWZ 0.17± 0.01 106

WZZ 0.057± 0.004 106

ZZZ 0.014± 0.001 106

tt̄W 0.59± 0.06 106

tt̄Z 0.76± 0.09 106

Table 5.1: Backgrounds, cross sections and numbers of generated events.

extent the signal events of different models of doubly charged scalar singlets are
compatible with this background.

5.3.2 Zee-Babu model

The Zee-Babu model is an extension of the Standard Model that generates neutrino
masses at the one-loop level. It includes a doubly-charged scalar singlet, k±±, along
with a singly-charged scalar singlet, h±. The singly-charged singlet is introduced in
order to break lepton number in two units, which is needed for Majorana neutrino
masses, by means of a trilinear interaction with the doubly-charged singlet. The

Figure 5.2: Bounds on the cross section (dashed black line) for an integrated luminosity
L = 35 fb−1 of the leptonic decay of k±±. The green and orange regions show the 1σ and
2σ uncertainties. The theoretical cross section in the context of the seesaw type-II model
(in which k±± is member of a SU(2)L triplet) is shown for reference (red line).
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relevant piece of the Lagrangian reads

LZB = gab ecaebk
±± + fab ℓ̃LaℓLbh

+ − µ k++h−h− + h.c. (5.4)

where fab is an antisymmetric matrix because of the iσ2 factor in ℓ̃L, while gab is
symmetric. Finally, the trilinear coupling can be expressed in terms of a dimension-
less parameter κ, defined by µ = κ min(mh,mk), and which we take to be κ < 4π

due to naturalness arguments [105].
As the goal of the Zee-Babu model is to describe neutrino masses, the main

constraints would be given by neutrino oscillation experiments. Both normal and
inverted orderings are still allowed by current data [105]. In addition, we take
into consideration the bounds from low energy processes. We proceed by selecting a
particular benchmark set of values for the parameters in each neutrino mass ordering.

In NO, neutrino data demand gee ∼ gµµ ∼ 0.1 ≫ geµ, geτ , gµτ , gττ and feµ ∼
feτ ∼ fµτ/2 [105]. Values of f around 0.01 satisfy bounds from µ −→ eγ. Finally,
the region mk < 2mh is still allowed for mk > 600 GeV if κ < 5. Values satisfying
these constraints are shown in the first row of Table 5.2.

In IO, the parameter space in highly constrained for most of the values of the
Majorana and Dirac phases [105]. In particular, the scalar masses are way beyond
the reach of the LHC. However, in the small window in which the Dirac CP phase is
around 180◦, the bounds become more relaxed. The hierarchies among the Yukawa
couplings become gττ ≪ gµτ ∼ gµµ ∼ and geµ, geτ < 0.1. In the second row of
Table 5.2 we present allowed values for the parameters.

gee geµ geτ gµµ gµτ gττ feµ feτ fµτ κ

NO 0.1 0.001 0.001 0.1 0.001 0.001 0.01 0.01 0.02 5
IO 0.1 0.0001 0.0001 0.0001 0.1 0.0001 0.1 -0.1 0.01 5

Table 5.2: Benchmark values for the relevant parameters of the Zee-Babu model in the
normal ordering (first row) and inverted ordering (second row) of neutrino masses.

Within the Zee-Babu model, the decay width of k±± into a pair of charged
leptons is given by

Γ(k±± −→ ℓ±a ℓ
±
b ) =

|gab|2

4π(1 + δab)
mk. (5.5)

As said above, k±± may also show more exotic decay modes. This translates into a
signatures not yet explored experimentally. In the Zee-Babu model, k±± can decay
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Figure 5.3: Excluded regions in the plane mk −mh in the Zee-Babu model for normal
ordering (left panel) and inverted ordering (right panel).

into a pair of h±, following

Γ(k±± −→ h±h±) =
1

8π

(
µ

mh

)2

mk

√
1− 4m2

h

m2
k

, (5.6)

which of course happens only for mk > 2mh. The subsequent decay h± −→ ℓ±a νb

(where a, b = e, µ, τ) has a width that follows Eq. (5.5) but without the 1 + δab

factor of identical particles, as the Yukawa coupling is antisymmetric (and ℓ and
ν are different particles). For the hierarchy between Yukawa couplings in NO, this
implies that h± decays into a lepton and a neutrino around 58% of the times, while
the decay into a tau and a neutrino happens around 42% of the cases. Moreover,
events with two, three and four leptons in the final state occur in 35%, 30% and 15%
of the time. In the IO, the decay of k±± to a tau and a neutrino reduces down to
around 25% of the cases. Thus we are safe to say that our search strategy captures
most of the signal. Finally, for the benchmark points considered, the decay widths
are small enough to make use of the narrow width approximation.

In order to set bounds on the scalar masses, we vary mk and mh between 100
and 1000 GeV and, for each pair of masses, we compute the efficiency ϵ of selecting
events in each of the categories defined in Section 5.2. Then, the total number of
signal events is given by

S = σ(pp −→ k++k−−)× L× ϵ, (5.7)

where L is the integrated luminosity. We compute the sensitivity for every category
in each signal region. Out of it, we keep only the most sensitive category in SR1, SR2
and SR3. With this set of three independent categories, we compare the signal with
the SM background. Using the CLs method [131], we find the regions that can be

119



5.3. Application to searches of doubly-charged scalars

excluded at the 95 % CL in the mk−mh plane3. Results are shown in Figure 5.3, for
normal ordering (left panel) and inverted ordering (right panel). Two representative
values of the luminosity were chosen. The green region delimits values that can be
excluded with 70 fb−1, that is, the luminosity collected by CMS and ATLAS together
at the time this study was published. On the other hand, the orange region displays
the results for L = 3000 fb−1, scheduled in the High-Luminosity phase of the LHC.
The grey triangle is already excluded by neutrino oscillation data and low-energy
constraints. We see that a mass of k±± as large as 1 TeV can be excluded in future
analyses, in both leptonic and exotic decays.

5.3.3 Three-loop model

In the last chapter we have constructed a model that induces neutrino masses at
the three-loop level. The foundation of this model was k±± and its interactions with
the charged leptons. This interaction leads to the leptonic decay of k±±, which is
also present in the type-II seesaw model; in this case the search is analogous. But in
order to generate neutrino masses and break lepton number in two units, the model
also involved a scalar triplet with hypercharge +1 and a real scalar singlet, both odd
under a Z2 parity symmetry. Moreover, the real singlet and the neutral component
of the triplet mix, leading to a dark neutral scalar S that show gauge interactions.
This opens up the possibility for the last two exotic decays of k±± in the list of the
beginning of Section 5.3. Indeed, h± is now member of a triplet and could decay
into SW±, via its gauge interactions. In addition, k±± can also be produced by
a doubly-charged scalar χ±±, member of the triplet, and subsequently decay into
charged leptons.

Following the same strategy, we may wonder what we can learn about k±± should
these exotic decays exist in nature. We consider pair production of k±± with 100%
decay branching ratio. We depict in Figure 5.4 the lowest cross section that can be
excluded at the 95% CL (dashed black line) with an integrated luminosity of 35 fb−1

3The CLs method is useful for excluding models in which the signal is small relative to the back-
ground. In those cases, the predictions of the signal+background model can be almost indistin-
guishable from those obtained with the background only hypothesis and we would lose experimental
sensitivity. In order to remedy this situation, one could construct the statistic CLs=CLs+b/CLb.
Then, the signal hypothesis can be excluded at the 95% CL if CLs ≤ 1− 0.95.

For a counting experiment with a single signal region, the statistic is simply:

CLs = 1−
∑nobs

n=0
e−(s+b)(s+b)n

n!∑nobs

n=0
e−bbn

n! ,
(5.8)

where s is the number of signal events, b is the expected background events, and nobs is the number
of events observed in the experiment. In the case that the analysis includes several signal regions,
as in this section, the statistics can be computed with the TLimits routine of ROOT [132] which
can also incorporate the uncertainties of the background.
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(a) (b)

Figure 5.4: Bounds on the cross section (dashed black line) for an integrated luminosity
L = 35 fb−1 of (a) k±± −→ h±h± (with 100% branching ratio) followed by h± −→
SW±, and (b) χ±± −→ k±±S followed by the leptonic decay of k±±. The green and
orange regions show the 1σ and 2σ uncertainties. For the plot on the left, we have fixed
mh = mk/2.5 and mS = mh/2.5; while, for the plot on the right, mk = mS = mχ/2.5.
The theoretical cross section is shown for reference (red line).

for the two scenarios named above. As before, the green and yellow regions represent
the 1σ and 2σ uncertainties. The theoretical cross section predicted by the three-
loop model is also shown in red. From Subfigure 5.4a, we see that the decay channel
with SW± in the final state remains inaccessible with the luminosity considered.
However, the enhancement in the production of k±± through the exotic interac-
tion with the triplet could imply interesting prospects, as seen in Subfigure 5.4b.
Compare with the bounds assuming pair production of k±± alone. These exclusion
limits can be inferred from Figure 5.2 after noting that, when k±± is a singlet, the
production cross section is reduced down to be around half of that corresponding
to k±± being member of a triplet. In that case, a mk as large as ∼ 600 − 650 GeV
can be probed. On the other hand, a search that considers the exotic channel in
Subfigure 5.4b could be able to exclude masses at around mk ∼ 700 GeV.

Finally, in Figure 5.5 we present the exclusion region in the mk − mχ plane,
combining both production modes. In orange we depict the exclusion regions for
which the decay mode to ℓ±ℓ± saturates the branching ratio of k±±; in green, k±±

decays with 100% branching ratio to ℓ±τ±. The last decay mode is motivated in
the context of the three-loop model of Chapter 4, in which feτ is much larger than
the rest of the Yukawa couplings of the model (see Table 4.2). For this plot we have
fixed mS = 200 GeV, as suggested by the analysis of the DM candidate.

For mχ < mk +mS only the channel with the pair production of k±± is present.
We see that, in this region, masses could be probed up to mk ∼ 650 GeV if
BR(k±± −→ ℓ±ℓ±) = 1. In the case of BR(k±± −→ ℓ±τ±) = 1, exclusion limits
could be set at mk ∼ 500 GeV. More interestingly, when the exotic decay cascade
is open the bounds can be improved with respect to those obtained when assuming
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Figure 5.5: Exclusion regions in the context of the three-loop model. In orange we show
a k±± decaying to ℓ±ℓ± with 100% branching ratio along with a doubly-charged member
of a scalar triplet, χ±± decaying mostly to k±± and a neutral scalar S when kinematically
possible; in green we show the same but with k±± decaying to ℓ±τ± with 100% branching
ratio. We have fixed mS = 200 GeV.

the presence of k±± alone by around 100 GeV.

5.4 Application to searches of singly-charged
scalars

We move on to applying the search strategy developed in Section 5.2 to tests of
LNV singly-charged scalars, hereafter called h±, with couplings to leptonic fields4.
h± does not have renormalizable interactions with quarks; furthermore, we do not
consider effective interactions either. Then, its production cross section will depend
exclusively on the interactions with the gauge bosons and the leptons. In general, the
leptonic interaction of h± would be with pairs of leptons of either chirality. Without
adding right-handed neutrinos to the field content5, two different combinations of
chiralities arise:

OLL = ν̄Lae
c
Lbh

− + h.c.+ ... (5.11)

OLR = ν̄LaeRbh
+ + h.c.+ ... (5.12)

4The work presented here was first published by the author of this thesis and collaborators in
Ref. [133].

5If we considered right-handed neutrinos there would be two additional operators, namely

ORR = ν̄Rae
c
Rbh

− + h.c.+ ..., (5.9)

ORL = ν̄RaeLbh
+ + h.c.+ ..., (5.10)

whose implementation would be equivalent to that of operators LL and LR, respectively.
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In the context of renormalizable theories, the LL operator comes from gauge invari-
ant leptonic interactions of either a weak singlet or a triplet, while the LR operator
is realised when the interaction is with a doublet. Furthermore, both operators can
also be generated within effective field theories in which the heavy states have been
integrated out.

In the specific case of an h± singlet, the renormalizable Lagrangian describing
its Yukawa interactions with leptons, like in the Zee-Babu model, is given by:

LLLh± = fabℓ̄Laℓ
c
Lbh

+ + h.c. (5.13)

Again, the Yukawa coupling fab (with a, b = e, µ, τ) is antisymmetric. This interac-
tion belongs to the LL category.

Alternatively, the LR interaction of the singlet to leptons can be realised at
dimension five following the effective Lagrangian:

LLRh± =
cab
Λ

(
ℓ̄Laϕ̃ eRb h

+
)
+ h.c., (5.14)

where cab encodes the information on new degrees of freedom, and Λ is the scale of
new physics. After spontaneous symmetry breaking, we retrieve the operator LR
in Eq. (5.12) and identify the coupling constant as gab ≡ cab

v√
2Λ

, where as usual
v ∼ 246 GeV is the SM VEV fixing the electroweak scale. Even for a cab of order 1,
a new physics scale around the TeV will typically introduce a suppression factor.

In general, both fab and gab Yukawa couplings induce lepton flavour violation and
hence show stringent bounds from lepton rare decay processes. These constraints can
be summarised6 by |feµfµτ | ≲ O(10−2), |feµfeτ | ≲ O(10−2) and |feτfµτ | ≲ O(10−5).
There are different ways to satisfy these bounds. For example, one could consider
all coupling constants to be highly suppressed, so that the interactions to leptons
are negligible. In fact, this is the approach followed in Ref. [136], where the anti-
symmetric Lagrangian is neglected and the interactions with leptons come from the
dimension-five effective operator in Eq. (5.14). However, the authors of the afore-
mentioned paper still consider only a small coupling scenario. Another possibility
could be to set two of the couplings to zero and leave the remaining one unfixed.
An aesthetic way to achieve this scenario would be imposing a global lepton number
symmetry such as Li−Lj, with (i, j) = (e, µ), (e, τ) or (µ, τ), which leads to fij ̸= 0

and fab = 0 for ab ̸= ij. Then, the experimental bound would be automatically
satisfied, even for the renormalizable interaction in Eq. (5.13). This will be the
framework adopted in this analysis.

6These limits have been obtained using the analytic expressions in Ref. [105] with the most
updated experimental results [134, 135] and considering a conservative value for the mass of the
charged scalar of 100 GeV.
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Figure 5.6: Feynman diagrams involved in the production of h±: diagram (a) corresponds
to pair production, (b)-(d) depict different single production modes. Diagrams (a) and
(b) contribute to the 2ℓ+Emiss

T topology, while (c) and (d) lead to 3ℓ+Emiss
T and 1ℓ+Emiss

T

topologies, respectively.

At leading order, h± can be pair-produced or single-produced, both possibilities
in s-channel diagrams mediated by Z/γ, and Z, γ and W gauge bosons, respectively.
Moreover, the singly production occurs when h± is radiated from an external lepton
leg and in association with two charged leptons, one charged lepton and one neutrino,
or two neutrinos. In Figure 5.6 we show the different production modes.

We assume that h± does not couple to quarks, so that the dominant decay chan-
nels are h+ → ℓ+νℓ′ , with ℓ, ℓ′ = e, µ, τ . For the weak singlet with the renormalizable
Lagrangian in Eq. (5.13) we necessarily have ℓ ̸= ℓ′. This is no longer true when
considering the LR effective interaction in Eq. (5.14), whose coupling constant gab
has no preferred pattern of symmetry.

In summary, the discussed production modes with leptonic decay channels give
three different final states:

1. Two opposite-sign leptons plus missing transverse energy, 2ℓ+Emiss
T (diagrams

a and b in Figure 5.6, with pair production and single production of h±,
respectively).

2. Three leptons plus missing energy, 3ℓ + Emiss
T , with single production of h±

(diagram c).

3. One lepton plus missing energy, 1ℓ + Emiss
T , with single production of h± (di-

agram d).

In this analysis we focus on the first two, which are in principle more promising than
the third one that contains just one lepton in the final state.

As said above, there are two contributions to the 2ℓ channel. The single produc-
tion mode depends on the coupling of h± to leptons, while the production of pairs
of h± is controlled by the gauge interactions. For this reason, the pair production
mode is the main contribution for sufficiently small values of the coupling constant.
In Figure 5.7 we consider the contribution of the pair production mode to the to-
tal cross section as a function of the coupling constant, for different masses of h±.
Indeed, for f below 0.1 we find that the pair production contribution is completely
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Chapter 5. LHC prospects for lepton number violating scalars

Figure 5.7: Contribution of the pair production mode (σpair) to the cross section of the
2ℓ channel (σfull), for three selected masses of the singly-charged scalar.

dominant. On the other hand, the single production mode shows a cross section
that grows with the coupling constant and becomes the leading contribution for
O(f) = 1. For in-between values, both contributions are competitive.

The 3ℓ channel is generated exclusively from the singly production diagram (c) in
Figure 5.6. In contrast with the 2ℓ channel, a search strategy based on this channel
would lose its sensitivity for decreasing values of the coupling constant. Following
the discussion above, we separate the search strategy according to the strength of the
leptonic interaction of h±. For f ≳ 0.1 we focus on the 3ℓ channel, while for f < 0.1

we make use of the 2ℓ channel. In this manner, we not only retain the sensitivity
regardless of the order of magnitude of the coupling f but we are also able to put
the results obtained for the cross section in terms of f and/or BRe+µ ≡ BRe+BRµ,
the decay branching ratio of h± into electrons and muons. Indeed, for O(f) ⩽ 0.1

the cross section of the 2ℓ channel is fully dominated by the pair production mode
and then it can be written as

σ2ℓ = σpp→h+h− × BR2
e+µ, (5.15)

The cross section of the 3ℓ channel is given by

σ3ℓ(f) = f 2 × σpp→h±ℓℓ(f = 1)× BRe+µ, (5.16)

where σpp→h±ℓℓ(f = 1) is the production cross section for f = 1.
Finally, we point out that the signal corresponding to the 2ℓ channel can be

assumed to emerge from either the LL or LR operators, since they show the same
signature. This is not the case for the 3ℓ channel, where the analysis based on the LR
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Figure 5.8: Feynman diagrams representing the production of the charged scalar through
the LL operator (panel a) and the LR operator (panel b).

interaction will report, to some extent, different results than the one considering the
LL operator. In particular, the topology with the LR interaction shows a different
configuration of the electric charges of the three leptonic fields in the final state (see
Figure 5.8). For this reason, the observables will be constructed with leptons from
different legs, and we expect the distributions to disagree from one scenario to the
other.

5.4.1 Analysis in the two lepton channel

To start with, we focus on the search strategy in the 2ℓ channel, following the pro-
cedure of Section 5.2. The topology of the final state consists of two opposite-sign
leptons and missing transverse energy. The relevant backgrounds are then Drell-Yan,
tt̄, WW , WZ, ZZ and tW . We generated all these background processes at leading
order for a centre of mass energy of 13 TeV with MadGraph_aMC@NLO 2.6 [121]
and rescaled their cross sections with different K-factors to include the impact
of QCD corrections. The parton shower and hadronisation were carried out with
PYTHIA 8 [123], while the detector response was simulated with Delphes 3 [137].
In all the cases we impose the following set of cuts at generator level: pℓ1T > 25 GeV,
pℓ2T > 20 GeV, |ηℓ| < 2.5, where ℓ1 (ℓ2) denotes the leading (sub-leading) lepton.
Additionally, for the Drell-Yan process we set mℓ+ℓ− > 100 GeV in order to make
the simulation more efficient. The information about the simulation of the different
backgrounds is collected in Table 5.3.

Regarding the event generation for the signal, we use the package
FeynRules [138] to implement the relevant interactions and write them in the UFO
format [120]. In order to be conservative we do not apply any K-factor to the signal
cross section. The rest of the simulation process proceeds in the same fashion as
for the backgrounds. In particular, we demand the signal events to satisfy the same
selection cuts at generator level as those imposed on the backgrounds. With the set
of cuts imposed at generator level, the cross section at LO for producing pairs of h±

is 5.5 fb, for mh± = 200 GeV.
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Background Cross section (pb) K-factor Simulated events
Drell-Yan 81 1.2 5.0× 107

tt̄ 20 1.8 2.5× 107

WW 4.9 1.5 3.0× 106

WZ 2.0 1.4 1.0× 106

ZZ 0.8 1.4 5.0× 105

tW 4.2 0.9 1.5× 106

Table 5.3: Main backgrounds along with their corresponding cross sections, the applied
K-factors [139–148] and the number of simulated events used in the analysis of the 2ℓ-
channel.

At the reconstruction level we select events with two opposite-sign leptons that
satisfy the same set of cuts imposed at generator level. In addition, we demand the
requirement Emiss

T > 35 GeV in order to reduce the Drell-Yan background which,
unlike the signal, does not show large missing transverse energy.

We build the three observables of Section 5.2 with the lepton pair being of
opposite sign. This choice makes straightforward the construction of mℓℓ and mT .
In the case of the stransverse mass, the indices L1 and L2 stand for the harder and
softer lepton, respectively. Again, we can safely set mX = 0 in the definition of mT2

as all momenta are much heavier than the lepton masses.
By making use of these three variables along with the observable ST , defined in

Section 5.2, we build the 81 categories chosen in the search strategy. However, the
distribution of mT2 exhibits an endpoint around mh± as this variable is obtained
from the transverse masses corresponding to the two leptons arising from the decay
of h+ and h−. Therefore, the category with the lowest cut chosen for this observable
(100 GeV) is not appropriate for values of mh± around it. For this reason, we added
18 categories corresponding to mT2 > 70 GeV and mT2 > 80 GeV (with ST > X

and X = 100, ..., 900 GeV).
We vary mh± between 100 and 500 GeV in steps of 50 GeV. For each value

of the mass and for each observable, we estimate the lower cross section that can
be excluded with a luminosity of 300 fb−1 by looking for the category with the
largest sensitivity, defined as S/

√
B. Exclusions for intermediate masses are ob-

tained by linear interpolation. The results are shown in Figure 5.9. The sensitivity
is driven by the mT2 categories in almost the whole range of masses considered.
Below mh± ∼ 150 GeV, its sensitivity worsens significantly and becomes similar to
that achieved with the other observables around mh± = 100 GeV. In summary, with
the mT2 categories it is possible to exclude cross sections ranging from ∼ 30 fb to
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Figure 5.9: Bounds on the cross section of pair produced h± decaying into electrons and
muons for a total integrated luminosity of 300 fb−1.

0.1 fb for masses between 100 GeV and 500 GeV.
We can also interpret the results in terms of BRe+µ, by considering the factorisa-

tion of the cross section in Eq. (5.15). In Figure 5.10 we display the limits obtained
with the observable with the largest sensitivity (mT2) for two representative values
of the total integrated luminosity, L = 300 fb−1 and 3 ab−1. We see that h± de-
caying mostly to electrons and muons (BRe+µ ∼ 0.9) can be excluded up to 500
GeV with 300 fb−1. When the luminosity is increased to 3 ab−1 this conclusion
can be extended for branching ratios above 0.5. On the other hand, the sensitivity
gap for BRe+µ < 0.3 could be addressed with the tau decay channel because the
exclusion limits in terms of BRτ translate into an upper limit on BRe+µ, given that
BRτ = 1 − BReµ. In fact, by combining our results with the exclusion reported in
Ref. [136], based on the recasting of the analysis of Ref. [149], singlet h± with masses
below ∼ 280 GeV can be excluded. A search strategy in the ditau channel more
focused on the high-mass range could extend this exclusion, however this is beyond
the scope of this work. Finally, an h± decaying fully into electrons and muons could
be ruled out in all the considered mass range (100 GeV - 500 GeV) with a minimum
luminosity of ∼ 192 fb−1. If a K-factor of 1.2 is applied to the signal7, the minimum
exclusion luminosity would reduce down to ∼ 133 fb−1.

7This K-factor was obtained in Ref. [150] by considering the QCD corrections to pair production
of right-handed sleptons, which have the same quantum numbers as the singly-charged scalar.
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Figure 5.10: Bounds in the decay branching ratio of h± into electrons and muons ob-
tained by using the mT2 categories with luminosities of 300 fb−1 (dashed line) and 3 ab−1

(solid line).

5.4.2 Analysis in the three lepton channel

Results with the LL operator

We move on to probe the large Yukawa coupling regime in the 3ℓ channel, with
exactly two leptons of the same sign and one of opposite sign. We will make use of
the background presented in Section 5.3.1, in which a number of events consistent
with an integrated luminosity of 3 ab−1 was generated at

√
s = 13 TeV. Again,

the relevant backgrounds consist of WZ, ZZ, WWW , WWZ, WZZ, ZZZ, ttW
and ttZ. At the reconstruction level we demand leptons to pass the same cuts as
those of the background generated in Section 5.3.1. We construct the following two
observables:

1. mℓℓ, the invariant mass of the two same-sign leptons, and

2. the transverse mass of the same-sign lepton pair (mTℓℓ), as well as the one of
the third lepton (mTℓ).

We do not consider the observable mT2 since in this case, unlike in the 2ℓ channel,
there is only one source of missing energy. Moreover, in Section 5.2 this observable
was constructed taking L1 as the vectorial sum of the two same-sign leptons, while
L2 was given by the third one. For this choice, mX in the definition of mT2 (see
Eq. (5.2)) cannot be neglected, as it corresponds to the invariant mass of the two
same-sign leptons. This will be enough to make most mℓℓ and mT2 categories almost
identical.
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Figure 5.11: Exclusion limits at 95% CL on the Yukawa coupling of h± decaying into elec-
trons and muons in the 3ℓ channel for a total integrated luminosity of 300 fb−1 (left panel)
and 3 ab−1 (right panel). Colours correspond to: BRe+µ = 0.1 (orange), BRe+µ = 0.5
(green) and BRe+µ = 1 (blue).

Once again, we additionally consider the auxiliary observable ST . Then, for each
observable O = mℓℓ, mT , we build 81 different categories with O > X and ST > Y ,
where X,Y = 100, 200, ..., 900 GeV. We remark that, contrary to the pair production
channel, in this case there are two transverse masses and we demand both of them
to simultaneously fulfil the selection cuts.

Regarding the signal events, we use the package FeynRules [120] to generate
the UFO model [120] that implements the relevant interactions. In order to be
consistent with the generation of background events in Section 5.3.1, we choose
once again MadGraph 5 [121] and then PYTHIA 6 [151] for parton showering. We
demand the signal events to satisfy the same selection cuts as the background.

We take mh± to range between 100 and 500 GeV, in steps of 50 GeV. Because
we are considering solely electrons and muons (plus missing transverse energy) in
the final state, the production is such that only the coupling feµ is needed. Here-
after we set feµ = 1 in all the simulations, as the results can be rescaled to any
coupling strength following Eq. (5.16). For each observable and every value of mh±

we search for the category with the largest sensitivity, S/
√
B. By following this

procedure, we compute the lowest cross section that can be excluded at the 95%
CL. Again, exclusions for intermediate masses are obtained by linear interpolation.
For mh± ≳ 250 GeV the sensitivity is slightly driven by mT , while for lower values
of the mass, the sensitivity of the transverse mass worsens due to the presence of an
endpoint in its distribution around mh± . This makes the observable mℓℓ the one with
the best sensitivity in that region. The results are shown in Figure 5.11 for a total
integrated luminosity of 300 fb−1 (left panel) and 3 ab−1 (right panel). Making use
of Eq. (5.16), we plotted the coupling-mass plane for three different decay branch-
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Figure 5.12: Top left panel: Invariant mass distribution of two same-sign leptons
in events generated with the LL coupling (orange) and the LR interaction (blue), for
mh± = 200 GeV. Top right panel: same as before but for the transverse mass distribu-
tion of two same-sign leptons. Bottom panel: same as before but for the transverse mass
distribution of the single opposite-sign lepton.

ing ratios of the charged scalar, namely BRe+µ = 0.1 (orange), BRe+µ = 0.5 (green)
and BRe+µ = 1 (blue). If h± decays only to electrons and muons, it is possible to
exclude the entire range of studied masses for couplings larger than ∼ 1.4 with a
luminosity of 300 fb−1. For the high luminosity phase, with 3 ab−1, this limit could
be extended to couplings as low as ∼ 0.8. Additionally, smaller branching ratios
become more accessible. For instance, h± with BRe+µ = 0.5 could be probed up to
mh± ∼ 500 GeV with a coupling ∼ 1.1.

Results with the LR operator

As said above, the observables are now constructed with leptons coming from legs
different than in the scenario with the LL operator. In Figure 5.12 we show several
distributions in both frameworks, for a mass of 200 GeV. Notably and in contrast
to the case of the LL interaction, mTℓ does not show an endpoint around mh± since
it is not built with the lepton arising from the decay of h±. This feature could
help to distinguish one scenario from the other. Additionally, while with the LL
operator two diagrams contribute to the amplitude, there is only one diagram in the
LR topology, making its production cross section typically one order of magnitude
smaller. For instance, for a mass of 200 GeV and coupling ∼ 1, the production
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Figure 5.13: Bounds on the cross section of a h± singly-produced through the LR
interaction (dashed blue line) and the LL operator (dashed orange line) for a luminosity
of L = 300 fb−1, and decaying exclusively to electrons and muons. The theoretical cross
section in the LR (solid blue line) and in the LL (solid orange line) case are also shown for
reference. The coupling y represents the Yukawa couplings g (f) in the LR (LL) scenario.

cross section at LO in the context of the LL operator gives 4.7 fb, while for the LR
operator it reads 0.5 fb.

In order to illustrate to what extent the change on the kinematic distributions
impacts the results, let us assume that the Lagrangian in Eq. (5.12) preserves lepton
flavour (that is, we only keep the diagonal elements) and redo the whole procedure,
fixing the couplings gee = gµµ for simplicity. Results for the LR operator are depicted
in blue in Figure 5.13 for a luminosity of 300 fb−1, in comparison to those obtained
with the LL interaction in orange. The symbol y denotes the Yukawa coupling g

(f) in the LR (LL) framework. Solid lines describe the theoretical cross section
while dashed lines indicate the maximum cross section that can be probed at the
given luminosity. The latter strongly depends on the acceptance of each category
and observable. In the whole interval of study, the sensitivity for the LR operator
is driven by mℓℓ, whose distribution is very similar to that of the LL interaction.
Conversely, the theoretical cross section, as explained above, is typically one order
of magnitude smaller. For this reason the exclusion limits will be weaker in this
scenario and, for retrieving the same sensitivities that are obtained with the LL
framework, larger couplings and/or luminosities are needed. In particular, a h±

decaying exclusively to electrons and muons through the LR interaction can be
excluded with a mass as large as ∼ 170 GeV with a luminosity of 300 fb−1, whereas
this limit extends to ∼ 370 GeV for the LL interaction.
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5.5 Summary
• LNV scalars are relevant in models of Majorana neutrino masses. Some of

these models induce the neutrino masses at the loop level, and therefore predict
scalar masses at the TeV scale that can be probed at high-energy colliders in
the near future. However, current searches do not take into consideration
the rich production and decay patterns that these scalars would exhibit and
therefore new dedicated searches are needed.

• We discussed a broad scope search strategy with three independent signal
regions. Because these scalars have interactions with leptons, the signal regions
contain events with two, three and four leptons in the final state.

• The search strategy considers three main observables. The importance of each
observable depends on the kinematics of the signal studied.

• We proposed novel LHC searches of LNV singly- and doubly-charged scalars
in model dependent and model independent frameworks.

• In order to estimate exclusion regions of the parameters in each scenario, signal
events were simulated with the appropriate computational tools. Background
events were also generated when needed.

• Results for the prospects for the Zee-Babu model and the three-loop model
were found, as well as for the relevant parameters of a singly-charged scalar
in a model independent framework.
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CHAPTER 6
Probes of νSMEFT four-fermion
operators

Under the assumption of the existence of a large energy gap between a given set
of particles below the electroweak scale and new physics, the influence of the latter
can be described by a tower of higher dimensional operators involving only the
considered particles. These operators get increasingly suppressed by the scale of
new physics as the order of the operators goes up; in this way, effects of operators
of dimension six are less important than those of dimension five.

So far there has been only observation of the SM particles, so it is natural
to consider an EFT involving only the SM field content. If we additional impose
the SM gauge symmetry SU(3)C × SU(2)L × U(1)Y we get the SM effective field
theory (SMEFT) [152]. In contrast with the Standard Model, global symmetries,
like lepton or baryon number, can be broken by some of the effective operators. In
fact, the dimension-five Weinberg operator generates a tree-level mass for neutrinos
(see Chapter 2 for more details). Within this context, neutrinos are Majorana-type.

However, right-handed neutrinos, hereafter called N , are still an experimentally
viable possibility (N is a sterile neutrino, and its observation could become extremely
hard). In fact, if the SM neutrinos are Dirac particles and their right-handed com-
ponent is N , the low energy physics is described by the SMEFT extended with N .
Then the effective field theory considering both the SM field content along with the
right-handed neutrino is simply called νSMEFT [153].

At dimension five, νSMEFT operators involving new right-handed neutrinos
are just (N̄N c)(ϕ†ϕ) and (N̄ cσµνN)Bµν [154] (in fact, should there be only one
family of N , the second operator vanishes). The basis at dimension six, found
in Ref. [155], consists of 16 operators conserving both lepton and baryon number,
one operator breaking lepton number and two additional operators breaking lepton
and baryon number. If we expand in flavour indices, the total number of operators
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(restricting to lepton and baryon number conserving operators) rises up to 389 (1332)
for one (three) family of right-handed neutrinos. Of course, this set of operators
is an extension of the SMEFT, so they need to be added to those in order to
constitute a complete basis of independent operators at a given dimension. Here
we will consider only dimension-six operators that simultaneously conserve lepton
and baryon number; these operators are listed in Table 6.1.

Operator Notation Operator Notation

SF
(ℓLN)ϕ̃(ϕ†ϕ) OℓNϕ (+h.c.)

(NγµN)(ϕ†i
←→
Dµϕ) OϕN (NγµeR)(ϕ̃

†iDµϕ) OϕNe (+h.c.)
(ℓLσµνN)ϕ̃Bµν ONB (+h.c.) (ℓLσµνN)σI ϕ̃W

Iµν ONW (+h.c.)

RRRR
(NγµN)(NγµN) ONN
(eRγµeR)(Nγ

µN) OeN (uRγµuR)(Nγ
µN) OuN

(dRγµdR)(Nγ
µN) OdN (dRγµuR)(Nγ

µeR) OduNe (+h.c.)

LLRR (ℓLγµℓL)(Nγ
µN) OℓN (qLγµqL)(Nγ

µN) OqN

LRRL
(ℓLN)iσ2(ℓLeR) OℓNℓe (+h.c.) (ℓLN)iσ2(qLdR) OℓNqd (+h.c.)
(ℓLdR)iσ2(qLN) OℓdqN (+h.c.) (qLuR)(NℓL) OquNℓ (+h.c.)

Table 6.1: Basis of dimension-six operators in the context of the νSMEFT [155]. Only
operators that conserve lepton and baryon number are listed. Flavour indices are omitted
for simplicity.

In this chapter we will find which νSMEFT operators are most constrained by
current data with the aim of reporting the directions in which new physics might still
be hidden1. To accomplish this task, we compare the new contributions, given by
these operators, to several physical processes with the experimental data collected
by the LHC and other experiments. We focus on four-fermion operators, which
can be constrained by looking at searches for one lepton and missing energy at the
LHC, monojet searches at the LHC and pion and tau decays. Moreover, operators
involving third-generation quarks can receive stringent constraints from dedicated
searches of rare top decays. We propose one such analysis.

Certain operators are left out of the present study as they involve only right-
handed neutrinos (ONN), are better tested in lepton facilities (e.g. OiieN or O13

uN)
or give suppressed contributions (like the one-loop operators ONB and ONW ). For
instance, when the SM neutrinos are Dirac-type and N their right-handed com-
ponent, operators such as the last two are already strongly bounded by neutrino
dipole moments measurements [157, 158]. For a Majorana N , these operators must

1The work presented here was published by the author of this thesis and collaborators in
Ref. [156].
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be also suppressed or they would strongly induce a decay into a SM neutrino and a
photon [159]. Accordingly, we will only include the SF operators for completeness.

Finally, it is important to remark to which scenarios the analysis presented here
applies. From a cosmological point of view, light sterile neutrinos are allowed by
precise measurements of the primordial abundances at the time of Big Bang Nucle-
osynthesis (BBN) [160] (when the temperature of the thermal bath is TBBN ∼MeV),
unless new physics interactions enhances their interaction rate. Indeed, sterile neu-
trinos can only be produced by helicity flips of the left-handed neutrinos, which
are suppressed because mν ≪ T . Then practically all neutrinos are left-handed,
explaining the observed value of the effective number of relativistic species Neff ≈ 3.

In the context of νSMEFT, the enhancements of the interaction rate are given
by the four-fermion operators; the cross section of neutrino scatterings generated
by these operators are proportional to ∼ T 2/Λ4, whereas the number density for
relativistic particles is ∼ T 3. At the end, the interaction rate is proportional to
Γ ∼ T 5/Λ4. Then, the sterile neutrinos are in equilibrium with the thermal plasma
when the interaction rate is larger than the expansion rate of the universe, which is
proportional to T 2

BBN/mP , where mP ∼ 1019 GeV is the Planck mass. Combining
both expression, we obtain Λ ≲ (mPT

3
BBN)

1/4 ∼ 300 GeV. This means that if Λ

lies below the electroweak scale, N is in equilibrium at the BBN era and gives
contributions to Neff which, in turn, is bounded by observations of 4He abundances.
In short, for sterile neutrinos the scale of new physics described by the νSMEFT
has to be above the electroweak scale. Further, in the particular case in which N

is a Majorana neutrino, its mass is also constrained by measurements of Neff made
by the Planck collaboration [161]. In Ref. [162] it was found that the contribution
of the right-handed neutrino to Neff escapes the sensitivity of Planck’s results when
mN is larger than about 10 MeV.

At the experiment level, when the leading contributions to the decay of a Majo-
rana N are given by the four-fermion operators, N shows a three-body decay into
two light jets and a charged lepton or missing energy, provided mN < mW . We
can estimate its mean life to be τN ∼ 256π3Λ4/m5

N . In the LHC, the radius of the
cross section of the detectors is of around 10 meters, so that if N lives shorter than
τN ≈ 10 [m]/c ≈ 10−8 s we will see its decaying products2. Plugging this limit into
the formula of the mean life we find that N , when the scale of new physics is larger
than the electroweak scale, can be considered for experimental purposes as a stable
particle if mN < 0.1 GeV.

To sum up, the combination of the previous constraints suggests that our study

2The signature of these processes can include displaced vertices [163, 164]. In that case, LHC
dedicated searches, as proposed in Ref.[163], could be useful as they would have small SM back-
ground.
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6.1. Searches for one lepton and missing energy

of the νSMEFT works when neutrinos are Dirac particles and the scale of the new
physics is larger than the electroweak scale, or when neutrinos are of Majorana type
with 0.01 GeV ≲ mN ≲ 0.1 GeV.

All throughout this study, we will focus on one family of N ; results for more fami-
lies are easily extrapolated. Finally, all collider simulations considered hereafter were
made with MadGraph 5 [121], parton showering was simulated using Pythia 8 [123]
and the reconstruction of jets, when necessary, was performed with FastJet 3 [165].
Operators3 in Table 6.1 were implemented with FeynRules 2 [138].

6.1 Searches for one lepton and missing energy
In the last chapter we stated that the transverse mass is a good observable for
measuring the signature of processes with sources of missing energy. Focusing on
this observable, several searches for one lepton and missing energy has been done
at the LHC. So in order to set bounds on the relevant operators giving pp −→ ℓN ,
we use the experimental information obtained by the ATLAS analysis of Ref. [166]
based on 36 fb−1 of data collected at

√
s = 13 TeV. In that work, only events with

exactly one light lepton were considered. When the lepton is an electron, the event is
selected if pT > 65 GeV and Emiss > 65 GeV. For muons, the selection cuts reduced
down to be pT > 55 GeV and Emiss > 55 GeV. Finally, the predicted SM background
events along with the observed events are collected in several bins based on their
values of the transverse mass, as shown in Table 6.2. Additionally, we compute the
maximum number of signal events, smax, that can be excluded at the 95% CL, using
the CLs method [131]. As in Chapter 5, the CLs is implemented with the TLimits
routine of ROOT [132] that takes into account the uncertainties of the background.

Although the experimental analysis provides with a large number of bins, we
have chosen to work with only those that do not go too high in energy, in order to
keep the effective theory valid at the TeV scale.

Searches for one tau and missing energy have been also carried out at the LHC.
For our purposes, we recast the CMS analysis of Ref. [167] based on 35.9 fb−1 and
a centre of mass energy of 13 TeV. In this case, the selection cuts consist of the
requirement of a single hadronic tau with pT > 80 GeV and Emiss > 200 GeV.
Values of the predicted SM background events along with the observed number of
events are collected in Table 6.3. Additionally, smax is computed as before.

Operators giving new contributions are OquNℓ, OℓdQN and OℓNqd (LRRL), OduNe
3We use the Fierz-transformed operator

OℓdqN =
1

2
(qLdR)iσ2(ℓLN) +

1

8
(qLσµνdR)iσ2(ℓLσ

µνN), (6.1)

with terms including scalar and tensor bilinears.
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400− 600 600− 1000 1000− 2000 [GeV]
A1 7400 (4400) 12000 (7200) 16000 (9600)
A2 2100 (1300) 3600 (2200) 4700 (2800)
A3 −3500 (−2100) −5600 (−3400) −7700 (−4600)
A4 5.0 (3.0) 1.2 (0.73) 0.15 (0.089)
A5 360 (210) 210 (120) 79 (47)
SM 9700± 500 (6460± 330) 2010± 140 (1320± 90) 232± 24 (150± 13)

data 9551 (6772) 1931 (1392) 246 (177)
smax 791 (778) 213 (257) 67 (62)

Table 6.2: Coefficients in units of TeV4 for pp → ℓN obtained upon recasting the ex-
perimental analysis of Ref. [166] for a luminosity of 36 fb−1. Result are rounded to
two significant figures. The numbers outside (inside) the parentheses correspond to the
ℓ = e (µ) case.

0− 500 500− 1000 > 1000 [GeV]
B1 170 3600 10000
B2 40 990 3200
B3 −69 −1600 −4700
B4 0.33 1.0 0.15
B5 40 290 160
SM 1243± 160 485± 77 23.4± 6.2

data 1203 452 15
smax 258 125 12

Table 6.3: Coefficients in units of TeV4 for pp → τN obtained upon recasting the
experimental analysis of Ref. [167] for a luminosity of 35.9 fb−1. Results are rounded to
two significant figures. Note that Eq. 6.11 is obtained under the assumption

√
s ≫ mW ,

so B4,5 in the first bin should not be taken rigorously.

(RRRR), OϕNe and ONW (SR). The relevant pieces of the four-fermion operators
giving contributions to pp −→ ℓN , are

LRRL :


OquNℓ ⊃ (d̄LuR)(N̄ReL)

OℓNqd ⊃ −(ēLNR)(ūLdR)

OℓdqN ⊃ −(ēLdR)(ūLNR)

RRRR :
{
OduNe ⊃ (d̄RγµuR)(N̄γ

µeR) .

(6.2)
Operators including the same fields, such as OℓdQN and OℓNqd, can produce

interferences. Operators from different classes can still give interferences, but they
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6.1. Searches for one lepton and missing energy

are chirality suppressed and we do not consider them here.
In order to test the impact of these operators we need to compute the cross

section obtained with every one of them. For instance, the first operator in the
previous list gives the following amplitude

M =
αquNℓ
Λ2

[u(u)PRv̄(d)][v(ℓ)PRū(N)], (6.3)

where as usual u and v are the spinors satisfying the Dirac equation. The squared
sum of the amplitude reads

Σ|M|2 =
α2
quNℓ

3 · 4Λ4
Tr[/puPR/pd]× Tr[/pℓPR/pN ]

=
α2
quNℓ

48Λ4
4(pupd)4(pℓpN)

=
α2
quNℓ

12Λ4
s2,

(6.4)

where the factor of 1/3 in the first line is because we are summing over the three
color states of ud̄. In the last step we put the products of momenta in terms of
Lorentz invariant quantities4. Finally, the invariant differential cross section can be
expressed as

dσ

dt
=

1

16πs2
Σ|M|2, (6.7)

so that the contribution of the operator OquNℓ to the differential cross section is

dσ

dt
=

1

192πs2
α2
quNℓ

Λ4
s2. (6.8)

As said, the operators Oi11ℓNqd and OℓdqN involve the same fields and hence interfere.
The amplitude is

M =
αℓNqd
Λ2

[v(e)PRū(N)(u(u)PRv̄(d)] +
αℓdqN
Λ2

[v(e)PRv̄(d)(u(u)PRū(N)], (6.9)

4We are going to set all momenta in terms of the Mandelstam variables

s = (pu + pd)
2 = (pℓ + pN )2 ≃ 2(pupd) ≃ 2(pℓpN ),

t = (pu − pN )2 = (pℓ − pd)2 ≃ −2(pupN ) ≃ −2(pdpℓ),
u = (pu − pℓ)2 = (pN − pd)2 ≃ −2(pupℓ) ≃ −2(pdpN ),

(6.5)

for vanishing masses. This also implies

s+ t+ u = 0. (6.6)
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and then

Σ|M|2 = 1

12Λ4
[4α2

ℓNqd(pepN)(pupd) + 4α2
ℓdqN(pepd)(pupN)

+ 4αℓNqd αℓdqN((pepN)(pupd) + (pepd)(pNpu)− (pepu)(pupN))]

=
1

12Λ4
[α2
ℓNqd s

2 + α2
ℓdqN t2 + αℓNqd αℓdqN(t

2 + s2 − u2)]

=
1

12Λ4
(α2

ℓNqd s
2 + α2

ℓdqN t2 − 2αℓNqd αℓdqN st),

(6.10)

where in the last step we have used Eq. (6.6). From here the differential cross section
is straightforward to calculate.

In the same manner, contributions for the rest of the operators are computed. In
particular, those obtained with the last two operators are a little more subtle as they
generate s-channel diagrams mediated by a W gauge boson. For these operators we
use the approximation

√
s≫MW .

To summarise, the modification to the differential cross section coming from this
set of operators is

dσ

dt
(ud̄→ ℓ+i N) =

1

192πΛ4s2

{[
(α11i

quNℓ)
2 + 4(α11i

duNe)
2 + (αi11ℓNqd)

2
]
s2

4
[
4(α11i

duNe)
2 + (αi11ℓdqN)

2
]
t2 + 2

[
4(α11i

duNe)
2 − αi11ℓNqdα11i

ℓdqN

]
st

+ 4(αiϕNe)
2m2

W

t2

s2
− 32(αiNW )2m2

W

(
t2

s
+ t

)}
,

(6.11)

where the index i = 1 (2) corresponds to electrons (muons). Moreover, we are only
considering the first quark family. Although it is true that the same operators for
the second family can give contributions with no interferences with those of the
first-family operators, the bounds obtained with them are expected to be one order
of magnitude smaller because of the smaller parton distribution functions.

As seen, the differential cross section in Eq. (6.11) is parametrised in terms of
some functions of the invariant variables. The operator coefficients are then grouped
according to their dependence upon these functions. Contributions from operators
of the same group will give the same distributions. For this reason we can also
parametrise the number of signal events obtained for each group in terms of some
coefficients Ai:

N =
1

Λ4

{[
(α11i

quNℓ)
2 + 4(α11i

duNe)
2 + (αi11ℓNqd)

2
]
A1 +

[
4(α11i

duNe)
2 + (αi11ℓdqN)

2
]
A2

+ 2
[
4(α11i

duNe)
2 − αi11ℓNqd αi11ℓdqN

]
A3 + (αiϕNe)

2A4 + (αiNW )2A5

}
. (6.12)
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690− 740 740− 790 790− 840 840− 900 900− 960 [GeV]
C1 210 170 130 130 94
C2 97 78 59 53 39
C3 320 250 180 170 130
SM 526± 14 325± 12 223± 9 169± 8 107± 6

data 557 316 233 172 101

smax 82 40 44 35 21

Table 6.4: Coefficients in units of TeV4 for pp → NNg(q) obtained upon recasting the
experimental analysis of Ref. [168] for a luminosity of 35.9 fb−1. Results are rounded to
two significant figures.

These coefficients are bin-dependent and have to be computed by simulation
using the same selection criteria as the experimental analysis considered. As for the
distributions, contributions for operators within each group give the same number of
events. For instance, we can compute the value of A1 by only switching on α11i

quNℓ and
with α11i

duNe = αi11ℓNqd = 0. Results for each coefficient and for each bin are collected
in Table 6.2. Values for muons (in parentheses) are estimated to be a factor of 0.6
smaller because of the harder muon trigger and identification efficiency.

Finally, we repeat this procedure for the same operators but with taus instead of
light leptons. The number of signal events is obtained from Eq. (6.12) by changing
the label i (corresponding to i = e, µ) to ‘3’ (which refers to taus). In addition, the
coefficients Ai are renamed as Bi. We report our results in Table 6.3.

Later on, we will set bounds on the effective operators by demanding that the
number of signal events N is not larger than smax.

6.2 Monojet searches at the LHC

Here, we recast the CMS analysis of Ref. [168] with collisions performed at
√
s = 13 TeV corresponding to a luminosity of 35.9 fb−1, and focusing on the miss-

ing transverse energy. Candidate events are required to show Emiss > 250 GeV, at
least one hard jet with pT > 250 GeV and no isolated leptons. Like in the previous
section, we give numbers of background events, data events and smax. They are
listed in Table 6.4.

Operators giving contributions to monojets processes are OuN , OdN , OqN and
OϕN . However, we are not considering the last one since its cross section decreases at
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Chapter 6. Probes of νSMEFT four-fermion operators

large energies. For this reason, we focus only on the following four-fermion operators:

RRRR :

{
OuN = (ūRγµuR)(N̄γ

µN)

OdN = (d̄RγµdR)(N̄γ
µN)

LLRR : OqN = (q̄LγµqL)(N̄γ
µN) = (d̄LγµdL + ūLγµuL)(N̄γ

µN)

(6.13)
Further, we do not consider interferences amongOqN and any of the RRRR operators
since they are chirality suppressed. Under these considerations, the number of signal
events, in terms of the coefficients Ci, is

N =
1

Λ4
[(α11

uN)
2C1 + (α11

dN)
2C2 + (α11

qN)
2C3]. (6.14)

We report our findings in Table 6.4.

6.3 Pion decays

Operators giving contributions to pion decays are exactly the same as those of
semileptonic searches in Section 6.1. In particular, OquNℓ and OℓNqd give scalar
form factors, while OduNe and OϕNe vector form factors. Finally OℓdqN , after the
corresponding Fierz transformation, leads to a tensor form factor which is hard to
estimate. For this reason we do not consider OℓdqN here. With this discussion in
mind, the matrix elements read:

M(π− → ℓ−i N) =
1

Λ2
u(pℓi)

{
⟨0|V µ|π−⟩

[(
α11i
duNe + αiϕNe

)
γµ
]

+ ⟨0|S|π−⟩
(
α11i
quNℓ − αi11ℓNqd

)}
PRv(pN) . (6.15)

We point out that ONW gives the following contribution to the amplitude:

MONW
=

2
√
2

Λ2
αiNW

[
u(pℓi)

(
γµ/q − qµ

)
MW

PRv(pN)

]
, (6.16)

where q = pℓi +pN is the momentum of the exchanged W gauge boson. But because
we are in the limit q ≪MW , we can safely neglect this contribution.

The corresponding scalar and vector form factors are:

⟨0|S|π−⟩ = fπ
m2
π

mu +md

, and ⟨0|V µ|π−⟩ = fπq
µ, (6.17)

with fπ ≃ 131 MeV. Then, using the equations of motion for the Dirac spinors
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u(pℓi)(/pℓ −mℓ) and (/pN +mN)v(pN), we obtain:

M(π− → ℓ−i N) =
fπ
Λ2

(
mℓi

(
α11i
duNe + αiϕNe

)
+

m2
π

mu +md

(
α11i
quNℓ − αi11ℓNqd

))
[u(pℓi)PRv(pN)].

(6.18)
In order to arrive to this expression we have neglected the term proportional to the
mass of N , which in any case, needs to be mN < mπ ≈ 139 MeV. From here it is
straightforward to compute the decay rate:

Γ(π− → ℓ−i N) =
f 2
πmπ

16πΛ4

(
1−

m2
ℓi

m2
π

)2 [
mℓi

(
α11i
duNe + αiϕNe

)
+

m2
π

mu +md

(
α11i
quNℓ − αi11ℓNqd

)]2
.

(6.19)
Finally, we will use the experimental values [4] of the decay width into electrons:

Γ(π −→ e+ inv) = (310± 1)× 10−23 GeV, (6.20)

and muons:
Γ(π −→ µ+ inv) = (25279± 5)× 10−21 GeV. (6.21)

In order to set bounds on the corresponding operators we require that the new
contributions to pion decays, given by Eq. (6.19), are smaller than twice the exper-
imental error.

6.4 Tau decays

In order to further put constraints on the operators of the νSMEFT framework, we
use the measured values of the tau decay width into electrons or muons and missing
energy. The most updated experimental results [4] are

Γ(τ −→ e+ inv) = (4.03± 0.02)× 10−13 GeV, (6.22)

and
Γ(τ −→ µ+ inv) = (3.93± 0.02)× 10−13 GeV. (6.23)

As in the case of the pion decays, we will demand the new contributions to the decay
width to be smaller than two standard deviations.
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Operators giving contributions to leptonic tau decays are

RRRR : Oi3eN = (ℓiRγµτR)(Nγ
µN) ,

LLRR : Oi3ℓN = (νiLγµντL)(Nγ
µN) + (ℓiLγµτL)(NγµN) ,

LRRL :



Oii3ℓNℓe = (νiLN)(ℓiLτR) − (ℓiLN)(νiLτR)+ h.c. ,

Oi3iℓNℓe = (νiLN)(τLℓiR)− (ℓiLN)(ντLℓiR) + h.c. ,

O3ii
ℓNℓe = (ντLN)(ℓiLℓiR)− (τLN)(νiLℓiR)+ h.c. ,

Oi33ℓNℓe = (νiLN)(τLτR)− (ℓiLN)(ντLτR)+ h.c. ,

O3i3
ℓNℓe = (ντLN)(ℓiLτR)− (τLN)(νiLτR) + h.c. ,

O33i
ℓNℓe = (ντLN)(τLℓiR) − (τLN)(ντLℓiR)+ h.c. .

(6.24)

In the SR category, the relevant loop operators are OiϕNe, O3
ϕNe, OiNW , O3

NW . When
there are more that one term, only those in boldface are relevant. As before, only
operators within the same class can give interferences.

Using the operators from this list we can see that the invisible piece of the leptonic
decay of the tau can be composed of the following combination of neutrinos: NN̄ ,
Nν̄i, Nν̄τ , N̄νi and N̄ντ . It is important to note that we need to separate those
channels in which the light neutrino can have either light-lepton flavour or tau
flavour. Indeed, τ −→ ℓiντ N̄ will be generated by the contact interactions that
correspond to the effective operators along with additional diagrams with a Wτν̄τ

SM vertex. Similarly, τ −→ ℓiν̄iN is generated by a point-like diagram as well
as by a diagram that includes the Wℓiν̄i SM vertex. This is no longer true for
Nν̄τ and N̄νi, because the LNV vertex Wτν̄i is not present in the Standard Model.
With these considerations in mind, we list the decay rates obtained for the relevant
operators.

For instance, the operator Oii3ℓNℓe is the only one giving contributions to the decay
mode τ −→ ℓiνiN̄ . Its matrix element reads

M =
αii3ℓNℓe
Λ2

{
[ū(ν)PRv(N)][ū(e)PRu(τ)]− [ū(e)PRv(N)][ū(ν)PRu(τ)]

}
. (6.25)

Then the spin averaged squared amplitude is

Σ|M|2 = 1

2

(αii3ℓNℓe)
2

Λ4
[Tr(/pν/pNPL)Tr(/pe/pτPL) + Tr(/pe/pNPL)Tr(/pν/pτPL)

− Tr(/pν/pN/pe/pτPL)− Tr(/pe/pN/pν/pτPL)]

=
2(αii3ℓNℓe)

2

Λ4
(pνpe)(pNpτ ).

(6.26)

The final state is a three-body phase space. We can make use of the Lorentz-invariant
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variables sij = (pi+pj)
2 = (pτ −pk)2 with i ̸= j ̸= k that satisfy s12+s13+s23 = m2

τ

for mτ ≫ mN ,mν ,mℓi . In this limit, the kinematic variables are simply:

s12 = 2(pepN) = s− 2(pτpν),

s13 = 2(pepν) = s− 2(pτpN),

s23 = 2(pNpν) = s− 2(pτpe).

(6.27)

So that
Σ|M|2 = (αii3ℓNℓe)

2

Λ4

s13(s− s13)
2

. (6.28)

Finally, the decay width can be expressed in terms of the invariant kinematic vari-
ables:

Γ =
1

256π3s3/2

∫
ds23

∫
ds23 Σ|M|2. (6.29)

The integration limits are

0 ≤ s13 ≤ s and 0 ≤ s23 ≤ s− s13. (6.30)

At the end, the decay width obtained with this operator is

Γ(τ → ℓiNνi) =
m5
τ

6144π3Λ4
(αii3ℓNℓe)

2. (6.31)

Following an analogous procedure we compute the rest of the leptonic decay width
of tau. Special attention needs to be paid in those cases where interferences are
present, as for OϕNe with ONW , Oi3iℓNℓe with O3ii

ℓNℓe and Oi33ℓNℓe with O3i3
ℓNℓe. Here, we

list the rest of our results:

Γ(τ → ℓiNN) =
m5
τ

1536π3Λ4

[
(αi3eN)

2 + (αi3ℓN)
2
]
, (6.32)

Γ(τ → ℓiNνi) =
m5
τ

6144π3Λ4
(αii3ℓNℓe)

2 , (6.33)

Γ(τ → ℓiνiN) =
m5
τ

6144π3Λ4

[
(αi3iℓNℓe)

2 + (α3ii
ℓNℓe)

2 − αi3iℓNℓeα3ii
ℓNℓe + 4(α3

ϕNe)
2

+
64

5

m2
τ

m2
W

(α3
NW )2 + 8

√
2
mτ

mW

α3
ϕNeα

3
NW

]
, (6.34)

Γ(τ → ℓiNντ ) =
m5
τ

6144π3Λ4

[
(αi33ℓNℓe)

2 + (α3i3
ℓNℓe)

2 − αi33ℓNℓe α3i3
ℓNℓe + 4(αiϕNe)

2

+
24

5

m2
τ

m2
W

(αiNW )2 − 2
√
2
mτ

mW

α3i3
ℓNℓeα

i
NW

]
, (6.35)

Γ(τ → ℓiντN) =
m5
τ

6144π3Λ4
(α33i

ℓNℓe)
2 . (6.36)
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6.5 Top quark decays

Operators that give contributions to top quark decays are listed below:

RRRR : O33i
duNe = (bRγµtR)(Nγ

µℓiR) + h.c. ,

LRRL :



Oi33ℓdqN =
1

2
(tLbR)(ℓiLN)− 1

2
(bLbR)(νiLN)

+
1

8
(tLσµνbR)(ℓiLσ

µνN)− 1

8
(bLσµνbR)(νiLσ

µνN) + h.c. ,

Oi33ℓNqd = (νiLN)(bLbR)− (ℓiLN)(tLbR)+ h.c. ,

O33i
quNℓ = (tLtR)(NνiL) + (bLtR)(NℓiL)+ h.c.

(6.37)

As before, whenever there are more than one term, only those in boldface are rele-
vant. From this list, only operators Oi33ℓdqN and Oi33ℓNqd produce interferences. Using
the same calculation techniques of previous sections, we compute the contribution
of these effective operators to the partial decay width of the top quark into bℓN :

Γ(t→ bℓ+i N) =
m5
t

6144π3Λ4

[
4(α33i

duNe)
2+(α33i

quNℓ)
2+(αi33ℓdqN)

2+(αi33ℓNqd)
2−αi33ℓdqNαi33ℓNqd

]
.

(6.38)
The particle data group lists the top quark total decay width to be
Γ(t) = 1.42+0.19

−0.15 GeV [4]. Then, for the purpose of setting bounds on these oper-
ators, we could proceed as in previous sections and demand the new contributions
to top quark decays to be smaller than twice the experimental error. However, the
results obtained in this manner are rather weak. For instance, in the case of O33i

quNℓ

we would find α < 640 (with Λ = 1 TeV) and Λ > 40 GeV (with α = 1).
On the other hand, we could try to constrain these operators using the informa-

tion regarding the partial decay width. Experimental values of Γ(t −→ bℓ+ inv) and
their uncertainties reported in the literature are obtained with the assumption that
the signature of the charged lepton and the neutrino reconstructs a W gauge boson.
This is no longer (always) true in the context of νSMEFT, in which the invisible
part of the new contributions corresponds to N . Under these circumstances, we
cannot make use of the experimental results from existing analyses to set bounds on
the effective operators in Eq. (6.38). New physics could still be hidden in these oper-
ators, and new dedicated studies must be performed in order to test this possibility.
Here, we propose one such analysis.

In passing, it is interesting to note that, despite the νSMEFT framework is built
respecting the gauge symmetries of the Standard Model, invariance under accidental
symmetries is no longer a requirement. Accordingly, the following flavour-violating
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6.5. Top quark decays

operators are to be considered:

O13
uN = (uRγµtR)(NγµN) , (6.39)

O13
qN = (uLγµtL)(NγµN)+ (dLγµbL)(Nγ

µN) , (6.40)

O13i
quNℓ = (uLtR)(NνiL)+ (dLtR)(NℓiL) + h.c. , (6.41)

O31i
quNℓ = (tLuR)(NνiL)+ (bLuR)(NℓiL) + h.c. (6.42)

and likewise for second generation quarks. These operators do not interfere and
produce the following decay widths:

Γ(t→ uNN) =
m5
t

1536π3Λ4

[
(α13

uN)
2 + (α13

qN)
2
]
, (6.43)

Γ(t→ uνiN) =
m5
t

6144π3Λ4
(α13i

quNℓ)
2 , (6.44)

Γ(t→ uNνi) =
m5
t

6144π3Λ4
(α31i

quNℓ)
2 . (6.45)

However, this type of operators, for which the signature corresponds to one light jet
+ two sources of missing energy, are hard to probe at hadron colliders, as the original
centre of mass energy of the interacting partons is not fixed. These operators are
better suited for being tested in lepton colliders, in which not only the transverse
but also the longitudinal component of the missing momentum is measured.

6.5.1 Prospects for t −→ bℓN at the LHC

At the LHC, top quarks are either singly-produced through weak interactions or
produced in pairs via the strong interactions. We concentrate in the latter. Top
quarks are too heavy to hadronise and quickly decay into W±b in the 99.9% of the
cases. In the next step of the decay chain, the W gauge boson decays into pairs
of quarks or into a lepton and a neutrino. Accordingly, we can categorise the final
states of the pair of top quarks as follows:

• Fully hadronic. The two W decay hadronically into qq̄. The final state is bb̄+
4 light jets with BR = 4/9. This decay mode has no sources of missing energy,
shows the largest branching ratio but it also has a lot of QCD background
contamination.

• Fully leptonic. The two W decay into a charged lepton and a neutrino. The
final state is composed of a pair of b quarks, a pair of charged leptons and a
pair of neutrinos. This decay mode happens 1/9 of the time. In the opposite
case of the fully hadronic decay channel, this decay mode is the cleanest,
but has the smallest branching ratio. Furthermore, there are two sources of
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Figure 6.1: Semileptonic top decays in the νSMEFT (subfigure a) and in the Standard
Model (subfigure b).

missing energy.

• Semileptonic. Finally, one W decays into pairs of light jets and the other W
into a charged lepton and a neutrino. In this case, the final state exhibits
a pair of b-jets, a pair of light jets, a charged lepton and a single source of
missing energy. The branching ratio is 4/9 although it drops to ≈ 1/3 if we
consider only light leptons (tau leptons are hard to reconstruct and are often
omitted, as in our study). Its features lie between those of the previous decay
modes. In particular, it has a very small QCD background and a considerable
large branching ratio.

Here we will focus on the semileptonic decay of pairs of top quarks in the LHC,
which will allow us to set bounds on the operators OduNe, OℓdqN , OℓNqd and OquℓN .
Indeed, these operators generate a topology with a top quark decaying hadronically
as in the Standard Model, while the other decays into a lepton and one source of
missing energy through the effective vertex (see diagram (a) in Figure 6.1). This
is exactly the same final state as that of the semileptonic decay of the pair of top
quarks within the Standard Model (diagram (b) in Figure 6.1). However, in the
νSMEFT framework the charged lepton and the neutrino do not reconstruct a W
gauge boson and this implies a new signal so far not studied.

In order to study the LHC prospects for this new signal, we start by generat-
ing background and signal events at

√
s = 14 TeV using the NNPDF23LO PDF

set [169]. The background consists of the SM semileptonic tt̄ decay channel. We
focus on muons in the final state, while assuming that the analysis considering
electrons is similar. Events are generated at leading order (with a tt̄ cross sec-
tion of 605.2 pb) and rescale them with a K-factor of ∼ 1.63. This K-factor is
obtained with a cross section at NNLO of 984.5 pb for mt = 172.5 GeV [170].
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6.5. Top quark decays

At the generator level, we demand events to have pT (j, b, ℓ) > 15, 15, 10 GeV,
η(j, b, ℓ) < 5, 3, 3, ∆R(jj, bb, bj, jℓ, ℓℓ) > 0.3 and ∆R(ℓℓ) > 0.2. We reconstruct the
jets with FastJet 3 [165] making use of the anti-kt algorithm [130] with R = 0.4.
Further requirements include pt(j) > 30 GeV, |η(b)| < 2.5. In the case of leptons we
demand pT > 10 GeV and η < 2.5. b-jets are tagged with an efficiency of 0.7 and
reconstructed by requiring B mesons to be at ∆R < 0.2 of a jet. We additionally
consider a 10% (1%) probability of a c quark (a light lepton) to be mis-identified as
a b-jet. Finally, we define a charged lepton to be isolated when within a cone of size
∆R = 0.2 there is a hadronic activity smaller than 10% of its pT .

We require events to have exactly two b-tagged jets, one isolated lepton and at
least two light jets, out of which we will consider only the two hardest ones.

First, we reconstruct the hadronic top mass, that is, the mass of the top quark
that decays hadronically. For this, the ingredients we need are two light jets, re-
constructing the hadronic W boson (Mhad

W ), along with one b-tagged jet. However,
there are two of them. So, subsequently, we reconstruct hadronic top masses twice,
one for each of the b-jets. From these two variables, we only keep the one that is
closer to the actual top mass (taken to be 172.5 GeV); accordingly, we simply call
it the hadronic top mass, mhad

t . The b-tagged jet best reconstructing the hadronic
top mass is then assigned to the hadronic top (thus, hereafter it will be called bt),
while the remaining b-jet belongs to the leptonic top decay cascade (bℓ). Finally,
we keep only those events for which the reconstructed hadronic top mass and the
reconstructed hadronic W mass lie within 40 GeV and 30 GeV of the top quark and
W masses, respectively.

Next, we reconstruct the leptonic top. In this case, we have a b-jet, a charged
lepton and N . In order to accomplish our task, we need the kinematic information
about these three objects. However, in proton colliders, like the LHC, the longitudi-
nal component of the momentum of the neutrino is not accessible5. In the Standard
Model, the leptonic decay of the top quark is mediated by the W gauge boson.
Then, typically we would find pνz by solving for the fixed value of MW :

M2
W = m2

ℓ + 2(EℓEν − p⃗ ℓT · p⃗ miss
T − pℓzpνz), (6.46)

where Eν =
√
(Emiss

T )2 + (Eν
z )

2. This is a quadratic equation in pνz and therefore it
has two solutions. With each of them, the leptonic top mass is finally reconstructed

5Indeed, for a single neutrino only the transverse momentum can be computed. In a given
collider the beams travel along one axis, so that the transverse momentum before the collision is
zero. After the collision, the momentum is conserved and by measuring the transverse momentum
of the visible particles one can infer the transverse component of the momentum of the neutrino.
This exact method can be followed in lepton colliders, in which the kinematics of the collision is
well-known, to obtain the longitudinal motion of the neutrino. However, in proton colliders this is
no longer true, as there is no control of the momenta carried by the colliding quarks.
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Chapter 6. Probes of νSMEFT four-fermion operators

twice. The leptonic top mass that agrees best with the hadronic top mass is kept.
However, within the νSMEFT framework the leptonic top decay is governed by
the contact interactions given by the different effective operators. We could try to
proceed in the same fashion as in the Standard Model, but it turns out that now
the charged lepton-neutrino system does not originate from the W gauge boson so
that we are not able to use the fixed value of MW to solve the quadratic equation in
pνz . Here we find pνz by solving for the quadratic equation for the leptonic top mass
which, as before, we take to be equal to 172.5 GeV. With the two solutions of the
quadratic equation, we reconstruct the invariant mass of the lepton-neutrino system.
Note that for the background this invariant mass is indeed a distribution of the W
mass, but for the signal this is no longer true. By making use of this feature we can
check to what extent the signal is compatible with the background. Accordingly, we
show the distribution of these variables in Figure 6.2, for both the signal and the SM
background. We have called these variables mℓ,1

W and mℓ,2
W , where ‘1’ and ‘2’ refer

to the ‘+’ and ‘-’ solutions of the quadratic equation. Only those solutions with
positive discriminant have been kept. At the end, the subsequent selection cuts,
including trigger, isolation and analysis cuts give an efficiency of 4.4% and 4.7% for
the signal and the background, respectively.

From Figure 6.2, we see that the signal and background distributions of mℓ,1
W and

mℓ,2
W are very similar. Therefore and in order to extract the maximum amount of

information from data, we perform a multivariate analysis based on a simple ma-
chine learning boosted decision tree classifier (BDT), which is no more than a forest
of decision trees, using the TMVA environment [171]. We consider the following
observables as inputs: the four-momentum of the lepton and that of the bℓ-jet, the
transverse missing momentum along with the transverse missing energy, mhad

W , mℓ,1
W

and mℓ,2
W , mhad

t , ∆Rbℓbh , ∆Rbℓj1,2 , ∆Rℓ,bh and ∆Rℓ,j1,2 . Because BDTs algorithms are
prone to suffer from overtraining, we have checked that the Kolmogorov-Smirnov
statistic test does not fall below the critical value of 0.01 [172]. We find that the most
discriminating observables are mℓ,1

W and mℓ,2
W . In Figure 6.3 we show the distributions

of the BDT variable for the signal and the background.
In order to avoid the systematic uncertainties, we consider the asymmetry vari-

able defined for every bin of the BDT as

A =
Nright −Nleft

Nright +Nleft

, (6.47)

where Nright (Nleft) counts the number of events to the left (right) of the given bin
(the bin itself is included in the count of Nright). The systematic uncertainties are
common to both Nright and Nleft and thus cancel in this ratio. We compute the
asymmetry for the total number of events of signal+background and background
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Figure 6.2: Reconstructed W -boson mass for the signal (solid red) and background
(dashed black). Here 1 (2) refers to the ‘+’ (‘−’) solution of the neutrino pz to the
quadratic equation for the invariant mass of the leptonic top. The signal was generated
with a BR(t −→ bµN) = 10−6.

alone, in each bin of the BDT variable. Then we look at the bin with the largest
|As+b − Ab| separation. In Figure 6.4 we depict the |As+b − Ab + 1σ| distance in
units of the standard deviation of Ab, as a function of the branching ratio of the
exotic top decay. For the sake of providing a more straightforward readability, we
show three curves, for which the 1σ, 2σ and 3σ bounds on BR(t −→ bℓN) can be
obtained from where the intersection with the abscissa axis occurs. From the left
panel, we find that branching ratios as low as ∼ 2 × 10−4 could be probed at the
High Luminosity phase of the LHC at

√
s = 14 TeV with an integrated luminosity

of 3 ab−1. The expected bounds in the long run, at
√
s = 27 TeV with L = 10−1 ab,

are also shown in the right panel6. For this case, the limits would be improved by a
factor of ∼ 4.

Finally, we can use the 95% CL bounds on the branching ratio of the exotic top
decay obtained in this subsection to set limits on α and Λ. Indeed, this is easily
done by plugging the 2σ values of BR(t −→ bℓN) in the expressions for the top
quark partial decay width found in Eq. (6.38) (with the total decay width of the top
quark being Γtotal ≃ 1.41 GeV [4]) and solving for α (or Λ).

6.6 Global analysis
In this section we put together the results and find bounds on the parameters of
the four-fermion effective operators, namely the Wilson coefficients α and the scale
of new physics Λ. In every case, we look for the maximum value of α assuming
Λ = 1 TeV. Similarly, we constraint the minimum value of Λ by assuming α = 1. As
said before, in order to keep the validity of the EFT under control, we restrain to

6At this centre of mass energy, the tt̄ cross section at LO is 3813 pb.
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Figure 6.3: BDT score variable for the signal (red line) and the background (black line).

Figure 6.4: Number of standard deviations between the BDT asymmetry for the signal
+ background and the asymmetry for the background alone as a function of the exotic
top decay mode branching ratio. Left panel corresponds to

√
s = 14 TeV and L = 3 ab−1;

while the right panel refers to
√
s = 27 TeV and L = 10 ab−1.

bins with energies below 1 TeV, although, in some cases, bins with larger energies
could give improved bounds.

We start with the LHC searches. Regarding one light lepton and missing energy
analyses, limits from operators O11i

quNℓ and O11i
duNe are easy to compute, as these

operators show no interferences with any other operator. For each bin in Table 6.2
we compute the bounds on α and Λ by demanding the number of signal events to be
equal to smax. Finally, we keep the limit from the mT bin giving the most stringent
result. For ℓ + Emiss this bin is [600 − 1000] GeV. The remaining two operators,
i.e. Oi11ℓNqd and Oi11ℓdqN , produce interferences, which are treated with marginalisation.
This process consists of finding the value of the marginalised operator that minimise
the total number of signal events, plugging in this expression and finally solving the
resulting one-dimensional equation. Likewise, this process is repeated for the other
operator. As before, the most constraining mT bin is [600− 1000] GeV. All bounds
for ℓ = µ are less restrictive as the LHC study of Ref. [166] shows a weaker sensitivity
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to final states with muons, as seen in Table 6.2.
Bounds from τ+Emiss searches follow an analogous procedure. As before, we con-

sider operators O113
quNℓ and O113

duNe, along with those that produce interferences, O311
ℓNqd

and O311
ℓdqN . In all cases, the mT bin giving the hardest bound is [500− 1000] GeV.

When mN < mπ ≈ 139 MeV7, we can use pion decays to further improve the
bounds on the corresponding operators. We see that (neglecting the mℓ term) the
split between the bounded values of the Wilson coefficients of O11i

quNℓ and Oi11ℓNqd is
rather small:

α11i
quNℓ − αi11ℓNqd = Λ2

√
16π(mu +md)2 × 2∆Γ(π → e+ inv)

f 2
πm

5
π

≈ 2× 10−4, (6.48)

for Λ = 1 TeV. We can use this result to improve the bounds on the less constrained
of these two operators. With ℓ + Emiss searches we have found α11i

quNℓ < 0.133 and
αi11ℓNqd < 0.25. Using pion decays, the bounds regarding the parameter αi11ℓNqd can be
improved by a factor of 1.9 (1.8) for electrons (muons). However, here we report the
most conservative limit.

In the case of monojets searches, we can set limits on the operators O11
uN , O11

dN

and O11
qN . There is no interference, which makes the computation straightforward.

For the three operators, the most restraining bounds are found with the Emiss bin
[740− 790] GeV.

Tau decays are useful for constraining several operators. In particular, bounds
from Oi3eN , Oi3ℓN , Oii3ℓNℓe and O33i

ℓNℓe are straightforward to compute, while O3ii
ℓNℓe with

O3i3
ℓNℓe and Oi33ℓNℓe with O3i3

ℓNℓe produce interferences. We marginalise these operators
in the same way as before. This set of operators, but involving the first and second
lepton families instead of the third (for instance O12

eN and O12
ℓN), could give contribu-

tions to muon decays. In that case, they modify the Fermi constant for which reason
special care has to be taken in computing their bounds. We leave this computation
for future work.

Finally, there are several operators giving new contributions to rare top decays.
Moreover, these searches would be the only way to probe these operators. We have
seen that using the top quark total decay width leads to weak constrains. Indeed,
we would find

O33i
quNℓ : α < 640 or Λ > 40 GeV, (6.49)

O33i
duNℓ : α < 320 or Λ > 55 GeV, (6.50)

Oi33ℓdqN and Oi33ℓNqd : α < 740 or Λ > 35 GeV. (6.51)

7This is always true for Dirac neutrinos as well as for Majorana neutrinos in the range of masses
considered in this work (see the introduction of this chapter).
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Thus, these directions remain very unconstrained and further exploration for new
physics is needed. New dedicated top quark searches could be useful in this regard.
In order to evaluate the bounds, we proceed in the same manner as before, but
using the LHC prospects obtained in Subsection 6.5.1. Bounds on operators O33i

dune

and O33i
quNℓ are straightforward to calculate, while Oi33ℓdqN and Oi33ℓNqd give interferences

and we need to marginalise. We see that bounds achieved with dedicated searches
would be significantly improved in around an order of magnitude, relative to the
those obtained with the measurement of the top quark total decay width.

We report all our findings in Figure 6.5 (see Table 6.5 for the actual numbers).
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Figure 6.5: Bounds on the four-fermion effective operators in the νSMEFT framework.
Left panel: upper bounds on α assuming Λ = 1 TeV. Right panel: lower bounds on Λ
assuming α = 1. Colours correspond to categories RRRR (blue), LLRR (orange) and
LRRL (green). Here ℓ stands for an electron. Bounds for ℓ = µ are obtained to be
practically identical.
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Operator αmax for Λ = 1 TeV Λmin [TeV] for α = 1 Observable

R
R

R
R

Oi3eN 3.0 (2.9) 0.58 (0.59) τ → ℓ+ inv
O11
dN 0.72 1.2 monojet
O11
uN 0.48 1.4 monojet
O11i
duNe 0.11 (0.16) 3.0 (2.5) ℓ+ Emiss

O113
duNe 0.15 2.6 τ + Emiss

O33i
duNe 9.2 (9.2) 0.33 (0.33) t→ b+ inv

LL
R

R Oi3ℓN 3.0 (2.9) 0.58 (0.59) τ → ℓ+ inv
O11
qN 0.40 1.6 monojet

LR
R

L

Oii3ℓNℓe 6.0 (5.9) 0.41 (0.41) τ → ℓ+ inv
Oi3iℓNℓe 7.6 (7.6) 0.36 (0.36) τ → ℓ+ inv
Oi33ℓNℓe 7.6 (7.6) 0.36 (0.36) τ → ℓ+ inv
O3ii
ℓNℓe 7.6 (7.6) 0.36 (0.36) τ → ℓ+ inv
O3i3
ℓNℓe 7.6 (7.6) 0.36 (0.36) τ → ℓ+ inv
O33i
ℓNℓe 6.0 (5.9) 0.41 (0.41) τ → ℓ+ inv
Oi11ℓdqN 0.46 (0.66) 1.5 (1.2) ℓ+ Emiss

Oi33ℓdqN 21 (21) 0.22 (0.22) t→ bℓ+ inv
O311
ℓdqN 0.67 1.2 τ + Emiss

Oi11ℓNqd 0.25 (0.36) 2.0 (1.7) π → ℓ+ inv
Oi33ℓNqd 21 (21) 0.22 (0.22) t→ bℓ+ inv
O311
ℓNqd 0.35 1.7 τ + Emiss

O11i
quNℓ 0.13 (0.19) 2.8 (2.3) ℓ+ Emiss

O113
quNℓ 0.19 2.3 τ + Emiss

O33i
quNℓ 18 (18) 0.23 (0.23) t→ bℓ+ inv

Table 6.5: Maximum (minimum) value of α (Λ) assuming Λ = 1 TeV (α = 1) for the four-
fermion operators. The last column indicates the most constraining observable. Numbers
refer to ℓ = e, while numbers inside parentheses correspond to ℓ = µ.
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6.7 Summary
• The effective field theory with the same gauge symmetries and the same field

content as the Standard Model is called SMEFT. If neutrinos are Dirac parti-
cles, one needs to extend the field content by adding a right-handed neutrino.
In this case, the effective theory is called νSMEFT.

• The non-renormalizable operators of the νSMEFT will induce new contribu-
tions to several physical processes. Among the different possibilities, of special
interest are the dimension-six four-fermion operators.

• We have computed new physics contributions to searches of one lepton and
missing energy, monojets searches, pion decays, tau decays and top quarks
decays coming from these operators.

• By comparing the new contributions given by the four-fermion operators with
experimental data we have set bounds on several of these operators.

• Results obtained in this chapter are valid when neutrinos are Dirac particles
and the scale of new physics is beyond the electroweak scale, or when neutrinos
are Majorana particles with 0.01 GeV ≲ mN ≲ 0.1 GeV.

• By using the current experimental data regarding the processes listed above,
we have set bounds on the maximum (minimum) values of α (Λ) assuming
Λ = 1 TeV (α = 1) corresponding to the four-fermion effective operators of
the νSMEFT.

• Unconstrained operators could still hide new physics and therefore must be
explored.

• In particular, operators giving contributions to rare top decays receive weak
constrains from measurements of top quark total decay widths.

• However, the new contributions to leptonic top quark decays show final states
that do not reconstruct the W gauge boson. For this reason, dedicated anal-
yses must be implemented to study their signature. Here, we have proposed
a search strategy for this aim.
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For a long time neutrinos were thought to be massless. This prejudice was sup-
ported by insufficient experimental information. The discovery of neutrino oscil-
lations completely changed this paradigm. In the pages that layout this thesis we
tried to address several topics related to the non-vanishing neutrino masses.

The Standard Model does not provide a mechanism for generating neutrino
masses; new pieces are to be added for this purpose. Physicists have designed
a great amount of models but without a more complete experimental knowledge
about the neutrino mixing parameters they work somewhat blindly. Here, we have
compared the available oscillation data with patterns of the neutrino mass matrix.
These patterns can be induced by new symmetries or by the dynamics of the un-
derlying theory. In particular, we have revisited the case of two-zero textures for
Majorana neutrinos using a purely numerical method. This technique not only needs
no previous algebraic work, but also allows to compare the viability among different
textures in terms of their χ2 and the available parameter space. More importantly,
it gives predictions of the unknown parameters and can be used to study the sta-
bility of the results when the constraints are approximate. Our findings indicate
that the most promising textures are those of class A. Textures of class B, in both
mass orderings, show a very constrained parameter space, with the phases mostly
fixed to a given value. Finally, texture C-NO requires sin2 θ23 = 0.5, which could
be incompatible with data in the near future, fixed values of the Majorana phases
and relative large values of the mass of the lightest neutrino (mℓ ≳ 0.1 eV). Texture
C-IO relaxes its predictions respect to those of C-NO; however, current data gives
a great preference of normal ordering over inverted ordering. Furthermore, we have
checked that, if the constraints are relaxed, the main predictions of the textures
remain while the parameter space is enlarged. Finally, excluded textures are also
revisited. In particular, texture F1-NO could show interesting prospects when the
constraint is only approximate.

Another fundamental aspect of neutrino masses that needs to be clarified before
the generation of neutrino masses can be properly described concerns whether they
are Dirac or Majorana type. The main difference is that the latter implies lepton
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number violation, which can be tested in experiments looking for neutrinoless double
beta decay. If one designs a model of Majorana neutrino masses that make use of
the predictions of texture A, it will also imply that the standard neutrino exchange
mechanism of neutrinoless double beta decay is highly suppressed (because texture
A demands (Mν)ee ≈ 0). However, this mechanism needs not be the main source of
neutrinoless double beta decay for there could be additional short-range mechanisms
that are based on the exchange of new heavy lepton number violating fields. In this
thesis we have presented a three-loop neutrino mass model that leads to the above
features. In particular, we have found that neutrinoless double beta decay could be
observed in the near future should the masses of the new fields be in the TeV scale.
Moreover, the model could receive constraints from processes with lepton flavour
violation, electroweak precision data and dark matter searches.

Many models of Majorana neutrino masses, like the one described above, are
based on explicit lepton number symmetry breaking. For this aim, they typically
introduce new heavy scalars that couple to leptons. Moreover, these scalars could
be embedded in larger multiplets or have interactions with neutrinos, which would
translate into enhancements of the production pattern, and into decay modes with
missing energy. Current LHC searches of doubly-charged and singly-charged scalars
do not take these considerations into account. Accordingly, we have presented a
broad scope search strategy with several signal regions and based on several observ-
ables with the purpose of studying the signatures of these scalars.

First, we have applied the search strategy to the case of doubly-charged scalars,
with special attention given to the Zee-Babu model and the three-loop model pre-
sented in this thesis. We have generated the relevant background regarding events
with two, three and four leptons, all of which have at least two leptons with the
same sign. Our findings report that future analyses could probe both leptonic and
exotic decays of doubly-charged scalars in the context of the Zee-Babu model. In
particular, masses as large as 1 TeV could be excluded in the near future. Moreover,
models with additional scalar multiplets show an enhancement of the production
mode of the doubly-charged scalar. We have found that, in the particular case of
the three-loop model, bounds on the mass of the doubly-charged scalar, obtained by
considering the enlarged production, would be more stringent than those obtained
with the standard pair production mode by around ∼ 100 GeV.

Then, we have studied singly-charged scalars, decaying into a light charged lepton
and a neutrino. These scalars can be pair-produced or singly produced in associa-
tion with two charged leptons, two neutrinos or a charged lepton and a neutrino.
Moreover, the single-production cross section depends on the Yukawa coupling of
the scalar with the leptons. Subsequently, we have divided the analysis in two sig-
nal regions with two charged leptons and three charged leptons, respectively. The
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former can be applied only when Yukawa couplings are small, while the former is
more relevant in the regime of large Yukawa coupling. For the signal region with two
leptons, we have shown that the branching ratio vs mass plane can be better tested
in the near future using our search strategy than with those previously considered
in the literature. On the other hand, the three lepton signal region has not been
considered prior to this work. Our results indicate that masses up to 500 GeV can
be probed in the High-Luminosity phase of the LHC, for Yukawa couplings as low
as ∼ 0.8 when the decay branching ratio into electrons and muons is saturated.

The last topic we have addressed is related to the effective field theory of the
Standard Model extended with right-handed neutrinos, which is the appropriate
description of low energy physics when neutrinos are Dirac particles. Here, we
have focused on four-fermion operators and computed the contributions they give
to several processes. After comparing with experimental data, we have set bounds
on the parameters of several of these operators. The unconstrained operators can
hide new physics and therefore it is necessary to probe them for new physics. New
strategies need to be designed to this aim. Accodingly, we have proposed one such
analysis for signatures of rare top decays not yet studied at high-energy colliders.

161



Conclusions

162



References

[1] M. Goldhaber, L. Grodzins, and A. W. Sunyar. “Helicity of Neutrinos”. In:
Phys. Rev. 109 (3 Feb. 1958), pp. 1015–1017. doi: 10.1103/PhysRev.109.
1015. url: https://link.aps.org/doi/10.1103/PhysRev.109.1015.

[2] S. S. Gershtein and Ya. B. Zeldovich. “Meson corrections in the theory of
beta decay”. In: Zh. Eksp. Teor. Fiz. 29 (1955). [,80(1955)], pp. 698–699.

[3] M. L. Perl et al. “Evidence for anomalous lepton production in e+e− annihi-
lation”. In: 35.22 (Dec. 1975), pp. 1489–1492. doi: 10.1103/PhysRevLett.
35.1489.

[4] M Tanabashi et al. “Review of Particle Physics, 2018”. In: Phys. Rev. D
98.3 (2018), 030001. 1898 p. doi: 10.1103/PhysRevD.98.030001. url:
http://cds.cern.ch/record/2636832.

[5] S. L. Glashow. “Partial Symmetries of Weak Interactions”. In: Nucl. Phys.
22 (1961), pp. 579–588. doi: 10.1016/0029-5582(61)90469-2.

[6] Peter W. Higgs. “Broken symmetries, massless particles and gauge fields”. In:
Phys. Lett. 12 (1964), pp. 132–133. doi: 10.1016/0031-9163(64)91136-9.

[7] Peter W. Higgs. “Broken Symmetries and the Masses of Gauge Bosons”. In:
Phys. Rev. Lett. 13 (16 Oct. 1964), pp. 508–509. doi: 10.1103/PhysRevLett.
13.508. url: https://link.aps.org/doi/10.1103/PhysRevLett.13.508.

[8] F. Englert and R. Brout. “Broken Symmetry and the Mass of Gauge Vector
Mesons”. In: Phys. Rev. Lett. 13 (9 Aug. 1964), pp. 321–323. doi: 10.1103/
PhysRevLett . 13 . 321. url: https : / / link . aps . org / doi / 10 . 1103 /
PhysRevLett.13.321.

[9] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble. “Global Conservation
Laws and Massless Particles”. In: Phys. Rev. Lett. 13 (20 Nov. 1964), pp. 585–
587. doi: 10.1103/PhysRevLett.13.585. url: https://link.aps.org/
doi/10.1103/PhysRevLett.13.585.

163

https://doi.org/10.1103/PhysRev.109.1015
https://doi.org/10.1103/PhysRev.109.1015
https://link.aps.org/doi/10.1103/PhysRev.109.1015
https://doi.org/10.1103/PhysRevLett.35.1489
https://doi.org/10.1103/PhysRevLett.35.1489
https://doi.org/10.1103/PhysRevD.98.030001
http://cds.cern.ch/record/2636832
https://doi.org/10.1016/0029-5582(61)90469-2
https://doi.org/10.1016/0031-9163(64)91136-9
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.508
https://link.aps.org/doi/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRevLett.13.321
https://link.aps.org/doi/10.1103/PhysRevLett.13.321
https://link.aps.org/doi/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRevLett.13.585
https://link.aps.org/doi/10.1103/PhysRevLett.13.585
https://link.aps.org/doi/10.1103/PhysRevLett.13.585


References

[10] T. W. B. Kibble. “Symmetry breaking in nonAbelian gauge theories”. In:
Phys. Rev. 155 (1967). [,165(1967)], pp. 1554–1561. doi: 10.1103/PhysRev.
155.1554.

[11] Steven Weinberg. “A Model of Leptons”. In: Phys. Rev. Lett. 19 (1967),
pp. 1264–1266. doi: 10.1103/PhysRevLett.19.1264.

[12] S. L. Glashow, J. Iliopoulos, and L. Maiani. “Weak Interactions with Lepton-
Hadron Symmetry”. In: Phys. Rev. D 2 (7 Oct. 1970), pp. 1285–1292. doi:
10.1103/PhysRevD.2.1285. url: https://link.aps.org/doi/10.1103/
PhysRevD.2.1285.

[13] Gerard ’t Hooft. “Renormalization of Massless Yang-Mills Fields”. In: Nucl.
Phys. B33 (1971), pp. 173–199. doi: 10.1016/0550-3213(71)90395-6.

[14] Murray Gell-Mann. “A Schematic Model of Baryons and Mesons”. In: Phys.
Lett. 8 (1964), pp. 214–215. doi: 10.1016/S0031-9163(64)92001-3.

[15] G Zweig. An SU3 model for strong interaction symmetry and its breaking;
Version 1. Tech. rep. CERN-TH-401. Geneva: CERN, Jan. 1964. url: http:
//cds.cern.ch/record/352337.

[16] G Zweig. “An SU3 model for strong interaction symmetry and its break-
ing; Version 2”. In: CERN-TH-412 (Feb. 1964). Version 1 is CERN preprint
8182/TH.401, Jan. 17, 1964, 80 p. url: http://cds.cern.ch/record/
570209.

[17] H. Fritzsch, Murray Gell-Mann, and H. Leutwyler. “Advantages of the Color
Octet Gluon Picture”. In: Phys. Lett. 47B (1973), pp. 365–368. doi: 10.1016/
0370-2693(73)90625-4.

[18] David J. Gross and Frank Wilczek. “Ultraviolet Behavior of Non-Abelian
Gauge Theories”. In: Phys. Rev. Lett. 30 (26 June 1973), pp. 1343–1346. doi:
10.1103/PhysRevLett.30.1343. url: https://link.aps.org/doi/10.
1103/PhysRevLett.30.1343.

[19] H. David Politzer. “Reliable Perturbative Results for Strong Interactions?”
In: Phys. Rev. Lett. 30 (26 June 1973), pp. 1346–1349. doi: 10 . 1103 /
PhysRevLett.30.1346. url: https://link.aps.org/doi/10.1103/
PhysRevLett.30.1346.

[20] G. Danby et al. “Observation of High-Energy Neutrino Reactions and the
Existence of Two Kinds of Neutrinos”. In: Phys. Rev. Lett. 9 (1962), pp. 36–
44. doi: 10.1103/PhysRevLett.9.36.

164

https://doi.org/10.1103/PhysRev.155.1554
https://doi.org/10.1103/PhysRev.155.1554
https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1103/PhysRevD.2.1285
https://link.aps.org/doi/10.1103/PhysRevD.2.1285
https://link.aps.org/doi/10.1103/PhysRevD.2.1285
https://doi.org/10.1016/0550-3213(71)90395-6
https://doi.org/10.1016/S0031-9163(64)92001-3
http://cds.cern.ch/record/352337
http://cds.cern.ch/record/352337
http://cds.cern.ch/record/570209
http://cds.cern.ch/record/570209
https://doi.org/10.1016/0370-2693(73)90625-4
https://doi.org/10.1016/0370-2693(73)90625-4
https://doi.org/10.1103/PhysRevLett.30.1343
https://link.aps.org/doi/10.1103/PhysRevLett.30.1343
https://link.aps.org/doi/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1103/PhysRevLett.30.1346
https://link.aps.org/doi/10.1103/PhysRevLett.30.1346
https://link.aps.org/doi/10.1103/PhysRevLett.30.1346
https://doi.org/10.1103/PhysRevLett.9.36


References

[21] M. L. Perl et al. “Evidence for Anomalous Lepton Production in e+ − e−

Annihilation”. In: Phys. Rev. Lett. 35 (22 Dec. 1975), pp. 1489–1492. doi:
10.1103/PhysRevLett.35.1489. url: https://link.aps.org/doi/10.
1103/PhysRevLett.35.1489.

[22] S. Schael et al. “Precision electroweak measurements on the Z resonance”.
In: Phys. Rept. 427 (2006), pp. 257–454. doi: 10.1016/j.physrep.2005.
12.006. arXiv: hep-ex/0509008 [hep-ex].

[23] K. Kodama et al. “Observation of tau neutrino interactions”. In: Phys. Lett.
B504 (2001), pp. 218–224. doi: 10.1016/S0370-2693(01)00307-0. arXiv:
hep-ex/0012035 [hep-ex].

[24] Georges Aad et al. “Observation of a new particle in the search for the Stan-
dard Model Higgs boson with the ATLAS detector at the LHC”. In: Phys.
Lett. B716 (2012), pp. 1–29. doi: 10.1016/j.physletb.2012.08.020.
arXiv: 1207.7214 [hep-ex].

[25] Nicola Cabibbo. “Unitary Symmetry and Leptonic Decays”. In: Phys. Rev.
Lett. 10 (12 June 1963), pp. 531–533. doi: 10.1103/PhysRevLett.10.531.
url: https://link.aps.org/doi/10.1103/PhysRevLett.10.531.

[26] Makoto Kobayashi and Toshihide Maskawa. “CP Violation in the Renor-
malizable Theory of Weak Interaction”. In: Prog. Theor. Phys. 49 (1973),
pp. 652–657. doi: 10.1143/PTP.49.652.

[27] M. Tanabashi et al. “Review of Particle Physics”. In: Phys. Rev. D 98 (3
Aug. 2018), p. 030001. doi: 10.1103/PhysRevD.98.030001. url: https:
//link.aps.org/doi/10.1103/PhysRevD.98.030001.

[28] Steven Weinberg. “Baryon- and Lepton-Nonconserving Processes”. In: Phys.
Rev. Lett. 43 (21 Nov. 1979), pp. 1566–1570. doi: 10.1103/PhysRevLett.43.
1566. url: https://link.aps.org/doi/10.1103/PhysRevLett.43.1566.

[29] B. Grzadkowski et al. “Dimension-Six Terms in the Standard Model La-
grangian”. In: JHEP 10 (2010), p. 085. doi: 10.1007/JHEP10(2010)085.
arXiv: 1008.4884 [hep-ph].

[30] Yi Liao and Xiao-Dong Ma. Renormalization Group Evolution of Dimension-
seven Baryon- and Lepton-number-violating Operators. 2016. arXiv: 1607.
07309 [hep-ph].

[31] Landon Lehman and Adam Martin. “Hilbert Series for Constructing La-
grangians: expanding the phenomenologist’s toolbox”. In: Phys. Rev. D91
(2015), p. 105014. doi: 10.1103/PhysRevD.91.105014. arXiv: 1503.07537
[hep-ph].

165

https://doi.org/10.1103/PhysRevLett.35.1489
https://link.aps.org/doi/10.1103/PhysRevLett.35.1489
https://link.aps.org/doi/10.1103/PhysRevLett.35.1489
https://doi.org/10.1016/j.physrep.2005.12.006
https://doi.org/10.1016/j.physrep.2005.12.006
https://arxiv.org/abs/hep-ex/0509008
https://doi.org/10.1016/S0370-2693(01)00307-0
https://arxiv.org/abs/hep-ex/0012035
https://doi.org/10.1016/j.physletb.2012.08.020
https://arxiv.org/abs/1207.7214
https://doi.org/10.1103/PhysRevLett.10.531
https://link.aps.org/doi/10.1103/PhysRevLett.10.531
https://doi.org/10.1143/PTP.49.652
https://doi.org/10.1103/PhysRevD.98.030001
https://link.aps.org/doi/10.1103/PhysRevD.98.030001
https://link.aps.org/doi/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevLett.43.1566
https://doi.org/10.1103/PhysRevLett.43.1566
https://link.aps.org/doi/10.1103/PhysRevLett.43.1566
https://doi.org/10.1007/JHEP10(2010)085
https://arxiv.org/abs/1008.4884
https://arxiv.org/abs/1607.07309
https://arxiv.org/abs/1607.07309
https://doi.org/10.1103/PhysRevD.91.105014
https://arxiv.org/abs/1503.07537
https://arxiv.org/abs/1503.07537


References

[32] Brian Henning et al. “Hilbert series and operator bases with derivatives in
effective field theories”. In: Commun. Math. Phys. 347.2 (2016), pp. 363–388.
doi: 10.1007/s00220-015-2518-2. arXiv: 1507.07240 [hep-th].

[33] Landon Lehman and Adam Martin. “Low-derivative operators of the Stan-
dard Model effective field theory via Hilbert series methods”. In: JHEP
02 (2016), p. 081. doi: 10.1007/JHEP02(2016)081. arXiv: 1510.00372
[hep-ph].

[34] Brian Henning et al. “2, 84, 30, 993, 560, 15456, 11962, 261485, ...:
Higher dimension operators in the SMEFT”. In: JHEP 08 (2017). [Erratum:
JHEP09,019(2019)], p. 016. doi: 10.1007/JHEP09(2019)019, 10.1007/
JHEP08(2017)016. arXiv: 1512.03433 [hep-ph].

[35] K. Abe et al. “Solar neutrino results in Super-Kamiokande-III”. In: Phys.
Rev. D83 (2011), p. 052010. doi: 10.1103/PhysRevD.83.052010. arXiv:
1010.0118 [hep-ex].

[36] K. Abe et al. “Atmospheric neutrino oscillation analysis with external con-
straints in Super-Kamiokande I-IV”. In: Phys. Rev. D97.7 (2018), p. 072001.
doi: 10.1103/PhysRevD.97.072001. arXiv: 1710.09126 [hep-ex].

[37] M. G. Aartsen et al. “Determining neutrino oscillation parameters from atmo-
spheric muon neutrino disappearance with three years of IceCube DeepCore
data”. In: Phys. Rev. D91.7 (2015), p. 072004. doi: 10.1103/PhysRevD.91.
072004. arXiv: 1410.7227 [hep-ex].

[38] D. Adey et al. “Measurement of the Electron Antineutrino Oscillation with
1958 Days of Operation at Daya Bay”. In: Phys. Rev. Lett. 121.24 (2018),
p. 241805. doi: 10.1103/PhysRevLett.121.241805. arXiv: 1809.02261
[hep-ex].

[39] G. Bak et al. “Measurement of Reactor Antineutrino Oscillation Amplitude
and Frequency at RENO”. In: Phys. Rev. Lett. 121.20 (2018), p. 201801. doi:
10.1103/PhysRevLett.121.201801. arXiv: 1806.00248 [hep-ex].

[40] Y. Abe et al. “Improved measurements of the neutrino mixing angle
θ13 with the Double Chooz detector”. In: JHEP 10 (2014). [Erratum:
JHEP02,074(2015)], p. 086. doi: 10.1007/JHEP02(2015)074, 10.1007/
JHEP10(2014)086. arXiv: 1406.7763 [hep-ex].

[41] K. Abe et al. “Measurement of neutrino and antineutrino oscillations by
the T2K experiment including a new additional sample of νe interac-
tions at the far detector”. In: Phys. Rev. D96.9 (2017). [Erratum: Phys.
Rev.D98,no.1,019902(2018)], p. 092006. doi: 10 . 1103 / PhysRevD . 96 .
092006,10.1103/PhysRevD.98.019902. arXiv: 1707.01048 [hep-ex].

166

https://doi.org/10.1007/s00220-015-2518-2
https://arxiv.org/abs/1507.07240
https://doi.org/10.1007/JHEP02(2016)081
https://arxiv.org/abs/1510.00372
https://arxiv.org/abs/1510.00372
https://doi.org/10.1007/JHEP09(2019)019, 10.1007/JHEP08(2017)016
https://doi.org/10.1007/JHEP09(2019)019, 10.1007/JHEP08(2017)016
https://arxiv.org/abs/1512.03433
https://doi.org/10.1103/PhysRevD.83.052010
https://arxiv.org/abs/1010.0118
https://doi.org/10.1103/PhysRevD.97.072001
https://arxiv.org/abs/1710.09126
https://doi.org/10.1103/PhysRevD.91.072004
https://doi.org/10.1103/PhysRevD.91.072004
https://arxiv.org/abs/1410.7227
https://doi.org/10.1103/PhysRevLett.121.241805
https://arxiv.org/abs/1809.02261
https://arxiv.org/abs/1809.02261
https://doi.org/10.1103/PhysRevLett.121.201801
https://arxiv.org/abs/1806.00248
https://doi.org/10.1007/JHEP02(2015)074, 10.1007/JHEP10(2014)086
https://doi.org/10.1007/JHEP02(2015)074, 10.1007/JHEP10(2014)086
https://arxiv.org/abs/1406.7763
https://doi.org/10.1103/PhysRevD.96.092006, 10.1103/PhysRevD.98.019902
https://doi.org/10.1103/PhysRevD.96.092006, 10.1103/PhysRevD.98.019902
https://arxiv.org/abs/1707.01048


References

[42] P. Adamson et al. “Measurement of Neutrino and Antineutrino Oscillations
Using Beam and Atmospheric Data in MINOS”. In: Phys. Rev. Lett. 110.25
(2013), p. 251801. doi: 10.1103/PhysRevLett.110.251801. arXiv: 1304.
6335 [hep-ex].

[43] M. A. Acero et al. “New constraints on oscillation parameters from νe ap-
pearance and νµ disappearance in the NOvA experiment”. In: Phys. Rev. D98
(2018), p. 032012. doi: 10.1103/PhysRevD.98.032012. arXiv: 1806.00096
[hep-ex].

[44] Valencia-Globalfit. http://globalfit.astroparticles.es/. 2018.

[45] Tsutomu Yanagida. “Horizontal gauge symmetry and masses of neutrinos”.
In: Conf. Proc. C 7902131 (1979). Ed. by Osamu Sawada and Akio Sugamoto,
pp. 95–99.

[46] Murray Gell-Mann, Pierre Ramond, and Richard Slansky. “Complex Spinors
and Unified Theories”. In: Conf. Proc. C 790927 (1979), pp. 315–321. arXiv:
1306.4669 [hep-th].

[47] Rabindra N. Mohapatra and Goran Senjanovic. “Neutrino Mass and Spon-
taneous Parity Nonconservation”. In: Phys. Rev. Lett. 44 (1980), p. 912. doi:
10.1103/PhysRevLett.44.912.

[48] Carlo Giunti and T. Lasserre. “eV-scale Sterile Neutrinos”. In: Ann. Rev.
Nucl. Part. Sci. 69 (2019), pp. 163–190. doi: 10.1146/annurev- nucl-
101918-023755. arXiv: 1901.08330 [hep-ph].

[49] A. Diaz et al. Where Are We With Light Sterile Neutrinos? 2019. arXiv:
1906.00045 [hep-ex].

[50] J. Schechter and J.W.F. Valle. “Neutrino Masses in SU(2) x U(1) Theories”.
In: Phys. Rev. D 22 (1980), p. 2227. doi: 10.1103/PhysRevD.22.2227.

[51] J. Schechter and J. W. F. Valle. “Neutrino decay and spontaneous violation
of lepton number”. In: Phys. Rev. D 25 (3 Feb. 1982), pp. 774–783. doi:
10.1103/PhysRevD.25.774. url: https://link.aps.org/doi/10.1103/
PhysRevD.25.774.

[52] George Lazarides, Q. Shafi, and C. Wetterich. “Proton Lifetime and Fermion
Masses in an SO(10) Model”. In: Nucl. Phys. B 181 (1981), pp. 287–300. doi:
10.1016/0550-3213(81)90354-0.

[53] Rabindra N. Mohapatra and Goran Senjanovi ć. “Neutrino masses and mix-
ings in gauge models with spontaneous parity violation”. In: Phys. Rev. D 23
(1 Jan. 1981), pp. 165–180. doi: 10.1103/PhysRevD.23.165. url: https:
//link.aps.org/doi/10.1103/PhysRevD.23.165.

167

https://doi.org/10.1103/PhysRevLett.110.251801
https://arxiv.org/abs/1304.6335
https://arxiv.org/abs/1304.6335
https://doi.org/10.1103/PhysRevD.98.032012
https://arxiv.org/abs/1806.00096
https://arxiv.org/abs/1806.00096
http://globalfit.astroparticles.es/
https://arxiv.org/abs/1306.4669
https://doi.org/10.1103/PhysRevLett.44.912
https://doi.org/10.1146/annurev-nucl-101918-023755
https://doi.org/10.1146/annurev-nucl-101918-023755
https://arxiv.org/abs/1901.08330
https://arxiv.org/abs/1906.00045
https://doi.org/10.1103/PhysRevD.22.2227
https://doi.org/10.1103/PhysRevD.25.774
https://link.aps.org/doi/10.1103/PhysRevD.25.774
https://link.aps.org/doi/10.1103/PhysRevD.25.774
https://doi.org/10.1016/0550-3213(81)90354-0
https://doi.org/10.1103/PhysRevD.23.165
https://link.aps.org/doi/10.1103/PhysRevD.23.165
https://link.aps.org/doi/10.1103/PhysRevD.23.165


References

[54] C. Wetterich. “Neutrino Masses and the Scale of B-L Violation”. In: Nucl.
Phys. B 187 (1981), pp. 343–375. doi: 10.1016/0550-3213(81)90279-0.

[55] J. Schechter and J. W. F. Valle. “Neutrinoless Double beta Decay in SU(2)
x U(1) Theories”. In: Phys. Rev. D 25 (11 June 1982), pp. 2951–2954. doi:
10.1103/PhysRevD.25.2951. url: https://link.aps.org/doi/10.1103/
PhysRevD.25.2951.

[56] Thomas Schwetz, Mariam Tortola, and J. W. F. Valle. “Where we are on
θ13: addendum to ‘Global neutrino data and recent reactor fluxes: status of
three-flavour oscillation parameters’”. In: New J. Phys. 13 (2011), p. 109401.
doi: 10.1088/1367-2630/13/10/109401. arXiv: 1108.1376 [hep-ph].

[57] K. Abe et al. Constraint on the Matter-Antimatter Symmetry-Violating Phase
in Neutrino Oscillations. 2019. arXiv: 1910.03887 [hep-ex].

[58] Andre de Gouvea, Boris Kayser, and Rabindra N. Mohapatra. “Manifest CP
Violation from Majorana Phases”. In: Phys. Rev. D67 (2003), p. 053004. doi:
10.1103/PhysRevD.67.053004. arXiv: hep-ph/0211394 [hep-ph].

[59] Guido Altarelli and Ferruccio Feruglio. “Discrete Flavor Symmetries and
Models of Neutrino Mixing”. In: Rev. Mod. Phys. 82 (2010), pp. 2701–2729.
doi: 10.1103/RevModPhys.82.2701. arXiv: 1002.0211 [hep-ph].

[60] Hajime Ishimori et al. “Non-Abelian Discrete Symmetries in Particle
Physics”. In: Prog. Theor. Phys. Suppl. 183 (2010), pp. 1–163. doi: 10.1143/
PTPS.183.1. arXiv: 1003.3552 [hep-th].

[61] Zhi-zhong Xing and Zhen-hua Zhao. “A review of �-� flavor symmetry in
neutrino physics”. In: Rept. Prog. Phys. 79.7 (2016), p. 076201. doi: 10.
1088/0034-4885/79/7/076201. arXiv: 1512.04207 [hep-ph].

[62] Shivani Gupta, Anjan S. Joshipura, and Ketan M. Patel. “How good is µ-τ
symmetry after results on non-zero θ13?” In: JHEP 09 (2013), p. 035. doi:
10.1007/JHEP09(2013)035. arXiv: 1301.7130 [hep-ph].

[63] Zhen-hua Zhao. “Breakings of the neutrino µ − τ reflection symmetry”. In:
JHEP 09 (2017), p. 023. doi: 10.1007/JHEP09(2017)023. arXiv: 1703.
04984 [hep-ph].

[64] Paul H. Frampton, Sheldon L. Glashow, and Danny Marfatia. “Zeroes of the
neutrino mass matrix”. In: Phys. Lett. B536 (2002), pp. 79–82. doi: 10.1016/
S0370-2693(02)01817-8. arXiv: hep-ph/0201008 [hep-ph].

[65] Walter Grimus et al. “Symmetry realization of texture zeros”. In: Eur. Phys.
J. C36 (2004), pp. 227–232. doi: 10.1140/epjc/s2004-01896-y. arXiv:
hep-ph/0405016 [hep-ph].

168

https://doi.org/10.1016/0550-3213(81)90279-0
https://doi.org/10.1103/PhysRevD.25.2951
https://link.aps.org/doi/10.1103/PhysRevD.25.2951
https://link.aps.org/doi/10.1103/PhysRevD.25.2951
https://doi.org/10.1088/1367-2630/13/10/109401
https://arxiv.org/abs/1108.1376
https://arxiv.org/abs/1910.03887
https://doi.org/10.1103/PhysRevD.67.053004
https://arxiv.org/abs/hep-ph/0211394
https://doi.org/10.1103/RevModPhys.82.2701
https://arxiv.org/abs/1002.0211
https://doi.org/10.1143/PTPS.183.1
https://doi.org/10.1143/PTPS.183.1
https://arxiv.org/abs/1003.3552
https://doi.org/10.1088/0034-4885/79/7/076201
https://doi.org/10.1088/0034-4885/79/7/076201
https://arxiv.org/abs/1512.04207
https://doi.org/10.1007/JHEP09(2013)035
https://arxiv.org/abs/1301.7130
https://doi.org/10.1007/JHEP09(2017)023
https://arxiv.org/abs/1703.04984
https://arxiv.org/abs/1703.04984
https://doi.org/10.1016/S0370-2693(02)01817-8
https://doi.org/10.1016/S0370-2693(02)01817-8
https://arxiv.org/abs/hep-ph/0201008
https://doi.org/10.1140/epjc/s2004-01896-y
https://arxiv.org/abs/hep-ph/0405016


References

[66] Walter Grimus and Luis Lavoura. “On a model with two zeros in the neutrino
mass matrix”. In: J. Phys. G31.7 (2005), pp. 693–702. doi: 10.1088/0954-
3899/31/7/014. arXiv: hep-ph/0412283 [hep-ph].

[67] R. González Felipe and H. Serôdio. “Abelian realization of phenomenological
two-zero neutrino textures”. In: Nucl. Phys. B886 (2014), pp. 75–92. doi:
10.1016/j.nuclphysb.2014.06.015. arXiv: 1405.4263 [hep-ph].

[68] W. Rodejohann and Michael A. Schmidt. “Flavor symmetry L(mu) -
L(tau) and quasi-degenerate neutrinos”. In: Phys. Atom. Nucl. 69 (2006),
pp. 1833–1841. doi: 10.1134/S1063778806110056. arXiv: hep-ph/0507300
[hep-ph].

[69] M. Hirsch et al. “Predictive flavour symmetries of the neutrino mass matrix”.
In: Phys. Rev. Lett. 99 (2007), p. 151802. doi: 10.1103/PhysRevLett.99.
151802. arXiv: hep-ph/0703046 [HEP-PH].

[70] Shun Zhou. “Update on two-zero textures of the Majorana neutrino mass
matrix in light of recent T2K, Super-Kamiokande and NOνA results”. In:
Chin. Phys. C40.3 (2016), p. 033102. doi: 10.1088/1674- 1137/40/3/
033102. arXiv: 1509.05300 [hep-ph].

[71] Di Zhang. “A modular A4 symmetry realization of two-zero textures of the
Majorana neutrino mass matrix”. In: Nucl. Phys. B952 (2020), p. 114935.
doi: 10.1016/j.nuclphysb.2020.114935. arXiv: 1910.07869 [hep-ph].

[72] Satoru Kaneko et al. New Approach to Texture-zeros with S3 symmetry -
Flavor Symmetry and Vacuum Aligned Mass Textures -. 2007. arXiv: hep-
ph/0703250 [hep-ph].

[73] E. I. Lashin and N. Chamoun. “The One-zero Textures of Majorana Neutrino
Mass Matrix and Current Experimental Tests”. In: Phys. Rev. D85 (2012),
p. 113011. doi: 10.1103/PhysRevD.85.113011. arXiv: 1108.4010 [hep-ph].

[74] K. N. Deepthi, Srinu Gollu, and R. Mohanta. “Neutrino mixing matrices
with relatively large θ13 and with texture one-zero”. In: Eur. Phys. J. C72
(2012), p. 1888. doi: 10.1140/epjc/s10052-012-1888-2. arXiv: 1111.2781
[hep-ph].

[75] Deirdre Black et al. “Complementary Ansatz for the neutrino mass matrix”.
In: Phys. Rev. D62 (2000), p. 073015. doi: 10.1103/PhysRevD.62.073015.
arXiv: hep-ph/0004105 [hep-ph].

[76] Madan Singh. “The Texture One Zero Neutrino Mass Matrix With Vanishing
Trace”. In: Adv. High Energy Phys. 2018 (2018), p. 2863184. doi: 10.1155/
2018/2863184. arXiv: 1803.10735 [hep-ph].

169

https://doi.org/10.1088/0954-3899/31/7/014
https://doi.org/10.1088/0954-3899/31/7/014
https://arxiv.org/abs/hep-ph/0412283
https://doi.org/10.1016/j.nuclphysb.2014.06.015
https://arxiv.org/abs/1405.4263
https://doi.org/10.1134/S1063778806110056
https://arxiv.org/abs/hep-ph/0507300
https://arxiv.org/abs/hep-ph/0507300
https://doi.org/10.1103/PhysRevLett.99.151802
https://doi.org/10.1103/PhysRevLett.99.151802
https://arxiv.org/abs/hep-ph/0703046
https://doi.org/10.1088/1674-1137/40/3/033102
https://doi.org/10.1088/1674-1137/40/3/033102
https://arxiv.org/abs/1509.05300
https://doi.org/10.1016/j.nuclphysb.2020.114935
https://arxiv.org/abs/1910.07869
https://arxiv.org/abs/hep-ph/0703250
https://arxiv.org/abs/hep-ph/0703250
https://doi.org/10.1103/PhysRevD.85.113011
https://arxiv.org/abs/1108.4010
https://doi.org/10.1140/epjc/s10052-012-1888-2
https://arxiv.org/abs/1111.2781
https://arxiv.org/abs/1111.2781
https://doi.org/10.1103/PhysRevD.62.073015
https://arxiv.org/abs/hep-ph/0004105
https://doi.org/10.1155/2018/2863184
https://doi.org/10.1155/2018/2863184
https://arxiv.org/abs/1803.10735


References

[77] G. C. Branco et al. “Removing ambiguities in the neutrino mass matrix”. In:
Phys. Lett. B562 (2003), pp. 265–272. doi: 10.1016/S0370-2693(03)00572-
0. arXiv: hep-ph/0212341 [hep-ph].

[78] Harald Fritzsch, Zhi-zhong Xing, and Shun Zhou. “Two-zero Textures of the
Majorana Neutrino Mass Matrix and Current Experimental Tests”. In: JHEP
09 (2011), p. 083. doi: 10 . 1007 / JHEP09(2011 ) 083. arXiv: 1108 . 4534
[hep-ph].

[79] Amol Dighe and Narendra Sahu. Texture zeroes and discrete flavor sym-
metries in light and heavy Majorana neutrino mass matrices: a bottom-up
approach. 2008. arXiv: 0812.0695 [hep-ph].

[80] nufit. www.nu-fit.org. 2019.

[81] Ivan Esteban et al. “Global analysis of three-flavour neutrino oscillations:
synergies and tensions in the determination of θ23, δCP , and the mass order-
ing”. In: JHEP 01 (2019), p. 106. doi: 10.1007/JHEP01(2019)106. arXiv:
1811.05487 [hep-ph].

[82] K. Abe et al. “Atmospheric neutrino oscillation analysis with external con-
straints in Super-Kamiokande I-IV”. In: Physical Review D 97.7 (Apr. 2018).
issn: 2470-0029. doi: 10.1103/physrevd.97.072001. url: http://dx.
doi.org/10.1103/PhysRevD.97.072001.

[83] Julien Alcaide, Jordi Salvado, and Arcadi Santamaria. “Fitting flavour sym-
metries: the case of two-zero neutrino mass textures”. In: JHEP 07 (2018),
p. 164. doi: 10.1007/JHEP07(2018)164. arXiv: 1806.06785 [hep-ph].

[84] F. Feroz, M. P. Hobson, and M. Bridges. “MultiNest: an efficient and robust
Bayesian inference tool for cosmology and particle physics”. In: Mon. Not.
Roy. Astron. Soc. 398 (2009), pp. 1601–1614. doi: 10.1111/j.1365-2966.
2009.14548.x. arXiv: 0809.3437 [astro-ph].

[85] F. Feroz et al. “Importance Nested Sampling and the MultiNest Algo-
rithm”. In: (2013). doi: 10.21105/astro.1306.2144. arXiv: 1306.2144
[astro-ph.IM].

[86] A. Gando et al. “Search for Majorana Neutrinos near the Inverted Mass
Hierarchy Region with KamLAND-Zen”. In: Phys. Rev. Lett. 117.8 (2016).
[Addendum: Phys. Rev. Lett.117,no.10,109903(2016)], p. 082503. doi: 10.
1103 / PhysRevLett . 117 . 109903 , 10 . 1103 / PhysRevLett . 117 . 082503.
arXiv: 1605.02889 [hep-ex].

170

https://doi.org/10.1016/S0370-2693(03)00572-0
https://doi.org/10.1016/S0370-2693(03)00572-0
https://arxiv.org/abs/hep-ph/0212341
https://doi.org/10.1007/JHEP09(2011)083
https://arxiv.org/abs/1108.4534
https://arxiv.org/abs/1108.4534
https://arxiv.org/abs/0812.0695
www.nu-fit.org
https://doi.org/10.1007/JHEP01(2019)106
https://arxiv.org/abs/1811.05487
https://doi.org/10.1103/physrevd.97.072001
http://dx.doi.org/10.1103/PhysRevD.97.072001
http://dx.doi.org/10.1103/PhysRevD.97.072001
https://doi.org/10.1007/JHEP07(2018)164
https://arxiv.org/abs/1806.06785
https://doi.org/10.1111/j.1365-2966.2009.14548.x
https://doi.org/10.1111/j.1365-2966.2009.14548.x
https://arxiv.org/abs/0809.3437
https://doi.org/10.21105/astro.1306.2144
https://arxiv.org/abs/1306.2144
https://arxiv.org/abs/1306.2144
https://doi.org/10.1103/PhysRevLett.117.109903, 10.1103/PhysRevLett.117.082503
https://doi.org/10.1103/PhysRevLett.117.109903, 10.1103/PhysRevLett.117.082503
https://arxiv.org/abs/1605.02889


References

[87] Ivan Esteban et al. “Updated fit to three neutrino mixing: exploring the
accelerator-reactor complementarity”. In: JHEP 01 (2017), p. 087. doi: 10.
1007/JHEP01(2017)087. arXiv: 1611.01514 [hep-ph].

[88] Sunny Vagnozzi et al. “Unveiling ν secrets with cosmological data: neutrino
masses and mass hierarchy”. In: Phys. Rev. D96.12 (2017), p. 123503. doi:
10.1103/PhysRevD.96.123503. arXiv: 1701.08172 [astro-ph.CO].

[89] Claudia Hagedorn, Jörn Kersten, and Manfred Lindner. “Stability of texture
zeros under radiative corrections in see-saw models”. In: Phys. Lett. B597
(2004), pp. 63–72. doi: 10.1016/j.physletb.2004.06.094. arXiv: hep-
ph/0406103 [hep-ph].

[90] M. Goeppert-Mayer. “Double Beta-Disintegration”. In: Phys. Rev. 48 (6 Sept.
1935), pp. 512–516. doi: 10.1103/PhysRev.48.512. url: https://link.
aps.org/doi/10.1103/PhysRev.48.512.

[91] H. V. Klapdor-Kleingrothaus. “Double beta decay and neutrino mass: The
Heidelberg-Moscow experiment”. In: Prog. Part. Nucl. Phys. 32 (1994),
pp. 261–280. doi: 10.1016/0146-6410(94)90024-8.

[92] Stefan. Schonert et al. “The GERmanium Detector Array (GERDA) for
the search of neutrinoless beta beta decays of Ge-76 at LNGS”. In: Nucl.
Phys. Proc. Suppl. 145 (2005). [,242(2005)], pp. 242–245. doi: 10.1016/j.
nuclphysbps.2005.04.014.

[93] M. Auger et al. “The EXO-200 detector, part I: Detector design and construc-
tion”. In: JINST 7 (2012), P05010. doi: 10.1088/1748-0221/7/05/P05010.
arXiv: 1202.2192 [physics.ins-det].

[94] A. Piepke. “KamLAND: A reactor neutrino experiment testing the solar neu-
trino anomaly”. In: Nucl. Phys. Proc. Suppl. 91 (2001). [,99(2001)], pp. 99–
104. doi: 10.1016/S0920-5632(00)00928-2.

[95] F. Granena et al. “NEXT, a HPGXe TPC for neutrinoless double beta decay
searches”. In: (2009). arXiv: 0907.4054 [hep-ex].

[96] Francisco del Aguila et al. “Effective Lagrangian approach to neutrinoless
double beta decay and neutrino masses”. In: JHEP 06 (2012), p. 146. doi:
10.1007/JHEP06(2012)146. arXiv: 1204.5986 [hep-ph].

[97] Julien Alcaide, Dipankar Das, and Arcadi Santamaria. “A model of neutrino
mass and dark matter with large neutrinoless double beta decay”. In: JHEP
04 (2017), p. 049. doi: 10.1007/JHEP04(2017)049. arXiv: 1701.01402
[hep-ph].

171

https://doi.org/10.1007/JHEP01(2017)087
https://doi.org/10.1007/JHEP01(2017)087
https://arxiv.org/abs/1611.01514
https://doi.org/10.1103/PhysRevD.96.123503
https://arxiv.org/abs/1701.08172
https://doi.org/10.1016/j.physletb.2004.06.094
https://arxiv.org/abs/hep-ph/0406103
https://arxiv.org/abs/hep-ph/0406103
https://doi.org/10.1103/PhysRev.48.512
https://link.aps.org/doi/10.1103/PhysRev.48.512
https://link.aps.org/doi/10.1103/PhysRev.48.512
https://doi.org/10.1016/0146-6410(94)90024-8
https://doi.org/10.1016/j.nuclphysbps.2005.04.014
https://doi.org/10.1016/j.nuclphysbps.2005.04.014
https://doi.org/10.1088/1748-0221/7/05/P05010
https://arxiv.org/abs/1202.2192
https://doi.org/10.1016/S0920-5632(00)00928-2
https://arxiv.org/abs/0907.4054
https://doi.org/10.1007/JHEP06(2012)146
https://arxiv.org/abs/1204.5986
https://doi.org/10.1007/JHEP04(2017)049
https://arxiv.org/abs/1701.01402
https://arxiv.org/abs/1701.01402


References

[98] Mattias Blennow et al. “Neutrinoless double beta decay in seesaw models”. In:
JHEP 07 (2010), p. 096. doi: 10.1007/JHEP07(2010)096. arXiv: 1005.3240
[hep-ph].

[99] Frank F. Deppisch, Martin Hirsch, and Heinrich Pas. “Neutrinoless Double
Beta Decay and Physics Beyond the Standard Model”. In: J. Phys. G39
(2012), p. 124007. doi: 10.1088/0954-3899/39/12/124007. arXiv: 1208.
0727 [hep-ph].

[100] J. Suhonen and O. Civitarese. “Weak-interaction and nuclear-structure as-
pects of nuclear double beta decay”. In: Phys. Rept. 300 (1998), pp. 123–214.
doi: 10.1016/S0370-1573(97)00087-2.

[101] A. S. Barabash. “Double beta decay experiments”. In: Phys. Part. Nucl. 42
(2011), pp. 613–627. doi: 10.1134/S1063779611040022. arXiv: 1107.5663
[nucl-ex].

[102] Michael E. Peskin and Tatsu Takeuchi. “New constraint on a strongly inter-
acting Higgs sector”. In: Phys. Rev. Lett. 65 (8 Aug. 1990), pp. 964–967. doi:
10.1103/PhysRevLett.65.964. url: https://link.aps.org/doi/10.
1103/PhysRevLett.65.964.

[103] Michael E. Peskin and Tatsu Takeuchi. “Estimation of oblique electroweak
corrections”. In: Phys. Rev. D 46 (1 July 1992), pp. 381–409. doi: 10.1103/
PhysRevD.46.381. url: https://link.aps.org/doi/10.1103/PhysRevD.
46.381.

[104] Max Baak and Roman Kogler. “The global electroweak Standard Model fit
after the Higgs discovery”. In: Proceedings, 48th Rencontres de Moriond on
Electroweak Interactions and Unified Theories: La Thuile, Italy, March 2-9,
2013. [,45(2013)]. 2013, pp. 349–358. arXiv: 1306.0571 [hep-ph].

[105] Juan Herrero-Garcia et al. “The Zee–Babu model revisited in the light of
new data”. In: Nucl. Phys. B885 (2014), pp. 542–570. doi: 10 . 1016 / j .
nuclphysb.2014.06.001. arXiv: 1402.4491 [hep-ph].

[106] C Patrignani et al. “Review of Particle Physics, 2016-2017”. In: Chin. Phys.
C 40.10 (2016), 100001. 1808 p. doi: 10.1088/1674-1137/40/10/100001.
url: http://cds.cern.ch/record/2241948.

[107] J. Adam et al. “New constraint on the existence of the µ+ → e+γ decay”. In:
Phys. Rev. Lett. 110 (2013), p. 201801. doi: 10.1103/PhysRevLett.110.
201801. arXiv: 1303.0754 [hep-ex].

172

https://doi.org/10.1007/JHEP07(2010)096
https://arxiv.org/abs/1005.3240
https://arxiv.org/abs/1005.3240
https://doi.org/10.1088/0954-3899/39/12/124007
https://arxiv.org/abs/1208.0727
https://arxiv.org/abs/1208.0727
https://doi.org/10.1016/S0370-1573(97)00087-2
https://doi.org/10.1134/S1063779611040022
https://arxiv.org/abs/1107.5663
https://arxiv.org/abs/1107.5663
https://doi.org/10.1103/PhysRevLett.65.964
https://link.aps.org/doi/10.1103/PhysRevLett.65.964
https://link.aps.org/doi/10.1103/PhysRevLett.65.964
https://doi.org/10.1103/PhysRevD.46.381
https://doi.org/10.1103/PhysRevD.46.381
https://link.aps.org/doi/10.1103/PhysRevD.46.381
https://link.aps.org/doi/10.1103/PhysRevD.46.381
https://arxiv.org/abs/1306.0571
https://doi.org/10.1016/j.nuclphysb.2014.06.001
https://doi.org/10.1016/j.nuclphysb.2014.06.001
https://arxiv.org/abs/1402.4491
https://doi.org/10.1088/1674-1137/40/10/100001
http://cds.cern.ch/record/2241948
https://doi.org/10.1103/PhysRevLett.110.201801
https://doi.org/10.1103/PhysRevLett.110.201801
https://arxiv.org/abs/1303.0754


References

[108] P. A. R. Ade et al. “Planck 2013 results. XVI. Cosmological parameters”. In:
Astron. Astrophys. 571 (2014), A16. doi: 10.1051/0004-6361/201321591.
arXiv: 1303.5076 [astro-ph.CO].

[109] Andi Tan et al. “Dark Matter Results from First 98.7 Days of Data from the
PandaX-II Experiment”. In: Phys. Rev. Lett. 117.12 (2016), p. 121303. doi:
10.1103/PhysRevLett.117.121303. arXiv: 1607.07400 [hep-ex].

[110] E. Aprile et al. “First Dark Matter Search Results from the XENON1T Ex-
periment”. In: Phys. Rev. Lett. 119.18 (2017), p. 181301. doi: 10.1103/
PhysRevLett.119.181301. arXiv: 1705.06655 [astro-ph.CO].

[111] E. Aprile et al. “Physics reach of the XENON1T dark matter experiment”.
In: JCAP 1604.04 (2016), p. 027. doi: 10.1088/1475-7516/2016/04/027.
arXiv: 1512.07501 [physics.ins-det].

[112] Huayong Han and Sibo Zheng. “New Constraints on Higgs-portal Scalar Dark
Matter”. In: JHEP 12 (2015), p. 044. doi: 10.1007/JHEP12(2015)044. arXiv:
1509.01765 [hep-ph].

[113] Miguel Escudero et al. “Toward (Finally!) Ruling Out Z and Higgs Mediated
Dark Matter Models”. In: JCAP 1612 (2016), p. 029. doi: 10.1088/1475-
7516/2016/12/029. arXiv: 1609.09079 [hep-ph].

[114] G. Belanger et al. “micrOMEGAs 3: A program for calculating dark matter
observables”. In: Comput. Phys. Commun. 185 (2014), pp. 960–985. doi:
10.1016/j.cpc.2013.10.016. arXiv: 1305.0237 [hep-ph].

[115] Georges Aad et al. “Search for doubly-charged Higgs bosons in like-sign dilep-
ton final states at

√
s = 7 TeV with the ATLAS detector”. In: Eur. Phys.

J. C72 (2012), p. 2244. doi: 10.1140/epjc/s10052-012-2244-2. arXiv:
1210.5070 [hep-ex].

[116] A. Zee. “A Theory of Lepton Number Violation, Neutrino Majorana
Mass, and Oscillation”. In: Phys. Lett. 93B (1980). [Erratum: Phys.
Lett.95B,461(1980)], p. 389. doi: 10.1016/0370-2693(80)90349-4,10.
1016/0370-2693(80)90193-8.

[117] Madan Singh, Gulsheen Ahuja, and Manmohan Gupta. “Revisiting the tex-
ture zero neutrino mass matrices”. In: PTEP 2016.12 (2016), 123B08. doi:
10.1093/ptep/ptw180. arXiv: 1603.08083 [hep-ph].

[118] A. Zee. “Quantum Numbers of Majorana Neutrino Masses”. In: Nucl. Phys.
B264 (1986), pp. 99–110. doi: 10.1016/0550-3213(86)90475-X.

[119] K. S. Babu. “Model of ’Calculable’ Majorana Neutrino Masses”. In: Phys.
Lett. B203 (1988), pp. 132–136. doi: 10.1016/0370-2693(88)91584-5.

173

https://doi.org/10.1051/0004-6361/201321591
https://arxiv.org/abs/1303.5076
https://doi.org/10.1103/PhysRevLett.117.121303
https://arxiv.org/abs/1607.07400
https://doi.org/10.1103/PhysRevLett.119.181301
https://doi.org/10.1103/PhysRevLett.119.181301
https://arxiv.org/abs/1705.06655
https://doi.org/10.1088/1475-7516/2016/04/027
https://arxiv.org/abs/1512.07501
https://doi.org/10.1007/JHEP12(2015)044
https://arxiv.org/abs/1509.01765
https://doi.org/10.1088/1475-7516/2016/12/029
https://doi.org/10.1088/1475-7516/2016/12/029
https://arxiv.org/abs/1609.09079
https://doi.org/10.1016/j.cpc.2013.10.016
https://arxiv.org/abs/1305.0237
https://doi.org/10.1140/epjc/s10052-012-2244-2
https://arxiv.org/abs/1210.5070
https://doi.org/10.1016/0370-2693(80)90349-4, 10.1016/0370-2693(80)90193-8
https://doi.org/10.1016/0370-2693(80)90349-4, 10.1016/0370-2693(80)90193-8
https://doi.org/10.1093/ptep/ptw180
https://arxiv.org/abs/1603.08083
https://doi.org/10.1016/0550-3213(86)90475-X
https://doi.org/10.1016/0370-2693(88)91584-5


References

[120] Celine Degrande et al. “UFO - The Universal FeynRules Output”. In: Comput.
Phys. Commun. 183 (2012), pp. 1201–1214. doi: 10.1016/j.cpc.2012.01.
022. arXiv: 1108.2040 [hep-ph].

[121] J. Alwall et al. “The automated computation of tree-level and next-to-leading
order differential cross sections, and their matching to parton shower simula-
tions”. In: JHEP 07 (2014), p. 079. doi: 10.1007/JHEP07(2014)079. arXiv:
1405.0301 [hep-ph].

[122] Torbjörn Sjöstrand, Leif Lönnblad, and Stephen Mrenna. PYTHIA 6.2
Physics and Manual. 2001. arXiv: hep-ph/0108264 [hep-ph].

[123] Torbjörn Sjöstrand et al. “An Introduction to PYTHIA 8.2”. In: Comput.
Phys. Commun. 191 (2015), pp. 159–177. doi: 10.1016/j.cpc.2015.01.
024. arXiv: 1410.3012 [hep-ph].

[124] Eric Conte, Benjamin Fuks, and Guillaume Serret. “MadAnalysis 5, A User-
Friendly Framework for Collider Phenomenology”. In: Comput. Phys. Com-
mun. 184 (2013), pp. 222–256. doi: 10.1016/j.cpc.2012.09.009. arXiv:
1206.1599 [hep-ph].

[125] Julien Alcaide, Mikael Chala, and Arcadi Santamaria. “LHC signals of
radiatively-induced neutrino masses and implications for the Zee–Babu
model”. In: Phys. Lett. B779 (2018), pp. 107–116. doi: 10.1016/j.physletb.
2018.02.001. arXiv: 1710.05885 [hep-ph].

[126] Georges Aad et al. “Search for new phenomena in events with three charged
leptons at

√
s = 7 TeV with the ATLAS detector”. In: Phys. Rev. D87.5

(2013), p. 052002. doi: 10.1103/PhysRevD.87.052002. arXiv: 1211.6312
[hep-ex].

[127] Georges Aad et al. “Search for anomalous production of prompt same-sign
lepton pairs and pair-produced doubly charged Higgs bosons with

√
s = 8

TeV pp collisions using the ATLAS detector”. In: JHEP 03 (2015), p. 041.
doi: 10.1007/JHEP03(2015)041. arXiv: 1412.0237 [hep-ex].

[128] Search for doubly-charged Higgs bosons in same-charge electron pair final
states using proton-proton collisions at

√
s = 13TeV with the ATLAS de-

tector. Tech. rep. ATLAS-CONF-2016-051. Geneva: CERN, Aug. 2016. url:
https://cds.cern.ch/record/2206133.

[129] A search for doubly-charged Higgs boson production in three and four lepton
final states at

√
s = 13 TeV. Tech. rep. CMS-PAS-HIG-16-036. Geneva:

CERN, 2017. url: https://cds.cern.ch/record/2242956.

174

https://doi.org/10.1016/j.cpc.2012.01.022
https://doi.org/10.1016/j.cpc.2012.01.022
https://arxiv.org/abs/1108.2040
https://doi.org/10.1007/JHEP07(2014)079
https://arxiv.org/abs/1405.0301
https://arxiv.org/abs/hep-ph/0108264
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012
https://doi.org/10.1016/j.cpc.2012.09.009
https://arxiv.org/abs/1206.1599
https://doi.org/10.1016/j.physletb.2018.02.001
https://doi.org/10.1016/j.physletb.2018.02.001
https://arxiv.org/abs/1710.05885
https://doi.org/10.1103/PhysRevD.87.052002
https://arxiv.org/abs/1211.6312
https://arxiv.org/abs/1211.6312
https://doi.org/10.1007/JHEP03(2015)041
https://arxiv.org/abs/1412.0237
https://cds.cern.ch/record/2206133
https://cds.cern.ch/record/2242956


References

[130] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “The anti-kt jet clus-
tering algorithm”. In: JHEP 04 (2008), p. 063. doi: 10.1088/1126-6708/
2008/04/063. arXiv: 0802.1189 [hep-ph].

[131] A L Read. “Modified frequentist analysis of search results (the CLs method)”.
In: CERN-OPEN-2000-205 (2000). doi: 10.5170/CERN-2000-005.81. url:
http://cds.cern.ch/record/451614.

[132] R. Brun and F. Rademakers. “ROOT: An object oriented data analysis frame-
work”. In: Nucl. Instrum. Meth. A389 (1997), pp. 81–86. doi: 10.1016/
S0168-9002(97)00048-X.

[133] Julien Alcaide and Nicolás I. Mileo. “LHC sensitivity to singly-charged scalars
decaying into electrons and muons”. In: (2019). arXiv: 1906.08685 [hep-ph].

[134] A. M. Baldini et al. “Search for the lepton flavour violating decay µ+ → e+γ
with the full dataset of the MEG experiment”. In: Eur. Phys. J. C76.8 (2016),
p. 434. doi: 10 . 1140 / epjc / s10052 - 016 - 4271 - x. arXiv: 1605 . 05081
[hep-ex].

[135] Bernard Aubert et al. “Searches for Lepton Flavor Violation in the Decays
τ± → e±γ and τ± → µ±γ”. In: Phys. Rev. Lett. 104 (2010), p. 021802. doi:
10.1103/PhysRevLett.104.021802. arXiv: 0908.2381 [hep-ex].

[136] Qing-Hong Cao et al. “Searching for Weak Singlet Charged Scalar at the
Large Hadron Collider”. In: Phys. Rev. D97.11 (2018), p. 115036. doi: 10.
1103/PhysRevD.97.115036. arXiv: 1711.02113 [hep-ph].

[137] J. de Favereau et al. “DELPHES 3, A modular framework for fast simulation
of a generic collider experiment”. In: JHEP 02 (2014), p. 057. doi: 10.1007/
JHEP02(2014)057. arXiv: 1307.6346 [hep-ex].

[138] Adam Alloul et al. “FeynRules 2.0 - A complete toolbox for tree-level phe-
nomenology”. In: Comput. Phys. Commun. 185 (2014), pp. 2250–2300. doi:
10.1016/j.cpc.2014.04.012. arXiv: 1310.1921 [hep-ph].

[139] Massimiliano Grazzini et al. “W+W− production at the LHC: fiducial cross
sections and distributions in NNLO QCD”. In: JHEP 08 (2016), p. 140. doi:
10.1007/JHEP08(2016)140. arXiv: 1605.02716 [hep-ph].

[140] Fabrizio Caola et al. “QCD corrections to W+W− production through gluon
fusion”. In: Phys. Lett. B754 (2016), pp. 275–280. doi: 10.1016/j.physletb.
2016.01.046. arXiv: 1511.08617 [hep-ph].

175

https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063
https://arxiv.org/abs/0802.1189
https://doi.org/10.5170/CERN-2000-005.81
http://cds.cern.ch/record/451614
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1016/S0168-9002(97)00048-X
https://arxiv.org/abs/1906.08685
https://doi.org/10.1140/epjc/s10052-016-4271-x
https://arxiv.org/abs/1605.05081
https://arxiv.org/abs/1605.05081
https://doi.org/10.1103/PhysRevLett.104.021802
https://arxiv.org/abs/0908.2381
https://doi.org/10.1103/PhysRevD.97.115036
https://doi.org/10.1103/PhysRevD.97.115036
https://arxiv.org/abs/1711.02113
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
https://arxiv.org/abs/1307.6346
https://doi.org/10.1016/j.cpc.2014.04.012
https://arxiv.org/abs/1310.1921
https://doi.org/10.1007/JHEP08(2016)140
https://arxiv.org/abs/1605.02716
https://doi.org/10.1016/j.physletb.2016.01.046
https://doi.org/10.1016/j.physletb.2016.01.046
https://arxiv.org/abs/1511.08617


References

[141] Georges Aad et al. “Measurement of the ZZ Production Cross Section in pp
Collisions at

√
s = 13 TeV with the ATLAS Detector”. In: Phys. Rev. Lett.

116.10 (2016), p. 101801. doi: 10.1103/PhysRevLett.116.101801. arXiv:
1512.05314 [hep-ex].

[142] Massimiliano Grazzini et al. “W±Z production at hadron colliders in NNLO
QCD”. In: Phys. Lett. B761 (2016), pp. 179–183. doi: 10.1016/j.physletb.
2016.08.017. arXiv: 1604.08576 [hep-ph].

[143] Radja Boughezal et al. “Color singlet production at NNLO in MCFM”. In:
Eur. Phys. J. C77.1 (2017), p. 7. doi: 10.1140/epjc/s10052-016-4558-y.
arXiv: 1605.08011 [hep-ph].

[144] Valentin Ahrens et al. “Precision predictions for the tt̄ production cross sec-
tion at hadron colliders”. In: Phys. Lett. B703 (2011), pp. 135–141. doi:
10.1016/j.physletb.2011.07.058. arXiv: 1105.5824 [hep-ph].

[145] Michał Czakon, Paul Fiedler, and Alexander Mitov. “Total Top-Quark Pair-
Production Cross Section at Hadron Colliders Through O(α4

S)”. In: Phys.
Rev. Lett. 110 (2013), p. 252004. doi: 10.1103/PhysRevLett.110.252004.
arXiv: 1303.6254 [hep-ph].

[146] Qing-Hong Cao. “Demonstration of One Cutoff Phase Space Slicing Method:
Next-to-Leading Order QCD Corrections to the tW Associated Production
in Hadron Collision”. In: (2008). arXiv: 0801.1539 [hep-ph].

[147] Stefano Frixione et al. “Single-top hadroproduction in association with a W
boson”. In: JHEP 07 (2008), p. 029. doi: 10.1088/1126-6708/2008/07/029.
arXiv: 0805.3067 [hep-ph].

[148] Nikolaos Kidonakis. “Theoretical results for electroweak-boson and single-top
production”. In: PoS DIS2015 (2015), p. 170. doi: 10.22323/1.247.0170.
arXiv: 1506.04072 [hep-ph].

[149] CMS Collaboration. Search for pair production of tau sleptons in
√
s =

13 TeV pp collisions in the all-hadronic final state. Tech. rep. CMS-PAS-
SUS-17-003. 2017. url: http://cds.cern.ch/record/2273395.

[150] Benjamin Fuks et al. “Revisiting slepton pair production at the Large Hadron
Collider”. In: JHEP 01 (2014), p. 168. doi: 10.1007/JHEP01(2014)168.
arXiv: 1310.2621.

[151] Torbjorn Sjostrand, Stephen Mrenna, and Peter Z. Skands. “PYTHIA 6.4
Physics and Manual”. In: JHEP 05 (2006), p. 026. doi: 10.1088/1126-
6708/2006/05/026. arXiv: hep-ph/0603175 [hep-ph].

176

https://doi.org/10.1103/PhysRevLett.116.101801
https://arxiv.org/abs/1512.05314
https://doi.org/10.1016/j.physletb.2016.08.017
https://doi.org/10.1016/j.physletb.2016.08.017
https://arxiv.org/abs/1604.08576
https://doi.org/10.1140/epjc/s10052-016-4558-y
https://arxiv.org/abs/1605.08011
https://doi.org/10.1016/j.physletb.2011.07.058
https://arxiv.org/abs/1105.5824
https://doi.org/10.1103/PhysRevLett.110.252004
https://arxiv.org/abs/1303.6254
https://arxiv.org/abs/0801.1539
https://doi.org/10.1088/1126-6708/2008/07/029
https://arxiv.org/abs/0805.3067
https://doi.org/10.22323/1.247.0170
https://arxiv.org/abs/1506.04072
http://cds.cern.ch/record/2273395
https://doi.org/10.1007/JHEP01(2014)168
https://arxiv.org/abs/1310.2621
https://doi.org/10.1088/1126-6708/2006/05/026
https://doi.org/10.1088/1126-6708/2006/05/026
https://arxiv.org/abs/hep-ph/0603175


References

[152] W. Buchmuller and D. Wyler. “Effective Lagrangian Analysis of New Inter-
actions and Flavor Conservation”. In: Nucl. Phys. B268 (1986), pp. 621–653.
doi: 10.1016/0550-3213(86)90262-2.

[153] Francisco del Aguila et al. “Heavy Majorana Neutrinos in the Effective La-
grangian Description: Application to Hadron Colliders”. In: Phys. Lett. B670
(2009), pp. 399–402. doi: 10 . 1016 / j . physletb . 2008 . 11 . 031. arXiv:
0806.0876 [hep-ph].

[154] Alberto Aparici et al. “Right-handed neutrino magnetic moments”. In: Phys.
Rev. D80 (2009), p. 013010. doi: 10.1103/PhysRevD.80.013010. arXiv:
0904.3244 [hep-ph].

[155] Yi Liao and Xiao-Dong Ma. “Operators up to Dimension Seven in Standard
Model Effective Field Theory Extended with Sterile Neutrinos”. In: Phys.
Rev. D96.1 (2017), p. 015012. doi: 10.1103/PhysRevD.96.015012. arXiv:
1612.04527 [hep-ph].

[156] Julien Alcaide et al. “Probes of the Standard Model effective field theory
extended with a right-handed neutrino”. In: JHEP 08 (2019), p. 031. doi:
10.1007/JHEP08(2019)031. arXiv: 1905.11375 [hep-ph].

[157] B. C. Canas et al. “Updating neutrino magnetic moment constraints”. In:
Phys. Lett. B753 (2016). [Addendum: Phys. Lett.B757,568(2016)], pp. 191–
198. doi: 10.1016/j.physletb.2016.03.078,10.1016/j.physletb.2015.
12.011. arXiv: 1510.01684 [hep-ph].

[158] O. G. Miranda et al. “Probing neutrino transition magnetic moments with
coherent elastic neutrino-nucleus scattering”. In: JHEP 07 (2019), p. 103.
doi: 10.1007/JHEP07(2019)103. arXiv: 1905.03750 [hep-ph].

[159] Lucia Duarte, Javier Peressutti, and Oscar A. Sampayo. “Majorana neutrino
decay in an Effective Approach”. In: Phys. Rev. D92.9 (2015), p. 093002. doi:
10.1103/PhysRevD.92.093002. arXiv: 1508.01588 [hep-ph].

[160] Ryan Cooke et al. “Precision measures of the primordial abundance of deu-
terium”. In: Astrophys. J. 781.1 (2014), p. 31. doi: 10.1088/0004-637X/
781/1/31. arXiv: 1308.3240 [astro-ph.CO].

[161] Planck Collaboration et al. Planck 2018 results. VI. Cosmological parameters.
2018. arXiv: 1807.06209 [astro-ph.CO].

[162] Miguel Escudero. “Neutrino decoupling beyond the Standard Model: CMB
constraints on the Dark Matter mass with a fast and precise Neff evaluation”.
In: JCAP 1902 (2019), p. 007. doi: 10.1088/1475-7516/2019/02/007.
arXiv: 1812.05605 [hep-ph].

177

https://doi.org/10.1016/0550-3213(86)90262-2
https://doi.org/10.1016/j.physletb.2008.11.031
https://arxiv.org/abs/0806.0876
https://doi.org/10.1103/PhysRevD.80.013010
https://arxiv.org/abs/0904.3244
https://doi.org/10.1103/PhysRevD.96.015012
https://arxiv.org/abs/1612.04527
https://doi.org/10.1007/JHEP08(2019)031
https://arxiv.org/abs/1905.11375
https://doi.org/10.1016/j.physletb.2016.03.078, 10.1016/j.physletb.2015.12.011
https://doi.org/10.1016/j.physletb.2016.03.078, 10.1016/j.physletb.2015.12.011
https://arxiv.org/abs/1510.01684
https://doi.org/10.1007/JHEP07(2019)103
https://arxiv.org/abs/1905.03750
https://doi.org/10.1103/PhysRevD.92.093002
https://arxiv.org/abs/1508.01588
https://doi.org/10.1088/0004-637X/781/1/31
https://doi.org/10.1088/0004-637X/781/1/31
https://arxiv.org/abs/1308.3240
https://arxiv.org/abs/1807.06209
https://doi.org/10.1088/1475-7516/2019/02/007
https://arxiv.org/abs/1812.05605


References

[163] Juan C. Helo, Martin Hirsch, and Sergey Kovalenko. “Heavy neutrino
searches at the LHC with displaced vertices”. In: Phys. Rev. D89 (2014).
[Erratum: Phys. Rev.D93,no.9,099902(2016)], p. 073005. doi: 10 . 1103 /
PhysRevD.89.073005,10.1103/PhysRevD.93.099902. arXiv: 1312.2900
[hep-ph].

[164] Georges Aad et al. “Search for massive, long-lived particles using multitrack
displaced vertices or displaced lepton pairs in pp collisions at

√
s = 8 TeV

with the ATLAS detector”. In: Phys. Rev. D92.7 (2015), p. 072004. doi:
10.1103/PhysRevD.92.072004. arXiv: 1504.05162 [hep-ex].

[165] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “FastJet User Manual”.
In: Eur. Phys. J. C72 (2012), p. 1896. doi: 10.1140/epjc/s10052-012-
1896-2. arXiv: 1111.6097 [hep-ph].

[166] Morad Aaboud et al. “Search for a new heavy gauge boson resonance decaying
into a lepton and missing transverse momentum in 36 fb−1 of pp collisions at
√
s = 13 TeV with the ATLAS experiment”. In: Eur. Phys. J. C78.5 (2018),

p. 401. doi: 10 . 1140 / epjc / s10052 - 018 - 5877 - y. arXiv: 1706 . 04786
[hep-ex].

[167] Albert M Sirunyan et al. “Search for a W’ boson decaying to a τ lepton
and a neutrino in proton-proton collisions at

√
s = 13 TeV”. In: Phys. Lett.

B792 (2019), pp. 107–131. doi: 10.1016/j.physletb.2019.01.069. arXiv:
1807.11421 [hep-ex].

[168] A. M. Sirunyan et al. “Search for new physics in final states with an energetic
jet or a hadronically decaying W or Z boson and transverse momentum
imbalance at

√
s = 13 TeV”. In: Phys. Rev. D97.9 (2018), p. 092005. doi:

10.1103/PhysRevD.97.092005. arXiv: 1712.02345 [hep-ex].

[169] Richard D. Ball et al. “Parton distributions with LHC data”. In: Nucl. Phys.
B867 (2013), pp. 244–289. doi: 10.1016/j.nuclphysb.2012.10.003. arXiv:
1207.1303 [hep-ph].

[170] Michal Czakon and Alexander Mitov. “Top++: A Program for the Calcula-
tion of the Top-Pair Cross-Section at Hadron Colliders”. In: Comput. Phys.
Commun. 185 (2014), p. 2930. doi: 10.1016/j.cpc.2014.06.021. arXiv:
1112.5675 [hep-ph].

[171] A. Hoecker et al. TMVA - Toolkit for Multivariate Data Analysis. 2007. arXiv:
physics/0703039 [physics.data-an].

[172] David Ciupke. “Study of BDT Training Configurations with an Application
to the Z/H −→ ττ −→ ee Analysis”. In: (2012).

178

https://doi.org/10.1103/PhysRevD.89.073005, 10.1103/PhysRevD.93.099902
https://doi.org/10.1103/PhysRevD.89.073005, 10.1103/PhysRevD.93.099902
https://arxiv.org/abs/1312.2900
https://arxiv.org/abs/1312.2900
https://doi.org/10.1103/PhysRevD.92.072004
https://arxiv.org/abs/1504.05162
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://arxiv.org/abs/1111.6097
https://doi.org/10.1140/epjc/s10052-018-5877-y
https://arxiv.org/abs/1706.04786
https://arxiv.org/abs/1706.04786
https://doi.org/10.1016/j.physletb.2019.01.069
https://arxiv.org/abs/1807.11421
https://doi.org/10.1103/PhysRevD.97.092005
https://arxiv.org/abs/1712.02345
https://doi.org/10.1016/j.nuclphysb.2012.10.003
https://arxiv.org/abs/1207.1303
https://doi.org/10.1016/j.cpc.2014.06.021
https://arxiv.org/abs/1112.5675
https://arxiv.org/abs/physics/0703039

	Agradecimientos
	Resumen
	List of publications
	Abstract
	Introduction
	The theory of electroweak interactions
	The mass of the gauge bosons
	Fermion masses
	The Standard Model as an effective field theory

	Neutrino masses
	Dirac or Majorana nature?
	Flavours in the neutrino mass matrix
	Implications of neutrino masses
	Generation of neutrino masses
	Right-handed neutrinos
	Adding scalar fields

	Open questions regarding neutrino masses

	Texture zeros
	Two-zero textures
	Fitting the constraints
	Allowed textures
	Approximate textures
	Summary

	Implications for neutrinoless double beta decay
	Effective Lagrangian approach
	The model
	The neutrino mass
	The effective propagator
	The complete calculation

	Neutrinoless double beta decay
	Neutrino exchange contribution
	New physics contribution
	Comparison with the experiment: long and short range bounds

	Constraints from other processes
	Electroweak precision data
	Lepton flavour violating processes
	Dark matter

	Some final considerations
	Summary

	LHC prospects for lepton number violating scalars
	Large Hadron Collider
	Search strategy
	Application to searches of doubly-charged scalars
	Background for same-sign leptons
	Zee-Babu model
	Three-loop model

	Application to searches of singly-charged scalars
	Analysis in the two lepton channel
	Analysis in the three lepton channel

	Summary

	Probes of SMEFT four-fermion operators
	Searches for one lepton and missing energy
	Monojet searches at the LHC
	Pion decays
	Tau decays
	Top quark decays
	Prospects for t-3mub N at the LHC

	Global analysis
	Summary

	Conclusions
	References

