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The influence of temperature (20–80∘C) on the electrochemical behaviour of passive films anodically formed on UB6 stainless
steel in phosphoric acid solution (5.5MH

3

PO
4

) has been examined by using potentiodynamic curves, electrochemical impedance
spectroscopy, and Mott-Schottky analysis. UB6 stainless steel in contaminated phosphoric acid is characterised by high interfacial
impedance, thereby, illustrating its high corrosion resistance. The obtained results show that the films behave as n-type and p-type
semiconductors in the potential range above and below the flat band potential, respectively. This behaviour is assumed to be the
consequence of the semiconducting properties of the iron oxide and chromium oxide regions which compose the passive film.

1. Introduction

In the phosphoric acid industry, the main stages of the
wet process phosphoric acid (WPA) manufacture involve
the attack of phosphate ore by concentrated sulphuric acid
(98%), filtration of the pulp, and concentration of acid [1].
Phosphoric acid in pure state is not very corrosive compared
to nitric or sulphuric acids, but this process generates severe
corrosion problems of the equipmentsmade of stainless steels
due to the presence of impurities such as chlorides, fluorides,
and sulphides [1–4].

Depending on the nature of phosphates and the type of
phosphoric acidmanufacturing process used, the equipments
(reactors, agitators, pumps, drain, etc.) are subjected to slower
or faster deterioration [1].

The choice of materials used in this industrial process
plays an important role since they must have both good
chemical and mechanical resistance. These two characteris-
tics are not always easy to obtain and a tradeoff between
these properties must be reached [5]. In this sense, austenitic

stainless steels are a good choice for phosphoric media. In
this study, a highly alloyed austenitic stainless steel (UB6) has
been used.

Stainless steels proved their good corrosion resistance in
acid solutions. It was shown in the literature that chloride
and fluorides ions accelerated the anodic process by altering
passivity and activating the material dissolution rate [6–14].

UB6 stainless steel is used extensively in phosphoric acid
industry, because of its good corrosion resistance; passive
films formed on its surface have been the subject of some
investigations [15].

The major disadvantage of these new alloys is their high
cost compared with conventional stainless steels, due to the
higher percentage of the alloying elements such as Cr, Ni, and
Mo, as well as the complexity of the fabrication process [16].

The favourable effect of these alloying elements on the
corrosion resistance is attributed to the formation of a
protective passive surface film [17, 18]. This film is stable,
invisible, adherent, and self-repairing. In order to prevent
corrosion, it is of paramount importance that stainless steels
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have a stable passive filmwith rapid passivation even in severe
corrosive environments [17].

Several studies on the corrosion of various materials
in phosphoric acid with addition of chemical ions [19, 20]
and solid particles (abrasion effect) [21] have been carried
out in our laboratory, as well as measurements in industrial
phosphoric acid to study the behaviour in a real and complex
medium [22].

The purpose of the present paper is to study the influence
of the medium temperature (20–80∘C) on the corrosion
behaviour of Alloy UB6 in a phosphoric acid solution by
means of electrochemical techniques.

2. Experimental Procedure

Thematerial used in this investigation has been stainless steel
Uranus B6 (UB6); the chemical composition of this alloy
is listed in Table 1. For all measurements, electrodes were
mechanically polished using successively thinner grade of
emery papers (400–4000 grades), then washed with distilled
water, and dried with blowing warm air. Electrodes were
circular shaped and the area of the samples exposed to
the solution was 0.60 cm2. Platinum and Ag/AgCl 3M KCl
electrodes were used as counter and reference electrodes,
respectively. The electrolyte used in this study has been
(5.5M) H

3
PO
4
contaminated with addition of 4% of H

2
SO
4

and 400 ppm of chloride ions (KCl). In this case, the solution
has been called contaminated H

3
PO
4
solution (pH = 0.42).

The experiments were conducted under thermostated
conditions at 20∘C, 40∘C, 60∘C, and 80∘C in order to study the
influence of temperature on the electrochemical behaviour
and semiconducting properties of UB6 stainless steel.

Electrochemical measurements were performed by using
an Autolab PGSTAT302N potentiostat. Potentiodynamic
polarisation tests began at −0.6VAg/AgCl and the potential was
subsequently scanned anodically at a scan rate of 0.5mVs−1.

Before the potentiostatic passivation experiments, the
surface of the samples was pretreated cathodically at
−0.6VAg/AgCl for 15 minutes to create reproducible initial
conditions. Afterwards, the working electrode was polarised
at a formation potential of 0.6VAg/AgCl (within the passive
range) for 1 hour at different temperatures to form a steady-
state passive film.

EIS and capacitance measurements were performed after
potentiostatic passivation tests, once a stable passive film
was formed on the samples surface. EIS measurements
were conducted at the formation potential (0.6VAg/AgCl) in
the frequency range of 100 kHz–10mHz, with an amplitude
signal of 10mV. Subsequently, the capacitance of the interface
was calculated at a constant frequency of 5 kHz using a
10mV amplitude signal and scanning the potential from
the formation value in the negative direction at a rate of
25mV s−1. The high scanning rate was used to avoid the
electroreduction of the passive film and the change in the
film thickness during the measurements. Moreover, at a
sufficiently high scanning rate, the defect structure within the
passive film is, “frozen-in” which avoids the defect density
from being affected by potential.
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Figure 1: Potentiodynamic curves obtained on stainless steel in
contaminated 5.5M phosphoric acid at the temperatures of 20∘C,
40∘C, 60∘C, and 80∘C.

3. Results and Discussion

3.1. Potentiodynamic Response. Polarisation curves of Alloy
UB6 recorded in the contaminated phosphoric acid solution
at different temperatures are illustrated in Figure 1.

Figure 1 shows that Alloy UB6 has a good passive
behaviour with a large passive domain. This behaviour may
be attributed to the chemical composition of the alloy rich on
Cr, Ni, and Mo. At anodic potentials, the formation of Fe, Cr,
and Ni oxides expected the following the reactions [4]:

Fe +H
2
O 󳨀→ FeO + 2H+ + 2e− (1)

Ni +H
2
O 󳨀→ NiO + 2H+ + 2e− (2)

Cr +H
2
O 󳨀→ CrO + 2H+ + 2e− (3)

The formation of iron oxide took place through a
dissolution-precipitation mechanism, in which the formed
compoundwas soluble and started to deposit on the electrode
surface, whereas the formation of both chromium and nickel
oxides took place by direct nucleation and growthmechanism
on the electrode surface. Then, the formation of higher
oxidized forms of iron and chromium was expected as well
as some thickening of nickel oxide,

2FeO +H
2
O 󳨀→ Fe

2
O
3
+ 2H+ + 2e− (4)

2CrO +H
2
O 󳨀→ Cr

2
O
3
+ 2H+ + 2e (5)

Some authors considered that chromiumoxide (Cr
2
O
3
) is

the main component of the passive film formed on stainless
steels [23, 24]. Nickel is able to reduce the corrosion rate
and passive current density, and molybdenum addition in
stainless steels is known to increase the resistance to pitting
corrosion [25]. Besides, the role ofNi andMo in stainless steel
at anodic potentials in phosphoric acid solution is to stabilise
the passive film and to eliminate the active surface sites. In
highly concentrated H

3
PO
4
electrolytes, precipitation of iron

phosphate can occur at the interface [26, 27], according to

6H
3
PO
4
+ 3Fe 󳨀→ 3Fe(H

2
PO
4
)

2

+ 3H
2

(6)

3Fe(H
2
PO
4
)

2

󳨀→ Fe
3
(PO
4
)

2

+ 4H
3
PO
4

(7)
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Table 1: Chemical composition of Alloy UB6.

Alloy Chemical composition (wt%)
Ni Cr Fe Mo C Mn Si S P Others

UB6 25.09 20.77 43.97 4.39 0.0013 1.84 1.45 0.007 0.0029 2.36 CU

Table 2: Electrical parameters obtained by polarization curves
for the alloy in the UB6 H3PO4 polluted solution at different
temperatures.

20∘C 40∘C 60∘C 80∘C
𝑖corr (𝜇A⋅cm

−2) 40.9 57.3 74.6 80.4

𝐸corr (mV/Ag/AgCl) −172.3 136.8 154.8 157.1

𝑖

𝑝

(𝜇A⋅cm−2) 37.1 44.3 46.3 57

𝐸cr (mV/AgCl/Ag) −10.6 453 603 614

The electrochemical parameters obtained from polari-
sation curves are shown in Table 2. It can be seen that
the increase of temperature leads to the increase in the
passive current density (𝑖

𝑝
), an ennoblement of corrosion

potential and a decrease of the domain of passivity (𝐸cr −
𝐸corr) [5, 28]. It is observed from the data obtained that the
increase in temperature from 20 to 80∘C induces a shift in
the corrosion potential (𝐸corr) towards more anodic values,
from −172.3 to 157.1mV, respectively. An increase in corrosion
current density values from 40.9 to 80.4 𝜇A⋅cm−2 can also be
observed as temperature increases from 20 to 80∘C.

In spite of the temperature increase, Alloy UB6 preserves
a stable passivity in the range of potentials studied.The sharp
increase in current density at a high potential (𝐸cr) indicates
the onset of transpassive dissolution of the Cr-species present
in the passive film formed on Alloy UB6.

Polarisation curves have been used to set the value of the
film formation potential within the passive range of UB6. A
film formation potential of 0.6VAg/AgCl has been selected.

3.2. EIS Measurements. Electrochemical impedance spec-
troscopy (EIS) has been employed to investigate the steady-
state properties of the passive films formed on Alloy UB6.
Once the passive film was formed on the electrode surface,
the EIS measurements were conducted at the formation
potential (0.6VAg/AgCl) at different temperatures (20∘C, 40∘C,
60∘C, and 80∘C).

Figure 2 shows the Nyquist plots for UB6 stainless steel
in the contaminated 5.5M H

3
PO
4
solution. These complex

plane plots have all the same semicircular shape which may
correspond to a large diameter charge-transfer dominated
region with some diffusion control, as found in other corro-
sion systems [29]. This form of impedance is consistent with
the occurrence of a charge transfer reaction in a porous film
of finite thickness [30], although oxygen evolution occurring
within a thick porous outer layer may exhibit such behaviour
[31]. It can be observed that an increase in temperature
reduces the amplitude of the semicircle, indicating a decrease
of the total impedance of the system and a loss in the
protective properties of the passive film. This evolution with
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Figure 2: Nyquist plots for the UB6 in contaminated 5.5M phos-
phoric acid at +0.6VAg/AgCl at the temperatures of 20∘C, 40∘C, 60∘C,
and 80∘C.

temperature suggests an evolution of the charge exchange
between thematerial and the solution occurring at the surface
[32].

The functionality with respect to frequency is seen more
clearly in the Bode-phase representation shown in Figure 3.
The phase angle plots are sensitive to system parameters and,
therefore, provide a good means of comparing the model
to the experiment. It can be seen from these plots that an
increase in temperature decreases the phase angle values at
low frequencies, indicating worse protective properties of the
passive film formed on the UB6 surface.

3.3. Equivalent Circuit and Interpretation. The superior cor-
rosion resistance of austenitic stainless steels, such as Alloy
UB6, is closely related to the passive film formed on their
surface [33–39]. The compact inner layer, known as barrier
layer, is composed principally of chromium oxides and is
the major contribution. The porous outer layer is composed
principally of iron oxides and hydroxides.

Figure 4 shows the equivalent circuit (EC) that has
been usually used to interpret EIS spectra of passive films
having a two-layer structure [37, 40–42]. This circuit has
two hierarchically distributed time constants and it has been
used to simulate the electrochemical behaviour of the present
system Alloy UB6/contaminated 5.5M H

3
PO
4
solution. In

this model, 𝑅
1
, CPE

1
, 𝑅
2
, and CPE

2
correspond to the

resistance and capacitance of the outer porous layer and inner
layer, respectively. In this sense, the passive film consists of
two layers: the inner barrier layer and the outer layer.
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Figure 3: Bode-phase plots for the UB6 in contaminated 5.5M
phosphoric acid at +0.6VAg/AgCl at the temperatures of 20∘C, 40∘C,
60∘C, and 80∘C.
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Figure 4: Representation of the equivalent circuits used for two-
layer model of passive film and proposed for the interpretation of
EIS spectra.

A constant-phase element (CPE) representing a shift from
ideal capacitor was used instead of the capacitance itself.
CPEs are used to model frequency dispersion behaviour
corresponding to different physical phenomena such as
surface heterogeneity which results from surface roughness,
impurities, dislocations, and formation of porous layers [36,
41, 43, 44]. The impedance of a constant-phase element is
defined as

𝑄 = 𝑍CPE = [𝐶 (𝑗𝜔)
𝛼

]

−1

,

(8)

where 𝛼 is defined as a CPE power, in an adjustable parameter
that lies between −1 and 1. For 𝛼 = 1, the CPE describes
an ideal capacitor, and for 𝛼 = 0, the CPE is an ideal
resistor. When 𝛼 = 0.5, the CPE represents a Warburg
impedance with diffusional character, and for 0.5 < 𝛼 < 1,
the CPE describes a frequency dispersion of time constants
due to local heterogeneities in the dielectric material. A pure
inductance yields 𝛼 = − 1.

The CPE elements, Q, have been converted into a pure
capacitance (C) by means of the following equation [45–47]:

𝐶 =

(𝑄 ⋅ 𝑅)

1/𝛼

𝑅

,

(9)

where 𝑄 = 𝑍CPE (see (8)).

The conversion shown in (8) has been done in order to
relate pure capacitance values (𝐶) to the thickness of passive
film layers, according to the following equation [48, 49]:

𝐶 =

𝜀 ⋅ 𝜀

0

𝑑

, (10)

where 𝜀 denotes the relative dielectric constant of the layer,
𝜀

0
is the permittivity of vacuum (8.85∗10−14Fcm−1), and 𝑑

is the layer thickness. A value of 15.6 has been assumed for
𝜀, as in the literature for austenitic stainless steels [27, 50].
This value is reasonable, since the dielectric constants of the
bulk oxides formed on stainless steels (Cr

2
O
3
, FeO, Fe

3
O
4
,

and Fe
2
O
3
) are about 10–20 [50, 51]. It is complicated to

obtain an accurate thickness value of the passive film when
the dielectric constant is not well established and when the
surface roughness varies substantially during the oxidation
process [41, 47, 48, 52]. Moreover, because of the open
porous structure, it is difficult to calculate the thickness of the
outer layer from the 𝐶

1
values [37]. Nevertheless, neglecting

some variations in the surface roughness and the dielectric
constant, the capacitive response under different conditions
can give an indication of how the passive film thickness
changes with the changing system conditions.

Parameters obtained by adjusting the experimental data,
as well as the thickness of both porous and barrier layers
obtained from (9), are given in Table 3. It can be seen that
R
1
and R

2
values are far higher than R

𝑆
values for all tests.

Thus, 𝑅
1
and R

2
can be related to the passive film. Moreover,

the resistance of the inner oxide layer (𝑅
2
) is larger than the

values associated with the outer porous layer (𝑅
1
), which is

consistent with the chosen physical model. It can be said
that R

1
is associated with the resistance of charge transfer

processes in the defects of the outer layer of the passive film,
while 𝑅

2
is assigned to the areas covered with the protective

inner layer of the passive film (barrier layer) [53]. These
results indicate that the protection provided by the passive
film was predominantly due to the barrier layer. Similar
results were obtained by other authors [36, 54–56].
𝑅

1
slightly decreases as temperature increases, which

suggests that temperature favours the formation of a more
porous filmand this behaviour could be related to the fact that
at lower temperatures the outer porous layer is more stable.
On the other hand, the parameter 𝑅

2
associated with the

inner oxide film is more sharply affected by temperature. 𝑅
2

clearly decreases when temperature increases, which suggests
a loss of the protective properties of the inner layer of the
passive film.

Concerning the capacitance values, it can be observed
thatC

1
<C
2
, which suggests that the outer layer of the passive

film is thicker than the inner layer, although its resistance is
lower.These results evidence that the passive film thickness is
not directly related to its protective properties.

The high values of the exponent 𝛼
1
reveal that CPEs

correspond to a nearly capacitive response and support the
physical validity of the proposed equivalent circuit, showing
that a better agreement between theoretical and experimental
data is obtained. The exponent has values close to 0.9, which
indicates that the interpretation of the CPE

1
element as a

capacitance should be acceptable, whereas the values of 𝛼
2
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Table 3: Parameters obtained by fitting the experimental results of EIS for the alloy in contaminated 5.5M H3PO4 solution at +0.6mV at
different temperatures.

Temperature 𝑅

𝑆

(Ohm⋅cm2)
𝑅

1

(Ohm⋅cm2)
𝐶

1

(𝜇F⋅cm−2) 𝛼

1

𝑑

1

(nm)
𝑅

2

(Ohm⋅cm2)
𝐶

2

(𝜇F⋅cm−2) 𝛼

2

𝑑

2

(nm)
𝑑

𝑇

(nm)
20∘C 4.16 204 13.7 0.95 1 644 38.2 0.7 0.36 1.36
40∘C 3.79 185 15.7 0.94 0.87 569 39.3 0.66 0.35 1.22
60∘C 3.41 169 17.0 0.9 0.81 340 42.6 0.6 0.32 1.13
80∘C 2.42 159 17.5 0.94 0.7 234 70.1 0.52 0.19 0.88

were between 0.5 and 0.8. The values of 𝛼
1
and 𝛼

2
decrease

as temperature increases, indicating that the electrode surface
becomes more rough and heterogeneous with temperature.

The estimated values of 𝑑
𝑇
= 𝑑

1
+ 𝑑

2
calculated with (9)

show that the layers formed on Alloy UB6 are typically on the
order of nm in thickness, within the typical range for passive
films formed on stainless steel (1–3 nm) [57].

3.4. M-S Analysis. The Mott-Schottky (M-S) analysis has
been employed to determine the electronic properties of
the passive films formed on UB6 stainless steel in the
contaminated 5.5M H

3
PO
4
solution.

The Mott-Schottky approach assumes that the capaci-
tance response is controlled by the band bending and can
be described by the variation of the space charge capacitance
under depletion conditions. When the passive or oxide films
are in contact with an electrolyte, the space charge region
developed in the passive film and the Helmholtz layer can
be considered as two capacitors in series. Thus, the measured
capacitance of the film-electrolyte interface can be described
by the following relation [58, 59]:

1

𝐶

=

1

𝐶SC
+

1

𝐶

𝐻

, (11)

where 𝐶SC and 𝐶
𝐻
are the space charge layer capacitance and

the Helmholtz layer capacitance, respectively. Presented as
the Mott-Schottky relation, the expression becomes

1

𝐶

2

=

1

𝐶

2

SC
+

1

𝐶

2

𝐻

+

2

𝐶SC𝐶𝐻
. (12)

In the case of the classical semiconductors (type: Si, Ge,
. . .) characterized by a doping density around 1016 cm−3, the
space charge capacitance is very small compared to that of
the Helmholtz layer. In these conditions, the contribution
of the second and third terms can be neglected. When the
heavily doped (1019–1020 cm−3) passive films are considered,
the capacitance of the space charge region becomes important
(but is still smaller than that of the Helmholtz layer). In this
case, the passive film-electrolyte interface can be described by
the following Mott-Schottky relation [60]:

1

𝐶

2

=

1

𝐶

2

𝐻

=

2

𝜀𝜀

0
𝑒𝑁

𝐷

(𝐸 − 𝐸FB −
𝑘𝑇

𝑒

) n-type, (13)

1

𝐶

2

=

1

𝐶

2

𝐻

−

2

𝜀𝜀

0
𝑒𝑁

𝐴

(𝐸 − 𝐸FB −
𝑘𝑇

𝑒

) p-type, (14)

where N
𝐷
/N
𝐴
are the donor/acceptor density in the pas-

sive film, 𝜀 is the dielectric constant of the oxide, 𝜀
0
is

the vacuum permittivity constant, 𝑒 is the electron charge
(1.602 × 10−19 C), k is the Boltzmann constant (1.38 × 10−23
J⋅K−1), T is the absolute temperature, and 𝐸fb is the flat-
band potential. For a p-type semiconductor, 1/C2 versus
E should be linear with a negative slope that is inversely
proportional to the acceptor density. On the other hand, an n-
type semiconductor yields a positive slope which is inversely
proportional to the donor density.

Figure 5 presents Mott-Schottky curves for the passive
films formed in the contaminated phosphoric acid solution
at 20∘C, 40∘C, 60∘C, and 80∘C at the formation potential of
0.6VAg/AgCl. These curves exhibit two linear regions, above
and below the flat band potential, 𝐸FB, which is located
between 0 and 0.1VAg/AgCl. Inside the potential region above
𝐸FB, the measured capacitance corresponds to the outer layer
of the film, which is composed mainly of iron (III) oxide,
and there is also the effect of phosphates [26] as well as the
presence of other compounds [58, 61, 62]. The positive slope
of this linear region clearly shows that the outer layer of
the passive film formed on UB6 is an n-type semiconductor.
On the contrary, inside the potential region below 𝐸FB, the
slope of the straight line is negative, so the capacitance
measured corresponds to a p-type semiconductor thatmay be
attributed to an inner Cr enriched oxide layer of the passive
film formed on the alloy surface [26, 63–65]. These results
have also been observed in other works [66, 67].

According to Mott-Schottky theory [68], the capacitance
of the film/electrolyte interface for p- and n-type semicon-
ductors is given by (13) and (14). Donor density, 𝑁

𝐷
, and

acceptor density, 𝑁
𝐴
, can be determined from the slope of

the experimental C−2 versus 𝐸 plots.
Table 4 summarises the values of𝑁

𝐷
and𝑁

𝐴
correspond-

ing to Alloy UB6. The density of defects is in the range
between 1020 and 1021 cm−3, which are of the same order of
magnitude as those reported for austenitic stainless steels in
several papers [35, 69–72]. These defects act as dopants, that
is, oxygen vacancies and cation interstitials imparting n-type
properties and cation vacancies yielding p-type character
[70, 71].

Based on the values of Table 4, it can be concluded that
the passive film formed on UB6 steel is disordered, which
becomesmore visible at higher temperatures.The decrease in
the slope when the temperature increases indicates that the
concentration of donor and acceptor species in the passive
film increases with temperature [69]. Higher donor and
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Table 4: Donor and acceptor density of the oxide films formed on UB6 stainless steel at different temperatures between 20 and 80∘C.

Temperature 𝑁
𝐴

(1020⋅cm−3) 𝑁

𝐷

(1020⋅cm−3) 𝐶1sc (outer) (𝜇F⋅cm
−2) 𝐶2sc (innerr) (𝜇F⋅cm

−2) 𝑑1 (outer) (nm) 𝑑2 (innerr) (nm)
20∘C 5.54 2.03 24.66 20.89 0.67 0.66
40∘C 9.33 3.95 20.61 29.55 0.66 0.46
60∘C 10.3 4.71 18.6 36.52 0.60 0.37
80∘C 24.3 5.60 17.0 75.21 0.57 0.18
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Figure 5: Mott-Schottky curves for the passive films formed in
contaminated 5.5M phosphoric acid at 20∘C, 40∘C, 60∘C, and 80∘C
at the formation potential of 0.6VAg/AgCl.

acceptor density values at elevated temperatures means that
the passive films formed onUB6 steel exhibit amore defective
structure and worse protective properties, as observed in the
EIS measurements.

According to the results obtained in the Mott-Schottky
analysis, two space-charge regions appear at the metal/inner
layer and outer layer/electrolyte interfaces. The capacitance
of these two space-charge layers can be estimated from the
capacitance values measured at those two-potentials, where
1/C2 reaches a maximum in the Mott-Schottky plots, that is,
at the formation potential (thickness of the outer layer) and
at the most negative potential (thickness of the inner layer).
The contribution of the Helmholtz layer capacitance (𝐶

𝐻
) to

the total capacitance has not been neglected, and its value has
been taken as the capacitance at the flat-band potential, for
each temperature. Arranging (11) is as follows:

𝐶SC =
𝐶 ⋅ 𝐶

𝐻

𝐶

𝐻
− 𝐶

. (15)

Thereafter, the thickness of the outer and inner layers of
the film can be calculated using (10). Values of 𝐶SC and
thicknesses (d) are presented in Table 4.

It can be observed that the inner layer exhibits higher
capacitance (𝐶

2
𝑠𝑐) than the outer layer (𝐶

1
𝑠𝑐), especially

at high temperatures, which means that the inner layer is
thinner than the outer layer. These findings agree with the
previous results obtained by EIS, validating the equivalent
circuit chosen to interpret the experimental results.

4. Conclusions

The electrochemical behaviour of the passive film formed
on Alloy UB6 in contaminated phosphoric acid (5.5M) was
investigated using potentiodynamic polarisation, EIS, andM-
S analysis, and the following conclusions were drawn.

(1) The potentiodynamic polarisation curves were char-
acterised by a very wide passive range indicating good
protection efficiency. The passive current density
increased and the transpassive potential decreased
as temperature increased in the studied solution,
indicating a decrease in corrosion resistance with
temperature.

(2) The impedance has been found to be dependant
on the temperature of the electrolyte, indicating the
occurrence of a charge transfer reaction in a porous
film. EIS measurements showed that the protection
provided by the passive film was predominantly due
to the inner oxide film. The resistance of the outer
porous layer R

1
decreased slightly as the tempera-

ture increased, which suggests that the temperature
favoured the formation of a more porous film. Capac-
itance values increased in general with temperature,
indicating a decrease in the passive layers thickness
and worse behaviour of UB6 against corrosion.

(3) The Mott-Schottky plots have shown both p-type
and n-type semiconducting behaviours. Calculated
acceptor/donor densities of UB6 in the contami-
nated phosphoric acid revealed an increase of the
acceptor/donor densities with the temperature, whose
values are of the order of 1020 cm−3. According to the
obtained results, it can be concluded that the passive
film formed on UB6 steel has a disordered structure
and becomes more defective at higher temperatures.

References

[1] P. Becker, Phosphates and Phosphoric Acid. Raw Materials,
Technology, and Economics of the Wet Process, M. Dekker, New
York, NY, USA, 2nd edition, 1989.

[2] A. Bellaouchou, A. Guenbour, and A. Benbachir, “Corrosion
behavior of stainless steel in phosphoric acid polluted by sulfide
ions,” Corrosion, vol. 49, no. 8, pp. 656–662, 1993.

[3] S. El Hajjaji, L. Aries, J.-P. Audouard, and F. Dabosi, “The
influence of alloying elements on the corrosion resistance of
stainless steels in phosphoric acidmedium polluted by sulphide
ions,” Corrosion Science, vol. 37, no. 6, pp. 927–939, 1995.

[4] H. Iken, R. Basseguy, A. Guenbour, and A. B. Bachir, “Classic
and local analysis of corrosion behaviour of graphite and



International Journal of Corrosion 7

stainless steels in polluted phosphoric acid,” Electrochimica
Acta, vol. 52, no. 7, pp. 2580–2587, 2007.

[5] A. Guenbour, M. Hajji, E. M. Jallouli, and A. B. Bachir, “Study
of corrosion-erosion behaviour of stainless alloys in industrial
phosphoric acid medium,” Applied Surface Science, vol. 253, no.
5, pp. 2362–2366, 2006.

[6] H. Streblow andP.Marcus,CorrosionMechanisms inTheory and
Practice, Marcel Dekker, New York, NY, USA, 1995.

[7] S. Rajeswari, K. S. Danadurai, T. M. Sridhar, and S. V.
Narasimhan, “Surface characterization and pitting behavior of
high-Cr-Ni-Mo alloys in simulated white water environment,”
Corrosion, vol. 57, no. 5, pp. 465–475, 2001.

[8] J. H. Qiu, “Passivity and its breakdown on stainless steels and
alloys,” Surface and Interface Analysis, vol. 33, no. 10-11, pp. 830–
833, 2002.

[9] G. C. Frenkel, “Pitting corrosion of metals: a review of the
critical factors,” Journal of the Electrochemical Society, vol. 145,
pp. 2186–2198, 1998.

[10] M. A. Ameer, A. M. Fekry, and F. E. Heakal, “Electrochem-
ical behaviour of passive films on molybdenum-containing
austenitic stainless steels in aqueous solutions,” Electrochimica
Acta, vol. 50, no. 1, pp. 43–49, 2004.

[11] A. Galal, N. F. Atta, and M. H. S. Al-Hassan, “Effect of some
thiophene derivatives on the electrochemical behavior of AISI
316 austenitic stainless steel in acidic solutions containing
chloride ions: I. Molecular structure and inhibition efficiency
relationship,”Materials Chemistry and Physics, vol. 89, no. 1, pp.
38–48, 2005.

[12] S. A.M. Refaey, F. Taha, and A.M. A. El-Malak, “Corrosion and
inhibition of stainless steel pitting corrosion in alkalinemedium
and the effect of Cl- and Br-anions,”Applied Surface Science, vol.
242, no. 1-2, pp. 114–120, 2005.

[13] S. A.M. Refaey, “Inhibition of chloride pitting corrosion ofmild
steel by sodium gluconate,” Applied Surface Science, vol. 157, pp.
199–206, 2000.

[14] S. S. Abd El-Rehim, S. A. M. Refaey, F. Taha, M. B. Saleh, and R.
A.Ahmed, “Corrosion inhibition ofmild steel in acidicmedium
using 2-amino thiophenol and 2-cyanomethyl benzothiazole,”
Journal of Applied Electrochemistry, vol. 31, no. 4, pp. 429–435,
2001.

[15] A. Fattah-Alhosseini, S. T. Shoja, B. H. Zebardast, and P. M.
Samim, “An electrochemical impedance spectroscopic study
of the passive state on AISI 304 stainless steel,” International
Journal of Electrochemistry, vol. 7, pp. 8–13, 2011.

[16] H. A. El Dahan, “Pitting corrosion inhibition of 316 stainless
steel in phosphoric acid-chloride solutions, part I: potentio-
dynamic and potentiostatic polarization studies,” Journal of
Materials Science, vol. 34, no. 4, pp. 851–857, 1999.

[17] J. Lee, “Effects of alloying elements, Cr, Mo and N on repas-
sivation characteristics of stainless steels using the abrading
electrode technique,” Materials Chemistry and Physics, vol. 99,
no. 2-3, pp. 224–234, 2006.

[18] M. A. M. Ibrahim, S. S. Abd El Rehim, and M. M. Hamza,
“Corrosion behavior of some austenitic stainless steels in
chloride environments,” Materials Chemistry and Physics, vol.
115, no. 1, pp. 80–85, 2009.

[19] A. Guenbour, S. Zeggaf, A. Ben Bachir, M. L. Escudero, and
M. F. Lopez, “Effect of mineral compounds in phosphoric acid
polluted by sulfide ions on corrosion of nickel,” Corrosion, vol.
55, no. 6, pp. 576–581, 1999.

[20] A. Bellaouchou, A. Geunbour, and A. Benbachir, “The corro-
sion of an austenitic stainless steel in phosphoric acid: effect of
sulphide ions action,” Bulletin of Electrochemistry, vol. 16, pp.
166–172, 2000.

[21] A. Guenbour, N. Bui, I. Fauchcu, Y. Segui, A. Ben Bachir, and
F. Dabosi, “The electrical properties of passive films formed on
stainless steels in phosphoric acids,” Corrosion Science, vol. 30,
no. 2-3, pp. 189–199, 1990.

[22] A. Guenbour, H. Iken, N. Kebkab, A. Bellaouchou, R. Boulif,
and A. B. Bachir, “Corrosion of graphite in industrial phospho-
ric acid,”Applied Surface Science, vol. 252, no. 24, pp. 8710–8715,
2006.

[23] S. R. Moraes, D. Huerta-Vilca, and A. J. Motheo, “Corrosion
protection of stainless steel by polyaniline electrosynthesized
from phosphate buffer solutions,” Progress in Organic Coatings,
vol. 48, no. 1, pp. 28–33, 2003.

[24] M. Abdellah, “Corrosion behaviour of 304 stainless steel in
sulphuric acid solutions and its inhibition by some substituted
pyrazolones,”Materials Chemistry and Physics, vol. 82, no. 3, pp.
786–792, 2003.

[25] L. Wegrelius, F. Falkenberg, and I. Olefjord, “Passivation of
stainless steels in hydrochloric acid,” Journal of the Electrochem-
ical Society, vol. 146, no. 4, pp. 1397–1406, 1999.

[26] M. Reffass, R. Sabot, M. Jeannin, C. Berziou, and P. Refait,
“Effects of phosphate species on localised corrosion of steel in
NaHCO

3

+ NaCl electrolytes,” Electrochimica Acta, vol. 54, no.
18, pp. 4389–4396, 2009.

[27] E. Almeida, D. Pereira, M. O. Figueiredo, V. M. M. Lobo, and
M.Morcillo, “The influence of the interfacial conditions on rust
conversion by phosphoric acid,” Corrosion Science, vol. 39, no.
9, pp. 1561–1570, 1997.

[28] A. Guenbour, J. Faucheu, A. Ben Bachir, F. Dabosi, and N. Bui,
“Electrochemical study of corrosion-abrasion of stainless steels
in phosphoric acids,” British Corrosion Journal, vol. 23, no. 4, pp.
234–238, 1988.

[29] A. M. P. Simões, M. G. S. Ferreira, G. Lorang, and M. D. Belo,
“Influence of temperature on the properties of passive films
formed on AISI 304 stainless steel,” Electrochimica Acta, vol. 36,
pp. 315–320, 1991.

[30] E. Sikora and D. D. Macdonald, “Nature of the passive film on
nickel,” Electrochimica Acta, vol. 48, no. 1, pp. 69–77, 2002.

[31] N. Sato and K. Kudo, “An ellipsometric study of anodic
passivation of nickel in borate buffer solution,” Electrochimica
Acta, vol. 19, no. 8, pp. 461–470, 1974.

[32] N. B. Hakiki, S. Boudin, B. Rondot, and M. D. Belo, “The
electronic structure of passive films formed on stainless steels,”
Corrosion Science, vol. 37, no. 11, pp. 1809–1822, 1995.

[33] J. Pan, C. Leygraf, R. F. A. Jargelius-Pettersson, and J. Lindén,
“Characterization of high-temperature oxide films on stainless
steels by electrochemical-impedance spectroscopy,” Oxidation
of Metals, vol. 50, no. 5-6, pp. 431–455, 1998.

[34] M. Belo, N. E. Hakiki, and M. G. S. Ferreira, “Semiconducting
properties of passive films formed on nickel-base alloys type
Alloy 600: influence of the alloying elements,” Electrochimica
Acta, vol. 44, no. 14, pp. 2473–2481, 1999.

[35] M. F. Montemor, M. G. S. Ferreira, N. E. Hakiki, and M. Belo,
“Chemical composition and electronic structure of the oxide
films formed on 316L stainless steel and nickel based alloys
in high temperature aqueous environments,” Corrosion Science,
vol. 42, no. 9, pp. 1635–1650, 2000.



8 International Journal of Corrosion

[36] M. G. S. Ferreira, N. E. Hakiki, G. Goodlet, S. Faty, A. M. P.
Simoes, and M. D. Belo, “Influence of the temperature of film
formation on the electronic structure of oxide films formed on
304 stainless steel,” Electrochimica Acta, vol. 46, pp. 3767–3776,
2001.

[37] H. Ge, G. Zhou, andW.Wu, “Passivation model of 316 stainless
steel in simulated cooling water and the effect of sulfide on the
passive film,” Applied Surface Science, vol. 211, no. 1–4, pp. 321–
334, 2003.

[38] G. Rondelli, P. Torricelli, M. Fini, and R. Giardino, “In vitro
corrosion study by EIS of a nickel-free stainless steel for
orthopaedic applications,” Biomaterials, vol. 26, no. 7, pp. 739–
744, 2005.

[39] M. J. Carmezim, A. M. Simões, M. F. Montemor, and M.
Belo, “Capacitance behaviour of passive films on ferritic and
austenitic stainless steel,” Corrosion Science, vol. 47, no. 3, pp.
581–591, 2005.

[40] J. Pan, D. Thierry, and C. Leygraf, “Electrochemical impedance
spectroscopy study of the passive oxide film on titanium for
implant application,” Electrochimica Acta, vol. 41, no. 7-8, pp.
1143–1153, 1996.

[41] F. Mansfeld and M. W. Kendig, “Evaluation of anodized
aluminum surfaces with electrochemical impedance spec-
troscopy,” Journal of the Electrochemical Society, vol. 135, no. 4,
pp. 828–833, 1988.

[42] A. Igual-Munoz, J. Garcia-Anton, J. L. Guinon, and V. Perez-
Herranz, “Inhibition effect of chromate on the passivation and
pitting corrosion of a duplex stainless steel in LiBr solutions
using electrochemical techniques,” Corrosion Science, vol. 49,
no. 8, pp. 3200–3225, 2007.

[43] P. Bommersbach, C. Alemany-Dumont, J. P. Millet, and B.
Normand, “Formation and behaviour study of an environment-
friendly corrosion inhibitor by electrochemical methods,” Elec-
trochimica Acta, vol. 51, no. 6, pp. 1076–1084, 2005.

[44] M. E. Orazem and B. Tribollet, Electrochemical Impedance
Spectroscopy, chapter 13, John Wiley and Sons, Hoboken, NJ,
USA, 1st edition, 2008.
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