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Abstract
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Doctor of Philosophy

The Origin of Flavor in Physics
Beyond the Standard Model

by Aurora MELIS

In this dissertation, we investigate the interplay between Supersymmetry and mod-
els based on different flavor symmetry groups: A4, S3, A5 and D(27). The use of
flavor symmetries is the most popular tool for model builders to tackle the Standard
Model’s flavor puzzle. A plethora of possible choices for the flavor symmetry and
its breaking are consistent with the existing flavor data. A well-known problem of
the SM is that we can not fully recover the fundamental flavor parameters of the SM
Lagrangian, the Yukawa matrices. This problem is especially critical in the neutrino
sector, where the Seesaw mechanism entangles the neutrino Yukawa couplings and
the right-handed neutrino Majorana masses. Hence, we may never be able to detect
which flavor symmetry lies behind the Origin of Flavor. Physics Beyond the Standard
Model, which predicts new flavor interactions, like, for example, Supersymmetry, is
probably the only opportunity to sort out the flavor puzzle. We show that the combi-
nation of bounds over lepton flavor violating processes, especially µ ! eg, can sig-
nificantly restrict the parameter space of Supersymmetry well beyond direct searches
and, at the same time, provide detached testable predictions to be (dis) proven by the
upcoming flavor violation searches. For the most promising of these models, we also
investigate the possibility of viable Leptogenesis. Finally, we discuss the constraints
imposed by the anomalous magnetic moment (g � 2)µ,e and µ ! eg on the leptonic
Yukawa structure and propose a radiative flavon correction to the lepton masses as
a possible solution.
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Resumen de la tesis

Contexto de investigación

El Modelo Estándar (SM), el modelo propuesto por Glashow, Salam y Weinberg a me-
diados de los años sesenta, es actualmente el modelo teórico que describe las inter-
acciones electromagnéticas, débiles y fuertes de las partículas elementales conocidas.
La descripción se implementa matemáticamente mediante una teoría de gauge basada
en el grupo de simetría SU(3)C ⌦ SU(2)L ⌦ U(1)Y bajo el cual el lagrangiano queda
invariante. Esta simetría se rompe espontáneamente en SU(3)C ⌦U(1)em a través del
mecanismo de Higgs. El contenido en partículas del SM puede dividirse en fermiones
de materia (quarks y leptones), bosones de gauge que transportan la fuerza y el bosón
de Higgs.
La física del sabor ha desempeñado un papel crucial en el desarrollo del SM, que
se ha demostrado complementaria a las búsquedas directas para detectar nuevas
partículas. El concepto de sabor es esencialmente la existencia de tres réplicas de
cada fermión elemental. Podemos rastrear el origen del concepto a principios de
1947, cuando el experimento de Conversi, Pancini y Piccioni mostró que los muones
µ de los rayos cósmicos no eran los mediadores de la fuerza nuclear, los piones predi-
chos por Yukawa, sino, más bien, partículas parecidas a electrones pero 200 veces
más pesadas. Ya en ese momento se propuso buscar la desintegración del muón a un
electrón más un fotón µ ! eg.
En 1955, el límite superior de esta tasa de desintegración (BR) se estableció en 2 ⇥
10�5. Esto condujo a la hipótesis de “los dos neutrinos" en la cual dos neutrinos difer-
entes aparecen en la desintegración µ ! enµne, de forma que, dos números cuánticos
adicionales se conservan: los números leptónicos Lµ y Le. En consecuencia, la desin-
tegración µ ! eg debería estar prohibida, ya que, viola el número leptónico.
En 1947 también se descubrió el kaon, la primera partícula que contenía un quark ex-
traño, aunque la existencia del quark extraño en sí (y la de los quarks up y down) solo
se postularía en 1964 por Murray Gell-Mann y George Zweig. En el Modelo de Quarks
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sugirieron que los hadrones no son partículas elementales y, por tanto, pueden clasi-
ficarse como estados ligados de sus quark y antiquarks de valencia up u, down d y
extraños s.
A partir del mecanismo Glashow-Iliopoulos-Maiani (GIM) , que explica la pequeñez
de la tasa de desintegración KL ! 2µ, el quark encanto c se predijo con éxito en 1970,
antes de su descubrimiento en 1974 en Stanford Linear Accelerator Centro (SLAC) ,
contemporáneo al Brookhaven National Laboratory (BNL). La segunda generación
de cada familia de partículas, µ, nµ, s y c, se había completado.
La observación inesperada de la violación de CP en la desintegración de los kaones
neutros estableció la hipótesis de una tercera generación de quarks, que ganó fuerza
después del descubrimiento en 1974-77 en SLAC de un tercer leptón, el t. Se necesi-
taron unos años más para obtener una imagen completa, pues el quark b, inferior, no
hizo su aparición hasta 1977 en Fermilab, mientras que, el quark superior t lo hizo en
1995. Notablemente su pesadez ya se predijo a partir del tamaño de la violación de
CP en los kaones neutros y de las oscilaciones de mesones B neutros.
Los bosones de gauge W, Z se identificaron a principios de la década de 1980 en el
Super Proton Synchrotron (SPS). Finalmente, el nt apareció en 2000. La última pieza
faltante del SM, el bosón de Higgs H, fue descubierta por los experimentos ATLAS y
CMS en el Gran Colisionador de Hadrones (LHC) en 2012.
Hoy estamos acostumbrados a incluir la existencia de las tres generaciones en el SM:
(e, µ, t), (u, c, t) y (d, s, b), donde los únicos términos que distinguen entre las difer-
entes generaciones son las interacciones Yukawa de los fermiones con el Higgs. Se
aprecia una gran redundancia innecesaria en el SM, pues la mayor parte de su con-
tenido en partículas está formado por tres copias pesadas de las partículas más lig-
eras e, u y d.
En los siguiente años, el rol de la física del sabor derivó del descubrimiento de los
componentes básicos del SM a la medición de sus parámetros. De hecho, la mayoría
de ellos están relacionados con el sector del sabor y, por lo tanto, pueden determi-
narse en las descomposiciones que lo violan (FV). Con el desarrollo experimental
y teórico, su determinación ha alcanzado una precisión impresionante y los proce-
sos FV ahora se utilizan para imponer restricciones a la física de los Modelos más
allá del Estándar (BSM). Las escalas de muy alta energía se pueden explorar de esta
manera, superando notablemente las alcanzadas através de búsquedas directas de
nuevas partículas en el LHC.
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Motivación

Es comúmente aceptado el hecho de que el SM no es una teoría final, sino más bien
una teoría efectiva válida hasta una escala de energía LNP ( de, al menos, varios TeV)
donde entran en juego Nueva Física (NP) y grados dinámicos de libertad adicionales.
De hecho, el SM está intrínsecamente incompleto porque no incluye la cuarta fuerza,
la gravedad y no proporciona la esperada unificación de las interacciones fuertes y
electrodébil. También deja abiertas muchas preguntas fundamentales, algunas rela-
cionadas con las observaciones cosmológicas: el origen de la materia oscura y la
energía oscura, que juntas llenan el 95 % de nuestro Universo, y asimetría bariónica
del Universo (BAU).
El SM (mínimamente extendido para incluir masas de neutrinos) tampoco es satisfac-
torio como teoría de partículas porque carece de una explicación para el origen de sus
estructuras de sabor, masas y mezclas. Aunque su capacidad de predicción depende
de ellos, el SM no nos da ninguna pista sobre el valor de ninguno de los parámet-
ros de sabor y, por ello, pueden considerarse como entradas externas necesarias para
el modelo. Esto se conoce con el nombre de puzzle de sabor que, en última instan-
cia, se traduce como nuestra total ignorancia acerca del origen de los acoplamientos
Yukawa de los fermiones al Higgs.
La masa de Higgs en sí misma es inexplicablemente ligera considerando que recibe
enormes correcciones cuánticas de los efectos virtuales de cada partícula u otros fenó-
menos que se acoplan al campo de Higgs. ¿Qué protege a la masa del bosón de Higgs
de correcciones arbitrariamente grandes de la física a gran escala? Esto se conoce
como el problema de la jerarquía electrodebil (EW).
De alguna manera es frustrante que, a pesar de haber sido ampliamente probado
durante los últimos 50 años, todavía no hay ningún resultado experimental bien es-
tablecido que contradiga las predicciones del SM. La única excepción a este éxito es
el descubrimiento de oscilaciones de neutrinos que demuestran que los neutrinos
son masivos, a la vez que, se mezclan sus sabores. Si FV está bien establecida en el
sector de quark, el lagrangiano del SM parece conservar explícitamente el sabor de
los leptones cargados para cualquier interacción dada. Esta característica no se basa
en ningún principio de gauge, sino que, es una simetría accidental del modelo que
surge del minimalismo de la construcción, específicamente de la hipótesis de que los
neutrinos no tienen masa, como se creía en ese momento. La observación de las os-
cilaciones de neutrinos demuestra que hay una violación del sabor leptónico (LFV)
en el sector leptónico neutro.



xxii Resumen de la tesis

Sorprendentemente, no existe aún ninguna evidencia similar que indique la violación
del sabor de los leptones cargados (CLFV), a pesar de su incesante búsqueda a través
de diferentes canales, tanto en experimentos especializados como en otros con un
propósito más general. La búsqueda de CLFV, como la desintegración radiativa de
leptones ` ! `0g o la desintegración a tres cuerpos ` ! 3 `0, son muy prometedoras
ya que, en el SM , todos los efectos de violación del sabor en el sector de leptones car-
gados son proporcionales a las diminutas masas de los neutrinos. Las tasas de desin-
tegración de los leptones pesados con carga en aquellos más ligeros están suprimidos
por la relación m2

n/M2
W y, por lo tanto, son demasiado pequeñas para ser medibles en

cualquier experimento imaginable. De hecho, las masas tan absurdamente pequeñas
de los neutrinos hacen que la tasa de desintegración del proceso µ ! eg esté por
debajo de 10�54 en el SM. Esto a su vez significa que cualquier observación de LFV
probaría la existencia de la física BSM. Además, los procesos CLFV tienen la ventaja
de ser teóricamente limpios porque son insensibles a los efectos de QCD no perturba-
cional que, en cambio, sí afectan a los observables en el sector de quark. La situación
experimental actual y las perspectivas para la búsqueda de CLFV son ambiciosas : se
espera alcanzar una BR (µ ! eg) < 6 ⇥ 10�14 y una tasa de conversión de muones
en núcleos CR (µ � e)N < 10�17 en un futuro cercano. Por ello, es importante estu-
diar el efecto de los modelos NP en estos observables para restringir su espacio de
parámetros y dar predicciones comprobables.
Entre todas las ideas propuestas para abordar el puzzle del sabor, el uso de simetrías
de sabor, que va desde el mecanismo más simple de Froggatt Nielsen (FN) hasta las
simetrías discretas no Abelianas, sigue siendo la herramienta más popular para los
creadores de modelos. Esta posibilidad ha sido especialmente explorada en el sector
de leptones. Una plétora de opciones posibles para la simetría del sabor y su ruptura
son consistentes con los datos de sabor existentes. Desafortunadamente, los modelos
de sabor tienen la desventaja de ser poco predictivos.
Mediante asignaciones adecuadas de cargos de sabor a los diferentes campos, el
tamaño de los acoplamientos de Yukawa depende sólo del parámetro adimensional
e = hfi/M, donde hfi es el valor esperado de vacío (VEV) del un campo escalar
complejo f, llamado flavon, responsable de la ruptura de la simetría del sabor. Lo
que implica que la dinámica del sabor puede ocurrir igualmente en la escala EW y
en la escala de Planck. De hecho, según la orientación teórica, las simetrías de sabor
a gran escala son más atractivas. El inconveniente de esta perspectiva es que probar
teorías de tan alta escala, mediante búsquedas directas de flavones y mediadores FN
en colisionadores, sería muy difícil si no imposible.
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Un problema bien conocido a nivel de SM es que no podemos reconstruir comple-
tamente los parámetros de sabor fundamentales a partir de las matrices Yukawa del
SM. En este sentido, los modelos NP, que predicen nuevas interacciones de sabor, son
probablemente la única oportunidad que tenemos para poder resolver el puzzle de
sabor. La Supersimetría es el ejemplo perfecto de esto.
La Supersimetría (SUSY) ha sido objeto de estudio intenso durante décadas y sigue
siendo la opción más justificada y convincente para NP. La encarnación más sim-
ple de SUSY, el Modelo Estándar Supersimétrico Mínimo (MSSM), tiene muchas
virtudes: un posible candidato a la materia oscura, nuevas fuentes de violación de
CP, un mecanismo para estabilizar la masa del Higgs, la posibilidad de unificar las
fuerzas fundamentales. Una transformación supersimétrica convierte un estado fer-
miónico en otro bosónico y viceversa. Un supermultiplete es una representación
irreducible del álgebra de SUSY y, por lo tanto, debe contener un número igual de
estados fermiónicos y bosónicos, supercompañeros entre sí con masas exactamente
iguales. Todos los supercompañeros del SM son partículas nuevas, por lo que SUSY
no puede permanecer exacta a la escala electrodébil, pues todos los supercompañeros
ya habrían sido descubiertos.
Un modelo realista debe contener la ruptura de SUSY. Sin embargo, el mecanismo
preciso a través del cual esta ocurre no es obvio y, por ello, es útil parametrizar nues-
tra ignorancia introduciendo soft terms efectivos en el lagrangiano. El espectro de
masas de las superpartículas y, en consecuencia, la mayoría de las implicaciones
fenomenológicas dependen de los soft terms. En principio, no tenemos informa-
ción sobre su estructura y, si asumimos entradas genéricas O(1), los observables FV
reciben contribuciones demasiado grandes en contradicción con los valores experi-
mentales. Esto se conoce como el problema de sabor supersimétrico.
La no observación de los supercompañeros predichos durante la fase 1 y 2 de toma de
datos del LHC comienza a restringir una formulación tan mínima de supersimetría,
apuntando a una escala de masa para las nuevas partículas más pesada de lo que
se esperaba inicialmente. En el escenario donde SUSY se da, pero que queda fuera
del alcance de los colisionadores actuales, podrian pasar décadas hasta conseguir la
energía necesaria para producir los supercompañeros de forma directa. Buscar for-
mas alternativas de sondear o restringir el gran espacio de parámetros disponible en
el MSSM es urgente. Estudios a bajas energías con alta precisión, como perturba-
ciones a los procesos de LFV, pueden ser la clave para encontrar los efectos de esas
particulas masivas.
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Metodología y principales resultados por artículo

La física del sabor y la origen de las jerarquías de masas podrían dirigirnos hacia
el encuetro de nueva física. En esta tesis consideramos que el problema del sabor de
SUSY no puede separarse del problema del sabor del SM. De hecho, es natural pensar
que el mismo mecanismo que genera las estructuras de sabor en los acoplamientos
Yukawa también es responsable de la estructura en los términos de SUSY. En los
artículos 1 - 3 mostramos explícitamente que las teorías SUSY complementadas por
una simetría de sabor son modelos extremadamente predictivos.

• En Artículo 1: Analizamos las estructuras de sabor en teorías supersimétricas
donde el MSSM surge como una teoría efectiva a baja energía a partir de una
simetría de sabor rota a escalas más altas. Estudié en detalle tres modelos de
sabor representativos con grupos de simetría discreta G` = D(27), A4, y S3

y proporcioné una descripción completa en un contexto supersimétrico, que
faltaba en la literatura. Esto demostró que los diferentes modelos de sabor se
pueden distinguir sistemáticamente a través de las diferentes estructuras de los
términos de ruptura suave SUSY, específicamente mediante los acoplamientos
trilineales y las matrices de masas supersimétricas. Las matrices deben obten-
erse a la escala EW por medio de las ecuaciones del grupo de renormalización
del MSSM (RGE), y compararse con los observables de sabor más relevantes.
Realicé los cálculos numéricos correspondientes, junto a los asociados al espec-
tro de masas a baja energía, a través del paquete Supersymmetric Phenomenol-
ogy (SPheno), junto con el paquete SARAH de Mathematica para generar el
código fuente, oportunamente automatizado a través de scripts en Bash.
Los resultados demuestran que la combinación de límites sobre los procesos
LFV, especialmente µ ! eg, puede restringir significativamente el espacio de
parámetros SUSY mucho más allá del alcance de la actualización a alta lumi-
nosidad del LHC. Los procesos de FV limitan los modelos de sabor de difer-
entes maneras y conducen a diferencias cualitativas e, incluso, cuantitativas
que el espacio de parámetros y, en algunos casos, permite distinguir entre los
modelos de sabor que, de otro modo, serían difíciles de discriminar al aumentar
únicamente la precisión de las masas de fermiones y los parámetros de mezcla.

• En Artículo 2: Sobre la base de estos resultados prometedores, apliqué este tipo
de análisis a un modelo reciente basado en una simetría de sabor D(27) con una
atractiva estructura de las matrices de masa de los fermiones que involucra un
texture zero universal para todos ellos. Consideramos que este es un modelo
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de sabor particularmente interesante, ya que, además, es compatible con una
unificación gauge total subyacente basada en el grupo SO(10) y que hace varias
postdicciones importantes como, por ejemplo, la relación Gatto-Sartori-Tonin
entre el ángulo de Cabibbo y las relaciones de masa de quark. Además, predice
el esquema de mezcla tribimaximal (TBM) fenomenológicamente exitoso para
los leptones. Los grandes efectos de FV, incluidos los observables de CP en el
sector kaon, restringen el espacio de parámetros del modelo, lo que permitirá
comprobarlo mediante búsquedas de violación de sabor en la próxima década.
El estudio indica que para los valores típicos preferidos por el mecanismo de
alineación del vacío del modelo, las limitaciones se vuelven particularmente
severas, lo que implica que las suposiciones como las masas de mensajeros uni-
versales son demasiado simples y deben abandonarse.

En los últimos años, diferentes experimentos han acumulado una gran cantidad de
datos experimentales sobre parámetros de neutrinos que nos han permitido derivar
con una precisión razonable la matriz de mezcla Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) y las diferencias entre las masas de los neutrinos. Aún así, la determinación
de la escala absoluta de masa de los neutrinos y la fase de Dirac CP aún no se ha
llevado a cabo. Futuros experimentos arrojarán luz sobre estas cantidades. Prob-
ablemente el problema más urgente de la física de los neutrinos esté relacionado
con la naturaleza intrínseca de los neutrinos. Como partículas masivas sin carga,
pueden ser Dirac (con partículas y antipartículas siendo objetos diferentes) o Majo-
rana (siendo las partículas y antipartículas las mismas).
Si los neutrinos son partículas de Majorana, las masas pequeñas se describen bien a
través de un operador de Weinberg en el SM. Pero existen diferentes posibilidades
para generar este operador efectivo a partir de una teoría más fundamental a energías
más altas, como el seesaw tipo I, tipo II o tipo III, modelos de masa radiativa, etc. El
mecanismo del seesaw, en todas sus realizaciones, ofrece una explicación natural de
por qué los neutrinos son mucho más ligeros que los otros fermiones y aclara por qué
los neutrinos de Majorana han sido tan populares.
Sin embargo, está claro que tan solo la medición de las masas de los neutrinos y sus
ángulos de mezcla no será suficiente para discriminar entre los diferentes mecan-
ismos ni inferir los acoplamientos responsables para ellos. Por ejemplo, para un
mecanismo de seesaw de tipo I, los acoplamientos Yukawa de neutrinos y la masa
Majorana de neutrinos dextrógiros se combinan para generar el operador Weinberg,
pero el SM no proporciona información para poder separarlos a partir de los datos
experimentales disponibles. Incluso una determinación completa de la matriz de
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masa de los neutrinos no será suficiente para reconstruir el mecanismo responsable
y descubrir el origen de los patrones de sabor observados.

• En Artículo 3: Generalizando los análisis de los Artículo 1 y 2, analizamos las
consecuencias fenomenológicas de incluir una simetría de sabor basada en los
grupos A5 y CP en un marco supersimétrico. Nos concentramos en el sector
leptónico donde se supone que se conservan dos simetrías residuales diferentes
para leptones cargados y neutros, en primera aproximación.
Investigué todas las realizaciones posibles para generar masas de neutrinos a
tree-level y calculé el conjunto mínimo de operadores efectivos pertenecientes al
potencial Kähler y las masas soft para los campos LH y RH. Sin supuestos adi-
cionales sobre la teoría UV, los operadores propuestos están siempre presentes
y no pueden evitarse mediante la introducción de simetrías adicionales.
Para las simetrías residuales consideradas aquí, hemos encontrado que la pres-
encia de mediadores de LH es especialmente relevante y que los flavones aso-
ciados con masas de neutrinos también inducen violación del sabor en el sector
de leptones cargados. Esto permite un análisis combinado de observables de
neutrinos y procesos LFV.
Escaneé el espacio de parámetros para cada caso e implementé los códigos para
una automatización de SPheno que permitió un análisis combinado de algunos
observables de neutrinos como las masas efectivas mbb y mb, junto con los pro-
cesos LFV. De hecho, el origen común de las masas de los neutrinos y la vi-
olación del sabor de los leptones cargados induce predicciones comprobables
que relacionan el espectro de los neutrinos, la mezcla de leptones y los procesos
de LFV. Se encontró una buena complementariedad entre los dos sectores.

Aunque el SM incluye todos los ingredientes necesarios para generar el BAU dinámi-
camente, la asimetría obtenida en el SM es demasiado pequeña por órdenes de mag-
nitud. Sin embargo, es bien sabido que extender el SM con varios neutrinos dextró-
giros (RH) pesados puede producir una BAU a través del mecanismo de leptogénesis.
Las desintegraciones que violan el número leptónico de los neutrinos RH, algunas
de las cuales se producen fuera de equilibrio, producen una asimetría de leptones.
Esto se convierte parcialmente en una asimetría bariónica por las interacciones de
esfalerones, que son eficientes por encima de la escala electrodébil. Los neutrinos RH
pesados proporcionan simultáneamente una respuesta natural a la pequeñez de las
masas de neutrinos levógiros (LH) a través del mecanismo de seesaw.
Es interesante observar que, dado que los neutrinos RH son singletes del SM, leptogé-
nesis vincula la resolución de la BAU a sus acoplamientos Yukawa y, por lo tanto, se
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conecta con el rompecabezas del sabor. Si el seesaw es, en efecto, el origen de las
masas de los neutrinos ligeros entonces, cualitativamente, leptogénesis es inevitable.
Determinar si reproduce con precisión el BAU observado se convierte en una pre-
gunta cuantitativa directamente ligada a un espectro dado de neutrinos RH y sus
interacciones con las partículas del SM.
Sorprendentemente, el modelo original (y posiblemente el más simple) de leptogé-
nesis requiere una escala de neutrinos RH M > 109 GeV, que se corresponde es-
trechamente con la escala natural del seesaw. Un modelo completo debería dar
cuenta de la BAU observada, lo cual proporciona restricciones adicionales para sus
parámetros. En particular, como veremos en esta tesis, la coincidencia con la BAU ob-
servada nos permite restringir los parámetros, por lo demás desconocidos, del sector
de neutrinos RH.

• En Artículo 4: Investigamos la posibilidad de una leptogénesis viable en el
modelo D(27) introducido en el Artículo 2. Resolví numéricamente las ecua-
ciones de Boltzmann con sabor para las asimetrías de los leptones, teniendo en
cuenta el desacoplamiento gradual de los neutrinos dextrógiros N1 y N2.
El escenario dominado por N1 resultó ser exitoso y la opción más natural para
el modelo, con M1 2 [109, 1012] GeV, que restringe el espacio de parámetros del
modelo subyacente y produce límites inferiores en los respectivos acoplamien-
tos Yukawa. Leptogénesis es también posible en el escenario dominado por N2,
con la asimetría en el sabor de los electrones protegida de la dilución generada
por N1 a través del texture zero.
Sin embargo, esto ocurre en una región de espacio de parámetros que tiene una
jerarquía de masa demasiado fuerte , con M2 relativamente cerca de M3, lo cual
no puede justificarse mediante el modelo D(27).

Los últimos años han sido testigos del surgimiento de varios indicios que apuntan
hacia fenómenos no estándar a partir de observables de precisión que involucran sa-
bores de leptones. LHCb y factorías de B han anunciado señales que muestran una
desviación en la universalidad de los acoplamientos leptónicos pronosticados por el
SM en desintegraciones semileptónicas de estos mesones, tanto en procesos neutros
como cargados. Si los datos futuros lo confirman, estas discrepancias ciertamente
requerirían un nuevo acoplamiento físico a baja escala de diferente intensidad para
diferentes familias de leptones.
Otra discrepancia que apuntaría a una conclusión análoga está relacionada con el
momento magnético anómalo del muón, (g� 2)µ. Las mediciones experimentales de
(g � 2)µ han estado en tensión con los cálculos teóricos cada vez más precisos dentro
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del SM durante aproximadamente 20 años. La discrepancia actualmente asciende a
alrededor de 3.5s. La situación puede aclararse, con el caso de nueva física posible-
mente reforzado, a través de los próximos resultados del nuevo experimento Muon
g-2 en FNAL. Curiosamente, otra tensión de 2.4s entre la teoría y los experimentos
también ha aparecido recientemente para el electrón. El (g � 2)e se ha determinado
tanto experimental como teóricamente con una precisión tan sobresaliente, que la co-
incidencia de la predicción SM con la medición se ha utilizado durante muchos años
como la forma más precisa de evaluar la constante de estructura fina a. Sin embargo,
en presencia de una medida alternativa y suficientemente precisa de a, se puede em-
plear (g � 2)e como prueba para testear la presencia de nueva física también.
Para un modelo genérico, una contribución considerable del momento magnético
anómalo, según lo requerido por las discrepancias observadas, está intrínsecamente
relacionada con los procesos LFV y la generación de masa. Cómo suprimir estas con-
tribuciones es un tema que a menudo no se aborda explícitamente en la literatura.

• En Artículo 5: Proponemos un mecanismo original en el que la realización
de las correcciones al (g � 2)` del muón y del electrón se relacionan manifi-
estamente con la generación de sus masas a través de una simetría de sabor.
Calculando los diagramas de Feynman correspondientes y estudiando el espa-
cio de parámetros, analicé si una corrección de flavones radiativos a la masa
de fermiones puede dar una contribución considerable al momento magnético
anómalo. La respuesta es positiva si introducimos una amplificación quiral a
partir de un acoplamiento cuántico no trivial en el potencial escalar.
La masa radiativa recibe el mismo realce y contribuye significativamente a la
generación de masa; esto establece un límite en el tamaño de la contribución
g � 2. Los diagramas FN y radiativo, con signos opuestos, contribuyen a las
masas de electrones y muones mediante una cancelación que acomoda la difer-
encia experimental de signo entre las discrepancias de momento magnético de
electrones y muones.
Demostramos que las anomalías presentes para muones y electrones pueden
explicarse simultáneamente en una vasta región del espacio de parámetros con
masas para los mediadores vectores tan grandes como Mc 2 [0.6, 2.5] TeV
que podrían conducir a señales observables en el LHC o en futuros colision-
adores de leptones. Para mostrar explícitamente esto, construí un modelo sen-
cillo ilustrativo basado en U(1)FN. La aplicación a un modelo completo, in-
cluyendo los sectores de los quarks y neutrinos y el estudio de sus consecuen-
cias fenomenológicas en la física del sabor se deja para trabajos futuros.
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Introduction

I.1 Overview

Research Context

The Standard Model (SM), the model proposed by Glashow, Salam, and Weinberg
in the middle sixties, is to present-day the theoretical model describing the electro-
magnetic, weak and strong interactions of the known elementary particles. The de-
scription is mathematically implemented by a gauge theory based on the SU(3)C ⌦
SU(2)L ⌦ U(1)Y symmetry group under which the Lagrangian is left invariant. This
symmetry is spontaneously broken down to SU(3)C ⌦ U(1)em via the Higgs mecha-
nism. The particle content of the SM can be divided into matter fermions (quarks and
leptons), force-carrying gauge bosons and the Higgs boson.
Flavor physics has played a central role in the development of the SM, proven com-
plementary to direct searches for sniffing out new particles. The concept of flavor is
essentially the existence of three replicas of each elementary fermion.
We can track down the origin of the concept at the beginning of 1947 when the ex-
periment of Conversi, Pancini, and Piccioni showed that the muons µ from cosmic
rays were not the mediators of the nuclear force, the pions predicted by Yukawa, but
rather electron-like particles although with 200 times its mass. At the time, the op-
portunity to search for the decay of the muon into an electron plus a photon, µ ! eg,
was already put forward.
In 1955 the upper limit on this branching ratio (BR) was set to 2 ⇥ 10�5. This led to
the two neutrino hypothesis in which two different neutrinos appear in the decay
µ ! enµne in order to respect the conservation of two additional quantum numbers:
the lepton numbers Lµ and Le. Accordingly, the decay µ ! eg must be forbidden as it
violates the lepton numbers Li.
In 1947 the kaon was also discovered, the first particle containing a strange quark.
However, the existence of the strange quark (and that of the up and down quarks)
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was only postulated in 1964 by Gell-Mann and Zweig in the Quark Model. They sug-
gested that hadrons are not elementary particles, and can be classified as bound states
of their valence up u, down d, and strange s quarks and antiquarks.
From the Glashow-Iliopoulos-Maiani (GIM) mechanism to explain the smallness of
the KL ! 2µ decay rate, the charm quark c was successfully predicted in 1970, before
its discovery in 1974 at Stanford Linear Accelerator Center (SLAC) and contempo-
rary at the Brookhaven National Laboratory (BNL). The second generation of each
family of particles, µ, nµ, s and c, was complete.
The observation of CP violation in neutral kaons decays set forth the hypothesis of
a third generation of quarks, which gained strength after the discovery in 1974-77 at
SLAC of a third lepton, the t. It took a few more years to get the full picture, the
bottom quark b made its appearance in 1977 at Fermilab and the top quark t in 1995,
remarkably the size of CP violation in the neutral kaons and of the neutral B meson
oscillations predicted its heaviness.
The gauge bosons W, Z were identified in the early 1980s at the Super Proton Syn-
chrotron (SPS). Finally, the nt appeared in 2000. The last lacking piece of the SM, the
Higgs boson H, was discovered in 2012 by the ATLAS and CMS experiments at the
Large Hadron Collider (LHC).
Today we are used to including the existence of the three generations in the SM:
(e, µ, t), (u, c, t) and (d, s, b), where the only terms that distinguish between different
generations are the Yukawa interactions of the fermions with the Higgs. We see that
there is much unnecessary redundancy in the SM, three heavy copies of the lighter e,
u and d particles made up most of its particle content.
From the discovery of the building blocks of the SM, afterward the role of flavor
physics shifted to the measurement of its parameters. Indeed, the majority of the
SM parameters are related to the flavor sector and can thus be determined in flavor
violating (FV) decays. With increasing experimental and theoretical accuracy, their
determination has by now reached an impressive precision, and FV processes are
now employed to constrain physics Beyond the Standard Model (BSM). Very high
energy scales can be probed in this way, well beyond the reach of direct searches for
new particles at LHC.

Motivation

It is commonly accepted that the SM is not a final theory but rather an effective theory
valid up to an energy scale LNP (at least of several TeVs) where New Physics (NP)
enters, and extra dynamic degrees of freedom come into play. As a matter of fact, the
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SM is intrinsically incomplete because it does not include the fourth strength, gravity,
and does not provide a unification of the strong and electroweak interactions. It also
leaves open many fundamental questions, some related to cosmology observations:
the origin of Dark Matter and Dark Energy, which together fill 95% of our Universe,
and the Baryon Asymmetry of the Universe (BAU).
The SM (minimally extended to include neutrino masses) is also unsatisfactory as a
particle theory because it lacks an explanation for the origin of its flavor structures,
masses, and mixings. Although its predicting ability relies on them, the SM gives
no clue about the value of any of the flavor parameters, and they can be regarded
as necessary external inputs of the model. This goes under the name of flavor puzzle,
which ultimately is our complete ignorance of the origin or the Yukawa couplings of
the fermions to the Higgs.
The Higgs mass itself is inexplicably light, considering that it receives enormous
quantum corrections from the virtual effects of every particle or other phenomena
that couple to the Higgs field. What protects the Higgs boson mass from arbitrarily
large corrections from physics at a high scale? This is known as the electroweak (EW)
hierarchy problem.
It is somehow frustrating that, despite being extensively tested during the last 50
years, there is yet no established experimental result that contradicts the SM predic-
tions. The only exception to this success was the discovery of neutrino oscillations,
which proved that neutrinos are massive as they undergo flavor mixing. While FV in
the quark sector is established, the SM Lagrangian explicitly conserves lepton flavor
in any given interaction. This feature does not arise from a gauge principle. It is an
accidental symmetry of the SM, which arises from the minimality of the construc-
tion, specifically from the hypothesis that neutrinos were massless, as observed at
that time. The observation of neutrino oscillations demonstrates that there is a lep-
ton flavor violation (LFV) in the leptonic neutral sector.
Although the search for such a violation has been pursued in a host of channels both
at dedicated and general-purpose experiments, surprisingly enough, there is yet no
evidence of Lepton flavor Violation in processes involving charged leptons (CLFV).
The search for CLFV, such as the radiative lepton decays ` ! `0g and the three-body
charged lepton decays ` ! 3 `0, is very promising, since in the SM all flavor violating
effects in the charged lepton sector are proportional to the tiny neutrino masses. The
ratio m2

n/M2
W suppresses the decay rates of heavy charged leptons into lighter ones,

which are by far too small to be measurable in any foreseeable experiment: µ ! eg

is limited to be below 10�54 in the SM. This, in turn, implies that any observation of
LFV would prove the existence of BSM physics. Besides, LFV processes are theoret-
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ically clean because they are not affected by the non-perturbative QCD effects that
affect the observables in the quark sector. The current experimental situation and
prospects for the search for CLFV are ambitious. We expect BR(µ ! eg) < 6 ⇥ 10�14

and muon conversion into Nuclei to reach CR(µ � e)N < 10�17 in the near future.
Therefore, it is necessary to study the effect of NP models on these observables to
constrain their parameter space and give testable predictions.
Among the proposed ideas to tackle the flavor puzzle, the use of flavor symmetries,
from the simplest Froggatt Nielsen (FN) mechanism down to non-Abelian discrete
symmetries, remains the most popular tool for model builders. This avenue has
been especially explored in the lepton sector. One well-known problem of the SM
is that we cannot fully reconstruct the fundamental flavor parameters of the SM La-
grangian, the Yukawa matrices. In this respect, NP models that predict new flavor
interactions are probably the only opportunity to sort out the flavor puzzle. Super-
symmetry is a perfect example of this.
Supersymmetry (SUSY) has been at the center of extensive research for decades and
is still the most motivated and compelling option for NP. The simplest incarnation of
SUSY, the Minimal Supersymmetric Standard Model (MSSM), has many virtues: a
possible dark matter candidate, new sources of CP violation, a mechanism for stabi-
lizing the mass of the Higgs, the possibility for unification of the fundamental forces.
A SUSY transformation turns a fermionic state into a bosonic one and vice versa.
A supermultiplet is an irreducible representation of the SUSY algebra and therefore,
must contain an equal number of fermionic and bosonic states, superpartners of each
other with exact equal masses. All of the superpartners of the SM are new particles.
Thus SUSY can not remain unbroken at the electroweak scale, or we would have al-
ready discovered all the superpartners.
A realistic model must contain SUSY breaking. However, the precise mechanism
through which the breaking occurs is not apparent, and it is useful to parametrize
our ignorance introducing effective soft terms in the Lagrangian. The mass spectrum
of the superparticles and, consequently, most of the phenomenological implications
depend on the soft terms. In principle, we have no information on their structure, and
if we assume generic O(1) entries, FV observables would receive too large contribu-
tions, this is also known as the supersymmetric flavor problem. The non-observance
by the LHC in Runs 1 and 2 of any of its predicted superpartners constrains such a
minimal realization of supersymmetry, pointing to a mass scale of the new predicted
particles heavier than naively expected. In the scenario where SUSY is indeed real-
ized by nature, but out of reach of current colliders, we should look for further ways
to (dis)probe or constrain the large parameter space available in the MSSM.
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Methodology and main results per article

In this thesis we take the point of view that the SUSY flavor problem can not be
detached from the SM flavor problem. Indeed, it is natural to think that the same
mechanism generating the flavor structures in the Yukawa couplings is also respon-
sible for the structure in the SUSY soft-breaking terms. In Article 1-3, we explicitly
show that SUSY theories supplemented by a flavor symmetry are extremely predic-
tive models.

• In Article 1: We analyzed the flavor structures in supersymmetric theories
where the MSSM arises as a low energy effective theory from a flavor sym-
metry broken at higher scales. I studied in detail three exemplifying flavor
models with discrete symmetry groups G` = D(27), A4, and S3 and provided
a complete description in a supersymmetric context, which was missing in the
literature. This showed that different flavor models can be distinguished sys-
tematically through the different structures of the SUSY soft-breaking terms,
specifically the trilinear couplings and supersymmetric mass matrices.
The matrices must be evolved to the EW scale by means of the MSSM renor-
malization group equations (RGE), and compared to the most relevant flavor
observables. I performed the numerical calculations for the running, spectrum
and low energy processes through the Supersymmetric Phenomenology pack-
age (SPheno), together with the SARAH Mathematica package to generate the
source code, opportunely automatized through Bash scripts.
The results prove that the combination of bounds over LFV processes, espe-
cially µ ! eg, can significantly restrict the SUSY parameter space far beyond
the reach of the LHC high-luminosity upgrade. FV processes constrain fla-
vor models in different ways and lead to qualitative and even quantitative dif-
ferences that are able to constrain the parameter space of flavor models and
even distinguish flavor models that would otherwise be hard to discriminate
by solely increasing the precision of fermion masses and mixing parameters.

• In Article 2: Building on these promising results, I applied this type of anal-
ysis to a recent model based on a D(27) flavor symmetry with a nice unified
texture zero structure for the fermion mass matrices. We considered this an
appealing flavor model as it is consistent with an underlying SO(10) grand
unification and makes several important postdictions, for example the Gatto-
Sartori-Tonin relation between the Cabibbo angle and the quark mass ratios.
Additionally it predicts the phenomenologically successful tribimaximal (TBM)
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mixing scheme for the leptons. The large FV effects, including CP-observables
in the kaon sector, constrain the parameter space of the model, allowing it to be
(dis)proven by flavor violation searches in the next decade.

In recent years, different experiments have accumulated a wealth of experimental
data on neutrino parameters that have allowed us to derive with reasonable pre-
cision the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix and the neu-
trino mass differences. Still, the determination of the absolute neutrino mass scale
and the Dirac CP phase remain to be completed. Next to future experiments will
shed light on these quantities.
If neutrinos are Majorana particles, the smallness of their masses is well described by
adding a Weinberg operator to the Standard Model (SM). There are different possi-
bilities to generate this effective operator from a more fundamental theory at higher
energies, like type I, type II, or type III Seesaw, radiative mass models, etc. The mea-
surement of neutrino masses and mixing angles alone will not be enough to discrim-
inate among these alternative mechanisms and to infer the couplings responsible for
them. For instance, for a type-I Seesaw mechanism, both the neutrino Yukawa cou-
plings and the right-handed neutrino Majorana mass combine to generate the Wein-
berg operator. However, the SM does not provide information to disentangle them
from the available experimental data. Even a full determination of the neutrino mass
matrix will not be enough to fix the mechanism responsible for it and uncover the
origin of the observed flavor patterns.

• In Article 3: Generalizing the analysis of Article 1 and 2, we analyzed the phe-
nomenological consequences of embedding a flavor symmetry based on the
groups A5 and CP in a supersymmetric framework. We concentrate on the
leptonic sector where two different residual symmetries are assumed to be con-
served at leading order for charged and neutral leptons.
I investigated all the possible realizations to generate neutrino masses at tree
level and computed the minimal set of effective operators entering the Kähler
potential and soft masses for LH and RH fields. I scanned the parameter space
for each case and implemented the codes for an automatization of SPheno that
allowed for a combined analysis of neutrino observables, like the neutrino ef-
fective mass mbb and mb, together with LFV processes. In fact, the common ori-
gin of neutrino masses and flavor violation for charged leptons, induce testable
predictions that relate the neutrino spectrum, lepton mixing and LFV processes.
A nice complementarity between the two sectors has been found.
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It is well-known that extending the SM by several heavy right-handed (RH) neutri-
nos can yield a BAU via leptogenesis. Lepton number-violating decays of the RH
neutrinos, some portion of which occur out of equilibrium, produce a lepton asym-
metry. This is partially converted into a baryon asymmetry by sphaleron interactions,
which are efficient above the electroweak scale. Heavy RH neutrinos simultaneously
provide a natural answer to the smallness of left-handed (LH) neutrino masses via
the Seesaw mechanism.
It is interesting to note that since RH neutrinos are SM singlets, leptogenesis links
the resolution of the BAU with their Yukawa couplings, and thus connects with the
flavor puzzle. If Seesaw is indeed the origin of light neutrino masses, then quali-
tatively leptogenesis is unavoidable. Whether it accurately reproduces the observed
BAU becomes a quantitative question for a given spectrum of RH neutrinos and their
interactions with SM particles.
Remarkably, the original (and arguably simplest) model of leptogenesis requires a
RH neutrino scale M > 109 GeV, which closely corresponds to the natural Seesaw
scale. A complete model ought to account for the observed BAU, which provides
additional constraints on its parameters. In particular, as we shall see in this anal-
ysis, matching to the observed BAU allows us to constrain the otherwise unknown
parameters of the RH neutrino sector.

• In Article 4: We investigated the possibility of viable leptogenesis in the D(27)
model introduced in Article 2. I solved numerically the flavored Boltzmann
equations for the lepton asymmetries, taking into account both N1 and N2

right handed neutrino decays. The N1-dominated scenario is successful and
the most natural option for the model, with M1 2 [109, 1012] GeV, which con-
strains the parameter space of the underlying model and yields lower bounds
on the respective Yukawa couplings. Viable leptogenesis is also possible in the
N2-dominated scenario, with the asymmetry in the electron flavor protected
from N1 washout by the texture zero. However, this occurs in a region of pa-
rameter space which has a stronger mass hierarchy and M2 relatively close to
M3, which is not a natural expectation of the D(27) model.

Recent years have been witnessing the arising of several hints for non-standard phe-
nomena from precision observables involving lepton flavors. Signs of departure from
the universality of leptonic couplings predicted by the SM in semi-leptonic decays of
B mesons have been reported by LHCb and B-factories experiments both in neu-
tral and charged current processes. If confirmed by future data, these discrepancies
would certainly require low-scale new physics coupling with different strength to
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different lepton families.
Another discrepancy that would point to an analogous conclusion is related to the
anomalous magnetic moment of the muon, (g � 2)µ. The experimental measure-
ments of (g � 2)µ have been in tension with the increasingly accurate theoretical
calculations within the SM for about 20 years. The discrepancy currently amounts
to about 3.5s. The situation may be clarified, and the case for new physics possibly
reinforced, by the upcoming results of the new Muon g-2 experiment at FNAL. Inter-
estingly, a 2.4s tension between theory and experiments has been recently reported
also for the electron. The (g � 2)e has been determined both experimentally and the-
oretically to such an outstanding precision, that matching the SM prediction to the
measurement has been used for many years as the most precise way to evaluate the
fine-structure constant a. However, in presence of an alternative and sufficiently pre-
cise measurement of a, one can employ (g � 2)e as a test for new physics too.
For a generic model, a sizeable contribution of the anomalous magnetic moment, as
required by the observed discrepancies, is intrinsically related to LFV processes a to
the mass generation. How to suppress these contributions is an issue that often is not
explicitly addressed in literature.

• In Article 5: We propose an original mechanism in which the realization of the
muon and electron (g � 2)` corrections are manifestly related to the mass gen-
eration through a flavor symmetry. Computing the corresponding Feynman
diagrams and studying the parameter space, I analyzed if a radiative flavon
correction to the fermion mass can give a sizable contribution to the anomalous
magnetic moment. The answer is positive if we introduce a chiral enhancement
from a non-trivial quartic coupling of the scalar potential.
We showed that the muon and electron anomalies can be simultaneously ex-
plained in a vast region of the parameter space with predicted vector-like me-
diators of masses as large as Mc 2 [0.6, 2.5] TeV that could lead to signatures
observable at the LHC or at future lepton colliders. To explicitly show this I
built an explicit U(1)FN toy model.

In the rest of this Introduction I want to address the main topics that the reader will
encounter in this dissertation, pointing out the connection between them and sum-
marizing the necessary nomenclature. Every introduced argument has a large as-
sociated literature and we will always redirect the curious reader to it for further
insights.
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I.2 The Flavor puzzle

Not including neutrinos, nineteen is the number of the free parameters of the SM [1].
Of these, only five are flavor blind: the three gauge couplings (g1, g2, g3), the Higgs
quartic coupling l and the Higgs mass µ2, while fourteen reside in the flavor sec-
tor of the SM. Six quark masses (mu, md, ms, mc, mb, mt), three charged lepton masses
(me, mµ, mt), three quark mixing angles (qq

12, q
q
23, q

q
13), one weak CP violating phase

dq and the strong CP violating parameter q. If we include the neutrino sector, nine
additional parameters have to be introduced: three neutrino masses (m1, m2, m3),
three lepton mixing angles (q`12, q`23, q`13) and, in case of Majorana neutrinos, three
CP violating phases (d`, a, b). The experimental value of these parameters is con-
stantly improving in precision and updated values are collected in Tab. I.1. Nonethe-
less, within the SM these parameters can only be accommodated and not explained.
Looking closely at Tab. I.1 several questions might arise

• Why are there three generations of each SM fermion field, in the same repre-
sentation of the gauge group, differing only by their mass?

• Why do the charged fermion masses exhibit a strong hierarchical structure
ranging some six orders of magnitude, from 10�4 to 102 GeV?

• Why do neutrino masses exhibit a milder hierarchy and are so much smaller
than the charged fermion masses, of the order of meV?

• Why are the mixing angles in the quark sector rather small and hierarchical
while the lepton mixings are democratically larger?

• What is the origin of CP violation?

The lack of fundamental understanding of such issues is often referred to as the flavor
puzzle. All the above questions ultimately derive from our lack of understanding of
the nature of the Yukawa couplings of Standard Model fermions to the Higgs. In-
deed, we have no theoretical guidance to build the Yukawa couplings. If we had to
write a SM Lagrangian ignoring the measured quark and lepton masses and mix-
ings, any flavor structure would be possible and we would naturally expect all the
different entries in the Yukawa matrices to be O(1). This would never agree with the
observed fermion masses and mixing angles.
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Quark sector Lepton sector

Parameter Value Parameter
Value

N.O. I.O.

M
ix

in
gs

sin2 q
q

12 /10�2 5.063±0.032 sin2 q`12 /10�1 3.10+0.13
�0.12 3.10+0.13

�0.12

q
q

12 /� 12.91±0.04 q`12 /� 33.82+0.78
�0.76 33.82+0.78

�0.76

sin2 q
q

23 /10�3 1.764±0.035 sin2 q`23 /10�1 5.63+0.18
�0.24 5.65+0.17

�0.22

q
q

23 /� 2.410±0.037 q`23 /� 48.3+1.1
�1.9 48.6+1.1

�1.5

sin2 q
q

13 /10�5 1.351±0.049 sin2 q`13 /10�2 2.241+0.066
�0.065 2.261+0.067

�0.064

q
q

13 /� 0.209±0.007 q`13 /� 8.61+0.13
�0.13 8.65+0.13

�0.12

dq /� 66.9±2.0 d` /� 221+39
�28 282+23

�25

M
as

se
s

mu /10�3 GeV 2.16+0.49
�0.26 Dm

2
21 /10�5 eV2 7.39+0.21

�0.20 7.39+0.21
�0.20

mc / GeV 1.27±0.02 Dm
2
3j

/10�3 eV2 +2.528+0.029
�0.031 +2.510+0.030

�0.031

mt /102 GeV 1.729±0.004
rj /10�2 +2.965+0.120

�0.111 �2.975+0.111
�0.121

md /10�3 GeV 4.67+0.48
�0.17 me/10�4 GeV 5.109989461±0.000000031

ms /10�2 GeV 9.3+0.11
�0.05 mµ/10�1 GeV 1.056583745±0.000000024

mb / GeV 4.18+0.03
�0.02 mt /GeV 1.77686±0.00012

TABLE I.1: Standard Model flavor parameters last updated on 2018. The CKM mixings
are obtained from the global fit of Ref. [2] (available at the website UTfit). The
neutrino parameters are the latest results for the global fit of Ref. [3] (website:
NuFit). The neutrino parameters are compatible with two mass orderings
m1 < m2 < m3 (NO) or m3 < m1 < m2 (IO). Note that j = 1 for NO and
j = 2 for IO. The analysis prefers a global minimum for NO with respect to
the local minimum of IO with Dc2 = Dc2

IO � Dc2
NO = 0.56. The charged

lepton and quark masses are obtained from Ref.[4] (website: PDGlive). The
quark masses correspond to the running mass mq(µ) renormalized in the MS
scheme with µ = 2GeV for q = u, d, s and µ = mq for q = c, b.

http://www.utfit.org/UTfit/ResultsSummer2018SM
http://www.nu-fit.org/?q=node/211
http://pdglive.lbl.gov/Viewer.action
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I.2.1 Yukawa sector of the Standard Model

Bare fermion masses Lm = �myy = �m(yLyR + yRyL) are not allowed in the SM
because they break gauge symmetry. Fermion masses arise via Yukawa interactions
with the Higgs of the type yyf:

LSM
Y = �Yu

ij QiujR eH � Yd
ij QidjRH � Ye

ij LiejRH + h.c. (I.1)

where i, j = 1, 2, 3 are the family indices, Qi, Li are left handed SU(2)L doublets, as
the Higgs field H and its conjugate eH = is2H⇤:

Qi =

 
ui

di

!

L

Li =

 
ni

ei

!

L

H =

 
H+

H0

!
eH =

 
H0⇤

�H�

!
, (I.2)

and ujR, djR, ejR are respectively the up, down and charged lepton SU(2)L singlets.
All fermion fields are left-handed, a charge conjugation matrix is understood to be
sandwiched between the fermion bilinears. The Yu,d,e are the Yukawa matrices or
shortly the Yukawas. Expanding the products in Eq.(I.1), fermion mass terms are
generated once the H0 component of the Higgs gets its VEV, hH0i = uH/

p
2

LSM
m = � vHp

2
Yu

ij uiLujR � vHp
2

Yd
ij diLdjR � vHp

2
Ye

ij eiLejR + h.c. . (I.3)

Thus the Yukawas generate the fermion mass matrices

mu,d,e =
uHp

2
Yu,d,e . (I.4)

Mass basis: The mass basis (or physical basis) (’) is defined where the mass matrices are
diagonal with real and positive eigenvalues, this is always possible via a bi-unitary
transformation where the two unitary (V†V = 1) rotation matrices are obtained as

V†
L (m m†)VL = (m m†)0 , V†

R(m
†m)VR = (m†m)0 . (I.5)

The change of basis is then given by

Q = Vu,d
L Q0 , uR = Vu

R u0
R , dR = Vd

R d0R , (I.6)

L = Ve,n
L L0 , eR = Ve

R e0R , (I.7)
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where
m0

u ⌘ diag(mu, mc, mt) = Vu†
L muVu

R , (I.8)

m0
d ⌘ diag(md, ms, mb) = Vd†

L mdVd
R , (I.9)

m0
e ⌘ diag(me, mµ, mt) = Ve†

L meVe
R . (I.10)

The u, d, e are the flavor (or interaction) eigenstates and u0, d0, e0 are the mass eigenstates.
The same transformations should be applied to all the interactions of fermions. The
couplings of the photon or the Z boson to fermions maintain the original diagonal
form, i.e. there is no tree level flavor changing neutral current in the SM. As there is
no right handed neutrino in the SM, one can always choose Vn

L = Ve
L so that also the

lepton charged current weak interactions remain flavor diagonal. In the basis where
both the up and down Yukawa couplings are diagonal, the quark charged current
reads

Lq
CC =

gp
2

uLgµ dLW+
µ + h.c. =

gp
2

u0
LgµVCKM d0LW+

µ + h.c. (I.11)

where the quark mixing matrix, or the Cabibbo–Kobayashi–Maskawa (CKM) matrix,
is defined in terms of the left-handed rotations

VCKM =

0

B@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

CA ⌘ K⇤
uVu†

L Vd
L Kd , (I.12)

up to two rephasing matrices Ku,d = diag(eia, eib, eig) that express our freedom to
make general phase field redefinitions. Being unitary, the matrix Vu†

L Vd
L depends on

three angles and six phases, however, we can define Ku,d to absorb 5 of these phases.

Parametrizations: A standard parametrization of the physical CKM matrix is given
in terms of three Euler angles q

q
ij and a complex phase dq that can not be removed by

field redefinitions

VCKM =

0

B@
1 0 0
0 cq

23 sq
23

0 �sq
23 cq

23

1

CA

0

B@
cq

13 0 sq
13e�idq

0 cq
13 0

�sq
13edq 0 cq

13

1

CA

0

B@
cq

12 sq
12 0

�sq
12 cq

12 0
0 0 1

1

CA , (I.13)

with sq
ij = sin q

q
ij and cq

ij = cos q
q
ij (for notation economy, we omit the superscript q

when the context is clear). Being the product of three Euler rotations matrices VCKM =

Rq
23Uq

13Rq
12 is itself unitary. In the SM, all the flavor and CP violation is contained in

the VCKM. The phase dq is not a physical parameter, by means of rephasing, it can be
shifted to different elements of the CKM matrix. A parametrization-independent and
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therefore physical measure of CP violation is instead given by the Jarlskog invariant:

Jq
CP = Im [VusVcbV⇤

ubV⇤
cs] = c12 c23 c2

13 s12 s23 s13 sin dq . (I.14)

Experimentally, this is found to be Jq
CP = (3.120 ± 0.090)⇥ 10�5.

The angle q
q
12 is known as the Cabibbo angle qC and lC ⌘ sin qC is taken as a natural

expansion parameter in the Wolfenstein parametrization of the CKM matrix. This is
given in terms of the four parameters lC, A, r, and h:

VCKM =

0

BB@

1 � l2
C

2 lC Al3
C(r � ih)

�lC 1 � l2
C

2 �Al2
C

Al3
C(1 � r � ih) Al2

C 1

1

CCA+O(l4
C) , (I.15)

with lC = 0.2250±0.0010 , A = 0.826±0.012 , r = 0.152±0.014 , h = 0.357±0.010 .

These relates to the standard parametrization as sq
12 ' lC , sq

23 ' Al2
C , sq

13 '
Aeidl3

C(r � ih) and JCP ' l6
C A2h. Due to the pure left handed nature of charged

weak current, in the above discussion, the right handed rotations Vu,d,e
R have com-

pletely disappeared. Moreover, the left rotations Vu,d
L are entangled in the CKM.

Unfortunately, there is thus no way to trace it back to the full Yukawa structures in
the framework of the SM.

Gatto-Sartori-Tonin relation: Consider only the (12)-block of the mass matrices

mu =

 
0 mu

12

mu⇤
12 mu

22

!
, md =

 
0 md

12

md⇤
12 md

22

!
. (I.16)

The main features of these matrices are at LO the (1,1)-texture zero and their hermic-
ity. Taking m12 = eidp�m1m2 and m22 = m2 + m1 the above matrices are readily
diagonalized with eigenvalues m0 = diag(m1, m2) and the angle of the rotation ma-
trix R12(q) satisfies that tan q12 =

p
m1/m2. This is a result of the pioneering work of

Gatto, Sartori and Tonin that gave the GST relation tan qij =
p

mi/mj [5]. Thus, the
rotation angles of Eq.(I.16) are

tan qu
12 =

r
mu

mc
, tan qd

12 =

r
md
ms

. (I.17)

Approximating mc,s + mu,d ' mc,s, this yields a successful prediction for the Cabibbo
angle

lC = | sin qC| '
����

r
md
ms

� ei(dd�du)
r

mu

mc

���� 2 [0.15, 0.29] . (I.18)
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I.2.2 Neutrino masses and mixings

Neutrinos were massless in the original formulation of the SM, so right-handed neu-
trinos (RH) do not appear in Eq. (I.1). The first indication that neutrinos have mass
and large mixings came from the Homestake experiment [6] during the sixties. Only
one-third of the number of neutrinos predicted by the standard solar model was
reaching the detector on the Earth. The observation was confirmed in 1998 by Super-
Kamiokande [7]. A similar deficit in the ratio of the flux of muon to electron flavor
atmospheric neutrinos produced in cosmic rays was also observed.
The odd disappearance of both atmospheric muon neutrinos and solar electron neu-
trinos can be understood as a phenomenon of neutrino oscillation. If neutrinos have
mass and their flavor eigenstates naL (a = e, µ, t) and mass eigenstates niL (i = 1, 2, 3)
do not coincide, as happens for the quarks, neutrinos can change their flavor. This
solves both the atmospheric and solar neutrino anomalies. Muon neutrinos from the
atmosphere would be experimentally undetectable when oscillating into tau neutri-
nos. Likewise, if electron neutrinos from the Sun change into muon or tau neutrinos,
they interact at a significantly lower rate. The neutrino oscillation probability, from
one flavor eigenstate to another na ! nb is calculated as

P(na ! nb) =

�����

3

Â
i=1

V⇤
aiVbiei m2

i L/2E

�����

2

' sin2(2q) sin2
✓

Dm2L
4E

◆
, (I.19)

where E ' p, L ' ct is the distance traveled by the neutrino and Vai, Vbi are the
entries of the lepton mixing matrix know as the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix. The last expression in (I.19) is valid in the two neutrino approxi-
mation. The neutrino oscillation experiments usually give no information about the
absolute neutrino mass scale as they are only sensitive to mass-squared differences
Dm2

ij = m2
i � m2

j , that is relative signs. The experimental data summarized in Tab. I.1
are compatible with two different neutrino mass orderings: Normal Ordering (NO)
with m1 < m2 < m3 and Inverted Ordering (IO) with m3 < m1 < m2 (with a prefer-
ence for the NO case). Specifically, the solar neutrino problem can be studied in term
of two effective parameters, the solar angle q� ⌘ q`12 and the solar mass-squared dif-
ference Dm2

� ⌘ Dm2
21, while the deficit in the neutrino flux from cosmic rays has been

studied using the atmospheric angle q@ ⌘ q`23 and the atmospheric mass-squared dif-
ference Dm2

@ ⌘ Dm2
3j (j = 1 for NO and j = 2 for IO). However, in the matter, high

energy solar neutrino propagation is appreciably affected by interactions with the
electrons of the medium, and we can measure a difference between the oscillation in
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the vacuum and in a medium. This makes it possible to ascertain the absolute sign
of the solar mass difference, so we know that m1 < m2.
Bounds on the absolute neutrino mass scale from laboratory searches are given by
b-decay experiments. The strongest limit comes from the Troitzk and Mainz experi-
ments, that is

mb =
s

m2
j Â

j
|Vej|2  2.05 eV at 95% CL[8] (I.20)

where mb is the effective mass that enters the decay. However, the by far strongest
constraint on the sum of the neutrino masses Âj mj today comes from cosmological
observations. Measurements of the temperature and polarization anisotropy spec-
trum of the cosmic microwave background (CMB) with the Planck satellite in com-
bination with other cosmological measurements like baryonic acoustic oscillations
(BAO) show that

Â
j

mj  0.12 eV at 90% CL [9] . (I.21)

Next future data analyses promise even tighter constraints. However, it should be
stressed that this bound is model dependent and based on different assumptions,
relieving some of them could relax the limit [10]. The bound can be converted into
a limit on the smallest neutrino mass mmin, in the more conservative case, mmin 
Âj mj/3 = 0.04 eV. For what we know so far of the neutrino mass scale, the neutrino
spectrum may or may not be hierarchical:

• Normal Hierarchy (NH): m1 ⌧ m2 '
q

Dm2
21 < m3 '

q
Dm2

31.

• Inverted Hierarchy (IH): m3 ⌧ m1 '
q
|Dm2

21 + Dm2
32| < m2 '

q
|Dm2

32|.

• Quasi Degenerate (QD):
q

Dm2
32 ⌧ m1 ' m2 ' m3 < Âi mi.

The observation of non-zero neutrino masses and mixings is the most established ev-
idence for New Physics Beyond the SM. Therefore additional terms must be added
to Eq. (I.1) to accommodate them.
Probably the most pressing problem in neutrino physics is related with the neutrino
intrinsic nature. As charge-less and massive they can be either Dirac (with particles
and antiparticles being different objects: n 6= nc like for the other fermions) or Majo-
rana (with particles and antiparticles being the same, just as for photons: n = nc).
In the first case, in analogy with the quarks and charged leptons, a Dirac mass term
for the neutrinos requires the existence of three right-handed (RH) neutrinos Ni ⌘ niR

to be able to write down the Yukawa term LiYn
ij NjH. However, RH neutrinos are
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gauge singlets so, they could possess Majorana mass terms that breaks explicitly lep-
ton number. This bare mass term is not constrained by any gauge symmetry and the
RH neutrinos can be arbitrarily heavy, so it has to be forbidden by imposing some
additional symmetry such as lepton number conservation. The leptonic Lagrangian
with Dirac neutrinos reads

LD
`,ij = �Ye

ij LieRjH � Yn
ij LiNi eH + h.c. , (I.22)

where Yn is the Yukawa coupling constant. The neutrino mass matrix can be added
to Eq.(I.4)

mn =
vHp

2
Yn , m0

n = diag(m1, m2, m3) = Vn†
L mnVn

R (I.23)

with Vn
L,R as in Eq.(I.5). The right handed rotation have no physical effect, whereas

Vn
L enter in the charged current, which in the mass basis reads

L`
CC =

gp
2

eLgµ nL W�
µ + h.c. =

gp
2

e0LgµVPMNS n0L W�
µ + h.c. , (I.24)

where, analogously to the quark mixing matrix (I.12), the PMNS matrix is defined
in terms of the left handed rotations up to rephasing, which can reabsorb five of the
present phases and leave only one physical Dirac phase

VPMNS =

0

B@
Ve1 Ve2 Ve3

Vµ1 Vµ2 Vµ3

Vt1 Vt2 Vt3

1

CA ⌘ K⇤
e Ve†

L Vn
L Kn . (I.25)

The PMNS, likewise the CKM, can be parametrized in terms of three Euler rotations
matrices VPMNS = R`

23U`
13R`

12:

VPMNS =

0

B@
1 0 0
0 c`23 s`23

0 �s`23 c`23

1

CA

0

B@
c`13 0 s`13e�id`

0 c`13 0
�s`13ed` 0 c`13

1

CA

0

B@
c`12 s`12 0
�s`12 c`12 0

0 0 1

1

CA , (I.26)

with s`ij = sin q`ij and c`ij = cos q`ij (again, we omit the superscript ` whenever the
context is clear). Although the possibility of Dirac neutrinos is allowed on theory
grounds, it leaves the smallness of neutrino masses unexplained, implying the need
for a tiny Yukawa coupling for neutrinos (Yn ⇠ O(10�13)). This is clearly not appeal-
ing from a model building point of view.
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For the case of Majorana neutrinos, if only Standard Model fields are present, there
is a unique lepton number violating dimension-5 operator that gives rise to neutrino
masses, the well-known Weinberg Operator which couples two lepton doublets and
two Higgs. The effective Lagrangian for leptons with Majorana neutrinos reads

LM
`,ij = �Ye

ij LieRjH � 1
2

kn
ij

L
LiLc

j
eH eHT + h.c. , (I.27)

where the superscript c stands for charge conjugation Lc = CLT (C = ig0g2). The
L can be understood as the cutoff scale where new physics probably sets in. After
electroweak symmetry breaking a light Majorana mass term for neutrino is generated

mn =
v2

H
2

kn , m0
n = diag(m1, m2, m3) = VnT

L mnVn
L . (I.28)

The charged current reads as (I.24), however, due to the Majorana nature of neutri-
nos, the matrix Kn is now physical yielding to a leptonic mixing matrix

VPMNS = eVPMNS diag(1, eia/2, ei(b/2+d)) = K⇤
e Ve†

L Vn
L , (I.29)

where eVPMNS is parametrized as in Eq.(I.26), in terms of three angles q`ij and the
Dirac phase d`, while the additional Majorana phases are a and b. We used the same
parametrization used in Article 4 (more details are given in Appendix D.1).
With the measurements of a non vanishing reactor mixing angle q`13 in 2012 by Dou-
ble Chooz [11], Daya Bay [12] and RENO [13], we now have complete knowledge
of all the three mixing angles q`12, q`23 and q`13. From Table I.1 we have large lepton
mixing s`12 ⇠ 1/

p
3 , s`23 ⇠ 1/

p
2 , s`13 ⇠ lC/

p
2 with lC the Wolfenstein parameter.

However, we do not have information yet on the Dirac-type CP violating phase d`

nor on the CP violating phases associated with Majorana neutrino masses. Regard-
ing d`, from combined analyses, we have a hint for maximal CP violation: d` ⇠ 3p/2.
The origin of the Weinberg Operator remains open. Above the cutoff scale the Ultra-

Violet (UV) complete theory is at play, involving new messenger fields, whose masses
lie close to the scale L. Since L and H are different fields, there are three different
ways of contracting the relevant fields that give an overall SU(2)L singlet [14]:

OI = (Li H)1(LjH)1 OII = (LiLj)3(HH)3 OIII = (Li H)3(LjH)3 . (I.30)

The possibility where both (LiLj)1(HH)1 is forbidden, since (HH)1 is symmetric,
while the singlet contraction is antisymmetric, and therefore vanishes. In particular,



18 Introduction

FIGURE I.1: Tree level realizations of the Weinberg operator from the Seesaw type I, II
and III mechanism, from left to right. The intermediate states are: singlet
fermion N, scalar triplet DL and fermion triplet S fields.

the explicit form of the bilinear are as follows:

(LiLj)1 ⇠ (niej � einj) (LiLj)3 ⇠

0

B@
ninj

niej + einj

eiej

1

CA (I.31)

(Li H)1 ⇠ (ni H0 � ei H+) (Li H)3 ⇠

0

B@
ni H+

ni H0 + ei H+

ei H0

1

CA (I.32)

(HH)3 ⇠

0

B@
H+H+

H+H0 + H0H+

H0H0

1

CA (I.33)

from which we realize that OI, OII and OIII all contain the combination of fields
ninjH02 that generate neutrino masses after electroweak spontaneous symmetry break-
ing. However, giving their different contractions of the SU(2)L indices, they are as-
sociated with the tree-level exchange of various messenger fields. Fig.I.1 illustrates
the UV completion of OI,II,III. OI has a tree-level realization in terms of the exchange
of a heavy SM singlet N: the type-I Seesaw mechanism. Whereas heavy triplets are
required to realize OII and OIII, respectively, by the exchange of a scalar particle D: the
type-II Seesaw mechanism, or of a fermion field S: the type-III mechanism.

Seesaw type I: In the type I mechanism, three heavy RH neutrinos Ni are introduced,
that allow for an invariant mass Lagrangian of the form

LI
n = �Yn

ij LiNj eH � 1
2

MNijN
c
i Nj + h.c. . (I.34)

Therefore we have the following mass matrix for neutrinos, with a characteristic
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(1,1)-texture zero,

LI
mn

= �1
2

⇣
nL Nc

⌘ 0
p

2 vHYn

p
2 vHYnT MN

! 
nc

L
N

!
+ h.c. . (I.35)

The Seesaw mechanism is implemented when MN is much above the electroweak
scale and MN � Yn, then matrix can be diagonalized yielding to

LI
mn

= �
⇣

nL Nc
⌘ v2

HYn M�1
N YnT 0

0 MN/2

! 
nc

L
N

!
. (I.36)

At low energies, integrating out the RH neutrinos generates an effective Weinberg
Operator as in Eq.(I.27). After EW symmetry breaking the light Majorana mass term
for the neutrinos reads

mn = �u2
H Yn M�1

N YnT . (I.37)

Compared to the charged lepton masses, the type-I Seesaw mechanism shows that
the light neutrino masses depend quadratically on the Dirac masses but are inversely
proportional to the large Majorana mass, so that the scale of new physics is LNP = MN .

Seesaw type II: In the type II mechanism, we need to add at least one scalar SU(2)L

triplet to the field content of the SM. For values of the weak hypercharge equal to +1,
the triplet can be arranged in a 2 ⇥ 2 matrix

D =

 
D+/

p
2 D++

D0 �D+/
p

2

!
, (I.38)

where D0, D+ and D++ are combinations of the triplet components. The Lagrangian
terms that are relevant for neutrino masses are

LII
n = (�kD

ij Lc
i D Lj � µD eH†D†H + h.c.) + M2

D Tr(D†D) , (I.39)

where kD
ij are the new Yukawa couplings produced by D. Assuming that the scalar

potential has a minimum in the component hD0i = vD = v2
HµD/M2

D and the hierar-
chy M2

D � µDvH, then the light neutrino mass matrix is

mn ' �v2
H kD µD M�2

D . (I.40)

In this case, the scale of new physics is approximately given by LNP = M2
D/µD.



20 Introduction

Observable Current Bound Future Bound

mbb [eV] 0.11 @ 90% (CUORE[15]) 0.005 @ 90% (nEXO[16])

mb [eV] 2.05 eV @ 95% (Troitsk[8]) 0.02 @ 90% (KATRIN[17, 18])

Â mj [eV]
0.26 @ 95% (Planck[9])

0.062 @ 68% (CORE+BAO[19])
0.12 @ 95% (Planck+BAO[9])

TABLE I.2: Current and future bounds on the neutrino observables: mbb, mb and the total
sum of neutrino masses. Note that the latest limits from Planck fall in the quasi-
degenerate regime for the neutrino spectrum. In that case, these bounds can be
translated into bounds over the lightest mass eigenstate as: mmin . 0.09 eV for
Planck data and mmin . 0.04 eV for Planck+BAO.

Seesaw type III: In the type-III mechanism, as for the case of the type II, the triplet
hyperchargeless fermions S can be arranged in the following form:

S =

 
S0/

p
2 S+

S� �S0/
p

2

!
. (I.41)

where S�, S0 and S+ are combinations of the triplet components. The related La-
grangian reads

LIII
n = �kS

ij LiSj eH + MSijTr(Sc
i Sj) + h.c. , (I.42)

where again kS
ij is a Yukawa coupling matrix. Under the hypothesis that MS � kSvH,

the light mass matrix assumes the form

mn ⇠ �v2
H kS M�1

S (kS)T , (I.43)

which is very similar to Eq.(I.37) since, regarding neutrino masses, the state S0 acts
like a RH neutrino. The Seesaw mechanism, in all its realizations, offers a natural ex-
planation of why the neutrinos are much lighter than the other fermions and clarifies
why Majorana neutrinos have been so popular. Note that the light neutrino masses
are obtained as the ratio of the Dirac and Majorana parameters mn = v2

Hy2
n/2MN ,

their absolute scale is therefore not fixed by the Seesaw. To give a reasonable es-
timate we can assume mn ⇠ 2

q
Dm2

3j = 0.1 eV and yn = 0.1, this implies a RH

neutrino mass as large as MN ⇠ 4 ⇥ 1012 GeV. We understand that typically the scale
of the RH neutrinos is very large, which makes a direct detection impossible.
However, the characteristic signature [20] of Majorana neutrinos, namely the obser-
vation of neutrinoless double beta decay (0nbb-decay), has so far remained elusive
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[15, 21, 22]. The 0nbb-decay effective mass is

mbb =

�����Âj
mj V2

ej

����� =
���c2

13

⇣
m1 c2

12 + m2 s2
12eia

⌘
+ m3 s2

13eib
��� . (I.44)

The neutrinoless double beta decay rate depends significantly on the neutrino mass
spectrum. The 0nbb experimental search can thus have an enormous impact in con-
straining the mass hierarchy, the absolute scale of neutrino masses and, together with
other sources of information, could provide a unique insight on the value of the CP
violating phases appearing in the leptonic mixing matrix. We expect the next gener-
ation experiments in Table I.2 to clarify the following questions:

• Are neutrinos Dirac or Majorana particles?

• What is the neutrino mass ordering and the neutrino mass scale?

• What is the value of the Dirac phase d` and, possibly, of the Majorana phases?

I.2.3 Sequential Dominance

In a context of small Yukawa mixings, similar to Yukawas of the quark sector, it has
been observed that the simultaneous emergence of two large mixing angles and hi-
erarchical neutrino masses are not natural in the Seesaw mechanism, how to account
for both of them? An elegant and natural possibility is called Sequential Dominance
(SD) [23–25]. The idea of SD is that one of the RH neutrinos Ma contributes domi-
nantly to the Seesaw mechanism and determines the atmospheric neutrino mass and
mixing. A second RH neutrino contributes sub-dominantly and determines the solar
neutrino mass and mixing Mb. The third RH neutrino Mc is effectively decoupled
from the Seesaw mechanism, therefore

Ma < Mb ⌧ Mc , (I.45)

where Ma,b,c can then be identified with M1,2,3 in all the possible ways. To understand
how sequential dominance works, we operate in the basis where the charged lepton
and right-handed neutrino mass matrices are diagonal, known as the flavor basis, such
that all mixing originates in the Dirac sector. So we begin by writing the right-handed
neutrino Majorana mass matrix MN in a diagonal basis as

0

B@
Ma 0 0
0 Mb 0
0 0 Mc

1

CA . (I.46)
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The neutrino Yukawa matrix in the flavor basis, ln, is explicitly given by

ln ⌘ Ve†
L YnVN , (I.47)

that we can write down in terms of three general column vectors

ln = (fa, fb, fc) . (I.48)

The effective light neutrino mass (after EW symmetry breaking), resulting from inte-
grating out the massive right handed neutrinos, is

mn =
v2

H

2

 
fcfT

c

Mc
+

fbfT
b

Mb
+

fafT
a

Ma

!
. (I.49)

Sequential dominance Ma < Mb ⌧ Mc then corresponds to the first term being negli-
gible, the second term subdominant and the third term dominant, so SD immediately
predicts a NH neutrino mass m1 ⌧ m2 < m3, because

fcfT
c

Mc
⌧

fbfT
b

Mb
<

fafT
a

Ma
. (I.50)

We write the relevant Yukawa couplings in the most general form

fa =

0

B@
a1

a2

a3

1

CA , fb =

0

B@
b1

b2

b3

1

CA with ai = |ai| eidai , bi = |bi| eidbi . (I.51)

The neutrino masses, under the SD condition of Eq.(I.45), are obtained

m3 ⇠ v2
H
2

|a2|2 + |a3|2
Ma

, m2 ⇠ v2
H
2

|b1|2
s12 Mb

, m1 ⇠ v2
H
2

O(|c|2)
Mc

, (I.52)

and for the mixing angles

tan q`23 ⇠ |a2|
|a3|

, tan q`12 ⇠
|b1|

c23 |a2|� s23 |b3|
, (I.53)

q`13 ⇠
e�ida2 |b1|p
|a2|2 + |a3|2

 
eidb1

a⇤2 b2 + a⇤3 b3

|b1|2
m2

m3
+ eida1

|a1|
|b1|

!
. (I.54)
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We see that small q13 and almost maximal q23 require that

|a1| ⌧ |a2| ' |a3| . (I.55)

In this case an upper bound on the value of the reactor angle is given by q`13 
m2/m3 '

q
Dm2

@/Dm2
� = 0.17. Quite remarkably this successful prediction was

made over a decade before the reactor angle was measured [26]. In order to obtain
precise predictions for mixing one can go further and impose constraints on the Dirac
Yukawa couplings, using specific vacuum alignments, dubbed Constrained Sequen-
tial Dominance (CSD). The TB-mixing corresponds to the choice

a1 = 0 , a2 = a3 , b1 = b2 = �b3 . (I.56)

This is a CSD(1) case, starting from it, general CSD(n) models are built assuming
an approximate maximal atmospheric angle, with different proposals for the solar
couplings

CSD(n) : fT
a = (0, a, a) , fT

b = (b, n b, (n � 2) b) , (I.57)

where n is a positive integer. The SD assumption is also especially useful in Lepto-
genesis to which we dedicate the next section.

I.3 Leptogenesis

The Seesaw mechanism not only renders a natural explanation of the smallness of the
neutrino masses, but it also provides a convincing framework, called Leptogenesis,
to address the Baryon Asymmetry of the Universe (BAU), that is the difference be-
tween the baryon and antibaryon densities, nB and nB. This is measured with respect
to the entropy density s to be

YB =
nB � nB

s
= (8.7 ± 0.1)⇥ 10�11 [27] . (I.58)

In the SM, the CP violation of the CKM matrix, in the quark sector, is not enough
to explain the size of the observed BAU. The physical process generating the baryon
asymmetry, called Baryogenesis, is an open issue. Getting information about the CP
symmetry in the leptonic sector might allow us to further understand the origin of
the observed matter-antimatter asymmetry of the Universe.
The existence in the SM of sphaleron processes violating both baryon B and lepton
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number L suggests Baryogenesis through Leptogenesis [28–32]. Leptogenesis is a
scenario where New Physics generates a lepton asymmetry through lepton number
violating decays of very heavy Majorana neutrino’s densities that occur out of equi-
librium. RH neutrinos are thermally produced after inflation through scatterings and
inverse decays in the thermal plasma. The lepton asymmetry is generated by the out
of equilibrium decays of the RH neutrino when the temperature gets below the neu-
trino mass. The lepton asymmetry is partially converted into the observed baryon
asymmetry by the existence of sphaleron interactions. The introduction of singlet
heavy neutrinos Ni with Majorana masses and Yukawa couplings to the doublet lep-
tons fulfills the necessary conditions to produce a baryon asymmetry, known as the
Sakharov conditions :

• B (or L) violation,

• C and CP violation,

• departure from thermal equilibrium.

This means that, if the Seesaw mechanism is indeed the source of the light neutrino
masses, then qualitative Leptogenesis is inevitable. The question of whether it solves
the mystery of the baryon asymmetry is merely a quantitative one.
We consider classes of neutrino mass models based on the Seesaw mechanism with
sequential dominance. Under this assumption, the RH neutrinos do not interfere,
and the generation of the asymmetry from each Ni decays proceed independently.
Depending on the size of the RH neutrino mass we have to distinguish 3 possible
flavor regimes [33]:

• Mi � 1012 GeV : before the charged lepton Yukawa couplings come into equi-
librium, the flavor-independent approach is proper.

• 109 GeV ⌧ Mi ⌧ 1012 GeV : only the t Yukawa coupling is in equilibrium and
is arranged separately in the Boltzmann equations. At the same time, the e and
µ flavors are indistinguishable and have to be treated with a combined density.

• 105 GeV ⌧ Mi ⌧ 1012 GeV : all flavors in the Boltzmann equations are to be
treated separately.

In what follows, we consider the last regime where all flavors in the Boltzmann
equations are separately arranged. The generation of a baryon asymmetry is a non-
equilibrium process which is generally addressed employing simplified Boltzmann
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FIGURE I.2: An illustrative example of the solutions of the Boltzmann equations in
Eq.(4.20). In Article 4, we employ a two-step procedure in which we solve
for the YDa arising from Ni=2 decays, and use them as initial conditions for
the Ni=1 calculation. This is justified if the SD framework where M1 ⌧ M2.
The produced BAU is computed at z � 1.

equations for the distribution functions, which can be schematically written as

dYNi

dz
= �(D + S)

⇣
YNi � Yeq

Ni

⌘

dYDa

dz
= �#a

Ni
D
⇣

YNi � Yeq
Ni

⌘
� Ka

Ni
W YDa , YB =

12
37 Â

a

YDa, (I.59)

where a = (e, µ, t) , i = (1, 2, 3) and z = Mi/T. The YNi is the density of neutrino
the Ni neutrino and Yeq

Ni
its equilibrium value. YDa are defined as YDa ⌘ YB/3 � YLa ,

where YLa are the total lepton number densities for each flavor 1. Normalization to
the entropy density s is understood for all number densities Y. An illustrative ex-
ample of the solutions of the Boltzmann equations is given in Fig.I.2. There are four
types of processes that contribute to the Boltzmann equations through the terms D, S
and W: decays and inverse decays (N $ La H), DL = 1 scatterings (NQ $ Lat) and
DL = 2 processes (La La $ HH,Le H $ Le H). Specifically, the factor D = GD/Hz
accounts for decays and inverse decays, S = GS/Hz represents the DL = 1 scat-
terings, while other processes contribute to the washout term W = GW/Hz which

1It is appropriate to solve the Boltzmann equations for YDa instead of for the number densities YLa

of the lepton doublets La, since Da ⌘ B/3 � La is conserved by sphalerons and by the other SM inter-
actions
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FIGURE I.3: DL = ±1 neutrino decays.

competes with the decay term.
The final lepton asymmetry in each flavor is entirely determined by neutrino prop-
erties, in particular is governed by two sets of parameters which can be computed
within a given neutrino model: the decay factors Ka

Ni
and the CP or decay asymmetries

#a
Ni

of the RH-neutrino Ni into Higgs H and lepton doublet La (or conjugate final
states). In fact, the Majorana nature of the RH-neutrino masses implies the lepton
number violating decays Ni ! La H and Ni ! La H⇤ with DL = ±1, the decay
factors are defined as

Ka
Ni

=
G(Ni ! La H) + G(Ni ! La H⇤)

H(Mi)
, (I.60)

where H(Mi) is the Hubble parameter at the temperature T = Mi. The CP-asymmetries
are defined as

#a
Ni

=
G(Ni ! La H)� G(Ni ! La H⇤)

G(Ni ! La H) + G(Ni ! La H⇤)
. (I.61)

The decay factors are dominated by the single tree level diagram. On the other hand,
the CP-asymmetry arises only at a one-loop level from the self-energy plus vertex
contributions diagrams displayed in Fig.I.3. In fact, if there is more than a single Ni,
then there is a relative CP-violating phase between the tree and the loop diagrams.
Considering only N1 decays (zero initial densities) and the flavor independent regime,
an upper bound on the CP asymmetry [30] can be written

#N1 <
3

16p

M1 Dm2
31

v2
H

. (I.62)

It is convenient to parametrize the produced asymmetry in terms of an efficiency
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factor h 2 [0, 0.2], which is a function of only KN1 [33]

YB =
12
37

Yeq
N1
(z ⌧ 1) #N1 h(KN1) ' 3 ⇥ 10�4 #N1 . (I.63)

where we used that Yeq
N1
(z ⌧ 1) ' 4 ⇥ 10�3 and h ' 0.2. From Eq.(I.63), we can

deduce #N1 ⇠ 10�7, which combined with the limit of Eq.(I.62) provide a lower bound
on M1

M1 � 2 ⇥ 109 GeV . (I.64)

Interestingly enough, this is compatible with the typical large scale expected in the
Seesaw mechanism. However, this lower bound represents a severe problem to
many flavor models, especially those incorporating some grand unification symme-
try, where the neutrino Yukawas are strictly related to the up-quark Yukawas. In
these kinds of models, the typical values for the lightest right-handed neutrino mass
are close to 106 � 107 GeV [34]. In general, the requirement of successful leptogenesis
yields stringent constraints on the Yukawa couplings and the masses of and heavy
neutrinos, which are not constrained by the Seesaw mechanism. An explicit example
of this is given in Article 4.

I.4 Flavor Symmetries

An exhaustive solution to the flavor puzzle can come from the interplay of flavor (or
family) symmetries, Grand Unification Theories (GUT) and the Seesaw mechanism.
In this section, we discuss the role of flavor symmetries [35]. Flavor symmetries
unify different members within a family, and for this are sometimes called horizontal
symmetries, as opposed to GUT symmetries, or vertical symmetries, which unite the
same members inside different families. Flavor symmetry models intend to explain
the Yukawa structures, which give the masses hierarchies and mixings, in terms of a
single expansion parameter with a dynamical motivation. The standard strategy to
interpret the large number of seemingly arbitrary parameters in the flavor sector is
to assume that, at some high energy scale, the theory is invariant under the action of
a flavor symmetry group G f .

I.4.1 Froggatt-Nielsen mechanism

In the approach of the Froggatt Nielsen (FN) mechanism [36], the SM Yukawa pa-
rameters are given a dynamical origin. The hierarchy of masses and mixings of quark
and leptons can be understood by assuming an horizontal G f = U(1)FN symmetry
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FIGURE I.4: Generation of the effective up-type Yukawa couplings through the typical
FN "spaghetti" diagram. The other Yukawa coupling arise from analogous
diagrams with different number of flavon insertions.

broken by the vacuum expectation value (VEV) of a complex scalar field hfi called
flavon. In the simplest version, the SM fermions carry positive and integer U(1)FN

charges: {qi, ui, di, ei}, while the Higgs is neutral and the flavon carries a negative
one unit flavor charge. Thus, the Yukawa terms are no longer invariant and the ul-
traviolet Lagrangian preserving the charge assignment of the underlying U(1) flavor
symmetry has the form

LUV
ij = �g

"
Qqic�qi H + Llic�li H + Â

q

c(1�q)cqf (I.65)

+c(1�uj)uujf + c(1�dj)ddjf + c(1�ej)eejf + h.c.
i

, (I.66)

where g is a generic O(1) coupling that, for illustration purposes, we take to be the
same for all interactions, and the cs are the Froggatt Nielsen fields. These are heavy
vector-like mediators with the quantum numbers of RH leptons and quarks. The
mass Mc is the scale of the flavor dynamics. Then the effective Lagrangian, at en-
ergies E ⌧ Mc, can be written as en expansion in 1/Mc, after integrating out the
heavy mediators:

LFN
ij = �Qqiuuj

eH
✓

f

Mc

◆qi+uj

� Qqiddj H
✓

f

Mc

◆qi+dj

� Llieej H
✓

f

Mc

◆li+ej

. (I.67)

The flavon field acquires a VEV that breaks the flavor symmetry. As long as hfi <

Mc, the nice feature of this approach is that the Yukawa couplings in Eq.(I.1), and
therefore the mass and mixings, are explained as different powers of a common ex-
pansion parameter e = ghfi/Mc ⌧ 1:

Yu
ij = eqi+uj Yd

ij = eqi+dj Ye
ij = eli+ej . (I.68)
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U(1)FN charge assignment

Q1 Q2 Q3 u1 u2 u3 d1 d2 d3

qi: 3 2 0 ui: 3 2 0 di: 1 0 0

L1 L2 L3 e1 e2 e3 H f c

li: 1 0 0 ei: 3 2 0 0 -1 -3,. . . ,2

TABLE I.3: A U(1)FN charge assignment for the SM fields, the flavon and the FN medi-
ators involved.

This is depicted in Fig.I.4 via the typical "spaghetti" diagram for the exemplifying
case of the up-type Yukawa coupling. The Yukawa couplings become hierarchical if
the U(1)FN charges are chosen appropriately. We can take the sine of the Cabibbo
angle as a useful expansion parameter e = lC = 0.225, then in terms of e the mass
ratios in the up, down and charged lepton sector read as

mu : mc : mt ⇠ e6 : e4 : 1 , (I.69)

md : ms : mb ⇠ e4 : e2 : 1 , (I.70)

me : mµ : mt ⇠ e4 : e2 : 1 , (I.71)

with an identical scaling for the down and charged lepton sectors. To conclude, here
we give a three family example, taken from Ref.[37], to show that a U(1)FN flavor
symmetry is sufficient to accommodate the SM flavor parameters. Given the charges
in Table I.3 we can build the following Yukawa structures that, once order one coef-
ficients are introduced to avoid undesired cancellations, give a good fit of the quark,
charged lepton masses and the small CKM mixings

Yu = yt

0

B@
e6 e5 e3

e5 e4 e2

e3 e2 1

1

CA , Yd = yb

0

B@
e4 e3 e3

e3 e2 e2

e 1 1

1

CA , Ye = yt

0

B@
e4 e3 e

e3 e2 1
e3 e2 1

1

CA(I.72)

where the (12)-blocks show an approximate (1,1)-texture zero as in Eq.(I.16). We
stress that, in principle, in the physical basis we should also redefine the fields to
obtain canonical kinetic terms. In Ref. [38] it is remarked that this can always be
achieved by an upper triangular matrix as in Appendix A.1.3. However hierarchical
Yukawas usually receive only higher order corrections from the Canonical rotation.
Note that in Eq.(I.72), while the U(1)FN flavor charges are used to explain the ob-
served mass hierarchies inside the same family members, the hierarchy between yt,
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yb, yt is left unexplained. Flavor symmetries should be combined with GUT groups
to offer a full solution to the flavor puzzle. In this example Qi, ui, ei and di, Li share the
same U(1)FN charges, which makes the above structures compatible with an SU(5)
unification scenario. Gauge coupling unification suggests that the SM gauge group
is generated when a unified larger gauge group is broken at a very high energy scale
compared to the electroweak (EW) one. In this picture, SM fermions are accommo-
dated in representations of the unified gauge group GGUT and an appropriate scalar
Higgs sector is introduced both to trigger the spontaneous breaking of GGUT down
to SU(3)C ⇥ U(1)em and to reproduce the fermion mass matrices. Typically GUTs
are quite constrained, and non-trivial relations are obtained among the SM fermion
mass matrices. For example, the SU(5) prediction for the Yukawa matrices relates
the charged lepton and down quark Yukawas

Yd = YeT . (I.73)

The relation is not fully rewarding, but it can be improved considering higher Higgs
representations, as suggested by Georgi and Jarlskog [39]. This introduces Clebsh-
Gordan coefficients (or Georgi and Jarlskog factors) in the relation above that, after
the RGE running, turn it nicely consistent with the low energy masses.
The FN approach is successful but mainly useful for explaining hierarchical struc-
tures as the order one couplings g remains unspecified. To describe non-hierarchical
flavor structures, in the last years, particular attention has been devoted to the study
of discrete flavor symmetries, thanks to their simplicity in recovering realistic lep-
ton mixing patterns. The combination of GUT and discrete flavor symmetries has
revealed success in various examples [35, 40–43]

I.4.2 Residual symmetries in model building

The two unitary matrices needed to diagonalize the charged lepton and neutrino
mass matrices define the PMNS matrix in Eq.(I.25). In the GUT model building, the
down type quark mass matrix is related to the charged lepton mass matrix, which is
approximately diagonal so that Ve is CKM-like. Therefore it is convenient to work
in a basis where the charged leptons are approximately diagonal, and the neutrino
mass matrix [35] predominantly defines the entire PMNS matrix. As charged lep-
tons are Dirac particles, one has to consider the square mass matrix m†

e me, which,
if approximately diagonal, is in general invariant under U(1)3 and thus also under
Zm for every m. Assuming that the neutrinos are Majorana particles, the maximal
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invariance group of the neutrino mass matrix which leaves the neutrino masses un-
constrained is the Klein group, the direct product of two copies of the cyclic group of
order 2: Z2 ⌦ Z2.
This leads to an attractive model-independent approach to get the leptonic mixing
matrix VPMNS straight from symmetry considerations [44, 45]. This strategy has al-
ready been investigated for several symmetries, for a recent review Ref.[46]. In Arti-
cle 4 we considered the non-Abelian discrete group A5 and CP as the leptonic sym-
metry, as studied in Ref.[47, 48]. At some large energy scale, the theory is invariant
under the action of a non-Abelian flavor symmetry group G f = S4, A4, A5, T7, D(27) . . . .
Then the scalar sector is built in a suitable way to break G f down to two different
Abelian subgroups that remain intact: Gn and Ge in the neutrino and the charged
lepton sector respectively. We have to assume

Ge ⇢ G f , Gn ⇢ G f , Ge \ Gn = ∆ , (I.74)

where Ge and Gn are often referred to as residual symmetries. Here we display that the
symmetries Ge and Gn significantly constrain the form of the neutrino mixing matrix
VPMNS. For simplicity, we can choose Ge,n to be single cyclic groups Ge = Z

ge
m and

Gn = Z
gn

2 with presentation rules

Z
ge
m = h1, ge ; gm

e = 1i , Z
gn

2 = h1, gn ; g2
n = 1i, (I.75)

being ge,n elements of G f and generators of the Z
ge
m , Z

gn

2 subgroups respectively. We
can write the action of the elements of the subgroups of G f on the lepton mass matri-
ces as

r(ge)
† mem†

e r(ge) = mem†
e , r(gn)

T mn r(gn) = mn, (I.76)

where in the second equation we used the fact that the neutrinos are Majorana par-
ticles 2. We can diagonalize the group elements r(ge) and r(gn) through unitary
matrices

r(ge)
d = W†

e r(ge)We , r(ge)
d = W†

nr(gn)Wn , (I.77)

where d stands for diagonal. Substituting in Eq.(I.76), it can be checked that the diag-
onalization of the mass matrices is equivalent to the rotations of the group elements,
i.e. for diagonal r(g), the only matrices that remain invariant are diagonal mass ma-
trices. Therefore, the matrices Ve

L and Vn
L are determined from We,n up to rephasing

2For Dirac neutrinos it will be as for the charged leptons: r(gn)†m†
nmnr(gn) = m†

nmn.
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Ke,n and permutation Pe,n matrices:

Ve
L = WeKePe , Vn

L = WnKnPn (I.78)

Thus, up to Majorana phases and permutations of rows and columns, the lepton
mixing matrix VPMNS is given by:

VPMNS = Ve†
L Vn

L = PeK⇤
e W†

e WnKnPn . (I.79)

We have seen that the mixing matrix VPMNS is determined through Ge and Gn and
their relative embedding into G f . However, it is determined only up to exchanges
of rows and columns, therefore we do not predict lepton masses in this approach.
Hence, the mixing angles are fixed up to a small number of degeneracies, associated
with these possible exchanges.
Following the symmetry approach, it is clear that the flavor symmetry must be bro-
ken in order to generate the observed non trivial structures. The criteria on the vac-
uum alignment of the involved flavon VEVs: hfni,hfei is formulated by the condi-
tions

gehfei = hfei , gnhfni = hfni . (I.80)

where flavons enter linearly in the mass terms

L` = �fe

L
L eRH � fn

L2 L Lc eH eH . (I.81)

In a consistent model, the alignment must stem from the minimization of the scalar
potential without ad-hoc assumptions on its parameters. Popular ingredients for this
kind of constructions are:

• the introduction of supplementary scalar degrees of freedom, which are called
driving fields, singlets under the gauge group.

• additional symmetries, apart from G f , which are necessary to forbid those La-
grangian operators which would prevent the desired vacuum alignment.

An example with G f = S4

We present an explicit example of the above discussion in the case of G f = S4, the
non Abelian group of permutations of 4 objects. It can be defined in terms of three
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generators S, T and U satisfying the presentation rule

S4 = h1, S, T, U ; S2 = T3 = U2 = (ST)3 = (SU)2 = (TU)2 = (STU)4 = 1i. (I.82)

It has 5 irreducible representations: two singlets 1, 10, two triplets 3, 30 and a doublet
2, such that there are 12 + 12 + 32 + 32 + 22 = 24 = 4! elements in S4. The Abelian
subgroups of S4 are: four Klein groups V, four Z3 groups and three different Z4.
For example, from (I.82) it is clear that T is a generator of a cyclic subgroup of order
3 while S, U generate a Klein subgroup. So we choose Ge = Z3 and Gn = V with
presentations

Z3 = h1, T ; T3 = 1i , V = h1, S, U ; S2 = U2 = (SU)2 = 1i . (I.83)

We work in the basis for S4 in which the irreducible representations of the generators
S, T and U are

1, 10 : S = 1 , U = ±1 , T = 1 ,

2 : S =

 
1 0
0 1

!
, U =

 
0 1
1 0

!
, T =

 
w 0
0 w2

!
, (I.84)

3, 30 : S = 1
3

0

B@
�1 2 2
2 �1 2
2 2 �1

1

CA , U = ⌥

0

B@
1 0 0
0 0 1
0 1 0

1

CA , T =

0

B@
1 0 0
0 w2 0
0 0 w

1

CA ,

where w = e2ip/3. Note that the T generator is diagonal. We can choose r(ge) = T3

such that We = 1 and we are directly in a basis where the charged lepton matrix mem†
e

is diagonal. We can also choose r(gn) = S3, for which the diagonalization matrix Wn

is given by

Wn = VTB ⌘

0

BB@

q
2
3

1p
3

0

� 1p
6

1p
3

� 1p
2

� 1p
6

1p
3

1p
2

1

CCA , (I.85)

This leads to a popular simplified form of the neutrino mass matrix called Tri-Bi-
Maximal (TB) mixing

VPMNS = K⇤
e VTBKnPn (I.86)
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which implies s2
12 = 1/3 , s2

23 = 1/2 and a vanishing reactor angle s13 = 0. The
conditions on the vacuum alignment of Eq.(I.80) correspond to the requirements that

Thfei = hfei , Shfni = Uhfni = hfni . (I.87)

The first condition is satisfied from a flavon VEV hfei in either the 1, 10, 3 and 30

representations, demanding T3,30(a, b, c)T = (a, b, c) the vacuum alignment is

hfe
1,10 i = ve

1,10 , hfe
3,30 i = ve

3,30

0

B@
1
0
0

1

CA , (I.88)

which can only result in a diagonal mass matrix mem†
e for the charged leptons. From

Eq.(I.84) we see that U, because of the minus sign in the definition, is always broken
by the VEV hfni of a flavon transforming in the 10 or 3 representations. On the other
hand flavon fields in the 1, 2 and 30 representations can be adopted, demanding
S2(a, b)T = (a, b) and S3(a, b, c)T = (a, b, c), the vacuum alignment is

hfn
1i = vn

1 , hfn
2i = vn

2

 
1
1

!
, hfn

30 i = vn
30

0

B@
1
1
1

1

CA . (I.89)

Substituting in Eq.(I.81) and contracting the fields considering that L ⇠ 3, 30, the most
general neutrino mass matrix looks like

mn =
v2

H
L2

2

64vn
30

0

B@
2 �1 �1
�1 2 �1
�1 �1 2

1

CA+ vn
1

0

B@
1 0 0
0 0 1
0 1 0

1

CA+ vn
2

0

B@
0 1 1
1 1 0
1 0 1

1

CA

3

75 . (I.90)

Redefining vn
30 = z/3, vn

1 = x � 2z/3 , vn
2 = y + z/3 the neutrino mass matrix is

usually displayed in the following form

mn =
v2

H
L2

0

B@
x y y
y y + z x � z
y x � z y + z

1

CA , (I.91)

which is left invariant under the action of S, U and diagonalized by the TB mixing,
with eigenvalues m0

n = diag(x � y, x + y, x + y + 2z).
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I.4.3 Generalized CP symmetry

The measurements of a non vanishing reactor mixing angle q`13 clearly show that
many simple patterns like the TB mixing are strongly disfavoured. A variation of
the approach adds CP as a residual symmetry in the neutrino sector, such as Gn !
Gn ⇥CP. This modifies the mixing coming from pure Gn and introduces a continuous
variable q which parametrizes this departure. A non vanishing reactor mixing angle
can be easily accommodated by an appropriate choice of q and, at the same time,
testable relations between mixing angles and Dirac as well as Majorana phases are
obtained. Under the action of CP, a generic field transforms

y(x) ! X y⇤(xCP) (I.92)

where X is the representations of the CP operator in field space and xCP = (x0,�x)

is the space-time coordinate transformed under the CP transformation. We choose
the framework in which the residual symmetry is Gn = Z2⇥CP as in Article 3. The
action of Xn on the neutrino mass matrices, is given by

XT
n mnXn = m⇤

n , (I.93)

where the X have to be a symmetric matrix X†X = XX† = 1 , this is a necessary
condition, otherwise the neutrino mass spectrum would be partially degenerate [44].
In addition, the consistency condition between Z

gn

2 and CP has to be fulfilled

Xn r⇤(gn)X�1
n = r(gn) . (I.94)

To derive the form of the unitary diagonalization matrix Vn of the Majorana mass
matrix mn we follow Ref. [44, 49]. Let r(gn) be diagonalized by an Wn1 matrix as in
Eq.(I.77), expressing r(gn) from this equation and substituting it in the consistency
condition in Eq.(I.94), we have

r(gn)
dW†

n1XnW⇤
n1r(gn)

d = W†
n1XnW⇤

n1 (I.95)

this means that W†
n1XnW⇤

n1 is a block diagonal matrix. Being a complex (unitary)
symmetric matrix, it is diagonalised by a unitary matrix Wn2 via the transformation:

W†
n2(W

†
n1XnW⇤

n1)W
⇤
n2 = (W†

n1XnW⇤
n1)

d . (I.96)

We can choose (W†
n1XnW⇤

n1)
d = 1 moving the possible phases to Wn2. With this choice
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the Takagi factorisation of the Xn (valid for unitary symmetric matrices) gives

Xn = WnWT
n (I.97)

with Wn = Wn1Wn2. This implies that the matrix Wn also diagonalizes r(gn)

W†
nr(gn)Wn = W†

n2r(gn)
dWn2 = r(gn)

d (I.98)

Employing the above equation together with Eq.(I.76), we have that

r(gn)
dWT

n mnWnr(gn) = WT
n mnWn , (I.99)

this implies that the combination WT
n mnWn is constrained to be a real block diago-

nal matrix. Thus the mass matrix can be fully diagonalized by a rotation Rij(q) in
the ij-plane of degenerate eigenvalues of r(gn). In this way the matrix mn can be
diagonalized with a unitary matrix defined as

Vn
L = WnRij(q)KnPn . (I.100)

The mass spectrum is not fixed and thus permutations of columns are admitted. The
inclusion of the charged leptons is as discussed in Sec. I.4.2. The full VPMNS is given
by

VPMNS = K⇤
e PeW†

e Wn Rij(q)KnPn . (I.101)

Non-Abelian discrete symmetries in conjunction with the CP symmetry have been
massively explored in the very recent years, for example, the interplay between S4

and CP has been studied in Ref.[49, 50]. This class of models are quite predictive
and one obtains specific correlations between the values of the three neutrino mixing
angles, while the leptonic CP phases are typically predicted to be exactly 0 or p, or
else p/2 or 3p/2.

I.5 The Origin of Flavor

A plethora of possible choices for the flavor symmetry and its breaking are compati-
ble with the existing flavor data: Abelian or non-Abelian, continuous or discrete, and
with a variety of gauge groups and representations.
By suitable assignments of flavor charges to the different fields, the size of the Yukawa
couplings depends only on the dimensionless parameter e = hfi/M. Implying
that the flavor dynamics can equally occur at the EW scale as well as the Planck
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scale. So the flavor symmetry could be broken at any scale above the TeV scale:
MEW ⌧ L f < MPl where L f ' hfi. Indeed, from theoretical guidance, high scale
flavor symmetries are more appealing. The drawback of this perspective is that test-
ing such high scale theories, through direct searches of the flavons and FN mediators
at colliders, would be very difficult.
In the framework of the SM, all the information we can extract on flavor is the
Yukawa eigenvalues (quark and lepton masses) and the left-handed misalignment
between up and down quarks (CKM matrix) or leptons (PMNS matrix). This is not
sufficient to settle the full structure of the Yukawa matrices. Therefore, if the Yukawa
couplings are the only remnant of flavor symmetry breaking, we may never be able
to unravel the Origin of Flavor.
The presence of physics Beyond the Standard Model (BSM) sensitive to flavor, for in-
stance, Supersymmetry, is not an obstacle for flavor but, on the contrary, an oppor-
tunity to advance in our understanding of the flavor puzzle [51]. In supersymmetric
extensions of the SM, the new interactions can provide fundamental insights into
the physics of flavor. Building on the previous work [52], in Article 1-4, we show
that finding a solution to the SM flavor problem will also resolve the so-called super-
symmetric flavor problem to a sufficient degree. In this section, we limit ourselves
to introduce the Minimal Supersymmetric Standard Model and the supersymmetric
flavor problem following the nomenclature or Ref.[53].

I.5.1 Supersymmetry

During the last decades, Supersymmetry (SUSY) has been at the core of extensive re-
search into BSM physics, and it remains yet one of the most compelling possibilities
for New Physics (NP).
Supersymmetry is an extension of the Poincaré symmetry of spacetime, establishing
a relation between fermions and bosons. A Supersymmetry transformation turns a
fermionic state into a bosonic one and vice versa. A supermultiplet is an irreducible
representation of the Supersymmetry algebra and, therefore, must contain an equal
number of fermionic and bosonic states. The combination of a Weyl fermion y and a
complex scalar field f is referred to as a chiral supermultiplet. While a combination
of a Vector boson field Aµ and a Majorana fermion l is called a gauge supermultiplet.
Clearly, the vector bosons of the Standard Model must reside in gauge supermulti-
plets, their fermionic superpartners are generically referred to as gauginos. Mean-
while, a chiral supermultiplet has to accommodate the SM fermions and the Higgs,
their superpartners are called sfermions and higgsinos respectively. None of the su-
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SU(3)C 1 1 3 3 3 1 1 8 1 1

SU(2)L 2 1 2 1 1 2 2 1 2 1

U(1)Y �1/2 1 1/6 �2/3 �1/3 1/2 �1/2 0 0 0

TABLE I.4: Supermultiplets in the MSSM. We display the scalar, f, and Weyl fermion, y,
components of the chiral supermultiplets together with their quantum num-
bers. For completeness we show also the vector boson Aa

µ and Majorana
fermion la components of the gauge supermultiplets.

perpartners of SM particles can be identified with some other Standard Model state.
Thus they are new particles that have eluded our searches so far.
In the limit of preserved Supersymmetry, the components of a supermultiplet have
equal masses and reside in the same gauge group’s representation. As the Super-
symmetry generators commute with those of gauge transformations, this implies all
fields within a supermultiplet have the same weak hypercharge, weak isospin, and
color charge, and consequently equal electric charge. In Table I.4, we display the
minimal set of supermultiplets required to house all of the SM particles.
An elegant description of Supersymmetry promotes the supermultiplet to an object
known as a superfield. This is defined on a manifold called superspace which is
the extension of the ordinary spacetime bosonic coordinates with four fermionic (or
Grassmann) coordinates: n

xµ, qa, q†
ȧ

o
, (I.102)

with µ = 0, 1, 2, 3 and a = 1, 2. As we are interested in the flavor sensitive part of
the SUSY Lagrangian, in the following we sketch how a general chiral Lagrangian is
built using the superspace formalism. The most general chiral superfield in terms of
the coordinates

�
x, q, q† , expanded in the fermionic coordinates, is given by

F =

✓
1 + iq†sµq∂µ +

1
4

qqq†q†∂µ∂µ

◆
f(x)

+

✓p
2q � ip

2
qqq†sµq∂µ

◆
y(x) + qq F(x) ⇢ (f, y, F) . (I.103)
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Hence, a chiral superfield contains as component fields a complex scalar f, a two-
component Weyl fermion y, together with a non-propagating auxiliary bosonic field
F, introduced to define a chiral superfield also off-shell consistently. On-shell, we
can use the equation of motion for F to express it in terms of f, y, so that, as desired,
a chiral supermultiplet contains an equal number of fermionic and bosonic degrees
of freedom. From the products of chiral superfields, we can build the most general
chiral Lagrangian

LSUSY
ch. = [F†

i Fi]D + [W(Fi) + c.c.]F , (I.104)

where [· · · ]D =
Z

d2qd2q†[· · · ] , (I.105)

[· · · ]F =
Z

d2q[· · · ]|q†=0 +
Z

d2q†[· · · ]|q=0 . (I.106)

In Eq.(I.104), the first term gives the kinetic contributions for the component fields
while a single holomorphic3 function of the complex scalar fields determine the non-
gauge interactions for chiral supermultiplets, the so-called Superpotential W, its most
general form is

W(Fi) =
1
2

MijFiFj +
1
6

yijkFiFjFk . (I.107)

Using (I.103) to re-express Eq.(I.104) in terms of its components gives

[F†
i Fi]D = �∂µf⇤i∂µfi + iy†isµ∂µyi + F⇤iFi + (total deriv.) (I.108)

[W(Fi)]F =
1
2

Mij �fiFj + fjFi � yiyj
�

(I.109)

+
1
6

yijk �fifjFk + fkfiFj + fifkFi + yiyjfk + ykyifj + yiykfi
�

.

No kinematic terms for the auxiliary fields Fi, F⇤
i appear in Lch., thus they can be

integrated out using their equations of motions ∂Lch./∂Fk = 0 and ∂Lch./∂F⇤k = 0
that give

Fk = �∂[W(Fi)]⇤F
∂F⇤k = �M⇤

kif
⇤i +

1
2

y⇤kijf
⇤if⇤j , (I.110)

the same for F⇤
i . Once Fi, F⇤

i have been removed from (I.108) and (I.109) we can sub-
stitute into Eq.(I.104) and the chiral Lagrangian for interactive superfields in terms of

3Which means it can not contain vertices involving F†k.
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the physical components reads

LSUSY
ch. = �∂µf⇤i∂µfi + iy†isµ∂µyi + V(f, f⇤) (I.111)

+
1
2

Mijyiyj +
1
2

yijkfiyjyk + c.c. , (I.112)

with V = F⇤iFi = M⇤
ik Mkjf⇤ifj +

1
2

Mily⇤jklfif
⇤jf⇤k (I.113)

+
1
2

M⇤
ily

jklf⇤ifjfk +
1
4

yijly⇤kmlfifjf
⇤kf⇤m . (I.114)

In the first line, we can see that this lagrangian contains the required kinetic terms
and a purely scalar potential V, while, in the second line, we have mass-like contri-
butions and Yukawa interactions for the fermionic components.

Driving fields: In SUSY frameworks, the minimization of the superpotential of the
model demands both flavons and driving fields. In the limit of unbroken SUSY, the
minimum of the related scalar potential V is given by the derivatives of W with re-
spect to the components of the driving fields f0, which define a set of equations
for the components of the flavon fields f. Suppose that a driving f0 and a flavon
f triplet, with components (f1, f2, f3), comprise the SM singlet, in such a way that
terms like f0f and f0f2 are flavor invariant. Thus, the most general renormalizable
superpotential is given by:

W = M f0f + y f0ff . (I.115)

As we are in unbroken SUSY, the potential is defined positive V = |F|2 + D2, then
the minimum is given by F = 0 and D = 0. The vacuum conditions for the f field
are then

8
>>>>>>>><

>>>>>>>>:

∂W
∂f0

1
= Mf1 + y f2f3 = 0

∂W
∂f0

2
= Mf2 + y f3f1 = 0

∂W
∂f0

3
= Mf3 + y f1f2 = 0

! hfi = v

0

B@
1
1
1

1

CA , v = �M
y

(I.116)

while the vacuum conditions for a driving field always give hf0i = 0. The pres-
ence of driving fields is not a necessary condition for obtaining the correct vacuum
alignment. Although this usually implies dealing with longer and more complicated
potentials like the one considered in Appendix E.1.
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I.5.2 Soft terms and the supersymmetric flavor problem

Supersymmetry cannot remain unbroken at the electroweak scale, or these super-
partners would already have been discovered. A realistic phenomenological model
must incorporate Supersymmetry breaking.
Theoretically, we presume that Supersymmetry is a spontaneously broken exact sym-
metry. The specific mechanism through which the breaking occurs is not apparent.
What is clear is that it requires to enlarge the MSSM to a hidden sector of particles
with not appreciable couplings to the visible sector of chiral supermultiplets of the
MSSM. So the breaking should occur in the hidden sector and be communicated to
the visible sector either radiatively or through non-renormalizable interactions.
A possibility is to couple the hidden sector to the visible sector through gravitational-
strength interactions that is the scenario described in Sec. I.5.3 and the explicit frame-
work of our analysis in Articles 1-4.
Practically, it is useful to parametrize our ignorance of SUSY-breaking by adding ex-
plicit terms that break Supersymmetry in the effective Lagrangian. Normally these
terms should be soft in the sense of positive mass dimension

Lsoft = �
✓

1
2

Malala +
1
6

aijkfifjfk +
1
2

bijfifj + c.c.
◆
� ( em2)j

if
†ifj . (I.117)

They consist of gaugino masses Ma, scalar squared-mass terms em2
ij and bij and trilin-

ear couplings aijk. Clearly these contributions break Supersymmetry since the corre-
sponding terms for the superpartners in (I.111) do not exist. The largest mass scale
associated with the soft terms is usually denoted msoft. The total correction to the
Higgs scalar squared mass must vanish in the msoft ! 0 limit

Dm2
H = m2

soft


l

16p2 log
✓

LUV

msoft

◆
+ · · ·

�
. (I.118)

The parameters msoft, appearing in Lsoft, ascertain the mass splittings between the
known SM particles and their superpartners, which tells us that the superpartner
masses should not be too large. Otherwise, we would miss the successful remedy
for the EW hierarchy problem. Using LUV = MPl ⇠ 1019 GeV and l ⇠ 1 in, one
concludes that msoft, and consequently the masses of at least the lightest few super-
partners, should plausibly not be much higher than the TeV scale.
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Outlook of the MSSM

A set of minimal assumptions define the Minimal Supersymmetric version of the Stan-
dard Model (MSSM):

• Minimal particle content and soft-breaking terms.

• Minimal gauge group SU(3)C ⇥ SU(2)L ⇥ U(1)Y and R-parity conservation.

The R-parity is an additional Z2 symmetry: the SM particles are assigned PR = +1
while the sfermions, gauginos and higgsinos have PR = �1. This forbids mixing be-
tween particles and sparticles. The most intriguing phenomenological consequence
of this is that the Lightest Supersymmetric Particle (LSP) is stable and, if electrically
neutral, forms an exceptional dark matter candidate, in the category of Weakly Inter-
acting Massive Particles (WIMP).
Against this background, the MSSM Lagrangian can be written as

LMSSM = LSUSY
ch. + LSUSY

gau. + LMSSM
soft , (I.119)

where LSUSY contains all of the gauge and Yukawa interactions and preserves Super-
symmetry invariance, and Lsoft violates Supersymmetry but admits only mass terms
and coupling parameters with positive mass dimension. The Superpotential for the
MSSM is

WMSSM
ij = Yu

ij Qi uc
j Hu � Yd

ij Qi dc
j Hd � Ye

ij Li ec
j Hd + µ HuHd . (I.120)

where Q, L, uc, dc, ec, Hu, Hd are the left-handed chiral superfields corresponding to
the chiral supermultiplets in Table I.4 on-shell. The Yu,d,e are the usual Yukawa cou-
plings, and the µ term is the supersymmetric version of the Higgs mass. Note that,
due to the Superpotential’s holomorphycity, unlike in the SM, the Higgs sector re-
quires two different chiral superfields to be able to write down this term. After
EWSB, the W and B bosons mix to generate the W±, Z and g. Meanwhile, the mass
eigenstates of their gaugino superpartners are two charginos c±

1,2 and four neutralinos
c0

1,2,3,4 that come from the mixing among themselves and the higgsinos. Here we are
not interested in describing the gauge part of the Lagrangian, for which we refer the
reader to Ref.[53].
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A complete description of the MSSM needs the soft Supersymmetry breaking terms
to be specified. Writing Eq.(I.117) for the MSSM we have

LMSSM
soft =

1
2

⇣
M1eBeB + M2 eW eW + M3egeg + c.c.

⌘
(I.121)

+ m2
Hu

H⇤
u Hu + m2

Hd
H⇤

d Hd + (bHuHd + h.c.) (I.122)

+ em2
Q
eQ† eQ + em2

u eu†
ReuR + em2

d
ed†

R
edR + em2

L
eL†eL + em2

e ee†
ReeR (I.123)

+
⇣

au eQ eu⇤
RHu + ad eQ ed⇤RHd + ae eL ee⇤RHd + h.c.

⌘
. (I.124)

In the second line of we have Supersymmetry-breaking contributions to the Higgs
potential: m2

Hu
and m2

Hd
are mass terms, while b is the only squared-mass term that

can occur in the MSSM. Each of the em2
Q,L, em2

u,d,e is a 3⇥3 hermitian matrix in family
space called soft mass matrices. Finally, each of au,d,e is a complex 3⇥3 matrix in flavor
space known as trilinear matrices. A one-to-one correspondence exists between the
Yukawa couplings of the Superpotential and the trilinears. We expect

M1,2,3 , au,d,e ⇠ msoft , em2
Q,L , em2

u,d,e ⇠ m2
soft (I.125)

with a characteristic mass scale msoft, not much larger than 1 TeV. The expression is
the most general soft Supersymmetry-breaking Lagrangian of the form that is com-
patible with gauge invariance and matter parity conservation in the MSSM. Unlike
the Supersymmetry-preserving part of the Lagrangian, the above LMSSM

soft introduces
many soft new parameters that were not present in the ordinary SM. A careful count
reveals 105 additional masses, phases, and mixing angles in the MSSM Lagrangian
that cannot be rotated away by field redefinitions for the quark and lepton supermul-
tiplets, and have no counterpart in the ordinary SM. Thus, in principle, Supersym-
metry breaking appears to introduce a tremendous arbitrariness in the Lagrangian.
We can state the supersymmetric flavor problem as follows [51]: the SUSY soft-breaking
terms have a completely separate origin from the Yukawa couplings in the Super-
potential and we have no knowledge upon their structure. On general grounds, we
could expect that all the entries in the soft breaking matrices were O(1) in any basis
and, in particular, in the basis of diagonal Yukawa couplings. In this situation, FCNC
and CP violation observables would receive significant contributions from loops in-
volving SUSY particles. This disagrees strongly with the stringent phenomenological
bounds on these processes, as discussed in Sec.I.6.
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I.5.3 Planck-scale-mediated soft terms

Specific models for the soft terms can predict the masses and the mixing angles for
the MSSM in terms of fewer parameters. This is the case of the MSUGRA models
in which the spontaneous Supersymmetry breaking sector connects with the MSSM
sector mostly through, Planck scale suppressed, gravity interactions. Thus the SUSY
mediation scale is the Plank-scale: LMed = MPl. The most general supersymmetric
non-renormalizable Lagrangian involving only chiral superfields is given by

L =
h
K(F†

i , Fj)
i

D
+


1
4

fab(Fi)cW aa cW b
a + W(Fi) + c.c

�

F
(I.126)

where

• The Kähler potential K: it is a function of both chiral and anti-chiral superfields.
In renormalizable theories it is just K = F†

i Fi.

• The Superpotential W: contrary to the Kähler, it is an arbitrary holomorphic
function of the only chiral superfields treated as complex variables.

• The Gauge kinetic function fab: like the superpotential, it a holomorphic function
of the chiral superfields treated as complex variables.

Let X be the spurion chiral superfield whose FX term eventually takes a VEV: X !
qqhFXi, X⇤ ! q†q†hF⇤

Xi that breaks Supersymmetry. The SUSY breaking scale is
given by LSUSY =

p
hFXi. We assume, for simplicity, that there is a single F-term,

that encodes the effects of SUSY-breaking in the hidden sector, and couples, through
gravitational interactions, universally to all the visible-sector fields. Then the poten-
tials in Eq.(I.126) expanded in 1/MPl read

W = WMSSM
ren � 1

MPl

✓
1
6

yX
ijkXFiFjFk +

1
2

µX
ij XFiFj

◆
+ . . . , (I.127)

K = F†
i Fj +

1
M2

Pl
kijF†

i FjXX† + . . . , (I.128)

fab =
dab
g2

a

✓
1 � 2

MPl
faX + . . .

◆
. (I.129)

The resulting Supersymmetry-breaking Lagrangian, after integrating out the auxil-
iary fields in Fi is

Lsoft = �
✓
hFXi
2MPl

falala +
hFXi
6MPl

yX
ijkfifjfk +

hFXi
2MPl

µX
ij fifj + c.c.

◆

� |hFXi|2
M2

Pl
kijf

†
i fj . (I.130)
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FIGURE I.5: Excluded region of the MSUGRA/CMSSM parameter space in the plane
{m0, M1/2} from the ATLAS collaboration with at LHC with luminosity L =
20 fb and center of mass energy

p
s = 8 TeV.

This has the same form as Eq.(I.117) with soft terms of order msoft ⇠ hFXi/MPl. If
one assumes the scale of SUSY particles to be msoft ⇠ 1 TeV and MPl ⇠ 1019, thenp
hFXi ⇠ 1010�11 GeV. In principle, the parameters fa, yX

ijk, µX
ijk and kji are determined

by the fundamental underlying theory. A very popular simplification is to assume a
minimal flavor blind structure in which fa = f , kij = kdij, yX

ijk = ayijk and µX
ij = bµij,

with universal real dimensionless constants, thus four parameters are defined at a
renormalization scale Q = MPl

4:

M1/2 = f
hFXi
2MPl

, m2
0 = k

|hFXi|2
M2

Pl
, A0 = a

hFXi
6MPl

, B0 = b
hFXi
2MPl

. (I.131)

In terms of which, the soft terms appearing in Eq.(I.121) are:

M1,2,3 = M1/2 , m2
Hu,Hd

= m2
0 , b = B0µ , (I.132)

em2
Q,L = m2

0 1 , em2
u,d,e = m2

0 1 , au,d,e = A0Yu,d,e . (I.133)

After evolving the soft terms down to the EW scale, one can demand that the scalar
potential gives correct EWSB. This yields to trade |µ| and B0 for one parameter tan b =

4Although a popular approximation is to start the RG running from the GUT unification scale
MGUT ⇠ 1015�16 GeV instead of MPl.
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vd/vu, that is the ratio of VEVs of the two Higgs doublets (thus vd = vH cos b,
vu = vH sin b). So the entire mass spectrum in MSUGRA models is usually fixed
in terms of the following five input parameters

M1/2 , m2
0 , A0 , tan b , Arg(µ) , (I.134)

to be added to the usual gauge and Yukawa couplings of the MSSM. This mini-
mal framework has the virtue to be highly predictive and to circumvent the most
dangerous types of flavor changing and CP violation. Direct experimental searches
have been performed to (dis)prove this simple scenario. The excluded region of the
MSUGRA parameter space in the plane {m0, M1/2} (tan b = 30, A0 = �2m0 and
µ > 0) is displayed in Fig.I.5.
A more interesting case is represented by models, in which the flavor structure of
the matrices is controlled, and to some extent protected, by the same dynamics that
generates the hierarchical structure of the SM Yukawa matrices to which we dedicate
the next section.

I.5.4 Supersymmetry and Flavor Symmetries

It is natural to think that the same mechanism generating the flavor structures in
the Yukawa couplings is also responsible for the structure in the SUSY soft-breaking
terms [51]. In this way, finding a solution to the SM’s flavor problem can also provide
a solution to the SUSY flavor problem. Specifically, it could be the case that an un-
derlying spontaneously-broken flavor symmetry is simultaneously responsible for
the fermion masses and mixing angles and the different flavor structures in the soft-
breaking terms. Two possible scenarios disclose to us depending on the hierarchy
between the SUSY mediation scale LMed and the flavor symmetry scale L f :

• L f > LMed : the Soft terms are generated after the breaking of the flavor sym-
metry G f , and the only remnants of the flavor symmetry at LMed are the Yukawas.
At the scale LMed, the soft-breaking terms can feel the flavor breaking only
through the Yukawa couplings or via non-renormalizable operators propor-
tional to LMed/L f and therefore are negligible.

• L f < LMed : the Superpotential and Soft terms must respect the flavor symme-
try above L f , but, at this scale, they feel the breaking of the flavor symmetry in
the same way that the Yukawa couplings. The soft mass matrices and the trilin-
ears offer new flavor observables. Note that this is always the case of Gravity
mediation.
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FIGURE I.6: The different scales at play in the breaking of SUSY in the Gravity mediated
scenario.

The second is a more appealing situation. In the physical basis, where the Kähler
is the identity, i.e. the fields are redefined to obtain canonical kinetic terms, and
the Yukawas are diagonal, one might naively expect the soft breaking matrices to be
simultaneously diagonalized with the Yukawa structures. This is is not generally the
case. Note that the non renormalizable part of Eqs.(I.127, I.128) are written as

W � Wren =
X

MPl
⇥ Wren , K � Kren =

XX†

M2
Pl

⇥ Kren , (I.135)

where (⇥) stands for all the possible ways in which the spurion field X, or the com-
bination XX†, can be coupled to the visible sector vertices of the Superpotential.

(m2
0)ij = kij

|hFXi|2
M2

Pl
, (A0)ij = aij

hFXi
6MPl

, (I.136)

where kij and aij are positive integers depending on the number of flavon insertions
that generate each supergraph in Wren. These coefficients are usually different for
each entry of the trilinears and soft masses, thus introducing a mismatch with the
corresponding Yukawa and Kähler structures. As a result, even stemming from an
ultraviolet flavor-conserving origin, the soft-breaking Lagrangian typically exhibits
large tree-level flavor violating effects, better discussed in the next section. However,
the flavor symmetry controls the size of flavor violation. Indirect flavor violating
measurements provide a new tool to constrain parameters like the gluino mass and
the sfermion masses. In Article 1, we show that the constraints, especially in the lep-
tonic sector, are incredibly competitive with direct LHC searches.
To conclude, in the case L f < LMed, which is always true when the Supersymmetry
breaking is mediated by gravity. Supersymmetric theories supplemented by an un-
derlying flavor symmetry G f provide a rich playground for model building aimed
at explaining the flavor structure of the Standard Model. Unfortunately, these effects
are model dependent.
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I.6 Flavor and CP Observables of interest

In this section, we introduce the most relevant observables considered in this dis-
sertation. New physics contributions to flavor changing neutral current (FCNC)
processes, which change the flavor of a fermion current without altering its elec-
tric charge, tend to be much larger than the SM predictions. In particular, in the
analysis of Article 1-3 the most stringent bounds on the parameter space of the con-
sidered models are offered by the radiative lepton decays ` ! `0g and the three-body
charged lepton decays ` ! 3 `0 as well as from the CP-violating parameter # in the
(K0 � K0)-mixing. In Article 5 we focused on the interplay between LFV, mass gener-
ation, and the two discrepancies in the leptonic anomalous magnetic moment.

I.6.1 Anomalous Magnetic Moment

Subatomic particles have a magnetic and an electric dipole moments that are gener-
ated by their intrinsic spin~s. The non-relativistic Hamiltonian interaction of a funda-
mental particle of spin~s with an electric and magnetic field includes

H = �~ds · ~E �~µs · ~B , (I.137)

where ~ds is the electric dipole moment (EDM), which measures the separation between
positive and negative charge within the particle, and ~µs is the magnetic dipole moment
(MDM) that measures of how much torque the particle experiences when placed in a
magnetic field. The energy terms in Eq.(I.137) are, respectively, odd and even terms
under parity (P) and time-reversal (T). Under the assumption of CPT symmetry, T
violation implies CP violation so a nonzero value for d is a sign of CP violation.
In the SM, the CKM phase is the only source of CP violation and lepton EDMs are
strongly suppressed as they arise only at four loop level with three W bosons and
one gluon giving |dSM

e | ⇠ 10�41 [54], the muon and tau lepton EDMs arise with the
same mechanism, |dSM

µ | = mµ de/me ⇠ 10�38 and |dSM
t | = mt de/me ⇠ 10�37. Thus

EDMs offer strong constraints over the presence of complex phases in NP scenarios.
The MDM can be expressed in terms of the gyromagnetic factor g : ~µs = g (Q/2m)~s,
with Q = ±e the charge of the particle. The Dirac magnetic moment, corresponding
to tree-level Feynman diagram, which can be thought of as the classical result, can be
calculated from the Dirac equation. The Dirac value of the magnetic dipole moment
of a charged lepton is g = 2. The anomalous magnetic moment (AMM) is defined as the
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FIGURE I.7: Feynman diagrams contributing to the QED vertex in the SM. (a) Dirac
contribution that gives g = 2. (b) the first QED correction known as the
Schwinger term. (c) the Hadron Vacuum Polarization as the first QCD cor-
rection. (d), (e) the first EW contributions of the gauge bosons.

difference with respect to the classical value

a =
(g � 2)

2
, (I.138)

called shortly (g � 2). Leptons are elementary particles and have no internal struc-
ture, the magnetic moment of a lepton can differ from its Dirac value (the anomaly)
through radiative corrections of virtual particles that couple to the lepton. The charged
lepton AMMs and EDMs can be extracted from the lepton-photon amplitude with
initial and final states of momenta p and p0 (the transfer momentum is defined as
q ⌘ p0 � p)

i M = �i e Q` Aµ(q) u`(p0) Gµ(q2) u`(p), (I.139)

where Aµ is the electromagnetic field and u`, u` are the Dirac spinor fields of the
lepton with ` = e, µ, t. The vertex operator, Gµ, is restricted by Lorentz invariance to
be

Gµ = F1(q2) gµ + F2(q2)
i sµnqn

2m`
+ F3(q2) g5

i sµnqn

2m`
, (I.140)

where gµ are the gamma matrices, sµn = i[gµ, gn]/2, and F1,2,3 are unknown func-
tions of q2 called form factors. In the limit where q2 ! 0, the form factors Fi(0) cor-
respond to classical definitions of the electric charge (i = 1), the leptonic anomalous
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AMM Current Value EDM Bound

ae /10�3 SM 1.15965218161±0.00000000023 [55]
|de| [e cm] 10�29

exp 1.15965218073±0.00000000028

aµ /10�3 SM 1.16591820±0.00000006 [56]
|dµ| [e cm] 10�19

exp 1.16592089±0.00000063

at /10�3 SM 1.17721±0.00005 [57]
|dt| [e cm] 10�17

exp [�52, 13] at 95% CL

TABLE I.5: Current experimental and theoretical status of lepton AMMs and EDMs. The
experimental values are taken from Ref.[4] (website: PDGlive).

magnetic moment (i = 2) and the electric dipole moment (i = 3):

F1(0) = 1 , F2(0) = a` , F3(0) =
d`
e

. (I.141)

Theoretical value: Within the SM the prediction for the value of the anomalous mag-
netic moment includes three parts

aSM
` = aQED

` + aQCD
` + aEW

` (I.142)

where, in order of importance, aQED includes all photonic and leptonic loop contri-
butions up to O(a5), aQCD contains contributions from hadronic loops and aEW the
loop contributions involving the W±, Z. The main diagrams contributing to each
term in Eq.(I.142) are displayed in Figure I.7 where the first order QED contribution
is the famous Schwinger correction (a/2p ⇠ 10�3) and first order QCD contribution
to the anomaly results from hadron vacuum polarization (HVP). The HVP contri-
bution can not be calculated perturbatively and the QCD simulations on the lattice
represent nowadays the most promising tool for an accurate determination of the
hadronic contribution from first principles.

The current experimental and theoretical best estimates for the AMMs of the lep-
tons, together with the limits on EDMs, are displayed in Table I.5. The main sources
of the uncertainty for the anomalies are the experiment and the QED calculation for
ae. While for aµ, they are the experiment and the hadronic contribution. The short
lifetime of the tau (' 2.9 ⇥ 10�13s) makes yet quite complex a precise experimental
determination of at.
To achieve the accuracy of theoretical prediction for (g � 2)e matching the experi-
mental precision, one needs to calculate a vast number of Feynman diagrams, up to

http://pdglive.lbl.gov/Viewer.action
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5-loop level for (g � 2)e. The QED prediction for the AMM of the electron agrees
with the experimentally measured value to 9 significant figures, making it the most
accurately verified prediction in the history of physics and the most substantial proof
of the SM’s predicting capacity. Matching the SM prediction for (g � 2)e to the mea-
surement has been used for many years as the most precise way to evaluate the fine-
structure constant a. Recently, a new determination of the fine structure constant a

from atomic cesium led to a more precise value of the electron anomaly and high-
lighted a new discrepancy:

Dae = aexp
e � aSM

e = �(8.8 ± 3.6)⇥ 10�13, [2.4s] . (I.143)

This is very interesting considering that, as opposed to ae, the SM result for aµ is
one of the very few of its predictions differing significantly from the experimentally
measured value:

Daµ = aexp
µ � aSM

µ = +(2.7 ± 0.7)⇥ 10�9 [3.5s] . (I.144)

Notice the opposite signs of the electron and muon anomalies. The AMM provides
an excellent test for physics beyond the SM. In a large class of models, new-physics
contributions to a` are proportional to m2

` , a situation that we call naive scaling. In
this case, the present value of the (g � 2)µ anomaly, corresponds to Dae = (0.6 ±
0.2)⇥ 10�13. Observing or excluding an anomaly in ae could become the most con-
vincing way to establish the origin of the aµ discrepancy.
The Fermilab Muon g-2 experiment (E989) [58] and J-PARC (E34) aim at a fourfold
reduction of the experimental uncertainty for the muon aµ with a relative uncertainty
of 140 ppb which has the potential to confirm the discrepancy with a 7s significance
if the central value remains the same. Meanwhile, essential improvements in the
precision of the electron ae are eagerly expected to come from the Harvard group.

I.6.2 Lepton Flavor Violation

In the SM with massless neutrinos, muon can decay only to electron and neutrino
pair, µ ! enenµ

5, other decays are kinematically forbidden or due to lepton flavor
conservation. From neutrino oscillations, we now know that the family lepton num-
bers, Le, Lµ and Lt, are violated in Nature. This necessarily implies some degree of
violation in the charged-lepton sector. Although the search for such a violation has

5The decay width for such dominant standard channel is usually used to normalize the branching
ratios for more exotic LFV decays
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LFV process Current Bound Future Bound

BR(µ ! eg) 4.2 ⇥ 10�13 (MEG at PSI[60]) 6 ⇥ 10�14 (MEG II [61])

BR(µ ! eee) 1.0 ⇥ 10�12 (SINDRUM[62]) 10�16 (Mu3e[63])

CR(µ � e )Al � 10�17 (Mu2e[64], COMET[63])

BR(t ! eg) 3.3 ⇥ 10�8 (BaBar[65]) 5 ⇥ 10�9 (Belle II[66])

BR(t ! µg) 4.4 ⇥ 10�8 (BaBar[65]) 10�9 (Belle II[66])

BR(t ! eee) 2.7 ⇥ 10�8 (Belle[67]) 5 ⇥ 10�10 (Belle II[66])

BR(t ! µµµ) 2.1 ⇥ 10�8 (Belle[67]) 5 ⇥ 10�10 (Belle II[66])

TABLE I.6: Relevant LFV processes considered in this dissertation.

been pursued in a host of channels both at dedicated and general-purpose experi-
ments, the data collected in Table I.6 show that, unlike in the neutrino and quark
sector, there is yet no evidence of Lepton Flavor Violation in processes involving
charged leptons, see Ref.[59] for a comprehensive review. The branching ratio of
µ ! eg can be computed from the diagram in Figure I.8 and gives

BR(µ ! eg) =
G(µ ! eg)
G(µ ! enn)

=
3a

32p

�����

3

Â
i=1

VµiV⇤
ei

m2
i

M2
W

�����

2

⇠ 10�54 , (I.145)

where the term inside the modulus is a GIM-like suppression factor

3

Â
i=1

VµiV⇤
ei m2

i = Vµ3V⇤
e3 Dm2

31 + Vµ2V⇤
e2 Dm2

21. (I.146)

Therefore, adding neutrino mass terms to the SM Lagrangian induces CLFV but forty
orders of magnitudes smaller than the sensitivity of present-day experiments, thus
at a level of no phenomenological interest. However we stress that LFV process in
charged lepton sector are so strongly suppressed not because of the GIM mechanism
but rather by the smallness of the neutrino masses compared to the EW scale. If the
penguin diagram dominates over the box diagram in Figure I.8, it can be intuitively
understood that the rates of µ ! 3 e and µN ! eN are further suppressed by a factor
of order a with respect to µ ! eg:

BR(µ ! 3 e) ' a

3p

 
log

m2
µ

m2
e
� 3

!
BR(µ ! eg) (I.147)

CR(µ � e)N ' a BR(µ ! eg) (I.148)
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(a)

(b)

FIGURE I.8: The Feynman diagrams contributing to the LFV processes in Table I.6 at
LO: (a) first contribution to the radiative lepton decays ` ! `0g, (b) first
contribution to the three-body charged lepton decays ` ! 3 `0.

In this way, the MEG bound on BR(µ ! eg) translates into a limit on the above ob-
servables at the 10�15 far from the present bound. Many NP models like the typical
supersymmetric frameworks of Article 1-3 maintain this proportionality. Measure-
ment of ` ! 3 `0 above or below the expected scaling would rule out many of these
models. The future bounds on the processes in Table I.6, combined, are an ambitious
project to identify what kind of NP is eluding us.
The bounds on LFV set already strong limits on NP, especially when considered to-
gether with the (g � 2)-discrepancies. In the following, we quantify this in a model
independent approach.

Dipole operator: It is commonly accepted that the SM constitutes only an effective
theory which is valid up an energy scale LNP where NP enters and additional dy-
namic degrees of freedom become important. In an effective Lagrangian approach,
the SM is treated as the Leading Order term of a Standard Model Effective Field The-
ory (SMEFT) expanded in 1/LNP:

LSMEFT = LSM(4) +
C(5)

LNP
O(5) + Â

n

C(6)
n

L2
NP

O(6)
n +O

 
1

L3
NP

!
. (I.149)
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where LSM(4) is the usual renormalizable part of the SM Lagrangian which contains
dimension d = 2 and d = 4 operators only, while On are non-renormalizable op-
erators with mass dimension d > 4, suppressed by LNP � vH, that is the cut-off
scale of NP, and the Cn are dimensionless Wilson coefficients. Interestingly, there is
only one possible operator that we can write down with d = 5, and this is the Wein-
berg Operator that was introduced to generate the neutrino Majorana mass term in
Eq.(I.27). As we have seen, it induces CLFV effects only at loop level and with neg-
ligibly low rates. The first relevant CLFV effects thus arise at the d = 6 level. In
this effective Lagrangian approach, non-standard effects to the leptonic observables
of interest (g � 2)`, BR(` ! `0g), EDMs may arise via the dipole operators

L(6)
`g =

em`

8p2 C``0 ` sµn PR `0 Fµn + h.c., (I.150)

where Fµn = ∂µ An � ∂n Aµ is the field strength tensor and the Wilson coefficient C``0 is
a matrix in flavor space called the dipole matrix. After the rotation to the mass basis,
C ! C0 = V`

L C V`†
R , the anomalous magnetic moment of the leptons and the FV

transitions are given, respectively, in terms of the diagonal and off diagonal entries
of the dipole matrix

(g � 2)` =
m2

`

4p2 Re(C0
``) , d` =

em`

4p2 Im(C0
``) (I.151)

BR(` ! `0g) =
3 a

p G2
F

�
|C0

``0 |2 + |C0
`0`|2

�
. (I.152)

Therefore, given the values in Table I.5 we can deduce the following constraints on
the diagonal entries C0

`` of the dipole matrix in the mass basis

Re(C0
ee) ' �7 ⇥ 10�5 GeV�2 , Im(C0

ee) . 6 ⇥ 10�7 GeV�2 ,

Re(C0
µµ) ' +5 ⇥ 10�6 GeV�2 , Im(C0

µµ) . 10�4 GeV�2 , (I.153)

and, from Table I.6 the bounds on the off-diagonal entries C0
``0 read

|C0
eµ|, |C0

µe| . 10�10 GeV�2 ,

|C0
et|, |C0

te| . 6 ⇥ 10�8 GeV�2 , (I.154)

|C0
µt|, |C0

tµ| . 7 ⇥ 10�8 GeV�2 .
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Eqs.(I.153) and (I.154) quantify the complexity the task. From Eq.(I.153), the diagonal
entries of C do not respect the naive mass scaling in m2

` because C0
ee > C0

µµ (although
this could be relaxed by considering a larger imaginary part in Cµµ) and the negative
sign of C0

ee seem to point to different NP contributions to accommodate the electron
and muon discrepancies [68].
Moreover, due to the strong limits on LFV, form Eq.(I.154) we see that the dipole
matrix must be diagonal to a very high degree in the mass basis. There are two possi-
bilities, either the lepton Yukawa and the dipole matrix are both generated diagonal
to a very good degree, or C0

``0 and C0
`0` are instead non-vanishing and such that they

cancel the contributions from C0
ee and C0

µµ times the mass rotations. Considering the
high degree of cancellation, the last case is conceivable only if there is a common
origin of C0 and Y0, which is a possibility that we explore in Article 5.

LFV in Supersymmetry

New sources of LFV can stem from the couplings among the SM leptons, their SUSY
partners, and the neutralinos and charginos given in Appendix A.2. These interac-
tions are flavor violating unless the lepton and slepton mass matrices are aligned
and can be simultaneously diagonalized, which does not occur in general. The 6 ⇥ 6
slepton mass matrix is given by

⇣
èL è†

R

⌘
m

2
è

 
èL
èR

!
=
⇣
è†

L
è†

R

⌘  
DLL DLR

DRL DRR

! 
èL
èR

!
, (I.155)

where

DLL
ij = em2

L,ij +
v2

d
2
(Y`†Y`)ij + m2

Z cos 2b

✓
�1

2
+ sin2 qW

◆
dij ,

DRR
ij = em2

`,ij +
v2

d
2
(Y`†Y`)ij � m2

Z cos 2b sin2 qWdij , (I.156)

DLR
ij = DRL

ij =
vdp

2

⇣
a`,ij � µ⇤Y`

ij tan b
⌘

.

Usually, these SUSY-breaking matrices can not be simultaneously diagonalized with
the Yukawa Y` and have off-diagonal entries in the mass basis. As a consequence,
the physical sleptons are mixtures of different flavors.
In the spirit of the mass insertion approximation (MIA) [69] in Appendix A.3, we can
also treat the off-diagonal entries of the slepton mass matrix in Eq.(I.156), normalised
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FIGURE I.9: Feynman diagram for meson oscillation : in the SM two different neutral
K mesons, carrying different strangeness, can turn from one into another
through the weak interactions, where i, j = 1, 2, 3.

by the diagonal entries, as mass insertions
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(I.158)

with i 6= j. The above mass insertions can be constrained by the experimental limits
on LFV once information on the SUSY spectrum are provided, an example of this is
given in Appendix D.2 through the analysis of Article 3.

I.6.3 Neutral Kaon Mixing

Historically, kaon physics has been the main player in the field of flavor physics,
being at the source of many of the fundamental ingredients of the SM: the flavor con-
cept of strangeness, the existence of higher-mass scales such as the charm and the
top, parity violation, meson-antimeson oscillations, the GIM mechanism, and CP vi-
olation.
Two neutral pseudoscalar K mesons exist that are each other’s antiparticles: the
K0(ds) and K0(sd). In the SM, (K0 � K0)-mixing occurs by one loop box diagrams
displayed in Figure I.9, the two mass eigenstates are called K-long (KL) and K-short
(KS) referring to their lifetimes which are found experimentally to be very different:
t(KS) ⇠ 90ps and t(KL) ⇠ 5⇥ 103 ps. The explanation of this difference can be found
in the CP properties of the two states. The K0, K0 mesons transform into each other
under CP conjugation: CP|K0i = �|K0i and CP|K0i = �|K0i. Thus the CP-even and
CP-odd eigenstates are respectively given by

K1 =
1p
2
(K0 � K0

) , K2 =
1p
2
(K0 + K0

) . (I.159)
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If CP is conserved in the decay of neutral kaons, then the CP-even state K1 will decay
into two pions K1 ! 2 p, forming a CP-even final state. On the contrary K2, has
to decay into a CP-odd final state, which contains three pions K2 ! 3 p. The three
pion final state is phase space suppressed with respect to the two pion final state, the
K1 decay rate is much faster, so that its lifetime is much shorter than the one of K2.
The mass eigenstates KL,S are not pure CP eigenstates but their different lifetimes are
explained assuming that KS ⇠ K1 is basically the CP-even state, with a small CP-odd
admixture, while KL ⇠ K1, is approximately the CP-odd state K2, with a small CP-
even admixture.
In 1964, the decay KL ! p+p� has been observed [70], yielding the first experimen-
tal confirmation that CP symmetry is violated. However, this does not tell us where
the observed CP violation originates from. CP can either be violated in the neutral
kaon mixing, if the mass eigenstates KL,s are not CP eigenstates, CP can be violated
in the decay, or also in the interference of mixing and decay amplitudes.

CP-parameters: The key idea to distinguish whether CP is violated in the mixing
(indirect CP violation) or in the decay process (direct CP violation) is that the amount
of direct CP violation depends on the decay channel, but indirect CP violation does
not. It is possible to disentangle the two types of CP violation studying the set of
decays KL,S ! p0p0 and KL,S ! p+p� and defining two parameters # and #0 that
parametrize indirect and direct CP violation

# =
1
3
(h00 + 2 h+�) , Re

✓
#0

#

◆
=

1
6

 
1 �

����
h00

h+�

����
2
!

, (I.160)

where

h00 =
A(KL ! p0p0)
A(KS ! p0p0)

= # � 2#0 , h+� =
A(KL ! p+p�)
A(KS ! p+p�)

= # + #0 . (I.161)

Both # and Re(#0/#) have been experimentally and theoretically measured with high
precision, with the results

|#|exp = (2.228 ± 0.011)⇥ 10�3 [4] , Re
✓

#0

#

◆exp

= (16.6 ± 2.3)⇥ 10�4 [4] ,

|#|SM = (1.90 ± 0.26)⇥ 10�3 [71] , Re
✓

#0

#

◆SM

= (14 ± 5)⇥ 10�4 [72] .

(I.162)
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A value of Re(#0/#) different from zero establishes the presence of direct CP violation
in the decay amplitudes, confirming that CP violation is associated with a DS = 1
transition as predicted by the SM. The SM value of # is slightly lower, albeit still con-
sistent with the experimental result. More controversial is the theoretical prediction
of Re(#0/#) because the first next-to-leading order (NLO) calculations claimed SM val-
ues one order of magnitude smaller than (I.162). The theoretical prediction is in good
agreement with the experimental value, once the long-distance contributions of the
final pion dynamics were taken adequately into account [73].
Due to its strong suppression in the SM, # is sensitive to potential NP contributions.
The good agreement of the measured values with its SM predictions results in strong
constraints on the NP entering (K0 � K0)-mixing.
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ABSTRACT: Supersymmetric theories supplemented by an underlying flavor symme-
try G f provide a rich playground for model building aimed at explaining the flavor
structure of the Standard Model. In the case where supersymmetry breaking is medi-
ated by gravity, the soft-breaking Lagrangian typically exhibits large tree-level flavor
violating effects, even if it stems from an ultraviolet flavor-conserving origin. Build-
ing on previous work, we continue our phenomenological analysis of these models
with a particular emphasis on leptonic flavor observables. We consider three repre-
sentative models which aim to explain the flavor structure of the lepton sector, with
symmetry groups G f = D(27), A4, and S3.
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1.1 Introduction

As the LHC marches onward in its search for hints of physics beyond the Standard
Model, the community eagerly waits. Unfortunately, despite the overwhelming ev-
idence for its need in order to explain open questions, such as the nature of dark
matter, the stability of the Higgs mass with respect to higher scales, the origin of
the Baryon asymmetry in the universe, amongst others, New Physics (NP) contin-
ues to elude us. We should not despair however, as the LHC, along with a robust
set of other dedicated experiments, will continue to probe new corners of parameter
space where NP could be hiding. At the same time, as our “first-guess” models come
increasingly under pressure, it is worth pausing to consider alternative methods or
observables which may help to further constrain them and extend the reach of the
LHC.
A class of such models, popular for their ability to shed light on several of the open
questions in particle physics, are supersymmetric extensions of the Standard Model.
Its simplest incarnation, the Minimal Supersymmetric Standard Model (MSSM) , has
many virtues: a possible dark matter candidate; new sources of CP violation; a mech-
anism for stabilizing the mass of the Higgs; the possibility for unification of the fun-
damental forces. However the non-observance by the LHC in Runs 1 and 2 of any
of its predicted superpartners is beginning to constrain such a minimal realization of
supersymmetry, pointing to a mass scale of the new predicted particles which may
be heavier than naively expected. In the scenario where supersymmetry is indeed
realized by nature, but out of reach of current colliders, we should look for further
ways to probe or constrain the large parameter space available in the MSSM.
One curious legacy of the Standard Model (SM) is its rich flavor structure, which has
historically [1] proven invaluable and complementary to direct searches for sniffing
out new particles. Yet, understanding the peculiar mass and mixing pattern of the
fundamental fermions remains one of the biggest puzzles of the SM. Despite a wealth
of ideas and models put forth by the theory community, a convincing solution to this
puzzle is still missing. Among the proposed ideas, the use of flavor symmetries,
both continuous and discrete, remains a popular tool for model builders. This av-
enue has been especially explored in the lepton sector, where the suggestive form
of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix has led to several ansätze
for its decomposition in terms of primitive bare mixing matrices, which give leptonic
mixing angles close to their measured values. In most models, the aim is to motivate
these special angles through the Clebsch-Gordan (CG) coefficients of a symmetry
group, and moreover, to predict the as yet unmeasured parameters of the leptonic
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sector: the Dirac CP violating phase, the quadrant of the atmospheric angle, and the
neutrino mass ordering.
Unfortunately, a definitive picture has failed to emerge from the large number of
present models (for recent reviews, see[2, 3]). One well-known problem at the level
of the SM is that we cannot fully reconstruct the fundamental flavor parameters of the
SM Lagrangian, the Yukawa matrices. In this regard, NP models which predict new
flavor interactions in addition to new particles are particularly interesting, as they
are bound to shed additional light (right-handed mixings, etc.) on the flavor puzzle
regardless of their original motivations. The MSSM contains a wealth of such new
flavor interactions in its soft-breaking sector. Although, in all generality the MSSM
contains a host of unknown parameters in the flavor sector, in a previous work [4] we
explored a specific class of predictive models where the MSSM emerges as an effective
theory from an ultraviolet flavor-symmetric theory. These models :

• Arise from a superpotential which is invariant under a given flavor symmetry
G f , spontaneously broken at a scale L f . After the breaking of G f , new effective
operators, à la Froggatt-Nielsen (FN), contribute to the low-energy superpoten-
tial. Similar effective operators contribute to the soft-breaking Lagrangian.

• Mediation of Supersymmetry breaking to the visible sector is assumed to occur
through interactions at a scale LMed � L f , so that the soft-breaking terms, and,
more exactly, the visible sector operators giving rise to the soft-breaking terms,
respect G f . An illustrative example of such a mediation scheme, which we will
assume for simplicity, is gravity mediation.

Under these conditions, these models contain tree-level flavor violating effects, arising
from the mismatch between the order one coefficients of their supersymmetric and
corresponding supersymmetry-breaking supergraphs after integrating out the medi-
ator fields at L f . In addition, as the flavor parameters 1 are fixed by the structure
of the superpotential, these models are minimal, depending only on the traditional
supergravity input parameters m0, m1/2, A0, tan b, and µ. This minimality and cal-
culabity of these models makes them interesting in their own right, and especially
amenable to constraints from flavor observables; in many cases extending beyond
the reach of direct searches at the LHC.
In this work, we continue our investigation of this class of models [4–6], with a
particular emphasis on constraints coming from leptonic flavor observables such as
µ ! eg, µ ! 3 e, and µ � e conversion, although for completeness we scan each

1With the exception of the usual unknown order-one parameters.
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model over all relevant flavor observables to obtain the strongest constraints. We
look at three representative models available in the literature, based on the symme-
try groups D(27), A4 and S3.
Our paper is organized as follows. We begin in Sec. 1.2 with a short review of the
mechanism presented in [4], giving generic formulas applicable for any of the class
of models under investigation. In Secs. 1.3-1.5 we apply these general formulae to
specific models found in the literature based on the flavor groups D(27), A4, and S3.
These sections are self-contained, including the relevant phenomenological analyses
and results for each group. Finally, we conclude in Sec. 1.6 with brief remarks on our
general results and future outlooks for extensions of this work.

1.2 A Review of the Mechanism

In this section we review and update the results of our previous work [4], demon-
strating that in SUSY models augmented with a flavor symmetry spontaneously bro-
ken at a scale L f  LMed, flavor violation in the soft-breaking terms is generically
present in the low-energy effective theory. This remains true even starting with com-
pletely flavor blind soft-breaking in the full theory and runs contrary to the naive
expectation that the soft terms, being controlled by the flavor symmetry, should be
diagonalized by the same rotations which diagonalize the Yukawa couplings. This
mismatch between the Yukawa or Kinetic mixing matrices and their corresponding
soft-term structures stems from the different ways in which SUSY breaking may be
inserted in the full theory diagrams, giving rise to a single coupling in the low-energy
effective theory.
Supersymmetry breaking can be represented by the insertion of a chiral background
superfield, a spurion X, which is assumed to obtain a vacuum value largely along its
supersymmetry breaking component hFXi � hXi. Although not necessary, we will
make the simplifying assumption in this work that this spurion is the only source of
SUSY breaking and couples universally to the visible sector.
This mismatch between the soft-breaking terms and the superpotential or Kähler po-
tential is manifest in terms of the FN fields in the full theory. Corrections to the low-
energy superpotential W and Kähler potential K are generated below the flavor scale,
L f . These corrections stem from non-renormalizable operators containing an appro-
priate number of flavon insertions, generated by integrating over the appropriate
heavy messengers in the underlying theory, which, in the case of the superpotential,
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FIGURE 1.1: A supergraph depiction of the corrections to the superpotential represented
by Eq. 1.1. An example for n = 1 involving a single Flavon insertion is given
below. The internal lines are heavy messengers, and the cross denotes a
supersymmetric mass insertion M.

may write schematically as,

W = Wren + Y Yc H

 
•

Â
n=1

xn

✓
hFi
M

◆n
!

, (1.1)

where Y (Yc) denotes any of the left-handed (right-handed conjugate) MSSM super-
fields, H denotes the SM Higgs field, hFi the vacuum expectation values (VEVs) of
any of the flavons or heavy Higgses, M the heavy mass scale ⇠ L f of the messengers
and xn is a numerical coefficient depending on the charges of the fields. These correc-
tions may be represented schematically in terms of the supergraphs which generate
them, as shown in Fig. 1.1. In addition to correcting to the superpotential, similar su-
pergraphs will generate the so called a-terms in the soft Lagrangian upon inserting a
soft-breaking term at any internal point in the diagram, which can be represented by
the insertion of a spurion field X with non-vanishing F-term, FX. Assuming a uni-
versal SUSY breaking, these universal corrections in the full theory are of the form

Lsoft ⇠
FX

MPl
⇥ Wren ⌘ m0 ⇥ Wren .

In terms of our supergraph language, this corresponds to attaching an external line
involving the spurion X to each of the vertices in a given supergraph.
From here, it is evident that, after integrating out the heavy fields in the Lagrangian to
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obtain the low-energy effective theory, the different ways to couple the spurion field
produce a mismatch between the a terms and their corresponding Yukawa matrices.
For a given supergraph which generates an entry in the Yukawa matrix, we have
multiple ways to generate the corresponding a term, one for each insertion of the
spurion X at a given vertex. This mismatch may be easily written in terms of the
operator dimension which generates the given entry in the Yukawa matrices of the
superpotential. Given an operator with n F insertions, we have 2n + 1 possible X
insertions; 2 for each F and mass-insertion vertex, plus one additional for the vertex
involving the Higgs. Generically, this implies that for a Yukawa entry Yij generated
by N Flavon insertions,

aij ⇠ (2n + 1) A0 Yij (1.2)

where A0 = k m0. As in FN models each entry in the Yukawa matrix is generated at
a different order, the individual entries in the a matrices will contain different order
one coefficients, and not be directly proportional to the Yukawa matrices. Performing
a rotation of the superfields and going to the Super-CKM basis, the a terms will not
be diagonalized, their off-diagonal terms contributing at tree-level to flavor violating
observables.
Similar considerations hold for the Kähler potential. Below L f , corrections to the
Kähler potential are generated when integrating over the heavy messengers. In the
case of a single flavon, as in the case Abelian models, it can be written schematically
as,

Kij = Yi Y†
j

 
dij + Â

n,m
c(n,m)

ij

✓
F
M

◆n ✓F†

M

◆m!
, (1.3)

where, for the leading terms, c(n,m)
ij = dm,0 d(qi + qj � n) if (qi + qj) > 0 and c(n,m)

ij =

dn,0 d(qi + qj � m) if (qi + qj) < 0. In the case of several flavon fields in complex
representations of G f , as is the case of typical non-Abelian models, the leading con-
tributions appear in the form FrF†

r
2,

Kij = Yi Y†
j

 
dij + Â

r,n
cr,n

ij

✓
FrF†

r
M2

◆n

+ . . .

!
, (1.4)

Again, this can be depicted in terms of supergraphs, where now superfields may
both enter (undaggered) or leave (daggered) a given vertex. The leading corrections,
those that do not contain derivatives or additional suppressions of M, are all of the

2Depending on the model, there may exist other contributions, including even non-hermitian combi-
nations of fields, if they are neutral under the different charges. However, they are usually sub-leading
with respect to FrF†

r .
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FIGURE 1.2: Supergraphs which correct the Kähler potential.

FIGURE 1.3: Diagonal contribution to the soft masses of a given superfield Y.

form shown in Fig. 1.2, with one internal line a superpropagator of a given messen-
ger connecting bubbles of F’s involving only mass insertions in the internal lines.
We may therefore organize the corrections generated by a given supergraph by the
number of incoming (nin) and outgoing (nout) F’s. A given supergraph of this form
will generate soft masses for the corresponding scalars F̃ when coupled to the super-
symmetry breaking combination hFXihFXi†, as shown for the diagonal contribution
in Fig. 1.3. For a supergraph of the form of Fig. 1.2, we have have two ways to attach
the spurion combination XX†, either as in Fig. 1.3 to an internal superpropagator, or
with X attached to one of the incoming F vertices and X† attached to one of the out-
going F vertices, as shown in Fig. 1.4. As there are nin ways to attach X to a given
incoming vertex and nout ways to attach X† to an outgoing vertex, plus an additional
graph involving the correction to the internal superpropagator, we find that the mis-
match factor between the soft mass matrices and the Kähler matrices can be written
in terms of the total number of Flavon insertions n = nin + nout and the number of
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FIGURE 1.4: Schematic contribution to the soft mass of a superfield Y.

incoming Flavon insertions nin,

m2
ij ⇠ f m2

0 · Kij, f = nin · nout + 1 = nin · (n � nin) + 1. (1.5)

As a concrete example, we show the case with nin = 1, N = 3 in Fig. 1.5, for which
Eq. (1.5) gives f = 3. Eqs. (1.2) and (1.5) are useful in the sense that without knowing
precisely the underlying theory, the mismatch factors can be quickly calculated solely
in terms of the number of Flavon insertions, or alternatively, the operator dimension
at which a given Yukawa entry is generated. Once these mismatch factors are known
and the soft-matrices given, rotations of the superfields, first to canonically normal-
ize [7] and then to diagonalize the Yukawa matrices, may be performed.
It is worth noting that even if the leading non-universal contributions in the soft-mass
matrix are proportional to the Kähler matrix, flavor changing entries are generically
present in the SCKM basis. In this case, the diagonalization of the Kähler matrix
also diagonalizes the soft-mass matrix, but the rescaling of the diagonal Kähler ele-
ments does not eliminate the diagonal elements in the soft-mass matrices if f 6= 1;
off-diagonal elements will always reappear when going to the SCKM basis.
As an illustrative example, consider a simplified non-Abelian model with two flavons.
The non-universal corrections to the Kähler potential and soft-mass matrices would
be proportional,

Kij = dij + c1

✓
F1F†

1
M2

◆
+ c2

✓
F2F†

2
M2

◆
, (1.6)

em2
ij = m2

0

✓
dij + 3c1

✓
F1F†

1
M2

◆
+ 3c2

✓
F2F†

2
M2

◆◆
. (1.7)

Taking F1 = (0, 1) and F2 = (e, e), it is clear that both matrices are diagonalized
with the same rotation U, but the rescaling of the Kähler, N1/2, does not reabsorb the
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FIGURE 1.5: An example of the mismatch factor in the soft masses for nin = 1, n = 3.

non-universal diagonal elements in the soft mass matrix,

N1/2V†KijVN1/2 = 1l (1.8)

N1/2V† em2
ijVN1/2 ' m2

0

 
1 + 2 a2 e 0

0 1 + b1 + b2 e

!
, (1.9)

with b1 ' 2c1/(1+ c1) and b2 ' 2c2/(1+ c2
1). Thus, as stated before, when diagonal-

izing the Yukawa matrix to go to the SCKM basis, the new rotation V ⇠ O(e), will
introduce again off-diagonal terms in the soft-mass matrices.
These off-diagonal entries of the a terms and soft masses are very relevant in per-
forming phenomenological analyses of given models. By subjecting them to the ap-
propriate flavor constraints, like those collected in Table I.6 for leptonic processes,
complementary bounds to high-energy colliders can be set. Finally, an additional
consideration comes from the stability of the vacuum. As shown in [8], the require-
ment of the absence of charge and color breaking (CCB) minima and unbounded
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from below (UFB) directions impose strong limits on the trilinear terms. In our anal-
ysis, we establish an upper bound for k (remember that A0 = k m0, Eq. (1.2)) at the
GUT scale and, after the running down to the EW scale, only points that satisfy the
following relations are considered:

| ae,ii |2  3 Y2
ei

�
m2

ei
+ em2

ei
+ m2

Hd

�
, (1.10)

| ae,ij |2  Y2
ek

⇣
m2

ei
+ em2

ej
+ m2

Hd

⌘
, k = Max(i, j) (1.11)

As an application of these rules, we turn now to a phenomenological analyses using
lepton flavor observables for three representative lepton flavor models found in the
literature, based on the flavor groups G f = D(27), A4 and S3.

1.3 A D(27) Model

As a first example, we consider the flavor model of I. de Medeiros Varzielas. G. G.
Ross and S. F. King in Ref. [9], where the continuum SU(3) f family symmetry of
Ref. [10], already considered in our previous work to study the quark sector, was
replaced by its discrete subgroup D(27). In this way the mechanism for obtaining the
desired vacuum structure, which leads to Tri-Bi-maximal (TB) mixing in the lepton
sector through a type I see-saw mechanism, is considerably simplified.
D(27) is the simplest non-trivial group in the series D(3N2), a discrete subgroup of
SU(3) that can be defined in terms of the semi-direct product (ZN ⇥ Z0

N)⇥ Z3. The
elements of the group (g) can be written in terms of the generators of Z3 (a, a0, b) as
follows:

g = bk am a0n for k, m, n = 0, 1, 2 , (1.12)

where the generators must satisfy

a3 = a03 = b3 = e , a a0 = a0 a

b a b�1 = a�1a0�1 , b a0 b�1 = a . (1.13)

These conditions give rise to nine singlets and a triplet/anti-triplet representation.
Table 1.1 shows the particle content of the model: left-handed (LH) leptons transform
as triplets 3 whereas the right-handed (RH) fields transform as anti-triplets 3̄; the
Higgs doublets are singlets under the group transformations and flavons, generically
denoted as f, transform as triplet or anti-triplets. Unlike the SU(3) f model, where
the VEV of a triplet could be rotated to a single direction, the discrete non-Abelian
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Field L ec, nc Hu,d S f123 f1 f̄3 f̄23 f̄123

D(27) 3 3 1 1 3 3 3̄ 3̄ 3̄
Z2 1 1 1 1 1 -1 -1 -1 -1

U(1)FN 0 0 0 2 -1 -4 0 -1 1

U(1)R 1 1 0 0 0 0 0 0 0

TABLE 1.1: Transformation of the matter superfields under the D(27) family symmetries.

symmetry leads to a finite number of candidate vacuum states. The obtained pattern
for the VEVs is then given by [9]:

hf̄3iT = u3

0

B@
0
0
1

1

CA , hf̄23iT = u23

0

B@
0
�1
1

1

CA , (1.14)

hf123i µ hf̄123iT = u123

0

B@
1
1
1

1

CA , hf1i µ u1

0

B@
1
0
0

1

CA , (1.15)

with v123 ⌧ v23 ⌧ v3 ⇠ v1. The leading Yukawa terms responsible for the fermion
masses in the SU(3) f model are still the dominant operators in this example al-
though, beyond the LO, additional contributions enter in the superpotential. Its com-
plete expression is [9]:

We =
1

M2 (L f̄3)(ec f̄3) Hd +
1

M2 (L f̄23)(ec f̄123) Hd +
1

M2 (L f̄123)(ecf̄23) Hd

+
1

M3 (L f̄23) (ec f̄23)S Hd (1.16)

+
1

M5 (L f̄123) (ec f̄3) Hd S (f1 f̄123) +
1

M5 (L f̄3) (ec f̄123)S Hd (f1 f̄123)

+
1

M6 (L f̄123) (ec f̄123) Hd (f123 f̄3)
2 .

After the flavor symmetry is broken, the Yukawa and Trilinear structures are given
by:

Ye ⇠ yt

0

B@
x1 e8 �x2 e3 x2 e3

�x3 e3 3 x4 e2 �3 x4e2

x3 e3 �3 x4 e2 x5 a

1

CA , (1.17)
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ae ⇠ yt A0

0

B@
13 x1 e8 �5 x2 e3 5 x2 e3

�5 x3 e3 21 x4 e2 �21 x4 e2

5 x3 e3 �21 x4 e2 5 x5 a

1

CA , (1.18)

where xi ⇠ O(1), hSi/Me ' �3, u3/Me =
pyt, u23/Me '

pyte, u123/Me '
pyte2

and the expansion parameter is given by e ' 0.15. As stated before, Ye and ae are
not simply proportional due to the mismatch caused by the different ways in which
the spurion field can be attached to the Yukawa supergraphs in order to generate the
Trilinear terms. Thus, from Eq. (1.2), the multiplicative factors in Eq. (1.17) are sim-
ply 2n + 1, with n equal to the number of flavon insertions. For instance, in the case
of Y11 µ e8, n = 6 (see last line of the superpotential) and the proportionality factor
would be 13. Similarly, for Y22 µ 3 e2, n = 3 (second line of the superpotential) and
aij = 7 A0 Yij µ 21 e2.
Regarding the Kähler potential, it is important to stress here that in this model the
SU(2)L doublet-messengers are assumed to be much heavier than their singlet coun-
terpart. Because of that, corrections to the kinetic and soft terms for LH particles
will be negligible and, therefore, the associated matrices can be taken as the identity
matrix. In contrast, the LO Kähler potential for RH fields is:

KR = ecec† +
1

M2

h
(ecf̄3)(f̄

†
3ec†) + (ecf̄23)(f̄

†
23ec†) + (ecf̄123)(f̄

†
123ec†)

i

+
1

M3

h
(ecf̄23)(f̄

†
123ec†)S + h.c.

i
(1.19)

+
1

M5

h
(ecf̄123) (f̄

†
23ec†) (f̄3f1)S + h.c.

i
.

Similarly, a mismatch between the soft-mass matrices and the Kähler metric will arise
when considering the different ways in which XX† can be coupled to the diagram,
see Fig. 1.5. Once the flavons get their VEV, the Kähler function and soft-mass matri-
ces can be written as:

(KR)ij =
�
dij + CR, ij

�
, ( em2

R,e)ij = m2
0
�
dij + BR, ij

�
, (1.20)

with CR and BR given by:

CR ⇠

0

B@
e4 �3 (1 + a) e3 3 (1 + a) e3

�3 (1 + a) e3 e2 �e2

3(1 + a) e3 �e2 a2

1

CA , (1.21)
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BR ⇠ a

0

B@
2 e4 �3 (4 + 8 a) e3 3 (4 + 8 a) e3

�3 (4 + 8 a) e3 2 e2 �2 e2

3 (4 + 8 a) e3 �2 e2 2

1

CA ,

where a = yt. Again, the multiplicative factors in Eq. (1.22) can be easily computed
from Eq. (1.5) just counting the number of flavon fields entering and leaving the dia-
gram, without specifying the complete messenger spectrum of the UV theory.
With the structures of the Kinetic-mixing and Yukawa matrices known, the super-
fields must now be rotated twice: first, to the basis where canonical kinetic terms are
recovered (canonical basis), and again, to the basis where the Yukawa couplings are
diagonal (mass basis). Thus, the final matrices are:

ae ! yt A0

0

BBB@

x2x3

x4
e4 2 x2 e3 �2

x2

x5
â e3

2 x2 e3 24 x4 e2 �6 x4 â e2

�2 x2 e3 �6 x4 e2 5 x5 â

1

CCCA
, (1.22)

em2
R,e ! m2

0

0

BBBBB@

1 �3 a (3 + 7a) e3 3 a
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11
2

a �
x2

3 x4

!
e3

�3 a (3 + 7a) e3 1 + a e2 �a (1 � 3 x4) e2

3 a

 
3 +

11
2

a �
x2

3 x4

!
e3 �a (1 � 3 x4) e2 1 + a

1

CCCCCA
,

(1.23)

where â ⌘ 1/
p

1 + a2. The net effect of this series of rotations is the following: the
canonical normalization makes the multiplicative factors of BR decrease by one unit,
while having no impact on the Yukawa and Trilinear terms; the second rotation to
the mass basis results in the reduction from e8 ! e4 of A`,11 and gives only addi-
tional small corrections to the elements of BR. The matrix U` that performs the latter
diagonalization gives only O(e2) corrections to UPMNS = U†

`Un so that it mantains
the tri-bimaximal LO structure. As a consequence, this model cannot reproduce the
experimental value of the reactor angle that would require sin q`13 µ e 3.
With these matrices, a combined fit to the latest experimental values for UPMNS [12],

excluding the 13 entry, and the Yukawas at the GUT scale [13] is performed to fix
the values of the xi coefficients. For e = 0.13 these are reasonably O(1) coefficients,
namely: (x1 = 1.0, x2 = 1.2, x3 = 1., x4 = 1., x5 = 1.7). After substituting these

3After completion of this work, we came across the preprint [11], where the authors succeed in
obtaining a correct sin q`13 in the context of a similar D(27) model.
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FIGURE 1.6: Excluded regions due to µ ! eg and µ ! eee for two reference values:
tan b = 5 (blue shapes) and tan b = 20 (red shapes). In the dark (blue
and red) regions, we compare with current µ ! eg bounds, while in
the light (blue and red) regions we compare with the expected µ ! eee
sensitivity in the near future. Interestingly, even for present bounds,
these results are competitive with MSUGRA ATLAS limits (gray area).

values, the matrices must be run to the EW scale by means of the MSSM renormal-
ization group equations (RGE), checked to satisfy the charge and color breaking rela-
tions, and compared to the most relevant flavor observables. Numerical calculations
for the running, spectrum and low energy processes have been done with the Super-
symmetric Phenomenology package (SPheno) [14, 15]. The resulting plot is Fig. 1.6.
As shown in Fig. 1.6, the most restrictive constraints come from the flavor violating
decays µ ! eg and µ ! eee. In the plot, the colored shapes represent the parameter
regions where the analyzed model would dissagree with current and future bounds
in Table I.6. As the results strongly depend on tan b, two reference values of tan b has
been considered that is tan b = 5, blue (darker) regions, and tan b = 20, red (lighter)
regions. It can be observed that, for both values of tan b, the obtained bounds are
competitive with MSUGRA ATLAS limits, even just considering present µ ! eg
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experimental limits. On top of that, if the Mu3e experiment reaches the expected
precision finding no sign of the µ ! eee process, the parameter space of the model
will turn out to be significantly constrained.
These results are in good agreement with those obtained with the mass insertion
approximation (MIA) [16–20], which provides a simplified description of the phe-
nomenology. As discussed in [20–22], in the absence of off-diagonal dLL insertions,
the main effects come from the RR sector. This sector suffers from a characteristic
cancellation among the two tan b-enhanced dominant contributions: the one due to
the pure bino term (with internal chirality flip and a flavor-conserving dLR mass in-
sertion) and another from the bino-higgsino exchange. This destructive interference
can be easily recognized in Fig. 1.6. Moreover, these contributions require a bino
mass insertion, M1, so, as we see in the figure, the bound practically disappears for
small values of M1/2.

1.4 An A4 Model

As a second example, we consider a model belonging to perhaps the most popular
class of models based on discrete flavors groups, those with G f = A4. This is the
discrete group of even permutations of 4 objects; it contains 12 elements and has four
inequivalent irreducible representations: three singlets {1, 10, 100} and a triplet 3. It is
specially interesting because it is the minimal non-Abelian group containing a triplet
representation. We refer to Appendix B.1 for a detailed description of the group, in-
cluding the associated multiplication rules. Flavor models based on an A4 symmetry
[23–47] have been an attractive option for describing the lepton sector due to their
simplicity and economical structure in reproducing the well-known TB-mixing pat-
tern at leading order (LO). Although this scheme predicts a vanishing reactor angle,
currently excluded by data [48–50], variations of these models [51–63] may still ac-
commodate an adequate q`13, once higher order corrections to masses and mixings
are taken into account. Here, we analyze the A4 Altarelli-Meloni model of Ref. [24],
which can be seen as a simplest A4 model in the sense that it is able to generate an
appropriate charged-lepton hierarchy between generations without requiring an ex-
tra U(1)FN symmetry. The complete flavor symmetry of the model is G f = A4 ⇥ Z4

with an additional U(1)R symmetry related to R-parity. Table 1.2 shows the symme-
try assignments for leptons, electroweak Higgs doublets and flavons. In particular,
the three generations of left-handed lepton doublets L and the right-handed neutrino
nc are ascribed to triplet representations while the right-handed charged leptons ec,
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Field nc L ec µc tc Hd Hu fS fT x x 0 x 0†

A4 3 3 1 1 1 1 1 3 3 1 10 100

Z4 -1 i 1 i -1 1 i 1 i 1 i -i

U(1)R 1 1 1 1 1 0 0 0 0 0 0 0

TABLE 1.2: Transformation of the matter and flavon superfields under the flavor sym-
metry G f = A4 ⇥ Z4, for non trivial cases the correspondent daggered fields
are also specified.

µc, tc, together with the two Higgs doublets Hu,d, transform in the trivial singlet rep-
resentation. Beyond the MSSM fields, the model contains the flavons that transform
as singlets or triplets.
The vacuum alignment in this model responsible for the symmetry breaking [24] is
given by

hfTi µ uT

0

B@
dûT1

1 + dûT2

dûT3

1

CA , hfSi µ uS

0

B@
1 + dv̂S

1 + dv̂S

1 + dv̂S

1

CA ,

(1.24)

hxi µ ux , hx 0i µ u0
x (1 + dû0

x) ,

where dûi = dui/M, uT/M ⇠ u0
x/M ⇠ e and uS/M ⇠ ux/M ⇠ dui/M ⇠ e0. The

shift in the VEVs, denoted as dui, account for NLO corrections arising from higher-
order operators in the driving superpotential. A similar order of magnitude is ex-
pected for e and e0, although a moderate hierarchy can be tolerated among them.
The LO effective superpotential contains the following operators

We =
1
M

tc(LfT) Hd

+
1

M2 µc ⇥(Lf2
T) + (LfT)

00x 0
⇤

Hd (1.25)

+
1

M3 ec ⇥(Lf3
T) + (Lf2

T)
00x 0 + (LfT)

0x 02
⇤

Hd ,

where the brackets stand for each possible product combination of the fields inside.
It is easy to see that, replacing Eqs. (1.24) into Eq. (1.25) with dui = 0, the vacuum
configuration leads to diagonal and hierarchical Yukawas in the charged-lepton sec-
tor. Off-diagonal entries in the Yukawa matrix derive from considering the shifted
VEVs (dui 6= 0) in the LO superpotential and higher-order operators obtained by the
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insertion of fS and x 0 [24]. Taking into account the charges of Table 1.2, the correction
to the LO superpotential would be:

dWe =
1

M2 tc ⇥(LfTfS) + (LfS)
00x 0

⇤
Hd

+
1

M3 µc ⇥(Lf2
TfS) + (LfTfS)

00x 0 + (LfS)
0x 02

⇤
Hd (1.26)

+
1

M4 ec ⇥(Lf3
TfS) + (Lf2

TfS)
00x 0 + (LfTfS)

0x 02 + (LfS)x
03 ⇤ Hd .

As can be seen in Eq. (1.27), these contributions result in non-vanishing off-diagonal
entries of the same order of the diagonal term in each row multiplied by e0:

Ye ⇠

0

B@
x1 e3 x2 e3e0 x3 e3e0

x4 e2e0 x5 e2 x6 e2e0

x7 e e0 x8 e e0 x9 e

1

CA , ae ⇠ A0

0

B@
7 x1 e3 9 x2 e3e0 9 x3 e3e0

7 x4 e2e0 5 x5 e2 7 x6 e2e0

5 x7 e e0 5 x8 e e0 3 x9 e

1

CA

(1.27)
with xi ⇠ O(1) generic order one coefficients. Again, Y` and A` are not proportional
and the multiplicative factors in the Trilinears can be computed with Eq. (1.2) consid-
ering N equal to the power associated to e and/or e0 in the correspondent Yukawa
element. The LO Kähler potential for left-handed (LH) fields is given by:

KL = L L† +
1

M2

h
(L L† fS f†

S) + (L L† fS) x†
i
+ h.c. , (1.28)

whereas the right-handed (RH) Kähler potential would be:

KR = ecec† + µcµc† + tctc†

+
1

M2

h
ec(fTf†

S)µ
c† + µc(fTf†

S)t
c†
i

(1.29)

+
1

M3 ec
h
(fSf† 2

T ) + (fSf†
T)

0x 0† + h.c.
i

tc† + h.c. ,

Once the flavons have been integrated out, the Kähler function and soft-mass matri-
ces for both LH- and RH-fields can be written as in Eq. (1.20) with CL(R) and BL(R):

CL ⇠

0

B@
e2 + e02 e02 e02

e02 e2 + e02 e02

e02 e02 e2 + e02

1

CA , CR ⇠

0

B@
e2 + e02 e e0 e2e0

e e0 e2 + e02 e e0

e2e0 e e0 e2 + e02

1

CA ,

(1.30)
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BL ⇠ 2

0

B@
e2 + e02 e02 e02

e02 e2 + e02 e02

e02 e02 e2 + e02

1

CA , BR ⇠ 2

0

B@
e2 + e02 e e0 3

2 e2e0

e e0 e2 + e02 e e0

3
2 e2e0 e e0 e2 + e02

1

CA .

(1.31)

Again, the multiplicative factors in Eq. (1.31) can be easily figured out from Eq. (1.5)
by just computing the number of flavon fields entering and leaving the diagram.
Then, we perform the two rotations to the canonical and the mass basis that result in
the following rotated matrices

ae ! A0

0

BBBBBBB@

7 x1 e3

 
4 x2 + 2

x1x4

x5

!
e3e0

 
6 x3 + 4

x1x7

x9

!
e3e0

2 x4 e2e0 5 x5 e2

 
4 x6 + 2

x5x8

x9

!
e2e0

2 x7 e e0 2 x8 e e0 3 x9 e

1

CCCCCCCA

, (1.32)

em2
L ! m2

0

0

B@
1 + e2 + e02 e02 e02

e02 1 + e2 + e02 e02

e02 e02 1 + e2 + e02

1

CA , (1.33)

em2
R,e ! m2

0

0

BBBBBBB@

1 + e2 + e02 e e0 2 e2e0 +

 
x4

x5
�

x8

x9

!
e e02

e e0 1 + e2 + e02 e e0

2 e2e0 +

 
x4

x5
�

x8

x9

!
e e02 e e0 1 + e2 + e02

1

CCCCCCCA

.

(1.34)

We find that the dominant structures of the matrices remain unaltered, the coeffi-
cients receiving only small corrections. In this case, the Yukawa rotation matrix U`

gives rise to an O(e0) correction to the 13 entry of the PMNS matrix, such that the
model can reproduce the experimental magnitude of sin q`13. This imposes e0 ⇠ 0.1
while the value of e is fixed by the Yukawa hierarchy. Note that the off diagonal en-
tries in the soft mass matrices arise at order e02.
The O(1) coefficients xi are determined by the combined fit of the experimental val-
ues of UPMNS [12] and the Yukawas at the GUT scale [13]. For tan b = 5 and (e, e0) =
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FIGURE 1.7: Excluded regions due to µ ! eg and µ ! eee for two reference values:
tan b = 5 (blue shapes) and tan b = 20 (red shapes). In the dark (blue
and red) regions, we compare with current µ ! eg bounds, while in
the light (blue and red) regions we compare with the expected µ ! eee
sensitivity in the near future. As before, these results are competitive
with MSUGRA ATLAS limits (gray area).

(0.04 , 0.08) we obtain: (x1 = 0.7, x2 = 1.0, x3 = �1.0, x4 = 1.6, x5 = 5.3, x6 = 0.99,
x7 = 4.0, x8 = 5.4, x9 = 3.6); whereas for tan b = 20 and (e, e0) = (0.02 , 0.06),
(x1 = 1.3, x2 = 1.0, x3 = 0.99, x4 = 1.8, x5 = 5.3, x6 = 0.99, x7 = 4.4, x8 = 0.81,
x9 = 1.8).
After RGE evolving the matrices to the SUSY scale with SPheno, checking the charge
and color breaking relations, and calculating the low-energy observables, the con-
straints on the model are shown in Fig. 1.7 for tan b = 5, blue (dark) region, and
tan b = 20, red (light) region. As expected, the most restrictive constraints come
from the flavor violating decays µ ! eg and µ ! 3 e. Current limits of the first pro-
cess are competitive with present ATLAS bounds whereas future limits for µ ! eee
will allow us to either discover SUSY or to constraint a considerable part of the pa-
rameter space if no signal is measured.
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Field nc
2 nc

1 ec
2 ec

1 L2 L1 Hu,d f c x c0 c0†

S3 2 10 2 1 2 1 1 2 1 2 10 10

Z6 w w w3 w3 w5 1 1 w4 w4 w4 w5 w�5

Z3 1 1 w2 w 1 1 1 w w 1 1 1

U(1)R 1 1 1 1 1 1 0 0 0 0 0 0

TABLE 1.3: Transformation of the matter superfields under the S3 family symmetry.

In contrast with the previous example, no cancellation is observed here. This is be-
cause, in this model, the dominant effect comes from the LL mass insertion and,
therefore, the two tan b-enhanced terms have the same sign. A detailed discussion of
these effects can be found in [20]. We see that present and future LFV constraints are
able to explore large values of m0 and M1/2 in these models, well beyond the LHC
reach.

1.5 An S3 Model

Finally, another interesting and minimal group of models are those based on the sym-
metry group S3 [64–71] defined as the group of all possible permutations among 3 ob-
jects, containing only 6 group elements. The number of irreducible representations is
3, which includes two singlets, {1, 10}, and a doublet, 2. The detailed description of
the group can be found in Appendix B.2. The example that we consider here is the
model of D. Meloni in Ref.[72], which generates a PMNS LO-structure compatible
with the TB-mixing together with a relatively large reactor angle and a good descrip-
tion of the quark sector. The full flavor symmetry of the model is G f = S3 ⇥ Z6 ⇥ Z3

with and additional U(1)R continuous symmetry which will eventually break down
to R-parity due to small SUSY breaking effects. Table 1.3 shows the complete spec-
trum for this model. As can be seen, the SU(2)L doublets and singlets of the second
and third generations are arranged in two S3 doublets, L and ec:

L2 =

 
t

µ

!
, ec

2 =

 
µc

tc

!
, (1.35)

whereas the electron fields are assigned to the real singlets, L1 and ec
1. The elec-

tron and muon Majorana neutrinos are grouped in a doublet, nc
2, while the tau right-

handed neutrino transforms as the pseudosinglet representation, nc
1.
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The minimization of the driving superpotential in the exact SUSY limit generates
the desired alignment for the vacuum structure [72]:

hfi µ uf

 
1
1

!
, hxi µ ux

 
dûx

1

!
,

hci µ uc , hc0i µ u0
c , (1.36)

where dûx = dux/M, uf/M ⇠ uc/M ⇠ e and ux/M ⇠ uc0/M ⇠ dux/M ⇠ e0.
At LO, only the muon and tau masses are generated by operators involving one and
two flavon insertions while the electron remains massless. To obtain its mass, op-
erators with up to 5-flavon insertions must be considered. The dominant terms are
given by the following contributions:

We =
1
M

[ (ec
2L2 f) + (ec

2L2) c ] Hd

+
1

M2 (ec
2L2f)0 c0 Hd

+
1

M4 ec
1 [(L2 x2)c2 + (L2 fx2)c + (L2 f2x2) ] Hd

+
1

M5 ec
1L1 [ (f x2)0c0c + (f2x2)0c0 ] Hd (1.37)

In the vacuum alignment configuration, Eqs. (1.36) and (1.36), the resulting effective
Yukawa and Trilinear matrices are:

Ye ⇠

0

B@
x1 e2 e03 x2 e e0 �x2 e e0

x3 e2 e02 x4 e x5 e

x6 e2 e02 x5 e x4 e

1

CA , ae ⇠ A0

0

B@
11 x1 e2 e03 5 x2 e e0 �5 x2 e e0

9 x3 e2 e02 3 x4 e 3 x5 e

9 x6 e2 e02 3 x5 e 3 x4 e

1

CA ,

(1.38)

where the proportionality factor between each Yukawa and Trilinear term is given
again by Eq. (1.2), with N equal to the total power of e and e0.
The LO contributions in the Kähler potential for LH- and RH-fields are given by:

KL = L2L†
2 + L1L†

1 +
1

M2

 ⇣
L2L†

2ff†
⌘

+
⇣

L2L†
2f
⌘

c† + c0
⇣

L2 x†
⌘0

L†
1 + h.c.

�
,

KR = ec
2ec†

2 + ec
1ec†

1 +
1

M2

 ⇣
ec

2ec†
2 ff†

⌘
+

⇣
ec

2ec†
2 f

⌘
c† +

⇣
ec

2xf†
⌘

ec†
1 + h.c.

�
.

(1.39)
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Once the flavor symmetry is broken, the Kähler metric and soft-mass matrices can be
written in terms of CL(R) and BL(R) as in Eq. (1.20), with:

CL ⇠

0

B@
e2 + e02 e02 e2e0

e02 e2 + e02 e2

e2e0 e2 e2 + e02

1

CA , CR ⇠

0

B@
e2 + e02 ee0 ee0

ee0 e2 + e02 e2

ee0 e2 e2 + e02

1

CA ,

(1.40)

BR ⇠ 2

0

B@
e2 + e02 e02 3

2 e2e0

e02 e2 + e02 e2

3
2 e2e0 e2 e2 + e02

1

CA , BR ⇠ 2

0

B@
e2 + e02 ee0 ee0

ee0 e2 + e02 e2

ee0 e2 e2 + e02

1

CA .

(1.41)

After canonical normalization and diagonalization of the Yukawa matrices, the soft
terms in the mass basis are:

ae ! A0

0

BBBBBBBB@

11 x1 e2e03

 
�

5
p

2
x2 +

3
p

2x2x5

x4 + x5

!
e3e0 �2

p
2 x2 e3e0

9
p

2
(x6 + x3) e2e02 3 (x5 � x4)e �3 x5 e3

9
p

2
(x6 � x3) e2e02 �3 x5 e3 �3 (x5 + x4)e

1

CCCCCCCCA

,

em2
L ! m2

0

0

BBBBBBBB@

1 + e2 + e02
1
p

2
e02 �

1
p

2
e02

1
p

2
e02 1 + 2 e2 + e02 3 e2e02

�
1
p

2
e02 3 e2e02 1 + e02

1

CCCCCCCCA

, (1.42)

em2
R,e ! m2

0

0

B@
1 + e2 + e02

p
2 e e0 O(e3e03)p

2 e e0 1 + 2 e2 + e02 O(e4e02)

O(e3e03) O(e4e02) 1 + e02

1

CA . (1.43)

The O(1) coefficients xi are set so that the experimental values for UPMNS [12] and
the Yukawa couplings at the GUT scale [13] are reproduced. Both for tan b = 5 with
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FIGURE 1.8: Excluded regions due to µ ! eg and µ ! eee for two reference values:
tan b = 5 (blue shapes) and tan b = 20 (red shapes). In the dark (blue
and red) regions, we compare with current µ ! eg bounds while in
the light (blue and red) regions we compare with the expected µ ! eee
sensitivity in the near future.

(e , e0) = (0.08 , 0.08), and tan b = 20 with (e , e0) = (0.1, 0.08) we obtain almost the
same coefficients, that is (x1 = 3., x2 = 1.6, x3 = 2.3, x4 = 0.6, x6 = 2.2).
The allowed parameter space for this model is given in Fig. 1.8 for tan b = 5, blue

(dark) areas, and tan b = 20, red (light) areas. Although we check all the low energy
observables in Table I.6, we once again find the most constraining processes to be
µ ! eg and µ ! 3 e. As can be seen in the figure, for low values of tan b this model
seems to be slightly more constrained than A4 whereas, for tan b = 20, the limits are
practically the same. As in the A4 case, the dominant contributions to these processes
come from the LL sector and therefore an analogous description holds here: the LL
leading terms, tan b-enhanced, are those corresponding to contributions with an in-
ternal chirality flip and no cancellation among these terms occurs, since no relative
sign from the hypercharge is present.
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1.6 Conclusions

In this work, building on the methods of [4], we continue to analyze the flavor struc-
tures in supersymmetric theories where the MSSM arises as a low energy effective
theory from a flavor symmetry broken at higher scales. For a specific class of predic-
tive models, if the scale of mediation of Supersymmetry breaking is above the flavor
symmetry scale, the resulting flavor structures in the soft-breaking terms are not uni-
versal and can give rise to flavor changing effects at low energies.
We have applied these ideas to three representative discrete flavor symmetry models,
A4,S3, and D(27), able to explain the neutrino and charged lepton structures. In these
models, we have been able to obtain the full trilinear couplings and the soft mass ma-
trices and we have applied the constraints from the non-observation of lepton flavor
violating processes, like µ ! eg and µ ! 3 e. We saw that different models may be
distinguished through the different predicted structures in the trilinear terms or soft
mass matrices. We have shown that, at present, these constraints are already com-
petitive with direct LHC searches. Future bounds on these observables may discover
SUSY with masses far beyond the reach of the LHC high-luminosity upgrade.
In conclusion, flavor symmetries in a supersymmetric context give rise generically
to non-universal soft-breaking terms. This non-universality and the resulting flavor-
changing effects must be always taken into account when restricting the allowed pa-
rameter space in these models. Moreover, the power of flavor changing observables
to signal the presence of supersymmetry at higher scales has been explicitly demon-
strated in these calculable models. We hope to continue to extend these results to
unified models with symmetries that describe both the quark and lepton sectors in a
future work.
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ABSTRACT: We study the phenomenology of a unified supersymmetric theory with a
flavor symmetry D(27). The model accommodates quark and lepton masses, mixing
angles and CP phases. In this model, the Dirac and Majorana mass matrices have a
unified texture zero structure in the (1, 1) entry that leads to the Gatto-Sartori-Tonin
relation between the Cabibbo angle and ratios of the masses in the quark sectors,
and to a natural departure from zero of the q`13 angle in the lepton sector. We derive
the flavor structures of the trilinears and soft mass matrices, and show their general
non-universality. This causes large flavor violating effects. As a consequence, the
parameter space for this model is constrained, allowing it to be (dis)proven by flavor
violation searches in the next decade. Although the results are model specific, we
compare them to previous studies to show similar flavour effects (and associated
constraints) are expected in general in supersymmetric flavor models, and may be
used to distinguish them.
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2.1 Introduction

Using symmetries to interpret the chaotic picture of flavor parameters in the SM
is a well-known and developed strategy. Nevertheless, a univocal picture has not
emerged, driving to a plethora of viable choices for the flavor symmetry G f and for
its breaking, which are consistent with the observed fermionic masses and mixig an-
gles. Likely, the only possibility to disentangle the puzzle of the origin of flavor is to
discover flavor-sensitive New Physics (NP). Supersymmetric extensions of the Stan-
dard Model (SM) give a good example in this sense, where in addition to the usual
Yukawa couplings of the SM we have the soft breaking terms: the trilinears and
soft-mass matrices corresponding to the scalar superpartners. Under the require-
ment that the mediation of Supersymmetry breaking to the visible sector occurs at
a higher scale LMed than the breaking of the flavor symmetry L f , i.e. LMed � L f ,
these three flavor structures will have to respect the same G f and, after the breaking
of the symmetry, be similarly non-trivial. In [1, 2] we investigated the case where
Supersymmetry breaking is communicated through a spurion field, X, coupling uni-
versally to the visible sector, and showed that we can expect a mismatch between
the Yukawa, Kinetic matrices, and the soft-breaking terms, that prevents the simul-
taneous diagonalization of the four structures. The mismatch is simply given by the
different ways in which the X-field may be inserted in the full theory diagrams and
its calculation is straightforward in terms of the operator dimension of the terms en-
tering in the Superpotential and Kähler potential.
In this work, we have applied this type of analysis to a recent model with a uni-
fied texture zero structure in the (1, 1) entry [3]. This is an appealing flavor model
as it is consistent with an underlying SO(10) grand unification and makes several
important postdictions, for example the Gatto-Sartori-Tonin relation in Sec.I.2.1 be-
tween the Cabibbo angle and the quark mass ratios. Additionally it predicts the
phenomenologically successful trimaximal 1 mixing scheme for the leptons [4, 5].
Nevertheless, it is important to find additional ways to constrain this and other fla-
vor models, in order to better distinguish between models which, by necessity of the
experimentally observed values, make similar postdictions for the fermion masses
and mixing angles. Flavor violating (FV) effects associated with new particles and
interactions provide one of the best options for constraining flavor models, and this
applies in particular to supersymmetric flavor models.
The layout of the paper is as follows. In Sec.2.2, we review some relevant details
about the model. In Sec.2.3, we present the analysis of FV processes, showing the ex-
clusion regions that constrain the parameter space of the model. We conclude in Sec.2.4.
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Field yq, e, n yc
q, e, n H5 S S f3 f23 f123 f fX

D(27) 3 3 100 100 100 3̄ 3̄ 3̄ 3̄ 3
ZN 0 0 0 2 -1 0 -1 2 0 x

TABLE 2.1: Transformation of the matter superfields under the D(27) flavor symmetry.

2.2 A D(27) model for quarks and leptons

D(27), a finite subgroup of SU(3), has been extensively studied as a flavor symmetry
in GUT models, due to it being one of the smallest finite groups with triplet and anti-
triplet irreducible representations. In addition to the first work using the group as a
flavor symmetry, [6] (considered in [2]), and the model we consider here [3], D(27)
has been used in unified models [7–12].
The models in [6, 7] are excluded by the measured value of q`13. The main differences
between [6, 7, 9, 10] and [3] are most visible in the neutrino sector of the respective
models, which do not significantly affect the FV constraints we consider here. Even
though the models generically share similar charged fermion mass structures arising
from specific VEV directions (in particular, the (1, 1, 1) direction as a flavor symme-
try breaking VEV), the subtle differences in the vacuum alignment of the respective
models are relevant, as they can significantly alter the FV constraints.
We now review the relevant details of the model in Ref.[3], where the interested
reader can find a more complete description. Although the model is compatible with
an underlying SO(10) grand unification, we present the matter superfields as sepa-
rate Left (LH), y, and Right-Handed conjugate (RH), yc, fermions. The flavon fields,
fi, are singlets under the SM group and charged under the flavor symmetry. The
model includes a Georgi-Jarlskog field S, associated to the breaking of the GUT sym-
metry, distinguishing down-quark and charged-lepton Yukawas, and a flavor singlet
S, needed to preserve the texture zero in the neutrino Majorana matrix [3]. The
field content in Table 4.1 give rise to the following superpotential, which leads to the
lepton and quarks Yukawas

W =
1

M2 (y f3)(y
c f3) H5 +

1
M3 (y f23)(y

c f23)S H5 (2.1)

+
1

M3 (y f23)(y
c f123) S H5 +

1
M3 (y f123)(y

cf23) S H5 (2.2)

+
1

M4 (y f23)(y
c f3)S S H5 +

1
M4 (y f3)(y

cf23)S S H5 (2.3)

+
1

M4 (y f3)(y
c f123) S2 H5 +

1
M4 (y f123)(y

cf3) S2 H5 , (2.4)
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and where the last 2 lines, Eqs. (2.3) and (2.4), are comparatively suppressed and
do not change the entries (12 and 21) in the matrices that are most relevant for FV
bounds, so we have neglected them.
The analysis and minimization of the flavon potential carried out in Appendix A of
[3] aligns the VEVs of the flavons in the directions

hf3i µ

0

BBB@

0

0

1

1

CCCA
, hf23i µ

1p
2

0

BBB@

0

1

1

1

CCCA
, hf123i µ

1p
3

0

BBB@

1

1

1

1

CCCA
,

written up to relative phases. The VEV of the f3 flavon is directly related to the third-
generation of Dirac-fermions masses y3 = {yt, yt, yb} such that hf3i2/M2

a ⌘ y3,a

with a = e, u, d. The relation between the VEVs and the parameter expansion ea is
determined by requiring a hierarchical Yukawa structure in which the 23 block is
dominant with respect to the 12 block

hf23i2 hSi
M3

23,a

M2
3,a

hf3i2 µ ei da ra e2
a ,

hf23i hf123i hSi
M3

123,a

M2
3,a

hf3i2 µ ei ga e3
a ,

where da, ga are phases that appear in the mass matrices and that arise by combin-
ing the phases of the various VEVs and coefficients that contribute to the respective
entries. The resulting mass matrices are complex and the model is able to reproduce
the measured CP-phase in the quark sector and additionally predicts a value for the
leptonic CP-phase.
Given that hSi/Ma = ra, with rd = ru = 1/3 and re = �1, the first condition tells
us that hf23i/Ma =

py3,a ei da/2 ea. On the other hand, the second relation only tells
us that hf123ihSi/M2

a ⇠ e2
a leaving some freedom in the VEV assignment and, to be

general, we write hf123i/Ma =
py3,a ei (ga�da/2) ea

a and hSi/Ma = e2�a
a with a 2 [0, 1].

Given the above considerations, at LO the resulting Yukawa is written as

Ya = y3,a

0

BBBBB@

0 x1,a ei ga e3
a x1,a ei ga e3

a

x1,a ei ga e3
a x2,a ra eida e2

a x2,a ra eida e2
a

x1,a ei ga e3
a x2,a ra eida e2

a 1

1

CCCCCA
, (2.5)

independent of the value of a, which on the other hand is important in the soft mass
terms. In fact, the present analysis has been carried out considering three reference
values for a = {0, 1/2, 1}. However, the minimization of the flavon potential, which
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Param. ee,d (x1, x2)e,d (g, d)e,d eu (x1, x2)u (g, d)u

L.O. 0.15 (1.24 , 2.42) (0.13 , 1.83) 0.05 (�1.12 , 3.60) (0 , 0)

H.O. 0.15 (1.23 , 2.52) (0 , 2) 0.05 (�1.12 , 3.30) (0 , 0)

TABLE 2.2: Order-one parameters from the fit of fermionic masses and mixings in [3].

contemplates the case in which the self-coupling terms for the f3,123 fields are domi-
nant, facilitates large values of f123, and we stress that a 2 [0, 1/2] is more consistent
with this hypothesis.
It is clear that no operator in Eq.(2.1) can contribute to the (1,1) element, which gives
the (1,1) texture zero in all mass matrices that characterizes this model (in contrast,
several earlier models had the (1,1) texture zero but only in the mass matrices of the
charged fermions [13], [6, 9]). As all fermions and additional flavons are triplets un-
der the finite group, the Dirac masses of both the quarks and leptons share the same
universal form, given by Eq.(2.5).
The different hierarchy in the up and down sectors requires two different expan-
sion parameters, namely eu ⇠ ed/3. This cannot be achieved if the messengers c

are SU(2)L doublets coupling equally to (u, d)L so these messengers should be con-
sidered much heavier than their singlet counterparts. The singlet messengers in the
up-sector can then be taken slightly heavier to accommodate the required difference.
Beyond these differences, we consider each type of messenger to have universal
masses, denoted M or Ma below, although we note that the messenger masses for
each term can in general be different (denoted as M3,a, M23,a, M123,a). In Ref. [3] a de-
tailed numerical fit was performed considering both only leading order (L.O.) terms
or including higher order (H.O.) corrections, and it was founf that the present mea-
surements of the fermion masses and mixings in the lepton and quark sectors, can be
accommodated. We summarize the results of this analysis in Table 4.2. In order to fit
the model, the experimentally allowed ranges for the observables are evolved to the
high scale (see [3] for details).
The L.O. fit was done without considering the terms with S S and S2 in the last two
lines of W in Eq.(2.1). It is a good fit to the observables, having a c2

d.o. f < 1 [3], al-
though the values of certain CKM elements are out of the expected ranges and the
resulting q

q
23 mixing angle is slightly too low, as the L.O. prediction q

q
23L.O.

= 0.0191 is
just outside of the 3s range evolved up to the high scale, of [0.0220, 0.0468].
The H.O. fit was done considering all the terms allowed by the symmetry, in par-
ticular the S S terms whose contribution is larger than the contribution from the S2

terms. These S S terms contribute to the 23 and 32 entries of the Yukawa matrices,
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therefore distinguishing these entries from the 13 and 31 entries. This additional free-
dom significantly improves the fit in the quark sector, particularly as q

q
23H.O.

= 0.0313,
within the 3s range.

2.3 Analysis of FV-effects

In this section we construct the structures of the soft-breaking terms under the fla-
vor symmetry and derive the non-proportionality factors as explained in Sec. I.5.4
and 1.2. We show that performing the rotations to go to the standard basis, where
the Kähler is the identity and the Yukawas are diagonal, does not diagonalize the
obtained structures. Although the analysis has been carried out numerically, we dis-
play analytically the resulting matrices to emphasize the order of magnitude of the
off-diagonal terms responsible for large Flavor Violating effects. In particular we con-
centrate on LFV processes, on which we have already very restrictive bounds meant
to be significantly improved in the near future as shown in Table I.6 (for an updated
review see Ref.[14] and for a recent discussion about experimental limiting factor in
the search for µ ! eg see Ref.[15]). In addition, taking into account the presence of
flavor-dependent phases, we must also consider flavor changing CP violating pro-
cesses in the quark sector, such as #K.

2.3.1 Soft breaking terms

The Yukawa and trilinears share the same overall texture but they will not be propor-
tional [1, 2] due to the different numerical factors, in this case of 7, 7 and 5 appearing
due to the multiple topologies possible for the respective trilinear terms:

aa = A0 y3,a

0

BBBBB@

0 7 x1,a ei ga e3
a 7 x1,a ei ga e3

a

7 x1,a ei ga e3
a 7 x2,a ra eida e2

a 7 x2,a ra eida e2
a

7 x1,a e3
a ei ga 7 x2,a ra eida e2

a 5

1

CCCCCA
. (2.6)

As discussed in Sec. 2.2 we consider the messengers that are SU(2)L doublets to be
much heavier than their singlet counterparts, so that RH messengers dominate the
contributions (this is in agreement with the model [3]). Thus, while the off-diagonal
corrections to the LH-Kähler potential are negligible, the RH corrections remain rel-
evant:
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KR = ycyc† +
1

M2

h
(ycf3)(f

†
3yc†) + (ycf23)(f

†
23yc†) + (ycf123)(f

†
123yc†)

i

+
1

M3

h
(ycf3)(f

†
23yc†) S + h.c.

i

+
1

M3

h
(ycf3) (f

†
123yc†)S + h.c.

i
(2.7)

+
1

M4

h
(ycf23) (f

†
123yc†)S S† + h.c.

i
.

The last term is relatively suppressed and has not been included in the phenomeno-
logical analysis. Similar terms apply for the sfermion squared masses, but similar
to what happens between the Yukawa couplings and the trilinears above, different
prefactors appear due to multiple possible topologies. We have then the following
structures

KR,a = 1 + y3,a

0

BBBBB@

e2a
a e2a

a ei(ga� da
2 ) ra ea

a + e2a
a

c.c. e2a
a ei(ga� da

2 ) ra ea
a + e2a

a

c.c. c.c. 1

1

CCCCCA
, (2.8)

em2
R,a = m2

0 1 + m2
0 y3,a

0

BBBBB@

2 e2a
a 2 e2a

a 4 ei(ga� da
2 ) ra ea

a + 2 e2a
a

c.c. 2 e2a
a 4 ei(ga� da

2 ) ra ea
a + 2 e2a

a

c.c. c.c. 1

1

CCCCCA
. (2.9)

Note that even if the 12 block appears to be simultaneously diagonalized here, the
rescaling of the Kähler and the rotation to the mass basis, as detailed in Appendix A.1.3,
will re-introduce the off-diagonal terms in the soft-mass matrices. After performing
the transformations to the diagonal-Yukawa canonical basis, we obtain the following
approximate form of the CKM

VCKM =

0

BBBBBBBBB@

1 �
x2

1,d

2 r2d x2
2d

e2
d

x1,d

rd x2,d
ed x1,d e3

d � ei (gd�dd)
ru x1,d x2,u

rd, x2,d
e2

d eu

�
x1,d

rd x2,d
ed 1 �

x2
1,d

2 r2d x2
2d

e2
d rd x2,d e2

d

�ei dd
ru x1,d x2,u

rd, x2,d
ed e2

u �rd x2,d e2
d 1

1

CCCCCCCCCA

.

(2.10)
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In can be checked that this matrix reproduces to a good approximation the numerical
results obtained in Ref.[3]. The diagonalized Yukawas are

Y0a = y3,a

0

BBBBBB@

±
x2

1,a

ra x2,a
e4

a 0 0

0 ra x2,a e2
a 0

0 0 1

1

CCCCCCA
. (2.11)

To obtain the trilinear and sfermion mass matrices in this basis, we perform the fol-
lowing rotations:

aa ! Va†
L aa Va

R , em2
R,a ! Va†

R em2
a,R Va

R , (2.12)

with the rotation matrices Va
L,R obtained in Appendix A.1.3. Then, in the charged

lepton sector at LO we obtain

ae ! A0 yt

0

BBBBBB@

�7
x2

1,e

re x2,e
e4

e 0 0

0 �7 re x2,e e2
e 2 ei de re x2,e e2

e

0 �2 re x2,e e2
e 5

1

CCCCCCA
, (2.13)

em2
R,e ! m2

0 1 + m2
0 yt

0

BBBBB@

e2a
e �e2 i (ge�de) e2a

e 3 e3 i(ge� de
2 ) re ea

e + e2a
e

c.c. e2a
e 3 ei(ge� de

2 ) re ea
e + e2a

e

c.c. c.c. 1

1

CCCCCA
. (2.14)

Except for the elements 12(21) and 13(31) of the trilinears, it’s clear that the final
matrices do not get diagonalized. Due to the this block diagonal form of the trilin-
ears, their relevance for FV in the lighter generations is negligible, such as in the
process µ ! eg. The same happens in the quark sector. The absence of charge and
color breaking (CCB) minima in MSUGRA1 requires |aii|2 . 3 m2

0 Y(diag)
i , as shown

in Ref. [16]. Comparing Eqs. (2.13) and (2.11) we see that the element A22 gives

1We can approximate m2
0 ⇠ (m2

˜̀ + m2
` + m2

Hd
). A similar condition applies also to off-diagonal

elements giving usually less stringent bounds. In the numerical analysis we put a relaxed limit on A0
and discard the points not respecting the CCB condition after the RGE evolution to the EW scale is
performed.
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a quite stringent bound on the allowed values of A0, A0 .
p

3 m0/7, so that the
trilinear contributions are usually subdominant with respect to the soft mass ma-
trix contributions. Looking at Eq.(2.14), and considering that a 2 [0, 1], we see
that large off diagonal entries are obtained (we emphasize that the value of the vac-
uum expectation value remains perturbative, v123/M23,a =

py3 ea
a ). In particular,

an e2a
e 2 [0.02, 1] contribution appears in the 12 entry that controls the µ ! e LFV-

decays, and ea
e 2 [0.15, 1] contributions arise in the 13 and 23 entries, determining

the size of the LFV-transitions t ! e and t ! µ, respectively. Similar results are
obtained in the quark sector where the resulting matrices at LO are

au ! A0 yt

0

BBBBBB@

7
x2

1,u

ru x2,u
e4

u 0 0

0 7 ru x2,u e2
u 2 e�i dd ru x2,u e2

u

0 2 ei dd ru x2,u e2
u 5

1

CCCCCCA
, (2.15)

em2
R,u ! m2

0 1 + m2
0 yt

0

BBBBB@

e2a
u �ei (gd�dd) e2a

u �e�igd (3 ru ea
u + e2a

u )

c.c. e2a
e e�idd (3 ru ea

u + e2a
u )

c.c. c.c. 1

1

CCCCCA
, (2.16)

ad ! A0 yb

0

BBBBBB@

7
x2

1,d
rd x2,d

e4
d 0 0

0 7 rd x2,d e2
d 2 rd x2,d e2

d

0 2 ei dd rd x2,d e2
d 5

1

CCCCCCA
, (2.17)

em2
R,d ! m2

0 1 + m2
0 yb

0

BBBBB@

e2a
d �ei (gd�dd) e2a

d 3 ei(2 gd�
3 dd

2 ) rd ea
d + e2a

d

c.c. e2a
d 3 ei(gd�

dd
2 ) rd ea

d + e2a
d

c.c. c.c. 1

1

CCCCCA
. (2.18)

In particular, we observe that the series of re-phasings that we have applied result
in a dangerous e i (gd�dd) in the 12 entry of the down soft mass matrix, which can be
responsible for deviations from the experimental value of eK.
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FIGURE 2.1: Excluded regions of the MSSM parameter space due to FV constraints for
the cases tan b = 5, 20 and 3 different values of the VEV of the f123. Blue and
green shapes refer to the current bounds on BR(µ ! e g) and eK, red and
orange shapes are the expected regions to be ruled out if future sensitivity
on BR(µ ! 3e) and CR(µ � e)Al are reached with no discovery.
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FIGURE 2.2: Lepton flavor violating decays of the t as a function of BR(µ ! e g) for the
same cases considered in Figure 2.1. The white window corresponds to the
accessible region between the current bound and the expected future limit
for BR(µ ! e g), that is to the region between the blue and red shapes in
Figure 2.1. The future limit on the t-decays is estimated as ⇠ 10�10, so that
the given ranges are out of reach for near future experiments.
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2.3.2 Phenomenological results

After substituting the numerical values corresponding to the best fit results of Ta-
ble 4.2, the matrices must be evolved to the EW scale by means of the MSSM renor-
malization group equations (RGE), and compared to the most relevant flavor ob-
servables. Numerical calculations for the running, spectrum and low energy pro-
cesses have been performed through the Supersymmetric Phenomenology package
(SPheno) [17], together with the SARAH Mathematica package [18] to generate the
source code. Taking into account that the flavor structures are completely fixed by
the D(27) flavor symmetry, the only inputs are the typical supergravity parameters,
chosen in the ranges: {m0 , M1/2} 2 [0, 10]TeV , A0 2 [0 , 0.5]m0 and tan b = 5 , 20
taken as interesting representative cases.
In Fig.2.1, the excluded regions of the MSSM parameter space are shown. In these
plots we compare the tan b = 5 (left) and tan b = 20 (right) results for values of the
VEV u123 = hf123i (normalized with respect to the messenger mass) of ⇠ e,

p
e and

1. The blue and green shapes refer to the present bounds while the red and orange
shapes are obtained from expected future limits.
The branching ratio of the `i ! `jg process is given by

BR(`i ! `jg)

BR(`i ! `j ni nj)
=

48 p3 a

G2
F

(|Aij
L |

2 + |Aij
R|

2) ⇠ a3

G2
F

d2
ij

m4
0

tan b2 , (2.19)

which holds approximately true for `i ! 3 `j and µ–e conversion in atoms pro-
cesses, in which the Z-penguin and box-type diagrams are usually subdominant
with respect to the the g-penguin tan b-enhanced contribution. Replacing the value
of dij = yte2a, Eq. (2.14), and taking into account yt µ tan b, we have tan b/m0 con-
stant for a fixed value of the branching ratio, i.e. tan b scales linearly with m0. Thus,
in the figures, the m0–M1/2 excluded regions scale almost linearly with tan b (nearly
a factor of 4 when going from 5 to 20). Similarly, when the VEV scales by up to a
factor of ⇠ 6.6, the excluded regions growing a factor of around 4, a milder growth
in this case. The bounds are relatively mild in the top left corner, with small VEV
and tan b = 5, allowing m0 and M1/2 of a few TeV, and this remains true when in-
creasing the VEV. On the other hand, even for small values of the VEV, tan b = 20
pushes the exclusion such that typical values of m0 and M1/2 need to be larger than
4 to 6 TeV. The strongest exclusions are shown in the bottom right corner, with large
VEV and tan b = 20 very little parameter space is still allowed within the displayed
10 TeV ranges for m0 and M1/2. Given such severe exclusion limits for tan b = 20,
one option is to abandon the simplifying assumption of universal messenger masses
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(Ma) and consider using the additional freedom of M3,a 6= M23,a. Together with the
difference between up-type messengers and down-type messengers (a = (u, d)), one
can accommodate simultaneously the hierarchies between mb/mt, mc/mt and ms/mb

without going to large values of tan b.
A feature of the model is the heaviness of the Left messengers which results in small
off-diagonal dLL-insertions. Consequently, the shapes that we observe are the typi-
cal ones of the dRR sector which is tan b-enhanced and exhibit the usual cancellation
between the bino and and bino-higgsino amplitudes in the 0.7 m0 . M1/2 . 1.2 m0

region of the parameter space Ref. [19]. Such cancellations occur in all situations in
which the contribution of the off-diagonal trilinear terms dRL is negligible, which is
often the case considering the CCB upper bound on |A| and the texture of the trilin-
ear terms of the model where d12(21) ' d13(31) ' 0.
Apart from LFV observables, the CP-violating observable #K plays also an impor-
tant role in the restriction of the parameter space of the model. In this case, #K

is, in principle, independent of tan b, but the off-diagonal entries of squark mass
matrices are proportional to yb, which restores the tan b dependence, as we see in
Fig.2.1. The exclusion regions in this figure correspond to points out of the 3s-range
|#K � #SM

K | < 3
q

s2
SM + s2

SUSY ' 1.4 ⇥ 10�3, where #SM
K is the SM prediction com-

puted for each point by SPheno with only trivial soft-breaking structures as inputs
and congruent with the estimate in Ref.[20]. The sSM, sSUSY are the theoretical un-
certainties of the SM estimate and the SUSY contribution respectively. In particular
sSM ⇠ 10 % #SM

K [20] while sSUSY is dominated by the hadronic uncertainties of the
fK decay constant and the B-parameters coming from Lattice QCD computations (see
Ref.[21]). To be conservative, we have taken this into account, letting each parame-
ter vary between its minimum and maximum value and taking half of the difference
between the respective maximum and minimum values of #K. We find that sSUSY re-
ceives the largest contribution from B3(µ) = 1.05 (12) and B5(µ) = 0.73 (10) and can
be up to ⇠ 20 % #SM

K in the region where the SUSY contribution is comparable to the
SM one. As we can see in the figure, this observable is very effective in restricting the
region of low M1/2, which corresponds to realtively light gluino and squark masses,
but can reach large m0 values.
It is interesting to compare the model predictions for LFV processes involving the t

lepton, shown in Fig.2.2, with the benchmark decay µ ! eg. As a reflection of the
m2

R,e structure in Eq.(2.14), the t branching ratios are correlated and increase linearly
with the branching ratio of the benchmark decay. For the same value of BR(µ ! eg),
larger tan b (going from a plot in the left to a plot in the right) corresponds to slightly
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smaller t branching ratios, while a larger VEV (going from a plot above to a plot
below) corresponds to a more significant reduction of the t branching ratios (up to
one order of magnitude smaller over the the range considered).
It is worth noting that in the cases tan b = 5 and u123/Me =

pyt ee,
pyt ee, the

observed dispersion for the processes t ! µ g and t ! 3 µ is imputable to a non-
negligible effect of the dRL

23 -insertion. For larger values of tan b and u123 this ceases to
be the case.
In some cases, particularly in the tan b = 20 panels, for each branching ratio a sec-
ond line becomes visible, and the two lines correspond to the maximum directions
of growth in the {m0, M1/2} planes of Fig.2.1. This is caused by a misalignment of
the cancellation region with respect to the one of µ ! e g, which results in two dis-
tinct directions of growth. The misalignment stems from additional contributions,
deriving mainly from the inclusion of the two mass insertions dRR

ik dRR
kj

2 (see Ref.[19]),
which for these processes is not negligible. Note that, as the exclusion region given
by #K can reduce or exclude the points in one of the two direction of growth, we are
not plotting these points in Fig.2.2.

2.3.3 Comparisons with other models

As explained in Sec. I.5.4, non-universal soft-breaking terms are always expected
in supersymmetric models when the flavor symmetry is broken below the SUSY-
breaking mediation scale. However, different flavor symmetries give rise to different
structures in the soft-breaking terms while reproducing the observed fermion masses
and mixing matrices.
This non-universality of soft-terms in supersymmetric flavor models has long been
considered in the literature [22–41]. In most of these works, the structure of the soft
terms is fixed by the symmetry and it is simply assumed that the unknown O(1)
coefficients differ from the ones in the Yukawa matrices. In Refs. [1, 2] this non-
proportionality was explicitly demonstrated and the corresponding soft-terms ob-
tained. In [1], two flavor symmetries were considered, U(1) f and SU(3) f , while
in [2], three different models were considered: D(27) (a different model from the one
considered here), A4 and S3. In this section, we compare their results with the present
model in order to extend the validity of our results to a wider class of models.
In Ref. [1], the kaon observables DMK and #K were considered, while in [2] only lep-
tonic observables were taken into account. In this work, we consider both kaon and

2In principle the misalignment could be also due to the contribution of additional diagrams, how-
ever this is not what we observe for the analyzed processes.



2.4. Conclusions 103

leptonic observables and therefore we can compare the exclusion regions with the
results presented in these works. In general, the regions for different models have
distinct shapes, depending on the respective details of the models. For instance, the
shape of the region constrained by #K in [1] (shown there in the mg̃–m3/2 plane) is
very similar to the one we find in this work for the case of the SU(3) symmetry, but
distinct from the shape of the U(1) model.
Regions excluded by leptonic observables in [2] are clearly different to the ones found
in this work for the A4 and S3 models, due to the simultaneous presence of left-
handed and right-handed mass insertions. Interestingly, the older D(27) model [6]
(now excluded due to q`13) produces similar exclusion shapes as the unified texture
zero model [3] we analyse here. This is not surprising, as the main differences be-
tween the two models arise in the neutrino sector and both models use the same
flavon VEV directions, in particular the (1, 1, 1) direction which is most relevant for
FV processes as it contributes to the lighter generations (where bounds are more
stringent). The particularities of the vacuum alignment mechanisms employed in
the two D(27) models would allow them to be distinguished in FV observables. For
the cases where FV is enhanced by taking v123/M ⇠ pyt e or v123/M ⇠ pyt, as pre-
ferred by the vacuum alignment mechanism, current FV bounds reach much higher
exclusions, up to around 8 TeV in the most sensitive case, as seen in the bottom right
panel of Fig. 2.1. In summary, taking into account current leptonic and kaon FV
bounds allows us to extend the excluded regions in comparison to previous works.

2.4 Conclusions

We performed an analysis of quark and lepton flavor violating processes in a su-
persymmetric model enlarged with a D(27) flavor symmetry which is broken below
the supersymmetry-breaking mediation scale. We have explicitly shown the non-
universality of trilinear terms and supersymmetry soft-breaking masses, with all the
SUSY breaking matrices determined in terms of m0, A0 and tan b.
FV processes allow us to explore this model up to rather heavy sparticle masses, well
above the LHC reach. LFV bounds, and specially µ ! eg, are the most restrictive
constraints in the parameter space, but thanks to the presence of flavor-dependent
phases, #K plays an important role in exploring the region of low M1/2.
The combination of LFV processes and #K can restrict very large values of M1/2 and
m0, depending on the tan b value and the model vev, v123. Indeed, if we take the
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typical values preferred by the vacuum alignment mechanism of the model, the con-
straints become particularly severe, reaching values of several TeV for M1/2 and m0.
This fact, implies that assumptions such as universal messenger masses are too sim-
ple and should be abandoned, in order to relax tan b and still accommodate the hier-
archy between the top and bottom mass.
We have compared the results for this flavor model with other models, including
a similar flavor model with a D(27) symmetry, and discrete symmetries such as A4

and S3. In general, FV processes constrain these models in different ways and lead to
qualitative and even quantitative differences.
In conclusion, FV searches are able to constrain the parameter space of flavor models
and even distinguish flavor models that would otherwise be hard to discriminate by
solely increasing the precision of fermion masses and mixing parameters.
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ABSTRACT: We analyze the phenomenological consequences of embedding a flavor
symmetry based on the groups A5 and CP in a supersymmetric framework. We con-
centrate on the leptonic sector, where two different residual symmetries are assumed
to be conserved at leading order for charged and neutral leptons. All possible realiza-
tions to generate neutrino masses at tree level are investigated. Sizable flavor violat-
ing effects in the charged lepton sector are unavoidable due to the non-universality of
soft-breaking terms determined by the symmetry. We derive testable predictions for
the neutrino spectrum, lepton mixing and flavor changing processes with non-trivial
relations among observables.



108 Article 3. LFV and neutrino masses from A5 and CP in the non-universal MSSM

3.1 Introduction

In recent years, different experiments have accumulated a wealth of experimental
data on neutrino parameters that have allowed us to extract with reasonable pre-
cision the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix [1–4] and the
neutrino mass differences. Still, the determination of the absolute neutrino mass
scale and the Dirac CP phase remain to be completed. Future experiments like DUNE
[5–8], T2HK [9], T2HKK [10] and NOnA [11] will shed light on these quantities; however,
even a full determination of the neutrino mass matrix mn will not be enough to fix
the mechanism responsible for it and uncover the origin of the observed flavor pat-
terns. Although this is also true in the case of the quark and charged lepton Yukawa
couplings, the smallness of neutrino masses and its favorite explanation through a
Seesaw mechanism makes this problem specially critical.
If neutrinos are Majorana particles, their masses are well described through a d = 5
Weinberg operator [12] in the Standard Model (SM). But there exist different possi-
bilities to generate this effective operator from a more fundamental theory at higher
energies, like type I, type II or type III Seesaw, radiative mass models, etc. It is clear
that the measurement of neutrino masses and mixing angles alone will not be enough
to discriminate among these alternative mechanisms and to infer the couplings re-
sponsible for them. For instance, for a type-I Seesaw mechanism, both the neutrino
Yukawa couplings and the right-handed neutrino Majorana mass would combine to
generate the Weinberg operator but the SM does not provide information to disen-
tangle them from the available experimental data.
Nevertheless, if flavor dependent new physics is close to the electroweak scale, as
naturally expected in most of the extensions of the SM, it will provide additional in-
formation on flavor dynamics helping us to inspect the mechanism responsible for
neutrino masses and to determine the parameters of the model. One example of this,
which has been explored in previous works [13–19] but we do not consider here, sup-
poses that the flavor symmetry is broken around the electroweak scale. In that case,
the scalar flavons may mediate lepton flavor violating (LFV) processes in a measur-
able way while the fields themselves could be produced and detected in future col-
liders. Another possibility is Supersymmetry (SUSY), which we consider the perfect
example for this as it generically contains new flavor interactions in its soft-breaking
sector in the presence of a flavor symmetry. As shown in [20–24], non-trivial flavor
structures are unavoidable if the scale of mediation of SUSY breaking to the visible
sector, LMed, is larger than the scale of breaking of the flavor symmetry, L f .
The group A5 combined with the so-called generalized CP symmetry has already
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been studied in different contexts [25–29]. Here, we aim to extend the work in [29]
and analyze the phenomenological implications of considering A5 and CP in a su-
persymmetric model. In these conditions, we will show that constraints from lepton
flavor violation are very strong and, in many cases, they are able to explore super-
symmetric masses well beyond the reach of direct searches at LHC [30, 31]. Besides,
if SUSY is found in future experiments, we will obtain additional information on
the structure of flavor matrices that will help us to distinguish between the different
mechanisms responsible for neutrino masses.
The paper is organized as follows: in Sec.3.2 and 3.3, we revisit the implications of in-
troducing a flavor symmetry in SUSY and the main features of A5 and CP as a flavor
group; Sec.3.4 is dedicated to derive the minimal set of flavor-conserving operators
entering the Kähler potential and the soft-mass terms; in Sec.3.5, the phenomenol-
ogy of the model is analyzed; finally, we conclude in Sec.3.6 summarizing the most
important results.

3.2 Flavor symmetries in supersymmetric theories

The embedding of a flavor symmetry in a supersymmetric theory implies that the
different superfields have definite transformation properties under the flavor sym-
metry and, then, the whole Lagrangian in terms of component fields is necessarily
invariant under this symmetry. Initially, the SM Yukawa couplings are forbidden and
they are only generated after spontaneous breaking of the symmetry [32]. Similarly,
the flavor structures of the soft-breaking terms will be determined in terms of the
flavon vevs [20–24].
Sizable non-universal contributions to the soft-terms appear in the low-energy effec-
tive theory if the scale of mediation of SUSY breaking, LMed, is above the scale of
flavor symmetry beaking L f , LMed � L f . Supergravity serves as illustrative ex-
ample to show this, although the results outlined here are more general [20]. In the
following, we consider MSUGRA, which depends only on five input parameters and
gives rise to the Minimal Supersymmetric Standard Model (MSSM) at low energies.
In Supergravity, SUSY breaking is propagated to the visible sector through gravita-
tional interactions, suppressed by the Planck scale MPl. MSUGRA is the simplest
and most conservative scenario that parametrizes the breaking of supersymmetry by
a single field, universally coupled to the visible sector, with a non-vanishing F-term,
hXi = FX 6= 0. In the full theory, before the breaking of the flavor symmetry, the soft-
breaking operators are generated from those associated with the Yukawa couplings
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FIGURE 3.1: (A) A supergraph representation of the processes that generate the correc-
tions to the Superpotential in the second term of Eq.(3.1). It involves nin
flavon insertions. Internal lines represent the heavy mediators c while the
crosses stand for SUSY mass insertions Mc.
(B) A supergraph depiction of the processes that generate the correction to
the Kähler potential in the second term of Eq.(3.2). Each bubble with enter-
ing (leaving) lines represent a set of nin (nout) fields (dagger fields) in the
same fashion than the upper diagram, mediated by c heavy superfields.

in the superpotential (W) and kinetic terms in the Kähler potential (K) through the
insertion of the spurion field and, in these conditions, they are completely universal.
However, after the breaking of the flavor symmetry, the superpotential and Kähler
potential receive corrections from non-renormalizable operators coming from dia-
grams like those depicted in Figure 3.1. Integrating over the heavy mediators c, the
Superpotential and Kähler potential can be schematically written as:

W = Wren + Y Yc H Â
F

•

Â
nin=1

xnin

✓
hFi
Mc

◆nin

, (3.1)

K = Y Y†

2

64 1 + Â
F,F†

•

Â
nin,
nout=1

c(nin,nout)

✓
hFi
Mc

◆nin
✓
hF†i
Mc

◆nout

3

75 , (3.2)
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FIGURE 3.2: (A) A supergraph representation of two processes contributing to the same
trilinear coupling. In the first diagram, the spurion field is attached to the
vertex Y-F-c while, in the second diagram, it is inserted in the c mass inser-
tion. The same can be done for each flavon and Higgs insertion. Therefore,
for a Yukawa diagram involving nin flavons, there will be (2 nin + 1) possi-
bilities to generate the associated trilinear coupling. All of them have to be
taken into account.
(B) A schematic supergraph depiction of the two types of processes that
contribute to the same soft mass due to the insertion of the spurion XX†

combination in different positions. The bubbles with nin (nout) flavons and
a X (X†) insertion symbolize the (2 nin(out) � 1) possible diagrams resulting
from attaching X as in the upper diagram. The second diagram accounts
for the insertion of XX† in the internal heavy mediator. Combining all of
them,

⇥
(2 nin � 1) (2 nout � 1) + 1

⇤
possibilities contribute to the soft mass.

where Y stands for any field belonging to the visible sector1 and Wren consists of
renormalizable operators such as the Higgs µ-term or a possible top Yukawa cou-
pling. Therefore, the standard Yukawa couplings are only generated by these opera-
tors as powers of the expansion parameter e = hFi/Mc, where hFi is the vev of the
scalar flavon and Mc the mass of the heavy mediators. The bubbles of fields entering

1We follow the usual superfield notation throughout the article. Thus, all the fields in Eqs.(3.1) and
(3.2) must be read as superfields. In Table 3.1, the relevant particle content for our analysis is specified.
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and leaving in Figure 3.1-(b) are the sets of nin- and nout-flavon insertions in Eq.(3.2)
which enclose similar structures to those in Figure 3.1-(a).
Adding the spurion field to these non-renormalizable Yukawa couplings or to the
Kähler potential generates the trilinear terms and soft mass matrices. From Figure 3.2
one may see that, for each operator with n-flavon insertions, the number of effective
operators contributing to the trilinear couplings and soft masses at the same order
is equal to the number of different ways in which the spurion field can be inserted
in the diagram. Thus, the proportionality factor between trilinears (soft masses) and
the corresponding Yukawa coupling ( Kähler term) is given by:

aij = (2 nin + 1) A0 Yij, (3.3)

em2
ij = m2

0 fij (K)ij with fij = [ (2 nin � 1)(2 nout � 1) + 1 ], (3.4)

where m0 ⌘ hFXi/MPl and A0 ⌘ k m0 with k ⇠ O(1). The main consequence of
Eqs. (3.3) and (3.4) is that, although term by term the trilinears and the soft masses
are proportional to Yukawas and Kähler elements, the full matrices are not propor-
tional to them. Therefore, going to the canonical basis, where the Kähler metric is
the identity, and to the mass basis, where the Yukawas are diagonal, does not ensure
that the soft terms are diagonalized. Actually, as we will see below in the case of A5,
off-diagonal contributions will generally survive the rotations and they will have an
impact on the low-energy phenomenology.

3.3 Lepton masses and mixing from A5 and CP

A5 is the non Abelian discrete group composed of the even permutations of five
objects. It has 60 elements and five irreducible representations (irrep): one singlet 1,
two triplets 3 and 30, one tetraplet 4 and one pentaplet 5. It can be generated by two
elements, s and t, satisfying2:

s2 = (s t)3 = t5 = e. (3.5)

The specific form of these generators for each irrep of the group in our basis conven-
tion is shown in Appendix B.3. The A5 group contains several subgroups: fifteen
associated with a Z2 symmetry, five Klein subgroups Z2 ⇥ Z2, ten related to Z3

transformations and six Z5 subgroups. Combinations of them may play the role of

2Lowercase letters are for the abstract elements of the group. Capital letters refer to specific repre-
sentations in terms of n ⇥ n matrices.
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residual symmetries for charged leptons and neutrinos. Here we are interested in
the combination of A5 and CP as proposed in [33] (see also [34–36]), where the CP
transformation generally acts non trivially on the flavor space [37–39]. The action of
a generalized CP transformation, X, over a field y(x) is given by3:

y(x) �! y0(x) = Xy?(xCP), (3.6)

with X a matrix representation of the CP transformation and xCP = (x0,��!x ). The
transformation X can be chosen as a constant, unitary and symmetric matrix:

XX† = XX? = 1 (3.7)

To ensure a consistent definition of the CP symmetry with the flavor group, the fol-
lowing condition must be verified:

(X�1 A X)? = A0 (3.8)

where A, A0 2 A5. In particular for A5, Eq.(3.8) is fulfilled with A = A0.
A5 as a family symmetry for leptons leads to the Golden Ratio (GR) mixing, which
predicts a vanishing reactor angle q13. A consequence of introducing CP as a sym-
metry is that the pure GR mixing is modified and a continuous parameter, q , that
quantifies this departure is introduced. In fact, the small value of the reactor angle
can be reproduced in terms of this variable that, at the same time, determines the
amount of observable CP violation in the leptonic mixings.
The set of combinations of residual symmetries for A5 and CP that accommodates
well the observed mixing in the leptonic sector has been discussed in previous works
[25–27]. Assuming that the lepton SU(2)L-doublet, L, transforms like a triplet repre-
sentation of A5, the authors in [26] conclude that only four possibilities are allowed:
two for Ge = Z5, one for Ge = Z3 and another for Ge = Z2 ⇥ Z2; for neutri-
nos, Gn = Z2⇥CP has been always considered. Here we are interested in the phe-
nomenology of Case II of [26], corresponding with Ge = Z5. The neutrino spectrum
for this scenario has been fully analyzed in [29]. A tuple of generators, Q of Ge = Z5

and (Z, X) of Gn = Z2⇥CP, characterizing this realization is:

(Q, Z, X) = (T, T2ST3ST2, X0), (3.9)

3Do not mistake the spurion chiral field responsible for the breaking of SUSY, X, for the matrix
representation of the generalized CP transformation X.
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Mechanism L nc Hu fn
1

fn
3

fn
30

fn
4

fn
5

I 3 � 1 1 � � � 5

II a-2 3 3 1 1 3 � � 5

II c-2 3 30 1 � � � 4 5

TABLE 3.1: Particle content for the different mechanisms examined here and its repre-
sentation under the flavor group A5 and CP. Note that all these fields should
be understood as chiral superfields that contains a spin-0 and a spin-1/2
component.

where X0 expressed in the 3 representation is

X0 = P23 ⌘

0

BB@

1 0 0
0 0 1
0 1 0

1

CCA . (3.10)

Its form in the rest of irreps of A5 can be found in Appendix B.3.

3.3.1 Charged-lepton masses

Residual symmetries constrain the form of the flavon vevs that break the invariance
under the family symmetry G`. Assuming that charged leptons are symmetric under
the subgroup Ge = Z5,

Qr hfe
ri = hfe

ri, (3.11)

with the generators Qr and the flavon fields fe
r in the r representation, must be sat-

isfied. The condition in Eq.(3.11) implies that non-zero vevs are possible only for the
triplet and pentaplet representations and their form is forced to be4

hfe
3i =

0

BBB@

w3

0

0

1

CCCA
, hfe

30 i =

0

BBB@

w30

0

0

1

CCCA
, hfe

5i =

0

BBBBBBBBBB@

w5

0

0

0

0

1

CCCCCCCCCCA

, (3.12)

4Here we just provide the form of the flavon vevs symmetric under the residual symmetry. In gen-
eral, the scalar potential responsible for them, which we do not specify here, will require the presence
of additional superfields.
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where w3, w30 and w5 are real parameters. The flavons in Eq.(3.12) generate non-
renormalizable operators that enter the superpotential and give rise to the charged
lepton masses as discussed in Eq.(3.1),

W` ◆ We = Wren
e + L ec Hd

•

Â
n=1

xn

✓
hfei
Mc

◆n
, (3.13)

where we have not assumed any specific representation for the right-handed fields.
The residual symmetry also imposes an invariance requisite under the (3 ⇥ 3) effec-
tive mass matrix:

Q†
3 m†

e me Q3 = m†
e me, (3.14)

where the generators are given in the triplet representation. A straightforward con-
sequence of Eq.(3.14) is that m†

e me must be diagonal in the basis where the set of
generators of the group {Qr} are diagonal. In our case, the generator of Ge = Z5 in
the tuple of Eq.(3.9) is Q = T, which is diagonal according to Eq.(B.15). Therefore,
the operators in Eq.(3.13) must produce a diagonal mass matrix at leading order (LO)
(higher order corrections are discussed in Sec.3.3.4). Its elements should exhibit the
correct hierarchy between generations:

me µ

0

BBB@

l4
C 0 0

0 l2
C 0

0 0 1

1

CCCA
, (3.15)

where lC = 0.2257 stands for the Cabibbo angle. In order to keep our discussion as
model-independent as possible, we do not suppose any specific mechanism respon-
sible for this pattern. However, for completeness, we mention some possibilities that
have been already proposed in the literature.
One way to generate the observed structure of masses for charged leptons is through
processes like those depicted in Figure 3.3, where the effective mass of each genera-
tion involves a different number of flavon insertions. Each of them is proportional to
the expansion parameter e ⌘ hfei/Mc ⌧ 1 that, in this specific case, might be e µ l2

C.
This type of diagrams can be easily arranged with an Abelian symmetry (continuous
or discrete) assigning adequate quantum numbers to the lepton and flavon fields.
Another strategy could be having a symmetry that is broken at separated scales. In
this scenario, a natural hierarchy between the flavon vevs is expected. Notice that the
c heavy mediators involved in all these constructions may be generally left-handed
(LH) or right-handed (RH) under SU(2)L. In the absence of further hypothesis, we
naturally expect all of them to be present and have masses of the same order.
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FIGURE 3.3: Example where the hierarchy in the charged-lepton sector is due to the
number of flavon insertions: tau, muon and electron masses are generated
by diagrams involving one, two and three flavons, respectively. In this spe-
cific example the heavy mediators are doublets under SU(2)L.

FIGURE 3.4: Example where the hierarchy for the charged-lepton masses comes from
the flavon vevs that break the family symmetry at different scales. Then,
hfei ⌧ hfµi ⌧ hfti is expected. In this specific example the heavy mediators
are singlets under SU(2)L.
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3.3.2 Neutrino masses

The residual symmetry in the neutrino sector, Gn = Z2⇥CP, delimits the form of the
light neutrino mass matrix mn through the following invariance conditions:

ZT
3 mn Z3 = mn and X3 mn X3 = m⇤

n, (3.16)

where Z3 and X3 are the generators of Z2 and CP in the triplet representation. The
texture of the matrix that satisfies Eq.(3.16) is

mn = mn
0

0

BBBBB@

s + x + z
3

2
p

2
(z + ijy)

3
2
p

2
(z � ijy)

3
2
p

2
(z + ijy)

3
2
(x + iy) s � x + z

2
3

2
p

2
(z � ijy) s � x + z

2
3
2
(x � iy)

1

CCCCCA
, (3.17)

where {s, x, y, z} are dimensionless and real numbers, j = (1 +
p

5)/2 is the GR
and mn

0 is the absolute mass scale for neutrinos. Similarly, the flavon vevs breaking
the family symmetry in this sector must satisfy

Zr hfn
r i = hfn

r i and Xr hfn
r i⇤ = hfn

r i, (3.18)

where hfn
r i and the generators of Z2 and CP, Zr and Xr, are expressed in the r rep-

resentation. The vacuum alignment is then subject to verify the general structure5:

hfn
1i = u1, hfn

3i = u3

0

BBB@

�
p

2j�1

1

1

1

CCCA
, hfn

30 i = u30

0

BBB@

p
2j

1

1

1

CCCA
, (3.19)

hfn
4i =

0

BBBBBBB@

yr � iyi

(1 + 2j)yr � iyi

(1 + 2j)yr + iyi

yr + iyi

1

CCCCCCCA

, hfn
5i =

0

BBBBBBBBBB@

�
q

2
3 (xr + xr,2)

�xr + ijxi

xr,2 � ixi

xr,2 + ixi

xr + ijxi

1

CCCCCCCCCCA

, (3.20)

5As for the charged leptons, we simply present the structure of the flavon vevs compatible with
the residual symmetry in the neutrino sector. The scalar potential originating them, which we do not
compute here, will generally involve additional superfields to those detailed in Table 3.1.
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where all the coefficients are real.
Majorana neutrino masses can be generated through the so-called dimension 5 Wein-
berg operator, which is produced at tree level by type I, II or III see-saw mechanisms.
Each case is related to the addition of one extra particle to the SM spectrum: RH neu-
trinos, a scalar triplet or a fermion triplet, respectively. In the effective low-energy
theory some of these constructions are equivalent to others (a detailed discussion
about this can be found in Appendix C of [29]) so that we can reduce the discussion
to just two cases: Mechanism I, consisting of the Weinberg operator and type II see-
saw, and Mechanism II, which includes type I and III see-saw realizations. In the
following, we specify the operators generating the neutrino masses for each mech-
anism. The quantum numbers of the fields for each scenario are displayed in Table
3.1, where the nomenclature of [29] has been conserved.

Mechanism I

Here we consider neutrino masses generated by the Weinberg operator. In this case,
a lepton doublet ` transforming as the 3 or the 30 representation produces the same
phenomenological results under a redefinition of the parameters as indicated in [29].
Therefore, without loss of generality, one may simply consider L ⇠ 3. The LO contri-
butions to the effective superpotential responsible for the neutrino masses are:

W` � WI
n = yn

1

⇥
L2H2

u fn
1
⇤

1
M2

c
+ yn

5

⇥
L2H2

u fn
5
⇤

1
M2

c
, (3.21)

where yn
i are dimensionless parameters and brackets mean that different contractions

are possible. In the low-energy theory all of them are equivalent, since they give
rise to the same predictions. However, as can be seen in Figure 3.5, the mediator
sector involved in each process is very different and thereby their ultraviolet (UV)
origin: while in the first diagram the heavy messengers are both LH and RH, the
second process considers RH fields and the last one scalar triplets. In the absence of
additional hypothesis about the high-energy theory, all these mediators are present
and have similar masses, Mc.
Once the flavor symmetry is broken, the mass matrix in Eq.(3.17) is generated with

s µ yn
1

u1

Mc
x µ �yn

5
xr,2

Mc
y µ �yn

5
xi

Mc
z µ �yn

5
xr

Mc
, (3.22)

where u1 and {xi, xr, xr,2} are the vevs of the singlet and pentaplet flavons respec-
tively, see Eqs.(3.19) and (3.20).



3.3. Lepton masses and mixing from A5 and CP 119

LL

Hu�
⌫

�
⌫

1,L

Hu

�
⌫

2,L
LL

HuHu

�
⌫

2,R

�
⌫

�
⌫

1,R

Hu Hu

�
⌫

L L

�
⌫�
1

�
⌫�
2

FIGURE 3.5: Different contractions generating the Weinberg Operator of Mechanism I
in Sec.3.3.2. The first diagram involves SU(2)L doublets and singlets as
mediators whereas the second and third only require singlets or triplets.
The phenomenological implications in each case are different.
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FIGURE 3.6: Different contractions generating the Dirac mass matrix of Mechanism II a-
2 and c-2 in Sec.3.3.2. The first and third diagrams involve SU(2)L doublets
as mediators whereas the second requires singlets. The phenomenological
implications in each case are different.



120 Article 3. LFV and neutrino masses from A5 and CP in the non-universal MSSM

Mechanism II

The type I see-saw formulation is investigated in Mechanism II. Two different situ-
ations are analyzed in this framework: both L and nc transform in the same triplet
representation (II a-2) or in opposite ones (II c-2). The specific choice, L ⇠ 3 or L ⇠ 30,
does not affect the resulting phenomenology. Therefore, L ⇠ 3 is always assumed.
Here we consider a trivial Majorana matrix, namely MN = MP23, with P23 defined
in Eq.(3.10), while the Dirac mass matrix, Yn, is more complicated. The opposite
option, non-trivial Majorana mass and trivial Dirac matrix, does not introduce ob-
servable effects in the LFV observables examined in the following section, hence we
do not discuss this possibility further.
The effective operators entering the superpotential that produces the Dirac mass are:

W` � WIIa2
n = Yn

1 [ ncL ]1 Hu + yn
1
[ ncL fn

1 ]1 Hu

L

+ yn
3
[ ncL fn

3 ]1 Hu

L
+ yn

5
[ ncL fn

5 ]1 Hu

L
+ c.c. (3.23)

for Mechanism II a-2, and

W` � WIIc2
n = yn

4
[ ncL fn

4 ]1 Hu

L
+ yn

5
[ ncL fn

5 ]1 Hu

L
+ c.c. (3.24)

for Mechanism II c-2. Again the brackets indicate that different contractions are
possible. Figure 3.6 shows the UV origin of each of them involving LH mediators,
RH mediators and triplets under SU(2)L. Once the flavor symmetry is broken, the
neutrino mass matrix is generated through the usual type I see-saw process,

mn = �Yn M�1
N YnT = � 1

M
YnP�1

23 YnT. (3.25)

The coefficients {s, x, y, z} entering mn as in Eq.(3.17) are intricate linear combina-
tions of the dimensionless parameters:

f µ Y1 + yn
1

u1

Mc
g µ yn

3
u

Mc
hr µ yn

5
xr

Mc
hi µ yn

5
xi

Mc
hr,2 µ yn

5
xr,2

Mc
(3.26)

for Mechanism II a-2, and

fr µ yn
4

yr

Mc
fi µ yn

4
yi

Mc
hr µ yn

5
xr

Mc
hi µ yn

5
xi

Mc
hr,2 µ yn

5
xr,2

Mc
(3.27)

for Mechanism II c-2.
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3.3.3 Lepton Mixing

The VPMNS is the matrix that measures the misalignment between the rotations of LH
charged-leptons and neutrinos to the mass basis. It is defined as

VPMNS = Ve†
L Vn

L . (3.28)

The conservation of CP and residual transformations determine the form of this ma-
trix up to permutations of rows and columns. In our case, the residual symmetry
in the charged sector indicates that for Ge = Z5 generated by Q = T diagonal, the
unitary rotation to the mass basis for LH charged leptons Ve

L is the identity. There-
fore the VPMNS will be determined only by the neutrino mixing at LO. The unitary
transformation that diagonalizes the neutrino mass matrix in Eq.(3.17) is [33]

VPMNS = Wn R13(q)Kn , (3.29)

where Wn defines a change of basis that block-diagonalizes the initial matrix in Eq.(3.17)
and it is directly related to the GR mixing, R13(q) is a rotation of an angle q in the
1 � 3 plane and Kn is a diagonal matrix with entries {±1, ±i} needed to have posi-
tive eigenvalues. The explicit form of the matrix Wn is

Wn =
1p
2

0

BBB@

p
2 cos f

p
2 sin f 0

sin f � cos f i

sin f � cos f �i

1

CCCA
, (3.30)

with sin f ⌘ 1/
p

1 + j2 and cos f ⌘ j
p

/(1 + j2). The rotation is given by

R13(q) =

0

BBB@

cos q 0 sin q

0 1 0

� sin q 0 cos q

1

CCCA
, (3.31)

where the size of the angle q is totally fixed by the entries of the block-diagonalized
mass matrix. In our case:

tan 2q =
2
p

2 + j y
2 x + z

. (3.32)

Mixing angles and complex phases can be directly extracted from Eqs.(3.29)�(3.32)
using the standard VPMNS parametrization that we detail in Appendix D.1. The
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reactor angle is proportional to the angle q as:

sin2 q13 =
2 + j

5
sin2 q. (3.33)

Eq.(3.33) implies that a small value of q is required in order to reproduce q13 ⇠ 9�.
Indeed, qbf = 0.175 has been found as the best fit value for this realization in [26].
Inspecting Eq.(3.32), one may see that such a tiny value for q can only be obtained
considering the following hierarchy among vevs6: y ⌧ x, z, s.
The atmospheric angle is predicted to be maximal, sin2 q23 = 1/2, and the solar
angle is related to the reactor angle through the sum rule:

sin2 q12 =
3 � j

5 cos2 q13
' 0.276

cos2 q13
(3.34)

CP invariants and complex phases are also predicted in this framework. The Jarlskog
invariant [40] is

JCP =
1
8

sin 2q12 sin q23 sin 2q13 cos q13 sin d = �
p

2 + j

20
sin 2q. (3.35)

The Dirac phase d can be inferred from Eq.(3.35) and it is maximal, | sin d| = 1. The
other CP invariants, defined as

I1 ⌘ Im


V12V12V⇤
11V⇤

11

�
= sin2 q12 cos2 q12 cos4 q13 sin a (3.36)

I2 ⌘ Im


V13V13V⇤
11V⇤

11

�
= sin2 q13 cos2 q12 cos2 q13 sin b, (3.37)

vanish exactly. Hence Majorana phases, a and b, must be 0 or p.

3.3.4 Next-to-Leading Order Corrections

Notice that Eqs.(3.12) and (3.19)-(3.20) indicate that the LO masses of the neutral
and charged leptons must be induced by two separate set of flavons. In practice,
this division can be always ensured introducing an additional ZN symmetry that

6A natural way of obtaining this hierarchy is through the two step symmetry breaking G` ! Gn =
Z2 ⇥ Z2⇥CP ! Z2⇥CP as explained in [29].
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distinguishes among them at LO7. However, at higher orders, flavons belonging to
the opposite sector (the wrong flavons) are allowed to enter the LO diagrams and may
introduce sizable corrections. In this section we comment how these effects can be
adequately taken into account.
The NLO corrections to the leading predictions of masses and mixing usually come
from higher-order operators that enter the scalar potential and the superpotential.
The former induce a shift in the flavon vevs while the latter is usually generated by
extra flavon insertions to the LO operators. As commented before, some of these
insertions may be due to the wrong-flavons. For neutrinos, one may check that these
contributions are usually subleading. Assuming that the heavy fields c mediating the
diagrams in both sectors have masses of the same order, corrections to the neutrino
mass matrix are of the form

dmn ⇠ l2
C m0

n, (3.38)

where m0
n is a 3⇥ 3 matrix with elements given in terms of the {s, x, y, z} parameters

defined in Eq.(3.17). Therefore, barring accidental cancellations in the LO elements
which may make the NLO terms dominant, we expect these corrections to be mostly
subleading.
Similarly, a suitable choice of charge assignments under a ZN symmetry can guaran-
tee that insertions of the neutrino flavons to the charged sector are also subleading.
For instance, if the following set of charges are considered

Nft = Nfµ = Nfe = k and Nfn = 1, (3.39)

such that QZN (f) = ei 2pNf/N , it is easy to see that one charged-lepton flavon could
only be substituted by k neutrino-flavon insertions8. Then, in its most general form,

7For instance, considering the diagrams in Figure 3.4 and the first diagram in Figure 3.6 as the
responsible mechanisms for lepton masses, one may see that the charges discriminating both sectors
would be:

Ncl
n

= NHl + N`c + nNfl � (n + 1)N ,

Nfe = (3N � N` � NHd � Nc
e )/2 ,

Nfn = 2N � N` � NHu � Nc
n ,

with ` ⌘ {e, µ, t, n}. For the remaining cases, similar assignments can be done.
8For the diagrams in Figures 3.4 and 3.5 (Mechanism I), the charges of the flavons in Eq.(3.39) can be

easily obtained solving the equation system:

Nfn = N � 2 N` � 2 NHu = 1 ,
Nft = NCL � Ntc = k ,
Nfµ = (NCL � Nµc )/2 = k ,
Nfe = (NCL � Nec )/3 = k,



124 Article 3. LFV and neutrino masses from A5 and CP in the non-universal MSSM

corrections to the charged-lepton mass matrix will be given by

dme ⇠
✓
hfni
Mc

◆k

0

BB@

1 1 1
1 1 1
1 1 1

1

CCA . (3.40)

Adjusting the value of k, the required suppression can always be obtained.

3.4 Kähler Potential and Soft Terms

In Sec.3.2, the main consequences of embedding a flavor symmetry in supersym-
metric theories where LMed � L f have been discussed, see also [20–24]. Even in
the most conservative case where SUSY breaking is parametrized by a single univer-
sal spurion field, tree-level flavor violating effects generally arise from the mismatch
between the order one coefficients in the soft-breaking structures and the Yukawa
and kinetic terms due to the different equivalent options of inserting this spurion
field [20]. Moreover, we observe that, in the absence of further hypothesis over the
UV spectrum, the common origin of the flavor structures for charged leptons and
neutrinos may induce testable relations between observables belonging to these two
sectors. Finally, we notice that, for some configurations, significant corrections from
the Kähler potential emerge that break the residual symmetries and could modify the
LO predictions. This fact is independent of SUSY and it actually corresponds to the
usual wave-function renormalization that should always be taken into account [24,
41–44].

3.4.1 Kähler corrections

The effective Kähler potential for a multiplet y of A5 and CP can be schematically
written as

K = y†
i yj

"
dij + Â

n, a, b
cn

ij ab

 
hf` †

ra i hf`
rb
i

Mc

!n #
, (3.41)

with ` = e, n and Mc the generic mass of the c heavy mediators. The specific terms
entering the sum depend on the symmetries of the model. We are interested in the
Kähler potential for lepton doublets and singlets. Under no further assumptions, we

with NCL = N � NHd � N`. For other cases, one may proceed in a similar way.
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can at least write the following terms for the former:

KL =

"
1 +

1
M2

c
Â

r

⇣
fe†

r fe
r + fn†

r fn
r

⌘
+ . . .

#
⇥

"
L†L +

1
M2

c
Â

r

⇣⇥
L†fe†

r
⇤

1

⇥
Lfe

r
⇤

1 +
⇥

L†fn†
r
⇤

1

⇥
Lfn

r
⇤

1

⌘
+ . . .

#
,

(3.42)

where dots stand for higher order terms in the same fashion and the sum in r ac-
counts for the flavons at work depending on the mechanism, see Table 3.1. The first
line is associated with singlet contractions that contribute to every element of the
Kähler metric, so they can be factorized as a global constant. The second line cor-
responds to non-trivial contractions and generates off-diagonal entries in the Kähler
metric. Note that, being ff† combinations, all terms in Eq.(3.42) are neutral under
any possible charge. Hence, they cannot be avoided and must be adequately taken
into account. The Kähler function for RH charged-leptons can be written as:

KR,e =

"
1 +

1
M2

c
Â
8r

fe†
r fe

r + · · ·
#
⇥

"
ec †ec +

1
M2

c
Â
8r

⇥
ec †fe†

r
⇤

1

⇥
ecfe

r
⇤

1 + · · ·
#

.

(3.43)

In contrast to the previous case, here only the flavons associated with charged lep-
tons contribute. An analogous expression can be written for RH neutrinos replacing
fe ! fn and ec ! nc.
The Kähler structures in Eqs.(3.42) and (3.43) can be explicitly computed simply by
inserting the flavon vevs in Eqs.(3.12) and (3.19)-(3.20). The results are rather intri-
cate, so we omit them here. We find that the charged-lepton flavons only contribute
to the diagonal of the Kähler metric, while neutrino flavons also induce off-diagonal
entries. Because of that, a redefinition of the fields is required in order to go to the
physical basis where the kinetic terms are canonical, that is bK = 1. This can be always
achieved making use of an upper triangular matrix that decomposes the Hermitian
Kähler metric as K = T†T [42] (see Appendix A.1.3):

by �! by = T y / y† K y = by† by (3.44)
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The upper triangular matrix T defined by Eq.(3.44) has the schematic form

T '

0

BBB@

1 + e2
11 e2

12 e2
13

0 1 + e2
22 e2

23

0 0 1 + e2
33

1

CCCA
, (3.45)

where e2
ij are complex entries linearly dependent on the flavon vevs squared. In our

case, the size of these entries may vary from 10�7 up to 10�2, depending on the
mechanism9. The field redefinition to the canonical basis affects the lepton masses in
Eqs.(3.15) and (3.17), which should be rotated as:

me �! bme =
⇣

T�1
⌘†

me T�1 , (3.46)

mn �! bmn =
⇣

T�1
⌘T

mn T�1 . (3.47)

Initially, the charged leptons in the non-canonically normalized flavor basis satisfy
that m†

e me is diagonal and hierarchical. The canonical rotation introduces corrections
to the product in Eq.(3.15) as:

m†
e me �! bm†

e bme '

0

BBB@

l8
C e2

12 l8
C e2

13 l8
C

· l4
C e2

23 l4
C

· · 1

1

CCCA
. (3.48)

The corrected diagonalizing matrix at LO is then

Ve
L �! bVe

L = Ve
L + dVe

L '

0

BBB@

1 e2?
12 l4

C e2?
13 l8

C

�e2
12 l4

C 1 l8
C

�e2
13 l8

C �l8
C 1

1

CCCA
. (3.49)

It enters the new VPMNS but does not introduce sizable modifications to the initial
angles. This is in agreement with [42], where the authors analyzed the effects of the
canonical rotation for hierarchical Yukawa matrices.
The situation for neutrinos is slightly more involved because their mass matrix is not
completely hierarchical and analytical expressions accounting for these effects are

9Notice that this upper-triangular form ensures that the corrections of canonical normalization are
always subleading for hierarchical matrices.
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difficult to obtain. We expect that corrections from the canonical rotation are impor-
tant when affecting small quantities, such as the reactor angle or the lightest mass
for a very hierarchical spectrum, and in those cases where the neutrino spectrum
has two or more quasi-degenerated masses, since small contributions can modify the
ordering. Numerically, this has been confirmed: while the correlations among vevs
obtained in [29] approximately remain after the canonical rotation, the range of pos-
sible values for the free parameters is significantly reduced because of these effects10.

3.4.2 Soft-breaking Masses

Once we have the Kähler potential, the soft-breaking masses before canonical nor-
malization can be obtained just examining the effective operators in KY, as detailed
in Sec.3.2. At LO, the soft-mass matrices are proportional, element by element, to the
Kähler metric, see Eq.(3.4), and the proportionality factor, fij, accounts for the differ-
ent ways in which the spurion F-term FX can be inserted in the representative Kähler
diagram [20, 21]. In our case:

em2
L = m2

0

"
L†L +

2
M2

c
Â

r

⇣⇥
L†fe†

r
⇤

1

⇥
L fe

r
⇤

1 +
⇥

L†fn†
r
⇤

1

⇥
L fn

r
⇤

1

⌘
+ · · ·

#
,

em2
R,e = m2

0

"
ec †ec +

2
M2

c
Â
8r

⇥
ec †fe†

r
⇤

1

⇥
ecfe

r
⇤

1 + · · ·
#

. (3.50)

Going to the canonical basis,

em2 �! bem
2
=

⇣
T�1

⌘†
em2 T�1, (3.51)

and then to the mass basis,

bem
2 �! bV†

e
bem

2 bVe , (3.52)

one observes that some off-diagonal terms in the LH soft mass matrix of Eq.(3.52)
survive the rotations. They can manifest in LFV processes such as `i ! `j g, `i ! 3 `j

or µ � e conversion. Moreover, since the LFV contributions for LH charged-sleptons
and the neutrino flavor structure arise from the same flavons, testable relations be-
tween observables from each sector can be inferred. On the other hand, RH charged

10Notice, however, that these corrections will affect only the determination of the parameters of a
given model from the experimental results. Almost always these variations lead to no measurable
effects on the observable predictions.
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leptons do not receive observable corrections to their soft masses since they are gen-
erated by the flavons in Eq.(3.12), which only contribute to the diagonal. As previ-
ously discussed for the Kähler potential, they can simply be reabsorbed through a
redefinition of the fields.

3.5 Predictions on flavor observables

Here we perform a combined analysis of the phenomenology of charged leptons and
neutrinos for the two mechanisms exposed in Sec.3.3.2. Following the strategy of
[29], each case is divided in several subcases, where one (Mechanism I) of two (Mech-
anism II) vevs of the active neutrino flavons are set to zero11. This allows to reduce
the number of independent parameters and to inspect relations among the vevs that
correctly reproduce the neutrino properties showed in Table I.1. We make predic-
tions for the total sum of the light neutrino masses, the effective mass mbb and the
flavor changing processes collected in Table I.6. Our numerical scan is realized as
follows:

• First, we randomly generate the independent parameters corresponding to each
mechanism in a range [�1,+1], Eqs.(3.22, 3.26, 3.27). Then, we compute the
light neutrino mass matrix mn in Eq.(3.17), the Kähler metric in Eq.(3.42) and
the soft masses in Eq.(3.50). The mass matrix for charged leptons is assumed to
be like in Eq.(3.15).

• The structures obtained before have to be rotated to the canonical basis as indi-
cated in Eqs.(3.46, 3.47, 3.51). After that, the lepton mass matrices are diagonal-
ized and re-phased to obtain real and positive eigenvalues.

bVn†
L bm†

n bmn bVn
L = diag(m2

1, m2
2, m2

3) , (3.53)
bVe†

L bm†
e bme bVe

L = diag(m2
e , m2

µ, m2
t) . (3.54)

At this stage, the VPMNS defined as in Eq.(3.28), with V` ! bV`, and the mass
splittings12, Dm2

21 = m2
2 � m2

1 and Dm2
3j = m2

3 � m2
j with j = 1 for Normal

11In many situations, that is equivalent to leave out some of the flavons in a model; if not, it could be
arranged working out the correspondent vacuum alignment that produces it.

12We assume that RGEs effects for the neutrino parameters are negligible so that our observables
computed at high scales, L ' 1014 � 1016 GeV, can be directly compared with the data in Table I.1.
Although this is the case for a hierarchical neutrino spectrum, it is not necessarily true for degenerate
masses [45]. However, in our case, the degenerate scenarios correspond to those subcases that are
already disfavored by cosmological bounds.
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Hierarchy (NH) and j = 2 for Inverted Hierarchy (IH), are checked to be in the
3s-allowed region for both hierarchies, see Table I.2.

• For those points which correctly reproduce lepton masses and mixing in the
3s region, we fix the value of mn

0 comparing with the best fit result for Dm2
21.

The value of mn
0 is expected to be some eV at most, so we discard points that

correspond to mn
0 > 5 eV.

• The soft mass matrices are evolved from the GUT to the EW scale by means
of the MSSM renormalization group equations and the branching ratios for the
lepton flavor violating observables in Table I.2 are computed13. We also pro-
vide estimations for the total sum of light neutrino masses and the effective
mass mbb.

3.5.1 Neutrinos

For the neutrino sector, we follow the analysis performed in [29]. The results are
displayed in Figure 3.7, where the effective neutrino mass mbb is plotted against the
minimum neutrino eigenvalue, that is mmin ⌘ m1 for NH and mmin ⌘ m3 for IH.
The upper panel reproduces the estimations presented in [29] whilst the lower panel
shows the effect of rotating to the canonical basis where the Kähler is the identity.
Blue points are related to Mechanism I, where neutrino masses are produced by the
Weinberg operator or type II see-saw. Red points to Mechanism II a-2, correspond-
ing to type I and III see-saw with trivial Majorana matrix and left- and right-handed
neutrinos transforming in the same triplet representation. Green points are associ-
ated with Mechanism II c-2, which considers the same framework as Mechanism II
a-2 but with the lepton doublet and the neutrino singlet transforming in different
triplet representations. According to [29], each case is divided in several subcases
where one (Mechanism I) or two (Mechanism II) flavon vevs are set to zero. Each
subcase allows for NH, IH or both of them. For Mechanism I, we have three subcases
corresponding to z = 0, x = 0 and s = 0. For Mechanism II a-2, a total of six subcases
are studied: f = 0, hr = 0 and hr,2 = 0 with either hi = 0 or g = 0. Finally, Mecha-
nism II c-2 consists of six more cases: fi = 0, hr = 0 and hr,2 = 0 with either hi = 0 or
fr = 0. For conciseness we identify the different cases with the first vev and specify
the second vev only when necessary. In addition, we use the subscripts "N" and "I"
as shorthand notation for NH and IH.

13Numerical calculations for the running, spectrum and low-energy processes have been performed
through the Supersymmetric Phenomenology package (SPheno) [46], together with the SARAH Math-
ematica package [47] for the generation of the source code.
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FIGURE 3.7: The observable mbb against mmin. The (bottom) top panel corresponds
to the assumption of UV LH-mediators originating (non-)negligible correc-
tions to the Kähler metric. Blue points correspond to Mech. I, red points to
Mech. II a-2 and green points are due to Mech. II c-2. The green and blue
shadows are the ones allowed for NO and IO respectively. Red shaded re-
gions are already excluded by experimental observations.
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From Figure 3.7 we conclude that the scenarios z = 0 N of Mechanism I and hr = 0 N

of Mechanism II a-2 are incompatible with the latest data from Planck + BAO, while
other cases like Mechanism I with s = 0 N and x = 0 I or Mechanism II with hr = 0 N

and hr,2 = 0 N could be tested in the future with further cosmological data. As shown
in Table I.2, future sensitivity in neutrinoless double beta decay experiments could
probe those realizations that predict IH and the region for quasi-degenerate masses
with a sensitivity mbb = (0.01 ÷ 0.05) eV (for reviews see [48, 49]).
Comparing upper and lower panels of Figure 3.7, it is evident that the predictions
on mmin for some subcases change significantly and result in being extended by one
or two orders of magnitude. That happens for those hierarchical subcases where
the smallness of mmin make it more susceptible to higher order corrections from the
canonical rotation. Significant cancellations between leading and higher order terms
happen in Mechanism I with s = 0 I, Mechanism II a-2 with f = 0 I, and Mechanism
II c-2 with fi = 0 N, see the second plot of Figure 3.7. However, note that a direct
measurement of m min is of no feasible pursue in the near future. From this point of
view, m min can be considered as much as an additional model parameter so we may
conclude that the canonical rotation has no substantial consequences on the testable
predictions of the model in [29]. The two exceptions to this are the subcases Mech-
anism II a-2 with { f , hi} = 0N and Mechanism II c-2 fi = 0N where, with enough
resolution, a small discrepancy with the predictions in [29] for mbb may be experi-
mentally found.

3.5.2 Charged Leptons

It has been pointed out in previous works the importance of correctly account for
the flavor effects that emerge from the inclusion of a flavor symmetry in SUSY [20–
22]. On the one hand, it allows for a characterization of the flavor models of interest
through their contributions to flavor-changing (FC) observables while, on the other
hand, the search for experimental signals on those processes will help us to explore
the SUSY spectrum at energies that go far beyond the LHC high-luminosity upgrade.
In this section we follow the strategy in [21] and we study the flavor contributions
arising from the breaking of A5 and CP in the LFV observables collected in Table I.6.
The structure of the soft mass matrix for LH fields is given in Eq.(3.50). We compute
its numerical value for each of the points that reproduce the neutrino experimental
parameters in the 3s region, Table I.2, plus the Planck bound on the total sum of light
neutrino masses, Table I.2. The range of possible values for the off-diagonal entries
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FIGURE 3.8: Excluded regions of the MSSM parameter space due to LFV constraints for
tan b = 10. The upper panel is obtained imposing the current bound for
BR(µ ! eg), the bottom panel show the regions expected to be ruled out
if the future sensitivity for CR(µ � e)Al is reached with no discovery. The
different mechanisms are distinguished through different colors: I (blue), II
a-2 (red) and II c-2 (green). The black line is the ATLAS bound for mSUGRA
models.

results in being constrained by the phenomenology (upper bound) and by the abso-
lute mass scale mn

0 ⇠ 5 eV (lower bound). The interval corresponding to each case is
reported in Table D.1.
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The minimum value of the off-diagonal elements in Table D.1 can be used to con-
strain the MSSM parameter space as it has been done in [20–22]. Concretely, we com-
pute the branching ratio (BR) for the LFV processes displayed in Table I.6 considering
an hypothetical soft mass matrix for LH sleptons whose off-diagonal elements corre-
spond to those minimum values. We choose a representative value of tan b = 10 and
calculate our predictions for different values of {m0, M1/2}. Comparing with current
and future experimental bounds in Table I.6, we are able to set excluded regions in
the {m0, M1/2} plane. Barring accidental cancellations, we expect that bounds for
specific models based on the realizations studied throughout this work will be like
those presented in Figure 3.8 in the most optimistic scenario.
The most interesting results are shown in Figure 3.8, where the upper panel has been
obtained from the most restrictive process nowadays, BR(µ ! eg)  4.3 ⇥ 10�13,
and the lower panel corresponds to the expected future sensitivity on CR(µ � e)Al 
10�17. Shaded green areas correspond to the stau as the lightest supersymmetric par-
ticle (m0 ⌧ M1/2) and no correct electroweak symmetric breaking (M1/2 ⌧ m0). The
ATLAS MSUGRA limit covers up to M1/2 = (500 ÷ 800) GeV for m0  6 TeV. We
note that the excluded regions, the remaining areas below the corresponding lines,
have the typical shape due to LH insertions, see [21].
Current bounds are already competitive with the experimental limit in Mechanism I,
for which the excluded slepton and gluino masses in the less constrained case reach
è . 800 GeV and eg . 1.5 TeV14. These bounds could be increased up to è . 3 TeV
and eg . 5 TeV with future sensitivity from µ � e conversion, (see lower panel in
Figure 3.8). More severe are the constraints imposed by Mechanism II. In particular,
for current bounds, we can infer the following global lower limits: è . 1.5 TeV and
eg � 2.8 TeV. They become much stronger considering the future reach of µ � e con-
version which translates into è� 5 TeV and eg � 8 TeV.
It means that precision experiments will allow us to put constraints over the super-
symmetric spectrum for masses that are beyond the LHC sensitivity in a factor of
3 ÷ 5. Conversely, the discovery of SUSY partners in the TeV range will put signifi-
cant constraints on these simple realizations with LH mediators, which will have to
be reformulated in more elaborated scenarios: for instance, suppressing the LH con-
tributions in the Kähler function or increasing the degrees of freedom in the neutrino
sector by considering non-trivial Majorana and Dirac structures simultaneously.

14Hereafter, we omit the cases z = 0 in Mechanism I and hr = 0 in Mechanism II a-2 from the dis-
cussion since they are already disfavored by the Planck + BAO limit on the total sum of light neutrino
masses.
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FIGURE 3.9: The quantities mbb and mmin versus the muon flavor violating decay
BR(µ ! eg). The MSUGRA input parameters are fixed to the conserva-
tive values m0 = M1/2 = 1 TeV, tan b = 2. The shaded regions are already
excluded by current bounds.
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FIGURE 3.10: The quantities mbb and mmin versus the flavor violating decays of the
t: BR(t ! eg) (top panels) and BR(t ! µg) (bottom panels). The
mSUGRA input parameters are fixed to the conservative values m0 =
M1/2 = 1 TeV, tan b = 2. The shaded regions are already excluded by
current bounds.

3.5.3 Relations among observables

In this framework it is possible to predict testable relations among the LFV observ-
ables in the charged sector, Table I.6, and the neutrino mass observables mbb and
mmin discussed in Sec.3.5.1. This allows to disentangle cases that are not distinguish-
able only through the analysis in [26]. To this end we fix the mSUGRA parameters
to m0 = M1/2 = 1 TeV, which would correspond to sleptons and gluinos masses
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around 1.5 TeV and 2.5 TeV respectively, and a very conservative value tan b = 2,
which ensures that the tan b-enhanced contributions to the FC processes are mini-
mized. Then, we study the dependence of both mbb and mmin on BR(µ ! e g) and
BR(t ! e (µ) g). Our results for each process are shown in Figures 3.9 and 3.10. It is
worth emphasizing the interplay of the experimental bounds coming from the two
sectors, which acts in a complementary way in constraining the different realizations
of the neutrino masses.
In fact, current bounds on LFV observables allow to constrain some regions that oth-
erwise were not testable with present neutrino data, since they predict too low val-
ues for mbb and mmin (bottom-right). In particular, the cases hr = 0 and hr,2 = 0 of
Mechanism II (both a-2 and c-2) are severely constrained, while the cases s = 0 and
x = 0 for Mechanism I, f = 0 for Mechanism II a-2 and fi = 0 for Mechanism II c-2
result partially excluded. Moreover, with the expected sensitivity of MEG II [50] in
BR(µ ! eg) all the scenarios detailed before will be completely (dis)proved. And
vice versa, those realizations out of the scope of MEG II, namely z = 0 in Mechanism
I and hr = 0 in Mechanism II a-2, happen to be incompatible with the recent cos-
mological data presented by the Planck collaboration for the neutrino masses [51].

3.6 Conclusions

In this work we have analyzed the phenomenological consequences of combining A5

and CP as a flavor symmetry in SUSY. We have focused on the leptonic sector where
two residual symmetries, Z5 and Z2⇥CP, remain conserved at LO for charged lep-
tons and neutrinos. In Sec.3.2, the main effects of introducing a flavor symmetry into
SUSY theories have been summarized. It can been shown that, even in the most con-
servative scenario, tree-level FC soft couplings arise when LMed � L f , producing
sizable effects in LFV observables.
The main features of A5 and CP as a group have been reviewed in Sec.3.3, where the
structure for the lepton mass matrices, the vev of the flavon fields and the leptonic
mixing have been derived. The mass matrix for charged leptons results in being di-
agonal at LO while, for neutrinos, all possible realizations to generate their masses
at tree level have been investigated. We noticed that two different set of flavons are
required to generate the neutrino and charged lepton masses at LO. Each of them can
induce corrections in the opposite sector at NLO, as discussed in Sec.3.3.4.
Sec.3.4 has been devoted to compute the minimal set of effective operators entering
the Kähler potential and soft masses for LH and RH fields. Under no additional
assumptions about the UV theory, the proposed operators are always present and
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cannot be avoided through the introduction of additional symmetries. For the resid-
ual symmetries considered here, we have found that the presence of LH mediators is
specially relevant and that the flavons associated with neutrino masses also induce
flavor violation in the charged-lepton sector. This allows for a combined analysis of
neutrino observables and LFV processes.
In Sec.3.5.1, we have computed our predictions for the neutrino effective mass mbb

versus mmin. We observed that the canonical rotation may have some effect over the
model parameter mmin. Although these variations seem to be difficult to measure, we
think that this information could be useful when (re)constructing theoretical models
from experimental data. Regarding charged leptons, in Sec.3.5.2, we have interpreted
our predictions for the LFV processes µ ! eg and µ � e conv. in terms of exclusion
limits on the plane {m0, M1/2}. The results depend on the mechanism responsible for
the neutrino masses; however, even in the less restricted realizations, we obtain limits
that are competitive with those coming from direct searches of ATLAS on MSUGRA
scenarios. This type of analysis is very useful to indirectly explore the supersym-
metric spectrum in concrete models: in the absence of experimental signals of new
physics, stringent limits can be set over the superpartner masses for each specific
setup; if SUSY is discovered at the TeV scale, the simplified constructions analyzed
throughout this article will have difficulties to accommodate it so that more refined
scenarios must be considered.
Finally, the common origin of neutrino masses and flavor violation for charged lep-
tons induce testable relations between neutrino and charged-lepton observables. This
has been expounded in Sec.3.5.3, where a nice complementarity between both sectors
has been found: those realizations difficult to test with neutrino data will be totally
probed with the expected sensitivity of MEGII on µ ! eg; conversely, the two scenar-
ios that remain out of the scope of this experiment should be already discarded if the
latest limits from Planck+BAO on the total sum of the neutrino masses are imposed.
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ABSTRACT: We investigate the possibility of viable leptogenesis in an appealing
D(27) model with a universal texture zero in the (1,1) entry. The model accommo-
dates the mass spectrum, mixing and CP phases for both quarks and leptons and
allows for grand unification. Flavoured Boltzmann equations for the lepton asym-
metries are solved numerically, taking into account both N1 and N2 right-handed
neutrino decays. The N1-dominated scenario is successful and the most natural op-
tion for the model, with M1 2 [109, 1012] GeV, and M1/M2 2 [0.002, 0.1], which
constrains the parameter space of the underlying model and yields lower bounds
on the respective Yukawa couplings. Viable leptogenesis is also possible in the N2-
dominated scenario, with the asymmetry in the electron flavour protected from N1

washout by the texture zero. However, this occurs in a region of parameter space
which has a stronger mass hierarchy M1/M2 < 0.002, and M2 relatively close to M3,
which is not a natural expectation of the D(27) model.
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4.1 Introduction

The Standard Model (SM) has been experimentally confirmed as the correct descrip-
tion of Nature, with excellent precision, up to scales of O(TeV). Nevertheless we
know that the SM is not a complete theory. It includes a host of free parameters, the
majority of which relate to the Yukawa sector, into whose origin and nature the SM
offers no insight. This is despite obvious indications of internal structure, such as
large mass hierarchies between generations of fermions, and small CKM mixing. It
is also unclear as to how the SM should be extended to account for massive neutri-
nos and lepton mixing. The combined questions of charged fermion hierarchies and
the CKM and PMNS mixing patterns is typically referred to as the flavour puzzle.
Moreover, the SM fails to accommodate several observational facts in cosmology. It
lacks dark matter and inflaton candidates, has no explanation for dark energy, and
does not account for the baryon asymmetry of the Universe (BAU).
Among these cosmological issues, perhaps the BAU is the most distressing one. The
SM is (nearly) symmetric in particles and anti-particles; despite this, no evidence of
the presence of primordial anti-matter in our observable universe has been found
so far. The BAU, that is, the difference between the baryon nB and antibaryon nB

number densities, is measured with respect to the entropy density s to be

YB =
nB � nB

s
= (0.87 ± 0.01)⇥ 10�10. (4.1)

Although the SM includes all the necessary ingredients to generate this BAU dynam-
ically [1], namely, CP violation in the CKM matrix, B violation through sphaleron in-
teractions, and out-of-equilibrium processes in the electroweak phase transition, the
asymmetry obtained in the SM is too small by orders of magnitude [2].
It is well-known that extending the SM by several heavy right-handed (RH) neutri-
nos can yield a BAU via leptogenesis [3]. Lepton number-violating decays of the RH
neutrinos, some portion of which occur out of equilibrium, produce a lepton asym-
metry. This is partially converted into a baryon asymmetry by sphaleron interactions,
which are efficient above the electroweak scale. Heavy RH neutrinos simultaneously
provide a natural answer to the smallness of left-handed (LH) neutrino masses via
the seesaw mechanism.
It is interesting to note that since RH neutrinos are SM singlets, leptogenesis links
the resolution of the BAU with their Yukawa couplings, and thus connects with the
flavour puzzle. If seesaw is indeed the origin of light neutrino masses, then quali-
tatively leptogenesis is unavoidable. Whether it accurately reproduces the observed
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BAU becomes a quantitative question for a given spectrum of RH neutrinos and their
interactions with SM particles. Remarkably, the original (and arguably simplest)
model of leptogenesis requires a RH neutrino scale M & 109 GeV, which closely
corresponds to the “natural” seesaw scale.
The flavour sector of the SM, including lepton mixing, comprises 22 (20) physical
parameters, assuming neutrinos are Majorana (Dirac) particles. A popular approach
to relate these parameters, and reduce the effective number of degrees of freedom in
the SM, is that of spontaneously broken flavour (or family) symmetries. Non-Abelian
discrete symmetries have been especially successful, able to simultaneously describe
charged lepton and neutrino parameters, and in several cases, also the quark sector
[4–12]. A very appealing D(27) model was introduced in [13], consistent with an
underlying SO(10) grand unified theory (GUT). The family symmetry leads to a pre-
dictive structure with a universal texture zero (UTZ) for all fermion mass structures,
including the effective neutrinos after seesaw. The family symmetry is also responsi-
ble for controlling flavour-violating processes, which are sufficiently suppressed for
certain regions of the model parameter space, as shown in [14]. A complete model
ought to account for the observed BAU, which provides an additional constraints on
its parameters. In particular, as we shall see in this analysis, matching to the observed
BAU allows us to constrain the otherwise unknown parameters of the RH neutrino
sector.
The paper is organized as follows. Section 4.2 summarizes the main features of the
model, originally presented in [13]. The seesaw implementation is described in Sec-
tion 4.3, explaining the existing UTZ result in an elegant new way based on rank-one
matrices (described in more detail in Appendix C.2). In Section 4.4 we write down
the Boltzmann equations describing the evolution of the neutrino and asymmetry
densities; this is supplemented by Appendix C.1. Section 4.5 presents the results and
our analysis. We conclude in Section 5.5. Appendices C.2 and C.3 provide additional
insight into the model and leptogenesis within it.

4.2 Overview of the D(27) Model

In this section we review the model introduced in [13]. Given that we are interested
in leptogenesis, we focus on the lepton sector, where SM fermions are contained in
superfields L (lepton SU(2) doublets) and ec, Nc (following conventional notation,
conjugates of the RH charged leptons and neutrinos, respectively). The field content
and their transformation properties under the G f = D(27) ⇥ ZN flavour group are
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given in Table 4.1. The superpotential that generates the Yukawa structures at leading

Field L ec Nc Hu,d S S fc fb fa f fX

D(27) 3 3 3 1 1 1 3 3 3 3 3

ZN 0 0 0 0 2 -1 0 -1 2 0 x

TABLE 4.1: Representations of superfields under the flavour symmetry G f = D(27) ⇥
ZN .

order for Dirac fermions is
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where i, j = (1, 2, 3) lower (upper) indices denote the D(27) triplets (anti-triplets).
Non-renormalizable terms are suppressed by messenger masses, which are in gen-
eral different [13]; they are denoted here by a common scale L, with variations in
messenger masses contained in an arbitrary coupling g for each term. The superpo-
tential responsible for RH neutrino Majorana masses is

WN = Nc
i Nc

j
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L
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. (4.3)

The f fields are flavons that break D(27) and provide the structure of the mass ma-
trices, with the vacuum alignment

hfci = vc

0

BBB@

0

0

1

1

CCCA
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2

0

BBB@

0

1

1

1

CCCA
, hfai =
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0
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1

1

�1

1

CCCA
. (4.4)

The core prediction of the model is universal complex-symmetric mass matrices with
the UTZ in the (1,1) entry, of the form

M =

0

BBB@

0 a a

a b + 2a b

a b c + b � 2a

1

CCCA
, (4.5)
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for some complex a, b, c. Assuming a strong hierarchy a < b < c, the eigenvalues are
approximately given by |a2/b|, |b| and |c|. This applies in particular to the Dirac and
Majorana mass matrices. Up to O(1) coefficients, they yield the following hierarchies
between families:

Ye,n ⇠ ye,n
c

0

BBB@

0 e3
e,n e3

e,n

e3
e,n e2

e,n e2
e,n

e3
e,n e2

e,n 1

1
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, MN ⇠ Mc

0
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0 e2
N e2

N

e2
N e2

N e2
N

e2
N e2

N 1

1

CCCA
, (4.6)

with ye,n
c and Mc the dominant contributions to the third and heaviest generation.

Masses and mixing are compatible with the expansion parameters ee ' 0.15 and
eN ⇠ e3

n. In addition to yn
c , Yn depends on effective parameters yn

a,b, sourced from
the subleading operators in Eq. (4.2) and defined explicitly in Eqs. (4.9)–(4.10) below.
Due to the flavon VEVs, they correspond to a hierarchy yn

a : yn
b : yn

c ⇡ e3
n : e2

n : 1. The
expansion parameter for Dirac neutrinos, en, is not constrained by phenomenology,
but internal consistency of the model requires that it remains perturbative, i.e. en .
0.5. We shall see that numerically viable regions in parameter space correspond to
en 2 [0.05, 0.5]. Note that the large hierarchy between the first two RH neutrinos N1,2

and the heaviest one N3 is characteristic of this kind of model [15–19], where rather
different mixing patterns in the quark and lepton sectors are obtained from the same
universal Yukawa structures, on the condition that hfci is dominant in the quark and
charged lepton sectors and irrelevant for the neutrino mass matrix. The structure in
Eq. (4.5) can written precisely as

Ye,n = ye,n
a (⇤ab +⇤ba) + ye,n

b ⇤b + ye,n
c ⇤c,

MN = Ma(⇤ab +⇤ba) + Mb⇤b + Mc⇤c,
(4.7)

where ⇤i = fif
T
i and ⇤ij = fif

T
j are rank-one matrices,

⇤ab = (⇤ba)
T =

0
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0 1 1
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1

CCCA
, ⇤c =
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0 0 1

1

CCCA
. (4.8)

The set of parameters (ye,n
a , ye,n

b , ye,n
c ) and (Ma, Mb, Mc) in Eq. (4.7) are generally com-

plex1 with phases coming either from the VEVs or the coefficients,

1The presence of a CP symmetry can constrain them to be real, with CP being broken spontaneously
e.g. through the flavon VEVs as in [20]. We don’t consider this possibility here.
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ye,n
a ⌘ |ye,n

a |eige,n , ye,n
b ⌘ |ye,n

b |eide,n , ye,n
c ⌘ |ye,n

c |,
Ma ⌘ |Ma|eigN , Mb ⌘ |Mb|eidN , Mc ⌘ |Mc|.

(4.9)

Given that phenomenology depends only on two independent combinations of the
phases, we follow [13] in taking just d and g as independent phases (see also Ta-
ble 4.2). In terms of the fundamental parameters of the superpotential in Eqs. (4.2)–
(4.3), they are
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a | = ge,n

a vavb hSip
6L3

, |ye,n
b | =
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b hSi
2L3 , |ye,n
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3L4
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gN
b vav2

bv2
f

2
p

3L4
, |Mc| =

gN
c v2

f

L
.

(4.10)

The superfield S is a gauge singlet, while S is not [13] and introduces Clebsch-Gordan
(CG) coefficients, although for our purposes here it is sufficient to consider their re-
spective VEVs hSi and hSi as real numbers, and absorb the different CG contribu-
tions to charged leptons and neutrino into ge,n

b . The expansion parameters of the
model in Eq. (4.6) are recovered from the parameters in Eq. (4.7) as

ee,n ⇠
��ye,n

a /ye,n
b

�� ⇠
��ye,n

b /ye,n
c
��1/2 ⇠ |ye,n

a /ye,n
c |1/3 ,

eN ⇠ |Ma/Mc|1/2 ⇠ |Mb/Mc|1/2 .
(4.11)

The lepton asymmetries are obtained in the flavour basis, wherein the charged lepton
Yukawa matrix Ye and RH neutrino mass matrix MN are diagonal. They are diago-
nalized by unitary matrices, such that

Ŷe = Ve†
L YeVe

R,

M̂N = VT
N MNVN ,

(4.12)

where hats ( ˆ ) denote diagonal matrices of positive eigenvalues and, Ye being com-
plex symmetric, we have Ve†

R = VeT
L . In the flavour basis, in the LR phase convention

(where the Yukawa couplings are given by L ⇠ LHdeR + LHunR + h.c.), the neutrino
Yukawa matrix is given by ln, where

l⇤
n ⌘ Ve†

L YnVN , (4.13)

where the additional conjugation on ln appears due to the change from the super-
symmetry basis to the seesaw basis [21].
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4.3 The UTZ seesaw mechanism

In this section we review the results from [13] for how the seesaw mechanism op-
erates in the UTZ model, understanding them through a new formulation based on
rank-one matrices. As the Dirac and Majorana matrices are expressed in terms of the
same rank-one matrices, the application of the usual seesaw formula,

mn = �v2
uYn M�1

N YT
n , (4.14)

provides a light neutrino mass matrix mn which can be expanded in the same fashion,
i.e.

mn = ma(⇤ab +⇤ba) + mb⇤b + mc⇤c, (4.15)

with the ⇤ matrices defined in Eq. (4.8). Notably, the UTZ is preserved. A detailed
discussion of this elegant property can be found in Appendix C.2. The parameters
ma,b,c entangle the combinations of Dirac and Majorana neutrino couplings as

ma = �v2
uyn

a
2

Ma
, mb = ma

✓
2

yn
b

yn
a
� Mb

Ma

◆
, mc = �v2

uyn
c

2

Mc
. (4.16)

Obtaining the correct neutrino mixing requires mc < ma < mb. In fact, if mc <

ma, mb, the light neutrino mass matrix in Eq. (4.15) is semi-diagonalized by a tri-
bimaximal (TB) rotation (see e.g. [22]). Moreover if ma < mb, the resulting pattern
has a Gatto-Sartori-Tonin [23] structure which can be fully diagonalized by a rotation
of an angle q in the 23 block. Consequently Eq. (4.15) is compatible with a normal-
ordered neutrino spectrum, with

m̂n ⌘ diag (m1, m2, m3) ' diag
✓
|mc|

6
, 3
����
m2

a
mb

���� , 2|mb|
◆

. (4.17)

At leading order the full PMNS matrix is given by
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In this class of model [15–19] the different mixing patterns in the quark and lepton
sectors require a large hierarchy between the first two RH neutrinos and the third, i.e.
M1,2 ⌧ M3. Indeed, given the relations in Eq. (4.16) and the hierarchy in the Dirac



148 Article 4. Leptogenesis in D(27) with a universal texture zero

sector (see Eq. (4.6)), i.e. yn
a ⇠ e3

nyn
c and yn

b ⇠ e2
nyn

c , the requirement that mc < ma <

mb, implies the following relations for the RH neutrino parameters: Ma/Mb < en and
Ma/Mc < e6

n. Therefore, N3 with M3 ⇠ Mc effectively decouples after seesaw. The
parameters Ma,b are given by the same operator and a moderate hierarchy between
them is obtained by the relative size of the coefficients gN

a , gN
b . For those values of

the Dirac neutrino expansion parameter en preferred by the model, we thus expect a
hierarchical spectrum for the Majorana neutrino masses in which M1 < M2 ⌧ M3.2

4.4 Leptogenesis

4.4.1 Boltzmann equations

The generation of a BAU through Ni-leptogenesis is a non-equilibrium process which
is generally treated by means of Boltzmann equations for the number densities of RH
(s)neutrinos, YNi and YeNi

(for an Ni neutrino with mass Mi), and leptons, YLa . It is
useful to consider the quantities YDa = YB/3�YLa rather than YLa , since Da = B/3�
La is conserved by sphalerons and other SM interactions. La and Da asymmetries
are related by a flavour coupling matrix A, i.e. YLa = Âa0 Aaa0YDa. The form of A
depends on which interactions are in thermal equilibrium during leptogenesis; it is
defined explicitly in Appendix C.1. The produced lepton asymmetries are partially
converted into a baryon asymmetry YB by the sphalerons, given in the MSSM by

YB =
10
31 Â

a

YDa , (4.19)

with YDa computed at a temperature T ⌧ Mi, where the densities YNi , YeNi
are ef-

fectively zero. In the fully flavoured regime, Mi ⌧ 109(1 + tan2 b) GeV, all lepton
flavours are to be treated separately, i.e. a = e, µ, t. In the two-flavour regime,
109(1 + tan2 b) GeV ⌧ Mi ⌧ 1012(1 + tan2 b) GeV, only the interaction mediated by
the t Yukawa coupling is in equilibrium and the asymmetries in the e and µ flavours
can be treated with a combined density YDeµ = YDe+Dµ.
In the MSSM, with hierarchical RH neutrinos only N1 and N2 participate in the lep-
togenesis process and we can neglect the contribution from N3. We have three dif-
ferent scenarios, depending on M1 and M2. Assuming first that both M1, M2 ⌧
109(1 + tan2 b) GeV, the three charged-lepton states are active in the plasma during

2This different hierarchy in the neutrino Dirac and Majorana matrices can be accommodated in the
model through different mediator masses for the Dirac, and RH Majorana mediators, respectively LD,
LN . From Eqs. (4.2) and (4.3), if vb/LD ' va/LD ' en, requiring LD/LN ' en leads to Ma/Mc < e6

n.
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leptogenesis and the Boltzmann equations take the form [24]

dYNi
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= �2D
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,
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⌘
+

Ka
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KNi

W Â
a

Aaa0YDa0 ,

(4.20)

where z = Mi/T and Yeq
Ni

, Yeq
eNi

are the equilibrium densities of (s)neutrinos Ni, eNi,
respectively. In this case, the flavour index a runs over the three lepton flavours,
a = e, µ, t, and the asymmetries YDa are stored separately in the different flavours.
The factors D and W govern the decay and washout behaviour, respectively, and con-
tain information about decays, inverse decays, and scattering processes. [25–28]. The
expressions used in our calculation are collected in Appendix C.1, where we follow
in particular the notation and method of [24]. The decay factors Ka

Ni
and CP asym-

metries #a
Ni

, arising from the interference between tree-level and loop diagrams of the
RH neutrino decay, are determined by the flavour parameters of the model, and are
explored in the next subsection.
In the case M1 < 109(1 + tan2 b) GeV < M2, only the tau Yukawa coupling is in
equilibrium during N2 decays. We thus have two lepton flavours in the process,
a = t, (e + µ). In this first step, two asymmetries are generated, YDt and YDeµ , follow-
ing Eq. (4.20). However, before the decay of N1, the muon Yukawa coupling reaches
equilibrium and YDeµ is projected on the e and µ flavours, proportionally to Ke

N2
and

Kµ
N2

, respectively. We then use these values as initial conditions in N1 decays, using
again Eq. (4.20) with a = e, µt.
Finally, we can have both N1 and N2 in the two-flavour regime, 109(1+ tan2 b) GeV ⌧
M1, M2. An asymmetry is generated from N2 decays in the (e+ µ)2 flavour, i.e. in the
combination of e and µ that couples to N2. This combination maintains the coherence
in the plasma between a decay and a subsequent inverse decay. Then, when T ⇠ M1,
the couplings of N1 select a different combination of of e and µ in the direction of the
N1 Yukawa coupling, (e + µ)1. This implies that only the component of the (e + µ)2

asymmetry in the (e + µ)1 direction can be washed-out by N1 inverse decays, while
the rest, orthogonal to (e + µ)1, remains untouched by N1.
Note that in all numerical calculations below, we use the instantaneous approxima-
tion to describe the transition between the two-flavour and three-flavour regime. A
more rigorous description of the transition between two different flavoured scenar-
ios would require the use of density matrix equations, as noted in [28, 29] and de-
scribed in detail in [30].
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4.4.2 Decay factors and CP asymmetries

The lepton asymmetry in each flavour is governed by two sets of parameters which
can be computed within a given neutrino model: the decay factors Ka

Ni
and CP asym-

metries #a
Ni

, for a neutrino Ni decaying into a Higgs Hu and lepton doublet La (or
their conjugates). The Majorana nature of the RH neutrino masses implies the de-
cays Ni ! LaHu and Ni ! LaH⇤

u violate lepton number by one unit (DL = 1). The
decay factors are defined as

Ka
Ni

=
G(Ni ! LaHu) + G(Ni ! LaH⇤

u)
H(Mi)

, KNi
= Â

a

Ka
Ni

, (4.21)

where H(T) is the Hubble parameter at the temperature T, and H(Mi) ' 1.66pg⇤M2
i /MPl.

The CP asymmetries are defined as

#a
Ni

=
G(Ni ! LaHu)� G(Ni ! LaH⇤

u)

G(Ni ! LaHu) + G(Ni ! LaH⇤
u)

. (4.22)

The decay factors are dominated by the single tree-level diagram, while the CP asym-
metries arise only at one-loop level from the self-energy plus vertex diagrams. In
the two-flavour regime, Keµ

Ni
= Ke

Ni
+ Kµ

Ni
, with the corresponding decay asymmetry

#
eµ
Ni

= #e
Ni
+ #

µ
Ni

.
Explicitly in terms of the neutrino Yukawa matrix in the flavour basis, ln, the decay
factors are given by

Ka
Ni

=
v2

u
m⇤Mi

(l†
n)ia(ln)ai, (4.23)

where m⇤ ' (1.58⇥ 10�3 eV) sin2 b. For Ni decay, the relative phase between the tree
diagram and the loop diagram with an intermediate Nj will be the phase of (l†

nln)ij.
Then the CP-asymmetries for the two lightest RH-neutrinos is expressed as
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where g(x) is a loop function given by the sum of the vertex and the self energy
contributions [24, 31]; in the MSSM,

g(x) =
p

x


2
1 � x

� log
✓

1 + x
x

◆�
. (4.25)
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An exploration of the CP asymmetries and decay factors – responsible for the produc-
tion and washout of a lepton asymmetry, respectively – provides some insight into
how leptogenesis proceeds in this model. The decay factors appear in the arguments
of exponential damping terms, and a large Ka

Ni
is associated with strong washout.

As it is inversely proportional to the RH neutrino mass, in the “vanilla” picture of
flavour-independent N1 leptogenesis, this yields a lower bound on the N1 mass,
M1 & 109 GeV [25]. When considering asymmetry generation from next-to-lightest
RH neutrinos (N2 leptogenesis), typically a crucial requirement is that Ka

N1
. 1 in

some lepton flavour, to not completely wash out a previously generated asymmetry
from N2 decays [27]. This depends in particular on the Yukawa structures that give
ln; N2 leptogenesis and its compatibility with low-scale neutrino phenomenology
has been studied in [32–35].
As we are considering the case in which M1 ⌧ M3 then we can also neglect the i = 3
contribution to #a

N1
. In Appendix C.3 we show that ln (in the flavour basis) main-

tains the hierarchical structure suggested by the model, and a rough estimate for the
leptogenesis parameters gives
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(4.26)

From this we can make some a priori considerations: (i) due to the UTZ in the electron
coupling to N1, lepton asymmetries from N1 decays are dominated by the µ and t

flavours, while #e
N1

is generally too small to contribute significantly to asymmetry
production, (ii) we similarly expect a strong washout in the µ and t flavours for both
N1 and N2 leptogenesis, and comparatively weak washout for the electron, and (iii)
despite the large hierarchy between Mb and Mc, the #a

N2
are typically dominated by

the first term, which generates non-negligible asymmetry only if Mb and Mc are not
too separated.
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Neutrinos Charged leptons
ma/meV 8.95 ye

a 3.01 ⇥ 10�4

mb/meV 24.6 ye
b 3.90 ⇥ 10�3

mc/meV 2.26 ye
c 7.16 ⇥ 10�2

gm 2.51 ge 0.13
dm 1.26 de �1.31

TABLE 4.2: Fitted values for the low-scale model parameters, extracted from the compu-
tation in [13].

4.5 Analysis and results

4.5.1 Numerical results

In this section we present the numerical solutions to the fully flavoured Boltzmann
equations in the MSSM as given in Section 4.4, following a similar procedure to the
one already adopted in [36]. The analysis has been performed under the assumption
that the spectrum of the heavy neutrinos in the model is hierarchical, M1 < M2 ⌧
M3. Within this framework,

• a possible asymmetry generated by the heaviest RH neutrino N3 is always
washed out and assumed to be negligible,

• the generation of the asymmetry and the washout from decays and inverse
decays of the N1 neutrinos starts only after the end of the analogous processes
from the N2. The two lightest RH neutrinos do not interfere with each other,
such that the generation of the asymmetry from N1 decays and from N2 decays
proceed independently.

Consequently, the Boltzmann equations in Eq. (4.20) are solved twice for each point
in the model parameter space. In the first step, we solve for YDa arising from Ni=2 de-
cays, assuming thermal initial conditions (zero neutrino and asymmetry densities).
The solutions for YDa are then used as initial conditions for the Ni=1 calculation. The
final asymmetry is obtained from the sum over YDa after N1 leptogenesis.
The input parameters are comprised of those not already fixed by the fit to low-scale
neutrino phenomenology. In particular, we use the fit to quark and lepton masses
and mixing for our flavour model performed in [13], with relevant best fit values for
the lepton sector given in Table 4.2. We fix tan b = 10 in this analysis. Note also that,
as the model does not determine the absolute mass scale for fermions, the fit only
provides estimates for the parameters in Eq. (4.9) up to an overall scale, which is set
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FIGURE 4.1: Allowed values of RH neutrino eigenvalues M1,2 giving YB within 20% of
the observed value. The N3 mass is fixed to be M3 = 5 ⇥ 1014 GeV. Red
points assume the only contributions are from N1 decays, while blue points
take into account both N1 and N2 decays.

by the third generation, i.e. by Mc and ye,n
c . With tan b fixed, we can infer the charged

lepton scale ye
c , while the neutrino scales yn

c and Mc remain unfixed. The fit fixes the
values of the neutrino mass parameters ma,b,c and charged lepton parameters ye

a,b,c.
The seesaw relation in Eq. (4.16) entangles the three Dirac and three Majorana neu-
trino couplings (yn

a,b,c and Ma,b,c, respectively), constrained only by the three fitted
values of ma,b,c, leaving three (real) free parameters which enter into the leptogenesis
analysis. The phases of the couplings are similarly related: Yn and MN each contain
two independent phases (gn, dn and gN , dN , respectively); combinations of these yield
the two fitted independent phases of mn.
For this analysis, we choose the sets Ma,b,c and gN , dN as the inputs, scanning over the
ranges |Ma,b| 2 [107, 1014] GeV with fixed |Mc| = 5⇥ 1014 GeV, and gN , dN 2 [�p, p].
For each point, we solve the N1 and N2 Boltzmann equations for z 2 [0, •]. We stress
that, as the parameters of Ye and mn are fixed by the fit, each point automatically
satisfies current experimental bounds on lepton masses and mixing. The results are
shown in Figures 4.1 and 4.2. Figure 4.1 shows the regions that reproduce the experi-
mental value of YB to within 20%, in terms of the RH neutrino mass eigenvalues M1,2,
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FIGURE 4.2: Allowed values of RH input mass parameters Ma,b, Dirac neutrino cou-
plings yn

a,b, and RH neutrino masses M1,2 giving YB within 20% of the ob-
served value. The colours correspond to those Figure 4.1.

with M3 ' 5 ⇥ 1014 GeV. In Figure 4.1a we see the successful leptogenesis regions
taking into account only N1 decays, while in Figure 4.1b we consider both N1 and
N2 decays. The comparison between plots allows us to conclude that, over most of
the parameter space of the model, the BAU is consistent with leptogenesis proceed-
ing entirely from N1 decays, assuming thermal initial conditions. In other words,
the asymmetries generated by N2 decays are efficiently washed out in all flavours.
In the N1 case, the dominant contributions to the viable regions are from the µ and
t asymmetries, while the electron asymmetry is completely negligible. This agrees
well with the expectations from the analytical approximations in Section 4.4. Never-
theless, in Figure 4.1b we find a small region where the N2 contribution to the BAU
dominates. We can see that this scenario requires a small splitting between the heavy
RH neutrinos, M2/M3 & 0.1. The N2 case is discussed further in Section 4.5.2, where
we show that this region of parameter space is not natural in the UTZ model.
Figure 4.2a displays the regions corresponding to YB within 20% of the observed
value, in terms of the RH neutrino mass parameters Ma,b, with Mc = 5 ⇥ 1014 GeV.
Most of the points correspond to N1 leptogenesis (red points) with Ma/Mb 2 [0.05, 1].
Figure 4.2b shows the corresponding regions in terms of the neutrino Dirac couplings
yn

a,b, and the expansion parameter en = yn
a/yn

b . In N1-dominated leptogenesis, we
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have yn
a 2 [0.003, 0.03], yn

b 2 [0.008, 0.5] and en 2 [0.05, 1].
Recalling that M1 ⇠ M2

a/Mb and M2 ⇠ Mb, the eigenvalues M1,2 display a big-
ger hierarchy when compared to Ma,b and these points satisfy M1/M2 2 [0.002, 0.1].
Therefore, we conclude that the correct BAU is found for RH neutrino masses above
M1 & 4 ⇥ 109 GeV and M2 & 2 ⇥ 1011 GeV. In this regime it is relevant to discuss the
issues related to the potential overproduction of gravitinos [37]. There are several
ways around it [38, 39], one of which is to keep the reheating temperature low and
to produce the RH neutrinos non-thermally (e.g. produced in decays of the inflaton).
Nonetheless, even for thermal production scenarios, if the gravitino is unstable with
mass m3/2 & 10 TeV, these relatively high reheating temperatures around 109 or 1010

GeV remain borderline viable.
Finally, it is interesting to analyse the restrictions that a requirement of successful
leptogenesis set on the flavour model. As we have seen in Figures 4.1 and 4.2,
the best possibility, if we demand a relatively low reheating temperature, would
correspond to RH eigenvalues M1 ' 4 ⇥ 109 GeV and M2 ' 2 ⇥ 1011 GeV, with
M3 � 1014 GeV. In terms of the model parameters these points correspond roughly
to Ma ' 3 ⇥ 1010 GeV, Mb ' 1011 GeV, yn

a ' 0.003 and yn
b ' 0.009. We empha-

size again that independent information on the neutrino Yukawa couplings and RH
neutrino masses is not available from oscillation experiments, but when the BAU
is accounted for we can obtain several unknown parameters. With the above val-
ues we obtain the expansion parameter en ' 0.3. The heaviest RH neutrino is
then Mc ⇥ gn

b/gn
c ' 2

p
3Mb/e6

n ' 5 ⇥ 1014 GeV. However, these restrictions depend
strongly on the details of the flavour model and may change with small variations
[14]. If supersymmetry is found in the neighbourhood of the electroweak scale, we
would obtain additional information on the flavour symmetry that could help restrict
these possibilities [14, 40–42].

4.5.2 N2 leptogenesis and comparison with other models

As we have seen in the comparison of Figures 4.1a and 4.1b, there is a small re-
gion where the BAU is generated mainly by N2 leptogenesis. This region corre-
sponds to M1  0.002M2, with M2 � 1013 GeV and M3 = 5 ⇥ 1014 GeV. These
points correspond to relationships between model parameters, Ma < 0.002Mb and
0.01 < en < 0.1.
Here, the mechanism of asymmetry generation and washout is slightly more in-
volved [28, 29, 43, 44]. At temperatures T ⇠ M2 ⇠ 1013 GeV, a comparatively large
asymmetry is generated in each of the two active lepton flavours a = (eµ), t from
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N2 decays. These serve as initial conditions of the subsequent N1 system, which oc-
curs at much lower temperatures T ⇠ M1 ⇠ 109 GeV. This lies in the fully flavoured
regime, wherein the active flavours are a = e, µ, t. The asymmetry YDeµ , initially gen-
erated in the combined eµ flavour, is split into the e and µ flavours proportionally
to Ke

N2
µ |le2|2 and Kµ

N2
µ |lµ2|2, respectively [28, 43, 44].3 Assuming the num-

ber density of e and µ asymmetries are equal at the moment where µ couplings
reach equilibrium, the initial conditions for the N1 decays are thus YDe ' x2YDeµ and
YDµ ' (1 � x2)YDeµ , where x = |yn

a/yn
b � Ma/Mb|.

As the CP asymmetries #a
N1

are sensitive to the ratio M1/M2 ⌧ 1, no significant
additional contribution to the BAU is generated by N1 decays in this regime. How-
ever, if a large asymmetry is generated by N2 decays, even a small portion stored
in the electron flavour can survive washout and reproduce the observed asymme-
try. To understand this, we make two observations: 1) the decay factors Ka

N1
are

approximately proportional to 1/M1, and 2) in each lepton flavour, they go like
(Ke

N1
, Kµ

N1
, Kt

N1
) ⇠ (e2

n, 1, 1). In other words, the flavour structure of the model implies
the washout in the electron flavour is generally weaker than other flavours. Indeed,
we observe that the YDµ and YDt asymmetries are efficiently washed out, while some
portion of YDe remains.
So, as we can see, N2 leptogenesis is possible (in part) due to the texture zero, which
is enforced by symmetry. However, from the perspective of the UTZ model based
on D(27), described above, this N2-dominated scenario is not “natural”, while N1

leptogenesis is still viable and natural in large parts of the parameter space. This
unnaturalness is a direct consequence of the structure of the neutrino matrices (see
Eq. (4.7)) and can be understood by looking at Eqs. (4.16)–(4.18). Using Eq. (4.18)
with the measured value for sin q13 ' 0.15, we obtain

2
yn

b
yn

a
� Mb

Ma
' 8.2 (4.27)

Barring accidental cancellations, this expression fixes |M2/M1| = |M2
b/M2

a | ⇡ 8. As
a consequence, the structure of Yukawa matrices enhances the leptogenesis effects
from N1, proportional to M1/M2, and suppresses N2 effects, proportional to M2/M3

(see Eq. (4.26)).

3In principle, we should also include the so-called phantom terms [44]. However, for d = e, µ and
using pd =

�
#d

N2
� #

(e+µ)
N2

Kd
N2

/K(e+µ)
N2

�
Nin

N2
, it is straightforward to check from Eq. (4.26) that, even

assuming an initial N2 abundance Nin
N2

, these terms are always subdominant in our scenario, at least by

e2
n, with respect to #

(e+µ)
N2

Kd
N2

/K(e+µ)
N2

. They can therefore be safely neglected in the model considered.
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N2 leptogenesis can be important in situations where M2/M1 � 1, as seen in Fig-
ure 4.1, but this requires a strong cancellation of several orders of magnitude in
Eq. (4.27). Moreover, the structure of the neutrino Yukawa matrices in the UTZ model
is not hierarchical in this region, as we have 0.1  yn

b . 1 while yn
c ' 0.1. These val-

ues are not natural to the UTZ model, where most of the flavon VEVs are required to
be much smaller than 1. In conclusion, N2 leptogenesis is possible, but disfavoured.
This can be compared with the situation in typical SO(10) models [34, 45, 46] and, in
general, in models of sequential dominance (SD) [36]. In these models, the three LH
neutrino mass scales are each determined independently by a single RH neutrino.
Schematically, SD in the limit of M1 < M2 ⌧ M3 gives

m1 µ
yn

3
2v2

u
M3

, m2 µ
yn

1
2v2

u
M1

, m3 µ
yn

2
2v2

u
M2

, (4.28)

with a strong hierarchy of m1 < m2 < m3, and where yn
3 µ mt, yn

2 µ mc and yn
1 µ mu

(and thus yn
a < yn

b < yn
c ). Models with special flavon directions like the so-called

Constrained Sequential Dominance 3 alignment [36] have simply sin q13 ' m1/(m1 +

m2), which does not constrain the ratio M2/M1. The only constraint on RH neutrino
masses comes from Eq. (4.28). Setting m1 = msol and m2 = matm implies M2 ' 1011

GeV and M2/M1 ' m2
c /(6m2

u) ' 5⇥ 104. Under these conditions N1 contributions to
the BAU are far too small, but N2 can still successfully contribute, as shown explicitly
in [30, 47, 48]. Unlike this traditional case for N2 leptogenesis, which is typically
aimed at resolving the problem of having a lightest neutrino with too small a mass
(M1 ⌧ 109 GeV), in our case even the N2 region requires M1 & 109 GeV, to avoid
too-large washout. In some sense, separate to the above discussion on naturalness,
some balancing is also required to ensure the initial N2 asymmetry, which may be one
or two orders of magnitude larger than anticipated by the observed BAU, is washed
out just the right amount by N1 interactions to yield the correct value of YB.
In the UTZ model we can also compare ratios between the yn

a,b,c presented here and
ratios of their respective counterparts from the up quark sector, which have yu

a /yu
b ⇠

0.05, yu
b /yu

c ⇠ 0.052 [13], in accordance with an expansion parameter #u ⇠ 0.05. By
contrast, the hierarchy between yn

a and yn
b is only up to one order of magnitude.

In the numerical analysis above, the parameters tan b and Mc ⇠ M3 are kept fixed.
The main impact of tan b is only to define the boundary between the two- and three-
flavor regimes. Given that the model favours large tan b values, we have taken a
moderately large value of tan b = 10, for which N2 leptogenesis takes place in the
two-flavour regime, N1 leptogenesis takes place in the three-flavour regime, and a
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sizable asymmetry in the electron flavour survives. Although the results would be
qualitatively similar for larger tan b values, for tan b < 10 the entire asymmetry
production occurs in the two-flavoured regime and, due to the alignment of N1 and
N2 Yukawa couplings in the e � µ plane, it is more difficult to obtain a sufficient
asymmetry. Ideally, a more natural realization of N2 leptogenesis would be achieved
in the fully three flavoured regime M1, M2  109(1 + tan b2) GeV, but this situation
can not be realized while simultaneously maintaining the required hierarchy M1 <

M2. Regarding Mc, the scenario in which the N2 production dominates is where the
ratio M2/M3 is large, M2/M3 & 0.1. We have considered a value for Mc consistent
with the model and which illustrates the relevant leptogenesis features. Another
choice will see the viable N2-leptogenesis region shifted up- or downwards in the
mass M2 in order to maintain this large ratio.

4.6 Conclusions

We have studied the generation of the baryon asymmetry of the Universe through
leptogenesis in the Universal Texture Zero SO(10) ⇥ D(27) ⇥ ZN flavoured GUT
model [13]. Here, leptogenesis yields the observed BAU for a considerable region
of the parameter space. When expressed in terms of the RH neutrino masses M1 and
M2, which are functions of the model parameters Ma and Mb. The viable ranges for
the mass of the lightest RH neutrino eigenstate have a lower bound of M1 & 4 ⇥ 109

GeV, which is still barely compatible with a gravitino mass m3/2 & 10 TeV, provided
the gravitino is unstable [37].
We specifically considered the effect of N2 leptogenesis, which we conclude to be
disfavored: although there exists a egion of parameter space where N2 leptogene-
sis provides the dominant contribution to the final asymmetry, this corresponds to a
scenario with both a very strong hierarchy between the two lightest RH neutrinos,
i.e. M1 ⌧ M2, and comparatively small hierarchy between M2 and M3. This is not
a natural expectation in the model, which predicts a strong hierarchy between the
heaviest neutrino and the two lighter ones, i.e. M1 < M2 ⌧ M3. Lepton asymme-
tries generated by decays of the heaviest neutrino N3 are therefore also negligible.
The preferred mechanism is thus N1 leptogenesis. The requirement that it accounts
for the entire baryon asymmetry allows us to restrict the parameters governing the
neutrino Yukawa matrix and RH neutrino mass matrix. These are otherwise only
partially constrained by the observed neutrino masses and mixing, namely those
combinations of parameters which appear in the neutrino matrix after seesaw. We
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find that viable N1 leptogenesis requires M1 & 4⇥ 109 GeV, with M2 & 2⇥ 1011 GeV,
while 0.002 . M1/M2 . 0.1. By consistency with low energy observables, we can
similarly constrain the neutrino Yukawa couplings, which are bounded from below,
yn

a & 0.003, yn
b & 0.008.

In conclusion, flavoured leptogenesis is viable for the UTZ model in the standard
N1 regime. Through this we are able to place further constraints on the parameter
space of the UTZ model, leading to direct constraints on the scale of the parame-
ters Ma, Mb governing the RH neutrino masses. Given that in the model the ac-
tive neutrino masses originate from type-I seesaw leading to normal ordering with a
strong hierarchy, the leptogenesis constraint on Ma, Mb can then be combined with
the observed mass-squared differences to indirectly constrain the Dirac neutrino cou-
plings yn

a , yn
b . These constraints are complementary to those provided by the study of

flavour-changing processes [14] in the UTZ model.
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ABSTRACT: The stringent experimental bound on µ ! eg is compatible with a simul-
taneous and sizable new physics contribution to the electron and muon anomalous
magnetic moments (g� 2)` (` = e, µ), only if we assume a non-trivial flavor structure
of the dipole operator coefficients. We propose a mechanism in which the realization
of the (g� 2)` correction is manifestly related to the mass generation through a flavor
symmetry. A radiative flavon correction to the fermion mass gives a contribution to
the anomalous magnetic moment. In this framework, we introduce a chiral enhance-
ment from a non-trivial O(1) quartic coupling of the scalar potential. We show that
the muon and electron anomalies can be simultaneously explained in a vast region
of the parameter space with predicted vector-like mediators of masses as large as
Mc 2 [0.6, 2.5] TeV.
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5.1 Introduction

Despite the lack of direct signals for new physics from the high-energy collision data
collected by the LHC experiments, we have a number of solid arguments, both the-
oretical and observational, that call for extensions of the Standard Model (SM). The
most convincing of those — related to the origin of neutrino masses, dark matter,
baryon asymmetry etc. — do not necessarily point to new particles at scales acces-
sible at colliders in the foreseeable future. However, recent years have been also
witnessing the arising of several hints for non-standard phenomena from precision
observables involving lepton flavors. Signs of departure from the universality of lep-
tonic couplings predicted by the SM in semi-leptonic decays of B mesons have been
reported by LHCb and B-factories experiments both in neutral- and charged-current
processes — for recent reviews see [1–3]. If confirmed by future data, these discrepan-
cies would certainly require low-scale new physics coupling with different strength
to different lepton families.
Another discrepancy that would point to an analogous conclusion is related to the
anomalous magnetic moment of the muon, (g � 2)µ. The experimental measure-
ments of (g � 2)µ have been in tension with the increasingly accurate theoretical
calculations within the SM for about 20 years. The discrepancy currently amounts
to about 3.5 s [4–10].1 The situation may be clarified — and the case for new physics
possibly reinforced — by the upcoming results of the new Muon g-2 experiment at
FNAL [14]. It is well known that new particles coupling to muons can easily account
for the (g � 2)µ provided that their mass are few TeV at most — for a recent review
see [15]. This makes the new physics possibly required by the (g � 2)µ anomaly
an ideal target for direct searches at LHC experiments, which in fact have already
reached the sensitivity so to exclude substantial portions of the parameter space of
typical models [15–20].
Interestingly, a 2s tension between theory and experiments has been recently re-
ported also for the electron g � 2. The (g � 2)e has been determined both experi-
mentally and theoretically to such an outstanding precision, that matching the SM
prediction to the measurement has been used for many years as the most precise
way to evaluate the fine-structure constant a. However, in presence of an alterna-
tive and sufficiently precise measurement of a, one can employ (g � 2)e as a test for
new physics too [21]. This has become possible in recent years and the most precise

1See, however, the very recent lattice result of the leading order hadronic vacuum polarization [11],
which, contrary to previous results, could reduce this discrepancy. On the other hand, even if the
anomaly is accounted for by the hadronic vacuum polarization, this would reflect in a deterioration of
the EW fit and the arising of tensions of comparable significance in other observables [12, 13].



5.1. Introduction 163

result, obtained by employing matter-wave interferometry with cesium-133 atoms
[22], highlighted the discrepancy for (g � 2)e mentioned above. Expressed in terms
of a` ⌘ (g � 2)`/2, the present situation can be summarized as follows:

Daexp
e ⌘ aexp

e � aSM
e = �(8.8 ± 3.6)⇥ 10�13, (5.1)

Daexp
µ ⌘ aexp

µ � aSM
µ = (2.7 ± 0.7)⇥ 10�9. (5.2)

It is very tempting to speculate about a simultaneous new-physics origin of the re-
sults above, outlining the same mechanism or, at least, a single model able to explain
both discrepancies. In fact, this has been recently attempted in a number of works
[23–35]. Although a common explanation has been shown to be possible, the model
building task has proved non-trivial. First, as Eqs.(5.1, 5.2) show, the new-physics
contributions need to be positive for Daµ and negative for Dae. Secondly, the ab-
solute magnitude of Daµ and Dae do not match the naive scaling Daµ/Dae ⇠ m2

µ/m2
e

[21] expected in models where the chirality flip of the lepton field in the dipole opera-
tor is provided by the lepton Yukawa coupling itself — see discussion below. In fact,
such a scaling would result in an absolute value for Dae way too suppressed com-
pared to the experimental range in Eq.(5.1). New physics giving a chirally-enhanced
contribution — i.e. featuring the chirality flip inside the loop — at least to Dae is thus
required in order to account for Eqs.(5.1, 5.2) simultaneously. The third and perhaps
most important challenge model building has to face concerns the tight experimental
limits on lepton-flavor-violating (LFV) processes — see e.g. [36] for a recent review —
in particular µ ! eg. It is clear that any new physics contributing to both the electron
and the muon dipole moment will in general induce the corresponding µ � e dipole
transition.
We can quantify the above difficulties as follows. In an effective Lagrangian ap-
proach, non-standard effects to the leptonic observables of interest (Da`, µ ! eg,
EDMs, etc.) arise via the dipole operators:

L �
e mexp

`

8 p2 C``0
� ¯̀sµnPR`

0� Fµn + h.c. `, `0 = e, µ, t. (5.3)

This effective Lagrangian constitutes a model-independent description of the new-
physics effects we are interested in, so long as the new-physics scale is much larger
than the energy scale associated to our observables, i.e. the lepton masses. In terms of
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the above Wilson coefficients — that in our convention have mass dimension GeV�2 —
the new-physics contribution to the Da` reads:

Da` =
mexp

`
2

(2p)2 Re(C``). (5.4)

In order to fit the experimental results — for illustration we focus here on the central
values in Eqs.(5.1, 5.2) — the dipole coefficients need to attain the following numeri-
cal values:

Re(Cee) ⇡ � 7 ⇥ 10�5 GeV�2, (5.5)

Re(Cµµ) ⇡ 5 ⇥ 10�6 GeV�2. (5.6)

The flavor-changing couplings instead contribute to LFV processes, in particular to
the radiative decays:

BR(` ! `0g)
BR(` ! `0nn̄0)

=
3a

pG2
F

�
|C``0 |2 + |C`0`|2

�
, (5.7)

where the coefficients C``0 are defined in the basis where the lepton Yukawa matrix Y`

is diagonal. The experimental bound BR(µ ! eg) < 4.2 ⇥ 10�13 [37] then translates
into the following constraint:

|Ceµ|, |Cµe| . 10�10 GeV�2. (5.8)

Notice that defining the coefficients in Eq.(5.3) we have factored out the dependence
on the lepton masses. Hence, in models where the chirality flip of the lepton fields
required by gauge invariance in Eq.(5.3) is due to a lepton mass insertion, the coef-
ficients Cee and Cµµ should be of the same order 1/L2, where L is the scale of new
physics, with no further chirality suppression. Nevertheless, Eqs.(5.5, 5.6) tell us that
this would result in a contribution to the electron magnetic moment a factor of 15
too small. If, on the other hand, the chirality flip in Eq.(5.3) is due to the insertion of
a Higgs vev inside the loop, one expects an enhancement of the order C`` ⇠ yc/y`
where yc is the coupling of the new fields to the Higgs and y` is the lepton Yukawa —
see e.g. the discussion in [38]. If the same coupling yc enters the diagrams for the
electron and the muon dipole moment, one would then obtain Daµ/Dae ⇠ mµ/me.
Again this is not compatible with the observed ranges of Eqs.(5.1, 5.2): besides the
sign, in this case the contribution to the electron g � 2 would result about a factor 15
too large.
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From this discussion, it is clear that suitable new physics contributions should be
flavor-dependent and rather sizable without disturbing the small values of the elec-
tron and muon masses — any loop contributing to dipole operators would generate a
radiative contribution to lepton masses as well — and without being in conflict with
LFV constraints. In fact, Eqs.(5.5, 5.6) and Eq.(5.8) show that a simultaneous expla-
nation of the two anomalies requires a relative suppression of the LFV coefficients
by more than five orders of magnitude. In other words, the matrix C``0 and the lep-
ton Yukawa matrix have to be almost aligned in flavor space, to such extent that
the relative misalignment angle can not exceed O(10�6). A priori there is no reason
why generic new physics responsible of non-standard g � 2 of leptons should have
a flavor structure so perfectly aligned to the SM lepton mass matrix, unless of course
the two sectors share a common origin. Hence we find it natural to investigate the
possibility of a combined explanation of the electron and muon g � 2 within a model
of flavor, i.e. directly arising from the same dynamics behind the observed lepton
masses. Our idea is to focus on flavor models à la Froggatt-Nielsen [39–41] and cal-
culate the contribution to the lepton g � 2 of the flavons and the mediator fields that
generate the charged-lepton masses.
The rest of the paper is organized as follows. In Section 5.2 we highlight the general
idea and the fundamental ingredients to obtain successful lepton masses and g � 2
from a flavor model. Section 5.3 shows how this is realized in a toy model exam-
ple. In Section 5.4 we discuss the phenomenology of flavons and mediators and we
conclude in Section 5.5.

5.2 General Idea

As discussed in the introduction, the new contributions to the anomalous magnetic
moment must be flavor dependent, but with a different flavor dependence from the
SM Yukawa couplings.2 Although, in principle, it would be possible to assign an ad
hoc flavor structure, both to the magnetic moments and to the Yukawas, it is more
satisfactory to try to explain these observables in terms of a new symmetry in flavor
space. Indeed, flavor symmetries à la Froggatt-Nielsen (FN) have been used for a long
time to understand the complex structure of Yukawa couplings. In this framework,
it looks completely natural to use the same mechanism to explain the new structures

2However, for an exception see Ref. [32]
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FIGURE 5.1: Froggatt Nielsen (Left) and Radiative (Right) lepton mass.
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FIGURE 5.2: Flavon contribution to (g � 2)`

of dipole operators.3 Fermion masses and anomalous magnetic moments, both chi-
rality changing operators, are intimately connected. Any radiative correction to the
fermion masses gives a contribution to the anomalous magnetic moment if we attach
a photon to one of the internal lines. However, the FN contributions to the Yukawas
usually considered are tree-level diagrams while we necessarily need a loop to gen-
erate the dipole operators. In any case, loop corrections to the tree-level diagrams are
always present and, as we will see below, under certain conditions they can be size-
able with respect to the tree-level diagrams. Yukawa couplings are accounted for as
powers of a dimensionless ratio u/M  1, with u a scalar vacuum expectation value,
singlet under the SM symmetries, and M the mass of a heavy vector-like mediator
with the SM quantum numbers. These contributions are obtained from tree-level
diagrams as shown in Figure 5.1. Nevertheless, the radiative corrections to this dia-
gram can be large. In particular, we could consider loops involving the flavons with
small vevs, so that we could “replace” two small vevs by an O(1) loop function. Ob-
viously, this is not so easy, as the flavons carry a flavor charge and they must break

3During the completion of this work, an article appeared [42], that also proposes a possible connec-
tion between anomalous magnetic moments and a U(1) flavor symmetry, although in the context of a
multi-Higgs doublet model rather than FN models.
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the symmetry to connect the low energy fermionic fields and thus the loop must also
break the symmetry by the same amount. This could be done through the flavon vev
itself. However, as we will see in the following, the above mentioned enhancement
can be achieved only if a larger vev of a different flavon field is inserted, being the
size of this vev not fixed if this field does not couple directly to the fermions. In this
way, it is possible to partially compensate the loop suppression and make this loop
contribution, with the correct symmetry-breaking properties, comparable to the tree-
level FN diagram.
Now, it is clear that this loop diagram generating a loop correction to the Yukawa
would be the same as the diagram generating the dipole coefficients simply adding
a photon, see Figure 5.2. In general, we expect that the anomalous magnetic moment
a` = Cm2

`/M2 [43] with C a loop factor if the fermion mass is present at tree-level or
C ⇠ O(1) if the mass is generated at loop level [44]. In our flavor symmetry models,
we could have radiative corrections to the mass similar to the tree-level contribu-
tion which implies that a large contribution to a`, with C ⇠ O(1), can be expected.
Moreover, the measured discrepancies in the muon and electron magnetic moments,
which do not follow this quadratic scaling with the fermion mass, can also be ex-
plained with flavor models where additional flavor dependence can enter naturally
the magnetic moment. The main problem of this construction, as discussed in the
introduction, is to suppress off-diagonal LFV dipole operators which requires some
non-trivial model building.
On the other hand, in flavor symmetry models, the dimensionless Yukawa couplings
depend only on ratios u/M and therefore can not fix the scale of symmetry breaking
or the mediator masses. Anomalous magnetic moments are dimension 6 operators,
and then the contributions to a` are suppressed, compared to the radiative contri-
bution to the mass, by the heaviest mass in the loop, i.e. in our flavor models, the
mediator mass, M2

c, or the flavon mass, M2
f. Therefore, this implies that anomalous

magnetic moments could provide a hint on the scale of flavor symmetry breaking if
the measured discrepancies are due to these flavon contributions.
At this point, we would like to emphasize that the relation between anomalous mag-
netic moments and radiative corrections to the masses is true for a generic model.
In particular, models with a chiral enhancement in the lepton anomalous magnetic
moments can also have large corrections to the tree-level lepton masses. This is what
happens, for instance, in the MSSM with large tan b or in models with leptoquarks
(LQs) where the chirality flip can be given by a quark mass, e.g. mt, instead of mµ or
me. In fact, the required contributions to the anomalous magnetic moments gener-
ically imply a large correction to the mass, which is usually not taken into account
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in the literature. For instance, models with multi-TeV chirality-flipping vector-like
leptons or LQs that can explain (g � 2)µ, as is the case in Refs. [38, 45–52], could
give a sizable correction to the mass. Assuming the loop functions in the radiative
mass and anomalous magnetic moments to be of the same order, we can estimate
mRAD

µ ⇠ Daµ M2
c/2mµ ⇠ 0.05 (Mc/2 TeV)2 GeV, with Mc the leptoquark mass. This

large contribution could cancel against a tree level mass contribution with some de-
gree of tuning, but radiative corrections to the mass should be taken into account in
these analysis.
Notice that, in this work, we concentrate on the charged-lepton sector and we do not
discuss neutrino mixings. The observed neutrino mixings can always be accommo-
dated with the help of the right-handed neutrino mass matrices in a type-I seesaw
mechanism, possibly with additional breaking of the flavor symmetry. In the follow-
ing, we apply these general ideas to explain the measured discrepancies Dae and Daµ

in models of flavor symmetries. For this, we will construct an explicit example of this
mechanism.

5.2.1 Lepton masses and g � 2 contribution

Assuming a minimal set of fields and couplings, the Yukawa-like interactions respon-
sible for the masses in a FN framework can be schematically written as:

LY = g`
�

cR `R f1 + . . . + L cR H
�
+ h.c., (5.9)

with cR a heavy vector-like mediator with the quantum number of a right-handed
lepton `R,4 f1 a flavon field carrying non-zero flavor charge, and g` a generic O(1)
coupling that, for illustration purposes, we took to be the same for all interactions.
As we will see below, our results not depending on this choice. Then, the minimal
potential should contain the following couplings:

V(f) = Â
i
�µ2

i (f
†
i fi) + li(f

†
i fi)

2 +
1
2 Â

i 6=j
lij (f

†
i fi)(f

†
j fj) +


l (f†

a f1)
2 + h.c.

�
,

(5.10)
where the indices i, j = 1, a, . . . go through all the flavons present in the model. We
have introduced fa as a general complex scalar field that does not couple directly
to leptons. Other quartic terms of the kind (f†

i fj)2 could also be present in Eq.(5.10)

4Obviously one could also consider mediators carrying the quantum numbers of left-handed lep-
tons, or a combination of right-handed and left-handed mediators with the Higgs not coupling directly
to the light chiral fields. For a detailed discussion of the messenger sector of FN models see [53–56].
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provided they respect the flavor symmetry. The interactions in Eq.(5.9) induce a mass
term for the charged leptons through the processes depicted in Figure 5.1. For a
diagram with n flavon insertions, the effective mass is:

mFN
` = gn+1

`

uHp
2

en�2
✓

u1

Mc

◆2
, (5.11)

where u1 ⌘ hf1i, Mc is the heavy mediator mass and e ⌘ u/Mc stands for possible
additional insertions of the same f1 as well as of other flavons generally present in a
complete flavor model. Depending on the number of different flavons and vertices in
the lagrangian, we have to take into account possible degeneracy coefficients, which
count for the possible ways of inserting each flavon. However, they can always be
absorbed into the g` coupling. In Figure 5.1, we show that, together with the FN-
diagram, the last vertex of Eq.(5.10) also induces a radiative mass term mRAD

` . The
computation of the diagram gives:

mRAD
` = gn+1

`

uHp
2

en�2
✓

ua

Mc

◆2 l

16p2 I⇥m (xf), (5.12)

and the following loop function

I⇥m (xf) =
1 + 2 log xf � x2

f

(1 � x2
f)

2 < 0 , (5.13)

with xf = µf1 /Mc, being µ2
f1

the bilinear coupling in the scalar potential before sym-
metry breaking. We must remark here that f1 is a complex scalar and the FN-operator
involves f2

1, therefore a bilinear coupling, µ2
i , can not close the loop in Figure 5.1

and we must take a quartic couplings with two vevs breaking the flavor symmetry.
Comparing Eqs. (5.11) and (5.12), they differ for the loop factor l I⇥m /(16 p2) and the
replacement u1 ! ua. The contribution mRAD

` is comparable with mFN
` if (ua/u1)2 is

big enough to compensate for the suppression of the loop factor. Note that, if more
than two insertions of f1 are present, we have to take into account the alternative
ways of closing the loop. As a consequence, typically there is a mismatch between
the degeneracy coefficients of the FN and RAD diagrams that can not be reabsorbed.
The function in Eq.(5.13) is defined negative; this means that as long as l > 0, the
two diagrams in Figure 5.1 interfere destructively among each other.
What we want to emphasize is that the same processes which generates the radiative
contribution to the lepton masses induces a correction to the anomalous magnetic
moment coupling a photon to the loop. It contributes to the anomalous magnetic
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moment as:

Da` = gn+1
`

uHp
2

m`

M2
c

en�2
✓

ua

Mc

◆2 l

8 p2 I⇥Da(xf). (5.14)

where the loop function is given by

I⇥Da(xf) = �
1 + 4x2

f(1 + 2 log xf) � x4
f(5 � 4 log xf)

2(1 � x2
f)

4 < 0 . (5.15)

In the mechanism described so far, the realization of the (g � 2) correction is di-
rectly related to the mass generation through a flavor symmetry. This implies that
Sign(Da`) = Sign(mRAD

` ) as they come from the same diagram. In this framework,
the obstacle of obtaining the experimental sign difference, between Daµ and Dae, can
be nicely overcome. We can achieve it by requiring Sign(Daµ) = Sign(mµ) while
Sign(Dae) = � Sign(me). The rotation to the physical basis where me, mµ > 0 au-
tomatically gives Dae < 0 and Daµ > 0. In particular, the SM contribution to ae

will get the chirality change through the electron mass itself, including both tree and
radiative contributions to the mass, while our new contribution gets the chirality
change through the radiative contribution only, with negative sign after rephasing.
As the electron and muon masses are generated through a destructive interference
between the FN and the radiative processes in Figure 5.1, basically what we need is
an opposite cancellation in the muon and electron sectors, i.e. mRAD

µ > mFN
µ while

mRAD
e < mFN

e . Now, taking g`, u1 and e positive in Eq.(5.11), this means that the
radiative masses and anomalous moments, as the muon mass before rephasing, are
negative while the electron mass is positive. Altogether, this implies that the radia-
tive and the tree level contributions must be of the same order. We let mRAD

` , and
consequently mFN

` , to be up to one order of magnitude larger than mexp
` , i.e.

|mRAD
` | = c` mexp

` with c` 2 [ 1, 10 ] . (5.16)

Notice that in the following ratios the dependence on the variables of our mechanism
is to great extent simplified [44],

Da`
mRAD

`

=
|Da`|

c` mexp
`

=
2 mexp

`

M2
c

I⇥Da(xf)

I⇥m (xf)
, (5.17)

�����
l mFN

`

mRAD
`

����� = l
c` ± 1

c`
=

16p2

I⇥m (xf)

✓
u1

ua

◆2
, (5.18)
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FIGURE 5.3: Mediator mass Mc as function of xf for the muon case (Left panel) and the
electron case (Right panel). We have used Eq.(5.17) imposing Daexp

` � 2s` <

Da` < Daexp
` + 2s` and c` 2 [1, 10]. For a given value of Da`, we can read

the required loop factor, c`, from the bar legend.

FIGURE 5.4: Ratio u1/ua as function of xf for the muon case (Left panel) and the electron
case (Right panel). We have used Eq.(5.18) with 1/2 < mFN

µ /mRAD
µ < 9/10

and 10/9 < mFN
e /mRAD

e < 2 and l 2 [p/6, 2p]. For a given c`, we can read
the required value of l from the bar legend.

with (+) for the electron and (�) for the muon, where, as before, we take l >

0. As we announced before, the ratios mFN/mRAD and Da/mRAD do not depend
on the choice of g`, as the same couplings necessarily enter the three observables.
From Eq.(5.17) we can directly deduce the dependence of Mc(xf) once we impose the
experimental bounds on Daexp

` together with c` = [1, 10], as shown in Figure 5.3. On
the other hand, in Figure 5.4, we can see that Eq.(5.18) gives the relation of u1/ua(xf).



172 Article 5. Muon and electron g-2 and lepton masses in flavor models

Field µL µR eL eR cR f1 f3 fa fb H

U(1) f �2 0 8 3 1, 2 . . . 6, 7, 8 1 3 2/5 8/5 0

Z2 + + � + ± � � + + +

TABLE 5.1: Fields and their flavor symmetry assignments.

From Figure 5.4 we see that it is always true that ua > u1, as expected from the
previous discussion. Notice that, although a quartic coupling (f†

1f1)2, present in
Eq.(5.10), also closes the loop in Figure 5.1, these results demonstrate the need of
the non-trivial quartic coupling (f†

a f1)2 in the scalar potential. The results shown in
Figure 5.3 and 5.4 rely exclusively on the level of cancellation between the FN and
radiative diagrams, therefore they can be considered to some extent independent
of the model details. Nonetheless, their validity can only be established within a
specific flavor model. For instance, the required relation between µf1 and u(1,a) will
be allowed only for certain regions of the viable parameter space. Our results show
superposition over the muon and electron parameter space for Mc 2 [0.6, 2.5] TeV.
Consequently, we use the mechanism described in this section to build a toy model
based on a U(1) f flavor symmetry that accommodates both the muon and electron
(g � 2) anomalies.

5.3 A U(1) f toy model

To give an illustrative realization of the mechanism described in the previous section,
let us consider an Abelian flavor symmetry U(1) f generating the flavor structures.
The field charges, supplemented by the appropriate mediator sector, are specified in
Table 5.1. Here we do not consider the flavor structures involving the t, as it goes
beyond our exemplifying purposes. Apart from flavor charges, all flavons are SM
singlets and mediators have the quantum numbers of lepton singlets, while the SM
Higgs boson does not transform under the flavor symmetry.
We do not contemplate the presence of mediators of fractional charge. This is a cru-
cial assumption, as it forbids the possibility for f(a,b) to participate to the mass gen-
eration at tree-level through the FN mechanism. Besides, two distinct fields fa and
fb are required if they must have fractional charges. A term (f†

a f1)2, as in Eq. (5.10),
would require (2q1 � 2qa = 0) and hence the same charge as f1. Furthermore, in this
model we introduce other two different flavons, f1 and f3, to obtain different can-
cellations between mFN and mRAD for the electron and the muon. If we have a single
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FIGURE 5.5: FN diagrams entering in the generation of the electron and muon masses.
The field subscripts indicate the U(1) f charge while the superscripts specify
the Z2 assignments.

flavon, f1, it is easy to see that mFN/mRAD is the same for both electrons and muons.
Moreover, we need this ratio to be negative to obtain a cancellation. As we will see
below, both conditions are met with the introduction of f3.
The Z2 symmetry plays a fundamental role. Any diagram that couples `+ ! `+(�),
where superscripts refer to Z2 charges, requires an even (odd) number of insertions.
As we consider only flavons with odd charges, our choice of U(1) charges could
allow e+R ! µ+

L only at the level of (2n + 1)-insertions and µ+
R ! e�L with (2n)-

insertions. However the Z2 symmetry prevents any of these flavor-changing cou-
plings that would give rise to µ ! eg. For the same reason, it also eliminates any
effective vertex µ†

ReR and µ†
LeL. Thus the charge assignments in Table 5.1 conserves

leptonic flavors.
The effective Lagrangian preserving the charge assignment of the underlying U(1) f

flavor symmetry has the form

L` = gµ

h
µ(0)

R c(1)
R f†

1 + µ(2)
L c(�2)

R H(0)
i
+ ge

h
e(3)R c(�6)

R f3 + e(8)L c(�8)
R H(0)

i
(5.19)

+ g Â
q

h
c
(q)
R c

(q+1)
R f1 + c

(q)
R c

(q+3)
R f3

i
+ h.c. . (5.20)

Given the charge assignment in Table 5.1, the most general scalar potential can be
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written as

V = µ2
1 f

†

1f1 + µ2
3 f†

3f3 + µ2
a f†

a fa + µ2
b f†

b fb

+ l1

⇣
f†

1f1

⌘2
+ l3

⇣
f†

3f3

⌘2
+ la

⇣
f†

a fa

⌘2
+ lb

⇣
f†

b fb

⌘2

+ l13

⇣
f†

1f1

⌘ ⇣
f†

3f3

⌘
+ l1a

⇣
f†

1f1

⌘ ⇣
f†

a fa

⌘
+ l1b

⇣
f†

1f1

⌘ ⇣
f†

b fb

⌘
(5.21)

+ l3a

⇣
f†

3f3

⌘ ⇣
f†

a fa

⌘
+ l3b

⇣
f†

3f3

⌘ ⇣
f†

b fb

⌘
+ lab

⇣
f†

a fa

⌘ ⇣
f†

b fb

⌘

+
⇣

l1ab f†
a f†

b f2
1 + l0

13 f†
3f3

1 + µ0
a

2
f2

a + µ0
b

2
f2

b + h.c.
⌘

,

where the last two terms are introduced to break explicitly the U(1) f symmetry and
allow to give a small mass to the two Goldstone bosons 5 present in the model, while
the Z2 is preserved.6 For simplicity we consider the ls to be real. The flavor sym-
metry is spontaneously broken when the flavons get a nonzero vev at the minimum
of the scalar potential. As detailed in Appendix E.1, the potential in Eq.(5.21) allows
for a non trivial minimum with u3 ⇠ �2u1 and ub ⇠ ua, u(1,a) 6= 0 and u1 < ua.
The mass matrices of the CP-even (Si) and -odd bosons (Pi) can be diagonalized by
two orthogonal matrices as detailed in Appendix E.1. The relevant (pseudo) scalar
masses are

m2
S1

' 2u2
1

 
2l1 � l13 �

9
4

l0
13

!
, m2

P1
' �2 u2

a

✓
l1ab +

u2
1

2u2
a
(l1ab � 18l0

13)

◆
,

m2
S2

' 2 u2
1

 
2l1 + 4l13 � 6l0

13 �
5
4
(2l1a + l1ab)2

2la + lab

!
. (5.22)

These physical masses are related to the µ2
f1

⌘ µ2
1 in Figure 5.3 as m2

S1,2
⇠ (2l1a +

l1ab)u2
a + 6l1u2

1 � µ2
f1

and m2
P1

⇠ (2l1a � l1ab)u2
a + 6l1u2

1 � µ2
f1

, relations that are
valid up to O(u2

1/u2
a) corrections. Looking at m2

P1
, it is clear that the necessary condi-

tion for a minimum is l1ab < 0.
5It is easy to check that taking µ0

a = µ0
b = 0, the potential has two unconstrained charges and

therefore two global symmetries. Initially, we have four charges q1, q3, qa and qb, i.e. 4 symmetries.
Then, only the last row in Eq. (5.21) constrains these charges, (2q1 � qa � qb = 0) and (3q1 � q3 = 0).
So, there remain two global symmetries that are explicitly broken by µ0

a and µ0
b. As can be seen in the

Appendix, we have two pseudoscalar masses directly proportional to µ0 2
(a,b).

6As mentioned in Section 5.2, neutrino masses can be accommodated through the right-handed
neutrino Majorana masses. The breaking of Z2 would be produced by the same flavons breaking lepton
number, coupling only to nR. This allows µ � e mixing in the nR and, hence, in the nL mass matrices.
In this way, the charged-lepton sector would be practically unaffected, with flavor changes in charged-
leptons always proportional to neutrino masses.
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5.3.1 Mass generation and (g � 2)`

Using the vertices in Eq.(5.19), we can write down the FN diagrams entering in the
mass generation of mµ and me. They are displayed in Figure 5.5, where it is impor-
tant to notice that due to the presence of f3 we have different tree-level diagrams
contributing to mµ and me with different weights for u3 ⇠ �2u1. From the potential
in Eq.(5.21) we see that different quartic couplings can act closing the loop in one of
these diagrams for mµ and me. In our toy model, the l introduced in Eqs.(5.12,5.14)
is given by the sum of different terms

l ! l1ab
ub
ua

+ l1
u2

1
u2

a
+ l0

13
u3u1

u2
a

. (5.23)

Nevertheless, the f(1,3) couple directly to the SM fermions and the size of their vevs
are limited, while the u(a,b) only enter the masses at loop level and their values can
be correspondingly larger. Provided that ua ⇠ ub � u(1,3), only diagrams with two
or more f1, closed by the quartic coupling l1ab f†

a f†
b f2

1 can give a contribution to
(g � 2)` with the required enhancement. Then, the total masses are,

mµ = g3
µ

uHp
2

e2
1

✓
e3

e1
+ 1

◆
+

l1ab
16p2

e2
a

e2
1

I⇥m (xf)

�

⇠ g3
µ

uHp
2

e2
1


�1 +

l1ab
16p2

e2
a

e2
1

I⇥m (xf)

�
, (5.24)

me = g4
e

uHp
2

e2
1e3

✓
2

e3

e1
+ 1

◆
+

l1ab
16p2

e2
a

e2
1

I⇥m (xf)

�

⇠ 2 g4
e

uHp
2

e3
1


3 � l1ab

16p2
e2

a
e2

1
I⇥m (xf)

�
, (5.25)

where e(1,a) = u(1,a)/Mc, we assume a common mediator mass Mc to simplify the
discussion and, in the second equality, we have taken u3 ⇠ �2u1. In this equation
we can see that, as we said above, it is the presence of u3 which provides the nega-
tive relative sign and different cancellation in mµ and me. Now, the corresponding
contributions to (g � 2)` read as

Daµ ⇠ g3
µ

l1ab
8 p2

uHp
2

mµ

M2
c

e2
a I⇥Da(xf) , (5.26)

Dae ⇠ �2 g4
e

l1ab
8 p2

uHp
2

me

M2
c

e2
a e1 I⇥Da(xf) . (5.27)
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Mc mS1 mS2 mS3 mS4 mP1 mP2 mP3 mP4 u1 u3 u(a,b) ge

1658 123 337 1245 1430 611 23 18 18 42 -84 262 0.72

l1 l3 l(a,b) l13 l1(a,b) l3(a,b) lab l0
13 l1ab µ(1,3) µ(a,b) µ0

(a,b) gµ

5.93 3.31 6.54 6.08 0.97 -0.31 1.82 0.65 -2.50 122 1010 9 0.85

TABLE 5.2: Example of a benchmark point. The spectrum mass parameters are given in
GeV. The combination of parameters provides Daµ = 1.6 ⇥ 10�9 and Dae =
�1.8⇥ 10�13 with a relative size of the loop contributions (ce, cµ) = (7.1, 1.6).

The minimization of the scalar potential requires l1ab < 0 and the loop function is
also I⇥m (xf) < 0, so the radiative diagram gives a positive contribution to the mass.
From Eqs.(5.26) and (5.27) one sees that, to obtain Sign(Daµ) = �Sign(Dae) in the
physical basis, we need the following condition to be satisfied

1p
3
<

4pq
l1ab I⇥m (xf)

e1

ea
< 1 . (5.28)

An example of a set of numerical values of the parameters giving a global minimum,
the corresponding vevs, and the resulting scalar mass spectrum are shown in Table
5.2. Notice that as expected there are two light pseudoscalars, i.e. the pseudo Nambu-
Goldstone bosons, with mass of the order of the explicit U(1) f breaking, and a third
pseudoscalar which is instead light because its mass is controlled by the small vev u1.

5.4 Phenomenological implications

We have seen that to explain the discrepancies in the muon and electron anomalous
magnetic moments through a low scale flavor symmetry, a relatively light flavon and
mediator sector is required. In this section we discuss the phenomenology of these
light particles at colliders and precision experiments. Rather than focusing on the
specific toy model presented in Section 5.3, we discuss the general features and phe-
nomenological consequences of the mechanism outlined in Section 5.2.
In Figures 5.3 and 5.4, we can see the requirements on the masses and the vacuum
expectation values needed to reproduce the anomalous magnetic moments through
this mechanism, irrespective of the details of the model, as symmetries, charges, and
scalar potential. The figure shows that we can successfully reproduce (g � 2)µ at the
2s level with a mediator mass up to 5.7 TeV, although this implies that cµ = 10, i.e. a
cancellation of the tree-level and radiative contributions to the muon mass with a
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tuning of 10%. In the case of (g � 2)e at 2s the maximum allowed mediator mass is
2.5 TeV with a 10% tuning.
If we take both values at 2s, we can see that we relax both the electron and muon dis-
crepancies with Mc ' 2.5 TeV and xf ' 0.6. This implies ce = 10 and cµ 2 [2.2, 6.9],
where the cµ range reflects the 2s range in Eq.(5.2). Then, the cancellation is larger
for the electron that for the muon and, as expected, a smaller degree of cancellation
would imply a lighter mediator. For instance, to reproduce the central values with
Mc = 1 TeV and xf = 1, it would require cµ = 1.1 and ce = 7.7. Therefore, our
explanation of the muon and electron discrepancies in the anomalous magnetic mo-
ments at two sigmas has a definite prediction: we expect vector-like fermions with
the quantum numbers of right-handed and/or left-handed SM leptons with mass be-
low 2.5 TeV.
The scalar sector is more model dependent, as the exact spectrum depends on the
minimization of the scalar potential as exemplified in Appendix E.1 for the toy model.
We can however outline some general features, based on the discussion in Section 5.2.
Figures 5.3 and 5.4 show that for our mechanism to work we need: (i) a hierarchy
between the U(1) f -breaking vevs with those (“u1”) entering the tree-level mass dia-
grams smaller than those (“ua”) controlling the radiative mass and the contributions
to (g � 2)`, i.e. u1 < ua; (ii) the bilinear terms in the scalar potential µf of the flavons
coupling to leptons of the same order or smaller than the mediator mass Mc, unless
u1 ⌧ ua. It is thus reasonable to expect at least one scalar and/or pseudoscalar to
be much lighter than the mediators. This is indeed the case in the explicit example
shown in Table 5.2, where the scalar spectrum lies in the 10 GeV–2 TeV range. The
light states have in particular to come mostly from the flavons involved in the FN di-
agram, thus coupling to light leptons, that in Section 5.2 we denoted as f1. Besides,
there must be one or more pseudo-Goldstone bosons whose mass is controlled by
explicit U(1) f -breaking terms and thus naturally — although not necessarily — light.
Given the above discussion, here we focus on the phenomenology of scalar states
with a substantial component of the flavon f1 entering the tree-level FN diagrams
that are in general expected to have mass of O(100) GeV or lighter.
From Figure 5.1, one can see that the coupling yf` of a physical state in f1 to `L`R is
proportional to the FN contribution to the lepton mass:

yf` ⇡ nf
mFN

`

u1
, (5.29)

where nf is the number of f1 insertions in the diagram. Even considering the max-
imal tuning we allowed, mFN

` = 10 mexp
` (i.e. c` = 10), the ratio mFN

` /u1 provides a
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substantial suppression to the couplings to electrons and muons. Indeed, numeri-
cally the couplings result

yfe ⇡ 2 ⇥ 10�4
⇣nf

2

⌘ ⇣ ce

10

⌘✓50 GeV
u1

◆
, (5.30)

yfµ ⇡ 4 ⇥ 10�2
⇣nf

2

⌘ ⇣ cµ

10

⌘✓50 GeV
u1

◆
. (5.31)

The flavon couples preferably to the heaviest lepton, in our case the muon. Of course,
it would be the tau if the same flavon were involved in the generation of the tau mass.
As a consequence, if produced at colliders either directly or through decays of the
mediators, our flavon would decay as f1 ! µ+µ� (or t+t�) with a branching ratio
close to 100%. A f1 lighter than about 200 GeV could appear as a di-muon (or di-tau)
resonance at LEP: e+e� ! f1 ! µ+µ�. However, the production cross section de-
pends on the small coupling to electrons and, due to limited statistics, searches for
such kind of di-fermion resonances performed by LEP experiments are not sensitive
to couplings yef . 10�2 [57]. For flavons substantially heavier than the maximum
LEP center-of-mass energy (209 GeV), bounds on the 4-lepton contact interaction [58]
translate into a limit yef yµf . 5 ⇥ 10�3 (mf/400 GeV)2, several orders of magnitude
above our typical values shown in Eq.(5.30). It would be interesting to assess the
sensitivity of proposed future leptonic colliders — such as the ILC, CLIC, CEPC, and
FCC-ee, see e.g. [59] — to leptonic flavons, a question that we defer to future work.
The FN mediators we considered are heavy vector-like leptons with the quantum
numbers of the SM lepton singlets, although realizations of our mechanism involv-
ing also or exclusively SU(2) doublet mediators are conceivable. In either case, these
new heavy fermions can be abundantly produced at the LHC via the electro-weak
Drell-Yan process pp ! Z⇤/g⇤ ! c+c�, plus modes involving the neutral states in
case of doublet mediators. In general, vector-like leptons mix with the SM leptons,
hence the charged states can decay to light leptons and SM bosons: c± ! Z (h) `±,
see e.g. [60]. In our case a more direct decay mode involves lighter flavon states:
c± ! f1 `±, where again with f1 we denote a flavon appearing in FN diagrams. De-
pending on the FN charge of a given mediator, decays of this kind may occur through
a renormalizable O(1) coupling, or again through an effective coupling arising from
mixing of different mediators involving the insertion of a certain number of flavon
and/or Higgs, as one can see from FN diagrams such as in Figure 5.5. As in gen-
eral a fewer number of vev insertion is needed than for the decays to SM particles,
we expect that this mode will be always dominant. The exact quantum numbers of
a given mediator will also determine which lepton the mediator preferably decays



5.4. Phenomenological implications 179

into. Considering that as discussed above flavons decay to pairs of the heaviest lep-
ton they couple to, the typical signature of this kind of models at the LHC consists of
a multi-lepton final state such as:

pp ! c+c� ! f1(! µ+µ�) `+ f1(! µ+µ�) `�, (5.32)

where ` = e, µ and the di-muon invariant mass can reconstruct the mass of the f1

state. Of course for models involving the third generation, decay chains of this kind
involving taus are possible and, in particular, flavons coupling to a FN diagram for
the tau would mostly decay into t+t�.
Searches based on multi-lepton final states have been performed by the LHC col-
laborations [61–64], and employed to constrain a variety of new-physics models. In
particular the analysis in [63] was interpreted in terms of production of third gener-
ation vector-like lepton doublets decaying to SM gauge/Higgs bosons and taus/tau
neutrinos. A limit on the mass of the vector-like lepton & 800 GeV was obtained. We
expect that reinterpreting this and other multi-lepton searches in terms of the vector-
like lepton production and decay chain shown in Eq.(5.32) would yield a comparable
limit, possibly stronger, in the 1 TeV ballpark, if no taus or neutrinos are present in the
final state. An optimized search taking full advantage of the spectacular six-lepton
signature in Eq.(5.32) should further increase the sensitivity.
Finally, we conclude this section by commenting about possible low-energy probes
of our setup. The most obvious observables that could test a combined explanation
of both electron and muon g � 2 are LFV processes and the electron EDM. In fact,
the suppression of LFV processes does not need to be complete as in the toy model
of Section 5.3, and any deviation from a perfect flavour alignment of the dipole coef-
ficients C``0 in Eq.(5.3) could be observed by searches for LFV processes, cf. [36] for
status and prospects of these experiments. The same diagrams giving rise to (g � 2)e

can contribute to the electron EDM (eEDM). In terms of the usual effective operators
such contribution reads

de =
e me

4p2 Im(Cee). (5.33)

The latest experimental limit [65] then implies:

de < 1.1 ⇥ 10�29 e cm ) |Im(Cee)| < 6 ⇥ 10�7 GeV�2. (5.34)

Comparing this with Eq.(5.5), we can see that the suppression of the imaginary part
of Cee, thus of the overall CP-violating phase of the (g � 2)e diagram, with respect to
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the real part must be at the percent level. Therefore, unless the CP-violating phase is
exactly zero, as it is the case if all new couplings are real, the eEDM is an observable
where a non-standard (g � 2)e can be tested, cf. a related discussion in [24].

5.5 Conclusions

We have proposed a new mechanism to accommodate the experimental (g � 2)`
(` = e, µ) discrepancies within the framework of low-scale flavor symmetry mod-
els. In these flavour models, that generate the Yukawa couplings through a Froggatt-
Nielsen mechanism, the presence of quartic couplings between flavons can always
act to close the loop of two scalar flavons that contribute to the mass at tree level, and
thus both give a radiative correction to the mass and generate a contribution to the
magnetic moment. We stress that a sizeable contribution of the anomalous magnetic
moment, as required by the observed discrepancies, gives necessarily a contribution
to the mass.
In order to obtain a sizable g � 2 correction, compatible with the present discrepan-
cies, we introduce a nontrivial quartic coupling with a second flavon, that acquires a
large VEV though does not participate to the tree level masses. The radiative mass
receives the same enhancement and contributes significantly to the mass generation;
this sets a limit on the size of the g � 2 contribution. The FN and radiative diagrams,
with opposite signs, contribute to the electron and muon masses through a cancella-
tion that accommodates the experimental difference in sign between the electron and
muon magnetic moment discrepancies and, at the same time, contributes to satisfy
the experimental limit on searches of vector-like mediators.
We show that our mechanism can provide a simple explanation of the discrepancies
of the muon (g � 2)µ and the electron (g � 2)e, simultaneously in a large viable pa-
rameter space, with predicted mediator masses as large as Mc 2 [0.6, 2.5] TeV. We
give an example of how this can be achieved in a toy model based on a U(1) f flavor
symmetry. The application to a complete model, including the tau, quarks and neu-
trino sectors and the study of its phenomenological consequences in flavor physics
is left to future works.
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Appendix A

A.1 Rotation to the Physical basis

A.1.1 Canonical rotation

In general the matter fields do not have canonical wave functions (kinetic terms).
To obtain canonical kinetic terms, i.e. the Käler metric K is the identity, we have to
redefine the fields y ! T by to go to the canonical basis

y† K y = by†(T�1)† K T�1 by = by† by (A.1)

thus the rotation must be the square root of the Käler metric T = K1/2 so that K = T†T
[42, 43]. It is always possible to write an Hermitian matrix as K = T†T in terms of an
upper triangular T matrix,

K = T† T =

0

BBB@

T11 0 0

T⇤
12 T22 0

T⇤
13 T⇤

23 T33

1

CCCA

0

BBB@

T11 T12 T13

0 T22 T23

0 0 T33

1

CCCA
. (A.2)

The equation is easy to solve

T11 =
p

Y11 , T12 =
Y12p
Y11

, T13 =
Y13p
Y11

, (A.3)

T22 =

s

Y22 �
Y2

12

Y11
, T23 =

Y23Y11 � Y13Y12q
Y22Y2

11 � Y11Y2
12

, (A.4)

T33 =
q

Y33 � T2
23 � T2

13 . (A.5)

The inverse of this upper triangular matrix is also upper triangular, and it is also
easily obtained.
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A.1.2 Yukawa diagonalization

In the case that the entries in the Yukawa matrices Y have a hierarchical structure,
with Y33 being the largest entry, a useful analytic expression for the diagonalizing
matrices VL,R is readily obtained [44]. This has been used to derive many of the
analytic expressions used in this thesis. The Yukawa matrices can be diagonalized,
V†

L YVR, by three successive rotations in the (2,3), (1,3) and (1,2) sectors (denoted by
s23, s13 and s12 )

VL =

0

BBB@

1 �s12 0

s12 1 0

0 0 1

1

CCCA

0

BBB@

1 0 �s13

0 1 0

s13 0 1

1

CCCA

0

BBB@

1 0 0

0 1 �s23

0 s23 1

1

CCCA
, (A.6)

VR =

0

BBB@

1 0 0

0 1 s023

0 �s023 1

1

CCCA

0

BBB@

1 0 s013

0 1 0

�s013 0 1

1

CCCA

0

BBB@

1 s012 0

�s012 1 0

0 0 1

1

CCCA
. (A.7)

Defining Dsij = sd
ij � su

ij, the CKM matrix is given by

VCKM =

0

BBB@

1 Ds12 + su
13Ds23 Ds13 � su

23Ds23

�Ds12 � sd
13Ds23 1 Ds23 + su

12Ds13

�Ds13 + sd
12Ds23 �Ds23 � sd

12Ds13 1

1

CCCA
. (A.8)

Assuming the off-diagonal elements are small relative to the on-diagonal ones in each
step of the diagonalization leads to the perturbative relation for the small mixing
angles given by

s23 ' Y23

Y33
+

Y32Y22

Y2
33

, s13 '
eY13

Y33
+

eY31Y11

Y2
33

, s12 '
eY12
eY22

+
eY21Y11
eY2

22
, (A.9)

s023 ' Y32

Y33
+

Y23Y22

Y2
33

, s013 '
eY31

Y33
+

eY13Y11

Y2
33

, s012 '
eY21
eY22

+
eY12Y11
eY2

22
, (A.10)

where the successive rotations produce elements eY

eY22 ' Y22 �
Y23Y32

Y33
,

eY13 = Y13 � Y12s023 , eY12 = Y12 � Y13s023 , (A.11)
eY31 = Y31 � Y21s23 , eY21 = Y21 � Y31s23 .
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A.1.3 Canonical normalization and rotation to CKM basis

To compare the MSSM contributions to the SM predictions, we have to rotate the
Kähler to pass to the canonical basis, where the Kähler corresponds to the identity
and the kinetic terms are canonical. Following Appendix A.1.1 this can be achieved
through an upper triangular matrix T† KR T, with T of the form

T =

0

BBBBBBBBB@

1 � y3,a
#2a

a

2
�y3,a #2a

a �
y3,ap

1 + y3,a

⇣
ei(ga� da

2 ) ra #a
a + #2a

a

⌘

0 1 � y3,a
#2a

a

2
�

y3,ap
1 + y3,a

⇣
ei(ga� da

2 ) ra #a
a + #2a

a

⌘

0 0
1

p
1 + y3,a

1

CCCCCCCCCA

. (A.12)

This upper triangular canonical transformation gives only sub-leading effects on the
hierarchical structures of the Yukawas and trilinears and therefore can neglected in
this qualitative discussion1. On the other hand, its effect on the soft mass matrices is
a general 1-unit reduction in the degeneracy coefficients. The Yukawas are diagonal-
ized by a bi-unitary transformation

Y0a = P⇤
aL Va†

L Ya Va
R PaR , (A.13)

where PaL, PaR are diagonal re-phasing matrices introduced to go to the SM phase
conventions in the CKM matrix as shown below, while

Va
L = Va⇤

R =

0

BBBBBBBB@

1 �
x2

1,a

2 r2a x2
2a

#2
a ei (ga�da)

x1,a

ra x2,a
#a ei ga x1,a #3

a

�e�i (ga�da)
x1,a

ra x2,a
#a 1 �

x2
1,a

2 r2a x2
2a

#2
a ei da ra x2,a #2

a

0 �e�i da ra x2,a #2
a 1

1

CCCCCCCCA

. (A.14)

It can be easily checked that these two matrices diagonalize the Yukawa and respect
unitarity up to O(#4

a). The CKM is defined in terms of the up and down-quark Left-
rotation matrices as

VCKM ⌘ P⇤
uL Vu†

L Vd
L PdL. (A.15)

1The only possible exception is the re-scaling of the third row and column



186 Appendix A

Given the expansion parameter in the up sector being three times smaller than in
the down sector, we can convince ourselves that the Vu†

L part gives only higher or-
der corrections to the LO structure, so in this qualitative discussion we can consider
VCKM ' Vd

L . We can now make use of the re-phasing matrices PuL and PdL in order to
make the 11, 22, 33, 12, 23 entries real in the CKM matrix. Looking at Eq.(A.14) we
see that we need to get rid of q12 = (gd � dd), q23 = dd, which may can be achieved
straightforwardly by

PdL = P⇤
uL =

0

BBBBB@

1 0 0

0 ei (gd�dd) 0

0 0 ei dd

1

CCCCCA
. (A.16)

Additionally, to keep real and positive Yukawa couplings after this rephasing, we
must absorb these undesired phases in the right re-phasing matrices, as

PeR = diag{e�i (2ge�de), e�i (p+de), 1} (A.17)

PuR = diag{e�i p, e�i(gd�dd), e�i gd} (A.18)

PdR = diag{e�i (p+2gd�dd), e�i gd , e�i gd}. (A.19)

These same transformations must be performed on the soft-mass matrices. The re-
sults may be found in Section 2.3.

A.2 Gaugino-slepton-lepton interaction

The mass matrix of the charginos is written as

✓
eW

±
R eH

±
uR

◆0

@ M2
p

2 mW cb
p

2 mW sb µ

1

A

0

@
eW±

L

eH±
dL

1

A , (A.20)

where sb = sin b. This is diagonalized by two unitary matrices Uc
L,R, the eigenvalues

are denoted by mec±
A

with A = 1, 2. The mass eigenstates are called the charginos

ec±
L = Uc

L

0

@
eW±

L

eH±
dL

1

A , ec±
L = Uc

R

0

@
eW±

R

eH±
uR

1

A , (A.21)
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then ec±
A = ec±

AL + ec±
AR (A = 1, 2) forms a Dirac fermion.

The mass matrix of the neutralinos is written as

⇣
eBL eW0

L
eH0

dL
eH0

uL

⌘

0

BBBBBBB@

M1 0 �mZ sW cb mZ sW sb

0 M2 mZ cW cb mZ cW sb

�mZ sW cb mZ sW sb 0 �µ

mZ cW cb �mZ cW sb �µ 0

1

CCCCCCCA

0

BBBBBBB@

eBL

eW0
L

eH0
dL

eH0
uL

1

CCCCCCCA

(A.22)

where sb = sin b, cb = cos b , sW = sin qW and cW = cos qW . The mass matrix
is diagonalized by a unitary matrix Un. The mass eigenvalues are denoted by mec0

A

(with A = 1, · · · 4) and are called the neutralinos. They are defined as

ec0
L = Un

0

BBBBBBB@

eBL

eW0
L

eH0
dL

eH0
uL

1

CCCCCCCA

. (A.23)

Then ec0
A = ec0

AL + ec0
AR (A = 1, · · · , 4) forms a Majorana fermion. The relevant inter-

action Lagrangian for gaugino-slepton-lepton, in the mass basis, is written as

Lint = `i

⇣
CR

iAXPR + CL
iAXPL

⌘
ec�

Aen`X + `i

⇣
NR

iAXPR + NL
iAXPL

⌘
ec0

A
èX + h.c. (A.24)

where the coefficients are defined in terms of the rotation matrices as

CR
iAX = �gUc⇤

R,A1 diX , (A.25)

CR
iAX = Ye

iX Uc⇤
L,A2 , (A.26)

NR
iAX =

gp
2
(Un

A1 tan qW + Un
A2)Ve⇤

X,i � Ye
ijU

n
A3Ve⇤

X,i+3 , (A.27)

NL
iAX = �

p
2 g tan qW Un⇤

A1 Ve⇤
X,i+3 � Ye

ij Un⇤
A3 Ve⇤

X,j . (A.28)

A.3 Mass Insertion Approximation

Although the mass eigenstate basis is the natural basis for calculations of physical
processes, for a qualitative analysis, it is often useful to have our expressions in the
flavor basis. The standard strategy is an approximate diagrammatic method com-
monly referred to as the Mass Insertion Approximation (MIA) [45].
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FIGURE A.1: The Feynman graphs for the scalar self energy in the mass eigenstate basis
(top) and in the flavour basis (bottom).

The squared mass matrix, M
2
I J

, of the flavour eigenstates FI , are necessarily Her-
mitian but not aligned in general. The rotation to the mass basis fi is obtained by
a unitary matrix U: FI = UIi fi. We consider the example in which we want to
approximate the scalar self-energy �iSij in the mass eigenstate basis:

�iŜij(p) =
Z d4k

(2p)4

yjkyli

(k � m2
l )[(k � p)2 � m2

h ]
=

i
16p2 yjkyli f (p; m2

l , m2
h) .(A.29)

In the standard MIA approach, this is done by writing

iUJj Sij(p)U†
i J = ŜI J(p) (A.30)

where �iŜI J is the scalar self-energy in the flavour basis. To compute it, the flavor
mass matrix M

2
I J

is decomposed into its diagonal and non-diagonal parts

M
2
I J = M2

I dI J + DI J with DI I = 0 . (A.31)

where M2
I are the flavor masses and DI J are the mass insertions. The massive flavour

propagators are defined by absorbing the diagonal part of the flavour mass matrix.
The scalar self-energy �iŜI J in the flavour basis is given by

�iŜI J(p) =
Z d4k

(2p)4
YJKYLI

(k � p)2 � m2
h

✓
dKL

k2 � M2
K
+

DKL

(k2 � M2
K)(k2 � M2

L)

+
DKNDNL

(k2 � M2
K)(k2 � M2

N)(k2 � M2
L)

+ · · ·
◆

(A.32)

=
i

16p2 YJKYLI

⇣
dKL f (p; M2

K, m2
h) + DKL f⇥(p; M2

K, M2
L, m2

h)+

+ DKNDNL f⇥⇥(p; M2
K, M2

N , M2
L, m2

h) + · · ·
⌘

(A.33)
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which as shown in Figure is essentially an expansion in terms of mass insertions. For
the loop-functions f the MIA approximation writes

iUKl f (p; m2
l , m2

h)U†
lL = dKL f (p; M2

K, m2
h) + DKL f⇥(p; M2

K, M2
L, m2

h) +

+ DKNDNL f⇥⇥(p; M2
K, M2

N , M2
L, m2

h + · · · ) , (A.34)

which can be generalized to the case of an arbitrary n-point amplitude. However,
this result, can be also obtained by a theorem of matrix analysis called the Flavor
Expansion Theorem.
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Appendix B
B.1 A4 Group

The set of even permutations on four objects form a group, labeled A4. This group
can be generated by two elements S and T obeying the following relations

S2 = (ST)3 = T3 = 1. (B.1)

It has three independent one-dimensional representations 1,10,100 and one three-di-
mensional representation 3. The one-dimensional representations are given by:

1 S = 1 T = 1

10 S = 1 T = ei4p/3 = w2

100 S = 1 T = ei2p/3 = w.

(B.2)

The three-dimensional representation, in a basis where the generator T is diagonal,
is given by:

T =

0

BBB@

1 0 0

0 w2 0

0 0 w

1

CCCA
, S =

1
3

0

BBB@

�1 2 2

2 �1 2

2 2 �1

1

CCCA
. (B.3)

The multiplication rules between the various representations are:

1 ⌦ 1any = 1any , 10 ⌦ 1
0
= 1

00
, 10 ⌦ 100 = 1 , 100 ⌦ 100 = 10, (B.4)

then, taking 3a = (a1, a2, a3) and 3b = (b1, b2, b3) as two generic triplets, we can
write also

1 ⌦ 3a = 3a ⇠

0

BBB@

a1

a2

a3

1

CCCA
, 10 ⌦ 3a = 3 ⇠

0

BBB@

a3

a1

a2

1

CCCA
, 100 ⌦ 3a = 3 ⇠

0

BBB@

a2

a3

a1

1

CCCA

(B.5)
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3a ⌦ 3b = 1 + 10 + 100 + 3S + 3A with

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

1 ⇠ a1b1 + a2b3 + a3b2

10 ⇠ a3b3 + a1b2 + a2b1

100 ⇠ a2b2 + a1b3 + a3b1

3S ⇠ 1
3

0

BBB@

2a1b1 � a2b3 � a3b2

2a3b3 � a1b2 � a2b1

2a2b2 � a1b3 � a3b1

1

CCCA

3A ⇠ 1
2

0

BBB@

a2b3 � a3b2

a1b2 � a2b1

a1b3 � a3b1

1

CCCA

.

(B.6)
It is useful to note that the operation of complex conjugation acts as

1⇤ ⇠ 1 , (10)⇤ ⇠ 100 , (100)⇤ ⇠ 10 , 3⇤ ⇠

0

BBB@

a1
⇤

a3
⇤

a2
⇤

1

CCCA
, (B.7)

so, for example, the product rule (10 ⌦ 3)⇤ = 100 ⌦ 3⇤.The reason for this is that T⇤ =

UT
23TU23 and S⇤ = UT

23SU23 = S where U23 is the matrix that changes the 2nd and
3rd row and column.

B.2 S3 Group

The group S3 is defined by the possible permutations among three objects. One of
its presentations is that given by the generators S and T satisfying the following
relations

S2 = (ST)2 = T3 = 1. (B.8)

The number of irreducible representations is three: two one-dimensional, 1 and 10,
and one two-dimensional, 2. The generators in the one-dimensional representations



B.2. S3 Group 193

are given by:

1 S = 1 T = 1

10 S = �1 T = 1
(B.9)

while, in the two-dimensional representation for the T-diagonal basis, they can be
written as:

T =

0

@ w 0

0 w2

1

A , S =

0

@ 0 1

1 0

1

A . (B.10)

The tensor products between singlets and pseudosinglets are:

1 ⌦ 1any = 1any , 10 ⌦ 1
0
= 1 (B.11)

Considering two doublets, 2a = (a1, a2) and 2b = (b1, b2), we can also write

1 ⌦ 2a = 2a ⇠

0

@ a1

a2

1

A , 10 ⌦ 2a = 2 ⇠

0

@ �a1

a2

1

A (B.12)

2a ⌦ 2b = 1 + 10 + 2 with

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

1 ⇠ a1b2 + a2b1

10 ⇠ a1b2 � a2b1

2 ⇠

0

@ a2b2

a1b1

1

A

(B.13)

The operation of complex conjugation leaves the singlets unchanged but acts over
the doublet as follows

2⇤ ⇠

0

@ a2
⇤

a1
⇤

1

A , (B.14)

so that 2⇤ transforms now as an anti-doublet with the matrices (S⇤, T⇤).
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B.3 A5 Group
Here we present the matrix form of the A5 and CP generators, Sr and Tr, for each of
the irreducible representations of the group: r = 1, 3, 30, 4 and 5 [46].

S1 = ei p T1 = ei 2p
5 (B.15a)

S3 =
1p
5

0

BBB@

1
p

2
p

2
p

2 �j 1/j
p

2 1/j �j

1

CCCA
T3 =

0

BBB@

1 0 0

0 ei 2p
5 0

0 0 ei 8p
5

1

CCCA
(B.15b)

S30 = � 1p
5

0

BBB@

1
p

2
p

2
p

2 1/j �j
p

2 �j 1/j

1

CCCA
T30 =

0

BBB@

1 0 0

0 ei 4p
5 0

0 0 e�i 4p
5

1

CCCA
(B.15c)

S4 = �1
5

0

BBBBBBB@

�
p

5 j � 3 j + 2 �
p

5

j � 3
p

5
p

5 j + 2

j + 2
p

5
p

5 j � 3

�
p

5 j + 2 j � 3 �
p

5

1

CCCCCCCA

T4 =

0

BBBBBBB@

ei 2p
5 0 0 0

0 ei 4p
5 0 0

0 0 ei 6p
5 0

0 0 0 ei 8p
5

1

CCCCCCCA

(B.15d)

S5 =
1
5

0

BBBBB@

�1
p

6 �
p

6 �
p

6 �
p

6
p

6 2 � j 2j 2(1 � j) �(1 + j)

�
p

6 2j 1 + j 2 � j 2 (j � 1)

�
p

6 2 (1 � j) 2 � j 1 + j �2j

�
p

6 �(1 + j) 2(j � 1) �2j 2 � j

1

CCCCCA
T5 =

0

BBBBB@

1 0 0 0 0

0 ei 2p
5 0 0 0

0 0 ei 4p
5 0 0

0 0 0 ei 6p
5 0

0 0 0 0 ei 8p
5

1

CCCCCA
.

(B.15e)
The matrix form of the CP generator, X0,r, in the irreps r = 1, 30, 4 and 5 is:

X0,1 = 1 X0,30 =

0

BB@

1 0 0
0 0 1
0 1 0

1

CCA (B.16a)

X0,4 =

0

BBBB@

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

1

CCCCA
X0,5 =

0

BBBBBBB@

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

1

CCCCCCCA

. (B.16b)

For r = 3, X0,3 has been specified in Eq.(3.10).
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C.1 Boltzmann equations

Recall that the baryon asymmetry YB can be expressed as

YB =
10
31 Â

a

YDa , (C.1)

where YDa are the B/3 � La asymmetries for each active lepton species a. In the
fully-flavoured scenario, these are simply the usual three lepton flavours, a = e, µ, t.
Assuming hierarchical RH neutrinos and thermal leptogenesis, the lepton asymme-
tries are obtained by solving the Boltzmann equations

dYNi

dz
= �2D

⇣
YNi � Yeq

Ni

⌘
,

dYeNi

dz
= �2D

⇣
YeNi

� Yeq
eNi

⌘
,

dYDa

dz
= 2#a

Ni
D
⇣

YNi � Yeq
Ni

⌘
+ 2#a

eNi
D
⇣

YeNi
� Yeq

eNi

⌘
+

Ka
Ni

KNi

W Â
a0

Aaa0YDa0 ,

(C.2)

where z = Mi/T. As noted in Section 4.4, the factors D and W govern the decay and
washout behaviour. In this appendix we make these explicit, noting how information
about decays and scattering are incorporated. In particular, we follow [47].

The equilibrium number density for a given field f is denoted Yeq
f , and are functions

of z. The RH (s)neutrino densities are given by

Yeq
Ni

= Yeq
eNi

=
45

2p4g⇤
z2K2(z), (C.3)

where g⇤ = 228.75 is the effective number of degrees of freedom in the MSSM and
K2(z) the modified Bessel functions of the second kind. The (s)lepton distributions
are given by

Yeq
a = Yeq

ea =
45

p4g⇤
. (C.4)



196 Appendix C

We now turn to the decay and washout factors, D and W. There are three classes of
processes that contribute to the Boltzmann equations: (1) decays and inverse decays
(N $ LaHu), (2) DL = 1 scatterings (e.g. NQ $ Lat) and (3) DL = 2 processes
(LaLa $ HuHu, LaHu $ LaHu). Following [48] and [47], in this analysis we include
DL = 1 scatterings involving neutrino and top Yukawa couplings, neglecting gauge
boson-mediated processes, as well as thermal corrections, and all DL = 2 processes.
Then

D = zKNi
f1(z)

K1(z)
K2(z)

, W =
z
2

KNi
f2(z)

K1(z)
K2(z)

Yeq
Ni

+ Yeq
eNi

Yeq
a + Yeq

ea
. (C.5)

The effects of DL = 1 scatterings are encapsulated in the functions f1(z) and f2(z).
These are discussed in [48] and [47], and we may approximate them by

f1(z) ' f2(z) ' z
a

"
log

 
1 +

a
z

!
+

1
a log(Mi/Mh)z

#
�
1 + 15

8z
�

, (C.6)

a =
4p2gNi v

2
u

9m2
t log(Mi/Mh)

, (C.7)

where Mh = 125 GeV is the Higgs mass, mt ' 93 GeV is the top mass (at the GUT
scale, which is a reasonable approximation of the value at the leptogenesis scale for
our purposes) and gNi = 2.
A is a numerical matrix describing flavour mixing, and is given in the nF-flavour
regime by

A =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

0

BBB@

�93/110 6/55 6/55

3/40 �19/30 1/30

3/40 1/30 �19/30

1

CCCA
, nF = 3

0

@�541/761 152/761

46/761 �494/761

1

A , nF = 2

�1, nF = 1

. (C.8)

While the ratio of Bessel functions, K1(z)/K2(z), is in principle well-behaved for all
positive z, for computational efficiency and stability it may be convenient to use the
approximations

K1(z) ⇡
✓

1 +
15
8z

◆�1
K2(z) ⇡

1
z

r
1 +

p

2
ze�z. (C.9)
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As described in Section 4.4, the decay factors are given by

Ka
Ni

=
v2

u
m⇤Mi

(l†
n)ia(ln)ai, KNi

= Â
a

Ka
Ni

, (C.10)

and the CP asymmetries by

#a
Ni

= #a
eNi
=

1
8p Â

j 6=i

Im[(l†
n)ia(l†

nln)ij(lT
n )ja]

(l†
nln)ii

g
✓M2

j

M2
i

◆
. (C.11)

where g(x) is a loop function given by the sum of the vertex and the self energy
contributions [47, 49]; in the MSSM,

g(x) =
p

x


2
1 � x

� log
✓

1 + x
x

◆�
. (C.12)

In the limit of very hierarchical RH neutrino masses, i.e. x ⌧ 1 or x � 1, to good
approximation,

g(x) =

8
><

>:

� 3p
x

, x � 1

2
p

x
�
1 + log

p
x
�

, x ⌧ 1
. (C.13)

C.2 Seesaw with rank-one matrices

We consider here a more intuitive explanation of the texture zero remaining after see-
saw, following the method employed for the model in [10], and presented in [11]. The
Dirac and Majorana matrices are given in terms of four rank-1 matrices, expressed in
terms of the VEV alignments of flavons fa,b,c, where

fa µ (1, 1,�1), fb µ (0, 1, 1), fc µ (0, 0, 1). (C.14)

For notational simplicity, in tis appendix we use fi to refer simply to the direction of
the VEV (rather than the field or VEV itself). We have

Yn = yn
a(⇤ab +⇤ba) + yn

b⇤b + yn
c⇤c,

MN = Ma(⇤ab +⇤ba) + Mb⇤b + Mc⇤c,
(C.15)

where
⇤ab = (⇤ba)

T = fafT
b , ⇤b = fbfT

b , ⇤c = fcfT
c . (C.16)



198 Appendix C

We define another set of vectors efa,b,c, which are orthogonal to fa,b,c, i.e.

efT
i fj = dij, i, j = a, b, c. (C.17)

An appropriate choice is

efa µ (1, 0, 0), efb µ (�1, 1, 0), efc µ (2,�1, 1), (C.18)

and new rank-1 matrices e⇤ij = efiefT
j . The inverse of the Majorana mass matrix can

then be decomposed in terms of the new matrices as

M�1
N =

1
Ma

(e⇤ab + e⇤ba)�
Mb
M2

a
e⇤a +

1
Mc

e⇤c. (C.19)

Decomposing Yn and MN as per Eqs. (C.15) and (C.19) and applying the seesaw
formula, mn = �v2

uYn M�1
N YnT, we note that, due the orthogonality of the two sets

of vectors, no new matrix structures appear. In particular, there are no mixed terms
with fc, e.g. ⇤ac, nor a structure ⇤a, either of which would spoil the texture zero in
mn. The light neutrino mass matrix in fact preserves the same structure as the other
mass matrices in the model, i.e.

mn = ma(⇤ab +⇤ba) + mb⇤b + mc⇤c. (C.20)

The parameters of the light neutrino mass matrix, ma, mb, mc, are given in terms of
yn

a,b,c and Ma,b,c by

ma = �v2
uyn

a
2

Ma
, mb = ma

✓
2

yn
b

yn
a
� Mb

Ma

◆
, mc = �v2

uyn
c

2

Mc
. (C.21)

The above discussion holds true also when the first higher-order terms are intro-
duced. These are given by the superpotential

dWY = Ln,iNjHu


gn

d
L4 (f

i
bf

j
c + fi

cf
j
b)S

2
�
+ Ln,iNjHu


gn

e
L4 (f

i
af

j
c + fi

cf
j
a)S2

�
, (C.22)

and modify Eq. (C.15) by

dYn = yn
d(⇤bc +⇤cb) + yn

e (⇤ac +⇤ca), (C.23)

which preserves the texture zero. After seesaw, the main effect of these terms can be
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absorbed into two additional parameters md and me and in corrections to the relations
in Eq. (C.21). Note that the term dependent on yn

e gives rise to a ⇤a structure in
mn, which spoils the texture zero, but appears only strongly suppressed by a factor
(yn

e )
2/Mc.

C.3 Analytic expression for the leptogenesis parameters

In this appendix we give the analytic expression for ln, i.e. for the Dirac neutrino
matrix in the basis where Ye and MN are diagonal, as well as for the decay factors Ka

Ni

and the CP asymmetries #a
Ni

entering in our numerical calculation.

The Yukawa and Majorana mass matrices share a unified symmetric and hierarchical
texture zero,

M` =

0

BBB@

0 a a

a b + 2a b

a b c + b � 2a

1

CCCA
, ` = e, n, N, (C.24)

where (a, b, c) stand for either yn,e
a,b,c or Ma,b,c. Given this complex symmetric structure

with the hierarchy a < b < c, the diagonalizing matrices satisfy the relation

M0
` ⌘ VT

` M`V` ⇡ diag
�
|a2/b|, |b|, |c|

�
. (C.25)

They can be approximated by

VT
` =

0

BBBBB@

1 � 1
2

���
a
b

���
2

� a
b

✓
1 � 2a

b

◆
�2a2
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a⇤

b⇤

✓
1 � 2a⇤

b⇤

◆
1 � 1

2

���
a
b

���
2

�b
c

a⇤

c⇤
b⇤

c⇤
1

1

CCCCCA
P`, (C.26)

where P` = diag(e�i(2g�d+p)/2, e�id/2, 1) is a matrix of phases ensuring the eigenval-
ues in M̂` are real and positive. With a ⇠ e3

n, b ⇠ e2
n, and c ⇠ 1, Eq. (C.26) is accurate

(and unitary) to O(e3
n), and preserves the (1,1) texture zero to O(e4

n). Expanding
V` as V` = (1+ DV`)P`, we split ln into two parts, one which preserves Yn (up to
rephasing) and a correction term Dl⇤

n, i.e.

l⇤
n ⌘ VT

e YnVN = Pe(1+ DVT
e )Yn(1+ DVN)PN = Pe(Yn + Dl⇤

n)PN (C.27)
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where

Dl⇤
n ' DVT

e Yn + YnDVN ' �

0
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1

CCCCA
, (C.28)

having discarded the term DVT
e YnDVN . Notice that the corrections in Dl⇤

n are typi-
cally of the order of Yn except in the 22,32 and 33 elements where they are smaller.
They are never larger; in this sense l⇤

n preserves the same hierarchy between the el-
ements as Yn. Considering only the first term in Eq. (C.27), l⇤

n ⇠ PeYnPN , we can
deduce for the decay factors:
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�����
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���
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1

1
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CCCCA
, (C.29)

and for the CP asymmetries,
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⇠ 3
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����
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����
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����
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Mb

����
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sin(2w1)

0

BBB@

0

1

1

1

CCCA
,

(C.30)

where we have called w1 = [gN � gn � dN + dn] and w2 = [dN � dn] the leading order
leptogenesis phases entering the N1 and N2 calculations respectively. Including also
the leading-order contributions from Dl⇤

n, we obtain analytic approximations for the
decay factors and CP asymmetries in terms of the input parameters of our analysis.
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Defining Q = |Mayn
b/(Mbyn

a)|, we have
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(C.31)

and, defining Qe = |ye
ayn

b/(ye
byn

a)| and we
1,2 = w1,2(N ! e),
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D.1 Angles, phases and CP invariants of the PMNS

All the angles are in the first quadrant qij 2 [0, p/2] and can be extracted using the
PMNS matrix elements as:

s2
12 =

|Ve2|2
1 � |Ve3|2

, s2
13 = |Ve3|2, s2

23 =
|Vµ3|2

1 � |Ve3|2
. (D.1)

We can define the Jarlskog invariant JCP and similar CP invariants, called I1 and I2,
for the Majorana phases:

JCP ⌘ Im [Ve1V⇤
13V⇤

t1Vt3] = c12 c23 c2
13 s12 s23 s13 sin d , (D.2)

I1 ⌘ Im [Ve2Ve2V⇤
e1V⇤

e1] = s2
12 c2

12 c4
13 sin a , (D.3)

I2 ⌘ Im [Ve3Ve3V⇤
e1V⇤

e1] = s2
13 c2

12 c2
13 sin b . (D.4)

The Majorana phases can be derived from the numerical PMNS mixing matrix taking
into account the unphysical phases described by the diagonal matrix that multiplies
the VPMNS from the left, Diag{eide , eidµ , eidt}. Those can be eliminated with a redefi-
nition of the charged lepton fields. We can extract the Dirac and Majorana phases
as

d = �arg

8
<

:

Ve1V⇤
e3V⇤

t1Vt3
c12c2

13c23s13
+ c12c23s13

s12s23

9
=

; , a = 2 arg
⇢

Ve2

Ve1

�
, b = 2 arg

⇢
Ve3

Ve1

�
. (D.5)

For sake of completeness we report the values of the unphysical phases

de = arg{Ve1} dµ = arg
n

Vµ3e�i(b/2+d)
o

dt = arg
n

Vt3e�i(b/2+d)
o

. (D.6)
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D.2 Bounds on Mass Insertions

Table D.1 collects the obtained intervals for the LL mass insertions after imposing all
the constraints regarding lepton mixing and masses. Specifically, we report the off-
diagonal elements of the soft mass matrix for LH sleptons divided by the MSUGRA
parameter m2

0, i.e. the value of the MI at the scale of flavor breaking, before RGE
evolution. The allowed ranges are specified for each realization of the neutrino mass
mechanisms analyzed in this work. In Section 3.5.2, the minimum of those intervals
has been employed to constrain the MSUGRA plane m0 � M1/2 for a representative
value of tan b = 10.

Mechanism dLL

12 dLL

13 dLL

23

I

z = 0 NH (3.9 ÷ 32)⇥ 10�5 (3.9 ÷ 32)⇥ 10�5 (3.9 ÷ 32)⇥ 10�5

x = 0 IH (2.2 ÷ 9.2)⇥ 10�3 (2.2 ÷ 9.2)⇥ 10�3 (6 ÷ 26)⇥ 10�4

s = 0
NH (1.3 ÷ 5.8)⇥ 10�3 (1.3 ÷ 5.8)⇥ 10�3 (1.1 ÷ 4.8)⇥ 10�3

IH (1 ÷ 15)⇥ 10�3 (1 ÷ 14)⇥ 10�3 (1.5 ÷ 18)⇥ 10�3

II a-2

f , g = 0 IH (3.8 ÷ 21)⇥ 10�3 (3.8 ÷ 21)⇥ 10�3 (4.6 ÷ 23)⇥ 10�3

f , hi = 0
NH (3.3 ÷ 29)⇥ 10�3 (3.3 ÷ 30)⇥ 10�3 (2.7 ÷ 22)⇥ 10�3

IH (3.4 ÷ 21)⇥ 10�3 (3.4 ÷ 20)⇥ 10�3 (4.5 ÷ 25)⇥ 10�3

hr, g = 0 NH (2.6 ÷ 14)⇥ 10�5 (2.6 ÷ 14)⇥ 10�5 (2.3 ÷ 12)⇥ 10�5

hr,2, g = 0 IH (5.8 ÷ 20)⇥ 10�3 (5.8 ÷ 20)⇥ 10�3 (1.3 ÷ 4.3)⇥ 10�3

hr,2, hi = 0 IH (5.6 ÷ 19)⇥ 10�3 (5.6 ÷ 19)⇥ 10�3 (8.5 ÷ 26)⇥ 10�5

II c-2

fi, hi = 0
NH (2.7 ÷ 27)⇥ 10�3 (2.7 ÷ 24)⇥ 10�3 (0.9 ÷ 16)⇥ 10�2

IH (4.8 ÷ 9.1)⇥ 10�3 (4.8 ÷ 9.2)⇥ 10�3 (9.4 ÷ 19)⇥ 10�3

fi, fr = 0
NH (2.8 ÷ 22)⇥ 10�3 (2.8 ÷ 21)⇥ 10�3 (8.6 ÷ 86)⇥ 10�3

IH (4.7 ÷ 8)⇥ 10�3 (4.8 ÷ 8.1)⇥ 10�3 (1.1 ÷ 1.9)⇥ 10�2

hr, hi = 0 NH (6.1 ÷ 15)⇥ 10�3 (6.1 ÷ 15)⇥ 10�3 (6 ÷ 15)⇥ 10�3

hr, fr = 0 NH (6.3 ÷ 22)⇥ 10�3 (6.3 ÷ 23)⇥ 10�3 (6.2 ÷ 22)⇥ 10�3

hr,2, hi = 0 NH (8.1 ÷ 20)⇥ 10�3 (8.1 ÷ 20)⇥ 10�3 (0.8 ÷ 21)⇥ 10�6

hr,2, fr = 0 NH (6.3 ÷ 22)⇥ 10�3 (6.3 ÷ 23)⇥ 10�3 (6.2 ÷ 22)⇥ 10�3

TABLE D.1: Obtained intervals for the LL mass insertions: d12, d13, d23. The allowed
ranges are specified for each realization of the neutrino mass mechanisms
analyzed in this work.
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Appendix E
E.1 Minimization of the potential
In order to reduce the number of free parameters, we consider the following relations
among coefficients: lb ⇠ la, l(1,3)b ⇠ l(1,3)a, l3a ⇠ (l1a + l1ab), l3 ⇠ (4l1 + 6l13 �
11l0

13)/16, µ1 ⇠ µ3, µb ⇠ µa, µ0
b ⇠ µ0

a. They are a total of 8 relations that reduce to 10
the number of free parameters in Eq.(5.21). We choose the following representation
for the scalar fields after spontaneous symmetry breaking:

fi = ui + si + iji. (E.1)

The minimization conditions of V in Eq.(5.21), with respect to si read as
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where the symbol h· · · i denotes that the fluctuating fields are taken to be zero. We
obtain the required relations among vevs: ub ⇠ ua and u3 ⇠ �2 u1, while (u1, ua) in
terms of the ls are given by
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where el1 = l1 + 2l13 � 3l0
13, ela = 2la +lab , el1a = l1a +l1ab/2 and eµ2

a = µ2
a + 2µ0

a
2.

The only interesting minimum for us is the non-trivial case u1, ua 6= 0 with u1 ⌧ ua,
so we require V3 to be a global minimum. The 4 ⇥ 4 squared mass matrices of the
CP-even and -odd bosons (Si and Pi) are given by
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Using the potential in Eq.(5.21), these matrices acquire the following form
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The physical basis is the flavon mass basis

sj = (US)ij Si , ji = (UP)ij Pj, (E.7)

defined where M2
S and M2

P are diagonal
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where we have expressed µ2
1,a with their value at the minimum using (E.3). The

diagonalization matrices, US, UP, at O(u1/ua) can be written as
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The computation of the radiative diagram and the contribution to the anomalous
magnetic moment in the flavon mass basis are given by
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where we have defined
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In the case Mc, µf,1 � m`, the loop functions are

Im(xf) =
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From Eq.(E.14) we see that, up to order O(u1/ua), we have (US)1,i = (2/
p

5,�1/
p

5, 0, 0)
and (UP)1,i = (�1, 0, 0, 0). Therefore, as already mentioned, in the calculation of
mRAD

` and Da` only S1,2 and P1 play a significant role. The Eqs.(E.15) and (E.16) are
very well approximated by the Mass Insertion Approximations of Eqs.(5.24-5.27).
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