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ALGUNAS CONTRIBUCIONES A LA
MODELIZACIÓN EN ESTUDIOS DE MAPEO

DE ENFERMEDADES

UNIVERSITAT DE VALÈNCIA
Programa de Doctorat en Estadística i Optimització

Resumen amplio

La epidemiología espacial es la disciplina científica que persigue
el estudio de la distribución geográfica de eventos relacionados con la
salud, tales como la incidencia o las muertes por alguna enfermedad, así
como de sus factores determinantes en la población (Last, 2001). Sus
principales objetivos son describir, cuantificar y explicar las variaciones
geográficas de las enfermedades, evaluar la asociación entre la incidencia
de enfermedades y posibles factores de riesgo e identificar agrupaciones
geográficas de las enfermedades (Elliott et al., 2000). La posibilidad de
contar con datos de salud y población referenciados geográficamente, los
avances en la computación y el desarrollo de metodologías estadísticas
adecuadas han hecho posible el crecimiento de esta displicina.

El mapeo de enfermedades tiene una larga tradición como rama de
la epidemiología espacial. Los mapas de enfermedades proporcionan un
resumen visual de información geográfica compleja y permiten identificar
patrones geográficos de las enfermedades que, simplemente observando
los datos organizados en tablas, podrían pasar desapercibidos. De
hecho, estas herramientas se utilizan con própositos descriptivos para
la vigilancia de la salud pública, a fin de:

• Detectar aquellas localizaciones que muestran un mayor riesgo.

xi
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• Generar hipótesis etiológicas para identificar los factores de riesgo
que influyen en la frecuencia de aparición de las enfermedades.

• Ayudar en la definición de políticas de salud y de asignación de
recursos para paliar las desigualdades geográficas encontradas.

Los mapas de enfermedades representan indicadores epidemiológicos
calculados a partir de los datos de salud disponibles. Estos datos pueden
disponerse en diferentes formatos dependiendo de la unidad de análisis
estudiada. En general, podemos distinguir entre datos a nivel de punto,
cuando las unidades de análisis son individuales, y datos a nivel de área,
cuando las unidades de análisis son las áreas geográficas en las que se
divide una región de estudio. En este caso, las áreas geográficas se
establecen habitualmente a partir de divisiones político-administrativas,
tales como secciones censales, municipios o provincias. Por el contrario,
los datos a nivel de punto corresponden a ubicaciones espaciales exactas
en las que ocurrió el evento de salud. Cuando los datos corresponden a
áreas geográficas, la información está disponible de forma agregada como
conteos de eventos para cada una de las unidades geográficas en las que
se divide la región de estudio. Las herramientas de estadística espacial
utilizadas para calcular los indicadores que serán representados en los
mapas de enfermedades dependerán del tipo de datos disponibles. En
esta tesis, nos centramos en las técnicas de disease mapping diseñadas
para estudiar la distribución geográfica de las enfermedades a través de
regiones de estudio divididas en unidades geográficas pequeñas.

La ventaja de los datos de salud agregados geográficamente es que
son fácilmente accesibles, ya que preservan la confidencialidad de los
individuos y son recopilados rutinariamente por un gran número de
instituciones estadísticas y de salud (Botella Rocamora et al., 2017).
Por el contrario, el acceso a datos de salud a nivel individual está
mucho más limitado y éstos rara vez suelen estar disponibles. Sin

xii
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embargo, la construcción de mapas de enfermedades a partir de datos
agregados geográficamente implica una pérdida de información que
sería conveniente limitar. Si el tamaño de las unidades geográficas
es grande, se podrían enmascarar variaciones del riesgo que pudieran
ocurrir dentro de ellas, cuando éstas son de evidente interés. Para
evitar esto, es conveniente considerar la región de interés dividida en
áreas geográficas del menor tamaño posible. Además, el estudio de la
variabilidad espacial de los riesgos en áreas geográficas pequeñas permite
análisis más similares al nivel individual. En ellas, la población es más
homogénea, en cuanto a hábitos de vida y condiciones socioeconómicas,
y también, el entorno presenta características similares, resultando más
difícil que se produzcan variaciones importantes del riesgo dentro de
ellas.

Cuando se trabaja con áreas pequeñas o enfermedades poco comunes,
el mapeo directo de indicadores epidemiológicos crudos presenta algunos
problemas. El indicador epidemiológico más habitual para evaluar el
riesgo de enfermedad en las áreas de una región de estudio es la Razón de
Morbilidad/Mortalidad Estandarizada (SMR). Esta medida se calcula
mediante el cociente entre el número de eventos observados en cada
unidad geográfica y el número de eventos esperados, en relación a
sus habitantes y las edades de los mismos, si los riesgos para cada
grupo de edad fueran los mismos que en cierta población de referencia
(habitualmente el total de la región de estudio). Así, valores de la
SMR superiores a 1 indicarían que los casos observados en la unidad
geográfica son superiores a los casos esperados, según la estructura de
su población, reflejando un exceso de riesgo en la unidad geográfica. Por
el contrario, valores de la SMR inferiores a 1 indicarían un riesgo en la
unidad geográfica inferior al de la población de referencia, habitualmente
el de toda la región de estudio. Cuando la región de estudio se
considera dividida en unidades geográficas pequeñas, el número de casos

xiii
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observados y/o esperados por unidad suele ser bajo, como consecuencia
de la existencia de poca población en las áreas. Esto hace que la SMR
muestre gran variabilidad, dando lugar a mapas que alternan áreas
contiguas con riesgos opuestos, que generalmente carecen de sentido
epidemiológico. Con el fin de solucionar este problema y obtener
mapas que reflejen variaciones del riesgo más sensatas, los indicadores
epidemiológicos deben estimarse utilizando modelos estadísticos que
tengan en cuenta la dependencia espacial que los datos podrían mostrar.
La incorporación de la dependencia espacial en los modelos significa que
los riesgos en cada unidad geográfica podrían ser estimados teniendo en
cuenta también los riesgos de sus unidades cercanas. Esta información
adicional permite obtener estimaciones más fiables que las SMR crudas
originales, las cuales se consideraron geográficamente independientes
cuando en realidad no lo son.

Un gran número de modelos estadísticos para el mapeo de
enfermedades han sido propuestos en la literatura, la mayoría de ellos
siguiendo una aproximación Bayesiana (Besag et al., 1991; Leroux et al.,
1999; Lawson et al., 2000; Lawson and Clark, 2002; Assunçao, 2003;
Best et al., 2005; Ugarte et al., 2006; MacNab, 2007; Lee, 2011; Bauer
et al., 2016; Goicoa et al., 2016). Entre ellos, Besag et al. (1991) (BYM)
y Leroux et al. (1999) son dos de los modelos más frecuentemente
utilizados en estudios aplicados. Estas propuestas han supuesto un
punto de referencia en el estudio de la distribución espacial del riesgo
de enfermedades y han servido como base para la formulación y el
desarrollo de nuevas propuestas de modelización (MacNab et al., 2006a;
Congdon, 2008; Martinez-Beneito et al., 2008; Song et al., 2011). En
esta tesis, las propuestas de BYM y Leroux et al. han sido evaluadas
en diferentes escenarios y, también, han sido el punto de partida para el
desarrollo de nuevos modelos de mapeo de enfermedades que mejoran
estas propuestas en los escenarios considerados.

xiv
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Esta tesis tiene cuatro objetivos principales, todos ellos relacionados
con la aplicación, la evaluación y el desarrollo de modelos de mapeo de
enfermedades en diferentes contextos.

El primero de los objetivos de esta tesis surge tras la aplicación de
modelos estándar de suavización espacial para el mapeo de enfermedades,
específicamente el ya mencionado modelo de referencia de BYM. En el
estudio de enfermedades poco comunes, es posible que un gran número
de unidades geográficas de la región de estudio no presenten casos
observados de la enfermedad. En tales ocasiones, cuando se utilizan
modelos estándar para llevar a cabo las estimaciones de los riesgos, es
común encontrarnos con un problema de “exceso de ceros” en los datos:
el número de áreas que no presentan casos de la enfermedad excede
considerablemente el número de ceros que los modelos estándar podrían
razonablemente explicar. En dicho caso, se produce un desajuste de
los datos originales, en términos del número de ceros observados, y
es necesario incorporar estrategias de modelización específicas para
ajustar ese exceso de ceros, que mejoren, en este sentido, el ajuste
de los modelos estándar de mapeo de enfermedades. En la literatura
del mapeo de enfermedades, algunas propuestas para modelizar datos
con exceso de ceros han sido sugeridas (Mullahy, 1986; Lambert, 1992;
Gschlößl and Czado, 2008; Song et al., 2011; Musenge et al., 2013;
Neelon et al., 2013). Las propuestas más populares para modelizar
datos con exceso de ceros son el modelo de Poisson cero-inflado (ZIP) y
el modelo de Poisson hurdle. Tras la aplicación y evaluación de estas
propuestas, a diferencia de lo que esperaríamos, encontramos que dichas
propuestas no ajustan suficientemente bien muchos conjuntos de datos.
Por tanto, en este contexto, nos planteamos el objetivo de desarrollar
estrategias de modelización alternativas que aseguren un buen ajuste
del exceso de ceros en aquellos datos que lo requieran.

El segundo objetivo de esta tesis se centra en el estudio de modelos
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multivariantes para el análisis conjunto de la distribución geográfica del
riesgo de varias enfermedades. Habitualmente, los modelos de mapeo
de enfermedades son univariantes, centrándose en la modelización de
los riesgos de una sóla enfermedad. Sin embargo, es posible que
varias enfermedades compartan factores de riesgo comunes y, por
tanto, podrían beneficiarse de un análisis conjunto. Recientemente, la
modelización multivariante ha recibido especial atención por parte de
investigadores interesados en la modelización espacial conjunta de los
riesgos de varias enfermedades simultáneamente. La modelización
multivariante en disease mapping tiene como objetivo estimar la
distribución geográfica de los riesgos de varias enfermedades, teniendo en
cuenta la dependencia espacial para cada enfermedad y la dependencia
entre las enfermedades. De esta forma, las estimaciones de los
riesgos estarían basadas en una mayor cantidad de información, lo
que permitiría obtener estimaciones más precisas en comparación con
el mapeo univariante de enfermedades.

Con el fin de evidenciar las ventajas de la modelización multivariante
con respecto a la modelización univariante, exploramos algunos modelos
específicos de modelización espacial multivariante propuestos en la
literatura. Específicamente, exploramos las propuestas de modelización
multivariante de Botella-Rocamora et al. (2015). Tras evaluar
los resultados obtenidos con estas propuestas, encontramos algunas
limitaciones cuando éstas son aplicadas en regiones de estudio pequeñas.
Las limitaciones encontradas se traducen en estimaciones poco precisas
de los riesgos, como consecuencia de imponer una variabilidad común
a todos los patrones de riesgo de las enfermedades consideradas.
Por esta razón, nos planteamos en este caso el objetivo de extender
los modelos multivariantes originales de Botella et al., permitiendo
heterocedasticidad entre las enfermedades, que solucionen los problemas
evidenciados y proporcionen estimaciones precisas de los riesgos.
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Los estudios típicos de mapeo de enfermedades consideran
dependencia espacial entre las observaciones a través de efectos
aleatorios que siguen alguna distribución previa espacial. Probablemente
las distribuciones previas espaciales más populares son la familia
de distribuciones Condicionales Autorregresivas (CAR) (Besag, 1974;
Besag et al., 1991). Estas distribuciones inducen dependencia espacial
por medio de una matriz de pesos espaciales que reflejan la fuerza
de dependencia entre cualquier par de unidades geográficas. El
procedimiento más común para definir los pesos espaciales en las
distribuciones CAR es utilizar un criterio de adyacencia. En ese
caso, a todos los pares de unidades geográficas con bordes adyacentes
se les asigna el mismo peso, típicamente 1, y al resto de unidades
no adyacentes se les asigna un peso de 0, reflejando independencia
(condicional) entre ellas. Sin embargo, asumir el mismo peso para
todas las áreas vecinas puede ser demasiado rígido o inapropiado en
algunos escenarios. Por esta razón, nuestro tercer objetivo es explorar
y desarrollar procedimientos para estimar matrices de pesos espaciales
en estudios de mapeo de enfermedades que resuelvan este problema.
Específicamente, nos centramos en el desarrollo de distribuciones CAR
adaptativas. Estas distribuciones consideran los pesos espaciales como
variables aleatorias en los modelos, lo que les permite ser diferentes, de
modo que puedan estimarse a partir de la información proporcionada
por los datos.

El último objetivo de esta tesis es desarrollar y publicar en formato
de aplicación web un atlas de mortalidad nacional avanzado a nivel
municipal. Esta aplicación estudiaría un gran número de causas
de muerte para el conjunto de toda España y utilizaría modelos
apropiados de estimación en áreas pequeñas para estimar las SMRs
suavizadas. Específicamente, las SMRs serían estimadas mediante
modelos de suavización espacial y espacio-temporal. Por un lado, el
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modelo BYM sería usado para obtener las SMRs suavizadas durante
todo el período de estudio. Por otro lado, también es interesante
estudiar la mortalidad en periodos de tiempo más cortos y analizar
su evolución a lo largo del tiempo. La modelización espacio-temporal
de los datos sería llevada a cabo mediante el modelo propuesto por
Martinez-Beneito et al. (2008). Dicha propuesta de modelización
consiste en la integración de modelos de suavización espacial y de
series temporales, específicamente de procesos autorregresivos, para
modelizar simultáneamente la dependencia espacial y temporal que
las observaciones pueden mostrar. Este objetivo está alineado con
la aplicación y evaluación de modelos de mapeo de enfermedades en
grandes regiones de estudio, el objetivo inicial de esta tesis. El atlas de
mortalidad nacional desarrollado será una herramienta muy útil tanto
para la población general, que podrá conocer el estado de salud de su
municipio y entorno, como para los profesionales de la salud, para los
que el atlas puede proporcionar información epidemiológica de gran
valor sobre la población a la que atienden.

Para llevar a cabo cada uno de los objetivos planteados en esta tesis
se ha hecho uso de extensos conjuntos de datos reales. Específicamente,
los conjuntos de datos analizados y utilizados en esta tesis han sido los
siguientes:

1. Datos de mortalidad a nivel municipal para un total de 27 causas
de muerte en hombres y mujeres en la Comunidad Valenciana
durante el periodo 1987-2006.

En este conjunto de datos, examinamos la necesidad de incorporar
estrategias de modelización de exceso de ceros en los modelos
estándar de mapeo de enfermedades y evaluamos nuestras
propuestas, con respecto al ajuste de ceros, en los conjuntos
de datos que así lo requieren (objetivo 1).
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2. Datos de mortalidad a nivel de sección censal para un total de
20 causas de muerte en hombres y mujeres en las ciudades de
Alicante, Castellón y Valencia durante el periodo 1996-2015.

Este conjunto de datos ha sido utilizado, por un lado, en la
evaluación y el desarrollo de modelos multivariantes de mapeo
de enfermedades (objetivo 2) y, por otro lado, en el desarrollo de
modelos espaciales con matrices de pesos adaptativas (objetivo
3).

3. Datos de mortalidad a nivel municipal para un total de 102 causas
de muerte en hombres y mujeres en el conjunto de toda España
durante el periodo 1989-2014.

Este conjunto de datos corresponde al utilizado en el desarrollo
del Atlas Nacional de Mortalidad en España (ANDEES) (objetivo
4).

La tesis que aquí presentamos es un compendio de tres artículos y
un trabajo adicional. Los trabajos correspondientes a los tres primeros
objetivos de esta tesis han sido publicados en forma de artículos
de investigación en revistas indexadas en el índice de Estadística y
Probabilidad del Journal Citation Reports (JCR). Específicamente, los
artículos de investigación publicados han sido los siguientes:

• “Some findings on zero-inflated and hurdle Poisson models for
disease mapping” publicado en Statistics in Medicine por F.
Corpas-Burgos, G. García-Donato y M.A. Martinez-Beneito
(2018).

• “On the convenience of heteroscedasticity in highly multivariate
disease mapping” publicado en Test por F. Corpas-Burgos, P.
Botella-Rocamora y M.A. Martinez-Beneito (2019).
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• “On the use of adaptive spatial weight matrices from disease
mapping multivariate analyses” publicado en Stochastic
Environmental Research and Risk Assessment por F.
Corpas-Burgos y M.A. Martinez-Beneito (2020).

El Atlas Nacional de Mortalidad en España (ANDEES) desarrollado,
marcado como el cuarto y último objetivo de esta tesis, ha sido publicado
online y puede visualizarse en el siguiente enlace web:

http://atlasnacional.fisabio.es

Las principales herramientas utilizadas en el desarrollo de esta tesis
han sido el paquete estadístico R y el software para análisis Bayesiano
utilizando métodos Markov chain Monte Carlo (MCMC) WinBUGS. Por
un lado, WinBUGS ha sido usado para ajustar cada uno de los modelos
a los datos y obtener las estimaciones de interés. Por otro lado, R
y algunos de sus paquetes han sido usados para el manejo de los
datos y los resultados de cada trabajo. Los principales paquetes de R
utilizados han sido las librerías Pbugs y Shiny. Pbugs ha hecho posible
automatizar las llamadas a WinBUGS desde R, ejecutando en paralelo (en
diferentes procesadores) las diferentes cadenas que han sido necesarias
en cada uno de los modelos ajustados y, por tanto, acelarando el tiempo
de computación para obtener los resultados. Shiny ha permitido el
desarrollo de la web que aloja los resultados de ANDEES.

Para cada uno de los artículos publicados, el código R, con la
implementación de todos los modelos ajustados y para todos los análisis
realizados, es proporcionado como material suplementario y puede ser
encontrado en el Apéndice de esta tesis.

Esta tesis se estructura de la siguiente forma. En el Capítulo 1,
presentamos una introducción general, incluyendo una descripción de los
objetivos, de los datos analizados en cada trabajo y del software utilizado.
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En el Capítulo 2, describimos el marco general de modelización en
los estudios de mapeo de enfermedades, así como las propuestas de
modelización originales sobre las que la presente tesis pretende realizar
alguna aportación. Resumimos también las limitaciones encontradas en
dichas propuestas y las nuevas propuestas de modelización desarrolladas
en esta tesis para resolverlas. El Capítulo 3 resume los principales
resultados obtenidos en cada trabajo. Los Capítulos 4, 5 y 6 contienen
los tres artículos de investigación publicados que componen este
compendio. En el Capítulo 7, describimos la metodología utilizada en el
desarrollo de ANDEES y sus principales características y resultados. Por
último, en el Capítulo 8, presentamos algunas conclusiones y posibles
líneas de trabajo futuro.

A continuación, resumimos los principales resultados y conclusiones
obtenidas en los trabajos desarrollados en esta tesis.

En primer lugar, con respecto a la modelización de datos con
exceso de ceros, mostramos cómo el exceso de ceros puede encontrarse
frecuentemente en la práctica cuando los datos son modelizados usando
modelos estándar de mapeo de enfermedades. En el conjunto de datos
de mortalidad de la Comunidad Valenciana, analizado en el Capítulo
4, encontramos que una proporción relevante de las enfermedades
estudiadas muestran exceso de ceros. Por tanto, el exceso de ceros
requiere atención en los estudios geográficos de la mortalidad y se
necesitan modelos específicos para tratar con este problema, ya que
de lo contrario, mapas con riesgos sobresuavizados son obtenidos. En
este sentido, encontramos que los modelos ZIP y hurdle, propuestos
para tratar con esta falta de ajuste, sin una modelización explícita
de las probabilidades de ceros, no ajustan problemas de exceso de
ceros suficientemente bien y son claramente insatisfactorios. Los
resultados sugieren la necesidad de una modelización explícita de
las probabilidades de ceros que deberían variar entre las unidades
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geográficas. Desafortunadamente, demostramos en varios resultados
teóricos que estas estrategias de modelización más flexibles pueden
conducir fácilmente a distribuciones a posteriori impropias o arbitrarias.
Esto hace que la modelización sea bastante complicada y se debe tener
precaución para evitar propuestas de modelización erróneas. Nuestros
resultados determinan algunas propuestas específicas de modelos ZIP
y hurdle, frecuentemente propuestas en la literatura, que deberían de
evitarse en general. Finalmente, proponemos varias alternativas de
modelización válidas que no presentan los problemas anteriores y que
son adecuadas para ajustar excesos de ceros. Mostramos que dichas
propuestas solucionan los problemas de exceso de ceros y corrigen la
mecionada sobresuavización de los riesgos en las unidades poco pobladas,
representando patrones geográficos más adecuados a los datos.

En nuestro trabajo sobre mapeo de enfermedades multivariante,
encontramos que la propuesta de Botella-Rocamora et al. (2015) para
la modelización espacial conjunta de varias enfermedades muestra
algunas limitaciones cuando los datos son más débiles. Específicamente,
en tales situaciones, la estructura previa de esta propuesta puede
influir significativamente en los patrones de riesgo estimados para todas
las enfermedades consideradas. Este hecho es causado por el único
parámetro de varianza común en la matriz M de este modelo, la
cual controla la variabilidad general de todos los patrones de riesgo
ajustados. Si la variabilidad de los patrones de riesgo considerados fuese
diferente, estas asunciones previas pueden producir evidentes desajustes
en los patrones de riesgos que son estimados. Una de las principales
contribuciones de este trabajo ha sido evidenciar estas limitaciones,
que son particularmente preocupantes cuando la propuesta original de
Botella-Rocamora et al. (2015) se aplica a regiones de estudio pequeñas.
En esta tesis, proponemos dos modificaciones del modelo multivariante
anterior que incorporan diferentes parámetros para modelizar la
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variabilidad de los riesgos de cada enfermedad y permiten resolver
los problemas evidenciados. Estas nuevas propuestas heterocedásticas
permiten que los patrones espaciales para cada enfermedad tengan
mayor o menor variabilidad cuando sea necesario, haciendo posible
obtener estimaciones de los riesgos más flexibles y precisas.

En nuestro trabajo sobre dependencia espacial adaptativa,
proponemos un procedimiento para estimar la matriz de pesos
espaciales en las distribuciones CAR de acuerdo a datos retrospectivos
multivariantes. Nuestro procedimiento adaptativo hace que los modelos
CAR sean más flexibles y mejoren el ajuste de posteriores análisis,
adoptando la matriz de pesos espaciales estimada, que debería haber
capturado las particularidades que los datos de mortalidad podrían
mostrar en esa región. Además, el carácter multivariante de nuestra
propuesta ha demostrado ser una herramienta indispensable para
estimar adecuadamente la estructura espacial de los datos.

La metodología introducida podría tener diferentes usos. En primer
lugar, el modelo adaptativo multivariante introducido podría usarse
en estudios multivariantes, considerando también dependencia entre
las causas de mortalidad, con estructuras espaciales adaptativas. Estos
modelos proporcionarían estimaciones de los riesgos más precisas,
aprovechando el carácter adaptativo de la dependencia espacial
considerada. Un segundo uso de modelos CAR adaptativos sería el
destacado en nuestro trabajo, es decir, hacer inferencia en la matriz
de pesos espaciales de una región de estudio. Como consecuencia, esa
matriz de pesos adaptativos podría usarse más tarde en posteriores
estudios de mapeo de enfermedades con una estructura espacial no
arbitraria, basada en datos y conocimientos previos. También hemos
encontrado un tercer uso práctico de nuestro modelo adaptativo. Este
uso sería el control de calidad de problemas sistemáticos que podrían
estar presentes en los conjuntos de datos de salud. Específicamente, los
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datos de mortalidad de la ciudad de Valencia, analizados en el Capítulo
6, pertenecen a un gran proyecto español que estudia la mortalidad
en grandes ciudades, el proyecto MEDEA. Todas las muertes en ese
conjunto de datos han sido geocodificadas mediante el uso de varias
herramientas de geocodificación, en particular la API de geocodificación
de Google y una segunda herramienta de geocodificación (Cartociudad)
del Instituto Geográfico Nacional de España. Estas herramientas, como
cualquier otra herramienta de geocodificación, no son perfectas y tienen
errores, para algunas calles en particular, grupos de casos que son
geocodificados en el centro de la ciudad, etc., que podrían distorsionar
los análisis espaciales de esa base de datos. Hemos encontrado que el
modelo adaptativo multivariante en esas bases de datos otorga bajos
pesos espaciales a aquellas secciones censales con errores sistemáticos
de geocodificación, ya que sus datos de mortalidad son algo diferentes
de sus áreas circundantes. Esto nos ha permitido detectar esos errores
(y corregirlos) al enfocarnos en aquellas secciones censales con bajos
pesos espaciales y sin una posible explicación alternativa para ellos
(sin geriátricos, sin áreas socialmente marginales, sin áreas de nueva
construcción, etc.).

Finalmente, el Atlas Nacional de Mortalidad en España (ANDEES)
desarrollado permite conocer a nivel municipal la distribución geográfica
y la evolución temporal de la mortalidad debida a un gran conjunto
de causas de muerte en toda España. Los resultados mostrados en
ANDEES muestran la existencia de patrones geográficos de mortalidad
muy diferentes según la causa, el sexo y el período de estudio analizado.
Esta herramienta permitirá a los investigadores y expertos en Salud
Pública examinar los patrones geográficos de las enfermedades y detectar
áreas de alto riesgo, que no son evidentes a través de otros tipos de
análisis. Los resultados presentados pueden desempeñar un papel crucial
en la búsqueda de factores de riesgo, así como en el establecimiento de
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prioridades, y orientar las políticas sociales y de salud.

ANDEES deja abiertas muchas posibles líneas de trabajo futuro.
Por un lado, nos gustaría actualizar periódicamente los resultados del
atlas, incorporando los datos de mortalidad posteriores a 2014. Por otro
lado, también nos gustaría implementar otros modelos más complejos
y flexibles para profundizar en el entendimiento de la distribución
geográfica de las enfermedades. Específicamente, estaríamos interesados
en implementar cada uno de los modelos desarrollados en esta tesis a
nivel nacional. Así, evaluaríamos (y arreglaríamos) la posible existencia
de problemas de exceso de ceros en cada uno de los conjuntos de
datos analizados. Además, la modelización multivariante considerando
grupos de enfermedades que pudieran tener factores de riesgo comunes,
mejoraría en gran medida la estimación geográfica de los riesgos, al
hacer uso de fuentes de información alternativas. Del mismo modo, la
modelización espacial adaptativa también permitiría obtener mapas
de riesgo con mayor variabilidad, permitiendo a los municipios con
características especiales mostrar el comportamiento separado que
requieren. Finalmente, la combinación de modelos espacio-temporales
con estas propuestas, aquellas que muestren una mejora más evidente
en el análisis espacial, permitiría obtener una visión actualizada y
más precisa de los riesgos. La implementación de algunos de estos
modelos para el análisis de la mortalidad en toda España podría
dar lugar a problemas computacionales desafiantes, dado el gran
tamaño de la región de estudio considerada y la gran cantidad de
patrones geográficos que se estimarían en un sólo modelo. Como
consecuencia, otra línea de trabajo futura sería resolver tales problemas
computacionales, mediante la exploración de diferentes herramientas
computacionales y la optimización de la implementación de cada uno
de los modelos propuestos.
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SOME CONTRIBUTIONS IN DISEASE
MAPPING MODELING

UNIVERSITAT DE VALÈNCIA
Doctoral Program in Statistics and Optimization

Abstract

Disease mapping has received great interest for the past three
decades. This research area pursues the study of the geographical
distribution of health-related events, such as mortality or the incidence
of diseases, aggregated in geographic units, in order to mainly identify
those locations that show a higher risk. The application of advanced
statistical methods to carry risk estimates out is essential to obtain
accurate estimates and to improve the understanding of the geographical
distribution of diseases.

In this thesis, we focus on the application and evaluation of several
relevant modeling proposals, emerged in the disease mapping literature,
to estimate the mortality geographic distribution, considering different
scenarios with real data. Specifically, we study the distribution of
mortality at the census tract level in the main cities of the Valencian
Region and at the municipal level in the Valencian Region and in the
whole of Spain. The evaluation of these previously published proposals
reveals some statistical problems in their implementations. Therefore,
our main goal with this thesis is the development of new methodological
proposals that allow solving the problems of these previously published
proposals. Likewise, we also pursue the development of an advanced
national mortality atlas that allows to interactively visualize the
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geographical distribution, and the temporal evolution, of mortality
for a large number of causes and throughout a long period of study in
the whole of Spain.

This thesis is a compendium of three articles and an additional
work, which are structured as follows. In Chapter 1, we present a
general introduction, including a description of the objectives, the
data analyzed in each work and the software used. In Chapter 2,
we introduce the general problem of disease mapping, as well as the
modeling proposals that have been improved in each of our works. We
also summarize the limitations found in these proposals and the new
modeling proposals developed in this thesis. Chapter 3 summarizes
the main results obtained in each of the subsequent works. Chapters
4, 5 and 6 contain the three published research articles that make up
this compendium. In Chapter 7, we describe the methodology used
in the development of the Spanish National Atlas of Mortality and its
main characteristics and results. Finally, in Chapter 8, we present some
conclusions and possible lines of future work.
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1. Introduction

1.1. Motivation
Spatial epidemiology is the scientific discipline that pursues the study
of the geographical distribution of events related to health, such as the
incidence or deaths for some disease, as well as its determining factors
in the population (Last, 2001). Its main objectives are to describe,
quantify and explain the geographical variations of the diseases, to
evaluate the association between the incidence of diseases and possible
risk factors and to identify geographic groupings of the diseases (Elliott
et al., 2000). The widespread access to geographically referenced health
and population data, advances in computing and the development
of adequate statistical methodologies have made the growth of this
discipline possible.

Disease mapping has a long tradition as a branch of spatial
epidemiology. Disease maps provide a visual summary of complex
geographic information and allow to identify geographic patterns of
diseases that, by simply looking at data organized in tables, could go
unnoticed. In fact, these tools are used for descriptive purposes for
public health surveillance, in order to:

• Detect those locations that show a higher risk.

• Generate etiological hypotheses to identify risk factors ruling the
frequency of appearance of diseases.

1
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1.1. Motivation

• Help in the implementation of health policies and resource
allocation to alleviate the geographic inequalities found.

Disease maps represent epidemiological indicators calculated from
the available health data. Theses data are arranged in different
formats depending on the unit of analysis studied. In general, we can
distinguish between data at the point level, when the units of analysis
are individuals, and data at the area level, when the units of analysis
are the geographical areas into which a study region is divided. In that
case, geographical areas are usually defined by political-administrative
divisions, such as census tracts, municipalities or provinces. Conversely,
point-level data correspond to exact spatial locations in which the
health event occurred. When data correspond to geographical areas,
the information is available in aggregate form as event counts for each of
the geographic units into which the study region is divided. The spatial
statistics tools used to calculate the indicators that will be represented
in the disease maps will depend on the type of data available. In this
thesis, we focus on disease mapping techniques devised to study the
geographical distribution of diseases through regions of studied divided
into small geographical units.

The advantage of geographically aggregated health data is that
they are easily accessible, since they preserve the confidentiality of
individuals and are routinely collected by a large number of statistical
and health institutions (Botella Rocamora et al., 2017). In contrast,
access to individual level health data is much more limited and these
are seldom available. Nevertheless, the construction of disease maps
from geographically aggregated data implies a loss of information that
would be convenient to limit. If the size of the geographic units is
large, risk variations that might occur within them could be masked,
when these are of obvious interest. To avoid this, it is convenient to
consider the region of interest divided into geographic areas of the
smallest possible size. Furthermore, the study of spatial variability
of risks in small geographic areas allows analyses more similar to the
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1. Introduction

individual level. In these, the population is more homogeneous in
terms of lifestyle habits and socioeconomic conditions and, also, the
environment presents similar characteristics, making it more unlikely
important risk variations to occur within them.

When working with small areas or uncommon diseases, direct
mapping of raw epidemiological indicators presents some problems.
The most common epidemiological indicator for assessing disease risk
in the areas of a study region is the Standardized Morbidity/Mortality
Ratio (SMR). This measure is calculated by the quotient between the
number of events observed in each geographic unit and the number of
expected events, in relation to its inhabitants and their ages, if the risks
for each age group were the same as in a certain reference population
(usually the total of the study region). Thus, SMR values greater than
1 would indicate that the observed cases in that geographic unit are
higher than the expected cases, according to its population structure,
reflecting a risk excess in that geographic unit. Conversely, SMR values
lower than 1 would indicate a risk in that geographic unit lower than
that of the reference population, usually that of the whole study region.
When the study region is divided into small geographic units, the
number of observed and/or expected cases per unit is usually low as a
consequence of the low population in those units. This makes the SMR
show great variability, giving rise to maps that alternate contiguous
areas with opposite risks, which usually lack of any epidemiological
sense. In order to solve this problem and obtain maps that reflect more
sensible risks variations, epidemiological indicators must be estimated
by using statistical models that take into account the hypthetical spatial
dependence that the data could show. The incorporation of spatial
dependence into the models means that the risks in each geographic unit
could be estimated taking also the risks of nearby units into account.
This additional information allows obtaining more reliable estimates
than the original raw SMRs, which were considered to be geographically
independent when actually they are not.
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1.1. Motivation

In order to visually illustrate this phenomenon, we represent in
Figure 1.1 the SMRs for mortality from malignant tumor of the oral
cavity in men in the municipalities of the Valencian Region for the
period 1987-2006. On the left map the raw SMRs are represented and
on the right map those estimated by the statistical model proposed by
Besag et al. (1991), which takes into account the spatial dependence
between events that occur in nearby locations.

SMR

< 0.67
0.67 − 0.80
0.80 − 0.91
0.91 − 1.10
1.10 − 1.25
1.25 − 1.50
> 1.50

Figure 1.1.: Raw SMRs (left) vs. estimated SMRs using the statistical
model proposed by Besag et al. (1991) for oral cavity tumor mortality
in men in the Valencian Region during the period 1987-2006.

A large number of statistical models for disease mapping have
been proposed in the literature, most of them following a Bayesian
approach (Besag et al., 1991; Leroux et al., 1999; Lawson et al., 2000;
Lawson and Clark, 2002; Assunçao, 2003; Best et al., 2005; Ugarte
et al., 2006; MacNab, 2007; Lee, 2011; Bauer et al., 2016; Goicoa et al.,
2016). Between them, Besag et al. (1991) (BYM) and Leroux et al.
(1999) outstand of two of the most frequently used models in applied
studies. These proposals have been a benchmark in the study of the
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1. Introduction

spatial distribution of disease risks and have served as a basis for the
formulation and development of new modeling proposals (MacNab
et al., 2006a; Congdon, 2008; Martinez-Beneito et al., 2008; Song et al.,
2011). In this thesis, BYM and Leroux et al.’s proposals have been
assessed in different scenarios and have been the starting point for the
development of new disease mapping models improving these basic
modeling proposals in those particular settings. Given the relevance
of the BYM and Leroux et al.’s proposals, their formulation will be
described in detail in Chapter 2 (Methodology).

Below we describe the main objectives of this thesis.

1.2. Objectives
This thesis has four main goals, all of them related to the application,
evaluation and development of spatial statistical models in different
contexts. These four objectives are:

• Objective 1. The first objective of this thesis arises after the
application of standard spatial smoothing models for disease
mapping, specifically the aforementioned BYM reference model.
In the study of uncommon diseases, a large number of geographic
units in the study region may not have observed cases of the
disease. On such occasions, when standard models are used to
carry out risk estimates, it is common to find a “zero excesses”
problem in the data, that is the number of areas that do not
present cases of the disease considerably exceeds the number of
zeroes that standard models could reasonably explain. In this
case, there is a poor fit of the original data, in terms of the
number of observed zeroes, and it is necessary to incorporate
specific modeling strategies for fitting those zero excesses, which
improve in this sense, the fit of standard disease mapping models.
In the disease mapping literature, some proposals for modeling
zero excesses have been suggested (Mullahy, 1986; Lambert, 1992;
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1.2. Objectives

Gschlößl and Czado, 2008; Song et al., 2011; Musenge et al., 2013;
Neelon et al., 2013). After the application and evaluation of some
zero excess modeling proposals, unlike what we would expect, we
find that they do not fit many data sets well enough. Therefore,
in this context, we set ourselves the objective of developing
alternative modeling strategies that ensure a good fit of the “zero
excesses” in those data sets that require it.

• Objective 2. The second objective of this thesis focuses
on the study of multivariate models for the joint analysis of
the geographical distribution of several diseases. Typically,
diseases mapping models are univariate, dealing with just
one disease or process. However, several diseases may share
common risk factors and may therefore benefit of a joint analysis.
Recently, multivariate modeling has received special attention
from researchers interested in the joint spatial modeling of the
risks of several diseases simultaneously. Multivariate modeling in
disease mapping aims to estimate the geographical distribution
of risks for several diseases taking into account the spatial
dependence for each disease and the dependence between diseases.
In this way, risk estimates would be based in a greater amount of
information, which would allow obtaining more accurate estimates
in comparison to the univariate mapping of diseases.

In order to show the advantages of multivariate modeling
with respect to univariate models, we explore some specific
multivariate proposals in the literature. Specifically, we explore
the multivariate modeling proposals of Botella-Rocamora et al.
(2015). After assessing the results obtained with these proposals,
we found some limitations when they are applied in small study
regions. The limitations found yield unreliable risks estimates
as a consequence of imposing a common variability to all the
risk patterns of the diseases considered. For this reason, we set
ourselves the objective of extending the original Botella et al.’s
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1. Introduction

multivariate models, allowing heterocedasticity between diseases,
which solves the evidenced problems and provides more accurate
risk estimates.

• Objective 3. Typical disease mapping studies consider spatial
dependence between observations through random effects that
follow some spatial prior distribution. Probably the most
popular spatial prior distributions are the family of Autoregressive
Conditional (CAR) distributions (Besag, 1974; Besag et al.,
1991). These distributions induce spatial dependence by means
of a matrix of spatial weights which reflect the strength of
dependency between any pair of geographic units. The most
common procedure to define spatial weights in CAR distributions
is to use an adjacency criterion. In that case, all pairs of geographic
units with adjacent edges are given the same weight, typically 1,
and the rest of the non-adjacent units are assigned a weight of
0, reflecting (conditional) independence between them. However,
assuming the same weight to all neighboring areas may be too
rigid or inappropriate in some scenarios. For this reason, we aim to
explore and develop procedures to estimate spatial weight matrices
in disease mapping studies that solve this problem. Specifically, we
focus on the development of adaptive CAR distributions. These
distributions consider the spatial weights as random variables in
the models, allowing them to be different, so that they can be
estimated from the information provided by the data.

• Objective 4. The last objective of this thesis is the development
of an advanced national mortality atlas at the municipal level, as
a web application. This application would study a large number of
causes of death for the whole of Spain and would use appropriate
small areas estimation models for estimating the smoothed SMRs.
This objective is aligned with the application and evaluation of
disease mapping models in very large study regions, the initial
main goal of this thesis. The developed national mortality atlas

7
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1.3. Data

will be a very useful tool for both the general population, who
will be able to know the state of health of their municipality
and environment, and health professionals for whom the atlas
can provide epidemiological information of great value on the
population to which they attend. The development of the atlas
will be carried out in collaboration with the Bayensians research
group of the FISABIO Foundation.

1.3. Data
Extensive real data sets have been used to carry out each of the
objectives of this thesis. Specifically, the data sets analyzed and used
in this thesis have been the following:

1. Municipal mortality data for a total of 27 causes of death
in men and women in the Valencian Region during the
period 1987-2006.

In this data set, we examine the need to model zero excesses in
standard disease mapping models and evaluate our proposals in
regards to the adjustment of zeroes in those data sets that require
it (Objective 1).

2. Mortality data at the census tract level for 20 causes
of death in men and women in the cities of Alicante,
Castellón and Valencia during the period 1996-2015.

This data set has been used, on the one hand, in the
assessment and development of multivariate disease mapping
models (Objective 2) and, on the other hand, in the development
of spatial models with adaptive weight matrices (Objective 3).

3. Spanish mortality data at the municipal level for a total
of 102 causes of death in men and women during the
period 1989-2014.

8
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1. Introduction

This data set corresponds to that used in the development of the
Spanish National Atlas of Mortality (ANDEES) (Objective 4).

1.4. Publications
The works corresponding to the first three objectives of this thesis
have been presented in different talks at national and international
conferences and published in the form of research articles in journals
indexed in the Statistics and Probability index of the Journal Citation
Reports (JCR). Specifically, the published research articles have been
the following:

• “Some findings on zero-inflated and hurdle Poisson
models for disease mapping” published in Statistics in
Medicine by F. Corpas-Burgos, G. García-Donato and M.A.
Martinez-Beneito (2018). This paper corresponds to Chapter 4
of this thesis.

• “On the convenience of heteroscedasticity in highly
multivariate disease mapping” published in Test by F.
Corpas-Burgos, P. Botella-Rocamora and M.A. Martinez-Beneito
(2019). This paper corresponds to Chapter 5 of this thesis.

• “On the use of adaptive spatial weight matrices
from disease mapping multivariate analyses” published
in Stochastic Environmental Research and Risk
Assessment by F. Corpas-Burgos and M.A. Martinez-Beneito
(2020). This paper corresponds to Chapter 6 of this thesis.

The Spanish National Atlas of Mortality (ANDEES) developed,
stated as the fourth and last objective of this thesis, has been published
online and can be accessed at the following web link:

http://atlasnacional.fisabio.es
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1.5. Software

The methodology used in the development of such atlas together with
some of its characteristics and results will be described in the Chapter
7 of this thesis. An enhanced version of Chapter 7 will be submitted
for review and publication.

1.5. Software
The main tools used in the development of this thesis have been the
statistical package R and the software for Bayesian analysis using Markov
chain Monte Carlo (MCMC) methods WinBUGS. On the one hand,
WinBUGS has been used to fit each of the models to the data and obtain
the estimates of interest. On the other hand, R and some of its packages
have been used to manage the data and results of each work. The
main R packages used have been the Pbugs and Shiny libraries. Pbugs
has made it possible to automate the call to WinBUGS from R, running
the different chains that have been necessary in each of the adjusted
models in parallel (different core processors), and therefore speeding
up the computation time for obtaining the results. Shiny has allowed
the development of the website that hosts the results of the Spanish
National Atlas of Mortality (ANDEES).

For each of the published papers, the R code with the implementation
of all the models fitted and for all the analyses performed is provided
as supplementary material and can be found in the Appendix of this
thesis and in https://github.com/pcorpas.

10
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2. Methodology

In this chapter, we describe the general modeling framework for disease
mapping studies and some of the most relevant models proposed to
carry out the estimation of the geographical distribution of risks. Next,
we show some limitations found in these models, after being used to
analyze the distribution of mortality in different scenarios, and we
summarize the modeling proposals developed in this thesis to solve
these issues. These proposals will be explained in detail in Chapters
4, 5 and 6 in which each of the different published research articles
are presented. Finally, we summarize the methodology used in the
development of the Spanish National Atlas of Mortality (ANDEES)
which will be described in detail in Chapter 7.

2.1. The disease mapping general modeling
framework

In this section, we begin by describing the general modeling framework
of disease mapping studies. First, we describe the univariate case in
which the focus is on modeling the risks for a single disease. Next, we
describe the multivariate case that will allow us to perform the joint
spatial modeling of the risks of various diseases.

11
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2.1. The disease mapping general modeling framework

2.1.1. The univariate case
In disease mapping studies, the region of interest is considered divided
into I contiguous geographic units, usually of small size, such as census
tracts or municipalities. As already mentioned, the main objective of
these studies is to determine the geographical distribution of the risks
for some disease throughout the geographic region of interest. For this,
the observed disease counts in each geographic unit {Oi : i = 1, . . . , I}
are modeled as:

Oi ∼ Poisson(EiRi), i = 1, . . . , I,

where Ei are the expected counts for each geographic unit, typically
calculated by means of some age standardization (Martinez-Beneito
and Botella Rocamora, 2019), and Ri are the corresponding risks that
we would like to estimate. Regarding the modeling of this last term,
the log-risks can be defined as:

log(Ri) = µ+ ηi, (2.1)

where µ is an intercept, modeling the mean of the log-risks, and η =
(η1, . . . , ηI)

′ is a random effects vector. Random effects ηi are introduced
into the model to allow the risks to vary for the different spatial units
and are typically assumed to be spatially correlated as such variability
is expected to exhibit this characteristic.

According to the previous expression, the risk in the i-th geographic
unit would be equal to exp(µ+ηi). Therefore, this expression is what we
call the smoothed SMR of such geographic unit under the spatial model
considered. That is, the SMR is an epidemiological concept which is
just equal to O/E for some population group, while the smoothed SMR
is the result of the modeling of the risks throughout the region of study.
That is, smoothed SMRs are just outputs of particular models but both

12
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2. Methodology

SMRs and smoothed SMRs try to estimate the same concept, the risk
of the disease. Smoothed SMRs can be therefore considered enhanced
(model-based) estimates of the risks in comparison to naive SMRs.

The random effects vector η is usually modeled using CAR prior
distributions in order to induce spatial dependence on the SMRs and
thus increasing the amount of information used to estimate them. A
particularly popular case of CAR prior distributions is the Intrinsic
CAR (ICAR) distribution (Besag et al., 1991) which can be defined as
the following set of I univariate conditional distributions:

φi|φ−i, σ2
φ ∼ N

(
1
wi+

I∑
k=1

wikφk,
σ2
φ

wi+

)
, i = 1, . . . , I. (2.2)

In this expression, the subindex in φ−i denotes all the terms in
φ excepting its i-th component, wik weighs the contribution of
the k-th random effect to the mean of φi, wi+ = ∑I

k=1 wik and
σ2
φ is a variance parameter. The dependence between elements of
φ is determined by the spatial weights wik, which are typically
non-zero if areas i and k are considered neighbors and zero otherwise.
Therefore, if two areas are considered neighbors, their random effects
are conditionally dependent, while random effects of non-neighboring
areas are conditionally independent.

A common assumption is to assume that the pair of areas (i, k) are
neighbors if they share a common border (adjacency) and in that case
set wik = 1 for all neighboring pairs of units (i, k). In that case, the
conditional distributions above reduce to simply:

φi|φ−i, σ2
φ ∼ N

(
1
ni

∑
k∼i

φk,
σ2
φ

ni

)
, i = 1, . . . , I, (2.3)

13
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2.1. The disease mapping general modeling framework

where ni stands for the number of neighboring areas of unit i and the
subindex k ∼ i denotes all those units k which are neighbors of i. Now,
the conditional mean of φi is equal to the raw (unweighed) mean of the
random effects in the neighboring areas and its conditional variance is
inversely proportional to the number of neighbors ni.

Some relevant modeling proposals for η

One of the most popular modeling proposals for η in disease mapping
studies is that introduced in Besag et al. (1991) (BYM). In this proposal,
the random effects vector η is considered to be the sum of two vectors
of random effects η = φ + θ. The term φ = (φ1, . . . , φI)

′ , which
follows an ICAR distribution, will be responsible for inducing spatial
dependence on R = (R1, . . . , RI)

′ and accounts for those risk factors of
regional scope which take an effect on several contiguous spatial units,
making them in principle similar. The second term, θ = (θ1, . . . , θI)

′ ,
whose components follow independent Normal distributions of mean
zero and common variance σ2

θ , accounts for risk factors of very limited
geographical scope that take an effect just on isolated areal units,
making their risks different to those of their surrounding units. Thus,
this second term induces additional unstructured variability in η. The
amount of spatial/unstructured variability in R depends on the balance
between σφ and σθ, which is determined by the model/data itself. If
the first has higher (respectively lower) values, in comparison with
the second, the final pattern will show substantial spatial dependence
(respectively independence).

A second popular CAR prior distribution for inducing spatial
correlation on the random effects vector η in Expression (2.1) is that
introduced in Leroux et al. (1999). In contrast to the BYM model, η in
this alternative proposal is not the sum of two additional components.
In this case, the determination of the amount of spatial/unstructured
variability is controlled by a spatial correlation parameter ρ ∈ [0, 1] so
that the special case of ρ = 0 simplifies to a model with independent

14
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2. Methodology

random effects and ρ = 1 corresponds to the ICAR distribution above.
All intermediate values of ρ ∈ (0, 1) induce patterns mixing both sources
of dependence. Specifically, for the Leroux et al.’s proposal, the prior
conditional distributions corresponding to ηi are given by:

ηi|η−i, ρ, σ2
η ∼ N

(
ρ

ρwi+ + 1− ρ

I∑
k=1

wikηk,
σ2
η

ρwi+ + 1− ρ

)
, i = 1, ..., I.

For the usual assumption of wik = 1 for adjacent spatial units, and
0 otherwise, the Leroux et al.’s proposal reduces to:

ηi|η−i, ρ, σ2
η ∼ N

(
ρ

ρni + 1− ρ
∑
k∼i

ηk,
σ2
η

ρni + 1− ρ

)
, i = 1, . . . , I.

This expression makes clear the equivalence of this distribution to either
independent Normal random effects or an ICAR distribution for ρ = 0
and ρ = 1, respectively.

Some relevant modeling proposals for data with zero excesses

As already mentioned in the introduction to this thesis, it is possible
that standard disease mapping models, such as BYM and Leroux et
al.’s proposal, underestimate the number of geographic units without
observed cases of the disease. This lack of fit for the number of zeroes
is commonly known as a problem of “zero excesses” in the data and
leads to obtaining risk maps that are oversmoothed. Therefore, in such
situations, it is necessary to consider specific “zero excesses” modeling
strategies in standard disease mapping models to improve their fit. In
the disease mapping literature, the most popular proposals to model
“zero excesses” in data are the zero-inflated Poisson (ZIP) model and
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2.1. The disease mapping general modeling framework

the hurdle Poisson model. In its simplest form, the ZIP model assumes
that the events observed in each geographic unit Oi follow a mixture
of a degenerate distribution with all its mass at zero and a Poisson
distribution with weights 1− πZ y πZ , respectively. This inflates the
number of zeroes expected by the Poisson distribution as a function of
πZ . On the other hand, the hurdle Poisson model assumes that the data
follow a mixture of a degenerate distribution with all its mass at zero
and a Poisson distribution truncated to take values above 0. That is, in
contrast to the ZIP model, all the zeroes observed in the hurdle model
are assumed to come from the zero-degenerate distribution. Therefore,
the parameter 1− πH in the hurdle model, represents the probability
that the number of observed cases in one unit is zero instead of the
percentage of extra-Poisson zeroes, the interpretation of 1− πZ in the
ZIP model. ZIP and hurdle models are often combined with specific
disease mapping proposals, such as BYM or Leroux et al., in order to
yield flexible spatial models accounting for zero excesses.

2.1.2. The multivariate case
In multivariate disease mapping, the goal is the joint modeling of
the risks of various diseases. In that case, the observed counts for
each geographic unit and disease {Oij : i = 1, . . . , I; j = 1, . . . , J} are
modeled as:

Oij ∼ Poisson(EijRij), i = 1, . . . , I, j = 1, . . . , J,

where Eij are the expected counts and Rij the relative risk for the i-th
geographical unit and j-th disease. As in univariate modeling, log-risks
can be defined as:

log(Rij) = µj + θij.
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2. Methodology

In this case, the term µj is just an intercept for the j-th disease and
Θ = {θij : i = 1, . . . , I; j = 1, . . . , J} is a collection of random effects
whose joint distribution specifies how dependence is defined within and
between diseases. Specifically, dependence among the columns of Θ
induces dependence between diseases and, similarly, dependence among
its rows induces spatial dependence within diseases (geographical units).
We will focus now on the M -modeling proposal, which will be the
multivariate model that we will paying particular attention in Chapter
5.

The Botella-Rocamora et al.’s M -model

An interesting proposal for modeling spatial dependence between
geographic units and dependence between diseases is introduced by
Botella-Rocamora et al. (2015). In this proposal multivariate spatial
dependence is induced by setting

Θ = ΦM (2.4)

where Φ is an I × K matrix of random effects with independently
distributed columns that typically follow some spatially correlated
distribution, such as BYM or Leroux et al.’s proposal. Those
spatial distributions induce dependence between geographical units and
therefore between rows of Θ. Additionally, M is a K×J random matrix
which induces dependence between the different columns in Θ, that is,
between the different diseases considered in the analysis. UsuallyK = J ,
although they could be different, such as for the multivariate formulation
of the BYM model, where two random effects are included per disease
and therefore K = 2J . The variance parameter of the random effects
in the columns of Φ is usually set to 1, since M cells are responsible for
controlling the variability of Θ. Otherwise, those variances and the cells
of M would not be identifiable as they would cancel each other out. On
the other hand, as proposed by Botella-Rocamora et al., the cells of M
are independently defined as Mij ∼ N(0, σ2) i = 1, ..., K, j = 1, ..., J ,

17



“Thesis” — 2020/7/6 — 16:18 — page 18 — #60
picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picture

picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picture

2.2. Some limitations (and some potential solutions) of the previous models

where σ could be either a fixed (typically large) value, and therefore
the Mijs would follow vague independent prior distributions, or an
additional variable to be estimated in the model. In the first case,
we call the corresponding modeling fixed effects M -modeling, since
M cells would be modeled in that manner and, alternatively, we call
the second case random effects M -modeling, once again because of
the modeling of the cells carried out in M. A theoretical property
of this model is that, as shown in the Botella-Rocamora et al. (2015)
paper, assigning N(0, σ2) prior distributions to the entries in M yields a
Wishart(K, σ2IJ) prior distribution for the covariance matrix between
diseases Σb when all spatial models share the same spatial distribution,
which can be computed as simply M′M. Hence, the independent
modeling of the cells of M entails a prior mean for Σb proportional to
an identity matrix or, alternatively, it assumes prior independence in
the columns of Θ.

2.2. Some limitations (and some potential
solutions) of the previous models

So far, we have described the general modeling framework for disease
mapping studies and some relevant models for deriving risk estimates
in different scenarios. In this section, we describe some limitations
evidenced by the previous proposals, once applied to some real contexts.
We also summarize the different methodological proposals that we
have developed to solve the limitations found, although the details of
these proposals are described later, in the chapters that contain the
corresponding original articles that have been published.

2.2.1. Modeling data with zero excesses
In order to examine the need to incorporate zero excesses modeling
strategies in the analysis of mortality data and to evaluate the behavior
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2. Methodology

of the most popular models in this context, the BYM model and its
corresponding ZIP and hurdle versions have been implemented on an
extensive real setting. Specifically, these models have been applied to
the study of the geographical distribution of mortality, for a total of 46
geographical patterns, at the municipal level in the Valencian Region
during the period 1987-2006. We pay particular attention to the fit of
the models in terms of the number of predicted zeroes, in comparison
to those actually observed for each cause of death, and to the estimated
SMRs for each of the models.

In summary, we find that the BYM model may fit quite poorly the
number of zeroes for certain data sets. Namely, in more than 30% of
the data sets considered the 95% posterior predictive intervals for the
number of zeroes in BYM were far from containing the real observed
zero counts, which were always above these intervals. With respect to
the approaches with a particular treatment of zeroes, the results are
not satisfactory either. Surprisingly, ZIP does not help much in fitting
more zeroes and showed 95% posterior predictive intervals which do not
contain the real observed number of zeroes in almost as many data sets as
the BYM model. The risk maps for the different diseases estimated with
these models showed hardly any difference. Conversely, for hurdle model,
all intervals contained the observed number of zeroes. Nevertheless,
this better fit of the proportion of zeroes yielded unrealistic estimates of
the risks, showing strange polarized patterns in almost all the diseases
analyzed and completely different to those obtained with BYM and
ZIP. Thus, naive ZIP and hurdle models are clearly unsatisfactory.
We show that this is a consequence of the implementation of these
models where the πZ and πH parameters, modeling the probabilities
of non-zeroes, are common to all municipalities. These results suggest
the need for an explicit modeling of the probabilities that should vary
across geographical units.

An alternative to a common zero excess probability is modeling
unit-specific πis (we will denote π when we refer indistinctly to either
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2.2. Some limitations (and some potential solutions) of the previous models

πZ or πH) by means of, for example, logistic regression. This has been
repeatedly done in the disease mapping context for both ZIP (Dalrymple
et al., 2003; Gschlößl and Czado, 2008; Neelon et al., 2010; Musenge
et al., 2013; Nieto-Barajas and Bandyopadhyay, 2013) and hurdle models
(Dalrymple et al., 2003; Neelon et al., 2010, 2013; Upfill-Brown et al.,
2014; Neelon et al., 2014; Arab, 2015). That is, following several of the
proposals in the literature, for both ZIP and hurdle models we could
consider:

logit(πi) = xiβ + ϕi (2.5)

where β model the effect of some set of covariates X and ϕ is a vector
of (possibly spatial) Gaussian random effects modeling the effect of
those factors that cannot be explained by X.

However, after exploring these more flexible modeling strategies, we
have found important posterior impropriety problems in hurdle and
ZIP models when the vector of probabilities π is modelled with either
fixed or random effects and with non-informative (improper) prior
distributions for these parameters. These impropriety problems in the
posterior distributions shows up as huge MCMC convergence problems
in the model parameters. One could think of using vague proper prior
distributions, instead of improper priors, as a posible strategy to avoid
impropriety issues. This is a procedure frequently found in the literature,
supposedly to avoid MCMC convergence problems. However, as we
demonstrate, in these cases the posterior distribution of the parameters
will depend on the (arbitrary) vagueness of its prior distribution, which
makes unadvisable that option. Therefore, we discourage the use of
those models particularly in a non-informative or objective setting and
we propose some valid alternatives with different πis. These proposals
are summarized below.

Some valid proposals for modeling π

We propose some (non-informative) procedures for modeling π that
avoid the conditions for posterior impropriety stated above. Specifically,
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2. Methodology

we formulate 3 separate modeling proposals.

Fixed effects modeling:

A potentially valid modeling proposal (we will refer to this as FE (Fixed
Effects) henceforth) would be to consider a hurdle model with

logit(πH) = Xβ.

A suitable proposal that could be used in principle for any disease
mapping model would be: X = [1I , log(E)], where E stands for the
vector of expected values used in the Poisson likelihood of hurdle
models. We have taken the logarithm of the expected values to avoid
any potential effect of the usually skewed distribution of this variable
caused by the presence of very few large cities.

This proposal models the logit of the probabilities of non-zeroes
as a function of the expected observations at each areal unit. This
seems quite reasonable since units with lower expected counts would
show more easily zero observed counts meanwhile those larger units
will show positive counts in general. For this proposal we will consider
an improper Uniform prior distribution for each component of β.

Nested fixed effects modeling:

The use of expected values as a surrogate of the (population) size of the
areal units in the FE modeling seems quite reasonable. Nevertheless,
this does not depend at all on the probabilities of non-zeroes resulting
from the Poisson side of hurdle models: πP = 1 − exp(−µ). These
probabilities could be also used as sensible covariates for modeling the
probabilities of non-zeroes for hurdle models πH , instead of just E.
Thus, our second proposal for modeling πH in hurdle models would be

logit(πHi ) = logit(πPi ) + γ.
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2.2. Some limitations (and some potential solutions) of the previous models

This would be an alternative fixed effects logistic modelling of πH using
logit(πP ) as an offset. The values of that offset would be leveraged
by γ so that if it takes values close to 0 this model would reproduce
the non-inflated probabilities in the Poisson layer, even for zero-counts,
meanwhile for γ < 0 the zero-specific probabilities would be inflated in
regards to the Poisson model. We will refer to this model as NFE, Nested
Fixed Effects model. Once again we will consider an improper Uniform
prior distribution for γ so that any potential posterior impropriety
problem in this model appears.

Geometric modeling:

Since resorting to logit regression has proved to bring lots of problems
into ZIP and hurdle models, we could try to avoid those transformations
in order to make sensible proposals. Thus, making

πi = 1− (1− πG)Ei

seems a reasonable proposal for both ZIP and hurdle models. For this
proposal we would have that the probability of observing a zero count
for a unit with n expected cases is (1−πG)n, where 1−πG is that same
probability for a unit with 1 expected case. This geometric progression
also holds for the Poisson process where the probability of observing
zeroes with n expected cases exp(−n λ) = exp(−λ)n follows that same
relationship. Thus, the probabilities of zero counts for this proposal are
in agreement with the Poisson side of the model. For πG, which can be
interpreted as the probability of observing a positive count for units
with one expected case, we set an Uniform prior distribution between
0 and 1. Since this prior is proper we avoid any posterior impropriety
coming from this term. We will refer to the ZIP and hurdle versions of
this model henceforth as ZGeo and HGeo respectively.
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2. Methodology

2.2.2. Heterocedastic multivariate modeling
The multivariate proposal presented by Botella-Rocamora et al. (2015)
has been implemented to study the geographical distribution of
mortality in the cities of Alicante, Castellón and Valencia composed of
215, 95 and 553 census tracts (the geographical unit for this analysis),
respectively. We consider the multivariate joint spatial modeling of
20 different causes of mortality and both fixed and random effects
M -models with underlying BYM spatial patterns for all three cities
separately. In order to evaluate the benefits of multivariate modeling,
we compare the results obtained against those derived with independent
BYM patterns for each disease.

In the case of the city of Castellón, markedly different risk maps
are obtained with the multivariate fixed and random effects M -models,
as compared to the univariate BYM models. On the one hand, while
univariate modeling generally provides maps with low variability for
most of the diseases in the study, except in a few cases such as AIDS,
fixed effects M -modeling provides maps with great variability in all
diseases, with hardly any smoothing, which resemble the corresponding
maps of unsmoothed SMRs. The lack of smoothing of fixed effects
M -model is noticed, but to a much lesser extent, in the results drawn
from Alicante and Valencia. On the other hand, we observed that
random effects M -modeling estimates in Castellón yield flat risk maps
for all 20 diseases studied, which in a few cases, such as AIDS, are very
different from those estimated with univariate modeling. Strikingly, this
performance was only seen in Castellón, but not (or not so evidently)
in Alicante or Valencia.

In the case of the cities of Alicante and Valencia, the differences
found between the fixed and random effects risk patterns were much
milder. For these two cities, both multivariate models take advantage
of the additional information provided by the set of diseases considered,
depicting more detailed spatial patterns in general than their univariate
alternatives. This suggests that the results found for Castellón could
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2.2. Some limitations (and some potential solutions) of the previous models

be due to the smaller size of this city, where the prior structure that
the M -model induces could be more influential than in Alicante and
Valencia. Thus, the prior covariance structure of the M -model could
be having an undesirable effect on the final fit that, when available
data are weaker, might be influencing the spatial patterns determined.

Next, we try to give a statistical explanation of these results.
Regarding the fixed effects M -model, we have mentioned that it was
equivalent to assuming a Wishart(K, σ2IJ) prior distribution on the
covariance matrix between diseases Σb. Since σ is usually set to a
large value for the fixed effects approach, this entails that the prior
mean of Σb is equal to Kσ2IJ , for a high value of σ. Therefore, this
model assumes the prior covariances between diseases to be centered
at 0 and the prior variances of the log-risks for each spatial pattern
to be high. These prior assumptions could explain the results found
in Castellón for the fixed effects model, where the prior information
in M could overwhelm the information provided by the data. For this
city, the cells of Θ do not produce any smoothing in the risks fitted,
as a consequence of their large prior variances (subsumed in matrix
M), which does not produce any shrinkage. As a consequence, the
smoothed SMRs estimated for this model reproduce the unsmoothed
original SMRs that disease mapping models typically try to avoid.

The random effectsM -model also leads to a prior mean ofKσ2IJ for
Σb but with σ now being a parameter to be estimated within the model.
In this case the prior mean will just be proportional to the identity
matrix but the proportionality constant will be estimated by the model
itself, which will be set to a common consensus value for all the diseases.
Univariate BYM models for each of the diseases in Castellón yielded
posterior standard deviations for the log-SMRs ranging from 0.05 to
0.42, depending on the disease. AIDS was the disease with a higher
standard deviation, far larger than the median standard deviation for
the set of diseases considered (0.13). Thus, the distribution of the
standard deviations of the log-SMRs for the different diseases has a
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2. Methodology

pronounced asymmetrical right-tailed distribution. In consequence, the
consensus scale parameter σ for the random effects model takes a value
that is much lower than that required to appropriately describe the
spatial variability of AIDS mortality. This could explain perfectly why
the initial pattern highlighted by the univariate BYM model for AIDS
vanishes when the random effects M -model is fitted.

In sum, the Castellón multivariate mortality study above has shown
important prior sensitivity problems for the M -model, mainly for
smaller data sets. Specifically, the fixed effectsM -model has a tendency
to yield unsmoothed risk estimates. Furthermore, the random effects
version has an inclination toward the shrinkage of all diseases to a
common point in terms of variability. Our proposal for fixing the
prior sensitivity problems of the M -model consists in a modification
of its random effects version. Specifically, we relax the assumption
of a common scale parameter for the cells of M. In particular we
propose two different ways to do this. The first proposal considers
Mij ∼ N(0, σ2

i ) for i = 1, ..., K, while our second alternative proposal
considers Mij ∼ N(0, σ2

j ) for j = 1, ..., J . We will refer to these two
proposals as the row variance-adaptive random effect M -model (or
simply RVAM -model) and the column variance-adaptive random effect
M -model (or simply CVA M -model), respectively. Obviously these
two proposals will be more adaptive in terms of variability than the
original random effects M -model, which will allow us to solve the
shrinkage problems toward a common variability evidenced in the
random effects M -model. We will refer to this latest model as the non
variance-adaptive model (NVA model).

2.2.3. Adaptive spatial modeling
CAR distributions are commonly used to model spatial dependence
between nearby geographic units in disease mapping studies. These
distributions induce spatial dependence by means of a spatial weights
matrix that quantifies the strength of dependence between any two
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2.2. Some limitations (and some potential solutions) of the previous models

neighboring spatial units. As previously described, the most common
procedure for defining that spatial weights matrix is using an adjacency
criterion. In that case, all pairs of spatial units with adjacent borders
are given the same weight (typically 1) and the remaining non-adjacent
units are assigned a weight of 0. However, assuming all spatial neighbors
in a model to be equally influential could be possibly a too rigid or
inappropriate assumption. This imposes all neighboring regions to be
equally influential on any particular risk, which may not correspond to
reality. In order to overcome this limitation, we propose a procedure
for estimating the spatial weights matrix in disease mapping studies.
Specifically, we propose an adaptive extension for both ICAR and
Leroux et al. spatial distributions in which the spatial weights for
adjacent areas are additional random variables in the model, allowing
variability between them, and estimates are based on the information
provided by the data.

We start first by introducing the estimation of spatial weights
matrices for ICAR distributions. Let φ = (φ1, . . . , φI)′ be a random
effects vector with ICAR distribution, that is:

φ|σ2
φ ∼ NI(0, σ2

φ(D −W )−).

For this expression, we will assume thatD andW are defined according
to adjacency between spatial units, i. e. D = diag(n1, · · · , nI) for ni
the number of neighbors of unit i andW = (wik) where wik = 1 if (i, k)
are adjacent units and 0 otherwise.

Let us now consider a random vector c = (c1, · · · , cI)′ of positive
values, a new spatial weights matrix W ∗(c) = diag(c)1/2W diag(c)1/2

and D∗ = diag(w∗1+, ..., w
∗
I+). With this, we propose the following

adaptive CAR prior distribution:

φ|c, σ2
φ ∼ NI(0, σ2

φ(D∗ −W ∗(c))−)
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2. Methodology

ci ∼ Gamma(α, α).

The elements of the vector c are assumed to be positive since the
non-zero weights of the new spatial weights matrix W ∗ are w∗ij =
(cicj)1/2 so, in this manner they all will be well defined and positive.
Accordingly, we have used a Gamma prior distribution for its elements,
which seems a natural choice. The Gamma distribution considered has
mean 1, in accordance with the value of the non-zero cells of W when
an adjacency criterion is considered. Thus, W ∗(c) will be on average
equal to W , although its non-zero weights will not necessarily have to
be equal to 1. Hence the new adaptive distribution will be more flexible
than the regular ICAR distribution. Note that, as defined, the (prior)
standard deviation of any element of c is equal to α−0.5, which could
guide us to set a prior distribution for this parameter. In fact, we have
considered a prior Uniform distribution on α−0.5, with lower and upper
limits intended to make it vague, in order to complete the hierarchical
structure above.

Alternatively, the definition of the adaptive ICAR distribution above
could be restated as a set of conditional distributions φi|φ−i, c, σ2

φ, i =
1, ..., I, of mean

E[φi|φ−i, c, σ2
φ] = 1

w∗i+

I∑
k=1

w∗ikφk =
c

1/2
i

∑
k∼i c

1/2
k φk

c
1/2
i

∑
k∼i c

1/2
k

=
∑
k∼i c

1/2
k φk∑

k∼i c
1/2
k

(2.6)

and variance

V ar[φi|φ−i, c, σ2
φ] =

σ2
φ

w∗i+
=

σ2
φ

c
1/2
i

∑
k∼i c

1/2
k

. (2.7)

These two expressions provide some quite valuable insights on the
model proposed. The expected value in Expression (2.6) is just a
weighted mean of the random effects for the corresponding neighbors.
The weights in that expression are given by the vector c, thus if ci had
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2.2. Some limitations (and some potential solutions) of the previous models

a low value for some i, that region will have a low contribution to the
means of its surroundings units. Additionally, Expression (2.7) suggests
that if ci is low, then the conditional variance of φi will be in contrast
high. Thus, if ci was low, these two expressions suggest that it is as if
spatial unit i was “disconnected” from its spatial neighbors, since φi
will be less influential on them and will have higher variance, allowing
it to move independently from the rest of the units. Conversely, if ci
was high, unit i will become more influential on its neighbors and will
take a value in close agreement with them. Therefore, in some manner,
the adaptive ICAR distribution would impose a tighter dependence
between this unit and its neighbors.

In the case of the Leroux et al. model, φ is distributed as:

φ|ρ, σ2
φ ∼ NI(0, σ2

φ((1− ρ)II + ρ(D −W ))−).

Following the development above, let us assume

φ|ρ, c, σ2
φ ∼ NI(0, σ2

φ((1− ρ)diag(c1/2) + ρ(D∗ −W ∗(c)))−),

whereD∗ andW ∗(c) are defined as for the adaptive ICAR distribution.
In this manner, for ρ = 1 this distribution would be equivalent to an
adaptive ICAR distribution, while for ρ = 0 it would yield a collection
of independent Normal random effects with adaptive (heteroscedastic)
variance. For that proposal, the conditional mean and variance of the
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random effect φi can be expressed as:

E[φi|φ−i, ρ, c, σ2
φ] = ρ

(1− ρ)c1/2
i + ρw∗i+

I∑
k=1

w∗ikφk

= ρc
1/2
i

(1− ρ)c1/2
i + ρc

1/2
i

∑
k∼i c

1/2
k

∑
k∼i

c
1/2
k φk

= ρ

1− ρ+ ρ
∑
k∼i c

1/2
k

∑
k∼i

c
1/2
k φk

and

V ar[φi|φ−i, ρ, c, σ2
φ] =

σ2
φ

(1− ρ)c1/2
i + ρw∗i+

=
σ2
φ

c
1/2
i (1− ρ+ ρ

∑
k∼i c

1/2
k )

.

Considering I new parameters in the model to allow different
strength of spatial dependence between neighboring geographic units
leads to a considerable increase in the number of parameters to be
estimated. As a consequence, data in univariate disease mapping
models may be not strong enough as to make inference on vector c
possible. For this reason, we propose the use of adaptive spatial weight
matrices in a multivariate disease mapping context so that the spatial
dependence structure between spatial units is shared and estimated
from a sufficiently large set of mortality causes. This spatial weight
matrix, which should capture the geometric/demographic/geographic
features of the region of study, will be common to all the diseases
involved in the study. This formulation would allow an appropriate
estimation of the vector c and therefore an appropriate estimation of
the weights matrix W ∗(c) corresponding to the set of diseases and
region of study considered.
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2.3. Development of the Spanish National Atlas of Mortality (ANDEES)

2.3. Development of the Spanish National
Atlas of Mortality (ANDEES)

The Spanish National Atlas of Mortality (ANDEES) is an interactive
web application that allows for the visualization of the spatial and
spatio-temporal distribution of mortality throughout the whole of Spain
during the period 1989-2014. ANDEES considers the municipality
(8,063 for the whole of Spain) as unit of analysis and studies by separate
102 causes of death for both men and women.

Two data sets have been used for the development of this atlas.
The first of them contains all the deaths occurred in Spain during
the period 1989-2014. These data have been provided by the Spanish
National Statistics Institute (INE) and tabulated according to sex,
five-year age group (considering a final age group of 85 years or more),
municipality and cause of death, for the total period 1989-2014 and
considering eight triennial periods, from 1991-1993 to 2012-2014. The
second data set contains information on the population (number of
people at risk) in the region and study period. This information has
been obtained from the municipal population registers and tabulated
according to sex, five-year age group, municipality and cause of death,
for the total period 1989-2014 and for the eight mentioned triennial
periods. Population data for each age group, sex and municipality have
been used to calculate the number of deaths that would be expected in
each municipality, if the risks for each age group were the same as in
the reference population, the whole country.

The mortality indicators represented in the atlas maps have been
estimated from the observed and expected deaths in each municipality,
for all the period and the study subperiods. The main mortality
indicators represented in the maps have been the smoothed SMRs.
Smoothed SMRs have been estimated using spatial and spatio-temporal
smoothing models. On the one hand, the BYM model has been used
to obtain smoothed SMRs for the whole period of study. On the other
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2. Methodology

hand, due to the great length of the study period, it is also interesting
to study mortality over shorter periods of time and analyze its evolution
over time. To do so, the observed and expected events in each of the
municipalities of Spain, disaggregated in the eight triennial periods
already mentioned, have been considered. The use of spatio-temporal
models allows the study of these disaggreagetd periods, providing
several estimates for each municipality, instead of a single risk estimate
corresponding to the entire period. In this way, the bias that occurs
when considering risks as static amounts over time is avoided, since it
is probable that some temporary change may have occurred in them
(Ocaña Riola, 2007).

Within the spatio-temporal modeling literature, an interesting
proposal to model spatial and spatio-temporal dependence between
geographic units and study periods is that suggested by
Martinez-Beneito et al. (2008). The spatio-temporal modeling of
the data in this atlas has been carried out using this proposal. The
spatio-temporal model proposed by Martinez-Beneito et al. (2008)
consists of the integration of spatial smoothing and time series models,
specifically auto-regressive processes, to simultaneously model the
spatial and temporal dependence that observations may show. In
this model, a spatio-temporal structure is defined in which the risks are
spatially and temporally dependent at the same time, allowing nearby
places to have similar spatial and temporal evolutions.

Spatial and spatio-temporal models have been run in WinBUGS using
the statistical software R and some of its packages. The enormous
volume of data to analyze and the number of estimates to be obtained
in each analysis have made this project a challenge from a computational
point of view. Some tools have been necessary to reduce the computing
time in obtaining the results. Specifically, we have made use of the Pbugs
package of R, which has allowed us to automate the calls to WinBUGS
from R and to run them in parallel, thus speeding up computations.

Once the posterior distributions of the smoothed SMRs were
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2.3. Development of the Spanish National Atlas of Mortality (ANDEES)

estimated from the BYM and the Martinez-Beneito et al.’s proposal,
we calculated their posterior means for each municipality and period
(in the case of spatio-temporal modeling). Additionally, the mass of
each of these distributions above 1 was also calculated as a confidence
measure for the risk excesses shown by our study. Both the smoothed
SMR and the P(SMR>1) for each municipality, sex and cause of death
are shown in the maps drawn in ANDEES.

The web application that contains the results and allows their
visualization in ANDEES has been developed using the Shiny package
of R (Chang et al., 2020). Nowadays, this package is becoming very
popular and several applications for spatial and spatio-temporal data
analysis and visualization have already been developed (Moraga, 2017;
Adin et al., 2019a; Moraga, 2019). The application enables user
interaction through several control widgets (mainly selectors to specify
sex, cause of death and study period and configure the representation
of the results) and creates interactive visualizations of the data and
results.

The main results that can be visualized in ANDEES are:

− Maps with the estimated smoothed SMRs and probabilities of risk
excess for the different causes of death, sex and study period. The
created maps support interactive panning and zooming which
is very convenient for exploring in detail particular areas. In
addition, when clicking on a municipality, information appears
with its name, the province in which it is located and the estimates
obtained.

− Line plots showing the temporal evolution of risks, for the selected
sex and cause of death, at the national and provincial levels
throughout the different subperiods that make up the whole study
period. These plots include interactive features such as panning,
zooming and series highlighting.
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2. Methodology

− Data tables containing the estimates of interest. These tables
support filtering, pagination and sorting which is very helpful
in situations where we wish to locate the information from one
particular municipality or show the municipalities with highest
or lowest values.

All these results can be downloaded by users.

The maps with the risk patterns for each analysis are shown
interactively thanks to the use of some functions available in the
Leaflet package (Cheng et al., 2019). Some of these functions have
had to be optimized in order to speed up the rendering time of the maps
when modifying the different selectors. Line plots with the evolution of
the risks in the different subperiods of the study have been built with
the Plotly package (Sievert et al., 2020) and data tables for displaying
the estimates of interest are shown by making use of the DT package
(Xie et al., 2020).
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3. Main results

In this chapter, we summarize the main results of the different modeling
proposals developed in this thesis. Such results will be described in
more detail in the following chapters in which the published research
articles are presented. Finally, we briefly describe some geographical
mortality patterns estimated and shown in ANDEES.

3.1. Some findings on zero-inflated and
hurdle Poisson models for disease
mapping

We fitted the 4 proposed models for dealing with zero excesses: FE,
NFE, HGeo and ZGeo, to the previously mentioned mortality data
set (46 geographical patterns) at the municipal level in the Valencian
Region. First, we evaluate the models fit in terms of the number
of predicted zeroes by any of those models in comparison to those
actually observed for each disease. As a summary, we observe that
the posterior predictive distribution for the number of zeroes for all 4
models agree with the real observed zeroes for each disease. Namely, all
3 hurdle models yield similar results to the naive hurdle model, being
the posterior predictive median for the number of zeroes always very
close to the real observed zeroes. The zeroes modeling in ZGeo yields a
great improvement over naive ZIP models since for ZGeo the posterior
predictive median for the number of zeroes is always very close to the
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3.1. Some findings on zero-inflated and hurdle Poisson models for disease
mapping

real observed zeroes. All 95% prediction intervals for the number of
zeroes for all diseases and models contain the real observed zeroes, as
would be expected in models which perform an explicit modeling of
that particular feature in the data.

Second, we also compare the fit of the proposed models in general
terms by using the Deviance Information Criterion (DIC). Regarding
the FE model, its DIC is higher than that of the BYM model for 43
out of 46 data sets, so its performance in general does not seem very
satisfactory. This suggests that the modeling proposed in FE is worse
than that of the BYM model. As a consequence we will not pay further
attention to this model. The NFE model attains better DICs for 11 out
of the 15 data sets identified as having zero excesses for naive BYM
models. Meanwhile, NFE attained lowed DICs than BYM for just 5
out of the remaining 31 data sets with no evidence of zero excess, as
could be expected since BYM is less complex than NFE and for these
data sets NFE should not yield any improvement. Thus, NFE attains
in general lower DICs in those settings where it would be expected.
HGeo attained lower DICs than BYM for 6 out of 15 data sets needing
a particular treatment for zeroes and 2 out of 31 times when that
treatment was not required in principle. Finally, ZGeo obtained similar
results to HGeo, improving BYM in 5 out 15 times where zero excesses
were evidenced and 8 out of 31 times when these were not so evident.
Thus, the results of Geometric models are overall satisfactory although
not as good, in terms of DIC, as those of NFE.

Finally, we compared the smoothed SMRs choropleth maps for BYM,
NFE, HGeo and ZGeo. Both hurdle maps (NFE and HGeo) modify the
risks mainly in those regions less populated and more prone to show
zeroes, decreasing their risks in order to get those extra zeroes required.
In contrast, regions having high SMRs hardly show any change. ZGeo
introduces more differences with regard to BYM. New regions with
both high and low risks emerge for this model. In view of these results,
we recommend to use NFE as benchmark proposal among all those
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3. Main results

introduced in this thesis to address “zero excesses” problems. We have
found particularly satisfactory that NFE shows a better performance
in terms of DIC than the rest of models. Moreover, this model seems
to yield the risk patterns more similar to those of BYM, but with the
zeroes issue fixed, what makes it seem the safest option.

3.2. On the convenience of
heteroscedasticity in highly multivariate
disease mapping

We implement the new RVA and CVA variance-adaptive proposals
to study the geographic distribution of mortality at the census tract
level in the cities of Alicante, Castellón and Valencia. We consider
the multivariate joint spatial modeling of 20 different causes of death
independently for all three cities. In order to evaluate those proposals,
we compare the new estimated risks with those obtained with the
original NVA M -model proposed in Botella-Rocamora et al. (2015)
and the univariate BYM models.

In the case of AIDS mortality in Castellón, the new modeling
proposals provide risk maps with greater variability than that obtained
with the NVA model and closely similar to that estimated with the
univariate BYM model. For the rest of the diseases, the risk maps
estimated with the new modeling proposals present a considerable lower
variability than the risk map for AIDS. This shows that both RVA and
CVA have solved the problems evidenced by the original multivariate
NVA model, which provided risk maps with a similar variability for all
the diseases in the study. Nevertheless, the original patterns estimated
by the univariate BYM models seem to be reinforced for both the RVA
and the CVA models, almost certainly as a consequence of sharing
information between diseases. RVA and CVA estimates for Valencia
and Alicante confirm the visual conclusions also drawn for Castellón,
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3.3. On the use of adaptive spatial weight matrices from disease mapping
multivariate analyses

although maybe to a lesser extent, since data for these cities are stronger
than for Castellón. Thus, the results for these larger cities are far more
robust to the multivariate model used to smooth the risks.

Besides the visual comparison of the estimated risk maps with
the different modeling proposals, we have also compared the fit of
these models in general terms by using the Deviance Information
Criterion (DIC). We observe that the model that provides a better fit
in terms of DIC for all three cities is the RVA M -model, followed by
the CVA M -model in two out of the three cities in the study. This
seems to confirm that, besides the evident visual differences found, the
heteroscedastic nature of the RVA and CVA models yields an important
enhancement also in terms of the predictive fit of the models.

3.3. On the use of adaptive spatial weight
matrices from disease mapping
multivariate analyses

We evaluate the performance of the BYM and Leroux et al. models with
adaptive spatial weights. The main data set for this analysis corresponds
to the observed deaths in the Valencia city census tracts, for a total
of 15 different mortality causes in men for the period from 1996 to
2015. First, we estimate the weights matrix for the Valencia census
tracts, which reflect the dependence structure of the mortality causes
considered over the whole city. Subsequently, we use the estimated
spatial structure matrix in posterior univariate analyses in order to
assess the improvement that its use could bring, in comparison to the
traditional adjacency criterion that assumes fixed weigths, equal to 1,
for each adjacent pair of units.

For the BYM model, the values of the estimated spatial weights
(their posterior means) range from 0.098 to 2.042, with a mean value
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of 1.240, while for the Leroux et al. model these values range from
0.027 to 1.886, with a mean value of 1.264. Both adaptive proposals of
the BYM and Leroux et al. models estimate a closely similar spatial
dependence structure for the region of study. The correlation between
the estimated spatial weights for the adaptive BYM and Leroux et al.
models is 0.956. We observe that the census tracts with lowest spatial
weights have certain peculiarities that make them special with respect to
their adjacent units. On the one hand, residential homes for elderly or
socially excluded people are frequently located in some of those “special”
census tracts. As a consequence, these units often show higher observed
deaths than expected for most of the mortality causes considered, which
makes them exhibit a different behavior from those of their neighbors.
On the other hand, new building areas and socially marginal regions of
the city also frequently show lowest spatial weights. The use of a broad
set of mortality causes, with 15 diseases, has allowed the models to
identify those census tracts with these particularities that lead them to
exhibit a very particular behavior in terms of mortality. That behavior
requires an adaptation of the spatial weights matrix, otherwise their
risks would be oversmoothed and estimated more similarly to their
neighbors than they should. The high values of the spatial weights
vector seem to be used to connect more tightly those regions of the map
in the outskirts that would otherwise have an excessively independent
behavior, preventing them from being isolated. Thus, the adaptive
proposal run seems to change some geometric properties of the graph
that could make some census tracts less connected to the rest of the
graph than would be desirable.

Once the spatial weights matrix of the spatial random effects has
been estimated for a region, it could be used for subsequent univariate
disease mapping analyses on that same region. We assess that procedure
on our data set comparing it with the use of the spatial weights matrices
estimated with the most traditional procedure which uses the adjacency
criterion. Specifically, for all 15 diseases in our data set we have fitted
univariate BYM and Leroux et al. models assuming either the spatial
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3.3. On the use of adaptive spatial weight matrices from disease mapping
multivariate analyses

dependence structure estimated from the multivariate analysis above
or the traditional adjacency-based weights matrix. Next, we compare
the results of both analyses for each mortality cause according to
the smoothed SMRs of both alternatives and also according to the
Conditional Predictive Ordinate (CPO) and the Deviance Information
Criterion (DIC) of each model.

In order to make a fair comparison, avoiding the use of the data
twice (once for estimating spatial weights and once for estimating the
smoothed SMRs with the corresponding univariate models), we have
used different spatial weights in our comparisons. For each mortality
cause, we have estimated spatial weights with a multivariate study of
14 diseases, all excepting the corresponding disease, which avoids using
the data twice for the univariate (preestimated) adaptive analyses.

Both models provide risk maps with similar spatial patterns.
However, the model using the adaptive spatial weights reproduces
higher variability than its adjacency-based alternative allowing some of
Valencia’s neighborhoods to be reproduced more clearly and making it
possible for some census tracts to reproduce more extreme risks. Thus,
the adaptive weights avoid the excessive smoothing of the smoothed
SMRs by allowing additional flexibility. Afterwards, we have compared
the fit of the adaptive vs. the non-adaptive weights models according
to the CPO and DIC criterion. According to DIC (CPO), we observe
that BYM and Leroux et al. models with adaptive weight matrices
provide a better fit than the corresponding adjacency based model in 14
(13) and 13 (9), respectively, out of the 15 mortality causes considered.
This confirms that the greater flexibility of the adaptive models really
improves the smoothed SMRs estimates in comparison to the traditional
adjacency-based analyses.

40



“Thesis” — 2020/7/6 — 16:18 — page 41 — #83
picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picture

picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picture

3. Main results

3.4. Some interesting mortality geographic
patterns found in ANDEES

In this section, we summarize some of the main results shown in
ANDEES. Specifically, we describe the estimated mortality geographic
patterns for all causes of death joinly and for some specific causes of
particular interest, separately for men and women.

3.4.1. All-causes mortality
All-causes mortality risk maps for the whole period 1989-2014 show a
territorial distribution marked by a north-south pattern. In the case of
men, the highest mortality occurs especially in the southwestern half of
the peninsula (Extremadura and western of Andalucía). In contrast, the
areas with the lowest mortality are found in the northern Meseta and
below the Pyrenees. In the case of women, the highest mortality occurs
in the southern half of the peninsula, especially in the southern and
western part of Andalucía (Huelva, Sevilla, Cádiz and Málaga). On the
other hand, the areas with the lowest mortality are once again located in
the northern half of the Meseta and south of the Pyrenees. This higher
mortality from all causes in men and women in southern areas of the
country compared to mortality in the northern zone could be reflecting,
in part, the existing socioeconomic inequalities between these regions
(Benach and Yasui, 1999). The temporal evolution of mortality at the
provincial and national levels from all-causes in men and in women
shows a clear downward trend throughout the study period. This overall
downtrend in general mortality throughout the whole country could be
explained by the public health and sanitary improvements that have
occurred over the years of the long period of study. The spatio-temporal
results show how, in general, the north-south geographic pattern found
is maintained in all the subperiods of the study, and areas with an
evolution different from the general one are not found.
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3.4. Some interesting mortality geographic patterns found in ANDEES

3.4.2. Malignant tumor of the trachea, bronchi and
lung mortality

Regarding mortality risk maps for malignant tumor of the trachea,
bronchi and lung in the period 1989-2014, the areas with the highest
risks for this cause in men are mainly concentrated in the southwestern
part of the peninsula (Extremadura, Huelva, Sevilla and Cádiz), also
in some areas of the Mediterranean coast and in zones of Asturias. In
contrast, the areas with the lowest mortality risks are located in the
northern half of the peninsula, as well as the northeast of Andalucía,
east of Castilla-La Mancha and the Canary Islands. On the contrary,
for women the areas with the highest mortality due to this cause of
death appear scattered, highlighting mainly the Canary Islands, some
areas of Madrid, Bizkaia and Pontevedra, and coastal zones of Málaga,
Alicante and western Mallorca. Many of these correspond to regions
with a high presence of residential tourism. The evolution of malignant
tumor of the trachea, bronchi and lung mortality at the provincial
and national levels in men remains stable in most provinces in the
periods between 1991 and 2008, exhibiting a slight downward trend
from 2008. The decrease in risks in the provinces with the highest
mortality (Huelva, Sevilla, Cádiz, Cáceres and Badajoz) is observed
from 1996 and is more pronounced than in the other provinces. In the
case of women, mortality shows a clear upeard trend from the year 2000.
The spatio-temporal results show how, in general, the geographical
mortality pattern found for each sex for the entire study period is
maintained with slight variations in the different subperiods.

3.4.3. Malignant tumor of the stomach mortality
The areas with the highest mortality risks for malignant tumor of the
stomach in men during the period 1989-2014 are mainly concentrated in
Castilla y León and some neighboring areas. The Galician Atlantic coast,
Cáceres, Ciudad Real and areas of the northern interior of Cataluña also
show high mortality. The lowest relative risks are concentrated on the
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3. Main results

Canary and Balearic Islands, and more dispersed over the Mediterranean
coast. In the case of women, the geographical distribution shows a
similar pattern to that of men, although it extends to a greater extent
in areas of southern Galicia, northern Cataluña and Ciudad Real. The
evolution of mortality risks at the provincial and national levels in men
and in women shows a downward trend. The spatio-temporal results
show how the geographic pattern found in both sexes is maintained
in the different subperiods of the study, and areas with a different
evolution of the general one are not found.

3.4.4. Diabetes mellitus mortality
Diabetes mellitus mortality in men during the period 1989-2014 shows
a lower mortality in the northern half of the peninsula. The areas with
the highest mortality are especially concentrated in the Canary Islands,
Sevilla, Cádiz and zones of Jaén, Ciudad Real and Valencia, while those
with the lowest mortality are located in the eastern provinces of Castilla
y León, Galicia and Madrid. In the case of women, the territorial
distribution also follows a north-south pattern, where the areas with the
highest mortality are in the south: Extremadura, Andalucía, southern
Castilla-La Mancha, Murcia, Valencia and the Canary Islands. Low
risk areas are observed in the northeast of the Meseta (Soria, Segovia,
Burgos) and some areas of Teruel, León and Galicia. In short, we find
that mortality risks from diabetes in both sexes increase considerably
from north to south. The municipalities of the Canary Islands are those
that show the highest relative risks in Spain.

The risks at the provincial and national levels in men remain
practically stable throughout the period between 1991 and 2005.
Starting in 2005, we observed a slight downtrend, except in Las Palmas
and Santa Cruz de Tenerife where the trend is upwards. In the case of
women, the evolution of the risks shows a downward trend throughout
the study period except in Las Palmas and Santa Cruz de Tenerife
where the risks keep stable. The spatio-temporal results show the
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3.4. Some interesting mortality geographic patterns found in ANDEES

existence of zones with a different temporal evolution in the different
subperiods of the study compared to the results for the entire period.

3.4.5. Leukemia mortality
Leukemia mortality in men in the period 1989-2014 shows very little
variability. This flat pattern, far flatter than that of most diseases, is
the most striking feature of this mortality cause. We find that the areas
with the lowest relative risks are found in zones of the Canary and
Balearic Islands, Galicia and eastern of Castilla y León. On the contrary,
the areas with higher risks are found in Cáceres, Barcelona and Córdoba.
In the case of women, the geographic pattern of mortality from leukemia
is completely flat, with no areas with particularly higher/lower risks as
compared to the whole country. In view of these results, we conclude
that leukemia mortality is distributed homogeneously throughout the
national territory. The temporal evolution of leukemia mortality in men
and in women shows a downward trend throughout the study period.
The spatio-temporal results show how the risk maps for both sexes keep
constant in time with hardly any variation in the different subperiods
of the study.

3.4.6. AIDS mortality
Finally, we describe the AIDS mortality geographic pattern in men for
the period 1989-2014. The mortality risk map from AIDS in women is
not available since this cause of death does not have a sufficient number
of cases to be considered in the study. The areas with the highest
mortality risks for this cause in men are mainly concentrated in zones
of Sevilla and the Andalusian coast, Valencia and the eastern coast,
Asturias, Madrid and Barcelona. Thus, this disease is mostly typical of
urban and costal municipalities. The AIDS mortality temporal evolution
in men shows a significant increase during the periods 1991-1993 and
1994-1996, but for all the subsequent periods the mortality trend is
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3. Main results

decreasing. The spatio-temporal results show the existence of zones with
a different temporal evolution in the different subperiods of the study.
We found that the municipalities with a steeper decrease are located in
Cataluña, Valencia, Madrid, Vizkaia, Guipuzkoa and Navarra. On the
contrary, we find that the municipalities with a milder risk decrease
are located in Andalucía, Extremadura, western Castilla y León and
Galicia. Thus, AIDS mortality seems to move during the period of
study from more urban areas to areas with lower socioeconomic status.
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4. Some findings on
zero-inflated and hurdle
Poisson models for disease
mapping

In this chapter, we present our paper “Some findings on zero-inflated
and hurdle Poisson models for disease mapping” by Francisca
Corpas-Burgos (Foundation for the Promotion of Health and Biomedical
Research of Valencia Region), Gonzalo García-Donato (University of
Castilla-La Mancha) and Miguel A. Martinez-Beneito (Foundation for
the Promotion of Health and Biomedical Research of Valencia Region)
published in Statistics in Medicine (2018), 37(23):3325-3337.

Abstract
Zero excess in the study of geographically referenced mortality data
sets has been the focus of considerable attention in the literature, with
zero-inflation being the most common procedure to handle this lack of
fit. Although hurdle models have also been used in disease mapping
studies, their use is more rare. We show in this paper that models
using particular treatments of zero excesses are often required for
achieving appropriate fits in regular mortality studies since, otherwise,
geographical units with low expected counts are oversmoothed. However,
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4.1. Introduction

as also shown, an indiscriminate treatment of zero excess may be
unnecessary and has a problematic implementation. In this regard, we
find that naive zero-inflation and hurdle models, without an explicit
modeling of the probabilities of zeroes do not fix zero excesses problems
well enough and are clearly unsatisfactory. Results sharply suggest the
need for an explicit modeling of the probabilities that should vary across
areal units. Unfortunately, these more flexible modeling strategies can
easily lead to improper posterior distributions as we prove in several
theoretical results. Those procedures have been repeatedly used in
the disease mapping literature and one should bear these issues in
mind in order to propose valid models. We finally propose several
valid modeling alternatives according to the results mentioned that are
suitable for fitting zero excesses. We show that those proposals fix zero
excesses problems and correct the mentioned oversmoothing of risks in
low populated units depicting geographic patterns more suited to the
data.

Keywords
Disease mapping, hurdle Poisson model, posterior impropriety, zero
excess, ZIP

4.1. Introduction
Zero excesses have been frequently addressed within the disease mapping
literature, see for example Ugarte et al. (2004); Song et al. (2011);
Nieto-Barajas and Bandyopadhyay (2013); Musenge et al. (2013); Arab
(2015). We consider this problem from a Bayesian perspective, a
paradigm frequently adopted in this context (the last four references
above are Bayesian). This topic has received considerable attention in
recent years. For example, popular Bayesian software such as INLA (Rue
et al., 2009) has included up to 5 different functions that implement
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specific models to handle situations of zero excesses. This issue is
not exclusive to disease mapping problems but, on the contrary, is
related to any type of data taking in general positive integer values
(including 0), such as for example Poisson, binomial or negative-binomial
distributed data. Zero excesses are a source of overdispersion caused
by a disagreement between the data and the distribution assumed: we
have more zeroes in our data set than the proposed distribution could
reasonably explain. As a consequence, zero excesses are features inherent
to particular combinations of distributions (or models in general) and
data sets, but not intrinsic to particular data sets. The presence of a
large number of zeroes is symptomatic of a zero excess situation, but
not necessarily indicative of one since observing many zeroes could be
perfectly compatible with a Poisson distribution with a low expected
value. Therefore an indiscriminate use of models dealing with zero
excesses is, in principle, not necessary. In this sense several procedures
have been developed for assessing zero excesses in specific problems
like Van Der Broek (1995) or Bayarri et al. (2008) which deal with this
issue on Poisson data with constant or covariate-dependent expected
cases.

Many disease mapping studies have incorporated zero excesses
modeling strategies in the analysis of mortality spatial data.
Nevertheless, to our knowledge, it has not been extensively tested
whether zero-specific treatments should be routinely used in this
context or if, on the contrary, the standard Poisson assumption (with
spatially varying random effects) fits regular mortality data well enough.
Moreover, it is rarely the case that the pursued positive effect of such
treatments is checked with the unexpected possible consequence that
the original data misfit, in terms of zero counts, still remains. A
motivating aspect of this research is to shed some light on these two
relevant questions using a real extensive setting with 540 areal units
and 46 geographical patterns corresponding to roughly 27 different
causes of mortality. In particular we consider the zero-inflated and
hurdle Poisson models, the most popular models in the related literature.
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4.1. Introduction

With respect to the first question, in roughly 15 patterns out of the
46 considered (barely 32% of the cases) we have observed a serious
departure from the number of zeroes predicted with traditional disease
mapping models, while the need for specific zero excess treatment for
the rest is questionable. Our findings for the second question are more
worrisome from a practical point of view. As we report, a preventive
extra zero modeling may be totally innocuous for the zero-inflated
approach without a particular modeling of the zero-specific component.
For hurdle models the situation is even worse, since the estimations
of the underlying risks can be dramatically influenced by spurious
circumstances like the spatial distribution of the population along the
region of study. The consequence is relevant since, for many cases, we
could be reporting nonsense estimations based on an unneeded zero
excess treatment.

The results observed in the real application indicate that for
regular zero-inflated and hurdle Poisson proposals a specific modeling
of the probability of zero-excess is needed in order to construct
satisfactory methods. This is admittedly the path followed by many
applied works in the literature (references will be given). Nevertheless,
as we prove, such modeling has an unforeseen important difficulty,
namely that conditions for impropriety of the posterior distribution
(an invalidating fact for many not so formal related approaches) are
very soft. These theoretical results make the assignment of the prior
distributions a very delicate issue, preventing the use of highly popular
“casual” non-informative priors frequently implemented by-default in
specialized Bayesian software. Our result is quite general and affects
several components of the model (like fixed effects or variances of the
random effects) and many of the link functions (e.g. logit or probit).
Additionally, we propose alternative modeling strategies that, as we
argue, are safer in terms of validity of the results.

This paper is divided into 6 sections. Section 4.2 introduces the
BYM model (Besag et al., 1991), the most popular proposal for disease
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mapping and two specific refinements, zero-inflation and hurdle Poisson
modeling, in order to cope with zero excesses. Section 4.3 shows
the performance of these proposals in the analysis of the Valencian
Mortality Dataset. Section 4.4 contains the main theoretical results
about conditions for impropriety of posterior and presents some valid
proposals to overcome the problems encountered. Section 4.5 illustrates
the dangers of using vague prior distributions on some particular
variables of models treating zero excesses and reassesses the behavior of
the proposals made in Section 4.4 on the previous Valencian Mortality
Dataset. Finally, Section 4.6 draws some conclusions from the results
derived in this paper.

4.2. Some proposals for treating zero
excesses in disease mapping

The goal of disease mapping is dealing with the sparse information in
the observed counts of some health outcome over a set of areal units.
In general these units are small in statistical terms, with frequent low
observed counts, that makes them noisy and weakly informative of
the underlying risk of the disease for many of them. Thus, statistical
modeling is needed for drawing acceptable risk estimates in those
units. The models used for this task mainly rely on spatial conditional
autoregressive random effects to induce geographical dependence on the
risk estimates and therefore to increase the amount of information used
to estimate them. Among the models using these random effects we
highlight one that is particularly popular, the Besag, York and Mollié’s
model (Besag et al., 1991), BYM henceforth. For this model, data
{Oi : i = 1, ..., I} representing observed counts on the areal units are
modeled as

Oi|Ri ∼ Poisson(EiRi), i = 1, ..., I,

where Ei are the expected counts for each unit, typically calculated by
means of some age standardization, and Ri are the corresponding risks
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4.2. Some proposals for treating zero excesses in disease mapping

that we would like to estimate. Regarding the modeling of this last
term, BYM defines the log-risks as:

log(Ri) = µ+ φi + θi, (4.1)

where µ stands for an intercept modeling the mean of the log-risks and
the two subsequent terms are Gaussian random effects. The term φ

follows an intrinsic conditional autoregressive (ICAR) distribution, i.e.
their components are assumed to have the following prior conditional
distributions:

φi|φ−i, σφ ∼ N

n−1
i

∑
j∼i

φj, n
−1
i σ2

φ

 , i = 1, ..., I,

where ni stands for the number of neighboring areas of unit i, the
subindex in φ−i indicates all terms in φ excepting its i-th component
and the subindex j ∼ i denotes all those units j which are neighbors of i.
This definition can be further elaborated introducing some parameters
in order to weight the contribution of some units with respect to
others, although we will not use that option. This term induces spatial
dependence on R and accounts for those factors of regional scope
which take effect on several contiguous units, making them similar. In
contrast, the term θ in Expression (4.1) accounts for risk factors of
very limited geographical scope that take an effect just on isolated areal
units and make their risks different to those of their surrounding units.
The terms introducing independent variability on the risks are modeled
as independent Gaussian random effects, i.e

θi|σθ ∼ N(0, σ2
θ), i = 1, ..., I.

The amount of spatial dependence inR depends on the balance between
σφ and σθ. If the first has higher (respectively lower) values, in
comparison to the second, the final pattern will show substantial spatial
dependence (independence).
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Besides the spatial modeling that could be done with the BYM
model the data available may require a specific treatment of the observed
zero counts if the model fitted could not explain the amount of observed
zeroes in the data set. The most used tool for dealing with zero excesses
is zero-inflation. Specifically, in case of modeling observed counts with a
Poisson likelihood, the resulting model is known as zero-inflated Poisson
(ZIP) (Lambert, 1992). In its simplest form, ZIP models assume the
observed counts to follow a mixture of a degenerate distribution with
all its mass at zero and a Poisson(λ) distribution, with weights 1− πZ
and πZ , respectively. This inflates the amount of zeroes expected by
the Poisson distribution as a function of πZ .

ZIP models for disease mapping fuse the simplest ZIP approach
just introduced with spatial models (such as BYM). This yields flexible
ZIP models with different (and dependent) λis, acknowledging that
the studied data set may have more zeroes than those reproduced by
BYM. Being more precise, a ZIP version of the BYM model could
be formulated as follows: The observed data are assumed to follow a
Poisson distribution of mean EiRiZi, where Ei stands for the expected
cases, Ri for the spatially-varying risks in the Poisson distribution of
the BYM model and Zi for a binary variable modeling if the observed
counts correspond to an extra-Poisson zero (Zi = 0) or correspond
to a value coming from the Poisson distribution (Zi = 1). The risks
Ri would be modeled as in Equation (4.1) and the Zis would follow
a Bernoulli(πZ) distribution, with unknown πZ . For this model the
smoothed Standardized Mortality Ratios (SMR) would be computed
as RiZi, i.e. a mixture of the BYM-based risks and 0. Examples of
applications that adopt this modeling approach include Gschlößl and
Czado (2008); Song et al. (2011); Musenge et al. (2013).

As an alternative to ZIP, data sets showing zero excesses are
sometimes modeled as hurdle Poisson models (Mullahy, 1986), simply
hurdle models henceforth. This proposal assumes the data to follow
a mixture of a degenerate distribution with all its mass at zero and
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a zero-truncated Poisson distribution. That is, in contrast to ZIP
models, all observed zeroes in hurdle models are assumed to come
from the zero-degenerate distribution. Thus, the parameter 1− πH in
hurdle models represents the probability that a given areal unit has zero
observed cases instead of the percentage of extra-Poisson zeroes, the
interpretation of 1−πZ in ZIP. As for ZIP, hurdle models are combined
with specific disease mapping proposals, such as BYM, in order to yield
flexible spatial models accounting for zero excesses.

More specifically, for a hurdle version of the BYMmodel the observed
counts Oi are assumed

P (Oi|πH ,µ) = (1−πH)I{0}(Oi)

(
πH

(
exp(−µi)

µOi
i

Oi!
(1− exp(−µi))−1

))I(0,∞)(Oi)

,

where µi = EiRi and IΩ(x) is the indicator function for the condition
x ∈ Ω. The risks Ris in this model would follow Expression (4.1). For
this proposal the smoothed SMR for the i-th unit should be computed
as πH(µi/(1 − exp(−µi)))/Ei (Neelon et al., 2013), where πH is the
probability of belonging to the truncated Poisson component and µi/(1−
exp(−µi)) is the expected value given that the observation belongs to
that component. This term is divided by the expected cases Ei since
πH(µi/(1− exp(−µi))) would be the mean of Oi but we want to draw
an estimate of Oi/Ei instead.

Both ZIP and hurdle versions of the BYM model, as introduced
above, are posed under a Bayesian approach since BYM is also originally
formulated from a Bayesian point of view. As a consequence all the
parameters in BYM, ZIP and hurdle in this paper will have their own
prior distribution. We will discuss prior distributions for these models
more in depth in Section 4.4. Nevertheless, for now, we will not pay
them further attention as they will be mostly irrelevant for the issues
discussed in the next section. Anyway, the prior distributions used
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in our analyses could be considered as regular prior choices for these
models in the literature. Full details on the priors used can be found
in the supplementary material of this paper (Annex A, Section A.3),
which contains all the code used for its analyses.

In the next section, we implement these three different approaches
in a real extensive setting in order to assess their practical utility. As
we will see, the results are far from being as satisfactory as expected.

4.3. An initial analysis of the Valencian
Mortality Data: A motivating
application

Now that we have introduced the BYM model and two potential tools
to cope with zero excesses, we are going to test their performance in an
extensive real setting. We will pay particular attention to their fit in
terms of the number of predicted zeroes in comparison to those actually
observed. Our particular data set for this task is the mortality data
used in the Spatio-temporal Mortality Atlas of the Valencian Region
(1987-2006) (Zurriaga et al., 2010) in which we have ignored the temporal
component. This atlas studies 46 geographical patterns corresponding
to the distribution of 27 causes of mortality for each sex, excepting some
particular combinations without enough deaths or without biological
sense (e.g. prostate cancer in women). Mortality is disaggregated at
the municipal level in a total of 540 municipalities of very different
sizes, ranging from 22 to about 750,000 inhabitants (year 2000). Thus,
observed deaths are expected to show substantial variability between
municipalities, with some locations showing systematically 0 deaths for
most of the causes.

The number of observed zeroes for the 46 geographical patterns
analyzed ranges from 4 to 243. As we mentioned, such numbers,
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although sometimes high do not necessarily mean zero excesses. They
can simply represent low mortality for any of those causes or low
population for some municipalities. Thus, for assessing zero excesses
with regard to the models introduced in Section 4.2 we have run each
of them on the available data. For each model and cause of death we
have sampled values from the posterior predictive distribution of the
observed deaths for each municipality and we have compared those
samples against the observed values. Specifically, we have compared
the number of zeroes observed for each cause of mortality and those
predicted by the models from the MCMC.

Table 4.1 shows the results obtained for some causes of deaths,
specifically the first 10 causes. The full table with all 46 analyses made
is annexed as supplementary material to this paper (Annex A, Section
A.2). The second column of Table 4.1 contains the number of zeroes
observed for each data set meanwhile the next 3 columns correspond
to that same number as predicted by each model run. Namely, we have
run the BYM model without any particular treatment of zeroes as well
as ZIP and hurdle versions of that same model. Bold fonts in Table
4.1 denote those combinations of models and data sets evidencing zero
excesses according to their predictive intervals.

All models in this paper were run in WinBUGS and the code for each
of them can be found as annex material at Annex A, Section A.3. A
R-markdown document with all the analysis carried out can be found
in that Annex. Three chains were run for each model and data set
with 50,000 iterations, whose first 5,000 iterations were used as burn-in
period. Of these, one of every 135 iterations was saved yielding a final
sample size of 1,002 iterations. Convergence was assessed by means
of the Brooks-Gelman-Rubin statistic (we required this to be lower
than 1.1 for each variable in the model) and the effective sample size
(required to be at least 100 for every variable in the model) implemented
with the R2WinBUGS package of R.
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Table 4.1.: Observed zeroes for each data set and posterior predicted
zeroes for each model and for the first 10 mortality causes. Values in
the Obs. zeroes column correspond to the real observed zeroes for each
data set. For the next 3 columns, numbers correspond to the posterior
predictive medians for this same quantity for each model run and the
corresponding unilateral 95% posterior predictive intervals. Bold fonts
denote those combinations of models and data sets evidencing zero
excesses according to their predictive intervals.

Sex & Cause Obs. zeroes BYM ZIP Hurdle

(Men, All tumours) 4 2 [0,5] 3 [0,5] 5 [0,11]
(Women, All tumours) 7 6 [0,10] 6 [0,10] 8 [0,15]

(Men, Mouth) 216 196 [0,211] 199 [0,215] 216 [0,242]
(Men, Stomach) 105 91 [0,103] 92 [0,104] 105 [0,127]

(Women, Stomach) 150 137 [0,151] 138 [0,152] 150 [0,173]
(Men, Colorectal) 73 58 [0,68] 59 [0,69] 74 [0,93]

(Women, Colorectal) 74 72 [0,82] 73 [0,83] 74 [0,93]
(Men, Colon) 96 79 [0,91] 84 [0,96] 96 [0,119]

(Women, Colon) 98 91 [0,102] 92 [0,104] 99 [0,119]
(Men, Rectum) 201 180 [0,196] 183 [0,199] 202 [0,228]

... ... ... ... ...

Table 4.1 (and in more detail the full table in Annex A, Section A.2)
shows how BYM may fit quite poorly the number of zeroes for certain
data sets. Namely, for 15 out of the 46 data sets considered the 95%
posterior predictive intervals for the number of zeroes in BYM did
not contain the real observed zero counts and for 5 additional data
sets the upper limit of that interval coincided with the observed zeroes
–this seems excessive since we would expect a priori just 2 or 3 of the
observed zeroes to lay outside of the predictive intervals–. The main
conclusion is a substantial lack of fit for BYM in terms of the number
of zeroes predicted and therefore a general advice for specific treatment

57



“Thesis” — 2020/7/6 — 16:18 — page 58 — #100
picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picture

picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picture

4.3. An initial analysis of the Valencian Mortality Data: A motivating
application

of those cases. On the contrary, BYM seems to accommodate well the
number of zeroes in the rest of datasets (26), making it questionable
the need for particular treatments of excess of zeroes in those settings.

With respect to the approaches with a particular treatment of zeroes,
the results are not satisfactory for different reasons. Surprisingly, ZIP
does not help much in fitting more zeroes and 11 out of the 46 original
data sets showed 95% posterior predictive interval which do not contain
the real observed number of zeroes and in 1 occasion the upper limit of
the interval coincided with those zeroes. This performance, although
better than that of BYM is also unacceptable since the number of
predictive intervals that do not contain the corresponding observed
value is far above of that corresponding to the nominal probability
of the interval. On the contrary, for hurdle, all intervals contained
the observed number of zeroes. Nevertheless, this better fit of the
proportion of zeroes has a pernicious effect on the estimations of the
SMRs that make them barely reliable. To understand this effect, we
have represented in Figure 4.1 choropleth maps for the SMRs fitted for
all three models in Table 4.1 for rectum cancer in males, one of the
cases where the presence of a zero excess for BYM and ZIP is evident.

We first highlight that the maps for BYM and ZIP are quite similar
for this data set and in general for all diseases fitted (maps not shown).
This is not surprising according to the fit of the πZ parameter in
ZIP for all the causes. The posterior mean for this parameter, which
measures the weight of the Poisson side of ZIP models, for all 46 data
sets ranges from 0.973 to 0.998. Thus even though ZIP models should
be able to fit zero excesses, they refuse to do it by minimising the
weight of the zero-specific component. This may be a consequence
of the implementation where the πZ parameter is common to all
municipalities. So, decreasing πZ for making room to more zeroes
in smaller municipalities also entails an increase in the probability of
observing zeroes in large cities where that probability is virtually zero.
Since the amount of information available in large municipalities is
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BYM

SMR

< 0.67
0.67 − 0.80
0.80 − 0.91
0.91 − 1.10
1.10 − 1.25
1.25 − 1.50
> 1.50

ZIP Hurdle

Figure 4.1.: Choropleth maps for the SMR estimates for all three
models in Section 4.3, rectum cancer in men.

much higher than that in the smaller ones, ZIP decides to reject the
zero-specific term as its contribution is more harmful, in likelihood
terms, for the large municipalities than beneficial for the smaller ones
(those with potential lack of zeroes).

The SMR map for hurdle shows a weird pattern completely different
to BYM. This map shows a polarized pattern with high SMRs in the
smaller municipalities and low SMRs for the rest. This pattern is
systematically repeated for most of the data sets analyzed (maps not
shown), being more evident for those data sets with more observed
zeroes. In our opinion, this is also an effect of having a common πH
parameter for all the municipalities. In contrast to ZIP now πH for the
different data sets is not so close to 1, being its posterior mean always
very close to the proportion of non-zero observed counts for each data
set. Nevertheless, as mentioned in the previous section, πH takes also
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an effect on the calculation of the SMRs for this model, decreasing
the mean of the Poisson component in that same proportion. For the
small cities this makes the number of predicted zeroes to be increased
but, alternatively, for the non-small cities this makes the SMRs to be
underestimated as evidenced in Figure 4.1.

These results suggest that in our case both zero-specific treatments
using these naive proposals which put the same zero-specific probabilities
to all units do not seem a good choice. At least in our extensive analysis,
ZIP does not seem to have a clear effect with regard to the baseline
BYM model. For hurdle the particular (naive) treatment of zeroes
makes misleading the corresponding SMRs map. Since considering a
common probability for the zero-specific side seems to be the cause
of these problems, we will explore from now on the opportunities and
benefits that the modeling of those probabilities could bring.

4.4. Modeling of the probability of observing
a zero

One of the most valuable advantages of Bayesian hierarchical models
is the possibility of modeling particular features of the data that we
could be interested in. Nevertheless, that ability is not always good as
it can lead us to models which are not necessarily well formulated and
therefore to misleading or plainly wrong results.

As introduced in the previous section, both ZIP and hurdle models
require a particular treatment of the assignment of the observed counts
to any of the two processes intervening in each of them. That assignment
follows a binary process which, up to now, has depended on a single
parameter π common to all areal units. We will denote π when we
refer indistinctly to either πZ or πH . The obvious alternative to a
common probability is modeling unit-specific πis by means of, for
example, logistic regression. This has been repeatedly done in the

60



“Thesis” — 2020/7/6 — 16:18 — page 61 — #103
picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picture

picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picture

4. Some findings on zero-inflated and hurdle Poisson models for disease
mapping

disease mapping context for both ZIP (Dalrymple et al., 2003; Gschlößl
and Czado, 2008; Neelon et al., 2010; Musenge et al., 2013; Nieto-Barajas
and Bandyopadhyay, 2013) and hurdle models (Dalrymple et al., 2003;
Neelon et al., 2010, 2013; Upfill-Brown et al., 2014; Neelon et al., 2014;
Arab, 2015). That is, following several of the proposals in the literature,
for both ZIP and hurdle models we will consider from now on

logit(πi) = xiβ + ϕi (4.2)

where β model the effect of some set of covariates X and ϕ is a vector
of (possibly spatial) Gaussian random effects modeling the effect of
those factors that cannot be explained by X.

In the next subsection we introduce a series of results of great interest
for the models that we want to explore now. Namely, we have found
important posterior impropriety problems in hurdle and ZIP models
when the vector of probabilities π is modelled with either fixed or
random effects. This makes that modeling quite tricky and caution has
to be taken in order to avoid flawed modeling proposals. These results
will determine some ZIP and hurdle specific proposals that should
be avoided in general. We will discourage the use of those models
particularly in a non-informative or objective setting. Additionally,
Subsection 4.4.1 will allow us to focus on some valid proposals with
different πis, that will be later developed at Subsection 4.4.2.

4.4.1. Some theoretical results warning against the
use of certain popular casual non-informative
priors

Once a suitable model is specified, when it comes the need to assign
the prior distribution, the applied literature is flooded with casual
possibilities that include, for example, a uniform prior on fixed effects
parameters or its ‘proper’ counterpart of a normal density with an
arbitrarily large variance. Obviously, these proposals are valid (in the
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sense that results are covered by laws of probability) as far as the
associated posterior distribution is proper (see below the comment
on the ‘vague’ counterparts), a property that it is rarely checked in
practice. We do so here and conclude that the conditions for propriety
of the posterior are quite severe and are not fulfilled by many popular
non-informative choices.

We start by introducing some results for hurdle models which
consider πH as proposed in (4.2). The proofs and full formulation of the
results introduced in this subsection are provided in the supplementary
material to this paper (Annex A, Section A.1).

First, we have shown that the hurdle model with πH modeled as in
(4.2) is problematic since some issues arise on the use of both fixed and
random effects in that expression. As stated in Corollary 1 (Annex A,
Section A.1) the use of random effects with improper prior distributions
for σ, the standard deviation of the random effects, yields an improper
posterior distribution regardless of the other elements in the model.
This means that the use of random effects in (4.2) with many of the
default prior choices in the literature for their variability should be
avoided. Besides, if for the j∗ column of X, xij∗ is positive for every
i with Oi > 0 and negative otherwise (or vice versa) and the prior
distribution of βj∗ is improper for large positive (respectively negative)
values then the posterior distribution is also improper. So, we could also
have posterior impropriety problems using fixed effects for modeling πH .
Fortunately, this condition (although just a sufficient condition, not
necessary, for impropriety) will not be fulfilled easily since it depends in
a binary manner on all the (random) values of the outcome of the model.
That binary condition should be fulfilled for all the observed outcomes
which is not that easy, especially for regions with a large number of
units. Additionally, Corollary 1 is very general since as stated there,
these results above would hold equally for other common link functions
in (4.2) such as probit or tobit; they would also hold for non-Poisson
based likelihoods such as binomial or negative binomial and for other
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different spatial structures (with positive-definite covariance matrices)
besides BYM.

The situation for ZIP models is not better. As stated in Corollary
2 (Annex A, Section A.1) the use of random effects in (4.2) for ZIP
models is as problematic as for hurdle models, since it yields an improper
posterior distribution under the same premises. Moreover, the results for
ZIP are equally general since they also apply for different link functions,
likelihood families and spatial structures for the mean of the non-zero
process. Nevertheless, the case of fixed effects is substantially different
(worse) for ZIP since these yield posterior impropriety more easily than
hurdle models. Thus, we have found that a sufficient condition for
posterior impropriety in ZIP would be that for any column j∗ of X,
xij∗ > 0 (respectively xij∗ < 0) for all i and βj∗ to diverge for large
positive (respectively negative) values. This condition is much more
general since this could be fulfilled by design of the covariates, regardless
of the observed counts O. In principle we could easily get rid of this
issue by, for example, subtracting the mean of any of the covariates
in the model but the problem would remain for the intercept. The
intercept is positive for all the units in the model so any improper prior
distribution on its corresponding term in β would yield an improper
posterior distribution, independently of the additional problems that
the rest of covariates in the model could also entail.

One could be tempted to use vague proper prior distributions,
instead of improper priors, as a possible strategy to avoid impropriety
issues. This is a procedure frequently found in the literature, supposedly
to avoid MCMC convergence problems. Nevertheless, according to the
results stated above, these “convergence problems” are a numerical
manifestation of the more worrisome fact of having an improper limiting
posterior distribution. Berger (2006) argues that the use of a vague prior
mimicking an improper prior with an associated improper posterior
can only hide but not solve the problem. In our context, this of course
invalidates the use of standard approaches like a vague normal priors
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on each component of β, vague gamma priors on the precision of
the random effects or uniform prior distributions with a large upper
limit on their standard deviations. Interestingly though, a tentative
use of vague proper priors could serve as a diagnostic test to detect
possible underlying problems of posterior impropriety. For instance,
results assuming a uniform prior on the standard deviation of ϕ with
an arbitrary large upper limit show high sensitivity to such upper
limit, warning clearly about the possible impropriety of the posterior
distribution.

4.4.2. Some valid proposals for modeling π
The previous subsection has stated some procedures to be avoided
when modeling the probabilities π in both ZIP and hurdle models.
One option would be to use informative prior distributions for β and
σ. In this sense Agarwal et al. (2002) have made one proposal of
informative prior distributions for β for ZIP models. Nevertheless, we
would rather avoid informative prior distributions. So, we will propose
some (non-informative) procedures for modeling π that do not fulfill the
conditions for posterior impropriety stated above. Regretfully, we do
not have a proof for the posterior propriety of these proposals since the
impropriety conditions formulated are just sufficient but not necessary.
In any case, these new proposals do not fall into the premises of those
results, in contrast to many of the proposals formulated in the literature.
Moreover, in our experience, these new proposals do not seem to show
at all any of the MCMC convergence problems appearing when one of
the models yielding improper posterior (according to the conditions
stated in the previous subsection) were used. We formulate now 3
separate modeling proposals.
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4. Some findings on zero-inflated and hurdle Poisson models for disease
mapping

Fixed effects modeling:

Although, as described above, the use of random effects for modeling
π is quite problematic, the use of fixed effects for modeling πH in
hurdle seems a much less troublesome option. Thus, a potentially valid
modeling proposal (we will refer to this as FE [Fixed Effects] henceforth)
would be to consider a hurdle model as defined in Section 4.2 with

logit(πH) = Xβ.

A suitable proposal that could be used in principle for any disease
mapping model would be: X = [1I , log(E)], where E stands for the
vector of expected values used in the Poisson likelihood of hurdle
models. We have taken the logarithm of the expected values to avoid
any potential effect of the usually skewed distribution of this variable
caused by the presence of very few large cities. According to the results
above this could yield an improper posterior distribution if Oi is positive
for each region with Ei > 1 and Oi = 0 otherwise (or vice versa). But,
for a reasonably high number of areal units this condition seems very
unlikely to be fulfilled.

This proposal models the logit of the probabilities of non-zeroes as
a function of the expected observations at each areal unit. This seems
quite reasonable since units with lower expected counts would show
more easily zero observed counts meanwhile those larger units will show
positive counts in general. This could be achieved for β2 (the coefficient
corresponding to the log-expected cases) taking positive values. For this
proposal we will consider an improper uniform prior distribution for
each component of β. This is because we specifically want to avoid the
use of vague prior distributions that could hide posterior impropriety
problems into just MCMC convergence problems due to the almost
impropriety of posterior distributions.

Interestingly, note the link between this proposal and the EZIP1
proposal in Song et al. (2011). In that paper a ZIP model with πZi =
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4.4. Modeling of the probability of observing a zero

Ei

δ+Ei
is proposed. A logit transformation of this expression yields

logit(πZi ) = log(Ei)− log(δ) which would be a ZIP version of the FE
model just proposed. However, note that this model is valid since δ is
assumed to have a Unif(0, 1) prior distribution in the EZIP1 model
which yields an exponential distribution of mean 1 on −log(δ). This
proper prior obviously avoids any potential impropriety on the posterior
distribution.

Nested fixed effects modeling:

The use of expected values as a surrogate of the (population) size of the
areal units in the FE modeling seems quite reasonable. Nevertheless,
this does not depend at all on the probabilities of non-zeroes resulting
from the Poisson side of hurdle models: πP = 1− exp(−µ). Although
these probabilities have been evidenced to produce some misfit in the
data in terms of zero excesses, they could be also used as sensible
covariates for modeling the probabilities of zeroes πH , instead of just
E. This approach was already introduced in the zero-altered model
of Heilbron (1994). These probabilities πP would not just take into
account the size of the areal units, through the expected counts E,
but also the risk attributed to any of them by the Poisson side of the
model. These risks could be an additional source of information making
considerable improvements as compared to the use of simple expected
counts. Thus, our second proposal for modeling πH in hurdle models
would be

logit(πHi ) = logit(πPi ) + γ.

This would be an alternative fixed effects logistic modelling of πH using
logit(πP ) as an offset. The values of that offset would be leveraged
by γ so that if it takes values close to 0 this model would reproduce
the probabilities in the Poisson layer, even for zero-counts, meanwhile
for γ < 0 the zero-specific probabilities would be inflated in regards to
the Poisson model. Note that in case of adapting this modeling to the
hurdle-BYM model in Section 4.2, the original (uninflated) BYM model
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4. Some findings on zero-inflated and hurdle Poisson models for disease
mapping

could be reproduced within this proposal by making γ = 0, thus we
will henceforth refer to this model as NFE, Nested Fixed Effects model.
Once again we will consider an improper uniform prior distribution for
γ so that any potential posterior impropriety problem in this model
appears.

Geometric modeling:

Since resorting to logit (or probit, tobit) regression has proved to bring
lots of problems into ZIP and hurdle models, we could try to avoid those
transformations in order to make sensible proposals. Thus, making

πi = 1− (1− πG)Ei

seems a reasonable proposal for both ZIP and hurdle models. For this
proposal we would have that the probability of observing a zero count
for a unit with n expected cases is (1−πG)n, where 1−πG is that same
probability for a unit with 1 expected case. This geometric progression
also holds for the Poisson process where the probability of observing
zeroes with n expected cases exp(−nλ) = exp(−λ)n follows that same
relationship. Thus, the probabilities of zero counts for this proposal are
in agreement with the Poisson side of the model. For πG, which can be
interpreted as the probability of observing a positive count for units
with one expected case, we set a uniform prior distribution between 0
and 1. Since this prior is proper we avoid any posterior impropriety
coming from this term. One of the main advantages of this model
is that since the modeling of π does not rely on any improper prior
distribution this model could be also set up for ZIP modeling. This
is contrast to the previous proposals whose ZIP counterparts would
be discouraged since they rely on fixed effects logit modeling. We will
refer to the ZIP and hurdle versions of this model henceforth as ZGeo
and HGeo, respectively.

67



“Thesis” — 2020/7/6 — 16:18 — page 68 — #110
picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picture

picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picture

4.5. Empirical illustration of the modeling proposals introduced

4.5. Empirical illustration of the modeling
proposals introduced

We start this section by illustrating the problems induced on ZIP and
hurdle models by arbitrary prior vagueness. With this section we seek
to make clear how prior problems are not just present for improper
prior distributions but also for vague proper priors, which are commonly
used in ZIP and hurdle disease mapping models. Finally, we will show
how the modelling proposals introduced in the previous section perform
with the same datasets used in Section 4.3 where naive ZIP and Hurdle
models showed a deficient performance.

4.5.1. An illustration of the prior vagueness problems
in ZIP and hurdle models

We are going to illustrate the dangers of using vague proper priors,
instead of improper priors, for modeling πZ and πH in ZIP and hurdle
models. We have already proved that using improper priors for some
variables in these models would yield improper posteriors but we want
to evidence that using vague proper prior does not seem to be a safe
option in any case. Thus, we have run two separate models in this
study: a ZIP model with logit(πZi ) = α for i = 1, ..., I and a hurdle
model with logit(πHi ) = α+ γi and γi ∼ N(0, σγ) for i = 1, ..., I. These
models are somewhat naive, indeed, as mentioned in the paper the ZIP
model proposed will not fit in general any risk excess, and additional
regressors could be used for modelling both πZ and πH in order to
improve them. Nevertheless, we have preferred to keep these models as
simple as possible in order to illustrate the prior specification problems
that they show. We have run these two models on the rectum cancer
data set that has also illustrated the results in Section 4.3. All models
were run in WinBUGS.
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Regarding the ZIP model mentioned, we have run it for several
different prior choices for α: α ∼ N(0, σ2

α) for σ2
α equal to 10, 100, 1000

and 10000. For the first of these choices α has a posterior mean of 5.26
and a 95% posterior credible interval of [3.22,8.68]. For σ2

α = 100 we
obtain a posterior mean of 10.85 and a credible interval of [3.98,24.33].
For σ2

α = 1000 we obtain a posterior mean of 18.87 and a credible interval
of [5.18,35.15]. Finally, for σ2

α = 10000 WinBUGS finds a numerical error
(TRAP 66) and is not able to run this model. As we see, posterior
inference on α completely depends on the prior distribution set for this
parameter. None of the models run, excepting that with σ2

α = 10000,
show any evident convergence problem. Thus, someone fitting these
models without an additional sensitivity analysis, such as ours, will
accept as good the results for any of the models run, when these models
are just hiding the impropriety problems of an hypothetical improper
prior choice for α. Note that as we increase σ2

α, α increases steadily,
giving zero probability to the zero-specific component. This reinforces
the idea that naive ZIP proposals with logit modeling of πZ do not fit
appropriately zero excesses.

Regarding the random effects hurdle model, we have run it also with
different prior distributions for σγ: σγ ∼ Unif(0, Uγ) for Uγ equal to
2, 10 and 100. For Uγ equal to 2 the posterior mean of σγ is equal to 1.1
with 95% posterior credible interval [0.1,2.0]. For Uγ equal to 10 the
posterior mean of σγ is equal to 6.4 with 95% posterior credible interval
[0.7,9.8]. Finally, for Uγ equal to 100 the posterior mean of σγ is equal to
69.2 with 95% posterior credible interval [17.0,99.0]. Note how the upper
limits of the posterior credible intervals for σγ are always very close to
Uγ , pointing out the informativeness of these supposedly uninformative
choices. Thus, in summary, we see how the posterior distribution of σγ
heavily depends on the (arbitrary) vagueness of its prior distribution,
which makes unadvisable the use of arbitrary vague proper priors for
σγ as a safe substitute of an improper prior distribution.
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4.5. Empirical illustration of the modeling proposals introduced

4.5.2. A re-analysis of the Valencian Mortality
Dataset

We turn back once again to the analysis of the Valencian Mortality
Dataset in Section 4.3. We have run all 4 models proposed in the
previous subsection: FE, NFE, HGeo and ZGeo, on the diseases
considered there. First, we have assessed their fit in terms of the
number of zero counts reproduced, i.e. the equivalent of Table 4.1 but
for these new models. Table A.2 of the supplementary material to this
paper (Annex A, Section A.2) shows, for all of them, the posterior
medians and 95% credible intervals for the number of predicted zeroes.
As a summary, in contrast to the results shown in Table 4.1, the
posterior predictive distribution for the number of zeroes in all 4 models
agree with those numbers observed for the real data sets. Namely, all
3 hurdle models yield similar results to the hurdle model in Table 4.1
with the posterior predictive median for the number of zeroes in the
data sets always very close to the real observed zeroes. The modeling of
the probabilities of zeroes in ZGeo has made a great improvement over
naive ZIP models since for ZGeo the predictive posterior median for the
number of zeroes is always very close to the real observed zeroes. All
95% credible intervals for the number of predicted zeroes for all diseases
and models contain the real observed zeroes as would be expected in
models which are performing an explicit modeling of that particular
feature in the data.

Second, we have also compared the fit of these models in general
terms by using the Deviance Information Criterion (DIC) proposed by
Spiegelhalter et al. (2002). The DICs for all models and 46 data sets,
with their corresponding deviances and number of effective parameters,
can be found at Table A.3 of Annex A, Section A.2. Regarding the FE
model its DIC is higher than that of the BYM model for 43 out of 46
data sets so its performance in general does not seem very satisfactory.
Although the FE model is more complex than BYM (has two additional
parameters) the deviances obtained are in general substantially higher
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than those of BYM models. This suggests that the modeling proposed
in FE is worse than that of the BYM model, thus maybe a linear
function of log(E) is not as good as it could seem in principle. As a
consequence we will not pay further attention to this model from now
on. The NFE model attains better DICs for 11 out of the 15 data sets
identified as having zero excesses. Meanwhile, for just 5 out of the
remaining 31 data sets with no evidence of zero excess NFE was better
in terms of DIC, as could be expected since BYM is less complex than
NFE and for these data sets NFE should not yield any improvement.
Thus, NFE attains in general lower DICs in those settings where it
would be expected. Regarding HGeo, it attained 6 out of 15 DICs lower
than BYM for those data sets needing a particular treatment for zeroes
and 2 out of 31 times was lower for those data sets that did not need
that treatment in principle. Finally, ZGeo also obtained similar results
to HGeo, improving BYM in 5 out 15 times where zero excesses were
evidenced and 8 out of 31 times when these were not so evident. Thus
the results of Geometric models are overall satisfactory although not as
good, in terms of DIC, as those of NFE.

Regarding the estimates of the parameters in the models proposed,
those of NFE showed a particularly coherent performance. Thus, for all
data sets needing zero treatment the parameter γ in the model attained
a 95% posterior credible interval completely below 0 (we mentioned that
γ < 0 should be a sign of zero correction with respect to BYM). On the
contrary, for only 1 out of the 31 data sets not showing zero excesses
the 95% credible interval for γ was completely below zero. Posterior
means and 95% credible intervals for γ for all 46 data sets can be found
at Table A.4 in Annex A to the paper (Section A.2). We do not find
anything particularly interesting in the πG estimates obtained in the
Geometric models. These parameters have a cumbersome interpretation
since they are referred as the probability of the zero-specific term for
units having E = 1, but each data set and spatial unit have different
expected values. Thus, no particularly intuitive result is drawn from
their estimates.
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BYM

SMR

< 0.67
0.67 − 0.80
0.80 − 0.91
0.91 − 1.10
1.10 − 1.25
1.25 − 1.50
> 1.50

NFE HGeo ZGeo

Figure 4.2.: Choropleth maps for the SMR estimates of NFE, HGeo
and ZGeo models, rectum cancer in men.

Figure 4.2 shows choropleth maps with the smoothed SMRs for
rectal cancer in men for BYM, NFE, HGeo and ZGeo. Recall that this
pattern was one of those needing some zero treatment. Both hurdle
maps (NFE and HGeo) are similar as their modeling of the probabilities
of zeroes is also similar, as mentioned in Section 4.4. They mainly
modify the risks in those regions less populated and more prone to
zeroes (upper-left side of the maps) decreasing their risks in order to
get those extra zeroes needed. As seen in Section 4.3 this differential
performance of the low populated areas could not be achieved with the
naive models introduced in Section 4.2. In contrast, regions having high
SMRs hardly show any change. Thus hurdle models mainly modify
the left tail of the distribution of the SMRs in order to fit the zero
excess, but leaves the right tail of the distribution mostly unchanged.
ZGeo introduces more differences with regard to BYM in both tails
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of the distribution. New regions with both high and low risks have
emerged in this map. Several regions of very low risk have emerged in
the upper-left side of the map. This result of ZGeo is very common and
can also be seen in many of the diseases studied (see Annex A, Section
A.2 for seeing all 4 maps for the whole set of diseases).

Although the choice of a particular model for treating zero excesses is
not a goal of this work, we would recommend to use NFE as benchmark
proposal between all those introduced in this paper. We have found
particularly satisfactory that NFE shows a better performance in terms
of DIC than the rest of models and the estimates of its γ parameter
seems very coherent. Moreover, this model seems to yield conservative
results in that the change in their geographic patterns compared to
BYM is milder than that for the rest of models, yet enough to correct the
original zero excesses in the BYM models. Finally, the logit formulation
of NFE makes it particularly well suited for further modelling πH if
needed in contrast to the geometric proposals. Thus we overall find NFE
a convenient proposal for modeling data sets showing zero excesses.

4.6. Conclusions
Disease mapping models with zero-specific treatment can be considered
as enhanced disease mapping models controlling overdispersion in the
observed counts inducing also dependence on the underlying risks.
Nevertheless, overdispersion fitting procedures in general may not be
enough for solving zero excesses problems, which are a unique kind
of overdispersion. Thus, specific models are needed to deal with this
problem. As shown in this paper zero excesses are present in certain
data sets concerning mortality data, at least for the Valencian Mortality
Dataset. A relevant proportion of the diseases studied have been found
to show zero excesses, even after accounting for overdispersion with
disease mapping models. Thus, as evidenced, zero excesses require
attention for mortality geographic studies in general.
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4.6. Conclusions

The Valencian Mortality Dataset is somewhat particular in some
senses due to the high demographic variability of the units of study.
This could have made naive ZIP and hurdle models (without modeling
of the probabilities of the zero-specific component) seem particularly
bad as zero-specific components also put substantial probability to zero
counts in large cities. As a consequence the zero-specific components
are discarded. Nevertheless, we expect substantial differences in the
expected cases for regular disease mapping studies since otherwise those
expected values would not be omnipresent in so many studies. In any
case the Valencian Mortality Dataset is comprehensive enough and
representative of real mortality data so that the need of zero-treatment
evidenced in this dataset could be a signal of a general fact in mortality
data sets of other regions.

Maybe one reason why mortality data may show frequent zero
excesses when smoothing the SMRs is inherent to the smoothing process.
Smoothing procedures usually combine information on the observed
data and the prior structure defined by the model. When that observed
information is low (small units) the shrinkage towards the prior structure
is stronger. As a consequence the risks in the smaller units may be easily
oversmoothed towards the mean, or a local mean, yielding conservative
risk estimates. Models treating zero excesses with a different probability
of the zero-specific component solve this problem by decreasing the
risk in the smaller units (those which are more likely to show zeroes)
and therefore increasing the number of zeroes predicted. Nevertheless,
a similar oversmoothing could exist in small units showing high risks.
In that case their SMRs should be higher but they are oversmoothed
towards the mean because of the small information in each of them.
Proposals modeling zero excesses in no way would fix this issue which
only alleviates the oversmoothing of small units showing low risks.

In our opinion the theoretical results in Subsection 4.4.1 are
also of high importance from an applied point of view. They
show that proposals leading to wrong (improper) results have been
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frequently proposed in the literature. These problems can have
different consequences such as plain improper posterior distributions
or, if arbitrary vague prior distributions are used, arbitrary posterior
distributions which are extremely sensitive (possibly unnoticedly) to
prior parameters. These problems are often interpreted in the literature
as simple MCMC convergence problems. Although this may seem
obvious, we would advice modelers to pay further attention to those
convergence problems. In our experience those problems have been an
excellent guidance for formulating the theoretical results in Subsection
4.4.1 since they clearly warn that something suspicious could be
happening. In our opinion this is an additional advantage of MCMC
inference since convergence problems can be treated, at least in this
context, as a trace of problems in model formulations instead of simple
drawbacks inherent to MCMC as an inferential tool.

The main purpose of this paper has not been to propose a
particularly suitable model for dealing with zero excesses. Besides
showing the high prevalence of zero excesses problems in regular
mortality data, which would deserve further epidemiological research,
the purpose of this paper is double. On one hand, we pretend to
show some theoretical pointing out wrong procedures in this area. In
our opinion this is quite important in order to avoid works proposing
flawed models. The main value of this side of the paper is warning
modelers on what procedures not to do instead of setting what to
do with zero excesses. Our results are just sufficient, not necessary,
conditions for posterior impropriety in these models. On the other
hand, this paper illustrates several “valid” proposals for modeling zero
excesses, i.e. we wanted to illustrate suitable proposals for handling
this particular issue that were admissible in light of the results shown
in Section 4.4. It would be desirable to have a proof of the posterior
propriety of these proposals, or even better necessary conditions for the
posterior impropriety of zero-specific models in general. Regretfully we
do not have that proof but anyway the value of the results proved still
remain since they guide us on what procedures not to follow which is a
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valuable guidance according to many models already proposed in the
literature.

A more thorough comparison of the models in Subsection 4.4 and
possibly some further models would be greatly advisable although that
comparison is beyond the scope of this paper. We have found more
interesting to illustrate several modeling proposals instead of exposing
just one of them. We also find it convenient to conclude pointing out
that, although the conditions in our results are fairly general, there
are some settings that are not covered by them. For example, our
results do not shed light on the use of multivariate random effects for
modeling the zeroes and Poisson processes by means of multivariate
spatial distributions (Neelon et al., 2013, 2014). Moreover, our results
apply only to the case of having a single observed count per spatial
unit, if more counts were available (Neelon et al., 2010, 2013, 2014) this
would be beyond the scope of this paper. Anyway, the current results
suggest the need for further research on these settings but also suggest
a high dose of caution when formulating proposals in this area.

Finally, we would like to point out that according to Natarajan and
McCulloch (1995) the conditions stated there for posterior impropriety
in the modeling of binary data are similar to those formulated in Albert
and Anderson (1984) for non-existence of MLE in logit frequentist
modeling. Indeed, the conditions for posterior impropriety in the
Bayesian approach are more restrictive than those for non-existence of
the MLEs in the frequentist context. The conditions set at Natarajan
and McCulloch (1995) have been those also set as conditions for posterior
impropriety for the modeling of the probability of the zero-specific
component with random effects in our work. Thus, the frequentist
formulation of ZIP and hurdle models from a frequentist setting could
be in principle as problematic as that same formulation from a Bayesian
point of view. The conditions under which frequentist ZIP and hurdle
models yield valid (or unvalid) MLEs should be further explored but
the results of this paper and the work of Albert and Anderson (1984)

76



“Thesis” — 2020/7/6 — 16:18 — page 77 — #119
picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picture

picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picture

4. Some findings on zero-inflated and hurdle Poisson models for disease
mapping

shed some doubts on those formulations from a frequentist point of
view.
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5. On the convenience of
heteroscedasticity in highly
multivariate disease
mapping

In this chapter, we present our paper “On the convenience of
heteroscedasticity in highly multivariate disease mapping” by Francisca
Corpas-Burgos (Foundation for the Promotion of Health and Biomedical
Research of Valencia Region), Paloma Botella-Rocamora (Conselleria
de Sanitat Universal i Salut Pública) and Miguel A. Martinez-Beneito
(Foundation for the Promotion of Health and Biomedical Research of
Valencia Region) published in Test (2019), 28(4):1229-1250.

Abstract
Highly multivariate disease mapping has recently been proposed as
an enhancement of traditional multivariate studies, making it possible
to perform the joint analysis of a large number of diseases. This
line of research has an important potential since it integrates the
information of many diseases into a single model yielding richer and
more accurate risk maps. In this paper we show how some of the
proposals already put forward in this area display some particular
problems when applied to small regions of study. Specifically, the
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5.1. Introduction

homoscedasticity of these proposals may produce evident misfits and
distorted risk maps. In this paper we propose two new models to deal
with the variance-adaptivity problem in multivariate disease mapping
studies and give some theoretical insights on their interpretation.

Keywords
Gaussian Markov random fields, Multivariate disease mapping, Bayesian
statistics, Spatial statistics, Mortality studies

5.1. Introduction
The analysis of geographical variations in rates of diseases has a
long tradition in epidemiology and statistics. This area of research,
known as disease mapping, has generated substantial interest from a
methodological point of view. In the beginning, disease mapping studies
focused mainly on the modeling of a single disease. However, there
may be several diseases with common shared risk factors. Recently,
multivariate disease mapping has received considerable attention by
researchers interested in the simultaneous joint spatial modeling of
several diseases (MacNab, 2016b,a; Martinez-Beneito et al., 2017).
Multivariate disease mapping models attempt to estimate the risk
of a disease in specific locations by using its spatial dependence as well
as the geographical distribution of the risks for other related diseases.
By so doing, a greater amount of information is used in the estimation of
the risks than in univariate models, which allows more precise estimates
to be obtained.

Martinez-Beneito (2013) recently developed a general framework
for multivariate disease mapping capable of reproducing many of the
Bayesian models in this area previously proposed in the literature. The
problem with that approach, and that of most of the multivariate
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disease mapping models in the literature, is its complexity and
computing requirements. Consequently, most of the existing literature
is restricted to multivariate modeling of two or three diseases at most.
However, Botella-Rocamora et al. (2015) extended the previous work
by developing a simpler and computationally more convenient proposal
capable of handling a considerably large number (tens) of diseases.
A second important advantage of this proposal is that it can be
implemented in regular Bayesian simulation packages such as WinBUGS
(Lunn et al., 2000).

In this work, we present an application of the methodology proposed
in Botella-Rocamora et al. (2015) for the spatial modeling of several
diseases in the cities of Alicante, Castellón and Valencia, which belong
to the Valencian region, one of the 17 administrative regions that
Spain is divided into. After observing the results obtained, some
limitations of the previous methodology are evidenced when it is applied
to smaller cities, as is the case of Castellón. For this reason, we
propose an enhancement, variance adaptivity, of Botella-Rocamora et
al.’s methodology, which allows the problems evidenced to be solved and
thereby improving multivariate risk estimates. Moreover, we also focus
particular attention on the multivariate implementation of the Besag
et al. (1991) model (BYM henceforth), which has not previously been
developed within the context of M -models, the multivariate disease
mapping proposal used in this paper.

This paper is organized as follows. Section 5.2 describes the modeling
proposal in Botella-Rocamora et al. (2015) for multivariate disease
mapping and introduces the particular implementation of that model
with BYM spatial structures. Section 5.3 shows an application of the
previous methodology to real data in the Spanish cities of Alicante,
Castellón and Valencia. In Section 5.4 we propose a modification of the
previous model that makes it possible to solve some of the problems
found in the estimation of the risk maps for the city of Castellón.
Section 5.5 presents and compares the results obtained with the new
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modeling proposal in a simulated study and on the mortality data for
Alicante, Castellón and Valencia, previously analyzed. Finally, Section
6.5 contains some conclusions about the models and the results obtained
in the previous sections.

5.2. The M -model for multivariate disease
mapping

A general statistical framework for the multivariate disease mapping
problem can be described as follows. Let Oij and Eij denote,
respectively, the number of observed and expected cases for the i-th
geographical unit of study and the j-th disease. The data likelihood
assumes that

Oij ∼ Poisson(EijRRij) i = 1, ..., I, j = 1, ..., J

where RRij is the relative risk for the i-th geographical unit and j-th
disease, and is modeled as log(RRij) = µj + θij. The term µj is
just an intercept for the j-th disease and Θ = {θij : i = 1, ..., I; j =
1, ..., J} is a collection of random effects whose joint distribution specifies
how dependence is defined within and between diseases. Specifically,
dependence among the columns of Θ induces dependence between
diseases and, similarly, dependence among its rows induces spatial
dependence within diseases (geographical units).

The original modeling proposal in Botella-Rocamora et al. (2015)
induces spatial multivariate dependence by setting

Θ = ΦM (5.1)

where Φ is an I × K matrix of random effects with independently
distributed columns that typically follow some spatially correlated
distribution, such as a proper CAR (Conditional Auto-Regressive)
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distribution. In that case different spatial correlation parameters could
be set for the columns of Φ, to reproduce a non-separable covariance
structure (Martinez-Beneito, 2013). Additionally, several columns
with different dependence structures could also be used to reproduce
more complex spatial dependence structures, such as Besag, York and
Mollié’s model (Besag et al., 1991). Those spatial distributions induce
dependence between spatial units and therefore between rows of Θ.
Additionally, M is a K × J random matrix which induces dependence
between the different columns in Θ, that is, between the different
diseases considered in the analysis. Usually K = J , although they
could be different, such as for the multivariate formulation of the BYM
model, where two random effects are included per disease and therefore
K = 2J . The variance parameter of the random effects in the columns
of Φ is usually set to 1, since M cells are responsible for controlling
the variability of Θ. Otherwise, those variances and the cells of M
would not be identifiable as they would cancel each other out. On the
other hand, as proposed by Botella-Rocamora et al., the cells of M
are independently defined as Mij ∼ N(0, σ2) i = 1, ..., K, j = 1, ..., J ,
where σ could be either a fixed (typically large) value, and therefore
the Mijs would follow vague independent prior distributions, or an
additional variable to be estimated in the model. In the first case,
we call the corresponding modeling fixed effects M -modeling, since M
cells would be modeled in that manner and, alternatively, we call the
second case random effects M -modeling, once again because of the
modeling of the cells carried out in M. Botella-Rocamora et al. chose
a uniform vague prior distribution on σ, which is the one we will also
use throughout this paper.

To conclude this brief introduction to Botella-Rocamora et al.’s
proposal, we believe it is also worth mentioning a theoretical property
of this model that will be used later in this work. Thus, as shown in
the original paper, assigning N(0, σ2) prior distributions to the entries
in M yields a Wishart(K, σ2Ij) prior distribution for the covariance
matrix between diseases Σb when all spatial models share the same
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5.2. The M -model for multivariate disease mapping

spatial distribution, which can be computed as simply M′M. Hence,
the independent modeling of the cells of M entails a prior mean for Σb

proportional to an identity matrix or, alternatively, it assumes prior
independence in the columns of Θ.

5.2.1. BYM M -models
The multivariate generalization of the BYM model by means of
M -models has not been described in the literature to date. Since BYM
models are one of the most popular modeling options in univariate
disease mapping, we will develop that extension in detail in this section.
The BYM models spatial patterns as the sum of two random effects, one
spatially correlated (ψ) following an Intrinsic CAR (ICAR) distribution
and the other independent between the units of study (γ). The first
random effect induces dependence between nearby spatial units, while
the second allows them to have markedly different risks to those of
their neighbors, if appropriate. To formulate an M -model depending
on BYM spatial structures, we should consider Φ = [Ψ : Γ ], where
Ψ = [ψ1 : ... : ψK ] and Γ = [γ1 : ... : γK ] are I ×K matrices of spatial
(ICAR) and heterogeneous terms. In the following we will consider K as
equal to J so that we will have as many spatial and heterogeneous terms
as spatial patterns to be modeled. Therefore, Φ will be an I × (2J)
matrix. In a similar manner we will consider M = [M ′

s : M ′
h]′, where

M s and Mh are J × J matrices in charge of modeling the covariance
between diseases for the spatial and heterogeneous terms.

For these definitions of Φ and M , the original matrix product in
Expression (5.1) is

Θ = ΦM = ΨMs + ΓMh.

If for any I × J matrix X we denote vec(X) = (x′·1, ...,x′·J)′, then

vec(Θ) = vec(ΨMs) + vec(ΓMh)
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and therefore the covariance matrix of this vector can be decomposed
as

Σvec(Θ) = Σvec(ΨMs) +Σvec(ΓMh).

Since vec(ΨMs) = (M ′
s ⊗ II)vec(Ψ ) (see, for example, Expression

(3.76) in Gentle (2007)), then

Σvec(ΨMs) = (M ′
s ⊗ II)Σvec(Ψ)(M s ⊗ II)

= (M ′
s ⊗ II)(IJ ⊗Σs)(M s ⊗ II) = (M ′

sMs ⊗Σs),

where Σs = (D −W )− denotes the Moore-Penrose generalized
inverse of the precision matrix of the ICAR distribution of the columns
of Ψ . In a similar manner

Σvec(ΓMh) = (M ′
hMh ⊗ II).

Therefore, for the BYM M -model defined above

Σvec(Θ) = (M ′
sMs ⊗Σs) + (M ′

hMh ⊗ II), (5.2)

where all the blocks in that matrix are of the form (σ2
s)ij(D −W )− +

(σ2
h)ijII , so that all the variances and cross-covariances in this model

have BYM spatial structures of different spatial and heterogeneous
variances.

One particularity of the implementation of M -models with BYM
spatial structures is the following. Let us assume all the cells in M
follow an N(0, σ2) as for the original implementation of M -models
with proper CAR distributions. In that case, the covariance matrix of
the corresponding model will take the form of Expression (5.2), where
Σs

b = M ′
sMs and Σh

b = M ′
hMh followWishart(J, σ2IJ) distributions.

As a consequence, both Σs
b and Σh

b have the same prior distribution
and if data are not strong enough, the two matrices will tend to be
similar. This may be a problem as it could interfere in the balance
between the spatial and heterogeneous terms of the BYM model that
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controls the amount of spatiality and heterogeneity in the geographical
patterns that are fitted. By considering all the cells inM as having the
same prior distribution, that balance would be set in advance, regardless
of the spatial dependence that data could show. A possible solution
to this problem could be to set different variances for the elements of
M s and Mh, that is (M s)ij ∼ N(0, σ2

s) and (Mh)ij ∼ N(0, σ2
h). In

this case the covariance matrix of the BYM M -model would also take
the form of Expression (5.2), but in this case Σs

b ∼ Wishart(J, σ2
sIJ)

and Σh
b ∼ Wishart(J, σ2

hIJ), which will allow the balance between the
spatial and heterogeneous terms to be determined within the model.
This is the implementation of the BYM M -model that we have run for
the next example.

A final issue that deserves some attention when implementing BYM
M -models is the estimation of the covariance matrix between diseases.
For multivariate models with a separable structure, the covariance
matrix can be calculated as M ′M (Botella-Rocamora et al., 2015).
Nevertheless, separability would require the columns of Φ to share a
common distribution with common parameters. This is a restrictive
assumption, but even for pCAR M -models with different but similar
correlation parameters, M ′M could be a reasonable estimate of the
covariance matrix between diseases. For BYM M -models, however,
one half of the underlying patterns in Φ have ICAR priors while the
other half have independent Normal priors, which are very different.
Moreover, the (marginal) scale of these two prior distributions may
be very different (Bernardinelli et al., 1995; Schrödle and Held, 2011),
which is something that should be borne in mind in order to estimate any
sensible covariance matrix between diseases. Thus, for BYMM -models,
we find it far more sensible to summarize the covariance matrix between
diseases as the covariance matrix of the columns of log(Θ) instead of
making M ′M , as for M -models based on a single distribution for the
columns of Φ.
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5.3. A motivating analysis

5.3.1. A multivariate mortality study in Castellón
The multivariate proposal put forward by Botella-Rocamora et al.
(2015) has been implemented to study the geographical distribution
of mortality in the cities of Alicante, Castellón and Valencia. In this
section, we present some results obtained in the city of Castellón, which
was composed of 95 census tracts (the geographical unit for this analysis)
and had around 170,000 inhabitants in 2016. Parallel results for the
analyses performed in Alicante and Valencia, composed of 215 and
553 census tracts respectively, are included as supplementary material
to this paper due to lack of space (see Annex B, Section B.1). We
consider the multivariate joint spatial modeling of 20 different causes
of mortality and both fixed and random effects M -models for all three
cities separately. In order to evaluate the benefits of multivariate
modeling, we compare the results obtained with Botella-Rocamora et
al.’s M -models with underlying BYM spatial patterns against those
obtained with independent BYM patterns for each disease.

All models were run in WinBUGS and the R code for calling each
of them can be found as annex material in supplementary material
(Annex B, Section B.2). Three chains were run for each model with
30,000 iterations, the first 5,000 of which were discarded as burn-in
period. Of these, one out of every 75 iterations was saved, thereby
yielding a final sample size of 1,002 iterations. We reran the model for
Castellón with 300,000 iterations but we did not find any differences
in the results of the two runs. We have therefore preferred to keep the
results with just 30,000 iterations for the rest of the paper since we felt
that these were enough. Convergence was assessed by means of the
Brooks-Gelman-Rubin statistic (we required this to be lower than 1.1
for each variable) and the effective sample size (required to be at least
100 for each variable). Convergence was explored for the intercepts of
the diseases, risk estimates, cells of the covariance matrices between
diseases (Σs

b and Σh
b ) and deviance, i.e., for the variables in the model
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which are identifiable. We have not assessed their convergence of the
rest of the parameters in the model that are not identifiable (cells ofM
and Φ), since they could yield a false sensation of convergence by simply
exchanging their values for each step of the MCMC. Convergence was
assessed with the R2WinBUGS package of R.

Figure 5.1 shows the results obtained with univariate BYM models
(upper row), fixed effectsM -modeling (middle row), and random effects
M -modeling (lower row) for 3 out of the 20 causes of death under
study in Castellón: AIDS, Cerebrovascular disease, and Suicides in
men. Results shown for the fixed effects M -model assume improper
Mij ∝ 1 distributions, that is, we implicitly assume σ to be set to
∞ in this case. Nevertheless, we have also run the same model with
σ set to high fixed values, such as 100 or 1000, obtaining results
that are barely distinguishable. Green colors correspond to census
tracts with estimated low risks (Smoothed Standardized Mortality
Ratio (sSMRs)< 0.67 = (1.5)−1 for darker greens), while brown colors
correspond to units of high risk (sSMRs> 1.5 for darker browns).
Light-colored units denote milder deviations from the overall risk for
the city.

As can be appreciated, markedly different risk maps are obtained
with the multivariate fixed effects M -model, as compared to the
univariate BYM models. Although the risk maps for AIDS for both
models do not present such marked differences (a map with great
variability is obtained for both models), in the case of Cerebrovascular
disease and Suicides, quite distinct risk maps are obtained. While
univariate modeling generally provides maps with low variability, fixed
effects M -modeling provides maps with great variability, with hardly
any smoothing, which resemble the corresponding maps of unsmoothed
SMRs (not shown in the paper). This performance of the fixed effects
M -modeling in Castellón has also been observed for most of the diseases
in the study. Interestingly, this lack of smoothing is noticed, but to a
much lesser extent, in the results drawn from Alicante and Valencia (see
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Figure 5.1.: Choropleth maps for the estimated risk patterns
using traditional univariate modeling (BYM), above, fixed effects
M -modeling, center row, and random effects M -modeling, below.

the previously mentioned supplementary material Annex B, Section
B.1) where the results for the fixed and random effects M -models are
very similar, in accordance with the original paper by Botella-Rocamora
et al. (2015).

The lower row in Figure 5.1 shows the results for these same
three diseases for the random effects M -model. As can be seen, in
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5.3. A motivating analysis

this case, there are no major differences between the risk maps of
Cerebrovascular disease and Suicides for the independent BYM models
and the random effects M -model. Both models show low variability
and similar geographical patterns. However, the two risk maps obtained
for AIDS mortality are dramatically different. The univariate model
points out several census tracts with extreme risk in some specific
locations in the city of Castellón that are known to be quite deprived.
In contrast, a much flatter map (more similar in this sense to those
of Cerebrovascular disease and Suicides) is obtained with the random
effects M -modeling. On this map, no census tract shows high risk, as
is also the case for Cerebrovascular disease and Suicides. In general, we
observed that random effects M -modeling estimates in Castellón yield
flat risk maps for all 20 diseases studied, which in a few cases, such as
AIDS, are very different from those estimated with univariate modeling.
Strikingly, this performance was only seen in Castellón, but not (or not
so evident) in Alicante or Valencia.

In the next subsection we will attempt to explain why these strange
results are obtained for the fixed and random effects M -models in the
city of Castellón.

5.3.2. A statistical interpretation of the results in the
motivating analysis

First, we find it interesting to emphasize that far milder differences were
found between the fixed and random effects risk patterns in Alicante and
Valencia. For these two cities, both multivariate models take advantage
of the additional information provided by the set of diseases considered,
depicting more detailed spatial patterns in general than their univariate
alternatives. This suggests that the results found for Castellón could
be due to the smaller size of this city, where the prior structure that
the M -model induces could be more influential than in Alicante and
Valencia. Thus, the prior covariance structure of the M -model could
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be having an undesirable effect on the final fit that, when available
data are weaker, might be influencing the spatial patterns determined.

Regarding the fixed effectsM -model, we have mentioned that it was
equivalent to assuming a Wishart(K, σ2IJ) prior distribution on the
covariance matrix between diseasesΣb. Similarly, for a BYMM -model,
the prior Wishart(K, σ2IJ) distribution would be assigned to Σs

b and
Σh

b . Since σ is usually set to a large value for the fixed effects approach,
this entails that the prior mean of Σb is equal to Kσ2IJ , for a high
value of σ. Therefore, this model assumes the prior covariances between
diseases to be centered at 0 and the prior variances of the log-risks for
each spatial pattern to be high. These prior assumptions could explain
the results found in Castellón for the fixed effects model, where the prior
information in M could overwhelm the information provided by the
data. For this city, the cells of Θ do not produce any smoothing in the
risks fitted, as a consequence of their large prior variances (subsumed in
matrix M), which does not produce any shrinkage. As a consequence,
the smoothed SMRs estimated for this model reproduce the unsmoothed
original SMRs that disease mapping models typically try to avoid.

The random effectsM -model also leads to a prior mean ofKσ2IJ for
Σb but with σ now being a parameter to be estimated within the model.
This would potentially avoid the undesirable non-shrinking effect of the
fixed effects M -model when applied to smaller data sets. In this case
the prior mean will just be proportional to the identity matrix but the
proportionality constant will be estimated by the model itself, which will
be set to a common consensus value for all the diseases (two common
values for BYM). Univariate BYM models for each of the diseases in
Castellón yielded posterior standard deviations for the log-SMRs ranging
from 0.05 to 0.42, depending on the disease. AIDS was the disease
with a higher standard deviation, far larger than the median standard
deviation for the set of diseases considered (0.13). Thus, the distribution
of the standard deviations of the log-SMRs for the different diseases has
a pronounced asymmetrical right-tailed distribution. In consequence,
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the consensus scale parameter σ for the random effects model takes a
value that is much lower than that required to appropriately describe
the spatial variability of AIDS mortality. This could explain perfectly
why the initial pattern highlighted by the univariate BYM model for
AIDS vanishes when the random effects M -model is fitted.

In sum, the Castellón multivariate mortality study above has shown
important prior sensitivity for the M -model, mainly for smaller data
sets. Specifically, the fixed effects M -model has a tendency to yield
unsmoothed risk estimates. Furthermore, the random effects version has
an inclination toward the shrinkage of all diseases to a common point
in terms of variability. Although this could be fine for some particular
data sets, in general it will be a restrictive performance of this model
which would be advisable to improve by seeking more adaptive models,
at least in terms of the variance of the diseases. This is the goal that
we pursue from now on.

5.4. An heteroscedastic modification of the
M -model

Our proposal for fixing the prior sensitivity problems of the M -model
consists in a modification of its random effects version. Specifically, we
relax the assumption of a common scale parameter for the cells of M. In
particular we propose two different ways to do this. The first proposal
considers Mij ∼ N(0, σ2

i ) for i = 1, ..., K, while our second alternative
proposal considers Mij ∼ N(0, σ2

j ) for j = 1, ..., J . From now on we will
refer to these two proposals as the row variance-adaptive random effect
M -model (or simply RVAM -model) and the column variance-adaptive
random effect M -model (or simply CVA M -model), respectively.
Obviously these two proposals will be more adaptive in terms of
variability than the original random effects M -model, which will,
hopefully, allow us to solve the shrinkage problems toward a common
variability evidenced in the previous section. Henceforth, we will refer
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to the random effects M -model introduced in Section 5.2 as simply
the non variance-adaptive model (NVA model) in order to emphasize
its main feature as compared to the two new variance-adaptive models
that we have just introduced. Note that the concepts of both variance
adaptivity and, alternatively, heteroscedasticity have already been used
in univariate disease mapping studies (MacNab et al., 2006a; Congdon,
2008) to refer to adaptive models in terms of reproducing different
variances for the different spatial units of study. We will use both these
terms in this paper, as mentioned, to consider different variances for
the different diseases in multivariate disease mapping problems.

Implementing the two M -model modifications proposed for proper
CAR versions of these models will be straightforward. Nevertheless, as
seen in Section 5.2, the implementation ofM -models with BYM spatial
structures requires some care. In particular, the RVA implementation
for BYM spatial models is also straightforward, since for this model all
the rows of M have Normal prior distributions of different variances.
Consequently, the scale of the elements inM s andMh will be different,
so there will be nothing that we need to be careful about. The balance
of the spatial and heterogeneous terms in this model will be determined
by the data instead of the prior structure of matrix M. On the
contrary, for the CVA M -model, the scale of the cells of M vary
only between columns, therefore fixing the balance between the spatial
and heterogeneous terms in this model. Thus, the CVA M -model
will show similar problems to those in the original implementation of
the NVA M -model. These problems can now be solved in a similar
manner as for the NVA M -model. We will consider M s and Mh to
have different variances per column but these variances will also be
different for those two matrices, that is, we assume (Ms)ij ∼ N(0, (σ2

s)j)
and (Mh)ij ∼ N(0, (σ2

h)j). In this way the balance between the spatial
and heterogeneous terms will vary freely for each pair of spatial and
heterogeneous random effects.

For the rest of this section we will interpret the CVA and RVA
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for M -models in general. We will not assume underlying BYM
spatial models for those models since the comments made are valid for
M -models in general. For BYM M -models, all considerations made
below on Σb may also be applied to Σs

b and Σh
b .

5.4.1. An insight on the log-risks separation strategies
for the RVA and CVA proposals

For all three RVA, CVA and NVA models, M can be stated as either
DM ∗ or M ∗D for D = diag(Σ) and M∗

ij ∼ N(0, 1), for Σ a vector
of the appropriate length. Specifically, M = DM ∗ for the RVA model,
M = M ∗D for the CVA model, and M can be stated as either M ∗D

or DM ∗ for D = σIJ or simply M = σM ∗ for the NVA model. This
allows us to formulate the RVA model as

Θ = ΦDM ∗, (5.3)

or the CVA model as
Θ = ΦM ∗D (5.4)

in terms of Expression (5.1). In a similar manner, Θ in the original
NVA model could also now be expressed as

Θ = ΦM ∗σ, (5.5)

or as both (5.3) and (5.4) for D = σIJ , instead of a general diagonal
matrix as for RVA or CVA. We will use these expressions to further
study the theoretical properties of these proposals instead of the RVA
and CVA formulations in the first paragraph of this section. Although
the formulation in that paragraph is more convenient in computational
terms (indeed it has been the one used to implement these models
in WinBUGS), the matrix formulations above are more convenient for
studying the statistical properties of the corresponding models. So we
will use them extensively from now on.
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Expression (5.3) evidences an interesting interpretation of the RVA
model, that is, the matrix decomposition there can also be viewed as
(ΦD)M ∗ and thus the standard deviations Σ in that model may be
interpreted as those corresponding to the underlying spatial patterns
in Φ. Hence, this model can be viewed as a set of underlying spatial
patterns of different variability (in contrast to NVA) that are later
made dependent by their postmultiplication by M ∗. On the other
hand, the CVA model first makes the spatial patterns in Φ dependent
(which originally had the same variability) and later those unscaled
dependent patterns are scaled by means of the postmultiplication by
D. Therefore, the standard deviations Σ in both the RVA and CVA
models have very different interpretations. First, for the RVA model,
these standard deviations correspond to the underlying spatial patterns,
whereas for the CVA model they scale the (spatial and multivariate
dependent ΦM ∗) patterns available according to the variability needed
for each particular disease.

Expressions (5.3) to (5.5) separate the different sources involved in
the multivariate covariance structure into different terms. Similar
separation strategies are also advocated by Barnard et al. (2000)
in multivariate (non-spatial) problems and by MacNab (2018) in
multivariate disease mapping studies. Our proposal runs in that same
direction, with some advantages that we will describe below.

By this separation of Θ into several components, Φ is in charge
of modeling the spatial dependence of the data, M ∗ is in charge of
modeling the multivariate dependence between diseases, and D models
the scale of Θ. In any case, note that some confounding will remain
between M ∗ and D since, ideally, M ∗ would be in charge of modeling
the correlation matrix between diseases, but it does not do exactly
that. To model the correlation matrix between diseases Cb, M ∗ should
be defined so that Cb = (M ∗)′M ∗. This would entail J column
restrictions on M ∗, specifically {M ∗

·jM
∗
·j = 1 : j = 1, ..., J}, which

are generally detrimental for MCMC algorithms (in our experience
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neither WinBUGS nor Stan tolerate restrictions of this kind very well).
In contrast, we propose modeling M∗

ij ∼ N(0, 1). With this choice we
have thatM ∗

·jM
∗
·j ∼ χ2

J , which will give J as expected value. Thus, our
definition ofM ∗ does not allow us to setM ∗

·jM
∗
·j to some specific value

and therefore it will not model any correlation matrix. Nevertheless,
the feature E(M ∗

j·M
∗
·j) = J , which makes J−1(M ∗)′M ∗ on average a

correlation matrix, fixes the scale of M ∗M ∗. This allows the modeling
of the scale of the multivariate patterns to be separated into the separate
matrix D, since that scale cannot be controlled by M ∗.

Hence, we now have two alternative separation strategies that could
fix the non-adaptability, in terms of variability, of the NVA proposal
in Botella-Rocamora et al. (2015). We are now going to explore their
differences for modeling Θ through Σb.

5.4.2. An insight on the RVA and CVA proposals in
terms of the modeling of Σb

The main difference between the RVA and CVA proposals lies in
their inherently different ways of modeling Σb. Thus, for RVA
Σb = M ′M = (DM ∗)′(DM ∗) = (M ∗)′D2M ∗, whereas for
CVA Σb = (M ∗D)′(M ∗D) = D(M ∗)′M ∗D. According to these
decompositions of Σb and expressions (5.3) and (5.4), RVA and
CVA have markedly different interpretations. We start by analyzing
RVA. Note that M ∗ in Expression (5.3) could be QR-decomposed
as M ∗ = QR for suitable orthogonal (Q) and upper triangular (R)
matrices. Therefore, Expression (5.3) could be alternatively stated as
Θ = ΦDQR. If R = Ij, then, for RVA, we would have Σb being
equal to (DM ∗)′(DM ∗) = (QR)′D2QR = Q′D2Q, that is, Q and
D2 would contain the eigenvectors and eigenvalues, respectively, of
Σb. Hence, in this case, we could interpret the RVA model as a
PCA decomposition of Θ, where Φ would be the (spatially correlated)
individual scores corresponding to each geographical unit, D would
weight the contribution of each axis to the multivariate dependence
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structure in Θ, and Q contains the orthogonal axis defining the PCA.
In the most general case in which R was not necessarily equal to Ij , the
axis in the PCA would not be just Q, but QR = M ∗ and therefore,
in that case, RVA can be understood as a PCA of Θ followed by a
subsequent non-orthogonal rotation. In this general case the PCA
interpretation would therefore remain but with the original cloud of
points projected onto a non-orthogonal axis given byM ∗. The columns
of Φ could be understood as the individual scores corresponding to each
spatial unit when projected onto those non-orthogonal components.
The RVA model assumes that each of those columns corresponding to
a specific linear combination of diseases (hopefully with a particular
sense) follows a spatially structured distribution so, in some sense, RVA
performs a spatial PCA of the matrix of log-risks Θ with non-orthogonal
axes.

The non-orthogonal (spatially-correlated) PCA analysis performed
in RVA could make more sense than it might seem at a first glance,
since geographical patterns of risk factors would be rarely uncorrelated.
Think, for example, of the spatial pattern of alcohol and tobacco
consumption throughout a region of study. It would be hard to assume
that both factors are independent. In that case, if these two risk factors
were the two main determinants of the diseases in our study, a simple
orthogonal PCA would induce spatially correlated distributions for
both a linear combination of these factors (a weighted mean) and
the corresponding orthogonal combination for these two variables.
Assuming spatial distributions for these two components could not be
justified since the second of them is mainly a residual shape component
of the PCA, possibly showing weak spatial dependence. In contrast, a
non-orthogonal PCA analysis, such as the one performed in the RVA
model, would determine the same linear subspace for fitting those
(correlated) effects, but without assuming an orthogonal performance
between alcohol- and tobacco-related spatial distributions. Thus, these
two axes could focus on the separate geographical description of alcohol
and tobacco consumption, when the assumption of spatial dependence
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for these two patterns is sure to be far more sensible than for the
components of the regular orthogonal PCA.

Regarding CVA, Expression (5.4) could be alternatively stated
as ΘD−1 = ΦM∗ = ΦQR and, thus, CVA performs a matrix
decomposition of the scale-standardized matrix ΘD−1. Since
D−1ΣbD−1 = D−1D(M ∗)′M ∗DD−1 = (M ∗)′M ∗ = R′Q′QR =
RR′, then R will correspond to the Cholesky upper triangle of the
correlation matrix between diseases. In consequence, the columns of
ΦQ will correspond, respectively, to the individual scores explaining
the (standardized) first disease, the individual scores explaining the
(standardized) second disease given the first, and so forth. CVA assumes
those vectors of scores (ΦQ) to be orthogonal combinations of common
underlying spatial patterns. Those orthogonal combinations mean that
all the columns of ΦQ share a common distribution (all of them are
linear combinations of the same spatial patterns) and this therefore
makes the modeling of Θ order-free with regard to diseases, i.e., invariant
to their ordering (Martinez-Beneito, 2013).

A second interesting interpretation of the CVA model also comes
from the decomposition Σb = D(M ∗)′M ∗D = DWD, where W
follows a standardWishart distributionWishart(K, IJ). This is a scaled
Wishart distribution as defined in Gelman et al. (2014). The scaled
Wishart distribution has a clear advantage over the regular Wishart
distribution as it separates the modeling of the variance parameters from
that of the unscaled covariance structure. This allows it, for example,
to be weakly informative on the scale parameters but more informative
on the correlation structure of Σb, since being too uninformative on
that structure makes the marginal priors of their correlation parameters
accumulate most of its mass at their extremes. In contrast, assuming
an inverse Wishart(J + 1, IJ) distribution on Σb, which would mean
putting flat prior distributions on its correlation parameters, assumes
informative priors on its standard deviations (see page 286 in Gelman
and Hill (2007)). Thus, the common degrees-of-freedom parameter of
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the Wishart distribution seems to introduce modeling conflicts between
the correlation and standard deviation parameters of Σb. Mainly for
these reasons, some authors advise the use of scaled Wishart priors
instead of regular Wishart priors for modeling covariance/precision
matrices (Barnard et al., 2000; Gelman and Hill, 2007; Gelman et al.,
2014).

From a more practical point of view, the scaled Wishart distribution
also allows specific inference to be performed on the different standard
deviations σ1, ..., σJ in a direct way. For a Wishart distribution, making
inference on different standard deviations for each disease would require
to increase the hierarchy of the model by setting Wishart(K,D) and
putting an additional layer in the model for D, if the software available
allows us to do so. The most popular inference tools for spatial
modeling nowadays (WinBUGS and INLA) have only implemented the
Wishart distribution to model precision matrices in multivariate settings.
Therefore, the proposed modeling overrides this limitation by building
the scaled Wishart distribution by itself.

The Wishart and scaled Wishart distributions are frequently used
as priors for precision matrices, instead of for covariance matrices, as we
have implicitly assumed in our proposal. In our opinion the main reason
for this consensus in the literature could be that Wishart is the conjugate
distribution for precision matrices of multivariate Normal variables,
what yields substantial benefits in computational and analytical terms.
The use of the Wishart(J + 1, IJ) as a prior distribution for precision
matrices is particularly popular as it yields uniform marginal prior
distributions on the correlation parameters between diseases (Barnard
et al., 2000). Similarly, a scaled Wishart(J + 1, IJ) prior distribution
on the covariance matrix would mean a uniform prior distribution on
the partial correlation parameters. Instead, our proposal puts a scaled
Wishart(K, IJ) distribution on the covariance matrix, which means
that, for the common case K = J , this proposal should not be far from a
uniform marginal prior distribution on the partial correlations between
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diseases. Nevertheless, Figure 5.2 illustrates the performance of our
scaled Wishart(K, IJ) prior for Σb, for K = J + 1, in terms of the
correlations between diseases. Each graph in that figure corresponds to
the marginal distribution (histogram for 50,000 draws) of the correlation
parameter between the first two diseases for scaled Wishart(J + 1IJ)
prior distributions on Σb, for J = 3, 6, 12 respectively. Figure 5.2
shows how the prior distributions for these settings concentrates on
0 as we increase the number of diseases. This is in contrast to the
scaled Wishart(J + 1, IJ) prior distribution on the precision matrix,
which yielded uniform prior distributions on the marginal correlations
independently of J , that is, the number of diseases considered.

Figure 5.2.: Prior marginal distributions for the correlation for the first
two diseases, out of a set of J = 3, 6, 12, assuming a Wishart(J + 1, IJ)
distribution for Σb. Histograms correspond to samples of 50,000 draws
from the corresponding distribution of that marginal correlation.

Although the preference for small correlations might seem an
undesirable effect for the scaled Wishart(J + 1, IJ) prior distribution
on Σb, it could be more desirable than expected. As we increase
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the number of diseases, the number of marginal correlations between
diseases in a model increases at a quadratic rate. Thus, assuming a
uniform prior distribution for the marginal correlations between diseases
would also mean a quadratic increase in false ‘significant’ correlations
as the number of diseases increases. In contrast, a prior concentrating
its mass on 0 when J grows would avoid this effect. This seems an
interesting feature of our proposal as, when we increase the number
of diseases in a multivariate study, we would expect the proportion of
closely related diseases to go down instead of increasing at a quadratic
rate. Hence, the prior structure proposed would perform a kind of
multiplicity control on the number of related diseases (Scott and Berger,
2010), thereby inducing a parsimonious fit of the multivariate structure
between them.

5.5. Some results of the CVA and RVA
M -models

In this section we are going to show several empirical comparisons of the
CVA and RVA M -models with some other alternatives. First, we are
going to explore the performance of these two models in a simulated data
set, illustrating the enhanced handling of heteroscedasticity between
diseases for these two models. Later, we will revisit the Castellón
study mentioned above and we will illustrate how the CVA and RVA
M -models solve the issues shown in Section 5.3.

5.5.1. An analysis of some simulated data sets
We have performed a simulation to assess the heteroscedastic effect
of the new RVA and CVA M -models, as compared to the older NVA
alternative. Specifically, we have considered the following settings for
Castellón, Alicante and Valencia. We have generated an underlying
pattern x following a proper CAR distribution of (conditional) standard
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deviation σx and a spatial correlation parameter of 0.9. We have avoided
generating our data from BYM models since, in real settings, the
mechanism generating the observed data will never be the same as that
used to analyze the data. Moreover, we have generated J additional
spatial patterns y1, ...,yJ also following proper CAR distributions of
spatial parameters equal to 0.9. Nevertheless, the (conditional) standard
deviation for y1 was set to 1, while for y2, ...,yJ it was set to 0.2 in
order to reproduce a heteroscedastic setting. Thus, J sets of observed
counts were generated, supposedly representing different diseases, in
the following manner:

Oij ∼ Poisson(EijRRij), i = 1, ..., I, j = 1, ..., J
log(RRij) = xi + (yj)i

Therefore, x induces correlation between diseases and the first of
the diseases generated will show higher variability than the rest, due
to the higher variability of y1. We have considered three different
settings for each of our three cities: σx = 0, σx = 0.5 and σx = 1, which
supposedly reproduce a gradient of increasing correlations between
diseases. Specifically, for σx = 0 the correlation between diseases should
be obviously equal to 0 for any two vectors of log-relative risks. For
σx = 0.5 the first vector of log-relative risks should show a correlation
of 0.42 with the rest of vectors, which should show correlations around
0.86. Finally, for σx = 1 the first vector of log-relative risks should
show a correlation of 0.69 with the rest of vectors, which should show
correlations around 0.96. According to the results in Botella-Rocamora
et al. (2015), where all the correlations between diseases ranged from
0.06 to 0.76, σx = 0.5 would be the most realistic setting in practical
terms. Anyway, all 3 settings considered will allow us to explore the
effect of having different correlations between diseases in our data sets.
We will refer to these three settings as Settings 1, 2 and 3, respectively.
Note that the choice of just one common underlying pattern per setting
is not motivated by any particular assumption of M -models. As a
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consequence, we do not find any reason, in principle, why the following
results could not be generalized to settings with a higher number of
underlying patterns.

Moreover, for each setting and city we have considered two different
values of J , 5 and 10, in order to assess the effect that the number of
diseases could have on the heteroscedasticity of data fitting. Therefore,
we have a total of 18 (=3 settings * 3 cities * 2 values of J) different
scenarios. Additionally, the seeds used for each setting, for J = 5 and
10, were exactly the same, and so O·1, ...,O·5 are equal for each city
and setting, regardless of J . In this way we want to specifically assess
the effect on heteroscedasticity of considering five additional diseases
in a multivariate study. Additionally, we have generated five different
data sets (replicates) for each scenario. For each of these replicates
a different set of relative risks and corresponding observed cases have
been generated. For all these replicates of these scenarios we have
run: (i) a model with independent BYM models for each disease; (ii)
the NVA homoscedastic M -model; (iii) the CVA M -model; and (iv)
the RVA M -model. All the M -models run have underlying BYM
models, as introduced in this paper. In sum, we have run a total of
18(scenarios)*5(replicates)*4(models)=360 models for this simulation
study. The full R code and material needed to reproduce this simulation
study can be found as accompanying material in the supplementary
material (Annex B, Section B.2).

Table 5.1 summarizes the analysis that was performed. Each row
corresponds to each of the 18 scenarios considered. The first three
columns of that table set the scenario corresponding to each row, which
is defined by the setting (none/ medium/ high dependence between
diseases), city (Castellón, Alicante or Valencia) and number of diseases
considered (5/10). Each of the 10 final columns summarize the results
obtained for all five replicates of each scenario for the models run. The
columns headed with ‘Orig.’ show the corresponding summary statistic
for all five replicates in the original simulated data sets. The first
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5.5. Some results of the CVA and RVA M -models

block of results in Table 5.1 summarizes the standard deviation (for
all five replicates) corresponding to the first of the diseases in each
scenario. These standard deviations correspond to the set of log-relative
risks (their posterior means) for the first simulated disease.The second
block of results also summarizes the standard deviations (mean of the
standard deviations) but for the rest of the diseases as a whole in
the simulation study. These two blocks are intended to illustrate the
handling of heteroscedasticity for each of the models considered.
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Table 5.1.: Standard deviations for the log-relative risks (their posterior means) for the first and subsequent
diseases in the simulation study.

First disease Rest of diseases
Setting City Diseases Orig. BYM NVA CVA RVA Orig. BYM NVA CVA RVA

1

Castellón
5 0.55 0.27 0.13 0.26 0.23 0.10 0.12 0.07 0.12 0.14
10 0.55 0.27 0.06 0.27 0.18 0.10 0.12 0.04 0.12 0.12

Alicante
5 0.66 0.22 0.07 0.22 0.17 0.10 0.07 0.03 0.07 0.08
10 0.66 0.22 0.05 0.22 0.13 0.10 0.08 0.03 0.08 0.08

Valencia
5 0.61 0.31 0.23 0.31 0.28 0.10 0.06 0.06 0.06 0.07
10 0.61 0.31 0.09 0.31 0.23 0.10 0.05 0.03 0.05 0.06

2

Castellón
5 0.78 0.41 0.29 0.41 0.37 0.30 0.15 0.14 0.17 0.20
10 0.78 0.41 0.27 0.43 0.36 0.31 0.17 0.18 0.20 0.24

Alicante
5 0.77 0.27 0.15 0.27 0.23 0.27 0.11 0.09 0.12 0.14
10 0.77 0.27 0.16 0.29 0.23 0.27 0.12 0.14 0.16 0.18

Valencia
5 0.74 0.36 0.33 0.37 0.35 0.28 0.13 0.16 0.15 0.17
10 0.74 0.36 0.32 0.38 0.34 0.28 0.12 0.19 0.19 0.21

3

Castellón
5 1.32 0.68 0.68 0.72 0.70 0.73 0.33 0.43 0.44 0.46
10 1.32 0.68 0.67 0.75 0.71 0.74 0.38 0.49 0.50 0.52

Alicante
5 1.07 0.55 0.53 0.58 0.55 0.60 0.27 0.39 0.40 0.42
10 1.07 0.55 0.55 0.62 0.57 0.60 0.30 0.44 0.45 0.47

Valencia
5 1.20 0.70 0.72 0.73 0.72 0.63 0.37 0.48 0.48 0.49
10 1.20 0.70 0.73 0.75 0.73 0.63 0.38 0.52 0.52 0.53
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5.5. Some results of the CVA and RVA M -models

Table 5.1 illustrates several interesting results. First, we can see
how all four models, in general, oversmooth the original data for all the
diseases. Nevertheless, focusing on the first disease, the oversmoothing
is particularly evident for the NVA M -model. The oversmoothing of
NVA, in comparison to the rest of the models, diminishes when the
correlations between diseases increase, being quite low for Setting 3,
although for Setting 1 its effect is quite important. Note that the
oversmoothing of the NVA M -model for the first disease is slightly
alleviated for the RVA M -model and even more so for CVA. Note
also that the oversmoothing of NVA for J = 10 is higher than for 5
for Setting 1 (and maybe slightly so for RVA), although this effect
is not so apparent for the rest of the settings. This could explain
the great problems found in Castellón for our case study, where 20
diseases were analyzed jointly, thereby making these problems even
more worrisome. For BYM and CVA, the differences between J = 10
and 5 were irrelevant. This is not surprising for the BYM model, as it
treats diseases as being completely independent, but Table 5.1 shows
how that same independence effect, in terms of variance, is also achieved
for CVA.

Although the non-superiority of the RVA/CVA models for Setting 3
could seem discouraging, in our opinion it is not so worrisome. First, as
mentioned previously, Setting 3 reproduces quite high correlations that
could be rare to find in practice. Setting 3 has been considered in the
study for illustrating the RVA/CVA models performance gradient when
correlations between diseases grow. Additionally, we find at least two
factors that could explain that apparent loss of the RVA/CVA benefit
for Setting 3. First, as designed this simulation study, heteroscedasticity
decreases as a function of the settings. Thus, it is straightforward to
check that for Setting 1 the standard deviation (between diseases)
for the first disease is equal to 1 for the first disease and 0.2 for the
rest, while those quantities are equal to 1.41 and 1.02 for Setting
3. Thus, the hypothetical advantage of RVA/CVA for Setting 3
would be lower, as evidenced in Table 5.1. On the other hand, the
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variability for the underlying patterns in this study is higher for the
correlated settings, being Setting 3 the setting with highest underlying
variability. Therefore, heteroscedasticity would be easier to get captured
by NVA (and also for the rest of models) in that setting, even though
NVA is not particularly devised for taking that feature into account.
As a consequence, NVA could reproduce heteroscedasticity better
for this setting than for the other two alternatives. Therefore, the
non-superiority of RVA and CVA for Setting 3 could be simply a
consequence of the particular design assumed for this simulation study.

The columns for the (mean) standard deviations of the rest of
the diseases also show some interesting results. Thus, we can see
how, for Setting 1, BYM, CVA and RVA show similar variabilities
and NVA might show a slight additional oversmoothing. Nevertheless,
interestingly, for Setting 2 and more obviously for Setting 3, all three
M -models show more variability than the BYM model. For Settings
2 and 3, the oversmoothing is reduced as J increases, since more
information is shared for a higher number of diseases. This shows
the superiority of M -models in general when correlated diseases are
studied. These models take that correlation into account and are
therefore able to alleviate the original oversmoothing of independent
BYM models. Additionally, the paper also mentions: ‘For these two
cities (Alicante and Valencia), both multivariate models take advantage
of the additional information provided by the set of diseases considered,
depicting more detailed spatial patterns in general than their univariate
alternatives’. Thus, those maps (included as supplementary material)
show clearer spatial patterns than those drawn from independent BYM
models. This result also supports the alleviation of the oversmoothing
effect achieved by M -models suggested above.

5.5.2. A new analysis of the Castellón mortality data
In this section we return to the geographical analysis of mortality
in the city of Castellón and implement the new RVA and CVA
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variance-adaptive proposals described in the previous section. In order
to evaluate those proposals, we compare the new estimated risks with
those obtained with the NVAM -model and the univariate BYM models.
The models have been executed in WinBUGS following the specifications
introduced in Subsection 5.3.1. The R code for this analysis can also
be found in the annex material (Annex B, Section B.2). The MCMC
specifications for the models run in this section were basically the same
as those used in Subsection 5.3.1.

Figure 5.3 shows the estimated risk maps with the new modeling
proposals for AIDS, Cerebrovascular disease and Suicides in men in
Castellón. As can be seen in the case of AIDS, the new modeling
proposals provide risk maps with greater variability than that obtained
with the NVA model and closely similar to those estimated with the
univariate BYM model (Figure 5.1). In the case of Cerebrovascular
disease and Suicide, the risk maps estimated with the new modeling
proposals present a considerable lower variability than the risk maps
for AIDS. This shows that both RVA and CVA have solved the problem
presented by the original multivariate NVA model, which provided
risk maps with a similar variability for all the diseases in the study.
Nevertheless, the original patterns estimated by the univariate BYM
models seem to be reinforced for both the RVA and the CVA models
(mainly for the RVA model), almost certainly as a consequence of
sharing information between diseases. RVA and CVA estimates for
Valencia and Alicante can also be found as annex material in Annex
B, Section B.1. Results for these cities confirm the visual conclusions
also drawn for Castellón, although maybe to a lesser extent, since data
for these cities are stronger than for Castellón. Thus, the results for
these larger cities are far more robust to the multivariate model used
to smooth the risks.

Besides the visual comparison of the estimated risk maps with the
different modeling proposals, we have also compared the fit of these
models in general terms by using the Deviance Information Criterion
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Figure 5.3.: Choropleth maps for the estimated risks using the new
heteroscedastic RVA and CVA M -models.

(DIC) proposed by Spiegelhalter et al. (2002). The DICs for all models
and cities in the study can be found in Table 5.2. As can be observed,
the model that provides a better fit in terms of the DIC in all three
cities studied is the RVA M -model, followed by the CVA M -model in
two out of three cities in the study. This seems to confirm that, besides
the evident visual differences found, the heteroscedatic nature of the
RVA and CVA models yields an important enhancement of the fit of
the underlying geographical risk patterns.

5.6. Discussion
As described in this paper, the multivariate modeling proposal in
Botella-Rocamora et al. (2015) for multivariate spatial studies of diseases
presents some limitations when data are weaker. Specifically, in such
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Table 5.2.: DICs for the adjusted models in all three cities in the
study.

Model Alicante Castellón Valencia
BYM with independent diseases 12964 6173 34270

Fixed effects M -model 13212 6675 34416
Random effects M -model 12865 6178 34029

RVA M -model 12798 6148 33918
CVA M -model 12870 6159 34009

situations, the prior structure of theM -model can significantly influence
the estimated risk patterns for all the diseases considered. As shown,
this fact is caused by the single common variance parameter in the
M matrix of this model, which controls the overall variability of all
risk patterns fitted. As illustrated, the fixed effects M -model has a
tendency to yield barely smoothed risk estimates as a consequence of
assuming a high prior variance for the log-risks for all diseases. As
suggested by a reviewer, a deeper study of this model could perhaps
conclude its subsequent impropriety coming from the improper prior
distribution of the cells of M. On the other hand, the random effects
M -model is prone to take all diseases, in terms of variability, to a
common point that will be estimated by the model. If the variability
of the risk patterns considered was different, these prior assumptions
may produce evident misfits in the risk patterns that are estimated.
One of the main contributions of this work has been to highlight these
limitations, which are particularly worrisome when the original NVA
proposal is applied to small regions of study.

In this work we have proposed two modifications of the previous
multivariate model that incorporate several different parameters to
model the variability of the risks for each disease and which allow us to
solve the problems evidenced in the study. These new heteroscedastic
proposals allow the spatial patterns for each disease to have greater or
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lesser variability when necessary. This has made it possible to obtain
more flexible and accurate risk estimates. Additionally, we have also
introduced and discussed the formulation of M -models based on the
popular spatial dependence structure proposed by Besag et al. It is also
worth mentioning that, in our opinion, the heteroscedastic proposals
in this paper are only advisable for highly multivariate problems, that
is, for at least a moderate number of diseases. For multivariate studies
of just 2 or 3 diseases, the different variances of the M matrix in
multivariate models would be estimated with just 2 or 3 observations,
respectively, making unreliable those estimates. In that case we would
rather to use the traditional NVA alternative since then all the cells
of the M matrix would contribute to estimate the common assumed
variance.

Regarding the two modeling proposals introduced in this paper,
RVA has shown a better performance in empirical terms according to
DIC. Thus, for our specific data sets, RVA seems to be more advisable
despite the appealing interpretation of the CVA model as a scaled
Wishart prior on Σb. In any case, it would be worthwhile performing
a more thorough and general comparison between these two models.
Beyond these empirical results we also find the RVA model proposed
interesting for several reasons. First, the PCA interpretation of the RVA
approach seems quite interesting. Further work should be carried out
under this approach in order to extract the ‘principal maps’ underlying
this model since, as currently implemented, these factors cannot be
identified by the model (some order restriction should be imposed, for
example, in the vector of standard deviations Σ in order to identify
those ‘principal maps’). Nevertheless, those ‘principal maps’ with the
municipal scores corresponding to the different principal axes is an
interesting idea that is certainly worth exploring. Moreover, the spatial
modeling of the ‘principal maps’ that the RVA model makes is also
appealing. Assuming a spatial distribution for these components could
be a sensible assumption since these common underlying components
could perfectly reflect the spatial distribution of risk factors throughout
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5.6. Discussion

the region of study. In contrast, CVA assumes spatial distributions
for the residual variability of each disease conditioned to the previous
diseases in the study. We find this assumption much less realistic in
practical terms. Nevertheless, the CVA proposal is interesting by itself
because of its interpretation as a scaled Wishart prior for Σb. As shown,
the CVA model makes it possible to implement the scaled Wishart
within some regular Bayesian packages, such as WinBUGS, and this could
be of interest even beyond the disease mapping literature.
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6. On the use of adaptive
spatial weight matrices from
disease mapping
multivariate analyses

In this chapter, we present our paper “On the use of adaptive
spatial weight matrices from disease mapping multivariate analyses”
by Francisca Corpas-Burgos (Foundation for the Promotion of
Health and Biomedical Research of Valencia Region) and Miguel
A. Martinez-Beneito (University of Valencia) published in Stochastic
Environmental Research and Risk Assessment (2020), 34:531–544.

Abstract
Conditional autoregressive distributions are commonly used to model
spatial dependence between nearby geographic units in disease mapping
studies. These distributions induce spatial dependence by means of
a spatial weights matrix that quantifies the strength of dependence
between any two neighboring spatial units. The most common procedure
for defining that spatial weights matrix is using an adjacency criterion.
In that case, all pairs of spatial units with adjacent borders are given
the same weight (typically 1) and the remaining non-adjacent units
are assigned a weight of 0. However, assuming all spatial neighbors
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6.1. Introduction

in a model to be equally influential could be possibly a too rigid or
inappropriate assumption. In this paper, we propose several adaptive
conditional autoregressive distributions in which the spatial weights
for adjacent areas are random variables, and we discuss their use
in spatial disease mapping models. We will introduce our proposal
in a multivariate context so that the spatial dependence structure
between spatial units is shared and estimated from a sufficiently large
set of mortality causes. As we will see, this is a key aspect for
making inference on the spatial dependence structure. We show that
our adaptive modeling proposal provides more flexible and accurate
mortality risk estimates than traditional proposals in which spatial
weights for neighboring areas are fixed to a common value.

Keywords
Adaptive conditional autoregressive distributions, Gaussian Markov
random fields, Multivariate disease mapping, Spatial weights matrix

6.1. Introduction
Disease mapping has attracted considerable attention over the last three
decades (Lawson, 2018; Martinez-Beneito and Botella Rocamora, 2019).
This area of research pursues the study of the geographical distribution
of health-related events, such as mortality from, or incidence of diseases,
aggregated over areal units, in order to identify mainly those locations
which show higher risks. In disease mapping problems, the units of
study usually considered are as small as possible, which can lead to
what are known as small areas estimation problems. As a consequence,
many modeling proposals have been formulated in order to deal with
this problem and thereby derive reliable risks estimates. Most of these
models consider dependence among nearby spatial units, assuming them
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6. On the use of adaptive spatial weight matrices from disease mapping
multivariate analyses

to show similar risks. Therefore the spatial dependence hypothesis is
the main key to improving risks estimates in disease mapping studies.

A large number of disease mapping models have been proposed,
most of them following a Bayesian approach; see Besag et al. (1991)
or Leroux et al. (1999) for two of the most frequently used models in
applied studies. These proposals are frequently specified as generalized
linear models that incorporate spatial dependence between nearby
geographical units through random effects following some spatial prior
distribution. Although some other spatial modeling tools have been also
used (Adin et al., 2017), the most popular spatial prior distributions
in disease mapping models belong to the family of Conditional
Autoregressive (CAR) distributions (Besag, 1974; Besag et al., 1991),
also known as Gaussian Markov Random Fields (GMRF) (Rue and Held,
2005). CAR distributions induce spatial dependence by considering a
schematic neighborhood structure which accounts for the geographical
arrangement of the spatial units. That neighborhood structure is
summarized by means of a spatial weights matrix quantifying the
relative influence that the random effects of the geographical units
have on each other, so those weights should reflect the strength of the
dependence between any pair of spatial units. Moreover, that weights
matrix is usually sparse, reflecting an implicit Markovian assumption
which considers the conditional distribution of any random effect, given
its neighbors, independent of the random effects in any other spatial
location.

Different proposals of spatial weights matrices for CAR distributions
have been made in the literature. By far, the most common procedure
is using an adjacency criterion for defining that matrix. In that case
all pairs of spatial units with adjacent geographical borders are given
the same weight, typically 1, and the remaining non-adjacent units are
assigned a weight of 0, reflecting independence given the remaining
spatial units (Besag et al., 1991). As pointed out by Raftery and
Banfield (1991), this choice could be sensible for regular lattices but less
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6.1. Introduction

so for irregular lattices such as those typically used in disease mapping
problems. Weighted versions of this common choice also exist which
are available in some common Bayesian inference packages, such as
WinBUGS or OpenBUGS; while some others, such as INLA, do not allow
for this option. This allows the strength of the dependence of nearby
pairs of units to be modulated, thereby allowing each neighboring pair
of units to show a different strength. However, the CAR distributions
in WinBUGS or OpenBUGS do not allow those weights to be estimated as
variables within a model; on the contrary, they have to be supplied as
constants to the corresponding model. Best et al. (1999) and Earnest
et al. (2007), for example, propose the use of weights matrices with
different weights which are a function of the geographic distance between
spatial units (usually, the Euclidean distance between their centroids);
in this manner random effects of closer geographic units will show
stronger dependence. However, it could happen that geography is not
necessarily the main determinant of dependence between units; thus
areas with similar values of certain covariates, for example, would take
similar risks estimates in general even though they are distant. In this
regard, Kuhnert (2003) defines the weights matrix of the random effects
as a function of the absolute difference between the values of some
covariate for the spatial units. Likewise, Earnest et al. (2007) define
the weights as a function of both the geographical distance and their
similitude in terms of some covariate. A comparison of models of this
kind is undertaken in Duncan et al. (2017).

Despite their interest to researchers, the use of the weight matrices
above shows some limitations. Firstly, unweighted adjacency-based
matrices do not have clear support beyond their simplicity and
convenience. In the end, assuming all spatial neighbors in a model
to be equally influential is an arbitrary assumption that should be
checked in some way. Nevertheless, the mentioned convenience of that
choice has led most disease mapping practitioners to accept and use
that matrix, without further justification, and to avoid questioning that
assumption. On the other hand, the use of functions of geographic
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distance for setting weights matrices assumes equal weights for all
locations which are equally distant, which could be somewhat simplistic
for some settings (consider regions with mountains, rivers or other
barriers). Additionally, those distance weighted proposals assume
parametric relationships between distances and weights, which could
also be rigid or sometimes inappropriate. Finally, the definition of
weights as a function of some covariate poses an additional problem
since the corresponding covariate may not always be available for all
locations. Therefore, the requirements for this option are higher than
for pure geometric criteria.

The objective of this work is to propose a procedure for estimating
the spatial weights matrix in disease mapping studies solving the issues
above. Specifically, we focus on the barely explored adaptive CAR
distributions which consider the weights of the spatial weights matrix
as additional random variables in the model. Some works can be found
in the literature, such as MacNab et al. (2006b); Brezger et al. (2007);
Lu et al. (2007); Congdon (2008); Ma et al. (2010), that follow this
approach. Our proposal, in contrast to the previous works, estimates a
common weights matrix from the joint study of several diseases, which
would, presumably, capture the different dependence strengths shown by
the neighboring spatial units in the region of study. As we will see, that
multivariate feature of our proposal will be a key aspect for its success.
The multivariate estimated weights matrix could be subsequently used
in future studies on that same region of study. In principle the enhanced
weights structure estimated for that region would allow improved risk
estimates to be derived incorporating the dependence structure shown by
some set of diseases in that region. That spatial structure should reflect
physical/social barriers, data artifacts, geographical/geometrical/social
features etc., which would be recommendable to consider in subsequent
spatial analyses on that same region.

This paper is structured as follows. Section 6.2 introduces some
traditional spatial modeling proposals widely used in disease mapping
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studies and makes a brief review of the main adaptive CAR models
already proposed in the literature. Section 6.3 describes our multivariate
modeling proposal for the weights matrix of CAR distributions. Section
6.4 illustrates how the developments proposed at Section 6.3 can be
used for estimating the spatial dependence structure in a real setting
and how that estimation improves subsequent analyses in comparison
to studies with unweighted dependence matrices. Finally, Section 6.5
discusses some results and conclusions drawn from this study.

6.2. Some modeling proposals in disease
mapping

6.2.1. Some popular disease mapping models
Disease mapping studies consider regions of interest discretely divided
into I spatial units, generally of small size, such as census tracts or
municipalities. The main aim of these studies is to determine the
geographical distribution of the risks for some disease for these spatial
units. The collection of observed cases per spatial unit are jointly
denoted byO = (O1, . . . , OI)′, where Oi denotes the number of observed
cases in the i-th unit. Typically, disease mapping models assume:

Oi ∼ Poisson(EiRi), i = 1, . . . , I,

where E = (E1, . . . , EI)′ contains the number of expected cases per
spatial unit for the corresponding disease and R = (R1, . . . , RI)′ is the
collection of location specific risks that we would want to estimate.
Typically, the log-risks are modeled as:

log(Ri) = µ+ z′iβ + ηi, (6.1)

where µ is an intercept, zi is a vector of covariates, with β = (β1, ..., βp)′
being its vector of associated parameters, and η = (η1, . . . , ηI)′ a vector
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of random effects. The random effects η are introduced to explain the
variability that cannot be explained by the covariates and η is typically
assumed to show spatial dependence since that residual variability could
easily exhibit that feature. From now on, for simplicity, we will assume
that no covariates are available and the log-risks are simply modeled as
the sum of the intercept and the set of random effects.

The random effects vector η is habitually modeled by using spatially
correlated CAR prior distributions. A particularly popular case of CAR
prior distribution is the Intrinsic CAR (Besag et al., 1991) distribution
(ICAR from now on), which for a vector φ may be defined by the
following set of I univariate conditional distributions:

φi|φ−i, σ2
φ ∼ N

(
1
wi+

I∑
k=1

wikφk,
σ2
φ

wi+

)
, i = 1, ..., I. (6.2)

In this expression, the subindex in φ−i denotes all the terms in φ
excepting its i-th component, wik weighs the contribution of the k-th
random effect to the mean of φi, wi+ = ∑I

k=1 wik and σ2
φ is a variance

parameter. These conditional distributions can be shown (Besag, 1974)
to yield the following joint distribution for φ:

φ|σ2
φ ∼ NI(0, σ2

φ(D −W )−),

where D = diag(w1+, ..., wI+), W = (wik)Ii,k=1 and the superindex in
(D −W )− denotes the Moore-Penrose inverse of D −W . Covariance
between elements of φ is determined by the spatial weights matrix W ,
whose elements wik are typically non-zero if areas (i, k) are considered
neighbors and zero otherwise. Therefore, if two areas are considered
neighbors, their random effects are conditionally dependent, while
random effects of non-neighboring areas are conditionally independent.
As mentioned previously, the most common approach is to assume that
areas (i, k) are neighbors if they share a common border (adjacency)
and in that case set wik = 1 for all neighboring pairs of units (i, k). In
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that case, the conditional distributions above reduce to simply:

φi|φ−i, σ2
φ ∼ N

(
1
ni

∑
k∼i

φk,
σ2
φ

ni

)
, i = 1, ..., I, (6.3)

where ni stands for the number of neighboring areas of unit i and the
subindex k ∼ i denotes all those units k which are neighbors of i. Now,
the conditional mean of φi is equal to the raw (unweighted) mean of
the random effects in its neighboring areas and its conditional variance
is inversely proportional to the number of neighbors ni.

One of the most popular specifications for η in disease mapping
studies is that introduced in Besag et al. (1991) (BYM from now on).
In this proposal, the random effects vector η is considered to be the
sum of two vectors of random effects η = φ+ θ. The term φ, which
follows an ICAR distribution as just introduced, will be responsible
for inducing spatial dependence on R and accounts for those risk
factors of regional scope which take effect on several contiguous spatial
units, making them in principle similar. The second term, θ, whose
components follow independent Normal distributions of mean zero
and common variance σ2

θ , accounts for risk factors of very limited
geographical scope that take an effect just on isolated areal units,
making their risks different to those of their surrounding units. Thus,
this second term induces additional unstructured variability in η. The
amount of spatial/unstructured variability in R depends on the balance
between σφ and σθ, which is determined by the model/data itself. If
the former has higher (respectively lower) values, in comparison to
the latter, the final pattern will show substantial spatial dependence
(respectively independence).

A second popular CAR prior distribution for inducing spatial
correlation on the random effects vector η in Expression (6.1) is that
introduced in Leroux et al. (1999). In contrast to the BYM model, η in
this alternative proposal is not the sum of two additional components.
In this case, the determination of the amount of spatial/unstructured
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variability is controlled by a spatial correlation parameter ρ ∈ [0, 1] so
that the special case of ρ = 0 simplifies to a model with independent
random effects and ρ = 1 corresponds to the ICAR distribution above.
All intermediate values of ρ ∈ (0, 1) induce patterns mixing both sources
of dependence. Specifically, for the Leroux et al. proposal, the prior
conditional distributions corresponding to ηi are given by:

ηi|η−i, ρ, σ2
η ∼ N

(
ρ

ρwi+ + 1− ρ

I∑
k=1

wikηk,
σ2
η

ρwi+ + 1− ρ

)
, i = 1, ..., I.

Note the obvious coincidence of this proposal with a weighted CAR
distribution for ρ = 1 and with a heterogeneous Normal distribution for
ρ = 0. For the usual assumption of wik = 1 for adjacent spatial units,
and 0 otherwise, the Leroux et al. proposal reduces to:

ηi|η−i, ρ, σ2
η ∼ N

(
ρ

ρni + 1− ρ
∑
k∼i

ηk,
σ2
η

ρni + 1− ρ

)
, i = 1, ..., I.

In the same manner as for the ICAR distribution, these conditional
distributions yield a joint Normal distribution, specifically:

η|ρ, σ2
η ∼ NI(0, σ2

η((1− ρ)II + ρ(D −W ))−), i = 1, ..., I,

where, as for BYM, W = (wik)Ii,k=1 denotes the spatial weights matrix
considered.

As described in the introduction, setting the same weights wik = 1 to
all the random effects of adjacent locations in CAR distributions could
be an inappropriate or rigid assumption. This makes all neighboring
regions equally influential on any particular risk, which may not
correspond to reality. In order to solve this limitation, models with
alternative stochastic weight matrices have been proposed and are
reviewed in the next subsection.
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6.2. Some modeling proposals in disease mapping

6.2.2. Adaptive CAR distributions
A few CAR models with adaptive weights matrices can be found in the
Bayesian disease mapping literature. The goal of these proposals is to
model spatial correlation through the fitting of an stochastic spatial
weights matrix W . This approach is undertaken within Bayesian
hierarchical models where the corresponding CAR distributed random
effects are defined as η|W , σ2

η, ... and an additional layer is considered
in the model for estimating the elements in W . Next, we briefly
summarize several of the contributions in this area. There is obviously
a huge body of literature proposing the stochastic modeling of variances
or covariances between variables in many different contexts: state space
models (Carter and Kohn, 1996), function estimation (Lang et al., 2002),
etc. Nevertheless, we will restrict the review below just to CAR spatial
models in order to focus on the particular topic that we are discussing
where the variance matrix is defined as a function of a particular weights
matrix W .

Wombling (Lu and Carlin, 2005; Lu et al., 2007; Ma and Carlin,
2007; Ma et al., 2010) would be a first attempt of stochastic modeling
of the spatial weights matrix W in CAR distributions. Specifically,
Wombling assumes the cells of W as binary stochastic values, which
are modeled as Bernoulli distributions. The probability of wij = 1 for
any pair of spatial units (i, j) could be modeled by means of a logistic
regression as a function of some covariates (Lu et al., 2007), such as the
adjacency matrix of the area of study or some other related quantity.
Obviously, the number of elements in that logistic regression will increase
quadratically as a function of the number of spatial units in the study,
which could be a problem for large lattices. In addition, a large collection
of sensible covariates would be required under this approach in order to
define a rich enough spatial weights matrix. More flexible alternatives
are also considered for estimating W within the Wombling approach,
although in this case only the weights of the cells corresponding to
adjacent elements in the lattice are estimated. In this case, since wij
are modeled as Bernoulli variables for adjacent units, this procedure
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will prune the adjacency graph originally considered. Ma et al. (2010)
proposes a spatial Ising model (see for example Geman and Geman
(1984) or Green and Richardson (2002)), which favors contiguous edges
in the graph (those sharing one of their nodes) to take the same values in
the weights matrix. This proposal has also been applied to multivariate
data sets, for the joint study of three diseases, as in Ma and Carlin
(2007). Although this proposal seems much more flexible than the naive
use of covariates for modeling P (wij = 1), the binary treatment of the
elements of the weights matrix in Wombling studies seems somewhat
restrictive. Moreover, the use of Ising models for estimating the non-zero
cells of W induces important computational problems (Ma and Carlin,
2007) for estimating the penalizing parameter of that model, at least
in the multivariate case. This forces this parameter to be fixed/tuned
according to previous runs of the models. However, as reported by the
authors, the fit of this model even for a fixed penalizing parameter
becomes challenging for medium/large lattices.

On the other hand, MacNab et al. (2006b) and Congdon (2008)
consider adaptive versions of the Leroux et al. CAR prior distribution.
This approach could be also used for estimating weights matrices in
CAR distributions as will become evident in the next section. These
proposals allow the spatial correlation parameter ρ of Leroux et al. to
vary for each geographical unit. Specifically, MacNab et al. (2006b)
propose defining an unweighted (adjacency-based) spatial process as
the following set of conditional distributions:

ηi|η−i,ρ, σ2
η ∼ N

(
ρi

ρini + 1− ρi
∑
k∼i

ηk,
σ2
η

ρini + 1− ρi

)
, i = 1, ..., I.

The problem with this proposal is that this set of conditional
distributions does not yield a valid CAR prior distribution since
the symmetry condition (Besag and Kooperberg, 1995), necessary
for η to have a symmetric covariance matrix, does not hold in
this case. Interestingly, regarding the spatial correlation parameters
ρ = (ρ1, ..., ρI), MacNab et al. (2006b) mention that ‘the analysis
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6.2. Some modeling proposals in disease mapping

showed very little prior-to-posterior updating for the ρjs, an indication
that the data did not provide enough information for useful posterior
inference’. Congdon (2008), also in the unweighted case for simplicity,
proposes the following set of conditional distributions:

ηi|η−i,ρ, σ2
η ∼ N

(
ρi

ρini + 1− ρi
∑
k∼i

ρkηk,
σ2
η

ρini + 1− ρi

)
, i = 1, ..., I,

which fulfills the mentioned symmetry condition. Although this proposal
is supposed to extend the Leroux et al. CAR distribution to having
different correlation parameters ρi, i = 1, ..., I, strikingly it does not
coincide with that proposal when all those ρi take a single common
value ρ. Moreover, this process yields the following joint covariance
matrix:

σ2
η(diag(1I − ρ)II + diag(ρ)(D −W diag(ρ)))−.

In this case the covariance matrix is not a combination of II andD−W
since this latest term is replaced by D−W diag(ρ). As a consequence,
this proposal does not seem such a straightforward generalization of the
Leroux covariance matrix. Congdon (2008) suggests several different
prior distributions for the components of ρ, such as beta, probit-normal
or logit-normal distributions which allow further modeling of these
variables. This adaptive CAR distribution is proposed and used in the
univariate context where a single spatial pattern is studied.

Brezger et al. (2007) propose an alternative adaptive model which
makes it possible to make inference on the spatial weights matrix of
ICAR prior distributions. The context of this paper is spatio-temporal
modeling in human brain mapping, but their ideas could be also useful
for regular disease mapping studies. Brezger et al. uses an ICAR as
prior distribution for the coefficients of some basis of functions modeling
the time trend for a set of brain voxels; a different ICAR distribution is
used for each element in that basis. Under this approach, the cells of the
weights matrices for those ICAR random effects are considered equal to

124



“Thesis” — 2020/7/6 — 16:18 — page 125 — #167
picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picture

picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picture

6. On the use of adaptive spatial weight matrices from disease mapping
multivariate analyses

0 for all non-adjacent pairs of units and are modeled as positive random
variables, following an informative Gamma(0.5,0.5) prior distribution
for the adjacent areas. Posterior sensitivity to that informative prior
distribution is not assessed in the paper. Additionally, the likelihood for
the Brezger et al. proposal is Normal so the applicability of their model
and results to regular disease mapping studies, usually with Poisson or
binomial likelihoods, should be further explored.

6.3. A new adaptive CAR distribution and its
use in multivariate models

As an alternative to the commonly used adjacency criterion, which
considers all the weights inW as fixed binary quantities, we propose to
model the spatial weights as random variables within the model so as
to allow variability between them. We begin by describing two proposal
in the simplest univariate case for both ICAR and Leroux et al. spatial
distributions. Subsequently, we will describe their equivalents in the
context of the multivariate study of several diseases since, as we will
argue, this is the appropriate context where adaptive proposals should
be implemented.

6.3.1. Univariate case
We start first by introducing the estimation of spatial weights matrices
for ICAR distributions. Let φ = (φ1, . . . , φI)′ be a random effects
vector with ICAR distribution, that is, φ|σ2

φ ∼ NI(0, σ2
φ(D −W )−).

For this expression we will assume thatD andW are defined according
to adjacency between spatial units, i. e. D = diag(n1, · · · , nI) for ni
the number of neighbors of unit i andW = (wik) where wik = 1 if (i, k)
are adjacent units and 0 otherwise.
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6.3. A new adaptive CAR distribution and its use in multivariate models

Let us now consider a random vector c = (c1, · · · , cI)′ of positive
values, a new spatial weights matrix W ∗(c) = diag(c)1/2W diag(c)1/2

and D∗ = diag(w∗1+, ..., w
∗
I+). With this, we propose the following

adaptive CAR prior distribution:

φ|c, σ2
φ ∼ NI(0, σ2

φ(D∗ −W ∗(c))−)

ci ∼ Gamma(α, α).

The elements of the vector c are assumed to be positive since the
non-zero weights of the new spatial weights matrix W ∗ are w∗ij =
(cicj)1/2 so, in this manner they will all be well defined and positive.
Accordingly, we have used a Gamma prior distribution for its elements,
which seems a natural choice. The Gamma distribution considered has
mean 1, in accordance with the value of the non-zero cells of W when
an adjacency criterion is considered. Thus, W ∗(c) will be on average
equal to W , although its non-zero weights will not necessarily have
to be equal to 1. Hence the new adaptive distribution will be more
flexible than the regular ICAR distribution. Note that, as defined, the
(a priori) standard deviation of any element of c is equal to α−0.5, which
could guide us to set a prior distribution for this parameter. In fact,
we have considered a uniform prior distribution on α−0.5, with lower
and upper limits intended to make it vague, in order to complete the
hierarchical structure above.

Alternatively, the definition of the adaptive ICAR distribution above
could be restated as a set of conditional distributions φi|φ−i, c, σ2

φ, i =
1, ..., I, of mean

E[φi|φ−i, c, σ2
φ] = 1

w∗i+

I∑
k=1

w∗ikφk =
c

1/2
i

∑
k∼i c

1/2
k φk

c
1/2
i

∑
k∼i c

1/2
k

=
∑
k∼i c

1/2
k φk∑

k∼i c
1/2
k

(6.4)
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and variance

V ar[φi|φ−i, c, σ2
φ] =

σ2
φ

w∗i+
=

σ2
φ

c
1/2
i

∑
k∼i c

1/2
k

. (6.5)

These two expressions provide some quite valuable insights about on
the model proposed. The expected value in Expression (6.4) is just a
weighted mean of the random effects for the corresponding neighbors.
The weights in that expression are given by the vector c, thus if ci had
a low value for some i, that region will have a low contribution to the
means of its surroundings units. Additionally, Expression (6.5) suggests
that if ci is low, then the conditional variance of φi will be in contrast
high. Thus, if ci was low, these two expressions suggest that it is as
if spatial unit i was ‘disconnected’ from its spatial neighbors, since φi
will be less influential on them and will have higher variance, allowing
it to move independently from the rest of the units. Conversely, if ci
was high, unit i will become more influential on its neighbors and will
take a value in close agreement with them. Therefore, in some manner,
the adaptive ICAR distribution would impose a tighter dependence
between this unit and its neighbors.

Besides the enhanced interpretation just made, the conditional
statement of the adaptive ICAR distribution above allows its
implementation in conventional Bayesian software packages such as
WinBUGS, JAGS ... Additional care should be taken for the adaptive
ICAR distribution since sum-to-zero restrictions are, in general, imposed
on ICAR distributions in order to solve the rank-deficiency of its
precision matrix (Besag and Kooperberg, 1995). This can be done
in practice, in a computationally convenient manner, by imposing∑
i φi ∼ N(0, ε) for some small value ε. Details of the coding of this

constraint for the adaptive ICAR distribution can be found in the
supplementary material of the paper (Annex C, Section C.2).

In the case of the Leroux et al. model φ is distributed as
φ|ρ, σ2

φ ∼ NI(0, σ2
φ((1−ρ)II+ρ(D−W ))−). Following the development
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above, several adaptive versions of the Leroux et al. distribution
could be made. For example, let us assume φ|ρ, c, σ2

φ ∼ NI(0, σ2
φ((1−

ρ)diag(c1/2) + ρ(D∗ −W ∗(c)))−), where D∗ and W ∗(c) are defined
as for the adaptive ICAR distribution. In this manner, for ρ = 1 this
distribution would be equivalent to an adaptive ICAR distribution,
while for ρ = 0 it would yield a collection of independent Normal
random effects with adaptive (heteroscedastic) variance. If preferred,
an alternative formulation of adaptive Leroux distribution could be
derived as φ|ρ, c, σ2

φ ∼ NI(0, σ2
φ((1− ρ)II + ρ(D∗ −W ∗(c)))−) which

for ρ = 0 yields non-adaptive (homoscedastic) independent random
effects. Nevertheless, we will focus in the first of these options as it
seems more flexible and appealing, from our perspective. For that
proposal, the conditional mean and variance of the random effect φi
can be expressed as:

E[φi|φ−i, ρ, c, σ2
φ] = ρ

(1− ρ)c1/2
i + ρw∗i+

I∑
k=1

w∗ikφk

= ρc
1/2
i

(1− ρ)c1/2
i + ρc

1/2
i

∑
k∼i c

1/2
k

∑
k∼i

c
1/2
k φk

= ρ

1− ρ+ ρ
∑
k∼i c

1/2
k

∑
k∼i

c
1/2
k φk

and

V ar[φi|φ−i, ρ, c, σ2
φ] =

σ2
φ

(1− ρ)c1/2
i + ρw∗i+

=
σ2
φ

c
1/2
i (1− ρ+ ρ

∑
k∼i c

1/2
k )

.

Once again, these conditional expressions allow the adaptive Leroux
CAR distribution to be implemented in conventional Bayesian software,
such as WinBUGS. Note that similar, although somewhat different,
adaptive CAR distributions have been already proposed in MacNab
(2018). Nevertheless, those proposals had as a goal the formulation
of more general (adaptive) CAR distributions. Our goal will now
be to estimate spatial weight matrices W ∗(c) suitable to be used in
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subsequent spatial analyses in that same area of study. It is hoped that
W ∗(c) will capture the geometric/demographic/geographic features of
the region of study which make some neighboring units more similar to
their neighbors than others.

6.3.2. Multivariate case
Although the univariate models above seem quite appealing, one could
be concerned about including another level in the hierarchy of the
model containing that adaptive CAR distribution. Moreover, that
additional layer would contain as many variables as observations in the
univariate model, so this modification increases the number of variables
in the model in a quite significant manner. As a consequence, data
in univariate disease mapping models may be not strong enough as
to make inference on vector c possible. As mentioned earlier, this
was already suggested by MacNab et al. (2006b) and we agree with
that point of view. For example, let us assume that we performed an
univariate disease mapping study with an adaptive CAR distribution
where the weights vector c should be estimated. Let us also assume that
the number of observed events for spatial unit i was abnormally higher
than the corresponding number of expected cases. This would make
the corresponding log-risk φi take a large positive value. It seems clear
that, in this case, if ci was low, this would help φi to reach that goal by
allowing it to have a more independent performance, in comparison to
its neighbors, and a higher variance. But, what makes the risk of this
disease so strange for this spatial unit? Is it the specific particularities
of the disease under study in that precise unit (φi) or the spatial unit
itself that, for some structural (geographical, social, environmental,
etc.) reason, is far different in general to its surrounding spatial units
(ci)? With a single observation per spatial unit the model does not
have enough information to distinguish these two settings and therefore
to estimate c properly. In contrast, if we had several risk estimates
for several diseases φij depending on a common weights matrix W ∗(c),
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we would be able to know if the risk of the original disease in the
i-th spatial unit was really different, or the differential factor was the
spatial unit. In the first case, among all the log-risks of the i-th spatial
unit, only that corresponding to the original disease should take a high
value and ci should not therefore take a low value since that unit does
not have a different performance in general than its neighbors. In the
second, all (or most of) the log-risks for the i-th spatial unit would take
extreme values and ci should take a low value in order to accommodate
that behavior. As a consequence, the use of adaptive CAR distributions
in the context of multivariate studies could improve the fit of the spatial
weights vector c to a considerable extent. This issue will become clearer
in the real case study in the next section.

In accordance to the previous paragraph, we introduce now a
multivariate model integrating adaptive CAR distributions, one per
disease, with a common spatial weights matrix. This formulation allows
an appropriate estimation of the vector c and therefore an appropriate
estimation of the weights matrix W ∗(c) corresponding to the set of
diseases and region of study considered. The following formulation
implements an adaptive BYM model per disease, although a similar
formulation could be analogously proposed for the case of the Leroux
et al. CAR distribution.

Let Oij represent the observed number of cases for the i-th spatial
unit and j-th disease, i = 1, ..., I, j = 1, ..., J . We will assume:

Oij ∼ Poisson(EijRij),

where Eij is the number of expected cases, and Rij the relative risk
for the corresponding spatial unit and disease. In accordance with the
univariate model, the log-risks can be expressed as:

log(Rij) = µj + ηij, (6.6)

where µj stands for an intercept modeling the mean of the log-risks

130



“Thesis” — 2020/7/6 — 16:18 — page 131 — #173
picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picture

picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picture

6. On the use of adaptive spatial weight matrices from disease mapping
multivariate analyses

for each disease and ηij are random effects accounting for spatial or
unstructured variability for those risks. We will model the columns
of η = (ηij) by means of a BYM model, i.e. ηij = φij + θij, where θij
are independent Normal random effects and the columns of φ = (φij)
follow adaptive ICAR distributions, all of them depending on a common
weights matrix W ∗(c) with a common weights vector c, as described
in the univariate case. Also, in parallel to the univariate case, the
components of c will be assumed to follow a Gamma(α, α) distribution.
Different standard deviations would be considered for the columns of
the φ and θ matrices in order to allow the relative risk geographical
patterns to show more or less spatial dependence. The prior distribution
for α will be chosen similarly to the univariate case above.

Note that the model just introduced, although posed in a
multivariate setting, does not take into account the hypothetical
dependence between diseases that these could show. In that case,
that proposal could incorporate and take advantage of that dependence.
In fact, we have explored that possibility by proposing a multivariate
M -model (Botella-Rocamora et al., 2015) with a common adaptive
spatial weights matrix and therefore a common spatial dependence
structure. We have not noticed any evident benefit of that proposal
in terms of the estimation of the spatial weights matrix in comparison
to the proposal above. Since our goal in this paper is focused on that
estimation, we have preferred to pose the ‘independent’ multivariate
version in order to keep its content simpler. In any event, if the main
goal was to estimate the risks R for several diseases with an adaptive
spatial dependence structure, the use of pure multivariate models, as the
M -model mentioned, would obviously yield a significant improvement.
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6.4. Application

6.4. Application

6.4.1. Spatial weights matrices estimation from
multivariate data sets

In this section, we evaluate the performance of the multivariate adaptive
spatial model described in the previous section in some real scenarios.
The main data set for this analysis corresponds to the observed and
expected deaths in the city of Valencia (Spain), for a total of 15 different
mortality causes in men for the period from 1996 to 2015. Mortality
data are available for each of the 531 census tracts of Valencia, the
geographical unit for this analysis. The main goal of this analysis is to
estimate a suitable weights matrix for the Valencian census tracts that
reflect the dependence structure of mortality causes in general over the
whole city. We will use the multivariate adaptive extension developed
in Subsection 6.3.2 for both the BYM and Leroux models, and the
mortality data set described to estimate that matrix. Subsequently, in
the next subsection, the estimated spatial structure matrix will be used
in posterior univariate analyses in order to assess the improvement that
its use could bring, in comparison to the traditional adjacency criterion
that assumes fixed weights, equal to 1, for each adjacent pair of units.

Both BYM and Leroux et al. multivariate models were run in
WinBUGS and the corresponding R code for all the analyses in this
section can be found as annex material to this paper in the Annex
C, Section C.2. For each model, three chains were run with 200,000
iterations, whose first 50,000 iterations were used as a burn-in period.
Of these, one of every 150 iterations was saved yielding a final sample
size of 3,000 iterations. Convergence was assessed by means of the
Brooks-Gelman-Rubin statistic (we required this to be lower than 1.1
for each variable in the model) and the effective sample size (required
to be at least 100 for each variable in the model).

We start by taking a look to the estimated weights vector c for our
analyses. These weights should reflect the strength of spatial dependence
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between each neighboring pair of spatial units. For the BYM model, the
values of the spatial weights c (their posterior means) range from 0.098
to 2.042, with a mean value of 1.240, while for the Leroux et al. model
these values range from 0.027 to 1.886, with a mean value of 1.264.
Figure 6.1 shows the corresponding ci for each geographic unit for both
models run. The census tracts with dark red color represent those with a
lower estimated spatial weight ci. According to the comments of Section
6.3, these census tracts should show a different behavior in comparison
to their surrounding census tracts and, as a consequence, the model
tries to separate/isolate those units. In contrast, the census tracts
in yellow are those that have been found to have a greater influence
on the risk of the surrounding areas or, in other words, those most
dependent on their neighbors. As shown in this figure, both adaptive
proposals of the BYM and Leroux models estimate a closely similar
spatial dependence structure for the region of study. The correlation
between the estimated spatial weights vector c for the adaptive BYM
and Leroux models is 0.956, which shows the agreement of the spatial
dependence structure estimated for both models.

We have explored the results in Figure 6.1 in order to interpret the
spatial dependence structure estimated by the models. In particular, we
have observed that the census tracts with lowest ci values have certain
peculiarities that make them special with respect to their adjacent units.
On the one hand, residential homes for elderly or socially excluded
people are frequently located in some of those “special” census tracts.
As a consequence, these units often show higher observed deaths than
expected for most of the mortality causes considered, which makes them
exhibit a different behavior from those of their neighbors. Anyway, if our
main goal was just to detect and model spatial units of this kind, with
a different behaviour than their neighbors, the use of models accounting
for discontinuities (Knorr-Held and Raßer, 2000; Denison and Holmes,
2001; Adin et al., 2019b) would be possibly a more suitable modeling
choice. On the other hand, new building areas and socially marginal
regions of the city also frequently show cis in the darkest red zones. The
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Adaptive BYM model Adaptive Leroux model

 

(0,0.3]
(0.3,0.7]
(0.7,1]
(1,1.2]
(1.2,1.4]
(1.4,1.6]
(1.6,2.05]

Figure 6.1.: Estimated spatial weight ci for each census tract of
Valencia according to all 15 diseases in the data set. Each choropleth
map corresponds to either BYM (left) or Leroux et al. (right) models
for the log-relative risks.

use of a broad set of mortality data, with 15 diseases, has allowed the
models to identify those census tracts with these particularities that lead
them to exhibit a very particular behavior in terms of mortality. That
behavior requires an adaptation of the spatial weights matrix, otherwise
their risks would be oversmoothed and estimated more similarly to their
neighbors than they should. The low estimated value of their spatial
weights will allow them to show the separate behavior that they require.
As will be shown in the next subsection, a more flexible modeling of
the risks is obtained in this manner, avoiding the excessive smoothing
problems that many of the most frequent disease mapping models entail
(Richardson et al., 2004; Botella-Rocamora et al., 2012). In contrast,
Figure 6.1 shows some other regions where high spatial weights have
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been fitted. Note that several of these units are located in spatial units
at the borders of the graph where the geometry of the graph would
impose lesser spatial dependence. See for example the yellow unit in
the north of the city or those in the southeast of the city, which connect
some other spatial units in its south which are not completely shown
at the choropleth maps. The high values of the spatial weights vector
seem to be used to connect more tightly those regions of the map in
the outskirts that would otherwise have an excessively independent
behavior, preventing them from being isolated. Thus, the adaptive
proposal run seems to change some geometric properties of the graph
that could make some census tracts less connected to the rest of the
graph than would be desirable.

The two tables shown in the Annex C reinforce also these results.
The first of these tables show, for each disease, the mean absolute
difference between the risks of the adjacency and adaptive models.
These results are separately presented for the regions with low, medium
and high weights. These results point out that the main risk differences
for both models occur there where the spatial weights vector takes
more extreme values, more different to 1. Thus, this is where these two
models particularly differ. On the other hand, the second of these tables
show the risk differences between each area and its neighbours for the
regions taking low and high weights, respectively. In average, the spatial
units taking low weights show higher differences in comparison to their
neighbours than the adjacency based model. Thus, these low weights
allow these units to have a more independent performance. In contrast,
the spatial units with high weights have risk estimates more similar
to their neighbours than the corresponding adjacency based estimates.
Therefore, the performance of these regions is just the opposite of that
of the regions taking low spatial weights.

Similar conclusions are drawn from a parallel analysis that we have
made for the whole of Spain at the municipal level (see more detailed
results for this analysis in the supplementary material). In this case,
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a multivariate analysis of 18 mortality causes has been carried out
and a common spatial structure is estimated from this analysis. As
a summary, 7 of the 10 municipalities with the lowest spatial weights
(those which are disconnected) are municipalities in the Costa Blanca,
a Spanish region with a large foreigner community of elderly retired
people from northern Europe who have moved to this Spanish region.
The presence of this community has been shown to have a clear impact
on the mortality of this region; see Zurriaga et al. (2008). The three
remaining municipalities with low spatial weights are all provincial
capitals, which correspond to municipalities with substantially higher
population than their neighbors. The spatial adaptive model used seems
to have been sensitive to both data artifacts, making these municipalities
different to their neighbors. On the contrary, we have found that 8
out of the 10 municipalities with the highest spatial weights belong to
coastal municipalities, that is, they are placed at the borders of the
graph of the region of study, which seems to confirm the impression
that we have drawn from the Valencia city data set.

Before concluding the study of the estimated spatial weights vector,
we want to illustrate the importance of the multivariate feature of
the models implemented for that estimation. Figure 6.2 shows, once
again for the BYM model in the Valencia city data set, the variability
(standard deviation) of the estimated vector c (its posterior mean) as a
function of the number of diseases considered. Thus, for one disease we
have run 15 different models, one per disease, and we have repeated
this for another 15 (randomly chosen) pairs of diseases, 15 trios and so
forth until reaching groups of 14 diseases. The black line in Figure 6.2
connects the mean of the observed standard deviations of c for each
number of diseases considered. The gray band delimits the minimum
and maximum standard deviations observed for c for each number
of diseases. Figure 6.2 shows how the multivariate model proposed
describes an increasing trend for the variability of c as a function of the
number of diseases considered. Thus, for the univariate studies, c hardly
learns from the data, which means that the resulting spatial weights
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matrix closely resembles the adjacency based weights matrix. In other
words, the adaptive feature of the model has hardly any effect when a
low number of diseases is considered. By way of contrast, Figure 6.2
shows substantial variability in c when the number of diseases is higher.
Thus, in summary, Figure 6.2 clearly points out the need to perform
multivariate studies if inference is pursued for the spatial dependence
structure of a region of study.
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Figure 6.2.: Variability of c (standard deviation) in the Valencia city
data set when estimated with the adaptive multivariate BYM model as
a function of the number of diseases considered in the analysis. The
black line connects the mean of the observed standard deviations of
c and the gray band delimits the minimum and maximum observed
standard deviations of c for each number of diseases.
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6.4.2. Use of the estimated spatial weights matrix in
subsequent univariate studies

Once the spatial weights matrix of the spatial random effects has been
estimated for a region, it could be used for subsequent univariate
disease mapping analyses on that same region. That is, the multivariate
estimates above of W ∗(c) could be used as estimates of the spatial
dependence structure for later uses, instead of the traditional (although
arbitrary) adjacency matrix W . It is hoped that W ∗(c) would have
captured the geographical structure and particularities of mortality
in that region of study. In this section, we are going to assess that
procedure on our data set comparing the use of the W ∗(c) matrices
estimated in the previous subsection with the most traditional procedure
which uses the adjacency criterion. Specifically, for all 15 diseases in
our data set we have fitted univariate BYM and Leroux et al. models
assuming either the spatial dependence structure estimated from the
multivariate analysis above or the traditional adjacency-based weights
matrix. Next, we compare the results of both analyses for each mortality
cause according to the Standardized Mortality Ratios (SMR) of both
alternatives and also according to the Conditional Predictive Ordinate
(CPO) and the Deviance Information Criterion (DIC) proposed by
Spiegelhalter et al. (2002).

In order to make a fair comparison, avoiding the use of the data
twice (once for estimating c and once for estimating the SMRs with the
corresponding univariate models), we have used different W ∗(c) in our
comparisons. Thus, for the case of AIDS mortality, for example, we have
estimated c with a multivariate study of 14 diseases, all excepting AIDS,
which avoids using the data twice for the univariate (preestimated)
adaptive analyses. We have repeated this procedure for all 15 causes
of mortality considered. Interestingly, the correlations between the
spatial weights vectors c for the analyses with 14 mortality causes and
that with 15 mortality causes are rather high, ranging from 0.94 to
0.97 depending on the cause removed. As a consequence, we would not
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expect important differences if W ∗(c) had been estimated just once
with all 15 diseases.

Figure 6.3 shows the estimated Standardized Mortality Ratios (SMR)
with the BYM model for the Valencian census tracts for cirrhosis
mortality (similar choropleth maps for the remaining of diseases are
shown in the supplementary material of this paper). The map on
the left side corresponds to the model assuming an adjacency-based
relationship between spatial units, while that on the right side uses the
spatial weights matrix previously estimated. The Leroux et al. model
provides similar results and these are also shown in the supplementary
material of this paper.

BYM model Adaptive BYM model

SMR

< 0.67
0.67 − 0.80
0.80 − 0.91
0.91 − 1.10
1.10 − 1.25
1.25 − 1.50
> 1.50

Figure 6.3.: Standardized Mortality Ratios for Cirrhosis in Valencia
estimated with the BYM model and with spatial weights matrices of
either unitary weights (left) or using the values obtained from the
multivariate analysis of 14 diseases (all mortality causes of study except
Cirrhosis) (right).
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As can be seen, both models provide risk maps with similar spatial
patterns. However, the model using the adaptive spatial weights
reproduces higher variability than its adjacency-based alternative
allowing some of Valencia’s neighborhoods to be reproduced more
clearly and making it possible for some census tracts to reproduce
more extreme risks. In particular, the adaptive analysis depicts more
clearly some particular high risk zones scattered throughout the city
which usually correspond to high deprivation areas. Thus, as previously
pointed out, the adaptive weights avoid the excessive smoothing of
the SMRs previously described in the literature by allowing additional
flexibility wherever it is required according to previous information
synthesized in the previous multivariate adaptive analysis.

Afterwards, we have compared the fit of the adaptive vs. the
non-adaptive weights models according to the CPO and DIC criterion.
Table 6.1 shows the DIC and CPO of the BYM and Leroux models
for both spatial weights matrices considered. For each model and
mortality cause we have marked the proposal providing a better fit,
according to DIC and CPO, in bold. As can be observed, according
to DIC (CPO), BYM and Leroux et al. models with adaptive weight
matrices provide a better fit than the corresponding adjacency based
model in 14 (13) and 13 (9), respectively, out of the 15 mortality
causes considered. This confirms that the greater flexibility of the
adaptive models really improves the SMRs estimates in comparison
to the traditional adjacency-based analyses. In addition, as it can be
confirmed at the supplementary material, those mortality causes with
a more substantial improvement in terms of DIC or CPO in general
coincide with those showing a spatial pattern of higher variability (AIDS
or COPD for example). Thus, an improvement is achieved mainly when
there is spatial variability to be explained, otherwise the gain achieved
is very modest as might seem logical.
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Table 6.1.: DIC and CPO for the BYM and Leroux at al. models
with adaptive and unweighted spatial weights matrices.

Causes
Adjacency Adaptive Adjacency Adaptive
BYM model BYM model Leroux model Leroux model

AIDS
DIC 1648.11 1631.87 1653.57 1647.39
CPO -857.98 -842.16 -865.67 -853.49

Stomach cancer
DIC 1771.57 1771.43 1770.46 1770.30
CPO -884.84 -884.77 -884.56 -884.49

Colorectal cancer
DIC 2354.53 2354.42 2354.07 2353.52
CPO -1176.82 -1176.95 -1176.69 -1176.65

Lung cancer
DIC 2861.52 2857.85 2872.61 2872.34
CPO -1430.85 -1429.09 -1436.90 -1438.01

Prostate cancer
DIC 2126.24 2126.08 2124.63 2124.51
CPO -1062.46 -1062.34 -1061.91 -1061.83

Bladder cancer
DIC 2051.48 2052.19 2056.07 2053.80
CPO -1027.02 -1027.55 -1029.16 -1027.80

Hematological cancer
DIC 1955.37 1955.17 1953.59 1953.26
CPO -977.43 -977.34 -976.51 -976.35

Mellitus diabetes
DIC 1976.97 1975.01 1978.35 1976.38
CPO -987.946 -987.03 -988.85 -987.54

Dementia
DIC 2335.17 2333.21 2341.74 2342.03
CPO -1168.47 -1168.05 -1172.21 -1172.41

Ischemic heart disease
DIC 3055.33 3048.46 3061.86 3061.53
CPO -1537.51 -1535.37 -1541.93 -1542.05

Ictus
DIC 2662.95 2659.86 2665.66 2664.25
CPO -1331.24 -1329.64 -1332.84 -1332.18

COPD
DIC 2681.81 2668.87 2698.39 2679.29
CPO -1348.43 -1342.04 -1359.55 -1347.98

Liver cirrhosis
DIC 2130.23 2128.75 2139.20 2141.70
CPO -1071.21 -1070.22 -1075.66 -1077.16

Suicides
DIC 1488.94 1488.86 1488.43 1488.36
CPO -744.36 -744.33 -744.09 -744.25

Traffic accidents
DIC 1506.68 1506.17 1506.76 1506.75
CPO -752.97 -752.80 -753.13 -753.22
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6.5. Discussion
As described in this paper, CAR distributions are usually considered
to model the spatial dependence between geographic units in disease
mapping studies. Although CAR distributions are undoubtedly useful
and powerful tools, the parameterization used to induce dependence by
means of its structure matrix is usually arbitrary. We have introduced
a procedure to estimate that spatial weights matrix according to
retrospective multivariate data. As shown, our adaptive procedure
makes CAR models more flexible and improves the fit of subsequent
analysis adopting the estimated weights matrix, which in principle
should have captured the particularities that mortality data could show
in that region. Additionally, the multivariate character of our proposal
has shown itself to be an indispensable tool for appropriately estimating
the spatial structure of the data.

The methodology introduced could have several different uses. First,
the multivariate adaptive model introduced could be used in multivariate
studies with adaptive spatial structures. These models should provide
more accurate risk estimates that could take advantage of the adaptive
character of the spatial dependence considered. In any event, if that
was the main goal of our analysis, a multivariate model, considering the
dependence between mortality causes, would be much more advisable.
A second use of adaptive CAR models would be the one emphasized in
this paper, that is, making inference on the spatial weights matrix of a
region of study. In this case, we would be more interested in the values
of the weights c than the own risks. As a consequence, that vector c,
and thus the adaptive weights matrix could be later used in subsequent
enhanced spatial disease mapping studies with a non-arbitrary spatial
structure based on previous data and knowledge.

In this sense, we find it convenient to mention a couple of limitations
of the proposed methodology. Our adaptive model proposes a kind
of meta-analysis of the spatial structure of several causes of death.
It would be obviously convenient that these causes of death were as
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6. On the use of adaptive spatial weight matrices from disease mapping
multivariate analyses

homogenous as possible. In an ideal situation, all of them should be
cardiovascular diseases, or tumoural causes of death ... since these
settings should probably share a common spatial dependence structure,
as assumed by our model. Considering congenital deaths or senility, for
example, as causes of death with a common spatial structure could be
possibly a bit risky since that assumption would be hard to maintain in
that case. Although we do not find any reason why adjacency could be
a better option in this setting. Anyway, this limitation should be born
in mind when using the estimated spatial weights matrix in new studies,
since the new causes of death in those cases should be as related as
possible to those used for estimating the spatial weights matrix.

In the same manner, as suggested by one reviewer, it would be
convenient to bear in mind that adding covariates to disease mapping
problems could possibly change the spatial dependence structure of
the region of study. For example, if an adaptive spatial dependence
structure gives a low weight to a particular spatial unit, separating it
from its neighbours, this could be also reproduced by a covariate taking
in this spatial unit very different values than in its neighbours. Thus, a
weights matrix that could be suitable for disease mapping studies for a
region of study could be not so good for ecological regression studies
on that same region.

Although in principle the main uses of our model would be those
mentioned in the previous paragraphs, we have also found a third
practical use of the model that we did not expect. This use would be
quality control of systematic problems that could be present in health
data sets. Being more precise, the Valencia city mortality data used
in Section 6.4 belongs to a large Spanish project studying mortality
in large cities, the MEDEA project. All the deaths in that data set
have been geocodified by using several geocoding tools, in particular
the Google geocoding API and a second geocoding tool (Cartociudad)
of the Spanish Geographic National Institute. These tools, as with any
other geocoding tool, are not perfect and they have errors for some
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6.5. Discussion

particular streets, groups of cases that are geocodified in the city center
etc. that could distort the spatial analyses of that data base. We have
found that the multivariate adaptive model on those data bases give low
spatial weights to those census tracts with systematic geocoding errors
since their mortality data are somewhat different from their surrounding
areas. This has allowed us to distill those errors by focusing on those
census tracts with low spatial weights and no potential alternative
explanation (no residential homes, no socially marginal areas, no new
building areas, etc.) for them. In most cases we have found that those
regions contained some geocoding error. Note that the results shown
in Section 6.4 correspond to the distilled database without geocoding
errors, which have been already fixed otherwise Figure 6.1 would have
also pointed out the census tracts with geocoding errors. This is just a
single example of the many uses that adaptive CAR models could have
in practice. This work illustrates just some potential uses of adaptive
CAR models, although we suspect there are many more than those that
we have found. We encourage readers to keep exploring new potential
uses of this approach.
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7. The Spanish National Atlas
of Mortality (ANDEES)

In this chapter, we introduce the Spanish National Atlas of Mortality
(ANDEES). This chapter is divided into 4 sections. Section 7.1
introduces and motivates the work that we have done in this atlas.
Section 7.2 describes the data, methodology followed and sketches some
of its main features. Section 7.3 shows a sample of the more interesting
results, in our opinion, that can be consulted in ANDEES. Finally,
Section 7.4 discusses some conclusions from our experience developing
ANDEES.

7.1. Introduction
The geographical distribution of mortality has been the object of interest
in many epidemiological studies. Just in Spain, small areas mortality
studies have been carried out for many of the regions into which Spain
is divided (Benach et al., 2004; Martínez-Beneito et al., 2005; Esnaola
et al., 2010; Ocaña et al., 2010) or they have paid particular attention to
the distribution of mortality within large cities (Borrell et al., 2009, 2010;
Puigpinos-Riera et al., 2011; Aguilar-Palacio et al., 2017). While these
studies do have their own interest, they show just a part of the picture
for the whole of Spain when, evidently, the risk in any of these regions
is not independent of the risks in the surrounding regions. Moreover,
if the region of study in a spatial analysis is too small to capture the
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7.1. Introduction

geographical variability of the disease, the geographical distribution of
risk could seem flat, when it would emerge if the region of analysis was
larger. Accordingly, we could be missing an opportunity to capture
that variability and thereby take advantage of its knowledge it contains,
since the underlying risk factors that could be causing that variability
could remain unknown. As a consequence, a small areas mortality study
at the national level could be quite interesting to undertake, mainly if
it is comprehensive enough to provide a general view of mortality for a
variety of causes throughout the whole country.

Some initiatives have already been undertaken in order to explore
the geographical distribution of mortality for the whole of Spain (Benach
et al., 2001; López-Abente et al., 2006) at a small area (municipal or
small municipality aggregates) level. Despite having some interesting
aspects, these works are already a bit outdated, in terms of the period of
study (1987-1995 in Benach et al. (2001) and 1989-1998 in López-Abente
et al. (2006)). Moreover, these two works were originally published as
traditional printed books. Obviously, the richness of municipal mortality
maps gets a bit constrained by this publishing format which does not
allow such a large amount of results to be explored in close detail.
Fortunately, new statistical dissemination tools such as Shiny (Chang
et al., 2020) or Tableau have emerged in recent years, making it possible
to consider new publishing formats for studies of this kind. These new
formats permit the use of more modern tools, such as interactive maps,
charts and tables facilitating a more effective dissemination of the
results of these studies. Additionally, Shiny (or some other similar
tools) enable the web publishing of the mortality projects that could be
developed, making this kind of analysis accessible even to the general
public, in contrast to the hardcopy print format of the prior mortality
atlases already published. Finally, the web publishing of the broad
mortality studies that we are talking about, would make it possible
to include a far higher number of causes of death. Mortality studies
with hundreds, or even thousands, of deaths are not feasible in paper
format, but web applications are able to handle such an amount of
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7. The Spanish National Atlas of Mortality (ANDEES)

information easily and in a user-friendly way. All of this supports the
idea of using updated mortality data and these modern statistical tools
to develop comprehensive small areas mortality studies at the national
level. This study could be of great interest for both epidemiologists (or
health professionals in general) and the general public.

ANDEES is an interactive web application that allows for the
visualization of the spatial and spatio-temporal distribution of mortality
throughout the whole of Spain during the period 1989-2014. The spatial
unit of analysis in ANDEES is the municipality, specifically a total
of 8,063 municipalities throughout Spain over the period of analysis.
The annual average population of these municipalities ranges from 5 to
3,061,610 inhabitants during the period of study, thus risk-smoothing
statistical models are absolutely required in order to draw minimally
reliable results. Independent geographical patterns are estimated in
ANDEES for men, women and for both sexes together; accordingly,
three spatial patterns are estimated for each cause of death, obviously
whenever this makes sense, since prostate cancer, for example, is not
considered in women or both sexes for evident reasons. ANDEES
considers a total of 102 causes of death, which correspond to all the
mortality groups considered by the Spanish National Statistical Institute
(INE).

Given the large volume of information generated in ANDEES,
the final design of this mortality atlas has been developed as a web
application. In this manner, we avoid the mentioned drawbacks of
traditional publishing formats. The final version of ANDEES can be
consulted at the following URL:

http://atlasnacional.fisabio.es.

ANDEES has been developed by the Bayensians research group of
the FISABIO Foundation and the Valencian General Directorate of
Public Health. The authors of ANDEES are, in this order: Francisca
Corpas Burgos, Carlos Vergara Hernández, Paloma Botella Rocamora,
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Jordi Pérez Panadés, Hèctor Perpiñán Fabuel and Miguel Ángel
Martínez Beneito. ANDEES has been partially funded by: UGP-15-156
grant from FISABIO, PI16/01004 grant from Instituto de Salud Carlos
III and MTM2013-42323-P grant from the Ministerio de Economía y
Competitividad.

7.2. Methodology

7.2.1. Data
Two data sets have been used as the main sources for the development
of this atlas. The first of them contains all the deaths that occurred
in Spain during the period 1989-2014. For each of these deaths, we
have the following individual information: sex, age, INE code of the
municipality of residence, year and cause of death. These data have
been provided by the INE and tabulated according to sex, five-year age
group (considering a final age group of 85 years or more), municipality
and cause of death, for the total period 1989-2014 and considering
eight triennial periods, from 1991-1993 to 2012-2014. The causes of
death studied correspond to each of the 102 causes of death set by the
INE in its Abbreviated List. This full list, with the CIE9 and CIE10
codifications corresponding to each of these causes of death, can be found
at: https://www.ine.es/daco/daco42/sanitarias/lista_reducida_CIE10.pdf.

Of the previous groups of death, only those sexes or the combination
of both with at least 10,000 deaths during the entire study period have
been finally studied, since the causes with a lower number of deaths
could yield unreliable results. In this manner, we guarantee at least
one observed death, on average, per municipality during the period of
study, which seems a reasonably safe limit over which the smoothing
methods used should yield reliable results.

The second main data set for ANDEES contains information on
the population (number of people at risk) for each region and year of
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7. The Spanish National Atlas of Mortality (ANDEES)

study. This second database is tabulated according to the following
variables: sex, age (five-year groups), INE code for each municipality
and year. This information has been obtained from the municipal
population register published annually by the INE. These data are
available annually at the INE website starting in 1998 (https://www.
ine.es/dynt3/inebase/es/index.htm?padre=517&capsel=525). Additionally,
the INE website also has this information available for 1996. The
population for 1997 has been estimated by geometric interpolation of
the populations published for 1996 and 1998. For the years between
1989 and 1995, the municipal populations have also been estimated
by geometric interpolation of the population data from the 1991 and
2001 censuses, since population register data were not available before
1996. Both censuses were previously calibrated to the population
registries data sources comparing the 2001 population gap for both
sources, thereby correcting the census data in order to adapt it to the
other source. This should eliminate the bias that could exist between
both sources for Spain as a whole; that same correction would be also
applied to municipal data. The same correction was also applied to the
1991 census data and therefore it would be taken into account for the
interpolated interim data. Population data for each age group, sex, year
and municipality have been used to calculate the number of expected
deaths per municipality and period, which will be used later for disease
mapping models.

Spain was divided into 8,119 municipalities in 2014; however, not
all of them have been considered as units of analysis in ANDEES. This
is because some of these municipalities were created after 1989, so
they have not existed throughout the whole period of study. As a
consequence, no observed and expected cases would be available for
all the years of the period of study for these municipalities, which
could lead to analysis problems mainly for the spatio-temporal study.
As a solution, we have decided to merge these municipalities into the
municipality that they come from, and consider them as a single unit
of study, summing their observed and expected cases for all the years
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of analysis. In the end, a total of 8,063 municipalities (or aggregates
in some cases) have been considered for the analyses of ANDEES.
The cartographic information used, also downloaded from the INE
website (https://www.ine.es/censos2011_datos/cen11_datos_resultados_
seccen.htm), corresponds to the Spanish municipalities for 2011 (latest
update available) and has been suitably modified taking into account
the aggregations of municipalities that we have just commented.

7.2.2. Spatial and spatio-temporal modeling of
mortality risks

The mortality risk indicators studied in ANDEES have been estimated
from the observed and expected deaths in each of the municipalities
of Spain, for the whole period of analysis 1989-2014 and for the eight
triennial periods that make up the whole study period. As for the
rest of the works carried out in this thesis, smoothed SMR have been
the main mortality indicator used to study the mortality risks for
each municipality. Smoothed SMRs have been estimated by means
of spatial and spatio-temporal smoothing models. On the one hand,
the spatial smoothing model used to smooth the SMRs for the whole
period of study has been the one proposed by Besag et al. (1991)
(BYM), already described in detail in the previous chapters of this
thesis. Thus, we will not introduce this model once again in this
chapter. On the other hand, due to the great length of the study period,
it is also interesting to study mortality over shorter periods of time and
analyze its evolution over time. To do so, the observed and expected
deaths for each of the municipalities of Spain, disaggregated in the
eight triennial periods already mentioned, have been considered. In
this case, mortality throughout Spain during the whole period of study
is used as the reference population for deriving the expected deaths
for all the subperiods and municipalities. The use of spatio-temporal
smoothing models allows the study to be disaggregated into several
study subperiods, providing updated estimates of the risks, instead of
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7. The Spanish National Atlas of Mortality (ANDEES)

global estimates summarizing the entire period. In this way, we avoid
the bias that occurs when considering risks as static amounts over time,
which show temporal variations (Ocaña Riola, 2007).

Within the spatio-temporal modeling literature, the
Martinez-Beneito et al. (2008) proposal has been particularly
well received and has been repeatedly used to explore the evolution
of mortality in different studies (Zurriaga et al., 2008, 2010;
Gracia et al., 2017; Marco et al., 2017; Morris et al., 2019). The
spatio-temporal smoothing of the SMRs in ANDEES has been carried
out according to this proposal. The spatio-temporal model proposed
by Martinez-Beneito et al. (2008) considers the joint use of spatial
smoothing tools and time series models, specifically auto-regressive
processes. That is, in this auto-regressive model, a spatio-temporal
structure is defined in which the risks are spatially and temporally
dependent at the same time, favouring SMRs that correspond to either
nearby locations or consecutive time periods to take similar values.

Specifically, the auto-regressive spatio-temporal model assumes that
the observed deaths in each municipality and time period Oit follow a
Poisson distribution:

Oit ∼ Poisson(EitRit), i = 1, . . . , I, t = 1, . . . , T,

where Eit and Rit are the expected number of deaths and the relative
risk in each geographic unit and time period under study, respectively.
For the first time period, the logarithm of the relative risks is defined as
the sum of an intercept, a spatial random effect, and a heterogeneous
random effect as follows:

log(Ri1) = (µ+ α1) +
(
1− ρ2

)−1/2
· (φi1 + θi1),

φ1 = (φ11, . . . , φI1) ∼ ICAR(σ2
φ),

θi1 ∼ N (0, σ2
θ), i = 1, . . . , I.

(7.1)

As in the BYM model, the spatial random effect is considered to follow
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an ICAR distribution and an additional heterogeneous random effect of
constant variance is also considered. The parameter ρ corresponds to
the temporal correlation, which controls the strength of the smoothed
SMRs temporal dependence for each municipality. The intercept for
these log-risks is decomposed into two terms: µ, which is the average
value of the log-risks for all the geographic units and periods, and α1,
which is the mean deviation from the average level that occurs for the
smoothed SMRs for the first subperiod of study.

For the following subperiods, the logarithm of the relative risks are
defined as follows:

log(Rit) = (µ+ αt) + ρ · (log(Ri(t−1))− µ− αt−1) + φit + θit,

φt = (φ1t, . . . , φIt) ∼ ICAR(σ2
φ),

θit ∼ N (0, σ2
θ), i = 1, . . . , I, t = 2 . . . , T.

(7.2)

In this way, the risk in each geographic unit and period not only
depends on the risk in its neighboring units, but also depends on its
own risk in previous periods. That temporal dependence is defined by
means of a first order autoregressive time series, while geographical
dependence is induced by including spatial random effects to model
the temporal evolution between consecutive periods. Thus, neighboring
areas have similar risk evolutions in the same manner that they have
similar geographical risk estimates.

Additionally, the vector of period-specific intercepts

α = (α1, α2, . . . , αT ) ∼ ICAR(σ2
α),

is assumed to also follow an ICAR distribution, considering the
consecutive time periods as neighbors. This induces a smooth evolution
in the average smoothed SMRs over all the time periods considered,
which seems a reasonable assumption from an epidemiological point of
view.
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Finally, we complete our model with the following prior distributions:

µ ∼ U(−∞,∞)

ρ ∼ U(−1, 1)

σφ, σθ, σα ∼ U(0, 100).

These prior distributions for the overall intercept (µ) and, for the
standard deviation of the random effects (σφ, σθ and σα) are intended
to be vague. The prior distribution of the time correlation parameter
(ρ) has been chosen in order to reproduce a stationary time series.
In equation (7.1), the term (1 − ρ2)−1/2 is introduced so that the
variance-covariance matrix of O·1 coincides with that same matrix for
the rest of the periods, which is the stationary covariance matrix
of the multivariate series (O·t)∞t=2. The expression of the overall
variance-covariance matrix for all the smoothed SMRs can be found in
Martinez-Beneito et al. (2008), which is just a Kronecker product of
the spatial and temporal dependence structures.

The models described above have been used in the studies of
mortality data for continental Spain. For the rest of Spain (islands and
autonomous cities), alternative models have been run in which there is
spatial dependence only for the municipalities on the island of Mallorca.
For the rest of the islands and autonomous cities, only heterogeneous
random effects have been considered, since the geographical extent of
these regions means the spatial dependence hypothesis makes little
sense. Moreover, avoiding spatial random effects in those regions also
avoids the particular problems that ICAR distributions exhibit when
used on disjointed sets of regions (Hodges et al., 2003). In any event,
for each sex and cause of death, three different intercepts were used for
the Canary Islands, Balearic Islands and Ceuta-Melilla, respectively,
since we assumed these regions to be distant and different enough as to
need these different parameters.

The mentioned spatial and spatio-temporal models have been run in
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7.2. Methodology

WinBUGS (Lunn et al., 2000), using the statistical package R with some
particular libraries. The enormous volume of data to be analyzed as well
as the number of estimates to be obtained for each analysis have been a
clear computational challenge. Thus, some tools have been necessary to
speed up the computing. Specifically, we have made use of the Pbugs
package of R (https://github.com/fisabio/pbugs), which has allowed us to
automate the calls to WinBUGS from R, running in parallel each of the
different chains involved in the MCMC process, reducing computation
times by a factor of the number of chains run. In the case of the spatial
analysis, three chains were run for each model with 11,000 iterations,
where the first 10% of these were discarded as a burn-in period. Of
these, one out of every 29 iterations was saved, thereby yielding a
final sample size of 1,026 iterations. In the case of the spatio-temporal
analysis, five chains were run for each model with 15,000 iterations.
The first 5,000 iterations of each chain were discarded in this case as
a burn-in period. Of these, one out of every 50 iterations was saved,
thereby yielding a final sample size of 1,000 iterations. Convergence was
assessed by means of the Brooks-Gelman-Rubin statistics (we required
this to be lower than 1.1 for each variable) and the effective sample size
(required to be at least 100 for each retrieved variable) (Brooks and
Gelman, 1998; Gelman et al., 2014). These statistics are implemented
in the R2WinBUGS package (Sturtz et al., 2005) of R, that the Pbugs
library makes use of.

Once the posterior distributions of the smoothed SMRs were
estimated from the BYM model and the spatio-temporal auto-regressive
proposal, we calculated their posterior means and their mass above 1
(risk excess probability) for each municipality and period (in the case
of spatio-temporal modeling). These values are the two main statistics
finally shown in the maps drawn in ANDEES.

In addition to these statistics, and to facilitate the visualization
and understanding of the results of the spatio-temporal analysis,
ANDEES allows the estimated smoothed SMRs from that analysis
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to be broken down into separate components: spatial, temporal and
spatio-temporal. ANDEES also permits each of these components to be
reproduced by separating or removing its effect over the spatio-temporal
smoothed SMRs for each municipality and subperiod. The mentioned
spatial component of the spatio-temporal SMRs would be the average
geographic pattern of those SMRs over all the subperiods that make
up the global period of study. This component would be quite
similar to the SMR maps represented in the spatial analysis. The
temporal component of the SMRs would represent the mean temporal
evolution of the SMRs throughout the study period, for the whole
period of study. Finally, the mentioned spatio-temporal component
would represent the changes produced in the smoothed SMRs for
each subperiod and municipality, beyond the sum of the spatial and
temporal components already described. Specifically, as described in
Adin et al. (2017) and Martinez-Beneito and Botella Rocamora (2019),
if µ∗ = 1

IT

∑I
i=1

∑T
t=1 log(Rit) is the average log-risk for all the spatial

units and periods, the estimated log-risks for each municipality i and
subperiod t can be decomposed, respectively, into the following spatial,
temporal and spatio-temporal components:

ξ∗i = 1
T

T∑
t=1

log(Rit)− µ∗,

γ∗t = 1
I

I∑
i=1

log(Rit)− µ∗,

δ∗it = log(Rit)− ξ∗i − γ∗t − µ∗.

It can be easily checked (see for example the references above) that
the estimated log-risks can be decomposed as the sum of these patterns,
i.e.:

log(Rit) = µ∗ + ξ∗i + γ∗t + δ∗it.

As mentioned, ANDEES allows the representation of different
maps showing the SMRs and the probabilities of excess risk,
including/excluding the different components that make up the log-risks
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decomposition above. Thus, for example, if the SMR maps in a
spatio-temporal model showed a strong temporal component, making
the risks high in the first period, in general, and low in the last period,
it might be wise to remove the temporal effect in both representations.
In this manner, it would be possible to observe the spatial pattern
for each period beyond the strong temporal trend mentioned. Once
the temporal component was removed, we could find a strong spatial
component underlying all the resulting maps. In that case, it could
perhaps be useful to remove the spatial component common to all
these maps in order to see more specific risk variations of more specific
interest for some particular locations and periods. This illustrates how
playing with these components may make it possible to visualize some
particular features that would otherwise remain unnoticed. The risk
excess probabilities maps for this representation are sensitive to the
components of the SMRs considered, thus if the temporal component
is removed, the risk excess probability of any observation would really
measure P (ξ∗i + δ∗it > 0) for the corresponding municipality.

7.2.3. Some further non-statistical details of ANDEES
Beyond the data modelling component of ANDEES, this project also
has an important data visualization component that we are going to
describe now. The web application that hosts and allows the results
of the above models to be visualized has been developed using the
Shiny package of R. Nowadays, this package is becoming nowadays very
popular and several applications for spatial and spatio-temporal data
analysis and visualization have already used it (Moraga, 2017; Adin
et al., 2019a). ANDEES enables user interaction through several control
widgets and creates interactive visualizations of the data and results
according to those controls. Specifically, ANDEES allows different
selection and visualization criteria for the maps to be set, showing
the spatial and spatio-temporal distribution of risks. These selection
criteria permit the specification of the sex, cause of death and study
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period (in the case of spatio-temporal analyses) of the map to be
represented. The visualization criteria enable the graphical output of
the results to be configured, for example, by specifying the indicator
that will be represented on the maps (smoothed SMRs or risk excess
probabilities), establishing the cut-off points or color palettes for the
choropleth maps, etc. Additionally, as already mentioned, in order to
facilitate the interpretation of the spatio-temporal analyses, it is also
possible to select which components of the SMRs (spatial, temporal or
spatio-temporal) will be included in the corresponding map.

The main exploration tools implemented in ANDEES are:

− Choropleth maps with the smoothed SMRs and risk excess
probabilities for the different causes of death, sexes and periods
of study (in the spatio-temporal case). These maps support
interactive panning and zooming, which is very convenient for
exploring particular regions in detail. In addition, when clicking
on a municipality, specific information shows up with its name,
province and the corresponding smoothed SMR and risk excess
probability estimates.

− Line plots showing the temporal evolution by subperiods of
the average risk for each province and the whole country, for
the selected sex and cause of death. These plots also include
support for interactive features such as panning, zooming and
series highlighting.

− Data tables containing numeric information on the estimates of
interest. These tables support filtering, pagination and sorting
which would be helpful for locating the information from one
particular municipality or identifying those municipalities with
highest or lowest risk estimates.

The Leaflet package (Cheng et al., 2019) has been used for building
the choropleth maps of ANDEES. This package allows interactivity to
be added to these maps, as well as to represent them over underlying
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cartography layers, which makes it possible to place each municipality
in its geographical context. Some of the Leaflet functions used have
had to be optimized and recoded in order to speed up the rendering
of the maps, as it seems that these functions were not designed to
handle such an amount of data. These improvements have reduced the
rendering time of each map in the atlas from about 8 seconds to just
2 seconds, approximately. Line plots with the risks evolution for the
different subperiods of the study have been drawn by using the Plotly
package (Sievert et al., 2020). Finally, data tables for displaying the
estimates of interest are shown with the help of the DT package (Xie
et al., 2020), which allows interactive features such as ordering by the
different columns of the table.

In addition to these results, ANDEES also provides further
information that may be of interest for exploring the results in greater
detail. These additional tools contain, among others:

− Dispersion plots for the smoothed municipal SMRs against some
municipal features, such as the number of inhabitants, municipal
average income, longitude or latitude. These plots make it possible
to address the potential relationship between these factors and
the risks of death.

− Density plots for the smoothed SMRs. This yields deeper insights
into the shape of that distribution, which choropleth maps hardly
allow knowing about. Moreover, these plots allow the length of
the tails of that distribution to be known, which is obviously of
interest from an epidemiologic point of view.

− Age-specific mortality rates per 100,000 inhabitants, for each
sex separately and for both together. This information makes it
possible to know the age distribution of each mortality cause and
compare it between sexes.
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7. The Spanish National Atlas of Mortality (ANDEES)

All the results shown in ANDEES can be downloaded by users as
image files, in the case of maps and figures, and csv/Excel files in the
case of data tables.

7.3. Results: Some interesting mortality
geographic patterns

In this section we provide a brief description of some of the results
shown in ANDEES. Specifically, we show the estimated geographic
mortality patterns for all causes of death jointly and for some specific
causes, separately for men and women. Likewise, we also present the
changes in the mortality risks at the provincial and national levels
during the period of the study, which allows us to identify areas with a
different behavior in comparison to the general trend. Our goal is not
to make an exhaustive interpretation of the maps and figures shown,
but to present an overview with some of the results obtained. In this
way, we attempt to illustrate the potential use of ANDEES for other
health professionals with a particular interest in some specific causes of
death, and the ways in which we would like people to make use of this
tool.

7.3.1. All-causes mortality
Figure 7.1 shows the all-causes mortality risk maps for the whole period
1989-2014 and the evolution of such risks at the provincial and national
levels in the different subperiods of study for both men and women,
respectively. As can be observed (Figures 7.1a and 7.1b), all-causes
mortality maps show clear inequalities, mainly marked by a north-south
pattern. In the case of men (Figure 7.1a), the highest mortality occurs
especially in the southwestern half of the peninsula (Extremadura and
western Andalucía). In contrast, the areas with the lowest mortality are
found in the north and north-east side of Spain (northern Meseta and
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below the Pyrenees). In the case of women (Figure 7.1b), the highest
mortality occurs in the southern half of the peninsula, especially in the
southern and western part of Andalucía (Huelva, Sevilla, Cádiz and
Málaga). On the other hand, the areas with the lowest mortality are
once again located in the north and north-east of Spain. Overall, both
two maps are quite similar in terms of evidencing similar geographical
patterns for both sexes. This higher mortality for all causes in men and
women in the southern areas of the country compared to mortality in the
northern zone could be reflecting, in part, the existing socioeconomic
inequalities between these regions (Benach and Yasui, 1999).

The general evolution of all-causes mortality at the provincial and
national levels, in men (Figure 7.1c) and women (Figure 7.1d), shows
a clear downward trend throughout the period of study. This overall
downtrend in general mortality throughout the whole country could be
explained by the public health and sanitary improvements that have
occurred over the years of this long period of study. The spatio-temporal
results show how, in general, the north-south geographic pattern found
is maintained in all the subperiods of the study, and areas with an
evolution different from the general one are not found. In other words,
the spatio-temporal interaction is quite mild for all-causes mortality.
Therefore, we do not include the maps for each one of the subperiods
of analysis, since they are very similar (leaving apart the effect of the
overall trend for the whole of Spain).

7.3.2. Malignant tumor of the trachea, bronchi and
lung mortality

Figure 7.2 shows the mortality risk maps for malignant tumors of the
trachea, bronchi and lung (simply lung cancer from now on) for the
period 1989-2014 and its evolution at the provincial and national levels
for both men and women. Of the 102 causes of death studied, lung
cancer represents the first cause of death in men, accounting for 8.3%
of all deaths. In contrast, lung cancer in women is the twenty-first

160



“Thesis” — 2020/7/6 — 16:18 — page 161 — #203
picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picture

picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picture

7. The Spanish National Atlas of Mortality (ANDEES)

RMEs

< 70
70 − 80
80 − 90
90 − 110
110 − 120
120 − 130
> 130

Mortalidad Municipal en España
Todas las causas

Hombres, 1989 − 2014

                                      Fuente: Fundación FISABIO
 Atlas Nacional de Mortalidad en España (ANDEES)

        Descargado desde http://atlasnacional.fisabio.es  

(a)

RMEs

< 70
70 − 80
80 − 90
90 − 110
110 − 120
120 − 130
> 130

Mortalidad Municipal en España
Todas las causas

Mujeres, 1989 − 2014

                                      Fuente: Fundación FISABIO
 Atlas Nacional de Mortalidad en España (ANDEES)

        Descargado desde http://atlasnacional.fisabio.es  

(b)

(c)

(d)

Figure 7.1.: All-causes mortality risk maps in the period 1989-2014
and the evolution of risks in men and women.
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cause of death, accounting for 1.3% of all deaths, and the fifth tumoural
mortality cause. As can be seen, the areas with the highest mortality
risks for this cause in men (Figure 7.2a) are mainly concentrated in
the southwestern part of the peninsula (Extremadura, Huelva, Sevilla
and Cádiz), also in some areas of the Mediterranean coast and in some
areas of Asturias. We found that nine out of the ten municipalities
with the highest lung cancer mortality risks are in Extremadura, the
community with the highest percentage of smokers according to the
report on ‘Smoking and Cancer in Spain’ published in 2018 by the
Spanish Association Against Cancer (AECC) (https://www.aecc.es/
sites/default/files/content-file/Informe-tabaquisimo-cancer-20182.pdf) and
historically a region hosting tobacco farming lands. In contrast, the
areas with the lowest mortality risks are located in the northern half of
the peninsula, as well as the northeast of Andalucía, east of Castilla-La
Mancha and the Canary Islands. In the case of women (Figure 7.2b),
the areas showing the highest mortality rates are scattered around many
parts of the country, with the highlighted areas being the Canary Islands,
some areas of Madrid, Bizkaia and Pontevedra, and coastal zones of
Málaga, Alicante and western Mallorca. Some of the municipalities
with the highest mortality risks correspond to tourist areas located on
the coast of Malaga, Alicante and the Canary and Balearic Islands.
During the period of study, large communities of elderly foreigners from
northern Europe, whose women historically smoked in larger numbers
than in Spain (Graham, 1996), have settled in these areas. It has been
previously suggested that the presence of these communities could be
having a clear impact on the mortality of these regions, it least in the
case of Alicante (Zurriaga et al., 2008), due to the different historical
smoking habits of these groups of women.

The evolution of lung cancer mortality risks at the provincial and
national levels in men (Figure 7.2c) remains stable in most provinces in
the periods between 1991 and 2008, exhibiting a slight downward trend
from that point on. The provinces with the highest mortality (Huelva,
Sevilla, Cádiz, Cáceres and Badajoz) show the sharpest decrease, which
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starts at the beginning of the period of study. Thus the geographical
variability of risks in men decreases with the evolution of the period of
study. For women (Figure 7.2d), lung cancer mortality shows a clear
upeard trend from the year 2000. The spatio-temporal results show
how, in general, the geographical mortality pattern found for each sex
for the entire study period is maintained (except for the main time
trend in women) with slight variations in the different subperiods for
some particular locations (maps not shown).

7.3.3. Malignant tumor of the stomach mortality
Figure 7.3 shows the malignant tumor of the stomach (just stomach
cancer from now on) mortality risk maps for the period 1989-2014 and
the evolution of those risks at the provincial and national levels in men
and women. Of the 102 causes of death evaluated, stomach cancer
represents the fourteenth cause of death in men, accounting for 1.9% of
all deaths, and the fourth tumoural cause. For women, stomach cancer
is the twenty-first cause of death, accounting for 1.4% of all deaths,
and also the fourth leading tumoural cause. As can be seen, the areas
with the highest mortality risks for this cause in men (Figure 7.3a) are
mainly concentrated in Castilla y León and some neighboring areas.
The Galician Atlantic coast, Cáceres, Ciudad Real and areas of the
northern interior of Cataluña also show high mortality. The lowest
relative risks are concentrated on the Canary and Balearic Islands, and
more dispersed on the Mediterranean coast. In the case of women
(Figure 7.3b), stomach cancer mortality shows a similar pattern to that
of men, although it extends to a greater extent in areas of southern
Galicia, northern Cataluña and Ciudad Real. This marked mortality
pattern in the interior of Spain for both sexes could be associated with
food consumption or food production tasks in these rural areas, where
more cured meat and less fruits and vegetables are consumed than in
the coastal zones (López-Abente et al., 2014). Overall, the geographical
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Figure 7.2.: Lung cancer mortality risk maps in the period 1989-2014
and the evolution of risks in men and women.
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7. The Spanish National Atlas of Mortality (ANDEES)

pattern found for stomach cancer is one of the more striking patterns
in ANDEES because of the high geographical inequalities evidenced.

The evolution of stomach cancer mortality risks at the provincial and
national levels for both sexes (Figures 7.3c and 7.3d) shows a downward
trend. The spatio-temporal analyses show how the geographic pattern
found in both sexes is maintained for the different subperiods of the
study, and areas with a significant departure from the overall mortality
trend for this disease are not found (maps not shown).

7.3.4. Diabetes mellitus mortality
Figure 7.4 shows the diabetes mellitus (simply diabetes from now on)
mortality risk maps in the period 1989-2014 and the temporal evolution
of these risks at the provincial and national levels for both sexes. Of the
102 causes of death studied, diabetes represents the fifteenth cause of
death in men, accounting for 1.9% of all deaths. For women, diabetes is
the ninth cause of death, accounting for 3.4% of all deaths. As observed,
the geographical distribution of the mortality relative risks for this
cause in men (Figure 7.4a) shows lower mortality in the northern half of
the peninsula and higher mortality in the southern half. The areas with
the highest mortality are especially concentrated in the Canary Islands,
Sevilla, Cádiz and zones of Jaén, Ciudad Real and Valencia, while those
with the lowest mortality are located in the eastern provinces of Castilla
y León, Galicia and Madrid. For women (Figure 7.4b), the territorial
distribution also follows a north-south pattern, where the areas with the
highest mortality are in the south: Extremadura, Andalucía, southern
Castilla-La Mancha, Murcia, Valencia and the Canary Islands. Low
risk areas are observed in the northeast of the Meseta (Soria, Segovia,
Burgos) and some areas of Teruel, León and Galicia. In short, we find
that the diabetes mortality risks for both sexes show a clear north-south
gradient. The Canary Islands stands out as the region with the highest
rates in Spain. Diabetes is a disease associated with junk food and the
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Figure 7.3.: Stomach cancer mortality risk maps in the period
1989-2014 and the temporal evolution of risks in men and women.
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Canary Islands is precisely the region with the most obese population
in Spain (Marcelino-Rodríguez et al., 2016).

The evolution in the diabetes mortality risk at the provincial and
national levels in men (Figure 7.4c) has remained practically stable
throughout the period between 1991 and 2005. Starting in 2005, we
observe a slight downtrend, except in Las Palmas and Santa Cruz
de Tenerife where the trend is upwards. For women (Figure 7.4d),
the evolution of the mortality risk is similar to that of men. These
figures show different spatio-temporal evolutions for the different regions
of Spain. Figures 7.5 and 7.6 shows the mortality risk maps (only
spatio-temporal interaction) for some subperiods in men and women,
respectively. The rest of the subperiods not shown (for a question
of space) do not add anything different to the maps shown in those
figures. These figures allow us to identify those areas that have followed
a different evolution to the country as a whole. For both sexes, we
find that the municipalities with the starkest mortality risks decrease
are located in areas of Extremadura, southern and western Andalucía,
Madrid and coastal zones of Alicante, Valencia, Galicia and Cantabria.
In constrast, we find that the municipalities with the steepest increases
in risk are located in areas of the Canary Islands, Cataluña and Castilla
y León. In the rest of the municipalities the risks remain stable during
the different subperiods considered. In any case, diabetes is a clear
example of spatio-temporal interaction in the evolution of mortality
risks.

7.3.5. Leukemia mortality
Figure 7.7 shows the leukemia mortality risk maps for the period
1989-2014 and the evolution of such risks at the provincial and national
levels for both sexes. Of the 102 causes of death studied, leukemia
represents the thirty-fourth cause of death in men, accounting for 0.9%
of all deaths. For women, leukemia is the thirty-fifth cause of death,
accounting for 0.7% of all deaths. As can be observed, the mortality risk

167



“Thesis” — 2020/7/6 — 16:18 — page 168 — #210
picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picture

picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picture

7.3. Results: Some interesting mortality geographic patterns

RMEs

< 70
70 − 80
80 − 90
90 − 110
110 − 120
120 − 130
> 130

Mortalidad Municipal en España
Diabetes mellitus

Hombres, 1989 − 2014

                                      Fuente: Fundación FISABIO
 Atlas Nacional de Mortalidad en España (ANDEES)

        Descargado desde http://atlasnacional.fisabio.es  

(a)

RMEs

< 70
70 − 80
80 − 90
90 − 110
110 − 120
120 − 130
> 130

Mortalidad Municipal en España
Diabetes mellitus

Mujeres, 1989 − 2014

                                      Fuente: Fundación FISABIO
 Atlas Nacional de Mortalidad en España (ANDEES)

        Descargado desde http://atlasnacional.fisabio.es  

(b)

(c)

(d)

Figure 7.4.: Diabetes mortality risk maps in the period 1989-2014 and
the evolution of risks in men and women.
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(d)

Figure 7.5.: Diabetes mortality risk maps (only spatio-temporal
interaction) in some study subperiods in men.

distribution for this cause of death in men (Figure 7.7a) shows hardly
any variability. We find that the areas with the lowest relative risks are
found in areas of the Canary and Balearic Islands, Galicia and eastern
Castilla y León. On the other hand, the regions with higher risks are
found in areas of Cáceres, Barcelona and Córdoba. For women (7.7b),
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(d)

Figure 7.6.: Diabetes mortality risk maps (only spatio-temporal
interaction) in some study subperiods in women.

the geographic pattern is completely flat, with no areas with particularly
higher/lower risks standing out from the whole country. Hardly any
municipalities show significant risks (P (SMRs > 100) above 0.95 or
below 0.05) for the whole of Spain for either sex. In view of these results,
we conclude that mortality from leukemia is distributed homogeneously
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throughout the national territory, unlike mortality from the rest of the
causes presented, which exhibits a marked spatial pattern. In other
words, leukemia is a good example of an evenly distributed cause of
mortality.

The spatio-temporal mortality evolution of leukemia in men (Figure
7.7c) and in women (Figure 7.7d) shows a downward trend throughout
the study period. The spatio-temporal analyses show how the
flat geographical distribution of risks for both sexes is maintained
throughout the whole period, without any significant departure from
this trend (maps not shown).

7.3.6. AIDS mortality
Figure 7.8 shows the AIDS mortality risk map for the period 1989-2014
and the evolution of those risks at the provincial and national levels in
men. The risk map of mortality from AIDS in women is not available
due to the small number of deaths (lower than 10,000) for that sex. Of
the 102 causes of death studied, AIDS represents the thirty-second cause
of death in men, accounting for 0.9% of all deaths. As can be seen, the
areas with the highest mortality risks for this cause in men (Figure 7.8a)
are mainly concentrated in zones of Sevilla and the Andalusian coast,
Valencia and the Levantine coast, Asturias, Madrid and Barcelona.

The temporal evolution of AIDS mortality in men (Figure 7.8b)
shows a significant increase from 1991 to 1996. From then on, mortality
exhibits a clear downward trend. The spatio-temporal results show
the existence of an important spatio-temporal interaction. Figure 7.9
represents AIDS mortality risk maps (only spatio-temporal interaction)
in men for four out of the eight subperiods. The rest of the subperiods
not shown (for a question of space) do not add anything different to the
maps shown in those figures. As previously mentioned, these figures
allow for the identification of those areas with a more unique behavior in
each subperiod. We found that the municipalities with the sharpest risk
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Figure 7.7.: Leukemia mortality risk maps in the period 1989-2014
and the evolution of risks in men and women.
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decrease are located in Cataluña, Valencia, Madrid, Vizkaia, Guipuzkoa
and Navarra. These correspond in several cases to the more urban zones
of Spain. In contrast, we find that the municipalities with the steepest
increase are located in Andalucía, Extremadura, western Castilla y
León and Galicia. In view of these results, it seems as if AIDS mortality
shifts from urban areas to more socio-economically disadvantaged areas
over the period of study.

7.4. Conclusions
Mortality atlases on small geographic areas have proven to be a very
useful tool for understanding the geographical distribution of diseases,
identifying high-risk areas and implementing social and public health
programs and interventions (Benach de Rovira and Martínez Martínez,
2013). In Spain, geographic mortality analyses have been very popular
and widespread. Thus, if we just limit ourselves to the mortality
atlases published in Spain in recent years, we could find at least
nine relevant works: Benach et al. (2001); López-Abente et al. (2001);
Martínez-Beneito et al. (2005); López-Abente et al. (2006); Ocaña et al.
(2007); Borrell et al. (2009); Esnaola et al. (2010); Ocaña et al. (2010);
Benach de Rovira and Martínez Martínez (2013). In these atlases,
different levels of disaggregation (census tract, municipal, provincial),
different regions (large cities, autonomous communities, national) and
different methodologies (Bayesian spatial modeling, empirical-Bayesian
random effects models, frequentist estimation) are used to study
mortality. All these works have contributed to a better understanding
of the geographical distribution of mortality in Spain, with important
repercussions from the social, public health, clinical or healthcare points
of view. Furthermore, these works have also had a notable scientific
impact, as evidenced by the number of international publications that
have used specific results from these works.
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7.4. Conclusions

Despite the importance of those works, ANDEES is currently the
largest and most updated mortality atlas developed in Spain, with
data on almost 9.5 million deaths between 1989 and 2014. This tool
permits the interactive visualization of the geographical distribution
and temporal evolution of mortality risks over a long time period,
enabling a detailed exploration of these results. ANDEES results show
the existence of very different mortality geographic patterns depending
on the cause, sex and period of study analyzed. We hope that the
periodic updating of the information contained in ANDEES will make
it possible to identify future geographic inequalities in the health of the
population and to evaluate public health interventions. In summary,
the use of modern statistical dissemination tools has made it possible
to bring a new modern concept of mortality atlas to this study. In our
opinion, this is the greatest value of this work.

ANDEES smoothing methodologies have made it possible to
estimate the geographical distribution of mortality risks and their
temporal evolution with an adequate degree of detail and reliability,
providing an updated view of mortality distribution when one focuses
on the latest subperiods. However, as we have shown in this thesis,
the spatial and spatio-temporal models used to estimate risks could be
extended by implementing more complex and flexible models that enable
a deeper understanding of the distribution of diseases. As future work,
we would be interested in implementing the previous models developed
in this thesis and some combinations of them, such as multivariate
adaptive hurdle models, to the geographic analysis of comprehensive
Spanish mortality data.
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7. The Spanish National Atlas of Mortality (ANDEES)
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                                      Fuente: Fundación FISABIO
 Atlas Nacional de Mortalidad en España (ANDEES)

        Descargado desde http://atlasnacional.fisabio.es  

(a)

(b)

Figure 7.8.: AIDS mortality risk maps in the period 1989-2014 and
the evolution of risks in men.
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7.4. Conclusions
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(d)

Figure 7.9.: AIDS mortality risks maps (only spatio-temporal
interaction) in some study subperiods in men.
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8. Conclusions and future work

In this thesis we implement, apply and evaluate some relevant models
previously proposed in the disease mapping literature for estimating
the geographical distribution of risks in different scenarios. After
evaluating the behavior of these modeling proposals for mortality studies
in different contexts, we found that they present important limitations.
Therefore, our main goal in this thesis, at least in Chapters 4 to 6, has
been to develop new proposals or extend those evaluated in order to
resolve the limitations found.

First, regarding zero excess modeling, we show how zero excesses
problems can be often found in practice when data are modeled using
standard disease mapping models. In the Valencian Mortality Dataset
used in Chapter 4, a relevant proportion of the diseases studied have
been found to show zero excesses. Thus, as evidenced, zero excesses
require attention for mortality geographic studies in general and specific
models are needed to deal with this problem since, otherwise, maps with
oversmoothed risks in the geographical units with low expected counts
will be obtained. In this regard, we find that naive zero-inflation and
hurdle models that propose to handle this lack of fit without an explicit
modeling of the probabilities of zeroes, do not fix zero excesses problems
well enough and are clearly unsatisfactory. Results sharply suggest the
need for an explicit modeling of the probabilities that should vary across
areal units. Unfortunately, as we prove in several theoretical results,
these more flexible modeling strategies can easily lead to improper
posterior distributions or arbitrary posterior distributions. This makes
that modeling quite tricky, and caution has to be taken in order to
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avoid flawed modeling proposals. Our results determine some ZIP
and hurdle specific proposals, frequently proposed in the literature,
that should be avoided in general. We finally propose several valid
modeling alternatives that do not present the above problems and that
are suitable for fitting zero excesses. We show that those proposals fix
zero excesses problems and correct the mentioned oversmoothing of
risks in low populated units, depicting geographic patterns more suited
to the data.

In our work about multivariate disease mapping, we find that the
Botella-Rocamora et al. (2015) proposal for the joint spatial modeling
of several diseases shows some limitations when data are weaker.
Specifically, in such situations, the prior structure of the M -model can
significantly influence the estimated risk patterns for all the diseases
considered. As we show, this fact is caused by the single common
variance parameter in the M matrix of this model, which controls the
overall variability of all risk patterns fitted. If the variability of the risk
patterns considered was different, this prior assumptions may produce
evident misfits in the risk patterns that are estimated. One of the main
contributions of this work has been to highlight these limitations, which
are particularly worrisome when the original NVA proposal is applied
to small regions of study. In this thesis, we propose two modifications
of the previous multivariate model that incorporate several different
parameters to model the variability of the risks for each disease and
which allow us to solve the problems evidenced in the multivariate
mortality study in the city of Castellón. These new heteroscedastic
proposals allow the spatial patterns for each disease to have greater or
lesser variability when necessary. This made it possible to obtain more
flexible and accurate risk estimates.

In our work about adaptive spatial dependence, we propose a
procedure to estimate the spatial weights matrix in CAR distributions
according to retrospective multivariate data. As we show, our adaptive
procedure makes CAR models more flexible and improves the fit of
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8. Conclusions and future work

subsequent analysis adopting the estimated weights matrix, which in
principle should have captured the particularities that mortality data
could show in that region. Additionally, the multivariate character of our
proposal has shown itself to be an indispensable tool for appropriately
estimating the spatial structure of the data.

The methodology introduced could have several different uses. First,
the multivariate adaptive model introduced could be used in multivariate
studies, considering dependence also between mortality causes, with
adaptive spatial structures. These models should provide more accurate
risk estimates that could take advantage of the adaptive character of the
spatial dependence considered. A second use of adaptive CAR models
would be the one emphasized in our work, that is, making inference on
the spatial weights matrix of a region of study. As a consequence, that
adaptive weights matrix could be later used in subsequent enhanced
spatial disease mapping studies with a non-arbitrary spatial structure
based on previous data and knowledge. We have also found a third
practical use of our adaptive model. This use would be quality control
of systematic problems that could be present in health data sets.
Specifically, the mortality data of Valencia city used in the analysis
in Chapter 6 belongs to a large Spanish project studying mortality
in large cities, the MEDEA project. All the deaths in that data set
have been geocodified by using several geocoding tools, in particular
the Google geocoding API and a second geocoding tool (Cartociudad)
of the Spanish Geographic National Institute. These tools, as with
any other geocoding tool, are not perfect and they have errors for
some particular streets, groups of cases that are geocodified in the city
center, etc. that could distort the spatial analyses of that data base.
We have found that the multivariate adaptive model on those data
bases gives low spatial weights to those census tracts with systematic
geocoding errors since their mortality data are somewhat different from
their surrounding areas. This has allowed us to distill those errors
(and correct them) by focusing on those census tracts with low spatial
weights and no potential alternative explanation (no residential homes,
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no socially marginal areas, no new building areas, etc.) for them.

Finally, the Spanish National Atlas of Mortality (ANDEES)
developed allows us to know at the municipal level the geographical
distribution and the temporal evolution of mortality due to a large set
of causes of death throughout Spain. The results shown in ANDEES
show the existence of very different geographic patterns of mortality
depending on the cause, sex and period of study analyzed. This tool
will allow researchers and public health experts to examine geographic
patterns of diseases and detecting high-risk areas that are not evident
through other types of analysis. The results presented can play a crucial
role in the search for risk factors, as well as in the establishment of
priorities and guide social and health policies.

ANDEES leaves open many possible lines of future work. On the
one hand, we would like to update periodically the results of the atlas
by incorporating the subsequent mortality data after 2014 as they are
published. On the other hand, we would also like to implement other
more complex and flexible models in order to deepen the understanding
of the geographical distribution of diseases. Specifically, we would be
interested in implementing each of the models developed in this thesis
at a national massive level. Thus, we would evaluate (and fix) the
possible existence of zeroes excess problems in each of the analyzed
data sets. Furthermore, multivariate modeling considering groups of
diseases that could have common risk factors would greatly improve
the geographic estimation of risks by making use of alternative sources
of information. Similarly, adaptive spatial modeling would also allow
obtaining risk maps with greater variability, allowing municipalities
with special characteristics to show the separate behavior that they
require. Finally, the combination of spatio-temporal modeling also
with these proposals, those that show a more evident improvement
on the spatial analysis, would allow obtaining an updated and more
precise view of the risks. The implementation of some of these models
for the analysis of mortality in the whole of Spain could give rise to
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8. Conclusions and future work

challenging computational problems, given the large size of the study
region considered and the large number of geographical patterns to
be estimated in a single model. As a consequence, another future line
of work would be solving such computational problems by exploring
different computing tools and optimizing the implementation of each of
the proposed models.
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A. Supplementary material to
the paper: “Some findings
on zero-inflated and hurdle
Poisson models for disease
mapping”
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A. Supplementary material to the paper: “Some findings on zero-inflated
and hurdle Poisson models for disease mapping”

A.1. Theoretical results
Then, we shows four different general results on the modeling of
zero-inflated and hurdle Poisson models with either fixed or random
effects. At the end we draw two corollaries with some specific results of
particular interest for the paper above.

Result 1. Let O = {Oi : i = 1, ..., I} be independent observations from
the hurdle Poisson model

Oi ∼ (1− πi(u, σ))1{0}(Oi)
(
πi(u, σ) Poi(Oi | EiRi)

1− Poi(0 | EiRi)

)1(0,∞)(Oi)

,

where
πi(u, σ) = F (σziu), with u ∼ f(u) = NI(0, I),

being F a distribution function with F (−x) = 1− F (x) and {zi : i =
1, ..., I} a set of I-dimensional vectors. Let also Z? be the I × I matrix
with rows z?i defined as zi if Oi = 0 or −zi if Oi > 0. Assume that
σ, u and R are independent a priori and σ follows an improper prior
distribution f(σ). Let

C = {v ∈ RI : Z?v ≤ 0},

if the following condition is satisfied

dimension (C) = I, (A.1.1)

then the posterior distribution f(u, σ,R | O) is improper independently
on the prior distribution f(R) assumed for R.

Proof. The proof uses a similar technique as the proof for impropriety
of posterior distributions in Bernoulli experiments derived in Natarajan
and McCulloch (1995) (Theorem 1.i).
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A.1. Theoretical results

We have to show that the integral∫
L(u, σ,R;O) f(u, σ,R) dudσdR

diverges, where L is the likelihood function, that is,

L(u, σ,R;O) =
I∏
i=1

(1−πi(u, σ))1{0}(Oi)
(
πi(u, σ) Poi(Oi | EiRi)

1− Poi(0 | EiRi)
)1(0,∞)(Oi)

and f is the prior distribution. It can be easily seen that the integral
above is:∫ ∏
{i:Oi=0}

Poi(Oi | EiRi)
1− Poi(0 | EiRi)

{∫ ∫
RI

∏
{i:Oi=0}

(1−F (σziu))
∏

{i:Oi>0}

F (σziu)f(σ)f(u)dudσ
}
f(R) dR.

Bearing in mind that F (−x) = 1 − F (x) the inner integral above
results:∫ ∫

RI

∏
{i:Oi=0}

(1− F (σz∗iu))
∏

{i:Oi>0}
F (−σz∗iu)f(σ)f(u)dudσ =

∫ ∫
RI

I∏
i=1

(1− F (σz∗iu))f(σ)f(u)dudσ ≥
∫ ∫

C

I∏
i=1

(1− F (σz∗iu))f(σ)f(u)dudσ ≥

≥
∫
f(σ)dσ

∫
C

1
2I f(u)du = 1

2I
∫
f(σ)dσ.

The last integral obviously diverges if f(σ) is improper.

Result 2. Let O = {Oi : i = 1, ..., I} be independent observations from
the hurdle Poisson model

Oi ∼ (1− πi(β))1{0}(Oi)
(
πi(β) Poi(Oi | EiRi)

1− Poi(0 | EiRi)

)1(0,∞)(Oi)

,

where
πi(β) = F (xiβ),
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A. Supplementary material to the paper: “Some findings on zero-inflated
and hurdle Poisson models for disease mapping”

xi = (xi1, . . . , xiJ) are J-dimensional vectors of known covariates and
F a distribution function. Suppose that β is, a priori, independent of
R with prior distribution

β ∼
J∏
j=1

fj(βj), βj ∈ R.

If for any 1 ≤ j∗ ≤ J , xij∗ > 0 for all i with Oi > 0 and negative
otherwise (respectively xij∗ > 0 for all i with Oi = 0 and negative
otherwise) and

∫
f(βj∗)dβj∗ diverges for large positive (respectively

negative) values of βj∗ then the posterior distribution f(β,R | O)
is improper independently on the prior distribution f(R) assumed for
R.

Proof. Let us assume the case xij∗ > 0 for all i with Oi > 0 and negative
otherwise. The likelihood function can be put as

L(β,R;O) =
∏

{i:Oi=0}
(1− πi(β))

∏
{i:Oi>0}

πi(β) Poi(Oi | EiRi)
1− Poi(0 | EiRi)

=

 ∏
{i:Oi=0}

(1− F (xiβ))
∏

{i:Oi>0}
F (xiβ)

 ∏
{i:Oi>0}

Poi(Oi | EiRi)
1− Poi(0 | EiRi)

.

Thus, ∫
R
L(β,R;O)f(βj∗)dβj∗ >

∫ ∞
0

L(β,R;O)f(βj∗)dβj∗ ∝

∫ ∞
0

∏
{i:Oi=0}

(1− F (xiβ))
∏

{i:Oi>0}
F (xiβ)f(βj∗)dβj∗ .

Since F is a distribution function is also, in particular, an increasing
function. Moreover, as xij∗ > 0 for all i with Oi > 0 and negative
otherwise we have that, if β0 = (β1, ..., βj∗−1, 0, βj∗+1, ..., βJ), this
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A.1. Theoretical results

expression is greater than
∏

{i:Oi=0}
(1− F (xiβ′0))

∏
{i:Oi>0}

F (xiβ′0)
∫ ∞

0
f(βj∗)dβj∗

which diverges due to the prior impropriety of f(βj∗) for large positive
values.

The proof for the case xij∗ > 0 if Oi = 0 and negative otherwise is
analogous.

Result 3. Let O = {Oi : i = 1, ..., I} be independent observations from
the ZIP model

Oi ∼ (1− πi(u, σ))1{0}(Oi) + πi(u, σ)Poi(Oi | EiRi),

where
πi(u, σ) = F (σztiu), u ∼ f(u) = NI(0, II),

being F a distribution function with F (−x) = 1 − F (x) and {zi, i =
1, ..., I} a set of I-dimensional vectors. Let also Z? be the I × I matrix
with rows z?i defined as zi if Oi = 0 or −zi if Oi > 0. Assume that
σ, u and R are independent a priori and σ follows an improper prior
distribution f(σ). Let

C = {v ∈ RI : Z?v ≤ 0},

if the following condition is satisfied

dimension (C) = I,

then the posterior distribution f(u, σ,R | O) is improper independently
on the prior distribution f(R) assumed for R.
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A. Supplementary material to the paper: “Some findings on zero-inflated
and hurdle Poisson models for disease mapping”

Proof. The Likelihood function for this model can be expressed as:

L(u, σ,R;O) =
I∏
i=1

(1−πi(u, σ)+exp(−EiRi))1{0}(Oi)(πi(u, σ)Poi(Oi|EiRi))1(0,∞)(Oi) ≥

I∏
i=1

(1− πi(u, σ))1{0}(Oi)(πi(u, σ)Poi(Oi|EiRi))1(0,∞)(Oi),

which is proportional, as a function of u and σ to the likelihood function
of the hurdle Poisson model. Since the conditions of this results are
the same than for Result 1 and there

∫
f(u, σ,R | O)dudσ diverged, it

follows that f(u, σ,R | O) is now improper as a direct consequence of
that Result.

Result 4. Let O = {Oi : i = 1, ..., I} be independent observations from
the ZIP model

Oi ∼ (1− πi(α))1{0}(Oi) + πi(α)Poi(Oi | EiRi),

where
πi(α) = F (xiβ),

xi = (xi1, . . . , xiJ) are J-dimensional vectors of known covariates and
F a distribution function. Suppose that β is, a priori, independent of
R with prior distribution

β ∼
J∏
j=1

fj(βj), βj ∈ R.

If for any 1 ≤ j∗ ≤ J , xij∗ > 0 for all i = 1, . . . , I (respectively xij∗ <
0) and

∫
f(βj∗)dβj∗ diverges for large positive (respectively negative)

values of βj∗ then f(β,R | O) is improper independently on the prior
distribution f(R) assumed for R.
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A.1. Theoretical results

Proof. Let us assume the case xij∗ > 0 for all i. The likelihood function
is

L(β,R;O) =
I∏
i=1

(
(1− πi(α))1{0}(Oi) + πi(α)Poi(Oi | EiRi)

)
.

The above expression corresponds to a sum with 2I positive terms.
Obviously if the integral of any one of these terms times the prior is
divergent then the posterior distribution would be improper. One of
these terms in the likelihood is

L1(β,R;O) =
I∏
i=1

Poi(Oi | EiRi)πi(α) =
I∏
i=1

Poi(Oi | EiRi)F (xiβ).

The function F (·) is increasing and therefore, as xij∗ > 0, is also an
increasing function of βj∗ . Then, if β0 = (β1, . . . , βj∗−1, 0, βj∗+1, . . . , βJ)

L1(β,R;O) ≥ L1(β0,R;O)

for any β with βj∗ > 0. Then∫
L1(β,R;O)f(β) dβj∗ ≥ L1(β0,R;O)

∫ ∞
0

fj∗(βj∗) dβj∗ ,

and, since fj∗(βj∗) diverges for large positive values, f(β,R | O) is
improper.

The proof of the Result for xij < 0 is analogous.

Corollary 1. Let us consider a hurdle Poisson model with Poisson
means modeled as a BYM model and probabilities of zeroes as

logit(πi) = xiβ + vi,

for v ∼ NI(0, σ2C) a vector of random effects with C a symmetric,
positive-definite structure matrix and xi a vector of covariates of length
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A. Supplementary material to the paper: “Some findings on zero-inflated
and hurdle Poisson models for disease mapping”

J . Then,

1. If f(σ) is improper then f(β, σ,u,R|O) diverges regardless of
f(β,u,R).

2. Let us assume β to be a priori independent with
βj ∼ f(βj) j = 1, ..., J , and there is a j∗ (1 ≤ j∗ ≤ J)
with xij∗ > 0 when Oi > 0 and negative otherwise (respectively
xij∗ > 0 when Oi = 0 and negative otherwise). If

∫
f(βj∗)dβj∗

diverges for large positive (respectively negative) values, then
f(β, σ,u,R|O) is improper regardless of f(σ,u,R).

3. Both previous results also hold for:

• probit or tobit link functions for modelling π.

• non-Poisson discrete likelihoods (such as binomial or
negative-binomial).

• other spatial structures, beyond BYM, for the Poisson means.

Proof.

Proof for item 1:
This is just a particular case of Result 1 for F (x) = antilogit(x), which
is the distribution function for a logistic density. Moreover, the linear
term for π is a bit different since we have now random effects vi instead
of σziu and fixed effects.
Regarding v, if C = ΛD2Λ′ is the eigendecomposition of C, then
v = σZu for u ∼ NI(0I , II) and Z = ΛD. In this case the matrix
Z∗ in Result 1 would be Z∗ = LZ for L a diagonal matrix with
Lii ∈ {−1, 1} for all i. Since C is positive definite then Z is of full
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A.1. Theoretical results

rank. Besides, since both L and Z are full rank, then Z∗ is also full
rank and therefore regular so yZ∗ = 0 iif y = 0. Natarajan and
McCulloch (1995) (Section 2.4) state that Condition (A.1.1) holds iif
there is no nonnegative vector, y 6= 0 such that yZ∗ = 0 so, according
to this criterion, that condition holds also for this Corollary.

Finally, regarding the fixed effects in the linear term for π. The last
integral in Result 1 would be now of the form

∫ ∫
RI

I∏
i=1

(1− F (xiβ + σz∗iu))f(σ)f(u)dudσ

which by similar bounding arguments as those used in the last part of
the proof of Result 1, is a divergent integral.

Proof for item 2:
This is just a particular case of Result 2 for F (x) = antilogit(x) and
with an additional random effects term in the linear predictor. This
term would not interfere at all in last integral of the proof of that result
which makes the posterior distribution improper. So this result keeps
being valid with the additional random effects term.

Proof for item 3:
First note that using probit or tobit link functionswould be equivalent
to consider normal or t probability density functions for F (). So these
would be also particular cases of Result 1. Note also that the Poisson
likelihood does not have any effect on the posterior impropriety of the
proofs of Results 1 and 2 so this could also be changed to binomial
or negative-binomial distributions, for example. Finally, note that
the BYM model for the Poisson means is irrelevant for the posterior
impropriety in these models since the impropriety comes from their
zero-specific terms.
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A. Supplementary material to the paper: “Some findings on zero-inflated
and hurdle Poisson models for disease mapping”

Corollary 2. Let us consider a ZIP model with Poisson means modeled
as a BYM model and probabilities of extra-Poisson zeroes as

logit(πi) = xiβ + vi,

for v ∼ NI(0, σ2C) a vector of random effects with C a symmetric,
positive-definite full-rank structure matrix and xi a vector of covariates
of length J . Then,

1. If f(σ) is improper then f(β, σ,u,R|O) diverges regardless of
f(β,u,R).

2. Let us assume β to be a priori independent with
βj ∼ f(βj) j = 1, ..., J , and there is a j∗ (1 ≤ j∗ ≤ J)
with xij∗ > 0 for i = 1, ..., I (respectively xij∗ < 0 for i = 1, ..., I).
If
∫
f(βj∗)dβj∗ diverges for large positive (respectively negative)

values then f(β, σ,u,R|O) is improper regardless of f(σ,u,R).

3. Both previous results also hold for:

• probit or tobit link functions for modelling π.

• non-Poisson discrete likelihoods (such as binomial or
negative-binomial).

• other spatial structures beyond BYM for the Poisson means.

Proof.
Follow the same argument than for Corollary 1 applied to Results 3
and 4.
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A.2. Additional results

A.2. Additional results

A.2.1. Observed and predicted zeroes for models in
Section 4.2

Table A.1.: Observed zeroes for each data set and posterior predicted
zeroes for each model. Values in the Obs. zeroes column correspond
to the real observed zeroes for each data set. For the 3 columns on
the right, numbers correspond to the posterior predictive median for
this same quantity for each model run and the corresponding unilateral
95% posterior predictive interval. Bold fonts denote those combinations
of models and data sets evidencing zero excesses according to their
predictive intervals.

Sex & Cause Obs. zeroes BYM ZIP Hurdle

(Men, All tumours) 4 2 [0,5] 3 [0,5] 5 [0,11]
(Women, All tumours) 7 6 [0,10] 6 [0,10] 8 [0,15]

(Men, Mouth) 216 196 [0,211] 199 [0,215] 216 [0,242]
(Men, Stomach) 105 91 [0,103] 92 [0,104] 105 [0,127]
(Women, Stomach) 150 137 [0,151] 138 [0,152] 150 [0,173]

(Men, Colorectal) 73 58 [0,68] 59 [0,69] 74 [0,93]
(Women, Colorectal) 74 72 [0,82] 73 [0,83] 74 [0,93]

(Men, Colon) 96 79 [0,91] 84 [0,96] 96 [0,119]
(Women, Colon) 98 91 [0,102] 92 [0,104] 99 [0,119]

(Men, Rectum) 201 180 [0,196] 183 [0,199] 202 [0,228]
(Women, Rectum) 234 223 [0,239] 225 [0,242] 235 [0,262]

(Men, Liver) 156 138 [0,153] 139 [0,153] 157 [0,182]
(Women, Liver) 188 176 [0,191] 178 [0,193] 188 [0,214]
(Women, Vesicle) 243 239 [0,255] 241 [0,256] 244 [0,270]

(Men, Pancreas) 179 163 [0,178] 165 [0,181] 179 [0,205]
(Women, Pancreas) 194 180 [0,196] 184 [0,201] 194 [0,220]
(Men, Larynx) 214 186 [0,203] 187 [0,203] 214 [0,240]
(Men, Lung) 34 25 [0,32] 25 [0,33] 34 [0,47]
(Women, Lung) 199 188 [0,203] 189 [0,205] 199 [0,224]
(Women, Breast) 80 73 [0,85] 74 [0,85] 80 [0,101]
(Women, Uterus) 188 187 [0,201] 188 [0,204] 188 [0,215]
(Women, Ovary) 201 195 [0,210] 195 [0,211] 202 [0,227]

(Men, Prostate) 62 51 [0,60] 53 [0,63] 63 [0,81]
(Men, Bladder) 123 104 [0,117] 105 [0,119] 124 [0,146]
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A. Supplementary material to the paper: “Some findings on zero-inflated
and hurdle Poisson models for disease mapping”

Sex & Cause Obs. zeroes BYM ZIP Hurdle

(Men, Lymphatic) 176 168 [0,183] 170 [0,184] 176 [0,201]
(Women, Lymphatic) 213 185 [0,201] 191 [0,207] 213 [0,240]

(Men, Leukemia) 196 179 [0,193] 182 [0,197] 196 [0,222]
(Women, Leukemia) 210 223 [0,240] 226 [0,241] 209 [0,236]
(Men, Diabetes) 97 82 [0,94] 83 [0,95] 97 [0,121]
(Women, Diabetes) 56 46 [0,56] 49 [0,59] 56 [0,74]
(Men, Hypertensive) 171 157 [0,171] 159 [0,175] 172 [0,197]

(Women, Hypertensive) 116 104 [0,117] 107 [0,120] 117 [0,136]
(Men, Ischemic) 8 8 [0,12] 8 [0,12] 8 [0,17]

(Women, Ischemic) 21 16 [0,22] 16 [0,22] 22 [0,34]
(Men, Cerebrovascular) 9 9 [0,13] 9 [0,13] 9 [0,17]

(Women, Cerebrovascular) 7 7 [0,11] 7 [0,10] 8 [0,16]
(Men, Atherosclerosis) 131 128 [0,144] 130 [0,144] 131 [0,155]

(Women, Atherosclerosis) 103 95 [0,109] 99 [0,113] 104 [0,125]
(Men, Other Cardiovascular) 16 12 [0,16] 12 [0,17] 17 [0,28]

(Women, Other Cardiovascular) 7 7 [0,11] 7 [0,11] 7 [0,15]
(Men, Pneumonia) 85 80 [0,93] 81 [0,93] 86 [0,107]

(Women, Pneumonia) 84 86 [0,97] 87 [0,98] 85 [0,105]
(Men, COPD) 27 21 [0,27] 21 [0,28] 27 [0,40]

(Women, COPD) 104 87 [0,99] 90 [0,102] 105 [0,127]
(Men, Cirrhosis) 104 93 [0,106] 95 [0,106] 104 [0,126]

(Women, Cirrhosis) 184 169 [0,184] 171 [0,186] 185 [0,211]

Mortality causes with bold font stand for those causes with zero excesses
according to BYM.
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A.2.2. Observed and predicted zeroes for models in Section 4.4

Table A.2.: Observed zeroes for each data set and posterior predicted zeroes for each model. Values in
the Obs. zeroes column correspond to the real observed zeroes for each data set. For the 5 columns on the
right, numbers correspond to the posterior predictive median for this same quantity for each model run
and the corresponding unilateral 95% posterior predictive interval. Bold fonts denote those combinations
of models and data sets evidencing zero excesses according to their predictive intervals.

Sex & Cause Obs. zeroes BYM FE NFE HGeo ZGeo

(Men, All tumours) 4 2 [0,5] 4 [0,8] 4 [0,9] 4 [0,9] 3 [0,7]
(Women, All tumours) 7 6 [0,10] 7 [0,12] 7 [0,12] 6 [0,12] 8 [0,12]

(Men, Mouth) 216 196 [0,211] 216 [0,235] 216 [0,234] 215 [0,234] 210 [0,228]
(Men, Stomach) 105 91 [0,103] 105 [0,121] 105 [0,123] 102 [0,119] 102 [0,117]
(Women, Stomach) 150 137 [0,151] 150 [0,169] 150 [0,169] 149 [0,168] 148 [0,163]
(Men, Colorectal) 73 58 [0,68] 73 [0,87] 73 [0,88] 70 [0,85] 71 [0,85]
(Women, Colorectal) 74 72 [0,82] 74 [0,89] 74 [0,89] 74 [0,88] 77 [0,89]

(Men, Colon) 96 79 [0,91] 95 [0,113] 96 [0,111] 98 [0,113] 90 [0,106]
(Women, Colon) 98 91 [0,102] 98 [0,114] 98 [0,115] 93 [0,110] 101 [0,114]
(Men, Rectum) 201 180 [0,196] 201 [0,220] 201 [0,220] 199 [0,220] 199 [0,215]
(Women, Rectum) 234 223 [0,239] 234 [0,255] 234 [0,255] 235 [0,255] 231 [0,248]
(Men, Liver) 156 138 [0,153] 157 [0,173] 157 [0,175] 152 [0,171] 155 [0,171]
(Women, Liver) 188 176 [0,191] 188 [0,208] 188 [0,206] 185 [0,204] 188 [0,205]
(Women, Vesicle) 243 239 [0,255] 243 [0,263] 243 [0,262] 241 [0,261] 248 [0,265]
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Sex & Cause Obs. zeroes BYM FE NFE HGeo ZGeo

(Men, Pancreas) 179 163 [0,178] 180 [0,197] 179 [0,199] 177 [0,196] 179 [0,195]
(Women, Pancreas) 194 180 [0,196] 194 [0,214] 193 [0,213] 196 [0,215] 191 [0,207]
(Men, Larynx) 214 186 [0,203] 214 [0,234] 214 [0,233] 206 [0,226] 214 [0,229]
(Men, Lung) 34 25 [0,32] 34 [0,45] 33 [0,45] 33 [0,44] 30 [0,39]
(Women, Lung) 199 188 [0,203] 198 [0,218] 200 [0,218] 198 [0,217] 196 [0,213]
(Women, Breast) 80 73 [0,85] 80 [0,94] 80 [0,95] 78 [0,93] 81 [0,93]
(Women, Uterus) 188 187 [0,201] 187 [0,208] 189 [0,209] 190 [0,210] 193 [0,208]
(Women, Ovary) 201 195 [0,210] 201 [0,220] 200 [0,221] 196 [0,217] 208 [0,224]
(Men, Prostate) 62 51 [0,60] 62 [0,76] 62 [0,75] 64 [0,77] 58 [0,71]
(Men, Bladder) 123 104 [0,117] 124 [0,141] 123 [0,141] 122 [0,139] 120 [0,135]
(Men, Lymphatic) 176 168 [0,183] 175 [0,195] 176 [0,194] 174 [0,194] 179 [0,195]

(Women, Lymphatic) 213 185 [0,201] 213 [0,232] 213 [0,232] 211 [0,232] 208 [0,225]
(Men, Leukemia) 196 179 [0,193] 196 [0,217] 196 [0,216] 195 [0,216] 192 [0,210]
(Women, Leukemia) 210 223 [0,240] 210 [0,230] 210 [0,231] 211 [0,230] 231 [0,247]
(Men, Diabetes) 97 82 [0,94] 97 [0,114] 97 [0,113] 95 [0,111] 95 [0,109]
(Women, Diabetes) 56 46 [0,56] 56 [0,70] 56 [0,69] 58 [0,72] 52 [0,63]
(Men, Hypertensive) 171 157 [0,171] 171 [0,191] 170 [0,192] 172 [0,190] 167 [0,183]

(Women, Hypertensive) 116 104 [0,117] 116 [0,133] 116 [0,133] 118 [0,136] 113 [0,128]
(Men, Ischemic) 8 8 [0,12] 7 [0,14] 8 [0,14] 7 [0,13] 9 [0,14]

(Women, Ischemic) 21 16 [0,22] 20 [0,29] 20 [0,30] 20 [0,29] 20 [0,27]
(Men, Cerebrovascular) 9 9 [0,13] 9 [0,15] 9 [0,15] 9 [0,15] 10 [0,14]
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dditionalresults
Sex & Cause Obs. zeroes BYM FE NFE HGeo ZGeo

(Women, Cerebrovascular) 7 7 [0,11] 7 [0,12] 7 [0,12] 6 [0,11] 8 [0,12]
(Men, Atherosclerosis) 131 128 [0,144] 131 [0,151] 130 [0,149] 137 [0,156] 133 [0,148]

(Women, Atherosclerosis) 103 95 [0,109] 103 [0,121] 103 [0,119] 114 [0,132] 100 [0,113]
(Men, Other Cardiovascular) 16 12 [0,16] 16 [0,24] 16 [0,23] 16 [0,24] 14 [0,20]

(Women, Other Cardiovascular) 7 7 [0,11] 7 [0,12] 7 [0,12] 6 [0,11] 8 [0,12]
(Men, Pneumonia) 85 80 [0,93] 84 [0,98] 84 [0,100] 83 [0,98] 88 [0,99]

(Women, Pneumonia) 84 86 [0,97] 84 [0,100] 83 [0,100] 86 [0,103] 89 [0,101]
(Men, COPD) 27 21 [0,27] 27 [0,37] 27 [0,37] 28 [0,37] 25 [0,33]

(Women, COPD) 104 87 [0,99] 104 [0,121] 104 [0,120] 105 [0,122] 100 [0,115]
(Men, Cirrhosis) 104 93 [0,106] 104 [0,121] 103 [0,120] 103 [0,121] 101 [0,115]

(Women, Cirrhosis) 184 169 [0,184] 184 [0,205] 184 [0,204] 184 [0,203] 180 [0,199]

Mortality causes with bold font stand for those causes with zero excesses according to BYM.
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A.2.3. Model selection criteria (DIC) for models in Section 4.4

Table A.3.: DICs for all models and data sets with their corresponding deviances and number of effective
parameters.

BYM FE NFE HGeo ZGeo

Sex & Cause D pD DIC D pD DIC D pD DIC D pD DIC D pD DIC

(Men, All tumours) 3623.3 265.1 3888.4 3629.7 267.1 3896.8 3624.5 267.9 3892.4 3623.2 265.8 3889 3626.4 266.8 3893.2

(Women, All tumours) 3333.8 173.5 3507.3 3338.9 175.1 3513.9 3335.5 175.4 3510.9 3333.8 173.7 3507.5 3334.7 172.5 3507.2

(Men, Mouth) 1575 70.4 1645.5 1605.8 58.2 1664 1578.2 66.4 1644.5 1594.2 58.1 1652.3 1583.6 69.2 1652.8

(Men, Stomach) 2112.5 100.7 2213.2 2126.9 96.7 2223.7 2116 98.1 2214.1 2120.2 95.4 2215.6 2114.5 100 2214.5

(Women, Stomach) 1854.2 54.1 1908.3 1867.3 52.1 1919.3 1854.9 54 1908.8 1858.7 50.8 1909.5 1856.9 53.9 1910.8

(Men, Colorectal) 2343.3 87.9 2431.1 2355.6 85.3 2440.9 2342.3 84.7 2427 2344.1 83.9 2428 2344.7 86.6 2431.3

(Women, Colorectal) 2260.9 80.4 2341.3 2269.7 81.2 2350.8 2261.8 81.2 2343 2263.8 79.9 2343.6 2263.8 81.2 2345

(Men, Colon) 2200.5 73.6 2274.1 2208.8 68.2 2277 2199.8 72.9 2272.7 2200.2 67 2267.2 2205.1 73.5 2278.6

(Women, Colon) 2110.6 63.6 2174.3 2114.8 66 2180.8 2114.6 61 2175.5 2111.8 63.2 2175 2114.2 62.5 2176.7

(Men, Rectum) 1580.5 60.1 1640.6 1584.6 49.8 1634.4 1585.4 53.4 1638.8 1589 49 1637.9 1578.3 54.7 1633

(Women, Rectum) 1458.2 52.5 1510.6 1481.6 43.6 1525.2 1461.8 50.6 1512.4 1470.2 42.8 1513 1465.1 52.6 1517.8

(Men, Liver) 1843.7 123.6 1967.3 1865.4 111.8 1977.3 1848.6 116.5 1965.1 1862.1 109.6 1971.7 1848.3 117.4 1965.7

(Women, Liver) 1649 67.8 1716.7 1670.3 61.9 1732.2 1651.6 66 1717.6 1659.4 59.4 1718.9 1656.7 66.9 1723.5

(Women, Vesicle) 1376.7 45.2 1421.8 1385.9 41.2 1427.1 1378.1 45.9 1424 1383.3 39.3 1422.6 1378.2 45.3 1423.5

(Men, Pancreas) 1701.1 56.6 1757.8 1702.9 51.9 1754.8 1704.2 53.1 1757.2 1704.9 50.6 1755.5 1699.1 54.1 1753.2

(Women, Pancreas) 1644.4 33.4 1677.7 1656.5 24.9 1681.4 1647.4 30.9 1678.3 1654.5 24.4 1678.9 1645.8 32.4 1678.2

(Men, Larynx) 1596.3 90.9 1687.2 1616.5 79 1695.5 1598.3 80.6 1678.8 1612.7 78.5 1691.2 1596.5 83.3 1679.8

(Men, Lung) 2869.3 190.1 3059.3 2889.2 186.2 3075.4 2871.5 188.7 3060.2 2884.4 185 3069.4 2871.8 188.7 3060.5
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BYM FE NFE HGeo ZGeo

Sex & Cause D pD DIC D pD DIC D pD DIC D pD DIC D pD DIC

(Women, Lung) 1590.2 66 1656.1 1613 56.1 1669.1 1595.3 62.2 1657.4 1605.9 55.7 1661.6 1594.5 63.7 1658.2

(Women, Breast) 2333.8 95.9 2429.7 2341 93.8 2434.9 2336.3 95.5 2431.8 2341.5 92.3 2433.7 2333.9 95.6 2429.5

(Women, Uterus) 1645.2 66.2 1711.4 1662.8 59.2 1722 1645 68.6 1713.5 1656.3 58.3 1714.6 1650.4 68 1718.4

(Women, Ovary) 1554.9 27.9 1582.8 1559.7 27.3 1586.9 1556.5 27 1583.5 1560.7 26.1 1586.9 1552.1 27.3 1579.5

(Men, Prostate) 2489.2 106.8 2596.1 2500 103.3 2603.3 2487.2 108 2595.3 2494 101.7 2595.7 2492.2 108.1 2600.2

(Men, Bladder) 2041.9 105.8 2147.8 2066.6 94.9 2161.5 2045.4 101.2 2146.6 2060.4 93.7 2154.1 2045.9 102.1 2148.1

(Men, Lymphatic) 1668.9 47.2 1716.1 1678.9 43.4 1722.3 1672.2 45.3 1717.5 1679 41.7 1720.8 1668.9 45.7 1714.6

(Women, Lymphatic) 1548.3 31.4 1579.7 1548.9 24.1 1573 1544.6 26.5 1571.1 1548.5 23.7 1572.2 1544.3 28.9 1573.2

(Men, Leukemia) 1608.8 25.1 1633.9 1619.4 22.7 1642.1 1607.8 23.5 1631.3 1611.3 21.3 1632.7 1611.6 25 1636.6

(Women, Leukemia) 1447.5 18.9 1466.5 1446.8 21.7 1468.5 1444.4 21.4 1465.8 1445 20.4 1465.4 1455.6 19.5 1475.1

(Men, Diabetes) 2165.2 115.7 2280.9 2181.9 109.2 2291.1 2168.9 112.5 2281.4 2173.4 109.9 2283.3 2172.9 113 2286

(Women, Diabetes) 2545.6 167.6 2713.1 2565.9 159.1 2725 2547.9 166.8 2714.7 2559.8 158.2 2718 2549.7 165.2 2714.9

(Men, Hypertensive) 1748.9 76.9 1825.7 1774 66.6 1840.6 1749.3 75.1 1824.4 1762.8 65.7 1828.5 1754.4 76.7 1831.1

(Women, Hypertensive) 2064.8 162.5 2227.3 2099.3 146.4 2245.7 2073.7 159.9 2233.5 2094.7 145.1 2239.7 2072.3 161.2 2233.5

(Men, Ischemic) 3217.4 250.9 3468.3 3223.8 253.6 3477.4 3218.4 252.4 3470.8 3219.1 251.7 3470.8 3218.6 251.4 3470

(Women, Ischemic) 2999 272.8 3271.9 3006.8 271 3277.9 3000.5 272.3 3272.8 3004.3 268.4 3272.7 3000.4 271 3271.4

(Men, Cerebrovascular) 3208 274.9 3482.9 3215.7 276.2 3491.9 3206.1 276.3 3482.4 3210.9 273.7 3484.6 3207.1 274.9 3482

(Women, Cerebrovascular) 3323.8 310.3 3634 3331.5 315.1 3646.6 3325.9 312.5 3638.4 3326 312.9 3638.9 3326.4 310.6 3637

(Men, Atherosclerosis) 1945.2 258.6 2203.8 2006.2 220.8 2227.1 1948.1 253.2 2201.4 2007.8 220 2227.7 1959.2 254.3 2213.5

(Women, Atherosclerosis) 2184.2 299.3 2483.5 2256.3 260.6 2516.9 2189.7 296.5 2486.2 2270 261 2531 2188.1 296 2484.1

(Men, Other Cardiovascular) 3132.1 251.4 3383.5 3143.1 250.2 3393.3 3130.6 252.2 3382.8 3137.6 247.5 3385.2 3132.7 250.7 3383.4

(Women, Other Cardiovascular) 3299.6 304.5 3604.1 3298.3 306.5 3604.8 3301.6 306.2 3607.7 3298 304.6 3602.6 3298 304.6 3602.6

(Men, Pneumonia) 2187.6 117.9 2305.5 2195.1 114.3 2309.4 2193.1 116.2 2309.3 2195.4 114.2 2309.6 2189.4 116.8 2306.2
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BYM FE NFE HGeo ZGeo

Sex & Cause D pD DIC D pD DIC D pD DIC D pD DIC D pD DIC

(Women, Pneumonia) 2172.1 134.6 2306.7 2186.4 127.6 2314.1 2172.9 135.2 2308.1 2185.2 126.4 2311.6 2173.8 134.8 2308.6

(Men, COPD) 2857.5 189.3 3046.8 2871.4 187.2 3058.6 2860.2 188.9 3049.1 2866.2 185.8 3052 2859.2 188.2 3047.4

(Women, COPD) 2177.5 159.6 2337.1 2205.2 142.1 2347.4 2183.8 157.5 2341.2 2198.7 141.2 2339.9 2188.9 153.9 2342.8

(Men, Cirrhosis) 2124 157.7 2281.7 2150.7 148.4 2299.1 2131.6 156.3 2287.8 2141.5 147.9 2289.4 2128.4 156.7 2285.1

(Women, Cirrhosis) 1675.5 150.7 1826.2 1709.9 127.5 1837.5 1683.2 144.6 1827.8 1701.8 128 1829.8 1686 146.4 1832.4

Mortality causes with bold font stand for those causes with zero excesses according to BYM.
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A.2. Additional results

A.2.4. Estimates of γ parameters

Table A.4.: Posterior means and 95% credible intervals for parameter
γ in the model NFE for each data set.

Sex & Cause γ

(Men, All tumours) -0.57 [-1.78 - 0.8]
(Women, All tumours) -0.08 [-0.98 - 0.97]

(Men, Mouth) -0.38 [-0.64 - -0.11]
(Men, Stomach) -0.34 [-0.61 - -0.01]
(Women, Stomach) -0.23 [-0.51 - 0.02]
(Men, Colorectal) -0.44 [-0.77 - -0.1]
(Women, Colorectal) -0.05 [-0.36 - 0.28]

(Men, Colon) -0.4 [-0.71 - -0.11]
(Women, Colon) -0.16 [-0.45 - 0.13]
(Men, Rectum) -0.37 [-0.63 - -0.13]
(Women, Rectum) -0.19 [-0.44 - 0.06]
(Men, Liver) -0.4 [-0.67 - -0.12]
(Women, Liver) -0.2 [-0.46 - 0.05]
(Women, Vesicle) -0.07 [-0.32 - 0.2]
(Men, Pancreas) -0.28 [-0.55 - -0.01]
(Women, Pancreas) -0.23 [-0.49 - 0.02]
(Men, Larynx) -0.55 [-0.82 - -0.29]
(Men, Lung) -0.56 [-1.02 - -0.1]
(Women, Lung) -0.23 [-0.49 - 0.05]
(Women, Breast) -0.19 [-0.51 - 0.11]
(Women, Uterus) -0.03 [-0.26 - 0.22]
(Women, Ovary) -0.09 [-0.34 - 0.14]
(Men, Prostate) -0.35 [-0.72 - -0.01]
(Men, Bladder) -0.45 [-0.76 - -0.16]
(Men, Lymphatic) -0.14 [-0.38 - 0.12]

(Women, Lymphatic) -0.47 [-0.74 - -0.22]
(Men, Leukemia) -0.28 [-0.51 - -0.02]
(Women, Leukemia) 0.22 [-0.01 - 0.46]
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A. Supplementary material to the paper: “Some findings on zero-inflated
and hurdle Poisson models for disease mapping”

Sex & Cause γ

(Men, Diabetes) -0.38 [-0.69 - -0.06]
(Women, Diabetes) -0.36 [-0.73 - 0.01]
(Men, Hypertensive) -0.25 [-0.51 - 0.01]

(Women, Hypertensive) -0.27 [-0.56 - 0.05]
(Men, Ischemic) 0.1 [-0.67 - 1.04]

(Women, Ischemic) -0.43 [-0.98 - 0.15]
(Men, Cerebrovascular) 0 [-0.77 - 0.86]

(Women, Cerebrovascular) -0.02 [-0.92 - 0.94]
(Men, Atherosclerosis) -0.08 [-0.4 - 0.27]

(Women, Atherosclerosis) -0.23 [-0.57 - 0.1]
(Men, Other Cardiovascular) -0.49 [-1.09 - 0.16]

(Women, Other Cardiovascular) 0.06 [-0.86 - 1.12]
(Men, Pneumonia) -0.11 [-0.44 - 0.21]

(Women, Pneumonia) 0.05 [-0.29 - 0.37]
(Men, COPD) -0.45 [-0.95 - 0.06]

(Women, COPD) -0.43 [-0.71 - -0.13]
(Men, Cirrhosis) -0.28 [-0.57 - 0.04]

(Women, Cirrhosis) -0.33 [-0.61 - -0.04]

Mortality causes with bold font stand for those causes with zero excesses
according to BYM.

A.2.5. Choropleth maps for all models in Section 4.4
for all causes

Choropleth maps for all models in Section 4.4 for all causes can be viewed
online at https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.7819.

203

https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.7819


“Thesis” — 2020/7/6 — 16:18 — page 204 — #246
picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picture

picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picture

A.3. Markdown document with all the analysis carried out

A.3. Markdown document with all the
analysis carried out

A.3.1. Execution of models in WinBUGS using the
library R2WinBUGS

Load libraries, data and cartography

# Working directory
DirMain = " " # Set an appropriate directory
setwd(DirMain)
# Load library and data
library(R2WinBUGS)
load("datos/OE.rdata")
load("VR.rdata")
# For running the models in parallel
# calls to WinBUGS
source("Pbugs.0.4.4.r")
# Load cartography
Cvalenciana <- dget("datos/Cvalenciana.txt")
# Total number of diseases
ndiseases <- 46
# Total number of municipalities
nareas <- 540
# Total number of observed and expected
# cases during the whole period of study
Obs <- list()
Exp <- list()
for (i in 1:ndiseases) {

Obs[[i]] <- apply(Obs2[[i]], 1, sum)
Exp[[i]] <- apply(Esp[[i]], 1, sum)

}
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A. Supplementary material to the paper: “Some findings on zero-inflated
and hurdle Poisson models for disease mapping”

BYM model

# BYM model, WinBUGS code
model.BYM <- function() {

for (i in 1:n) {
O[i] ~ dpois(mu[i])
# Modeling of the mean for each
# municipality
log(mu[i]) <- log(E[i]) + m + sd.phi *

phi[i] + sd.theta * theta[i]
# SMR for each municipality
SMR[i] <- exp(m + sd.phi * phi[i] +

sd.theta * theta[i])
# Prior distribution for the non-spatial
# effect
theta[i] ~ dnorm(0, 1)
# Predictive distribution
O.pred[i] ~ dpois(mu[i])
pred.equal.0[i] <- equals(O.pred[i], 0)

}
# Predictive distribution for the number
# of zeroes
zero.pred <- sum(pred.equal.0[])
# Prior distribution for the spatial
# effect
phi[1:n] ~ car.normal(map[], w[], nvec[], 1)
# Prior distribution for the mean risk
# for all municipalities
m ~ dflat()
# Prior distribution for the standard
# deviations of the random effects
sd.theta ~ dunif(0, 5)
sd.phi ~ dunif(0, 5)

}
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A.3. Markdown document with all the analysis carried out

# Run BYM model for each disease
for (i in 1:ndiseases) {

# Working directory
setwd(paste(DirMain, "/resul/", LabelsCausas[i],

sep = ""))
# Initial values
initials <- function() {

list(m = rnorm(1, 0, 0.1), sd.theta = runif(1,
0, 1), sd.phi = runif(1, 0, 1),
theta = rnorm(nareas), phi = rnorm(nareas))

}
# Data
data <- list(n = nareas, O = Obs[[i]],

E = Exp[[i]], map = Cvalenciana$map,
w = Cvalenciana$w, nvec = Cvalenciana$nvec)

# Variables to retrieve
param <- c("sd.phi", "sd.theta", "SMR",

"mu", "zero.pred")
# Calls to WinBUGS
t.ResulBYM <- system.time(ResulBYM <- Pbugs(data =

data, inits = initials, parameters.to.save =
param, model.file = model.BYM, n.chains = 3,
n.iter = 50000, n.burnin = 5000,
DIC = F, working.directory = getwd()))

# Save results
save(ResulBYM, t.ResulBYM, file = "ResulBYM.Rdata")
setwd <- paste(DirMain)

}

Naive ZIP model

# Naive ZIP model, WinBUGS code
model.ZIP <- function() {
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A. Supplementary material to the paper: “Some findings on zero-inflated
and hurdle Poisson models for disease mapping”

for (i in 1:n) {
O[i] ~ dpois(mu[i])
Z[i] ~ dbern(p)
# Modeling of the mean for each
# municipality
log(mu[i]) <- log(E[i]) + m + sd.phi *

phi[i] + sd.theta * theta[i] -
1000 * (1 - Z[i])

# SMR for each municipality
SMR[i] <- exp(m + sd.phi * phi[i] +

sd.theta * theta[i] - 1000 *
(1 - Z[i]))

# Prior distribution for the non-spatial
# effect
theta[i] ~ dnorm(0, 1)
# Predictive distribution
O.pred[i] ~ dpois(mu[i])
pred.equal.0[i] <- equals(O.pred[i], 0)

}
# Predictive distribution for the number
# of zeroes
zero.pred <- sum(pred.equal.0[])
# Prior distribution for the spatial
# effect
phi[1:n] ~ car.normal(map[], w[], nvec[], 1)
# Prior distribution for the mean risk
# for all municipalities
m ~ dflat()
# Prior distribution for the standard
# deviations of the random effects
sd.theta ~ dunif(0, 5)
sd.phi ~ dunif(0, 5)
# Prior distribution for p
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A.3. Markdown document with all the analysis carried out

p ~ dunif(0, 1)
}
# Run ZIP model for each disease
for (i in 1:ndiseases) {

setwd(paste(DirMain, "/resul/", LabelsCausas[i],
sep = ""))

# Initial values
initials <- function() {

list(m = rnorm(1, 0, 0.1), sd.theta = runif(1,
0, 1), sd.phi = runif(1, 0, 1),
theta = rnorm(nareas), phi = rnorm(nareas),
Z = as.numeric(Obs[[i]] > 0))

}
# Data
data <- list(n = nareas, O = Obs[[i]],

E = Exp[[i]], map = Cvalenciana$map,
w = Cvalenciana$w, nvec = Cvalenciana$nvec)

# Variables to retrieve
param <- c("sd.phi", "sd.theta", "SMR",

"mu", "p", "zero.pred")
# Calls to WinBUGS
t.ResulZIP <- system.time(ResulZIP <- Pbugs(data =

data, inits = initials, parameters.to.save =
param, model.file = model.ZIP, n.chains = 3,
n.iter = 50000, n.burnin = 5000,
DIC = F, working.directory = getwd()))

# Save results
save(ResulZIP, t.ResulZIP, file = "ResulZIP.Rdata")
setwd <- paste(DirMain)

}
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A. Supplementary material to the paper: “Some findings on zero-inflated
and hurdle Poisson models for disease mapping”

Naive Hurdle model

# Naive Hurdle model, WinBUGS code
model.Hurdle <- function() {

# Modeling using the zero trick
c <- 10000
for (i in 1:n) {

zeros[i] <- 0
zeros[i] ~ dpois(zeros.mean[i])
zeros.mean[i] <- -L[i] + c
Z[i] <- step(O[i] - 1)
# Expression of the log-likelihood por i
L[i] <- (1 - Z[i]) * log(1 - p) +

Z[i] * (log(p) + O[i] * log(lambda[i]) -
lambda[i] - logfact(O[i]) -
log(1 - exp(-lambda[i])))

# Modeling of the mean Poisson for each
# municipality
log(lambda[i]) <- log(E[i]) + m +

sd.phi * phi[i] + sd.theta *
theta[i]

# SMR for each municipality
SMR[i] <- (p * lambda[i]/(1 - exp(-lambda[i])))
/E[i]
# Prior distribution for the non-spatial
# effect
theta[i] ~ dnorm(0, 1)
# Predictive distribution
O.pred[i] ~ dbern(p)
pred.equal.0[i] <- equals(O.pred[i], 0)

}
# Predictive distribution for the number
# of zeroes
zero.pred <- sum(pred.equal.0[])
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A.3. Markdown document with all the analysis carried out

# Prior distribution for the spatial
# effect
phi[1:n] ~ car.normal(map[], w[], nvec[], 1)
# Prior distribution for the mean risk
# all every municipalities
m ~ dflat()
# Prior distribution for the standard
# deviations of the random effects
sd.theta ~ dunif(0, 5)
sd.phi ~ dunif(0, 5)
# Prior distribution for p
p ~ dunif(0, 1)

}
# Run Hurdle model for each disease
for (i in 1:ndiseases) {

setwd(paste(DirMain, "/resul/", LabelsCausas[i],
sep = ""))

# Initial values
initials <- function() {

list(m = rnorm(1, 0, 0.1), sd.theta = runif(1,
0, 1), sd.phi = runif(1, 0, 1),
theta = rnorm(nareas), phi = rnorm(nareas))

}
# Data
data <- list(n = nareas, O = Obs[[i]],

E = Exp[[i]], map = Cvalenciana$map,
w = Cvalenciana$w, nvec = Cvalenciana$nvec)

# Variables to retrieve
param <- c("sd.phi", "sd.theta", "SMR",

"lambda", "p", "zero.pred")
# Calls to WinBUGS
t.ResulHurdle <- system.time(ResulHurdle <- Pbugs(

data = data, inits = initials, parameters.to.save =
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A. Supplementary material to the paper: “Some findings on zero-inflated
and hurdle Poisson models for disease mapping”

param, model.file = model.Hurdle, n.chains = 3,
n.iter = 50000, n.burnin = 5000,
DIC = F, working.directory = getwd()))

# Save results
save(ResulHurdle, t.ResulHurdle, file =

"ResulHurdle.Rdata")
setwd <- paste(DirMain)

}

FE Hurdle model

# FE Hurdle model, WinBUGS code
model.HFE <- function() {

# Modeling using the zero trick
c <- 10000
for (i in 1:n) {

zeros[i] <- 0
zeros[i] ~ dpois(zeros.mean[i])
zeros.mean[i] <- (-L[i] + c)
Z[i] <- step(O[i] - 1)
# Expression of the log-likelihood por i
L[i] <- (1 - Z[i]) * log(1 - p[i]) +

Z[i] * (log(p[i]) + O[i] * log(lambda[i]) -
lambda[i] - logfact(O[i]) -
log(1 - exp(-lambda[i])))

# Modeling of the mean Poisson for each
# municipality
log(lambda[i]) <- log(E[i]) + m +

sd.phi * phi[i] + sd.theta *
theta[i]

# Modeling p for each municipality
logit(p[i]) <- alpha + beta * LE[i]
# SMR for each municipality
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A.3. Markdown document with all the analysis carried out

SMR[i] <- (p[i] * lambda[i]/(1 -
exp(-lambda[i])))/E[i]

# Prior distribution for the non-spatial
# effect
theta[i] ~ dnorm(0, 1)
# Predictive distribution
O.pred[i] ~ dbern(p[i])
pred.equal.0[i] <- equals(O.pred[i], 0)

}
# Predictive distribution for the number
# of zeroes
zero.pred <- sum(pred.equal.0[])
# Prior distribution for the spatial
# effect
phi[1:n] ~ car.normal(map[], w[], nvec[], 1)
# Prior distribution for the mean risk
# for all municipalities
m ~ dflat()
# Prior distribution for the standard
# deviations of the random effects
sd.theta ~ dunif(0, 5)
sd.phi ~ dunif(0, 5)
# Prior distribution for the parameters
# logistic regression
alpha ~ dflat()
beta ~ dflat()

}
# Run FE Hurdle model for each disease
for (i in 1:ndiseases) {

setwd(paste(DirMain, "/resul/", LabelsCausas[i],
sep = ""))

# Initial values
initials <- function() {
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A. Supplementary material to the paper: “Some findings on zero-inflated
and hurdle Poisson models for disease mapping”

list(m = rnorm(1, 0, 0.1), sd.theta = runif(1,
0, 1), sd.phi = runif(1, 0, 1),
theta = rnorm(nareas), phi = rnorm(nareas),
alpha = rnorm(1, 0, 0.1), beta = rnorm(1,

0, 0.1))
}
# Data
data <- list(n = nareas, O = Obs[[i]],

E = Exp[[i]], LE = log(Exp[[i]]) -
mean(log(Exp[[i]])), map = Cvalenciana$map,

w = Cvalenciana$w, nvec = Cvalenciana$nvec)
# Variables to retrieve
param <- c("sd.phi", "sd.theta", "SMR",

"lambda", "p", "alpha", "beta", "zero.pred")
# Calls to WinBUGS
t.ResulHFE <- system.time(ResulHFE <- Pbugs(data =

data, inits = initials, parameters.to.save =
param, model.file = model.HFE, n.chains = 3,
n.iter = 50000, n.burnin = 5000,
DIC = F, working.directory = getwd()))

# Save results
save(ResulHFE, t.ResulHFE, file =

"ResulHFE.Rdata")
setwd <- paste(DirMain)

}

NFE Hurdle model

# NFE Hurdle model, WinBUGS code
model.HNFE <- function() {

# Modeling using the zero trick
c <- 10000
for (i in 1:n) {
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A.3. Markdown document with all the analysis carried out

zeros[i] <- 0
zeros[i] ~ dpois(zeros.mean[i])
zeros.mean[i] <- (-L[i] + c)
Z[i] <- step(O[i] - 1)
# Expression of the log-likelihood por i
L[i] <- (1 - Z[i]) * log(1 - p[i]) +

Z[i] * (log(p[i]) + O[i] * log(lambda[i]) -
lambda[i] - logfact(O[i]) -
log(1 - exp(-lambda[i])))

# Modeling of the mean Poisson for each
# municipality
log(lambda[i]) <- log(E[i]) + m +

sd.phi * phi[i] + sd.theta *
theta[i]

# Modeling p for each municipality
logit(p[i]) <- logit(1 - exp(-lambda[i])) +

gamma
# SMR for each municipality
SMR[i] <- (p[i] * lambda[i]/(1 -

exp(-lambda[i])))/E[i]
# Prior distribution for the non-spatial
# effect
theta[i] ~ dnorm(0, 1)
# Predictive distribution
O.pred[i] ~ dbern(p[i])
pred.equal.0[i] <- equals(O.pred[i], 0)

}
# Predictive distribution for the number
# of zeroes
zero.pred <- sum(pred.equal.0[])
# Prior distribution for the spatial
# effect
phi[1:n] ~ car.normal(map[], w[], nvec[], 1)
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A. Supplementary material to the paper: “Some findings on zero-inflated
and hurdle Poisson models for disease mapping”

# Prior distribution for the mean risk
# for all municipalities
m ~ dflat()
# Prior distribution for the standard
# deviations of the random effects
sd.theta ~ dunif(0, 5)
sd.phi ~ dunif(0, 5)
# Prior distribution for the parameters
# logistic regression
gamma ~ dflat()

}
# Run NFE Hurdle model for each disease
for (i in 1:ndiseases) {

setwd(paste(DirMain, "/resul/", LabelsCausas[i],
sep = ""))

# Initial values
initials <- function() {

list(m = rnorm(1, 0, 0.1), sd.theta = runif(1,
0, 1), sd.phi = runif(1, 0, 1),
theta = rnorm(nareas), phi = rnorm(nareas),
gamma = rnorm(1, 0, 0.1))

}
# Data
data <- list(n = nareas, O = Obs[[i]],

E = Exp[[i]], map = Cvalenciana$map,
w = Cvalenciana$w, nvec = Cvalenciana$nvec)

# Variables to retrieve
param <- c("sd.phi", "sd.theta", "SMR",

"lambda", "p", "gamma", "zero.pred")
# Calls to WinBUGS
t.ResulHNFE <- system.time(ResulHNFE <- Pbugs(data =

data, inits = initials, parameters.to.save =
param, model.file = model.HNFE, n.chains = 3,
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A.3. Markdown document with all the analysis carried out

n.iter = 50000, n.burnin = 5000,
DIC = F, working.directory = getwd()))

# Save results
save(ResulHNFE, t.ResulHNFE, file = "ResulHNFE.Rdata")
setwd <- paste(DirMain)

}

HGeo model

# HGeo model, WinBUGS code
model.HGeo <- function() {

# Modeling using the zero trick
c <- 10000
for (i in 1:n) {

zeros[i] <- 0
zeros[i] ~ dpois(zeros.mean[i])
zeros.mean[i] <- (-L[i] + c)
Z[i] <- step(O[i] - 1)
# Expression of the log-likelihood por i
L[i] <- (1 - Z[i]) * log(1 - p[i]) +

Z[i] * (log(p[i]) + O[i] * log(lambda[i]) -
lambda[i] - logfact(O[i]) -
log(1 - exp(-lambda[i])))

# Modeling of the mean Poisson for each
# municipality
log(lambda[i]) <- log(E[i]) + m +

sd.phi * phi[i] + sd.theta *
theta[i]

# Modeling p for each municipality
p[i] <- 1 - pow((1 - pi), E[i])
# SMR for each municipality
SMR[i] <- (p[i] * lambda[i]/(1 -

exp(-lambda[i])))/E[i]
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A. Supplementary material to the paper: “Some findings on zero-inflated
and hurdle Poisson models for disease mapping”

# Prior distribution for the non-spatial
# effect
theta[i] ~ dnorm(0, 1)
# Predictive distribution
O.pred[i] ~ dbern(p[i])
pred.equal.0[i] <- equals(O.pred[i], 0)

}
# Predictive distribution for the number
# of zeroes
zero.pred <- sum(pred.equal.0[])
# Prior distribution for the spatial
# effect
phi[1:n] ~ car.normal(map[], w[], nvec[], 1)
# Prior distribution for the mean risk
# for all municipalities
m ~ dflat()
# Prior distribution for the standard
# deviations of the random effects
sd.theta ~ dunif(0, 5)
sd.phi ~ dunif(0, 5)
# Prior distribution for pi
pi ~ dunif(0, 1)

}
# Run HGeo model for each disease
for (i in 2:ndiseases) {

setwd(paste(DirMain, "/resul/", LabelsCausas[i],
sep = ""))

# Initial values
initials <- function() {

list(m = rnorm(1, 0, 0.1), sd.theta = runif(1,
0, 1), sd.phi = runif(1, 0, 1),
theta = rnorm(nareas), phi = rnorm(nareas),
pi = runif(1, 0, 1))
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}
# Data
data <- list(n = nareas, O = Obs[[i]],

E = Exp[[i]], map = Cvalenciana$map,
w = Cvalenciana$w, nvec = Cvalenciana$nvec)

# Variables to retrieve
param <- c("sd.phi", "sd.theta", "SMR",

"lambda", "p", "pi", "zero.pred")
# Calls to WinBUGS
t.ResulHGeo <- system.time(ResulHGeo <- Pbugs(data =

data, inits = initials, parameters.to.save =
param, model.file = model.HGeo, n.chains = 3,
n.iter = 50000, n.burnin = 5000,
DIC = F, working.directory = getwd()))

# Save results
save(ResulHGeo, t.ResulHGeo, file = "ResulHGeo.Rdata")
setwd <- paste(DirMain)

}

ZGeo model

# ZIP model, WinBUGS code
model.ZGeo <- function() {

for (i in 1:n) {
O[i] ~ dpois(mu[i])
Z[i] ~ dbern(p[i])
# Modeling p for each municipality
p[i] <- 1 - pow((1 - pi), E[i])
# Modeling of the mean for each
# municipality
log(mu[i]) <- log(E[i]) + m + sd.phi *

phi[i] + sd.theta * theta[i] -
1000 * (1 - Z[i])
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lambda[i] <- E[i] * exp(m + sd.phi *
phi[i] + sd.theta * theta[i])

# SMR for each municipality
SMR[i] <- exp(m + sd.phi * phi[i] +

sd.theta * theta[i] - 1000 *
(1 - Z[i]))

# Prior distribution for the non-spatial
# effect
theta[i] ~ dnorm(0, 1)
# Predictive distribution
O.pred[i] ~ dpois(mu[i])
pred.equal.0[i] <- equals(O.pred[i], 0)

}
# Predictive distribution for the number
# of zeroes
zero.pred <- sum(pred.equal.0[])
# Prior distribution for the spatial
# effect
phi[1:n] ~ car.normal(map[], w[], nvec[], 1)
# Prior distribution for the mean risk
# for all municipalities
m ~ dflat()
# Prior distribution for the standard
# deviations of the random effects
sd.theta ~ dunif(0, 5)
sd.phi ~ dunif(0, 5)
# Prior distribution for pi
pi ~ dunif(0, 1)

}
# Run ZGeo model for each disease
for (i in 1:ndiseases) {

setwd(paste(DirMain, "/resul/", LabelsCausas[i],
sep = ""))
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# Initial values
initials <- function() {

list(m = rnorm(1, 0, 0.1), sd.theta = runif(1,
0, 1), sd.phi = runif(1, 0, 1),
theta = rnorm(nareas), phi = rnorm(nareas),
Z = as.numeric(Obs[[i]] > 0),
pi = runif(1, 0, 1))

}
# Data
data <- list(n = nareas, O = Obs[[i]],

E = Exp[[i]], map = Cvalenciana$map,
w = Cvalenciana$w, nvec = Cvalenciana$nvec)

# Variables to retrieve
param <- c("sd.phi", "sd.theta", "SMR",

"mu", "lambda", "p", "pi", "zero.pred")
# Calls to WinBUGS
t.ResulZGeo <- system.time(ResulZGeo <- Pbugs(data =

data, inits = initials, parameters.to.save =
param, model.file = model.ZGeo, n.chains = 3,
n.iter = 50000, n.burnin = 5000,
DIC = F, working.directory = getwd()))

# Save results
save(ResulZGeo, t.ResulZGeo, file = "ResulZGeo.Rdata")
setwd <- paste(DirMain)

}

A.3.2. Comparison: observed zeroes for each data set
vs. posterior predicted zeroes for each model
(Tables A.1 and A.2)

# Load libraries
library(xtable)
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library(pander)
library(rmarkdown)
library(knitr)
# Posterior predicted zeroes for each
# model
zeros_BYM <- character()
zeros_ZIP <- character()
zeros_Hurdle <- character()
zeros_HFE <- character()
zeros_HNFE <- character()
zeros_HGeo <- character()
zeros_ZGeo <- character()
for (i in 1:ndiseases) {

# Load WinBUGS results
load(paste(getwd(), "/resul/", LabelsCausas[i],

"/ResulBYM.Rdata", sep = ""))
load(paste(getwd(), "/resul/", LabelsCausas[i],

"/ResulZIP.Rdata", sep = ""))
load(paste(getwd(), "/resul/", LabelsCausas[i],

"/ResulHurdle.Rdata", sep = ""))
load(paste(getwd(), "/resul/", LabelsCausas[i],

"/ResulHFE.Rdata", sep = ""))
load(paste(getwd(), "/resul/", LabelsCausas[i],

"/ResulHNFE.Rdata", sep = ""))
load(paste(getwd(), "/resul/", LabelsCausas[i],

"/ResulHGeo.Rdata", sep = ""))
load(paste(getwd(), "/resul/", LabelsCausas[i],

"/ResulZGeo.Rdata", sep = ""))
# Posterior predicted medians for zeroes
# for each model run and corresponding
# unilateral 95% posterior predictive
# intervals
zeros_BYM[i] <- paste0(round(summary

221



“Thesis” — 2020/7/6 — 16:18 — page 222 — #264
picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picture

picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picture

A.3. Markdown document with all the analysis carried out

(ResulBYM$sims.list$zero.pred)[3]),
" [0,", round(quantile
(ResulBYM$sims.list$zero.pred,

p = 0.95)), "]")
zeros_ZIP[i] <- paste0(round(summary

(ResulZIP$sims.list$zero.pred)[3]),
" [0,", round(quantile
(ResulZIP$sims.list$zero.pred,

p = 0.95)), "]")
zeros_Hurdle[i] <- paste0(round(summary

(ResulHurdle$sims.list$zero.pred)[3]),
" [0,", round(quantile
(ResulHurdle$sims.list$zero.pred,

p = 0.95)), "]")
zeros_HFE[i] <- paste0(round(summary

(ResulHFE$sims.list$zero.pred)[3]),
" [0,", round(quantile
(ResulHFE$sims.list$zero.pred,

p = 0.95)), "]")
zeros_HNFE[i] <- paste0(round(summary

(ResulHNFE$sims.list$zero.pred)[3]),
" [0,", round(quantile
(ResulHNFE$sims.list$zero.pred,

p = 0.95)), "]")
zeros_HGeo[i] <- paste0(round(summary

(ResulHGeo$sims.list$zero.pred)[3]),
" [0,", round(quantile
(ResulHGeo$sims.list$zero.pred,

p = 0.95)), "]")
zeros_ZGeo[i] <- paste0(round(summary

(ResulZGeo$sims.list$zero.pred)[3]),
" [0,", round(quantile
(ResulZGeo$sims.list$zero.pred,
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p = 0.95)), "]")
}
Disease <- c("(Men, All tumours)", "(Women, All tumours)",

"(Men, Mouth)", "(Men, Stomach)", "(Women, Stomach)",
"(Men, Colorectal)", "(Women, Colorectal)",
"(Men, Colon)", "(Women, Colon)", "(Men, Rectum)",
"(Women, Rectum)", "(Men, Liver)", "(Women, Liver)",
"(Women, Vesicle)", "(Men, Pancreas)",
"(Women, Pancreas)", "(Men, Larynx)",
"(Men, Lung)", "(Women, Lung)", "(Women, Breast)",
"(Women, Uterus)", "(Women, Ovary)",
"(Men, Prostate)", "(Men, Bladder)",
"(Men, Lymphatic)", "(Women, Lymphatic)",
"(Men, Leukemia)", "(Women, Leukemia)",
"(Men, Diabetes)", "(Women, Diabetes)",
"(Men, Hypertensive)", "(Women, Hypertensive)",
"(Men, Ischemic)", "(Women, Ischemic)",
"(Men, Cerebrovascular)", "(Women, Cerebrovascular)",
"(Men, Atherosclerosis)", "(Women, Atherosclerosis)",
"(Men, Other Cardiovascular)",
"(Women, Other Cardiovascular)",
"(Men, Pneumonia)", "(Women, Pneumonia)",
"(Men, COPD)", "(Women, COPD)", "(Men, Cirrhosis)",
"(Women, Cirrhosis)")

Table <- cbind(Disease, unlist(lapply(Obs,
function(x) {

sum(x == 0)
})), zeros_BYM, zeros_ZIP, zeros_Hurdle,
zeros_HFE, zeros_HNFE, zeros_HGeo, zeros_ZGeo)

colnames(Table) <- c("Sex & Cause", "Obs. zeroes",
"BYM", "ZIP", "Hurdle", "HFE", "HNFE",
"HGeo", "ZGeo")

kable(Table, split.table = Inf, row.names = FALSE,
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align = "c", caption = "Observed zeroes for each
data set and posterior predicted zeroes for each
model. Values in the Obs.zeroes column correspond to
the real observed zeroes for each data set. For the
5 columns on the right, numbers correspond to the
posterior predictive median for this same quantity
for each model run and the corresponding unilateral
95% posterior predictive interval.")

A.3.3. DIC for each model (Table A.3)

# DIC BYM model
CalculaDIC_BYM <- function(Simu, O, E, save = FALSE) {

mu <- t(apply(Simu$sims.list$SMR, 1,
function(x) {

x * E
}))

D <- apply(mu, 1, function(x) {
-2 * sum(O * log(x) - x - lfactorial(O))

})
Dmedia <- mean(D)
mumedia <- apply(Simu$sims.list$SMR,

2, mean) * E
DenMedia <- -2 * sum(O * log(mumedia) -

mumedia - lfactorial(O))
if (save == TRUE) {

return(c(Dmedia, Dmedia - DenMedia,
2 * Dmedia - DenMedia))

}
cat("D=", Dmedia, "pD=", Dmedia - DenMedia,

"DIC=", 2 * Dmedia - DenMedia, "\n")
}

224



“Thesis” — 2020/7/6 — 16:18 — page 225 — #267
picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picture

picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picture

A. Supplementary material to the paper: “Some findings on zero-inflated
and hurdle Poisson models for disease mapping”

# DIC Hurdle FE, Hurdle NFE and HGeo
# models
CalculaDIC_Hurdle <- function(Simu, O, E,

save = FALSE) {
log.verosim <- matrix(nrow = Simu$n.sims,

ncol = length(O))
Z <- as.numeric(O > 0)
for (j in 1:Simu$n.sims) {

for (k in 1:length(O)) {
if (Z[k] == 0) {

log.verosim[j, k] <- log(1 -
Simu$sims.list$p[j, k])

}
if (Z[k] == 1) {

log.verosim[j, k] <- log(Simu$sims.list$
p[j, k]) + O[k] * log(Simu$sims.list$
lambda[j, k]) - Simu$sims.list$lambda[j,
k] - lfactorial(O[k]) -
log(1 - exp(-Simu$sims.list$lambda[j,

k]))
}

}
}
D <- -2 * apply(log.verosim, 1, sum)
Dmedia <- mean(D)
log.verosimMedia <- c()
for (k in 1:length(O)) {

if (Z[k] == 0) {
log.verosimMedia[k] <- log(1 -

Simu$mean$p[k])
}
if (Z[k] == 1) {

log.verosimMedia[k] <- log(Simu$mean$p[k]) +
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O[k] * log(Simu$mean$lambda[k]) -
Simu$mean$lambda[k] - lfactorial(O[k]) -
log(1 - exp(-
Simu$mean$lambda[k]))

}
}
DenMedia <- -2 * sum(log.verosimMedia)
if (save == TRUE) {

return(c(Dmedia, Dmedia - DenMedia,
2 * Dmedia - DenMedia))

}
cat("D=", Dmedia, "pD=", Dmedia - DenMedia,

"DIC=", 2 * Dmedia - DenMedia, "\n")
}
# DIC ZGeo model
CalculaDIC_ZIP <- function(Simu, O, E, save = FALSE) {

log.verosim <- matrix(nrow = Simu$n.sims,
ncol = length(O))

Z <- as.numeric(O > 0)
for (j in 1:Simu$n.sims) {

for (k in 1:length(O)) {
if (Z[k] == 0) {

log.verosim[j, k] <- log((1 -
Simu$sims.list$p[j, k]) +
Simu$sims.list$p[j, k] *

dpois(x = O[k], lambda =
Simu$sims.list$lambda[j,
k]))

}
if (Z[k] == 1) {

log.verosim[j, k] <- log(Simu$sims.list$
p[j, k] * dpois(x = O[k], lambda =
Simu$sims.list$lambda[j,
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k]))
}

}
}
D <- -2 * apply(log.verosim, 1, sum)
Dmedia <- mean(D)
log.verosimMedia <- c()
for (k in 1:length(O)) {

if (Z[k] == 0) {
log.verosimMedia[k] <- log((1 -

Simu$mean$p[k]) + Simu$mean$p[k] *
dpois(x = O[k], lambda =
Simu$mean$lambda[k]))

}
if (Z[k] == 1) {

log.verosimMedia[k] <- log(Simu$mean$p[k] *
dpois(x = O[k], lambda =
Simu$mean$lambda[k]))

}
}
DenMedia <- -2 * sum(log.verosimMedia)
if (save == TRUE) {

return(c(Dmedia, Dmedia - DenMedia,
2 * Dmedia - DenMedia))

}
cat("D=", Dmedia, "pD=", Dmedia - DenMedia,

"DIC=", 2 * Dmedia - DenMedia, "\n")
}
DIC_BYM <- matrix(nrow = ndiseases, ncol = 3)
DIC_HFE <- matrix(nrow = ndiseases, ncol = 3)
DIC_HNFE <- matrix(nrow = ndiseases, ncol = 3)
DIC_HGeo <- matrix(nrow = ndiseases, ncol = 3)
DIC_ZGeo <- matrix(nrow = ndiseases, ncol = 3)
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for (i in 1:ndiseases) {
# Load WinBUGS results
load(paste(getwd(), "/resul/", LabelsCausas[i],

"/ResulBYM.Rdata", sep = ""))
load(paste(getwd(), "/resul/", LabelsCausas[i],

"/ResulHFE.Rdata", sep = ""))
load(paste(getwd(), "/resul/", LabelsCausas[i],

"/ResulHNFE.Rdata", sep = ""))
load(paste(getwd(), "/resul/", LabelsCausas[i],

"/ResulHGeo.Rdata", sep = ""))
load(paste(getwd(), "/resul/", LabelsCausas[i],

"/ResulZGeo.Rdata", sep = ""))
# DIC for each model and cause
DIC_BYM[i, ] <- CalculaDIC_BYM(ResulBYM,

Obs[[i]], Exp[[i]], save = TRUE)
DIC_HFE[i, ] <- CalculaDIC_Hurdle(ResulHFE,

Obs[[i]], Exp[[i]], save = TRUE)
DIC_HNFE[i, ] <- CalculaDIC_Hurdle(ResulHNFE,

Obs[[i]], Exp[[i]], save = TRUE)
DIC_HGeo[i, ] <- CalculaDIC_Hurdle(ResulHGeo,

Obs[[i]], Exp[[i]], save = TRUE)
DIC_ZGeo[i, ] <- CalculaDIC_ZIP(ResulZGeo,

Obs[[i]], Exp[[i]], save = TRUE)
}
Table <- cbind(Disease, round(DIC_BYM, 1),

round(DIC_HFE, 1), round(DIC_HNFE, 1),
round(DIC_HGeo, 1), round(DIC_ZGeo, 1))

colnames(Table) <- c("Disease", rep(c("D",
"pD", "DIC"), 5))

rownames(Table) <- as.character(1:46)
cab <- c("Disease", rep(c("D", "pD", "DIC"),

5))
Table2 <- rbind(cab, Table)
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rownames(Table2) <- c("", rownames(Table))
addtorow <- list()
addtorow$pos <- list(0)
addtorow$command <- paste0("\\multicolumn{1}{c}{}",

paste0(" & \\multicolumn{3}{c}{", c("BYM",
"FE", "NFE", "HGeo", "ZGeo"), "}",
collapse = ""), "\\\\")

print(xtable(Table2, caption = "DIC for each model.",
align = rep("c", 17)), add.to.row = addtorow,
include.colnames = F, hline.after = c(-1,

0, 1, nrow(tabla2)), include.rownames = F,
comment = FALSE)

A.3.4. Posterior distribution of γ in the Hurdle NFE
model (Table A.4)

gamma <- character()
for (i in 1:ndiseases) {

# Load WinBUGS NFE results
load(paste(getwd(), "/resul/", LabelsCausas[i],

"/ResulHNFE.Rdata", sep = ""))
# Posterior mean for gamma in the NFE
# model and the corresponding 95%
# posterior interval.
gamma[i] <- paste0(round(ResulHNFE$summary["gamma",

1], 2), " [", round(ResulHNFE$summary["gamma",
3], 2), " - ", round(ResulHNFE$summary["gamma",
7], 2), "]")

}
Table <- cbind(Disease, gamma)
colnames(Table) <- c("Sex & Cause", "$\\gamma$")
kable(Table, split.table = Inf, row.names = FALSE,

229



“Thesis” — 2020/7/6 — 16:18 — page 230 — #272
picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,30)10 (-5,30)(1,0)10 (0,35)(0,-1)30 picture

picture(0,0) (-30,0)10 (-30,-5)(0,1)10 (-35,0)(1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picturepicture(0,0) (30,0)10 (30,-5)(0,1)10 (35,0)(-1,0)30 (0,-30)10 (-5,-30)(1,0)10 (0,-35)(0,1)30 picture

A.3. Markdown document with all the analysis carried out

align = "c", caption = "Posterior distribution of
$\\gamma$ in the NFE model")

A.3.5. Choropleth maps for all models (Figures in
A.2.5)

# Load libraries
library(RColorBrewer)
cuts_SMR <- c(0, 0.67, 0.8, 0.91, 1.1, 1.25,

1.5)
palette <- brewer.pal(7, "BrBG")[7:1]
for (i in 1:ndiseases) {

# Load WinBUGS results
load(paste(getwd(), "/resul/", LabelsCausas[i],

"/ResulBYM.Rdata", sep = ""))
load(paste(getwd(), "/resul/", LabelsCausas[i],

"/ResulZIP.Rdata", sep = ""))
load(paste(getwd(), "/resul/", LabelsCausas[i],

"/ResulHurdle.Rdata", sep = ""))
load(paste(getwd(), "/resul/", LabelsCausas[i],

"/ResulHFE.Rdata", sep = ""))
load(paste(getwd(), "/resul/", LabelsCausas[i],

"/ResulHNFE.Rdata", sep = ""))
load(paste(getwd(), "/resul/", LabelsCausas[i],

"/ResulHGeo.Rdata", sep = ""))
load(paste(getwd(), "/resul/", LabelsCausas[i],

"/ResulZGeo.Rdata", sep = ""))
# SMR estimates, BYM model
plot(VR.cart, col = palette[findInterval

(ResulBYM$mean$SMR,
cuts_SMR)], main = paste0("BYM - ",
Disease[i]))
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A. Supplementary material to the paper: “Some findings on zero-inflated
and hurdle Poisson models for disease mapping”

legend("bottomright", c("< 0.67", "0.67 - 0.80",
"0.80 - 0.91", "0.91 - 1.10", "1.10 - 1.25",
"1.25 - 1.50", "> 1.50"), title = "SMR",
border = NULL, fill = palette, bty = "n")

# SMR estimates, naive ZIP model
plot(VR.cart, col = palette[findInterval

(ResulZIP$mean$SMR,
cuts_SMR)], main = paste0("ZIP - ",
Disease[i]))

legend("bottomright", c("< 0.67", "0.67 - 0.80",
"0.80 - 0.91", "0.91 - 1.10", "1.10 - 1.25",
"1.25 - 1.50", "> 1.50"), title = "SMR",
border = NULL, fill = palette, bty = "n")

# SMR estimates, naive Hurdle model
plot(VR.cart, col = palette[findInterval

(ResulHurdle$mean$SMR,
cuts_SMR)], main = paste0("Hurdle - ",
Disease[i]))

legend("bottomright", c("< 0.67", "0.67 - 0.80",
"0.80 - 0.91", "0.91 - 1.10", "1.10 - 1.25",
"1.25 - 1.50", "> 1.50"), title = "SMR",
border = NULL, fill = palette, bty = "n")

# SMR estimates, FE model
plot(VR.cart, col = palette[findInterval

(ResulHFE$mean$SMR,
cuts_SMR)], main = paste0("HFE - ",
Disease[i]))

legend("bottomright", c("< 0.67", "0.67 - 0.80",
"0.80 - 0.91", "0.91 - 1.10", "1.10 - 1.25",
"1.25 - 1.50", "> 1.50"), title = "SMR",
border = NULL, fill = palette, bty = "n")

# SMR estimates, NFE model
plot(VR.cart, col = palette[findInterval
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A.3. Markdown document with all the analysis carried out

(ResulHNFE$mean$SMR,
cuts_SMR)], main = paste0("HNFE - ",
Disease[i]))

legend("bottomright", c("< 0.67", "0.67 - 0.80",
"0.80 - 0.91", "0.91 - 1.10", "1.10 - 1.25",
"1.25 - 1.50", "> 1.50"), title = "SMR",
border = NULL, fill = palette, bty = "n")

# SMR estimates, HGeo model
plot(VR.cart, col = palette[findInterval

(ResulHGeo$mean$SMR,
cuts_SMR)], main = paste0("HGeo - ",
Disease[i]))

legend("bottomright", c("< 0.67", "0.67 - 0.80",
"0.80 - 0.91", "0.91 - 1.10", "1.10 - 1.25",
"1.25 - 1.50", "> 1.50"), title = "SMR",
border = NULL, fill = palette, bty = "n")

# SMR estimates, ZGeo model
plot(VR.cart, col = palette[findInterval

(ResulZGeo$mean$SMR,
cuts_SMR)], main = paste0("ZGeo - ",
Disease[i]))

legend("bottomright", c("< 0.67", "0.67 - 0.80",
"0.80 - 0.91", "0.91 - 1.10", "1.10 - 1.25",
"1.25 - 1.50", "> 1.50"), title = "SMR",
border = NULL, fill = palette, bty = "n")

}
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B. Supplementary material to
the paper: “On the
convenience of
heteroscedasticity in highly
multivariate disease
mapping”
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B. Supplementary material to the paper: “On the convenience of
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B.1. Additional results
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Figure B.1.: Graphical representation of the estimated risk in
Alicante using traditional univariate modeling (BYM), the fixed
effects M -modeling and the random effects M -modeling proposed in
Botella-Rocamora et al. (2015).
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Figure B.2.: Graphical representation of the estimated risk in Alicante
using the new variance-adaptive modeling proposals (RVA and CVA
M -modeling).
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Figure B.3.: Graphical representation of the estimated risk in
Valencia using traditional univariate modeling (BYM), the fixed
effects M -modeling and the random effects M -modeling proposed in
Botella-Rocamora et al. (2015).
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Figure B.4.: Graphical representation of the estimated risk in Valencia
using the new variance-adaptive modeling proposals (RVA and CVA
M -modeling).
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B. Supplementary material to the paper: “On the convenience of
heteroscedasticity in highly multivariate disease mapping”

B.2. Code used to obtain results

B.2.1. Execution of models in WinBUGS using the
library R2WinBUGS

Load libraries and data

# Working directory
DirMain = " " # Set an appropriate directory
setwd(DirMain)
# Load library and data
library(R2WinBUGS)
library(knitr)
# For running the models in parallel calls to WinBUGS
library(pbugs)
load("datos.Rdata")

BYM model

# BYM model with independent diseases,
# WinBUGS code
BYM.indep <- function() {

for (j in 1:Ndiseases) {
for (i in 1:Nareas) {

O[i, j] ~ dpois(lambda[i, j])
# Modeling of the mean for each
# municipality
log(lambda[i, j]) <- log(E[i,

j]) + mu[j] + sdhet[j] *
het[i, j] + sdsp[j] * sp[j,
i]

# SMR for each municipality
SMR[i] <- exp(mu[j] + sdhet[j] *
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B.2. Code used to obtain results

het[i, j] + sdsp[j] * sp[j,
i])

# Prior distribution for the non-spatial
# effect
het[i, j] ~ dnorm(0, 1)

}
# Prior distribution for the spatial
# effect
sp[j, 1:Nareas] ~ car.normal(adj[], weights[],

num[], 1)
# Prior distribution for the mean risk
# for all municipalities
mu[j] ~ dflat()
# Prior distribution for the standard
# deviations of the random effects
sdhet[j] ~ dunif(0, 5)
sdsp[j] ~ dunif(0, 5)

}
}

# Run BYM model for each city, sex and
# disease

# City = 1: Alicante, 2: Castellón, 3:
# Valencia
for (i in 1:3) {

# Specific mortality causes
j <- 2
# Sex = 1: Mens, 2: Women
for (k in 1:2) {

# Mortality cause
l <- c(1:20)
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# Matrix with observed and expected cases
O <- t(apply(Obs[[i]][[j]][k, , ,

], c(1, 2), sum)[l, ])
E <- t(apply(Esp[[i]][[j]][k, , ,

], c(1, 2), sum)[l, ])
Nareas <- dim(O)[1]
Ndiseases <- dim(O)[2]

# Data
data <- list(Nareas = Nareas, Ndiseases =

Ndiseases, O = O, E = E, adj =
unlist(nb[[i]]),
weights = rep(1, length(unlist(nb[[i]]))),
num = sapply(nb[[i]], length))

# Initial values
initials <- function() {

list(mu = rnorm(Ndiseases, 0,
0.1), sdhet = runif(Ndiseases,
0, 1), sdsp = runif(Ndiseases,
0, 1), het = matrix(rnorm(Nareas *
Ndiseases), nrow = Nareas,
ncol = Ndiseases), sp = matrix(rnorm(Nareas *
Ndiseases), nrow = Ndiseases,
ncol = Nareas))

}
# Variables to retrive
param <- c("SMR", "lambda", "het",

"sp", "mu", "sdsp", "sdhet")
# Calls to WinBUGS
t.result <- system.time(result <- pbugs(data =

data, model.file = BYM.indep, inits =
initials, parameters.to.save = param,

n.chains = 3, n.iter = 30000,
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B.2. Code used to obtain results

n.burnin = 5000, DIC = F))
# Save results
save(result, t.result, file = paste(getwd(),

"/resul/resul.BYMIndep.", i,
".", j, ".", k, ".Rdata", sep = ""))

}
}

Fixed effects M -model (Section 5.2 in paper)

# Fixed effects M-model, WinBUGS code

Mmodel.FE <- function() {
for (i in 1:Nareas) {

for (j in 1:Ndiseases) {
O[i, j] ~ dpois(lambda[i, j])
# Modeling of the mean for each
# municipality and disease
log(lambda[i, j]) <- log(E[i,

j]) + mu[j] + Theta[i, j]
# SMR for each municipality and disease
SMR[i, j] <- exp(mu[j] + Theta[i,

j])
}

}

# Definition of the random effects matrix
for (i in 1:Nareas) {

for (j in 1:Ndiseases) {
Theta[i, j] <- inprod2(tPhi[,

i], M[, j])
}

}
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# Matrix of spatially correlated random
# effects if M is a square matrix define
# Nsp (Number of spatial underlying
# patterns) as Ndiseases
for (j in 1:Nsp) {

# Prior distribution for the spatial
# effect
Spatial[j, 1:Nareas] ~ car.normal(adj[],

weights[], num[], 1)
for (i in 1:Nareas) {

# Prior distribution for the non-spatial
# effect
Het[j, i] ~ dnorm(0, 1)
tPhi[j, i] <- Spatial[j, i]

}
}

for (j in (Nsp + 1):(2 * Nsp)) {
for (i in 1:Nareas) {

tPhi[j, i] <- Het[(j - Nsp),
i]

}
}

# M-matrix
for (i in 1:(2 * Nsp)) {

for (j in 1:Ndiseases) {
M[i, j] ~ dflat()

}
}

# Others prior distributions
for (j in 1:Ndiseases) {
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B.2. Code used to obtain results

# Prior distribution for the mean risk
# for all municipalities
mu[j] ~ dflat()

}
}

# Run fixed effects M-model considering
# 20 causes of mortality

# City = 1: Alicante, 2: Castellón, 3:
# Valencia
for (i in 1:3) {

# Specific mortality causes
j <- 2
# Sex = 1: Mens, 2: Women
for (k in 1:2) {

# Mortality causes
l <- c(1:20)

# Matrix with observed and expected cases
O <- t(apply(Obs[[i]][[j]][k, , ,

], c(1, 2), sum)[l, ])
E <- t(apply(Esp[[i]][[j]][k, , ,

], c(1, 2), sum)[l, ])
Nareas <- dim(0)[1]
Ndiseases <- dim(O)[2]
# Data
data <- list(Nareas = Nareas, Ndiseases =

Ndiseases, Nsp = Ndiseases, O = O, E = E,
adj = unlist(nb[[i]]), weights = rep(1,

length(unlist(nb[[i]]))),
num = sapply(nb[[i]], length))

# Initial values
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B. Supplementary material to the paper: “On the convenience of
heteroscedasticity in highly multivariate disease mapping”

initials <- function() {
list(mu = rnorm(Ndiseases, 0,

0.1), M = matrix(rnorm(2 *
Nsp * Ndiseases), nrow = 2 *
Nsp, ncol = Ndiseases), Het = matrix(rnorm

(Nareas * Nsp), nrow = Nsp, ncol =Nareas),
Spatial = matrix(rnorm(Nareas *

Nsp), nrow = Nsp, ncol = Nareas))
}
# Variables to retrieve
param <- c("SMR", "lambda", "M",

"Het", "Spatial", "mu", "Theta")
# Calls to WinBUGS
t.result <- system.time(result <- pbugs(data =

data, model.file = Mmodel.FE, inits =initials,
parameters.to.save = param, n.chains = 3,
n.iter = 30000, n.burnin = 5000,
DIC = F))

# Save results
save(result, t.result, file = paste(getwd(),

"/resul/resul.MmodelFE.", i,
".", j, ".", k, ".Rdata", sep = ""))

}
}

Random effects M -model or NVA M -model (Section 5.2 in
paper)

# Random effects M-model, WinBUGS code

Mmodel.RE <- function() {
for (i in 1:Nareas) {
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B.2. Code used to obtain results

for (j in 1:Ndiseases) {
O[i, j] ~ dpois(lambda[i, j])
# Modeling of the mean for each
# municipality and disease
log(lambda[i, j]) <- log(E[i,

j]) + mu[j] + Theta[i, j]
# SMR for each municipality and disease
SMR[i, j] <- exp(mu[j] + Theta[i,

j])
}

}

# Definition of the random effects matrix
for (i in 1:Nareas) {

for (j in 1:Ndiseases) {
Theta[i, j] <- inprod2(tPhi[,

i], M[, j])
}

}

# Matrix of spatially correlated random
# effects: if M is a square matrix define
# Nsp (Number of spatial underlying
# patterns) as Ndiseases
for (j in 1:Nsp) {

# Prior distribution for the spatial
# effect
Spatial[j, 1:Nareas] ~ car.normal(adj[],

weights[], num[], 1)
for (i in 1:Nareas) {

# Prior distribution for the non-spatial
# effect
Het[j, i] ~ dnorm(0, 1)
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B. Supplementary material to the paper: “On the convenience of
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tPhi[j, i] <- Spatial[j, i]
}

}

for (j in (Nsp + 1):(2 * Nsp)) {
for (i in 1:Nareas) {

tPhi[j, i] <- Het[(j - Nsp),
i]

}
}

# M-matrix
for (j in 1:Ndiseases) {

for (i in 1:Nsp) {
M[i, j] ~ dnorm(0, prec.sp)

}

for (i in (Nsp + 1):(2 * Nsp)) {
M[i, j] ~ dnorm(0, prec.het)

}
}

# Others prior distributions

# Prior distribution for the mean risk
# for all municipalities
for (j in 1:Ndiseases) {

mu[j] ~ dflat()
}
# Prior distribution for the standard
# deviations of the random effects
prec.sp <- pow(sd.sp, -2)
sd.sp ~ dunif(0, 100)
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B.2. Code used to obtain results

prec.het <- pow(sd.het, -2)
sd.het ~ dunif(0, 100)

}

# Run random effects M-model considering
# 20 causes of mortality

# City = 1: Alicante, 2: Castellón, 3:
# Valencia
for (i in 1:3) {

# Specific mortality causes
j <- 2
# Sex = 1: Mens, 2: Women
for (k in 1:2) {

# Mortality causes
l <- c(1:20)

# Matrix with observed and expected cases
O <- t(apply(Obs[[i]][[j]][k, , ,

], c(1, 2), sum)[l, ])
E <- t(apply(Esp[[i]][[j]][k, , ,

], c(1, 2), sum)[l, ])

Nareas <- dim(0)[1]
Ndiseases <- dim(O)[2]

# Data
data <- list(Nareas = Nareas, Ndiseases =

Ndiseases, Nsp = Ndiseases, O = O, E = E,
adj = unlist(nb[[i]]), weights = rep(1,

length(unlist(nb[[i]]))),
num = sapply(nb[[i]], length))
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# Initial values
initials <- function() {

list(mu = rnorm(Ndiseases, 0,
0.1), sd.sp = runif(1, 0,
1), sd.het = runif(1, 0,
1), Het = matrix(rnorm(Nareas *
Nsp), nrow = Nsp, ncol = Nareas),
Spatial = matrix(rnorm(Nareas *
Nsp), nrow = Nsp, ncol = Nareas))

}

# Variables to retrieve
param <- c("sd.sp", "sd.het", "SMR",

"lambda", "M", "Het", "Spatial",
"mu")

# Calls to WinBUGS
t.result <- system.time(result <- pbugs(data =

data, model.file = Mmodel.RE, inits =initials,
parameters.to.save = param, n.chains = 3,
n.iter = 30000, n.burnin = 5000,
DIC = F))

# Save results
save(result, t.result, file = paste(getwd(),

"/resul/resul.MmodelRE.", i,
".", j, ".", k, ".Rdata", sep = ""))

}
}
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B.2. Code used to obtain results

RVA M -model (Section 5.4 in paper)

# RVA M-model, WinBUGS code

Mmodel.RVA <- function() {
for (i in 1:Nareas) {

for (j in 1:Ndiseases) {
O[i, j] ~ dpois(lambda[i, j])
# Modeling of the mean for each
# municipality and disease
log(lambda[i, j]) <- log(E[i,

j]) + mu[j] + Theta[i, j]
# SMR for each municipality and disease
SMR[i, j] <- exp(mu[j] + Theta[i,

j])
}

}

# Definition of the random effects matrix
for (i in 1:Nareas) {

for (j in 1:Ndiseases) {
Theta[i, j] <- inprod2(tPhi[,

i], M[, j])
}

}

# Matrix of spatially correlated random
# effects if M is a square matrix define
# Nsp (Number of spatial underlying
# patterns) as Ndiseases
for (j in 1:Nsp) {

# Prior distribution for the spatial
# effect
Spatial[j, 1:Nareas] ~ car.normal(adj[],
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B. Supplementary material to the paper: “On the convenience of
heteroscedasticity in highly multivariate disease mapping”

weights[], num[], 1)
for (i in 1:Nareas) {

# Prior distribution for the non-spatial
# effect
Het[j, i] ~ dnorm(0, 1)
tPhi[j, i] <- Spatial[j, i]

}
}

for (j in (Nsp + 1):(2 * Nsp)) {
for (i in 1:Nareas) {

tPhi[j, i] <- Het[(j - Nsp),
i]

}
}

# M-matrix
for (j in 1:Ndiseases) {

for (i in 1:(2 * Nsp)) {
M.aux[i, j] ~ dnorm(0, 1)
M[i, j] <- sd[i] * M.aux[i, j]

}
}

# Others prior distributions

# Prior distribution for the mean risk
# for all municipalities
for (j in 1:Ndiseases) {

mu[j] ~ dflat()
}
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B.2. Code used to obtain results

# Prior distribution for the standard
# deviations of the random effects
for (i in 1:(2 * Nsp)) {

sd[i] ~ dunif(0, 5)
}

}

# Run RVA M-model considering 20 causes
# of mortality

# City = 1: Alicante, 2: Castellón, 3:
# Valencia
for (i in 1:3) {

# Specific mortality causes
j <- 2
# Sex = 1: Mens, 2: Women
for (k in 1:2) {

# Mortality causes
l <- c(1:20)

# Matrix with observed and expected cases
O <- t(apply(Obs[[i]][[j]][k, , ,

], c(1, 2), sum)[l, ])
E <- t(apply(Esp[[i]][[j]][k, , ,

], c(1, 2), sum)[l, ])

Nareas <- dim(0)[1]
Ndiseases <- dim(O)[2]

# Data
data <- list(Nareas = Nareas, Ndiseases =

Ndiseases, Nsp = Ndiseases, O = O, E = E,
adj = unlist(nb[[i]]), weights = rep(1,
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B. Supplementary material to the paper: “On the convenience of
heteroscedasticity in highly multivariate disease mapping”

length(unlist(nb[[i]]))),
num = sapply(nb[[i]], length))

# Initial values
initials <- function() {

list(mu = rnorm(Ndiseases, 0,
0.1), sd = runif(2 * Nsp,
0.1, 1), Het = matrix(rnorm(Nareas *
Nsp), nrow = Nsp, ncol = Nareas),
Spatial = matrix(rnorm(Nareas *
Nsp), nrow = Nsp, ncol = Nareas))

}

# Variables to retrieve
param <- c("sd", "SMR", "lambda",

"M", "mu")

# Calls to WinBUGS
t.result <- system.time(result <- pbugs(data =

data, model.file = Mmodel.RVA, inits=initials,
parameters.to.save = param, n.chains = 3,
n.iter = 30000, n.burnin = 5000,
DIC = F))

# Save results
save(result, t.result, file = paste(getwd(),

"/resul/resul.MmodelRVA.", i,
".", j, ".", k, ".Rdata", sep = ""))

}
}
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B.2. Code used to obtain results

CVA M -model (Section 5.4 in paper)

# CVA M-model, WinBUGS code

Mmodel.CVA <- function() {
for (i in 1:Nareas) {

for (j in 1:Ndiseases) {
O[i, j] ~ dpois(lambda[i, j])
# Modeling of the mean for each
# municipality and disease
log(lambda[i, j]) <- log(E[i,

j]) + mu[j] + Theta[i, j]
# SMR for each municipality and disease
SMR[i, j] <- exp(mu[j] + Theta[i,

j])
}

}

# Definition of the random effects matrix
for (i in 1:Nareas) {

for (j in 1:Ndiseases) {
Theta[i, j] <- inprod2(tPhi[,

i], M[, j])
}

}

# Matrix of spatially correlated random
# effects if M is a square matrix define
# Nsp (Number of spatial underlying
# patterns) as Ndiseases
for (j in 1:Nsp) {

# Prior distribution for the spatial
# effect
Spatial[j, 1:Nareas] ~ car.normal(adj[],
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B. Supplementary material to the paper: “On the convenience of
heteroscedasticity in highly multivariate disease mapping”

weights[], num[], 1)
for (i in 1:Nareas) {

# Prior distribution for the non-spatial
# effect
Het[j, i] ~ dnorm(0, 1)
tPhi[j, i] <- Spatial[j, i]

}
}

for (j in (Nsp + 1):(2 * Nsp)) {
for (i in 1:Nareas) {

tPhi[j, i] <- Het[(j - Nsp),
i]

}
}

# M-matrix
for (j in 1:Ndiseases) {

for (i in 1:Nsp) {
M.aux[i, j] ~ dnorm(0, 1)
M[i, j] <- sdstruct.sp[j] * M.aux[i,

j]
}
for (i in (Nsp + 1):(2 * Nsp)) {

M.aux[i, j] ~ dnorm(0, 1)
M[i, j] <- sdstruct.het[j] *

M.aux[i, j]
}

}

# Others prior distributions Prior
# distribution for the mean risk for all
# municipalities
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B.2. Code used to obtain results

for (j in 1:Ndiseases) {
mu[j] ~ dflat()

}

# Prior distribution for the standard
# deviations of the random effects
for (j in 1:Ndiseases) {

prec.sp[j] <- pow(sdstruct.sp[j],
-2)

sdstruct.sp[j] ~ dunif(0, 5)

prec.het[j] <- pow(sdstruct.het[j],
-2)

sdstruct.het[j] ~ dunif(0, 5)
}

}

# Run CVA M-model considering 20 causes
# of mortality

# City = 1: Alicante, 2: Castellón, 3:
# Valencia
for (i in 1:3) {

# Specific mortality causes
j <- 2
# Sex = 1: Mens, 2: Women
for (k in 1:2) {

# Mortality causes
l <- c(1:20)

# Matrix with observed and expected cases
O <- t(apply(Obs[[i]][[j]][k, , ,

], c(1, 2), sum)[l, ])
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E <- t(apply(Esp[[i]][[j]][k, , ,
], c(1, 2), sum)[l, ])

Nareas <- dim(0)[1]
Ndiseases <- dim(O)[2]

# Data
data <- list(Nareas = Nareas, Ndiseases =

Ndiseases, Nsp = Ndiseases, O = O, E = E,
adj = unlist(nb[[i]]), weights = rep(1,

length(unlist(nb[[i]]))),
num = sapply(nb[[i]], length))

# Initial values
initials <- function() {

list(mu = rnorm(Ndiseases, 0,
0.1), sdstruct.sp = runif(Ndiseases,
0, 1), sdstruct.het = runif(Ndiseases,
0, 1), Het = matrix(rnorm(Nareas *

Nsp), nrow = Nsp, ncol = Nareas),
Spatial = matrix(rnorm(Nareas *

Nsp), nrow = Nsp, ncol = Nareas))
}

# Variables to retrieve
param <- c("sdstruct.sp", "sdstruct.het",

"SMR", "lambda", "M", "mu")

# Calls to WinBUGS
t.result <- system.time(result <- pbugs(data =

data, model.file = Mmodel.CVA, inits=initials,
parameters.to.save = param, n.chains = 3,
n.iter = 30000, n.burnin = 5000,
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B.2. Code used to obtain results

DIC = F))

# Save results
save(result, t.result, file = paste(getwd(),

"/resul/resul.MmodelCVA.", i,
".", j, ".", k, ".Rdata", sep = ""))

}
}

B.2.2. Choropleth maps for all models

# Load libraries
library(RColorBrewer)

cuts_SMR <- c(0, 0.67, 0.8, 0.91, 1.1, 1.25,
1.5)

palette <- brewer.pal(7, "BrBG")[7:1]

# Name of mortality causes
Causes <- dimnames(Obs[[i]][[j]])[[2]]

# City = 1: Alicante, 2: Castellón, 3:
# Valencia
for (i in 1:3) {

# Specific mortality causes
j <- 2
# Sex = 1: Mens, 2: Women
k <- 1
# Mortality causes
for (l in 1:20) {

# Load WinBUGS results, BYM model
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B. Supplementary material to the paper: “On the convenience of
heteroscedasticity in highly multivariate disease mapping”

load(paste(getwd(), "/resul.BYMIndep.",
i, ".", j, ".", k, ".", l, ".Rdata",
sep = ""))

# SMR estimates, BYM model
aux <- palette[findInterval(result$mean$SMR,

cuts_SMR)]
plot(Carto[[i]], col = palette[aux],

main = paste0("BYM - ", Causas[l]),
lwd = 0.2)

legend("bottomright", c("< 0.67",
"0.67 - 0.80", "0.80 - 0.91",
"0.91 - 1.10", "1.10 - 1.25",
"1.25 - 1.50", "> 1.50"), title = "SMR",
border = NULL, fill = palette,
bty = "n")

# Load WinBUGS results, fixed effects
# M-model
load(paste(getwd(), "/resul.MmodelFE.",

i, ".", j, ".", k, ".Rdata",
sep = ""))

# SMR estimates, fixed effects M-model
aux <- palette[findInterval(result$mean$SMR[,

l], cuts_SMR)]
plot(Carto[[i]], col = palette[aux],

main = paste0("MmodelFE - ",
Causas[l]), lwd = 0.2)

legend("bottomright", c("< 0.67",
"0.67 - 0.80", "0.80 - 0.91",
"0.91 - 1.10", "1.10 - 1.25",
"1.25 - 1.50", "> 1.50"), title = "SMR",
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B.2. Code used to obtain results

border = NULL, fill = palette,
bty = "n")

# Load WinBUGS results, random effects
# M-model
load(paste(getwd(), "/resul.MmodelRE.",

i, ".", j, ".", k, ".Rdata",
sep = ""))

# SMR estimates, random effects M-model
aux <- palette[findInterval(result$mean$SMR[,

l], cuts_SMR)]
plot(Carto[[i]], col = palette[aux],

main = paste0("MmodelRE - ",
Causas[l]), lwd = 0.2)

legend("bottomright", c("< 0.67",
"0.67 - 0.80", "0.80 - 0.91",
"0.91 - 1.10", "1.10 - 1.25",
"1.25 - 1.50", "> 1.50"), title = "SMR",
border = NULL, fill = palette,
bty = "n")

# Load WinBUGS results, RVA m-model
load(paste(getwd(), "/resul.MmodelRVA.",

i, ".", j, ".", k, ".Rdata",
sep = ""))

# SMR estimates, RVA M-model
aux <- palette[findInterval(result$mean$SMR[,

l], cuts_SMR)]
plot(Carto[[i]], col = palette[aux],

main = paste0("MmodelRVA - ",
Causas[l]), lwd = 0.2)
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B. Supplementary material to the paper: “On the convenience of
heteroscedasticity in highly multivariate disease mapping”

legend("bottomright", c("< 0.67",
"0.67 - 0.80", "0.80 - 0.91",
"0.91 - 1.10", "1.10 - 1.25",
"1.25 - 1.50", "> 1.50"), title = "SMR",
border = NULL, fill = palette,
bty = "n")

# Load WinBUGS results, CVA m-model
load(paste(getwd(), "/resul.MmodelCVA.",

i, ".", j, ".", k, ".Rdata",
sep = ""))

# SMR estimates, CVA M-model
aux <- palette[findInterval(result$mean$SMR[,

l], cuts_SMR)]
plot(Carto[[i]], col = palette[aux],

main = paste0("MmodelCVA - ",
Causas[l]), lwd = 0.2)

legend("bottomright", c("< 0.67",
"0.67 - 0.80", "0.80 - 0.91",
"0.91 - 1.10", "1.10 - 1.25",
"1.25 - 1.50", "> 1.50"), title = "SMR",
border = NULL, fill = palette,
bty = "n")

}
}

B.2.3. DIC for each model (Table 5.2 in paper)

# Function for DICs calculation
CalculaDIC <- function(Simu, O, save = FALSE) {
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B.2. Code used to obtain results

mu <-
Simu$sims.matrix[, which(substr(dimnames
(Simu$sims.matrix)[[2]], 1, 2) == "la")]

D <- apply(mu, 1, function(x) {
-2 * sum(dpois(as.vector(t(O)), x,

log = T))
})
Dmedia <- mean(D)
mumedia <- apply(mu, 2, mean)
DenMedia <- -2 * sum(dpois(as.vector(t(O)),

mumedia, log = T))
if (save == TRUE) {

return(c(Dmedia, Dmedia - DenMedia,
2 * Dmedia - DenMedia))

}
cat("D=", Dmedia, "pD=", Dmedia - DenMedia,

"DIC=", 2 * Dmedia - DenMedia, "\n")
}

DIC.BYMIndep <- list()
DIC.MmodelFE <- list()
DIC.MmodelRE <- list()
DIC.MmodelRVA <- list()
DIC.MmodelCVA <- list()

# City = 1: Alicante, 2: Castellón, 3:
# Valencia
for (i in 1:3) {

# Specific mortality causes
j <- 2
# Sex = 1: Mens, 2: Women
k <- 1
# Mortality causes
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B. Supplementary material to the paper: “On the convenience of
heteroscedasticity in highly multivariate disease mapping”

l <- c(1:20)

# Matrix with observed cases
O <- t(apply(Obs[[i]][[j]][k, , , ],

c(1, 2), sum)[l, ])

# DIC M-model with independent diseases
load(paste(getwd(), "/resul.BYMIndep.",

i, ".", j, ".", k, ".Rdata", sep = ""))
DIC.BYMIndep[[i]] <- CalculaDIC(Simu = result,

O = O, save = TRUE)[3]
# DIC fixed effects M-model
load(paste(getwd(), "/resul.MmodelFE.",

i, ".", j, ".", k, ".Rdata", sep = ""))
DIC.MmodelFE[[i]] <- CalculaDIC(Simu = result,

O = O, save = TRUE)[3]
# DIC random effects M-model
load(paste(getwd(), "/resul.MmodelRE.",

i, ".", j, ".", k, ".Rdata", sep = ""))
DIC.MmodelRE[[i]] <- CalculaDIC(Simu = result,

O = O, save = TRUE)[3]
# DIC RVA M-model
load(paste(getwd(), "/resul.MmodelRVA.",

i, ".", j, ".", k, ".Rdata", sep = ""))
DIC.MmodelRVA[[i]] <- CalculaDIC(Simu = result,

O = O, save = TRUE)[3]
# DIC CVA M-model
load(paste(getwd(), "/resul.MmodelCVA.",

i, ".", j, ".", k, ".Rdata", sep = ""))
DIC.MmodelCVA[[i]] <- CalculaDIC(Simu = result,

O = O, save = TRUE)[3]

}
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B.2. Code used to obtain results

Table <- matrix(c(unlist(DIC.BYMIndep),
unlist(DIC.MmodelFE), unlist(DIC.MmodelRE),
unlist(DIC.MmodelRVA), unlist(DIC.MmodelCVA)),
ncol = 3, byrow = TRUE)

rownames(Table) <- c("BYM with independent diseases",
"Fixed effects $M$-model", "Random effects $M$-model",
"RVA $M$-model", "CVA $M$-model")

colnames(Table) <- c("Alicante", "Castellón",
"Valencia")

print(kable(Table, caption = "DICs for the adjusted models
in each study city"))

B.2.4. Used code in the simulation study
Simulation of data for each setting and city

Load libraries and data

# Working directory
DirMain = " " # Set an appropriate directory
setwd(DirMain)
# Load library and data
library(R2WinBUGS)
library(knitr)
# For running the models in parallel calls to WinBUGS
library(pbugs)
load("datos.Rdata")

# Function to generate values of a CAR
# distribution
Genera_CAR <- function(desv, nvec, adj, rho = 1) {

n <- length(nvec)
D.W <- matrix(0, n, n)
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B. Supplementary material to the paper: “On the convenience of
heteroscedasticity in highly multivariate disease mapping”

diag(D.W) <- nvec
indice_veci <- cbind(rep(1:n, nvec),

adj)
D.W[indice_veci] <- -rho
UDUt <- eigen(D.W)
rango <- sum(UDUt$values > 1e-10)
Spat <- as.vector(UDUt$vectors[, 1:rango] %*%

matrix(rnorm(rango, 0, UDUt$values[1:rango]^{
-1/2

}), ncol = 1)) * desv
return(Spat)

}

# Seeds for each replica (1:5) and city
# (1: Alicante, 2:Castellón, 3:Valencia)
seeds <- list()
seeds[[1]] <- c(20, 54, 86, 92, 6)
seeds[[2]] <- c(89, 94, 102, 92, 6)
seeds[[3]] <- c(20, 54, 67, 92, 6)

Setting 1

for (City in 1:3) {
# 1: Alicante, 2:Castellón, 3:Valencia
for (Ndiseases in c(5, 10)) {

# Expected cases
E <- t(apply(Esp[[City]][[1]][1,

, , ], c(1, 2), sum))[, 1:Ndiseases]
for (Replica in 1:5) {

# Matrix with spatial random effects for
# each disease
Y <- matrix(NA, nrow = dim(Carto[[City]])[1],
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B.2. Code used to obtain results

ncol = Ndiseases)
# Matrix with simulated observed cases
# for each disease
Obs_simu <- matrix(NA, nrow = dim

(Carto[[City]])[1], ncol = Ndiseases)

# Common spatial pattern to all diseases
set.seed(79 * seeds[[City]][Replica])
patron_comun <- Genera_CAR(desv = 0,

nvec = sapply(nb[[City]],
length), adj = unlist(nb[[City]]),

rho = 0.9)

# Specific spatial pattern for each
# disease First disease
i <- 1
set.seed(i * seeds[[City]][Replica])
Y[, i] <- patron_comun + Genera_CAR(desv = 1,

nvec = sapply(nb[[City]],
length), adj = unlist(nb[[City]]),

rho = 0.9)

# Other diseases
for (i in 2:Ndiseases) {

set.seed(i * seeds[[City]][Replica])
Y[, i] <- patron_comun +

Genera_CAR(desv = 0.2,
nvec = sapply(nb[[City]],

length), adj = unlist(nb[[City]]),
rho = 0.9)

}

# Simulation of the observed cases for
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B. Supplementary material to the paper: “On the convenience of
heteroscedasticity in highly multivariate disease mapping”

# each disease
for (i in 1:Ndiseases) {

mu_Obs <- exp(Y[, i]) * E[,
i]

set.seed(i)
Obs_simu[, i] <- rpois(

dim(Carto[[City]])[1], mu_Obs)
}

save(Obs_simu, Y, E, file = paste0(City,
"/", Ndiseases, "enfermedades/Escenario 1/
datos_simulados", Replica, ".RData"))

}
}

}

# Next, adjust the BYM model with
# independent diseases, NVA M-model, RVA
# M-model and CVA M-Model to the
# simulated observed cases for each data
# set (following the code specified in
# the Annex).

Setting 2

for (City in 1:3) {
# 1: Alicante, 2:Castellón, 3:Valencia
for (Ndiseases in c(5, 10)) {

# Expected cases
E <- t(apply(Esp[[City]][[1]][1,

, , ], c(1, 2), sum))[, 1:Ndiseases]
for (Replica in 1:5) {

# Matrix with spatial random effects for
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B.2. Code used to obtain results

# each disease
Y <- matrix(NA, nrow = dim(Carto[[City]])[1],

ncol = Ndiseases)
# Matrix with simulated observed cases
# for each disease
Obs_simu <- matrix(NA, nrow = dim

(Carto[[City]])[1], ncol = Ndiseases)

# Common spatial pattern to all diseases
set.seed(79 * seeds[[City]][Replica])
patron_comun <- Genera_CAR(desv = 0.5,

nvec = sapply(nb[[City]],
length), adj = unlist(nb[[City]]),

rho = 0.9)

# Specific spatial pattern for each
# disease First disease
i <- 1
set.seed(i * seeds[[City]][Replica])
Y[, i] <- patron_comun + Genera_CAR(desv = 1,

nvec = sapply(nb[[City]],
length), adj = unlist(nb[[City]]),

rho = 0.9)

# Other diseases
for (i in 2:Ndiseases) {

set.seed(i * seeds[[City]][Replica])
Y[, i] <- patron_comun +

Genera_CAR(desv = 0.2,
nvec = sapply(nb[[City]],

length), adj = unlist(nb[[City]]),
rho = 0.9)

}
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B. Supplementary material to the paper: “On the convenience of
heteroscedasticity in highly multivariate disease mapping”

# Simulation of the observed cases for
# each disease
for (i in 1:Ndiseases) {

mu_Obs <- exp(Y[, i]) * E[,
i]

set.seed(i)
Obs_simu[, i] <- rpois(

dim(Carto[[City]])[1], mu_Obs)
}

save(Obs_simu, Y, E, file = paste0(City,
"/", Ndiseases, "enfermedades/Escenario 2/
datos_simulados", Replica, ".RData"))

}
}

}

# Next, adjust the BYM model with
# independent diseases, NVA M-model, RVA
# M-model and CVA M-Model to the
# simulated observed cases for each data
# set (following the code specified in
# the Annex).

Setting 3

for (City in 1:3) {
# 1: Alicante, 2:Castellón, 3:Valencia
for (Ndiseases in c(5, 10)) {

# Expected cases
E <- t(apply(Esp[[City]][[1]][1,

, , ], c(1, 2), sum))[, 1:Ndiseases]
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B.2. Code used to obtain results

for (Replica in 1:5) {
# Matrix with spatial random effects for
# each disease
Y <- matrix(NA, nrow = dim(Carto[[City]])[1],

ncol = Ndiseases)
# Matrix with simulated observed cases
# for each disease
Obs_simu <- matrix(NA, nrow = dim

(Carto[[City]])[1], ncol = Ndiseases)

# Common spatial pattern to all diseases
set.seed(79 * seeds[[City]][Replica])
patron_comun <- Genera_CAR(desv = 1,

nvec = sapply(nb[[City]],
length), adj = unlist(nb[[City]]),

rho = 0.9)

# Specific spatial pattern for each
# disease First disease
i <- 1
set.seed(i * seeds[[City]][Replica])
Y[, i] <- patron_comun + Genera_CAR(desv = 1,

nvec = sapply(nb[[City]],
length), adj = unlist(nb[[City]]),

rho = 0.9)

# Other diseases
for (i in 2:Ndiseases) {

set.seed(i * seeds[[City]][Replica])
Y[, i] <- patron_comun +

Genera_CAR(desv = 0.2,
nvec = sapply(nb[[City]],

length), adj = unlist(nb[[City]]),
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B. Supplementary material to the paper: “On the convenience of
heteroscedasticity in highly multivariate disease mapping”

rho = 0.9)
}

# Simulation of the observed cases for
# each disease
for (i in 1:Ndiseases) {

mu_Obs <- exp(Y[, i]) * E[,
i]

set.seed(i)
Obs_simu[, i] <- rpois(

dim(Carto[[City]])[1], mu_Obs)
}

save(Obs_simu, Y, E, file = paste0(City,
"/", Ndiseases, "enfermedades/Escenario 3/
datos_simulados", Replica, ".RData"))

}
}

}

# Next, adjust the BYM model with
# independent diseases, NVA M-model, RVA
# M-model and CVA M-Model to the
# simulated observed cases for each data
# set (following the code specified in
# the Annex).

Mean standard deviation of the risks for the first disease and for
the rest of diseases in each setting, city and model used in the
adjustment of the data
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B.2. Code used to obtain results

# Specify number of diseases (in our
# study 5 and 10 diseases)
Ndiseases <- 5

# Object in which we save the results
Resul <- list()
for (City in 1:3) {

Resul[[City]] <- list()
}
names(Resul) <- c("Alicante", "Castellon",

"Valencia")
n_geographicalunits <- c(215, 95, 553)
names(n_geographicalunits) <- c("Alicante",

"Castellon", "Valencia")

for (City in 1:3) {
for (Setting in 1:3) {

# Object in which we save the simulated
# spatial patterns for each disease in
# each replica
Sim_data <- array(NA, dim = c(5,

n_geographicalunits[City], Ndiseases))
# Object in which we save the estimated
# risks with the BYM model with
# independent diseases for each replica
BYM_indep <- array(NA, dim = c(5,

n_geographicalunits[City], Ndiseases))
# Object in which we save the estimated
# risks with the NVA M-model for each
# replica
NVA <- array(NA, dim = c(5

, n_geographicalunits[City], Ndiseases))
# Object in which we save the estimated
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B. Supplementary material to the paper: “On the convenience of
heteroscedasticity in highly multivariate disease mapping”

# risks with the CVA M-model for each
# replica
CVA <- array(NA, dim = c(5

, n_geographicalunits[City], Ndiseases))
# Object in which we save the estimated
# risks with the RVA M-model for each
# replica
RVA <- array(NA, dim = c(5

, n_geographicalunits[City], Ndiseases))

for (Replica in 1:5) {
# Simulated observed cases
load(paste0(City, "/", Ndiseases,

" enfermedades/Escenario ",
Setting, "/datos_simulados",
Replica, ".RData"))

Sim_data[Replica, , ] <- Y
# Estimated risks with the BYM model with
# independent diseases
load(paste0(City, "/", Ndiseases,

" enfermedades/Escenario ",
Setting, "/Resultados/Replica ",
Replica, "/resul.BYMIndep.Rdata"))

BYM_indep[Replica, , ] <- result$mean$SMR
# Estimated risks with NVA M-model
load(paste0(City, "/", Ndiseases,

" enfermedades/Escenario ",
Setting, "/Resultados/Replica ",
Replica, "/resul.MmodelRE.Rdata"))

NVA[Replica, , ] <- result$mean$SMR
# Estimated risks with CVA M-model
load(paste0(City, "/", Ndiseases,

" enfermedades/Escenario ",
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B.2. Code used to obtain results

Setting, "/Resultados/Replica ",
Replica, "/resul.MmodelCVA.Rdata"))

CVA[Replica, , ] <- result$mean$SMR
# Estimated risks with RVA M-model
load(paste0(City, "/", Ndiseases,

" enfermedades/Escenario ",
Setting, "/Resultados/Replica ",
Replica, "/resul.MmodelRVA.Rdata"))

RVA[Replica, , ] <- result$mean$SMR
}

# Original standard deviation of the
# simulated spatial patterns and standard
# deviation of the estimated risks with
# each model
Resul[[City]][[Setting]] <- list()
Resul[[City]][[Setting]]$sds <- cbind(apply(apply(

exp(Sim_data),
c(1, 3), sd), 2, mean), apply(apply(BYM_indep,
c(1, 3), sd), 2, mean), apply(apply(NVA,
c(1, 3), sd), 2, mean), apply(apply(CVA,
c(1, 3), sd), 2, mean), apply(apply(RVA,
c(1, 3), sd), 2, mean))

dimnames(Resul[[City]][[Setting]]$sds)[[2]] <-
c("Original", "BYM", "NVA", "CVA", "RVA")

}
}

# Mean standard deviation of the first
# spatial pattern and the rest of spatial
# patterns
for (City in 1:3) {

for (Setting in 1:3) {
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B. Supplementary material to the paper: “On the convenience of
heteroscedasticity in highly multivariate disease mapping”

print(paste0("# ", names(Resul)[City],
", Escenario ", Setting, ", ",
Ndiseases, " enfermedades"))

print(round(rbind(Resul[[City]][[Setting]]$sds[1,
], apply(Resul[[City]][[Setting]]$sds[2:
Ndiseases, ], 2, mean)), 2))

}
}
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C. Supplementary material to
the paper: “On the use of
adaptive spatial weight
matrices from disease
mapping multivariate
analyses”
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C. Supplementary material to the paper: “On the use of adaptive spatial
weight matrices from disease mapping multivariate analyses”

C.1. Additional results

C.1.1. Standardized Mortality Ratios for studied
mortality causes in Valencia estimated with the
BYM (upper row) and Leroux (lower row)
models and with spatial weights matrices of
either unitary weights (left) or using the values
obtained from the multivariate analysis of 14
diseases (all mortality causes of study except
the evaluated cause) (right)

Figures can be viewed online at: https://link.springer.com/article/10.
1007/s00477-020-01781-5?.
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C
.1.A

dditionalresults
C.1.2. Mean absolute difference for the risks of the adjacency and adaptive BYM

models as a function of the magnitude of the corresponding spatial
weights. The spatial weigths matrix for each disease is that estimated
with 14 diseases, excluding that particular disease

Low spatial weight (5%)Medium spatial weight (90%)High spatial weight (5%)

AIDS 0.218 0.087 0.099
Stomach cancer 0.007 0.006 0.008
Colorectal cancer 0.004 0.004 0.007
Lung cancer 0.013 0.006 0.008
Prostate cancer 0.006 0.004 0.003
Bladder cancer 0.007 0.008 0.011
Hematological cancer 0.005 0.005 0.007
Mellitus diabetes 0.009 0.008 0.017
Dementia 0.012 0.007 0.010
Ischemic heart disease 0.014 0.010 0.014
Ictus 0.011 0.006 0.016
COPD 0.037 0.011 0.014
Liver cirrhosis 0.031 0.016 0.021
Suicides 0.011 0.009 0.013
Traffic accidents 0.012 0.010 0.017
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Low spatial weight (5%)Medium spatial weight (90%)High spatial weight (5%)

Median 0.011 0.008 0.013

Mean 0.027 0.013 0.018
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C.1.3. Mean absolute difference for the risks of each spatial unit and the mean

risk for their neighbors, for the adjacency and adaptive BYM models, as a
function of the magnitude of the corresponding spatial weights. The
spatial weights matrix for each disease is that estimated with 14 diseases,
excluding that particular disease

Low spatial weight (5%) High spatial weight (5%)
Adjacency BYMAdaptive BYMAdjacency BYMAdaptive BYM

model model model model

AIDS 1.641 1.692 0.433 0.368
Stomach cancer 0.019 0.021 0.016 0.016
Colorectal cancer 0.015 0.016 0.014 0.016
Lung cancer 0.037 0.048 0.025 0.024
Prostate cancer 0.012 0.015 0.013 0.012
Bladder cancer 0.061 0.063 0.052 0.051
Hematological cancer 0.022 0.024 0.020 0.020
Mellitus diabetes 0.021 0.026 0.020 0.021
Dementia 0.042 0.049 0.034 0.034
Ischemic heart disease 0.111 0.112 0.056 0.049
Ictus 0.032 0.039 0.027 0.027
COPD 0.096 0.133 0.060 0.060
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Low spatial weight (5%) High spatial weight (5%)
Adjacency BYMAdaptive BYMAdjacency BYMAdaptive BYM

model model model model

Liver cirrhosis 0.110 0.134 0.084 0.079
Suicides 0.043 0.044 0.039 0.038
Traffic accidents 0.046 0.054 0.035 0.039
Median 0.042 0.048 0.034 0.034

Mean 0.154 0.165 0.062 0.057
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C.1. Additional results

C.1.4. Estimated spatial weights ci for each
municipality of Spain according to all 18
diseases in the data set. Choropleth map
corresponds to either BYM model for the
log-relative risks

Adaptive BYM model

(0 − 0.6]
(0.6 − 0.9]
(0.9 − 1]
(1 − 1.05]
(1.05 − 1.3]
(1.3 − 1.5]
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C. Supplementary material to the paper: “On the use of adaptive spatial
weight matrices from disease mapping multivariate analyses”

C.2. R code to obtain results

C.2.1. Execution of models in WinBUGS using the
R2WinBUGS and pbugs libraries

Load libraries and data

# Working directory
DirMain = " " # Set an appropriate directory
setwd(DirMain)
# Load libraries and data
library(R2WinBUGS) # For running WinBUGS from R
library(knitr)
# For running the models in parallel calls to WinBUGS
library(pbugs)
# For preparing information about spatial neighbors
# of each geographic unit to be used in WinBUGS
# (using the poly2nb and nb2WB functions)
library(spdep)
load("data.RData")

# Loaded data Obs: 4-dimensional array
# with the observed mortality cases for
# each year of the study, sex, geographic
# unit and disease Exp: 4-dimensional
# array with the expected mortality cases
# for each year of the study, sex,
# geographic unit and disease carto:
# SpatialPolygonsDataFrame of the study
# region
# Neighbours list of each geographic unit with class nb
carto.nb <- poly2nb(carto)
# List with the adjacency vector (carto.wb$adj) and the
# number of neighbors of each geographic unit
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C.2. R code to obtain results

# (carto.wb$num) to use in WinBUGS
carto.wb <- nb2WB(carto.nb)
# Vector to identify the positions of the neighbors
# of each geographic unit
index <- c(1, cumsum(carto.wb$num))

# Studied mortality causes
causes <- c(1:2, 5, 7, 9:12, 15:21)
sex <- 1 # Mens

Multivariate adaptive BYM model

# Multivariate adaptive BYM model,
# WinBUGS code
AdaptiveBYM_model <- function() {

# Likelihood
for (i in 1:Nareas) {

for (j in 1:Ndiseases) {
O[i, j] ~ dpois(lambda[i, j])
# Modeling of the mean for each census
# tract and disease
log(lambda[i, j]) <- log(E[i,

j]) + mu[j] + phi[i, j] +
sd.theta[j] * theta[i, j]

# SMR for each census tract and disease
SMR[i, j] <- exp(mu[j] + phi[i,

j] + sd.theta[j] * theta[i, j])
# Prior distribution for spatial effects
phi[i, j] ~ dnorm(mean.phi[i,

j], prec.phi[i, j])
# Prior distribution for non-spatial
# effects
theta[i, j] ~ dnorm(0, 1)
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C. Supplementary material to the paper: “On the use of adaptive spatial
weight matrices from disease mapping multivariate analyses”

}
}

for (i in 1:n.adj) {
sqrt.c.adj[i] <- sqrt(c[adj[i]])
for (j in 1:Ndiseases) {

phi.adj[i, j] <- phi[adj[i],
j]

}
}

# Precision of the conditioned
# distribution of spatial effects
for (j in 1:Ndiseases) {

prec.phi[1, j] <- pow(sd.phi[j],
-2) * sqrt(c[1]) * sum(sqrt.c.adj[index[1]:
index[2]])

for (i in 2:Nareas) {
prec.phi[i, j] <- pow(sd.phi[j],

-2) * sqrt(c[i]) * sum(sqrt.c.adj[(index[i]
+ 1):index[i + 1]])

}
}

# Mean of the conditioned distribution of
# spatial effects
for (j in 1:Ndiseases) {

mean.phi[1, j] <- inprod2(sqrt.c.adj[index[1]:
index[2]], phi.adj[index[1]:index[2], j])
/sum(sqrt.c.adj[index[1]:index[2]])

for (i in 2:Nareas) {
mean.phi[i, j] <- inprod2(sqrt.c.adj[(index[i]

+ 1):index[i + 1]], phi.adj[(index[i] +
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C.2. R code to obtain results

1):index[i + 1], j])/
sum(sqrt.c.adj[(index[i] +
1):index[i + 1]])

}

# Sum-to-zero restriction for spatial
# effects
ceros[j] <- 0
ceros[j] ~ dnorm(sum.phi[j], 10)
sum.phi[j] <- sum(phi[, j])

}

# Prior distributions for c
for (i in 1:Nareas) {

c[i] ~ dgamma(tau, tau) %_% I(0.001, )
}
tau <- pow(sd.c, -2)
sd.c ~ dunif(0, 5)

# Other prior distributions
for (j in 1:Ndiseases) {

sd.phi[j] ~ dunif(0, 5)
sd.theta[j] ~ dunif(0, 5)
mu[j] ~ dflat()

}
}

# Object where the results for each set
# of diseases will be saved
results.AdaptiveBYM <- list()

# Run multivariate adaptive BYM model for
# each set of diseases
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C. Supplementary material to the paper: “On the use of adaptive spatial
weight matrices from disease mapping multivariate analyses”

for (i in 1:15) {
# Selection of mortality causes
causes.id <- causes[-c(i)]

# Data
data <- list(O = apply(Obs[, sex, , causes.id],

c(2, 3), sum), E = apply(Exp[, sex,
, causes.id], c(2, 3), sum), Nareas = dim(Obs)[3],
Ndiseases = length(causes.id), n.adj =
length(carto.wb$adj),
adj = carto.wb$adj, index = index)

# Initial values
initials <- function() {

list(mu = rnorm(data$Ndiseases, 0,
1), sd.phi = runif(data$Ndiseases,
0, 1), sd.theta = runif(data$Ndiseases,
0, 1), phi = matrix(rnorm(data$Nareas *
data$Ndiseases), nrow = data$Nareas,
ncol = data$Ndiseases), theta =
matrix(rnorm(data$Nareas *
data$Ndiseases), nrow = data$Nareas,
ncol = data$Ndiseases), c = runif(data$Nareas,
0.9, 1.1), sd.c = runif(1, 0.5,
0.6))

}
# Variables to retrive
param <- c("mu", "lambda", "sd.phi",

"phi", "sd.theta", "theta", "SMR",
"c", "sd.c", "tau")

# Calls to WinBUGS
results.AdaptiveBYM[[i]] <- pbugs(data = data,

inits = initials, parameters.to.save = param,
model = AdaptiveBYM_model, n.iter = 2e+05,
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C.2. R code to obtain results

n.burnin = 50000, n.chains = 3, DIC = F)
}

# Save results
save(results.AdaptiveBYM, file =

"Results/results.AdaptiveBYM.RData")

Multivariate adaptive Leroux model

# Multivariate adaptive Leroux model,
# WinBUGS code
AdaptiveLeroux_model <- function() {

# Likelihood
for (i in 1:Nareas) {

for (j in 1:Ndiseases) {
O[i, j] ~ dpois(lambda[i, j])
# Modeling of the mean for each census
# tract and disease
log(lambda[i, j]) <- log(E[i,

j]) + mu[j] + eta[i, j]
# SMR for each census tract and disease
SMR[i, j] <- exp(mu[j] + eta[i,

j])
# Prior distribution for spatial effects
eta[i, j] ~ dnorm(mean.eta[i,

j], prec.eta[i, j])
}

}

for (i in 1:n.adj) {
sqrt.c.adj[i] <- sqrt(c[adj[i]])
for (j in 1:Ndiseases) {
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C. Supplementary material to the paper: “On the use of adaptive spatial
weight matrices from disease mapping multivariate analyses”

eta.adj[i, j] <- eta[adj[i],
j]

}
}

# Precision of the conditioned
# distribution of spatial effects
for (j in 1:Ndiseases) {

prec.eta[1, j] <- pow(sd.eta[j],
-2) * sqrt(c[1]) * (rho[j] *
sum(sqrt.c.adj[index[1]:index[2]]) +
1 - rho[j])

for (i in 2:Nareas) {
prec.eta[i, j] <- pow(sd.eta[j],

-2) * sqrt(c[i]) * (rho[j] *
sum(sqrt.c.adj[(index[i] +

1):index[i + 1]]) + 1 -
rho[j])

}
}

# Mean of the conditioned distribution of
# spatial effects
for (j in 1:Ndiseases) {

mean.eta[1, j] <- (rho[j] * inprod2
(sqrt.c.adj[index[1]:index[2]],
eta.adj[index[1]:index[2], j]))/(rho[j] *
sum(sqrt.c.adj[index[1]:index[2]]) +
1 - rho[j])

for (i in 2:Nareas) {
mean.eta[i, j] <- (rho[j] * inprod2

(sqrt.c.adj[(index[i] +
1):index[i + 1]], eta.adj[(index[i] +
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C.2. R code to obtain results

1):index[i + 1], j]))/(rho[j] *
sum(sqrt.c.adj[(index[i] +

1):index[i + 1]]) + 1 -
rho[j])

}

# Sum-to-zero restriction for spatial
# effects
ceros[j] <- 0
ceros[j] ~ dnorm(sum.eta[j], 10)
sum.eta[j] <- sum(eta[, j])

}

# Prior distributions for c
for (i in 1:Nareas) {

c[i] ~ dgamma(tau, tau) %_% I(0.001,
)

}
tau <- pow(sd.c, -2)
sd.c ~ dunif(0, 5)

# Other prior distributions
for (j in 1:Ndiseases) {

mu[j] ~ dflat()
sd.eta[j] ~ dunif(0, 5)
rho[j] ~ dunif(0, 1)

}
}

# Object where the results for each set
# of diseases will be saved
results.AdaptiveLeroux <- list()
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C. Supplementary material to the paper: “On the use of adaptive spatial
weight matrices from disease mapping multivariate analyses”

# Run multivariate adaptive Leroux model
# for each set of diseases
for (i in 1:15) {

# Selection of mortality causes
causes.id <- causes[-c(i)]

# Data
data <- list(O = apply(Obs[, sex, , causes.id],

c(2, 3), sum), E = apply(Exp[, sex,
, causes.id], c(2, 3), sum), Nareas = dim(Obs)[3],
Ndiseases = length(causes.id), n.adj =
length(carto.wb$adj),
adj = carto.wb$adj, index = index)

# Initial values
initials <- function() {

list(mu = rnorm(data$Ndiseases, 0,
1), sd.eta = runif(data$Ndiseases,
0, 1), rho = runif(data$Ndiseases,
0, 1), eta = matrix(rnorm(data$Nareas *
data$Ndiseases), nrow = data$Nareas,
ncol = data$Ndiseases), c = runif(data$Nareas,
0.9, 1.1), sd.c = runif(1, 0.5,
1.5))

}
# Variables to retrive
param <- c("mu", "lambda", "sd.eta",

"SMR", "c", "sd.c", "rho")
# Calls to WinBUGS
results.AdaptiveLeroux[[i]] <- pbugs(data = data,

inits = initials, parameters.to.save = param,
model = AdaptiveLeroux_model, n.iter = 2e+05,
n.burnin = 50000, n.chains = 3, DIC = F)

}
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C.2. R code to obtain results

# Save results
save(results.AdaptiveLeroux, file =

"Results/results.AdaptiveLeroux.RData")

Univariate BYM model with spatial weights matrices of either
unitary weights or using the values obtained from the
multivariate analysis of 14 diseases

# Univariate BYM model, WinBUGS code
BYM_model <- function() {

# Likelihood
for (i in 1:Nareas) {

O[i] ~ dpois(lambda[i])
# Modeling of the mean for each census
# tract
log(lambda[i]) <- log(E[i]) + mu +

sd.phi * phi[i] + sd.theta *
theta[i]

# SMR for each census tract
SMR[i] <- exp(mu + sd.phi * phi[i] +

sd.theta * theta[i])
# Prior distribution for non-spatial
# effects
theta[i] ~ dnorm(0, 1)

}

# Prior distribution for spatial effects
phi[1:Nareas] ~ car.normal(adj[], w[],

num[], 1)

# Other prior distributions
sd.phi ~ dunif(0, 5)
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C. Supplementary material to the paper: “On the use of adaptive spatial
weight matrices from disease mapping multivariate analyses”

sd.theta ~ dunif(0, 5)
mu ~ dflat()

}

# Object where the results for each
# disease will be saved
results.BYM <- list()

# Run BYM model for each disease
for (i in 1:15) {

# ATTENTION: Specify spatial weights

# For unitary weights
w <- rep(1, length(carto.wb$adj))

# For adaptive weights:
index_neighbors <- cbind(rep(1:dim(carto)[1],

carto.wb$num), carto.wb$adj)
w <- c(sqrt(results.AdaptiveBYM[[i]]$mean$

c[index_neighbors[, 1]]) *
sqrt(results.AdaptiveBYM[[i]]$mean$

c[index_neighbors[, 2]]))

# Data
data <- list(O = apply(Obs[, sex, , causes[i]],

2, sum), E = apply(Exp[, sex, , causes[i]],
2, sum), Nareas = dim(Obs)[3], adj = carto.wb$adj,
w = w, num = carto.wb$num)

# Initial values
initials <- function() {

list(mu = rnorm(1, 0, 1), sd.phi = runif(1,
0, 1), sd.theta = runif(1, 0,
1), phi = rnorm(data$Nareas),
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C.2. R code to obtain results

theta = rnorm(data$Nareas))
}
# Variables to retrive
param <- c("mu", "lambda", "sd.phi",

"phi", "sd.theta", "theta", "SMR")

results.BYM[[i]] <- pbugs(data = data,
inits = initials, parameters.to.save = param,
model = BYM_model, n.iter = 1e+05,
n.burnin = 30000, n.chains = 3, DIC = F)

}

# For the model with unitary weights
save(results.BYM, file =

"Results/results.BYM.unitaryw.RData")
# For the model with adaptive weights
save(results.BYM, file =

"Results/results.BYM.adaptw.RData")

Univariate Leroux model with spatial weights matrices of either
unitary weights or using the values obtained from the
multivariate analysis of 14 diseases

# Univariate Leroux model, WinBUGS code
Leroux_model <- function() {

# Likelihood
for (i in 1:Nareas) {

O[i] ~ dpois(lambda[i])
# Modeling of the mean for each census
# tract
log(lambda[i]) <- log(E[i]) + mu +

sd.eta * eta[i]
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C. Supplementary material to the paper: “On the use of adaptive spatial
weight matrices from disease mapping multivariate analyses”

# SMR for each census tract
SMR[i] <- exp(mu + sd.eta * eta[i])
# Prior distribution for spatial effects
eta[i] ~ dnorm(mean.eta[i], prec.eta[i])

}

for (i in 1:n.adj) {
sqrt.c.adj[i] <- sqrt(c[adj[i]])
eta.adj[i] <- eta[adj[i]]

}

# Precision of conditioned distribution
# eta[i]
prec.eta[1] <- (rho * sqrt(c[1]) * sum

(sqrt.c.adj[index[1]:index[2]]) + 1 - rho)
for (i in 2:Nareas) {

prec.eta[i] <- (rho * sqrt(c[i]) *
sum(sqrt.c.adj[(index[i] + 1):index[i +

1]]) + 1 - rho)
}

# Mean of conditioned distribution eta[i]
mean.eta[1] <- (rho * inprod2

(sqrt.c.adj[index[1]:index[2]],
eta.adj[index[1]:index[2]]))/(rho *
sum(sqrt.c.adj[index[1]:index[2]]) +
1 - rho)

for (i in 2:Nareas) {
mean.eta[i] <- (rho *

inprod2(sqrt.c.adj[(index[i] +
1):index[i + 1]], eta.adj[(index[i] +
1):index[i + 1]]))/(rho *
sum(sqrt.c.adj[(index[i] +
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C.2. R code to obtain results

1):index[i + 1]]) + 1 - rho)
}

# Sum-to-zero restriction for spatial
# effects
ceros <- 0
ceros ~ dnorm(sum.eta, 10)
sum.eta <- sum(eta[])

# Other prior distributions
mu ~ dflat()
sd.eta ~ dunif(0, 5)
rho ~ dunif(0, 1)

}

# Object where the results for each
# disease will be saved
results.Leroux <- list()

# Run Leroux model for each disease
for (i in 1:15) {

# ATTENTION: Specify spatial weights

# For unitary weights:
w <- rep(1, length(carto.wb$adj))

# For adaptive weights:
w <- c(results.AdaptiveLeroux[[i]]$mean$c)

# Data
data <- list(O = apply(Obs[, sex, , causes[i]],

2, sum), E = apply(Exp[, sex, , causes[i]],
2, sum), Nareas = dim(Obs)[3], adj = carto.wb$adj,
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C. Supplementary material to the paper: “On the use of adaptive spatial
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n.adj = length(carto.wb$adj), num = carto.wb$num,
index = index, c = w)

# Initial values
initials <- function() {

list(mu = rnorm(1, 0, 1), sd.eta = runif(1,
0, 1), eta = rnorm(data$Nareas))

}
# Variables to retrive
param <- c("mu", "lambda", "sd.eta",

"eta", "SMR", "rho")

results.Leroux[[i]] <- pbugs(data = data,
inits = initials, parameters.to.save = param,
model = Leroux_model, n.iter = 1e+05,
n.burnin = 30000, n.chains = 3, DIC = F)

}

# For the model with unitary weights
save(results.Leroux, file =

"Results/results.Leroux.unitaryw.RData")
# For the model with adaptive weights
save(results.Leroux, file =

"Results/results.Leroux.adaptw.RData")

C.2.2. Estimated spatial weights ci with multivariate
adaptive BYM and Leroux models for each
census tract of Valencia according to all 15
diseases in the data set (Figure 6.1 in paper)
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C.2. R code to obtain results

library(RColorBrewer)
library(sp)

# Results of the multivariate adaptive
# BYM and Leroux models
load("Results/results.AdaptiveBYM.15diseases.RData")
load("Results/results.AdaptiveLeroux.15diseases.RData")

palette <- brewer.pal(7, "YlOrRd")[7:1]
intervals_c <- c(0, 0.3, 0.7, 1, 1.2, 1.4,

1.6, 2.05)

par(oma = c(2, 0, 2, 0), mar = c(1, 0, 0,
0), mfrow = c(1, 2), xpd = NA)

# Estimated spatial weights with the
# multivariate adaptive BYM model
# according to all 15 diseases in the
# data set
plot(carto, col = palette[cut(results.AdaptiveBYM$mean$c,

intervals_c)], xlim = c(-0.4430475, -0.2739941),
ylim = c(39.45547, 39.55039), main =
"Adaptive BYM model")

# Estimated spatial weights with the
# multivariate adaptive Leroux model
# according to all 15 diseases in the
# data set
plot(carto, col =palette[cut(results.AdaptiveLeroux$mean$c,

intervals_c)], xlim = c(-0.4430475, -0.2739941),
ylim = c(39.45547, 39.55039), main =
"Adaptive Leroux model")

legend(-0.4870006, 39.49428, levels
(cut(results.AdaptiveBYM$mean$c,
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intervals_c)), title = " ", border = NULL,
fill = paleta, bty = "n")

C.2.3. Standardized Mortality Ratios for studied
mortality causes in Valencia estimated with the
BYM (upper row) and Leroux (lower row)
models and with spatial weights matrices of
either unitary weights (left) or using the values
obtained from the multivariate analysis of 14
diseases (all mortality causes of study except
the evaluated cause) (Section C.1,
supplementary material in paper)

# Results of the BYM model with unitary
# weights
load("Results/results.BYM.unitaryw.RData")
BYM <- results.BYM
# Results of the Leroux model with
# unitary weights
load("Results/results.Leroux.unitaryw.RData")
Leroux <- results.Leroux
# Results of the BYM model with adaptive
# weights
load("Results/results.BYM.adaptw.RData")
BYM_adapt <- results.BYM
# Results of the Leroux model with
# adaptive weights
load("Results/results.Leroux.adaptw.RData")
Leroux_adapt <- results.Leroux
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C.2. R code to obtain results

# Studied mortality causes
causes_name <- c("AIDS", "Stomach cancer",

"Colorectal cancer", "Lung cancer", "Prostate cancer",
"Bladder cancer", "Hematological cancer",
"Mellitus diabetes", "Dementia",
"Ischemic heart disease", "Ictus", "COPD",
"Liver cirrhosis", "Suicides",
"Traffic accidents")

Palette.RR <- brewer.pal(7, "BrBG")[7:1]

par(mfrow = c(2, 2), xpd = TRUE)

for (i in 1:15) {
par(mfrow = c(2, 2), xpd = TRUE)
aux <- cut(BYM[[i]]$mean$SMR, c(-100,

0.67, 0.8, 0.91, 1.1, 1.25, 1.5,
100))

plot(carto, col = Palette.RR[aux], main =
paste0("BYM model"),
xlim = c(-0.4430475, -0.2739941),
ylim = c(39.45547, 39.55039), cex.main = 1.5)

aux <- cut(BYM_adapt[[i]]$mean$SMR, c(-100,
0.67, 0.8, 0.91, 1.1, 1.25, 1.5,
100))

plot(carto, col = Palette.RR[aux], main =
paste0("Adaptive BYM model"),
xlim = c(-0.4430475, -0.2739941),
ylim = c(39.45547, 39.55039), cex.main = 1.5)

aux <- cut(Leroux[[i]]$mean$SMR, c(-100,
0.67, 0.8, 0.91, 1.1, 1.25, 1.5,
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100))
plot(carto, col = Palette.RR[aux], main =

paste0("Leroux model"),
xlim = c(-0.4430475, -0.2739941),
ylim = c(39.45547, 39.55039), cex.main = 1.5)

aux <- cut(Leroux_adapt[[i]]$mean$SMR,
c(-100, 0.67, 0.8, 0.91, 1.1, 1.25,

1.5, 100))
plot(carto, col = Palette.RR[aux], main =

paste0("Adaptive Leroux model"),
xlim = c(-0.4430475, -0.2739941),
ylim = c(39.45547, 39.55039), cex.main = 1.5)

par(xpd = NA)
legend(-0.5253527, 39.61729, c("< 0.67",

"0.67 - 0.80", "0.80 - 0.91", "0.91 - 1.10",
"1.10 - 1.25", "1.25 - 1.50", "> 1.50"),
title = "SMR", border = NULL, fill = Palette.RR,
bty = "n")

mtext(causes_name[i], side = 3, cex = 2,
line = 0, outer = TRUE)

}

C.2.4. DIC for the BYM and Leroux models with
adaptive and unweighed spatial weights
matrices (Table 6.1 in paper)

# Studied mortality causes
causes <- c(1:2, 5, 7, 9:12, 15:21)
# Observed mortality cases
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C.2. R code to obtain results

Observados <- apply(Obs[, , , causes], c(2,
3, 4), sum)

# Function for DICs calculation
CalculaDIC <- function(mu, O, save = FALSE) {

D <- apply(mu, 1, function(x) {
-2 * sum(dpois(O, x, log = T))

})
Dmedia <- mean(D)
mumedia <- apply(mu, 2, mean)
DenMedia <- -2 * sum(dpois(O, mumedia,

log = T))
if (save == TRUE) {

return(c(Dmedia, Dmedia - DenMedia,
2 * Dmedia - DenMedia))

}
cat("D = ", Dmedia, "pD = ", Dmedia -

DenMedia, "DIC = ", 2 * Dmedia -
DenMedia, " \n")

}

# Objects where the DIC of the models for
# each disease will be saved
DIC_BYM <- c()
DIC_BYMadapt <- c()
DIC_Leroux <- c()
DIC_Lerouxadapt <- c()

for (j in 1:15) {
# DIC BYM model with unitary weights
DIC_BYM[j] <- CalculaDIC(mu=BYM[[j]]$sims.list$lambda,

O = Observados[sex, , j], save = TRUE)[3]
# DIC BYM model with adaptive weights
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DIC_BYMadapt[j] <- CalculaDIC(mu = BYM_adapt[[j]]$
sims.list$lambda,
O = Observados[sex, , j], save = TRUE)[3]

# DIC Leroux model with unitary weights
DIC_Leroux[j] <- CalculaDIC(mu = Leroux[[j]]$

sims.list$lambda,
O = Observados[sex, , j], save = TRUE)[3]

# DIC Leroux model with adaptive weights
DIC_Lerouxadapt[j] <- CalculaDIC(mu=Leroux_adapt[[j]]

$sims.list$lambda,
O = Observados[sex, , j], save = TRUE)[3]

}

kable(data.frame(causes_name, DIC_BYM, DIC_BYMadapt,
DIC_Leroux, DIC_Lerouxadapt), digits = 2,
col.names = c("Causes", "BYM model Adjacency",

"BYM model Adaptive", "Leroux model Adjacency",
"Leroux model Adaptive"))

C.2.5. CPO for the BYM and Leroux models with
adaptive and unweighed spatial weights
matrices (Table 6.1 in paper)

# Objects where the likelihood of the
# models for each simulation, geographic
# unit and disease will be saved
likelihood_BYM <- array(NA, dim = c(1002,

531, 15))
likelihood_BYMadapt <- array(NA, dim = c(1002,

531, 15))
likelihood_Leroux <- array(NA, dim = c(1002,

531, 15))
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C.2. R code to obtain results

likelihood_Lerouxadapt <- array(NA, dim = c(1002,
531, 15))

# Objects where the CPO of the models for
# each geographic unit and disease will
# be saved
CPO_BYM <- array(NA, dim = c(531, 15))
CPO_BYMadapt <- array(NA, dim = c(531, 15))
CPO_Leroux <- array(NA, dim = c(531, 15))
CPO_Lerouxadapt <- array(NA, dim = c(531,

15))

# Likelihood of the models for each
# disease, geographic unit and MCMC
# simulation
for (i in 1:15) {

for (j in 1:531) {
for (k in 1:1002) {

likelihood_BYM[k, j, i] <- dpois
(Observados[sex,
j, i], BYM[[i]]$sims.list$lambda[k,
j])

likelihood_BYMadapt[k, j, i] <- dpois
(Observados[sex,
j, i], BYM_adapt[[i]]$sims.list$lambda[k,
j])

likelihood_Leroux[k, j, i] <- dpois
(Observados[sex,
j, i], Leroux[[i]]$sims.list$lambda[k,
j])

likelihood_Lerouxadapt[k, j,
i] <- dpois
(Observados[sex,
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j, i], Leroux_adapt[[i]]$sims.list$
lambda[k, j])

}
}

}

# CPO of the models for each disease and
# geographic unit
for (i in 1:15) {

for (j in 1:531) {
CPO_BYM[j, i] <- 1/(mean(1/likelihood_BYM[,

j, i]))
CPO_BYMadapt[j, i] <- 1/(mean(1/

likelihood_BYMadapt[, j, i]))
CPO_Leroux[j, i] <- 1/(mean(1/

likelihood_Leroux[, j, i]))
CPO_Lerouxadapt[j, i] <- 1/(mean(1/

likelihood_Lerouxadapt[, j, i]))
}

}

# Total CPO of the models
CPO_TOTAL_BYM <- apply(apply(CPO_BYM, 2,

function(x) {
log(x)

}), 2, sum)
CPO_TOTAL_Leroux <- apply(apply(CPO_Leroux,

2, function(x) {
log(x)

}), 2, sum)
CPO_TOTAL_BYMadapt <- apply(apply(CPO_BYMadapt,

2, function(x) {
log(x)
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C.2. R code to obtain results

}), 2, sum)
CPO_TOTAL_Lerouxadapt <- apply(apply(CPO_Lerouxadapt,

2, function(x) {
log(x)

}), 2, sum)

kable(data.frame(causes_name, CPO_TOTAL_BYM,
CPO_TOTAL_BYMadapt, CPO_TOTAL_Leroux,
CPO_TOTAL_Lerouxadapt), col.names = c("Causes",
"BYM model Adjacency", "BYM model Adaptive",
"Leroux model Adjacency", "Leroux model Adaptive"),
digits = 2)
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