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General introduction

Tuberculosis (TB) is an infectious disease caused by the airborne transmitted

bacterial pathogens belonging to the Mycobacterium tuberculosis complex

(MTBC). Tuberculosis is a curable and preventable disease although it is one of

the top ten causes of death worldwide according to the World Health

Organization (WHO). TB can be transmitted by air droplets from human to

human, so, the most common infection site are the lungs. However, TB

infections in different organs are reported in lower frequency. Individuals with

TB are treated with a six-month regimen of four antibiotics, nevertheless, this

treatment can be extended up to 20 months with less effective drugs in patients

infected with a drug resistant strain. It is estimated that about one-quarter of

the worldwide population has latent TB, which is characterized by no suffering

TB symptoms and presumably non transmissible disease.

The MTBC is a group of highly related, slow-growing mycobacteria which

causes tuberculosis in humans and animals [1]. The causative agents of

tuberculosis in humans are Mycobacterium tuberculosis, and the highly related

lineage Mycobacterium africanum, both with no know reservoir outside the

human host. The MTBC also includes the animal-adapted mycobacteria named

M.bovis, M. caprae, M. microti, M. pinnipedii, M. orygis, M. suricattae, and

M.mungi [2].

The genus Mycobacterium comprises more than 170 species that share

unique phenotypic and genotypic characteristics [3]. All the involved species
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General introduction

have a high content of G/C ranging from 60 to 72%. Although most

Mycobacterium species are free living organisms that do not cause TB disease

[4], some of them can cause infections within human populations [5]. These

non-tuberculous mycobacterial infections included cases by M.avium,

M.kansasii and others [6]. A major physiological feature of the Mycobacterium

genus is the unusual cell wall structure [7, 8]. This cell barrier consisted of a

lipid bilayer made of long fatty acids (mycolic acids), and waxy components

providing a hydrophobic permeable barrier that confer resistance to harmful

compounds and avoid dehydration [9]. Due to this, mycobacterial species are

not easy to decolorize and are considered acid fast bacilli. In fact, they need a

special staining method called Ziehl-Neelsen staining [8]. Additionally, all

mycobacterial species are aerobic, non-spore-forming, nonmotile, and have a

rod-shaped form. Their size ranged from 0.2 to 0.6µ by 1.0 to 10µ, forming

colonies that morphologically varies in texture and color among species [7].

MTBC strains are slow growing bacteria, with a generation time of 12-24h on

commonly media growth.

1.1 Global burden of tuberculosis

The last report of the WHO estimated that 10 millions of people got infected

with TB in 2018 [10]. Of these, 1.45 million cases died because of TB disease

(484,000 due to drug resistant tuberculosis, 251,000 with HIV coinfection). With

these numbers, TB is considered the leading cause of death by a single

infectious disease overcoming the HIV/AIDS infection. The most affected

regions are South-East Asia and Africa with 44% and 24% of all TB notified

cases, respectively. The countries that contributed with two-thirds of all

reported cases are India (27%), China (9%), Indonesia (8%), the Philippines

(6%), Pakistan (6%), Nigeria (4%), Bangladesh (4%) and South Africa (3%)

[10](Figure 1.1A).

The increasing prevalence of cases that fail to respond to standard antibiotic

treatment is a main threat to global TB control efforts. Multidrug-resistant TB
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Global burden of tuberculosis

(MDR-TB) are those infections that are resistant to rifampicin and isoniazid

simultaneously, the most powerful antibiotics against TB. During 2018 it was

estimated that 484,000 of new cases were caused by MDR-TB or rifampicin

resistant TB (RR-TB), accounting for 3.4% and 18% of all globally new and

previously treated TB cases, respectively. Fifty percent of all MDR-TB/RR-TB

cases are concentrated in India (27%), China (14%) and the Russian

Federation (9%) [10] (Figure 1.1B).

1.1.1 Tuberculosis in Europe

In 2018 there were reported 259,000 tuberculosis cases equivalent to a TB

incidence of 28 cases per 100,000 inhabitants [10]. This corresponds to about

2.6% of all globally TB cases, being the continent with the lowest TB incidence

value. Nevertheless, the TB rate is highly variable among countries, with higher

rates in Eastern Europe than in the Western region. The countries with the

highest incidence rate were Kyrgyzstan (144 per 100,000 population), followed

by the Republic of Moldova (95), Georgia (86), Tajikistan (85) and Ukraine (84)

[11].

Spain is in the 18th position of TB incidence of the forty-two European

countries. In 2017, the Spanish surveillance system reported 4,483 TB cases

(incidence rate of 9.6 per 100,000 inhabitants), being Galicia, Catalunya and

Asturias the regions with the highest TB incidence rate with 19.6, 12.9 and 10.8

cases per 100,000 people, respectively [12]. Particularly, in the Comunidad

Valenciana, the study region of this thesis, were reported 424 TB cases and an

incidence close to the mean of the country (8.6 per 100,000 inhabitants).

Regarding TB drug resistance (DR), the European countries with the major

MDR-TB prevalence are the Russian Federation (28.2%), the Republic of

Moldova (26.6%), Kyrgyzstan (22.4%) and Ukraine (21.4%). Notably, according

to the national public health system, the MDR-TB incidence in Spain is

remarkably low, with just 20-30 MDR-TB cases reported every year [11].

11



General introduction

Figure 1.1: Estimated global incidence of TB incidence rates (A) and MDR/RR-TB
cases (B) during 2018. Source: WHO [10]
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1.1.2 The End TB Strategy

Currently, the WHO has set a series of targets to stop TB around the world.

This initiative was called End TB Strategy, approved in 2014 by the World Health

Assembly [13]. Its main objectives are to reduce the number of TB deaths by

90% and decrease the TB incidence by 80% by 2030, especially on high-burden

countries [10]. Although the number of TB cases have been decreasing since

the 1990s, the majority of the countries worldwide still have an incidence rate

higher than 10 per 100,000 inhabitants. In order to reach the objectives stated

by the End TB Strategy, the WHO has released a report called “Implementing the

End TB strategy: the essentials” with the aim to guide actions to help countries

on how to implement this plan. It states three main pillars to accomplish the

end of the TB epidemic, (1) Integrated, patient-centred care and prevention, (2)

Bold policies and supportive systems and (3) Intensification of research and

innovation. These guides highlight, among others, the importance of early and

rapid TB diagnosis, accurate and fast drug susceptibility testing, application of

appropriate treatments and effective control of the transmission. Additionally, it

emphasizes the requirement of research and development of new diagnostics,

drugs, vaccines and innovative delivery methods [13].

1.2 Tuberculosis infection

TB infection begins when the tubercle bacillus enters the lungs via inhalation,

reaches the alveolar space and encounters the resident alveolar macrophages,

where the bacteria replicates [14]. Once the infection is established, there are

two different scenarios depending on disease severity: 1) the immune system

can control the bacteria growth (but do not eliminate the initial infection) and the

individual is infected without disease symptoms. This asymptomatic condition is

known as latent TB infections (LTBI). Nevertheless, 2) there is a small

percentage of people (between 5-15%) in whom the immune system fails and

develop active disease, presenting mild, moderate or severe symptoms, or

even developing lung cavitations. Active TB cases can transmit the pathogen to
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other individuals [15]. Additionally, there is approximately a 10% lifetime risk of

developing active TB from LTBI [16]. However, the factors that trigger infection

progress and the underlying bacterial metabolic changes remain unclear and

could involve host’s immunological, clinical, and bacterial factors [17]. The most

common methods for the detection of LTBI are the positivity of the tuberculin

skin test (TST), and the IFN- release assay (IGRA) tests, both based on

immunological responses by the host but not able to distinguish between latent

and active tuberculosis.

For many years the dichotomy between active and latent TB clinical stages

has been used to differentiate between those that are infected and can remain

asymptomatic during years or lifelong and those that develop typical TB

symptoms (continuous coughing, high fever, night sweats, fatigue, chest pain).

However, there is a growing consensus that TB infection is better reflected by

the existence of a wide spectrum of different infection status [18, 19], which are

mediated by the heterogeneous nature of the bacterial dynamics and the host

immune responses in the granulomas [15] (Figure 1.2). The heterogeneity

associated with LTBI outcomes has been mainly shown by analyzing the whole

blood transcriptome signature of latent and active TB patients [20], and by

positron emission tomography combined with computed tomography

technology (PET/CT scan) within lung lesions [21]. Although a reduced host

gene-set of transcriptome signature is promising, the classification of patients

into these different infection status is still difficult [22]. In clinical settings, a

combination of clinical disease manifestations, microbiological evidence, and

immunological tests (TST and IGRA) results can help to define different LTBI

status [19]. For instance, it has been described a group of contacts called

“resisters”, which are patients that never developed TB diseases even if they

are constantly exposed to an active case. These individuals seemed to be

resistant to M.tuberculosis infection due to the fact that they do not present any

TB symptoms and negative TST/IGRA outcomes even though they are

constantly exposed to TB infection. In addition, these individuals are presumed

to not transmit the disease. A recent study has identified household contacts
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with no evidence of infection even two years after index cases exposures [23].

Another interesting and recently discovered infection status is subclinical TB.

This TB infection is characterized by having no TB symptoms but with positive

results of sputum and/or culture and immunological assays, and sometimes

positive chest radiographs [15]. These TB cases are difficult to detect mainly

because people without clear symptoms do not go to a medical care facility for

further examination. Instead, the diagnosis of these cases are found by

household contact investigations, representing major challenges for public

health systems. A recent study for example has identified presence of

subclinical TB in patients otherwise healthy by examining the bacterial content

of exhaled secretions in masks [24]. It is important to differentiate subclinical

TB infection from classic LTBI, mainly because a percentage of these latent

individuals are preventelly treated with isoniazid once identified by

epidemiological interventions. Thus, there is the danger that those individuals

with subclinical disease may acquire isoniazid resistance even before showing

symptoms [25]. Whether these patients can transmit the disease is still in

debate but will be the focus of the present dissertation.

Figure 1.2: The spectrum of tuberculosis, from Mycobacterium tuberculosis
infection to active (pulmonary) tuberculosis disease. Taken and adapted from [14].
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1.3 Tuberculosis transmission

TB can be transmitted in aerosolized droplets by coughing from a person with

active disease. Thus, the most common infection site is the respiratory system

but any organ can be infected. In addition, many other non-tuberculous

mycobacteria can cause disease in humans, however, these infections tend to

be associated with extra-pulmonary disease and their transmissibility among

individuals are unlikely [4]. Recent transmission (that occurring within a window

of a few years) is the main contributor to TB cases in high burden countries [26]

and is also a major contributor in low burden countries [27, 28]. Interrupting

transmission is essential in order to reduce the TB incidence and to advance

towards eradication.

1.3.1 Factors associated with transmission

There are many factors associated with TB transmission, these include host

and bacterial features, but also social and behavioral factors (Figure 1.3). Host

factors are likely related with disease infectiousness, thus, individuals with more

severe pulmonary disease (for example, with larger lung cavities) are more

likely to transmit TB [29]. This may be related to the coughing frequency and

the bacillary load. However, it has been shown a low correlation between

bacillary load in the sputum and infectiousness [30] and it is estimated that

around 30% of index cases are sputum negative [31]. Other determinants that

affect progression to active disease involve individual social behaviours such as

smoking [32] and alcohol abuse [33]. In addition, factors like malnutrition [34]

and comorbidities such as HIV infections and diabetes are related with disease

susceptibility [35, 36]. Closer interactions with these more infectious individuals

affect disease transmissibility. In addition to this, delay in TB diagnosis as well

as the initiation of TB treatment, increase the probability of disease

transmission through population [37]. Associated factors to this delayed status

include patient awareness of the symptoms and the efficiency to detect a TB

infection by healthcare systems [38]. Population-level social patterns are
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influenced by age and demographic structure, cultural behaviors and migration

patterns. For example, in high-burden settings, TB transmission occurred more

frequently in outdoors scenarios rather than indoors [26]. On the contrary, TB

incidence in older populations is related with LTBI [18].

Regarding bacterial factors, it has been described that there are differences

of transmission among MTBC lineages. For instance, in a cosmopolitan setting

like San Francisco, MTBC lineages tend to transmit better in specific human

population [39]. In fact, it is described that some MTBC lineages are

“generalists” or “specialists” according to their geographic spread [40], whether

this uneven distribution is due to historical contingency or to bacterial biological

factors is still under debate.

Figure 1.3: Factors influencing tuberculosis transmission. Taken from [41]

1.3.2 How to measure transmission

Cutting TB transmission is a cornerstone of TB control. Nevertheless,

measuring tuberculosis transmission is complex due to the natural history of
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the bacteria, resulting in a few patients developing the disease [41]. Also there

is not a unique tool to evaluate transmission as some measure infection (like

TST and IGRA), while others are limited to active TB cases as they are based

on the similarity of the infecting bacteria (molecular genotyping) [26]. Gobally,

epidemiological interventions to detect and control TB transmission mainly

focus on the identification of active TB cases coupled with contract tracing. This

passive case finding strategy assumes that a person with TB symptoms will

seek a healthcare facility to be diagnosed and treated [42, 43], while the main

goal of contact tracing is to reduce time required to detect and treat a case by

identifying secondary cases among active TB patients, thus cutting

downstream transmission [44]. Contact tracing combines epidemiological

surveys to close contacts of active TB cases with examination of clinical

evidence such as chest radiographies, bacili detection in sputum and

TST/IGRA testing [45]. Contact questionnaires include information regarding

people that likely had contact when symptoms started, and their respective

social-behavior habits and thus heavily relies on the assumption that prolonged

contact is necessary for transmission. Contact tracing has been shown to

improve successfully the detection of TB cases within close contacts cases

[45, 43]. A meta-analysis described that contact tracing investigations have

proven to better estimate the prevalence of active TB and LTBI within contacts

in high-, middle and low-income countries [46]. For many years, contact tracing

has been the standard practice used as a control intervention in high-income

settings [47, 48], in fact, it is recommended practice in Spain [12].

Nevertheless, its implementation in middle- and low-income countries is poor

[49]. Moreover, its cost-effectiveness value in National TB programmes is still

unknown.

Since the early 1990’s, molecular approaches to investigate TB

transmission have been developed. These genotyping tools have improved our

understanding of TB transmission dynamics by revealing cases belonging to a

transmission cluster. In addition, genotyping approaches can estimate

transmission at population level, instead of individual level assessments from
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classic contract tracing [50]. Due to their fast and replicable application in TB

surveillance, molecular techniques combined with epidemiological strategies

have helped to resolve TB investigations as well as to identify and establish risk

factors for transmission [51, 52]. Furthermore, molecular-based approaches

such as MIRU-VNTR have been widely used globally to track specific MTBC

strains in different populations [53]. However, their implementation at the

population-based level has been scarced, particularly because many links

could not be corroborated by epidemiological investigations. Now we know that

these techniques overestimate the number of cases that are part of TB

transmission clusters [54, 55]. Due to this, they are not implemented in public

health systems, especially in low- and middle-income countries.

More recently, WGS has started to be used as a tool to detect TB

transmission. In principle, WGS provides a greater resolution than traditional

molecular approaches to trace infection sources and delineate transmission

networks [56]. In addition, WGS is getting cheaper and offers a cost-effective

alternative for investigating TB transmission as the agreement with

epidemiological data is greater than previous tools [144]. A further discussion is

detailed below and in chapters 3 and 4 of this dissertation.

1.4 Tuberculosis treatment

Treatment of TB aims to cure all the patients that had active or LTBI to stop

the transmission of the disease or at least minimize it. Thus, the objectives of

TB therapy are to reduce the number of growing bacilli within the patient; to

eradicate infecting bacteria populations in order to prevent a relapse episode

and the development of MDR-TB during therapy [57].

1.4.1 Drug-susceptible TB

The standard treatment for patients with drug-susceptible TB lasts at least 6

months. WHO recommendations consist of an initial 2-months intensive phase
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(rifampicin, isoniazid, pyrazinamide, and ethambutol every day), followed by 4-

months of isoniazid and rifampicin. This effective anti-TB-drugs are known as

first-line drugs. This first-line regime costs around US$20 and its clinical success

is approximately 85% of all newly diagnosed TB cases [58]. However, it is a

long therapy and not well tolerated by some patients. Some studies described

side effects and an increased risk of developing a relapse in individuals who had

large pulmonary cavities [59, 60] and slow response to first-line treatment [61, ?].

Additionally, many of these cases end up developing resistance to one or more

drugs. In 2017, It was estimated that 4.1% of all globally new TB cases had

multidrug-resistant or rifampicin-resistant TB. This proportion increased up to

19% in those cases that were previously treated with TB, also known as relapse

cases [10]. In order to reduce these adverse reactions as well as the number of

relapses, some short-term treatments have been proposed [58]. However, the

majority of these studies are still in the clinical trial phase.

1.4.2 Rifampicin

The rifampicin is considered one of the most powerful first-line drugs against

TB. The mechanism of action of rifampicin is to inhibit bacterial transcription by

targeting RNA polymerase subunit [62] that is encoding by the rpoB gene.

Unfortunately, rifampicin drug-resistant isolates were reported shortly after the

drug introduction as primary treatment in 1966, especially when rifampicin was

the only active drug administered [63, 64]. Around 95% of all mutations

conferring rifampicin resistance are located in a 81bp rpoB region called

rifampicin resistance determining region (RRDR) [65]. Nevertheless, less

common mutations outside this region had been described elsewhere [66].

This topic is discussed in-depth in chapter 5 of this thesis.

1.4.3 Isoniazid

Isoniazid is a first-line pro-drug that blocks the synthesis of mycolic acids, which

are one of the main and most important components of the M. tuberculosis cell
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wall [67]. Isoniazid is activated by the catalase-peroxidase katG gene [68].

Isoniazid resistant isolates commonly lack catalase and peroxidase activity.

Thus, between 83-96% of globally isoniazid related mutations occurred within

katG gene [69]. There are reported another isoniazid resistant clinical strains

that harbour mutations in other regions such as inhA,KasA and ahpC promoter

and coding genes, all related with the synthesis of mycolic acid and likely

playing a compensatory function for the loss of catalase-peroxidase activity

[70].

1.4.4 Ethambutol

Ethambutol targets the bacterial cell wall by inhibiting the synthesis of cell wall

arabinan [71]. Ethambutol resistant strains typically harboured mutations within

the embCAB operon, which is involved in the synthesis of the cell wall

arabinan. Thus, the majority of the ethambutol resistant strains have mutations

in the corresponding coding genes, especially in the embB gene. However,

other target genes related to ethambutol drug resistance had been described.

For example, Rv3806c and Rv3792 genes seemed to affect the synthesis or

utilization of DPA (decaprenylphosphoryl--d-arabinose) pathway, resulting in

high-level resistance [72].

1.4.5 Pyrazinamide

Pyrazinamide is another pro-drug that is converted to pyrazionic acid by the

enzyme pyrazinamidase, which is encoded by the well-known pncA gene [73].

This first-line antibiotic is important because it inhibits the bacterial growth in

acidic environments (i.e. inside the macrophages). Moreover, pyrazinamide is

widely used to treat MDR-TB cases, improving the success rates as well as to

shorten the drug regimen period [74]. Contrary to other genes related to drug

resistance, mutations in all over the pncA gene had been reported to cause

resistance to pyrazinamide [75].
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1.4.6 Multidrug-resistant and extensively drug-resistant TB

With the first-line treatment regime the majority of TB cases are cured.

However, drug resistant strains are globally reported more frequently [58].

Recently, the WHO recommends an standardized drug regimen consisting of

the administration of all-oral drugs for 6-9 months. These therapy included

bedaquiline, fluoroquinolones, ethionamide, clofazimine, in combination with

effective first-line drugs [76]. In contrast, MDR patients with fluoroquinolones

resistance have to take a longer (up to 20 months) MDR-TB treatment that

involve a combination of WHO endorsed second-line drugs. In addition to this,

longer MDR-TB treatment is related with adverse side effects to the patient,

and it is more expensive compared with the first-line treatment [77, 78, 79].

Importantly, during 30 years, and during the development of this thesis, the

standard treatment for MDR-TB was the administration of fluoroquinolones and

one injectable aminoglycoside agent (kanamycin, capreomycin and amikacin)

for 18 months. This regimen is still in use in Spain as there is no routine access

to bedaquiline, a cornerstone of the all-oral regimen.

In addition to MDR-TB, extensively drug-resistant TB (XDR-TB) cases are

reported worldwide. XDR-TB strains involve resistance to isoniazid, rifampicin,

any fluoroquinolones, and at least one injectable agent. In 2018, the WHO

reported that 6.2% of all MDR-TB cases were XDR-TB [10]. Just like MDR

treatment, the WHO has recently endorsed a shorten drug regimen to treat

these cases. This therapy consisted in using all-oral bedaquiline, pretomanid,

and linezolid drugs for 6-9 months. In all cases, treatment success depends on

the extent of drug resistance, the severity of the disease and the patient’s

immune system state. Drug resistance monitoring and patient follow-up are

recommended during all the therapy time.

1.4.7 Diagnosis of drug resistant tuberculosis

Shortly after the use of anti TB drugs in the 40’s, drug resistant strains emerged

and were transmitted within the population [80]. As a consequence, in the 60’s,
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George Canetti described a phenotypic-based method called proportion

method for detecting resistant M. tuberculosis bacteria populations [81]. Since

then, this TB drug susceptibility testing (DST) method has not changed, being

the reference approach to identify drug resistance for decades, especially in

low-income regions, where the TB incidence is high [82]. The proportion

method uses different serial critical drug concentrations and compared the

bacterial growth between susceptible and resistant strains. It uses an inoculum

size prepared by shaking and adjusted to a specific opacity, then, the

colony-forming-units are counted. Moreover, it can be performed in both

liquid-based and agar-based growth media. The most common liquid-based

proportion method is the automated BACTEC MGIT 960 system (Becton

Dickinson, USA). Nevertheless, evidence pointed out that this assay introduces

errors in susceptibility testing due to the bacterial inoculum size and, thus, the

results should be used carefully [83]. In addition to this, it has been shown that

some mutations related with rifampicin resistance (also known as disputed

mutations) are not detected by automated liquid-based media growth [84].

Some of these disputed variants, particularly the rpob I491F, has been

described to drive a MDR epidemic in Africa as they passed undetected by

countries surveillance systems [85, 86]. For this reason, the European

Committee on Antimicrobial Testing recommended a revision of the distribution

of minimal inhibitory concentrations (MICs) for some anti TB drugs [82], in order

to define the clinical breakpoints of each drug. For instance, it has been

reported that susceptible and resistant strains have similar MICs for some

first-line [87], and second-line drugs [88].

The steady increase of clinical MDR or XDR-TB cases, together with the

monomorphic and clonal features of M.tuberculosis [89], offered the

opportunity to identify the molecular basis of many resistances. Thus, specific

point mutations (such as single nucleotide polymorphisms [SNP], deletions and

insertions) were initially described by sequencing different drug target genes

[73]. After identification of drug targets and associated mutations, molecular

assays were implemented into routine clinical diagnostics. These assays are
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faster than phenotypic-based methods, being able to detect one particular

resistance in a couple of hours or days. Moreover, they require less technical

expertise, as well as less biosecurity laboratory facilities than phenotypic-based

DST [82]. However, they tend to have lower sensitivity and/or specificity values

than cultured-based systems [90]. Among the available commercial detection

kits based on Nucleic Acids Amplification Tests (NAATs tests), the GeneXpert

MTB/RIF assay (Cepheid, USA) as well GenoType MTBDRplus (Hain

Lifescience, Germany) have been approved by the WHO since 2008 [91]. The

Xpert MTB/RIF assay consists of a real-time PCR-based methodology for the

detection of M. tuberculosis DNA as well as rifampicin related mutations. On

the other hand, GenoType MTBDRplus is a line probe assay that detects MDR-

and XDR-TB cases by screening specific mutations related with first-line

(except pyrazinamide) and second-line drug resistance. Using the

cultured-based methodologies as resistance reference, both molecular assays

give sensitivity and specificity values of >98%, demonstrating that they are

reliable diagnostic tests for TB patients as well as for MDR-TB individuals

[92, 93]. The major difference is that Xpert MTB/RIF can be used on diagnostic

samples (eg, sputum samples), while GenoType MTBDRplus is usually

performed on cultured isolates. Recently, the Xpert Ultra assay (an updated

version of the Xpert MTB/RIF) has been tested and demonstrated that

improves the MTBC diagnostic accuracy and can be used as an initial test to

diagnose pulmonary TB. In addition, the latest version of Truenat® MTB and

MTB Plus system (Molbio Diagnostics, India) have also become an alternative

MTBC diagnostic tool [94]. Despite massive deployment of Xpert assays (both

versions), only a few low- and middle-income countries have access to these

techniques. Instead, they use the sputum smear microscopy as primary

diagnostic method for MTBC identification and phenotypic-based DST for drug

resistance detection. Although sputum smear microscopy has lower sensitivity

and specificity values compared to Xpert MTB/RIF [95], it is still cheaper and

needs lower technical requirements.

Despite genotypic-based assays show a high agreement percentage
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compared with those phenotypic-based methods, there is still a significant

percentage of resistant strains that are classified as “susceptible” by these

genotypic-based approaches, especially those related with resistance to

second-line drugs [96]. This is because the genotypic probes are limited in the

number of mutations detected, only the most common variants conferring

phenotypic resistance are tested. A solution to this is to increase the number of

validated mutations by sequencing large collections of MTBC resistant and

susceptible strains and compare to phenotypic results [97]. The application of

new technologies like WGS could help to resolve this limitation; since it is

possible to identify and annotate all the related mutations present in the

genome [97] as well as to identify novel mutations related with drug resistance.

A further discussion is detailed below and in chapter 5 of this thesis.

1.5 Whole genome sequencing in infectious
diseases and tuberculosis

The development and application of high-throughput technologies such as Next

Generation Sequencing (NGS) in the study of infectious diseases have

improved clinical detection methods and public health surveillance systems

[98]. Most NGS applications offer faster, more comprehensive, and more

accurate than traditional microbiological techniques. For instance, in the area of

food-borne diseases, especially with Listeria monocytogenes bacteria, WGS

detects more bacterial outbreaks in two years than those identified by classic

pulse-field gel electrophoresis (known as PFGE technique), and thus, with

epidemiological investigations, the outbreaks were solved, and eventually, the

number of cases decreased [99]. In addition, NGS is proving to be a higher

discriminatory molecular tool for identifying and studying pathogens outbreaks

such as Legionella infections [100]. Regarding drug resistance detection,

WGS-based studies have demonstrated its similar sensitivity and specificity

values compared with routine phenotypic DST and/or genotypic probes

references, resulting in a reliable and alternative technique for resistance
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prediction. Some bacterial examples include Neisseria gonorrhoeae [101],

Klebsiella pneumoniae [102], Staphylococcus aureus [103], and Pseudomonas

aeruginosa [104].

WGS also offers crucial insights into other infectious diseases, such as viral

and fungal infections, malaria or neglected tropical diseases. WGS provides a

better picture of the viruses diversity and its evolving patterns to gain resistance

to antiviral agents [105]. Also, WGS improves estimations regarding high likely

origin and date of certain outbreaks [106], and helped in the development of

vaccines such as seasonal influenza [107]. Moreover, WGS has improved the

knowledge about Candida auris, providing novel insights into treatment and

epidemiology of the fungal pathogen [108]. Another NGS direct application is

the rapid diagnosis of parasitic diseases. The Centers for Disease Control and

Prevention (CDC) of the United States is working on the development of

diagnostic tools for identifying drug resistance in malaria parasites [109], and

an effective genotyping method for Cyclospora cayetanensis pathogen [110].

Although the NGS prices are cheaper (it is estimated that costs between

150-250US dollars per bacteria isolate [111]), only the United Kingdom [112]

and the United States [113] have implemented this technique as a part of their

routine diagnostic surveillance public health system. The use of NGS in routine

clinical laboratories requires the initial investment in sequencing equipment as

well as optimal infrastructure to work and store sequencing data. In addition,

specialized personnel are needed, including bioinformaticians to create, handle

and maintain the pipelines for analysis.

Recently, a single-molecule NGS portable instrument has been available.

The MinION (Oxford Nanopore Technologies) has become an affordable and

easy-to-use sequencing alternative within public health surveillance. This

technology offers the capacity of sequencing in real-time at the point-of-care.

For example, MinION helped public health surveillance during the Ebola [114]

and Zika [115] outbreaks. Nevertheless, the current version of this technology

has high sequencing error rates, especially in G/C genomic regions [116],

which is common in some pathogens such as M. tuberculosis.
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1.6 Applications of whole genome sequencing in
tuberculosis

In 1998 the first M. tuberculosis complete genome was available. The reference

H37Rv strain was sequenced by a combination of large-insert clones (cosmids

and BACs) and small-insert clones approaches (shotgun sequencing libraries).

Thus, the complete genome consisted of a single-chromosome sequence of

4,441,529 bp (with a G/C content of 65.6%), encoding around 4,000 genes

[117]. Since then, we have improved our understanding regarding genetic

determinants of drug resistance, adaptation to host immunological responses

and the evolution of the pathogen. In addition, it helped in the development of

molecular typing methods with epidemiological implications. Despite all the

advantages, it took around two years to obtain a single genome.

Nowadays, WGS is becoming an essential tool in the TB field, not only in

basic research areas but also in diagnostics and public health. Currently, we

have the ability to whole-genome sequence from dozens to thousand MTBC

strains at the same time depending on the instrument used. In fact, MTCB has

become the most whole-genome sequenced pathogen bacteria. the main WGS

applications in TB focused on disease control by: 1) improving drug

susceptibility prediction; 2) rapid detection of transmission clusters; 3) strain

genotype surveillance across country borders and 4) diagnosis of MTBC

strains and lineage identification [56] Figure 1.4.

MTBC is genetically monomorphic with very little diversity among strains

even when comparing animal- and human-adapted lineages [118]. In fact, a

maximum genetic distance of 2,200 SNPs (which corresponds to 0.05% of the

genome) between strains of different lineages has been detected using

Illumina-NGS technology in a global collection of MTBC strains [119]. This low

diversity is also contributed by the lack of significant ongoing recombination or

horizontal gene transfer events, major contributors to diversity in other bacterial

pathogens. WGS analyses are mainly based on the detection of specific SNPs

and/or small genomic deletions or insertions (INDELS) using customized
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bioinformatics pipelines [56]. These pipelines consisted of three main steps.

Briefly, raw sequences (those obtained from sequencing device) are trimmed

according to a quality control value followed by mapping to a reference

genome, and finally the detection of SNPs and INDELS. An additional step is to

exclude genetic elements that cause mapping errors (approximately 10% of the

MTBC genome) such as large gene families, as well as some mobile genetic

elements [120]. Despite a well defined step-by-step protocol, there does not

exist a gold standard WGS MTBC pipeline. A more detailed pipeline as well as

all the softwares used will be described in the next chapters.

Figure 1.4: The primary applications for whole genome sequencing of
M.tuberculosis in public health include international surveillance of prevalence
and drug resistance (panel A), determination of the species or subspecies of M.
tuberculosis complex isolates (panel B), determination of drug resistance patterns
on the basis of the presence of specific SNPs (panel C) and identification of
transmission clusters and outbreaks (panel D). ETH, ethambutol; INH, isoniazid;
PZA, pyrazinamide; RIF, rifampicin. Taken and adapted from [56]
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1.6.1 Mycobacterium tuberculosis diversity

TB cases are caused by the members of the MTBC. They are a group of highly

related bacilli sharing the 99.9% of nucleotide content of the whole genome

[121]. The MTBC includes the two well known human-adapted mycobacterial

groups; M. tuberculosis sensu stricto [lineages (L) 1 to 4 and L7], and the

lineages traditionally referred to as M. africanum (L5 and L6). Moreover, at

least nine MTBC phylogenetic groups mainly infecting wild and domestic

mammalian hosts are part of MTBC (including M.bovis, M. caprae, M. microti,

M. pinnipedii, M. orygis, M. suricattae, and M.mungi) [2]. Recently, a new

lineage (defined as L8) has been described as part of MTBC involving strains

causing human tuberculosis [122]. The seven phylogenetic lineages of

human-adapted MTBC are geographically spread [123] (Figure 1.5). Overall,

L2 and L4 are the most globally distributed. L2 is the most common in East

Asia, whilst isolates belonging to L4 are frequently found all over the globe

although is particularly frequent in Western Europe, The Americas and Africa.

This distribution is in agreement with the hypothesis that L4 originated in

Europe and then was carried to America during the colonization period in the

XVI century [124]. On the other hand, L1 dominates the Indian Ocean region

and parts of East Africa and L3 is restringed to Central and South Asia.

Contrarily, L5 and L6 are restricted to West Africa regions, L7 can be only found

in Ethiopia and L8 has only been found in two cases from is limited to the

African Great Lakes region. This fact suggests that lineages could be adapted

to specific human populations [125]. In fact, sub-lineages somewhat reproduce

the geographic restrictions observed at the lineage level. This has led to the

hypothesis that some lineages and sub-lineages are “specialists”

human-adapted genotypes with a narrow niche to a specific human population,

while globally distributed lineages are considered “generalists” genotypes

infecting a wider range of human populations [40]. Data shows that the

differential success of genotypes is likely due to a combination of historical

contingency and pathogen biology [126].

There is substantial evidence supporting that the most likely geographic
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origin of MTBC was in Africa. First, M. canetti, the mycobacterial species

closest to the common ancestor of the MTBC, is restricted to the Horn of Africa.

In addition, Africa has the largest diversity of MTBC lineages. More recently, a

phylogeographical analysis using 259 whole genome sequences from a global

MTBC isolates collection, postulated Africa as the most likely origin region

[127]. The result has been recently corroborated by the recent discovery of L8

in the Great Lakes branching before the diversification of the seven known

lineages. Contrary to place of origin, the time of the most common ancestor of

the complex (tMRCA) is still controversial; one of work dating the ancestor with

bayesian analysis estimated that the most common ancestor existed around

70,000 years ago [127]. On the contrary, another recent research inferred a

high likely origin around 6,000 years ago by including ancient MTBC DNA from

1,000-years peruvian mummies [128].

In addition to ecological adapted features, some MTBC lineages show

genetic differences that have an impact in clinical as well as epidemiological

features, resulting in a more virulent MTBC phenotype. This virulent phenotype

is related with disease severity and its transmission rate. A study performed in

Tanzania demonstrated that patients infected with L4 strains induced more level

of acute-phase reactants, which are proteins involved in the inflammatory

response, than patients infected with L1 strains, suggesting an increased

virulence among L4 isolates [129]. Similar to this, Jong et al[130] showed that

individuals harbouring MTBC infections with L2 and L4 had shorter latency

periods compared with those infected with L6 strains. The most strong

evidence a clinical role of MTBC lineages is the repeated association of L2 to

drug resistance. This has been observed in many parts of the world with

supportive evidence from in-vitro experiments [131]. Regarding transmissibility

features, there is an overall view that strains from L2 and L4 are more

transmissible than other MTCB lineages, mainly because there has been an

increase in frequency of these genotypes over the time [132]. However, this

evidence is based on clustering rates obtained from culture positive cases and

culture bias due to MTBC variability can affect the growth and metabolism of
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some lineages. For instance, It has been described that lineages 5 and 6 grow

slowly in vitro due to a specific mutation in pykA gene [133], suggesting that the

prevalence of these MTBC lineages could be underestimated in culture [134].

Furthermore, while L2 strains have expanded in South Africa [135] there is no

such expansion observed in other regions like Southern Europe where L2

strains are constantly imported from Asia and Eastern Europe. Thus, the

success of MTBC genotypes is highly dependent on the socioeconomic context

of the country, the presence of other successful genotypes and the human

genetic backgrounds present in each specific region [136].

1.6.2 Drug susceptibility prediction

WGS drug susceptibility prediction is based on the presence or absence of

specific mutations (SNPs and INDELS) related with drug resistance. In this

sense, full catalogues of well curated mutations are required. In the last few

years, high-confidence DR mutations have been described using

genotype-phenotype statistical associations obtained by a sequencing a large

number of isolates from multiple clinical datasets [97]. For example, the

Comprehensive Resistance Prediction for Tuberculosis (CRyPTIC) project aims

to replace the phenotypic testing by predicting the drug susceptibility profile

given specific DR mutations, especially those related with first-line treatment

[137]. Another international consortium is the Relational Sequencing

Tuberculosis Data Platform (ReSeqTB), whose main objective is to expand our

current catalogue of high-confidence DR list by using a public TB database,

where researches can contribute with their WGS data (including genotypic,

phenotypic and clinical outcome data) [138].

With these international initiatives, currently we are able to predict first-line

DR strains profiles in the absence of phenotypic data [139, 137]. A WGS-based

meta-analysis reported that mean sensitivity and specificity values for drug

resistance detection were 0.98 (95% CI 0.93–0.98) and 0.98 (95% CI

0.98–1.00) for rifampicin and 0.97 (95% CI 0.94–0.99) and 0.93 (95% CI

0.91–0.96) for isoniazid, respectively. On the contrary, the remaining first-line
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Figure 1.5: Global phylogeography of the human-adapted MTBC. A. Genome-
based phylogeny of the Mycobacterium tuberculosis complex (MTBC). The MTBC
comprises seven human-adapted lineages (in colour) and several lineages adapted
to various wild and domestic animals (in grey). Branches of the main lineages
are collapsed to improve clarity (indicated by triangles). M. tuberculosis-specific
deletion 1 (TBD1) indicates that all lineage 2 (L2), L3 and L4 strains share this
genomic deletion. Similarly, the deletion of the region of difference 7 (RD7),
RD8, RD9 and RD10 is indicated under the respective branches. The grey
dotted line leading to Mycobacterium mungi, Mycobacterium suricattae and the
dassie bacillus indicates the most likely phylogenetic relationship of these animal-
adapted ecotypes with the other members of the MTBC. The dagger indicates
genomes generated from 1,000-year-old MTBC DNA that was recovered from
archaeological human remains in Peru. Bootstrap confidence intervals are
indicated. Scale bar represents the number of nucleotide substitutions per site. B.
The global distribution of the seven main human-adapted MTBC lineages. Taken
and adapted from [1]

drugs (ethambutol, pyrazinamide and streptomycin) reported more varied

performance values. Thus, sensitivity values ranged from 0.71-1.00, 0.43-1.00,

and 0.57-1.00 for ethambutol, pyrazinamide and streptomycin, respectively.

While specificity values ranged from 0.15-95.8, 0.67-1.00, and 0.4-1.00,

respectively [140]. These results showed that WGS can be considered an

accurate alternative for drug susceptibility prediction and as such it has now

replaced routine microbiological culture in the United Kingdom and The
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Netherlands.

Unfortunately, a small percentage of first-line DR isolates harbouring

uncommon mutations will be classified as susceptible, giving a false negative

result and, as a consequence, compromising standard treatment. For instance,

disputed mutations have been described to confer low-level rifampicin

resistance (eg, rpoB, I491F) and, thus, some automated phenotypic

liquid-based instruments may not detect it, resulting in an erroneous resistance

classification [66, 84, 86]. A similar situation happened with XDR-TB cases, in

which most of DR variants related with some second-line and/or new antibiotics

such as delamanid are still unknown [141]. This is because available XDR

phenotypic tests are not well standardized, resulting in discrepancies.

Development of alternative or standardization of current phenotypic methods is

needed in order to validate these variants as well as to increase the number of

high-confidence DR mutations global list, especially those related with

second-line drugs. A further discussion is detailed in chapter 5 of this thesis.

1.6.3 Whole genome sequencing as an epidemiological
marker

In the last two decades, TB molecular methods to classify MTBC strains and

detect transmission have evolved from complicated techniques such as the

restriction-fragment-length-polymorphism (RFLPs) to more reproducible

methods like Spoligotyping and the Mycobacterial Interspersed Repetitive

Units-Variable Number of Tandem Repeats (MIRU-VNTR) typing. These latter

methods are based on the amplification of MTBC repetitive sequences, and the

presence/absence of the different regions to determine the distinct genotypes.

In addition, global online databases have been created to classify strains

according to their respective Spoligotyping and MIRU-VNT profile [136].

Despite these protocols are well standardized and have been widely used

worldwide, it is not clear their added value to epidemiological interventions

compared to contact tracing which targets close contacts and is not dependent

on culture [142].
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More recently, WGS has been demonstrating a higher discriminatory power

to trace and disentangle transmission networks [143, 144]. The first reported

study was in 2005, in which the authors used WGS to resolve three identical

isolates by MIRU-VNTR approach [145]. Since then, several studies have

implemented the use of WGS as a supportive marker to help epidemiological

investigations [146, 147, 148]. However, very few are population-based and

mostly based on retrospective collections (Additional Tables 10.1-10.2),

despite the fact that they are extremely helpful to understand transmission

dynamics in a population as well to track the impact of TB control interventions

[27, 28, 147, 149].

Using epidemiological links information and WGS data, it has been

proposed that a maximum genetic distance of 12 SNPs between two different

MTBC isolates indicated recent transmission [150], and a threshold of 5 SNPs

for very recent events [151, 152]. The estimated time of infection is based on

the low mutation rate of the MTBC (0.04-2.2 SNPs per genome, per year [153]).

Although these SNPs cut-offs can resolve TB outbreaks, they were calibrated in

low-burden TB settings. Whether these genetic distances can be applied in

other TB settings is still unknown and will be discussed in chapter 3 of this

dissertation.

However delimiting transmission clusters is not the only application of WGS

in transmission studies [144]. Given the higher resolution it can be used to infer

individual links of transmission, in other words, identify who infected whom within

a transmission cluster. Many modelling-based algorithms, as well as bayesian-

based inferences, have been developed [154, 155], however, these were created

focused in other pathogens with higher mutation rate [156], and its application

in MTBC epidemiology has been scared and usually limited to large outbreak

rather than to entire population. This topic will be discussed further in chapter 4
of this thesis.
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1.6.4 Other whole genome sequencing applications

Despite decreasing costs, WGS is still an expensive technique difficult to

implement in low- and middle-income countries [56]. However, thanks to WGS

of representative MTBC isolates, we can extract SNP markers that can

characterize strains without additional whole genome sequencing. For

example, Coll et al. [157] used a global collection of MTBC strain genomes to

define a set of SNPs that can help to type major MTBC lineages and

sub-lineages. MTBC strain classification is important to describe the bacteria

diversity and to understand its population structure at local and global scales.

Also, there is increasing evidence that there are biological differences between

strains that may play a role in disease outcome between the MTBC lineages

[158]. These variations include clinical outcomes and drug resistance

acquisition [119]. For example, isolates belonging to L2 have a higher basal

mutation rate and more likely develop drug resistance than L4 strains, at least

in in vitro experiments [159]. In an epidemiological context, strain classification

is important because we can track specific MTBC lineages or sub-lineages

outbreaks that are spreading in local settings as well as between countries

[148, 160]. Due to the very low rate of homoplasy, SNPs are the most robust

markers for phylogenetic and epidemiological purposes [136]. Thus, different

PCR-based molecular approaches to identify phylogenetic SNPs

simultaneously in one reaction, have been developed as an alternative and

affordable tool for MTBC genotyping [161, 162].

Although the SNP-typing technique “per-se” does not have the required

resolution for defining and resolving transmission clusters, some SNP-based

alternatives have been developed for identifying TB outbreaks in specific

settings after applying WGS of representative isolates. Examples included the

design and application of targeted SNP-based PCRs to track different MTBC

clusters in a local settings [163, 164, 165]. More recently, a study has now been

published to detect in almost “real-time” transcontinental spreading of a specific

MTBC strain by SNP-typing [166]. Other SNP-typing applications include the

detection of specific mutations related with drug resistance [167, 168]. Due to
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their multiple applications, technically easy and fast to perform, SNP-typing

methodologies will continue to play an important role in TB research and

control, especially in low- middle-income laboratories, where WGS is still far

from being an essential tool for TB.

1.7 Implementation of tuberculosis whole
genome sequencing into the health systems

Despite the great advance of using WGS in TB research, there are only few

countries that have implemented it as part of routine diagnosis. There are a

number of technical and economical issues (for example, market research)

regarding the implementation of WGS as a routine practice. These issues

involved the required laboratory and computing infrastructure [56]. In addition

to this, standardized and easy-to-use pipelines need to be created by

specialized bioinformaticians. That is why just high-income countries such as

the United Kingdom (Public Health England) and The Netherlands (National

Institute for Public Health and the Environment, RIVM) have implemented WGS

as part of their routine TB diagnostic tools [113]. It would be desirable that

following this tendency, other high-income countries will introduce WGS into

their public health systems.

In low- and middle-income countries, this implementation seems farther.

Short-term solutions include web-based WGS analysis pipelines. For example,

PhyResSE [169] and TBprofiler [139] databases may help to cover this issue.

Both pipelines are optimized for a rapid and complete MTBC-WGS analysis

with a DR prediction as well as phylogenetic classification. However, the main

limitation to this is the need of the sequencing files as an input, and importantly,

the poor internet connection that some places have. International supportive

and political commitments will be necessary for a sustainable implementation of

WGS in TB diagnostic pipelines.
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2.1 Aim the thesis

Although the use of WGS in the TB field is increasingly common, its use as an

epidemiological and diagnostic markers is still scarce. Even in high-income

regions like Spain, there is very little integration in public health systems.

Valencia Region (Comunidad Valenciana) is a low-burden TB incidence area in

which the current TB diagnostics and epidemiological interventions are enough

to maintain a low TB incidence rate through time, but with a slow pace of

incidence decline. It is also a region where most TB cases are contributed by

local-born individuals, in contrasting differences with other low-burden

countries, such as the United Kingdom or The Netherlands. Furthermore, there

is limited data about the amount of ongoing transmission of the disease in

different settings, and the very few published studies are mostly based on

molecular markers with low resolution. We hypothesized that applying WGS will

improve our understanding and knowledge regarding the TB disease clinical

and epidemiological characteristics in the region. Additionally, we reason that

lessons and/or methods learned in this thesis can then be extrapolated to other

TB settings.

In this dissertation, we used WGS to genomically characterize a large

proportion of MTBC clinical isolates collected during three years (2014-2016) in

Valencia Region. First, we performed an epidemiological study, estimated the
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genomic transmission rate and identified risk factors associated (chapters 3
and 4). Second, we also evaluated the use of WGS to predict drug resistance

in the studied population (chapter 3) and to identify novel resistance

determinants and assist on personalizing the treatment of a challenging TB

patient (chapter 5). Finally, we studied the global genomic diversity of the

bacteria to propose a new, efficient and rapid methodology for strain

genotyping (chapter 6). Our results were compared with those of the local

health system. To our knowledge, this is the first regional and likely national

project of this kind. We hope that this population-based study may serve as a

precursor to using WGS as a routine tool for TB in the public health surveillance

system and could also be extrapolated to the national level as well as to low-

and middle-income countries.

Finally, this thesis has been possible thanks to the invaluable contribution of

all the health personnel of the hospitals that participated during its realization. In

total, 18 health entities from Valencian Region were involved (Additional Table
10.3)

2.2 Objectives

The main objectives of the thesis are focused on the use WGS applied to

tuberculosis surveillance, thus, the specific objectives were:

• To characterize by WGS the MTBC clinical isolates collected during the

study period. Specifically, to estimate and predict drug resistance and

transmission burden based on sequencing data (chapter 3).

• To identify clinical and epidemiological features associated with genomic

transmission (chapter 3).

• To compare the TB transmission detected by WGS against those detected

by routine contact tracing investigations performed by local health system

( chapter 3).
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• To evaluate transmission dynamics within genomic clusters by inferring

high likely transmitters (index cases included) as well as identifying risk

factors associated with them (chapter 4).

• To apply WGS data to personalize TB treatment, especially in those TB

patients with uncertain DR phenotypic profile (chapter 5).

• To develop two rapid and affordable PCR-based techniques to characterize

MTBC isolates from specific phylogenetic SNPs derived from WGS data

(chapter 6).

• To perform and validate our SNP typing assays in two different TB burden

settings (chapter 6).

2.3 Outline

This thesis is composed of 4 main chapters, 3 of them have already been

published in high-impact scientific journals (chapters 4 to 6). For editing

purposes, the final accepted version of them is included in this dissertation. At

the beginning of each chapter, there is a link to each manuscript journal page.

In chapter 3, we used the WGS data obtained from 785 MTBC clinical

isolates to describe the TB population. More specifically, we evaluated risk

factors associated with TB and disease transmission. We also classified and

predicted DR profiles from all the TB cases for which a WGS of the

corresponding isolate was available. In addition, we detected the genomic

transmission and compared it with the local surveillance system. Finally, we

estimated WGS sensitivity and specificity values using the routine TB

diagnostic methods as a reference.

In chapter 4, we combined mathematical modelling with WGS data to infer

whether a most likely index case is sampled or not within a genomic

transmission cluster. Moreover, we estimated when these transmitters infected

other individuals. In other words, when high likely transmission events occured.
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Once transmitters were identified, we searched for risk factors specifically

associated with them.

In chapter 5, we used WGS data to identify and report a misidentified

MDR-TB case within a TB patient with a presumed “fully susceptible” infection

for 9 years. We first identified that uncommon and novel DR mutations were

responsible for the MDR status. Also, those DR variants were not detected by

routine clinical methods, explaining why the strain infecting the patient was

identified as susceptible. In this chapter, we highlight the importance of WGS

DR prediction to provide appropriate drug treatment, this method is more

accurate and also faster than culture based DR methods.

Finally, in chapter 6, we developed two cheap and fast PCR-based SNP-

typing assays to classify clinical isolates into the main phylogenetic lineages of

MTBC as well as lineage 4 sublinages. After validation, we applied our molecular

approaches within a clinical MTBC collection of 491 samples, demonstrating

high sensitivity and specificity values.
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Using whole genome sequencing
to determine and identify
tuberculosis transmission: a
population-based study in Valencia
Region, Spain.

3.1 Introduction

Controlling tuberculosis (TB) transmission is the key to reducing the number of

cases and to eradicate the TB worldwide. Recent transmission is a major

contributor to global TB burden, notably in high-burden incidence settings [151].

On the contrary, in some low-burden areas, most TB prevalence is related with

infections derived by reactivations of migrants from high-burden countries

[170, 149]. Although TB incidence within local-born patients in these settings is

low, recent transmission rate among them is elevated. For instance, a

population-based study in the United Kingdom (UK) evidenced that 67% of TB

cases were due to foreign-born people from high-burden countries, however,

recent transmission within UK borders mostly involved local-born individuals

[27].

Tuberculosis incidence is contributed by both recently infected TB cases

(usually defined as less than 5 years after exposure), and long-term latent TB
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infections (LTBI) [170]. It is estimated that the prevalence of LTBI in close

contacts ranges between 24.2-32.4% in low-burden settings [46]. Current TB

control efforts are mainly based on a passive case finding strategy, which

focuses on a rapid detection of active TB individuals once they report to a

primary healthcare facility, followed by close contacts investigations [43]. By

contrast, active case finding intervention aims the disease eradication by

targeting people in high-risk groups to find LTBI (eg, crowded settings) and,

thus, potentially reduced transmission [171]. Passive case finding followed by

contact tracing also focuses on sputum positive cases as the assumptions is

that those are the most contagious [172]. However, in several studies it has

been observed that between 10%-25% of index cases were sputum negative

[31], suggesting that an important fraction of transmission cases are missed by

our current strategy of passive case finding and contact tracing. A similar

conclusion has been reached when applying whole genome sequencing

(WGS), as very likely transmission cases by WGS are not identified by

epidemiological investigations [149]. Thus, there is an emergent view that

active case finding can play an important role to halt tuberculosis transmission.

There are different strategies to implement active case finding [173].

Community-wide active case finding has been tested in Vietnam and has

shown a significant decrease of TB incidence as compared to passive case

finding [174]. However, given the prevalence of LTBI most of these strategies

are targeted, focusing on specific communities or high-risk groups.

Measuring TB transmission is not straightforward. Approaches to estimate it

range from epidemiological investigations (eg, contact tracing method) to

molecular tools to detect TB outbreaks (eg, MIRU-VNTR genotyping technique)

[41]. These latter approaches have the potential to reveal genetic links that are

not identified by contact tracing. However, traditional molecular genotyping has

its limitations. For instance, there is reported that many genotyping links

identified by molecular tools have not epidemiological evidence associated,

resulting in an overestimation of TB transmission rates [55], resulting in no

cost-effective added value to the public health surveillance systems [142]. As a
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result, the adoption of this technique as a universal genotyping method is

scarce, especially in low-income countries.

This situation has started to change with the use of whole genomes as

epidemiological markers [175, 150]. Whole genomes show a higher degree of

agreement with epidemiological investigations , and avoid overclustering

detected by conventional methods. The most common approach to delineate

this genomic transmission is by using different single nucleotide polymorphisms

(SNP) thresholds [150]. Although the number of SNPs is still under debate [56],

there is no doubt that a 5 SNP threshold identifies cases of recent transmission

while some additional cases can be identified with higher cut-offs at the

expense of including false clustered cases [143, 144]. At the same time, using

whole genome sequencing (WGS), we can model the evolution of the pathogen

sequences and, hence, define how likely two cases are in the same

transmission cluster even without epidemiological data support [147, 176].

However, the majority of publications are focused on transmission previously

detected by conventional genotyping methods while population-based studies

are scarce [144].

WGS is also useful to predict drug resistance (DR). Recently, it has been

proved that DR prevalence at country level can be accurately estimated by

genomic surveillance [177], and could replace the classic phenotypic drug

susceptibility testing (DST), especially DR predictions related with first-line

drugs [178, 137, 179] . The sensitivity and specificity values of this WGS-DST

prediction largely depends on the use of well-curated catalogues of DR

mutations robustly linked to individuals drug susceptibility profiles. Thus,

international consortiums have been publishing catalogues of well-established

mutations [169, 97]. Additionally, our increased knowledge of these causative

genetic variants demonstrates that first-line drug susceptibility profiles can be

precisely predicted and used at patient level [137].

Here, we reported a TB population-based study in Valencia Region, a

low-incidence setting from 2014 to 2016. We carried out a WGS-based

analysis of 785 patients corresponding to 77% of all MTBC culture positive
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cases. During the study period the mean TB incidence was 8.4 cases per

100,000 population, including local- and foreign-born inhabitants. Contrary to

the tenet that most cases in high-income regions are due to foreign-born

individuals, most cases were Spanish-born patients (63%) and were more likely

involved in recent transmission events. At the population level, we identified

that between 35-41.3% of the TB patients were genomically related within a

transmission cluster (47.4% of them were local-born patients). Our results

show that transmission is still a major contributor to TB burden even in

low-burden settings like Valencia Region. Compared to the United Kingdom

where most cases are imported and genomic clustering rate is low, our results

suggests that halting transmission among the local-born population can

accelerate TB elimination in the region.

3.2 Methods

3.2.1 Study Population Setting

Valencia Region, including Alicante; Castellón and Valencia provinces, is the

fourth largest populated region in Spain with 4,963,703 million inhabitants, of

which 15% corresponds to foreign-born people. During the study period there

were reported a total of 1281 TB cases, giving an incidence rate of 8.4 per

100,000 population (https://www.sp.san.gva.es/).

Tuberculosis local surveillance is managed by the Regional Public Health

Agency (DGSP: Dirección General de Salud Pública); they use contact tracing

method as a gold standard approach to detect TB transmission within the

population. As a part of a mandatory routine, each positive diagnosed TB

patient fills up a local-standardized questionnaire in order to identify

epidemiologically related cases and highly likely new infected individuals. In

addition, this survey also collected clinical, microbiological and demographic

data. Contact investigation was done in 72% of all TB notified individuals

through 2014 and 2016. A total of 9,312 close contacts were investigated by
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DGSP and found that 23.7% of these individuals were infected contacts, which

included active TB and LTBI cases. Of these, just 13.3% of patients developed

the disease. Standard phenotypic drug susceptibility testing (DST) using

liquid-based (BACTEC-MGIT 960 system), and/or solid-based

(Löwenstein-Jensen) growth media is used for routine drug resistance (DR)

inspection.

Approval for the study was given by the Ethics Committee for Clinical

Research from the Valencia Regional Public Health Agency (Comité Ético de

Investigación Clı́nica de la Dirección General de Salud Pública y Centro

Superior de Investigación en Salud Pública). Informed consents were waived

on the basis that tuberculosis is part of the regional compulsory surveillance

program of communicable diseases. All personal information was anonymized

and no data allowing individual identification was retained.

3.2.2 Isolate Collection and DNA extraction

A total of 785 single-patient cultures were retrieved from 18 Hospitals from

Valencia Region over the 2014-2016 period. This number corresponded to 77%

(785/1019) of all culture-positive cases reported by the DGSP. Hospitals

previously tested TB positivity on liquid Mycobacteria Growth Indicator Tube

(MGIT) or solid-media Löwenstein-Jensen (LJ). In order to obtain sufficient

DNA amount all clinical isolates were cultured again in Middlebrook 7H11 agar

plates supplemented with 10% OADC (Becton-Dickinson) for 3 weeks at 37°C.

DNA was extracted with CTAB method from a representative population sample

(four times plate scraping). A TB biological library was constructed by storing

all scrapped samples in 1ml of glycerol (20%) at -80C°. All procedures were

performed at FISABIOS’s BSL3 facility (Valencia city), under WHO protocols

recommendations.
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3.2.3 Whole Genome Sequencing and bioinformatics
analysis

Sequencing libraries were constructed with Nextera XT DNA Library Preparation

Kit (Illumina, San Diego, CA) following the manufacturer’s instructions. WGS

procedure was performed on the Illumina MiSeq platform.

Data analysis was carried out following a validated pipeline previously

described [180] (http://tgu.ibv.csic.es/?page id=1794). Briefly, high quality

sequencing reads not belonging to the Mycobacterium tuberculosis Complex

(MTBC) were filtered out. Then, resulting reads were mapped to an inferred

MTBC most likely common ancestor genome

(https://zenodo.org/record/3497110). SNPs with a minimum 10X depth

coverage and a quality score of 20 were kept for further analysis. We separated

SNPs according to their frequency. Fixed-SNPs (fSNP), those called with at

least 90% of allele frequency, were used for epidemiological analysis (e.g

transmission detection); while variable-SNPs (vSNP), those detected with

frequency between 10-89%, were also included for DR prediction. Indels were

considered when the mutation was present in a minimum of 10 reads and 10%

of frequency. We used the H37Rv as reference (NCBI, AL123456.2) for variant

annotation. Variants detected in regions difficult to map such as repetitive

sequences and PPE/PE-PGRS genes were removed from the analysis as well

as those detected within higher density regions (> 3 SNPs in 10 bp).

3.2.4 Drug resistance prediction and MTBC classification
based on WGS data

Drug resistance profile for every sample was predicted by identification of

well-known mutations conferring resistance. Briefly, all mutations (fSNPs and

vSNPs included) were compared with ReSeqTB [181] and PhyResSE [169]

resistance databases, well-validated catalogues of variants associated with first

and second line drugs resistance. Isolates were classified as susceptible,

resistant, multidrug resistant (MDR) or extensively drug-resistant (XDR),
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according to their predicted resistance profile. MTBC isolates classification was

determined using a combination of lineage (L) and sub-lineage specific

markers previously described [157, 40]. Additionally, we searched for

phylogenetic allele’s frequencies in vSNPs, if we found two different lineage or

sub-lineage SNPs in one sample or those variants frequencies were less than

95%, the isolate was considered a likely mixed infection. Despite Valencia

region being considered a low-burden TB setting, five samples were identified

as mixed infection and removed from the analysis.

3.2.5 Genomic transmission based on genetic distances
and phylogeny

Genomic-based estimation of transmission was evaluated by performing

clustering analysis based on pairwise distance of whole genome data. A

multisequence alignment (MSA) file with the fSNPs from all samples was

constructed discarding drug resistance position. Then, pairwise distances

between each sample was computed with R ape package. A genomic cluster

was defined whether a group of at least two MTBC strains shared a defined

genetic distance, we evaluated genomic clusters using three different

thresholds (0, 5 and 12 SNPs). Clusters were defined using a customized

script. To confirm that all clusters were monophyletic, a maximum likelihood

tree was constructed with the MSA (50,184 SNPs) file using RAxML v8 [182],

GTRGAMMA model and 1,000 bootstrap replicates. Mycobacterium canetti

was included as an outgroup.

3.2.6 Statistical analysis

In order to evaluate association between risk factors and genomic clustering

(clustered cases vs unique cases), we computed Fisher’s exact test in samples

with epidemiological data available (n=724, 92.2% of all sequenced

individuals). Univariate analysis identified that Spanish-born was related to

genomic transmission (see Results). Next, we carried out univariate
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comparisons on Spanish-born individuals that were in genomic transmission

(clustered cases, n=299) against all MTBC lineages and sub-lineages.

We made a comparison between the transmission rate detected by WGS

with that identified by local Public Health surveillance system to correlate SNP

distances with epidemiological evidence. We applied three different SNPs

thresholds (0,5 and 12 SNPs). In addition, we estimated the number of

transmission events detected by routine contact tracing method as well as

WGS. The number of potential transmission events was calculated by the

number of individuals within a cluster minus one case, which could be an index

case (n-1 method). All statistical analyses and graphics were performed in R.

3.2.7 Performance of WGS for drug resistance prediction
and epidemiology

We evaluate the performance of the WGS technique for DR prediction as well as

for detecting transmission. Sensitivity, specificity, accuracy, positive predictive

values (PPV), and negative predictive values (NPV) were calculated for both

comparisons [183]. Sensitivity was calculated as the probability that a given

result will be a positive result (true positive value). Specificity was calculated as

the probability that a given result will be a negative result (true negative value).

PPV was calculated as the probability that a given positive result was a true

positive result. NPV was calculated as the probability that a given negative result

was a true negative result.

In the case of DR prediction, we compared our genomic DR profile against

the DST results obtained by the hospitals (n=684). Routine phenotypic DST for

first-line drugs was carried out using the BACTEC MGIT 960 system (Becton

Dickinson, USA). DST was considered the reference method. Comparisons

were made for the first-line drugs (rifampicin, isoniazid, ethambutol,

pyrazinamide and streptomycin). In the case of transmission, we tested the

genomic clustered cases detected (considering 0, 5 and 12 SNPs threshold),

against the reference method, which was the epidemiologically linked cases
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identified by the standard contact tracing investigations.

3.3 Results

3.3.1 Study population

Between 2014 and 2016, 1281 new cases of tuberculosis were diagnosed and

notified to the DGSP, of which 1019 (79.5%) were culture-positive. We

performed WGS on 785 individuals, which corresponds to 77% of all

culture-positive TB patients (785/1019); epidemiological information was

available for 724 individuals, which constitute a representative subset from the

local TB population. Table 3.1 presents an overview of the demographic and

clinical characteristics of culture-positive TB cases. Further analysis was

performed with this dataset.

The majority of the individuals were Spanish-born (63%, n=456), men

(62.3%, n=451) and with a median age of 44 years (SD±19.27). Most of the

cases (82%,n=594) were related to pulmonary tuberculosis and only 57.7%

(n=418) were sputum smear positive. A small proportion of patients displayed

HIV positive status (7%, n=51) or alcohol abuse (19%, n=138). The mean TB

incidence rate in Spanish-born people was 6.7 per 100,000 inhabitants

compared with 20 per 100,000 in foreign population.
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Table 3.1: Demographic characteristics of all culture-positive TB individuals analyzed in
the study. All patients column is showing the values obtained by the local surveillance
system, while WGS patients define the TB cases that we were able to sequence.
Abbreviations; WGS, Whole Genome Sequencing.

Characteristic All Patients WGS Patients
(n= 1019) (n=724)

Age (years)
≤15 23 (2.2%) 20 (2.8%)

16-24 70 (6.8%) 57 (7.9%)

25-44 413 (40.5%) 287 (39.6%)

45-65 338 (33.1%) 238 (32.9%)

≥66 175 (17.1%) 122 (16.8%)

Sex
Female 381 (37.4%) 273 (37.7%)

Male 638 (62.6%) 451 (62.3%)

Place of birth
Spanish-born 682 (67%) 456 (63%)

Foreign-born 337 (33%) 268 (37%)

Sputum smear
Positive 575 (56.4%) 418 (57.7%)

Negative 439 (43.1%) 302 (41.7%)

Disease type
Pulmonary 832 (81.6%) 594 (82%)

Extrapulmonary 187 (18.3%) 130 (17.9%)

Alcoholisma

Yes 181 (17.7%) 138 (19%)

No 777 (76.2%) 543 (75%)

Diabetesb

Yes 110 (10.7%) 74 (10.2%)

No 887 (87%) 639 (88.2%)

HIV infectedc

continued
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Characteristic All Patients WGS Patients
(n= 1019) (n=724)

Yes 61 (5.9%) 51 (7%)

No 862 (84.6%) 609 (84.1%)

Social exclusiond

Yes 99 (9.7%) 90 (12.4%)

No 882 (86.5%) 606 (83.7%)

Health care workerse

Yes 24 (2.3%) 14 (1.9%)

No 986 (96.7%) 705 (97.4%)

Imprisonmentf

Yes 45 (4.4%) 39 (5.3%)

No 952 (93.4%) 668 (92.3%)

Diagnostic delayg

Yes 264 (25.9%) 180 (24.8%)

No 712 (69.9%) 520 (71.8%)

Contact tracing investigationh 139 (13.6%) 97 (13.4%)
a Unknown data in 61 individuals.
b Unknown data in 22 individuals.
c Unknown data in 96 individuals.
d Unknown data in 38 individuals.
e Unknown data in 9 individuals.
f Unknown data in 22 individuals.
g Diagnostic delay was considered whether there were at least 90 days between

symptom onset and diagnosis date. Unknown data in 43 individuals.
h TB individuals found by routine epidemiological contact tracing method used by local

surveillance system.
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3.3.2 MTBC genotyping

Of the 785 MTCB clinical samples analyzed, 10 isolates were removed due to

either non-MTBC samples (5/785) and likely mixed infections (5/785). Using

specific SNPs to determine MTBC lineages and sub-lineages circulating in the

region (Coll et al. 2014; Stucki et al. 2016), we identified six different lineages,

including animal genotypes. The most frequent was L4 in 714 isolates (92.1%),

followed by L2 and L3, with 21 (2.7%) and 20 (2.6%) strains, respectively.

Lineages 1, 6 and 5, were the least frequent with 4, 3 and 2 cases, respectively.

In contrast, we detected 11 cases within animal lineages, 9 of these belonged

to M. bovis, and 2 were assigned to M. caprae (Figure 3.1A).

Because L4 was the most frequent in our study, we further inspected its

main sub-lineages. We identified that 89.9% (n=644) of all L4 isolates

corresponded to the three main L4 generalists genotypes described by (Stucki

et al. 2016); 33.3% L4.1.2 (Haarlem family, n=240); 30.2% L4.3 (LAM family,

n=216); and 26.3% L4.10 (PGG3 family, n=187). In contrast, specialist

sub-lineages were found in a lower proportion; 1.4% L4.6.2 (Cameroon family,

n=10); L4.1.3 and L4.5 with two cases each. In addition, isolates belonging to

L4.4, L4.1.1 (“X” genotype) and L4.2 were detected in 3.2% (n=23), 2.6%

(n=19), and 1.4% (n=10), respectively. Moreover, we couldn’t identify any of the

known specific sub-lineage SNPs in five L4 strains, thus they remain as L4.

3.3.3 TB transmission rate in Valencia Region is higher than
evidenced by contact tracing

Transmission clustering rate was estimated using all sequenced data (n=775).

Using a genomic clustering approach to evaluate transmission (12 SNPs), we

detected that 331 (42,7%) samples were within a transmission group

(Figure 3.1B). They were included in 112 different clusters with variable size

(ranging from 2-12 cases per cluster (Figure 3.1C). In order to distinguish

transmission due to recent or old infection, we evaluated different SNP cut-offs.

Using a 5 SNP threshold, the clustering rate was 35%, which corresponded to
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271 isolates within 97 genomic clusters. A 5 SNP threshold should roughly

correspond to an infection event 5-8 years ago (assuming a molecular clock of

0.3-0.5 SNPs/year). Furthermore, the clustering rate by applying a 0 SNP

cut-off was 15.9%, which involved 123 individuals within 51 groups and is

indicative of very recent transmission. In contrast, the percentage of linked

cases revealed by contact tracing was considerably lower, 12.5% (n=97), than

the proportion estimated by WGS clustering method (Figure 3.1B).

Figure 3.1: Genomic characterization of the study region.A) Phylogeny of 775
TB isolates collected during 2014-2016. Each ring represents different genomic
clusters detected by different SNP threshold (0, 5, 10 and 12 SNPs). textitM.canneti
was used as an outgroup. B) Clustering percentage obtained by using different
SNP threshold. C) Number of genomic clusters by different cluster size. 12 SNP
threshold was used as a standard. Clusters sizes from 8 to 11 samples were not
detected. * Nomenclature proposed by Comas et al. [127]

By contact tracing, 97 out of the 775 samples with WGS data, had been

identified to be epidemiologically linked (12.5%, (Figure 3.1B), involving 66

transmission clusters. From these 97 samples, we observed that only 74

(76.3%, 74/97) and 65 cases (67%, 65/97) were genomically related by

applying 12 and 5 SNPs threshold, respectively. The link between the rest of

the cases (23/97) was incompatible with the genetic distance threshold used to
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estimate transmission since they are separated by more than 100 SNPs which

roughly corresponds to a transmission event around 100 years ago

(Figure 3.2).

Using the standard 12 SNP threshold, and the available epidemiological

data from patients (n=724), we calculated 199 transmission events which

involve 288 TB cases belonging to 111 genomic clusters. Of these genomic

transmission events, only 15,5% (31/199) were epidemiologically detected by

the local surveillance system.” It is notably that all transmission events identified

by epidemiological investigations happened between individuals that had a

genetic distance of 5 SNPs, suggesting that contact tracing method only

identifies very recent transmission.

We then benchmarked WGS as an epidemiological tool for transmission by

using 12, 5, and 0 SNPs thresholds against the epidemiologically linked cases

detected by contact tracing. For this comparison we used the samples with

contact epidemiological data associated (n=724) and declared as a cluster by

public health officials. The number of confirmed linked cases by contact tracing

in our dataset was 59 and we used them as a gold-standard to identify the SNP

thresholds that maximizes sensitivity and specificity. When using different

genetic thresholds to define transmission the sensitivity values were 93.22%

(95% CI, 83.54-98.12%) for 12 SNP cutoff, and 91.53% (95% CI,

81.32-97.19%) for 5 SNP threshold and decreased to 49.15% (95% CI,

35-89-62.50%) when using a 0 SNP cutoff. Specificity values were lower with

63.31% (95% CI, 59.52-66.98%), 71.73% (68.14-75.12%), and 88.27% (95%

CI, 85.58-87.60%) using 12, 5, and 0 SNP thresholds, respectively. In addition,

PPV was 30% in all transmission cutoffs (Table 3.2). In general, the accuracy

of WGS were 65.75% (95% CI, 62.16-69.20%) using 12 SNPs, 73.34% (95%

CI, 69.96-76.53%) using 5 SNPs, and 85.08% (95% CI, 82.28-87.60%) by 0

SNPs.
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Figure 3.2: Clustered samples using different clustering methods. The graph
shows the numbers of samples with their minimum genetic distance between
isolates. The grey dashed line separates the genomically related samples
(clustered cases) from those that are not (unique cases.

3.3.4 TB transmission is associated with Spanish-born
population

Clustering rate resulted considerably high for a low-burden region (42.71%,

using a 12 SNP threshold), hence, we next evaluated whether there were any

risk factors associated with transmission that could explain the elevated value

observed. As expected, transmission was associated with the youngest

patients (median age, 4 years) (85% vs 15%, p = 0.001), on the contrary,

patients with 65 years were associated with being unique cases (29.5% vs

70.5%, p = 0.001). Additionally, pulmonary TB was associated with clustered

cases (45% vs 75.4%, p = 0.001). No risk factors such as alcohol abuse and

HIV positive status were associated with transmission (48.5% vs 51.5%, p=

0.123; and 41.2% vs 58.8%, p = 1, respectively). Strikingly, we found that the

Spanish-born people were more likely associated with transmission when
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compared to foreigners (47.4% vs 31%, p= 0.001) (Table 3.3). Knowing this,

we investigated whether there was any particular risk factor within

Spanish-born patients associated with transmission. We obtained the same

results as for the total population (Table 3.3).

Table 3.3: Risk factors associated with transmission among the whole population
and Spanish-born population. Abbreviations; REF, Reference; WGS, Whole Genome
Sequencing.

All Patients (n=724) Spanish Population (n=456)

Variable Clustered
cases

Unique
cases Odd Ratio p-value Clustered

cases
Unique
cases Odd Ratio p-value

(n=299) (n=425) (95% CI) (n=216) (n=240) (95%CI)

Transmission
method

WGS 299
(41.3%)

425
(58.7%)

4.54
(3.48-5.96)

<0.001 216
(47.4%)

240
(52.6%)

5.04
(3.64-7.02)

<0.001

Contact
tracing

97
(13.4%)

627
(86.6.%)

69
(15.1%)

387
(84.9%)

Age
(years)
≤15 17

(85%)
3
(15%)

6.53
(1.83 - 35.51)

<0.001 16
(88.9%)

2
(11.1%)

5.45
(1.21-50.67)

0.018

16-24 20
(35.1%)

37
(64.9%)

0.63
(0.33 - 1.17)

0.144 12
(57.1%)

9
(42.9%)

0.97
(0.33-2.64)

1

25-44 133
(46.3%)

154
(53.7%)

REF REF 83
(59.3%)

57
(40.7%) REF REF

45-64 93
(39%)

145
(61%)

0.74
(0.52 - 1.07)

0.111 74
(45.4%)

89
(54.6%)

0.57
(0.35-0.92)

0.020

≥65 36
(29.5%)

86
(70.5%)

0.49
(0.30 - 0.78)

<0.001 31
(27.2%)

83
(72.8%)

0.26
(0.14-0.45)

<0.001

Sex
Male 197

(43.6%)
254
(56.4%)

1.3
(0.94 - 1.79)

0.102 141
(49.8%)

142
(50.2%)

1.07
(0.72-1.59)

0.775

Female 102
(37.3%)

171
(62.7%)

REF REF 75
(43.3%)

98
(56.7%)

REF REF

Place of
birth

Spanish-
born

216
(47.4%)

240
(52.6%)

2
(1.44 - 2.79)

<0.001 - - - -

Foreign-
born

83
(31%)

185
(69%)

REF REF - - - -

Sputum
smear
Positive 184

(44%)
234
(56%)

1.32
(0.96-1.80)

0.078 129
(50%)

129
(50%)

1.29
(0.87-1.91)

0.185

continued
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All Patients (n=724) Spanish Population (n=456)

Variable Clustered
cases

Unique
cases Odd Ratio p-value Clustered

cases
Unique
cases Odd Ratio p-value

(n=299) (n=425) (95% CI) (n=216) (n=240) (95%CI)

Negative 113
(37.4%)

189
(62.6%)

REF REF 86
(43.6%)

111
(56.4%)

REF REF

Disease
type

Pulmonary 267
(45%)

327
(55%)

2.5
(1.60-3.98)

<0.001 196
(51%)

188
(49%)

2.70
(1.52-4.97)

<0.001

Other 32
(24.6%)

98
(75.4%)

REF REF 20
(27.8%)

52
(72.2%)

REF REF

Alcoholism
Yes 67

(48.5%)
71
(51.5%)

1.35
(0.91 - 2.00)

0.123 47
(54%)

40
(46%)

1.32
(0.80-1.72)

0.281

No 223
(42.9%)

320
(58.9%)

REF REF 165
(47.1%)

185
(52.9%)

REF REF

Diabetes
Yes 31

(41.8%)
43
(58.1%)

1.02
(0.61 - 1.71)

1 25
(41.6%)

35
(58.4%)

0.76
(0.42-1.37)

0.404

No 264
(41.3%)

375
(58.7%)

REF REF 188
(48.3%)

201
(51.7%)

REF REF

HIV
infected

Yes 21
(41.2%)

30
(58.8%)

0.97
(0.52 - 1.80)

1 15
(48.4%)

16
(51.6%)

1.02
(0.48-2.28)

1

No 255
(41.9%)

354
(58.1%)

REF REF 186
(47.8%)

203
(52.2%)

REF REF

Social
exclusion

Yes 34
(37.7%)

56
(62.3%)

0.85
(0.52-1.36)

0.493 16
(44.4%)

20
(55.6%)

0.89
(0.42-1.87)

0.862

No 253
(41.7%)

353
(58.3%)

REF REF 194
(47.3%)

216
(52.7%)

REF REF

Health
care

workers
Yes 9

(64.3%)
5
(35.7%)

2.60
(0.77-9.99)

0.100 9
(64.3%)

5
(35.7%)

2.03
(0.60-7.85)

0.277

No 288
(40.9%)

417
(59.1%)

REF REF 206
(46.9%)

233
(53.1%)

REF REF

Imprisonment
Yes 20

(51.3%)
19
(48.7%)

1.53
(0.76-3.09)

0.241 16
(59.3%)

11
(40.7%)

1.64
(0.70-4.02)

0.237

No 272
(40.7%)

396
(59.3%)

REF REF 198
(46.9%)

224
(53.1%)

REF REF

Diagnostic
delay

continued
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All Patients (n=724) Spanish Population (n=456)

Variable Clustered
cases

Unique
cases Odd Ratio p-value Clustered

cases
Unique
cases Odd Ratio p-value

(n=299) (n=425) (95% CI) (n=216) (n=240) (95%CI)

Yes 66
(36.6%)

114
(63.4%)

0.78
(0.54-1.12)

0.161 46
(39%)

72
(61%)

0.64
(0.41-1.01)

0.050

No 222
(42.7%)

298
(57.3%)

REF REF 162
(50.5%)

159
(49.5%)

REF REF

a Unknown data in 43 individuals.
b Unknown data in 11 individuals.
c Unknown data in 64 individuals.
d Unknown data in 28 individuals.
e Unknown data in 5 individuals.
f Unknown data in 17 individuals.
g Diagnostic delay was considered whether there were at least 90 days between symptom onset and

diagnosis date. Unknown data in 24 individuals.
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As no risk factor is associated with local-born increased transmission we

wondered if transmission was driven by the bacterial genotype. We analyzed all

the genotypes (lineages and sub-lineages included) that had at least 10 cases

infecting Spanish-born and performed a multivariate analysis. We identified no

association between transmission among Spanish-born and a specific MTBC

genetic lineage, except for sub-lineage L4.1.1, for which the proportion of

clustered and unique cases in Spanish-born people is very different (14.3% vs

85.7%, p-value 0.011). In this case, this statistically significance result is

associated to be a unique case rather than being a clustered case. These

results suggest that there is no specific MTBC lineage involved in transmission

among local population studied, but this does not preclude that more specific

genotypes are, further analysis identifying specific genotypes must be

conducted (Table 3.4).

Lineage Patients
(n=456)

Clustered cases
(n=216)

Unique cases
(n=240)

Odds ratio
(95% CI) p-value

L4.1.1 14 2 (14.3%) 12 (85.7%) 0.17
(0.02-0.81) 0.011

L4.1.2 141 70 (49.6%) 71 (50.4%) reference reference

L4.3 145 68 (46.9%) 77 (53.1%) 0.90
(0.55-1.46) 0.722

L4.4 11 5 (45.5%) 6 (54.5%) 0.85
(0.19-3.50) 1

L4.10 126 62 (49.2%) 64 (50.8%) 0.98
(0.59-1.63) 1

Table 3.4: MTBC lineage distribution among Spanish-born population separated by
clustered and unique cases. Only genotypes that had at least 10 Spanish-born
individuals are represented.
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Finally, we also inspected the distribution of genetic distances between

Spanish-born beyond the SNP thresholds we used for recent transmission. In

that way, we can identify older transmission events. We noticed a continuous

distribution of genomic distances between strains without a clear cut-off at 12

SNPs (Figure 3.3), contrary to what was observed in other low-burden TB

settings, such as the United Kingdom [27] where transmission are very recent

and no case is found between 12-50 SNPs (see General Discussion). This

results suggests that transmission in the Valencia Region has been maintained

over the last decades, contrary to what is observed in the UK where only very

recent transmission events are detected.

Figure 3.3: Distribution of genetic distances between Spanish-born isolates. The grey
dashed line separates the genomically related samples (clustered cases) from those that
are not (unique cases).
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3.3.5 Using WGS as a routine tool to predict drug resistance

WGS allowed the prediction to first- and second-line drugs. Using our

catalogue of confident mutations we predicted the DR profile in all the 775

MTBC sequenced isolates. The majority of these were predicted as susceptible

to all TB drugs (691/775, 89.2%). Nevertheless, 85 samples harboured at least

one mutation related with drug resistance (10.9%). Fifteen isolates were

predicted as MDR-TB and one as an XDR-TB case. Based on genetic data,

isoniazid resistance was the most frequent resistance found with 57.8% (n=44)

of the cases, followed by rifampicin and fluoroquinolones resistance with 25%

(n=19) and 23.6% (n=18), respectively. Pyrazinamide resistance was predicted

in 19.7% (n=15) individuals. Finally, ethambutol and streptomycin resistance

phenotypes were predicted in 17.1% (n=13) each. All the M. bovis strains

harboured the phylogenetic mutation H57D in pncA that confers resistance to

pyrazinamide.

In order to test whether WGS can be used as a tool for first-line drug

resistance prediction in our setting, we calculated their performance values. We

used culture-based DST as the reference method as it is the routine method for

determining first-line DR in the Valencia region. Out of the 775 samples

studied, 702 had a complete DST profile available, 79 of them (11.2%, 79/702)

were classified as DR resistant to at least one first-line antibiotic. WGS

specificity values for all first-line drugs ranged between 98-100%, being

pyrazinamide the lowest with 98.81%. In contrast, sensitivity and PPV values

were low, especially for some drugs such as ethambutol, pyrazinamide and

streptomycin, whose values were around 50% or lower (50%, 52.38% and

39.13%. respectively). Overall, the accuracy values were >97% for all the

drugs (Table 3.5), suggesting that WGS could be used as a diagnostic tool for

DR prediction in the region. The discrepancies between WGS and DST might

be explained by the presence of MTBC strains harbouring uncommon

mutations not present in available catalogues (see chapter 5 for an example),

labelling errors in the genomics laboratory or false negative/positive DST

results.
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3.4 Discussion

This is the first national population study-based using WGS to genomic

characterize the MTBC population circulating in Valencia region and more

importantly, to delineate its transmission and compared with local

epidemiological investigations. We whole-genome sequenced 77% of all MTBC

culture-positive cases during three years, which is a representative proportion

of all the TB notified cases of the region, and give us a real picture of the

bacteria population that are infecting the population as well as some

epidemiological factors that are associated with disease prevalence, especially

local-born feature.

Valencia Region is a TB low-burden area with an incidence of 8.4 (per

100,000 inhabitants), however, we found multiple evidence that suggests

transmission is still playing an important role in the setting. First, the proportion

of Spanish-born population with TB was 63%, this percentage is in agreement

with the reported in other Spanish cities such as Barcelona [131] and Madrid

[184] with 65.3%, and 63.4%, respectively. On the contrary, the proportion of

local-born TB cases in other low-burden countries such as Canada [185], the

UK [27], and The Netherlands [149] are lower than 30% of all TB individuals.

Second, we detected that almost half of all TB cases were clustered (42.7%),

using the standard of 12 SNP threshold to delineate genomic transmission, and

one third (35%) when applying a 5 SNP threshold (35%). In both cases, this

clustering rate is higher compared to those reported in other low-burden

countries, where genomic transmission ranged between 14-16% [27, 149], and

somewhat closer to that reported in high-burden TB countries, where the

detected transmission ranged from 39 to 66% [151, 186]. However, the

sampling period of these studies ranged from one to ten years, and thus the

molecular clustering rate may not be directly comparable (but see General
Discussion). Finally, we identified that this elevated transmission rate was

associated with local-born TB cases as opposed to recent immigrants. A

similar situation has been reported in the UK, where foreign-born TB incidence
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is contributed by LTBI acquired abroad and, hence, they are less associated

with local transmission clusters [27]. Although the TB local-born incidence rate

in Valencia Region was low (6.7 per 100,000 inhabitants), we did not identify a

clear SNP cut-off to delineate genomic transmission (from 0 to 35 SNPs,

Figure 3), demonstrating a continuum distribution of genetic distances in our

setting involving very recent but also older transmission events that had

occurred among local-born individuals. By contrast, while in the UK

transmission is also higher among local-born only only very recent transmission

is observed (see General Discussion).

Despite the availability of a few additional population-based studies that use

WGS as a primary tool for detecting transmission, our results are not fully

comparable with them, due to the specifics of the TB setting. For example,

there are two studies that genomically characterized endemic regions within

Canada [28, 176]. In both reports, the genomic clustering percentage is higher

than 70%. However, those studies focused on specific and low-migration

populations and, hence, the TB incidence rate is low but the majority of the

cases are genomically related.

The fact that epidemiological investigations only detected 12.5% clustered

cases against 42.71% identified by WGS denotes the limitations of the contact

tracing method. A recent meta-analysis has demonstrated that WGS helped to

improve the current contact tracing method revealing additional members of

transmission clusters [144]. In high-burden countries, epidemiological links

were identified only in the 18% of all clustered cases [147]. In contrast,

agreement percentage raises up to 42.3% in low-burden countries [27]. The

disagreement observed in Valencia region might be explained by the fact that

we observed more transmission than other low-burden countries, and this

transmission likely happened during sporadic contacts outside the boundaries

of contact tracing investigations. As a consequence, contact tracing likely

missed a number of epidemiological links, similar to what happens in high

burden countries. This also explains the low sensitivity, specificity and PPV

obtained when comparing contact tracing with WGS (Table 3.2). We noticed
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that the higher agreement values were obtained with lower SNP thresholds (0

and 5 SNPs) but also that many links below those thresholds are not detected

by contact tracing, supporting the idea that routine contact tracing method in

Valencia Region only detects a percentage of very recent transmission.

In general, Spain is a low-burden resistant TB country (incidence of 0.5 per

100,000 population). By traditional phenotypic DST, 11.2% of cases were

identified to have a drug resistant profile. Using WGS, we predicted that 10.9%

(n=85) of all the isolates were at least resistant to one antibiotic and 1.9%

(n=15) were predicted as MDR-TB. Using DST as a reference method for

detecting phenotypic resistance, we calculated performance values for WGS.

Overall, the specificity, NPV and accuracy values were higher than 97%

(Table 3.5), which is comparable with other worldwide studies [137], and other

low-burden TB countries such as The Netherlands [179]. Nevertheless, the fact

that some first-line drugs (eg, rifampicin) had a lower sensitivity values than

other studies, could suggest the presence of uncommon low-level resistance

mutations that are missed by routine phenotypic DST [84, 187]. This

phenomenon is further discussed in chapter 5.

In conclusion, the use of WGS for the genomic characterization of MTBC

isolates, prediction of drug resistances profiles, and most importantly, to detect

genomic transmission, provides a perfect complement to the information

obtained by routine methods used in this local setting. Our results show that

transmission is still a major contributor to local TB prevalence, suggesting that

strategies for cutting this transmission are required in order to accelerate TB

elimination. In this sense, due to WGS is able to detect genetic links that are

missed by contact tracing, the combination of both methods will improve the

conventional epidemiological investigations, for example, by designing specific

interventions that target high transmission TB risk groups or foci (eg,

geographical hotspots of TB). Our data suggests that WGS can add additional

actionable information at the patient and the population level and progress must

be made to incorporate WGS routinely in the Valencia Region health system. In

fact, as a consequence of this thesis, we have generated 10 reports to public
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health authorities and to microbiological units of the hospitals. Our reports have

helped to confirm or to oriented epidemiological investigations. At the individual

level they have helped to confirm or discard drug resistance and in some cases

to help to treat the patient as in chapter 5.
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High-resolution mapping of
tuberculosis transmission: Whole
genome sequencing and
phylogenetic modelling of a cohort
from Valencia Region, Spain.

The work described in the present chapter has been published as a Research Article in

PLoS Medicine Journal:

Xu Y, Cancino-Muñoz I, Torres-Puente M, Villamayor LM, Borrás R, Borrás-Máñez M,

et al. High-resolution mapping of tuberculosis transmission: Whole genome sequencing

and phylogenetic modelling of a cohort from Valencia Region, Spain. Murray MB, editor.

PLoS Med. 2019;16: e1002961. https://doi.org/10.1371/journal.pmed.1002961

69

https://doi.org/10.1371/journal.pmed.1002961


High-resolution mapping of tuberculosis transmission

4.1 Abstract

Background: Whole genome sequencing provides better delineation of

transmission clusters in Mycobacterium tuberculosis than traditional methods.

However, its ability to reveal individual transmission links within clusters is

limited. Here, we used a 2-step approach based on Bayesian transmission

reconstruction to (1) identify likely index and missing cases, (2) determine risk

factors associated with transmitters, and (3) estimate when transmission

happened.

Methods and findings: We developed our transmission reconstruction method

using genomic and epidemiological data from a population-based study from

Valencia Region, Spain. Tuberculosis (TB) incidence during the study period

was 8.4 cases per 100,000 people. While the study is ongoing, the sampling

frame for this work includes notified TB cases between 1 January 2014 and 31

December 2016. We identified a total of 21 transmission clusters that fulfilled

the criteria for analysis. These contained a total of 117 individuals diagnosed

with active TB (109 with epidemiological data). Demographic characteristics of

the study population were as follows: 80/109 (73%) individuals were

Spanish-born, 76/109 (70%) individuals were men, and the mean age was

42.51 years (SD 18.46). We found that 66/109 (61%) TB patients were sputum

positive at diagnosis, and 10/109 (9%) were HIV positive. We used the data to

reveal individual transmission links, and to identify index cases, missing cases,

likely transmitters, and associated transmission risk factors. Our Bayesian

inference approach suggests that at least 60% of index cases are likely

misidentified by local public health. Our data also suggest that factors

associated with likely transmitters are different to those of simply being in a

transmission cluster, highlighting the importance of differentiating between

these 2 phenomena. Our data suggest that type 2 diabetes mellitus is a risk

factor associated with being a transmitter (odds ratio 0.19 [95% CI 0.02–1.10],

p ¡ 0.003). Finally, we used the most likely timing for transmission events to

study when TB transmission occurred; we identified that 5/14 (35.7%) cases
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likely transmitted TB well before symptom onset, and these were largely

sputum negative at diagnosis. Limited within-cluster diversity does not allow us

to extrapolate our findings to the whole TB population in Valencia Region.

Conclusions: In this study, we found that index cases are often misidentified,

with downstream consequences for epidemiological investigations because

likely transmitters can be missed. Our findings regarding inferred transmission

timing suggest that TB transmission can occur before patient symptom onset,

suggesting also that TB transmits during sub-clinical disease. This result has

direct implications for diagnosing TB and reducing transmission. Overall, we

show that a transition to individual-based genomic epidemiology will likely close

some of the knowledge gaps in TB transmission and may redirect efforts

towards cost-effective contact investigations for improved TB control.

4.2 Introduction

Better understanding of tuberculosis (TB) transmission is key for TB control in

the 21st century. Economic resources are very limited in many high-burden

countries, while in low-burden countries, TB control is jeopardized by

diminishing resources, as TB is not perceived as a public health issue [188].

The limited funding is spent on tracing contacts of individuals diagnosed with

TB; many of these contacts test negative for TB infection, whereas other

contacts that had substantial exposure may not be screened. Historically a

dichotomy between active and latent disease has been used at the

epidemiological level to differentiate those TB cases that can transmit (active

TB disease) versus those that do not (latent). However, more recent evidence

suggests that the transition between these different states is fuzzy, and that TB

development may be better represented as a spectrum of clinical and

sub-clinical states [18]. The degree to which sub-clinical disease contributes to

transmission is largely unknown, particularly because tools to detect

sub-clinical disease have only recently become available [19, 15].
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Whole genome sequencing (WGS) of patient isolates shows a higher

agreement with contact investigations than previous markers [55]. Importantly

WGS is also a superior tool to delineate transmission clusters and can be used

to estimate the burden of transmission [189]. But only very limited approaches

have been developed using WGS to identify individual transmission links.

Phylodynamic and transmission network analyses based on the combined use

of WGS and epidemiological data have been primarily confined to the analysis

of large outbreaks [175, 54, 164, 190]. However, transmission clusters

spanning decades are more an exception than a rule in TB epidemiology

[191, 151]. For most epidemiological scenarios, 2 key limitations prevent the

use of phylodynamic and network models to predict transmission links: the

diversity of the bacteria is extremely low, and the time span does not allow a

good correlation between time and the accumulation of variation.

Population-based analyses where dozens or hundreds of transmission clusters

can be identified typically involve cluster sizes of 1–15 TB cases and sampling

times of 2–5 years. In high-burden countries, cluster sizes may be larger but

time frames are still short. We thus developed an approach that allowed us to

simultaneously analyze small clusters from a 3-year population-based study in

the Valencia Region of Spain. Our approach infers index cases as well as

estimating transmission times.

4.3 Methods

Our overall analysis proceeded as follows: isolate collection, sequencing

analysis, identification of transmission clusters meeting certain criteria,

phylogenetic tree reconstruction, calculation of tree timing with several choices

of molecular clock rate, and, finally, Bayesian transmission analysis.

4.3.1 Case definitions

• Clustered case. A clustered case is a case that is genomically close to

another case in the population according to a genetic threshold. Typically,
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for recent transmission, 12 or 5 SNPs are used but see below.

• Index case. The index case is the first documented individual in a TB

outbreak, usually the one that generates an epidemiological investigation.

In most epidemiological investigations in TB, this coincides with (or it is

assumed to be) the first diagnosed individual.

• Most likely ancestral genotype (MLAG). The MLAG is the

reconstructed genotype of a hypothetical ancestral case of an outbreak. It

may coincide or not with the index case from the epidemiological

investigation. A match of the MLAG with any sampled genotype suggests

that the sampled genotype is likely an index case.

4.3.2 Ethics statement

This study was approved by the Ethics Committee for Clinical Research of the

Valencia Regional Public Health Agency (Comité Ético de Investigación Clı́nica

de la Dirección General de Salud Pública y Centro Superior de Investigación en

Salud Pública). Informed consent was waived on the basis that TB is part of the

regional compulsory surveillance program of communicable diseases. All

personal information was anonymized, and no data allowing individual

identification was retained.

4.3.3 Study population and isolate collection

Valencia Region has 4,974,475 million inhabitants and is composed of 3

provinces, Castellón, Valencia, and Alicante. In 2018, there were 315 reported

individuals with TB in the entire region (incidence rate of 6.4/100,000

inhabitants); Valencia is considered a low-TB-burden region. Contact tracing

investigation is the gold standard procedure to detect transmission clusters and

is done in 74.1% of all notified TB cases.

We performed a population-based genomic study involving 785 TB culture

positive cases in Valencia Region, Spain, during 2014–2016 as a part of an
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ongoing local genomic epidemiology study. Using WGS data to delineate

transmission (based on SNP distances, cutoff of ≤15 SNPs; see below), we

identified 121 clusters, most of which involved 2 cases per cluster (n = 325

clustered cases; see Supplementary Methods). For the present analysis we

included all transmission clusters that involved at least 4 TB cases and had

more than 1 SNP (variant) between the strains. Based on a reviewer’s

feedback, we performed a chi-squared test to corroborate that the clusters

selected for this study were a good representation of the total number of

clustered cases in the population.

A total of 21 clusters met the criteria, involving a total 117 people with TB.

For 115 of these we had epidemiological data including date of diagnosis and

diagnostic symptom onset as well as other clinical and demographic data. For 2

individuals we used the date of culture positivity with a 2-week correction to infer

the date of diagnosis.

4.3.4 WGS analysis and transmission delineation

DNA from TB culture positive Mycobacteria Growth Indicator Tubes (Becton

Dickinson) was extracted. Sequencing libraries were constructed with Nextera

XT DNA Library Prep Kit (Illumina) and sequenced on the Illumina MiSeq

instrument. Generated paired-end sequencing reads were trimmed, and likely

contaminant reads that might be present in clinical culture were filtered using

KRAKEN software [192]. The bioinformatic analysis was performed following a

previous pipeline[127]. Briefly, sequencing reads were mapped and aligned to

an inferred Mycobacterium tuberculosis complex (MTBC) most likely common

ancestor genome. Next, variants were separated into INDELS (small insertions

and deletions) and SNPs. Variants with at least 10 reads in both strains and a

quality score of 20 were selected. Because we wanted to detect genomic

transmission, we focused on SNPs that were present with at least a 90%

frequency. Finally, SNPs annotated in regions difficult to map such as repetitive

sequences and PPE/PE-PGRS genes were removed from the analysis, as well

as those detected in a window of 10 variants near INDELS. In addition, variants
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known to confer drug resistance [193, 97] were removed.

This pipeline has been validated by international public health TB reference

laboratories (http://tgu.ibv.csic.es/?page id=1794) and published [97, 194]. The

parameters used in the pipeline are common among the genomic TB research

community [56].

4.3.5 Cluster delineation based on SNP distances and
phylogeny

Transmission clusters were defined using a loose cutoff of ≤15 SNPs.

Furthermore, all detected groups were confirmed by building a phylogeny that

included all the isolates. This phylogeny was inferred using the maximum

likelihood phylogenetic approach with RAxML v8.2 [182], applying the General

Time Reversible model of nucleotide substitution with the gamma distribution

(GTRGAMMA). Transmission clusters with more than 1 SNP between the

strains and composed of at least 4 TB individuals were kept for ensuing

analyses. The methods described below are agnostic to the cutoff value, but

with a threshold of 15 SNPs, we were sure to incorporate recent and old

transmission events. In any case, most samples were below the cutoff of 12

SNPs, and 82% were below the cutoff of 5 variants.

4.3.6 Reconstruction of genetic relatedness networks

The resulting SNP alignment for each cluster was used to infer a genetic

relatedness network. Due to the monomorphic and non-recombining nature of

the MTBC [136] and the possibility that the ancestral genotype was present in

the samples, we used a parsimony-based algorithm for network reconstruction

implemented in the PopART software [195]. We chose a median joining

network (MJN) approach because it allows cases to occupy central positions in

the network; genotypes at branching points in the parsimony tree are

hypothesized to have been present but unsampled. In addition, a reconstructed

recent ancestor of the cluster based on the phylogenetic topology was added to
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the network so we could (1) hypothesize the MLAG and (2) infer the

directionality of a SNP (wild-type versus mutant status) given the MLAG. In the

genetic network analysis, we considered that any strain matching the MLAG for

its transmission cluster was a candidate to be the index case of the cluster.

4.3.7 Timed tree reconstruction

The accepted value for the substitution rate in TB is approximately 0.3–0.5

substitutions per genome per year [54, 196], though our data seem to suggest

that this rate may vary both between clusters and at the individual lineage level

within clusters. We first estimated timed trees for all clusters using the treedater

package in R [197] with 5 different clock rate values (ranging from 0.327 to

1.103) sampled from a log-normal distribution following a meta-analysis.

Although we generated predictions for a range of rates, for clarity, results in the

main text will be based on a clock rate of 0.363, which closely matches the

mean rate identified in our meta-analysis and in a recent publication [153] for

MTBC lineage 4, which dominates our population. Parameters used to obtain

the different clock rate values, as well as the meta-analysis performed, are

described and shown in Supplementary Methods and Supplementary Table
4.3.

4.3.8 Transmission inference

We developed a method of simultaneous transmission inference on many

clusters based on TransPhylo, a Bayesian analysis approach that uses the

Markov chain Monte Carlo (MCMC) method to reconstruct transmission trees

from pathogen phylogeny [154]. The main difference between our method and

TransPhylo’s previous capabilities is that we can perform inference with multiple

transmission clusters simultaneously, choosing which parameters should be

shared between clusters.

The resulting transmission tree contains information about who infected

whom and when, and also whether a case is sampled or not. This information
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is represented by a matrix whose columns are the times of infection, times of

sampling, and transmitters, and whose rows correspond to individuals in the

cluster. If an individual in the reconstructed tree is not sampled, then the

corresponding entry for time of sampling is empty. TransPhylo produces a

posterior sample of such trees. From this collection, we can extract (1) the

posterior probability that the index case of a cluster is sampled and (2) the

posterior probability that each host transmitted TB in their cluster. A detailed

protocol that includes all equations of the TransPhylo method can be found in

Supplementary Methods.

In order to test and validate our method, we performed simulations of 2

outbreaks. We observed narrower widths of credible intervals for all parameters

(Supplementary Results and Supplementary Figures 4.6-4.7) using the

simultaneous approach. This method has been incorporated into the latest

version of the TransPhylo package [154].

4.3.9 Statistical analysis

We selected the index cases and the samples with higher than 0.6 posterior

probability of being transmitters as predicted by TransPhylo (23 transmitters

compared to the remaining 84 clustered cases), with sensitivity analysis of the

latter threshold in Supplementary Methods and Supplementary Table 4.4.

Then, we computed the odds ratio (OR) and 95% confidence intervals (Fisher’s

exact test) to explore epidemiological variables associated with being a

transmitter. Furthermore, we performed a multivariate logistic regression to

confirm our univariate result. Based on peer review feedback, we statistically

compared epidemiological variables associated with transmitters to those of the

non-clustered cases identified in the whole dataset.
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4.4 Results

4.4.1 Genetic networks suggest missing index cases

Using an initial threshold of 15 SNPs, we identified a total of 21 transmission

clusters involving 117 TB cases (Table 4.1). This 15-SNP threshold allowed us

to look at older transmission events, although most of the cases (81.2%) were

within 5 SNPs of another case, consistent with very recent transmission. Most

of the clusters had more than 1 case with an identical genotype (0 SNP

difference); 5 clusters had no identical pairs (Supplemetary Table 4.3). No

statistical difference was observed for available clinical, epidemiological, and

demographic variables between the 21 transmission clusters that met our

inclusion criteria (n = 109) and the total clustered samples in the population (n

= 325) (see Supplementary Methods and Supplementary Table 4.4).

Table 4.1: Main characteristics of the study population.

Characteristic All Patients
(n= 109a)

Age (years)
<18 11 (10%)

19–34 20 (18%)

35–65 66 (61%)

>65 12 (11%)

Sex
Female 33 (30%)

Male 76 (70%)

Place of birth
Spain 80 (73%)

Other country 29 (27%)

Sputum smear
Positive 66 (61%)

continued
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Characteristic All Patients
(n= 109)a

Negative 41 (38%)

Disease type
Pulmonary 100 (92%)

Extrapulmonary 9 (8%)

Alcoholism 25 (23%)

Diabetes 13 (12%)

HIV infected 10 (9%)

Social exclusion 13 (12%)

Healthcare worker 5 (5%)

Imprisonment 8 (7%)

Diagnostic delay (days)
≥30 46 (42%)

31–60 25 (23%)

61–89 14 (13%)

≤90 32 (29%)

a Eight TB cases had no epidemiological data.

Genetic networks are a popular approach to try to understand transmission

without the need for additional epidemiological data. Using the SNP alignment

data, we applied the MJN algorithm to establish genetic relatedness between

the strains. A total of 22 missing links were predicted (involving 14 out of 21

genetic networks). In 5 of the genetic networks the predicted missing genotype

corresponded to the MLAG, suggesting that the index case was not sampled. In

other clusters intermediate genotypes were missing. In contrast, in 7 networks

(33%) we did not predict any missing links, indicating that the MLAG predicted

was present among the TB cases analyzed.

In the MJN approach it is reasonable to estimate that the strain with the

same genotype as the MLAG is also the most likely index case. However, in

several clusters (Figure4.1, and Supplementary Figures 4.8-4.9), more than
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one strain matched the MLAG, and thus the approach, which is based solely in

genotypes, cannot predict which of the matching cases is the most likely index

case. One striking feature of the networks in which we can identify an MLAG

among sampled TB cases is that this hypothetical index case does not always

coincide with the first diagnosed case (Figure 4.1A). This situation occurred in

2 of the 5 networks in which there was a case with the same genotype as the

MLAG (clusters CL045 and CL078). Together with the fact that in an additional

14 genetic networks the MLAG was not present, this suggests that the common

assumption that the earliest diagnosed case is the index case is not necessarily

correct. All the networks reconstructed by the genetic network approach can be

found in Supplementary Figures 4.8-4.9.

Genetic networks do not necessarily reflect transmission, as they do not

integrate key information. For instance, the number of substitutions observed is

affected by the time elapsed since infection and by within-host diversity;

multiple clones can coexist in the same individual, and they may be

differentially transmitted. Thus, the assumption that the SNPs are gained from

an ancestral reconstructed genotype and that diversification events represent

transmission events may not be correct.

4.4.2 TransPhylo identifies index cases not detected by
contact tracing

The TransPhylo approach integrates sample timing and genetic relatedness,

and allows for within-host diversity, thereby avoiding the assumption that

diversification represents transmission. TransPhylo produces posterior

reconstructed transmission events and timing for each cluster, which can be

visualized in many ways, including consensus trees (Figure 4.1B) and the

posterior probability of infection between cases (Figure 4.1C). In our study,

TransPhylo estimated that there were unsampled cases, with different numbers

of unsampled cases in different clusters. For the main results, we selected a

clock rate value of 0.363 SNPs/genome/year, which is the rate obtained by

others [196, 198]. The results show that most transmission clusters had 2 or
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Figure 4.1: Comparison of transmission reconstruction methods. The figure shows
for clusters CL045 and CL016 the inferred genetic network (A) and the consensus
transmission tree inferred from TransPhylo (B and C). In addition we show the strength of
the TransPhylo prediction (C). When the index case is sampled, it is depicted by a direct
black arrow connecting the grey “0” circle to the respective individual. This is the case
for G146 in CL045. When the index case is missing, this is represented by an orange
square connected to all cases, as in CL016. Any other unsampled tuberculosis case is
shown using a blue square symbol.

fewer unsampled cases (62%). Only 1 cluster (CL026) had a median number of
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unsampled cases greater than 5 (Figure 4.2). The estimated number of

unsampled cases is lower if a higher substitution rate is assumed, with very few

unsampled cases under a fast clock assumption (Supplementary Figure
4.10). This effect occurs because with a faster assumed clock rate, timed tree

branches are shorter, and TransPhylo is less likely to place unsampled cases

along the branches.

TransPhylo’s augmented MCMC approach allows us to extract the inferred

index case for each posterior tree. Figure 4.3 shows for every cluster the

probability that each diagnosed individual in the cluster was the index case,

along with the individuals’ diagnosis times. There are 6 clusters in which the

index case was most likely unsampled. For those clusters where the index case

was likely sampled, the index case is not always the first diagnosed individual

(33%); the index case’s diagnosis can be many months after the first diagnosis

(e.g., CL005). Most of the clustered cases were not detected as contacts in the

contact tracing epidemiological investigations.

There is general agreement between TransPhylo and the genetic network

approach in identifying those clusters in which the index case is likely sampled.

For 7 clusters (33%), both approaches predicted that the index case had been

sampled. TransPhylo predicted the presence of an index case in 8 additional

clusters in which the exact MLAG genotype did not occur, and consequently

the genetic network approach did not predict that the index case was sampled.

For the rest of the clusters (n = 6), neither TransPhylo nor the genetic network

identified a likely index case. However, despite this general agreement, the

methods do not always agree on which patient was the likely index case.

Genetic networks predicted the same index case as TransPhylo in only 2

(13%) of the 15 clusters with a likely sampled index case. This disagreement is

likely associated with the fact that the time of sampling and rate of genetic

change are not taken into account in the genetic network prediction. Also, the

genetic network approach predicted more unsampled genotypes than

TransPhylo, reflecting the fact that some of the missing genotypes likely existed

but evolved within a host and were not transmitted (Supplementary Figures
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Figure 4.2: Weighted mean number of unsampled tuberculosis cases. For each
posterior transmission tree, we associate a weighting factor tk, where k is the number
of sampled cases for which transmission happened after diagnosis, and t = 0.1. This
accounts for the fact that individuals are treated once diagnosed, and so are less likely
to transmit. This figure shows the mean number of unsampled cases for one of the
simulated clock rates (0.363). The results for all clock rates appear in S5 Fig.
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Figure 4.3: The posterior probability that each individual is the index case for a
cluster versus the time of diagnosis of the individual. The individual with highest
posterior probability to be the index case is shown in red for each cluster. In some
clusters, the first diagnosed case was the estimated index case, in that it had the highest
probability of being the index case (e.g., CL002). In contrast, in the majority of clusters
the most likely index case was not the first diagnosed individual (e.g., CL010 and CL023)
or was not sampled (e.g., CL016 and CL003). The Psamp values are the posterior
probability that the index case was any of the sampled individuals—in some clusters
(e.g., CL003) the index case was likely to have been an unsampled individual.
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4.8-4.9).

4.4.3 Timing of events reveals TB cases transmitting before
diagnosis or symptom onset

Because it integrates information about case timing and the molecular clock

alongside genetic relatedness of isolates, TransPhylo can estimate the timing of

transmission, which can be compared to diagnosis times and reported

symptom times. Thus, triangulation of relevant dates and timing should allow us

to use TransPhylo to evaluate how much transmission could be averted by

earlier identification of individuals with TB or by isolating patients during the first

stages of treatment.

First, we extracted transmission trees corresponding to one of the molecular

clock rates (0.363 SNPs/genome/year) and selected all individuals for whom

the probability of transmitting was greater than 0.6. We then compared inferred

transmission times to diagnosis times and to the reported times of symptom

onset. A total of 14 individuals had a high likelihood of being transmitters

(Figure4.4). We reasoned that if our prediction was accurate, many

transmission events should happen between the onset of symptoms and

diagnosis; this is the case for 9 out of the 14 TB individuals. However, when we

looked at the time of transmission in the other 5 cases, transmission occurred

before symptom onset or diagnosis (G815, G258, G201, G1775, and G1449).

Notably, 3 out of the 5 individuals were sputum negative at the time of

diagnosis, suggesting that they were infectious before, but not at the time of

detection. The time of first transmission event for all cases in every cluster is

reported in Supplementary Figures 4.11-4.17, including combinations of

different probabilities and clock rates.

To evaluate the feasibility that transmission happened before symptoms, we

analyzed the contact tracing and epidemiological data available for 1 of the

cases. G1449 was a credible transmitter before symptom onset (Figure 4.4).

G1449 clustered with another case, G1011, which was the 18-year-old
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daughter of G1449. Both were identified almost simultaneously, but the

daughter was the first to seek care. Thus, she was considered the index case,

and contacts were screened. G1449 was identified during screening a few days

later. We estimate that G1449 infected G1011 less than 2 years before, which

is compatible with the incubation time of latent TB in persons without known

risk factors. Conversely, if G1011 infected G1449 after symptom onset, then

G1449 had to develop symptoms in less than 1 month since infection, which is

less likely than the other scenario.

We also reasoned that the probability of transmission should be compatible

with the known epidemiological characteristics of the patients. We used the

time of arrival of foreign nationals to evaluate the feasibility that transmission

happened when we predicted. In all individuals with a high probability of

transmitting TB, transmission happened after arrival to the country. Conversely,

there were 5 individuals for whom transmission was predicted to have

happened before arrival, so for these individuals there is a contradiction

between the prediction (if they were transmitters) and the epidemiological

history. In all 5 cases, our approach did not identify them as credible

transmitters (probabilities of transmission < 0.3; Supplementary Table 4.5).

Finally, we examined whether individuals with longer estimated times

between infection and diagnosis had higher numbers of secondary TB cases.

This would be expected, since delayed diagnosis gives an individual the

opportunity to expose others and to become the index case of a cluster. We

found that the estimated time to diagnosis was longer for those individuals

predicted to have infected 2 or more secondary cases, but the results are

variable, as expected given that many other factors affect probabilities of

transmission and infection (see Supplementary Figure 4.18).
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Figure 4.4: Resampled median time of first transmission. The graph represents the
median time of the first highly likely transmission for individuals for whom the posterior
probability of transmitting (prob_transm) was greater than 0.6, under a clock rate value of
0.363 SNPs/genome/year. For each case, the diagnosis time (dgns_time; squares) and,
where known, the symptom onset time (symp_time; triangles) are added. Analogous
graphs for different transmission probability cutoffs, and without cutoffs, are shown in
Supplementary Figures.

4.4.4 Identification of transmitters allows association of risk
factors to transmission

For 66% of the clusters analyzed, the index case identified by TransPhylo was

either unsampled or not the first diagnosed case (14 out of 21). This suggests

that index cases based on diagnostic dates can be misleading. In addition,

analyses of risk factors associated with transmission using molecular

epidemiology data have been traditionally performed on group measures of

clustering (clustered versus unique cases, association with cluster sizes). This

approach obviates the fact that not all individuals with TB are transmitters, and

thus risk factors associated with transmission are difficult to disentangle from

those associated with infection. Our identification of likely index cases and

transmitters allows us to explore whether risk factors have a different
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distribution specifically among likely transmitters. We combined likely

transmitter cases together with the index cases predicted by TransPhylo (n =

23) and compared them to the other clustered cases (n = 61). Our statistical

analysis is limited by the low number of clusters and the low number of

transmitters that were unequivocally identified. Also, clustered cases are a

composite of transmitters, non-transmitters, and those cases that cannot be

confidently assigned to either category. Still, relevant differences between likely

transmitters and the rest of the clustered cases can be identified (Figure 4.5).

As a proof of concept, transmitters tended to be diagnosed later (mean

diagnostic delay 85 days versus 54 days), although this difference is not

statistically significant. Other variables also suggest important differences

between being a transmitter and simply being part of a cluster. Transmitters

were significantly enriched in diabetic patients in both univariate (Fisher’s exact

test; OR 0.19 [95% CI 0.02–1.10], p < 0.003) and multivariate (logistic

regression; OR 23.77 [95% CI 2.53–339.69], p < 0.009) statistical analyses. It

has been suggested before that diabetic patients tend to have larger TB

cavities, a factor known to be associated with transmission [199]. Finally, we

confirm previous reports showing that individuals who are smear negative at

the time of diagnosis can be transmitters (37% in our dataset). However, we

take these results with caution. We repeated the analysis comparing

transmitters to non-clustered cases, and diabetes was still enriched (27%

versus 10%), but not significantly (p = 0.06). While small sample sizes do not

allow us to draw more conclusions, these preliminary results show the

importance of differentiating between being a transmitter and being infected.
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Figure 4.5: Fig 5. Epidemiological characteristics of the cases used to identify
transmission risk factors. Note that the data do not include all the study samples: for 5
clusters we were not able to identify a likely transmission event, and these clusters were
excluded from this analysis. Transmitters are defined as those individuals estimated to
be likely transmitters and/or likely index cases detected by TransPhylo. The figure shows
estimated odd ratios for each risk factor tested. *Fisher’s exact test. Comparisons were
made between transmitter cases and the rest of the clustered samples.

89



High-resolution mapping of tuberculosis transmission

4.5 Discussion

We present a genomic-based approach to unveil individual TB transmission links

between patients within transmission clusters. Importantly, our method allows us

to identify, or infer the absence of, the most likely index case, as well as estimate

the number of unsampled cases within a cluster. These findings may contribute

to reorienting contact investigation strategies in terms of to whom and where TB

testing should be done. In addition, we identify potential transmission events

during the sub-clinical disease stage, suggesting the need to incorporate early

disease stages in epidemiological models and TB control programs.

WGS has been shown to be superior to previous genotyping tools in

identifying TB cases likely to be of recent transmission [200]. Nevertheless,

there is only an agreement of 30%–50% between those identified by WGS as

TB cases of recent transmission and those identified by contact tracing [149].

This scenario indicates that likely index cases are missing, and improved

contact investigation strategies are required in order to detect those individuals.

A recent clinical trial [42] showed that close contacts of index cases identified

by active case finding have better TB cure rates than those identified by

passive case finding. Thus, identification of index cases has implications at the

population and at the individual care level. In this study, we showed that in up to

28% of clusters there is no evidence that the index case is included among the

individuals in the cluster. For those clusters in which an index case was

detected, 60% of the time the index case was not the individual first diagnosed

with TB, suggesting that efforts to identify transmission are imperfect.

The reasons that index cases are not sampled in a study may be multiple and

will probably vary by clinical setting. First, index case transmission could have

occurred prior to the sampling time. This is very likely in our analyses, where we

potentially include older transmission events, though fixed SNP cutoffs may not

perfectly delineate transmission clusters [201]. Furthermore, we missed those

individuals with culture negative status at the time of diagnosis, and they may

have contributed to transmission. However, it is worrying that individuals with TB
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may have been missed by control programs and may remain actively transmitting

in the population. In Valencia, around 3,000 contacts are investigated every year

following the European Centre for Disease Prevention and Control guidelines.

Still, a large percentage of the clustered cases were not identified as contacts,

consistent with similar published studies [149, 27, 202, 147], including index

cases predicted in our analysis.

With our approach we could separate likely transmitters from other

clustered cases, rather than treating each cluster as a single unit, and so could

associate biological, epidemiological, and demographic variables with

transmission. Our dataset has 2 major shortcomings—namely the low number

of transmission links with enough statistical support and the fact that only 21

clusters met the criteria for the analysis—and thus our clusters are not

necessarily representative of the whole population. Still, our data suggest that

certain risk and epidemiological factors are enriched among the transmitters,

while others are depleted. In addition, we corroborate that individuals with

negative sputum smear status can contribute to transmission (40% of index

cases), as has been discussed previously [31, 203]. Larger population-based

datasets including a larger number of clusters meeting the criteria will help to

better define the exact role of these factors.

Our selection of TransPhylo as a tool to trace transmission was driven by

the necessity of considering potential unsampled cases. There are other similar

approaches that do not take unsampled cases into account [204] or that use a

model more suited to environmental reservoirs [205, 206]. In addition, we could

not make predictions for some transmission clusters due to the limited

observed within-cluster diversity, as anticipated previously [207]. Thus, our

analysis focused on those events that we could robustly estimate. It is

important to note that predictions may be sensitive to molecular rate variations.

We focused our discussion on analyses using a molecular rate that is

appropriate for MTBC lineage 4 strains, which dominate the local setting.

However, other settings will need to calibrate the model with a different rate as

it is becoming apparent that the rate for different lineages may vary [153].
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The fact that we estimate that approximately 35% of transmission events

occurred before symptom onset could have several explanations.

Patient-reported times of symptom onset are subjective, and if symptoms were

mild, disease may not have been recognized for some time. However, in most

cases the time difference between symptom onset and transmission spans

several weeks or even months. Recently it has been speculated that

sub-clinical transmission may exist and be facilitated by unrelated cough [208].

Here we show evidence for transmission during the asymptomatic phase of

disease, in which the transmission probability is lower than during exacerbated

disease, but non-negligible [208, 209].

There is evidence from clinical trials of sputum smear positive individuals

who are otherwise healthy being potential transmitters [19]. This is in line with

recent evidence showing a spectrum of different disease states (from almost

healthy to diseased [15]) and the possibility that a percentage of those

traditionally considered latently infected TB cases in reality are active TB cases

with sub-clinical disease [19, 43]. Our transmission analysis suggests that

sub-clinical disease may jeopardize current TB control strategies, in line with

results from epidemiological models [43].

A limitation of our method is that we could not test it on other publicly

available genomic datasets. One reason is because it is difficult to obtain

cases’ associated epidemiological data, especially those related to symptom

onset (which is a key variable of our study). Despite this, we validated our

method by (1) conducting sensitivity analyses using different TransPhylo

parameters and (2) comparing the predicted transmission time for foreign-born

TB cases with the time of immigration. Nevertheless, the lack of published

datasets with the relevant epidemiological data highlights the need to

incorporate these variables in prospective TB epidemiological studies.

In conclusion, our individual-based transmission inference method

demonstrates that many likely transmitters, including index cases, are missed

by contact investigations. Strikingly, a substantial proportion of these

transmitters likely spread TB during sub-clinical disease. Future work aligning
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biomarkers and epidemiological research will help to elucidate host biomarkers

of transmission during the spectrum of TB infection, to design better TB control

strategies.
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4.6 Supplementary Data

4.6.1 Supplementary Methods

Ongoing population study
The present study is part of an ongoing population TB study. This global study

consisted in the recollection and WGS analysis of a total of 785 positive TB

clinical samples during 2014-2016. Using SNPs distances between isolates (15

SNPs), we detected that 41% (n=325) of all samples were in transmission.

Although the majority of clustered cases comprised two samples, we detected

transmission clusters that involved up to 12 TB cases. From this first analysis,

we obtained the samples that we used in the present study. We selected to 21

genomic clusters (17.3% of all clusters identified) that corresponded 117

isolates (36% of the total transmission). These genomic groups that had at

least four cases and had 2 SNPs difference between all samples involved.

Furthermore, we made a comparison analysis to see whether our sampling

selection was representative of the whole population (Supplementary Table
4.4).

Timed tree reconstruction
Although the accepted value for the TB substitution rate in the community is

approximately 0·3-0·5 substitutions per genome per year[1,2], our data seem to

suggest that the rate may vary both between clusters and within clusters. For

example, in some clusters the SNP distances between pairs of hosts are not

consistent with the case timings. For example, a host sampled earlier in time

can seem to have accumulated more SNPs than a host sampled later

(compared to inference of an ancestral sequence for a cluster), or vice versa. In

such cases, an estimated timed phylogenetic tree using a low clock rate (as is

normally assumed in TB) would place the earliest sequence in the cluster quite

far back in time compared to the most recent sampled case.

We therefore need to incorporate rate uncertainty in the inference

framework. However, one challenge is that we do not know if and how rates
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vary across clusters, and furthermore, although treedater[3] allows us to fit a

relaxed clock, the consequence of increased number of parameters and lack of

signal contained in small cluster data mean that the branch length estimates

may not be reliable. Therefore, we adopt a simple approach whereby instead of

using a single timed phylogenetic tree for each cluster, we sample clock rates

from a known distribution and use treedater to estimate timed trees for all

clusters by fixing the clock rate to be in the range of one of our sampled rate

values with a margin of ±. So for each sampled clock rate, we obtain timed

tress corresponding to all clusters and we used TransPhylo [4] and the method

outlined below to infer the transmission trees. We then pool the transmission

trees for each clock rate. By inspecting this combined posterior, we can

compare between rates and see if any of the interesting quantities are sensitive

to changes in clock rate. We perform a meta-analysis of 18 publications

reporting clock rates per year from different studies of MTBC (see

Supplementary Table 4.2). We obtained a mean rate of 0.32 (±0.022-0.44) but

with very wide range of values (0.14-0.59). Thus, we chose to use a log-normal

distribution with log-scale mean and standard deviation of -0.7 and 0.5,

respectively, for the sampling distribution of the clock rate and δ = 0.2.

Transmission inference
We develop our method of simultaneous transmission inference on many

clusters based on TransPhylo, a Bayesian method to reconstruct transmission

trees from pathogen phylogeny. In TransPhylo, an MCMC method is used to

draw samples from the posterior distribution of transmission tree and model

parameters given a timed tree reconstructed from sequenced isolates (4.1).

P (T, θ|P ) ∝ P (P |T, θ)P (T |θ)P (θ), (4.1)

where T is transmission tree, P is timed tree and θ collects the model

parameters. The transmission tree is represented by a matrix whose columns

are the times of infection, times of sampling and the infectors, and whose rows

correspond to infected individuals. If a case is not sampled, then the

corresponding entry for time of sampling is empty. In the posterior trees that
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TransPhylo produces, the number of rows in T can be variable across

iterations, because of the addition/removal of unsampled cases;

reversible-jump MCMC is used in TransPhylo to account for changes of

dimensionality.

The transmission tree contains information about who infected whom and

when, and also whether a case is sampled or not. The timed tree shows

evolution history of pathogens sampled from hosts and is constructed from

known methods of phylogenetic tree-building, such as neighbor-joining,

maximum likelihood or Bayesian methods. The TransPhylo posterior thus

reflects our updated belief of the transmission pattern and epidemiological

parameters after observing the timed tree of the sequences.

In practice, especially in low-incidence settings, we often define

transmission clusters based on our knowledge of the genomics and the

epidemiology of cases, such that we are quite confident that transmissions

occurred within clusters and were less likely between clusters. This makes it

more amenable to analyze multiple clusters simultaneously than to work with a

single large phylogeny of all sequences, because these clusters tend to be

separated by long branches and TransPhylo will put many unsampled cases

along these branches and so will not explore transmission within clusters

efficiently.

In order to develop a framework for simultaneous transmission inference, a

straightforward extension to (4.1) would be to carry out our Bayesian inference

in an augmented tree and parameter space. More precisely, let T, P and Θ be

elements in the respective joint space of n clusters, that is, T = (T1, . . . , Tn) with

Ti the transmission tree for cluster i, and similarly for P and Θ, then

P (T,Θ|P) ∝
n∏

i=1

P (Pi|Ti, θi)P (Ti|θi)P (θi), (4.2)

assuming independence between clusters. MCMC simulation of (4.2) proceeds

as it would in (4.1), with each step consisting of separately updating parameters

and trees for all clusters. This would be no different from independently running

TranPhylo once for each cluster. In order to allow information to be shared
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between clusters, we decompose θ into sharing and non-sharing parts,

θ = (θs, θns), where we can choose which parameters should be shared among

clusters and which should not. The posterior distribution becomes

P (T,Θ|P) ∝
n∏

i=1

P (Pi|Ti, θnsi , θs)P (Ti|θnsi , θs)P (θnsi )P (θs). (4.3)

Note that θs does not have index i because it is the same for all clusters. The

update of θs is based on the Metropolis-Hastings ratio of likelihoods of all

clusters.

With the above framework, not only can we handle the statistical inference

with multiple transmission clusters simultaneously, we can also choose which

parameters should be shared. The latter has both epidemiological and

computational implications — if we believe that certain parameters, such as the

basic reproduction number (the expected number of secondary infections from

any primary infection) and/or the sampling rate will be similar within each

cluster, then we can easily encode this belief into (4.3). This offers great

computational savings as the number of parameters is significantly reduced —

avoiding (n − 1)n(θs) parameter estimations where n(θs) denotes the number

of parameters in θs.

4.6.2 Supplementary Results

Simulations
We simulated two outbreaks using TransPhylo’s simulator function

simulateOutbreak, with different model parameters: 1) neg — within-host

diversity; 2) off.r — first parameter of negative binomial offspring distribution,

or equivalently the basic reproduction number; and 3) and pi — sampling rate,

from the posterior. Because of the stochastic nature of the simulator, we obtain

different time-trees. We then apply the new joint inference routine to infer the

model parameters and compare them with those obtained from running

TransPhylo separately. For both the two independent runs and the joint routine

the same number of MCMC iterations, 104, were used, with a burn-in of 20%,
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hence, the computer time of the joint routine is about the same as the total time

of running the two independent runs sequentially (Supplementary Figure 4.6).

TransPhylo parameters
For both neg and off.r, an exponential prior Exp(1) was used; while a Beta

prior Beta(5, 1) was used for pi. We see that the offspring distribution

parameter, which is also the R0, is very robust to changes in clock rate. A high

sampling proportion of 0.7 was observed even with the lowest clock rate,

reflecting our prior belief of sampling. In addition, the neg parameter is not

affected by small changes in clock rate, however it is significantly lower if the

clock rate is very high relative to the other rates (Supplementary Figure 4.7).
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4.6.3 Supplementary Tables

Reference Publication
year

MTBC
lineage

No. of
samples

Clock rate
(genome per year

Ford et al. [210] 2011 L4 33 0.34
Walker et al.[150] 2013 All 390 0.5

Bryant et al.[211] 2013 L1, L2,
L3 and L4 199 0.3

Ford et al.[159] 2013 L4 36 0.36
Roetzer at al.[54] 2013 L4 86 0.44

Bos et al.[128] 2014 All 261 0.22
Merker et al.[212] 2015 L2 110 0.44

Luo et al.[213] 2015 L2 393 0.2
Eldhom et al.[214] 2015 L4 252 0.29

Kay et al.[215] 2015 L4 165 0.22

Duchêne et al.[196] 2016 All
and L4

261
and 252

0.24
and 0.25

Bjorn-Mortensen
et al.[216] 2016 L4 182 0.47

Liu et al.[217] 2018 All 160 0.2
Merker et al.[198] 2018 L2 220 0.41

Duchêne et al.[218] 2018 L2 110 0.41
Rutaihwa et al.[219] 2018 L2 308 0.59

Brynildsrud et al.[124] 2018 L4 269 0.21
Meehan et al.[143] 2018 L4 and L5 324 0.14

Table 4.2: Meta-analysis table for different published MTBC clock rates.
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Cluster
ID

Number of
isolates

Number of
unique strains

Alignment
length (SNP)

CL001 8 1 36
CL002 12 7 12
CL003 7 2 26
CL004 6 1 16
CL005 5 2 2
CL007 5 0 19
CL008 4 0 12
CL009 4 0 9
CL010 6 3 4
CL011 6 2 5
CL015 4 1 14
CL016 6 3 16
CL020 4 0 13
CL023 4 0 15
CL026 7 1 18
CL031 5 1 5
CL045 4 1 2
CL069 5 1 14
CL072 5 1 19
CL077 6 1 31
CL078 4 1 3

Table 4.3. Characteristics and genetic information about selected clusters. The
table shows characteristics of the clusters including numbers of isolates and SNPs.

100



Supplementary Data

Characteristic Global clustered
cases (n=325)

Selected clustered
cases (n=109)

Age (years)
<18 23 (7%) 11 (10%)
19-34 78 (24%) 20 (18%)
35-65 194 (59.7%) 66 (61%)
>65 35 (10.7%) 12 (11%)
Sex
Female 114 (35%) 33 (30%)
Male 211 (64.9%) 76 (70%)
Place of birth
Spanish-born 230 (70.7%) 80 (73%)
Foreign-born 95 (29.2%) 29 (27%)
Sputum smear
Positive 197 (60.6%) 66 (61%)
Negative 126 (38.8%) 41 (38%)
Disease type
Pulmonary 290 (89.2%) 100 (92%)
Extrapulmonary 35 (10.7%) 9 (8%)
Alcoholism 69 (21.2%) 25 (23%)
Diabetes 34 (10.4%) 13 (12%)
HIV infected 24 (7.3%) 10 (9%)
Social exclusion 36 (11%) 13 (12%)
Health care workers 9 (2.7%) 5 (5%)
imprisonment 22 (6.7%) 8 (7%)
Diagnostic delay (100 days) 61 (18.7%) 23 (21%)
30 days 125 (38.4%) 46 (42%)
31-60 days 77 (23.7%) 25 (23%)
61-89 days 35 (10.8%) 14 (13%)
90 days 76 (23.4%) 32 (29%)
Contact tracing transmission 77 (23.7%) 24 (22%)

Table 4.4: Comparison table between the clustered cases detected in the global
ongoing study and those selected in this research.
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4.6.4 Supplementary Figures

Figure 4.6. Histograms of model parameters neg — within-host diversity, off.r —
first parameter of negative binomial offspring distribution, or equivalently the basic
reproduction number, and pi — sampling rate, from the posterior. tp1 and tp2 —
independent TransPhylo runs for the first and second timed tree simulated from the
simulator function simulateOutbreak; tpj — TransPhylo run on the two timed trees
with parameter sharing. Credible intervals are shown in blue and the true parameter
values in red.

103



High-resolution mapping of tuberculosis transmission

Figure 4.7. Trace plot of model parameters, colored by the simulated clock rates.
The figure shows the trace plot of within-host diversity (neg), the offspring distribution
parameter (off.r) and the sampling proportion (pi) from the MCMC run.
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Figure 4.8. Genetic Network reconstruction of all transmission clusters used in the
study(Part 1). The first diagnosed case is colour coded in green while the rest are colour
coded blue. The Most Likely Index Case (brown colour) is the sample that has the same
genotype as the predicted Most Likely Ancestral Genotype (red colour). The number
inside brackets represents SNP difference between each isolate. The arrow denotes the
high likely direction of the transmission.
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Figure 4.9. Genetic Network reconstruction of all transmission clusters used in the
study (Part 2). The first diagnosed case is colour coded in green while the rest are colour
coded blue. The Most Likely Index Case (brown colour) is the sample that has the same
genotype as the predicted Most Likely Ancestral Genotype (red colour). The number
inside brackets represents SNP difference between each isolate. The arrow denotes the
high likely direction of the transmission.
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[a] [b]

Figure 4.10. Weighted mean number of unsampled cases under different simulated
clock rates.
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Figure 4.11. Resampled median time of first transmissions. The graph represents
the median time of the first highly likely transmission for cases where the posterior
probability of transmitting is greater than 0.5, under a clock rate of 0.363. For each
case, the diagnosis time (square), and, where known, the symptom onset time (triangle)
are added. Lighter colours indicate higher transmission probabilities. The range of the
error bar indicates the 0.25 and 0.75 quantile.
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Figure 4.12. Resampled median time of first transmissions. The graph represents
the median time of the first highly likely transmission for cases where the posterior
probability of transmitting is greater than 0.7, under a clock rate of 0.363. For each
case, the diagnosis time (square), and, where known, the symptom onset time (triangle)
are added. Lighter colours indicate higher transmission probabilities. The range of the
error bar indicates the 0.25 and 0.75 quantile.

108



Supplementary Data

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

G04
G1008
G1011
G1015
G1058

G108
G1090
G1099

G114
G1141
G1156
G1163
G1180
G1181
G1188
G1246

G125
G1261
G1288

G130
G1303
G1308
G1320
G1330
G1342
G1350
G1411
G1432
G1440
G1446
G1449

G145
G146
G147

G1494
G1495
G1544
G1567
G1570
G1571
G1577
G1578
G1588
G1590
G1603
G1610
G1621
G1630
G1644
G1648
G1653
G1676
G1701
G1732
G1747
G1761
G1775
G1785
G1788
G1792
G1823
G1829
G1839
G1842
G1889

G19
G1939
G1965

G201
G2059
G2102

G249
G258
G260
G271
G368
G401
G405
G446
G465
G497
G500
G536
G538
G545
G552
G553
G562
G566
G621
G623

G63
G637
G679
G693
G733

G76
G764

G77
G778

G78
G788
G813
G815
G830
G837
G839
G848
G850
G871
G881
G882
G909
G917
G932
G940

G99

2000 2010

Time

H
os

t

key

dgns_time

symp_time

0.25

0.50

0.75

prob_transm

Median time of first transmission

Figure 4.13. Resampled median time of first transmissions. The graph represents
the median time of the first highly likely transmission for cases where the posterior
probability of transmitting is greater than 0.7, under a clock rate of 0.363.
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Figure 4.14. Resampled median time of first transmissions. The graph represents
the median time of the first highly likely transmission for cases where the posterior
probability of transmitting is greater than 0.5, under a clock rate of 0.544. For each
case, the diagnosis time (square), and, where known, the symptom onset time (triangle)
are added. Lighter colours indicate higher transmission probabilities. The range of the
error bar indicates the 0.25 and 0.75 quantile.
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Figure 4.15. Resampled median time of first transmissions. The graph represents
the median time of the first highly likely transmission for cases where the posterior
probability of transmitting is greater than 0.6, under a clock rate of 0.544. For each
case, the diagnosis time (square), and, where known, the symptom onset time (triangle)
are added. Lighter colours indicate higher transmission probabilities. The range of the
error bar indicates the 0.25 and 0.75 quantile.
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Figure 4.16. Resampled median time of first transmissions. The graph represents
the median time of the first highly likely transmission for cases where the posterior
probability of transmitting is greater than 0.7, under a clock rate of 0.544. For each
case, the diagnosis time (square), and, where known, the symptom onset time (triangle)
are added. Lighter colours indicate higher transmission probabilities. The range of the
error bar indicates the 0.25 and 0.75 quantile.
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Figure 4.17. Resampled median time of first transmissions. The graph represents
the median time of the first highly likely transmission for all cases, corresponding to a
posterior probability of transmitting of 0.2, under a clock rate of 0.544.

113



High-resolution mapping of tuberculosis transmission

0.0

0.1

0.2

0.3

0 10 20

Time from infection to diagnosis

de
ns

ity

NumInfectees

<=1

>1

Figure 4.18. Density of times to diagnosis among those cases estimated to have
caused more than one vs 0-1 secondary cases. Estimates were derived under a
clock rate of 0.363 and are collected over all posterior transmission events. The means
time since the infection of the transmitter to active disease of the secondary case (thus
including latency periods) are 4.88 years (those infecting more than 1 secondary case)
vs 3 years (those infecting 0 or 1 secondary cases).

114



Cryptic Resistance Mutations
Associated With Misdiagnoses of
Multidrug-Resistant Tuberculosis.

The work described in the present chapter has been published as a Brief Report Article

in Journal of Infectious Diseases

Cancino-Muñoz I, Moreno-Molina M, Furió V, et al. Cryptic Resistance Mutations

Associated With Misdiagnoses of Multidrug-Resistant Tuberculosis. The Journal of

Infectious Diseases. 2019; 220(2):316–320. https://doi.org/10.1093/infdis/jiz104
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Cryptic resistance mutations associated to misdiagnoses MDR-TB

5.1 Abstract

Understanding why some multidrug-resistant tuberculosis cases are not

detected by rapid phenotypic and genotypic routine clinical tests is essential to

improve diagnostics assays and advance toward personalized tuberculosis

treatment. Here, we combine whole-genome sequencing with single-colony

phenotyping to identify a multidrug-resistant that had infected a patient for 9

years. Our investigation revealed the failure of rapid testing and genome-based

prediction tools to identify the multidrug-resistant strain. The false-negative

findings were caused by uncommon rifampin and isoniazid resistance

mutations. Although whole-genome sequencing data helped to personalize

treatment, the patient developed extensively drug-resistant tuberculosis,

highlighting the importance of coupling new diagnostic methods with

appropriate treatment regimens.

Keywords: Tuberculosis, drug resistance, whole-genome sequencing,

individualized treatment, cryptic mutations

5.2 Background

Personalized treatment in tuberculosis can be achieved in the next years if we

are able to implement rapid, cost-effective and comprehensive drug

susceptibility tests (DSTs). However, the prospects for this personalization

deeply depend on our ability to identify drug resistance-associated mutations

and to interpret their clinical role during management of the cases [220].

Current methods to identify and manage drug resistance are based on rapid

liquid culture systems and/or molecular amplification tests [221]. Both

approaches have limitations. For rifampin (RIF), some mutations, termed

“disputed” mutations [84], are systematically missed by rapid automatic liquid

culture methods, such as the Bactec-Mycobacteria Growth Indicator Tube

(Bactec-MGIT) system, which is used in this study. These noncanonical RIF
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resistance mutations are involved in low-level resistance and associated with

relapse [221, 222]. Likewise, the number of mutations screened by nucleic acid

amplifications tests is limited [84]. Until now, no case has been reported in

which both the Bactec-MGIT system and genotypic assays failed to identify

multidrug-resistant strains. Here, we report a multidrug-resistant strain with

cryptic mutations not detected by rapid routine clinical methods or

whole-genome prediction tools. Prospective whole-genome sequencing (WGS)

helped to track additional resistance mutations, but failure to provide an

appropriate treatment regimen led to extensively drug-resistant tuberculosis.

Despite limited therapeutic options, the patient was declared cured in 2018.

5.3 Methods

Clinical and microbiological data, together with a more-detailed description of

the methods, are included in the Supplementary Methods.

5.3.1 Clinical case, Isolate Collection, and Routine DST
Procedures

The study case was a Spanish-born patient with no common tuberculosis risk

factors whose first episode of tuberculosis occurred in 2009. Findings of

sputum and culture analyses became negative within 2 months after treatment

initiation, and the patient was considered cured 4 months later, based on World

Health Organization guidelines. However, relapse occurred in 2013 despite no

risk factor for relapse during the initial episode [223]. Two years later, the

patient was not responding to therapy despite compliance with treatment, close

monitoring, and infection with a drug-sensitive, based on results of the

hospital´s routine rapid phenotypic DST and genotypic testing. We analysed 16

serial clinical isolates recovered from the patient during 2009-2018 by the

clinical microbiology unit of the Hospital Universitario General de Valencia

(Valencia, Spain).
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Routine phenotypic DST for the first-line antituberculosis drugs (and

linezolid [LZD] in 1 isolate) was performed on all clinical samples collected

during the study period, using the Bactec-MGIT 960 system (Becton Dickinson,

Franklin Lakes, NJ). For second-line drugs, the Sensititre MycoTB MIC Plate

(Trek Diagnostics System, Cleveland, OH) was used. Ranges of critical

concentrations for all drugs are specified in the Supplementary Methods.

5.3.2 WGS Sequencing

Extracted DNA from diagnostic cultures was sequenced on the MiSeq platform,

using standard procedures. We used Kraken [192] to identify reads belonging to

the Mycobacterium tuberculosis complex. For mapping and variant calling, we

used a previously described pipeline [127]. For details, see the Supplementary
Methods.

5.3.3 Identification of Candidate Drug Resistance Variants

We identified candidate drug resistance variants by mapping them to known

drug resistance-associated genes and confirming that they had not previously

been described as phylogenetic markers (Additional Table 2). In addition, we

screened any new variant that arose during the course of treatment in any part

of the genome and reach a minimal frequency of 15% in ≤1 sample, to evaluate

their potential role on drug resistance. Our in-house results were compared to

data from 3 publically genomic resistance databases (accessed April 2018) [193,

103, 139]. The global frequencies of these candidate mutations were evaluated

against an in-house database of 4762 genomes collected worldwide.

5.3.4 Isolation of Single Clones, Amplicon Sequencing, and
Minimum Inhibitory Concentration (MIC) Validation for
Resistance Mutations

After we identified mutations in genes or genomic regions associated with drug

resistance to INH and RIF, we tested whether those variants conferred
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resistance, by characterizing a series of single-colony isolates. Twenty-two

single clones with different genotypes, obtained from complex diagnostic

cultures at different time points, were selected and isolated. Each clone was

tested twice for susceptibility to INH, using the resazurin microtiter assay with

2-fold dilutions for 9 different concentrations (range, 0.06-32 µg/mL). We also

confirmed that the I491F mutation conferred resistance to RIF, using the

proportions method with 2-fold dilutions for 10 different concentrations (range,

0.06-64 µg/mL). Before DST, we performed ultra-deep amplicon sequencing of

the regions of interest (rpoB, katG, and the ahpC promoter) to confirm the

genotype of each clone, as well as to discount the presence of any unnoticed

mutation with a frequency of ≤0.1%, the lover limit of detection

(Supplementary Methods and Supplementary Table 5.4).

5.4 Results

5.4.1 Cryptic Variants Behind an Unnoticed
Multidrug-Resistant Tuberculosis Case

A total of 16 isolates from the patient were available and sequenced during the

study period (2009-2017). It is important to note that the first genome

sequence was analyzed in 2015, after the patient had received standard

first-line treatment for 2 years without a response (Supplementary Figure 5.3).

Reconstruction of a phylogeny from WGS data strongly supported a scenario in

which the relapse infection (which began in 2013) was caused by the strain

from the first episode (which began in 2009; Supplementary Figure 5.4).

Inspection of candidate variants only revealed likely mutations in known drug

resistance genes (a complete list is shown in Additional Table 3). We found

the rpoB mutation I491F, which is a noncanonical but known RIF

resistance-associated variant. I491F is systematically missed by Bactec-MGIT

system because of an unfortunate combination of slow mycobacterial growth

and the system´s switch to an automated readout after 20 days.
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WGS analysis of previous isolates revealed that I491F variant appeared to

be fixed in the isolate initially cultured during the relapse episode (in September

2013) but not in the isolate from the first episode (in 2009). Thus, during the

relapse episode, the mycobacteria were already resistant to RIF at the time the

first positive culture result were obtained (Figure 5.1). Knowing this, we looked

for INH resistance variants in the first isolate from the relapse episode, but we did

not detect any putative mutation. However, in later isolates we identified 2 new

noncanonical, mutually exclusive candidate INH resistance mutations, in katG

gene (G249del and G273R). The G249del variant appeared as early as January

2014 but with highly variable frequency across samples, although it dominated

the last mycobacteria-positive cultures (from June 2016 onward). In contrast,

the G273R mutation appeared for the first time in March 2014, disappearing by

December 2015. As expected for noncanonical katG mutations, screening of

the ahpC gene and promoter region identified multiple ahpC promoter mutations

whose presence fluctuated through time (Figure 5.1).

Switching treatment from a first-line regimen to a multidrug-resistant

tuberculosis regimen is a major clinical decision. Thus, resistance variants

detected by our genomic analyses needed validation. We selected 22 single

clones from secondary cultures of specimens obtained at different time points

during treatment and performed DST with alternative methods (Figure 5.2).

Furthermore, we performed ultra-deep amplicon sequencing in specific RIF and

INH resistance regions (Supplementary Methods). First, we confirmed that all

19 clones harboring the rpoB I491F mutation were RIF resistant (MIC, > 1

µg/mL) as compared to the 3 clones from 2009 with no mutation (MIC, < 1

µg/mL), which had an higher MIC than H37Rv but similar to that for other

RIF-susceptible strains described elsewhere [87]. In the case of INH

resistance, clones from 2009 and 2013 had a low MIC for INH (< 0.25 µg/mL),

consistent with the fact that no putative katG mutations were found in these

isolates. In contrast, all clones from 2014 had either the katG G273R or the

G249del mutation fixed and no other alternative candidate mutation at a

frequency of ≥0.1%, as revealed by amplicon sequencing (Figure 5.2). All of
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these clones were highly resistant to INH (MIC, > 32 µg/mL) based on the

resazurin microtiter assay. In addition, clone haplotype analysis established a

link between specific ahpC mutations and the 2 specific katG variants

(Figure 5.2).

Thus, multiple lines of evidence suggested that the 2 katG mutations were

likely involved in INH resistance: (1) genomic analyses identified the variants as

mutually exclusive, suggesting selection for different resistant populations; (2) a

single-clone phenotypic assay identified that these mutations were associated

with high-level INH resistance; and (3) ahpC mutations were associated with

noncanonical katG mutations (Supplementary Table 5.1). Additionally,

genomic analysis detected 3 different ethambutol-associated mutations,

beginning April 2015, including 2 in the embB genomic region (G328Y, M306V)

and 1 in the ubiA region (G165S; Figure 5.1).

5.4.2 Prospective case management aided by WGS data

After validation of RIF and INH resistance, we used WGS as a primary tool for

detecting resistance. Given the newly discovered multidrug-resistant

tuberculosis profile of the patient and their lack of response to treatment, the

clinical team decided to change the drug regimen in December 2015.

Moxifloxacin (MFX) and capreomycin were added, and RIF removed. Despite

the patient´s adherence to the new treatment regimen, sputum smear results

were positive in June 2016, followed by another positive culture in October

2016. Rapid sequencing of this isolate revealed that it had acquired a related

MFX resistance mutation (E540D, in gyrB) and a likely capreomycin (L16R, in

tlyA). In parallel, a microdilution-based assay (the Sensititre MycoTB MIC

Plate) confirmed resistance to MFX (MIC, < 4 µg/mL) but revealed amikacin

susceptibility (MIC, ≤ 1 µg/ml). Accordingly, drug therapy was adjusted,

removing MFX and adding linezolid and amikacin. Unfortunately, bedaquiline

and delamanid were not available to the hospital. With this new treatment, the

last positive culture result was in February 2017, and after 18 months of culture

negativity, the patient made a satisfactory recovery. All resistance variants
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detected are in Supplementary Table 5.2.

Notably, none of the publically available genomic resistance prediction

databases classified any of the isolates as a multidrug-resistant or extensively

drug-resistant strain (Supplementary Table 5.3). In agreement with this, an

extensive analysis of 4762 genomes revealed that strains with noncanonical

RIF resistance mutations were depleted of known katG resistance mutations

(7.6% vs 36%; P < .001, by the x2 test). A deeper analyses of katG in those

strains revealed 7 mutations not described before, all of them leading to an

amino acid change and some with phylogenetic convergence signal

(Supplementary Data).
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Figure 5.2: Percentages are given for the frequency among diagnostic cultures,
as well as among individual isolated clones (identified with a “C”). DST, drug
susceptibility testing; MIC, minimum inhibitory concentration; PM, proportions methods;
REMA, resazurin microtiter assay. a;Phenotypic DST results for RIF and INH from
individual clones. b;Phenotypic DST results for RIF and INH from clinical isolates.
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5.5 Discussion

Here we described the use of WGS data to diagnose a case of

multidrug-resistant tuberculosis that was missed by the commonly used

Bactec-MGIT system. An uncommon RIF resistance mutation (I491F, rpoB) led

to a systematic negative test result. Notably, this outcome affected INH DST

with the Bactec-MGIT system; in contrast, our investigation clearly

demonstrated the presence of high-level INH resistance at different time points.

The resistance profile undetected by the Bactec-MGIT system before genome

data were available explains why the patient remained culture positive and the

infecting mycobacteria acquired additional resistance mutations between 2013

and 2015. In the absence of a fully reliable Bactec-MGIT result, we decided to

use WGS data to aid in the clinical management of the case.

However, clinical decisions based on WGS are not straightforward. The

higher resolution of next-generation sequencing approaches, combined with

our increasing knowledge of drug resistance-associated mutations, provide

evidence for the usefulness of designing individualized drug regimens [224].

Nevertheless, this work also reveals additional layers of complexity in the

clinical decision making; for example, INH-susceptible subpopulations were still

present after 2.5 years of treatment (Supplementary Figure 5.5). These

results suggest that personalized treatment will require serial sequencing over

time, preferably instead of sputum culture, to avoid culture bias and track the

dynamics of susceptible and resistant subpopulations. Furthermore, rigorous

standardized statistical approaches such as those developed by Miotto et al

[97] should identify high likely drug resistance mutations, to avoid false-positive

predictions and adverse downstream clinical consequences. In this particular

case, WGS aided care management, but despite access to WGS data,

treatment decisions led to the development of extensively drug-resistant

tuberculosis.

The poor treatment outcome in this patient is in line with previous reports

that RIF monoresistance is associated with relapse and with the acquisition of
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additional resistance mutations [221, 225]. Furthermore, it is also noteworthy

that most of the variants described are epidemiologically rare and that none

of the canonical mutations were found. Uncommon drug resistance-conferring

mutations are likely more common in high-burden countries [226], and, thus

personalized treatment approaches based on WGS data in those countries may

be compromised. Evidence from this patient adds to the view that we need

to integrate different layers of heterogeneity to understand the emergence of

and predict drug resistance in a patient. Those layers include strain, lesion,

pharmacodymanics, and drug penetration heterogeneity.
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5.6 Supplementary Data

5.6.1 Supplementary Methods

Case study
A 43-year old male patient with no tuberculosis (TB) clinically records was

admitted to the Hospital Universitario General de Valencia, Spain in April of

2009. The patient did not present any comorbility or risk factor that supposed a

bad therapeutic compliance (e.g HIV negative status). The patient was first

diagnosed with pulmonary TB and treated with the standard first-line therapy

for active TB (Two months with rifampicin [RIF], isoniazid [INH], ethambutol

[EMB] and pyrazinamide [PZA], followed by four months of RIF and INH only),

adjusting for body weight. During this period, serial sputum-positive samples

was collected and culture in order to 1) confirm the presence of Mycobacterium

tuberculosis Complex (MTBC) bacilli and 2) to performed drug susceptibility

testing (DST). MTB identification was carried out using the commercial kit

BACTEC MGIT TB Identification Test (Becton Dickinson and Co, Franklin

Lakes, New Jersey). First-line DST was performed using rapid phenotypic

BACTEC MGIT 960 system (Becton Dickinson and Co, Franklin Lakes, New

Jersey) and genotypic probes (GenoType MTBDR plus, Hain Lifescience,

Nehren, Germany). DST results indicated that the isolate was fully-susceptible

to all first-line antibiotics. After two months of treatment, the patient became

sputum smear and culture negative. Consecutive negative samples for next

four months (n=4) confirmed that the patient was cured. During 2010 and 2012

the patient presented negative sputum smear and was discharged.

In September 2013, the patient was readmitted to the hospital because he

presented typical TB symptoms suggesting a relapse episode. MTBC was

detected in sputum smear samples and confirmed in by rapid culture-based

immunoassay (BACTEC MGIT TBc Identification Test). Relapse disease has

been related with the infection by an MDR TB strain. So, phenotypic and

genoptypic DST was performed. Again, phenotypic DST and line-probe assays

showed no evidence of drug resistance. With this scenario, the patient was
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treated with the same first-line antituberculous therapy maintained all effective

drugs. Six months later (March 2014) the patient became sputum and

culture-negative and once again, was considered cured. Unfortunately, in June

2014, a single sputum specimen was detected as an INH mono-resistant

isolate by phenotypic BACTEC MGIT 960 system but no mutation was detected

by genotypic Hain line-probes assay. Because the infection strains was

considered INH mono-resistant and there were more four effective

antituberculous agents, the drug remigen was prolongated another nine

months. Notably, during this time, phenotypic DST from all the clinical

culture-positive samples tested negative for resistance to first-line drugs. Due

to the first episode and the continuum culture-positive sputum status during the

relapse, the therapy was extended until December 2015. As a consequence of

the long and ineffective TB regimen, the patient developed a great cavity in the

right upper lung.

In December 2015, whole genome sequencing (WGS) was performed for a

culture derived from a positive sputum sample of the patient isolated in June of

2014. WGS analysis identified mutations in the rpoB and katG genes

conferring RIF and INH resistance (rpoB I491F and katG G273R, respectively),

which indicated an infection caused by probable a multidrug resistant (MDR)

strain. We corroborated and validated RIF and INH resistance by extensive

phenotypic DST methods (Proportions method in the case of the RIF and

REMA assay for INH, see below for a detailed description). With this result, the

antituberculois therapy was changed, and second-line drugs were added

following the recommendations by the WHO guidelines[1]. This regimen

included the administration of EMB, Moxifloxacin (MFX), PZA, higher doses of

INH (INH+) and the injectable agent Capreomycin (CP). We decided to use CP

instead of other aminoglycoside because of the greater ease of intramuscular

administration. From this point, WGS was used in retrospective manner to

genomic characterirzed all the stored clinical samples from the patient, since

the first TB episode in 2009. In addition, WGS was used prospective manner

together with hospital phenotypic DST results to guide the antibiotic regimen in
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the patient.

On June 2016, after six months of the MDR treatment, a new sputum smear

and culture-positive appeared. WGS analysis of this sample revealed the

presence of mutations conferring EMB, MFX, and high likely CP drug

resistance (embB G238Y, gyrB E540D and tlyA L16R, respectively), indicating

that TB infecting isolate had evolved to an extensively drug-resistant (XDR)

strain. Phenotypic DST performed in the hospital (Sensititre MYCOTB MIC

Plate, Trek Diagnostics System, Cleveland, OH) confirmed MFX drug

resistance (MIC 4 µg/ml) and susceptibility to amikacin (MIC ≤1µg/ml). Based

on these findings and following the WHO recommendations [227], we decided

to change the drug treatment in the same month adding the second-line

amikacin and linezolid agents, INH+ and PZA. In addition, surgical intervention

was proposed but there were several cavited foci in both lungs and the patient

rejected this option. The last culture-positive sputum was detected in February

2017. A year later, amikacin was removed from the therapy due to the patient

had suffered adverse effects such as hearing and sigth loss. It is notable that

PZA resistance was no detected by phenotypic (BACTEC MGIT 960 system)

and genotypic (WGS analysis) methods during the nine years of the disease.

Isolate collection and DNA extraction
For this study, we used sixteen serial clinical isolates from a single patient and

one epidemiologically related sample, all supplied by the Hospital General de

Valencia. The single-patient samples covered a total of 9 years and included a

first episode of active TB and a relapse incident years later (Supplementary

Table 1). Positive mycobacterial growth indicator tubes (MGIT) were

subcultured in Middlebrook 7H11 agar plates supplemented with 10% OADC

(Becton-Dickinson) for 5 weeks at 37°C. We scrapped bacteria with a sterile

loop four times across the plate to obtain a representative sample of the

population and we extracted their DNA using the CTAB protocol [228]. The rest

of the bacteria was also scrapped and stored in 1ml of glycerol (20%) at -80 C°.

Because of the high risk to manage and work with XDR strains, isolates G1257,
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G1720 and G1928 were directly extracted from the positive MGIT culture.

Routine microbiological diagnostics methods
Standard phenotypic DST for the first-line anti tuberculosis drugs (and linezolid

[LZD] in one isolate) was performed in all clinical samples during whole study

period using the BACTEC MGIT 960 system (Becton Dickinson and Co,

Franklin Lakes, New Jersey) following the manufacturer recommended critical

concentrations for each drug; RIF (1.0µg/ml), INH (0.1µg/ml), ethambutol

(EMB) (5.0µg/ml), pyrazinamide (PZA) (100µg/ml), streptomycin STR

(1.0µg/ml) and LZD (1.0µg/ml).In addition, genotypic line-probes assays for RIF

and INH resistance was carried out with the commercial kit GenoType MTBDR

plus (Hain Lifescience, Nehren, Germany). Finally, Sensititre MYCOTB MIC

Plate (Trek Diagnostics System, Cleveland, OH)) was applied within a few

clinical samples to determine the minimal inhibitory concentrations (MIC) for

some second-line antibiotics such as moxifloxacin (MFX), ethionamide (ETH)

and amikacin (AMK). The following range of concentrations were used; MFX,

(0.06-8µg/ml); ETH, (0.3-40µg/ml); AMK, (0.12-16µg/ml).

Whole genome sequencing analysis
DNA from diagnostic cultures was extracted as previously described [228].

Sequencing libraries were constructed with Nextera XT DNA Library

Preparation Kit (Illumina, San Diego, CA) following the manufacturer

instructions. WGS was performed on the Illumina MiSeq instrument and the

average sequencing depth value per base was 168-fold (range: 103-268). To

account for contaminant DNA, we identified reads only belonging to the

Mycobacterium tuberculosis Complex (MTBC) using KRAKEN software [192].

Mapping and single nucleotide polymorphism (SNP) calling was performed

following a previous pipeline [127]. Briefly, MTBC reads were mapped and

aligned to an inferred MTBC most likely common ancestor genome using BWA

[229]. Next, we separated variants into INDELS (small insertions and deletions

included) and SNPs. Single polymorphisms with at least 10 reads in both

strands and a quality score of 20 were selected and classified into two
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categories based on their frequency in the sample. We considered fixed SNPs

those with no less than 90% of frequency and low-frequency SNPs those

involving variants whose frequencies range between 10 and 89%. An INDEL

was considered whether the mutation was present with a minimum deep

coverage of 10x. SNP annotation was performed using H37Rv annotation

reference (AL123456.2). Finally, SNPs annotated in regions difficult to map

such as repetitive sequences and PPE/PE-PGRS genes were removed from

the analysis as well as those detected near INDELS.

Identification of relapse versus re-infection strains
In order to identify whether the isolates from the first and second disease

episode were the same (relapse) or coming from two independent infections

(re-infection) we applied both a phylogenetic and a SNP threshold approach.

Regarding the SNP threshold approach, pairwise genetic distances were

compared based on a concatenated SNP alignment obtained from every fixed

SNP from every isolate. A genetic distance below 12 SNPs is indicative of

clonal diversification from the first episode strain and thus is classified as a

relapse case. On the contrary distances beyond 12 SNPs are indicative of

exogenous infection with a different strain and thus the case is classified as

likely re-infection [150, 230]. To differentiate phylogenetically between relapse

and re-infection we built a phylogeny including all the isolates from the first and

second episode as well as epidemiological related sample (brother). The

phylogeny was inferred following maximum likelihood phylogenetic approach

using RAxML v8.2 [182] applying the General Time Reversible model of

nucleotide substitution with the Gamma distribution (GTRGAMMA).

Identification of known lineage and drug resistance associated mutations
Once we had determined all the polymorphic sites (including fixed and variable

SNPs), we compared our SNP and INDEL data with a series of publicly

available predictive databases (Phyresse [193], Mykrobe predictor [103],

TB-profiler [139], latest accessed on April 2018) to determine lineage and drug

resistance mutations present in our samples. Isolates were classified as
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susceptible, resistant or multidrug resistant (MDR) according to the mutations

identified.

Identification of candidate drug resistance variants
Relevant variants during the course of treatment were selected if they appeared

at least in one isolate with a minimum frequency of 15% and had at least 15%

of difference between any two isolates (n=96, see Supplementary Table 2).

Global frequency of the new candidate mutations was evaluated against a

database of 4,762 genomes collected world-wide. The same database was

used to identify strains with and without “disputed” rpoB mutations as well as

new drug resistance determinants to INH in katG gene.

Isolation of single colonies and drug susceptibility testing of new drug
resistance mutations
After the identification of a series of novel mutations in genes or genomic

regions associated with drug resistance we decided to explicitly test if those

mutations conferred resistance by phenotypically and genetically characterizing

a series of single-colony isolates. Twenty-two single colonies from six clinical

samples with different co-existing haplotypes were isolated from Middlebrook

7H11 agar plates, grown for 10 to 15 days in Middlebrook 7H9 at 37C and

stored in 500µl aliquotes with 20% glycerol at -80C° until used.

Antibiotic stock solutions were prepared at 10 mg/ml either in sterile water

(INH) or methanol (RIF, both from Sigma-Aldrich) and stored at -20ºC. Nine

days before the experiments, 500µl of frozen inoculum from each of the 22

colonies were cultured in 10ml of Middlebrook 7H9 broth supplemented with

10% ADC (Becton-Dickinson) and 0.1% tween80. Exponentially-growing

bacteria were adjusted to an optical density of 0.2 (which is equivalent to a 1

McFarcland turbidity standard) in tween-free Middlebrook 7H9 broth

immediately prior to use.

We obtained the MIC for INH following the resazurin microtiter assay (REMA)

protocol [231]. Briefly, serial two-fold dilutions ranging from 0.125 to 32µg/ml of
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INH in tween-free 7H9 broth were prepared in a 96-well plate, with a volume

of 100µl. We then added 100ul of a 1:100 dilution of a fresh density adjusted

bacterial suspension, prepared as above and sealed the plate in a hermetic

plastic bag. Because of the slow growth of the samples carried the rpob I491F

mutations, after 9 days of incubation at 37°C, 30µl of 0.02% resazurin was added

to each well and the plate was further incubated at 37ºC for 48 h. A change of

color from blue to pink indicates bacterial growth. The MIC was defined as the

lowest drug concentration that prevented this color change. Drug and bacteria

free wells were used as control.

To determine phenotypic resistance to RIF, we used the proportion method

(PM) in Middlebrook 7H11 agar according to standard procedures [81]. The

reason for using this particular method is that these strains grow very slowly in

RIF-containing broth and give inconsistent results with the REMA. In brief, 50µl

of a 10-2 and a 10-4 dilutions of a fresh density-adjusted bacterial suspension

were cultured in plates containing 0.125 to 64µg/ml of RIF. Drug-free plates

were used as a positive control. After 3 weeks of incubation at 37°C, the

number of colonies forming units growing on medium with antibiotic were

compared with those on the positive control. The proportion of resistant

bacteria was represented as percentage. The MIC was defined as the first drug

concentration where there was no growth.

The H37Rv strain was used as a quality control in all experiments. In

addition, the isolate from the first episode that is wild-type (G1480) for the

mutations was used to measure the increase on MIC in the following isolates.

Strains were classified as susceptible or resistant according to the critical

concentrations recommended by WHO (guidelines 2014 [227]).

Deep amplicon sequencing: amplification, library construction and
sequencing
In order to confirm the SNPs identified and the possible detection of additional

very low-frequency variants (¡5%), we performed deep amplicon sequencing

following and adjusting the single molecule-overlapping reads (SMOR)
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approach [232]. Six primer sets were designed to target specific regions of

rpoB, katG and ahpC (promoter and CDS included) (see supplementary Table

5), producing amplicons between 285-339bp. We used two additional primers

sets targeting phylogenetic lineage-diagnostic SNPs as internal controls. A

total of 39 samples were analysed including 15 clinical isolates from the case,

22 from single colonies and two controls (lineage 4 H37Ra and a Lineage 2

Beijing strain). A single PCR amplification step was carried out with

parameters: initial denaturation at 95ºC for 3min, 20 cycles of denaturation at

98ºC for 15 sec, annealing at 65ºC for 15s and extension at 72ºC for 30s, with a

final extension at 72ºC for 2min. Each reaction contained 12.5µl of 2x KAPA

HiFi HotStart ReadyMix (KAPA biosystems), 0.75µl of 10µM forward primer,

0.75 of 10µM reverse primer, 5µl of template DNA and 6µl of PCR-grade water.

After amplification, reactions were pooled by sample (5µl of each amplicon and

20µl of 10µM Tris-HCl) and purified using 1X NucleoMag NGS Clean-up and

Size Select (Macherey-Nagel) up to 50µl final volume.

Amplicon sequencing libraries construction and sequencing were performed

as described for whole genome sequencing. Purified libraries were validated

on a Bioanalyzer DNA chip (Agilent Technologies) to verify fragment size, and

quantified using Qubit 3.0 Fluorometer (Thermo Fisher Scientific). The

expected average coverage for this experiment was 50,000 fold per base.

Data availability
All genomic data are deposited in the European Nucleotide Archive under the

Bioproject numbers PRJEB22237 and PRJEB25887.

5.6.2 Supplementary Results

Non-canonical resistance mutations can lead to under-reporting and
treatment of MDR-TB cases
The fact that INH resistance went undetected (likely due to the fitness cost of

the RIF mutation on replication [84] led us to question whether non-canonical

(also known as “disputed”) mutations are involved in a systematic under
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detection of MDR-TB. We pooled together a global SNP database of 4762

strains. A total of 66 strains harbored a non-canonical RIF resistance mutation

(7.6% of the strains with a RIF resistance mutation). Of these, only 24 isolates

contained a known katG mutation as opposed to 92.4% in strains carrying

undisputed RIF resistance mutations (36%, P<0.001, chi-square test). Some of

the strains could be RIF mono-resistant, particularly related with relapse cases

[233, 234]. However, we hypothesized that a percentage of these strains were

undetected MDR cases associated to non-canonical mutations. Among strains

with a “non-canonical” rpoB mutation we found seven mutations not described

before, all of them leading to an aminoacid change. For three of them we had

evidence of convergent evolution, a strong predictor of resistance particularly in

drug resistance associated regions [235, 236] [19,20]. One, katG V1A have

been recently identified as INH associated with resistance [237]. For the other

two (V473L and G285V), publicly available phenotypic results are contradictory

as the majority of the isolates were susceptible. However, rpoB I491F mutation

was present in four out of the six strains indicating a possible parallelism with

the phenotyping problems presented in this manuscript.

5.6.3 Supplementary Tables
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Amplicon
target a

Primer sequences
5’ - 3’

Product
length (bp) b Reference

rpoB RRDR
(761020-761233)

F-CGATCACACCGCAGACGTT
R-GTTTCGATCGGGCACATCC 232 [232]

rpoB 491
(761126-761362)

F-GTCGGGGTTGACCCACAAG
R-CAGGTACACGATCTCGTCGC 256 This study

katG 315
(2155074-2155345)

F-CCATGAACGACGTCGAAACAG
R-GCTCTTCGTCAGCTCCCACTC 272 [232]

katG 429del
(2154941-2154723)

F-AGACAGTCAATCCCGATGCC
R-GCGGGTGGATCCGATCTATG 257 This study

oxyR-ahpC promoter
(2726015-2726251)

F-ACCACTGCTTTGCCGCCACC
R-CCGATGAGAGCGGTGAGCTG 236 [238]

ahpC 192
(2726608-2726856)

F-ACCCCAACAACGAGATCCAG
R-GATGTCTTTGGCGTACTCGG 218 This study

a Positions correspond to H37Rv genome. NCBI Reference Sequence NC000962.3.
b Length includes Illumina adapter sequences.

Table 5.4: Primers used for amplicon sequencing of relevant rpoB, katG and ahpC
regions. Abbreviations: RRDR, rifampicin-resistance-determining-region.
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5.6.4 Supplementary Figures

Figure 5.3: Management of the case and role of the genomic and clinical
laboratories. Timeline with the most relevant patient’s management clinical events
during 9 years of the infection. The clinical laboratory (red line) refers to the
routine BACTEC-MGIT (phenotypic) and Hain Gentotype MTBDRplus (genotypic) assays
performed in the hospital. The genomic laboratory (green lines) corresponds to results
obtained by whole genome sequencing analysis of the isolates and available from 2015
onwards. Once the relevant mutations were identified using WGS individual clones
at different time-points were isolated and tested for RIF and INH resistance using an
alternative approach to BACTEC MGIT. WGS was also used in a prospective manner to
predict DST to new drugs during MDR-TB treatment.
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Figure 5.4: Genetic relationship between all the isolates. Sample G1480
corresponds to the first episode and presented a fully-susceptible resistance profile;
G1479 corresponds to the first relapse isolate. A. Inferred maximum Likelihood tree.
Isolates G1720, G1721 and G1928 presented an extensively drug-resistant profile. B.
Pairwise SNP distanced between all samples.

Figure 5.5: Predicted percentage of the susceptible (grey bar) versus INH resistant
populations (blue bar) identified across all isolates. The percentage of the INH
resistant population refers to the sum of the frequencies of the two INH mutations co-
existing in the patient (katG G273 and G249del)
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tuberculosis complex strains in low
and high burden countries.

The work described in the present chapter has been published as a Reseach Article in

Scientific Reports Journal

Cancino-Muñoz, I. et al. Development and application of affordable SNP typing

approaches to genotype Mycobacterium tuberculosis complex strains in low and high

burden countries. Sci Rep 9, 15343 (2019).
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Development and application of two affordable SNP typing approaches

6.1 Abstract

The Mycobacterium tuberculosis complex (MTBC) comprises the species that

causes tuberculosis (TB) which affects 10 million people every year. A robust

classification of species, lineages, and sub-lineages is important to explore

associations with drug resistance, epidemiological patterns or clinical

outcomes. We present a rapid and easy-to-follow methodology to classify

clinical TB samples into the main MTBC clades. Approaches are based on the

identification of lineage and sub-lineage diagnostic SNP using a real-time PCR

high resolution melting assay and classic Sanger sequencing from

low-concentrated, low quality DNA. Thus, suitable for implementation in middle

and low-income countries. Once we validated our molecular procedures, we

characterized a total of 491 biological samples from human and cattle hosts,

representing countries with different TB burden. Overall, we managed to

genotype 95% of all samples despite coming from unpurified and

low-concentrated DNA. Our approach also allowed us to detect zoonotic cases

in eight human samples from Nigeria. To conclude, the molecular techniques

we have developed, are accurate, discriminative and reproducible.

Furthermore, it costs less than other classic typing methods, resulting in an

affordable alternative method in TB laboratories.
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6.2 Introduction

With around 10 million new cases and 1.5 million deaths, tuberculosis (TB)

caused by the acid-fast bacillus Mycobacterium tuberculosis complex (MTBC),

is the first worldwide infectious disease cause of death and remains a major

global health problem in low and high burden incidence countries [239]. The

MTBC comprises the species responsible for most of the human TB cases

worldwide (M. tuberculosis and M. africanum) as well as those associated with

animal disease (M. bovis, M. caprae, M. canetti) and the vaccine strain M.

bovis BCG [240]. Human-associated strains can be further divided into seven

main MTBC lineages [127, 157] using robust genomic markers as

single-nucleotide polymorphisms (SNPs) that are in agreement with previous

genotyping approaches [39]. Some lineages have been associated with a wide

geographic distribution, such as the MTBC lineage (L) 4, which is the most

predominant around the globe. On the other hand, other lineages are restricted

to certain areas [40], such as L7 strains predominantly found in Ethiopia [241],

the M. africanum L5 and L6, primarily found in West Africa [242]. MTBC L4 is

considered the most frequent and genetically diverse. Recently, 10 L4 groups

or sub-lineages have been proposed [40].

Lineages and sub-lineages have been associated with different functional

and disease phenotypes including differences in transcription, lipids or

immunological response but also with disease presentation and epidemiology

[119]. However, it has been difficult to correlate specific nucleotide changes or

identify regions associated with those phenotypes. Part of the problem is the

complex interaction between the host, the bacteria and the environment [89].

As important as these factors are, the need for robust mycobacterial

classification systems that can be used worldwide and compared across sites

is sought after. Classical genotyping methods such as Spoligotyping [243] and

the Mycobacterial Interspersed Repetitive Units- Variable Number of Tandem

Repeats (MIRU-VNTR) [244] can fail to discriminate and classify within the

MTBC phylogeny [136]. On the contrary, SNP markers are stable over time due
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to the absence of recombination within MTBC and are congruent with other

robust markers like large deletions [136, 157]. Other new techniques like

Whole-Genome sequencing (WGS) have a greater resolution but are limited by

high costs, difficulties to interpret the results and limited access in

low-to-middle income countries.

Recently, two new approaches became available by using real-time PCR,

and a ligation-dependent PCR with Luminex flow cytometer technology for

genotyping clinical MTBC strains [161]. Here, we present two methods

developed for fast, accurate and less expensive MTBC genotyping using High

Resolution Melting (HRM) analysis with real-time PCR reactions (real-time

PCR-HRM) on multiplex and uniplex reactions with an unspecific dye, and

automatized Sanger sequencing. HRM analysis assays were performed before

on MTBC strains, nevertheless, all studies focused on the detection of variants

related with drug resistance ([245, 246, 247, 248]), and to differentiate MTBC

members in cultured and non-cultured samples [249].

In addition, we applied these new approaches to a collection of 491 clinical

uncharacterized isolates from three different burdens countries: i) human

derived samples from a low-burden region in Spain; ii) human derived samples

from a high-burden region in Liberia, West Africa; and iii) human and cattle

derived samples from abattoirs in Nigeria. The three datasets were used to

show an accurate picture of the circulating lineages and sub-lineages in the

different regions and to explore zoonoses between humans and cattle.

Furthermore, we successfully tested our molecular assays in complex

biological samples that included low DNA concentrations, unpurified heat-killed

extracts, as well as contaminants that could affect the PCR performance.

These methods were developed in the need to reduce the costs of typing in

diagnostic laboratories, especially in high burden countries.
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6.3 Methods

6.3.1 Ethics Statement

For the Valencia biological samples, the study was approved by the

corresponding Ethics Committee of the Regional Health Office for Valencia

(Spain), with an exemption for informed consents from the corresponding

Ethics Committee on the basis that this study is part of the surveillance

program of communicable diseases by the Public Health Regional Program

and, as such, falls outside the mandate of the corresponding Ethics Committee

for Biomedical Research. For the Nigerian samples: Based on the premise that

the country has a high level of illiteracy, verbal consent was obtained before

sample collection. This was approved by the UI/UCH Ethics Committee of the

University of Ibadan (UI/EC/14/0198 number). For the Liberian samples:

Formal ethical approval for the study was obtained from the Liberian Institute

for Medical Research (EC/LIB/914/923 resolution number). Thereafter, the

Liberian National Leprosy and Tuberculosis Control Programme and Ministry of

Health and Social Welfare approved to collect samples from the hospitals used.

For the Liberian samples, there was no direct contact with the patients and

therefore exemption from informed consent was granted. All patient personal

information was anonymized and no data allowing individual identification was

retained. All research was performed following relevant guidelines and

regulations.

6.3.2 Biological samples

We used a reference set of strain DNA samples to set-up the assays [250]. The

set included 40 DNA samples corresponding to all MTBC lineages and the

main L4 sub-lineages obtained in collaboration with The Swiss Tropical and

Public Health Institute (Swiss TPH, [n=22]), as well as by a local ongoing TB

project (n=18) (Supplementary Table 6.5). Swiss TPH Reference samples

were well defined by WGS in previous studies [127, 40]. We used this
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reference set to optimize the real-time PCR-HRM assay as well as Sanger

sequencing. Afterwards, we tested our molecular approaches for validation on

two different TB burden settings: i) low-burden - 219 clinical isolates of the

Hospital Universitario y Politécnico La Fe, Valencia, Spain obtained during the

years 2011-2013; and ii) high-burden - 188 samples from Nigeria Countrywide

as well as 78 clinical samples from Liberia. The Nigeria samples were enriched

by isolates from cattle lesions.

6.3.3 Reference collection strains

Samples from Swiss TPH were incubated in liquid media Middlebrook 7H9

(Becton Dickinson) at 37ºC during two weeks, while as those from our

laboratory were grown in commercial Middlebrook 7H10 agar (Becton

Dickinson) with OADC supplement. In all cases, DNA extraction method was

performed following the CTAB method [228]. Purified DNA was used to perform

our molecular approaches.

6.3.4 Sample preparation

In the case of the validation datasets, we tested our molecular approaches in

direct supernatants prior to an inactivation step, following the next procedure: all

samples were grown in standard Lowenstein-Jensen solid media (BBL, BD) and

incubated at 37°C during 3-4 weeks; next, the inactivation was performed by a

heat-kill cycle of 30min at 95°C and centrifuged. We used the heat-inactivated

supernatant to perform the molecular assays. Moreover, DNA concentration

was quantified using PicoGreen® (Molecular Probes) in samples from Valencia,

while Qubit fluorometer (ThermoFisher Scientific) was used on those from West

African samples.
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6.3.5 SNP selection for molecular assays

For real-time PCR-HRM method, we used a combination of specific-lineage

and sub-lineages SNPs previously described [39, 40, 161, 120, 251] as well as

new seven markers developed in the present study. Novel markers were

identified by analyzing 34,167 SNPs previously identified in a dataset of 219

globally representative genomes [127]. Given that the vast majority of SNPs in

MTBC are billelic and does not show evidence of convergent evolution we

applied a parsimony-based approach to map and extract all the specific

lineages and sub-lineages SNPs from a global MTBC phylogeny. We used the

“Trace Character History” module implemented in MESQUITE

(http://www.mesquiteproject.org) to obtain the polymorphisms that were

common to each lineage and sub-lineage. We obtained a SNPs candidate list

of 2,056 and 1,337 for lineages and sub-lineages, respectively. To choose a

SNP candidate for the real-time PCR-HRM, we prioritized synonymous variants

detected in essential genes. In all cases, we met this criteria, except in SNP

markers for L5 and L4.1.3, in which both were non-synonymous changes. As a

proof of concept, all the selected SNPs were validated against a database of

4,595 genomes recently published by our group to assure their stability as

markers [194]. The same SNP dataset was used to identify genomic regions

with less than 1 Kb that contain the higher number lineage-specific markers.

After mapping the genomic coordinates against H37Rv reference genome

(NCBI reference number NC˙000962.3), we found two candidate regions

harbouring three lineage specific variants each. The first region contained the

specific SNPs for L1, L2 and L3, the second region had the diagnostic variants

for L3,L4 and L5.Afterwards, we designed an amplification assay including the

SNPs of interest in both regions for follow-up Sanger sequencing (Figure 6.1).

6.3.6 Primers design and specificity

All primers for both molecular approaches were specifically designed in this

project, except diagnostic SNPs for L4 and L6 that were previously published
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[39, 161]. Oligosequences were designed using the Primer3Plus [252] online

tool (www.primer3plus.com). To make multiplex amplifications in a single tube,

we increased the melting temperature by adding AA/TT tail-bases in two primer

paired sequences. After primer design, we performed a BLAST [253] search to

evaluate in silico specificity. Furthermore, we did conventional PCR to

corroborate the size and specificity of the amplicons. In all cases, we used the

manufacturer conditions of the KAPA2G Fast PCR amplification kit

(KAPABiosystems) adding 500 nM of each forward and reverse primer and 10

ng of DNA in a final volume of 25µl. PCR products were visualized using

standard agarose gel electrophoresis (1.4%) for 1hr at 110V. Data containing

the diagnostic SNP positions, as well as the primer sequences used for all

molecular approaches are in Tables 6.1-6.2 (real-time PCR-HRM approaches),

and Supplementary Table 6.6 (Sanger sequencing approach).

6.3.7 Real-time PCR-HRM for lineages and sub-lineages

We optimized the use of the real-time PCR-HRM technology for the rapid

detection of specific MTBC lineages (from L1 to L6, and M. bovis clade), as

well as L4 sub-lineages. For the most common lineages, we designed two

multiplex reactions: one containing the specific oligonucleotides for L2, L3 and

L4 and the second including the primers for specific L1 and L6. In contrast,

uniplex reactions were developed for L5 and M. bovis identification. In all

cases, each PCR reaction had a final volume of 10 µl. This reaction consisted

in 5µl of the KAPA HRM FAST PCR Master Mix (KAPABiosystems), which

includes the unspecific EvaGreen® dye and dNTPs; 2.5 mM of MgCl2 (25mM)

and 10 ng of template DNA. Every forward and reverse primers had different

concentrations depending on the multiplex reaction. In the first multiplex

reaction, we added 200 nM of each primer for L2 and L3, while for L4, we used

600 nM of each oligonucleotide. In the second multiplex reaction, the

concentration of each pair of primers was 200 nM. In the case of the Uniplex

assay (L5 and M.bovis), a total of 400 nM of each primer were added to the

mix. Finally, distilled water was added to complete a 10 µl final volume. For all
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lineages the PCR amplification step consisted in an initial denaturation step at

95°C for 5 min; 40 cycles of denaturation (95°C, 10 s), annealing (57°C, 20 s)

and final extension (72°C, 20 s).

Real-Time PCR-HRM for L4 specific sub-lineages was performed following

uniplex reaction conditions described above, with the exception of the

annealing step, which was 55°C due to the oligonucleotides melting

temperature. All reactions were performed in three technical replicates per

sample to test the reproducibility of the assay.

The HRM assay was performed at the end of each reaction and consisted of

one cycle of increasing temperature from 45°C to 97°C at ramps rate of 2.2 °C/s.

Fluorescence signal changes were collected at the end for posterior analysis. In

every run we used several controls. A free-DNA well serve as a non-template

control. In addition, reference DNAs for all lineages were used to assign the

melting curve of the sample to one for the lineage/sub-lineage and as controls.

6.3.8 Analysis of the melting curves in HRM assay

All the real-time PCRs (multiplex and uniplex) reactions and HRM curves

analyses were performed with a Roche LightCycler480 instrument (Roche

Applied Science, Germany) and Gene Scanning software, respectively. This

analysis consists of four steps: 1) identify samples that did not amplify as

negatives to exclude them from the analysis; 2) normalize the melting curve

data indicating the values of initial and final signal fluorescence for all samples;

3) adjust the temperature of the normalized melting curves at the point where

the DNA is denatured to distinguish the changes in the shape of samples; and

4) finally, the melting curves are represented by a difference plot. The program

allows selecting a baseline curve to show the differences based on this. In all

the cases negative controls for the lineage or sub-lineages evaluated were

used for this baseline curve.
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6.3.9 Sanger sequencing

We performed Sanger sequencing on the reference set to identify major

lineages. First, the amplification step was carried out with conventional PCR

using the same reaction conditions as described above (primers specificity

section). Then, PCR products were labeled and purified according to the

BigDye Terminator v3.1 Cycle Sequencing Kit (AppliedBiosystems) and PCR

ExcelaPure 96-Well UF Purification Kit (EdgeBioSystems) protocols,

respectively. The two target regions were sequenced with the ABI 3037xl DNA

analyzer (AppliedBiosystems). Finally, the resulting sequences were analyzed

using Pregap5 and Gap5 programs [254], both included in the Staden package.

6.3.10 Performance of the molecular techniques

We evaluate the performance of the techniques by calculating the accuracy,

sensitivity, specificity, positive predictive value and negative predictive value of

each. WGS lineage definition was used as a gold standard genotyping method.

We tested a total of 76 whole-genome sequenced heat-inactivated clinical

samples, 43 from Liberia dataset and 33 from Valencia dataset.

6.3.11 Biosafety procedures

DNA extractions from cultures were done in a BSL-3 facility as per WHO

recommendations. Samples from Nigeria and Liberia were heat-inactivated at

the Nigeria laboratory. Once arrived, s second inactivation step to assure killing

of the bacteria was done at FISABIO‘s (Spain) BSL-3 facility. In the case of the

Valencia samples, culture procedures as well as heat-inactivated step were

performed at the Hospital Universitario Politécnico la Fe BSL-3.

6.3.12 Data availability

The datasets generated during and/or analysed during the current study are

available from the corresponding author on reasonable request. The Sanger
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sequences generated were uploaded to the NCBI database under submission

numbers 2262663 and 2262671.

6.4 Results

6.4.1 Lineage and sub-lineage identification by real-time
PCR-HRM and Sanger sequencing

To identify diagnostic SNPs for typing all MTBC lineages and L4 sub-lineages,

we analyzed a global reference collection of 219 MTBC strain genomes. A total

of 34,167 SNPs were found affecting a variable number of strains as previously

published. We mapped the variants to the corresponding MTBC phylogeny and

extracted all that were common to the strains belonging to a lineage or

sub-lineage. A total of 2,056 lineage SNPs and 1,337 sub-lineage SNPs were

identified as candidate markers. Specific common L7 variants were discarded.

The diagnostic potential of all variant candidate were corroborated in-silico in a

larger collection of 4,495 MTBC genomes [194] to assure their stability (see

Methods section and Figure 6.1).

Using the annotated specific lineage variant list, we identified two short

genomic regions (less than 500bp) containing SNP markers for the six main

human lineages (L1-L6). The first region involved the specific phylogenetic

markers for L1, L2 and L5 at H37Rv (NCBI, NC 000962.3) reference genomic

positions 4357773GA, 4357804TG, 4357657GA, while the second region

included SNPs for L3, L4 and L6 at positions 1281984GA, 1281771CT,

1281685CG, respectively (Supplementary Table 6.6). After amplifying both

regions and testing the specificity of the primers (Supplementary Figures
1-2), we used 18 DNA strains representative of the MTBC lineages diversity as

controls (reference dataset, Supplementary Table 6.5) to performed Sanger

sequencing. A visual analysis of the sequences generated showed that no

nucleotide differences in the amplified regions were detected against the wild

type sequences, except for those mutations corresponding to each specific
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lineage (Supplementary Figure 3). The diagnostic amplicon positions in the

first region for L1, L2 and L5 markers were 243GA, 274GA and 127TG,

respectively. In the case of the second region, amplicon positions for detecting

L3, L4 and L6 were 310GA, 274GA and 127TG, respectively.

Different candidate SNP were selected based on different features to design

a set of primers for each lineage and sub-lineage for real-time PCR-HRM assay

(Tables 6.1-6.2). Seven diagnostic SNPs were tested for the real-time

PCR-HMR detection of MTBC lineages on the reference dataset (n=40)

(Supplementary Table 6.5). To optimize the reaction, we developed two

multiplex real-time PCR reactions to detect the most common MTBC lineages

(L1-L4 and L6). While specific lineages (L5 and M. bovis) were detected by a

uniplex PCR reaction each, analysis of melting curves on HRM assays denoted

the differences between positive controls according to their melting temperature

and signal fluorescence (Figure 6.2).

Given the importance of L4 as the most successful MTBC lineage, we

developed a real-time PCR-HRM assay to type the most common sub-lineages

defined by WGS. We used six diagnostic SNPs previously described [40], while

the rest were designed after screening of a global SNP database 3 In all cases,

primers were designed to assure the specificity of the real-time PCR-HRM

assay (Figure 6.2). Once more, we used 24 DNAs representing the most

common L4 sub-lineages (reference collection). HRM analysis showed a clear

discrimination between positive samples (those with the specific SNP) against

those with wild-type genotype (Figure 6.3).
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MTBC
lineagea

SNP
positionb

Nucleotide
changec Gene Primers sequences

5’-3’
Amplicon
size Reference

1 115499 T/G Rv0101 F-ATAATATTGCGTCGGTGTTGG
R-TTATATATTAATGGGCAGGCC 81bp This study

2 3304966d G/A Rv2952 F-TGTTACCCGCACTTTCGGCGTTT
R-AGGTCGGCGTATGGGAGGTA 80bp This study

3 4266647d A/G Rv3804c F- GCGACATACCCGTGACGGC
R- CGTTGAGATGAGGATGAGGG 92bp This study

4 2154724 A/C Rv1908c F-CCGAGATTGCCAGCCTTAAG
R-GAAACTAGCTGTGAGACAGTC 64bp [39]

5 456731 C/T Rv0380c F-GCATCGTGTCCGAAGTTCTC
R-ATCATCGCCGACATCGATAC 68bp This study

6 378404 G/A Rv0309 F-CCGACAGCGAGAACCTGC
R-CCATCACGACCGAATGCTT 54bp [136]

M.bovis 2831482 T/G Rv2515c F-GTGTTGCTGTCGATGACGC
R-ACTGGTACCGCAATACCGTC 91bp This study

a Nomenclature proposed by Comas et al [120]
b Genomic position on the H37Rv reference genome (NCBI, NC 000962.3).
c Allelic change in the reference genome.
d Mutation previously described by Fenner at al [251]

Table 6.1: Specific lineage primers used in the study.
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MTBC
lineagea

SNP
positionb

Nucleotide
changec Gene Primers sequences

5’-3’
Amplicon
size Reference

L4.1.1 3798451d C/G Rv3383c F-ATCGACTCAATGGCCCGATG
R-TGACTCTGGATGCGGTTTT 112bp This study

L4.1.2 4323348d C/T Rv3848
/3849

F-AAATCCGTTCGTCGTGTGGA
R-CTGACGTTGTGAGGGGTCAA 82bp This study

L4.1.3 4409231 T/G Rv3921c F-GACCGCCTCCTGCTTTTTG
R- ACGTCTTCGGCATGATCGAA 53bp This study

L4.2 2942377 C/T Rv2614c F-GAGTAGTCCTCCAGTTCGCG
R-TCAGCTTCCCCGACGAAATC 85bp This study

L4.3 1480024d G/T Rv1318c F-CAGGCCAGGATCCACATCAG
R-TGCTGCTCAATCTCACTCGG 100bp This study

L4.4 4307886 G/A Rv3834c F-AAGGTGGTGCAGTTCGAC
R-ACTGCGAGGCGTGGATTC 69bp This study

L4.5 2789341d A/C Rv2483c F-GGAGGCCTCACCATCCTTG
R-ACGAAGGCGGCTACAAAGAA 81bp This study

L4.6.1 435708 G/A Rv0357c F-CAAAGATCCCGCTGGGTCAT
R-GATATGAGATCGACGGCCGG 58bp This study

L4.6.2 3191099d C/A Rv2881c F-CATCATGCAGAACACCCATC
R-CCCATTGTTCTGCTCTTTCG 72bp This study

L4.10 1692141d C/A Rv1501 F-GCTCGGTGTTCTTCGACTCA
R-TGGCCGTTTCAGATAGCACA 107bp This study

a Nomenclature proposed by Stucki et al [40].
b Genomic position on the H37Rv reference genome (NCBI, NC 000962.3).
c Allelic change in the reference genome.
d Mutation previously described by Stucki et al [40].

Table 6.2: Specific L4 sub-lineages primers used in the study
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6.4.2 Performance of typing methodologies

In the previous section we used a reference dataset to set-up the real-time

PCR-HRM and Sanger sequencing assays. To evaluate and test their

robustness, we calculated some performance parameters from a collection of

76 heat-inactivated clinical samples that had been whole genome sequenced in

our laboratory (43 from Liberia dataset and 33 from Valencia), ranging from

0.054-8.08 ng/µl DNA concentrations .In both cases, WGS was use as a gold

standard genotyping method.

The sensitivity if the real-time PCR-HRM assay was 97.37% (74/76, [95%

CI: 98.82-99.68%]), while the specificity was 100% (368/369, [95% CI:

99.01-100%]).Overall, real-time PCR-HRM assay accuracy was 99.33% (95%

CI: 98.04-99.86%).

The sensitivity of the Sanger sequencing was 71.05% (54/76, [95% CI:

59.51-80.89%]), while the specificity was 100% (305/305, [95% CI:

98.80-100.00%]), giving a negative predictive value of 92.44% (95% CI:

89.52-94.56%). Overall, the Sanger Sequencing assay accuracy was 94.23%

(95% CI: 91.39-96.35%) (Figure 6.3). Thus, although Sanger sequencing

allowed us to accurately identify the lineage, a positive result strongly depends

on the successful amplification of at least one genomic region.

Screening method No. of samples
analyzed (n=76)

Sensitivity
(95% CI)

Specificity
(95% CI) PPV NPV Accuracy

Real-time
PCR-HRM 74 97.37%

(98.82-99.68)
100.00%
(99.01.100) 100% 99.46%

(97.91-99.86)
99.33%
(98.04-99.86)

Sanger Sequencing 54 71.05%
(59.51-80.89)

100.00%
(98.80-100) 100% 92.44%

(89.52-94.56)
94.23%
(91.39-96.35)

Table 6.3: Performance values of the molecular techniques used in the study.
These values were extracted from 76 whole-genome sequenced heat-inactivated clinical
samples. Abbreviations: PPV, Predicted Positive Value; NPV, Negative Predictive Value.
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6.4.3 Molecular characterization in a low-burden region

Once the methods were optimized and validated, we sought to apply the

real-time PCR-HRM technique to heat-inactivated bacteria from a clinical

laboratory in order to test the robustness of the typing scheme to DNA amount

and purity. We used 219 DNA samples from Valencia (Spain) ranging from 0.02

to 18.3ng/µl total DNA amount. These samples were heat-inactivated extracts

and had not been molecularly characterized before. SNP typing identified 191

isolates (87.2%) as L4, whereas the L3 and L2 were identified in nine (4.1%)

and eight (3.6%) samples each. L1 and M. bovis lineages were present in four

and two cases, respectively. Finally, L5 was not identified. The most frequent

sub-lineages identified were L4.1.2 (Haarlem family) with 66 (30%) cases,

followed by L4.10 with 51 (23.2%) cases, and L4.3 (LAM family) with 49

(22.3%) isolates (Figure 6.4).Furthermore, with the patient origin data obtained

from 140 cases, we constructed a map including the sub-lineages frequencies

to see whether they are globally spread or just found in restricted areas

(Figure 6.5). We observed that the sub-lineages L4.1.2 and L4.10 are more

frequent in East Europe, while L4.3 is more common in Latin America and East

Africa. In contrast, L4.6.2 (Cameroon family) and L4.4 are more specific for

some regions of Africa as previously reported [40].

6.4.4 Molecular characterization in a high-burden region

We genotyped 266 tuberculosis samples from five different Nigeria districts as

well as from Liberia. For this dataset, we also used heat-inactivated extracts.

DNA concentrations ranged from 0.05 to 33.2ng/µl. We were not able to

characterize 17 samples due to amplification problems.

The sampling scheme from Nigeria (n=171) was thought to increase the

chances to identify zoonoses events between humans and cattle. Thus 58% of

the samples (n=99) were obtained from cattle lesions while 42% (n=72) derived

from human patients. We screened these samples with our specific M. bovis

real-time PCR-HRM assay to distinguish between M. bovis and the rest of the
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Figure 6.4: MTBC genotypes identified by real-time PCR-HRM assay in the three
study regions. a, Proportion of the main lineages detected. b, Principal sub-lineages
belong to L4. Numbers inside of the pie charts represents percentage. * Nomenclature
proposed by Stucki et al [40]
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Figure 6.5: Global distribution of all lineage 4 samples in Valencia region by patient
origin country. * Nomenclature proposed by Stucki et al [40]

MTBC strains (Figure 6.2D). We detected the presence of an M. bovis infection

in 99 (93%) cattle lesions. No human tuberculosis was identified in any

cattle-derived sample (Figure 6.4). In contrast, we identified bovine

tuberculosis infecting eight human cases. We identified that six cases were

from Makurdi, North-central-Nigeria. For the rest of the human samples (n=64),

the most common genotype detected was L4 with 34 cases (20%), with the

specialist L4.6.2 as the most frequent sub-lineage (13 cases). Surprisingly, we

detected the presence of unclassified sub-lineages in 10 samples. L5 was

classified in seven isolates. Additionally, ambiguous HRM profiles were

identified in 13.5% of the human samples (n=23). This ambiguous results could

be due to the presence of mixed infections by different MTBC strains, potential

contamination errors and/or, less likely, to possible PCR artefacts. In addition,

with the geographic data, we created a distribution map of the lineages

(sub-lineages included), in order to have a snapshot of the MTBC diversity

affecting the abattoirs in the zone (Figure 6.6).

In the case of the Liberian samples (n=78), the most frequent lineage

detected was L4 corresponding to 70.5% (n=55) of all MTBC strains, followed

by Indio-Oceanic L3 with 19% (n=15). L2 and L6 were the less frequent
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lineages with six and one cases, respectively. Within L4, we detected that the

L4.3 was the most common with 25.5% of the samples (n=14), followed by

L4.4.1 (X genotype) with 20% of the infecting strains (n=11). The specific

L4.6.2 was found only in nine cases (16.3%) of all the clinical samples

(Figure 6.4). Furthermore, we were not able to classify eight heat-inactivated

L4 MTBC samples, suggesting that local sub-lineages are circulating in the

country.

Host
MTBC lineage Cattle Human
Lineage 4 0 (0%) 34 (20%)
Lineage 5 0 (0%) 7 (4%)
M.bovis 99 (58%) 8 (5%)
Possible mixed infection 0 (0%) 23 (13%)
Total 99 (58%) 72 (42%)

Table 6.4: Global distribution of all lineages (sub-lineages included) identified in all
Nigeria regions. The map shows the MTBC diversity circulating in Nigeria study regions.
The diameter of each circle represents the number of samples obtained from each zone.

Figure 6.6: Global distribution of all lineages (sub-lineages included) identified in
all Nigeria regions. The map shows the MTBC diversity circulating in Nigeria study
regions. The diameter of each circle represents the number of samples obtained from
each zone.
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6.5 Discussion

In this study, we developed two genotyping methods using faster and less

expensive technologies such as real-time PCR-HRM and Sanger automatized

Sequencing with informative SNPs for the main six lineages of MTBC, including

the M. bovis clade and the most common L4 sub-lineages. First, we set up

Multiplex and Uniplex real-time PCR-HRM reactions for the main MTBC

lineages and specific L4 sub-lineages using an unspecific dye instead of

specific probes, which helps to reduce the cost of the assay. We optimized the

PCR assay to obtain a reliable result using lower reagents volumes than the

manufacturer’s recommendation (10 vs 20µl of total reaction volume). By

comparing this method with classical genotypic approaches such as

spoligotyping which costs 26US$ per isolate [164], we demonstrated a

relatively lower cost of our assay, being of 2.4US$ in the case of a uniplex PCR

reaction and lower than 0.9US$ using multiplex condition. Additionally, our

molecular techniques have a similar cost when we compared them with other

SNP-based genotyping methods such a Luminex MOL-PCR assay, which cost

0.8 and 0.15EUR for uniplex and multiplex reactions, respectively [161].

Nevertheless, Luminex platform is considered a not conventional laboratory

equipment, especially in low- and middle-income countries. Moreover, we show

that our real-time PCR-HRM assay works with heat-inactivated,

low-concentrated DNA samples, which are commonly generated in TB

diagnostic laboratories.

It is well known that WGS are decreasing every year, mostly based on the

high-throughput capacity for sequence several samples per run (up to 24

isolates with the Illumina MiSeq instrument), or because third generation

sequencers technologies (such as the Oxford Nanopore MinION device) are

more accessible (between 100-150EUR per isolate). Besides this, many low-

and middle- income countries do not have the necessary equipment. In

addition, in many high burden countries, the number of TB cases is larger so it

is not feasible to perform WGS all of them [56], thus providing installations for
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PCR-based approaches as a quick and affordable screening method.

Using a validation dataset of 76 clinical strains well-defined by WGS to test

the performance of the techniques, we were able to genotype up to 97.3% and

71% of samples by real-time PCR-HRM and Sanger sequencing, respectively,

both of the with specificity values of 100%. The fact that we could not perform

Sanger sequencing assay on some samples, could be due to the low amount of

DNA that we were able to recover from them, being insufficient for the minimum

required concentration for the amplification on conventional PCR assays.

Despite this, all the samples that were amplified by both methods (n=54), show

a 100% of concordance with lineage defined by WGS, even if the techniques

differed in the SNP position target. This result suggests that both molecular

assays work with heat-inactivated, and low-concentrated DNA samples, which

are commonly generated in TB diagnostic laboratories. We applied our

real-time PCR-HRM approach to analyze three uncharacterized collections

from different TB burdens countries to test its efficiency. First, we were able to

classify 98.6% (215 out of 219) and 93.6% (249 out of 266) of the clinical

samples from the low-burden (Valencia, Spain) and high-burden settings

(Nigeria and Liberia), respectively. These results are in agreement with studies

in which authors mention that up to 6% of the strains were not classified

[255, 162]. Additionally, we wanted to test the sensitivity of the approach, and

we found a positive result while using heat-inactivated clinical samples

concentrations below the limit of detection of fluorometric quantitation. These

results indicate reliable results, even by using non purified DNA as a template,

and as a consequence, a rapid detection method.

Regarding the genotypes identified in Valencia, we found out that majority

of the MTBC cases belonged to the global L4 (87%) being subdivided into the

generalists L4.1.2 (36%), L4.10 (27.3%), and L4.3 (26.7%). The frequencies

detected were in concordance to those reported before worldwide [40], in the

same region [256], and the same country [257]. Moreover, we identified the rest

of the MTBC lineages, except the specific L5, reflecting the high MTBC diversity

circulating in the region. Regarding the global distribution of the country of origin
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of foreign-patients, the analysis shows a congruent result with data reported

before. For example, patients infected by L4.10 strains were mostly from East

Europe (16 out of 23) also, TB cases from Latin America countries were infected

by L4.3 MTBC strains (9 out of 15).

Similar results were obtained with the Liberian samples. We detected that

the dominant lineage of the MTBC is L4 (70.5%), followed by L1 (19.2%). As for

sub-lineages, we identified the presence of the generalists (L4.3, 25.5%), and

specialists (L4.6.2, 16.3%) clades almost with the same frequencies,

corresponding with those reported in West African border countries [40, 258].

The presence of a high percentage of L4 unclassified samples (14.5%)

suggested that endemic sub-lineages (highly likely to be specialist clades) are

circulating in the region. This snapshot of the MTBC diversity in the Liberian

population denotes the influence of migration inside the country, probably

increased after country foundation at the beginning of the 19th century. To our

knowledge, this is the first time that Liberian TB samples are genotyped.

The use of a specific lineage marker that identifies the M. bovis clade could

be helpful to promptly distinguish this genotype from the M. tuberculosis strains

in clinical samples. As a proof of concept, we performed our real-time PCR-HRM

technique on 171 uncharacterized samples mostly from cattle. We found out that

the majority of cases (60%, n=107) belonged to M. bovis species. Furthermore,

we identified six human-samples harbouring bovine tuberculosis from the same

region.

One limitation of these assays is that we only interrogated one specific SNP,

and as a consequence, additional biological information such as

epidemiological markers (e.g. transmission clusters detection) will be missed.

Nevertheless, these techniques are flexible and could be adapted to identify

other specific polymorphisms like, for example, the detection of antibiotic

resistant MTBC samples [248, 259, 167], or the rapid identification of local

transmission clusters [255]. We optimized the protocol using the Roche

LightCycler480 system which could be an uncommon laboratory device.

Nevertheless, we obtained reliable results using the less expensive
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LightCycler96 instrument. In fact, West African samples were genotyped using

this system.

In summary, the molecular approaches developed here show an accurate,

discriminative and reproducible methodology to genotype MTBC strains. Due to

a need for common and affordable reagents, these techniques could be useful

in TB diagnostic laboratories from low- to middle-income countries.
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6.6 Supplementary Data

6.6.1 Supplementary Tables

Sample
ID Source MTBC

lineage
LSP
lineage

Spoligotyping
family

N0067 Swiss TPH L1 Indo-Oceanic EAI
N0153 Swiss TPH L1 Indo-Oceanic EAI
N1068 Swiss TPH L1 Indo-Oceanic EAI
N0053 Swiss TPH L2 East-Asian Beijing
N0150 Swiss TPH L2 East-Asian Beijing
N1007 Swiss TPH L3 East-African-Indian CAS
N1022 Swiss TPH L3 East-African-Indian CAS
N1057 Swiss TPH L4.1.1 Euro-American X
N0148 Swiss TPH L4.1.1 Euro-American X
N0142 Swiss TPH L4.1.1 Euro-American X
G02 This study L4.1.2 Euro-American Haarlem
G287 This study L4.1.2 Euro-American Haarlem
G1010 This study L4.1.2 Euro-American Haarlem
N1204 Swiss TPH L4.1.3 Euro-American Ghana
G770 This study L4.1.3 Euro-American Ghana
N1263 Swiss TPH L4.2 Euro-American
G440 This study L4.2 Euro-American
G551 This study L4.2 Euro-American
G450 This study L4.3 Euro-American LAM
G186 This study L4.3 Euro-American LAM
G1068 This study L4.3 Euro-American LAM
G200 This study L4.4 Euro-American
G564 This study L4.4 Euro-American
N0163 Swiss TPH L4.5 Euro-American
N1277 Swiss TPH L4.6.1 Euro-American Uganda
N1207 Swiss TPH L4.6.2 Euro-American Cameroon
G630 This study L4.6.2 Euro-American Cameroon
G818 This study L4.6.2 Euro-American Cameroon
N1770 Swiss TPH L4.10 Euro-American
G109 This study L4.10 Euro-American
G280 This study L4.10 Euro-American
N1176 Swiss TPH L5 West-African-1 AFRI2
N1063 Swiss TPH L5 West-African-1 AFRI2
N1272 Swiss TPH L5 West-African-1 AFRI2
N0091 Swiss TPH L6 West-African-2 AFRI1
N1202 Swiss TPH L6 West-African-2 AFRI1
N1177 Swiss TPH L6 West-African-2 AFRI1
G578 This study M.bovis M.bovis M.bovis
G513 This study M.bovis M.bovis M.bovis
G1020 This study M.bovis M.bovis M.bovis

Table 6.5: Reference samples used in this study. All isolates were previously characterized by
whole-genome sequencing. Abbreviations: LSP, Long Sequence Polymorphisms; TPH, Tropical
Health Institute.
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MTBC
lineagea

SNP
positionb

Nucleotide
changec Gene Primer sequences

5’-3’
Amplicon
size Reference

L1
L2
L5

4357773
4357804
4357657

G/A
T/G
G/A

Rv3878/
Rv3879c

F-ACCCTCAACAACCACAACGT
R-CGACACTACCGATCAGCGTT 386bp This study

L3
L4
L6

1281984
1281771
1281685

G/A
C/T
C/G

Rv1155/
intergenic region

F-GATGGTCATACGCCGTTGCT
R-CTCTTGCGGGGACTTCGATT 402bp This study

a Nomenclature proposed by Comas et al [120].
b Genomic position on the H37Rv reference genome (NCBI, NC 000962.3).
c Allelic change in the reference genome.

Table 6.6: Specific primers used in Sanger sequencing molecular approach.
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6.6.2 Supplementary Figures

Figure 6.7: PCR products for the Sanger sequencing molecular assay (part 1). The
figure shows the amplified products for Region 1 (specific markers for L1, L2 and L5).
Three samples for each lineage were tested, except for L5, which only had 2 samples
(wells 14-15). The amplicon size is 386bp. Well 19 was DNA-free and was considered
as a negative control. The molecular weight-size ranged from 250-10,000bp.

Figure 6.8: PCR products for the Sanger sequencing molecular assay (part 2). The
figure shows the amplified products for Region 1 (specific markers for L3, L4 and L6).
Three samples for each lineage were tested, except for L5, which only had 2 samples
(wells 14-15). The amplicon size is 402bp. Well 19 was DNA-free and was considered
as a negative control. The molecular weight-size ranged from 250-10,000bp.
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Figure 6.9: Sanger sequencing amplified Region 1 to identify lineage 5. The
chromatograms shows the specific region that contains the lineage 5 diagnostic SNP for
different samples. The specific polymorphism is marked in blue. An adenine (represented
in green) is detected instead of a guanine (represented in black) at the position 169. In
this case, the sample N0135 harbors the diagnostic marker for lineage 5, while the rest
presented the wild-type allele.
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Tuberculosis (TB) is considered one of the major causes of death worldwide.

Thus, identification of latent individuals at risk of developing active disease,

rapid diagnostics, as well as an efficient and early transmission detection, are

essential to decrease its incidence. Novel technologies such as whole genome

sequencing (WGS) are improving the identification of infectious diseases and

the development of diagnostic tools with a theoretically ultimate resolution. In

this thesis, we used WGS in order to obtain a genomic snapshot of all MTBC

cases in a local region during a three year period. We used the isolates

genomic information for several purposes: 1) to describe the bacteria

population structure and transmission patterns; 2) to predict drug resistance

phenotypes of isolates circulating in the region and 3) to highlight the

importance of applying WGS to personalize treatment in TB cases of difficult

management. As an in-depth discussion of each topic is presented in each

chapter, in this general discussion we will focus on hot topics regarding the use

of WGS at the epidemiological and diagnostic levels.

7.1 Comparison of transmission rates across
settings based on WGS

In the third chapter, we present the genomic characterization of MTBC isolates

in the Valencia Region over a three year period, 2014-2016. We applied WGS
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in 785 clinical isolates, described the structure of the bacilli population, carried

out an epidemiological study and also we identified and delimited TB

transmission. As expected, L4 is the most prevalent lineage since it is the most

common and widespread lineage [40]. This is also in accordance with our

chapter 6 results in which we genotype populations from Valencia and

compared to other settings. In Valencia Region local-born TB individuals are

the major contributors to the overall disease incidence, contrary to the situation

in other low-burden regions, where the majority of TB cases are contributed by

immigrants [149, 185]. At the same time it is known that in low-burden countries

transmission is associated with local-born individuals. Thus, given the major

contribution of local-born cases, it is not surprising that rates of genomic

transmission are also higher in Valencia Region as compared to other TB

settings (Additional Tables 10.1-10.2). To illustrate this point and put

transmission in Valencia Region into context we used comparable datasets

from different TB burden settings, such as The United Kingdom [27] and Malawi

[151] publicly available. The United Kingdom reports a TB incidence of 8 per

100,000 population similar to Valencia Region but mainly contributed by

immigrants (72%). On the other hand, Malawi is an endemic TB country which

reports an incidence of 181 per 100,000 people, and a high HIV-positive TB

coinfection rate (88 per 100,000 people). Using only their respective local-born

individuals and up to a 12 SNP threshold to delineate transmission, we note

that in Valencia Region as well as in Malawi, almost half of their respective

local-born cases are involved in genomic transmission [47.4% in Valencia

Region (216/456), 49.3% in Malawi (108/219)], independently of the TB burden.

In contrast, only 32% (24/74) of UK-born TB patients are in transmission.

Notably in Figure 7.1 (see below), we observe several Spanish-born patients

were between 15 and 50 SNPs of difference among them. In contrast not such

cases exist in UK-born cases. As 15-50 SNPs reflect transmission events that

occurred decades ago, our analysis suggests that in Valencia Region, in

contrast to UK, older contagion events still contribute to TB cases today

(Figure 7.1). Notably, Malawi shows a similar pattern than Valencia Region but

more exacerbated. The data shows that to reach a situation as in UK efforts to
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halt transmission is key.

We hypothesize that the higher values of our local-born cases are the

consequence of a continued transmission over past decades that was not

halted and that now is reflected in the local TB incidence. On the contrary,

successful past efforts on transmission control can be observed in the UK

where only very recent transmission is contributing to local-born TB incidence

and strains sharing ancestors 15-50 years before are absent. Data suggests

that the UK situation is similar in The Netherlands, Canada, Germany and US

where most cases are due to reactivation episodes in immigrants. The results

suggest that control of TB in the Valencia Region and probably Spain is lagging

behind with respect other low-burden countries, this is not only reflected in the

different patterns of transmission but also in that the incidence in Spanish-born

population (6.7 per 100,000 people) is still much higher than in UK-born

population (3.5 per 100,000 people). Given that the actual TB control in

Valencia Region is meeting the targets of WHO to reduce TB, it is also plausible

that the efforts controlling transmission are efficient but more time is needed to

reach the results observed in other low-burden countries such as the UK.

7.2 WGS to identify recent transmission in
different settings

Another interesting and valuable lesson that we can extract from this analysis is

about how to define genomic TB transmission. The term recent transmission is

used to define those contagion events that occurred in a short period of time,

typically revealed by contact investigations. A timeframe to define recent

transmission is not unique and depends on the public health agency definitions

but it is usually assumed that less than 2-5 years after contagion are cases of

recent transmission. When using WGS this translates in a mean number of 0-5

SNP between two cases as the bacteria is assumed to accumulate 0.3-0-5

SNP/year. Higher thresholds has been used, for example 12 SNPs are well

accepted a transmission cluster [152] but the disagreement with
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Figure 7.1: Genetic distances between local-born patients in different TB-burden settings. A)
Pairwise distances between Spanish-born people (n= 361). B) Pairwise distances between UK-born
people (n= 37). This dataset was used from Walker et al [27]. C) Pairwise distances between
Malawi-born people during the 2008-2010 (n= 195). This dataset was used from Guerra-Assunção
et al [151]. The grey dashed line separates the genomically related samples (clustered cases) from
those that are not (unique cases). For plotting and representing purposes, we only used data up to
150 SNP threshold, which cleary means not transmission.
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epidemiological investigations increases at those thresholds (this dissertation,

[149]) and thus many transmission events by WGS cannot easily be validated.

Thus, designing effective control measures is not only relevant to measure

recent transmission but also the contribution of older transmission events.

While in the UK (Figure 7.1) those older transmission events do not exist, in

our study, but also in Malawi setting, genetic distances analysis shows a

continuum of genetic distances not fitting a strict threshold like 12 SNPs and

reflecting a continuum of transmission events. Thus in Valencia Region use of

recent transmission SNP thresholds is useful to reveal transmissions that have

happened very recently but miss the complete picture on how transmission is

contributing to the yearly TB burden. As shown in Malawi, this situation may

likely be common across epidemiological settings.

As expected, epidemiologically linked cases identified by public health are

detected as very recent transmission events by WGS, defined by a 5 SNP

threshold roughly equivalent to 5 years. As discussed above, this is related to

the fact that epidemiological investigations look for recent contacts and not

older transmissions. However even in that timeframe of 5 years, local

investigations missed 60% of transmission cases (Figure 3.2, chapter 3). This

suggests that while local investigations are very good at tracing some close

contacts (family members, workplace) they missed many cases that probably

occur outside the boundaries of the questionnaires. Some of these cases may

be contacts not revealed by the index case because of the limitations of the

epidemiological questionnaire. In that regard, investigations incorporating

social contact networks have helped to identify additional transmission cases in

some settings [175]. The application of these strategies could help to improve

the transmission detection in Valencia Region.

But our data also suggests that transmision happens during casual contacts

in the community or before symptoms (as shown in chapter 4). Identification

of those individuals is more difficult. In those cases implementation of some

sort of active case finding may help to identify transmitters. For example, by

implementing targeted community-based screening in risk groups or large-scale
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screening in transmission hotspots as informed by WGS.

7.3 Transmission during subclinical disease

Controlling human-to-human transmission is key for achieving the targets of the

End TB Strategy stated by the WHO [13]. Concerning this, it is mandatory to

understand the complex dynamics of TB transmission and associated risk

factors. Using WGS combined with epidemiological data, we investigated the

dynamics of transmission within a fraction of the clusters previously identified in

Valencia Region using TransPhylo, a bayesian-based phylogenetic modelling

approach (chapter 4). These estimations included the probability of the index

case being sampled, which of all clustered cases was the index case, and

when a transmission event happened. Interestingly, we discovered that in some

individuals, transmission occurs before symptoms onset, likely during

subclinical disease. This striking result supports the idea of the existence of

different infection status before developing active TB beyond the dichotomy

latent/active TB [15]. We show for the first time that MTBC strains are

transmissible during some of these newly recognized infection states.

Nevertheless, more WGS-based studies are needed to evaluate the amount of

subclinical transmission in different clinical settings.

These findings provide novel avenues to understand how TB is transmitted

and the relationship of the pathogen and the host during infection that

ultimately leads to transmission. We suggest that omic-based approaches that

can link transmission timing with host biosignatures (for example using host

transcriptomics [260]) have the potential to increase the identification TB cases

at risk of transmitting the disease during the different stages of TB infection.

7.4 Active case finding to halt transmission

As we demonstrated through this dissertation, a great percentage of

transmission (most of it related with local-born patients) is missed by local
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surveillance systems. Moreover, we showed that some TB cases likely transmit

before developing symptoms. Therefore, novel diagnostics tools as well as new

epidemiological interventions are needed in order to stop this autochthonous

TB transmission. In addition, these approximations will reduce new infections

and, hence, the TB incidence will decrease. Probably, the most important

strategy with short-term effects is to change from passive to an active case

finding. This strategy aims to find TB cases before the patient seeks for health

care. In this way, community-based interventions include screening people in

crowded areas searching for TB [261]. Many reports have been demonstrated

that active case finding, increases the detection of TB in individuals with no

typical symptoms, and smear negative status, in both, low-burden [31] and

high-burden TB settings [262]. Despite the improvements of this active case

finding intervention, studies regarding public health viability and

cost-effectiveness as well as rapid screening tools are required. To cover this

latter issue, recent development of molecular tests that are capable of detecting

ultra-low level of M.tuberculosis DNA are helping to identify more cases than

sputum microscopy [95, 263]. Furthermore, eight whole-blood transcriptional

signatures have been shown to differentiate between latent, subclinical and

active TB [22]. Given the low prevalence of TB disease in the general

population, we need to find cost-effective strategies to do active case finding. In

that regard the transmission picture revealed by WGS can help to design and

guide epidemiological interventions.

7.5 Drug resistance prediction

Another important and essential intervention to control TB at individual-care

and population levels is to stop drug resistance emergence and its

transmission. Despite Valencia Region is not considered a high MDR setting,

accurate and fast drug resistance prediction tools are essential for patient

management. Recent studies have proved that DR prevalence can be

accurately predicted by genomic surveillance [177], and especially to first-line
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drugs [137]. In chapters 3 and 5 we used the bacterial genome sequence as a

diagnostic for drug resistance. First, we demonstrated that WGS is a reliable

prediction tool for detecting drug resistance, at least in our study region (Table
3.5, chapter 3). High agreement values of accuracy and specificity between

WGS and phenotypic DST were estimated for first-line drugs. The few

discrepant results that we identified could be due to either, phenotypic

DST-related issues or by the presence of unknown mutations. In this regard,

WGS-DST depends on the availability of catalogues with high-confidence

causative mutations. In a recent meta-analysis, ethambutol, streptomycin and

pyrazinamide have reported low sensitivities and specificities values, due

sometimes to the lack of data regarding resistance genes and mutations for

these drugs or to standardization problems on phenotypic-based assays [140].

Although there are web-based tools that contain several resistance mutations

catalogues [193, 139, 97] there are still unknown DR variants for first- and

particularly second-line and new anti-TB-drugs, however, new mutations are

periodically reported [264, 186]. Despite these limitations, there is enough

confidence to predict susceptibility to first-line drugs as demonstrated by a

study involving 10,000 isolates from different parts of the world [137] which has

led to some countries to phase-out phenotypic-DST and replace it by WGS.

Nevertheless, phenotypic-DST is then focused in those cases for which there is

a prediction of resistance or cases where inspection of the WGS is

inconclusive.

7.6 Personalized treatment for TB based on WGS

In this thesis, we used WGS to discover and describe novel mutations related

to isoniazid resistance (chapter 5). These variants were undetected by

automated DST approaches and, thus, isolates harbouring these mutations

were considered susceptible. It is well known that some of these variants

conferred ‘low-level’ phenotypic resistance, resulting in an outcome difficult to

interpret [84]. Moreover, we used WGS DR prediction in a prospective manner
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to guide TB treatment. Although the patient became XDR-TB, a close

monitoring of the patient using the genomic, clinical and microbiological

information led to physicians to successfully treat the patient. To our

knowledge, this is one of the first cases that use WGS to personalize the

treatment of a patient using genomic information. In the context of this patient

this was especially relevant as DST tests for some first and second line drugs

were inconclusive. These results highlight the capacity of WGS for fast and

accurately predict drug resistance, at least in our study region. Additionally, it is

also remarkable that WGS can solve complex or phenotypically undetermined

cases, in this sense personalized treatments are imperative to save patients

life. There is no doubt that personalizing treatment based on pathogen genomic

data will help in the management of cases. This is really relevant for

high-burden MDR-TB countries where more complicated management

situations are found and where many times treatment is empirical as DST for

second-line drugs is not as standardized as for first-line drugs. However, we

need to expand the catalogues of mutations for second-line drugs. More

importantly, the new recommended regimens by the WHO are based on all-oral

drugs including drugs like bedaquiline, linezolid and delamanid [76]. Our

knowledge about the genetic bases of resistance to those drugs is far from

complete. Combined with the fact that there are no DST commercial tests

favailable, the patient monitoring and follow-up to detect acquisition of

resistance will be extremely challenging. In fact there is an increasing number

of reports informing about the emergence of bedaquiline resistance both in

personalized therapies [265] and under programmatic conditions [266, 267].

7.7 Strain classification

As was stated throughout this thesis, WGS is a valuable tool for identifying

SNPs that could be further used for different applications in population studies,

such as detecting and predicting transmission and DR. In addition, WGS can

be used as a typing tool to classify MTBC strains into lineages. Although this
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technology has become cheaper over the last years, specific infrastructure as

well as qualified personnel are needed, these conditions are not always

available in low and middle-income regions. Nevertheless, the knowledge

obtained from WGS could be translated to develop simpler laboratory methods

in order to obtain specific and accurate information in a cheaper and faster

manner. As a proof of concept, in chapter 6, two molecular tools were

developed for classifying MTBC isolates into the main lineages, using routine

PCR-based reagents and laboratory instruments. One of the aims was to have

an alternative and affordable typing method that can be useful in

resource-limited settings. In addition, we demonstrated that our approaches

work with low DNA concentration, which is a common problem in routine clinical

samples (eg, DNA obtained from heat-inactivated and sputum samples). Thus,

a clinical collection of around 500 isolates from different TB incidence settings

was characterized. As an example, our results were in agreement with those

recently published [186]. Thanks to the low MTBC diversity and its clonal

genomic features, these approaches are not limited only to the detection of

phylogenetic SNPs, in fact, they can be adapted to other specific applications.

For instance, SNPs panels related to DR are commonly used in routine clinical

diagnostics. Markers with epidemiological interest (to identify a local TB

outbreak or transcontinental spread) can be unmasked with these molecular

techniques [268, 146, 166]. However, a previous notion is always required to

proceed to WGS of representative cases and identify specific SNP positions.

7.8 Further considerations

From the analysis and results reported here, we can state that implementation

of WGS in public health surveillance systems will improve drug resistance

prediction and case management at the individual level. In addition, it will help

to characterize TB transmission patterns accurately at the population level.

However, its implementation requires the integration of other related disciplines

such as microbiology, epidemiology and bioinformatics. Thus, a
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multidisciplinary team is needed involving personnel with knowledge regarding

genomics and skills in analyzing big data. Currently, a few high-income

countries are using WGS as a routine diagnostic tool, but it is estimated that

more countries will adopt it in the next few years. In our local setting, many

clinicians and epidemiologists are conscious about the use and applications of

WGS in TB field. In addition, we have worked with them on many occasions in

order to exploit the most relevant clinical and epidemiological results from our

genomic analysis. In Valencia Region, its integration to the local surveillance

system does not seem very far.

Finally, the results presented have been only possible by the invaluable

contribution of many actors of the Valencia Region health system. A total of 18

clinical microbiology units from hospitals in the region have generously

contributed to the study in what represents, one of the best examples of

multicenter studies in infectious diseases in the country. Public health officials

and particularly those devoted to the control of TB in the region have provided

the invaluable demographic and epidemiological information needed to reach

the conclusions exposed. Thanks to this coordinated effort, we described and

proved how this technology complements the current approaches used in

Valencia Region to handle the disease. The implementation of WGS as a

supplementary tool for the diagnosis and epidemiology of TB in Valencia

Region is already helping local TB control and, we think can serve as a

template for using WGS into other infectious diseases in the local public health

surveillance system.
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• Tuberculosis transmission burden in Valencia Region is high based on

WGS compared to other low-burden countries like The United Kingdom.

Risk factors of genomic transmission in Valencia Region are being born in

Spain (associated), young age (associated) and older age

(non-associated).

• Although current TB epidemiological investigations (contact tracing)

maintain a low TB incidence, they underestimate the real TB transmission

burden.

• Our analysis demonstrated that WGS could be an alternative and

trustworthy tool for detecting both recent and older TB transmission

events. Furthermore, it could become a transformative methodology for

the public health surveillance system.

• Sensitivity and specificity values demonstrated that WGS is an accurate

and reliable tool for predicting drug resistance.

• WGS-based phylogenetic modelling combined with epidemiological data

allows to infer high likely transmitters and index cases within a transmission

cluster. However, its application is limited by the null diversity observed

many times between clustered cases.

• In some individuals, TB transmission can occur during subclinical disease

and can jeopardize the progress of passive case finding and contact
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tracing. Together with emerging data from different fields, controlling

subclinical disease through active case finding approaches will become

relevant in the near future.

• Real-time WGS can be used to detect drug resistance variants during TB

treatment. More importantly, it helps to identify uncommon mutations that

arise through time.

• The PCR-based SNP-typing molecular approaches give an alternative

rapid tool for classification of MTBC strains and it is a method that could

be translated to multiple TB applications.
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[143] Meehan CJ, Moris P, Kohl TA, Pečerska J, Akter S, Merker M, Utpatel C, Beckert
P, Gehre F, Lempens P et al. The relationship between transmission time and
clustering methods in mycobacterium tuberculosis epidemiology: 37:410–416.
ISSN 23523964. doi:10.1016/j.ebiom.2018.10.013.

[144] Nikolayevskyy V, Niemann S, Anthony R, van Soolingen D, Tagliani E, Ködmön
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Bouza E, Pérez-Lago L and Garcı́a-de Viedma D. Optimizing and accelerating
the assignation of lineages in mycobacterium tuberculosis using novel alternative
single-tube assays: 12(11):e0186956. ISSN 1932-6203. doi:10.1371/journal.pone.
0186956.
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Study Study
Year

Aim of the study Study
Region

TB burden
setting

[175] 2011 Comparison between MIRU-VNTR and WGS for
detecting genetic transmission

British Columbia,
Canada LI

[269] 2013 Use of WGS to corroborate three transmission
clusters detected by previous investigations Shangai, China HI

[27] 2014 To perform a population-based study to detect
transmission by WGS Oxfordshire, UK LI

[28] 2015 To perform a population-based study to detect
transmission by WGS Quebec, Canada LI

[270] 2015 Use of WGS to corroborate one transmission
clusters detected by previous investigations Turku, Finland LI

[202] 2015 Use WGS in order to determine SNP difference
between close contacts TB patients

Karonga District,
Malawi HI

[40] 2016 Comparison between MIRU-VNTR and WGS for
detecting genetic transmission Switzerland LI

[271] 2016 Comparison between MIRU-VNTR and WGS for
detecting genetic transmission Shangai, China HI

[272] 2016 Use of WGS to corroborate one transmission
clusters detected by previous investigations London, UK MI

[273] 2016 Use of WGS in order to improve an XDR-TB cluster
investigation London, UK MI

[274] 2017 Use of WGS to corroborate one MDR transmission
cluster between three different countries

Austria, Romania
and Germany LI, HI and LI

[275] 2017 Use of WGS to corroborate one transmission
clusters detected by previous investigations Southampton, UK LI

[276] 2017 Use of WGS to corroborate one transmission
clusters detected by previous investigations Oslo, Norway LI

[86] 2018 Use of WGS in order to improve a MDR-TB cluster
investigation

Republic of
Singapore HI

[277] 2018 To perform a population-based study to detect
transmission by WGS Tasmania LI

[147] 2018 To perform a population-based study to detect
transmission by WGS Shanghai, China HI

[149] 2018 To perform a population-based study to detect
transmission by WGS The Netherlands LI

[278] 2018 Use of WGS to corroborate transmission clusters
detected by previous investigations Florida, US LI

[279] 2018 Use of WGS to corroborate transmission clusters
detected by previous investigations Belem, Brazil HI

[280] 2018 Use of WGS to corroborate one transmission
cluster between two different countries

The Netherlands
and Denmark LI

[281] 2019 To perform a population-based study to detect
transmission by WGS Scania, Sweden LI

[160] 2019 To perform a population-based study to detect
transmission by WGS

Papua New
Guinea HI

[176] 2019 To perform a population-based study to detect
transmission by WGS Yukon, Canada LI

[282] 2019 Use of WGS to detect transmission clusters within
MDR-TB cases Lima, Peru HI

[148] 2019 Use of WGS to detect transmission clusters within
MDR-TB cases Belgrade, Serbia MI

[283] 2019 To perform a population-based study to detect
transmission by WGS

Hamburg,
Germany LI

Table 10.1: Tuberculosis transmission studies that use whole genome sequencing
as an primary or alternative tool for detecting transmision clusters (Part 1).
Abbreviations; LI, Low incidence; MI, Middle incidence; HI, High incidence; WGS, Whole
genome sequencing. 214



Study Other genotyping
method used

Epidemiological
intervention

Study
years

Isolates
analized

MTBC
lineage
identified

SNP threshold
applying for
transmission

Clusters
detected
by WGS

Clustering
rate

[175] RFLPs,
MIRU-VNTR - 2006-

2008 36 - - 2 -

[269] RFLPs,
MIRU-VNTR Contact tracing 2009-

2010 32 L2 ≤5 SNPs 4 32%

[27] - Contact tracing 2007-
2012 247 - ≤12 SNPs 13 16%

[28] - - 1991-
2013 163 L4 ≤12 SNPs 11 92%

[270] MIRU-VNTR Contact tracing 2012-
2013 12 L4 ≤5 SNPs 1 -

[202] - Contact tracing 1997-
2010 374 L3 ≤10 SNPs 124 33%

[40] MIRU-VNTR - 2008-
2012 90 L4 ≤12 SNPs 17 47%

[271] MIRU-VNTR - 2009-
2012 324 L2 ≤12 SNPs 38 32%

[272] MIRU-VNTR Contact tracing 1998-
2012 344 L4 ≤12 SNPs 1 -

[273] - Contact tracing 2013-
2015 6 - ≤5 SNPs 1 -

[274] MIRU-VNTR - 2009-
2014 12 - ≤12 SNPs 3 -

[275] MIRU-VNTR Contact tracing 2011 17 - ≤5 SNPs 1 -

[276] MIRU-VNTR Contact tracing 2009-
2014 22 L2 ≤12 SNPs 1 -

[86] - Contact tracing 2012-
2016 10 - ≤12 SNPs 1 -

[277] - - 2014-
2016 29 L3 ≤5 SNPs 2 33%

[147] MIRU-VNTR Contact tracing 2009-
2015 218 L2 ≤10 SNPs 44 68%

[149] MIRU-VNTR - 2016 535 L4 ≤12 SNPs 29 14%

[278] MIRU-VNTR Contact tracing 2009-
2015 21 - ≤5 SNPs 3 -

[279] MIRU-VNTR Contact tracing 1998-
2011 63 L4 ≤12 SNPs 26 -

[280] RFLPs,
MIRU-VNTR - 1993-

2016 40 L3 ≤12 SNPs 5 42%

[281] MIRU-VNTR Contact tracing 2004-
2014 93 L4 ≤12 SNPs 18 56%

[160] MIRU-VNTR - 2010-
2015 104 L2 ≤8 SNPs 17 71%

[176] MIRU-VNTR Contact tracing 2005-
2014 1316 - ≤5 SNPs 6 88%

[282] MIRU-VNTR - 2009-
2012 61 L4 ≤5 SNPs 6 54%

[148] - - 2008-
2014 103 L4 ≤5 SNPs 12 61%

[283] MIRU-VNTR Contact tracing 2005-
2015 1171 - ≤5 SNPs 87 32%

Table 10.2: Tuberculosis transmission studies that use whole genome sequencing
as an primary or alternative tool for detecting transmision clusters (Part 2).
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Hospital Province

Hospital General de Alicante Alicante
Hospital de la Marina Baixa Alicante
Hospital San Juan de Alicante Alicante
Hospital Arnau de Vilanova Alicante
Hospital de Dénia Alicante
Hospital Vega Baja de Orihuela Alicante
Hospital General Universitario de Elche Alicante
Hospital Público Virgen de los Lirios Alicante
Hospital General de Castellón Castellón
Hospital de la Ribera Valencia
Hospital Lluı́s Alcanyı́s de Xàtiva Valencia
Hospital Francesc De Borja de Gandia Valencia
Hospital Clı́nico Universitario de Valencia Valencia
Hospital de Sagunto Valencia
Hospital General de Valencia Valencia
Hospital Universitario y Politécnico de Valencia Valencia
Centro de Especialidades de Valencia Valencia
Hospital Universitario Doctor Peset Valencia

Table 10.3: Hospitals involved for the completion of this thesis
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Additional Data Table 2. List of loci associated with drug resistance used to predict resistance profile. 
 

Genomic 
position 

Wild-type 
allele 

Mutation 
allele 

Genomic 
Region 

Gene 
Name 

Gene 
Alias 

Gene 
Direction 

Amino acid 
Change 

Codon 
Change 

Antibiotic SNP 
Confidence* 

6575 C T coding Rv0005 gyrB + Arg446Cys cgt/tgt FQ Low confidence 

6620 G C coding Rv0005 gyrB + Asp461His gac/cac FQ High confidence 

6620 G A coding Rv0005 gyrB + Asp461Asn gac/aac FQ High confidence 

6621 A C coding Rv0005 gyrB + Asp461Ala gac/gcc FQ High confidence 

6734 A G coding Rv0005 gyrB + Asn499Asp aac/gac FQ High confidence 

6735 A C coding Rv0005 gyrB + Asn499Thr aac/acc FQ High confidence 

6736 C G coding Rv0005 gyrB + Asn499Lys aac/aag FQ High confidence 

6737 A C coding Rv0005 gyrB + Thr500Pro acc/ccc FQ High confidence 

6738 C A coding Rv0005 gyrB + Thr500Asn acc/aac FQ High confidence 

6741 A T coding Rv0005 gyrB + Glu501Val gaa/gta FQ High confidence 

6742 A T coding Rv0005 gyrB + Glu501Asp gaa/gat FQ High confidence 

6749 G A coding Rv0005 gyrB + Ala504Thr gcg/acg FQ Low confidence 

6750 C T coding Rv0005 gyrB + Ala504Val gcg/gtg FQ High confidence 

7563 G T coding Rv0006 gyrA + Gly88Cys ggc/tgc FQ High confidence 

7564 G C coding Rv0006 gyrA + Gly88Ala ggc/gcc FQ High confidence 

7566 G A coding Rv0006 gyrA + Asp89Asn gac/aac FQ Low confidence 

7570 C T coding Rv0006 gyrA + Ala90Val gcg/gtg FQ High confidence 

7572 T C coding Rv0006 gyrA + Ser91Pro tcg/ccg FQ High confidence 

7581 G C coding Rv0006 gyrA + Asp94His gac/cac FQ High confidence 

7581 G A coding Rv0006 gyrA + Asp94Asn gac/aac FQ High confidence 

7581 G T coding Rv0006 gyrA + Asp94Tyr gac/tac FQ High confidence 

7582 A G coding Rv0006 gyrA + Asp94Gly gac/ggc FQ High confidence 

7582 A C coding Rv0006 gyrA + Asp94Ala gac/gcc FQ High confidence 

7582 A T coding Rv0006 gyrA + Asp94Val gac/gtc FQ Low confidence 

575729 C T coding Rv0486 mshA + Gln128STOP cag/tag ETH Low confidence 

576164 C T coding Rv0486 mshA + Arg273Cys cgc/tgc ETH Low confidence 

576242 G T coding Rv0486 mshA + Gly299Cys ggc/tgc ETH Low confidence 

576338 C T coding Rv0486 mshA + Gln331STOP cag/tag ETH Low confidence 

576414 G A coding Rv0486 mshA + Gly356Asp ggc/gac ETH Low confidence 

576429 A C coding Rv0486 mshA + Glu361Ala gag/gcg ETH Low confidence 

760314 G T coding Rv0667 rpoB + Val170Phe gtc/ttc RIF High confidence 

761004 A G coding Rv0667 rpoB + Thr400Ala acc/gcc RIF Low confidence 

761093 G C coding Rv0667 rpoB + Gln429His cag/cac RIF Low confidence 

761095 T C coding Rv0667 rpoB + Leu430Pro ctg/ccg RIF Low confidence 

761095 T G coding Rv0667 rpoB + Leu430Arg ctg/cgg RIF Low confidence 

761098 G T coding Rv0667 rpoB + Ser431Ile agc/atc RIF Low confidence 

761098 G C coding Rv0667 rpoB + Ser431Thr agc/acc RIF Low confidence 

761100 C A coding Rv0667 rpoB + Gln432Lys caa/aaa RIF Low confidence 

761101 A T coding Rv0667 rpoB + Gln432Leu caa/cta RIF High confidence 

761101 A C coding Rv0667 rpoB + Gln432Pro caa/cca RIF Low confidence 

761108 G T coding Rv0667 rpoB + Met434Ile atg/att RIF Low confidence 

761109 G T coding Rv0667 rpoB + Asp435Tyr gac/tac RIF High confidence 

761110 A G coding Rv0667 rpoB + Asp435Gly gac/ggc RIF High confidence 

761110 A T coding Rv0667 rpoB + Asp435Val gac/gtc RIF High confidence 



761111 C G coding Rv0667 rpoB + Asp435Glu gac/gag RIF Low confidence 

761120 C G coding Rv0667 rpoB + Asn438Lys aac/aag RIF Low confidence 

761128 C T coding Rv0667 rpoB + Ser441Leu tcg/ttg RIF Low confidence 

761128 C G coding Rv0667 rpoB + Ser441Trp tcg/tgg RIF Low confidence 

761139 C A coding Rv0667 rpoB + His445Asn cac/aac RIF High confidence 

761139 C G coding Rv0667 rpoB + His445Asp cac/gac RIF High confidence 

761139 C T coding Rv0667 rpoB + His445Tyr cac/tac RIF High confidence 

761140 A C coding Rv0667 rpoB + His445Pro cac/ccc RIF High confidence 

761140 A G coding Rv0667 rpoB + His445Arg cac/cgc RIF High confidence 

761140 A T coding Rv0667 rpoB + His445Leu cac/ctc RIF Low confidence 

761141 C A coding Rv0667 rpoB + His445Gln cac/caa RIF Low confidence 

761154 T G coding Rv0667 rpoB + Ser450Ala tcg/gcg RIF Low confidence 

761155 C G coding Rv0667 rpoB + Ser450Trp tcg/tgg RIF High confidence 

761155 C T coding Rv0667 rpoB + Ser450Leu tcg/ttg RIF High confidence 

761161 T C coding Rv0667 rpoB + Leu452Pro ctg/ccg RIF High confidence 

761277 A T coding Rv0667 rpoB + Ile491Phe atc/ttc RIF High confidence 

781687 A G coding Rv0682 rpsL + Lys43Arg aag/agg RIF High confidence 

781821 A C coding Rv0682 rpsL + Lys88Gln aag/cag RIF Low confidence 

781822 A G coding Rv0682 rpsL + Lys88Arg aag/agg RIF High confidence 

801268 T C coding Rv0701 rplC + Cys154Arg tgt/cgt LZD Low confidence 

1472337 C T ribosomal MTB000019 rrs + --- - STR Low confidence 

1472358 C T ribosomal MTB000019 rrs + --- - STR Low confidence 

1472359 A C ribosomal MTB000019 rrs + --- - STR Low confidence 

1472362 C T ribosomal MTB000019 rrs + --- - STR Low confidence 

1472750 C A ribosomal MTB000019 rrs + --- - STR Low confidence 

1472751 A G ribosomal MTB000019 rrs + --- - STR Low confidence 

1472752 A T ribosomal MTB000019 rrs + --- - STR Low confidence 

1473246 A G ribosomal MTB000019 rrs + --- - AMK, KAN, CM High confidence 

1473247 C T ribosomal MTB000019 rrs + --- - AMK, KAN, CM High confidence 

1473329 G T ribosomal MTB000019 rrs + --- - AMK, KAN, CM High confidence 

1475956 G T ribosomal MTB000020 rrl + --- - LZD Low confidence 

1476471 G T ribosomal MTB000020 rrl + --- - LZD Low confidence 

1673423 G T intergenic Rv1483 fabG1 + --- - INH Low confidence 

1673424 A G intergenic Rv1483 fabG1 + --- - INH Low confidence 

1673425 C T intergenic Rv1483 fabG1 + --- - INH High confidence 

1673432 T A intergenic Rv1483 fabG1 + --- - INH High confidence 

1673432 T C intergenic Rv1483 fabG1 + --- - INH High confidence 

1674481 T G coding Rv1484 inhA + Ser94Ala tcg/gcg INH, ETH High confidence 

1674782 T C coding Rv1484 inhA + Ile194Thr atc/acc INH, ETH Low confidence 

1833909 A C coding Rv1630 rpsA + Asp123Ala gac/gcc PZA Low confidence 

1834325 G A coding Rv1630 rpsA + Val262Met gtg/atg PZA Low confidence 

1917946 C T coding Rv1694 tlyA + Arg3STOP cga/tga CM Low confidence 

1917979 C T coding Rv1694 tlyA + Arg14Trp cgg/tgg CM Low confidence 

1917991 C T coding Rv1694 tlyA + Arg18STOP cga/tga CM Low confidence 

1918003 C T coding Rv1694 tlyA + Gln22STOP cag/tag CM Low confidence 

1918139 C A coding Rv1694 tlyA + Ala67Glu gcg/gag CM Low confidence 

1918144 A G coding Rv1694 tlyA + Lys69Glu aaa/gaa CM Low confidence 

1918211 C A coding Rv1694 tlyA + Ala91Glu gca/gaa CM Low confidence 



1918292 T C coding Rv1694 tlyA + Leu118Pro ctg/ccg CM Low confidence 

1918322 T A coding Rv1694 tlyA + Val128Glu gtg/gag CM Low confidence 

1918388 T C coding Rv1694 tlyA + Leu150Pro ctg/ccg CM Low confidence 

1918487 C T coding Rv1694 tlyA + Pro183Leu ccg/ctg CM Low confidence 

1918489 C A coding Rv1694 tlyA + Gln184Lys cag/aag CM Low confidence 

1918489 C T coding Rv1694 tlyA + Gln184STOP cag/tag CM Low confidence 

1918494 T G coding Rv1694 tlyA + Phe185Leu ttt/ttg CM Low confidence 

1918651 G A coding Rv1694 tlyA + Glu238Lys gag/aag CM Low confidence 

2102240 G A coding Rv1854c ndh - Arg268His cgc/cac INH, ETH Low confidence 

2102715 A G coding Rv1854c ndh - Thr110Ala acc/gcc INH, ETH Low confidence 

2155167 C G coding Rv1908c katG - Ser315Arg agc/agg INH Low confidence 

2155167 C A coding Rv1908c katG - Ser315Arg agc/aga INH Low confidence 

2155168 G C coding Rv1908c katG - Ser315Thr agc/acc INH High confidence 

2155168 G A coding Rv1908c katG - Ser315Asn agc/aac INH High confidence 

2155168 G T coding Rv1908c katG - Ser315Ile agc/atc INH High confidence 

2155169 A G coding Rv1908c katG - Ser315Gly agc/ggc INH High confidence 

2155206 C G coding Rv1908c katG - Ser302Arg agc/agg INH Low confidence 

2155212 G C coding Rv1908c katG - Trp300Cys tgg/tgc INH Low confidence 

2155214 T G coding Rv1908c katG - Trp300Gly tgg/ggg INH High confidence 

2155222 G T coding Rv1908c katG - Gly297Val ggc/gtc INH Low confidence 

2155289 A C coding Rv1908c katG - Thr275Pro acc/ccc INH High confidence 

2155699 A G coding Rv1908c katG - Asn138Ser aac/agc INH Low confidence 

2288683 T C coding Rv2043c pncA - STOP187Arg tga/cga PZA High confidence 

2288697 T C coding Rv2043c pncA - Leu182Ser ttg/tcg PZA High confidence 

2288703 T C coding Rv2043c pncA - Val180Ala gtc/gcc PZA High confidence 

2288703 T G coding Rv2043c pncA - Val180Gly gtc/ggc PZA High confidence 

2288704 G T coding Rv2043c pncA - Val180Phe gtc/ttc PZA Low confidence 

2288718 T C coding Rv2043c pncA - Met175Thr atg/acg PZA High confidence 

2288719 A G coding Rv2043c pncA - Met175Val atg/gtg PZA High confidence 

2288727 T C coding Rv2043c pncA - Leu172Pro ctg/ccg PZA Low confidence 

2288730 C T coding Rv2043c pncA - Ala171Val gcg/gtg PZA Low confidence 

2288740 A C coding Rv2043c pncA - Thr168Pro acc/ccc PZA High confidence 

2288752 T C coding Rv2043c pncA - Ser164Pro tcg/ccg PZA High confidence 

2288754 T C coding Rv2043c pncA - Val163Ala gtg/gcg PZA High confidence 

2288757 G A coding Rv2043c pncA - Gly162Asp ggt/gat PZA Low confidence 

2288761 G C coding Rv2043c pncA - Ala161Pro gcg/ccg PZA High confidence 

2288764 A C coding Rv2043c pncA - Thr160Pro aca/cca PZA High confidence 

2288766 T G coding Rv2043c pncA - Leu159Arg ctg/cgg PZA Low confidence 

2288772 T C coding Rv2043c pncA - Val157Ala gtg/gcg PZA High confidence 

2288772 T G coding Rv2043c pncA - Val157Gly gtg/ggg PZA High confidence 

2288778 T G coding Rv2043c pncA - Val155Gly gtg/ggg PZA High confidence 

2288779 G A coding Rv2043c pncA - Val155Met gtg/atg PZA High confidence 

2288782 A G coding Rv2043c pncA - Arg154Gly agg/ggg PZA Low confidence 

2288805 C T coding Rv2043c pncA - Ala146Val gcg/gtg PZA High confidence 

2288805 C A coding Rv2043c pncA - Ala146Glu gcg/gag PZA Low confidence 

2288806 G C coding Rv2043c pncA - Ala146Pro gcg/ccg PZA High confidence 

2288806 G A coding Rv2043c pncA - Ala146Thr gcg/acg PZA Low confidence 

2288817 C A coding Rv2043c pncA - Thr142Lys acg/aag PZA High confidence 



2288817 C T coding Rv2043c pncA - Thr142Met acg/atg PZA High confidence 

2288818 A G coding Rv2043c pncA - Thr142Ala acg/gcg PZA High confidence 

2288820 A C coding Rv2043c pncA - Gln141Pro cag/ccg PZA Low confidence 

2288821 C T coding Rv2043c pncA - Gln141STOP cag/tag PZA Low confidence 

2288823 G C coding Rv2043c pncA - Arg140Pro cgc/ccc PZA High confidence 

2288826 T G coding Rv2043c pncA - Val139Gly gtg/ggg PZA High confidence 

2288827 G C coding Rv2043c pncA - Val139Leu gtg/ctg PZA High confidence 

2288828 T G coding Rv2043c pncA - Cys138Trp tgt/tgg PZA High confidence 

2288830 T C coding Rv2043c pncA - Cys138Arg tgt/cgt PZA High confidence 

2288832 A G coding Rv2043c pncA - His137Arg cat/cgt PZA High confidence 

2288832 A C coding Rv2043c pncA - His137Pro cat/cct PZA High confidence 

2288833 C G coding Rv2043c pncA - His137Asp cat/gat PZA High confidence 

2288836 G A coding Rv2043c pncA - Asp136Asn gat/aat PZA Low confidence 

2288836 G T coding Rv2043c pncA - Asp136Tyr gat/tat PZA Low confidence 

2288838 C A coding Rv2043c pncA - Thr135Asn acc/aac PZA High confidence 

2288839 A C coding Rv2043c pncA - Thr135Pro acc/ccc PZA High confidence 

2288841 C T coding Rv2043c pncA - Ala134Val gcc/gtc PZA High confidence 

2288844 T C coding Rv2043c pncA - Ile133Thr att/act PZA Low confidence 

2288847 G C coding Rv2043c pncA - Gly132Ala ggt/gct PZA High confidence 

2288847 G A coding Rv2043c pncA - Gly132Asp ggt/gat PZA High confidence 

2288848 G T coding Rv2043c pncA - Gly132Cys ggt/tgt PZA High confidence 

2288848 G A coding Rv2043c pncA - Gly132Ser ggt/agt PZA Low confidence 

2288853 T C coding Rv2043c pncA - Val130Ala gtg/gcg PZA High confidence 

2288853 T G coding Rv2043c pncA - Val130Gly gtg/ggg PZA High confidence 

2288857 G T coding Rv2043c pncA - Asp129Tyr gat/tat PZA High confidence 

2288859 T G coding Rv2043c pncA - Val128Gly gtc/ggc PZA Low confidence 

2288868 T G coding Rv2043c pncA - Val125Gly gtc/ggc PZA High confidence 

2288869 G T coding Rv2043c pncA - Val125Phe gtc/ttc PZA High confidence 

2288874 G C coding Rv2043c pncA - Arg123Pro cgc/ccc PZA High confidence 

2288880 G C coding Rv2043c pncA - Arg121Pro cgg/ccg PZA High confidence 

2288883 T A coding Rv2043c pncA - Leu120Gln ctg/cag PZA High confidence 

2288883 T C coding Rv2043c pncA - Leu120Pro ctg/ccg PZA High confidence 

2288883 T G coding Rv2043c pncA - Leu120Arg ctg/cgg PZA Low confidence 

2288885 G A coding Rv2043c pncA - Trp119STOP tgg/tga PZA Low confidence 

2288886 G C coding Rv2043c pncA - Trp119Ser tgg/tcg PZA High confidence 

2288886 G A coding Rv2043c pncA - Trp119STOP tgg/tag PZA High confidence 

2288887 T C coding Rv2043c pncA - Trp119Arg tgg/cgg PZA High confidence 

2288887 T G coding Rv2043c pncA - Trp119Gly tgg/ggg PZA High confidence 

2288895 T G coding Rv2043c pncA - Leu116Arg ctg/cgg PZA High confidence 

2288895 T C coding Rv2043c pncA - Leu116Pro ctg/ccg PZA High confidence 

2288902 A C coding Rv2043c pncA - Thr114Pro acg/ccg PZA Low confidence 

2288920 G A coding Rv2043c pncA - Gly108Arg gga/aga PZA High confidence 

2288920 G C coding Rv2043c pncA - Gly108Arg gga/cga PZA High confidence 

2288928 G A coding Rv2043c pncA - Gly105Asp ggc/gac PZA High confidence 

2288930 C A coding Rv2043c pncA - Ser104Arg agc/aga PZA High confidence 

2288931 G T coding Rv2043c pncA - Ser104Ile agc/atc PZA High confidence 

2288933 C G coding Rv2043c pncA - Tyr103STOP tac/tag PZA High confidence 

2288934 A G coding Rv2043c pncA - Tyr103Cys tac/tgc PZA High confidence 



2288934 A C coding Rv2043c pncA - Tyr103Ser tac/tcc PZA Low confidence 

2288935 T G coding Rv2043c pncA - Tyr103Asp tac/gac PZA High confidence 

2288938 G A coding Rv2043c pncA - Ala102Thr gcg/acg PZA High confidence 

2288944 A G coding Rv2043c pncA - Thr100Ala acc/gcc PZA High confidence 

2288944 A C coding Rv2043c pncA - Thr100Pro acc/ccc PZA High confidence 

2288945 C A coding Rv2043c pncA - Tyr99STOP tac/taa PZA High confidence 

2288952 G C coding Rv2043c pncA - Gly97Ala ggt/gct PZA High confidence 

2288952 G A coding Rv2043c pncA - Gly97Asp ggt/gat PZA High confidence 

2288953 G A coding Rv2043c pncA - Gly97Ser ggt/agt PZA Low confidence 

2288954 G A coding Rv2043c pncA - Lys96Asn aag/aac PZA High confidence 

2288955 A G coding Rv2043c pncA - Lys96Arg aag/agg PZA High confidence 

2288955 A C coding Rv2043c pncA - Lys96Thr aag/acg PZA High confidence 

2288956 A C coding Rv2043c pncA - Lys96Gln aag/cag PZA High confidence 

2288956 A G coding Rv2043c pncA - Lys96Glu aag/gag PZA Low confidence 

2288957 C G coding Rv2043c pncA - Tyr95STOP tac/tag PZA High confidence 

2288960 C A coding Rv2043c pncA - Phe94Leu ttc/tta PZA High confidence 

2288960 C G coding Rv2043c pncA - Phe94Leu ttc/ttg PZA High confidence 

2288961 T G coding Rv2043c pncA - Phe94Cys ttc/tgc PZA High confidence 

2288961 T C coding Rv2043c pncA - Phe94Ser ttc/tcc PZA High confidence 

2288962 T C coding Rv2043c pncA - Phe94Leu ttc/ctc PZA High confidence 

2288971 G T coding Rv2043c pncA - Glu91STOP gag/tag PZA High confidence 

2288982 C T coding Rv2043c pncA - Thr87Met acg/atg PZA Low confidence 

2288988 T G coding Rv2043c pncA - Leu85Arg ctg/cgg PZA High confidence 

2288988 T C coding Rv2043c pncA - Leu85Pro ctg/ccg PZA Low confidence 

2288997 A G coding Rv2043c pncA - His82Arg cat/cgt PZA High confidence 

2288998 C G coding Rv2043c pncA - His82Asp cat/gat PZA High confidence 

2289000 T G coding Rv2043c pncA - Phe81Cys ttc/tgc PZA High confidence 

2289000 T C coding Rv2043c pncA - Phe81Ser ttc/tcc PZA High confidence 

2289001 T G coding Rv2043c pncA - Phe81Val ttc/gtc PZA High confidence 

2289016 A C coding Rv2043c pncA - Thr76Pro act/cct PZA Low confidence 

2289028 T C coding Rv2043c pncA - Cys72Arg tgc/cgc PZA High confidence 

2289029 T A coding Rv2043c pncA - His71Gln cat/caa PZA High confidence 

2289030 A G coding Rv2043c pncA - His71Arg cat/cgt PZA High confidence 

2289031 C T coding Rv2043c pncA - His71Tyr cat/tat PZA Low confidence 

2289036 C T coding Rv2043c pncA - Pro69Leu cca/cta PZA Low confidence 

2289038 G C coding Rv2043c pncA - Trp68Cys tgg/tgc PZA High confidence 

2289038 G T coding Rv2043c pncA - Trp68Cys tgg/tgt PZA High confidence 

2289039 G A coding Rv2043c pncA - Trp68STOP tgg/tag PZA High confidence 

2289039 G C coding Rv2043c pncA - Trp68Ser tgg/tcg PZA Low confidence 

2289040 T C coding Rv2043c pncA - Trp68Arg tgg/cgg PZA Low confidence 

2289040 T G coding Rv2043c pncA - Trp68Gly tgg/ggg PZA Low confidence 

2289043 T C coding Rv2043c pncA - Ser67Pro tcg/ccg PZA High confidence 

2289050 T G coding Rv2043c pncA - Tyr64STOP tat/tag PZA High confidence 

2289052 T G coding Rv2043c pncA - Tyr64Asp tat/gat PZA Low confidence 

2289054 A G coding Rv2043c pncA - Asp63Gly gac/ggc PZA Low confidence 

2289057 C T coding Rv2043c pncA - Pro62Leu ccg/ctg PZA High confidence 

2289061 A C coding Rv2043c pncA - Thr61Pro aca/cca PZA Low confidence 

2289068 C A coding Rv2043c pncA - Phe58Leu ttc/tta PZA High confidence 



2289068 C G coding Rv2043c pncA - Phe58Leu ttc/ttg PZA High confidence 

2289070 T C coding Rv2043c pncA - Phe58Leu ttc/ctc PZA High confidence 

2289071 C G coding Rv2043c pncA - His57Gln cac/ag  PZA High confidence 

2289072 A G coding Rv2043c pncA - His57Arg cac/cgc PZA High confidence 

2289072 A C coding Rv2043c pncA - His57Pro cac/ccc PZA High confidence 

2289073 C G coding Rv2043c pncA - His57Asp cac/gac PZA Low confidence 

2289073 C T coding Rv2043c pncA - His57Tyr cac/tac PZA Low confidence 

2289081 C G coding Rv2043c pncA - Pro54Arg ccg/cgg PZA High confidence 

2289081 C A coding Rv2043c pncA - Pro54Gln ccg/cag PZA High confidence 

2289081 C T coding Rv2043c pncA - Pro54Leu ccg/ctg PZA Low confidence 

2289082 C T coding Rv2043c pncA - Pro54Ser ccg/tcg PZA High confidence 

2289089 C A coding Rv2043c pncA - His51Gln cac/caa PZA High confidence 

2289090 A G coding Rv2043c pncA - His51Arg cac/cgc PZA High confidence 

2289090 A C coding Rv2043c pncA - His51Pro cac/ccc PZA High confidence 

2289091 C T coding Rv2043c pncA - His51Tyr cac/tac PZA High confidence 

2289096 A C coding Rv2043c pncA - Asp49Ala gac/gcc PZA Low confidence 

2289096 A G coding Rv2043c pncA - Asp49Gly gac/ggc PZA Low confidence 

2289097 G A coding Rv2043c pncA - Asp49Asn gac/aac PZA High confidence 

2289100 A G coding Rv2043c pncA - Lys48Glu aag/gag PZA High confidence 

2289100 A T coding Rv2043c pncA - Lys48STOP aag/tag PZA High confidence 

2289103 A C coding Rv2043c pncA - Thr47Pro acc/ccc PZA High confidence 

2289103 A G coding Rv2043c pncA - Thr47Ala acc/gcc PZA Low confidence 

2289108 T G coding Rv2043c pncA - Val45Gly gtg/ggg PZA Low confidence 

2289111 T G coding Rv2043c pncA - Val44Gly gtc/ggc PZA High confidence 

2289133 G T coding Rv2043c pncA - Glu37top gaa/taa PZA High confidence 

2289138 T C coding Rv2043c pncA - Leu35Pro ctg/ccg PZA High confidence 

2289140 C G coding Rv2043c pncA - Tyr34STOP tac/tag PZA High confidence 

2289150 T G coding Rv2043c pncA - Ile31Ser atc/agc PZA High confidence 

2289159 C A coding Rv2043c pncA - Ala28Asp gcc/gac PZA Low confidence 

2289162 T C coding Rv2043c pncA - Leu27Pro ctg/ccg PZA High confidence 

2289171 G A coding Rv2043c pncA - Gly24Asp ggc/gac PZA High confidence 

2289180 T G coding Rv2043c pncA - Val21Gly gta/gga PZA High confidence 

2289186 T C coding Rv2043c pncA - Leu19Pro ctg/ccg PZA High confidence 

2289193 G A coding Rv2043c pncA - Gly17Ser ggc/agc PZA High confidence 

2289200 C A coding Rv2043c pncA - Cys14STOP tgc/tga PZA High confidence 

2289201 G A coding Rv2043c pncA - Cys14Tyr tgc/tac PZA Low confidence 

2289202 T C coding Rv2043c pncA - Cys14Arg tgc/cgc PZA High confidence 

2289203 C G coding Rv2043c pncA - Phe13Leu ttc/ttg PZA High confidence 

2289204 T C coding Rv2043c pncA - Phe13Ser ttc/tcc PZA Low confidence 

2289206 C G coding Rv2043c pncA - Asp12Glu gac/gag PZA High confidence 

2289207 A C coding Rv2043c pncA - Asp12Ala gac/gcc PZA High confidence 

2289208 G A coding Rv2043c pncA - Asp12Asn gac/aac PZA Low confidence 

2289213 A G coding Rv2043c pncA - Gln10Arg cag/cgg PZA Low confidence 

2289213 A C coding Rv2043c pncA - Gln10Pro cag/ccg PZA Low confidence 

2289214 C A coding Rv2043c pncA - Gln10Lys cag/aag PZA High confidence 

2289216 T C coding Rv2043c pncA - Val9Ala gtg/gcg PZA Low confidence 

2289216 T G coding Rv2043c pncA - Val9Gly gtg/ggg PZA Low confidence 

2289218 C A coding Rv2043c pncA - Asp8Glu gac/gaa PZA High confidence 



2289219 A C coding Rv2043c pncA - Asp8Ala gac/gcc PZA High confidence 

2289219 A G coding Rv2043c pncA - Asp8Gly gac/ggc PZA Low confidence 

2289220 G A coding Rv2043c pncA - Asp8Asn gac/aac PZA High confidence 

2289222 T G coding Rv2043c pncA - Val7Gly gtc/ggc PZA High confidence 

2289222 T A coding Rv2043c pncA - Val7Asp gtc/gac PZA Low confidence 

2289223 G T coding Rv2043c pncA - Val7Phe gtc/ttc PZA High confidence 

2289225 T C coding Rv2043c pncA - Ile6Thr atc/acc PZA High confidence 

2289231 T G coding Rv2043c pncA - Leu4Ser ttg/tcg PZA High confidence 

2289231 T G coding Rv2043c pncA - Leu4Trp ttg/tgg PZA Low confidence 

2289234 C A coding Rv2043c pncA - Ala3Glu gcg/gag PZA High confidence 

2289235 G C coding Rv2043c pncA - Ala3Pro gcg/ccg PZA Low confidence 

2289239 G A coding Rv2043c pncA - Met1Ile atg/ata PZA High confidence 

2289239 G T coding Rv2043c pncA - Met1Ile atg/att PZA Low confidence 

2289240 T A coding Rv2043c pncA - Met1Lys atg/aag PZA High confidence 

2289240 T C coding Rv2043c pncA - Met1Thr atg/acg PZA High confidence 

2289248 T C intergenic Rv2043c pncA - --- - PZA High confidence 

2289248 T G intergenic Rv2043c pncA - --- - PZA High confidence 

2289252 A G intergenic Rv2043c pncA - --- - PZA High confidence 

2289252 A C intergenic Rv2043c pncA - --- - PZA High confidence 

2289252 A T intergenic Rv2043c pncA - --- - PZA High confidence 

2715342 G A intergenic Rv2416c eis - --- - KAN Low confidence 

2715346 C T intergenic Rv2416c eis - --- - KAN Low confidence 

2726136 C T intergenic Rv2428 ahpC + --- - INH Low confidence 

2726145 G A intergenic Rv2428 ahpC + --- - INH Low confidence 

3073808 C G coding Rv2764c thyA - Arg222Gly cgc/ggc PAS Low confidence 

4241078 A G coding Rv3793 embC + Ile406Val atc/gtc EMB Low confidence 

4243221 C T intergenic Rv3794 embA + --- - EMB Low confidence 

4243225 C A intergenic Rv3794 embA + --- - EMB Low confidence 

4243242 G A coding Rv3794 embA + Asp4Asn gac/aac EMB Low confidence 

4243245 G A coding Rv3794 embA + Gly5Ser ggt/agt EMB Low confidence 

4243833 G A coding Rv3794 embA + Ala201Thr gcg/acg EMB Low confidence 

4244193 G A coding Rv3794 embA + Gly321Ser ggc/agc EMB Low confidence 

4244281 G A coding Rv3794 embA + Gly350Asp ggc/gac EMB Low confidence 

4244617 C T coding Rv3794 embA + Ala462Val gcg/gtg EMB Low confidence 

4245730 A C coding Rv3794 embA + Asp833Ala gac/gcc EMB Low confidence 

4246734 T G coding Rv3795 embB + Leu74Arg ctg/cgg EMB Low confidence 

4247402 T G coding Rv3795 embB + Ser297Ala tcg/gcg EMB Low confidence 

4247429 A G coding Rv3795 embB + Met306Val atg/gtg EMB High confidence 

4247429 A C coding Rv3795 embB + Met306Leu atg/ctg EMB High confidence 

4247430 T C coding Rv3795 embB + Met306Thr atg/acg EMB High confidence 

4247431 G A coding Rv3795 embB + Met306Ile atg/ata EMB High confidence 

4247431 G C coding Rv3795 embB + Met306Ile atg/atc EMB High confidence 

4247431 G T coding Rv3795 embB + Met306Ile atg/att EMB High confidence 

4247469 A C coding Rv3795 embB + Tyr319Ser tat/tct EMB Low confidence 

4247495 G T coding Rv3795 embB + Asp328Tyr gat/tat EMB Low confidence 

4247496 A G coding Rv3795 embB + Asp328Gly gat/ggt EMB Low confidence 

4247507 T C coding Rv3795 embB + Trp332Arg tgg/cgg EMB Low confidence 

4247513 T C coding Rv3795 embB + Tyr334His tac/cac EMB Low confidence 



4247573 G A coding Rv3795 embB + Asp354Asn gac/aac EMB Low confidence 

4247717 C G coding Rv3795 embB + Leu402Val ctg/gtg EMB Low confidence 

4247723 C T coding Rv3795 embB + Pro404Ser ccg/tcg EMB Low confidence 

4247729 G A coding Rv3795 embB + Gly406Ser ggc/agc EMB High confidence 

4247729 G T coding Rv3795 embB + Gly406Cys ggc/tgc EMB High confidence 

4247730 G C coding Rv3795 embB + Gly406Ala ggc/gcc EMB High confidence 

4247730 G A coding Rv3795 embB + Gly406Asp ggc/gac EMB High confidence 

4247863 C G coding Rv3795 embB + Ile450Met atc/atg EMB Low confidence 

4247873 G A coding Rv3795 embB + Ala454Thr gcg/acg EMB Low confidence 

4248002 C A coding Rv3795 embB + Gln497Lys cag/aag EMB Low confidence 

4248003 A G coding Rv3795 embB + Gln497Arg cag/cgg EMB High confidence 

4248747 G A coding Rv3795 embB + Gly745Asp ggc/gac EMB Low confidence 

4249518 A G coding Rv3795 embB + His1002Arg cac/cgc EMB Low confidence 

4326087 C A coding Rv3854c ethA - Arg463Ser cgt/agt ETH Low confidence 

4326236 G A coding Rv3854c ethA - Gly413Asp ggt/gat ETH Low confidence 

4326300 A G coding Rv3854c ethA - Thr392Ala acg/gcg ETH Low confidence 

4326320 G A coding Rv3854c ethA - Gly385Asp ggc/gac ETH Low confidence 

4326333 G C coding Rv3854c ethA - Ala381Pro gcc/ccc ETH Low confidence 

4326449 C A coding Rv3854c ethA - Thr342Lys acg/aag ETH Low confidence 

4326461 T G coding Rv3854c ethA - Ile338Ser atc/agc ETH Low confidence 

4326738 C T coding Rv3854c ethA - Gln246STOP cag/tag ETH Low confidence 

4326807 G A coding Rv3854c ethA - Glu223Lys gag/aag ETH Low confidence 

4326917 C A coding Rv3854c ethA - Thr186Lys acg/aag ETH Low confidence 

4327224 T G coding Rv3854c ethA - Tyr84Asp tac/gac ETH Low confidence 

4327301 A C coding Rv3854c ethA - Asp58Ala gac/gcc ETH Low confidence 

4327307 A C coding Rv3854c ethA - Asp56Ala gac/gcc ETH Low confidence 

4327322 C T coding Rv3854c ethA - Pro51Leu ccc/ctc ETH Low confidence 

4327346 G A coding Rv3854c ethA - Gly43Asp ggc/gac ETH Low confidence 

4327347 G T coding Rv3854c ethA - Gly43Cys ggc/tgc ETH Low confidence 

4407604 C A coding Rv3919c gidB - Ala200Glu gcg/gag STR Low confidence 

4407790 C T coding Rv3919c gidB - Ala138Val gcg/gtg STR Low confidence 

4407824 C T coding Rv3919c gidB - Gln127STOP caa/taa STR Low confidence 

4407931 T C coding Rv3919c gidB - Leu91Pro cta/cca STR Low confidence 

4407940 T C coding Rv3919c gidB - Val88Ala gta/gca STR Low confidence 

4407992 G A coding Rv3919c gidB - Gly71Arg gga/aga STR Low confidence 

4408009 T G coding Rv3919c gidB - Val65Gly gtc/ggc STR Low confidence 

4408102 G C coding Rv3919c gidB - Gly34Ala ggg/gcg STR Low confidence 

 



Additional Data Table 3. Significant variant frequencies across all isolates. All values are given in percentage 
 

Genomic 
Position 

Wild-
type 

Allele 

Variant 
Allele 

Jan 
2014 

March 
2014 

June 
2014 

Aug 
2014 

Oct 
2014 

Dec 
2014 

Jan 
2015 

April 
2015 

June 
2015 

Nov 
2015 

Dec 
2015 

June 
2016 

Oct 
2016 

Jan 
2017 

6742 A C 0 0 0 0 0 0 0 0 0 0 0 100 100 100 

36471 C G 0 0 57.14 0 0 0 0 0 0 0 60 0 0 0 

80564 C G 0 0 0 0 0 0 0 0 14.58 0 0 0 0 0 

130660 T A 100 0 0 0 0 0 0 0 0 0 0 0 0 0 

208321 C G 0 0 0 0 0 0 0 0 0 85.71 0 0 0 0 

232974 A C 0 0 0 0 0 0 0 93.33 85.35 28.22 0 0 0 0 

580797 A G 0 0 0 0 0 0 0 0 0 66.67 0 0 33.33 0 

623273 G A 0 0 0 0 100 0 0 0 0 0 0 0 0 0 

650379 C T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

699980 G C 0 0 0 15 0 55.56 0 0 0 0 0 0 0 0 

725302 C T 0 20.93 0 0 0 0 0 0 0 0 0 0 0 0 

761152 T A 0 0 0 0 11.82 0 0 7.25 0 0 0 0 0 6.41 

761277 A T 100 100 99.24 99.56 99.07 99.32 100 100 98.63 98.97 100 98.97 100 99.32 

851731 T G 0 0 0 0 23.48 0 0 0 0 0 0 0 0 0 

852638 C G 0 0 0 0 0 50.81 71.91 0 0 0 0 0 0 0 

854253 C G 0 0 0 30.77 0 0 0 0 27.27 0 0 0 0 0 

916546 G T 0 0 0 0 0 19.05 0 0 0 0 0 0 0 0 

939197 G C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1002273 G A 100 100 100 100 100 100 100 100 100 100 100 98.37 100 100 

1131770 C T 0 0 0 0 14.97 0 0 0 0 0 0 0 0 0 

1157076 C A 100 100 99.25 98.97 100 100 99.07 100 99.35 100 100 100 100 100 

1230842 T C 0 0 0 0 0 0 0 0 0 0 0 99.19 99.64 100 

1474752 T C 100 100 100 98.68 95.83 97.83 100 95.65 100 100 98.04 100 100 99.49 

1502314 C T 99.48 100 100 100 100 100 100 100 100 98.35 100 99.05 100 100 

1514788 G T 0 25.66 0 0 0 0 0 0 0 0 0 0 0 0 

1519823 A G 0 0 0 0 0 0 0 0 100 75 0 0 0 0 

1524571 A T 0 0 0 100 0 0 0 0 100 100 100 0 75 0 

1543413 C G 0 0 0 0 0 0 0 0 37.50 0 0 0 0 0 

1917986 T G 0 0 0 0 0 0 0 0 0 0 0 99.08 98.07 100 

1960078 C A 0 0 0 0 0 0 0 84.47 0 0 0 0 0 0 

1997457 G C 0 0 0 36.36 0 0 0 0 20 20 0 0 27.78 0 

2074547 G T 0 0 0 0 0 0 0 0 0 0 0 0 100 0 

2094917 T A 0 0 0 0 0 0 0 0 0 0 0 0 21.43 0 

2154827 C - 99.00 0 0 0 67 41 38 0 8 71 93 72 98 97 

2155295 C G 0 98.06 40.74 97.14 24.39 52.21 65.08 95.89 82.95 28.32 0 0 0 0 

2180818 T C 0 0 0 0 0 0 0 0 0 80 0 0 0 0 

2183360 C T 0 0 0 0 0 0 0 0 0 0 0 49.07 0 0 

2262857 C T 100 100 100 100 100 100 100 100 0 100 100 100 100 100 

2300456 G A 0 0 0 0 0 0 0 0 0 51.97 0 0 0 0 

2304044 T A 0 0 0 0 0 0 0 0 0 19.85 0 0 0 0 



2314650 T C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2339605 A G 100 100 90.91 100 100 100 0 100 100 100 100 0 100 0 

2363682 C A 0 0 0 100 0 0 100 0 0 100 0 0 100 0 

2370345 C T 0 0 0 0 0 0 52 0 0 0 0 0 0 0 

2482657 G C 0 0 21.05 36.17 0 0 0 0 0 0 0 0 0 0 

2525723 G C 20 0 0 0 0 0 0 0 0 17.39 0 0 0 0 

2527757 C T 0 0 23.27 36.18 0 0 0 0 0 0 0 0 0 0 

2534563 G C 30 0 75 0 27.27 0 0 0 0 33.33 0 0 0 0 

2536917 T C 0 16.39 0 0 0 0 0 0 0 0 0 0 0 0 

2542966 C T 0 0 0 0 0 60 0 0 0 0 0 0 0 0 

2551675 A C 0 0 0 0 0 0 0 0 0 0 100 0 0 0 

2726112 C T 0 0 19.77 35.34 0 25.83 0 96.72 0 0 0 21.78 0 0 

2726139 C T 0 0 13.79 67.91 0 26 0 0 0 0 0 0 0 0 

2726141 C A/T 0 5.71 0 0 0 0 45.19 0 0 0 0 0 0 0 

2726145 G A 0 0 0 0 0 0 0 0 0 7.52 64.93 0 0 0 

2726153 G A 0 0 0 0 0 0 0 0 0 0 7 0 0 0 

2726767 A C 94.94 0 0 0 0 0 0 0 0 0 0 0 0 0 

2786787 T G 0 0 0 0 0 0 0 0 0 0 75 0 0 0 

2794585 C A 100 100 100 100 99.32 100 100 100 100 100 100 100 100 100 

2879778 G T 100 100 97.22 99.02 100 98.41 100 100 100 100 98.15 92.86 98.91 97.87 

2895066 C G 0 0 0 0 0 0 0 96.30 82.96 30.65 0 0 0 0 

2895750 G A 0 0 0 0 75 40.58 41.73 0 16.34 66.83 97.47 100 100 100 

3007115 C A 0 0 0 66.67 0 0 0 0 0 0 0 0 0 0 

3007143 T A 0 0 100 0 0 0 0 0 0 0 0 0 100 0 

3007407 C G 0 0 0 0 0 0 0 0 30.25 0 0 0 0 0 

3008814 C T 15.85 0 0 0 0 0 0 0 0 0 0 0 0 0 

3008839 G T 0 34.78 0 0 0 0 0 0 0 0 0 0 0 0 

3045144 C T 0 0 0 0 0 0 0 0 0 64.52 81.82 100 100 100 

3096287 G C 100 100 0 100 0 100 0 0 0 0 0 0 0 0 

3096295 G C 0 0 100 100 0 0 0 75 0 80 100 75 0 100 

3160000 A C 71.43 0 60 87.50 0 100 80 50 0 71.43 85.71 0 87.50 0 

3173107 G A 100 100 100 100 100 98.23 100 100 98.65 99.40 100 100 100 100 

3247866 C A 0 0 0 0 0 0 0 0 0 60 0 0 0 0 

3247867 A G 80 0 0 0 0 0 0 0 0 60 0 0 0 0 

3247868 A G 100 0 0 0 0 42.86 0 0 0 0 0 0 0 0 

3247869 A G 100 0 0 0 0 66.67 0 0 60 0 0 0 0 0 

3349257 T C 0 0 0 0 16.28 0 0 0 0 0 0 0 0 0 

3415194 G A 0 0 0 0 0 0 22.22 0 16.13 16.13 0 30.77 13.16 0 

3498811 A G 0 0 0 0 0 0 0 0 20.67 0 0 0 0 0 

3580637 T C 62.50 0 0 0 50 50 0 0 0 0 0 0 0 0 

3596631 G A 0 0 0 0 0 0 0 0 14.97 0 0 0 0 0 

3664945 C T 99.17 100 99.40 100 98.90 99.12 100 96.84 100 100 99.37 100 100 100 

3854063 G T 0 0 0 0 0 0 0 0 0 0 0 0 30 0 

3862473 A G 0 0 0 71.43 77.78 0 0 0 0 0 0 0 0 0 

3878567 G C 0 28.57 0 0 0 0 0 0 0 0 0 0 16.67 23.53 



3915436 C T 0 0 0 0 0 57.14 61.90 0 0 0 0 0 0 0 

4026874 T C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4117169 C G 0 60 0 50 50 66.67 0 37.50 0 54.55 55.56 50 0 75 

4247429 A G 0 0 0 0 0 0 0 0 0 0 10.26 0 0 0 

4247495 G T 0 0 0 0 0 0 0 0 0 54.97 88.82 100 100 100 

4255385 C G 0 0 0 0 0 0 0 0 0 62.84 86.62 100 100 100 

4269341 C T 0 0 0 0 0 0 0 97.03 86.79 23.53 0 0 0 0 

4338596 T G 0 0 0 50 40 0 50 0 0 0 50 0 21.43 0 

4353414 G C 100 0 0 100 0 0 0 0 0 0 0 0 0 0 

4358702 A G 71.43 0 0 0 100 0 0 0 0 0 0 0 0 0 

4373008 T C 0 0 0 0 42.86 0 0 0 0 60 0 0 33.33 0 
 
 



Additional Data
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Introducción

La tuberculosis (TB) es una enfermedad infecciosa causada por bacterias

patógenas pertenecientes al complejo de Mycobacterium tuberculosis (MTBC).

Aunque es curable y prevenible, la TB es una de las diez principales causas de

muerte en todo el mundo según la Organización Mundial de la Salud (OMS).

Se estima que aproximadamente una cuarta parte de la población mundial

tiene TB latente, que se caracteriza por no presentar los sı́ntomas tı́picos de

TB y por una enfermedad presumiblemente no transmisible.

El MTBC es un grupo de bacterias de lento crecimiento pertenecientes al

género Mycobacterium. Aunque la mayorı́a de las especies de Mycobacterium

(más de 170 especies) son organismos de vida libre que no causan

enfermedad, algunas de ellas pueden causar infecciones en humanos. Los

principales agentes causantes de la tuberculosis en humanos son las

micobacterias Mycobacterium tuberculosis y Mycobacterium africanum. Otras

micobacterias pertenecientes al MTBC, como por ejemplo, M.bovis, M. caprae,

M. microti, M. pinnipedii, M. orygis, M. suricattae y M.mungi, son conocidas por

causar infecciones a otros huéspedes animales. Además del MTBC, existen

otras micobacterias no tuberculosas que causan la enfermedad, dentro de

estas se incluyen las especies M.avium y M.kansasii, entre otras. Una

caracterı́stica fisiológica importante del género Mycobacterium es la estructura
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de su pared celular. Esta pared consiste en una bicapa lipı́dica hecha de

ácidos grasos de cadena larga (ácidos micólicos), que proporcionan una

barrera impermeable que confiere resistencia a diferentes compuestos nocivos

y evita la deshidratación celular. Gracias a esta caracterı́stica, las

micobacterias son ácido-alcohol resistentes, por lo que necesitan un método

de tinción especial llamado tinción de Ziehl-Neelsen. Todas las micobacterias

son bacilos aeróbicos, con forma de bastón y que no forman esporas. Su

tamaño varı́a de 0.2 a 0.6µm por 1.0 a 10µm, formando colonias que varı́an

morfológicamente en textura y color entre especies.

Situación actual de la tuberculosis

En el 2018, la OMS estimó que 10 millones de personas se infectaron con TB.

De estos, 1,45 millones de personas murieron a causa de esta enfermedad

(484,000 casos relacionados con tuberculosis fármaco resistente, y 251,000

casos por una coinfección con VIH). Las regiones más afectadas son el

sudeste asiático y el continente africano, con el 44En 2017, el sistema de

vigilancia español reportó 4,483 casos de TB (tasa de incidencia equivalente a

9.6 casos por cada 100,000 habitantes), siendo Galicia, Catalunya y Asturias

las regiones con la tasas más altas con 19.6, 12.9 y 10.8 casos por cada

100,000 personas, respectivamente. Particularmente, en la Comunidad

Valenciana, se notificaron 424 casos de TB con una incidencia de 8,6 por cada

100.000 habitantes. Aunque el número de casos de TB ha disminuido desde

1990, la mayorı́a de los paı́ses del mundo todavı́a tienen una tasa de

incidencia superior a 10 casos por cada 100.000 habitantes. Con el fin de

reducir de reducir la incidencia de TB a nivel global, la OMS ha desarrollado

una iniciativa llamada “The End TB Strategy”. Sus principales objetivos son

reducir el número de muertes por TB en un 90% y disminuir la incidencia de TB

en un 80% para 2030. Dichas estrategias destacan, entre otras, la importancia

de un diagnóstico precoz y rápido de TB, pruebas precisas de sensibilidad a

los fármacos administrados, aplicación de tratamientos apropiados y un control

efectivo de la transmisión. Además, enfatiza el uso de la investigación para el
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desarrollo de nuevas pruebas diagnósticas, medicamentos, vacunas.

Infección y transmisión de la tuberculosis

La infección de TB comienza cuando el bacilo ingresa a los pulmones por

inhalación y alcanza el espacio alveolar. Una vez allı́, se encuentra con los

macrófagos alveolares residentes, en donde la bacteria se replica. Una vez

que se establece la infección, existen dos escenarios diferentes según la

gravedad de la enfermedad: 1) el sistema inmunitario del huésped puede

controlar el crecimiento bacteriano y, sin llegar a eliminar la infección inicial, el

individuo infectado no desarrolla los sı́ntomas de la enfermedad. Esta

condición asintomática se conoce como infección de TB latente (LTBI). Sin

embargo, 2) Entre el 5 y 15% de las personas infectadas, el sistema

inmunitario falla y desarrolla una enfermedad activa, presentando sı́ntomas

leves, moderados o severos, o incluso desarrollando cavitaciones pulmonares.

Los factores que desencadenan el progreso de la infección (de infecciones

latentes a activas) y los cambios metabólicos bacterianos subyacentes siguen

sin estar claros y podrı́an involucrar factores bacterianos, ası́ como, elementos

inmunológicos y clı́nicos de huésped. Los métodos más comunes para la

detección de infección por TB activa son la inspección de esputos para la

identificación de bacilos mediante microscopio, la siembra del cultivo. El

diagnóstico de LTBI se realiza mediante la positividad de la ensayos basados

en respuestas inmunológicas del huésped, como son la prueba cutánea de la

tuberculina (TST), y pruebas de sangre de liberación del interferón gamma

(IGRA). Durante muchos años, se ha establecido una dicotomı́a entre los

estados clı́nicos de TB activa y latente para diferenciar entre aquellos

pacientes que están infectados y pueden permanecer asintomáticos durante

años o toda la vida, y aquellos que desarrollan sı́ntomas tı́picos de TB (tos

continua, fiebres, sudores nocturnos, fatiga, dolor de pecho). Sin embargo,

existe evidencia cientı́fica que sugiere que la infección de TB se refleja mejor

por la existencia de un amplio espectro de diferentes estados de infección, que

están mediados por la naturaleza heterogénea y dinámica de la bacteria,
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además, de las respuestas inmunitarias del huésped en los granulomas. Una

combinación de manifestaciones clı́nicas de la enfermedad, evidencia

microbiológica y resultados de pruebas inmunológicas (como TST e IGRA)

pueden ayudar a definir estos estados de la enfermedad. Por ejemplo, la

tuberculosis subclı́nica se caracteriza por presentar resultados positivos de

esputo o cultivo y ensayos inmunológicos, y a veces radiografı́as de tórax, pero

sin desarrollar sı́ntomas tı́picos de TB. Estos casos de TB son difı́ciles de

detectar principalmente porque las personas asintomáticas no acuden a un

centro de atención médica. El diagnóstico de estos casos solo es posible a las

investigaciones de contacto, por lo que representan desafı́os importantes para

los sistemas de salud pública. Asimismo, aún se debate si estos pacientes

asintomáticos pueden transmitir la enfermedad.

La TB se transmite por el aire a través de aerosoles, por lo que, el sitio de

infección más común es el sistema respiratorio. Existen muchos factores

asociados con la transmisión de TB, los cuales incluyen caracterı́sticas

biológicas relacionadas la bacteria y el huésped, ası́ como factores sociales a

nivel de población (por ejemplo, comportamientos culturales). Los factores del

huésped están relacionados con la infecciosidad de la enfermedad, por lo

tanto, las personas con sı́ntomas más graves (por ejemplo, con más cavidades

pulmonares profundas), tienen más probabilidades de transmitir TB. Otros

determinantes que pueden alterar el nivel de infección incluyen el tabaquismo,

alcoholismo, y la desnutrición, ası́ como presentar comorbilidades como

infecciones por VIH y diabetes. Además de esto, el retraso en el diagnóstico e

inicio del tratamiento de TB, aumentan la probabilidad de transmisión. Con

respecto a los factores biológicos bacterianos, se ha descrito que existen

diferencias de transmisión entre los diferentes linajes de MTBC. De hecho, se

cree que algunos de estos linajes son ”generalistas” o ”especialistas”, según su

distribución geográfica. Si esta distribución desigual se debe a contingencias

históricas o factores biológicos relacionados con la bacteria, es aún

controversial.
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¿Cómo medir la transmisión?

Medir la transmisión de la tuberculosis es complejo debido a la historia natural

de la bacteria, ya que no todos los pacientes infectados desarrollan la

enfermedad, y solo unos pocos, la transmiten. Además, no existe una

herramienta única para evaluar la transmisión, ya que algunas técnicas miden

la presencia de infección (como TST e IGRA), mientras que otras se limitan

evaluar solo los casos de tuberculosis activa (por ejemplo, genotipado

molecular). Globalmente, las intervenciones epidemiológicas para detectar y

controlar la transmisión de TB se centran principalmente en la identificación de

casos activos junto con un estudio epidemiológico de contactos. Esta

estrategia de búsqueda pasiva de casos, supone que una persona con

sı́ntomas de TB buscará un centro de salud para recibir un tratamiento. Por

otra parte, el objetivo principal del estudio de contactos es reducir el tiempo

necesario para detectar y tratar un caso, mediante la identificación de casos

secundarios entre pacientes con tuberculosis activa, reduciendo ası́ la

transmisión. El estudio de contactos combina la aplicación de encuestas

epidemiológicas junto con evidencia clı́nica (por ejemplo, pruebas TST/IGRA o

radiografı́as torácicas), en contactos cercanos de pacientes con TB activa. Se

ha demostrado que los estudios de contactos estiman mejor la prevalencia de

tuberculosis activa y latente, y durante muchos años, ha sido la práctica

estándar utilizada como método de intervención para el control de la

enfermedad en paı́ses desarrollados. Sin embargo, su coste-efectividad en los

programas nacionales de TB aún se desconoce.

Desde principios de la década de los 90’s, se han desarrollado técnicas

moleculares para investigar la transmisión de la tuberculosis. Estas

herramientas de genotipado han mejorado nuestro entendimiento de la

dinámica de transmisión de TB al revelar que algunos casos pertenecen a un

mismo grupo de transmisión. Debido a su aplicación rápida y replicable en los

sistemas de vigilancia de tuberculosis, las técnicas moleculares combinadas

con estrategias epidemiológicas han ayudado a resolver investigaciones de

TB, ası́ como a identificar y establecer factores de riesgo asociados a la
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transmisión de la enfermedad. Sin embargo, se ha reportado que estos

métodos moleculares sobreestiman el número de casos que forman parte de

algunos grupos de transmisión. Debido a esto, su implementación en los

sistemas de salud pública es escasa.

Recientemente, la secuenciación de genomas completos (WGS, por sus

siglas en inglés) ha comenzado a emplearse como otra herramienta molecular

para detectar la transmisión de TB. En principio, la WGS proporciona una

mayor resolución que los métodos moleculares tradicionales para identificar

fuentes de infección y delinear las redes de transmisión. Además, la técnica de

WGS se está abaratando y ofrece una alternativa rentable para investigar la

transmisión de la TB, ya que el porcentaje de concordancia con las

investigaciones epidemiológicas es mayor que los descritos con las

herramientas anteriores.

Tratamiento de la tuberculosis

El tratamiento de la tuberculosis tiene como objetivo curar a todos los

pacientes con enfermedad activa o latente para detener la transmisión o al

menos minimizarla. Ası́, el propósito de la terapia antituberculosa es reducir el

número de bacilos activos dentro del paciente; erradicar las poblaciones

bacterianas infectantes para prevenir un episodio de recaı́da y el desarrollo de

TB-MDR durante la terapia.

El tratamiento estándar para pacientes diagnosticados con tuberculosis

dura al menos 6 meses. La OMS recomienda la administración de rifampicina,

isoniazida, pirazinamida y etambutol todos los dı́as durante 2 meses, seguido

de 4 meses solo con isoniazida y rifampicina. Este régimen conocido también

como tratamiento de primera lı́nea, cuesta alrededor de 20US$ y su éxito

clı́nico es del 85% en todos los casos de TB recientemente diagnosticados. Sin

embargo, es una terapia de larga duración y algunos pacientes no la toleran

bien, por lo que, algunos casos terminan desarrollando resistencia a uno o

más fármacos. En 2017, se estimó que el 4.1% de todos los nuevos casos de
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TB a nivel mundial tenı́an TB resistente a uno o múltiples fármacos, y que

aumentaba hasta un 19% en aquellos casos que fueron tratados previamente

contra tuberculosis.

El tratamiento para casos MDR es más largo, con más efectos secundarios

asociados, y más costosos. Recientemente, la OMS recomendó el uso de un

nuevo régimen farmacológico que consiste en la administración de

medicamentos de segunda lı́nea durante 6-9 meses. Estas terapias incluyen el

uso de bedaquilina, fluoroquinolonas, etionamida y clofazimina, en

combinación con fármacos efectivos de primera lı́nea. Cabe resaltar que estos

fármacos son totalmente orales. En el caso de pacientes resistentes a las

fluoroquinolonas, deben llevar un tratamiento más largo (hasta 20 meses), que

incluya una combinación de medicamentos de segunda lı́nea aprobados por la

OMS, como por ejemplo, algunos agentes aminoglucósidos inyectables.

Además de casos MDR-TB, existen pacientes que presentan resistencias a

fármacos de segunda lı́nea, estos casos son conocidos como tuberculosis

extremadamente resistente (XDR-TB, por sus siglas en inglés). Las cepas

XDR presentan resistencia a isoniazida, rifampicina, a cualquier

fluoroquinolona y al menos a un agente inyectable. En 2018, la OMS informó

que el 6.2% de todos los casos MDR-TB fueron XDR-TB. Al igual que el

tratamiento de MDR, la OMS ha aprobado recientemente un régimen de

medicamentos más corto para tratar estos casos. Esta terapia consiste en el

uso de bedaquilina, pretomanida y linezolid durante 6-9 meses. En todos los

casos, el éxito del tratamiento depende del grado de resistencia a los

medicamentos, la gravedad de la enfermedad y el estado del sistema

inmunitario del paciente. Se recomienda la monitorización de la resistencia a

los medicamentos y el seguimiento del paciente durante todo el tiempo de

tratamiento.
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Diagnóstico de cepas resistentes

Poco después del uso de medicamentos contra la tuberculosis en los años 40,

surgieron cepas fármaco resistentes. Como consecuencia, en los años 60, se

describió un método fenotı́pico para detectar poblaciones de M. tuberculosis

resistentes llamado método de proporciones. Desde entonces, este método ha

sido la prueba estándar para la detección de resistencias antimicrobianas. El

método de proporciones utiliza diferentes concentraciones en serie de los

fármacos y compara el crecimiento bacteriano entre cepas sensibles y

resistentes. Se puede realizar tanto en medios de crecimiento lı́quidos como a

sólidos. El método de proporciones lı́quido más común es el sistema

automatizado BACTEC MGIT 960 (Becton Dickinson, EE. UU.). Sin embargo,

este ensayo introduce errores en las pruebas de sensibilidad y los resultados

deben usarse con cuidado. Además de esto, se ha demostrado que algunas

mutaciones relacionadas con resistencia a rifampicina (también conocidas

como mutaciones en disputa) no son detectadas el sistema. Igualmente, se

han reportado que algunas cepas sensibles y resistentes presentan

concentraciones mı́nimas inhibitorias (CMIs) similares para algunos de

fármacos de primera y segunda lı́nea. Por esta razón, el Comité Europeo de

Pruebas Antimicrobianas (EUCAST) recomendó una revisión de estas

distribuciones para algunos fármacos, con el fin de definir los puntos de corte

clı́nicos de cada medicamento.

La secuenciación de cepas MDR y XDR, ha llevado a descubrir genes

diana asociados con diferentes resistencias. Ası́, diferentes pruebas

genotı́picas (basados en la amplificación ácidos nucleicos) para la

identificación de distintas mutaciones puntuales, como los polimorfismos de un

solo nucleótido (SNP, por sus siglas en inglés), deleciones e inserciones, se

han implementado como pruebas clı́nicas rutinarias para el diagnósticos de

resistencias. Estos ensayos son más rápidos que los métodos fenotı́picos,

pudiendo detectar una resistencia particular en un par de horas o dı́as.

Además, requieren menos experiencia técnica, ası́ como, una menor

infraestructura para su realización. Sin embargo, tienden a tener valores de
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sensibilidad y / o especificidad más bajos que los sistemas basados en cultivos

fenotı́picos. Entre los kits de detección comerciales disponibles, el ensayo

GeneXpert MTB/RIF (Cepheid, EE. UU.), y GenoType MTBDRplus (Hain

Lifescience, Alemania) han sido aprobados por la OMS desde 2008. El ensayo

Xpert MTB/RIF consiste en una metodologı́a basada en PCR a tiempo real

para la detección de ADN de M. tuberculosis, ası́ como mutaciones

relacionadas con resistencia a rifampicina. Por otro lado, el GenoType

MTBDRplus es un ensayo tipo sonda que identifica casos MDR y XDR

mediante la detección de mutaciones especı́ficas relacionadas con la

resistencia a fármacos de primera y segunda lı́nea (excepto pirazinamida).

Recientemente, el ensayo Xpert Ultra (una versión actualizada del Xpert

MTB/RIF) ha sido probado y demostrado que mejora la precisión del

diagnóstico de TB y puede usarse como una prueba inicial para diagnosticar la

tuberculosis pulmonar. A pesar del despliegue masivo de ensayos Xpert

(ambas versiones), solo unos pocos paı́ses tienen acceso a estas técnicas. En

su lugar, el método fenotı́pico de proporciones sigue siendo la técnica estándar

para la detección de resistencias.

A pesar de que los ensayos genotı́picos muestran un alto porcentaje de

concordancia en comparación con los fenotı́picos, todavı́a hay un porcentaje

significativo de cepas resistentes que se clasifican como ”sensibles” por estas

pruebas moleculares, especialmente aquellas relacionadas con resistencias a

fármacos de segunda lı́nea. Esto se debe a que las sondas genotı́picas tienen

un número limitado de mutaciones que pueden detectar, ya que solo se

interrogan las variantes más comunes que confieren resistencia fenotı́pica. La

aplicación de nuevas tecnologı́as como WGS podrı́a ayudar a resolver esta

limitación; dado que es posible identificar y anotar todas las mutaciones

presentes en el genoma, ası́ como identificar nuevas mutaciones relacionadas

con la resistencia a fármacos.
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Aplicaciones de WGS en tuberculosis

Hoy en dı́a, la WGS se está convirtiendo en una herramienta esencial en el

campo de la TB, no solo en las áreas de investigación básica sino también en

áreas de diagnóstico y la salud pública. Actualmente, se tiene la capacidad

de secuenciar el genoma completo de cientos de cepas de MTBC al mismo

tiempo. Las principales aplicaciones de WGS en tuberculosis son: 1) mejorar

la predicción de la sensibilidad de los fármacos antituberculosos; 2) detección

rápida de grupos de transmisión; 3) vigilancia genómica-epidemiológica de los

diferentes genotipos que circulan en una zona especı́fica; y 4) la identificación

y clasificación de cepas en linajes pertenecientes al MTBC.

El MTBC es genéticamente monomórfico con muy poca diversidad.

Utilizando la tecnologı́a de WGS en una colección global de cepas de MTBC,

se describió que la máxima distancia genética entre dos cepas de diferentes

linajes son 2.200 SNPs, lo que corresponde al 0.05% del genoma. Los análisis

de WGS se basan principalmente en la detección de SNP especı́ficos y/o

pequeñas deleciones o inserciones genómicas (llamados INDELS) utilizando

“pipelines” bioinformáticos personalizados. Estos “pipelines” consisten en tres

pasos principales. A pesar de un protocolo bien definido, no existe un “pipeline”

estándar para el análisis de MTBC mediante WGS.

Diversidad de Mycobacterium tuberculosis Complex

El MTBC se clasifica en 8 linajes adaptados al ser humano (M.tuberculosis y

M.africanum), ası́ como a algunos animales (M.bovis, entre otros). Los ocho

linajes filogenéticos de MTBC adaptados al ser humano están diseminados

geográficamente, aunque en general, los linajes 2 y 4 son los más distribuidos

a nivel mundial. Por el contrario, los linajes 5 y 6 están restringidos a las

regiones de África occidental. Esto ha llevado a la hipótesis de que algunos

linajes son ”especialistas” con un nicho estrecho para una población humana

especı́fica, mientras que los linajes distribuidos globalmente se consideran

”generalistas” que infectan a una gama más amplia de poblaciones. Respecto

238



al origen del MTBC, existe evidencia cientı́fica basada en datos de WGS que

respalda que el posible origen geográfico del MTBC fue en África hace unos

6000 años.

Además de las caracterı́sticas ecológicas, algunos linajes de MTBC

muestran diferencias genéticas que tienen un impacto clı́nico y epidemiológico,

lo que resulta en un fenotipo más virulento. Este fenotipo más virulento está

relacionado con la severidad de la enfermedad y su tasa de transmisión,

haciéndolo exitoso en algunas poblaciones humanas. Sin embargo, el éxito de

estos genotipos depende en gran medida, del contexto socioeconómico de

cada paı́s, ası́ como la presencia de otros genotipos, y los antecedentes

genéticos humanos presentes en cada población.

Predicción de sensibilidad a fármacos

La predicción de la sensibilidad a fármacos mediante la WGS, se basa en la

presencia o ausencia de mutaciones especı́ficas relacionadas resistencias a lo

largo del genoma de M.tuberculosis, por lo que es necesario tener catálogos

de mutaciones de alta calidad que ayuden a predecir resistencias con alta

confianza. Debido a esto, se han formado diferentes consorcios

internacionales que tienen como objetivo expandir la lista actual de mutaciones

de alta confianza (ReSeqTB), ası́ como, reemplazar las pruebas fenotı́picas

(CRyPTIC). Actualmente, podemos predecir perfiles de resistencia a fármacos

de primera lı́nea en ausencia de datos fenotı́picos, demostrando que se puede

reemplazar el cultivo microbiológico.

Desafortunadamente, un pequeño porcentaje de aislados resistentes

poseen mutaciones poco comunes que se clasifican como sensibles, dando

como resultado un falso negativo, y como consecuencia, comprometiendo el

tratamiento contra TB. Una situación similar ocurre con los casos XDR, en

donde la mayorı́a de las variantes relacionadas con resistencia a fármacos de

segunda lı́nea aún se desconocen. Esto se debe a que las pruebas fenotı́picas

disponibles no están bien estandarizadas, lo que genera discrepancias entre
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diferentes laboratorios. Se necesita el desarrollo de una alternativa o

estandarización de los métodos fenotı́picos actuales para validar estas

mutaciones, ası́ como para aumentar el número de mutaciones de alta

confianza en la lista global.

El uso de WGS como marcador epidemiológico

Se ha demostrado que WGS tiene un mayor poder discriminatorio para

identificar y desenredar cadenas de transmisión. De hecho, varios estudios

han implementado el uso de WGS como marcador de apoyo para ayudar a las

investigaciones epidemiológicas. Sin embargo, la mayorı́a se basan

principalmente en estudios retrospectivos, a pesar de que el uso de WGS es

extremadamente útil para comprender mejor la dinámica de transmisión en una

población, y también para evaluar el impacto de las intervenciones

epidemiológicas en el control de la tuberculosis.

Utilizando información de investigaciones epidemiológicas y datos de WGS,

se ha propuesto que una distancia genética máxima de 12 SNPs entre dos

cepas indica una transmisión reciente, y un umbral de ≤ 5 SNP para eventos

muy recientes. Ası́ mismo, el tiempo estimado de infección se basa en la baja

tasa de mutación del MTBC (0.04-2.2 SNP por genoma, por año). Aunque

estos umbrales de SNPs pueden resolver brotes de transmisión, se calibraron

en paı́ses de baja incidencia, por lo que, aún se desconoce si estas distancias

genéticas se pueden aplicar en otros entornos de TB.

Dada su mayor resolución, la WGS se puede usar para inferir enlaces

individuales dentro de un grupo de transmisión, en otras palabras, identificar

quién infecta a quién. Para ello, se han desarrollado muchos algoritmos

basados en modelos matemáticos. Sin embargo, la mayorı́a de estos se

crearon pensando en patógenos con mayor tasa de mutación, y sus

aplicaciones en la epidemiologı́a de TB es generalmente limitada a brotes

conocidos en lugar de probarla en toda la población.
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Otras aplicaciones

Al tener acceso a todo el genoma del MTBC, podemos identificar y extraer

SNPs filogenéticos que pueden clasificar cepas de manera rápida. La

clasificación de aislados es importante para describir la diversidad bacteriana y

comprender su estructura poblacional a escalas local y global. En un contexto

epidemiológico, la clasificación de cepas es importante porque permite rastrear

brotes especı́ficos que se están extendiendo en entornos locales, ası́ como

entre paı́ses. Ası́, se han desarrollado diferentes métodos moleculares

basados en PCR, para identificar SNP filogenéticos, como una herramienta

alternativa y asequible para el genotipado de cepas del MTBC.

Aunque la técnica de tipificación de SNP no tiene la resolución requerida

para definir y resolver grupos de transmisión, se han desarrollado algunas

alternativas para identificar brotes de TB en entornos especı́ficos y en tiempo

real. Otras aplicaciones de tipificación de SNP incluyen la detección de

mutaciones especı́ficas relacionadas con resistencia a fármacos. Debido a sus

múltiples aplicaciones, fáciles y rápidas de realizar, estas metodologı́as

continúan desempeñando un papel importante en la investigación y el control

de la TB, especialmente en los laboratorios de bajos y medianos recursos,

donde la WGS aún está lejos de ser una herramienta esencial.

Implementación de WGS en los sistemas de salud

A pesar del gran avance en el uso de WGS en la investigación de TB, paı́ses

como el Reino Unido y Holanda, la han implementado como parte de

diagnóstico de rutina. Hay una serie de problemas técnicos y económicos con

respecto a su implementación como práctica habitual. Estos problemas

involucran la infraestructura de laboratorio y computación requerida. Además,

es necesario que bioinformáticos especializados desarrollen “pipelines”

estandarizados y fáciles de usar. Se espera que en los próximos años, otros

paı́ses introduzcan WGS en sus sistemas de salud pública.

En paı́ses de bajos y medianos ingresos, dicha implementación parece más
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lejana. Algunas soluciones a corto plazo incluyen herramientas de análisis en

lı́nea, que sean rápidas y que los resultados sean fácil de interpretar de forma

remota. Existen diferentes herramientas como PhyResSE y TBprofiler que

pueden ayudar a cubrir este problema. Ambos “pipelines” realizan un análisis

de WGS rápido y completo, lo que incluye con una predicción de resistencias y

clasificación filogenética de aislados de MTBC. Sin embargo, la principal

limitación a estas alternativas es la necesidad de los archivos de

secuenciación de los aislados como entrada, y lo que es más importante, la

mala conexión a Internet que tienen algunos lugares. Es necesario apoyo

internacional para una implementación sostenible de WGS en el de

diagnóstico de la tuberculosis.

Propósito de la tesis

Aunque el uso de WGS en el campo de la TB es cada vez más común, su

aplicación como marcador epidemiológico y de diagnóstico aún es escaso.

Incluso en regiones económicamente desarrolladas como España, es muy

poca su integración en los sistemas de salud pública. La Comunidad

Valenciana es un área de baja incidencia de TB en la que, los métodos de

diagnóstico actuales y las intervenciones epidemiológicas, son suficientes para

mantener esta tasa baja de la enfermedad a lo largo del tiempo, pero con un

ritmo lento en la disminución de la incidencia. Gracias a que La Comunidad

Valenciana es una región donde la mayorı́a de los casos de TB son aportados

por individuos nacidos en el paı́s, podemos estudiar y explorar diferentes

factores asociados de la tuberculosis en las personas locales. Además, los

datos sobre la cantidad de transmisión continua de la enfermedad en

diferentes entornos son limitados, y los pocos estudios publicados se basan

principalmente en marcadores moleculares con baja resolución. Sugerimos

que la aplicación de WGS mejorará nuestra comprensión y conocimiento sobre

las caracterı́sticas clı́nicas y epidemiológicas de la tuberculosis en la región.

Además, creemos que las lecciones y/o métodos aprendidos en esta tesis se
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pueden extrapolar a otros entornos de TB.

En esta tesis, utilizamos WGS para caracterizar genómicamente una gran

colección de aislados clı́nicos de MTBC recolectados durante tres años

(2014-2016) en la Comunidad Valenciana. Primero, realizamos un estudio

epidemiológico donde estimamos la tasa de transmisión genómica e

identificamos los factores de riesgo asociados (capı́tulos 3 y 4). También

evaluamos el uso de WGS para predecir la resistencia a fármacos en la

población estudiada (capı́tulo 3), y utilizamos WGS para identificar nuevas

mutaciones asociadas con resistencia para ayudar a guiar y personalizar el

tratamiento de TB en un paciente complicado (capı́tulo 5). Finalmente,

estudiamos la diversidad genómica global de MTBC para proponer una

metodologı́a nueva, eficiente y rápida para el genotipado de aislados clı́nicos

(capı́tulo 6). Cabe resaltar que nuestros resultados se compartieron y

compararon con el sistema de salud local. Hasta donde sabemos, este es el

primer proyecto regional y probablemente nacional de este tipo. Esperamos

que este estudio basado en la población sirva como precursor en el uso de

WGS como herramienta rutinaria en el sistema de vigilancia de la salud

pública, y también pueda extrapolarse a nivel nacional, ası́ como a paı́ses de

bajos y medianos ingresos.

Objetivos

Los objetivos principales de la tesis se centran en el uso de WGS aplicada a la

vigilancia epidemiológica de la tuberculosis, por lo tanto, los objetivos

especı́ficos son:

• Caracterizar por WGS los aislados clı́nicos de MTBC recogidos durante

el perı́odo de estudio. Especı́ficamente, estimar y predecir la resistencia

a fármacos, ası́ como la transmisión en función de los datos de

secuenciación (capı́tulo 3).

• Identificar las caracterı́sticas clı́nicas y epidemiológicas asociadas con la
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transmisión genómica (capı́tulo 3).

• Comparar la transmisión de tuberculosis detectada por WGS y por las

investigaciones epidemiológicas de rutina (estudio de contactos)

realizadas por el sistema de salud local (capı́tulo 3).

• Evaluar la dinámica de transmisión dentro de los brotes genómicos

detectados, mediante la inferencia de posibles transmisores (incluidos los

casos ı́ndice), y la identificación de factores de riesgo asociados con ellos

(capı́tulo 4).

• Utilizar los datos de WGS para personalizar el tratamiento de la TB,

especialmente en aquellos pacientes con perfiles fenotı́picos dudosos

(capı́tulo 5).

• Desarrollar técnicas rápidas y asequibles basadas en PCR, para

caracterizar aislados de MTBC a partir de SNP filogenéticos especı́ficos

derivados de datos de WGS (capı́tulo 6).

• Validar y aplicar nuestros ensayos moleculares de tipificación de SNP en

dos diferentes entornos de incidencia de TB (capı́tulo 6).

Esquema de la tesis

Esta tesis está compuesta por 4 capı́tulos principales, 3 de ellos ya han sido

publicados en revistas cientı́ficas de alto impacto (capı́tulos 3 a 6).

En el capı́tulo 3, utilizamos los datos de WGS obtenidos de 785

aislamientos clı́nicos para describir la población con tuberculosis. Más

especı́ficamente, evaluamos los factores de riesgo asociados con la

transmisión de la enfermedad. También clasificamos y predecimos perfiles de

resistencia de todos los casos de TB disponibles. Además, detectamos la

transmisión genómica y la comparamos con la detectada por el sistema de

vigilancia local. Finalmente, estimamos los valores de sensibilidad y
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especificidad de WGS utilizando los métodos de diagnóstico de TB de rutina

como referencia.

En el capı́tulo 4, combinamos modelos matemáticos con datos de WGS

para inferir si el caso ı́ndice más probable se muestrea o no, dentro de un

grupo de transmisión genómica. Además, estimamos cuándo estos posibles

transmisores infectaron a otras personas. En otras palabras, cuando ocurrieron

eventos probables de transmisión. Una vez que se identificaron los

transmisores, buscamos factores de riesgo especı́ficamente asociados con

ellos.

En el capı́tulo 5, utilizamos datos de WGS para identificar e informar un

caso MDR-TB mal identificado en un paciente con tuberculosis con una

presunta infección ”totalmente sensible”, durante 9 años. Primero,

identificamos que unas mutaciones poco comunes asociadas con resistencia

eran las responsables del estado MDR. Además, descubrimos que dichas

variantes no se detectaron mediante los métodos clı́nicos de rutina, lo que

explica por qué la cepa infectante se identificó como sensible. En este capı́tulo,

destacamos la importancia de WGS para la predicción de resistencias para

proporcionar un tratamiento farmacológico adecuado.

Finalmente, en el capı́tulo 5, desarrollamos dos ensayos moleculares

rápidos y asequibles de tipificación basados en PCR, para clasificar aislados

clı́nicos de MTBC en los principales linajes filogenéticos de MTBC, ası́ como

las sublinajes del linaje 4. Después de la validación, aplicamos nuestras

pruebas moleculares en una colección clı́nica de 491 muestras de MTBC,

demostrando valores de alta sensibilidad y especificidad.
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Resultados y Discusión

Comparación de la tasa de transmisión genómica en
diferentes entornos

En la Comunidad Valenciana, los individuos nacidos en España con

tuberculosis son los principales contribuyentes a la incidencia general de la

enfermedad, a diferencia de la situación en otras regiones de baja incidencia,

donde la mayorı́a de los casos de tuberculosis son aportados por extranjeros.

Al mismo tiempo, se sabe que en estas regiones, la transmisión se asocia a

individuos autóctonos. Dada la gran contribución de casos locales en la

Comunidad Valenciana, no es sorprendente que también las tasas de

transmisión genómica sean más altas en comparación con otras regiones de

baja incidencia. Para ilustrar este punto y poner la transmisión de la

Comunidad Valenciana en contexto, utilizamos bases de datos comparables de

regiones con diferentes tasas de incidencia de tuberculosis, como el Reino

Unido y Malawi. El Reino Unido tiene una incidencia de 8 por cada 100,000

habitantes, lo que similar a la Comunidad Valenciana pero contribuido

principalmente por extranjeros (72%). Por otro lado, Malawi es un paı́s con

tuberculosis endémica con una incidencia de 181 por cada 100,000 personas.

Utilizando solo los casos autóctonos de cada paı́s y un umbral de 12 SNP para

delinear la transmisión genómica, observamos que en la Comunidad

Valenciana, ası́ como en Malawi, casi la mitad de sus respectivos casos locales

están involucrados en la transmisión genómica (47.4% en la Comunidad

Valenciana contra 49.3% en Malawi), independientemente de la incidencia de

TB. En contraste, solo el 32% de los pacientes con TB nacidos en el Reino

Unido están en transmisión. Adicionalmente, observamos que varios casos

locales de la Comunidad Valenciana tenı́an entre 15 y 50 SNPs de diferencia

entre ellos, mientras que en el Reino Unido, no existen tales diferencias en la

gente local. Dado que esta distancia genética refleja eventos de transmisión

que tienen décadas de antigüedad, este resultado sugiere que en la en la

Comunidad Valenciana, los eventos de contagio más antiguos todavı́a
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contribuyen a los casos actuales. Cabe resaltar que en Malawi se muestra un

patrón similar al de la Comunidad Valenciana, pero más exacerbado. Este

análisis muestra que para llegar a una situación como en el Reino Unido, los

esfuerzos para detener la transmisión de TB son clave.

Sugerimos que los altos valores de nuestros casos autóctonos son la

consecuencia de una transmisión continua que no se detuvo durante las

últimas décadas, y que ahora se refleja en la incidencia local de TB. Por el

contrario, en el Reino Unido se observa que los esfuerzos aplicados en el

pasado sobre el control de la transmisión han sido exitosos, donde solo la

transmisión muy reciente está contribuyendo a la incidencia local de TB. Estos

datos sugieren que la situación del Reino Unido es similar en Holanda,

Canadá, Alemania y EE. UU., donde la mayorı́a de los casos se son

contribuidos por reactivaciones en extranjeros. Igualmente, estos resultados

sugieren que el control de la TB en la Comunidad Valenciana y probablemente

en España, se está rezagado con respecto a otros paı́ses de baja incidencia.

Esto no solo se refleja en los diferentes patrones de transmisión, sino también,

en que la incidencia de TB en la población autóctona (6.7 por 100,000

personas) sigue siendo mucho más alta que en la población local del Reino

Unido (3.5 por 100,000 personas), por ejemplo. Dado que el control real de la

TB en la Comunidad Valenciana está cumpliendo con los objetivos propuestos

por la OMS para reducir la incidencia de TB, es posible que los esfuerzos para

controlar la transmisión sean eficientes, pero se necesita más tiempo para

alcanzar los resultados observados en otros paı́ses de baja incidencia, como el

Reino Unido.

Uso de WGS para identificar transmisión reciente

El término de transmisión reciente se usa para definir los eventos de contagio

que ocurrieron en un corto perı́odo de tiempo, tı́picamente revelados por

estudios de contacto. Generalmente se define como transmisión reciente

aquellos casos de contacto que desarrollen la enfermedad en un periodo de 2

a 5 años después del caso ı́ndice. Cuando se utiliza WGS para definir
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transmisión, esto se traduce a un diferencia media genética de 0-5 SNPs entre

dos casos, ya que se supone que la bacteria acumula 0.3-0-5 SNPs/año.

Aunque utilizar umbrales de hasta 12 SNPs es bien aceptados para definir

grupos de transmisión, el porcentaje de concordancia con las investigaciones

epidemiológicas disminuye y, por lo tanto, muchos eventos de transmisión

genómica no se puede validar fácilmente. Por lo tanto, diseñar medidas de

control efectivas no solo es relevante para medir la transmisión reciente sino

también la contribución de eventos de transmisión más antiguos. Mientras que

en el Reino Unido esos eventos de transmisión más antiguos no existen, en la

Comunidad Valenciana, ası́ como en Malawi, el análisis de distancias

genéticas muestra un patrón continuo de distancias que no se ajustan a un

umbral estricto de 12 SNPs, y reflejan unos constantes flujos de eventos de

transmisión, tanto recientes como antiguos. Con esto sugerimos que, en la

Comunidad Valenciana, el uso de umbrales de SNPs para definir transmisión

es útil para revelar eventos que han sucedido muy recientemente, pero se

pierde la imagen completa de cómo la transmisión está contribuyendo a la

incidencia anual de TB. Además, es probable que esta situación sea más

común entre otras regiones epidemiológicas, como se muestra en Malawi.

Como se esperaba en la Comunidad Valenciana, usando un umbral de 5

SNPs, equivalente a 5 años, los casos epidemiológicamente relacionados

identificados por el sistema de vigilancia de salud pública son detectados como

eventos de transmisión muy recientes por WGS. Esto está relacionado con el

hecho de que, las investigaciones epidemiológicas buscan contactos recientes

y no transmisiones más antiguas. Sin embargo, incluso en ese perı́odo de 5

años, las investigaciones locales no detectaron el 60% de los casos de

transmisión. Esto sugiere que, si bien las investigaciones locales son muy

buenas para rastrear algunos contactos cercanos (miembros de la familia,

lugar de trabajo), se pierden muchos casos de contacto que probablemente

ocurren fuera de los lı́mites de los cuestionarios. En ese sentido, algunas

investigaciones han incorporado información sobre contactos sociales que han

ayudado a identificar casos de transmisión adicionales en algunas regiones
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especı́ficas. La aplicación de estas estrategias podrı́a ayudar a mejorar la

identificación transmisión en la Comunidad Valenciana.

Nuestros datos también sugieren que la transmisión puede ocurre entre

contactos casuales o incluso antes de desarrollar sı́ntomas (como se muestra

en el capı́tulo 2). La identificación de esos individuos es más complicada. En

esos casos, la implementación de algún tipo de búsqueda activa de casos

puede ayudar a identificar estos transmisores. Por ejemplo, mediante la

implementación de pruebas selectivas basadas en la comunidad en grupos de

riesgo o pruebas de detección a gran escala en puntos crı́ticos de transmisión,

según lo informado por WGS.

Transmisión de la tuberculosis durante estados subclı́nicos

El control de la transmisión es clave para disminuir la incidencia de la

tuberculosis. Con respecto a esto, es obligatorio comprender la compleja y

dinámica transmisión de la TB y los factores de riesgo asociados a esta.

Usando WGS combinado con datos epidemiológicos, investigamos la dinámica

de la transmisión dentro de una fracción de brotes genómicos utilizando un

método filogenético bayesiano llamado TransPhylo (capı́tulo 4). Los

resultados fueron estimaciones que incluyen la probabilidad de que en un brote

de transmisión el caso ı́ndice sea muestreado, cuál de todos los casos era el

caso ı́ndice y cuándo ocurrió un evento de transmisión. Sorpresivamente,

descubrimos que en algunos individuos, la transmisión ocurre antes de

desarrollar los sı́ntomas, probablemente durante la enfermedad subclı́nica.

Este resultado respalda la idea de la existencia de diferentes estados de

infección antes de desarrollar TB activa más allá de la clásica dicotomı́a de la

enfermedad latente/activa. Igualmente, mostramos por primera vez que las

cepas de MTBC son transmisibles durante algunos de estos estados de

infección recientemente reconocidos. Sin embargo, se necesitan más estudios

basados en WGS para evaluar la cantidad de transmisión subclı́nica en

diferentes entornos clı́nicos.
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Estos hallazgos proporcionan nuevas ideas de cómo se transmite la

enfermedad, y sobre la relación patógeno-huésped durante la infección que

finalmente conduce a la transmisión. Sugerimos que algunos métodos

basados en tecnologı́as ómicas, pueden vincular el tiempo de transmisión con

las el nivel de infección del huésped (por ejemplo, utilizando transcriptomas del

huésped) tienen el potencial de aumentar la identificación de casos de TB en

riesgo de transmitir la enfermedad durante las diferentes etapas de la infección

de TB.

Búsqueda activa de casos para detener la transmisión

Como se ha demostrado en esta tesis, un gran porcentaje de transmisión (la

mayor parte relacionada con pacientes autóctonos) es ignorada por los

sistemas de vigilancia locales. Por lo que es necesario el desarrollo de nuevas

herramientas de diagnóstico y nuevas intervenciones epidemiológicas para

detener esta transmisión, y la disminuir la incidencia de tuberculosis.

Probablemente, la estrategia con efectos a corto plazo más importante es la de

cambiar la búsqueda de casos, de una manera pasiva a una activa. Esta

búsqueda activa tiene como objetivo encontrar casos de tuberculosis antes de

que el paciente busque atención médica. De esta manera, las intervenciones

pensadas a nivel de comunidad incluyen el monitoreo de personas en áreas

concurridas en busca de tuberculosis. Se han demostrado que esta búsqueda

activa aumenta la detección de TB en individuos asintomáticos con esputos

negativos y, sin aparente carga bacilar, tanto en regiones de baja y alta

incidencia. A pesar de las mejoras epidemiológicas que brinda esta

intervención, se requieren estudios sobre su rendimiento y rentabilidad en la

salud pública, ası́ como herramientas de detección rápida de tuberculosis. El

desarrollo de pruebas moleculares capaces de detectar niveles muy bajos de

ADN de M. tuberculosis podrı́a identificar más casos de TB que la microscopı́a

de esputo. Dada la baja prevalencia de la enfermedad de TB en la población

general, necesitamos encontrar estrategias rentables para encontrar casos de

manera activa. En ese sentido, la transmisión revelada por WGS puede ayudar
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a diseñar y guiar las intervenciones epidemiológicas.

Predicción de resistencias

Aunque la Comunidad Valenciana no es considerada una región con alta

incidencia de MDR-TB, el uso de herramientas precisas y rápidas capaces de

predecir un perfil de resistencias es esencial para el manejo adecuado del

paciente. Estudios recientes han demostrado que la prevalencia de cepas

resistentes puede predecirse mediante la vigilancia genómica, especialmente

en fármacos de primera lı́nea. Los altos valores de especificidad y sensibilidad

demuestran que la WGS es una herramienta de predicción confiable para

detectar resistencias de primera lı́nea, al menos en la Comunidad Valenciana

(capı́tulo 3). Los pocos resultados discrepantes que identificamos podrı́an

deberse a problemas fenotı́picos relacionados con las técnicas usadas para

medir la sensibilidad, o por la presencia de mutaciones desconocidas. En este

sentido, la predicción por WGS depende de la existencia de catálogos de

mutaciones de alta confianza. Aunque existen herramientas online que

contienen varios catálogos de mutaciones asociados con resistencia, aún

existen variantes desconocidas para fármacos de primera y particularmente de

segunda lı́nea, ası́ como mutaciones de resistencia a los nuevos antibióticos. A

pesar de estas limitaciones, existe suficiente confianza para predecir la

sensibilidad a fármacos de primera lı́nea, como lo demostró un estudio que

incluyó 10,000 aislados clı́nicos de diferentes partes del mundo. Esto ha

llevado a algunos paı́ses a eliminar las pruebas fenotı́picas y reemplazarlo por

la predicción de WGS. Sin embargo, los ensayos fenotı́picos son necesarios en

aquellos casos donde la inspección por WGS no es concluyente.

Tratamiento personalizado de tuberculosis basado en WGS

En esta tesis utilizamos la WGS para descubrir y describir nuevas mutaciones

relacionadas con la resistencia a la isoniazida (capı́tulo 5) en un paciente

aparentemente “sensible”. Estas variantes no fueron detectadas por las
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pruebas fenotı́picas automatizados, y ası́, los aislados que tenı́an estas

mutaciones se consideraron sensibles. El análisis fenotı́pico y genómico de

estos aislados reveló que estas mutaciones confieren resistencia fenotı́pica de

”bajo nivel”, lo que resulta en un resultado difı́cil de interpretar. Sabiendo esto,

utilizamos la predicción de WGS de manera prospectiva para guiar el

tratamiento del paciente. Aunque el caso adquirió XDR-TB, un seguimiento

cercano del paciente utilizando la información genómica, clı́nica y

microbiológica llevó a los médicos a tratar al paciente con éxito. Hasta donde

sabemos, este es uno de los primeros casos que utilizan WGS para

personalizar el tratamiento de un individuo utilizando información genómica.

En el contexto de este paciente, esto fue especialmente relevante ya que las

pruebas fenotı́picas para algunos medicamentos de primera y segunda lı́nea

no fueron concluyentes. Estos resultados destacan la capacidad de la WGS

para pronosticar de forma rápida y precisa la resistencia a los medicamentos,

al menos en nuestra región de estudio. Además, también es notable que la

WGS pueda resolver casos fenotı́picamente indeterminados, en este sentido,

los tratamientos personalizados son imprescindibles para salvar la vida de los

pacientes. Esto es realmente relevante para los paı́ses con alta incidencia de

MDR-TB, donde se encuentran en situaciones de manejo más complicadas y

donde muchas veces, el tratamiento de segunda lı́nea es empı́rico y no está

bien estandarizado. Por esta razón, es importante expandir los catálogos de

mutaciones para estos fármacos, y más importante aún, para aquellos

incluidos en los nuevos regı́menes recomendados por la OMS. Nuestro

conocimiento sobre las bases genéticas de la resistencia a esas drogas está

lejos de ser completo. Combinado con el hecho de que no hay pruebas

comerciales fenotı́picas disponibles, el monitoreo y seguimiento de pacientes

para detectar la adquisición de resistencia será extremadamente desafiante.

Clasificación de aislados

Como se indicó a lo largo de esta tesis, la WGS es una herramienta valiosa

para identificar SNPs que podrı́an utilizarse para diferentes aplicaciones en
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estudios de población microbiana. Además, la WGS puede usarse como una

herramienta de genotipado para clasificar cepas de MTBC en diferentes

linajes. Aunque esta tecnologı́a se ha vuelto más barata en los últimos años,

se necesita una infraestructura especı́fica y personal calificado para poner en

marcha este método, estas condiciones no siempre están disponibles en las

regiones de bajos y medianos ingresos. Sin embargo, el conocimiento

obtenido de WGS podrı́a traducirse para desarrollar métodos de laboratorio

más simples con el fin de obtener información especı́fica y precisa de una

manera más, fácil, barata y rápida. En el capı́tulo 6, se desarrollaron dos

herramientas moleculares para clasificar aislados de MTBC en los principales

linajes, utilizando reactivos basados en PCR e instrumentos básicos de

laboratorio. Uno de los objetivos era tener un método de genotipado alternativo

y asequible que pudiera ser útil en paı́ses con recursos económicamente

limitados. Adicionalmente, demostramos que nuestros ensayos moleculares

funcionan incluso en muestras biológicas con baja concentración de ADN, lo

que es un problema común en muestras clı́nicas de rutina (por ejemplo, ADN

obtenido de muestras inactivadas por calor y de esputo). Una vez puesto a

punto, se genotipó una colección clı́nica de alrededor de 500 aislados de

paı́ses con diferente incidencia de TB. Gracias a la baja diversidad de MTBC y

sus caracterı́sticas genómicas clonales, esta metodologı́a no se limitan solo a

la detección de SNP filogenéticos, de hecho, se pueden adaptar a otras

aplicaciones especı́ficas. Por ejemplo, los paneles para la detección de SNPs

relacionados con resistencias se usan comúnmente en diagnósticos clı́nicos

de rutina. Igualmente, marcadores con interés epidemiológico (para identificar

brotes locales o diseminación transcontinental de TB) se pueden

desenmascarar con estas técnicas moleculares. Sin embargo, siempre se

requiere una noción previa de lo que se quiere amplificar para proceder a hacer

WGS de casos representativos e identificar posiciones especı́ficas de SNP.
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Consideraciones adicionales

A partir del análisis y los resultados reportados aquı́, podemos afirmar que la

implementación de WGS en los sistemas de vigilancia de salud pública

mejorará la predicción resistencias y el manejo individual de los casos.

Además, ayudará a caracterizar con precisión los patrones de transmisión de

TB a nivel poblacional. Sin embargo, su implementación requiere la integración

de otras disciplinas relacionadas, como la microbiologı́a, la epidemiologı́a y la

bioinformática. Por lo tanto, se necesita un equipo multidisciplinario que

involucre personal con conocimientos sobre genómica y habilidades para

analizar grandes bases de datos. Actualmente, solo algunos paı́ses

desarrollados están utilizando WGS como herramienta de diagnóstico rutinario,

pero se estima que más paı́ses lo adoptarán en los próximos años. En la

Comunidad Valenciana, su integración al sistema de vigilancia local no parece

muy lejana. De hecho, muchos profesionales clı́nicos y epidemiólogos son

conscientes del uso y las aplicaciones de WGS en el campo de la tuberculosis.

Un total de 18 unidades de microbiologı́a de la región han contribuido

generosamente al estudio en lo que representa, uno de los mejores ejemplos

de estudios multicéntricos en enfermedades infecciosas en el paı́s. Gracias a

este esfuerzo coordinado, describimos y probamos cómo esta tecnologı́a

complementa los enfoques actuales utilizados en la Comunidad Valenciana

para manejar la enfermedad. La implementación de WGS como herramienta

complementaria para el diagnóstico y la epidemiologı́a de la TB en la

Comunidad Valenciana ya están ayudando al control local de la TB y, creemos

que puede servir como plantilla para usar WGS en otras enfermedades

infecciosas en el sistema local de vigilancia de salud pública.
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Conclusiones

• La incidencia de transmisión de tuberculosis es alta según WGS en

comparación con otros paı́ses como el Reino Unido. Los factores de

riesgo asociados con brotes de transmisión en la Comunidad Valenciana

son casos autóctonos (asociados), jóvenes (asociados) y mayores (no

asociados).

• La mayorı́a de la incidencia de TB y su transmisión se asocia con personas

nacidas en el lugar.

• Aunque las investigaciones epidemiológicas actuales de TB (rastreo de

contactos) mantienen una baja incidencia de TB, subestiman la carga real

de transmisión de TB.

• Los análisis de sensibilidad y especificidad demostraron que WGS es una

herramienta precisa y confiable para detectar eventos de transmisión de

TB recientes y anteriores y predecir la resistencia a los medicamentos.

Podrı́a convertirse en una metodologı́a transformadora para el sistema de

vigilancia de salud pública.

• El modelo filogenético basado en WGS combinado con datos

epidemiológicos permite inferir transmisores de alta probabilidad e

ı́ndices de casos dentro de un grupo de transmisión. Sin embargo, su

aplicación está limitada por la diversidad nula observada muchas veces

entre casos agrupados.

• En algunos individuos, la transmisión de TB puede ocurrir durante la

enfermedad subclı́nica y puede poner en peligro el progreso de la

búsqueda pasiva de casos y el estudio de contactos. Junto con los datos

emergentes de diferentes campos que controlan la enfermedad

subclı́nica a través de enfoques activos de búsqueda de casos, serán

relevantes en el futuro cercano.
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• El uso de WGS en tiempo real se puede utilizar para detectar variantes de

resistencia a los medicamentos durante el tratamiento de la tuberculosis.

Más importante aún, ayuda a identificar mutaciones poco comunes que

surgen a través del tiempo.

• Los enfoques moleculares de tipificación SNP basados en PCR brindan

una herramienta rápida alternativa para clasificar las cepas de MTBC y es

un método que podrı́a traducirse en múltiples aplicaciones de TB.
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