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Resumen amplio en castellano 

El hierro (Fe) es un micronutriente y cofactor esencial para todos los 

organismos eucariotas. Las proteínas que incorporan hierro en su estructura lo 

hacen en forma de grupos hemo, centros Fe/S o centros de hierro y oxígeno, entre 

otros. Estos cofactores están implicados en numerosos procesos celulares como la 

respiración, la replicación y reparación del DNA, la biogénesis de ribosomas y la 

traducción de proteínas, la biosíntesis de ácidos nucleicos y lípidos, la fotosíntesis 

y el transporte de oxígeno. Pese a ser un metal abundante en la corteza terrestre, 

su forma oxidada Fe3+ es la más frecuente en un entorno oxidante y resulta 

insoluble a pH fisiológico. Esto hace de la deficiencia de hierro o anemia 

ferropénica el desorden nutricional más extendido del planeta. Alteraciones en la 

homeostasis del hierro también provocan hemocromatosis, o algunas 

enfermedades neurodegenerativas graves como la ataxia de Friedrich, y 

contribuyen al cáncer. Además, la deficiencia de hierro también provoca clorosis 

en los cultivos agrícolas, afectando tanto su producción como su valor nutricional. 

A pesar de ser un nutriente esencial, la presencia de hierro en exceso es tóxica para 

las células ya que participa en reacciones Fenton. Estas reacciones generan 

radicales hidroxilo (·OH) a partir del peróxido de hidrógeno (H2O2), los cuales 

pueden oxidar proteínas, DNA o lípidos si la maquinaria de detoxificación de 

especies reactivas del oxígeno (ROS) se ve sobrepasada. El estudio de los 

mecanismos que regulan la incorporación, almacenamiento y utilización del hierro 

en Saccharomyces cerevisiae resulta de gran importancia para entender la 

homeostasis del hierro en eucariotas. Éstos son el primer paso para el posterior 

desarrollo de tratamientos contra enfermedades relacionadas con el hierro o la 

mejora de cultivos causantes de graves pérdidas económicas. 

El mecanismo de percepción de la deficiencia de hierro en eucariotas se sitúa 

en la síntesis de los centros Fe/S, que tiene lugar en la mitocondria. En la levadura 

Saccharomyces cerevisiae, utilizado como organismo modelo eucariota, la mutación 

de alguno de los componentes de la maquinaria mitocondrial de síntesis o 

exportación de centros Fe/S provoca, independientemente del hierro citosólico, la 

activación del regulón de hierro. En S. cerevisiae el regulón de hierro es un 

conjunto de unos 30 genes activados por los factores transcripcionales Aft1 y Aft2. 
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Aft1/Aft2 se unen específicamente a secuencias FeRE (iron responsive elements), 

PyPuCACCCPu (Py: pirimidina; Pu: purina), situadas en los promotores de los 

genes del regulón. Dichos genes codifican proteínas implicadas en la adquisición de 

hierro extracelular, la movilización y reciclaje del hierro intracelular y la 

remodelación metabólica de procesos dependientes de hierro. Esta última función, 

llevada a cabo principalmente por las proteínas Cth1 y Cth2, optimiza la utilización 

del hierro en aquellos procesos que son más esenciales en condiciones de baja 

biodisponibilidad de hierro.  

Cth1 y Cth2 pertenecen a la familia de proteínas tipo tristetraprolina (TTP). 

Esta familia se caracteriza por tener un dominio conservado de dos dedos de zinc 

en tándem Cx8Cx5Cx3Hx18Cx8Cx5Cx3H (TZF, Tandem Zinc-Finger) que le permite 

unirse a secuencias ricas en adenina y uracilo (AREs, AU-Rich Elements) situadas en 

los extremos 3’ no traducibles (3’-UTR, 3’-UnTranslated Region) de algunos RNAs 

mensajeros (mRNAs). Tras la unión específica de mRNAs en el núcleo, Cth1/Cth2 

promueven la degradación de éstos en el citoplasma. Éstos mRNAs diana de Cth1 y 

Cth2 codifican proteínas que contienen hierro o están implicadas en procesos que 

consumen hierro. Cth1 y Cth2 provocan la degradación de mRNAs que codifican 

proteínas de: la cadena de transporte de electrones (ETC, Electron Transport 

Chain), el ciclo de los ácidos tricarboxílicos (TCA, Tricarboxylic acid cycle), la ruta 

de biosíntesis de hemo, el metabolismo de lípidos, la síntesis de muchos 

aminoácidos, el transportador de hierro a la vacuola o la proteína Rli1 implicada en 

la biogénesis de ribosomas. Además, Cth1 y Cth2 se autorregulan, ya que sus 

mRNAs contienen secuencias ARE. A pesar de que Cth1 y Cth2 tienen funciones 

parcialmente solapantes, el mutante cth2Δ, y no el mutante cth1Δ, presenta un 

defecto de crecimiento en deficiencia de hierro, que es exacerbado en el doble 

mutante cth1Δcth2Δ. Además, mientras que CTH1 se expresa de manera transitoria 

durante el inicio del crecimiento en deficiencia de hierro, CTH2 se expresa en 

deficiencias más severas alcanzando niveles de expresión más elevados y 

constantes. Por ello, muchos procesos están principalmente regulados por Cth2, 

mientras que Cth1 tiene un papel secundario en la remodelación metabólica de 

procesos dependientes de hierro.  
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La degradación citoplasmática de mRNAs promovida por Cth2 se produce en 

los cuerpos de procesamiento (P-bodies) en sentido 5’-3’. Además, requiere de la 

RNA helicasa Dhh1, que activa la eliminación de la caperuza (decapping) a través 

de Dcp1 y Dcp2. También se requiere de la exonucleasa citoplasmática Xrn1. Dhh1 

también está implicada en reclutar la maquinaria de deadenilación para el 

acortamiento de la cola 3’ poli(A) y en la propia formación de los P-bodies. En 

mamíferos, las proteínas de la familia TTP además de promover la degradación de 

sus mRNAs diana, también reprimen la traducción de los mismos, incluido el 

propio mRNA de TTP. El homólogo de Dhh1 en mamíferos, RCK/p54, está 

implicado en la represión de la traducción de las dianas de TTP. 

Uno de los procesos que requieren hierro es la traducción global de 

proteínas. Los genes implicados en la biosíntesis de varios aminoácidos y la 

proteína con centros Fe/S Rli1, esencial en la biogénesis y reciclado de ribosomas, 

son dianas de Cth2 a nivel de mRNA. Además, los niveles de rRNAs, tRNAs y otros 

mensajeros que codifican proteínas ribosómicas, disminuyen drásticamente 

durante la escasez de hierro debido a la inactivación de la ruta TOR. Por último, en 

deficiencia de hierro se produce un incremento en la fosforilación de la subunidad 

α del factor de inicio de la traducción eIF2, que ha sido descrito como una señal de 

bloqueo del inicio de la traducción global. Estos resultados previos indican que 

probablemente el inicio de la traducción global estaría afectado por la deficiencia 

de hierro. 

La respiración mitocondrial es otro de los procesos que requieren un gran 

aporte de hierro a través de la ETC y del TCA y que no son esenciales en deficiencia 

de hierro en esta levadura. Además, la respiración mitocondrial es la responsable 

de generar niveles basales de ROS, principalmente a través de los complejos I y III 

de la cadena de transporte de electrones. Muchos de los mRNAs diana de Cth2 se 

encuentran en estas dos rutas. Sin embargo, otros procesos se encargan de 

disminuir la expresión de los genes implicados en respiración. Este es el caso de los 

factores transcripcionales Hap1 y el complejo Hap2-5. Éstos dependen de hemo y 

oxígeno para activar los genes de respiración, y también pueden verse 

negativamente afectados por el estrés oxidativo. Por otro lado, la expresión de 

CTH2 ha sido descrita en condiciones de estrés por H2O2. El papel de Cth2 en estas 
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condiciones es la de regular la expresión de algunos miembros del regulón de 

hierro, además de reducir el potencial de membrana en la mitocondria, que a su 

vez indica un papel de Cth2 en el control de los niveles de ROS mitocondriales. 

Por último, otro de los procesos esenciales que requiere hierro es la síntesis 

de dNTPs por parte de la enzima ribonucleótido reductasa (RNR). Su actividad está 

altamente regulada y restringida a situaciones en las que se requieren mayores 

niveles de dNTPs (fase S del ciclo celular, reparación del DNA o bajo condiciones de 

estrés genotóxico) para evitar el aumento de las tasas de mutación, los errores en 

la reparación del DNA o la aparición de tumores. La enzima RNR está formada por 

una subunidad grande con el sitio catalítico codificada por los genes RNR1 y RNR3. 

Puede ser un homodímero Rnr1-Rnr1 o un heterodímero Rnr1-Rnr3. La subunidad 

pequeña, que es la que contiene el radical tirosilo oxo-dihierro, es un heterodímero 

codificado por los genes RNR2 y RNR4. A pesar de que Rnr2 es la única subunidad 

que contiene el cofactor de hierro, todas las subunidades son reguladas en 

condiciones de deficiencia de hierro. En cuanto a la subunidad codificada por el 

gen RNR3, se expresa a muy bajos niveles en condiciones normales. Sin embargo, la 

expresión de RNR3 se ve altamente inducida en condiciones de estrés replicativo o 

daños en el DNA, a pesar de que el mutante rnr3Δ no presenta un fenotipo afectado 

en estas condiciones. La inducción de dicho gen se produce a través de la ruta de 

quinasas Mec1–Rad53–Dun1. A pesar de los estudios sobre la regulación de la 

expresión de RNR3 en condiciones de daños al DNA, pocos se han centrado en su 

regulación en deficiencia de hierro. 

La finalidad de esta tesis doctoral es estudiar nuevos mecanismos 

moleculares implicados en la respuesta a la deficiencia de hierro en S. cerevisiae, 

centrándose en la identificación de rutas que promuevan la represión de la 

traducción global, así como el propio papel de Cth2 en la represión de la 

traducción, la respiración o la regulación de RNR3 en deficiencia de hierro. Para 

ello, esta tesis ha sido dividida en cuatro capítulos que se corresponden con los 

siguientes objetivos propuestos:  

1. Determinar las rutas y mecanismos moleculares implicados en la represión 

global de la traducción en respuesta a la deficiencia de hierro y cómo mRNAs 

específicos se ven afectados. 
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2. Dilucidar el papel de la proteína Cth2, de sus dominios conservados y de las 

secuencias ARE, en la represión de la traducción de mRNAs específicos 

durante la deficiencia de hierro. 

3. Determinar la contribución de Cth2 en la respiración mitocondrial y en sus 

correspondientes actividades enzimáticas en suficiencia y deficiencia de 

hierro. 

4. Caracterizar los mecanismos moleculares que inducen la expresión de RNR3 

en condiciones prolongadas de deficiencia de hierro. 

La metodología empleada para llevar a cabo el estudio de estos objetivos 

propuestos incluye: (i) técnicas microbiológicas para la construcción de cepas y 

plásmidos específicos, así como su fenotipado en diferentes condiciones y medios 

de crecimiento; (ii) técnicas moleculares para el estudio y cuantificación del DNA, 

como la inmunoprecipitación de cromatina; para el estudio del RNA y su 

traducción (RT-qPCR y fraccionamiento de polisomas); y para el estudio de 

proteínas, como Western blot o inmunoblot; (iii) ensayos de actividad β-

galactosidasa y de consumo de oxígeno; y (iv) determinación de actividades 

enzimáticas dependientes de hierro a partir de lisados celulares o mitocondrias 

purificadas. 

Los resultados del capítulo 1 se centran en la respuesta traduccional global 

en condiciones de deficiencia de hierro. En este capítulo se vio mediante perfiles de 

polirribosomas como la traducción global se reprime gradualmente con el 

crecimiento bajo condiciones limitantes de hierro. La cepa W303 mostró una 

proporción polisomas/monosoma 80S (P/M) ligeramente disminuida después de 3 

horas de crecimiento en deficiencia de hierro (-Fe), comparado con la situación de 

suficiencia de hierro (+Fe). Sin embargo, tras 6 horas de crecimiento en -Fe, la 

reducción P/M fue mucho más drástica. Dichos experimentos de fraccionamiento 

de polisomas empleando cicloheximida, junto con el aumento de la señal en la 

fracción correspondiente al pico 80S, indicaron que la represión global se produce 

al inicio de la traducción. El análisis de la distribución de mRNAs específicos en el 

perfil general de polirribosomas permitió diferenciar diferentes estados 

traduccionales pese a la represión global en -Fe. Mientras que la traducción del 

mRNA de ACT1 apenas se vio afectada, los mRNAs de RPS16B y RPL3 (proteínas 
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ribosómicas) se vieron desplazados a la fracción 80S, apoyando la represión 

traduccional global. Por otro lado, el mRNA de GCN4 vio incrementada su presencia 

en fracciones de polisomas en -Fe. Esto sugirió una mayor traducción de GCN4 en -

Fe. Sin embargo, los resultados de la actividad β-galactosidasa utilizando el gen 

lacZ bajo el control del promotor GCN4, mostraron solamente una ligera inducción 

en -Fe comparada con la gran inducción en condiciones de deficiencia de 

aminoácidos. Resultados previos mostraron una mayor fosforilación del factor 

traduccional eIF2α en -Fe. En este trabajo se mostró cómo eIF2α se fosforila en -Fe 

de forma dependiente de Gcn2 y Gcn1. Una cepa mutante en la serina 51 de eIF2α 

mostró una significativa recuperación del ratio P/M durante la deficiencia de 

hierro. Además, los mutantes gcn2∆ y gcn1∆ también mostraron una gran 

recuperación de la traducción en deficiencia de hierro comparado con una cepa 

salvaje. Por otro lado, la represión global de la traducción dependiente de Gcn2 

resultó ser transitoria ya que tiempos más prolongados de la deficiencia de hierro 

(12 horas en una cepa BY4741) mostraron ratios P/M disminuidos tanto en el 

mutante gcn2∆ como en la cepa salvaje. Con estos resultados, las conclusiones 

generales de este capítulo son las siguientes: (i) Durante el progreso de la 

deficiencia de hierro se reprime de manera gradual el inicio de traducción global; 

(ii) durante la deficiencia de hierro, la quinasa Gcn2 reprime el inicio de la 

traducción global fosforilando la serina 51 de eIF2α de manera dependiente de 

Gcn1, e induce la traducción de GCN4. 

Los resultados del capítulo 2 demuestran el papel de Cth2 a través de sus 

TZFs en la represión traduccional de mRNAs específicos con secuencias ARE 

durante la deficiencia de hierro. Se realizaron perfiles de polirribosomas en los que 

se determinó la distribución de mRNAs concretos, además de llevarse a cabo 

cálculos de la eficiencia de traducción de ciertos mRNAs. La traducción del mRNA 

de SDH4 disminuyó específicamente en deficiencia de hierro mientras que el 

mRNA de ACT1 permaneció asociado a fracciones de polisomas. La represión 

traduccional de SDH4 resultó ser dependiente de los AREs de su mensajero y de los 

TZFs de la proteína Cth2. Además, la propia traducción del mRNA de CTH2 se vio 

reducida en deficiencia de hierro de forma dependiente a los AREs de su mRNA y 

los TZFs de su proteína. Mediante el análisis de la distribución en perfiles de 
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polirribosomas de otros mRNAs diana de Cth2 con AREs (CCP1, HEM15 and 

WTM1), se mostró que Cth2 también reprime la traducción de éstos durante la 

escasez de hierro. Tras demostrarse la necesidad de tener intactos el dominio TZF 

de Cth2 y los AREs de los mRNAs diana para la represión de su traducción, se 

estudió la implicación de otros dominios de Cth2 menos conservados. Se estudió la 

implicación de dos regiones conservadas de Cth2 (CR1 y CR2), pertenecientes al 

extremo amino terminal, y una región del extremo carboxilo terminal (CR3), 

mediante diferentes construcciones truncadas de Cth2. Las construcciones de Cth2 

truncadas en los 89 y 170 primeros aminoácidos (CR1 y CR2, respectivamente) del 

extremo amino mostraron, mediante la distribución del mRNA de SDH4 en el perfil 

de polirribosomas y cálculos de eficiencia de traducción, que dicho extremo amino 

terminal de Cth2 está implicado tanto en la degradación de mRNAs como en la 

represión de la traducción. Sin embargo, la construcción de Cth2 truncada en los 

52 últimos aminoácidos del extremo carboxilo no presentó defectos en la 

degradación de mensajeros, pero sí en la represión de la traducción. Además, dicho 

truncado CTH2ΔC52 presentó un fenotipo negativamente afectado en el 

crecimiento en condiciones de deficiencia de hierro, y mayores niveles de 

proteínas Aco1, Hem15 y Bio2. Por último, la predicción de la estructura 

tridimensional de Cth2 mostró que el dominio carboxilo podría interaccionar 

directamente con el dominio TZF, diferenciándose así del dominio carboxilo no 

estructurado de TTP. Las conclusiones generales de este capítulo son las 

siguientes: (i) En respuesta a la deficiencia de hierro, Cth2 promueve la represión 

traduccional de mRNAs con secuencias ARE en un proceso que requiere de ambos, 

la integridad del dominio TZF y de los AREs; (ii) ambos dominios, amino y 

carboxilo terminal, de Cth2 contribuyen a la represión de la traducción de mRNAs, 

pero solo el dominio amino terminal es responsable de la degradación de mRNAs 

en respuesta a la deficiencia de hierro; (iii) el dominio carboxilo terminal de Cth2 

es fisiológicamente relevante en condiciones de deficiencia de hierro. 

Por otro lado, los resultados del capítulo 3 demuestran el papel de Cth2 en la 

regulación de la respiración celular en respuesta a la deficiencia de hierro. 

Mediante medidas del consumo de oxígeno, se vio que éste era significativamente 

menor en respuesta tanto a la deficiencia de hierro nutricional como genética, esta 

última observada en la cepa fet3Δfet4Δ mutante para los sistemas de transporte de 
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hierro de alta y baja afinidad. Sin embargo, esta disminución en la velocidad del 

consumo de oxígeno en deficiencia de hierro, y por tanto de la respiración celular, 

se produjo independientemente de Cth2. A pesar de ello, tanto la sobreexpresión 

de Cth2 como de Cth1, fueron capaces de reprimir el consumo de oxígeno de 

manera dependiente de sus TZFs en condiciones de suficiencia de hierro. En la 

misma línea, la expresión constitutiva del regulón de hierro mediante la mutación 

de la cisteína 291 de Aft1 (alelo AFT1-1UP) también reprimió el consumo de 

oxígeno en suficiencia de hierro, además de disminuir la capacidad de crecimiento 

en un medio con etanol y glicerol como fuentes de carbono no fermentables. En 

ambos casos, la eliminación del gen CTH2 rescató tanto el consumo de oxígeno 

como el fenotipo de crecimiento. Estos resultados confirmaron la capacidad de la 

proteína Cth2 de participar en la represión de la respiración mitocondrial, aunque 

probablemente en deficiencia de hierro varios mecanismos redundantes repriman 

la respiración, y por ello se enmascare el efecto específico de Cth2. Varias 

actividades enzimáticas mitocondriales dependientes de hierro fueron 

determinadas con el fin de indagar más en la función de Cth2 de reprimir la 

respiración. Además de esto, también se determinó la actividad de la proteína Leu1 

de la ruta de biosíntesis de leucina, la cual contiene centros Fe/S. Se confirmó la 

capacidad de Cth2 de inducir la degradación del mRNA de LEU1 tanto en 

suficiencia de hierro (tras la sobreexpresión de Cth2) como en deficiencia de 

hierro. En cuanto a los niveles de proteína total de Leu1, se mostraron igualmente 

disminuidos tras sobreexpresar Cth2 en suficiencia de hierro como en condiciones 

de deficiencia. Este resultado se reflejó en la correspondiente bajada de actividad 

enzimática en +Fe. Sin embargo, la bajada de actividad en -Fe fue tal que se redujo 

más allá de los límites de sensibilidad del experimento, por tanto, no pudo 

determinarse el efecto de Cth2 en deficiencia de hierro sobre la actividad de Leu1. 

Respecto a las actividades enzimáticas relacionadas con la respiración 

mitocondrial, se determinó la actividad aconitasa, dependiente de hierro y 

perteneciente al ciclo de los ácidos tricarboxílicos. En este caso, el efecto de 

sobreexpresión de Cth2 en suficiencia de hierro mostró claramente la disminución 

tanto en niveles de mRNA de ACO1, como en cantidad de proteína Aco1 y su 

respectiva actividad. El papel de Cth2 en deficiencia de hierro se reflejó tanto a 

nivel de mRNA como de proteína. Sin embargo, la actividad enzimática aconitasa, 
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ya disminuida en deficiencia de hierro, sólo se vio ligeramente más reducida en 

células con CTH2. Los resultados obtenidos con las actividades enzimáticas de la 

cadena de transporte de electrones resultaron más determinantes. La actividad 

succinato deshidrogenasa, perteneciente al ciclo de los ácidos tricarboxílicos y 

complejo II de la cadena de transporte de electrones, se midió de manera 

individual y junto con la actividad citocromo c reductasa del complejo III. En 

ambos casos, los niveles de varios mRNAs con AREs que codifican algunas de las 

subunidades de los complejos se vieron claramente disminuidos, tanto por la 

sobreexpresión de Cth2 en +Fe como de manera dependiente de Cth2 en -Fe. 

Igualmente, dicho efecto se reflejó en las actividades enzimáticas del complejo II y 

de los complejos II+III, tanto en suficiencia como en deficiencia de hierro. Estos 

resultados demostraron el papel de Cth2 en la represión de los complejos II y III de 

la cadena de transporte de electrones. Sin embargo, los resultados relacionados 

con la actividad citocromo c oxidasa (complejo IV) fueron diferentes en ambos 

casos. La expresión constitutiva de Cth2 en suficiencia de hierro no afectó a la 

actividad del complejo IV, a pesar de los múltiples mRNAs diana de Cth2 que 

codifican algunas subunidades del complejo. Además, en deficiencia de hierro, 

aunque se apreció una bajada general en la actividad, ésta se vio respaldada por 

Cth2. Tras comprobarse que los niveles de mRNA de COX4 y COX6 efectivamente se 

correspondían con los resultados esperados, al tratarse de dianas de Cth2 con 

AREs, se determinaron los niveles de los mRNAs COX1, COX2 y COX3. Estos tres 

genes codificados por el genoma mitocondrial constituyen el núcleo del complejo 

IV. En los tres casos se vieron incrementados sus niveles de mRNA en deficiencia 

de hierro independientemente de Cth2, y solamente en el caso del mRNA de COX1 

sus niveles fueron mayores en células que expresaban CTH2 en deficiencia de 

hierro. En la misma línea, tras medir los niveles de proteína Cox1 en deficiencia de 

hierro, dichos niveles resultaron mayores en células con CTH2 respecto a células 

cth2Δ. Las conclusiones generales de este capítulo son las siguientes: (i) La 

respiración mitocondrial se ve comprometida en deficiencia de hierro 

independientemente de Cth2, sin embargo, la expresión constitutiva del regulón de 

hierro reprime la respiración y disminuye la capacidad de crecimiento en fuentes 

de carbono no fermentables a través de Cth2; (ii) la sobreexpresión de Cth2 en 

suficiencia de hierro provoca la disminución, no solo del consumo de oxígeno, sino 
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también de varias actividades enzimáticas dependientes de hierro como Leu1, 

aconitasa y los complejos II y III de la cadena de transporte de electrones; (iii) Cth2 

promueve la actividad del complejo IV de la cadena de transporte de electrones en 

respuesta a la deficiencia de hierro. 

Los resultados del capítulo 4 demuestran que la inducción de la expresión del 

gen RNR3 se produce a nivel transcripcional en condiciones prolongadas de 

deficiencia de hierro. Tras determinar el pico de expresión de RNR3 a las 15 horas 

de deficiencia de hierro en condiciones de crecimiento exponencial, se comparó su 

expresión en -Fe con las condiciones de estrés replicativo y daños al DNA. El 

crecimiento en presencia de hidroxiurea, metil metanosulfonato o 4-nitroquinolina 

N-óxido produjo niveles similares de mRNA y proteína Rnr3 respecto a los 

producidos tras las 15 horas de deficiencia de hierro. De manera similar a estas 

condiciones de estrés replicativo o genotóxico, las quinasas Rad53 y Dun1 también 

resultaron implicadas en la inducción de RNR3 en deficiencia de hierro. Además, se 

demostró que dicha inducción se produce a nivel transcripcional por la mayor 

unión de la RNA polimerasa II al promotor de RNR3. También se determinó que la 

presencia de Cth2 es necesaria para la inducción transcripcional del gen, solo en 

condiciones de deficiencia de hierro prolongadas y de manera independiente de la 

quinasa Dun1. Además, se vio que el papel de Cth2 en la inducción de RNR3 en 

deficiencia de hierro se produce a través de sus TZFs y que es predominante 

respecto a la función de Cth1. Tras analizar los niveles de algunos mRNAs que 

codifican proteínas que son represoras directas o indirectas del promotor de 

RNR3, se determinó que los mRNAs de CRT1 y ROX1 están regulados por Cth2 en -

Fe. Probablemente, el mRNA de CRT1 sea una diana directa de Cth2 en deficiencia 

de hierro ya que posee un ARE casi completo. Por otro lado, el mRNA de ROX1, 

aunque se vio regulado de manera significativa por Cth2 tras 15 horas en 

deficiencia de hierro, no posee ningún ARE o similar y por tanto no sería una diana 

directa de Cth2. Además, el mRNA de HOS1 con AREs resultó ser una diana clara de 

Cth2 en condiciones prolongadas de deficiencia de hierro. HOS1 codifica para una 

histona deacetilasa empleada por el complejo represor de la transcripción Ssn6–

Tup1.  El complejo Ssn6–Tup1 es reclutado por Crt1 y Rox1 a los promotores de 

algunos genes, entre ellos RNR3. A pesar de esto, es probable que Cth2 también 

desreprima el promotor de RNR3 independientemente de Rox1 y Crt1. La mutación 
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de CTH2 en el triple mutante rox1Δmot3Δcrt1Δ aún provocó un defecto adicional 

en la inducción de RNR3. Por último, se determinó que Rnr3 es fisiológicamente 

relevante en deficiencia de hierro. Con estos resultados, las conclusiones generales 

de este capítulo son las siguientes: (i) RNR3 es fisiológicamente relevante y se 

induce transcripcionalmente en respuesta a la deficiencia de hierro prolongada 

alcanzando niveles de mRNA y proteína comparables a aquellos alcanzados bajo 

condiciones de estrés genotóxico o replicativo; (ii) las quinasas Rad53 y Dun1 

están implicadas en la inducción de RNR3 bajo condiciones prolongadas de 

deficiencia de hierro. Además, Cth2 contribuye a la inducción de RNR3 

independientemente de Dun1, a través de sus TZF y sólo bajo condiciones 

prolongadas de deficiencia de hierro. 
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Abstract 

Iron is an essential micronutrient for all eukaryotes because of its redox 

properties. It participates as a cofactor in a wide range of biological processes, 

including protein translation, mitochondrial respiration (Krebs cycle and electron 

transport chain (ETC)) and DNA replication. The model organism Saccharomyces 

cerevisiae responds to iron deficiency by activating the iron acquisition and 

recycling systems, and by remodeling cellular metabolism to promote iron 

utilization in specific processes at the expense of others. The tandem zinc finger 

(TZF)-containing protein Cth2 plays an important role in prioritizing iron by 

promoting the degradation of multiple mRNAs containing A/U-rich elements 

(AREs), including the CTH2 mRNA itself that is autoregulated. In this thesis, we 

identified and characterized new mechanisms involved in the global translational 

repression and novel functions of Cth2 in response to iron starvation. Our results 

with polysome fractionation experiments demonstrate that during the progress of 

iron deficiency the eIF2α/Gcn2 pathway is involved in the general repression of 

translational initiation. The Gcn2 kinase specifically phosphorylates serine 51 of 

eIF2α in a Gcn1-dependent manner, causing a slight induction of GCN4 translation 

when iron is scarce. The Gcn2 activation by uncharged tRNAs and TORC1 

inactivation during the iron deficiency is discussed. Besides, we show a role played 

by Cth2 in translational inhibition of several ARE-containing mRNAs during iron 

deficiency. Both the Cth2 TZF-domain as well as the AREs within SDH4 (subunit of 

succinate dehydrogenase) and CTH2 mRNAs are essential for translational 

repression. Besides, other mRNAs are translationally repressed by Cth2, 

suggesting a Cth2 general role on inhibition of translation of ARE-containing 

mRNAs. Our results also demonstrate that while the amino-terminal domain (NTD) 

of Cth2 is important for both mRNA turnover and translational inhibition 

functions, its carboxy-terminal domain (CTD) is only involved in translational 

repression. Importantly, Cth2 CTD is physiologically relevant during iron-deficient 

conditions. Two novel Cth2 functions under iron deficiency include the regulation 

of mitochondrial respiration and the RNR3 catalytic subunit of the iron-dependent 

ribonucleotide reductase (RNR) enzyme responsible of dNTP synthesis. The 

overexpression of CTH2 under iron sufficiency decreases respiration (measured by 

the oxygen consumption) as well as several iron-dependent enzymatic activities, 
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including Leu1, aconitase (from Krebs cycle) and complex II and III of the ETC, 

while the complex IV activity is unaffected. Under iron deficiency, oxygen 

consumption decreases regardless Cth2, despite the decrease in complex II and III 

activities of the ETC. Interestingly, under iron starvation Cth2 contributes to a 

better complex IV activity, probably by increasing Cox1 protein levels. Finally, 

RNR3 has been described to be highly expressed under genotoxic or replication 

stress conditions by the Mec1–Rad53–Dun1 checkpoint kinase pathway. However, 

RNR3 function is not clear as its paralog RNR1 was described to be the major 

isoform of the catalytic subunit of RNR. Our results suggest a higher RNR3 

expression under long-term iron deficiency comparable to that observed under 

those stresses. Besides, we demonstrate the participation of Cth2 (through its TZF-

domain) and Dun1 in the transcriptional induction of RNR3 under long-term iron-

deficient conditions. And importantly, unlike other stresses, RNR3 is 

physiologically relevant when iron is scarce. 

 

 

 

 

 



 

5 
 

 

 

 

 

Glossary 
 



Glossary 

6 
 

+Fe – Iron-sufficient condition 

-Fe – Iron-deficient condition 

3-AT – 3-aminotriazole 

4-NQO – 4-nitroquinoline N-oxide 

AMD – ARE-mediated mRNA decay 

AREs – Adenosine/Uridine Rich Elements 

BPS – Bathophenanthrolinedisulfonic acid 

CFUs – Colony Forming Units  

ChIP – Chromatin immunoprecipitation 

CHX – Cycloheximide 

CIA – Cytosolic iron-sulfur protein assembly machinery 

CR – Conserved Region 

CTD – Carboxy-terminal domain 

COX – Cytochrome c oxidase, complex IV 

dNTPs – Deoxyribonucleoside triphosphates 

eIF2 – Translation initiation factor 

eIF2B – Guanine nucleotide exchange factor 

ETC – Electron Transport Chain 

ESR – Environmental Stress Response 

FAC – Ferric ammonium citrate 

FAS – Ferrous ammonium sulfate 

FeRE – Iron Responsive Element 

Fz – 3-(2-Pyridyl)-5,6-diphenyl-1,2,4-triazine-4′,4′′-disulfonic acid sodium 

(ferrozine) 

gDNA – Genomic DNA 

HU – Hydroxyurea 

ISC – Iron-sulfur cluster assembly/export machinery 

IREs – Iron-responsive elements 

IRPs – Iron regulatory proteins 

MMS – Methyl methanesulfonate 
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mRNA – messenger RNA 

mtDNA – mitochondrial DNA 

ND – Not Detectable 

NTD – Amino-terminal domain 

nts – Nucleotides 

OD – Optical Density 

OXPHOS – Oxidative phosphorylation 

P-bodies – Processing bodies 

PCR – Polymerase chain reaction 

P/M – polysomes/monosome ratio 

qPCR – Quantitative PCR 

RiBis – Ribosome biogenesis 

RNPs – Ribonucleoproteins 

RNR – Ribonucleotide reductase 

ROS – Reactive Oxygen Species 

RPs – Ribosomal proteins 

rpm – Revolutions per minute 

RTG – Retrograde pathway 

RT-qPCR – Quantitative reverse transcription PCR 

SC – Synthetic Complete medium 

SC minus – Synthetic Complete lacking specific requirements 

SD – Minimum medium 

TCA cycle– Tricarboxylic acid cycle 

TNFα - Tumor necrosis factor alpha 

TTP – Tristetraprolin 

TZFs – Tandem Zinc Fingers 

UTR – Untranslated region 

uORF – Upstream open reading frame 

WHO – World Health Organization 
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Iron is an essential element for all eukaryotic organisms. Its redox activity 

and its ability to bind to multiple ligands makes iron an essential cofactor in 

numerous biological processes. Iron-containing proteins participate in many 

cellular processes including respiration, DNA replication and repair, ribosome 

biogenesis, translation, photosynthesis, biosynthesis of lipids and oxygen 

transport. Despite all of these iron-dependent processes, high iron concentrations 

can lead to cytotoxicity in living organisms 

Iron is the fourth most abundant element of the Earth crust. The anoxic 

conditions of the primitive atmosphere made of the reduced ferrous iron form 

(Fe2+) the main cofactor of many proteins. In fact, the oldest fossilized 

microorganisms (3.7-4.3 million years old and close to the Earth’s formation) are 

thought to be iron-oxidizing bacteria (Dood et al., 2017). However, the Earth’s 

change to an oxidizing atmosphere increased the ferric form (Fe3+) that is highly 

insoluble at physiological pH. This low bioavailability of iron makes of the iron 

deficiency anemia the most common nutritional disorder worldwide according to 

the World Health Organization (WHO), affecting two billion people, particularly 

women and children (reviewed by Chaparro & Suchdev, 2019; Means, 2020). Iron 

deficiency anemia has several consequences for humans: reduced physical and 

growth capacity, fatigue, susceptibility to infections, impaired neurological 

development, premature birth or mortality. Besides, defects in human iron 

homeostasis have been related with severe disorders such as Friedreich’s ataxia, 

myopathies and encephalomyopathies, hemochromatosis, multiple mitochondrial 

dysfunction syndromes, higher risk of pathogenesis and cancer (reviewed by 

Stehling et al., 2014; Muckenthaler et al., 2017). Iron deficiency in agriculture is 

also a concern with an important economic impact because it induces chlorosis 

and reduces photosynthesis, affecting both the yield and the nutritional value of 

crops (reviewed by Puig et al., 2007; Zhang et al., 2019a). 

For these reasons, studying the molecular mechanisms that regulate iron 

metabolism is important for dealing with iron nutritional disorders, the 

development of medical treatments and the understanding of physiological 

alterations of significant economic impact. 

1. The biological role of iron 
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As iron can easily oscillate between its two redox states (ferrous Fe2+ and 

ferric Fe3+ forms) it participates as cofactor in several oxido-reductase and electron 

transfer reactions. There are three main cofactors that contain iron centers: 

- Heme groups: ferrous iron is coordinated with protoporphyrin IX. Heme 

forms the prosthetic group of many oxygen-related proteins such as 

hemoglobin (oxygen sensing and transport in vertebrates), myoglobin 

(oxygen transport and storage in muscle tissues), cytochromes (electron 

transfer reactions in respiratory and photosynthetic electron transport 

chains) or heme-containing catalases and peroxidases (catalyzing and 

diminishing the reactive oxygen species, ROS). In eukaryotes, the initial and 

final step in the biosynthesis of heme are located in mitochondria (reviewed 

by Mühlenhoff et al., 2015). The budding yeast Saccharomyces cerevisiae 

senses oxygen indirectly through the concentration of heme, and at the same 

time, heme-synthesis is oxygen-dependent as it requires oxygen as a 

substrate. 

 

- Iron-sulfur (Fe/S) clusters: [2Fe-2S], [4Fe-4S] and [3Fe-4S] clusters are 

involved in the electron transport chain (ETC), the tricarboxylic acid (TCA) 

cycle, photosynthesis, protein translation and ribosome biogenesis (through 

the yeast Rli1 Fe/S-protein) (Kispal et al., 2005; Yarunin et al., 2005), DNA 

synthesis and repair (Puig et al., 2017), telomere length regulation as well as 

heme, biotin, lipoic acid and several amino acid biosynthetic pathways. 

Eukaryotic Fe/S cluster synthesis and assembly studies have been mainly 

performed in yeast. Fe/S clusters are synthetized by three well conserved, 

from yeast to human, machineries: the essential mitochondrial iron-sulfur 

cluster (ISC) assembly and export machineries, and cytosolic iron-sulfur 

protein assembly (CIA) machinery (reviewed by Lill et al., 2015). The 

synthesis starts in the mitochondria with the ISC assembly machinery. Then, 

an unknown sulfur-containing compound, named X-S, is exported to the 

cytoplasm by the Atm1 transporter (the main member of the ISC export 

machinery). Finally, the CIA machinery and the Grx3/4 glutaredoxins 

assemble the nuclear and cytosolic Fe/S proteins (Mühlenhoff et al., 2010). 
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- Oxo-diiron (Fe-O-Fe) centers: oxo-diiron proteins participate in the 

formation of biological membranes through the sterol metabolism and fatty 

acid metabolism. The essential fatty acid desaturase Ole1 in S. cerevisiae 

contains an Fe-O-Fe center. Also, the class Ia of ribonucleotide reductases 

that catalyze the rate-limiting step of dNTP synthesis use oxo-diiron centers 

as essential cofactors (see section 5). 

 

2. Iron sensing and responses to changes in iron bioavailability in 

Saccharomyces cerevisiae 

Despite iron is essential for all eukaryotes, it can participate in Fenton 

reactions and produce hydroxyl radicals (·OH) from hydrogen peroxide (H2O2). 

Therefore, high iron levels can generate ROS, and if the ROS detoxification 

machinery is not sufficient, cells can be damaged at DNA, lipid and protein levels. 

For these reasons, living organisms tightly regulate iron acquisition, storage and 

utilization. S. cerevisiae has been used as a model organism to study iron 

homeostasis regulation in eukaryotes in response to fluctuations in iron 

bioavailability.  

ISC assembly and export machineries are directly involved in iron sensing in 

yeast and higher eukaryotes. The X-S molecule exported to the cytoplasm by the 

mitochondrial Atm1 (human ABCB7) transporter is crucial in communicating the 

iron status to cells and in regulating iron homeostasis. Cells with defective ISC 

machineries accumulate iron within mitochondria (Kispal et al., 1999) and induce 

the extracellular iron uptake systems (Chen et al., 2004; Rutherford et al., 2005; 

Hausmann et al., 2008). The X-S molecule is involved in post-transcriptional 

regulation of iron homeostasis in higher eukaryotes (through the iron regulatory 

proteins, IRPs) and transcriptional regulation of iron homeostasis in yeast 

(through Aft1/Aft2 and Yap5, see below) (reviewed by Mühlenhoff et al., 2015; 

Gupta & Outten, 2020).   

Briefly, in mammals the IRP1 and IRP2 proteins bind the iron-responsive 

elements (IREs) in the untranslated regions (UTRs) of specific mRNAs related to 

iron homeostasis when iron is scarce. For example, when iron levels are low, the 
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IRP-IRE binding to the 5‘UTR of ferritin mRNA (encoding the iron excess storage 

protein) inhibits its translation, and the binding to the 3’UTR of transferrin 

receptor-1 mRNA (encoding the receptor of the plasma iron transport protein) 

increases its mRNA stability and translation. In this manner, the iron storage is 

repressed and iron uptake increased under iron deficiency (reviewed by Anderson 

et al., 2012; Bayeva et al., 2013; Mühlenhoff et al., 2015). Under high iron 

conditions, IRP1 binds a [4Fe-4S] cluster and cannot adopt the conformation that 

allows IRE binding. In this way, in mammals the CIA machinery is also involved in 

iron homeostasis, as the CIA components are in charge of introducing the Fe/S 

cluster into IRP1. On the other hand, IRP2 does not bind any Fe/S cluster but it is 

also regulated in an iron-dependent manner and degraded by the proteasome 

under high iron conditions (Salahudeen et al., 2009; Vashisht et al, 2009; 

Thompson et al., 2012). However, not all the described IRP-dependent regulation 

in eukaryotes is at the post-transcriptional level. Recently, a remarkable study 

revealed a novel IRP1 transcriptional function in the iron homeostasis regulation 

in Drosophila (Huynh et al., 2019). The IRP1 protein containing the [4Fe-4S] 

cluster downregulated the transcription of iron- and heme-dependent processes 

once the peak iron demand was over (Huynh et al., 2019). 

2.1. The regulation in response to iron excess in S. cerevisiae 

Iron excess detoxification in S. cerevisiae involves the transcriptional 

activator Yap5. Yap5 binds its target promoters independently of the iron levels (Li 

et al., 2008) and only activates transcription when it directly binds two [2Fe-2S] 

clusters in an ISC (but not CIA)-dependent manner (Rietzschel et al., 2015). Yap5 

activates the transcription of CCC1, GRX4, TYW1 and CUP1 (reviewed by Martínez-

Pastor et al., 2017; Gupta & Outten, 2020). Ccc1 is the vacuolar iron importer, the 

main iron storage facilitator in yeast. The monothiol glutaredoxin Grx4 binds iron 

and inactivates the Aft1/2-dependent upregulation of the iron regulon (see below). 

The Tyw1 enzyme contains a [4Fe-4S] cluster and it was proposed to sequester 

cytosolic iron protecting cells from iron toxicity (Li et al., 2011). Finally, Cup1 is a 

cytosolic copper-binding protein important in the resistance to high copper 

concentrations. Cup1 also limits the copper availability to Fet3, component of the 

reductive iron uptake system (see below). 
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2.2. The regulation in response to iron deficiency in S. cerevisiae 

It is a general pattern that the S. cerevisiae strains worse adapted to high iron 

concentrations are better adapted to iron starvation (Martínez-Garay et al., 2016). 

The iron deficiency regulation in S. cerevisiae involves the transcription factors 

Aft1 and Aft2. Aft1/2 activate the expression of ~30 genes collectively known as 

the iron regulon (reviewed by Martínez-Pastor et al., 2017). These genes are 

involved in: (i) acquisition of extracellular iron; (ii) mobilization and recycling of 

internal iron; and (iii) iron optimization due to a metabolic remodeling response 

(see section 2.2.1 and Figure I-1). Aft1 plays a predominant role in activating the 

cell surface iron uptake systems while Aft2 mainly activates genes of intracellular 

iron transport (Rutherford et al., 2001; Courel et al., 2005). Indeed, the aft1Δ 

mutant shows a growth defect under iron limitation that is more exacerbated in 

the aft1Δaft2Δ mutant (Blaiseau et al., 2001; Rutherford et al., 2001). Aft1 (and 

probably Aft2) shuttle between the nucleus and the cytoplasm and accumulate in 

the nucleus when iron is scarce (Yamaguchi-Iwai et al., 2002). Aft1 is imported to 

the nucleus by the Pse1 importin in an iron status-independent manner (Ueta et 

al., 2003). Then, Aft1/2 bind specific PyPuCACCCPu sequences (Py: pyrimidine; Pu: 

purine) called iron responsive elements (FeRE) in the promoters of the iron 

regulon members and activate their transcription (Yamaguchi-Iwai et al., 1996; 

Courel et al., 2005).  

As previously mentioned, functional mitochondrial Fe/S cluster production 

by mitochondrial ISC (but not CIA) machineries are involved in the sensing of the 

iron deficiency (Chen et al., 2004; Rutherford et al., 2005; Hausmann et al, 2008). 

Two monothiol glutaredoxins Grx3 and Grx4 (Ojeda et al., 2006; Pujol-Carrión et 

al., 2006), the aminopeptidase P-like protein Fra1 and the BolA-like protein Fra2 

(Kumanovics et al., 2008; Poor et al., 2014) are also required to deactivate the 

Aft1/2 transcriptional factors during iron sufficiency. A homodimer of Grx3 or 

Grx4 binds a [2Fe-2S] cluster with two glutathione molecules through the 

mitochondrial ISC systems but in a CIA-independent manner (Mühlenhoff et al., 

2010). This step connects the mitochondrial iron status with Aft1/2 activity. 

Probably, the X-S molecule itself involves glutathione as it is present in the 

substrate binding pocket of the crystal structure of Atm1 (Lill et al., 2014; 
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Srinivasan et al., 2014). Besides, glutathione-deficient cells display Aft1/2-

dependent activation of the iron regulon (Kumar et al., 2011; Sipos et al., 2002). 

Then, one Grx3/4 monomer and one glutathione are substituted by Fra2. Probably 

Fra1 is also involved in the latter complex as it interacts with Fra2 and Grx3/4 

(Ueta et al., 2007; Kumanovics et al., 2008). This complex interacts with Aft1/2 

transcriptional factors through their conserved CDC (Cys–Asp–Cys) motif and 

induces the dissociation of Aft1/2 from their promoters under iron sufficiency 

(Ueta et al., 2012; Poor et al., 2014; Li & Outen, 2019). Finally, Aft1/2 are exported 

from the nucleus via the nuclear export protein Msn5 (Ueta et al., 2012). This is the 

reason why Aft1/2 mutants in the CDC motif (AFT1-1UP and AFT2-1UP mutants) 

constitutively activate the iron regulon (Yamaguchi-lwai et al., 1995; Rutherford et 

al 2001). The Aft1 phosphorylation by Hog1 kinase in Ser210 and Ser224 is also 

necessary for its interaction with Msn5 (Ueta et al., 2007; Martins et al., 2018). 

However, the Msn5 mutation alone is not sufficient to constitutively activate the 

iron regulon, although Aft1/2 are maintained in the nucleus (Ueta et al., 2012).  

2.2.1. The transcriptional response: the iron regulon 

A list of ~30 genes transcriptionally activated by Aft1/2 are known as the 

iron regulon members (reviewed by Sanvisens & Puig, 2011; Martínez-Pastor et al., 

2017). These genes encode proteins involved in several iron-related roles when 

iron is scarce (Figure I-1): 

- (i) Acquisition of extracellular iron 

The reductive iron uptake is transcriptionally activated by Aft1/2 when iron 

is scarce. It involves two heme-containing surface metalloreductases, Fre1 and 

Fre2, that convert Fe3+ from inorganic salts or Fe3+ chelates to reduced Fe2+. Fre1/2 

also reduce Cu2+ to Cu+, important for the Fet3/Ftr1 high-affinity reductive iron 

uptake system (Figure I-1). Fet3 is a multicopper ferroxidase that oxidizes Fe2+ to 

Fe3+ reducing molecular oxygen to water for the subsequent Fe3+ transport by the 

Ftr1 transmembrane permease. Correct copper acquisition and delivery into Fet3 

is essential for the Fet3/Ftr1 iron uptake system and for the iron deficiency 

adaptation. 
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The low-affinity reductive iron uptake system, transcriptionally activated by 

Aft1/2, is used under anaerobic conditions as its iron transporter Fet4 is oxygen-

independent (Figure I-1). However, this system is less specific because it can bind 

other metals. The heme-dependent expression of Rox1 protein represses FET4 

promoter under aerobic conditions to prevent metal toxicity (Jensen & Culotta, 

2002). In the same way, under anaerobic or heme-deficient conditions the general 

repressor complex Tup1–Ssn6 and Hda1 repress the Fet3/Frt1 high-affinity 

reductive iron uptake system (Crisp et al., 2006).  

Figure I-1. The transcriptional factors Aft1 and Aft2 activate the iron regulon 

under iron starvation in S. cerevisiae. The iron regulon members include genes 

that encode proteins that enhance the (i) acquisition of extracellular iron; (ii) the 

mobilization and recycling of iron; and (iii) the metabolic remodeling response. 

 

Siderophores are low molecular-mass Fe3+-organic chelators that S. cerevisiae 

cannot produce but can specifically transport if produced by other organisms. The 

siderophore transport system is also transcriptionally activated by Aft1/2 under 

iron deficiency (Figure I-1). Fit1, Fit2 and Fit3 are cell wall mannoproteins that 

facilitate the iron-siderophore passage through the cell wall. Then, the Fre1/2, 

general metalloreductases, or Fre3/4, siderophore-specific metalloreductases, 
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reduce the Fe3+ from the siderophore and Fe2+ is released for its transport through 

the Fet3/Frt1 reductive system. Other nonreductive strategy involves the direct 

siderophore transport by Arn1-4 transporters, each specific for a group of 

fungal/bacterial siderophores. As this nonreductive system can operate 

independently of oxygen, Cti6, that is required for growth under iron starvation 

(Puig et al., 2004), derepresses ARN1 and FIT1 in anaerobiosis or in the absence of 

heme overcoming Tup1-repression (Crisp et al., 2006). In the same line of 

promoting the nonreductive system, when oxidative stress activates the iron 

regulon through Aft1, sets the iron assimilation through the nonreductive pathway 

to minimize the ferrous iron oxidative damage (Castells-Roca et al., 2011). 

- (ii) Mobilization and recycling of internal iron  

The vacuole is the main iron storage compartment in yeast. Aft1/2 activates 

several genes for the iron mobilization from the vacuole when iron is scarce 

(Figure I-1). The Fre6 metalloreductase converts the vacuolar Fe3+ to Fe2+ as well 

as it also reduces copper. Then, the Fet5/Fth1 transport system (paralog of 

Fet3/Ftr1) or the Smf3 transporter export vacuolar iron to the cytosol. The SMF3 

promoter, as FET4, is repressed by Rox1 under aerobic conditions (Jensen & 

Culotta, 2002), and then derepressed in anaerobiosis or under heme-deficient 

conditions. 

On the other hand, heme is recycled by the heme oxygenase Hmx1 located in 

the cytosolic face of the endoplasmic reticulum. Cytoplasmic iron is introduced into 

the mitochondria by Mrs4. Both HMX1 and MRS4 genes are transcriptionally 

activated by Aft1/2 (Figure I-1).  

- (iii) The metabolic remodeling response 

Cth1 and Cth2 are two iron regulon members with FeRE sequences in their 

promoters that are transcriptionally activated by Aft1/2 when iron is scarce. These 

proteins are the main responsible for the metabolic remodeling response taking 

place in S. cerevisiae under iron limitation. By promoting the decay of some 

mRNAs, Cth1 and Cth2 help to prioritize the iron utilization in some iron-

dependent processes at the expense of others (see below and in Figure I-1). 
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Besides Cth1/2 proteins, other Aft1/2 activated members promote a 

metabolic reorganization when iron is scarce. The synthesis of biotin in S. 

cerevisiae is iron-dependent. It lacks the first two steps of the pathway since it 

starts with the 7-keto, 8-amino-pelargonic acid (KAPA) precursor. The pathway 

depends on BIO3, BIO4 and BIO2 genes, containing the biotin synthase Bio2 protein 

a [4Fe-4S] cluster. All three genes are downregulated in low iron (Shakoury-Elizeh 

et al., 2004). Besides, under iron deficiency Aft1 activates the transcription of 

VHT1, transporter of extracellular biotin, and BIO5, the cell surface transporter of 

some precursors (KAPA and DAPA) of the pathway (Shakoury-Elizeh et al., 2004; 

Bellí et al., 2004). The transcriptional factor Vhr1 also transcriptionally activates 

VHT1 and BIO5 when biotin levels are low, condition that occurs under iron 

deficient-conditions (Weider et al., 2006). 

2.2.2. The post-transcriptional response to iron deficiency: Cth1 and 

Cth2 

Cth1 and Cth2 display very low expression levels under iron sufficiency and 

are transcriptionally activated by Aft1/2 under iron deficiency (Foury & Talibi, 

2001; Rutherford et al., 2003; Shakoury-Elizeh et al., 2004; Puig et al., 2005; Puig et 

al., 2008). The cth2Δ mutant (but not cth1Δ) produces a growth defect only under 

iron deficiency that is exacerbated in the cth1Δcth2Δ double mutant (Puig et al., 

2005). Despite some differences, both Cth1 and Cth2 proteins have an important 

role in prioritizing the iron utilization in the adaptation of yeast cells to iron 

scarcity.  

- Structure and function 

Cth1 and Cth2 belong to the eukaryotic tristetraprolin family of proteins 

(TTP family). This family specifically interacts through its highly conserved 

tandem zinc-fingers (TZFs), Cx8Cx5Cx3Hx18Cx8Cx5Cx3H (x being a variable amino 

acid), with adenosine/uridine-rich elements (AREs) within the 3’-untranslated 

region (3’-UTR) of multiple mRNAs to promote their degradation in the cytoplasm 

(Figure I-2). Humans express three TTP members: TTP or TIS11, TIS11d and 

TIS11b. The tridimensional structure of human TIS11d TZFs bound to single-

stranded RNA was solved and demonstrated that each zinc finger binds adjacent 
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5′-UAUU-3′ motifs (Hudson et al., 2004). Because of these results, the 5′-

UAUUUAUU-3′ and 5′-UUAUUUAU-3′ sequences are accepted as consensus AREs 

even though some variations still would maintain moderate TTP-binding affinity 

(Brewer et al., 2004). 

 

Figure I-2. The Cth1 and Cth2 post-transcriptional response carries out a 

metabolic remodeling under iron deficiency. The conserved tandem zinc-

fingers (TZFs) specifically bind adenosine/uridine-rich elements (AREs) within the 

3’-untranslated region (3’-UTR) of multiple mRNAs to promote their degradation 

in the cytoplasm. 

 

The kind of mRNA targets downregulated by the TTP family members can 

vary between different species. Briefly, mammalian TTP, the most studied family 

member, is involved in the regulation of anti-inflammatory and immune responses. 

TTP physiological roles were initially pointed out by Taylor et al. in 1996, that 

described growth retardation, cachexia, arthritis, inflammation and autoimmunity 

in TTP mutant mice. This phenotype was suppressed by the use of anti-TNF 
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antibodies. Indeed, TTP is induced in response to inflammation or growth factors 

and promotes the mRNA decay of the tumor necrosis factor alpha (TNFα) (Carballo 

et al., 1998) and other cytokines (reviewed by Brooks & Blackshear, 2013; Wells et 

al., 2017). More recently, mammalian TTP has also been involved in the regulation 

of iron metabolism as (i) TTP levels are increased under iron deficiency, (ii) it 

promotes the decay of mRNAs encoding iron-containing proteins, and (iii) human 

TTP complements the Cth1/2 function in S. cerevisiae (Bayeva et al., 2012; Bayeva 

et al., 2013; Sato et al., 2018). Interestingly, an iron-related physiological role of 

TTP has been reported as TTP mutant mice display cardiac dysfunction when iron 

is scarce (Sato et al., 2018). 

In S. cerevisiae the downregulation of the Cth1/2 mRNA targets prioritizes 

the utilization of iron. While CTH1 is rapidly and transiently activated in the early 

iron deficiency, CTH2 expression starts when the iron deficiency is more severe 

reaching higher and more constant levels and prevailing over Cth1 role (Puig et al., 

2005; Puig et al., 2008). Despite they have redundant functions and common iron-

dependent targets, Cth1 preferentially downregulates mitochondrial respiration or 

amino acid biosynthetic pathways in the early iron deficiency adaptation. On the 

contrary, when the iron deficiency is more severe, Cth2 is the main responsible of 

downregulating mitochondrial respiration, iron storage, heme or lipid biosynthetic 

pathways (Puig et al., 2008 and see below in “cell processes regulated by Cth1 and 

Cth2”). For these reasons, there are more Cth2-related studies compared to Cth1, 

especially those associated with the mechanism of mRNA turnover and protein 

destabilization. 

- Mechanism of Cth2-mediated mRNA turnover 

Cth2, as the rest of the TTP family members, is a nucleocytoplasmic shuttling 

protein (Vergara et al., 2011). While the nuclear import sequence of Cth2 is within 

its TZFs, its nuclear export depends on its mRNA binding capacity (Vergara et al., 

2011). In fact, the nucleocytoplasmic shuttling is necessary for its ARE-mediated 

mRNA decay (AMD) function that takes place in the cytoplasm. Stopping the 

nuclear transcription with thiolutin or the mRNAs nuclear export (through xpo1-1 

or mex67-5 thermosensitive mutants) (Vergara et al., 2011), as well as directly 
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mutating the Cth2-TZF domain, prevents the Cth2 nuclear export and therefore its 

AMD function (Puig et al., 2005). The TZF domain is the only highly conserved 

motif in Cth2 within the TTP family, but there are other three less conserved 

regions, present in the Cth2 paralogs of other Saccharomyces species: CR1 and CR2 

in the amino-terminal domain (NTD) and CR3 after the TZFs in the carboxyl-

terminal domain (CTD) (Prouteau et al., 2008). While the full integrity of the TZFs 

and the AREs are essential for AMD (Puig et al., 2005), the CR1 is partly involved in 

the AMD function of Cth2 (Prouteau et al., 2008).  

The Cth2-dependent AMD involves the RNA helicase Dhh1 and the 5’ to 3’ 

cytoplasmic exonuclease Xrn1 (Pedro-Segura et al., 2008). The Dhh1 DEAD-box 

ATPase protein activates 5’ mRNA decapping (completed by Dcp1/Dcp2) for the 

later 5’ to 3’ mRNA degradation by Xrn1 in the processing bodies (P-bodies) 

(reviewed by Coller & Parker, 2004; Decker & Parker, 2012). Interestingly, the 

formation of P-bodies is controlled by the ATPase activity of Dhh1 and its 

interaction with the deadenylation complex (Carroll et al., 2011; Mugler et al., 

2016). Although P-bodies are not detected under iron deficiency, Cth2 is found in 

the P-bodies observed in xrn1Δ, dcp1Δ and dcp2Δ mutant strains (Pedro-Segura et 

al., 2008). Indeed, Cth2 (and also Cth1) interacts with the carboxyl-terminal 

domain of Dhh1 and fails to promote the degradation of the ARE-containing SDH4 

mRNA in a dhh1Δ mutant strain (Pedro-Segura et al., 2008). These results 

suggested a model for the Cth2-dependent post-transcriptional regulation when 

iron is scarce: Cth2 goes into the nucleus and binds its target-mRNAs, probably 

cotranscriptionally, then it is exported to the cytoplasm where it recruits 

deadenylation and decapping proteins, and finally the exonuclease Xrn1 degrades 

the ARE-containing mRNAs from 5’ to 3’ (Martínez-Pastor et al., 2013b).  

Similarly, mammalian TTP-dependent AMD starts with the deadenylation or 

poly(A) shortening by the Ccr4-Not complex followed by either (i) 5’ decapping by 

the Dhh1 homolog RCK/p54 and Dcp1/Dcp2 decapping enzymes plus final 5’ to 3’ 

degradation by Xrn1 or (ii) 3’ to 5’ mRNA decay via the exosome (Chen et al., 2001; 

Fenger-Grøn et al., 2005; Lykke-Andersen & Wagner, 2005). Importantly, it is 

known that mammalian TTP also can repress translation through interactions with 

the Dhh1 homolog RCK/p54, which acts as both a promoter of decapping and 
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repressor of translation initiation (Coller & Parker, 2005; Qi et al., 2012; Tiedje et 

al., 2012). Additionally, Dhh1 senses the mRNAs with non-optimal codons (with 

reduced ribosome speed) and promotes their translational repression and decay 

(Radhakrishnan et al., 2016). 

- Cell processes regulated by Cth1 and Cth2 

In response to iron-deficient conditions, Cth1 and Cth2 promote the decay of 

numerous mRNAs, most of them containing AREs, that encode proteins that 

directly bind iron or are involved in iron-consuming pathways (Puig et al., 2005; 

Puig et al., 2008): 

o Mitochondrial respiration (see section 4.2) 

o Heme biosynthesis: COX10, HEM13 and the ferrochelatase HEM15  

o Lipid metabolism: synthesis of sterols (ERG1, ERG3, ERG5, ERG11, 

ERG25), sphingolipids (SCS7) and unsaturated fatty acids (fatty acid 

desaturase OLE1). Besides being post-transcriptionally regulated by 

Cth2, OLE1 is also transcriptionally induced under iron deprivation by 

Mga2 in an Aft1/2-independent manner (Puig et al., 2005; Romero et al., 

2018a). Importantly, the sustaining of unsaturated fatty acids levels is 

essential under iron starvation as mga2Δ shows defects in activating the 

iron regulon when iron is scarce (Jordá et al., 2020) 

o Synthesis of amino acids: leucine, isoleucine, valine (LEU4, ILV3 and the 

isopropylmatale isomerase LEU1), lysine (homoaconitase LYS4), 

glutamate (glutamate synthase GLT1) and methionine (MET7). Besides 

the Cth1/2-dependent post-transcriptional downregulation, iron-

dependent transcriptional downregulation can occur, for example, in the 

GLT1 gene (Shakoury-Elizeh et al., 2004; Philpott et al., 2012) and in 

LEU1 gene (Ihrig et al., 2010). In the latter case, the lack of the metabolite 

α-isopropylmalate under iron deficiency downregulates the transcription 

of LEU1 (Ihrig et al., 2010) 

o Iron storage: the vacuolar iron importer CCC1  

o Ribosome biogenesis, recycling and translation initiation/termination: 

RLI1  
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o Some members of Fe/S mitochondrial cluster biogenesis: ISA1 and NFU1 

 

- Regulation of Cth1 and Cth2 protein levels 

Overexpression of functional TZF-containing Cth2 protein is toxic for the cell 

(Pedro-Segura et al., 2008). However, CTH1 and CTH2 mRNAs contain AREs within 

their 3’-UTR. These AREs are important for their negative feedback regulation by 

AMD in a TZF-dependent manner that permits rapid recovery when yeast cells 

shift from iron-deficient to iron-sufficient conditions (Martínez-Pastor et al., 

2013a). Similarly, feedback regulatory loops have been described for TTP, in this 

case at both the mRNA decay and translational levels (Brooks et al., 2004, Tchen et 

al., 2004; Pullmann et al., 2007; Tiedje et al., 2012). Cth2 protein levels are also 

controlled at the post-translational level. Cth2 protein stability is controlled by 

phosphorylation in several serine residues recognized by the SCFGrr1 ubiquitin 

ligase complex that accelerate the protein turnover by the proteasome (Romero et 

al., 2018b). 

 

3. The global inhibition of translation in response to iron deficiency 

Recently, iron deficiency has been added to the list of stresses or nutritional 

signals that inhibit the TORC1 pathway (Romero et al., 2019). Iron deficiency 

diminishes the RNA polymerase II transcription rate and decreases the abundance 

of many mRNAs. Besides, reduced activities of RNA polymerase I, showing 

subsequent decline in 18S and 25S rRNA levels, and RNA polymerase III, showing 

subsequent decrease in tRNAs, are probably due to the TORC1 inhibition under 

iron starvation (Romero et al., 2019). Also, the environmental stress response 

(ESR) and the retrograde response (RTG) would be activated under iron starvation 

(Romero et al., 2019). And finally, the reduced expression of ribosomal proteins 

(RPs) and ribosome biogenesis (RiBis) genes is achieved directly through TORC1 

inhibition itself as well as through the ESR and the diminished RNA Pol II activity 

under iron limitation (Romero et al., 2019). On the other hand, protein synthesis is 

a highly energy consuming process in the cell and many stresses (heat shock, 

oxidative and osmotic stresses) and nutritional deficiencies (glucose and amino 



Introduction 

25 
 

acid limitation) inhibit bulk translation (Martínez-Pastor & Estruch, 1996; Ashe et 

al., 2000; Hinnebusch, 2005; Shenton et al., 2006; Yamamoto & Izawa, 2013; 

Crawford & Pavitt, 2019). 

At this point, several evidences indicate that iron deficiency could impair the 

general translation activity of the cells: (i) decreased levels of several rRNAs, 

tRNAs, RPs and RiBis mRNAs are observed under iron deficiency (Romero et al., 

2019); (ii) the RLI1 ARE-containing mRNA (encoding the essential Fe/S protein 

involved in ribosome biogenesis and translation) is decreased in a Cth2-dependent 

manner as well as many mRNAs of amino acid biosynthesis pathways (Puig et al., 

2005; Puig et al., 2008); and (iii) the alpha subunit of the translation initiation 

factor (eIF2α) is phosphorylated under iron deficiency (Romero, 2018; Romero et 

al., 2020; Figure I-3: A and B). Regarding the latter argument, translation initiation 

is the principal translational regulated point in eukaryotes (reviewed by Gebauer 

& Hentze, 2004; Sonnenberg & Hinnebusch, 2009; Jackson et al., 2010; Hershey et 

al., 2012; Dever et al., 2016; Crawford & Pavitt, 2019). Under optimal growing 

conditions, the translation initiation factor eIF2 (with three subunits α, β and γ), 

GTP and methionyl-tRNA form the ternary complex, the first step in forming the 

pre-initiation complex in translation. At the end of the initiation phase of 

translation, GTP hydrolyzes into GDP and the ternary complex disassembles. Then, 

the guanine nucleotide exchange factor eIF2B recycles the eIF2-GDP into eIF2-GTP 

and the subsequent addition of methionyl-tRNA forms the ternary complex again. 

However, when the growth conditions are not favorable (amino acid starvation or 

other stresses) uncharged tRNAs bind the histidyl-tRNA synthetase (HisRS)-like 

domain of the kinase Gcn2. The Gcn1–Gcn20 complex facilitates the transfer of the 

uncharged tRNA from the translating ribosome to Gcn2 and activates the Gcn2 

kinase activity (Marton et al., 1997; Garcia-Barrio et al., 2000). However, Gcn2 

activation can occur under stresses that not necessarily increase the levels of 

uncharged tRNAs, but it still depends on the HisRS domain, the tRNA binding and 

the Gcn1–Gcn20 complex. The current model proposes a Gcn2 activation in a 

Tap42–PP2A-dependent manner when TORC1 complex is inactivated. Under this 

situation, TORC1 cannot phosphorylate Tap42 and the protein phosphatase 2A 

(PP2A) complex dephosphorylates Ser-577 of Gcn2 activating its kinase function 

(Di Como & Arndt, 1996; Jiang & Broach, 1999; Valenzuela et al., 2001; Cherkasova 
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& Hinnebusch, 2003; Kubota et al., 2003; Narasimhan et al., 2004; Hinnebusch, 

2005; Yan et al., 2006). Once Gcn2 kinase is active, it phosphorylates eIF2α in Ser-

51 (Dever et al., 1992) and consequently inhibits the eIF2B function, decreasing 

the ternary complex levels and blocking the 5’ cap-dependent translation 

initiation. On the other hand, and independently of the initial stress activating 

Gcn2, the GCN4 mRNA translation is enhanced under low ternary complex levels 

due to its regulation by four short upstream open reading frames (uORFs) 

(Hinnebusch et al., 2005). Gcn4 is a transcriptional factor that activates amino acid 

biosynthetic pathways, especially necessary under amino acid starvation. Indeed, 

the polysomal distribution of the GCN4 mRNA is more associated to polyribosome 

fractions after 6 hours of iron deficiency compared to iron sufficiency or earlier 

iron-deficient times (Romero, 2018; Romero et al., 2020; Figure I-3: C). This would 

indicate that the GCN4 transcript is probably in a more active translation state 

under iron starvation.  

Figure I-3. Previous results (Romero, 2018; Romero et al., 2020) showed a 

higher eIF2α phosphorylation and enhanced translation of the GCN4 mRNA 

under iron deficiency. The protein levels of eIF2α phosphorylated and total 
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eIF2α of wild-type W303 prototroph strain were analyzed by Western blot in SC 

cultures growing for 15 hours until early exponential phase. Then, cells were 

maintained in SC (+Fe, here indicated as 0 minutes in -Fe) or in SC with 100 µM 

BPS (-Fe) during 90, 180 or 360 minutes. (A) A representative result is shown. (B) 

Mean values and standard deviations from the quantification of three independent 

biological replicates are shown relative to the 0 minutes in -Fe. An asterisk (*) 

indicates a significant difference (p-value <0.05) from two-tailed student’s t-test 

compared to the SC condition (0 hours in -Fe). (C) Polysome profile experiments 

were performed under the same growth conditions before described and the GCN4 

mRNA profile was analyzed by RT-qPCR. 

Altogether, these results strongly suggest that if general translation initiation 

is compromised under iron starvation it is probably in a Gcn2/eIF2α-dependent 

manner. 

 

4. Respiration in iron deficiency 

Mitochondria produce energy from the aerobic metabolism that couples the 

ATP production (by the F1F0-ATP synthase, complex V) and the oxidative reactions 

of the TCA cycle and the ETC (complexes I-IV). This oxidative phosphorylation 

(OXPHOS) process is known as mitochondrial respiration. Mitochondria are also 

involved in other processes such as the amino acid metabolism, and the synthesis 

of Fe/S clusters, heme and lipoic acid. However, in yeast the only indispensable 

function of mitochondria is the biogenesis of Fe/S clusters. S. cerevisiae is a 

microorganism that can produce energy from fermentation or aerobic respiration. 

Although aerobic respiration could produce 17 times more ATP compared to 

fermentation, S. cerevisiae only respires a proportion of the total carbon source and 

this also depends on the carbon source available (Lagunas, 1986). Glucose is 

yeast’s preferred carbon source, and although only 3 % is metabolized through 

respiration, 34 % of the total ATP is produced by respiration because of the higher 

ATP yield (Lagunas, 1986). This is due to the fact that glucose represses 

respiration in yeast cells despite the presence of oxygen. But, upon glucose 

deprivation, the Snf1 kinase complex is activated by phosphorylation and 

derepresses the respiratory genes (reviewed by Kayikci & Nielsen, 2015). On the 
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other hand, respiration is a highly iron-consuming process and there is no growth 

under non-fermentable carbon sources during iron starvation. Indeed, during the 

diauxic shift, the iron regulon is induced in a Snf1 kinase complex- and Aft1-

dependent manner, suggesting the exceptional need of iron during respiration 

(Haurie et al., 2003). Moreover, during iron deficiency glycogen levels as well as 

mRNAs encoding glucose import and storage accumulate in a Cth1/2-dependent 

manner (Puig et al., 2008). Also Snf1 is phosphorylated under iron starvation 

although glucose is abundant (Puig et al., 2008). Thus, iron homeostasis, glucose 

sensing and respiration are highly connected processes. 

 

4.1. The Hap complex regulation 

The Hap complex is the master regulator of respiratory metabolism. It 

induces the expression of cytochromes and respiratory genes that contain the 

CCAAT box in their promoters (reviewed by Hortschansky et al., 2017; Mao & 

Chen, 2019). The DNA-binding domain of the Hap complex (Hap2/3/5) is 

constitutively expressed. The activation domain encoded by HAP4 is the only one 

transcriptionally regulated (DeRisi et al., 1997; Forsburg & Guarente, 1989). The 

activity of the complex is heme- and oxygen-dependent as: (i) the transcriptional 

factor Hap1 depends on heme and activates the HAP4 expression (Zhang & 

Guarente, 1995; Zhang & Hach., 1999); and (ii) heme directly binds Hap4 

increasing the half-life of the protein (Bouchez et al., 2020). In addition to the 

heme-dependent activity, the Hap complex is sensitive to oxidative stress. Thus, 

increased levels of ROS from mitochondria or after a H2O2 treatment, produce 

lower Hap activity and lower Hap4 protein levels (Chevtzoff et al., 2010). In the 

same way, decreased levels of reduced glutathione, involved in many ROS 

detoxifying reactions, produce very low Hap4 protein levels (Yoboue et al., 2012). 

During iron deficiency, the synthesis of heme is compromised and this directly 

downregulates the transcription of CYC1 (cytochrome c) dependently of both Hap1 

and Hap4 transcriptional activators (Ihrig et al., 2010). In the same direction, 

under low iron concentrations the hmx1Δ mutant (with defects in heme 

degradation) shows increased transcription of the CYC1 promoter (Protchenko & 

Philpott, 2003). 
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4.2. Cth2 mRNA targets in the Krebs cycle and the electron transport chain 

Respiration is the main source of intracellular ROS under physiological 

conditions (reviewed by Herrero et al., 2008; Murray et al., 2011; Baccolo et al., 

2018). Besides, the steady-state levels of Fe/S clusters are reduced in the presence 

of oxygen because of the formation of basal ROS (Ast et al., 2019). In this way, 

hypoxia rescues Fe/S cluster levels and their activity, and even rescues the frataxin 

mutant phenotype (member of the core ISC assembly machinery) (Ast et al., 2019). 

Additionally, a ROS-protective capacity of Cth2 during oxidative stress has been 

shown. Under oxidative stress, iron entrance is limited by downregulating the 

expression of some iron regulon members in a Cth2-dependent manner (Castells-

Roca et al., 2016). Also, the expression of Cth2 decreases the mitochondrial 

membrane potential under non-stress conditions (Matsuo et al., 2017). Despite 

these interesting results, the role of Cth2 in respiration during iron starvation has 

not been studied beyond the observation of decreased mRNA levels of several 

components of the TCA and ETC in a Cth2-dependent manner (Figure I-4; Puig et 

al., 2005; Puig et al., 2008; Romero et al., 2019). However, this strongly suggest a 

Cth2 role in the downregulation of respiration during iron deficiency that could 

help in the ROS reduction and in the cofactor preserving. 

-  Krebs cycle or tricarboxylic acid (TCA) cycle 

The Krebs or TCA cycle is the connection between glycolysis and the ETC as it 

oxidizes the acetyl-CoA to obtain NADH and FADH2 later used in ETC. It takes place 

in the mitochondrial matrix with the exception of the succinate dehydrogenase 

activity (SDH, complex II in the ETC) that takes place in the inner mitochondria 

membrane. Ten mRNAs that encode enzymes of the TCA cycle show increased 

levels in a cth2Δ mutant during iron starvation, and eight of them are ARE-

containing mRNAs (Figure I-4: A). Importantly, the aconitase enzyme (Aco1) 

contains a [4Fe-4S] cluster. On the other hand, the Sdh2 subunit from the SDH 

enzyme contains three different Fe/S clusters ([4Fe-4S], [3Fe-4S] and [2Fe-2S]) 

and Sdh3-Sdh4 subunits share a heme center. The alpha-ketoglutarate 

dehydrogenase has three subunits encoded by KGD1, KGD2 and LPD1. It does not 

contain iron but the Kgd2 subunit requires lipoic acid which synthesis requires the 
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lipoic acid synthase (encoded by LIP5). Lip5 contains two [4Fe-4S] clusters and its 

mRNA contains 3 AREs, putative targets for Cth2-dependent downregulation (Puig 

et al., 2005; Puig et al., 2008). 
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Figure I-4. The Cth2 mRNA-targets in the Krebs cycle (A) and Electron 

Transport Chain (B). The transcripts showing decreased mRNA levels in a Cth2-

dependent manner (Puig et al., 2005; Puig et al., 2008) are shown in red and those 

with AREs in the 3’UTR are underlined. Genes of the ETC complexes encoded by 

the mitochondrial genome are shown in green. 

 

- Complex I (NADH:ubiquinone oxidoreductase) 

In yeast, there is no complex I as such, instead there are three NADH 

dehydrogenases in the inner mitochondria membrane that do not pump protons 

(Figure I-4: B). There is one internal NADH dehydrogenase (NDI1) facing the 

mitochondrial matrix, and two external (NDE1 and NDE2) facing the 

intermembrane space. They transfer the electrons from NADH to ubiquinone 

(coenzyme Q) to reduce it to ubiquinol. Only the NDE1 mRNA shows increased 

levels in a cth2Δ mutant during iron starvation, but it is not an ARE-containing 

mRNA. 

- Complex II (succinate dehydrogenase, SDH) 

As mentioned before, this tetrameric enzyme contains three Fe/S clusters 

and one heme and it is the link between the ETC and the TCA cycle. It oxidizes 

succinate to fumarate in the TCA cycle and transfers the electrons from FADH2 to 

ubiquinone for reducing it to ubiquinol. The four subunits of the complex are ARE-

containing mRNAs that show increased levels in a cth2Δ mutant during iron 

starvation (Figure I-4: B). 

- Complex III (cytochrome c reductase or cytochrome bc1) 

This complex contains ten subunits (nine encoded by the nuclear genome 

and one, cytochrome b COB1, by the mitochondrial genome). All but one of the 

nuclear genes encode ARE-containing mRNAs with increased transcript levels in a 

cth2Δ mutant during iron starvation (Figure I-4: B). The complex III, together with 

the external NADH dehydrogenases, are the main sources of superoxide anions in 

the ETC (reviewed by Herrero et al., 2008; Murray et al., 2011; Baccolo et al., 



Introduction 

32 
 

2018). Complex III receives two electrons from ubiquinol. One electron passes 

through the [2Fe-2S] cluster of Rieske protein (encoded by RIP1), then through the 

cytochrome c1 (encoded by CYT1) and finally reduces the cytochrome c (encoded 

by CYC1 and CYC7). The other electron passes through the bL and bH heme groups 

of cytochrome b (encoded by the mitochondrial gene COB1) and returns to 

ubiquinone forming a semi-reduced ubiquinone. This semi-reduced ubiquinone 

would need another electron to be completely reduced and start a new cycle. The 

semi-reduced ubiquinone is highly reactive and, if the ETC is slow, it can react with 

oxygen leading to superoxide formation and subsequent H2O2. 

- Complex IV (cytochrome c oxidase, COX) 

This complex of eleven subunits transfers the electrons from the reduced 

cytochrome c to molecular oxygen. The three subunits encoded by the 

mitochondrial genome (COX1, COX2 and COX3) form the catalytic core of the 

complex, in which only Cox1 contains iron (and copper) in form of heme centers. 

Five of the nuclear genes encode ARE-containing mRNAs with increased transcript 

levels in a cth2Δ mutant during iron starvation (Figure I-4: B). 

- Complex V (F1F0-ATP synthase) 

The named complex V is not part of the ETC, but uses the protons pumped by 

the complexes II, III and IV in the synthesis of ATP. Only one subunit with no AREs 

in its mRNA shows increased transcript levels in a cth2Δ mutant during iron 

starvation (Figure I-4: B). 

 

5. Ribonucleotide reductase (RNR) in Saccharomyces cerevisiae 

Iron is closely related to the DNA metabolism. Several DNA repair enzymes 

(Pri2, Dna2, Rad3, Chl1, Ntg2, Tpa1), DNA polymerases (DNA Pol α, ε, δ and ζ) and 

the ribonucleotide reductase use iron as cofactor from yeast to humans (reviewed 

by Puig et al., 2017). Besides, defects in some ISC and CIA machineries members 

cause nuclear genome instability (Stehling et al., 2012; Gari et al., 2012; Pijuan et 

al., 2015). The RNR enzyme constitutes the limiting step in the de novo synthesis of 

deoxyribonucleoside triphosphates (dNTPs). The class I RNR is found in almost all 
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eukaryotic organisms, including yeast and humans, and contains an oxo-diiron 

cofactor. A poor control of the dNTP levels could cause DNA replication and repair 

problems and subsequent high mutation rates, genome instability and cancer. 

Indeed, human RNR activity is increased in some tumor types, and therefore it is a 

common target for anti-tumor therapies including iron chelators (reviewed by 

Richardson et al., 2009; Aye et al., 2015; Mannargudi & Deb, 2017; Knighton et al., 

2019).  

 

5.1.  Structure and function 

The class Ia RNR of S. cerevisiae contains the large R1 (α2) and the small R2 

(ββ’) subunits in a quaternary structure R13R2n (n=1 or 3). Besides, the unique aspect 

of S. cerevisiae is that R2 is a heterodimer (reviewed by Kolberg et al., 2004; 

Nordlund & Reichard, 2006; Cotruvo & Stubbe, 2011; Sanvisens et al., 2013; Puig et 

al., 2017). RNR enzyme catalyzes the synthesis of deoxyribonucleotides (dNDPs) 

reducing the corresponding ribonucleotides (NDPs) in the cytoplasm. Briefly, the 

large R1 subunit is usually an Rnr1 homodimer and sometimes an Rnr1–Rnr3 

heterodimer, however, RNR3 is usually expressed at very low levels (see below 

section 5.3). Each R1 component contains one catalytic and two allosteric effector 

sites. The latter are the specificity S and activity A sites that balance the four dNTP 

pools and control the general enzymatic activity, respectively. The A site is 

controlled by the dATP (inhibitor)/ATP (activator) ratio. On the other hand, the R2 

small subunit is an Rnr2–Rnr4 heterodimer with the essential diferric tyrosyl 

radical [(Fe3+)2-Y·] cofactor in Rnr2. Despite Rnr4 does not contain cofactor, it is 

essential for the cofactor assembly into Rnr2 as well as for R1–R2 assembly. 

Besides Rnr4, the cytosolic monothiol glutaredoxins Grx3 and Grx4 (Muhlenhoff et 

al., 2010) as well as Dre2–Tah18 members of the CIA machinery (Zhang et al., 

2011; Zhang et al., 2014) were described to be involved in the iron delivery to 

Rnr2. A few years later, Dre2 was described to be required for the RNR cofactor 

formation but to be dispensable for the Grx3/4-dependent iron loading (Li et al., 

2017). Thioredoxin or glutaredoxin systems are in charge of reducing two 

conserved cysteines in R1 catalytic site, then the electron is transferred to the 

cofactor in R2 and the NDP is reduced to dNDP. 
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5.2.  Regulatory aspects  

RNR function is tightly regulated and its enzymatic activity is restricted to 

periods when dNTPs are required (DNA damage, DNA replication stress or 

entering the S phase) to avoid elevated mutation rates. The Mec1–Rad53–Dun1 

checkpoint kinase pathway controls the RNR activity under these conditions, and 

also under iron-deficient conditions (Figure I-5 and Sanvisens et al., 2013; Puig et 

al., 2017). Also, different mechanisms limit the RNR activity under non-stress 

conditions. These are deactivated under iron deficiency, in some cases similarly to 

DNA damage and replication stress (Figure I-5):  

- (i) Sml1 protein inhibits RNR catalytic activity by directly binding to the 

Rnr1 protein. Under iron deficiency or in strains defective in the ISC 

assembly machinery, Sml1 is phosphorylated by Dun1 and its levels 

decrease, leading to an increase in RNR function (Sanvisens et al., 2014; 

Pijuan et al., 2015). Subsequent Sml1 degradation occurs in a 

vacuolar/proteasomal-dependent manner under iron-deficient conditions 

(Sanvisens et al., 2014). 

 

- (ii) Dif1 promotes the nuclear localization of R2 while R1 stays in the 

cytoplasm. Under iron starvation, Dun1 phosphorylates Dif1 and promotes 

the R2 cytoplasmic-localization and subsequent RNR activity (Sanvisens et 

al., 2016). Besides, there are reduced levels of Dif1 in defective strains of the 

ISC assembly machinery promoting the R2-cytoplasmatic localization 

(Pijuan et al., 2015). Also, Dif1 is more phosphorylated in a DRE2-defective 

(component of CIA machinery) strain in a Dun1-dependent manner (Zhang 

et al., 2014). 

 

- (iii) RNR2/3/4 genes are repressed by the transcriptional repressor Crt1. 

The expression of RNR2/3/4 increases in the DRE2-defective (component of 

CIA machinery) strain (that also induces the expression of CTH2) because of 

the phosphorylation and subsequent removal of the Crt1 repressor from 

their promoters (Zhang et al., 2014). Besides, there is an increased Rad53-
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phosphorylation and higher expression of RNR3, also in a Dun1-dependent 

manner, in strains defective in ISC and CIA machineries (Stehling et al., 

2012; Zhang et al., 2014).  

Figure I-5. Mechanisms of activation of S. cerevisiae ribonucleotide reductase 

enzyme under Fe/S cluster and iron deficient-conditions. (i) Sml1, (ii) Dif1 

and (iii) Crt1 are phosphorylated by Dun1 promoting the Rnr1 protein activity, 

avoiding the Rnr2–Rnr4 transport to the nucleus and derepressing the RNR2/3/4 

transcription, respectively. (iv) Transcriptional factors Aft1/2 activate the 

transcription of CTH1, CTH2 and RNR1. The Cth1/2 proteins promote the 

degradation of the ARE-containing WTM1 mRNA triggering the subsequent Rnr2–

Rnr4 cytoplasmic-localization. 

 

- (iv) The connection of the iron regulon with the iron-dependent RNR 

activity is remarkable as cells treated with hydroxyurea (HU), a specific 

RNR inhibitor, activate the iron regulon, and the aft1Δaft2Δ mutant is 

hypersensitive to HU (Dubacq et al., 2006). Wtm1 anchors R2 in the nucleus 
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while R1 stays in the cytoplasm. Cth1/2 downregulate the ARE-containing 

WTM1, RNR2 and RNR4 mRNAs (Sanvisens et al., 2011) in response to iron 

deficiency (and in ISC-CIA defective strains that activate the iron regulon). 

This happens in a Mec1–Rad53–Dun1 checkpoint pathway-independent 

manner. The downregulation of the RNR2 and RNR4 mRNA levels plus the 

redistribution of R2 to the cytoplasm increases the dNTP levels (Sanvisens 

et al., 2011). On the other hand, RNR1 was recently considered as a new 

member of the iron regulon. Aft1/2 enhance the RNR1 expression under 

iron limitation through two FeRE sites in the RNR1 promoter with a 

subsequent increase in the synthesis of dNTPs (Ros-Carrero et al., 2020). 

 

5.3. The RNR3 subunit 

Unlike RNR1, RNR3 is expressed at very low levels under non-stress 

conditions. No negative phenotype has been described in the rnr3Δ mutant under 

the stresses typically defined to strongly upregulate its expression (DNA damage, 

genotoxic stress, replication stress). However, RNR3 overexpression rescues the 

rnr1Δ mutant lethality (Elledge & Davis, 1990; Domkin et al., 2002). Indeed, Rnr1 

and Rnr3 proteins share 80 % amino acid sequence identity, and both maintain the 

amino acids for the catalytic and allosteric activities of RNR. All R1 combinations 

(Rnr1–Rnr1, Rnr1–Rnr3, Rnr3–Rnr3) are active, but the specific activity of Rnr3 is 

very low (Domkin et al., 2002). However, there is a strong synergism between 

Rnr1 and Rnr3 that probably increases the Rnr3 incorporation into the 

holoenzyme when RNR3 gene is expressed (Domkin et al., 2002). 

Despite the necessity of more efforts to elucidate the physiological function of 

Rnr3, some studies have described various differences between Rnr1 and Rnr3. 

Rnr3 lacks the dATP-dependent inhibition and this could be advantageous in the 

dNTP synthesis (Domkin et al., 2002). However, the rnr3Δ mutation does not cause 

lower dNTP levels in response to DNA damage (Chabes et al., 2003; Maicher et al., 

2017). More recently, it has been described that Rnr3 is not involved in the Rnr1 

function facilitating the elongation of short telomeres by telomerase (Maicher et 

al., 2017; Maicher & Kupiec, 2018). However, these authors showed that the 

deletion of CRT1, that causes the Rnr3 upregulation, was sufficient to increase the 
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dNTP levels compared to the dNTP levels in the wild-type. Also, the dNTP (except 

dGTP) levels were still higher than in the wild-type in the rnr1Δcrt1Δ mutant 

(Maicher et al., 2017). These results demonstrate a possible advantageous role of 

Rnr3 in the synthesis of dNTPs (except dGTP) compared to Rnr1. Finally, a recent 

study showed that Rnr3 is upregulated in a Mec1-dependent manner under non-

fermentable carbon sources or limiting concentrations of glucose, while Rnr1 is 

downregulated (Corcoles-Saez et al., 2019). Importantly, these authors show that 

the rnr3Δ mutant has a negative phenotype growing in glycerol and suggest a 

dNTP-independent role of Rnr3 in mitochondrial function (Corcoles-Saez et al., 

2019). 

Rnr3 is almost undetectable under non-stress conditions. But its property of 

being highly induced (or derepressed) under DNA damage or replication stress has 

been used as a sensor of genome instability, replication stress responses or 

chemical-genotoxicity in several studies, some at genome-wide level (Ochi et al., 

2011; Wei et al., 2013; Hendry et al., 2015). Several proteins are involved in the 

RNR3-promoter repression. As above mentioned, Crt1 is a transcriptional 

repressor of RNR2/3/4. Crt1 binds motives known as X-box. These are cis-

regulatory elements of 13 nucleotides present in the promoter of RNR2/3/4 

damage‑inducible genes and also the CRT1 promoter (Huang et al., 1998). Crt1 

represses the RNR3 transcription by recruiting the general repressor complex 

Tup1–Ssn6, that positions nucleosomes through the chromatin remodeling 

complex ISW2 and recruits several histone deacetylases (Huang et al., 1998; Li & 

Reese, 2001; Zhang & Reese, 2004a; Zhang & Reese, 2004b; Zhang & Reese, 2005; 

Sharma et al., 2007). Under DNA damage, Crt1 is phosphorylated in a Mec1–

Rad53–Dun1-dependent manner and dissociates from the RNR3 promoter (Huang 

et al., 1998). But, before dissociating the RNR3 promoter, Crt1 binds the general 

transcription factor TFIID and the chromatin remodeling complex SWI/SNF, that 

promotes nucleosome remodeling, for the derepression of RNR3 (Li & Reese, 2000; 

Sharma et al., 2003; Zhang & Reese, 2005). Interestingly, the chromatin remodeling 

complexes ISW2 and SWI/SNF repress and activate RNR3, respectively, 

antagonistically (Tomar et al., 2009). Also, the multifunctional protein Rap1 

involved in transcription is required for the activation of RNR3 in a Mec1–Rad53–

Dun1, TFIID and SWI/SNF-dependent manner, probably preventing the 
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repositioning of nucleosomes and stabilizing the TFIID binding (Tomar et al., 

2008). Besides TFIID, the full transcriptional activation of RNR3 requires Gcn5, the 

catalytic subunit of the SAGA histone acetyltransferase complex (Zhang et al., 

2008; Ghosh & Pugh, 2011). Other mechanisms regulate the expression of RNR3. In 

response to DNA damage, the Hrr25 kinase phosphorylates Swi6 and this is 

required for the RNR3 transcriptional upregulation via the cell cycle regulator SBF 

complex (Swi6–Swi4) (Ho et al., 1997). 

Rox1 and Mot3 are also Ssn6–Tup1-recruiting transcriptional repressors, but 

in this case, of hypoxic genes. Mot3 enhances the repression function of Rox1 by 

helping it in the recruitment of Ssn6–Tup1 (Klinkenberg et al., 2005). Besides, 

Rox1 and Mot3 bind the promoters of RNR2/3/4. The repression of RNR3 by Crt1 

together with the Rox1 and Mot3 repression works synergistically under non-

stress conditions (Klinkenberg et al., 2006).  Additionally, under DNA damage or 

genotoxic stress, Rox1 and Mot3 still repress RNR3, but in a weaker manner 

compared to when Crt1 is also attached (Klinkenberg et al., 2006). 
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In the context of the model eukaryotic organism Saccharomyces cerevisiae, 

the present doctoral thesis aims to characterize the general translational 

repression and novel functions of Cth2 during the progress of iron starvation. For 

these purposes, this thesis has been divided in four chapters corresponding to the 

following objectives: 

1. To decipher the molecular pathways involved in the general translational 

repression that occurs in response to iron deficiency, and how it affects 

particular transcripts. 

 

2. To elucidate the role of Cth2 protein, its conserved domains, and AREs in 

the selective translational repression of specific mRNAs in response to 

iron deficiency. 

 

3. To determine the contribution of Cth2 to mitochondrial respiration 

activities under iron-sufficient and iron-deficient conditions. 

 

4. To characterize the molecular mechanisms that induce the expression of 

RNR3 upon long-term iron deficiency. 

 

 

 

 

 

 

 

 

 



 

42 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

43 
 

 

 

 

 

Materials and Methods 
  



 

44 
 

 



Materials and Methods 

45 
 

Materials and Methods 

1. Microbiological techniques in Saccharomyces cerevisiae 

 

1.1. List of Saccharomyces cerevisiae strains 

SPY number Strain Genotype Source 

SPY382 
W303a 

prototroph  

HTLU-2832-1B MATa, 
HIS3, TRP1, LEU2, URA3, 

ADE2, can1 

Frederick R. 
Cross Lab 

SPY1159 ura3Δ 
W303a prototroph 

ura3::hphB 
Romero et al., 

2020.  

SPY1160 gcn2Δura3Δ  
W303a prototroph 

(SPY1159) gcn2::KanMX4 
Romero et al., 

2020.  

SPY1012 SUI2 

RS86 MATa, ura3-52, leu2-
3,-112, trp1-Δ63, Δsui2, 

Δp919, [SUI2, URA3] pRS-
65 [pRS414 SUI2-TRP1] 

Hueso et al., 
2012.  

SPY1013 SUI2-S51A 

RS88 MATa ura3-52, leu2-
3,-112, trp1-Δ63, Δsui2, 

Δp919, [SUI2, URA3] pRS-
67 [pRS414 SUI2-S51A-

TRP1] 

Hueso et al., 
2012.  

SPY17 BY4741 
MATa, his3Δ1, leu2Δ0, 

met15Δ0, ura3Δ0 
Research 
Genetics 

SPY999 gcn2Δ  BY4741 gcn2::KanMX4 
Research 
Genetics 

SPY1146 gcn1Δ  BY4741 gcn1::KanMX4 
Research 
Genetics 

SPY245 sdh4Δ BY4741 sdh4::KanMX4 
Research 
Genetics 

SPY122 cth1Δcth2Δ 
 BY4741 cth1::KanMX4, 

cth2::His3MX6 
Puig et al., 

2005.  

SPY251 cth1Δcth2Δsdh4Δ 
BY4741 cth1::KanMX4, 

cth2::HisMX6, sdh4::hphB 
Puig et al., 

2005.  

SPY386 fet3Δfet4Δ 
BY4741 fet3::URA3, 

fet4::KanMX4 
Sanvisens et al., 

2011.  

SPY28 aft1Δ BY4741 aft1::KanMX4 
Research 
Genetics 

SPY904 aft1Δcth2Δ 
BY4741 (SPY25) 

aft1::hphB, cth2::KanMX4 
Ramos-Alonso 
et al., 2018b.  

SPY325 cth1Δcth2Δ 
 BY4741 (SPY25) 

cth1::hphB, cth2::KanMX4 
Sanvisens et al., 

2011.  



Materials and Methods 

46 
 

SPY number Strain Genotype Source 

SPY387 W303-1a 
MATa, ade2-1, trp1-1, leu2-

3,112, his3-11,15, ura3, 
can1-100, GAL+, psi+ 

Seiko Ishida 
Lab 

SPY391 sml1Δ W303-1a sml1::HIS3 Yao et al., 2003.  

SPY388 dun1Δ W303-1a dun1::HIS3 Yao et al., 2003.  

SPY390 rad53Δsml1Δ 
W303-1a rad53::HIS3, 

sml1::HIS3 
Yao et al., 2003.  

SPY131 cth1Δ  BY4741 cth1::KanMX6 Puig et al., 2005 

SPY25 cth2Δ  BY4741 cth2::KanMX4 
Research 
Genetics 

SPY556 dun1Δ  BY4741 dun1::KanMX4 
Research 
Genetics 

SPY452 cth1Δcth2Δ 
BY4741 cth1::hphB, 

cth2::His3MX6  
Fe homeostasis 

Lab 

SPY454 dun1Δcth1Δcth2Δ 
BY4741 (SPY556) 

cth1::hphB, cth2::His3MX6 
Fe homeostasis 

Lab 

SPY814 crt1Δ  BY4741 crt1::KanMX4 
Research 
Genetics 

SPY805 cth1Δcth2Δcrt1Δ 
BY4741 (SPY452) 

crt1::KanMX4 
This study 

SPY813 rox1Δmot3Δ 
BY4741 rox1::KanMX4, 

mot3::His3MX6 
Markus Proft 

Lab 

SPY818 
rox1Δmot3Δcth1Δ

cth2Δ 
BY4741 (SPY813) 

cth1::hphB, cth2::loxP 
This study 

SPY819 rox1Δmot3Δcrt1Δ 
BY4741 (SPY813) 

crt1::loxP 
This study 

SPY820 
rox1Δmot3Δcrt1Δ

cth1Δcth2Δ 
BY4741 (SPY818) 

crt1::loxP-LEU2-loxP 
This study 

SPY998 rnr3Δ BY4741 rnr3::His3MX6 This study 

 

1.2. Liquid growth media 

- Complete medium for yeast growth (YPD) was prepared with yeast extract 

1 % (w/v), bacteriological peptone 2 % (w/v) and glucose 2 % (w/v). In the YPEG 

medium ethanol 2 % and glycerol 3 % were added instead of glucose. 
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- Synthetic complete medium (SC) and synthetic complete lacking specific 

requirements (SC minus) for selection of auxotrophic markers were prepared 

using specific amino acid drop-out supplements at 0.2 % (w/v) (Kaiser, 

Formedium). Besides, in both cases, they were prepared with yeast nitrogen base 

without amino acids and ammonium sulfate (Condalab) 0.17 % (w/v), (NH4)2SO4 

0.5 % (w/v) and glucose 2 % (w/v). In some cases, galactose 2 % (w/v) was added 

instead of glucose.  

- For iron-sufficient (+Fe) conditions with SC or SC minus media, ferrous 

ammonium sulfate (FAS, Sigma) was added in the indicated cases to a final 

concentration of 10 μM. 

- For iron-deficient (-Fe) conditions with SC or SC minus media, 

bathophenanthrolinedisulfonic acid (BPS, Sigma), a specific Fe2+ chelator, was 

always added to a final concentration of 100 μM. Only in the analysis of cell growth 

experiments (section 1.4 of Materials and Methods) different BPS concentrations 

or another Fe2+ specific chelator, 3-(2-Pyridyl)-5,6-diphenyl-1,2,4-triazine-4′,4′′-

disulfonic acid sodium (ferrozine, Fz, Sigma), were used as indicated in each case.  

- For genotoxic stress conditions, SC medium was supplemented during 1 

hour with hydroxyurea (HU, Sigma) to a final concentration of 0.2 M, methyl 

methanesulfonate (MMS, Sigma) at 0.04 %, or 4-nitroquinoline N-oxide (4-NQO, 

Sigma) at 0.2 mg/L. 

- Minimal medium (SD) was mostly used in the determination of iron-

dependent enzymatic activities (section 4.6 of Materials and Methods). The 

medium was prepared as SC, but without drop-out supplementation. Only 

requirements corresponding to the auxotrophic mutations were added if 

necessary, at the concentrations of the Kaiser (Formedium) drop-out (histidine 76 

mg/L, leucine 380 mg/L, methionine 76 mg/L and uracil 76 mg/L). In the SD +Fe 

condition, 50 µM of ferric ammonium citrate (FAC) was added to the SD medium, 

whereas the SD -Fe condition corresponded to an iron-free SD medium (yeast 

nitrogen base without amino acids, ammonium sulphate and iron, Formedium) 

without the addition of any metal chelator. 
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- SD with 3-aminotriazole (3-AT) was used as control treatment to trigger 

amino acid starvation, since it inhibits the product of the HIS3 gene and therefore, 

histidine biosynthesis. Times and concentrations used are indicated in each case. 

1.3. Solid growth media 

Solid media were obtained by adding bacteriological agar to a final 

concentration of 1.5 % (w/v) to the liquid media before autoclave sterilization. 

BPS, ferrozine and 3-AT were added before pouring the solution. For antibiotic 

resistance selection, Geneticin (G418, Gibco Life Technologies) was added to a final 

concentration of 200 μg/mL and Hygromycin B (Invivogen) to a final 

concentration of 300 μg/mL. SC-Ura plates with 5-Fluoroorotic Acid (5-FOA) were 

used for selection of ura3Δ cells (5-FOA 0.1 % (w/v) and uracil 12 mg/L). 

1.4. Analysis of cell growth 

Individual colonies were cultivated at 30 °C overnight in 3 mL of the 

appropriate SC minus medium for selection of auxotrophic markers. Later on, cells 

were reinoculated in 3 mL of fresh medium to an OD600 of 0.2 for 4-6 hours at 30 

°C, allowing 2-3 yeast duplications events. At least three biological replicates were 

used to study yeast cell growth in different liquid and solid media.  

In liquid media, cells were washed and the OD600 was adjusted to 1.0 with 

sterile distilled water. 10 µL of cells were inoculated per well in a 96-well plate, 

previously filled with 260 µL of the liquid medium indicated in each case. The 

OD600 was monitored in a SPECTROstar Omega instrument (BMG Labtech, 

Offenburg, Germany) every 30 min during 3-4 days at 30 °C, with 20 sec of shaking 

at 500 rpm before each measurement. Mean values of the growth curves (OD600 vs. 

time) were represented and the maximum OD600 mean values were determined. 

Besides, the µmax (maximum specific growth rate, h-1) parameter was calculated 

from each well using the reparameterized Gompertz equation (Zwietering et al., 

1990), 

ln (ODt/OD0) = D * e^ {-e^[((μmax*e)/D)*(λ - t) + 1]} 

where OD0 is the initial OD600 and ODt is the OD600 at time t; D = ln(OD∞/OD0) is the 

OD600 value reached with OD∞ as the asymptotic maximum, and λ is the lag phase 

period (h). 
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In solid media, cell cultures were diluted to an OD600 of 0.1 and then two 10-

fold serial dilutions were performed (1:10, 1:100). Approximate volumes of 3 µL 

were plated onto the agar media with the replicate plater for 96-well plate (Sigma). 

Plates were incubated at 30 °C for 4-10 days and images of the plates were taken 

every 2-3 days. 

1.5. Cell viability 

Cell viability was determined by counting in YPD agar plates the number of 

Colony Forming Units (CFUs) of a strain that was previously subjected to iron 

deficiency. Three independent exponential phase cultures were cultivated in both 

iron-sufficient and iron-deficient conditions. The OD600 was measured, and 10-fold 

serial dilutions were performed for plating and counting between 30-300 CFUs 

after 2-3 days of incubation at 30 °C. Then, cell viability was calculated as (CFUs x 

dilution) / OD600. Relative viabilities at the different times of the iron deficiency 

were represented compared to the iron-sufficient condition. 

 

2. Microbiological and molecular techniques in Escherichia coli 

 

2.1. E. coli strains 

Subcloning Efficiency™ DH5α Competent Cells (Invitrogen, ThermoFisher 

Scientific). Genotype: F- φ80lacZΔM15 Δ(lacZYA-argF)U169 recA1 endA1 

hsdR17(rk-, mk+) phoA supE44 thi-1 gyrA96 relA1 λ- 

One Shot® TOP10 Chemically Competent E. coli (Invitrogen, ThermoFisher 

Scientific). Genotype: F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacΧ74 recA1 

araD139 Δ(ara-leu) 7697 galU galK rpsL (StrR) endA1 nupG λ- 

2.2. Growth conditions 

The Lysogeny Broth (LB) medium was used to grow E. coli: NaCl 1 % (w/v), 

tryptone 1 % (w/v) and yeast extract 0.5 % (w/v). For LB agar plates, 1.5 % (w/v) 

of agar was added. In both cases, ampicillin (50 µg/mL) was used to select the 

bacteria with the plasmids containing the antibiotic-resistance gene. 

2.3. Plasmid construction 
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The DNA sequences for cloning (insert) were amplified by the polymerase 

chain reaction (see section 3.1 of Materials and Methods) using oligonucleotides 

with restriction sites that flanked the insert. After PCR product purification 

(Illustra GFX PCR DNA and Gel Band Purification Kit, GE Healthcare) the plasmid 

and the insert were digested with restriction enzymes according to manufacturer’s 

instructions. Then, the removal of the 5’ phosphate from the plasmid was made for 

preventing recircularization (FastAP Thermosensitive Alkaline Phosphatase, 

Thermo Scientific). Finally, both digested DNAs were isolated by gel purification 

(Illustra GFX PCR DNA and Gel Band Purification Kit, GE Healthcare) to subsequent 

ligation (Rapid DNA Ligation Kit, Roche). 

2.4. E. coli transformation and plasmid extraction 

The competent E. coli strains One Shot® TOP10 and DH5α (see section 2.1 of 

Materials and Methods) were used for propagation of newly ligated and already 

verified plasmids, respectively. Transformation was made according to 

manufacturer’s instructions. For posterior plasmid extraction, the GeneJET 

Plasmid Miniprep Kit (Thermo Scientific) was used. In the case of new constructs, 

plasmids coming from several individual colonies were analyzed by PCR and/or 

restriction enzyme digestion followed by DNA sequencing to check the position 

and sequence of the insert.  

2.5. List of plasmids 

pSP 
number 

Plasmid description Source 

pSP1116 p180: pRS416-GCN4-lacZ Hinnebusch, 1985.  

P37 pRS413 Sikorski & Hieter, 1989.  

P127 pFA6-pAG32-hphMX4 Goldstein & McCusker, 1999.  

pSP888 pRS416-Flag2-SDH4 Ramos-Alonso et al., 2018a.  

pSP527 pRS416-SDH4 Puig et al., 2005.  

pSP889 pRS416-Flag2-SDH4-AREmt Ramos-Alonso et al., 2018a.  

pSP528 pRS416-SDH4-AREmt Puig et al., 2005.  

pSP419 pRS415-CTH2 Puig et al., 2005.  

P39 pRS415 Sikorski & Hieter, 1989.  
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pSP 
number 

Plasmid description Source 

pSP571 pRS415-CTH2-C190R Puig et al., 2005.  

pSP414 pRS416-Flag2-CTH2 Puig et al., 2005.  

pSP760 pRS416-Flag2-CTH2-AREmt Martínez-Pastor et al., 2013a.  

pSP410 pRS416-CTH2 Puig et al., 2005.  

pSP758 pRS416-CTH2-AREmt Puig et al., 2005.  

pSP429 pRS416-Flag2-CTH2-C190R Martínez-Pastor et al., 2013a.  

pSP427 pRS416-CTH2-C190R Puig et al., 2005.  

pSP457 pRS416-GFP-CTH2 Vergara et al., 2011.  

pSP724 pRS416-GFP-ΔN89-CTH2 Vergara et al., 2011.  

pSP464 pRS416-GFP-ΔN170-CTH2 Ramos-Alonso et al., 2018a.  

pSP465 pRS416-GFP-ΔC52-CTH2 Ramos-Alonso et al., 2018a.  

pSP949 pRS415-Flag2-SDH4 Ramos-Alonso et al., 2018a.  

pSP569 pRS415-SDH4 Puig et al., 2005.  

pSP529 pRS415-GAL1-SDH4 Puig et al., 2005.  

P40 pRS416 Sikorski & Hieter, 1989.  

pSP449 p416-TEF-Flag2-CTH2 Sato et al., 2018.  

pSP450 
p416-TEF-Flag2-CTH2-

C190R 
Sato et al., 2018.  

pSP486 p416-TEF-CTH1 Puig et al., 2008.  

pSP487 p416-TEF-CTH1-C225R Fe homeostasis Lab 

P175 pRS316-AFT1-1UP(C291F) Rutherford et al., 2001.  

pSP425 p416-TEF-CTH2 Puig et al., 2008.  

P139 
pUG73 (LEU2, 

Kluyveromyces lactis) 
Gueldener et al., 2002.  

P140 pSH47 (GAL1-cre) Güldener et al., 1996.  

P3 pFA6a-His3MX6 Wach et al., 1997.  

pSP638 pRS416-RNR3-lacZ Klinkenberg et al., 2006.  

 

3. General molecular biology techniques 

 

3.1. Polymerase chain reaction (PCR) 

PCR was used to amplify DNA fragments and generate deletion cassettes, 

cloning inserts and to test yeast transformants and constructed plasmids. The DNA 

polymerases Expand High Fidelity (Roche) or Phusion High-Fidelity (Finnzymes) 

were used when 3’-5’ exonuclease activity was needed. When the proofreading 
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activity was not required, the DNA polymerase Biotaq (Bioline) was used. The list 

of oligonucleotides used in PCR are listed in the section 3.2 of Materials and 

Methods. The PCR was performed in a thermocycler (Mastercycler personal, 

Eppendorf). PCR cycles consisted of an initial denaturing step at 95 °C, several 

amplification cycles divided in 3 steps (denaturation, annealing and elongation) 

and a final extension step. Durations and temperatures depended on the DNA 

polymerase used and the size to amplify. Manufacturer’s instructions were 

followed. 

3.2. List of oligonucleotides for PCR 

SPO 
number 

Primer Primer sequence 5'-3' Use 

SPO2077 URA3-pAG-F 

TCTTAACCCAACTGCACAGAAC
AAAAACCTGCAGGAAACGAAGA
TAAATCATGGTACGCTGCAGGT

CGACA 

SPY1159 construction 
(ura3::hphB from 

pAG32) 

SPO2078 URA3-pAG-R 

GCTCTAATTTGTGAGTTTAGTA
TACATGCATTTACTTATAATAC
AGTTTT ACTAGTGGATCTGAT

ATC 

SPY1159 construction 
(ura3::hphB from 

pAG32) 

SPO2041 GCN2-294 F GGACTATAGTGATGTAGGTAG 

SPY1160 construction 
(gcn2::KanMX4 from 

SPY999) 

SPO2043 GCN2+124 R GGTGACCTACCCCCTTTACA 

SPY1160 construction 
(gcn2::KanMX4 from 

SPY999) 

SPO2040 GCN2-383 F GACGTGCAAGGGCCTGCTTG 
SPY1160 gcn2::KanMX4 

verification 

SPO1318 CRT1-193-F CTCGTGGCTCACCTATGGAT 

SPY805 construction 
(crt1::KanMX4 from 

SPY814) 

SPO1320 CRT1+209-R CTCATCACTCCATCTCATCCTAT 

SPY805 construction 
(crt1::KanMX4 from 

SPY814) and SPY819 
crt1::loxP verification  

SPO1319 CRT1-251-F GTAGCGCCACTCCACGATAT 

SPY805 crt1::KanMX4, 
SPY819 crt1::LEU2-loxP 
and SPY819 crt1::loxP 

verifications 

SPO1104 Kan-R-atg GTGAGTCTTTTCCTTACCCAT 
SPY805 crt1::KanMX4 

verification  

SPO1200 CTH1-300-F GTCTGTGCCAATGGCACCCAA 

SPY818 construction 
(cth1::hphB from 

SPY325) 

SPO1201 CTH1+300-R ACAAAGCCGATCATTTGGCAA 

SPY818 construction 
(cth1::hphB from 

SPY325) 
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SPO 
number 

Primer Primer sequence 5'-3' Use 

SPO1199 CTH1-500-F 
CGCGGATCCATACCAACCGACAG

CATGGGAAA 
SPY818 cth1::hphB 

verification  

SPO1148 hphB:500-R GGTCGGAGACGCTGTCGAACT 
SPY818 cth1::hphB 

verification  

SPO1094 
CTH2-43-

pUG-F 

GTTGTTGGGACTTGGAGGCTCT
TGGTAGGTCGTATTTGTGCATC

TTGAGAGAAACAGCTGAAGCTT
CGTACGC 

SPY818 construction 
(cth2::LEU2-loxP from 

PUG73) 

SPO1095 CTH2-pUG-R 
TGTTTAGTTGAGACGCCGGTCT
TCGCCAGGCCAGGAATTGTTTC
ATAGGCCACTAGTGGATCTG 

SPY818 construction 
(cth2::LEU2-loxP from 

PUG73) 

SPO1205 CTH2-340-F 
CGCGGATCCAGCCCATTTGCGTC

TTC 
SPY818 cth2::LEU2-loxP 

verification  

SPO1016 LEU2-B-R AGTTATCCTTGGATTTGG 

SPY818 cth2::LEU2-loxP 
and SPY819 crt1::LEU2-

loxP verifications  

SPO1204 CTH2-500-F 
CGCGGATCCCCAGCCCAGAGGGT

TCAAACGTT 
SPY818 cth2::loxP 

verification  

SPO1214 CTH2+300-R TGGGCCGATGTTCAAGGAATA 
SPY818 cth2::loxP 

verification  

SPO1328 CRT1-pUG-F 
TGTCATGGCGATTTGGGAAAAA
GTTGAAAAAAAAAATAGCAGTA

ACAGCTGAAGCTTCGTACGC 

SPY819 construction 
(crt1::LEU2-loxP from 

pUG73) 

SPO1329 CRT1-pUG-R 

GTTATATTCTTTTTTAAATATC
CCCATATACTAATGATAGAACT
TGCATAGGCCACTAGTGGATC

TG 

SPY819 construction 
(crt1::LEU2-loxP from 

pUG73) 

SPO1852 RNR3-F1 
CAAGAATAGCAGCAGCAATAAA
TCAAATACTCCCACACAACGGA

TCCCCGGGTTAATTAA  

SPY998 construction 
(rnr3::His3MX6 from 

pFA6a-His3MX6) 

SPO1853 RNR3-R1 
CCAAGTTAGATAAGGAAAGGGA
AAAATGCCACCAGAAAGAGAAT

TCGAGCTCGTTTAAAC  

SPY998 construction 
(rnr3::His3MX6 from 

pFA6a-His3MX6) 

SPO1854 RNR3-269-F TGCCATGGCGAGGACCAAAC  
SPY998 rnr3::His3MX6 

verification 

SPO1014 TEFprom-R GGGCGACAGTCACATCAT 

SPY998 rnr3::His3MX6 
and SPY1160 
gcn2::KanMX4 
verifications 
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3.3. Agarose gel electrophoresis 

DNA size determination and separation, as well as the RNA quality control, 

were carried out in 1.0 or 1.5 % (w/v) agarose gels. Agarose was dissolved in the 

electrophoresis buffer TAE 1x (Tris Base 40 mM, glacial acetic acid 20 mM, EDTA 

pH 8.0 1 mM). When the solution was tempered, 2 µL of GreenSafe Premium 

nucleic acid stain (Nzytech) were added per 100 mL. The 1 Kb Plus DNA Ladder 

(Invitrogen, ThermoFisher Scientific) or the FastGene 50 bp DNA Ladder (NIPPON 

Genetics) were used for estimating the size of large and small DNA products, 

respectively. Nucleic acids were resuspended in DNA Gel Loading Dye (Thermo 

Scientific) and visualized under UV illumination.  

 

4. Molecular biology techniques in Saccharomyces cerevisiae 

 

4.1. DNA-related molecular techniques 

 

4.1.1. Genomic DNA extraction 

Genomic DNA (gDNA) was obtained from a 10 mL yeast overnight culture 

grown in YPD at 30 °C. The culture was centrifuged at 4000 rpm for 2 min and 

washed with sterile distilled water. Then, cells were resuspended in 200 µL of lysis 

buffer (Triton X-100 2 %, SDS 1 %, NaCl 100 mM, Tris-HCl pH 8.0 10 mM) and 

transferred into a screw-cap tube already containing 300 µL of sterile glass beads 

and 200 µL of phenol:chloroform:isoamyl alcohol (25:24:1) saturated with 10 mM 

Tris-HCl pH 8.0 and 1 mM EDTA (Sigma). Cells were broken using the Millmix 20 

bead beater (Tehtnica) with 3 shaking cycles of 30 sec each.  A volume of 200 µL of 

TE 1x buffer (Tris-HCl pH 8.0 10 mM, EDTA 1 mM) was added to each tube and 

they were centrifuged at 12000 rpm for 5 min. The aqueous layer was transferred 

into a fresh tube, and nucleic acids were precipitated with 1 mL of 96 % ethanol. 

Each sample was again centrifuged at 12000 rpm for 5 min and the pellet was 

resuspended in 400 µL of TE 1x buffer. A volume of 30 µL of RNase A (1 mg/mL) 

was added to eliminate the RNA contaminants during 1 hour at 37 °C. DNA was 

then precipitated by adding 10 µL of ammonium acetate 4 M and 1 mL of 96 % 
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ethanol. Finally, after centrifuging at 12000 rpm for 5 min and washing with 96 % 

ethanol, the dried DNA pellet was resuspended in 100 µL of TE 1x buffer. 

4.1.2. Obtention of new strains by gene disruption 

The disruption of genes was carried out with deletion cassettes generated by 

PCR (see section 3.1 of Materials and Methods) that allowed auxotrophic or 

antibiotic resistance selection. The PCR products were concentrated by 

precipitation with 2.5 volumes of 96 % ethanol and 0.1 volumes of sodium acetate 

3 M, washed with 70 % ethanol, dried and resuspended in sterile water before 

yeast transformation. In some cases, loxP-flanked gene disruption cassettes were 

generated from the pUG73 plasmid (Gueldener et al., 2002). This allowed the later 

marker rescue using the cre expression plasmid pSH47 (see the list of plasmids in 

section 2.5 of Materials and Methods). The expression of the Cre recombinase was 

induced by cultivating the transformants 2 hours in galactose-containing medium, 

as detailed in Güldener et al. (1996). The loss of the marker gene was verified by 

PCR and by plating in selective and non-selective media. The later selection of 

mutants without the cre plasmid was performed by plating in 5-FOA (see section 

1.3 of Materials and Methods) 

4.1.3. Yeast transformation 

Yeast transformation with plasmids or with deletion cassettes was carried 

out following the lithium acetate-based method (Gietz & Woods, 2002). After 

thermal shock, transformants selected by antibiotic resistance were incubated 2 

hours in YPD at 30 °C before plating in the selective medium. Selection plates were 

incubated at 30 °C for 2-3 days. 

4.1.4. Chromatin immunoprecipitation (ChIP) 

To perform chromatin immunoprecipitation (chIP) analysis, 25 OD600 units 

(in a total volume of 50 mL) were collected for each exponential phase culture. The 

protein-chromatin cross-linking was made by adding 1.35 mL of formaldehyde 37 

% and incubating 15 min at room temperature with occasional mixing. Then, a 

volume of 2.5 mL of glycine 2.5 M was added to each sample and, after 5 min, the 

samples were placed on ice. After centrifuging at 4000 rpm for 5 min at 4 °C, cells 
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were washed 4 times with 20 mL of TBS pH 7.5 (Tris Base 25 mM, NaCl 15 mM) 

and snap frozen in liquid nitrogen. 

Pelleted cells were then resuspended in 300 μL of lysis buffer (HEPES pH 7.5 

50 mM, NaCl 140 mM, EDTA pH 8.0 1 mM, Triton X-100 1 %, sodium deoxycholate 

0.1 %, PMSF 1 mM, benzamidine 1 mM and cOmplete™ Protease Inhibitor Cocktail) 

and transferred into screw-cap tubes containing 300 µL of glass beads. Cells were 

broken using the Precellys 24 homogeniser (Bertin Technologies) in two rounds of 

20 sec at 6500 rpm. Then, 150 μL of lysis buffer were added and glass beads were 

eliminated by centrifugation at 2000 rpm for 1 min at 4 °C. Cell lysates were then 

sonicated in a chilled water bath using Bioruptor (Diagenode) to generate 

chromatin fragments between 300-600 base pairs. After a centrifugation at 12000 

rpm for 5 min at 4 °C, 10 μL of each supernatant were transferred into new tubes 

and maintained on ice (INPUT samples). The rest of supernatants (IP samples) 

were incubated (2 h and 30 min at 4 °C) with magnetic beads Dynabeads™ Pan 

Mouse IgG (Invitrogen, ThermoFisher Scientific) previously overnight combined 

with the monoclonal antibody that recognizes Rpb1, the largest subunit of the RNA 

polymerase II (8WG16, BioLegend). 

Once the incubation finished, samples were centrifuged at 3000 rpm for 1 

min at 4 °C and supernatants were removed using a magnetic rack. Then, 

successive washes were performed: twice with 1 mL of lysis buffer, twice with 1 

mL of lysis buffer containing NaCl 360 mM, twice with 1 mL of wash buffer (Tris-

HCl pH 8.0 10 mM, LiCl 250 mM, NP-40 0.5 %, sodium deoxycholate 0.5 %, EDTA 

pH 8.0 1 mM) and once with 1 mL of TE buffer (Tris-HCl pH 8.0 10 mM, EDTA 1 

mM).  

Following washing, 50 μL of elution buffer (Tris-HCl pH 8.0 50 mM, EDTA pH 

8.0 10 mM, SDS 1 %) were added to elute the samples from the Dynabeads during 

10 min at 600 rpm at 65 °C (Thermomixer, Eppendorf). A volume of 40 μL of 

supernatant was transferred into a new tube, and the elution process was repeated 

again with 30 μL more of elution buffer. Finally, additional elution buffer was 

added to all supernatants (IP and INPUT samples) to a final volume of 150 μL. A 

posterior 15 h incubation at 600 rpm at 65 °C was performed to reverse cross-

linking. 
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To finally obtain the DNA, each sample was treated with 7.5 μL of Proteinase 

K (Roche) and 142.5 μL of TE buffer at 600 rpm at 37 °C during 1 h 30 min. Next, 

DNA was purified using the GeneJet PCR Purification kit #K0702 (Fermentas) 

according to the manufacturer's instructions. Specific binding of Rbp1 protein 

(RNA polymerase II) to DNA fragments was analyzed by quantitative PCR (qPCR, 

end of section 4.2.1 of Materials and Methods). IP samples were tested undiluted 

and INPUT samples were tested at 1/100 dilution. 

4.2. RNA related molecular techniques 

 

4.2.1. Quantitative reverse transcription PCR (RT-qPCR) 

 

- RNA extraction 

A volume of an exponential phase culture corresponding to 5.0 OD600 units 

was centrifuged at 4000 rpm for 2 min. The cell pellet was washed with cold 

distilled water, snap frozen and stored at -80 °C. Then, cells were resuspended in 

500 µL of cold LETS buffer (LiCl 0.1 M, EDTA pH 8.0 10 mM, Tris-HCl pH 7.4 10 

mM, SDS 0.2 %) and transferred into a screw-cap tube already containing 500 µL 

of sterile glass beads and 400 µL of phenol:chloroform (5:1). Then, cells were 

broken using the Millmix 20 bead beater (Tehtnica) with 3 shaking cycles of 30 sec 

each, and 30 sec of incubation on ice in between. After centrifugation at 13000 rpm 

for 5 min at 4 °C, the supernatant was transferred into a new tube containing 400 

µL of phenol:chloroform (5:1) and then to a tube containing 400 µL of 

chloroform:isoamyl alcohol (25:1). The RNA from the top phase was precipitated, 

with 2.5 volumes of cold 96 % ethanol and 0.1 volumes of LiCl 5 M, during 3 hours 

at -80 °C or overnight at -20 °C. After 15 min of centrifugation and rinsing with cold 

70 % ethanol, the pellet was dried and resuspended in RNase-free milliQ water. A 

second step of RNA precipitation was performed adding 2.5 volumes of cold 96 % 

ethanol and 0.1 volumes of sodium acetate 3 M. Once pelleted, washed and dried as 

before, the RNA of each sample was resuspended again in RNase-free milliQ water 

for later RNA quantification and quality control with NanoDrop and agarose gel 

electrophoresis, respectively. 

- Treatment with DNase I 
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The DNA of each sample was removed from 1 µg of RNA using the DNase I 

RNase-free (Roche) for 15 min at 25 °C in a final volume of 10 µL. To inactivate the 

DNase I, a volume of 0.625 µL of EDTA 2 mM was added and incubated 10 min at 

65 °C. 

- cDNA synthesis 

The RNA retrotranscription into cDNA was performed with 2.5 µL of DNA-

free RNA in a final volume of 10 µL using the Thermo Scientific Maxima Reverse 

Transcriptase (200 U/µL). The manufacturer's instructions were followed for both 

oligo dT and random primers application scenarios.  

- Quantitative PCR (qPCR) 

The qPCR is the last step in the RT-qPCR and ChIP protocols. In both cases, 

the qPCR was carried out using the LightCycler® 480 Instrument II and 5 µL of 

SYBR Green Premix Ex Taq (Tli RNase H Plus, TaKaRa) for a total reaction volume 

of 10 µL. A cDNA pool with all samples was made and serial dilutions (1/5, 1/10, 

1/50, 1/100, 1/500 and 1/1000) were used to generate a calibration curve for 

each primer pair in each experiment. A volume of 2.5 µL of cDNA (1/40 dilution) 

and 0.2 µL of each 10 µM primer were added to a final volume of 10 µL for RT-

qPCR; and 2 µL of DNA and 0.4 µL of each 10 µM primer were added for ChIP 

experiments. The list of oligonucleotides used in qPCR are listed in the section 4.3 

of Materials and Methods. For amplification, the PCR conditions consisted of an 

initial denaturing cycle (95 °C for 10 sec) and 40 amplification cycles (annealing at 

55 °C for 10 sec and extension at 95 °C for 15 sec). Then, the melting curves 

generated with each primer pair confirmed the specificity of the PCR reaction. The 

cycle threshold (Ct) value of each sample was used to determine the amount of 

cDNA or DNA in each case by interpolation to respective calibration curves. 

4.2.2. mRNA stability determination 

The SDH4 mRNA half-life determination was performed using a fusion of the 

GAL1 promoter with SDH4 coding sequence (pSP529, list of plasmids in section 2.5 

of Materials and Methods). Cells were grown overnight in SC-Ura-Leu, for selection 

of auxotrophic markers, with raffinose 2 % (w/v) at 30 °C. Later on, cells were 

reinoculated to an OD600 of 0.2 in fresh SC-Ura-Leu -Fe (BPS 100 µM) medium with 
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galactose 2 % (w/v) at 30 °C during 4 hours. Then, glucose was added to a final 

concentration of 4 % (w/v) to inhibit the GAL1 promoter transcription. Aliquots of 

cells at 0, 5, 10 and 15 min were taken for RT-qPCR experiments using random 

primers for cDNA synthesis (see section 4.2.1 of Materials and Methods). The 

SDH4/PGK1 mRNA relative half-life was determined as follows: t½ = ln2/kD 

 

4.2.3. Polysome fractionation 

 

- Sample preparation 

To perform polyribosome profile analyses, a volume of an exponential phase 

culture (OD600 between 0.6-1.0) corresponding to 60 OD600 units was separated 

into two equal volumes in 50 mL conical tubes. Then, 100 µL of cycloheximide (10 

mg/mL) were added per 10 mL of the cell culture, to a final concentration 0.1 

mg/mL. These tubes were incubated 5 min on ice with occasional mixing to block 

translational elongation. After centrifugation at 4000 rpm for 5 min at 4 °C, cells 

from the same sample were unified and resuspended in 2 mL of cold lysis buffer 

(Tris-HCl pH 8.0 20 mM, KCl 140 mM, MgCl₂ 5 mM, DTT 0.5 mM, cycloheximide 0.1 

mg/mL, heparin 0.5 mg/mL, Triton X-100 1 %). Cells were again washed and 

centrifuged in the same conditions, for later being resuspended in 700 µL of lysis 

buffer. The entire volume was transferred into a 2 mL screw-cap tube containing 

500 µL of glass beads. Cells were broken by vortexing 8 times during 30 sec, with 

30 sec of incubation on ice in between. After centrifugation at 5000 rpm for 5 min 

at 4 °C, the supernatant was transferred into a new tube and centrifuged again at 

8000 rpm for 5 min at 4 °C. RNA from the supernatant was quantified, verifying 

y = 98.471e-kD x
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that the ratio A260nm/A280nm is higher than 2. Glycerol was added to a final 

concentration of 5 % and samples were snap frozen and stored at -80 °C. 

- Preparation and detection of sucrose gradients 

For the preparation of 6 sucrose gradients, 50 mL of sucrose 10 % (solution 

A) and 55 mL of sucrose 50 % (solution B) were prepared from a 70 % (w/v) 

sucrose stock  and, in both cases, Tris-HCl pH 8.0 20 mM, KCl 140 mM,  MgCl₂ 5 

mM, DTT 0.5 mM, cycloheximide 0.1 mg/mL and heparin 1 mg/mL. The polysome 

fractioner was used for the gradients preparation and posterior detection (Density 

Gradient Fractionation System; Teledyne Isco, Lincoln, NE). Then, 8.5 A260nm units 

of each sample were loaded onto the gradients. The solution A was used to balance 

the tubes for the ultracentrifuge (Beckman SW41 Rotor) that ran at 35000 rpm for 

2 h 40 min at 4 °C. For the detection of gradients, sucrose 60 % was used as pump 

solution. The ultraviolet detection at A260nm generated the general polyribosome 

profiles and the outgoing gradient fractions were collected in aliquots that were 

snap frozen and stored at -80 °C (outline of the process in Figure M-1). 

Figure M-1. Schematic representation of the polysome fractionation protocol 

explained in section 4.2.3 of Materials and Methods. The general polysome 

profile represented shows, from lighter to heavier fractions, the 

ribonucleoproteins (RNPs), the total mRNAs bound to ribosomal subunits (40S and 

RNPs 
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60S), monosomes (80S) and polysomes. The ratio polysomes/(ribosomal subunits 

+ monosome 80S) or polysomes/monosome 80S is associated with the mRNAs 

translational state as higher polysome abundance is usually correlated with 

greater translation efficiency. 

 

- RNA extraction of polysome fractionation samples 

The RNA extraction was performed from 200 µL of each fraction, to which 8 

µL of the mRNAs phe and lys (6 ng/μL each) from Bacillus subtilis were added as 

control of the RNA extraction. The SpeedTools Total RNA Extraction kit (Biotools 

B&M Labs) was used according to manufacturer’s instructions (following the 

alternative protocol of DNA digestion post-elution and ethanol precipitation for 

salts removal). The distribution of specific mRNAs in general polyribosome 

profiles was analyzed by RT-qPCR (see section 4.2.1 of Materials and Methods 

from cDNA synthesis) using 3.5 µL of DNA-free RNA (instead of 2.5 µL) in a final 

volume of 10 µL. 

 

4.3. List of oligonucleotides for qPCR 

SPO number qPCR Primer Primer sequence 5'-3' 

SPO1119 Oligo dT TTTTTTTTTTTTTTTVN 

SPO1120 ACT1-qPCR-F TCGTTCCAATTTACGCTGGTT 

SPO1121 ACT1-qPCR-R CGGCCAAATCGATTCTCAA 

SPO1338 RPS16B-qPCR-F GACGAACAATCCAAGAACGA 

SPO1339 RPS16B-qPCR-R  AGAACGAGCACCCTTACCAC 

SPO1699 RPL3-qPCR-F CGAAGCTGTCACCGTTGTTG 

SPO1700 RPL3-qPCR-R AAATGTTCAGCCCAGACGGT 

SPO2083 phe-qPCR-F CATGGATGCTGTTTTTCCAT 

SPO2084 phe-qPCR-R GCACCTGACCTATCCTCCAA 

SPO2085 lys-qPCR-F CGAGCAAAGCATTCTCATCA 

SPO2086 lys-qPCR-R AGCTCTCTCCGGATACGACA 

SPO1299 Flag2-SDH4-qPCR-F TTGATCTTTCCTACGCTTTCG 

SPO1300 Flag2-SDH4-qPCR-R TCGTCCTTGTAGTCGCCTTT 

SPO1149 PGK1-qPCR-F AAGCGTGTCTTCATCAGAGTTG 

SPO1150 PGK1-qPCR-R CGTATCTTGGGTGGTGTTCC 

SPO1134 SDH4-qPCR-F GCACTCCCAATGATGCCTAC 

SPO1135 SDH4-qPCR-R AATGGAACGACGGACAAGG 

SPO1130 CTH2-qPCR-F GCAGTTTCATTCTCTCCAC 
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SPO number qPCR Primer Primer sequence 5'-3' 

SPO1131 CTH2-qPCR-R TAGGTGCCGTGCTATTCAGG 

SPO1310 CCP1-qPCR-F ACTCGCAATCCCAAAAGAGA 

SPO1311 CCP1-qPCR-R CGGTGTAGTGGAAGCCAAAG 

SPO1156 HEM15-qPCR-F CCAAAGTTGATGGCCTAATG 

SPO1157 HEM15-qPCR-R TATTCCGATTCCCCAATGAC 

SPO1132 WTM1-qPCR-F TCCTGACGATACCATTGCTC 

SPO1133 WTM1-qPCR-R TCTTCTGCTTCCACCCTTGT 

SPO1306 ACO1-qPCR-F GCCATCAAGAGACCCATTGT 

SPO1307 ACO1-qPCR-R ATCCAGCGTTTCCACATTCT 

SPO1178 LEU1-qPCR-F GCCAGACAAGGTATCGTCCA 

SPO1179 LEU1-qPCR-R TGAGTAGAGGTATGAGAGTCACCA 

SPO2015 COX1-qPCR-F GTATGGCAGGAACAGCAATGT 

SPO2016 COX1-qPCR-R ATGCTGTATCTGTAGCTCCA 

SPO1663 COX2-qPCR-F AGTTGATGCTACTCCTGGTAGA 

SPO1664 COX2-qPCR-R CATGACCTGTCCCACACAAC 

SPO2017 COX3-qPCR-F TCTTTGCTGGTTTATTCTGAGC 

SPO2018 COX3-qPCR-R TCAATACCTACGGGTGGTCAA 

SPO2013 COX4-qPCR-F TCAAGCCAGCCACAAGAAC 

SPO2014 COX4-qPCR-R AGCACCAGGACCAATCAAAG 

SPO1736 COX6-qPCR-F CGCAAGATACGAAAAGGAGT 

SPO1737 COX6-qPCR-R TCAATAACAGCAGGAGCAG 

SPO1747 SDH1-qPCR-F GCCAATTCCTTGTTGGATCTTG 

SPO1748 SDH1-qPCR-R TGGCAACCCAGGCTGTAAAG 

SPO1182 SDH2-qPCR-F CGAAGAAGGGTATGGCTACTG 

SPO1183 SDH2-qPCR-R CACTTGGCTCGTCTGGATT 

SPO1726 SDH3-qPCR-F CTCTTCGGAGTCTCTGGTTT 

SPO1727 SDH3-qPCR-R CGGTATCCCAGATCAAGTGT 

SPO1227 RIP1-qPCR-F GGTCGGTGCTATGGGTCTTT 

SPO1228 RIP1-qPCR-R CAAAACATCGGCAGTAGCGG 

SPO1180 CYC1-qPCR-F AGATGTCTACAATGCCACACC 

SPO1181 CYC1-qPCR-R CCCTTCAGCTTGACCAGAGT 

SPO1885 CYT1-qPCR-F CTTGACAGAGTTGCTTGGAG 

SPO1886 CYT1-qPCR-R CCTTGTTCATCAGGTTCGTC 

SPO1186 RNR3-qPCR-F CTGAACAAAAGGCGGCATC 

SPO1187 RNR3-qPCR-R GGGGCAACACTATCTTCCAA 

SPO1541 
ACT1-qPCR-chIP-

prom-282-F 
AAACTCGCCTCTCTCTCTC 

SPO1542 
ACT1-qPCR-1-chIP-

prom-134-R         
GGGGAAGGAAGAATACAAG 

SPO1537 
FET3-qPCR-chIP-

prom-388-F 
TACTTTCCGGGTGCGAAT 

SPO1538 
FET3-qPCR-chIP-

prom-217-R 
TGGCGAGAATAAGAGCAC 
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SPO number qPCR Primer Primer sequence 5'-3' 

SPO1412 
RNR3-qPCR-chIP-

prom-260-F 
AGGACCAAACGACAAGATGG 

SPO1413 
RNR3-qPCR-chIP-

prom-131-R 
TTTGCAGCAGAACACGAAAC 

SPO1865 CRT1-qPCR-F ATCCTCCTACTGCTGCCAAA 

SPO1866 CRT1-qPCR-R TCTTGCGTGTTTCTCCTTGA 

SPO1330 ROX1-qPCR-F  CAACAGAAAGAACAGCAGCA 

SPO1331 ROX1-qPCR-R  CCGAGGAAGATGGTGAAAGA 

SPO1332 MOT3-qPCR-F  CCCCATCATCAGACCATAAA 

SPO1333 MOT3-qPCR-R  CACCAAGGGCATAGAAAATG 

SPO1824 YOX1-qPCR-F         TCTCGTTCTTCCTCTTCTTCAC 

SPO1825 YOX1-qPCR-R         CCTGGCTTCTCTTTATGCTTG 

SPO1826 YPH1-qPCR-F CCAAAAAGGAAAAGTCCACAGG 

SPO1827 YPH1-qPCR-R GCGTGAATGGTGAATGAGAG 

SPO1834 IRA2-qPCR-F GGATACACAGCAGAGCAACA   

SPO1835 IRA2-qPCR-R TCCAAACGAGTGACAGACAA   

SPO1685 RPA190-qPCR-F GATAAAGACACGCCAGCAGA 

SPO1686 RPA190-qPCR-R GCATTGACCTTGGAGGATGT 

SPO1828 HAP4-qPCR-F ATTCTTCTGCCTCCTCCA 

SPO1829 HAP4-qPCR-R CAGCAATGGTTTCCACATC 

SPO1830 CWP1-qPCR-F TTCTCCACTGCTTTGTCTGTC   

SPO1831 CWP1-qPCR-R CGGAACGGATACTCACCA   

SPO1822 HOS1-qPCR-F GACTACAATCCATCGCAAG 

SPO1823 HOS1-qPCR-R TGGGCACCTCACTGTTATT  

SPO1832 DIA2-qPCR-F CGATAAGTGGTTCTGCGTTG   

SPO1833 DIA2-qPCR-R CCTTGCTGTATGAGCGTGA   

 

4.4. Protein related molecular techniques 

 

4.4.1. Western blot assay 

 

- Protein extraction 

To identify and quantify specific proteins, first, protein extraction was 

performed in cells from exponential phase cultures. After centrifuge a volume 

corresponding to 5-10 OD600 units, cell pellets were washed with distilled water 

and then resuspended in 200 μL of NaOH 0.2 M. The tubes were incubated at room 

temperature for 5 min for posterior centrifugation at 12000 rpm for 1 min. Then, 

samples were resuspended in 100 μL of 2X-SDS protein loading buffer (Tris-HCl 
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pH 6.8 24 mM, Glycerol 10 %, SDS 0.8 %, β-mercaptoehtanol 5.76 mM, 

bromophenol blue 0.04 %) and boiled 5 min at 95 °C. After, samples were 

centrifuged at 3000 rpm for 10 min at 4 °C, supernatants transferred into fresh 

tubes and finally stored at -20 °C. 

- Electrophoresis and protein immunodetection 

To load equal protein amounts per sample, these were quantified using the 

Protein Assay Dye Reagent (BioRad) at A595nm. After boiling the samples at 65 °C, 

the microliters corresponding to the ratio 1.2/A595nm of each sample (which 

approximately correspond to 30 µg of protein) were separated by molecular 

weight in denaturing polyacrylamide gel electrophoresis (SDS-PAGE). The 

percentage of acrylamide:bis-acrylamide 37.5:1 (PanReac AppliChem) of the gels 

was adjusted (8-15 %) depending on the molecular weight of the proteins 

analyzed. The MiniProtean 3 (BioRad) system was used with protein SDS Running 

buffer (Tris Base 25 mM, glycine 192 mM, SDS 0.1 %, pH: 8.1-8.5) at 100 V during 

3-4 hours at room temperature. Once proteins were resolved together with 5 μL of 

protein ladder per gel (PageRuler Prestained, Thermo Scientific), they were 

transferred onto a nitrocellulose membrane (Amersham Protran 0.45 µm NC, GE 

Healthcare). Transfer buffer (Tris Base 25 mM, glycine 192 mM, SDS 0.1 %, 

methanol 20 %, pH: 8.1-8.5) was used in the Mini Trans-Blot Electrophoretic 

Transfer Cell (BioRad) system at 400 mA during 1 hour with refrigeration. Then, 

the membranes were stained during 5 min with Ponceau S staining solution 

(Sigma) 0.5 % (w/v in acetic acid 1 %) to check that the same load of proteins was 

made in each sample. After eliminating the rests of Ponceau S with TBS-T pH 7.5 

(Tris Base 25 mM, NaCl 15 mM, Tween 20 0.05 %), the blocking was made with 5 

% skim milk powder (Oxoid, Thermo Scientific) in TBS-T at 4 °C overnight. The 

primary, and corresponding secondary antibodies (see the list and dilutions used 

for each antibody in section 4.4.2 of Materials and Methods), were incubated 

during 1-2 hours at room temperature in 5 % milk blocking solution. The washing 

with TBS-T between antibodies and after the secondary antibody was made 5 

times. 

- Protein exposure and quantification 
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For the final protein exposure, the ECL Advance Western blotting Detection 

Kit (GE Healthcare) was used according to manufacturer’s instructions in the 

chemiluminescence image analyzer ImageQuant LAS 4000 mini (GE Healthcare). 

Several exposure times per membrane were quantified using the ImageQuant TL 

1D gel analysis (GE Healthcare). 

4.4.2. List of antibodies used in Western Blot 

Primary Antibody Secondary Antibody 

α-eIF2α       α-rabbit 

(John M. Zaborske Lab) 
(Santa Cruz 

Biotechnology) 

1:2000 1:10000 

α-eIF2α-phosphorylated (Ser51/52)     α-rabbit 

(Santa Cruz Biotechnology) 
(Santa Cruz 

Biotechnology) 

1:2000 1:10000 

α- Flag M2 Peroxidase-conjugated    

(Sigma) - 

1:10000   

α-Pgk1        α-mouse 

(Invitrogen) (Amersham) 

1:10000 1:50000 

α-Aco1        α-rabbit 

(Roland Lill Lab) 
(Santa Cruz 

Biotechnology) 

1:20000-1:50000 1:10000 

α-Bio2        α-rabbit 

(Roland Lill Lab) 
(Santa Cruz 

Biotechnology) 

1:2500-1:5000 1:10000 

α-Hem15       α-rabbit 

(Roland Lill Lab) 
(Santa Cruz 

Biotechnology) 

1:2500-1:5000 1:10000 

α-Leu1       α-rabbit 

(Roland Lill Lab) 
(Santa Cruz 

Biotechnology) 

1:2500-1:5000 1:10000 

α-Por1 α-rabbit 

(Roland Lill Lab) 
(Santa Cruz 

Biotechnology) 

1:2500-1:5000 1:10000 
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Primary Antibody Secondary Antibody 

α-Cox1       α-mouse 

(Abcam) (Amersham) 

1:500-1:1000 1:5000 

α-Cox2       α-rabbit 

(Roland Lill Lab) 
(Santa Cruz 

Biotechnology) 

1:500-1:1000 1:5000 

α-Cox4       α-rabbit 

(Roland Lill Lab) 
(Santa Cruz 

Biotechnology) 

1:1000 1:5000 

α-Rnr3        α-rabbit 

(Mingxia Huang Lab) 
(Santa Cruz 

Biotechnology) 

1:100000 1:10000 

α-Act1        α-mouse 

(MP Biomedicals) (Amersham) 

1:2500-1:5000 1:10000 

 

4.4.3. Protein stability determination 

Protein half-life determination experiments were performed adding 

cycloheximide (final concentration 50 μg/mL) to exponential phase cultures to 

stop translation. Aliquots of cells at different times during the first 60 minutes 

were taken for posterior protein disappearance determination by Western Blot. 

The protein relative half-life was determined as explained in section 4.2.2 of 

Materials and Methods for mRNA stability calculations. 

4.5. Determination of β-galactosidase activity 

Several yeast strains containing an URA3 plasmid with the RNR3 or the GCN4 

promoter fused to lacZ (pSP638 and pSP1116, list of plasmids in section 2.5 of 

Materials and Methods) were used to perform the β-galactosidase assays. The lacZ 

gene encodes the β-galactosidase enzyme. This enzyme hydrolyzes a lactose analog 

(Ortho-Nitrophenyl-β-D-galactopyranoside, ONPG) resulting in the formation of 

yellow ortho-nitrophenol, spectrophotometrically detectable at A420nm. This allows 

the study of the regulation of expression of the corresponding lacZ fused 

promoters.  
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At least three individual colonies were grown at 30 °C overnight in the 

appropriate SC minus medium for plasmid/s maintenance. Next day, cells were 

reinoculated in fresh medium under different growth conditions. In some cases, 

cells were co-transformed with two plasmids: one with a gene of interest in a 

plasmid with LEU2 or HIS3 as auxotrophic marker, and the other the URA3 plasmid 

containing the RNR3-lacZ fusion. In these cases, the β-galactosidase activity in -Fe 

in SC-Ura-Leu or SC-Ura-His did not reach levels as high as in SC-Ura (Figure M-2). 

For this reason, SC-Ura-Leu and SC-Ura-His media were only used in the overnight 

cultures for both plasmid maintenance, and SC-Ura was used for the exponential 

growth in the RNR3-lacZ assays.  

After exponential cell growth, a volume corresponding to  1-5 OD600 units was 

pelleted and stored at -80 °C. Cells were then resuspended in 1 mL of buffer Z 

(Na2HPO4 60 mM, NaH2PO4 40 mM, KCl 10 mM, MgSO4 1 mM, β–mercaptoethanol 

50 mM) and 700 µL were transferred into a new tube already containing 50 µL of 

SDS 0.1 % and 50 µL of chloroform. Cells were permeabilized by vortexing during 

10 sec. The assay started by adding 200 µL of ONPG (4 mg/mL) to each sample and 

incubating in a Thermomixer (Eppendorf) at 30 °C with maximum shaking. The 

reaction was stopped after 5-30 minutes adding 350 µL of Na2CO3 1 M and 

incubating the tubes on ice. Samples were centrifuged at high speed during 2 

minutes and A420nm was determined, as well as the OD600 using the original cell 

suspension in buffer Z. The β-galactosidase activity was calculated in Miller Units 

(one unit corresponds to 1 nmol of ONPG hydrolyzed per min at 30 °C and pH 7.0): 

Miller Units = (A420nm *1000) / (OD600 *cell volume (mL)*assay time (min)) 
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Figure M-2. The RNR3-lacZ β-galactosidase activity in iron deficiency is lower 

in SC-Ura-Leu and SC-Ura-His compared to SC-Ura. BY4741 cells with RNR3-

lacZ (URA3 plasmid) and, in the cases indicated, an empty plasmid with the LEU2 

or HIS3 gene were grown in the SC medium specified with 100 μM of BPS (-Fe) 

during 18 hours for β-galactosidase assays. The asterisk (*) indicates a significant 

p-value (≤ 0.05) from two-tailed student's t-test compared with cells grown in SC-

Ura only with RNR3-lacZ plasmid. 

4.6. Determination of iron-dependent enzymatic activities 

The iron-dependent enzymatic activities isopropylmalate isomerase (Leu1), 

aconitase (ACO), complex II succinate dehydrogenase, complex III cytochrome c 

reductase and complex IV cytochrome c oxidase were measured using the 

protocols and resources from the laboratory of Dr. Roland Lill (Philipps-

Universität, Marburg) as described below. All cell cultures were performed in 

minimal media (see section 1.2 of Materials and Methods) and all activities were 

normalized to malate-dehydrogenase (MDH) activity, whose levels remained 

constant. 

4.6.1. From cellular lysates 

Whole-cell lysates were obtained to determine isopropylmalate isomerase 

(Leu1), aconitase (ACO) and cytochrome c oxidase (complex IV, CIV) enzymatic 

activities. A volume corresponding to 100-150 OD600 units was pelleted for each 

cell culture at 3500 rpm for 3 min at 4 °C. After washing with 15 mL of cold water 

in 15 mL conical tubes, pelleted cells were weighed. Approximately 100 µL of lysis 

buffer (TNEG + Triton: Tris-HCl pH pH 7.4 25 mM, NaCl 150 mM, EDTA 2.5 mM, 

Glycerol 10 % and Triton X-100 0.5 %) were added per 100 mg of cells and 

resuspended by vortexing. Then, 2 µL of saturated PMSF, 2 µL of cOmplete™ 

Protease Inhibitor Cocktail diluted in 1 mL of water, and approximately 50 µL of 

glass beads were added for each 100 µL of lysis buffer. With tubes upside down, 

cells were broken by vortexing 4 times during 1 min, with 1 min of incubation on 

ice in between. Next, samples were centrifuged at 3500 rpm for 5 min at 4 °C and 

supernatant centrifuged at 13000 rpm for 5 min at 4 °C. The collected cellular 

supernatants were maintained on ice and immediately used for enzymatic 
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activities through spectrophotometric determination in 1 cm cuvettes. In all cases, 

the absolute value of ΔAbs/min was calculated in the linear zone of each kinetics, 

and represented relative to the mg of total protein in each assay, as follows: 

Specific enzymatic activity (U)

Total protein (mg)
=  106

|ΔAbs/min|

ε (M−1cm−1) × total protein (mg)
  

where enzymatic activity units are U= μmol/min and ε is the molar absorption 

coefficient (M-1 cm-1). The total protein concentration was calculated using the 

Protein Assay Dye Reagent (BioRad) and a protein calibration curve. 

 

- Isopropylmalate isomerase (Leu1) 

The A235nm of isopropyl-malate (ɛ235: 4950 M-1 cm-1) was measured during 3 

min in 1 cm quartz cuvettes. 

                                               Sample cuvette    

Buffer (Tris-HCl pH 8.0 50 mM, NaCl 50 mM)               980 µL            

100 mM 3-isopropylmalic acid                     10 µL                

Cellular lysate                                                                         5-10 µL     

 

- Aconitase (ACO) IDH-coupled 

The A340nm of NADPH (ɛ340: 6200 M-1 cm-1) was measured during 2 min in 1 

cm quartz cuvettes. 

                                                       Sample cuvette    Reference cuvette 

Buffer (Triethanolamine pH 8.0 50 mM,            960 µL                         960 µL     

             NaCl 50 mM, MgCl2 1.5 mM)               

20 mM cis-aconitic acid                                           12 µL                               - 

40 mU/µl Isocitrate Dehydrogenase                   10 µL                               - 

0.1 M NADP+                                                            12 µL                            12 µL     

Cellular lysate                                                           5-10 µL                        5-10 µL                 
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- Cytochrome c oxidase (complex IV, CIV) 

The A550nm of reduced cytochrome c (ɛ550: 20000 M-1 cm-1) was measured 

during 2 min in 1 cm plastic cuvettes. 

                                                            Sample cuvette    

COX buffer (MES pH 6.5 50 mM, NaCl 50 mM)       950 µL            

20 mg/mL Reduced cytochrome c              50 µL                

Cellular lysate                                                                  5-20 µL     

When the assay finished, 10 µL of KCN 100 mM were added to confirm a flat 

activity. Before the assay, cytochrome c was reduced on ice by incubation with 

sodium dithionite to a final concentration of 10 mM during 5 min. Then, desalting 

of the reduced cytochrome c was performed using a PD-10 column with COX 

buffer. Aliquots were snap frozen and stored at -80 °C.  

 

- Malate-dehydrogenase (MDH) 

The A340nm of NADH (ɛ340: 6200 M-1 cm-1) was measured during 2 min in 1 cm 

quartz cuvettes. 

                                                         Sample cuvette    

Buffer (Tris-HCl pH 8.0 50 mM, NaCl 50 mM)               950 µL            

10 mg/mL NADH                                                                     20 µL                

5 mg/mL Oxalacetate                                                            20 µL                

Cellular lysate                                                                           2-5 µL     

 

4.6.2. From isolated mitochondria  

Yeast mitochondria isolation was performed as described by Daum et al. 

(1982) with modifications, to determine succinate dehydrogenase (complex II), 

cytochrome c reductase (complex III) and cytochrome c oxidase (complex IV) 

enzymatic activities. Briefly, individual colonies were grown at 30 °C overnight 

either in 50 mL of iron-sufficient (+Fe with 50 µM ferric ammonium citrate, FAC) 

or in 100 mL of iron-free media (-Fe). Next day, cells were reinoculated in 200 mL 

and 400 mL, +Fe and -Fe respectively, of fresh media to an OD600 of 0.2. When 
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OD600 was around 1.0, cultures were inoculated overnight in 2 L and 4 L, +Fe and -

Fe respectively.  

- Harvesting and washing of cells 

After centrifuging each culture at 3500 rpm for 5 min, supernatant was 

removed by decanting. Cells were gently resuspended in 200 mL of water, 

centrifuged again and the supernatant completely removed. Pelleted cells were 

weighed, estimating 10 g of wet cells per sample (the following indicated volumes 

correspond for each 10 g of wet cells). Then, 30 mL of Tris-SO4 pH 9.4 0.1 M and 

DTT 10 mM were added to the cells, gently resuspended and incubated at 150 rpm 

for 15 min at 30 °C. After centrifuging at 3000 rpm for 5 min, pellets were washed 

in 40 mL of sorbitol buffer (sorbitol 1.2 M, potassium phosphate buffer KPi pH 7.4 

20 mM), centrifuged and resuspended again in 40 mL of sorbitol buffer. 

- Spheroplasting 

The amount of 7 mg of Zymolyase 100T (Seikagaku Corp.) was resuspended 

in 1 mL of sorbitol buffer and added to each cell sample for incubation at 30 °C and 

150 rpm for 45 min. Next, spheroplast formation was tested checking the rapid 

drop of the OD600 of 25 µL of cells in 1 mL of water, and not in 1 mL of sorbitol 

buffer. After centrifuging at 3000 rpm for 5 min at 4 °C, spheroplasts were gently 

resuspended in 40 mL of cold sorbitol buffer, centrifuged and washed again as 

indicated. Then, spheroplasts were resuspended in 30 mL of cold BB buffer 

(sorbitol 0.6 M, HEPES-KOH pH 7.4 20 mM, PMSF 1 mM). 

- Dounce homogenization and isolation of mitochondria 

The homogenization was performed with 25 strokes using a pre-chilled 

Douncer. Then, samples were centrifuged at 4000 rpm for 5 min at 4 °C. The 

supernatant of each sample was again centrifuged at 10000 rpm for 12 min at 4 °C. 

Each pellet was resuspended in 30 mL of BB buffer without PMSF and transferred 

into 50 mL corning tubes. After centrifuging at 4000 rpm for 5 min at 4 °C, 

supernatants were centrifuged again at 10000 rpm for 12 min at 4 °C as before. 

Between 100-200 µL of BB buffer without PMSF were used for gently resuspension 

of the pelleted mitochondria. Smaller aliquots were snap frozen and stored at -80 

°C. The total protein concentration was calculated using the Protein Assay Dye 
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Reagent (BioRad) and a protein calibration curve. Enzymatic activities assays were 

performed as follows, and calculations were performed using the previously 

explained formula. 

 

- Succinate dehydrogenase (complex II) 

The A600nm of dichlorphenol-indophenol, DCIP (ɛ600: 21000 M-1 cm-1) was 

measured during 2 min in 1 cm plastic cuvettes. 

                                                                   Sample cuvette     Reference cuvette 

Buffer (Tris-HCl pH 8.0 50 mM, NaCl                920 µL                         920 µL    

           50 mM, KCN 1 mM, Triton 0.1 %)               

20 % Sodium succinate                                          12 µL                            12 µL                         

20 % Sodium malonate (inhibitor)                        -                                 12 µL 

20 mg/mL Phenazine methosulfate                   12 µL                            12 µL  

2.9 mg/mL Dichlorphenol-indophenol             20 µL                            20 µL 

Isolated Mitochondria (total protein)                25 µg                           25 µg                 

 

- Succinate dehydrogenase-Cytochrome c reductase (complex II+III) 

The A550nm of reduced cytochrome c (ɛ550: 20000 M-1 cm-1) was measured 

during 2 min in 1 cm plastic cuvettes. With this assay, both complex II and III 

enzymatic activities were measured at the same time. 

                                                                 Sample cuvette      Reference cuvette 

Buffer (Tris-HCl pH 8.0 50 mM,                        920 µL                         920 µL     

             NaCl 50 mM, KCN 1 mM)               

20 % Sodium succinate                                        12 µL                            12 µL                         

20 % Sodium malonate (inhibitor)                      -                                 12 µL 

20 mg/mL Oxidized cytochrome c                    50 µL                            50 µL     

Isolated Mitochondria (total protein)              25 µg                           25 µg                 
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- Cytochrome c oxidase (complex IV) 

The A550nm of reduced cytochrome c (ɛ550: 20000 M-1 cm-1) was measured 

during 2 min in 1 cm plastic cuvettes. 

                                                                     Sample cuvette    

COX buffer (MES pH 6.5 50 mM, NaCl 50 mM)              950 µL            

20 mg/mL Reduced cytochrome c                     50 µL                

Isolated Mitochondria (total protein)                            5-10 µg     

When the assay finished, 10 µL of KCN 100 mM were added to confirm a flat 

activity. Reduced cytochrome c was prepared as above explained. 

- Malate-dehydrogenase (MDH) 

The A340nm of NADH (ɛ340: 6200 M-1 cm-1) was measured during 2 min in 1 cm 

quartz cuvettes. First, the lysis of 20 µg of isolated mitochondria was performed 

adding 4 µL of dodecylmaltoside 3 % in a final volume of 50 µL using the buffer 

below indicated. 

                                                         Sample cuvette    

Buffer (Tris-HCl pH 8.0 50 mM, NaCl 50 mM)               910 µL            

10 mg/mL NADH                                                                     20 µL                

5 mg/mL Oxalacetate                                                             20 µL                

Total lysate of 20 µg of mitochondria                                50 µL     

 

4.7. Determination of oxygen consumption rate 

Individual colonies were grown at 30 °C overnight in 3 mL of the appropriate 

SC minus medium for selection of auxotrophic markers. Later on, cells reinoculated 

to an OD600 of 0.1-0.2 were grown during 6 hours at 30 °C in 10 mL under iron-

sufficient or -deficient conditions. A volume corresponding to 2.0 OD600 units was 

collected and washed with distilled water, resuspended in 1 mL of YPEG medium 

(yeast extract 1 %, bacteriological peptone 2 %, ethanol 2 %, glycerol 3 %) and 

transferred into an air-tight chamber. The oxygen content decline was monitored 

during 15 min using the Oxyview 1 System (Hansatech) with a S1 Clark-type O2 

electrode.  
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The system consists of a platinum cathode (-) in contact with both the silver 

anode (+), through KCl 3 M, and the chamber on the top where cells were placed. A 

basal 0.7 V voltage difference occurs between the cathode and the anode, and 

when O2 is present in the chamber it is reduced and the voltage difference 

increases proportionally. First, the maximum voltage was established at 0.9 V 

using oxygen-saturated distilled water (0.28 µmol O2 per mL at 20 °C). This 

maximum value was registered on a graph paper at the 180 mm horizontal 

division, and the minimum value, 0 µmol O2 per mL, was situated at the 20 mm 

division. Second, vertical output speed of the register graph paper was established 

in 5 mm/min. Thereby, the horizontal changes in the recording corresponded to a 

decrease in the O2 content of the solution in the chamber, and vertical changes 

corresponded to the time elapsed. In this way, it was possible to calculate the 

oxygen consumption rate per minute and per OD600. Between 2 and 4 nmol 

O2/(min x OD600) were measured to be consumed by a wild-type strain after 

growing 6 hours with glucose 2 % under iron-sufficient conditions.   

5. Structural modeling of the Cth2 protein domains 

The structural model of the Cth2 protein (from amino acid 160 to 285) has 

been performed by Dr. Julio Polaina (IATA-CSIC) using the I-TASSER server for 

protein structure and function prediction (Yang et al., 2015). PDB structures 1RGO 

(Hudson et al., 2004) and 2CQE, which corresponds to the zinc-finger domain of 

human protein KIA1046, were used as templates. The IUPred2A software 

(http://iupre d2a.elte. hu) was used to predict potential intrinsically unstructured 

protein regions (Meszaros et al., 2018). 
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Chapter 1. Global translational repression under iron deficiency depends on 

the eIF2α/Gcn2 pathway 

This work was published in the Scientific Reports journal, volume 10 (Romero 

et al., 2020). The authors are Antonia María Romero*, Lucía Ramos-Alonso*, Paula 

Alepuz, Sergi Puig and María Teresa Martínez-Pastor 

*These authors contributed equally to this work. 

As previously introduced, bulk translation is a highly energy consuming 

cellular process that is inhibited in response to several environmental and 

nutritional stresses. Translation is an iron-dependent process because ribosome 

biogenesis and recycling require the essential Fe-S protein Rli1. Moreover, in yeast, 

the biosynthesis of multiple amino acids, including leucine, isoleucine, valine, 

lysine, glutamate, methionine and cysteine depends on iron. Despite all the existing 

studies on iron homeostasis regulation, there is no evidence for translation 

alterations during the adaptation to iron-deficient conditions in yeast. This work 

provides new indications of the global translational repression that takes place in 

S. cerevisiae under iron starvation.  

C1.1.  General translation decreases in response to iron limitation 

To explore whether iron deficiency modifies the bulk of mRNA translation, 

we performed polysome profile experiments with a wild-type W303 prototroph 

strain cultivated in iron sufficiency (+Fe) or iron deficiency (-Fe). No statistically 

significant differences were observed in the polysomes/monosome 80S (P/M) 

ratio between 3 and 6 hours of iron sufficiency (Figure C1-1: A, B and E). 

However, after 3 hours of iron deficiency, there was a significant decrease in 

polysome abundance compared to both +Fe times (Figure C1-1: C and E). After 6 

hours in -Fe conditions, the repression of translation became more evident, with 

the observation of an increased 80S monosomal peak compared to the polysome 

area, and the consequent reduction in the P/M ratio (Figure C1-1: D and E). These 

results indicate that a general repression of translation initiation occurs during the 

progress of iron limitation. 
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Figure C1-1. A general repression of translation occurs during iron 

deficiency. Polysome profile experiments of a W303 prototroph strain were 

performed in SC cultures growing for at least 15 hours until early exponential 

phase (OD600 0.05 and 0.2 for the experiments at 3 and 6 hours, respectively). 

Then, the cells were maintained in SC (+Fe) (A and B) or in SC with 100 µM BPS (-

Fe) (C and D). A representative A260nm polysome profile of three biologically 

independent replicates is shown. The ribosomal subunits (40S and 60S), 

monosome (80S) and polysome fractions are indicated, and the average of 

polysomes/monosome 80S (P/M) ratio represented with standard deviations (E). 

Different letters over the bars indicate statistically significant differences (p-

value<0.05) from two-tailed student's t-test. 
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C1.2. The polysome profile of specific transcripts responds differently to 

the iron limitation progress 

To study how the global repression of translation during iron deficiency is 

affecting specific transcripts, we studied the translational state of different mRNAs 

by determining their distribution on the polysome profiles. The total RNA of the 

different fractions was extracted and the levels of specific transcripts were 

analyzed by RT-qPCR. The profiles of RPS16B and RPL3 (mRNAs encoding the 

corresponding ribosomal proteins, RPs) showed an enriched association to the 80S 

fraction, which decreased or shifted to lighter polysomal fractions in the 

progression of iron deficiency (Figure C1-2: A and B). This result was interpreted 

as a decrease in the specific translation of these RP transcripts, which was 

consistent with the repression of general translation during iron starvation. 

Regarding the translation profile of a housekeeping gene, such as ACT1, its pattern 

of elevated association to polysomes indicated a constant level of translation, with 

only a slight shift to lighter polyribosome fractions after 6 hours of iron deficiency 

(Figure C1-2: C). Therefore, the ACT1 translation profile was mostly unaffected in 

the conditions of iron deficiency used in this study. On the contrary, the previously 

observed shift in the distribution of GCN4 mRNA to polysomal fractions after 6 

hours of iron deficiency (Romero, 2018; Romero et al., 2020; Figure I-3: C) 

suggested a higher translation efficiency of the GCN4 mRNA. This result was 

supported by the higher eIF2α phosphorylation observed in -Fe conditions 

(Romero, 2018; Romero et al., 2020; Figure I-3: A and B), as active GCN4 mRNA 

translation has been described to occur when eIF2α is phosphorylated and eIF2 

function is limited (reviewed by Hinnebusch, 2005). To further investigate GCN4 

mRNA translation in iron deficiency, we analyzed the β-galactosidase activity of 

W303 cells expressing a construct containing the wild-type GCN4 promoter (with 

its four uORFs) fused to the lacZ reporter coding sequence. Only a slight, but 

statistically significant, increase in the β-galactosidase activity was observed in -Fe 

compared to +Fe conditions (Figure C1-2: D). However, the increase in β-

galactosidase activity observed after the treatment with 3-aminotriazole (3-AT), 

used as control as it causes amino acid starvation, was more pronounced that the 

change observed upon iron deficiency (Figure C1-2: D). Taken together, these 

results suggest that, despite the global repression of translation that occurs when 
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iron is scarce, the translation of specific mRNAs is differentially regulated under 

iron deficiency. 

Figure C1-2. Specific mRNAs are differentially translated under iron 

deficiency. The RNA from the different fractions of the polyribosome profiles 

shown in Figure C1-1 was extracted and the RPS16B (A), RPL3 (B) and ACT1 (C) 

mRNA profiles were analyzed by RT-qPCR as described in Materials and Methods. 

(D) The ura3Δ and gcn2Δura3Δ strains (W303 prototroph background) 

transformed with pRS416-GCN4-lacZ plasmid were grown in SD (+Fe) and in SD 

supplemented with 100 µM BPS (-Fe) during 6 hours, and in SD with 30 mM 3-

aminotriazole (3-AT) during 5 hours. Then, the β-galactosidase activities were 

determined and represented relative to W303 in +Fe. Mean values and standard 

deviations from three biologically independent experiments are shown. Different 

letters over the bars indicate statistically significant differences (p-value<0.05) 

from two-tailed student's t-test. 
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Figure C1-3. The phosphorylation of eIF2α (Sui2) in Ser51 is involved in the 

global translational repression under iron deficiency. Polysome profile 

experiments of wild-type SUI2 (RS-86) and SUI2-S51A mutant (RS-88) cells (Hueso 

et al., 2012) were performed from overnight cultures reinoculated in SC (+Fe) (A 

and C) and SC with 100 µM BPS (-Fe) (B and D) for 9 hours. A representative 

A260nm polysome profile of three biologically independent replicates is shown. The 

average of polysomes/monosome 80S (P/M) ratio is represented with standard 

deviations (E). Different letters over the bars indicate statistically significant 

differences (p-value<0.05) from two-tailed student's t-test. 
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C1.3.  The eIF2α-Gcn2 pathway is involved in the global translational 

repression that occurs under iron deficiency 

As previously mentioned in the introduction, under amino acid starvation or 

different stress conditions, the Gcn2 kinase is activated and phosphorylates eIF2α, 

which downregulates general translation initiation and increases the translation of 

GCN4. The observation that during iron deficiency the translation of GCN4 mRNA 

was slightly increased, together with the higher eIF2α phosphorylation, suggested 

a possible implication of the eIF2α-Gcn2 pathway in the global repression of 

translation under iron limitation. This hypothesis is consistent with the low GCN4-

lacZ activity observed when GCN2 was deleted under all the conditions tested (+Fe, 

-Fe and amino acid starvation) (Figure C1-2: D). Besides, the increased 80S 

monosomal peak in the global profile under prolonged iron deficiency (Figure C1-

1: D) is usually indicative of repression of translation initiation. These results 

suggest a potential role for the eIF2α-Gcn2 pathway in global translational control 

under iron starvation. 

Further polysome profile experiments were performed to evaluate the 

implication of the eIF2α (encoded by the SUI2 gene) phosphorylation in the global 

translational repression under iron deficiency. Given that the phosphorylation in 

serine 51 of eIF2α by Gcn2 kinase has been previously reported to inhibit protein 

synthesis under amino acid starvation (Dever et al., 1992), we analyzed the 

polysome profile of a SUI2-S51A mutant (non-phosphorylatable eIF2α strain). The 

P/M ratio observed in iron sufficiency was similar between the wild-type and the 

SUI2-S51A strains (Figure C1-3: A, C and E), and, as expected, the wild-type P/M 

ratio decreased under iron starvation (Figure C1-3: B and E). And importantly, 

the P/M ratio of the SUI2-S51A mutant did not decrease during iron deficiency 

compared to the wild-type (Figure C1-3: B, D and E). For this reason, we conclude 

that the phosphorylation of eIF2α in serine 51 is involved in the repression of 

global translation initiation when iron bioavailability is limited. 

Following these observations, we proceeded to test the role of the Gcn2 

kinase in repressing general translation during iron deficiency as it directly 

phosphorylates the serine 51 of eIF2α. As mentioned in the literature (Hinnebusch 

& Fink 1983; Garcia-Barrio et al., 2000), the gcn2∆ mutant exhibited the expected  
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growth defect in the absence of amino acids achieved by adding 3-AT (Figure C1-

4). In the same way, this mutant could not phosphorylate eIF2α in any of the tested 

conditions (+Fe, -Fe or 3-AT) (Figure C1-5). When polysome profile experiments 

were performed, similar results were obtained with the gcn2∆ and SUI2-S51A 

mutants. Very similar P/M ratios were obtained for the wild-type (BY4741) and 

gcn2∆ strains under iron sufficiency (Figure C1-6: A, C and E). However, while the 

wild-type decreased the P/M ratio upon iron starvation, gcn2∆ did not (Figure C1-

6: B, D and E). Together, these results highlight the importance of the Gcn2 kinase 

in repressing the global translation initiation during iron deficiency. Despite of 

this, it should be remarked that the translational derepression caused by gcn2∆ in -

Fe is transient, since at prolonged times of iron deficiency, the P/M ratios between 

the wild-type and the gcn2∆ were equally lowered (Figure C1-7). Taken together, 

these results demonstrate the importance of the eIF2α-Gcn2 pathway in the 

inhibition of global translation under iron starvation. 

Figure C1-4. The gcn1Δ and gcn2Δ mutants displayed the expected growth 

defect in the presence of 3-aminotriazole. Analyses of the cell growth of wild-

type BY4741, gcn1∆ and gcn2∆ cells, transformed with the pRS413 plasmid 
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containing the HIS3 gene, were performed in triplicate in SD (+ Ura 20 mg/L + Leu 

60 mg/L + Met 20 mg/L) in solid (A) and liquid (B) media, with or without 3-AT, 

as explained in section 1.4 of Materials and Methods. Mean values and standard 

deviations of maximum OD600nm are shown (B). Different letters over the bars 

indicate statistically significant differences (p-value<0.05) from two-tailed 

student's t-test. 

Figure C1-5. The eIF2α phosphorylation was absent in the gcn1Δ and gcn2Δ 

mutants in the three tested conditions: +Fe, -Fe and 3-aminotriazole. The 

protein levels of eIF2α phosphorylated and total eIF2α of wild-type BY4741, gcn1∆ 

and gcn2∆ cells, transformed with the pRS413 plasmid containing the HIS3 gene, 

were analyzed by Western blot from overnight precultures reinoculated in SC-His 

(+Fe, 6 hours), SC-His with 100 µM BPS (-Fe, 9 hours) and SC-His with 30 mM 3-AT 

(5 hours). (A) A representative result is shown. PL: Protein ladder. (B) Mean 

values and standard deviations from the quantification of three independent 

biological replicates are shown. Different letters over the bars indicate statistically 

significant differences (p-value<0.05) from two-tailed student's t-test. 
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Figure C1-6. Gcn2 is involved in the global translational repression under 

iron deficiency. Polysome profile experiments of wild-type BY4741 and gcn2∆ 

cells were performed from overnight cultures reinoculated in SC (+Fe) (A and C) 

and SC with 100 µM BPS (-Fe) (B and D) for 9 hours. A representative A260nm 

polysome profile of at least three biologically independent replicates is shown. (E) 

The average of polysomes/monosome 80S (P/M) ratio is represented with 

standard deviations. Different letters over the bars indicate statistically significant 

differences (p-value<0.05) from two-tailed student's t-test. 
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Figure C1-7. The derepression of global translational observed in gcn2∆ cells 

during the iron deficiency is temporary. Polysome profile experiments of wild-

type BY4741 (A) and gcn2∆ (B) cells were performed at 12 hours as explained in 

Figure C1-6. The P/M ratios are represented (C) and analyzed as previously 

mentioned. 

 

C1.4.  Gcn1 is involved in global translational repression under iron 

deficiency 

The phosphorylation of eIF2α requires the previous activation of Gcn2 kinase 

through the binding of uncharged tRNAs to the histidyl-tRNA synthetase (HisRS)-

like domain of Gcn2. Moreover, the Gcn1–Gcn20 complex is required for the 

activation of Gcn2 by amino acid starvation (Marton et al., 1997; García-Barrio et 

al., 2000), oxidative stress and UV irradiation (Shenton et al., 2006; Anda et al., 

2017). We decided to investigate the implication of this mechanism in the 

repression of global translation mediated by eIF2α-Gcn2 under iron starvation. 

Similar to gcn2∆, the gcn1∆ mutant exhibited a minor but significant growth defect 

under amino acid starvation (Figure C1-4). Importantly, the gcn1∆ mutant did not 

phosphorylate eIF2α in any of the tested conditions (+Fe, -Fe or 3-AT) (Figure C1-
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5). Regarding the polyribosome profile experiments, no differences were observed 

between the wild-type and the gcn1∆ mutant in iron sufficiency (Figure C1-8: A, C 

and E). On the other hand, the global repression of translation observed in the 

wild-type under iron deficiency was somewhat limited in the gcn1∆ mutant 

(Figure C1-8: B, D and E). Therefore, Gcn1 is involved in the global translational 

repression when iron is limited, most likely in the specific activation of Gcn2 

kinase. 

Figure C1-8. Gcn1 is involved in the global translational repression under 

iron deficiency. Polysome profile experiments of wild-type BY4741 (A and B) and 

gcn1∆ (C and D) cells were performed as explained in Figure C1-6. (E) The P/M 

ratios are represented with standard deviations. Different letters over the bars 
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indicate statistically significant differences (p-value<0.05) from two-tailed 

student's t-test. 
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Discussion of Chapter 1 

As protein synthesis is a highly energy consuming process, it is common that 

prokaryotic and eukaryotic cells repress global translation when exposed to stress 

conditions. Besides, cells need to adapt its proteome to respond and survive to 

these stresses. Nutritional deficiencies like glucose or amino acid limitation, and 

several stresses like heat shock, oxidative and osmotic stress rapidly arrest general 

translation (Martínez-Pastor & Estruch, 1996; Ashe et al., 2000; Shenton et al., 

2006; Yamamoto & Izawa, 2013). Indeed, the repression of translation initiation 

usually is observed fast (within the first 30 minutes of the stress) being sometimes 

a temporary response that relaxes when the transcriptional response arrives 

(reviewed by Crawford & Pavitt, 2019). However, we have seen that the 

translational response is not immediate during the progress of the iron deficiency. 

Moreover, translation is even supported by the robust homeostasis of amino acid 

levels during iron starvation (Shakoury-Elizeh et al., 2010; Philpott et al., 2012). 

The arrest of translation is not the first response as it is not significantly reduced 

within the first 3 hours of -Fe (Figure C1-1). The fastest response of yeast cells to 

iron starvation is the activation of the iron regulon. TORC1 inhibition (reducing all 

RNA polymerases levels) occurs later in the iron deficiency (6 hours and 9-11 

hours in the W303 and BY4741 yeast backgrounds, respectively) (Romero et al., 

2019). Under these conditions, the RP and RiBi mRNA levels drop (Romero et al., 

2019). These results strongly suggested a global translation inhibition, which we 

have confirmed taking place at longer times of iron deficiency. The global 

translation observed by polysome profiles in the W303 background was slightly 

decreased during short-term iron deficiency (3 hours) but dramatically decreased 

at longer times of the iron starvation (6 hours) (Figure C1-1: C, D and E). 

Importantly, the global translational arrest observed is specific of the iron 

deficiency as same cultures in iron sufficiency (with similar OD600) did not show 

translational inhibition (Figure C1-1: A, B and E). Therefore, the global inhibition 

of translation initiation occurs at long times during the iron deficiency. 

Despite the general mRNA translation arrest that occurs during the response 

to stresses, certain mRNAs can be upregulated contrary to the global response 

(Shenton et al., 2006; Melamed et al., 2008; Warringer et al., 2010; Garre et al., 

2012; Garre et al., 2018). This can be achieved (i) through mRNA modifications, (ii) 
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because of specific regulation of mRNA-binding proteins, (iii) internal ribosome 

entry sites or (iv) through upstream ORFs (reviewed by Spriggs et al., 2008; 

Hinnebusch et al., 2016; Crawford & Pavitt, 2019). The latter is the case of the 

GCN4 mRNA that contains four uORFs. GCN4 translation increases when the 

ternary complex levels (eIF2–GTP–methionyl-tRNA) are low, and therefore the 

general translation initiation is repressed. This counter is well characterized under 

amino acid limitation as the transcriptional factor Gcn4 activates genes for the 

amino acid biosynthetic pathways (Hinnebusch et al., 2005). Previous results 

support that this would be also the case during iron deficiency (Romero, 2018; 

Romero et al., 2020; Figure I-3: C). However, the GCN4-lacZ results (Figure C1-2: 

D) do not fully correlate with the polysome presence of the GCN4 transcript after 6 

hours in -Fe, especially if compared to the β-galactosidase in the amino acid 

starvation situation. Moreover, we currently do not know the function and 

relevance of GCN4 translation under iron-deficient conditions. The slight GCN4-

lacZ induction during the iron deficiency supports a mild drop in ternary complex 

levels compared to amino acid limitation, or additional translational problems 

posterior to initiation. However, the shift to monosomal fractions of the RPS16B 

and RPL3 mRNAs encoding ribosomal proteins corroborates the general 

translational repression (Figure C1-2: A and B).  

The phosphorylation of eIF2α in serine 51 turns eIF2–GDP into a competitive 

inhibitor of eIF2B and decreases the ternary complex levels. The eIF2α 

phosphorylation under iron deficiency (Romero, 2018; Romero et al., 2020; Figure 

I-3: A and B) and the increased 80S peak observed in this work when translation 

is arrested (Figure C1-1: D) suggest that translation is being inhibited at the 

initiation step. Gcn2 is the only kinase in S. cerevisiae that phosphorylates serine 

51 of eIF2α. We have determined that Gcn2 is activated and phosphorylates eIF2α 

in -Fe: (i) eIF2α is not phosphorylated in the gcn2Δ mutant (Figure C1-5), (ii) this 

phosphorylation is important for the inhibition of the translation initiation (Figure 

C1-3), and (iii) gcn2Δ mutant lacks the GCN4-lacZ induction (Figure C1-2: D). 

Consistent with this, the gcn2Δ mutant, which shows the expected phenotype 

under amino acid limitation (Figure C1-4), does not exhibit repression of the 

translation initiation in -Fe (Figure C1-6). However, when the iron deficiency 
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persists longer (12 hours), the GCN2 deletion does not rescue anymore the 

translational state (Figure C1-7). Perhaps the role of Gcn2 is transient and other 

mechanisms are involved in the repression of translation initiation at longer times 

(12 hours in -Fe). For instance, after 12 hours in -Fe the levels of rRNAs, mRNAs, 

especially RPs and RiBis, and tRNAs, could be dramatically low. Besides, the 

recycling of amino acids and ribosomes, the latter especially dependent of the 

Fe/S-dependent Rli1 protein, would be more compromised with the progression of 

the iron deficiency. As a consequence, removing Gcn2 activity would not be enough 

to recover bulk translation.  

Unlike S. cerevisiae, with only one eIF2α kinase, in mammals there are four 

eIF2α kinases. These are expressed in different tissues and activated by different 

stresses: GCN2 is activated under nutrient limitation (Sood et al., 2000), PKR under 

viral infections (Clemens, 1997), PERK/PEK by endoplasmic reticulum stress (Shi 

et al., 1998; Harding, 1999) and HRI is the heme-regulated eIF2α kinase activated 

under iron deficiency in erythroid cells (Ranu & London, 1976; Kramer et al., 1976; 

Levin et al., 1976). All these kinases phosphorylate eIF2α when activated, repress 

general translation and activate the translation of the ATF4 mRNA (GCN4 in yeast) 

also regulated by uORFs. This has been termed the Integrated Stress Response 

(ISR) (reviewed by Pakos-Zebrucka et al., 2016; Pavitt, 2018). The global inhibition 

of translation under iron deficiency in mammals seems to be conserved in yeast. 

Iron starvation limits heme synthesis and the heme-regulated eIF2α kinase (HRI) 

phosphorylates eIF2α in erythroid cells. This decreases bulk translation, 

downregulates the translation of globins and increases the synthesis of specific 

transcripts like HbF (fetal hemoglobin) (Han et al., 2001; Hahn & Lowrey, 2013; 

Hahn & Lowrey, 2014; Zhang et al., 2019b). When HRI is disrupted, global 

translation and especially the synthesis of globins in mice is improved, similarly to 

GCN2 deletion in yeast (Han et al., 2001). Interestingly, iron deficiency decreases 

the translation of mRNAs encoding cytosolic and mitochondrial ribosomal proteins 

in an HRI-dependent manner (Zhang et al., 2019b). In the same way, we have 

observed the shift to monosomal fractions of two mRNAs encoding cytosolic RPs 

during the iron deficiency (Figure C1-2: A and B).  
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The ISR pathway was initially outlined in yeast as the General Amino Acid 

Control (GAAC) as it was first described to induce the amino acid biosynthetic 

genes in response to amino acid depletion (Hinnebusch & Fink, 1983). Since then, 

Gcn2 in yeast has been described to be activated under several stresses like purine 

starvation, glucose limitation, salt stress, membrane stress, oxidative stress and 

intracellular acid stress (Rolfes & Hinnebusch, 1993; Yang et al., 2000; Goosens et 

al., 2001; Deloche et al., 2004; Shenton et al., 2006; Hueso et al., 2012). We are 

adding iron deficiency to the list of conditions activating Gcn2 in yeast. Our 

proposed model of Gcn2 activation in iron deficiency (Figure D1-1) would be 

similar to the amino acid limitation condition. During iron deficiency uncharged 

tRNAs would bind the A site of the ribosome. Gcn1 is the protein of the Gcn1–

Gcn20 complex that directly binds the ribosome and directly transfers the tRNA to 

the HisRS-like domain of Gcn2, promoting its kinase activity as in amino acid 

starvation (Marton et al., 1997; Garcia-Barrio et al., 2000). In fact, under iron 

deficiency, as in amino acid limitation, eIF2α is not phosphorylated in the gcn1Δ 

mutant (Figure C1-5) and this mutant shows a significant recovery of the 

translation initiation in -Fe (Figure C1-8). Then, Gcn2 would phosphorylate eIF2α 

in Ser-51 decreasing the ternary complex levels, repressing the general translation 

initiation but increasing the translation in the main ORF of GCN4 (Figure D1-1). 

Further studies would be necessary to elucidate whether other mRNAs in addition 

to GCN4 are preferentially translated during the progress of iron deficiency via 

Gcn2. 

We cannot ignore other hypothesis about the Gcn2 activation under iron 

starvation. Other stresses that activate Gcn2, different from amino acid limitation 

or glucose depletion, do not show clear reduced amino acid levels. Instead, higher 

levels of uncharged tRNAs could be consequence of defects in the aminoacyl tRNA 

synthase, like in oxidative stress or acidic intracellular pH (Shenton et al., 2006; 

Hueso et al., 2012). It could even be possible that Gcn2 is being activated 

independently of the uncharged tRNA pool. This hypothesis would still require 

Gcn1 and the binding of a tRNA (uncharged or not) to the HisRS-like domain of 

Gcn2 (Kubota et al., 2003; Narasimhan et al., 2004; Hinnebusch et al., 2005; Anda 

et al., 2017). The Ser-577 of Gcn2 could be involved in this last hypothesis. When 
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this residue is phosphorylated, the Gcn2 kinase is inactivated. The kinase/s 

involved in this phosphorylation are not known, but the protein phosphatase 2A 

(PP2A) complex is known to dephosphorylate Ser-577. The Ser-577 

dephosphorylation is believed to increase the tRNA binding affinity of Gcn2, and 

once the tRNA is bound in a Gcn1-dependent manner, the Gcn2-kinase activity 

increases (Cherkasova & Hinnebusch, 2003; Kubota et al., 2003). The PP2A 

complex is regulated by TORC1. Inactivation of TORC1 promotes the 

dephosphorylated state of Tap42 that cannot bind and deactivate the PP2A 

complex (Jiang & Broach, 1999).  

Figure D1-1. Proposed model for the eIF2α-Gcn2 pathway-dependent 

regulation of translation under iron deficiency. 

 

Therefore, during iron-deficient conditions both hypotheses of Gcn2 

activation could coexist (Figure D1-1): (i) limited amino acid levels would 

increase the uncharged tRNAs, and (ii) TORC1 inactivation could activate Gcn2 in a 

Tap42/PP2A-dependent manner. The first hypothesis is supported by the fact that 

the synthesis of several amino acids requires iron-containing proteins whose 
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mRNAs are downregulated in a Cth1/2-dependent manner (Puig et al., 2005; Puig 

et al., 2008). At our severe iron-deficient conditions it is likely that amino acids are 

scarce and this could promote the subsequent increment of uncharged tRNAs. On 

the other hand, the second hypothesis is supported by the observed decrease in 

rRNAs, tRNAs, RP and RiBi mRNAs during iron deficiency because of the reduced 

activity of all RNA polymerases due to the TORC1 inhibition (Romero et al., 2019). 

Bulk translation is probably limited because of reduced ribosome levels as a 

consequence of TORC1 inactivation. However, the phosphorylation state of Tap42 

or Ser-577 of Gcn2 during iron deficiency has not been addressed and would 

require further studies. 
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Chapter 2. Cth2 represses the translation of ARE-containing mRNAs in 

response to iron deficiency 

This work was published in: 

- PLoS Genetics journal, volume 14 (Ramos-Alonso et al., 2018a). The authors 

are Lucía Ramos-Alonso, Antonia María Romero, Maria Àngel Soler, Ana 

Perea-García, Paula Alepuz, Sergi Puig and María Teresa Martínez-Pastor 

 

- Current Genetics journal, volume 65, mini-review (Ramos-Alonso et al., 2019). 

The authors are Lucía Ramos-Alonso, Antonia María Romero, Julio Polaina, 

Sergi Puig and María Teresa Martínez-Pastor 

 

As previously introduced, Cth2 promotes the metabolic remodeling of several 

cellular processes in order to optimize iron utilization (Puig et al., 2005; Puig et al., 

2008). The role of Cth2 and of the TTP family of proteins is to promote ARE-

mediated mRNA decay (AMD), including their own transcripts whose AREs are 

important for negative feedback regulation (Brooks et al., 2004; Tchen et al., 2004; 

Pullmann et al., 2007; Tiedje et al., 2012; Martínez-Pastor et al., 2013a). Besides, it 

is known that mammalian TTP can also repress translation of its ARE-containing 

targets, including again its own transcript (Coller & Parker, 2005; Qi et al., 2012; 

Tiedje et al., 2012). Because of these studies and because of the observation of a 

poor correlation between CTH2 mRNA and Cth2 protein levels in an ARE mutant 

allele of CTH2 (Martínez-Pastor et al., 2013a), we decided to investigate a potential 

role of Cth2 in ARE-dependent translational regulation during iron starvation. 

C2.1. SDH4 mRNA translation decreases under iron deficiency 

SDH4 mRNA, which encodes the subunit 4 of succinate dehydrogenase, 

exhibited one of the most down-regulated transcript patterns in a wild-type strain 

compared to the cth2∆ mutant during iron deficiency (Puig et al., 2005). Therefore, 

SDH4 mRNA has been widely used as a model for an ARE-containing Cth2 target in 

response to iron starvation (Puig et al., 2005; Pedro-Segura et al., 2008; Prouteau 

et al., 2008; Puig et al., 2008; Vergara et al., 2011).  We decided to explore whether  
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the down-regulation of SDH4 expression was also controlled at the translational 

level, as TTP represses the translation of its targets in mammals (Qi et al., 2012; 

Tiedje et al., 2012). Therefore, SDH4 mRNA translation was analyzed in a wild-type 

strain cultivated in iron sufficiency (+Fe) or iron deficiency (-Fe) using two 

different approaches. First, SDH4 translation efficiency, defined as the Sdh4 

protein/SDH4 mRNA ratio, was normalized to the translation efficiency of 3-

phosphoglycerate kinase PGK1, whose levels were not altered by changes in the 

iron availability. As expected, in response to iron starvation, the SDH4/PGK1 mRNA 

levels dropped to the third of those in iron sufficiency (Figure C2-1: A). However, 

the corresponding protein levels lowered to a greater extent, a tenth of the iron 

sufficiency levels, reducing the translation efficiency of SDH4 to the third of the 

translation efficiency in +Fe (Figure C2-1: A). However, a potential explanation for 

this reduced translation efficiency of SDH4 in -Fe could be a different Sdh4 protein 

half-life. For this reason, we analyzed the protein half-life of Flag2-Sdh4 protein as 

explained in Materials and Methods. The result showed that the Flag2-Sdh4 protein 

half-life during iron limitation was not diminished but increased (Figure C2-1: B). 

Therefore, the decreased Sdh4 protein levels observed during the iron deficiency 

were not due to the protein destabilization, but probably to a decrease in 

translation efficiency. 

The second experimental approach used to study the translation of SDH4 in 

iron deficiency was by polysome fractionation experiments. Polysome profiles in    

-Fe conditions showed a general decrease in the polysome/80S abundance 

compared to the +Fe condition (Figure C2-2: C and D), as expected from the 

results of Chapter 1. The specific distribution of the SDH4 transcript among the 

fractions showed a greater monosomal 80S peak association during iron starvation 

compared to the heavy polysomal distribution during iron sufficiency (Figure C2-

2: A). On the contrary, the polysomal profile of ACT1 mRNA, a housekeeping gene 

non-iron regulated, showed a constant and high polyribosome association under 

both +Fe and -Fe conditions (Figure C2-2: B). Taken together, these results 

suggest that the SDH4 mRNA translation is inhibited under iron deficiency. 
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Figure C2-1. The SDH4 mRNA translation efficiency is decreased under iron 

deficiency. (A) Analyses of the translation efficiency of SDH4/PGK1 of wild-type 

BY4741 cells transformed with the pRS416-Flag2-SDH4 (SDH4) plasmid were 

performed in three independent biological replicates from overnight cultures 

reinoculated in SC-Ura with 10 µM FAS (+Fe) and SC-Ura with 100 µM BPS (-Fe) 

for 7 hours. Flag2-SDH4 and PGK1 mRNA levels were determined by RT-qPCR using 

specific primers, and Flag2-Sdh4 and Pgk1 protein levels were determined by 

Western blot with anti-Flag and anti-Pgk1 antibodies. The translation efficiency 

was calculated as: (Flag2-Sdh4 protein / Flag2-SDH4 mRNA) / (Pgk1 protein / PGK1 

mRNA). Mean values and standard deviations are shown and referred to those in 

+Fe. (B) Flag2-Sdh4 expressing cells were grown as in (A) and protein levels were 

determined at the indicated times after adding cycloheximide (50 μg/mL). Mean 

values of the Flag2-Sdh4 protein half-life (t1/2) from two independent biological 

replicates are indicated and were calculated as explained in section 4.4.3 of 
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Materials and Methods. One of the Western blot results is shown. A non-specific 

anti-Flag band (*) was used as loading control. 

Figure C2-2. The SDH4 mRNA is more associated to the 80S peak in iron 

deficiency. Polysome profile experiments of sdh4Δ cells transformed with the 

pRS416-SDH4 (SDH4) plasmid were performed from overnight cultures 

reinoculated in SC-Ura with 10 µM FAS (+Fe) and SC-Ura with 100 µM BPS (-Fe) 

for 7 hours. A representative A260nm polysome profile of at least two biologically 

independent replicates is shown for +Fe (C) and -Fe (D) and the ribosomal 

subunits (40S and 60S), monosome (80S) and polysome fractions are indicated. 

The RNA from individual fractions was extracted and SDH4 (A) and ACT1 (B) 

mRNA levels were analyzed by RT-qPCR as described in Materials and Methods. 
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C2.2. AREs within SDH4 mRNA are required for its translational inhibition 

under iron deficiency 

The degradation of SDH4 mRNA under iron deficiency depends on the two 

ARE motifs within its 3’-UTR (Puig et al., 2005). We wanted to test if the SDH4 

mRNA translational inhibition observed in -Fe was ARE-dependent. We used a 

wild-type (SDH4) and a mutated version of SDH4 (SDH4-AREmt) with four adenine 

nucleotides mutated to cytosine (Puig et al., 2005). Consistent with previous work 

(Puig et al., 2005), SDH4-AREmt mRNA levels displayed a 5-fold increase upon iron 

deficiency when the AREs were mutated (Figure C2-3: A). But importantly, Sdh4 

protein levels more than tripled the observed mRNA increase, from 5-fold to 16-

fold, which resulted in a 3-fold increment of the SDH4 translation efficiency when 

AREs were mutated during iron deficiency (Figure C2-3: A). This result was 

corroborated by polysome profile experiments (Figure C2-3: B, C, D and E). While 

the AREs mutation did not affect the high polyribosome association already 

observed for SDH4 in +Fe (Figure C2-2: A and Figure C2-3: D), iron deficiency 

provoked a shift of the SDH4-AREmt transcript to polysomal fractions (Figure C2-

3: B). Again, the high polyribosome association of ACT1 mRNA was neither affected 

by the iron availability nor by the AREs of SDH4 (Figure C2-3: C and E). Therefore, 

these results are indicative of an ARE-mediated SDH4 mRNA translational 

inhibition specifically taking place during iron starvation. 

C2.3. Cth2 is the responsible of the SDH4 mRNA translational inhibition 

under iron deficiency 

As previously mentioned, the presence of Cth2 during iron limitation is 

necessary for the ARE-dependent degradation of SDH4 mRNA. This regulation 

requires the binding of the TZFs of Cth2 to the AREs in the 3’UTR of SDH4 mRNA 

(Puig et al., 2005). As we already demonstrated that the AREs are the cis regulatory 

elements in the translational inhibition of SDH4, we decided to test the implication 

of Cth2 as trans regulatory element in SDH4 translational repression during iron 

starvation. We performed SDH4 translation efficiency and polysome profile 

experiments during iron deficiency either with a plasmid of the wild-type version 

of CTH2, a TZFs mutant (CTH2-C190R) or an empty vector (cth2Δ). In order to 

eliminate the secondary role played by Cth1, the experiments were performed in a  
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Figure C2-3. AREs within SDH4 mRNA are required for its translational 

inhibition under iron deficiency. (A) Analyses of the translation efficiency of 

SDH4/PGK1 were performed in sdh4Δ cells transformed with pRS416-Flag2-SDH4 

(SDH4) or pRS416-Flag2-SDH4-AREmt (SDH4-AREmt) in -Fe as explained in Figure 

C2-1 A. Mean values and standard deviations from two independent experiments 

are shown and referred to pRS416-Flag2-SDH4 (SDH4). (B-E) Polysome profile 

experiments of sdh4Δ cells transformed with pRS416-SDH4 (SDH4) or pRS416-

SDH4-AREmt (SDH4-AREmt) were performed in +Fe and -Fe as in Figure C2-2. The 

RNA from individual fractions was extracted and SDH4 (B, D) and ACT1 (C, E) 

mRNA levels were analyzed by RT-qPCR as described in Materials and Methods. A 

representative profile from at least two biologically independent replicates is 

shown in each case. 
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cth1Δcth2Δ background, as it was done in most Cth2-related investigations 

previously performed (Puig et al., 2005; Pedro-Segura et al., 2008; Puig et al., 2008; 

Vergara et al., 2011; Romero et al., 2018b). When Cth2 was absent (cth2Δ) or 

mutated in the TZFs (CTH2-C190R), SDH4 mRNA levels increased by 1.5 to 1.8-fold 

during iron limitation (Figure C2-4: A), whereas the Sdh4 protein levels increment 

Figure C2-4. Cth2 represses SDH4 mRNA translation in a Cth2-TZF-dependent 

manner when iron is scarce. (A) Analyses of the translation efficiency of 
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SDH4/PGK1 of cth1Δcth2Δ mutant cells co-transformed with pRS416-Flag2-SDH4 

and either pRS415-CTH2 (CTH2), pRS415 (cth2Δ) or pRS415-CTH2-C190R (CTH2-

C190R) were performed in three independent biological replicates from overnight 

cultures reinoculated in SC-Ura-Leu with 100 µM BPS (-Fe) for 7 hours. 

Calculations were performed as explained in Figure C2-1 A. Mean values and 

standard deviations are shown and referred to pRS415-CTH2 (CTH2). (B-E) 

Polysome profile experiments of cth1Δcth2Δsdh4Δ cells co-transformed with 

pRS416-SDH4 and either pRS415-CTH2 (CTH2), pRS415 (cth2Δ) or pRS415-CTH2-

C190R (CTH2-C190R) were performed as mentioned above. The RNA from 

individual fractions was extracted and SDH4 (B, D) and ACT1 (C, E) mRNA levels 

analyzed by RT-qPCR as described in Materials and Methods. A representative 

profile from at least two biologically independent replicates is shown in each case. 

 

was from 8 to 10-fold. With this result, the calculated SDH4 translation efficiency 

increased by 5 to 7-fold during iron deficiency in a Cth2-dependent manner. This 

result was again corroborated by polysome profile experiments (Figure C2-4: B, C, 

D and E). Similar results to SDH4-AREmt cells were obtained (Figure C2-3: B), 

since a higher SDH4 mRNA polysomal association was observed in cth2Δ and 

CTH2-C190R cells in -Fe (Figure C2-4: B and D). Again, ACT1 mRNA distribution 

was not affected by Cth2 (Figure C2-4: C and E). These results demonstrate that 

SDH4 translational repression under iron deficiency is mediated by the Cth2 

protein through the binding of its TZFs to the AREs in the 3’-UTR of the SDH4 

mRNA. 

C2.4. CTH2 mRNA translation is also repressed by Cth2 protein under iron 

limitation 

As before mentioned, Cth2 protein promotes its own mRNA decay in an ARE-

dependent manner (Martínez-Pastor et al., 2013a). This is important for rapid Cth2 

disappearance and the consequent recovery of cell respiration, among other iron-

dependent processes, when iron availability is restored (Martínez-Pastor et al., 

2013a). In this way, the Cth2 translational repression of its own mRNA would 

contribute to its negative feedback regulation. To test whether the ARE of CTH2 

mRNA was the cis-regulatory element in its translational inhibition, we assayed a 
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wild-type (CTH2) and an ARE mutated version of CTH2 (CTH2-AREmt) in iron 

deficiency. While the CTH2 mRNA levels suffered only a 1.3-fold increase in the 

CTH2-AREmt samples, the corresponding protein levels increased 4.8-fold (Figure 

C2-5: A). Consequently, CTH2 translation efficiency was 3.6-fold higher in the 

CTH2-AREmt mutant than in the wild-type CTH2 during the iron deficiency (Figure 

C2-5: A). Regarding the polysome profile experiments, CTH2 mRNA was more 

associated to heavier polysomal fractions in the ARE mutated version of CTH2 in     

-Fe (Figure C2-5: B), while ACT1 mRNA was similar in both cases (Figure C2-5: C). 

Therefore, these results are indicative of an ARE-mediated CTH2 mRNA 

translational repression. 

Figure C2-5. The ARE sequence of the CTH2 mRNA represses its translation in 

low iron conditions. (A) Analyses of the translation efficiency of CTH2/PGK1 of 

cth1Δcth2Δ mutant cells transformed with pRS416-Flag2-CTH2 (CTH2) or pRS416-

Flag2-CTH2-AREmt (CTH2-AREmt) were performed in at least two independent 

biological replicates from overnight cultures reinoculated in SC-Ura with 100 µM 
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BPS (-Fe) for 7 hours. Calculations were performed as explained in Figure C2-1 A 

with CTH2 instead of SDH4 data. Mean values and standard deviations are shown 

and referred to those of pRS416-Flag2-CTH2 (CTH2). (B and C) Polysome profile 

experiments of cth1Δcth2Δ mutant cells transformed with pRS416-CTH2 (CTH2) or 

pRS416-CTH2-AREmt (CTH2-AREmt) were performed as mentioned above. The 

RNA from individual fractions was extracted and CTH2 (B) and ACT1 (C) mRNA 

levels were analyzed by RT-qPCR as described in Materials and Methods. A 

representative profile from at least two biologically independent replicates is 

shown in each case. 

 

At this point, Cth2 protein seemed likely to be the trans-acting factor 

regulating the CTH2 mRNA translational inhibition through its TZFs. To 

demonstrate it, we used the wild-type (CTH2) and the TZFs mutated version of 

CTH2 (CTH2-C190R) in iron deficiency, since Cth2 protein stability was not affected 

by the C190R mutation (Figure C2-6). The CTH2 mRNA levels were increased 2.8-

fold in CTH2-C190R expressing cells, compared to CTH2 wild-type cells, whereas 

the protein increased 4.5-fold (Figure C2-7: A). The result was a 1.6-fold 

increment in the translation efficiency of CTH2 in the TZF mutant in -Fe (Figure 

C2-7: A). The results obtained with polysome profiles indicated similar 

conclusions. The CTH2 transcript was more associated to heavier polysomal 

fractions in CTH2-C190R cells in -Fe, whereas ACT1 mRNA did not (Figure C2-7: B 

and C, respectively). Taken together, we can conclude from these results that the 

Cth2 protein represses its own mRNA translation by the specific binding of its TZFs 

to the ARE in the 3’UTR of its transcript. 

Figure C2-6. The Cth2 protein stability in iron deficiency is TZF-independent. 

Protein half-life (t1/2) of cth1Δcth2Δ mutant cells transformed with pRS416-Flag2-
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CTH2 (CTH2) or pRS416-Flag2-CTH2-C190R (CTH2-C190R) was determined from 

overnight cultures reinoculated in SC-Ura with 100 µM BPS (-Fe) for 7 hours. 

Protein levels were determined at the indicated times after adding cycloheximide 

(50 μg/mL). Mean values of the protein half-life (t1/2) from two independent 

biological replicates are indicated, and one of the Western blot results is shown. A 

non-specific anti-Flag band (*) was used as loading control. 

 

Figure C2-7. Cth2 represses its own mRNA translation in a Cth2-TZF-

dependent manner under iron-limited conditions. (A) Analyses of the 

translation efficiency of CTH2/PGK1 of cth1Δcth2Δ mutant cells transformed with 

pRS416-Flag2-CTH2 (CTH2) or pRS416-Flag2-CTH2-C190R (CTH2-C190R) were 

performed in four independent biological replicates represented and normalized 

as in Figure C2-5 A. (B and C) Polysome profile experiments of cth1Δcth2Δ mutant 
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cells transformed with pRS416-CTH2 (CTH2) or pRS416-CTH2-C190R (CTH2-

C190R) were performed as mentioned above. The RNA from individual fractions 

was extracted and CTH2 (B) and ACT1 (C) mRNA levels were analyzed by RT-qPCR 

as described in Materials and Methods. A representative profile from at least two 

biologically independent replicates is shown in each case. 

 

C2.5. Cth2 represses the translation of multiple ARE-containing mRNAs 

Besides the above SDH4 and CTH2 mRNAs translational repression via Cth2-

binding, we wondered if Cth2 was able to repress the translation of other ARE-

containing mRNAs. For this purpose, we analyzed the polysome profiles of 

additional Cth2 mRNA-targets in cells expressing or lacking CTH2 in iron 

deficiency. For a better quantification of the mRNAs distribution, the fractions of 

each replicate were grouped in two pools prior to RNA extraction: monosomal and 

polysomal (Figure C2-8), in addition to the analysis of individual fractions (Figure 

C2-9).  

The analysis showed that the presence of cytochrome-c peroxidase (CCP1), 

ferrochelatase (HEM15) and the ribonucleotide reductase inhibitor (WTM1) 

mRNAs in the pooled polysomal versus monosomal fractions was higher in the 

cth2Δ cells compared to the wild-type CTH2-expressing cells (Figure C2-8: A, B 

and C). These results were also confirmed by the profile of individual fractions 

(Figure C2-9: A, B and C). This higher association to heavier polysomal fractions 

(and lower to monosomal fractions) in the cth2Δ mutant was similarly found in 

SDH4 mRNA (Figure C2-8: D and Figure C2-9: D), which already was shown to be 

regulated at the translational level in a Cth2-dependent manner (Figure C2-4: A, B 

and D), while the control ACT1 mRNA showed minimal differences (Figure C2-8: E 

and Figure C2-9: E). The polyribosome analyses of specific mRNAs in individual 

fractions, as well as in pooled fractions, confirmed that, in addition to SDH4, other 

Cth2 mRNA-targets (CCP1, HEM15 and WTM1) were translationally inhibited by 

Cth2 during iron starvation. 
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Figure C2-8. Cth2 represses the translation of several ARE-containing mRNAs 

under iron deficiency. Polysome profile experiments of cth1Δcth2Δsdh4Δ cells co-

transformed with pRS416-SDH4 and either pRS415-CTH2 (CTH2) or pRS415 

(cth2Δ) were performed in two independent biological replicates from overnight 

cultures reinoculated in SC-Ura-Leu with 100 µM BPS (-Fe) for 7 hours. The RNA 

from unified monosomal and polysomal fractions was extracted and CCP1 (A), 

HEM15 (B), WTM1 (C), SDH4 (D) and ACT1 (E) mRNA levels were analyzed by RT-

qPCR as described in Materials and Methods. Mean values and standard deviations 

are shown. 
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Figure C2-9. Cth2 represses the translation of several ARE-containing mRNAs 

under iron deficiency. The RNA from individual fractions of the polysome profile 

experiments from Figure C2-8 was extracted and CCP1 (A), HEM15 (B), WTM1 (C), 

SDH4 (D) and ACT1 (E) mRNA levels were analyzed by RT-qPCR as described in 

Materials and Methods. Mean values and standard deviations are shown. A 

representative profile from two biologically independent replicates is shown in 

each case. 
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C2.6. Both Cth2 amino and carboxy-terminal domains are involved in 

SDH4 mRNA translational repression, but only the amino-terminal 

domain is responsible for mRNA decay 

Previous studies have shown that the first 89 amino acids of the amino-

terminal domain (NTD) of Cth2 are involved in its ability to promote targeted 

mRNA decay without affecting the protein shuttling between the nucleus and the 

cytoplasm (Prouteau et al., 2008; Vergara et al., 2011). These amino acids are 

within the conserved CR1 region of Cth2, probably involved in the recruitment of 

components of the mRNA degradation machinery. To decipher which Cth2 protein 

regions, besides the TZFs, were important for the Cth2-dependent mRNA 

translational repression, we studied the SDH4 mRNA translational status with 

different truncated versions of Cth2 fused to GFP (Figure C2-10: A, GFP-

CTH2ΔN89 lacking CR1, GFP-CTH2ΔN170 lacking CR1 and CR2, and GFP-CTH2ΔC52 

lacking CR3). The fusion of GFP to the amino-terminus of Cth2 did not affect its 

function in mRNA decay, -Fe growth or nucleus-cytoplasm shuttling (Vergara et al., 

2011; Ramos-Alonso et al., 2018a). The translation efficiency experiments under 

iron starvation showed the expected increment in SDH4 mRNA levels in the cth2Δ 

cells compared to the GFP-CTH2 (CTH2) wild-type cells (Figure C2-10: B). The 

increment was more pronounced at the Sdh4 protein level, obtaining a 1.7-fold 

increment in SDH4 translation efficiency in cth2Δ cells during iron deficiency 

compared to CTH2 (Figure C2-10: B). The cells expressing the truncated versions 

of Cth2 in the NTD (CTH2ΔN89 and CTH2ΔN170) showed an intermediate situation 

between wild-type and cth2Δ cells. SDH4 translation efficiency slightly increased in 

CTH2ΔN89 compared to wild-type. However, translation efficiency levels closer to 

those obtained with cth2Δ were reached in CTH2ΔN170 expressing cells (Figure 

C2-10: B). To further address the Cth2 NTD contribution to SDH4 translation, 

polysome profile experiments were performed with CTH2ΔN170 expressing cells 

in -Fe (Figure C2-10: C). Again, the SDH4 mRNA profile showed an intermediate 

situation between wild-type CTH2 cells and the cth2Δ mutant (Figure C2-10: C). 

These results suggest that both CR1 and CR2 conserved NTDs of Cth2 are involved 

in SDH4 mRNA decay as well as in the translational inhibition of SDH4 that occurs 

during iron starvation. 
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Figure C2-10. Both Cth2 NTD and CTD are necessary for SDH4 mRNA 

translational repression, whereas only Cth2 NTD is involved in SDH4 mRNA 

decay during iron deficiency. (A) Schematic representation of the pRS416-GFP-

CTH2 fusion truncated plasmids at the amino-terminal domain (NTD) and the 

carboxy-terminal domain (CTD). The number of amino acids truncated is indicated 
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(ΔN89 and ΔN170 in the NTD, and ΔC52 in the CTD) as well as the situation of the 

conserved regions (CR) and the TZFs. (B) Analyses of the translation efficiency of 

SDH4/PGK1 of cth1Δcth2Δ mutant cells co-transformed with pRS415-Flag2-SDH4 

and either pRS416-GFP-CTH2 (CTH2), pRS416 (cth2Δ), pRS416-GFP-CTH2ΔN89 

(CTH2ΔN89), pRS416-GFP-CTH2ΔN170 (CTH2ΔN170) or pRS416-GFP-CTH2ΔC52 

(CTH2ΔC52) were performed in three independent biological replicates from 

overnight cultures reinoculated in SC-Ura-Leu with 100 µM BPS (-Fe) for 7 hours. 

Calculations were performed as explained in Figure C2-1 A. Mean values and 

standard deviations are shown and referred to pRS416-GFP-CTH2 (CTH2). An 

asterisk (*) indicates a significant difference (p-value <0.03) from two-tailed 

student’s t-test compared with pRS416-GFP-CTH2 (CTH2). (C and E) Polysome 

profile experiments of cth1Δcth2Δsdh4Δ cells co-transformed with pRS415-SDH4 

and either pRS416-GFP-CTH2 (CTH2), pRS416 (cth2Δ), pRS416-GFP-CTH2ΔN170 

(CTH2ΔN170, in panel C) or pRS416-GFP-CTH2ΔC52 (CTH2ΔC52, in panel E) were 

performed as mentioned above. The RNA from individual fractions was extracted 

and SDH4 mRNA levels were analyzed by RT-qPCR as described in Materials and 

Methods. A representative profile from at least two biologically independent 

replicates is shown in each case. (D) The SDH4/PGK1 relative mRNA half-life was 

calculated in cth1Δcth2Δsdh4Δ cells co-transformed with pRS415-GAL1-SDH4 and 

either pRS416-GFP-CTH2 (CTH2), pRS416 (cth2Δ) or pRS416-GFP-CTH2ΔC52 

(CTH2ΔC52) as explained in section 4.2.2 of Materials and Methods. Mean values 

and standard deviations from three independent experiments are shown. An 

asterisk (*) indicates a significant difference (p-value <0.04) from two-tailed 

student’s t-test compared with cth2Δ. 

 

On the other hand, the experiments involving the conserved region CR3 in 

the carboxy-terminal domain (CTD) of Cth2, using the CTH2ΔC52 truncated 

version, suggested that the steady-state SDH4 mRNA levels were not altered by the 

CTD (Figure C2-10: B). This result was consistent with Prouteau et al. (2008), but 

to unequivocally determine whether Cth2 CTD contributed to SDH4 mRNA 

stability, SDH4 mRNA half-life was determined in CTH2ΔC52, wild-type CTH2 and 

in cth2Δ mutant cells. SDH4 mRNA half-life in CTH2ΔC52 was similar to the one 
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obtained in wild-type CTH2 cells, and both lower than in cth2Δ (Figure C2-10: D). 

With these results, we can conclude that the Cth2 CTD is not involved in the decay 

of SDH4 mRNA. However, Sdh4 protein levels and SDH4 translation efficiency in 

CTH2ΔC52 were significantly higher than in cells expressing wild-type CTH2 

(Figure C2-10: B). In the same way, polysome profile experiments with CTH2ΔC52 

showed an intermediate SDH4 mRNA distribution between wild-type CTH2 and 

cth2Δ cells in the 80S peak and in polysome fractions (Figure C2-10: E). Taken 

together, these results suggest that Cth2 NTD is important for both SDH4 mRNA 

decay and translational repression, whereas CTD is only involved in translational 

inhibition during iron deficiency. 

C2.7. The deletion of Cth2 CTD alters the levels of various iron-dependent 

proteins under iron starvation 

After the observation that the CTD of Cth2 was significantly involved in the 

translational repression of SDH4 but not in its mRNA degradation, we wanted to 

test if there were increased protein levels of other Cth2-targets in CTH2ΔC52 cells 

during the iron deficiency. We determined the protein levels of three iron-

dependent proteins: aconitase (Aco1), biotin synthase (Bio2) and ferrochelatase 

(Hem15) under iron starvation in wild-type CTH2, CTH2ΔC52 and cth2Δ mutant 

cells (Figure C2-11: A). Hem15, Bio2 and, to a minor extent, Aco1 protein levels 

were increased in cth2Δ cells in -Fe, as observed with Sdh4 protein (Figure C2-4: 

A and Figure C2-10: B) and previously shown with Sdh2 (Martínez-Pastor et al., 

2013a). However, CTH2ΔC52 expressing cells, which only lack the CR3, displayed 

similar or more increased protein levels of these Cth2 targets. (Figure C2-11: A). 

This result reinforces the previous suggestion of the Cth2 CTD involvement in the 

translational repression of Cth2 mRNA-targets during iron starvation. 

Following these results, we wondered how the NTD and CTD of Cth2 were 

structured when the TZF domain was binding the mRNA, probably exposing some 

motifs for the recruitment of components of mRNA decay and/or translational 

repressive machineries. Using as template the solved TZFs structure of the human 

homologue TIS11d associated with a single-stranded RNA (Hudson et al., 2004), 

Dr. Julio Polaina predicted Cth2 protein structure (Figure C2-11: B). On the one 

hand, the prediction suggested an NTD unstructured conformation, not showed in 
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the figure. On the other hand, the model interestingly predicted the CTD folding 

back into the TZFs of Cth2 (Figure C2-11: B). This is in agreement with previous 

observations about the lack of functionality of any CTD-tagged Cth2 protein, as it 

could be interfering with the ARE-binding function of the TZFs (Puig et al., 2005; 

Prouteau et al., 2008; Vergara et al., 2011). Together, these results suggest that the 

unstructured Cth2 NTD could be recruiting both mRNA decay and translational 

repressive machineries, whereas the CTD, that could be interacting with the TZF 

domain, would be dispensable for the SDH4 mRNA decay but would contribute to 

the translational repression of several iron-dependent proteins. 

Figure C2-11. The Cth2 CTD deletion increases the abundance of various 

iron-dependent proteins. (A) Western blot experiments of cth1Δcth2Δ mutant 

cells transformed with pRS416-GFP-CTH2 (CTH2), pRS416 (cth2Δ) or pRS416-GFP-

CTH2ΔC52 (CTH2ΔC52) were performed from overnight cultures reinoculated in 

SC-Ura with 100 µM BPS (-Fe) for 7 hours. Total protein levels of aconitase 

(Aco1p), biotin synthase (Bio2p) and ferrochelatase (Hem15p) were determined. 

Relative mean values and standard deviations from three independent 

experiments are shown. An asterisk (*) indicates a significant difference (p-value 

<0.05) from two-tailed student’s t-test compared to CTH2. (B) The structural 

model for Cth2 CTD and TZFs was performed as explained in section 5 of Materials 

and Methods. The structure from amino acid 160 to 285 bound to single-stranded 

RNA (in red) is represented. The protein back-bone is indicated in gray except the 

CR3 (from amino acid 263 to 285), which is indicated in green. The histidine and 

cysteine residues that coordinate the two Zn2+ ions (symbolized by black small 
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spheres) are displayed in blue and yellow colors, respectively. TZF1: TZF on the 

NTD side; TZF2: TZF on the CTD side. 

Figure C2-12. The Cth2 CTD mutant shows growth defects under iron-

deficient conditions. Cell growth analyses of cth1Δcth2Δ mutant cells 

transformed with pRS416-GFP-CTH2 (CTH2), pRS416 (cth2Δ) or pRS416-GFP-

CTH2ΔC52 (CTH2ΔC52) were performed from overnight cultures in SC-Ura (+Fe) 

and SC-Ura with 700 µM Ferrozine (-Fe) as explained in section 1.4 of Materials 

and Methods in solid media (A) and in liquid media (B-E). At least three 

independent biological replicates are shown in each case. Mean values of the 

growth curves (OD600 vs. time) were represented (B and D) and relative mean µmax 

(maximum specific growth rate, h-1) values referred to CTH2 in +Fe are shown with 
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standard deviations (C and E). An asterisk (*) indicates a significant difference (p-

value <0.05) from two-tailed student’s t-test compared to CTH2 value in -Fe. 

 

C2.8. The Cth2 CTD is physiologically relevant under iron deficiency  

The specific role of Cth2 CTD in translational repression of Cth2-mRNA 

targets, together with the predicted CTD interaction with the TZF domain, suggest 

an implication of the Cth2 CTD in the yeast adaptation to iron-deficient conditions. 

As expected, neither the cell growth of CTH2ΔC52 nor cth2Δ mutant cells was 

affected compared to the wild-type CTH2 in solid or in liquid iron-sufficient media 

(Figure C2-12: A, B and C). However, the Cth2 CTD mutant showed a slight 

growth defect in iron-deficient solid medium (Figure C2-12: A). Remarkably, this 

growth defect was more prominent under iron deficiency in liquid media, with 

maximum OD600 mean values (Figure C2-12: D) and maximum specific growth 

rate (µmax) (Figure C2-12: E) of CTH2ΔC52 cells significantly decreased in 

comparison with CTH2. Taken together, these results support a physiologically 

relevant role of Cth2 CTD under iron starvation. 
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Discussion of Chapter 2 

The expression of CTH2 in response to iron deficiency is known to be 

necessary to optimize iron utilization. Cth2 protein promotes a metabolic 

remodeling of iron-dependent processes via ARE-mediated mRNA decay that is 

essential for the physiological fitness of cells under iron starvation (Puig et al., 

2005). In the nucleus, Cth2 binds through its TZFs to ARE-containing mRNAs 

encoding proteins involved in iron-consuming pathways (Puig et al., 2005; Puig et 

al., 2008). Then, the mRNA-bound to Cth2 is exported to the cytoplasm where 

mRNA degradation occurs preferentially via the 5’ to 3’ pathway in a Dhh1- and 

Xrn1-dependent manner (Pedro-Segura et al., 2008). Occasionally, Cth2 can also 

interfere in the nucleus with the choice of the polyadenylation site and promote 

extended transcripts of its target mRNAs, which are rapidly degraded in the 

nucleus by the 5’ to 3’ exonuclease Rat1 or in the cytoplasm by Xrn1 (Ciais et al., 

2008; Prouteau et al., 2008; Vergara et al., 2011; Martínez-Pastor et al., 2013b). 

Besides the role of Cth2 in promoting AMD, several observations suggested that 

Cth2 could have a role in the translation status of its mRNA targets: (i) an ARE 

mutant allele of CTH2 mRNA shows a poor correlation between CTH2 transcript 

and Cth2 protein levels in -Fe (Martínez-Pastor et al., 2013a), (ii) Cth2 physically 

interacts with the RNA helicase Dhh1 (Pedro-Segura et al., 2008), homolog of 

human RCK/p54 involved in the repression of translation initiation of TTP mRNA 

targets (Coller & Parker, 2005; Qi et al., 2012; Tiedje et al., 2012), and (iii) in xrn1Δ, 

dcp1Δ and dcp2Δ strains Cth2 localizes into P-bodies (Pedro-Segura et al., 2008), 

which contain transcripts that are temporarily not being translated (Parker & 

Sheth et al., 2007; Decker & Parker, 2012). 

The polyribosome experiments under iron-sufficient and -deficient 

conditions confirmed the results of Chapter 1 related to the mild repression of 

general translation observed here in Chapter 2 after 7 hours in -Fe in the BY4741 

background (Figure C2-2: C and D), with only a slight shift to monosomal 

fractions in ACT1 mRNA in -Fe compared to +Fe (Figure C2-2: B; Figure C2-3: C 

and E). Besides, the translation of SDH4 mRNA was specifically repressed under 

iron deficiency compared to iron sufficiency, by measuring both the translation 

efficiency of SDH4 mRNA (Figure C2-1) and the SDH4 mRNA association to the 
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different polyribosome fractions (Figure C2-2: A; Figure C2-3: B and D). Also, the 

strong association to the 80S monosomal peak of the SDH4 mRNA in -Fe suggests a 

repression of translation taking place at the initiation step. On the other hand, the 

global arrest of translation initiation observed under iron starvation (Figure C2-2: 

C and D), reproduced by the mild change in the ACT1 mRNA profile (Figure C2-2: 

B), was only partially responsible of the strong arrest of SDH4 mRNA in -Fe 

(Figure C2-2: A) that was 3 times more associated to monosomal fractions than 

the global profile. Therefore, the SDH4 mRNA translation initiation is repressed 

specifically under iron starvation. 

In mammals, the AREs were the first 3’-UTR motifs of mRNAs described to 

lead to rapid mRNA decay of certain lymphokines, cytokines and proto-oncogenes 

(Shaw & Kamen, 1986). Later, they were described to participate also in 

translational control. The TIA-1 RNA-binding protein acts as a translational 

repressor binding the ARE of the 3’-UTR of TNFα mRNA and cyclooxygenase-2 

mRNA (Piecyk et al., 2000; Dixon et al., 2003). On the other hand, the HuR RNA-

binding protein acts as a translational enhancer binding the ARE of the 3’-UTR of 

p53 (Galbán et al., 2003; Mazan-Mamczarz et al., 2003). More recently, the 

mammalian TTP was included in the list of proteins repressing the translation of 

ARE-containing mRNAs in a DEAD-box RNA helicase RCK/p54-dependent manner 

(Qi et al., 2012) or by competition with the HuR translational activator (Tiedje et 

al., 2012). Here, we have demonstrated that ARE motifs of SDH4 and CTH2 

transcripts (Figure C2-3 and Figure C2-5, respectively) are the cis regulatory 

elements responsible of their translational repression occurring specifically during 

iron starvation. Moreover, as in the mRNA targets of mammalian TTP, the Cth2 

protein was demonstrated to be the trans regulatory element repressing the 

translation of SDH4 and CTH2 ARE-containing mRNAs in -Fe in a TZFs-dependent 

manner (Figure C2-4 and Figure C2-7, respectively). Accordingly, the SDH4 ARE 

dependency in the association to polyribosome fractions was not observed in +Fe 

due to the lack of CTH2 expression (Figure C2-3: D). However, the sustained 

presence of the SDH4 and CTH2 mRNAs in the 80S peak of polyribosome 

experiments in -Fe despite the ARE motif (Figure C2-3: B and Figure C2-5: B, 

respectively) or Cth1/2 proteins (Figure C2-4: B and D; and Figure C2-7: B, 

respectively) still cannot be completely explained by the mild repression of general 
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translation (Figure C2-2: C and D). Probably, additional unknown regulatory 

factors and/or additional cis regulatory elements different from the AREs could be 

involved in the translational repression of SDH4 and CTH2 mRNAs in -Fe.  

The fact that Cth2 represses the translation of its own mRNA reinforces the 

importance of the CTH2 negative feedback regulation already described at the 

mRNA decay level (Martínez-Pastor et al., 2013a). This autoregulation is important 

for a rapid Cth2 removal when cells shift from iron-deficient to iron-sufficient 

conditions, allowing the reactivation of the iron-dependent processes 

downregulated by Cth2 that are important for cell growth, like mitochondrial 

respiration (Martínez-Pastor et al., 2013a). Similar feedback regulation at both 

mRNA decay and translational levels have been described for TTP (Brooks et al., 

2004, Tchen et al., 2004; Tiedje et al., 2012). In both cases, other family members 

(TIS11b and TIS11d in mammalian cells and Cth1 in yeast) contain AREs and auto- 

and cross-regulate their expression (Tan & Elowitz, 2014; Martínez-Pastor et al., 

2013a). The Cth2 translational inhibition of its own mRNA adds an extra step of 

control in the regulation of Cth2, supporting the cells requirement of carefully 

restrict Cth2 presence to specific iron-deficient conditions. 

Other Cth2 mRNA-targets that participate in iron-dependent processes 

(CCP1, HEM15 and WTM1) were here described to be translationally inhibited by 

Cth2 in -Fe (Figure C2-8 and Figure C2-9). These results suggest that Cth2 has a 

role in both, mRNA decay and translational repression of the set of ARE-containing 

mRNAs that facilitate the adaptation to iron starvation. However, very little is 

known about the mechanism by which Cth2 regulates both processes. The 

conserved CR1 of Cth2 in the NTD is important for the mRNA decay, and its lack 

leads to higher presence of extended Cth2 target transcripts (Prouteau et al., 

2008). This Cth2 NTD is believed to be involved in recruiting the components of 

the mRNA decay machinery (Prouteau et al., 2008). Therefore, we further 

investigated the Cth2 domains involved in both mRNA decay and translational 

repression. While Cth2 NTD was important for both SDH4 mRNA degradation and 

SDH4 translational inhibition, the CTD was involved in translation regulation, but 

was dispensable for SDH4 mRNA decay (Figure C2-10). Besides, the lack of Cth2 

CTD increased other iron-proteins (Aco1, Bio2 and Hem15) encoded by ARE-
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containing mRNAs (Figure C2-11: A). These results, together with the fact that the 

Cth2 CTD has a physiological relevant role in -Fe (Figure C2-12), supports the 

importance of Cth2 as translational regulator of its mRNA targets when iron is 

scarce. 

The mammalian and the Drosophila melanogaster TTP protein structure 

prediction showed the lack of tertiary structure for TTP beyond its TZFs, with 

unstructured NTD and CTD domains (Ngoc et al., 2014), both necessary for its 

function (Rigby et al., 2005). We thought that predicting the structure of the yeast 

Cth2 could support the functional differences described here for both CTD and 

NTD domains. The predicted TZF and CTD structure binding an ARE-containing 

mRNA suggested that the CTD (mainly the CR3 domain) folds back into the TZFs 

(Figure C2-11: B). Interestingly, this difference compared to TTP could be the 

reason why Cth2 CTD is not involved in mRNA decay and also explains the lack of 

functionality of any CTD-tagged Cth2 protein (Puig et al. 2005; Prouteau et al., 

2008; Vergara et al. 2011). On the other hand, Cth2 NTD acquires the unstructured 

conformation already described for TTP that could more easily facilitate the 

exposure of motifs involved in the recruitment of proteins. We currently do not 

know which Cth2-dependent process takes place first, activation of decay or 

translational repression. Generally, the mRNA decay occurs as a consequence of 

translational repression (reviewed by Roy & Jacobson, 2013; Huch & Nissan, 

2014). Prior to decapping and transcript degradation, mRNAs usually need to be 

first in a low translational state. In this way, the decapping activator Dhh1 also 

functions in the inhibition of translation initiation and elongation. Dhh1 inhibits 

the production of a stable 48S preinitiation complex in vitro and binds slow 

elongating ribosomes in mRNAs with non-optimal codons (Coller & Parker, 2005; 

Carroll et al., 2011; Sweet et al., 2012; Radhakrishnan et al., 2016). However, not 

always both mRNA decay and translation processes are connected. For example, a 

distinct role of some ARE-binding proteins in translation inhibition, but not in 

mRNA decay, has been established (Bell et al., 2006). In the same way, the effect of 

TTP in TNFα mRNA translational repression is more pronounced than the mRNA 

decay, with TNFα mRNA levels showing a marginal change (Qi et al., 2012). This 

could indicate a TTP dominant role in the translational downregulation of its 

target mRNAs compared to their mRNA degradation, emphasizing the importance 
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of TTP in translational control. In the case of Cth2, its role in translational 

repression is important as both CTD and NTD domains are involved, and probably 

it is physiologically relevant under iron starvation. Cth2 CTD would preferentially 

interact with factors that control translation, while proteins involved in both 

mRNA turnover and translation would associate with its NTD.  
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Chapter 3. Study of the role of Cth2 in the regulation of cellular respiration 

during iron deficiency 

Part of this work was published in: 

- Proceedings of the National Academy of Sciences journal, volume 115 (Sato et 

al., 2018). The authors are Tatsuya Sato*, Hsiang-Chun Chang*, Marina 

Bayeva, Jason S. Shapiro, Lucía Ramos-Alonso, Hidemichi Kouzu, Xinghang 

Jiang, Ting Liu, Sumeyye Yar, Konrad T. Sawicki, Chunlei Chen, María Teresa 

Martínez-Pastor, Deborah J. Stumpo, Paul T. Schumacker, Perry J. Blackshear, 

Issam Ben-Sahra, Sergi Puig, and Hossein Ardehali  

- Metallomics journal, volume 10 (Ramos-Alonso et al., 2018b). The authors are 

Lucía Ramos-Alonso, Nadine Wittmaack, Isabel Mulet, Carlos A. Martínez-

Garay, Josep Fita-Torró, María Jesús Lozano, Antonia M. Romero, Carlos 

García-Ferris, María Teresa Martínez-Pastor and Sergi Puig 

*These authors contributed equally to this work. 

As previously introduced, mitochondrial respiration is a highly iron-

consuming process particularly important for energy production. Both the Krebs 

cycle, also called tricarboxylic acid cycle, and the electron transport chain require 

iron and heme in multiple steps. Because of this, a shift from respiration to 

fermentation occurs during iron-deficient conditions. Interestingly, multiple 

potential Cth2 mRNA-targets encode components of the TCA cycle and the ETC 

(Figure I-4; Puig et al., 2005; Puig et al., 2008). Moreover, most Cth2 studies have 

been focused on the degradation and translational repression of its mRNA targets 

(Puig et al., 2005; Puig et al., 2008; Pedro-Segura et al., 2008; Prouteau et al., 2008; 

Ihrig et al., 2010; Vergara et al., 2011; Martínez-Pastor et al., 2013a; Ramos-Alonso 

et al., 2018a; Ramos-Alonso et al., 2019). However, little is known about the 

corresponding protein levels and enzymatic activities, and how Cth2 impacts 

respiration and oxygen consumption. For this reason, the aim of this chapter is to 

investigate the role of Cth2 in the control of cellular respiration beyond mRNA 

regulation. 

C3.1. Mitochondrial respiration is repressed under iron deficiency 

independently of Cth2 
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To explore the requirement of iron in mitochondrial respiration, we decided 

to measure the oxygen consumption rate in cells growing in iron sufficiency (+Fe) 

or iron deficiency (-Fe) as explained in section 4.7 of Materials and Methods. The 

relative oxygen consumption rate of a wild-type BY4741 strain in -Fe was 

significantly reduced compared to the +Fe condition (Figure C3-1: A). To further 

confirm that this reduction of the respiratory capacity was due to the low 

availability of iron, and not to a secondary effect of the iron chelator BPS, we 

determined the oxygen consumption in a fet3Δfet4Δ mutant strain, with the high- 

and low-affinity Fe transport systems knocked out. Again, an important decrease in 

oxygen consumption was observed in the fet3Δfet4Δ mutant in +Fe compared to 

the wild-type BY4741 in +Fe (Figure C3-1: A). These results suggest that 

mitochondrial respiration is compromised under both nutritional and genetic iron 

deficiencies. 

Figure C3-1. Iron deficiency causes a decreased oxygen consumption 

independently of Cth2. Analyses of the oxygen consumption rate were performed 

as described in section 4.7 of Materials and Methods. (A) Wild-type BY4741 

overnight cultures were reinoculated in SC with 10 µM FAS (+Fe) and SC with 100 

µM BPS (-Fe), and fet3Δfet4Δ cultures in SC (+Fe) during 6 hours. Oxygen 

consumption rates were determined and represented relative to BY4741 in +Fe. 

(B) Overnight cultures of cth1Δcth2Δ mutant cells transformed with pRS416-CTH2 

(CTH2) or pRS416 (Vector) were reinoculated in SC-Ura with 10 µM FAS (+Fe) and 

SC-Ura with 100 µM BPS (-Fe) for 6 hours. Oxygen consumption rates were 
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represented relative to CTH2 in +Fe. In both panels, mean values and standard 

deviations from at least two biologically independent experiments are shown. An 

asterisk (*) indicates a significant difference (p-value <0.05) from two-tailed 

student’s t-test compared with BY4741 in +Fe (A) and CTH2 in +Fe. (B) 

 

Next, we investigated the implication of Cth2 in the inhibition of the 

respiratory capacity under iron deficiency, probably by promoting the mRNA 

degradation and translational repression of several of the components of both the 

Krebs cycle and the ETC. As in chapter 2, all the experiments were performed in a 

cth1Δcth2Δ background. As CTH2 is only expressed under iron-deficient 

conditions, there were no differences in the oxygen consumption in +Fe between 

cth1Δcth2Δ cells transformed with the CTH2 plasmid (CTH2) or empty vector 

(Vector) (Figure C3-1: B). As expected, a diminished respiration was observed in 

both cases under iron deficiency, but it occurred in a Cth2-independent manner 

(Figure C3-1: B). Together, these results indicate that iron deficiency can inhibit 

mitochondrial respiration regardless of Cth2. 

C3.2. CTH1 or CTH2 overexpression decreases respiration in a TZF-

dependent manner under iron sufficiency 

Despite that the lack of CTH2 expression seemed to be dispensable in the 

repression of respiration observed under iron deficiency, we wondered if it was 

also the case in cells constitutively expressing CTH2 in iron sufficiency. The oxygen 

consumption analyses were performed in +Fe in cth1Δcth2Δ cells transformed 

with an empty vector (Vector), or constitutively expressing CTH2 by the TEF2 

promoter fusion with either the CTH2 coding sequence (TEF-CTH2) or with the 

TZF-mutated version (TEF-CTH2-C190R). An important decrease in oxygen 

consumption was observed in TEF-CTH2-expressing cells in +Fe compared to 

cth1Δcth2Δ cells (Vector), which was completely recovered in the TEF-CTH2-C190R 

mutant (Figure C3-2: A). Similar results were obtained with CTH1 overexpression 

in +Fe. The decreased oxygen consumption measured in TEF-CTH1 compared to 

cth1Δcth2Δ cells (Vector) in +Fe, was recovered in the corresponding TZF mutant 

(Figure C3-2: B). These results demonstrate that either CTH1 or CTH2 can repress 
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the mitochondrial respiration in a TZF-dependent manner if overexpressed under 

iron-sufficient conditions.  

Figure C3-2. CTH1 and CTH2 overexpressing cells reduce oxygen 

consumption in a TZF-dependent manner in iron-sufficient conditions. 

Analyses of oxygen consumption rate were performed as described in section 4.7 

of Materials and Methods. (A) Analyses of cth1Δcth2Δ mutant cells transformed 

with pRS416 (Vector), p416-TEF-Flag2-CTH2 (TEF-CTH2) or p416-TEF-Flag2-CTH2-

C190R (TEF-CTH2-C190R) were performed from overnight cultures reinoculated in 

SC-Ura with 10 µM FAS (+Fe) during 6 hours. (B) Analyses of cth1Δcth2Δ mutant 

cells transformed with pRS416 (Vector), p416-TEF-CTH1 (TEF-CTH1) or p416-

TEF-CTH1-C225R (TEF-CTH1-C225R) were performed as explained in panel A. In 

both panels, mean values and standard deviations from at least two biologically 

independent experiments were determined and represented relative to Vector. An 

asterisk (*) indicates a significant difference (p-value <0.05) from two-tailed 

student’s t-test comparing the indicated samples (A) or compared to Vector (B). 
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C3.3. The constitutive activation of the iron regulon in iron sufficiency 

decreases respiration in a CTH2-dependent manner 

Next, we wanted to test if the constitutive activation of the entire iron 

regulon triggered an oxygen consumption reduction under iron sufficiency. The 

single C291F mutation in the AFT1 gene (called AFT1-1UP allele) retains Aft1 in the 

nucleus (Yamaguchi-Iwai et al., 2002) and promotes the constitutive 

transcriptional activation of the iron regulon (Rutherford et al., 2001) by 

preventing the Aft1 dissociation from its target promoters (Ojeda et al; 2006; Ueta 

et al., 2012). We used the AFT1-1UP allele to determine the oxygen consumption 

rate. The AFT1-1UP expressing cells in +Fe showed a significant decrease in 

respiration compared to a wild-type strain, which was partially recovered by the 

deletion of CTH2 (Figure C3-3: A). In the same way, the growth capacity of the 

AFT1-1UP cells in the non-fermentable ethanol-glycerol medium (YPEG) was 

decreased compared to the wild-type, and partially rescued by the CTH2 deletion 

(Figure C3-3: B). These results strongly suggest that the constitutive activation of 

the iron regulon represses mitochondrial respiration mainly through Cth2. 

Figure C3-3. AFT1-1UP expressing cells inhibit respiration in a CTH2-

dependent manner in iron sufficiency. (A) Analyses of the oxygen consumption 
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rate of wild-type BY4741 cells transformed with pRS416 (Vector) and aft1Δ 

mutant cells and aft1Δcth2Δ transformed with pRS316-AFT1-1UP-C291F (AFT1-

1UP) were performed from overnight cultures reinoculated in SC-Ura with 10 µM 

FAS (+Fe) during 6 hours. Mean values and standard deviations from at least two 

biologically independent experiments were determined and represented relative 

to BY4741 + Vector. An asterisk (*) indicates a significant difference (p-value 

<0.05) from two-tailed student’s t-test compared with BY4741 + Vector. (B) 

Analyses of the cell growth in solid media of cells transformed as explained in 

panel A were performed in triplicate in YPD (glucose 2 %) and YPEG (ethanol 2 % 

and glycerol 3 %) as explained in section 1.4 of Materials and Methods. 

 

C3.4. The Fe-dependent activity of Leu1 decreases upon CTH2 

overexpression or iron deficiency 

Before testing mitochondrial enzymatic activities that contribute to cellular 

respiration, we decided to test the iron-dependent activity of Leu1, which takes 

place in the cytoplasm. LEU1 encodes the Fe/S protein isopropylmalate isomerase, 

which catalyzes the second step in the leucine biosynthesis pathway. The LEU1 

mRNA is strongly downregulated under iron-deficiency through a mechanism 

partially dependent on its ARE sites and Cth2 protein (Puig et al., 2005; Ihrig et al., 

2010). Besides, Leu1 is considered one of the most abundant Fe/S proteins in S. 

cerevisiae (Ghaemmaghami et al., 2003). Leu1 enzymatic activity is easily detected 

on whole cellular lysates, whereas most of the respiration-related activities require 

a previous step of mitochondria isolation.  

We determined the mRNA, enzymatic activity and protein levels of LEU1 in 

cth1Δcth2Δ cells carrying the CTH2 plasmid (CTH2), under iron sufficiency and 

deficiency. As the wild-type version of CTH2 is only activated in -Fe, the plasmid 

constitutively expressing CTH2 (TEF-CTH2) was used in +Fe, and CTH2 wild-type 

cells were the negative control under iron sufficiency. In -Fe, the negative control 

of CTH2 expression was the empty vector (Vector). In +Fe, the LEU1 mRNA was 

reduced in TEF-CTH2 expressing cells compared to CTH2 wild-type cells (Figure 

C3-4: A). And, under iron deficiency, the LEU1 mRNA was drastically decreased 

with slightly recovered levels in Vector cells compared to CTH2 cells (Figure C3-4: 
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A). In fact, in addition to its Cth2-dependent post-transcriptional mRNA 

degradation, LEU1 is also strongly downregulated at the transcriptional level in -Fe 

(Puig et al., 2005; Ihrig et al., 2010). To better study the outcome of Cth2-

dependent regulation beyond the mRNA levels, we determined Leu1 enzymatic 

activity. Importantly, lower Leu1 activity levels were detected in TEF-CTH2 

expressing cells compared to the CTH2 situation in both exponentially growing 

(Figure C3-4: B) and saturated cultures (Figure C3-4: C) in +Fe. The 

determination of Leu1 enzymatic activity under iron deficiency was exclusively 

tested in saturated cultures, due to the elevated number of cells required for 

activity detection under iron starvation. Despite this, no detectable Leu1 activity 

was measured under iron deficiency (Figure C3-4: C). 

Figure C3-4.  LEU1 mRNA, activity and protein levels are downregulated by 

both Cth2 overexpression and iron deficiency. (A) The LEU1/ACT1 mRNA 
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levels of cth1Δcth2Δ mutant cells transformed with pRS416-CTH2 (CTH2), p416-

TEF-CTH2 (TEF-CTH2) or pRS416 (Vector) were determined from overnight 

cultures reinoculated in SC-Ura with 10 µM FAS (+Fe, 6 hours) and/or in SC-Ura 

with 100 µM BPS (-Fe, 10 hours) by RT-qPCR as described in Materials and 

Methods. (B) Leu1 enzymatic activity was determined relative to malate 

dehydrogenase (MDH) from cellular lysates of cth1Δcth2Δ mutant cells 

transformed with p416-Flag2-CTH2 (CTH2) or p416-TEF-Flag2-CTH2 (TEF-CTH2) 

as explained in Materials and Methods. Overnight cultures were reinoculated in SD 

with 50 µM FAC (+Fe, 7 hours). (C) Leu1 enzymatic activity was also determined 

from cellular lysates of cth1Δcth2Δ mutant cells transformed with pRS416-Flag2-

CTH2 (CTH2), p416-TEF-Flag2-CTH2 (TEF-CTH2) or pRS416 (Vector). Overnight 

cultures in SD with 50 µM FAC (+Fe) and 50 µM BPS (-Fe) were reinoculated 

overnight in SD with 50 µM FAC (+Fe) and in iron-free SD (-Fe), respectively. ND: 

not detectable activity. (D) The Leu1/Por1 protein levels were determined from 

the cell lysates of panel A and panel B (+Fe, 6-7 hours; -Fe, 10 hours) by Western 

blot. In all cases, mean values and standard deviations from at least two 

independent biological replicates are shown. An asterisk (*) indicates a significant 

difference (p-value <0.05) from two-tailed student’s t-test compared with CTH2 

cells in +Fe. 

 

Regarding Leu1 protein levels, a significant decrease was detected in TEF-

CTH2 cells compared to CTH2 cells in +Fe (Figure C3-4: D). Also, an important 

reduction in Leu1 protein levels was observed in both CTH2 and Vector cells in -Fe, 

but unlike mRNA levels, no recovered Leu1 protein levels were observed in Vector 

cells compared to CTH2 cells (Figure C3-4: D). Taken together, these results 

suggest that CTH2 overexpression under iron-sufficient conditions is able to 

reduce LEU1 mRNA levels as well as its enzymatic activity, possibly as a 

consequence of the diminished Leu1 protein levels. On the other hand, the Cth2-

dependent regulation of Leu1 under iron deficiency is only observed at the mRNA 

level. The undetectable Leu1 enzymatic activity in -Fe was probably due to the lack 

of cofactor in the Leu1 protein.  
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C3.5. The Fe-dependent aconitase activity decreases upon CTH2 

overexpression or iron deficiency 

Aconitase is a respiration-related activity easily detectable as no previous 

mitochondria isolation step is needed in the enzymatic assay. ACO1 encodes the 

Fe/S protein aconitase that catalyzes the conversion of citrate to isocitrate, second 

step in the TCA cycle. As LEU1, the ACO1 mRNA also contains several AREs in its 

3’UTR and is a target of the Cth2-dependent regulation (Figure I-4: A; Puig et al., 

2005; Puig et al., 2008). The mRNA, enzymatic activity and protein levels of ACO1 

were determined in the aforementioned cellular lysates. Although in +Fe the ACO1 

mRNA was not significantly reduced in TEF-CTH2 expressing cells compared to 

CTH2 cells (Figure C3-5: A), the aconitase enzymatic activity was drastically 

reduced in TEF-CTH2 cells in both exponentially growing (Figure C3-5: B) and 

saturated cultures (Figure C3-5: C). Under iron deficiency, as previously described 

(Puig et al., 2005; Puig et al., 2008), the Cth2-dependent ACO1 mRNA 

downregulation was evident comparing CTH2 and Vector expressing cells (Figure 

C3-5: A). However, an important increment in ACO1 mRNA levels was displayed in 

-Fe regardless of Cth2 (Figure C3-5: A), due to the transcriptional activation of the 

mitochondrial retrograde pathway under iron starvation (Romero et al., 2019). On 

the other hand, the corresponding aconitase enzymatic activity was drastically 

reduced under iron starvation compared to the iron sufficiency in a Cth2-

independent manner (Figure C3-5: C). The decreased Aco1 protein levels in TEF-

CTH2 cells in +Fe (Figure C3-5: D) were well suited with the decreased aconitase 

activities of TEF-CTH2 cells in this condition (Figure C3-5: B and C). However, 

under iron limitation, the Cth2-dependent downregulation of the ACO1 mRNA, 

although also observed at the Aco1 protein level (Figure C3-5: D), was not 

maintained at the enzymatic activity level (Figure C3-5: C). In the same way, the 

aforementioned transcriptional activation of ACO1 through the RTG pathway in -Fe 

was not reflected beyond the mRNA levels. Taken together, these results show a 

decrease in aconitase activity due to diminished Aco1 protein levels when CTH2 is 

overexpressed under iron-sufficient conditions. However, the aconitase activity 

under iron-deficiency shows a Cth2-independent reduction despite of the 

increased Aco1 protein levels when CTH2 is not present. 
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 Figure C3-5. Aconitase activity is downregulated by both Cth2 

overexpression and iron deficiency. The ACO1/ACT1 mRNA levels (A), the 

aconitase enzymatic activities from cellular lysates in exponential phase (+Fe, 7 

hours) (B) and overnight in SD with 50 µM FAC (+Fe) and iron-free SD (-Fe) (C) 

were determined as explained in Figure C3-4 panels A-C, respectively. (D) The 

Aco1/Por1 protein levels were determined from the cell lysates of panel B (+Fe, 7 

hours) and from cth1Δcth2Δ mutant cells transformed with pRS416-Flag2-CTH2 

(CTH2), p416TEF-Flag2-CTH2 (TEF-CTH2) or pRS416 (Vector) grown in SD with 50 

µM FAC (+Fe, 6 hours) and/or SD with 50 µM BPS (-Fe, 9 hours) by Western blot. 

In all cases, mean values and standard deviations from at least two independent 

biological replicates are shown. An asterisk (*) indicates a significant difference (p-

value <0.05) from two-tailed student’s t-test compared with CTH2 cells in +Fe. 
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Figure C3-6. mRNA levels of several components of the cytochrome c oxidase 

(COX, complex IV). The COX1 (A), COX2 (B), COX3 (C), COX4 (D) and COX6 (E) 

mRNA levels relative to ACT1 mRNA in cth1Δcth2Δ mutant cells transformed with 
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pRS416-CTH2 (CTH2), p416-TEF-CTH2 (TEF-CTH2) or pRS416 (Vector) were 

determined from overnight cultures reinoculated in SC-Ura with 10 µM FAS (+Fe, 6 

hours) and in SC-Ura with 100 µM BPS (-Fe, 10 hours) by RT-qPCR using random 

primers for reverse transcription as described in Materials and Methods. Mean 

values and standard deviations from at least three independent biological 

replicates are shown. An asterisk (*) indicates a significant difference (p-value 

<0.05) in -Fe from two-tailed student’s t-test compared with CTH2 cells in -Fe. 

 

C3.6. The mitochondrial respiratory Complex IV activity is affected only 

under iron deficiency in a Cth2-dependent manner 

The cytochrome c oxidase (COX) constitutes the complex IV and terminal 

electron acceptor of the ETC involved in the reduction of molecular oxygen to 

water. As previously introduced, complex IV is encoded by twelve genes, with the 

three catalytic core subunits encoded in the mitochondrial DNA (COX1, COX2 and 

COX3). Besides, five of the nuclear encoded genes (Figure I-4: B) are Cth2 mRNA-

targets containing ARE motifs (Puig et al., 2005; Puig et al., 2008). Again, before 

carrying out the enzymatic activity assay, we determined the role of Cth2 in the 

mRNA fluctuations of some of the COX components under iron sufficiency and 

deficiency. COX1 showed an increment in its mRNA levels under iron deficiency 

compared to iron sufficiency in both CTH2 and Vector cells (Figure C3-6: A). The 

highest levels of COX1 mRNA were reached in CTH2 cells in -Fe, and were 

significantly decreased in TEF-CTH2 cells only in this condition (Figure C3-6: A). 

Regarding COX2 and COX3 mRNAs, their levels were slightly incremented in -Fe 

compared to +Fe, but remained unaltered under iron deficiency independently of 

Cth2 (Figure C3-6: B and C). COX4 and COX6 mRNAs are ARE-containing Cth2 

targets, and thus showed the expected behavior, with decreased mRNA levels in 

CTH2 cells in -Fe compared to +Fe, recovered in Vector cells in -Fe (Figure C3-6: D 

and E). And finally, TEF-CTH2 expressing cells diminished COX4 and COX6 mRNA 

levels both in +Fe and -Fe, compared to cells or conditions not expressing CTH2 

(Figure C3-6: D and E). In summary, these results confirm the expected regulation 

of the Cth2 targets within the ETC complex IV in -Fe, and show increased COX1 

mRNA levels when CTH2 is expressed in -Fe under the control of its own promoter. 
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Figure C3-7. COX activity is affected under iron deficiency in a Cth2-

dependent manner. COX enzymatic activity was determined as described in 

Materials and Methods in cth1Δcth2Δ mutant cells transformed with pRS416-Flag2-

CTH2 (CTH2), p416-TEF-Flag2-CTH2 (TEF-CTH2) or pRS416 (Vector). (A) The 

assay was performed from cellular lysates of overnight cultures in SD with 50 µM 

FAC (+Fe) and 50 µM BPS (-Fe) reinoculated overnight in SD with 50 µM FAC (+Fe) 

and in iron-free SD (-Fe), respectively. (B) Experiments were also performed from 

isolated mitochondria of overnight cultures in SD with 50 µM FAC (+Fe) and iron-

free SD (-Fe) reinoculated again overnight in fresh media. Mean values and 

standard deviations from two independent biological replicates (A) and three 

technical replicates (B) are shown. An asterisk (*) indicates a significant difference 

(p-value <0.05) from two-tailed student’s t-test compared with CTH2 cells in +Fe. 
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The enzymatic activity of complex IV was measured to test the involvement 

of Cth2 in mitochondrial respiration. Experiments were performed with both 

cellular lysates and isolated mitochondria (Figure C3-7: A and B, respectively).  

Surprisingly, in spite of the multiple Cth2 mRNA-targets within the COX complex, 

the enzymatic activity was unaltered in TEF-CTH2 expressing cells in +Fe 

compared to CTH2 cells (Figure C3-7: A and B). In the same way, iron starvation 

decreased COX activity, a decline that was more pronounced in Vector cells 

(Figure C3-7: A and B). After this observation, we contemplated a possible role of 

Cth2 in the maintenance of COX activity under iron starvation. This could happen 

by increasing Cox1, the catalytic core subunit of the complex responsible of the 

reduction of oxygen and the only COX component containing iron (heme centers) 

as well as copper. As mentioned above, COX1 mRNA levels increased in CTH2 cells 

compared to Vector cells in -Fe (Figure C3-6: A). This seemed also to be the case in 

Cox1 and, to a lesser extent, in Cox2 protein levels (Figure C3-8). On the other 

hand, the Cox4 protein levels were lower in CTH2 cells compared to Vector cells as 

COX4 mRNA is a Cth2 mRNA-target (Figure C3-6: D and Figure C3-8). Altogether, 

these results suggest a new role of Cth2 in maintaining a better complex IV activity 

during iron starvation compared to Vector cells. 

Figure C3-8. Cox1 and Cox2 protein levels increase under iron-deficient 

conditions in a Cth2-dependent manner. The protein levels of Cox1, Cox2 and 

Cox4 relative to Por1 protein were analyzed by Western blot from the isolated 

mitochondria in iron-free SD (-Fe) of Figure C3-7 B. Mean values and standard 

deviations of each protein fold change (CTH2/Vector cells) are shown. Two 

independent biological replicates were analyzed.  
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Figure C3-9. Succinate dehydrogenase activity is slightly downregulated by 

Cth2 overexpression and iron deficiency. The SDH1 (A), SDH2 (B), SDH3 (C) 
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and SDH4 (D) mRNA levels relative to ACT1 mRNA were determined from cultures 

and conditions as explained in Figure C3-4 A. (E) SDH enzymatic activity was 

determined from isolated mitochondria as described in Materials and Methods and 

in Figure C3-7 B. An asterisk (*) indicates a significant difference (p-value <0.05) 

from two-tailed student’s t-test compared with CTH2 cells in +Fe. 

 

C3.7. The activity of mitochondrial respiratory Complexes II+III is 

negatively affected by either CTH2 overexpression or iron deficiency 

Succinate dehydrogenase (SDH) constitutes the complex II in the ETC. The 

SDH complex oxidizes succinate to fumarate as part of the Krebs cycle and reduces 

co-enzyme Q or ubiquinone in the ETC. As previously introduced, the SDH complex 

is encoded by four genes (SDH1, SDH2, SDH3 and SDH4). The Sdh2 subunit 

contains 3 Fe/S clusters, and Sdh3 and Sdh4 share a heme center. Despite these 

differences, all of them seemed to be coregulated at the mRNA level in a Cth2-

dependent manner under iron starvation (Figure I-4: B; Puig et al., 2005; Puig et 

al., 2008). In all cases, these genes also showed decreased mRNA levels in TEF-

CTH2 expressing cells compared to CTH2 cells in +Fe (Figure C3-9: A, B, C and D). 

On the other hand, higher levels of SDH2, SDH3 and SDH4 mRNAs were here 

observed in Vector cells compared to CTH2 cells in -Fe (Figure C3-9: B, C and D, 

respectively). Only SDH1 did not show the expected result in -Fe (Figure C3-9: A), 

probably because of the different times in exponential phase used in previous 

studies (Puig et al., 2005; Puig et al., 2008). The enzymatic activity of SDH under 

iron starvation was hardly detectable (Figure C3-9: E), but unlike aconitase 

(Figure C3-5: C), in this case reflected the Cth2-dependent regulation observed at 

the mRNA level in -Fe. Also, the decreased SDH1-4 mRNA levels of TEF-CTH2-

expressing cells was corresponded to the slight decrease in SDH activity in TEF-

CTH2 compared to CTH2 cells in +Fe (Figure C3-9). Moreover, when the enzymatic 

activities of both complex II and III of the mitochondrial ETC were determined 

together, the results showed more drastic reductions of activity levels in TEF-CTH2 

cells in +Fe (Figure C3-10: D).  Finally, very low enzymatic activity levels of 

complex II and III together were detected under iron deficiency, but these were 

even lower in the presence of Cth2 (Figure C3-10: D). 
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Figure C3-10. Succinate dehydrogenase and cytochrome c reductase 

activities are downregulated by Cth2-overexpression and iron deficiency. 

The RIP1 (A), CYC1 (B), CYT1 (C) mRNA levels relative to ACT1 mRNA were 

determined from cultures and conditions as explained in Figure C3-4 A. (D) SDH 

and cytochrome c reductase enzymatic activities were determined from isolated 

mitochondria as described in Materials and Methods and in Figure C3-7 B. An 

asterisk (*) indicates a significant difference (p-value <0.05) from two-tailed 

student’s t-test compared with CTH2 cells in +Fe. 

 

The cytochrome c reductase (complex III) of the ETC catalyzes the oxidation 

of ubiquinol and reduction of the cytochrome c (encoded by CYC1). Complex III 
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contains ten subunits. The cytochrome b (COB1) is the only one encoded by the 

mitochondrial DNA, and together with Cyt1 (cytochrome c1) and Rip1 (Rieske 

protein) form the redox center of the complex with an Fe/S cluster and several 

heme groups. Both CYC1 and eight subunits of the complex (Figure I-4: B) contain 

ARE motifs in their mRNAs that are Cth2 targets (Puig et al., 2005; Puig et al., 

2008). The RIP1, CYC1 and CYT1 mRNA levels decreased in TEF-CTH2-expressing 

cells compared to CTH2 cells in +Fe (Figure C3-10: A, B and C, respectively). 

Under iron starvation, minor Cth2-dependent mRNA regulation was detected with 

CYC1 and CYT1 mRNA levels (Figure C3-10: B and C), but RIP1 mRNA levels were 

clearly affected by Cth2 (Figure C3-10: A). Importantly, the CYC1 mRNA levels 

were almost undetectable (Figure C3-10: B) under iron starvation with a very 

scarce Cth2-dependent regulation. This is consistent with a previous work (Ihrig et 

al., 2010) in which Hap1 and Hap4 were shown to downregulate the transcription 

of CYC1, due to the reduction in heme levels when iron is scarce. Altogether, these 

results show an inhibition of complexes II+III activities when CTH2 was 

overexpressed under iron-sufficient conditions, and drastically reduced activities 

under iron starvation, even more reduced in a Cth2-dependent manner. 
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Discussion of Chapter 3 

Mitochondrial respiration is a highly iron-consuming process controlled by 

the carbon source, oxygen and heme levels. Yeast cells growing in glucose, their 

preferred carbon source, repress respiration in a Mig1-dependent manner due to 

the inactivation of the Snf1 kinase complex (reviewed by Kayikci & Nielsen, 2015). 

However, despite the presence of glucose we could detect differences in 

mitochondrial respiration related to the variations in iron availability. We 

observed a decreased oxygen consumption rate under both nutritional and genetic 

iron deficiencies, in a Cth2-independent manner (Figure C3-1). Under iron 

deficiency, respiration is downregulated both transcriptionally (via Hap1 and the 

Hap2-5 complex) and post-transcriptionally (via Cth1/2). The fact that under iron 

starvation two independent pathways downregulate (or fail to induce) respiration 

would explain the reduced oxygen consumption regardless of Cth2. In fact, under 

iron starvation, CYC1 transcription is drastically decreased due to lack of activity of 

the heme-dependent Hap1 and Hap4 transcription factors (Ihrig et al., 2010) and if 

the degradation of heme is impaired, using a hmx1Δ mutant, the transcription of 

CYC1 increases again (Protchenko & Philpott, 2003). However, previous evidences, 

as well as new ones presented here, support a role for Cth2 in the repression of 

respiration: (i) Cth2 promotes the AMD of twenty-two components of the TCA 

cycle and ETC (Figure I-4; Puig et al., 2005; Puig et al., 2008; Romero et al., 2019); 

(ii) mammalian TTP is induced during iron starvation and downregulates NDUFS1 

and UQCRFS1 (Rieske/Rip1 in yeast) of the complex I and III of the ETC, 

respectively (Bayeva et al., 2012; Bayeva et al., 2013; Sato et al., 2018); (iii) Cth2 

(and Cth1) can reduce oxygen consumption in a TZF-dependent manner if 

overexpressed in +Fe conditions (Figure C3-2); and (iv) the constitutive activation 

of the iron regulon decreases respiration and growth in non-fermentable carbon 

sources through Cth2 (Figure C3-3). These last two points are in agreement with a 

Cth2 predominant role over Cth1 when expressed under the control of their own 

promoters, despite both proteins having partially redundant functions (Puig et al., 

2008). However, to observe the specific Cth2-dependent downregulation of 

respiration in -Fe, by measuring oxygen consumption, it is probably necessary to 

eliminate the additional respiratory repression by glucose. 



Discussion of Chapter 3         
  

152 
 

During iron deficiency, S. cerevisiae needs to regulate the uptake and 

intracellular storage of iron as well as the iron-dependent pathways and 

machineries involved in the synthesis of its cofactors. However, it is not currently 

known if cells have a direct mechanism to preferentially guide and incorporate the 

iron into certain iron-proteins over others. Against this idea, it has been shown 

during low and sufficient iron conditions that the amount of iron bound to several 

proteins is proportional to the amount of total protein (Shakoury-Elizeh et al., 

2010). Due to these results, the authors suggested that iron incorporation into 

proteins is determined by the amount of apo-protein available (Shakoury-Elizeh et 

al., 2010). Interestingly, in the case of the essential Fe/S Rli1 protein, little amount 

of protein accumulates without iron, even under low iron. However, the decrease 

in the Rli1 protein levels when iron is scarce probably reduces its overall activity. 

Therefore, probably yeast cells do not possess a specific mechanism that 

preferentially allocates iron into essential pathways (Shakoury-Elizeh et al., 2010). 

Instead, cells transcriptionally and/or post-transcriptionally downregulate certain 

iron-dependent pathways to control their final protein levels, and therefore the 

iron delivery.  

We have described in Chapter 2 that Cth2 not only promotes AMD but also 

represses the translation of its targets. This fact, together with the high number of 

Cth2 mRNA targets in the Krebs cycle and ETC (Figure I-4; Puig et al., 2005; Puig 

et al., 2008; Romero et al., 2019) and the reduced oxygen consumption, strongly 

suggest a Cth2 role in downregulating the apo-protein levels of respiratory 

subunits. This could mean a Cth2 indirect function in the iron distribution under 

iron limitation. We measured several mRNA, protein and enzymatic activity levels 

of mitochondrial respiratory steps (aconitase from TCA cycle and complex IV, 

complex II and complex II+III of ETC), as well as the cytosolic Leu1 activity. The 

clearest result observed was the reduction in all levels (mRNA, protein and 

activities) in TEF-CTH2-expressing cells under iron sufficiency (Figure C3-4; 

Figure C3-5; Figure C3-9; Figure C3-10), with the only exception of complex IV 

activity (Figure C3-7). These results clearly confirm the Cth2 capacity of inhibiting 

mitochondrial respiration when overexpressed in +Fe conditions. Probably this 

situation also diminishes more iron-dependent cytosolic activities besides the 
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Leu1 activity by reducing the respective apo-proteins levels (see the summarized 

activities results in Figure D3-1).  

Figure D3-1. Outline of relative levels of O2 consumption and enzymatic 

activities assays from this chapter.  

 

On the other hand, under low iron conditions, there is a dramatic decrease in 

all enzymatic activities measured (Figure D3-1), in most cases with little or no 

obvious Cth2 dependency (Figure C3-4; Figure C3-5; Figure C3-9; Figure C3-

10), again with the only exception of complex IV activity (Figure C3-7), which will 

be discussed below. In the case of the cytoplasmic Leu1, despite being one of the 

most abundant iron-dependent enzymes in the cell (Ghaemmaghami et al., 2003) 

and maintaining relatively abundant protein levels (Figure C3-4: D), its activity 

was undetectable in -Fe (Figure C3-4: C; Ihrig et al., 2010). The leu2Δ background 

of the BY4741 strain used, significantly increases LEU1 expression (Ihrig et al., 

2010). Regarding the hypothesis of iron incorporation according to the amount of 

apo-protein available (Shakoury-Elizeh et al., 2010), we could expect that Leu1 

protein incorporates significant amounts of the iron available and this could be 

detrimental in -Fe. However, the increased LEU1 expression of the leu2Δ 

background has been described not to significantly change its iron-responsive 

downregulation of activity (Ihrig et al., 2010). Accordingly, Leu1 activity levels are 

without doubt reduced in -Fe, but as they are below the detection levels, it is 

impossible to observe a Cth2 dependency (Figure C3-4: C). However, the Cth2-

dependent downregulation can still be observed at the mRNA level (Figure C3-4: 

A; Ihrig et al., 2010). Regarding aconitase, the increased ACO1 mRNA levels in -Fe 
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(Figure C3-5: A) are explained by the activation of the RTG response that 

upregulates the first steps of the TCA cycle (Romero et al., 2019). The Cth2-

dependent regulation of ACO1 in -Fe was clearly observed at mRNA and protein 

levels (Figure C3-5: A and D). Besides, Aco1 protein levels are also dependent on 

Cth2 CTD as shown in Chapter 2 (Figure C2-11: A). On the other hand, aconitase 

activity was extremely decreased in -Fe and in a Cth2-independent manner 

(Figure C3-5: C). In general, the extremely low enzymatic activities detected in -Fe 

forced us to work with high volumes of cell cultures to perform these 

measurements. This situation made difficult working with exponential phase 

cultures when using cell lysates, and impossible when mitochondria isolation was 

needed. However, the decreased Leu1 and aconitase activities of TEF-CTH2 in +Fe 

in exponential phase cultures (Figure C3-4: B; Figure C3-5: B) were maintained in 

overnight cultures (Figure C3-4: C; Figure C3-5: C). 

Regarding ETC complexes, SDH1-4 mRNA levels of complex II showed a 

tendency to be coordinately regulated in a Cth2-dependent manner (Figure C3-9: 

A, B, C and D). Probably, as shown in Chapter 2 with Sdh4, the protein levels 

would be affected by the Cth2-dependent translational repression in -Fe, and this 

is reflected by the SDH activity, drastically decreased in -Fe, especially in CTH2 

expressing cells (Figure C3-9: E). The complex II+III activity also showed a 

significant Cth2 dependency in +Fe (when overexpressed) and lighter in -Fe 

(Figure C3-10: D). Among the three ARE-containing mRNA levels measured 

(Figure C3-10: A, B and C), the best Cth2 AMD effect was observed with RIP1 

mRNA, the only one downregulated by mammalian TTP in complex III (Sato et al., 

2018). Importantly, the incorporation of Rip1 into the complex is one of the final 

steps in both yeast and mammalian cells, and it is required for the complex 

stability (Atkinson et al., 2011; Diaz et al., 2012; Sánchez et al., 2013). On the other 

hand, CYC1 mRNA radically decreases in -Fe with a slight Cth2 dependency, as 

previously described (Ihrig et al., 2010). Altogether, these results suggest a Cth2 

role in downregulating both the mRNA and the corresponding protein levels of 

Aco1 and some subunits of complex II and III, which supports: (i) the Cth2 capacity 

of repressing respiration when overexpressed in +Fe and (ii) a role of Cth2 in 

inhibiting even more the already dramatic decay of respiration in -Fe.  
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On the contrary, the complex IV activity is not affected by the Cth2 

overexpression in +Fe (Figure C3-7). Even in -Fe, it is unexpectedly supported by 

CTH2 compared to Vector cells (Figure C3-7). This happens despite the 

downregulation of the ARE-containing COX4 and COX6 mRNAs occurring in a Cth2-

dependent manner (Figure C3-6: D and E). On the contrary, the mRNA levels of 

the mitochondrial encoded subunits COX1, COX2 and COX3 were always increased 

in -Fe (Figure C3-6: A, B and C). Among the three, COX1 mRNA was the only one 

showing a Cth2-dependent regulation. COX1 mRNA levels were higher in -Fe in a 

Cth2-dependent manner, but lower in TEF-CTH2 cells in -Fe (Figure C3-6: A). 

Accordingly, Cox1 protein levels, and to a lesser extent Cox2, were increased in 

CTH2-expressing cells in -Fe, while, as expected, Cox4 slightly decreased (Figure 

C3-8). It is important to remind that in the determination of enzymatic activities, 

all needed substrates are added in excess into each spectrophotometric test to 

ensure that maximum activities can be reached. Particularly, in the determination 

of complex II+III and complex IV activities, oxidized and reduced amounts of 

cytochrome c are added, respectively to each assay (see section 4.6 of Materials 

and Methods). This would mean that the diminished complex II+III activity is due 

to the lack of stability of the complexes. In the case of complex IV, the results 

suggest that cells expressing CTH2 in -Fe would have better complex IV 

functionality if sufficient cytochrome c were reduced in the mitochondrial ETC. 

However, this situation in cells under iron starvation is unlikely due to the lack of 

complex II+III activity (Figure C3-9: E; Figure C3-10: D) and the drastically 

reduced levels of CYC1 mRNA and protein (Figure C3-10: B; Ihrig et al., 2010). 

Then, why do cells maintain complex IV functionality better than that of complex 

II-III in -Fe? In the ETC, the complex I and complex III are the main source of ROS 

under physiological conditions (reviewed by Herrero et al., 2008; Murray et al., 

2011; Baccolo et al., 2018). Accordingly, mammalian TTP reduces the apo-protein 

levels of two ETC components in -Fe, one from complex I and the other one from 

complex III (Sato et al., 2018). The absence of TTP in -Fe does not result in a higher 

ETC activity, on the contrary, it leads to the accumulation of nonfunctional apo-

protein forms of ETC subunits, reduces respiration and increases electron leakage 

and ROS, finally promoting cardiac disfunction in mice (Sato et al., 2018). In this 

line, perhaps the lack of CTH2 in -Fe would not simply increase ETC activities and 
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respiration, on the contrary, it would unbalance the ETC complexes including 

subunits without iron cofactor, thus reducing oxygen consumption and increasing 

ROS production. In fact, no higher oxygen consumption has been observed in -Fe in 

cells lacking CTH2 in the presence of glucose (Figure C3-1: B). Also, the lack of 

CTH2 in -Fe slightly increases complex II+III activity (Figure C3-9: E; Figure C3-

10: D), suggesting an increase in ROS. On the other hand, if the complex IV 

integrity is maintained in -Fe, it could be beneficial under a rapid shift from iron 

deficiency to iron sufficiency to restore the ATP production and not to block the 

incoming electrons flow in complex I-III.  

The protective role of Cth2 against oxidative stress has been shown, together 

with a decrease in mitochondrial membrane potential and diminished ROS 

production (Castells-Roca et al., 2016; Matsuto et al., 2017). Besides, the diauxic 

shift induces the iron regulon (Haurie et al., 2003). These authors suggested that 

cells respond during the diauxic shift to the exceptional need of iron, but the role of 

Cth2 here is not clear. Perhaps Cth2 could be beneficial in maintaining an efficient 

and coordinated ETC (and consequently, less ROS productive) under iron-limiting 

conditions. Interestingly, the H2O2 generated in respiring cells triggers the heme 

transfer from Ccp1 (cytochrome c peroxidase) to the catalase Cta1 for 

mitochondrial H2O2 detoxification (Kathiresan et al., 2014). In this line, as CCP1 

encodes for an ARE-containing mRNA strongly downregulated by Cth2 in -Fe (Puig 

et al., 2008), Cth2 could be helping in this heme transfer when expressed. Indeed, 

we have seen in Chapter 2 that CCP1 mRNA translation is also repressed by Cth2 in 

-Fe (Figure C2-8: A; Figure C2-9: A). 

In this chapter, we have shown a better complex IV functionality in -Fe in 

cells expressing CTH2, but we have not explored the Cth2-related molecular 

mechanism responsible of that. The fact that the entire core of complex IV genes 

belongs to the mitochondrial DNA could be the key. The mitochondrial genome 

encodes eight proteins: Cob1 (complex III); Cox1, Cox2 and Cox3 (complex IV); 

Atp6, Atp8 and Atp9 (complex V) and the ribosomal protein Var1. Except Var1, the 

rest of proteins (mitochondrial DNA polymerase, translational activators, other 

ribosomal proteins and ETC subunits, regulatory and assembly factors) are 

encoded by the nucleus (reviewed by Derbikova et al., 2018; Lindahl, 2019; Barros 
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and McStay, 2020). The intricate regulation of each mitochondrial subunit 

governed by the nucleus, adds more complexity to the regulation of the OXPHOS 

system. In the case of COX1, its transcript contains seven introns. Maturases 

encoded by open reading frames within COX1 and COB1 introns (Lazowska et al., 

1980; Wenzlau et al., 1989) and several nuclear genes, including MSS116 and 

COX24, are needed for COX1 splicing (Séraphin et al., 1989; Huang et al., 2004; 

Barros et al., 2006; De Silva et al., 2017). Mss116 is also involved in the activation 

of COX1 mRNA translation, together with Pet309, Cbp3, Mam33 and Mss51. Then, 

the Cox11 and Cox17 copper chaperones (Tzagoloff et al., 1990; Glerum et al., 

1996; Hiser et al., 2000; Khalimonchuk et al., 2005) and the Cox10 and Cox15 

heme synthases, install two unique heme centers (one heme a and one heme 

a3:CuB) into Cox1 (Nobrega et al., 1990; Barros et al., 2001). Despite the numerous 

factors encoded by the nucleus for the COX1 regulation, only two mRNAs (COX15 

and CBP3) contain AREs and have been described to be downregulated by Cth2 in -

Fe (Puig et al., 2008). Interestingly, Mss51 besides activating COX1 mRNA 

translation, is also required for the correct maturation of COX1 pre-mRNA and the 

assembly of complex IV (Faye & Simon, 1983; Simon & Faye, 1984; Perez-Martínez 

et al., 2003; Perez-Martínez et al., 2009; García-Villegas et al., 2017). Mss51 is a 

heme-binding protein located in the mitochondrial inner membrane and regulated 

by heme/O2 levels and oxidative stress. When heme levels are low or under 

oxidative stress (that forms disulfide bonds in Mss51 lowering the heme-binding 

affinity) COX1 mRNA translation is inhibited (Soto et al., 2012; Soto & Barrientos, 

2016). If Cth2 would have an oxidation-protective role related to mitochondrial 

respiration, it could enhance the COX1 mRNA translation due to a better Mss51 

functionality in -Fe compared to cth2Δ cells. Usually, translational activators are 

also involved in the complex assembly. If the assembly is impaired, the activator is 

not available to initiate a new round of mRNA translation. It has been shown with 

Cox1, when the coupling of complex IV assembly and COX1 mRNA translation is 

impaired, Cox1 protein is rapidly degraded (Mick et al., 2007; Mick et al., 2010). 

Interactions between some translational activators of the COX1, COX2 and COX3 

mRNAs (core complex IV) have been detected and suggest the co-regulation of the 

three subunits (Naithani et al., 2003).  
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Despite the interesting regulation of COX1 by the heme-Mss51 protein, it is 

not known if Cth2 affects its function. Further studies are required to elucidate the 

molecular mechanisms of Cth2 in the maintenance of complex IV during iron 

starvation. How Cth2 affects mtDNA integrity, the transcription and translation of 

mitochondrial genes or the mitochondrial heme distribution could be important 

topics in future studies. The results of this chapter show the Cth2 role in the 

downregulation of apo-protein levels of some nuclear respiratory subunits. Under 

iron-sufficient conditions, Cth2 overexpression would diminish respiration. On the 

other hand, under iron limitation Cth2 could prevent the formation of non-

functional ETC complexes and the ROS production like TTP does in mammals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

159 
 

 

 

 

 

Chapter 4 
Results  



         
  

160 
 



Results Chapter 4 

161 
 

Chapter 4. Transcriptional regulation of the ribonucleotide reductase RNR3 

gene in long-term iron-deficient conditions 

As previously introduced, the RNR enzyme catalyzes the rate-limiting step in 

the synthesis of dNTPs. This is an iron-dependent process that results prioritized 

through the action of Cth2 in response to iron starvation (Sanvisens et al., 2011). 

The RNR large subunit is an Rnr1 homodimer and sometimes an Rnr1-Rnr3 

heterodimer. The RNR3 gene is usually expressed at very low levels under normal 

growth conditions, but its promoter is strongly activated during DNA damage 

(Elledge & Davis, 1990). In fact, the RNR3 promoter fused to different reporters has 

been widely used in studies about the regulation of the DNA damage or replication 

stress responses (Endo-Ichikawa et al., 1996; Ho et al., 1997), or about general 

aspects of the transcriptional and genome stability machineries (Li & Reese, 2000; 

Sharma et al., 2003; Zhang & Reese, 2007; Tomar et al., 2008; Minard et al., 2011; 

Ghosh & Pugh, 2011; Hendry et al., 2015), as well as being used as biosensor of 

genotoxic chemicals (Endo-Ichikawa et al, 1995; Ochi et al., 2011; Wei et al., 2013). 

Despite this, no clear physiological relevance of RNR3 has been described upon 

these stresses. This work provides new evidence of an RNR3 transcriptional 

induction with implications in cell growth taking place under severe iron-deficient 

conditions. 

C4.1. Rnr3 is induced to the same extent under long-term iron-deficient 

and genotoxic/replication stress conditions 

To explore the RNR3 expression changes during the progress of iron 

starvation, we determined RNR3 mRNA levels in wild-type BY4741 exponentially 

growing cells at different times of iron deficiency (-Fe) relative to ACT1 mRNA 

levels. RNR3 mRNA, similar to CTH2, displayed almost undetectable levels at 0 

hours of -Fe (Figure C4-1: A). Both CTH2 and RNR3 were only expressed during 

iron deficiency, with a delayed induction in the case of RNR3, that showed the 

highest levels after 18 hours of iron scarcity (Figure C4-1: A). Although this 

experiment was performed in exponentially growing cultures, the cell viability was 

decreased to 75 % after 15 hours in -Fe (Figure C4-1: B). However, because the 

ACT1 mRNA levels were also decreased after 18 hours of -Fe, not longer being a 

good gene of reference, 15 hours was the time chosen to study the long-term RNR3 
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upregulation observed in -Fe where, in the absence of normalization with ACT1, 

the peak of RNR3 expression was observed (data not shown). 

Figure C4-1. The RNR3 levels are induced to the same extent under long-term 

iron deficiency, genotoxic stress and replication stress. (A) RNR3/ACT1 and 
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CTH2/ACT1 mRNA levels of wild-type BY4741 cells were determined by RT-qPCR 

as described in Materials and Methods. Overnight cultures were reinoculated in SC 

for 6 hours (here indicated as 0 hours in -Fe) and SC with 100 µM BPS (-Fe, 

indicated times from 6 to 24 hours). Values are represented relative to RNR3/ACT1 

mRNA levels at 18 hours of -Fe. (B) The cell viability determination of wild-type 

BY4741 cells was performed as explained in section 1.5 of Materials and Methods 

from cells grown as in panel A. The percentages of cell viabilities at the different 

times of the iron deficiency were represented relative to the SC condition (0 hours 

in -Fe). (C) The RNR3/ACT1 mRNA levels of wild-type BY4741 cells were 

determined from overnight cultures reinoculated in SC for 4 hours and then 

supplemented 1 hour with hydroxyurea 0.2 M (HU), methyl methanesulfonate 0.04 

% (MMS) and 4-nitroquinoline N-oxide 0.2 mg/L (4-NQO), or overnight cultures 

reinoculated in SC for 6 hours (SC condition) and SC with 100 µM BPS (-Fe) for 15 

hours. The RNR3/ACT1 mRNA levels were represented as the fold-induction 

relative to the SC condition. (D and E) The Rnr3/Act1 protein levels were 

determined by Western blot. Cells were grown as described in panel C for SC, HU, 

MMS and 4-NQO (D) and SC and indicated -Fe times (E). Protein quantifications 

were represented as the fold-induction relative to the SC condition. In all cases, 

mean values and standard deviations from at least two independent biological 

replicates are shown. An asterisk (*) indicates a significant difference (p-value 

<0.05) from two-tailed student’s t-test compared to the SC condition (0 hours in -

Fe). 

 

As previously mentioned, the expression of RNR3 was strongly increased 

under genotoxic or replication stress conditions. To compare these situations with 

iron starvation, we exposed wild-type BY4741 cells to the RNR inhibitor 

hydroxyurea (HU) and to the DNA-damaging agents methyl methanesulfonate 

(MMS) and 4-nitroquinoline N-oxide (4-NQO). A similar increase in RNR3 mRNA 

levels (from 15 to 20-fold) was displayed under any of the conditions tested 

(Figure C4-1: C). Besides, an 8-fold increase in Rnr3 protein was observed after 15 

hours in -Fe (Figure C4-1: D), higher than the ~2-fold increase observed earlier 

under iron deficiency or the ~3-fold increase under HU, MMS or 4-NQO exposure 
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(Figure C4-1: D and E). Taken together, these results demonstrate that Rnr3 is 

induced under long-term iron-deficient conditions to the same extent as in 

genotoxic and replication stress conditions. 

C4.2. RNR3 is transcriptionally activated in a Rad53/Dun1 checkpoint 

kinases-dependent manner under long-term iron deficiency 

To determine if the RNR3 induction under iron deficiency was caused by a 

transcriptional activation, we determined the RNA polymerase II recruitment to 

the RNR3 promoter under iron sufficiency (+Fe) and deficiency (-Fe) relative to the 

recruitment to the ACT1 promoter. The FET3 promoter was used as a positive 

control of a gene transcriptionally activated when iron is scarce. We observed a 

higher recruitment of RNA Pol II to both RNR3 and FET3 promoters in -Fe 

compared to +Fe (Figure C4-2). This result suggests that the RNR3 transcription is 

upregulated under iron deficiency. 

Figure C4-2. The RNA Pol II is recruited to the RNR3 promoter under iron 

deficiency. The RNA polymerase II occupancy in FET3 and RNR3 promoters was 

determined relative to the ACT1 promoter by ChIP as described in section 4.1.4 of 

Materials and Methods. Wild-type BY4741 overnight cultures were reinoculated in 

SC (+Fe) and in SC with 100 µM BPS (-Fe) for 6 hours. Mean values and standard 

deviations from two independent biological replicates are shown and represented 

relative to the +Fe situation in each case. 

 

As previously introduced, the Mec1–Rad53–Dun1 checkpoint pathway is 

known to be required for the RNR3 transcriptional activation in response to DNA 
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damage or replication blocking by dissociating the Crt1 repressor (Huang et al., 

1998; Zhang & Reese, 2005; Sharma et al., 2007). In order to determine the 

implication of this pathway in the RNR3 induction observed under long-term iron 

deficiency, we determined the β-galactosidase activity of a plasmid containing the 

RNR3 promoter fused to the lacZ reporter in some checkpoint pathway mutants 

(Figure C4-3). The RNR3-lacZ β-galactosidase activity was highly induced in the 

wild-type W303 strain after 15 hours in -Fe compared to the +Fe condition, again 

indicating a transcriptional upregulation of RNR3 under long-term iron deficiency 

(Figure C4-3). Importantly, this upregulation of activity in -Fe compared to +Fe 

was decreased in the dun1Δ and rad53Δsml1Δ mutant strains (Figure C4-3). The 

SML1 gene was deleted to allow the rad53Δ viability. Nevertheless, the sml1Δ 

mutant alone not only did not show a decreased RNR3-lacZ activity, but it even 

showed an increased activity in -Fe (Figure C4-3). All these results together 

demonstrate the implication of the Rad53/Dun1 checkpoint kinases in the 

transcriptional upregulation of RNR3 under long-term iron-deficient conditions. 

Figure C4-3. RNR3 is transcriptionally induced in a Rad53 and Dun1 

checkpoint kinases-dependent manner under long-term iron-deficient 

conditions. RNR3-lacZ β-galactosidase levels of wild type W303, sml1Δ, dun1Δ and 

rad53Δsml1Δ mutant cells transformed with RNR3-lacZ were determined from 

overnight cultures reinoculated in SC-Ura (+Fe) and in SC-Ura with 100 µM BPS (-

Fe) for 15 hours. Mean values and standard deviations from three independent 

biological replicates are shown. An asterisk (*) indicates a significant difference (p-
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value <0.05) from two-tailed student’s t-test comparing the fold change in -Fe/+Fe 

levels of each mutant with the fold change in -Fe/+Fe levels of the wild-type W303. 

C4.3. Cth2 induces the RNR3 expression only when expressed under iron-

deficient conditions 

Cth2 was previously described to be important for the RNR assembly and 

production of dNTPs under iron starvation (Sanvisens et al., 2011). Therefore, we 

wanted to study a possible role of Cth1/Cth2 in the transcriptional induction of 

RNR3 in -Fe. Again, the RNR3-lacZ β-galactosidase activity was highly induced in 

the wild-type BY4741 strain after 15 hours in -Fe, compared to the +Fe condition 

(Figure C4-4: A). This -Fe specific increment was slightly reduced in the cth1Δ 

mutant, drastically  reduced  in  the cth2Δ  mutant and  even more decreased in the 

Figure C4-4. RNR3 is transcriptionally induced in a Cth1, and mainly Cth2-

TZF-dependent manner under long-term iron-deficient conditions. RNR3-lacZ 
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β-galactosidase levels of (A) wild-type BY4741, cth1Δ, cth2Δ and cth1Δcth2Δ 

mutant cells transformed with RNR3-lacZ and (B) cth1Δcth2Δ mutant cells co-

transformed with RNR3-lacZ and either pRS415-CTH2 (CTH2), pRS415-CTH2-

C190R (CTH2-C190R) or pRS415 (Vector) were determined from overnight 

cultures reinoculated in SC-Ura (+Fe) and in SC-Ura with 100 µM BPS (-Fe) for 15 

hours. Mean values and standard deviations from three independent biological 

replicates are shown. An asterisk (*) indicates a significant difference (p-value 

<0.05) from two-tailed student’s t-test comparing the fold change in -Fe/+Fe levels 

of each mutant with the fold change in -Fe/+Fe levels of the wild-type BY4741 (A) 

and CTH2 cells (B). 

 

 cth1Δcth2Δ double mutant (Figure C4-4: A). Next, we wanted to determine more 

precisely the implication of the Cth2-TZFs in the induction of RNR3 promoter in -

Fe. The cth1Δcth2Δ background was co-transformed with the RNR3-lacZ plasmid 

and either the CTH2 plasmid (CTH2), the TZF-mutated version (CTH2-C190R) or 

empty vector (Vector). The observed inducible activity in -Fe compared to +Fe in 

CTH2 expressing cells was reduced to the same extent in both CTH2-C190R and 

Vector cells (Figure C4-4: B). This indicates that Cth2 has a significant TZF-

dependent role in the RNR3 transcriptional upregulation under long-term iron 

deficiency.  

We wondered then whether a constitutive expression of CTH2 in +Fe was 

sufficient to induce RNR3 expression. We tested the RNR3 and CTH2 mRNA levels 

(Figure C4-5: A and B, respectively) in cth1Δcth2Δ cells expressing the wild-type 

version of CTH2 (CTH2), the empty vector (Vector) and the TEF2 promoter fusion 

with the CTH2 coding sequence (TEF-CTH2). As expected from the β-galactosidase 

activity assays, the increase in RNR3 mRNA levels in -Fe compared to +Fe in CTH2 

cells was also observed but to a much lower extent in Vector cells (Figure C4-5: 

A). Surprisingly, the TEF-CTH2 expressing cells still showed the same low RNR3 

mRNA levels in +Fe and highly induced levels in -Fe (Figure C4-5: A), although the 

CTH2 mRNA levels were increased by the TEF2 promoter in both conditions 

(Figure C4-5: B). These results indicate that the Cth2-dependent RNR3 

upregulated expression only takes place under iron starvation. 
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Figure C4-5. RNR3 is not induced by Cth2 under iron sufficiency. The 

RNR3/ACT1 (A) and CTH2/ACT1 (B) mRNA levels of cth1Δcth2Δ mutant cells 

transformed with pRS416-CTH2 (CTH2), pRS416 (Vector) or p416-TEF-CTH2 (TEF-

CTH2) were determined from overnight cultures reinoculated in SC-Ura with 10 

µM FAS (+Fe, 6 hours) and in SC-Ura with 100 µM BPS (-Fe, 10 hours) by RT-qPCR 

as described in Materials and Methods. Mean values and standard deviations from 

three independent biological replicates are shown relative to CTH2 in +Fe. An 

asterisk (*) indicates a significant difference (p-value <0.05) from two-tailed 

student’s t-test comparing the -Fe to the +Fe situation in each case. 
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C4.4. Cth2 and Dun1 independently induce RNR3 transcription under 

long-term iron deficiency 

Here we have shown that the RNR3 transcriptional induction under long-

term iron deficiency is dependent on both Rad53/Dun1 and Cth2 (Figure C4-3 

and Figure C4-4, respectively). Next, we wanted to test if these pathways act 

independently or not. The previously shown induction of RNR3-lacZ activity in -Fe 

compared to +Fe in the wild-type BY4741 was reduced to the same extent in both 

dun1Δ and cth1Δcth2Δ mutant strains (Figure C4-6). Importantly, the RNR3-lacZ 

induction in -Fe was even more drastically decreased in the dun1Δcth1Δcth2Δ 

mutant approaching the basal levels measured in +Fe (Figure C4-6). These results 

suggest that Cth2 and Dun1 have independent roles in the transcriptional 

induction of RNR3 when iron is scarce.  

Figure C4-6. Cth2 and Dun1 independently induce the RNR3 transcription 

under long-term iron-deficient conditions. RNR3-lacZ β-galactosidase levels of 

wild type BY4741, dun1Δ, cth1Δcth2Δ and dun1Δcth1Δcth2Δ mutant cells 

transformed with RNR3-lacZ were determined from overnight cultures 

reinoculated in SC-Ura (+Fe) and in SC-Ura with 100 µM BPS (-Fe) for 15 hours. 

Mean values and standard deviations from three independent biological replicates 

are shown. An asterisk (*) indicates a significant difference (p-value <0.05) from 

two-tailed student’s t-test comparing the fold change in -Fe/+Fe levels of each 

mutant with the fold change in -Fe/+Fe levels of the wild-type BY4741. 
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Figure C4-7. The mRNA levels of the RNR3 transcriptional repressors CRT1 

and ROX1 are decreased in a Cth2-dependent manner under long-term iron 

deficiency. The RNR3/ACT1 (A), CRT1/ACT1 (B), ROX1/ACT1 (C) and MOT3/ACT1 

(D) mRNA levels of cth1Δcth2Δ mutant cells transformed with pRS416-CTH2 

(CTH2) and pRS416 (Vector) were determined from overnight cultures 

reinoculated in SC-Ura with 10 µM FAS for 6 hours (+Fe, here indicated as 0 hours 

in -Fe) and SC-Ura with 100 µM BPS (-Fe, 6 and 15 hours) by RT-qPCR as described 

in Materials and Methods. Mean values and standard deviations from at least two 

independent biological replicates are shown relative to the levels at 0 hours in -Fe. 

An asterisk (*) indicates a significant difference (p-value <0.05) from two-tailed 

student’s t-test comparing the fold change -Fe/+Fe levels of the CTH2 cells with the 

fold change -Fe/+Fe levels of the Vector cells. 
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C4.5. Cth2 partially promotes the RNR3 transcriptional derepression 

through Crt1 regulation under long-term iron deficiency 

As previously introduced, the role of Cth2 is to promote an ARE-mediated 

mRNA decay in order to facilitate the metabolic remodeling of cellular processes 

under iron starvation (Puig et al., 2005; Puig et al., 2008). However, the results 

above demonstrated a role of Cth2 in the transcriptional activation of RNR3. We 

wondered if Cth2 was promoting the AMD of any transcriptional repressor of the 

RNR3 promoter. To study this possibility, we determined the mRNA levels of three 

well-known RNR3 transcriptional repressors, namely Rox1, Mot3 and Crt1, all 

recruiting the Ssn6–Tup1 general repressor complex (Huang et al., 1998; Li & 

Reese, 2001; Zhang & Reese, 2004a; Klinkenberg et al., 2005; Klinkenberg et al., 

2006). As expected, the RNR3 mRNA levels were more induced in CTH2 expressing 

cells compared to Vector cells especially after 15 hours in -Fe (Figure C4-7: A). 

Interestingly, the CRT1 and ROX1 mRNA levels were more incremented in Vector 

cells compared to CTH2 cells especially after 15 hours in -Fe (Figure C4-7: B and 

C, respectively). On the contrary, the MOT3 mRNA levels showed incremented 

levels in CTH2 cells compared to Vector cells after 6 and 15 hours of iron 

deficiency, but the levels slightly fluctuated during the progress of the iron 

deficiency in both cases (Figure C4-7: D). These results suggest that the RNR3 

transcriptional repressors Crt1 and Rox1 could be negatively regulated in -Fe at 

the mRNA level in a Cth2-dependent manner. 

In addition to these three repressors of RNR3 promoter, other potential 

transcriptional repressors are described in the literature. We made a selection of 

those that were also described as possible Cth1/Cth2 targets (Puig et al., 2005; 

Puig et al., 2008) and/or contained ARE sequences in their 3’UTR mRNAs. Then, 

we measured if their mRNA levels were altered in a Cth2-dependent manner in -Fe 

(Figure C4-8). The paralogs YOX1 and YHP1 are homeobox transcriptional 

repressors (Horak et al., 2002). Yox1 has been described to bind the RNR3 

promoter, as well as other promoters of genes involved in DNA-damage responses 

(Horak et al., 2002; Aligianni et al., 2009). Besides, both YOX1 and YHP1 mRNAs 

contain one ARE each, at 15 and 230 nts after the translation termination codon, 

respectively. On the other hand, Hap4 is a transcriptional factor detected to bind 
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the ROX1 promoter, one of the RNR3 transcriptional repressors (Zhang et al., 

2017). Besides, the HAP4 mRNA (with 2 AREs at 274 and 302 nts after the 

translation termination codon) has been described as a Cth2-target (Puig et al., 

2008). Despite that the mRNA levels of YOX1, YHP1 and HAP4 were decreased in 

the progression of the iron deficiency in CTH2 expressing cells (Figure C4-8: A, B 

and C, respectively), they did not show differences at 15 hours in -Fe relative to 

+Fe between CTH2 and Vector cells.  

Another studied mechanism of repression of RNR3 transcription involves the 

recruitment of histone deacetylases by the Ssn6–Tup1 repressor complex (Zhang 

& Reese, 2005). The triple histone deacetylase mutant rpd3Δhos1Δhos2Δ showed a 

reduced Crt1-dependent repression (Davie et al., 2002; Zhang & Reese, 2005). The 

HOS1 mRNA is the only one containing an ARE (at 563 nts after the translation 

termination codon). Interestingly, the HOS1 mRNA showed increased levels at 15 

hours in -Fe in Vector cells compared to CTH2 cells (Figure C4-8: D), suggesting a 

Cth2-dependent HOS1 mRNA decay.  

Another study using RNR3-GFP determined 150 mutants that showed an 

induction of RNR3 expression in untreated and MMS treated cells (Hendry et al., 

2015). Three of them were chosen because of the above-mentioned criteria: 

RPA190, IRA2 and DIA2 (Figure C4-8: E, F and G respectively). The RPA190 (RNA 

polymerase I largest subunit) mRNA, with 2 AREs at 275 and 552 nts after the 

translation termination codon, is a Cth1-mRNA target (Puig et al., 2008). The IRA2 

and DIA2 mRNAs, with no AREs, are possible Cth1 and Cth2-mRNA targets, 

respectively (Puig et al., 2008). However, their mRNA levels did not show 

significant changes between CTH2 and Vector cells (Figure C4-8: E, F and G 

respectively).  

The CWP1 mRNA, with an ARE at 311 nts after the translation termination 

codon, was the last mRNA tested because when mutated together with other 6 

genes (none with AREs) the RNR3-GFP was induced (Wei et al., 2013). Despite of 

its strongly decreased mRNA levels under iron deficiency, there were no 

differences between CTH2 and Vector cells (Figure C4-8: H). 
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Figure C4-8. mRNA levels of other RNR3 transcriptional repressors that are 

potential Cth2 mRNA targets. The YOX1/ACT1 (A), YHP1/ACT1 (B), HAP4/ACT1 
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(C), HOS1/ACT1 (D), RPA190/ACT1 (E), IRA2/ACT1 (F), CWP1/ACT1 (G) and 

DIA2/ACT1 (H) mRNA levels were determined as indicated in Figure C4-7.  

Figure C4-9. Cth2 partly induces the RNR3 transcription through Crt1 

regulation under long-term iron deficiency. RNR3-lacZ β-galactosidase levels of 

crt1Δ and cth1Δcth2Δcrt1Δ (A), rox1Δmot3Δ and rox1Δmot3Δcth1Δcth2Δ (B), 

rox1Δmot3Δcrt1Δ and rox1Δmot3Δcrt1Δcth1Δcth2Δ (C) mutant cells transformed 

with RNR3-lacZ were determined from overnight cultures reinoculated in SC-Ura 

(+Fe) and in SC-Ura with 100 µM BPS (-Fe) for 15 hours. Mean values and standard 

deviations from at least three independent biological replicates are shown. An 

asterisk (*) indicates a significant difference (p-value <0.05) from two-tailed 

student’s t-test comparing the fold change in -Fe/+Fe levels of each mutant with 

the fold change in -Fe/+Fe levels of that mutant lacking CTH1 and CTH2. 
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Once the list of Cth2-regulated RNR3 repressors was reduced to Crt1, Hos1 

(via Crt1–Ssn6–Tup1-dependent repression) and Rox1, several mutants, crt1Δ, 

rox1Δmot3Δ and rox1Δmot3Δcrt1Δ were generated in combination with the 

cth1Δcth2Δ mutant strain to test the RNR3-lacZ activity under iron sufficiency and 

deficiency (Figure C4-9). Although the -Fe/+Fe induction in the β-galactosidase 

activity has been considered, it should be noticed the higher basal activity levels in 

+Fe when any of these RNR3-promoter repressors was deleted (Figure C4-9). The 

RNR3-lacZ activity of the crt1Δ strain was induced in -Fe compared to +Fe, and 

importantly maintained almost intact this induction in the crt1Δcth1Δcth2Δ strain 

(Figure C4-9: A). However, the observed -Fe/+Fe induction in the rox1Δmot3Δ 

strain was completely lost in rox1Δmot3Δcth1Δcth2Δ cells (Figure C4-9: B). On the 

other hand, when the three repressors were mutated, rox1Δmot3Δcrt1Δ cells, there 

was no difference in the RNR3-lacZ activity levels between +Fe and -Fe conditions 

(Figure C4-9: C), probably because of a completely derepressed RNR3-promoter 

situation. However, the Cth1/Cth2 role was still present as the 

rox1Δmot3Δcrt1Δcth1Δcth2Δ strain showed diminished activity levels in -Fe 

(Figure C4-9: C). Together, these results suggest that Cth2 can promote the 

transcriptional derepression of RNR3 possibly through the regulation of Crt1, 

although other mechanisms could be involved. 

 

C4.6. Rnr3 is physiologically relevant under iron-deficient situations 

No clear growth defects have been described with the unique deletion of 

RNR3 in any of the stress conditions typically defined to induce its expression 

(DNA damage, genotoxic stress, replication stress). Here, we observed a 

remarkable growth defect in the rnr3Δ mutant strain in both liquid and solid iron-

deficient media compared to the wild-type BY4741 (Figure C4-10: B and C, 

respectively). This situation is specific to the -Fe situation as the rnr3Δ cell growth 

was not affected in liquid nor solid iron-sufficient media compared to the wild-type 

(Figure C4-10: A and C, respectively). These results demonstrate a physiologically 

relevant role of Rnr3 under iron starvation. 
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Figure C4-10. The rnr3Δ mutant shows growth defects under iron-deficient 

conditions. Cell growth analyses of wild-type BY4741 and rnr3Δ mutant cells in 

liquid media were performed from overnight cultures SC with 10 µM FAS (+Fe) (A) 

and SC with 1500 µM Ferrozine (-Fe) (B) and in solid media in SC (+Fe) and SC 

with 200 µM BPS (-Fe) (C) as explained in section 1.4 of Materials and Methods. 

Four independent experiments were performed in each case. Mean values of the 

growth curves (OD600 vs. time) were represented with standard deviations (A and 

B). 
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Discussion of Chapter 4 

The ribonucleotide reductase enzyme of S. cerevisiae harbors the essential 

oxo-diiron cofactor in the Rnr2 subunit. Despite this, all RNR subunits show iron-

dependent regulations (Sanvisens et al., 2014; Pijuan et al., 2015; Ros-Carrero et 

al., 2020), and in the case of the regulation of Rnr2 and Rnr4, it includes the Cth2-

dependent AMD under iron deficiency (Sanvisens et al., 2011). RNR3 induction is 

known to occur in strains defective in ISC and CIA machineries in a Dun1-

dependent manner (Stehling et al., 2012; Zhang et al., 2014). However, here we 

have shown that both Cth2 and Dun1, independently and to the same extent, 

induce RNR3 expression under long-term iron-deficient conditions (Figure C4-6). 

This upregulation occurs at the transcriptional level, as higher RNA Pol II 

recruitment to the RNR3 promoter has been observed (Figure C4-2). This is 

remarkable given that Rpb1 protein levels are reduced under iron-deficient 

conditions (Romero et al., 2019). The RNR3 promoter induction results in higher 

mRNA and protein levels of Rnr3, comparable to those reached under genotoxic or 

replication stress conditions (Figure C4-1: C, D and E). And, importantly, the 

RNR3 transcriptional upregulation led to sufficient protein levels to support a 

physiological role under iron starvation (Figure C4-10).  

In response to DNA damage, the RNR2/3/4 transcriptional repressor Crt1 is 

phosphorylated by Dun1 and then released from its target promoters (Huang et al., 

1998; Figure D4-1: A). We believe that this is also the Dun1-related situation 

observed over RNR3 transcription under iron deficiency (Figure D4-1: B): (i) 

Rad53 is more phosphorylated in strains defective in ISC and CIA machineries that 

induce the RNR3 promoter (Stehling et al., 2012); (ii) RNR3 mRNA levels are 

induced in a Dun1-dependent manner in a CIA-defective strain (Zhang et al., 2014); 

(iii) Rad53 and Dun1 kinases are required in the RNR3 induction under long-term 

iron deficient-conditions (Figure C4-3; Figure C4-6). For these reasons, we 

decided to focus our efforts in elucidating the role of Cth2 in RNR3 transcriptional 

induction under long-term iron deficiency.  

In this chapter, we have described that the function of Cth2 in upregulating 

RNR3 (i) depends on its TZF motif, (ii) predominates over the role of Cth1 and (iii) 

only takes place under iron deficiency (Figure C4-4; Figure C4-5). As Cth2 is an 
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mRNA-binding protein that promotes AMD, it is likely that Cth2 could 

downregulate the mRNA levels of an RNR3 transcriptional repressor. The mRNA 

steady-state levels of CRT1, ROX1 and MOT3, three well-known RNR3 

transcriptional repressors that act synergistically (Klinkenberg et al., 2006), 

showed that CRT1 and ROX1 (but not MOT3) mRNAs levels are increased in cells 

lacking CTH2 compared to CTH2-expressing cells in -Fe (Figure C4-7). None of 

them has been described before as a potential Cth2 mRNA-target (Puig et al., 2005; 

Puig et al., 2008) and neither contains the canonical ARE 5′-UAUUUAUU-3′ / 5′-

UUAUUUAU-3′ sequences within their 3’-UTRs. Despite this fact, CRT1 and ROX1 

mRNA levels are clearly lowered by the presence of Cth2 after 15 hours in -Fe, 

when the highest RNR3 expression takes place (Figure C4-7: A, B and C). Only in 

the case of CRT1, its mRNA is downregulated by Cth2 in the first 6 hours of -Fe 

(Figure C4-7: B). In fact, 6 hours in iron deficiency is the -Fe time used in the 

previous studies that characterized the possible Cth2 mRNA-targets (Puig et al., 

2005; Puig et al., 2008). Despite the lack of Cth2-dependent regulation on CRT1 

and ROX1 mRNAs found in these studies, and the lack of canonical AREs in their 3’-

UTRs, an incomplete 5′-UAUUUAU-3′ ARE sequence is present at 551 nts in the 3’-

UTR of CRT1 mRNA. This suggests that CRT1 mRNA could be a new direct Cth2 

mRNA target in -Fe. On the other hand, the ROX1 mRNA regulated by Cth2 only at 

long-term iron deficiency does not contain any ARE-like sequence and probably it 

is not a direct Cth2 target. Interestingly, it is possible that potential new mRNAs 

differentially regulated (directly or indirectly) by Cth2 would be better or only 

observed at long-term iron-deficient conditions.  

In the case of ROX1, it is regulated by heme (and oxygen) as its transcription 

is activated by the heme-dependent proteins Hap1 and Hap4 (Zhang et al., 2017). 

Besides, ROX1 has been described to be highly expressed upon oxidative stress 

(Castells-Roca et al., 2011; Liu & Barrientos, 2012). It is likely that Cth2 

downregulates the ROX1 mRNA levels indirectly. In fact, HAP4 mRNA is a Cth2-

target with 2 AREs (Puig et al., 2008). However, we did not see a Cth2-dependent 

downregulation of HAP4 in our conditions (Figure C4-8: C). The possibility that 

Cth2 indirectly decreases ROX1 mRNA levels under long-term iron deficiency via 

HAP4 downregulation or other mechanisms that derepress RNR3 expression 
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requires further studies. Interestingly, new mRNAs differentially regulated 

(directly or indirectly) by Cth2 could be detected in future expression studies 

performed at long-term iron-deficient conditions. 

Figure D4-1. Proposed model for the RNR3 transcriptional activation under 

long-term iron deficiency (B) compared to genotoxic stress (A). 

 

In addition to CRT1, ROX1 and MOT3, we tested the mRNA levels of other 

potential RNR3 transcriptional repressors (Figure C4-8). We filtered those that 

have been described to potentially bind and repress RNR3 promoter or derepress 

RNR3 expression when mutated. Besides, they appear as possible Cth1/Cth2 
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targets (Puig et al., 2005; Puig et al., 2008) or if not, at least contain canonical 

AREs. Among them, only the ARE-containing HOS1 mRNA showed increased levels 

in cells lacking CTH2 compared to CTH2-expressing cells at long-term iron 

deficiency (Figure C4-8: D). Hos1 is a class I histone deacetylase that together 

with Rpd3 and Hos2 is recruited by the Ssn6–Tup1 repressor complex (Watson et 

al., 2000; Davie et al., 2002; Davie et al., 2003; Zhang & Reese, 2005). Ssn6–Tup1 is 

a general corepressor complex brought to target promoters by Crt1, Rox1 and 

Mot3 DNA-binding proteins, repressors of DNA damage- and hypoxia-inducible 

genes (Balasubramanian et al., 1993; Huang et al., 1998; Kastaniotis et al., 2000). 

The expression through the RNR3 promoter was analyzed in several mutant 

strains of the three repressors and in combination with cth1Δcth2Δ deletions 

(Figure C4-9). The RNR3 induction observed in the crt1Δ mutant under long-term 

iron deficiency was practically maintained in the crt1Δcth1Δcth2Δ strain (Figure 

C4-9: A). This was not the case when the rox1Δmot3Δ strain was compared to 

rox1Δmot3Δcth1Δcth2Δ (Figure C4-9: B). This would indicate that the Cth2-

dependent RNR3 upregulation occurs mainly through Crt1. However, when the 

three repressors are mutated, the Cth2-dependent role in RNR3 induction is still 

present (Figure C4-9: C). These results using multiple mutant strains of CRT1, 

ROX1 and MOT3 can be difficult to interpret as they repress several other genes 

and act synergistically upon the RNR3 promoter. The only CRT1 deletion alone 

under normal conditions derepresses RNR3 more than a wild-type strain under 

long-term iron deficiency; and the deletion of the three repressors probably 

derepresses RNR3 completely. We cannot conclude that Cth2 only derepresses 

RNR3 by these repressors. We propose a model of RNR3 induction under long-term 

iron-deficient conditions (Figure D4-1: B) in which (i) Cth2 promotes the direct 

AMD of CRT1 mRNA that, together with the Crt1 phosphorylation by Rad53–Dun1, 

derepresses the RNR3 promoter; (ii) Cth2 indirectly downregulates ROX1 (but not 

MOT3) mRNA levels by an unknow mechanism specific of the iron starvation; and 

(iii) probably other mechanisms directly or indirectly related with Cth2 could 

transcriptionally derepress RNR3. Further studies are required to elucidate the 

complex regulation of RNR3 in -Fe. We consider essential to test if the observed 

lower CRT1 and ROX1 mRNA levels in a Cth2-dependent manner would result in 

diminished Crt1 and Rox1 protein levels and decreased RNR3-promoter binding. 
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On the other hand, the reason why Rnr3 is physiologically relevant 

specifically under long-term iron-deficient conditions is not known. The other only 

known condition that shows a negative phenotype in the rnr3Δ strain is under non-

fermentable carbon sources or limiting concentrations of glucose (Corcoles-Saez et 

al., 2019). Interestingly, under these conditions the authors showed an RNR3 

upregulation and an RNR1 downregulation important for mitochondrial function. 

However, they suggested that the physiological function of Rnr3 under glycerol 

growth was independent of its role in dNTP production (Corcoles-Saez et al., 

2019). On the contrary, iron-deficient conditions are known to increase RNR1 

expression to optimize dNTP synthesis (Sanvisens et al., 2011; Ros-Carrero et al., 

2020). RNR1 upregulation was observed to occur in a Cth2- and Aft1-dependent 

manner during iron starvation (Sanvisens et al., 2011; Ros-Carrero et al., 2020). To 

know if this is also the case for RNR3 regulation under long-term iron deficiency 

would require further investigation. 
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General Discussion 

Iron deficiency is a nutritional stress to which yeast cells gradually respond. The 

acquisition of extracellular iron and its mobilization from the vacuole due to the 

activation of the iron regulon are the first steps. Then, the described metabolic 

remodeling response occurs mainly through Cth2. Iron is involved in an 

extraordinary number of cell processes that need to be progressively regulated to 

maintain iron homeostasis and survival. In this thesis, we have described that Cth2 

specifically represses the translation of ARE-containing mRNAs (Chapter 2) before 

Gcn2 represses the global initiation of translation (Chapter 1). The Gcn2-

dependent inhibition of general translation overlaps with the described TORC1 

inhibition under iron deficiency (Romero et al., 2019). This suggests that cells try 

to face iron deficiency by promoting the Cth2-dependent specific metabolic 

remodeling (6-7 hours of -Fe in BY4741 strain) before repressing more general 

processes (9-11 hours in -Fe in BY4741 strain). In both cases, further studies 

would be required to elucidate the details of the molecular mechanisms already 

suggested to be involved in these translational regulations. Besides, similarly to 

Chapter 2, where specific mRNA and protein levels were used to determine 

translational efficiencies together with their distribution in polysome profiles, 

additional experiments detecting the global newly synthesized protein levels 

would corroborate our results in Chapter 1.  

On the other hand, we have described new Cth2 functions taking place at 

longer exposures to iron-deficient conditions. We have shown that Cth2 

contributes to the RNR3 upregulation (Chapter 4) and cytochrome c oxidase 

function (Chapter 3) under long-term iron deficiency. Interestingly, these two 

novel roles of Cth2 only take place under iron starvation as Cth2 overexpression in 

+Fe did not induce RNR3 or the complex IV activity of the ETC. Therefore, new 

Cth2-related functions could be described under more severe iron deficiencies. 

Most likely, after long periods of iron starvation, iron-related processes would be 

seriously compromised, as it has been shown with global translational inhibition 

after 12 hours of iron limitation regardless Gcn2 (Chapter 1). Besides, it is possible 

that ROS and DNA damage would accumulate more obviously during the 

progression of iron deficiency. The novel roles of Cth2 in derepressing RNR3 and in 
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maintaining a more efficient ETC in -Fe could be decisive under these conditions, 

as DNA reparation and less ROS productive mitochondria would be indispensable 

for cell survival. However, there are several unexplored aspects of the Cth2-

dependent regulation of respiration as well as in RNR3 derepression (discussion of 

Chapters 3 and 4, respectively). Accurate ROS measurements would be needed to 

determine a possible role of Cth2 in reducing the oxidative stress generated by the 

ETC under iron deficiency. If this is the case, it could reduce ROX1 expression as it 

is described to be highly induced upon oxidative stress (Castells-Roca et al., 2011; 

Liu & Barrientos, 2012). If demonstrated, this fact could partially explain the 

decreased ROX1 mRNA levels (and therefore RNR3 derepression) observed in a 

Cth2-dependent manner at long-term iron deficiency. It would correlate the ROS 

protective role of Cth2 in the ETC with a higher RNR3 expression. As mentioned in 

the discussion of Chapter 4, Rnr3 is probably needed to optimize dNTP synthesis 

under long-term iron-deficient situations. But interestingly, Rnr3 is also the only 

RNR protein physically found in mitochondria (Sickmann et al., 2003; Reinders et 

al., 2006). To determine if Rnr3 has another mitochondria-related function, as 

Corcoles-Saez et al. (2019) suggested, further studies would be required. 
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1. During the progress of iron deficiency, global translation is gradually 

repressed at the initiation step. 

2. When iron is scarce, Gcn2 kinase represses global translation initiation in a 

Gcn1-dependent manner by phosphorylating serine 51 of eIF2α, which 

causes the induction of GCN4 translation.  

3. In response to iron deficiency, Cth2 promotes the translational repression of 

ARE-containing mRNAs in a process that requires the integrity of both the 

TZF domain and the AREs. 

4. Both the amino and the carboxy-terminal domains of Cth2 contribute to 

mRNA translational repression, whereas only the amino-terminal domain is 

responsible for mRNA decay under iron starvation.  

5. The carboxy-terminal domain of Cth2 is physiologically relevant under iron 

deficiency. 

6. Mitochondrial respiration is compromised under iron deficiency regardless 

of Cth2. However, the constitutive activation of the iron regulon represses 

respiration and diminishes growth capacity in non-fermentable media 

through Cth2. 

7. The overexpression of Cth2 under iron sufficiency decreases not only oxygen 

consumption, but also multiple iron-dependent enzymatic activities, 

including Leu1, aconitase and complex II and III of the ETC. 

8. The activity of complex IV of the ETC is unaffected by the overexpression of 

Cth2 under iron sufficiency and decreases under iron deficiency. However, 

Cth2 contributes to maintain a better functionality of complex IV when iron is 

scarce probably by increasing the Cox1 mRNA and apo-protein levels. 

9. RNR3 is transcriptionally induced under long-term iron-deficient conditions 

reaching mRNA and protein levels comparable to those under genotoxic or 

replication stress conditions. RNR3 is physiologically relevant under iron-

deficient conditions. 

10. Rad53 and Dun1 checkpoint kinases are involved in the RNR3 upregulation 

under long-term iron deficiency. Cth2 contributes to the upregulation of 
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RNR3, independently of Dun1, in a TZF-dependent manner and only under 

iron starvation. 
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