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Chapter 1. General Introduction 

1.1. Evolution of Ageing 

Ageing is the decline of an organism’s biological functions with age, typically 

leading to a decrease in its reproductive abilities and an increase in its probability 

of death (Rose 1994). Such a decrease in reproduction and survival seems to be 

outrageously against Darwinian fitness, which probably explains why studying 

the evolution of ageing has captured the interest of evolutionary biologists for 

decades (Medawar 1952; Williams 1957; Kirkwood 1977).  

The persistence of ageing despite its negative effects on fitness has its cornerstone 

in the idea that the strength of selection decreases with age. This idea was put 

forward by Fischer (1931) and Haldane (1941), and first presented in a verbal and 

graphical model by Peter Medawar (1946). Medawar’s intuition rested on the 

observation that, even in the absence of intrinsic mortality, extrinsic mortality 

sources (e.g. predation, disease, accidents) gradually decrease the probability of 

individuals to survive. Therefore, Medawar predicted that, after an individual 

successfully develops to become an adult and starts reproducing (i.e., after sexual 

maturation), the strength of natural selection will gradually decrease with age, 

leading to a “Selection Shadow” (Figure 1.1). Hamilton was the first to formalize 

the idea that the strength of selection wanes across the lifetime of an individual, 

showing that selection gradients on mortality do actually inevitably decrease with 

age because the age at which a gene acts is inversely proportional to its influence 

on fitness (Hamilton 1966). Despite recent contention about the role of extrinsic 

mortality in the selection shadow (Caswell 2007; Wensink et al. 2017; Moorad 

et al. 2019; Day and Abrams 2020), the central tenet that selection becomes less 

intense with age is robust and the basis for the major theories explaining the 

evolution of ageing (Medawar 1952; Williams 1957; Kirkwood 1977; Rose 

1994).  



 
 
 
  
Chapter 1 
 

2  
 

First, Peter Medawar proposed (1952) that ageing results from the accumulation, 

during evolutionary time, of negative mutations that act late in life (“mutation 

accumulation theory”), when natural selection is weaker (Figure 1.2a). This 

theory has been tested by exploring whether there is an increase in additive 

genetic variance in mortality rate with age, due to the accumulation of late-acting 

mutations. Although initial studies seemed to support this prediction by reporting 

an increase in additive genetic variance in mortality at later ages (Hughes and 

Charlesworth 1994; Charlesworth and Hughes 1996), later experiments and 

reanalyses have casted doubts on this conclusion (Promislow et al. 1996; Shaw 

et al. 1999). An extension to this theory was later proposed stating that late acting 

 

Figure 1.1. Change in the strength of selection with age. The strength of 
selection is expected to decline after an individual reaches adulthood (sexual 
maturation) and starts reproducing, leading to a “Selection Shadow” on later 
ages. 
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deleterious mutations can also be maintained in the population if their early life 

effects are only slightly deleterious (i.e., positive pleiotropic effects, see 

Maklakov et al. 2015). The presence of these positive pleiotropic alleles is 

supported by mutation accumulation studies, where spontaneous mutations have 

been found to reduce early and late life fitness (Houle et al. 1997; Estes et al. 

2005; Kimber and Chippindale 2013). To sum up, “mutation accumulation 

theory” predicts that, due to the selection shadow, mutations with negative effects 

late in life are expected to accumulate as long as they are slightly deleterious or 

do not have any effect on early life (i.e., selectively neutral), when selection is 

stronger.  

Second, in 1957 George Williams posited the other theory that was to dominate 

evolutionary explanations of ageing, the “antagonistic pleiotropy theory”. 

According to this theory, the evolution of ageing may ensue due to the 

accumulation of antagonistic pleiotropic alleles that have positive effects early in 

life but are deleterious late in life. As natural selection is stronger at earlier ages, 

mutations that increase early life fitness at the expense of late life fitness are 

expected to accumulate (Figure 1.2b). This theory has mainly found support in 

artificial selection experiments selecting for longer lifespan and testing if this 

causes lower early life fitness. Selection for increased late life reproduction or 

lifespan has indeed been found to be correlated with decreased reproduction 

(Rose and Charlesworth 1980; Luckinbill et al. 1984; Partridge et al. 1999; Sgrò 

and Partridge 1999). Yet, there are also numerous cases where lifespan increases 

without associated reproductive costs (reviewed in Flatt 2011), again casting 

doubts about the generality of this theory. 

An important point here is that both theories predict an increase in mortality rate 

with age; however, in nature there are many examples where mortality rate 

plateaus at late ages (Fox et al. 2004; Miyo and Charlesworth 2004; Barbi et al. 
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2018). For example, Barbi et al. (2018) showed that in humans, age-specific 

mortality becomes constant beyond the age 105 by using high quality data from 

an Italian population (Barbi et al. 2018). Several studies have tried to marry these 

observations with existing theories of ageing (Mueller and Rose 1996; Pletcher 

and Curtsinger 1998), giving rise to two main explanations for late life mortality 

rates. The first one is based on selective disappearance and how it differentially 

affects individuals in a population depending on their robustness (a sum of factors 

that determine an individual’s likelihood of survival). As mortality will remove 

less robust individuals at early ages, more robust individuals will contribute to 

the decreased mortality rate at late ages (Vaupel et al. 1979; Brooks et al. 1994; 

Chen et al. 2013). The second explanation is based on the fact that the strength 

of natural selection declines after first reproduction and becomes zero when an 

organism stops reproducing. In parallel with the strength of natural selection, age-

specific mortality is also expected to decelerate, leading to mortality plateaus 

(Rauser et al. 2009; Mueller et al. 2011). 

 

Figure 1.2. Mutation accumulation theory vs. Antagonistic pleiotropy 
theory. (a) Mutation accumulation theory suggests that ageing results from 
the accumulation of mutations that have no effect early in life but negative 
effects late in life. (b) Antagonistic pleiotropy theory suggests that ageing is 
caused by the accumulation of antagonistic mutations that have positive 
effects early in life but negative effects late in life. 
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Third, in 1977 Thomas Kirkwood proposed the “disposable soma theory”, which 

argues that as organisms have access to limited resources, they should optimize 

their allocation of energy between somatic maintenance and reproduction so as 

to maximize their fitness (Kirkwood 1977). For example, somatic maintenance 

requires energy as it involves costly processes such as genome repair or clearing 

misfolded proteins (Kirkwood 2008). Likewise, organisms spend energy for 

reproduction due to processes such as egg/sperm production and mating activities 

(Otronen 1995; Olsson et al. 1997; Marshall et al. 1999). Thus, optimizing fitness 

can require diverting resources from somatic maintenance to reproduction, and 

ageing may ensue. This differential resource allocation towards early life 

reproduction or development, instead of long-term somatic maintenance, will be 

even more beneficial in light of a decrease in selection gradients against mortality 

with age (Hamilton 1966; Caswell 2007; Wensink 2017). From this perspective, 

disposable soma theory and antagonistic pleiotropy theory are somewhat 

convergent in the sense that pleiotropic gene effects can modulate how to allocate 

energy between somatic maintenance and reproduction (Kirkwood and Rose 

1991). As a matter of fact, some researchers have gone so far so as to define the 

disposable soma theory as a physiological mechanism of antagonistic pleiotropy 

theory (Maklakov and Chapman 2019). 

Finally, the more modern “developmental theory of ageing” argues that 

senescence may result from the fact that physiological processes are optimized 

for early but not late ages (Maklakov and Chapman 2019). In fact, the example 

given by Williams in his classic paper (Williams 1957) describes an allele with 

beneficial effects on bone calcification during development, but deleterious 

effects via the calcification of arteries late in life. Actually, there is no reason why 

this allele could not be repressed late in life, and so this is a typical example for 

an allele that results in ageing due to its suboptimal expression in adulthood (de 

Magalhães and Church 2005; Walker 2011; De Magalhães 2012). Hence, given 

that it results from age-specific pleiotropic effects of alleles, developmental 
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theory of ageing can be considered as another mechanism of antagonistic 

pleiotropy theory. In contrast to the disposable soma theory, that predicts early 

life fitness costs (e.g. reduced fecundity) as a side effect of better somatic 

maintenance (e.g. higher longevity), the developmental theory of ageing predicts 

that increased longevity can be decoupled from these costs by age-specific 

optimization of gene expression. This is consistent with the identification of 

genes that are found to be detrimental when deactivated during development, but 

increase lifespan when deactivated during adulthood (Curran and Ruvkun 2007; 

Tacutu et al. 2012). 

1.2. Sex-specific Ageing 

One of the most complex problems in the biology of ageing lies in explaining 

why males and females age differently (Maklakov and Lummaa 2013). Sex-

specific ageing is widely observed across the tree of life. For example, females 

live three times longer than males in the brown antechinus, a small marsupial, 

while males are twice as likely as females to survive from one year to the next in 

Arabian babblers, a passerine bird (Keller and Waller 2002; Clutton-Brock and 

Isvaran 2007). In humans, the lifespan gap is estimated to be 4.8 years - female 

life expectancy is 74.7 years while male life expectancy is 69.9 years (DESA 

2019). Several hypotheses have been proposed to explain this phenomenon, 

stemming from two complementary but fundamentally distinct perspectives: 

adaptive and non-adaptive processes.  

1.2.1. Adaptive Processes  

Sex-specific ageing can be adaptive and may reflect sex differences in selective 

pressures and age-dependent risks of extrinsic mortality (Vinogradov 1998; 

Carranza and Pérez‐Barbería 2007; Clutton-Brock and Isvaran 2007; 

Bonduriansky et al. 2008; Berg and Maklakov 2012; Adler and Bonduriansky 

2014). Due to the evolution of anisogamy (small, cheap but numerous male 
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sperms vs. big, expensive but fewer female eggs) and subsequent gestation costs, 

females are typically the sex with higher parental investment (albeit in some 

species males exhibit as much or more parental investment than females –Trivers 

1972– and a lower potential reproductive rate –Shuster and Wade 2003–). As a 

consequence, intrasexual selection is expected to be stronger in the sex with less 

parental investment (generally males), resulting in higher competition within that 

sex and, ultimately, more variation in fitness and a higher opportunity for 

selection (Bateman 1948, Trivers 1972). In turn, this will lead to the evolution of 

different reproductive strategies in the sexes (Janicke et al. 2016) and, inasmuch 

as males and females are exposed to sex-specific selection pressures, male and 

female life histories are expected to diverge. For example, intense intrasexual 

competition early in life tends to promote “live-fast, die-young” strategies in 

males compared to females (Trivers 1972; Promislow 1992; Kruger and Nesse 

2004; Clutton-Brock and Isvaran 2007).  

Sexual conflict, social context and sex-specific ageing 

Sexual conflict adds another layer of complexity to sex-specific ageing theory. 

Firstly, differential optimization of life histories will result in intra-locus sexual 

conflict (IASC), which may hamper the evolution of sexually dimorphic life 

histories (Promislow 2003). Considering that the majority of genes are shared 

between males and females, alleles at the same loci are, due to diverging interests 

between the sexes, sometimes be selected in opposite directions in different 

sexes, generating IASC and constraining the evolution of sexual dimorphism. For 

example, IASC has been demonstrated in Drosophila melanogaster where 

Chippindale et al. (2001) found a negative genetic correlation for adult fitness 

between males and females across 40 haploid genomes (Chippindale et al. 2001). 

Secondly, inter-locus sexual conflict (IRSC), which arises due to the antagonistic 

interactions between phenotypic traits which are underlain by alleles at different 

male and female loci, can also drive sex-specific effects on longevity. For 

example, the seminal fluid proteins in D. melanogaster increase male 
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reproductive success at the expense of female lifetime reproductive success and 

lifespan (Chapman and Davies 2004; Wigby and Chapman 2005). In summary, 

selection for sex-specific optimal trait values is expected to cause both inter and 

intrasexual conflict between males and females (Maklakov and Lummaa 2013). 

Interestingly, recent research suggests that ageing itself can lead to sexual 

conflict. Given that senescence of one sex can impose significant reproductive 

costs to their mating partner in terms of lower fertility and offspring viability, it 

has been suggested (and shown in at least two species) that ageing can be a source 

of IRSC (Dean et al. 2007, 2010; Carazo et al. 2011). Hence, understanding the 

dynamic interplay between ageing and sexual conflict is an interesting and 

relatively unexplored avenue of research with respect to sex-specific ageing.  

Similarly, we know relatively little about how social context may modulate sex-

specific selective pressures and sexual conflict, and how this may affect sex-

specific lifespan. For example, the sex ratio at reproduction will directly affect 

sexual selection and sexual conflict (Kvarnemo and Ahnesjo 1996; Kokko and 

Rankin 2006), and potentially sex-specific lifespan. In line with this, social 

context has been found to have significant effects on sex-specific lifespan and 

ageing in several species, including fruit flies and humans (Botev 2012; Leech et 

al. 2017). In feral fowls (Gallus gallus), old males were able to sire relatively 

more offspring in a female-biased social context (where they have higher chance 

of being socially dominant), due to lower intrasexual competition in that social 

environment (Figure 1.3; Dean et al. 2010). Altogether, evidence from the 

literature thus suggests that social context can: (1) modulate sex-specific ageing 

through its effects on sexual selection and sexual conflict, and (2) modulate the 

intensity of selection on old ages by influencing the amount of offspring that old 

individuals contribute to future generations. Surprisingly, the role of social 

context on the evolution of sex-specific life histories has been largely overlooked. 
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Extrinsic mortality and sex-specific ageing 

Unsurprisingly given its relevance to explain the evolution of ageing per se, a 

priority to understand sex-specific ageing is to study extrinsic mortality effects 

across the sexes. The link between mortality and sex-specific life histories has 

received a lot of attention. In males, elevated mortalities are frequently associated 

with intrasexual selection, for example as a result of costly visual/vocal sexual 

displays (e.g. increased predation risks; Figure 1.4) and male-male combats 

leading to direct injury or death (Promislow 1992; Liker and Székely 2005). 

Intersexual selection can also cause males to die younger. In the brown widow 

spiders (Latrodectus geometricus), males sometimes sacrifice themselves to 

females (i.e., sexual cannibalism) as an extreme nuptial gift that increases their  

reproductive success (Segoli et al. 2008). As an obvious consequence of this 

behaviour, brown widow spider females live more than three times longer than 

males (Mohafez 2015). Sex-specific reproductive strategies can also cause 

Figure 1.3. The effect of social context on the chances of young and old 
males to dominate a group. Rebeca Dean and colleagues demonstrated that 
in feral fowls: (a) young males have higher chances of being socially dominant 
and monopolizing females in a male-biased social context; however, (b) old 
and young males have similar chances of dominating the group and 
monopolizing females in a female-biased social context. 



 
 
 
  
Chapter 1 
 

10  
 

female-biased mortalities. For example, in the long-tailed dance fly   

(Rhamphomyia longicauda), males provide females with nuptial gifts in 

exchange for copulations and, therefore, females tend to exhibit high intrasexual 

competition for mating (Funk and Tallamy 2000). As a result, females of this 

species are more prone to being predated (e.g. captured by spider webs) compared 

to males (Gwynne and Bussière 2002). Likewise, in other species females can 

have lower survival than males because of the increased probability of predation 

during maternal care, such as in some birds (Liker and Székely 2005). In short, 

under natural conditions sexual selection can strongly influence which sex will 

survive longer to extrinsic mortality hazards. 

Predicting how sex differences in extrinsic mortality translate into sex-specific 

intrinsic mortality (ageing) is less straightforward. High extrinsic mortality is 

expected to generally accelerate ageing because it will contribute decisively to 

 

Figure 1.4. The tragic cost of a vocal display. A male frog predated by a 
snake while singing courtship song in order to attract females. This is an 
example of how high intrasexual competition for females can make males 
more vulnerable to predation.  Photo credits: Javier Abalos. 
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weaken natural selection with age (Haldane 1941; Medawar 1952; Williams 

1957; Kirkwood 1977). However, when mortality is condition dependent, it 

might result in slower ageing and longer lifespan due to co-variation between 

survival and condition (Chen and Maklakov 2012; Maklakov et al. 2015; Chen 

et al. 2016). In other words, condition dependent selection for a particular trait 

(such as higher heat resistance) will be coupled by selection with other beneficial 

traits, resulting in longer lifespan (Maklakov et al. 2015).  Irrespective of the 

source of mortality, inasmuch as the sexes are subject to sex-specific selection 

pressures, existing trade-offs are expected to be optimized in different ways in 

males and females (Trivers 1972; Bonduriansky et al. 2008; Berg and Maklakov 

2012). For example, in the roundworm Caenorhabditis remanei, non-random 

extrinsic mortality causes the evolution of longer lifespan and higher female 

fecundity, but leads to a decline in male reproductive success, suggesting a trade-

off between ageing and early reproductive success in males but not females (Chen 

and Maklakov 2012; Chen et al. 2016). Unfortunately, how random vs. condition 

dependent extrinsic mortality affects sex-specific life history evolution in other 

species remains largely unexplored. 

Sex-specific life history trade-offs and their mechanisms 

As a corollary, understanding the mechanisms underlying the presence of life 

history trade-offs across the sexes can also help us understand sex-specific 

selection pressures on life history. A promising research line to tap into sex-

specific reproduction/survival trade-offs can be investigating the link between 

reproductive success and gut microbiota. Recent studies have explored the 

importance of gut microbiota on lifespan, ageing and female reproduction in a 

range of species from diverse genera such as Drosophila  (Brummel et al. 2004; 

Ren et al. 2007; Clark et al. 2015; Gould et al. 2018), Daphnia (Sison-Mangus et 

al. 2015; Callens et al. 2016), Caernohabditis (Houthoofd et al. 2002; Cabreiro 

and Gems 2013) and humans (Tiihonen et al. 2010; Insenser et al. 2018). In 

contrast, we know very little about the link between reproductive success and gut 
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microbiota in males. If such links where to diverge between the sexes, this may 

allow us to better understand sex-specific ageing from both a mechanistic and 

functional perspective. In fruit flies at least one bacteria species has been found 

to affect male reproductive traits (Morimoto et al. 2017). Compared to the high 

amount of studies that have investigated the role of gut microbiota on ageing and 

fecundity (Wong et al. 2011; Clark et al. 2015; Clark and Walker 2018; Gould et 

al. 2018), the scarcity of studies investigating the link between male reproductive 

traits (competitive fitness, sperm quality etc.) and gut microbiota is surprising. 

1.2.2. Maladaptive Processes  

In contrast to adaptive hypotheses, maladaptive hypotheses explain sex 

differences in aging as maladaptive consequences of the asymmetric inheritance 

of different genetic components (Maklakov and Lummaa 2013).  

The “mother’s curse” hypothesis 

The “mother’s curse” hypothesis proposes that the mitochondrial genome may 

play a role in decreasing male lifespan, which would contribute to explain sex-

specific ageing in taxa where females live longer than males (Camus et al. 2012). 

As the mitochondrial genome is maternally transmitted, mutations with 

deleterious effects for males can accumulate as long as they have positive, 

neutral, or even slightly deleterious effects for females (Charlesworth 1994; 

Frank and Hurst 1996; Wolff and Gemmell 2013). Consequently, maternal 

inheritance of mitochondrial DNA sets the scene for a sex-specific selective sieve 

that can lead to female-biased lifespan (Frank and Hurst 1996; Gemmell et al. 

2004; Zeh and Zeh 2005; Dowling et al. 2010; Innocenti et al. 2011; Camus et 

al. 2012). Recent studies suggest that mitochondrial haplotype can also have sex-

specific effects on lifespan in terms of cyto-nuclear interactions, where genetic 

variation across mitochondrial and nuclear genomes interact to shape life history 

outcomes (Drummond et al. 2019; Vaught et al. 2020). Although there is 
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substantial evidence that mitochondrial DNA can indeed affect sex-specific 

lifespan, it leaves many answers unexplained. For example, it does not provide 

an explanation for the shorter female lifespan that is observed in many taxa, such 

as in birds (Liker and Székely 2005). 

The “unguarded-X” hypothesis 

Second, the “unguarded-X” hypothesis (hereafter UXh) (Figure 1.5a) posits that 

sex-specific ageing may be caused by the increased expression of deleterious 

recessive mutations in the heterogametic sex, due to the asymmetric inheritance 

of the sex chromosomes (Trivers 1985). While recessive mutations in the X (or 

Z) chromosome will be expressed unconditionally in the heterogametic sex, the 

same will not happen in the homogametic sex owing to the second copy of the X 

(or Z) chromosome, which will “guard” against their expression. Hence, the 

“unguarded-X” effect generally predicts slower ageing and longer lifespan in the 

homogametic sex (Trivers 1985). Studies looking at the correlation between sex-

specific ageing and sex determination systems have provided indirect support for 

this hypothesis (Pipoly et al. 2015; Xirocostas et al. 2020). Pipoly et al. (2015) 

used adult sex ratios as a proxy for sex-specific survival and found that adult sex-

ratios are typically female-biased in taxa with XY sex-determination system, but 

male-biased in the ones with ZW sex-determination system. More recently, 

Xirocostas et al. (2020) found that the heterogametic sex tends to have higher 

mean/maximum lifespan across a wide taxonomic range. Finally, recent 

experimental evidence suggests that un-guarding the X chromosome may reduce 

the sex lifespan gap in D. melanogaster (Carazo et al. 2016; but see Brengdahl et 

al. 2018).  

The “toxic Y” hypothesis 

Finally, the more recent “toxic Y” hypothesis focuses on the role of the 

heteromorphic Y (or W) chromosome on sex-specific ageing (Figure 1.5b, Marais 

et al. 2018). During the evolution of sex chromosomes, recombination 
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suppression leads to the accumulation of deleterious mutations and repetitive 

DNA (satellite sequences and transposable elements) in the Y and W 

chromosomes (Bachtrog 2013; Wright et al. 2016). Recent evidence has shown 

that, in D. melanogaster, repetitive DNA sequences on the Y chromosome 

become de-repressed with age, resulting in the mis-expression of transposable 

elements (Brown et al. 2020b).  In order to test how de-repression of transposable 

elements in the Y chromosome affects sex-specific lifespan, Brown et al. (2020b) 

generated flies with different sex chromosome karyotypes: XXY females; X0 and 

 

Figure 1.5. Schematic Illustrations of Unguarded-X Hypothesis and 
Toxic Y Hypothesis. (a) The unguarded-X hypothesis posits that 
heterogametic sex lives shorter because the recessive deleterious mutations in 
the X (or Z) chromosomes are “guarded” by the second copy of X (or Z) 
chromosome in the homogametic sex (on the left) but they are expressed in 
the heterogametic sex (on the right). (b) The toxic Y hypothesis suggests that 
heterogametic sex lives shorter due to the expression of deleterious repetitive 
sequences that are present in the Y (or W) chromosomes of the heterogametic 
sex (on the right). 
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XYY males in addition to wild-type karyotypes: XX females and XY males. They 

found a positive correlation between the de-repression of repeats and the number 

of Y chromosomes, and a negative correlation between average lifespan and the 

number of Y chromosomes (Brown et al. 2020b). Moreover, in another study, 

Brown et al. (Brown et al. 2020a) found that Y-chromosome affects 

heterochromatin integrity genome-wide by acting as a sink for heterochromatin 

machinery components and therefore diminishing the heterochromatin protection 

on other normally silenced repeat-rich sequences. This can further contribute to 

sex-specific gene expression and sexual dimorphism in life history traits, 

including lifespan (Brown et al. 2020a). Therefore, in D. melanogaster there is 

solid evidence of substantial “toxic Y” effects, where the accumulation of 

repetitive DNA elements can cause increased mortality of the heterogametic sex 

(Wright et al. 2016; Marais et al. 2018). However, the role of the “toxic Y” 

hypothesis in explaining broad patterns of sex differences in ageing has yet to be 

addressed.   
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Chapter 2. Objectives 
The overarching aim of this thesis was to explore open questions regarding the 

evolution of sex-specific ageing. To this end, this thesis was organized in two 

parts that addressed adaptive and maladaptive questions in relation to sex-specific 

ageing. Adaptive questions seek to further our understanding of sex-specific 

selection pressures leading to sex differences in different ageing processes, while 

maladaptive questions focus on trying to understand how broad patterns of sex-

specific ageing may have partly come about as a by-product of asymmetric 

inheritance between the sexes. Both types of explanations should ultimately 

contribute towards a comprehensive understanding of sex-specific ageing across 

the tree of life. These goals were achieved through five specific objectives, three 

on Aim 1 (Chapters 4, 5 and 6) and two on Aim 2 (Chapters 7 and 8). 

Aim 1. To further our understanding of sex-specific selection 

pressures in relation to ageing. 

Objective 1.1. To explore how the social context may influence age 

fitness effects in males and females (Chapter 4). 

The social context can have crucial effects on sex-specific life histories for two 

main reasons. First, by modulating the opportunity for intra- vs. intersexual 

selection mechanisms, and ensuing sex-specific selective pressures. Second, by 

determining the relative contribution of old individuals to future generations, and 

hence the intensity of selection on males and females of old age. Yet, studies that 

explore how social context interacts with age are relatively scarce. The objective 

of this chapter was thus to explore if social context can modulate age effects on 

reproductive success in males and females in D. melanogaster. 
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Objective 1.2. To investigate the effect of condition dependent mortality 

on reproductive senescence of male and female cohorts (Chapter 5). 

Recent research posits that condition dependent extrinsic mortality can be an 

important factor in the evolution of sex-specific life histories. My objective here 

was to explore how condition dependent mortality affects reproductive 

senescence in male/female cohorts of D. melanogaster. Here, I also aimed to 

address the idea that condition dependent extrinsic mortality may enhance the 

potential for male ageing to cause sexual conflict.  

Objective 1.3. To explore how the gut microbiota may affect male life 

history traits (Chapter 6). 

As a consequence of inherently ‘live-fast, die-young’ male reproductive 

strategies, males have often been found to trade off early reproductive success 

against survival. An increasing appreciation of the role that gut microbiota plays 

in shaping organism phenotypes has led to an emerging field in the study of 

ageing, but most research has focused on the influence of gut microbiota in 

female life history. The objective that motivated this chapter was thus to explore 

the link between gut microbiota, male reproductive success and ageing in D. 

melanogaster. 

Aim 2. To further our understanding of how the sex 

determination system constrains sex-specific ageing. 

Objective 2.1. To provide an experimental test of the unguarded-X 

hypothesis in D. melanogaster (Chapter 7). 

The “unguarded-X” hypothesis focuses on the role of heteromorphic sex 

chromosomes (X or Z) in sex-specific aging. Recessive mutations in the X or Z 

chromosome will be unconditionally expressed (i.e., “unguarded”) in the 
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heterogametic sex, but not in the homogametic sex. As a result, this may give rise 

to sex differences in lifespan. My objective in this chapter of my thesis was to 

test a fundamental prediction of the unguarded-X hypothesis: that inbreeding 

should depress the lifespan of the homogametic sex more than the lifespan of the 

heterogametic sex, for which I used D. melanogaster. 

Objective 2.2. To use a comparative approach to test predictions from the 

“unguarded-X” vs. “Toxic Y” effects across vertebrates (Chapter 8). 

The “unguarded-X” hypothesis has so far dominated explanations of broad sex-

specific lifespan patterns. This is perhaps because it seems to fit well with the 

intuitive link between sex determination systems and sex lifespan gaps across 

taxa, such as in birds (ZW, males seem to live longer) and mammals (XY, females 

seem to live longer). However, both the “unguarded-X” and the more recent 

“toxic Y” hypotheses predict a correlation in the same direction between the sex 

determination system and sex-specific ageing. Predictions from these two 

hypotheses do diverge when it comes to the link between the relative size of the 

sex chromosomes and sex-specific lifespan. The unguarded-X hypothesis 

predicts a positive relationship between the lifespan gap (i.e., homogametic sex 

– heterogametic sex lifespan) and the size of the X (or Z) relative to both the Y 

(or W) chromosome and to the autosomes. The “toxic Y” hypothesis predicts a 

direct negative relationship between the size of Y (or W) chromosome and the 

lifespan of the heterogametic sex. My objective here was to: a) test for the 

existence of a direct link between sex-specific survival and the sex determination 

system across vertebrates, and b) explore the relationship between the size of sex 

chromosomes and the sex gap in lifespan in vertebrates. 
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Chapter 3. General Materials and Methods 

3.1. Drosophila melanogaster as a Model Organism 

In this thesis, I used the vinegar fly D. melanogaster as a model organism. More 

than a century ago, Thomas Hunt Morgan peered through a scope in his soon-to-

be famous “Fly Room” at Columbia University, where bunches of ripe Bananas 

frequently hang prominently from the ceiling (Figure 3.1). To his surprise, the fly 

that met his eyes on this particular day of 1910 had white eyes instead of the 

brilliant red eyes that are characteristic of this species. This event probably 

marked the rise of D. melanogaster as a model organism in biology, perhaps “the” 

model organism in the study of genetics and, later, evolution. Since then, D. 

melanogaster has maintained its popularity as a model organism for decades 

owing (apart from a historical contingency) to its easy maintenance in the 

laboratory, ability to produce a large number of offspring and short generation 

time (approximately 10 days at 25oC, illustrated in Figure 3.2). It has contributed 

to advance research in many fields including evolutionary biology (Powell 1997), 

 

Figure 3.1. An old photograph of Dr. Morgan's Fly Room, 1914. 
Photograph is taken from https://integrativebio.utexas.edu/about/history/the-
fly-room.  
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immunology (Buchon et al. 2014), oncology (Vidal and Cagan 2006), 

neurobiology (Jeibmann and Paulus 2009) and many others (Kaun et al. 2011; 

Prüßing et al. 2013; Ong et al. 2015).  

 
D. melanogaster is also an ideal model organism to study sex-specific life history 

evolution because it exhibits a sexually dimorphic lifespan, where females live 

longer than males (Rose et al. 2004). Its mating behaviour and life history traits 

have been very well-studied, providing the basics for more detailed research 

about sex-specific life history evolution. Briefly, in D. melanogaster males have 

strong intrasexual competition over mating, and females are able to re-mate with 

multiple males (Dow and Schilcher 1975; Pitnick 1991; Markow 2002). 

Intrasexual competition is mostly observed in males; however, aggression 

between females is also present (Ueda and Kidokoro 2002; Bath et al. 2017, 

 

Figure 3.2. Life cycle of D. melanogaster. Illustration is modified from (Ong 
et al. 2015). 
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2018). Both males and females exhibit mate choice (Gowaty et al. 2003; Byrne 

and Rice 2006; Edward and Chapman 2012, 2013; Monier et al. 2018). In males, 

intrasexual competition is believed to be stronger than intersexual selection, 

while in females intersexual selection appears to be more important (Gowaty et 

al. 2003). In addition, many candidate genes involved in ageing and reproductive 

success in males and females have been described in this species (Parkes et al. 

1998; Kapahi et al. 2004; Innocenti and Morrow 2010; Partridge et al. 2011; 

Durham et al. 2014). Finally, it has a low‐diversity bacterial community in the 

gut (Wong et al. 2011) and its gut microbiota has been found to affect fitness and 

lifespan (Clark et al. 2015; Gould et al. 2018). As a result, it is an excellent 

organism to study the interaction between gut microbiota and sex-specific life 

history evolution. 

3.2. Experimental Populations 

We used flies from a laboratory-adapted, wild-type (wt) Dahomey stock 

population of D. melanogaster that has been maintained since 1970 with 

overlapping generations (Partridge and Farquhar 1983). In Chapters 4, 5 and 7, 

we used focal wild-type flies that hatched from eggs that we collected from these 

cages. In addition to wild-type flies, in the experiments where we did competitive 

fitness assays (Chapters 4, 6 and 7), we also used recessive mutant sparkling 

poliert (spa) flies (backcrossed into the same Dahomey genetic background). 

Flies homozygous for the spa allele exhibit a rough eye phenotype (Figure 3.3) 

that allows to distinguish the offspring of wt and spa parents in competitive 

fitness assays (e.g., Fricke et al. 2010). We note that, as seems to be usual, spa in 

our population tend to show a fitness deficit with respect to wt flies (Carazo, P. 

unpubl. data), but this would in no way affect the outcome of our fitness 

estimations, as competitors were always the same (i.e., standard spa flies) across 

different treatments. Finally, in Chapter 6, we used DGRP (Drosophila Genetic 
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Reference Panel) flies that were inbred for 20 generations and then fully 

sequenced (Mackay et al. 2012).  

All flies were maintained in a 25°C room with 60% humidity under 12h:12h 

Light/Dark cycle in Cavanilles Institute facilities. Across the experiments, flies 

were fed with slightly different mediums (Table 3.1).  

To obtain virgin flies to start up experiments, we always collected Dahomey eggs 

from our population cages using grape-agar filled Petri dishes with a smear of 

live yeast paste, which we then cultured at standardized density (Clancy and 

Kennington 2001). We then collected virgin adults emerging from these eggs 

within 7 hours of eclosion, and used them in the different assays described in each 

 

Figure 3.3. Wild type and sparkling poliert fruit flies. Photograph of a wild 
type female (on the right) next to a sparkling poliert (spa) female (on the left). 
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experiment (detailed explanation in the Materials and Methods sections of the 

corresponding chapters).  

 

3.3. Statistical Analysis 

For most statistical analyses, we used a generalized linear regression 

modelling/mixed modelling approach. Prior to fitting models, we always 

Table 3.1. Fly food media used in different chapters. List of ingredients of 
the fly food media that was prepared for the experiments of each chapter. 

 Food Type 

Chapter 4 

All flies were fed with a diet containing yeast (40 g), sugar (50 

g), soya flour (10 g), corn flour (60 g), nipagin (3 g) and propionic 

acid (5 ml) in 1 Litres of water. 

Chapter 5 

All flies were fed with a diet containing yeast (40 g), sugar (50 

g), soya flour (10 g), corn flour (60 g), nipagin (3 g) and propionic 

acid (5 ml) in 1 Litres of water. 

Chapter 6 

DGRP flies were fed with Bloomington Drosophila Stock Center 

Cornmeal Food: 

(https://bdsc.indiana.edu/information/recipes/bloomfood.html) 

Spa flies were fed with a diet containing  yeast (40 g), sugar (50 

g), soya flour (10 g), corn flour (60 g), nipagin (3 g) and propionic 

acid (5 ml) in 1 Litres of water. 

Chapter 7 

All flies were fed with a medium adapted from Lewis (1960) 

containing yeast  (14.6 g), corn flour (72 g), soya flour (8.8 g), 

malt extract (72 g), molasses (20g), nipagin (2.8 g), propionic 

acid (5.3 ml) and phosphoric acid (0.3 ml) in 1 Litres of water. 

        

https://bdsc.indiana.edu/information/recipes/bloomfood.html
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explored data graphically to check for heteroscedasticity and normality. We 

normally dealt with potential outliers by using alpha-winsorization (α = 0.05) 

(Quinn and Keough 2002). After model fitting, we always ran diagnostic tests to 

assess model performance and check the model assumptions (i.e., absence of 

heteroscedasticity, normality of residuals, Winter 2013). When assumptions were 

not met even after standard data-transformation (e.g. log and square-root 

transformation), we used the non-parametric Kruskal-Wallis test (Kruskal and 

Wallis 1952) followed by Dunn’s multiple comparisons post hoc test (Dunn 

1964) whenever we found a significant effect by using the Kruskal-Wallis test. 

We controlled for False Discovery Rate (FDR) using the Benjamini-Hochberg 

adjustment (Benjamini and Hochberg 1995). For all tests, we used an alpha value 

of 0.05 and all the p-values presented are two-tailed. All analyses were performed 

in R v. 3.3.2 (R Core Team 2016) 
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Chapter 4. Social context and reproductive ageing in 

Drosophila melanogaster 

4.1. Introduction 

Social context (e.g. sex ratio, density) has the potential to modulate age effects 

on reproductive success by influencing different factors such as mate encounter 

rate, mate choice or intrasexual competition (Kvarnemo and Ahnesjo 1996; 

Kokko and Rankin 2006). For example, in the feral fowl, a species with strong 

male-male competition over female harems, Dean et al. (2010) found that old 

males have the potential to sire a relatively higher proportion of offspring in 

groups with a female-biased sex ratio, compared to a male-biased sex ratio. This 

is due to old males having a higher chance of being socially dominant in female-

biased groups, where male-male competition is low (Dean et al. 2010). 

Unfortunately, this interesting result has not been followed up by similar studies 

in other organisms with different mating systems, nor with respect to female age.  

In this study, we used Drosophila melanogaster to explore how male and female 

age affects the reproductive success of males and females in experimental mating 

patches with female-biased (FB) or male-biased (MB) sex ratios. In D. 

melanogaster, males have strong intrasexual competition over mating and 

allocate considerable time and effort to court available females, while females are 

able to re-mate with multiple males (Dow and Schilcher 1975; Pitnick 1991; 

Markow 2002). Although intrasexual competition is mostly observed in males, 

aggression between females is also present, mainly when food sources are scarce 

(Ueda and Kidokoro 2002; Bath et al. 2017, 2018). Furthermore, both males and 

females of this species exhibit mate choice but the degree and direction of these 

choices can differ depending on the population of origin and the social 

environment (Gowaty et al. 2003; Byrne and Rice 2006; Edward and Chapman 

2012, 2013; Monier et al. 2018). Based on its mating system, we predicted that 
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sex ratio would modulate age effects on the fitness of males and females 

differently. In males, intrasexual competition is believed to be stronger than 

intersexual selection (Gowaty et al. 2003). Hence, we predicted that male age 

would decrease reproductive success relatively more in a male-biased social 

context, because we expected old males to have a higher disadvantage under 

intense male-male competition. In contrast, in this species female intrasexual 

competition appears to be less important than intersexual selection (Gowaty et al. 

2003), so we did not predict a similar outcome. Instead, D. melanogaster males 

exhibit a marked preference for young females (Cook and Cook 1975; Lüpold et 

al. 2011), so we predicted female age to decrease reproductive success more in a 

female-biased social context, where there is a potentially higher opportunity for 

males to choose young females over the old ones. 

4.2. Materials & Methods 

Fly maintenance 

We collected Dahomey eggs from our population cages and virgin adults 

emerging from those eggs using the protocol described in Chapter 3 (General 

Materials and Methods). Then we generated old focal males and females by 

isolating them with excess food for 28 days prior to assays, during which time we 

flipped them into a new vial once a week. In contrast, young focal males and 

females were only kept in isolation for 3 days after their emergence and prior to 

assays. Young sparkling (spa) competitors/partners were kept in same-sex groups 

of 10 for 3 days after their emergence and until the beginning of assays.  

Competitive fitness assays   

In order to explore the effect of sex ratio and age on reproductive success, we 

studied the fitness of focal wt male and female flies when competing against spa 

rivals, in a factorial combination of sex ratio (i.e., male biased –4 males and 2 

females– vs. female biased –4 females and 2 males–) and age (i.e., a young vs. 
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old focal wt male/female competing against young spa rivals for young spa 

mating partners). Thus, within each vial, all flies except the focal experimental 

fly were spa (Figure 4.1).  

For all treatments, we allowed flies to interact and lay eggs for 2 days, after which 

time we discarded the males and allowed females to oviposit for 3 more days in 

a fresh vial. In order to control for larval density across treatments during this 

second period of oviposition, we separated the four females in the female-biased 

sex ratio treatment in two vials containing two females each. After 

transferring/discarding females, we incubated vials from both the first and second 

period of oviposition for 16 days, froze the vials, and then proceeded to count the 

number of spa and wt offspring in each vial. In order to control for the potential 

effects of density on the development of larvae from eggs laid during the first 

oviposition period, we counted the number of pupae in these vials. The density 

of larvae per vial (number of pupae ± SEM = 44.7 ± 1.0) was, in all cases, 

comfortably below the threshold for which density effects have been described in 

D. melanogaster (Miller and Thomas 1958).  

Statistical analysis 

To determine the effect of ageing and sex ratio on reproductive success in a way 

that is comparable across the two different sex ratio treatments (i.e., fixed density 

but which include a different amount of males and females), we standardized 

data.  We calculated the standardized reproductive success of each focal female 

by subtracting the average number of offspring that belong to competitors (spa) 

from the observed number of offspring that belong to the focal fly (wt) for each 

replicate: 

# of offspring from focal −
# of offspring from competitors

# of competitors
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Figure 4.1. Schem
atic illustration of experim

ental design. Schem
e of the different treatm

ents im
plem

ented to m
easure 

the reproductive success of young (y) and old (o) focal flies com
peting w

ith spa flies across m
ale/fem

ale-biased different 
sex ratios. 
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We calculated the standardized reproductive success of each focal male using the 

same equation, but dividing by the number of females that were present in the 

corresponding mating vial (2 females in male-biased social context and 4 females 

in female-biased social context).  

To explore the effect of age and sex ratio on reproductive success of each sex 

separately, we fitted a linear model including age, sex ratio, and their interactions 

as fixed factors. We then repeated this analysis using a restricted maximum 

likelihood LMMs and introducing pupae density as a random intercept effect. In 

order to obtain minimum adequate models, we performed backward stepwise 

model selection based on Likelihood Ratio Tests (LRTs). 

4.3. Results 

We did not find a significant age × sex ratio interaction (F1,88 = 0.1027, p = 

0.7494) or a sex ratio effect (F1,89 = 2.1731, p = 0.144) in male reproductive 

success. However, we found a significant effect of age (F1,89 = 19.2600, p < 0.001, 

Figure 4.2a). In the case of female reproductive success, we did not find a 

significant age × sex ratio interaction (F1,88 = 0.0967, p = 0.7566) or a sex ratio 

effect (F1,89 = 0.8208, p = 0.3674), but we did find a significant age effect (F1,89 = 

64.1757, P < 0.001, Figure 4.2b).  

Controlling for pupae density did not qualitatively change our results. For males, 

there was no significant age × sex ratio interaction (χ2 = 0.1073, df = 1, p = 

0.7433) or sex ratio effect (F1,89 = 2.1731, p = 0.144), whereas we did find a 

significant age effect (F1,89 = 18.9707, p < 0.001) on male reproductive success. 

Similarly, for females, we did not find a significant age × sex ratio interaction (χ2 

= 0.101, df = 1, p = 0.7506) or a sex ratio effect (F1,89 = 0.8140, p = 0.3674), but 

we found a significant main effect for age (F1,89 = 64.8510, p < 0.001).  
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Figure 4.2. Effect of m
ale/fem

ale age on reproductive success across different social contexts. Standard reproductive 
success of (a) young/old focal m

ales in m
ale‐biased and fem

ale‐biased social contexts and (b) young/old focal fem
ales in m

ale‐
biased and fem

ale‐biased social contexts 
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4.4. Discussion 

In this study, we investigated the potential role that sex ratio at mating might play 

in modulating the fitness effects of age in Drosophila melanogaster. We found 

that both male and female age caused a decline in reproductive success but, 

contrary to our expectations, this effect was not modulated by sex ratio at mating 

(i.e., was similar in both male-biased and female-biased social context).  

In the case of males, we were expecting male age to decrease the reproductive 

success more in a male-biased social context, where intrasexual competition is 

high. Like in many other organisms, in D. melanogaster male-male competition 

is expected to increase drastically in male-biased social contexts (Wang and 

Anderson 2010). In principle, this should lead to old males having relatively 

higher reproductive fitness in female-biased contexts, where male-male 

competition is low. Accordingly, Dean et al. (2010) showed that, in the feral fowl 

(Gallus gallus), the effects of age on the reproductive success of males were 

mitigated in female-biased (vs. male-biased) contexts. In this species, socially 

dominant males have privileged access to mating opportunities but females mate 

multiply, so sperm competition is intense (David Ligon and Zwartjes 1995; 

Pizzari and Birkhead 2000; Pizzari et al. 2002; Dean et al. 2010). Dean et al. 

(2010) elegantly showed that, despite old males having a lower sperm 

competition ability than young males, they had a relative advantage in female-

biased (vs. male-biased) social groups, due to a higher possibility of being 

socially dominant when male-male intrasexual competition is low.  The absence 

of similar effects in D. melanogaster in our study may have to do with inherent 

differences in the mating system of these two species.  

In fruit flies, male-male competition over access to females is generally high and, 

in the wild, males seem to exhibit a typical resource-defense polygyny by 

defending pieces of decaying fruit where females feed (Markow 1988). Recent 

evidence suggests that male-male aggression in this context also serves a mate-
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guarding function (Baxter et al. 2015), but flies don’t live in stable social groups 

and hence males cannot monopolize access to females throughout their lifespan. 

Furthermore, lab populations like the one used in this study have been kept at 

high densities for thousands of generations, in conditions where mate 

monopolization is highly unlikely. As a result, the level of intrasexual 

competition in our population might not modulate age-related fitness effects as it 

does in feral fowls (or might do so to a lesser extent). On the other hand, 

intersexual competition also seems to be quite important in D. melanogaster, and 

there is good evidence that both female and male mate choice are modulated by 

social context (Edward and Chapman 2012, 2013; Monier et al. 2018). In 

particular, females prefer mating with young (or large) males that court more 

vigorously (Jagadeeshan et al. 2015; Rezaei et al. 2015), and they appear to be 

less choosy when sex ratios are female-biased (Monier et al. 2018). Hence, old 

males might be expected to benefit in female-biased contexts due to females 

being less choosy in favour of young males. At a first glance, this might make it 

more striking that we didn’t find sex ratio to modulate age effects on male 

reproductive success; however, the relatively complex mating behaviour of fruit 

flies might be the reason behind the absence of such an effect. 

For example, it is possible that our results for males are partly explained by male 

mate choice effects. Under female-biased sex ratios, where males are expected to 

be choosier, young males may benefit by choosing high quality females while old 

males are left to mate with low quality females. In D. melanogaster, ageing seems 

to diminish the ability of males to choose high quality females (Hu et al. 2014). 

Old males may hence fail to be choosy despite ample opportunity for male mate 

choice in female-biased contexts, to the benefit of young “choosy” males. An 

intriguing possibility is that mate-choice copying (Nöbel et al. 2018) may have 

contributed to exacerbate male age effects in the female-biased sex ratio. In D. 

melanogaster, females prefer mating with young males that court more 

vigorously (Jagadeeshan et al. 2015; Rezaei et al. 2015) and, in our experiment, 
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old and young focal males were always phenotypically distinguishable to their 

young rival sparkling flies (i.e., different eye-colour). Given recent findings 

showing that females tend to copy the mate choice of other females based on male 

colour cues in fruit flies (Danchin et al. 2018), it is possible that the inherent 

advantage of young males over old males due to female choice may have been 

exacerbated in the female-biased context, where mate-choice copying is more 

likely. In short, young males may hold a similar fitness advantage against old 

males irrespective of the sex ratio, but via different sexual selection mechanisms: 

via intrasexual competition and female mate choice, when the sex ratio is male-

biased, and via male mate choice and female mate copying when the sex ratio is 

female-biased. 

In the case of females, female reproductive success also decreased with age 

similarly in both female-biased and male-biased social contexts (Figure 4.2b). 

We might have expected that, in a female-biased social context with a higher 

opportunity for males to be choosy, males (which are all young in this case) would 

prefer to mate with young (vs. old) focal females, which would thus have had 

higher reproductive success. Several previous studies have reported the existence 

of both pre and post-copulatory male mate choice with respect to female age. For 

example, male courtship intensity decreases with female age (Cook and Cook 

1975) and males allocate less sperm to old females compared to their young 

counterparts (Lüpold et al. 2011). However, being attractive to males is not 

always beneficial for females. Mating and male harassment are known to 

decrease survival and reproductive success in female D. melanogaster (Partridge 

and Fowler 1990; Chapman et al. 1995; Wigby and Chapman 2005). The fact that 

male preference for young females may have been more marked in the female-

biased social context could have led males to be more harmful to these females, 

which in turn may have counterbalanced any benefits from male mate choice. As 

a matter of fact, Long et al. (2009) showed that male harm is preferentially 

directed towards intrinsically higher-fitness females and that, as a result, any 
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fitness advantage that could be experienced by high condition females (young 

females in our design) might be compensated by the costs of being attractive in a 

female-biased social context; at least in simple environments such as the one used 

in this experiment (Long et al. 2009; see also Yun et al. 2017; MacPherson et al. 

2018). However, we think this is an unlikely explanation in our case because we 

used a short-term proxy of female reproductive success and male harm to females 

tends to curtail long-term female fecundity (Wigby and Chapman 2005). 

Relatively high mating costs in a male-biased social context might also contribute 

to explain why we did not observe an interaction between sex ratio and female 

age. Although the opportunity for male mate choice is lower in this context, and 

males might thus harm both young and old females, mating costs may be expected 

to be more pronounced in old females, which would tend to exacerbate age effects 

in a male-biased social context. Unfortunately, we currently have very little 

information about how social context changes intra- vs- intersexual competition 

in males and females, in D. melanogaster or other species, which means the above 

possibilities remain to be explored.  

Studies of reproductive senescence so far have focused on understanding the 

effect of male and female age on reproductive success (Williams 1957; Flatt and 

Heyland 2011), for example by studying male/female age effects on pre-post 

copulatory mating abilities, mate choice, and offspring viability (Cook and Cook 

1975; Dunson et al. 2004; Maklakov et al. 2009; Carazo et al. 2011; Lüpold et 

al. 2011; Velando et al. 2011; Tan et al. 2013). Many studies have also 

investigated the interaction between social context and several fitness traits such 

as mating duration, reproductive success, survival and lifespan (Iliadi et al. 2009; 

Bretman et al. 2010, 2013; Costa et al. 2010; Adler and Bonduriansky 2011; 

Zajitschek et al. 2013; Leech et al. 2017). In sharp contrast, how age effects on 

reproductive success may be modulated by the social context has so far been 

largely overlooked even though social context (such as sex ratio at mating) might 
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play a crucial role in modulating sex-specific age effects on reproductive success. 

We suggest future studies should aim to fill this gap in knowledge.
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Chapter 5. Condition-dependent mortality, 

reproductive senescence and the potential for sexual 

conflict in Drosophila melanogaster 

5.1. Introduction 

Classic theories predict the evolution of ageing due to the weakening of natural 

selection with age, via the accumulation of negative mutations that act late in life 

(mutation accumulation; Medawar 1952), selection for pleiotropic alleles that 

have positive effects early in life but negative effects late in life (antagonistic 

pleiotropy; Williams 1957; Williams et al. 2006), and/or trade-offs between 

growth, reproduction and ageing (Kirkwood 1977). High extrinsic mortality can 

accelerate ageing because it can contribute decisively to weaken natural selection 

with age (Caswell 2007; Day and Abrams 2020). When mortality is condition 

dependent, predictions about how extrinsic mortality should affect early/late life 

fitness are complex (Maklakov et al. 2015). For example, by generating co-

variation between survival and condition, non-random extrinsic mortality might 

result in slower ageing and longer lifespan (Chen and Maklakov 2012; Maklakov 

et al. 2015; Chen et al. 2016).  

Under natural conditions, extrinsic mortality is frequently expected to be 

condition dependent (Maklakov et al. 2015), and the significance of condition 

dependent mortality to understand ageing has been studied both under natural 

conditions and by using experimental evolution in the laboratory (Reznick et al. 

2004; Chen and Maklakov 2012, 2014). Reznick et al. (2004) found that guppies 

(Poecilia reticulate) from populations evolved under high extrinsic mortality had 

higher reproductive success and longer lifespan, but faster functional decline in 

swimming performance (Reznick et al. 2004). Similar findings have been 

reported from experimental evolution studies in a nematode, Caenorhabditis 
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remanei (Chen and Maklakov 2012; Chen et al. 2016). In this species, non-

random extrinsic mortality caused the evolution of longer male/female lifespan 

and higher female fecundity, but also a sharper decline in male reproductive 

success, suggesting a trade-off between ageing and reproductive success in males, 

but not females (Chen and Maklakov 2012; Chen et al. 2016).  

In addition to providing insight into life history evolution, studying how condition 

dependent extrinsic mortality affects ageing can also help us understand sexual 

selection and sexual conflict processes (Dean et al. 2010; Bonduriansky 2014). 

For example, it has been proposed that individuals may acquire indirect fitness 

benefits from choosing old mating partners if only high condition mates tend to 

survive to a late age (Brooks and Kemp 2001; Johnson and Gemmell 2012). In 

contrast, ageing is usually accompanied by a decline in reproductive abilities that 

can lead to direct fitness costs to individuals mating with old mates. In fact, it has 

been proposed and shown in at least two organisms that ageing can be a source 

of increased sexual conflict by increasing female mating costs (when facing old 

males) and hence male/female conflict over mating (Dean et al. 2007, 2010; 

Carazo et al. 2011). For example, in feral fowls (Gallus gallus), male 

reproductive senescence severely impacts female reproductive success so that 

ageing of dominant males (i.e., capable of dominating access to females in their 

harem) translates into sexually antagonistic payoffs for females (Dean et al. 

2010). Similarly, in the mealworm beetle (Tenebrio molitor) male age imposes 

direct fertility costs on females, as well as lowers the quality of viable offspring 

(Carazo et al. 2011). In this species, females respond by being less receptive (and 

quicker to re-mate) when paired with old males, while old males invest more on 

female guarding than young males, reflecting increased sexual antagonism over 

mating. Moreover, selective disappearance can lead to cohorts with old males that 

have better survival abilities but higher reproductive senescence (due to 

survival/reproduction trade-offs). This may further intensify the age-dependent 

increase in male-female sexual conflict over mating by increasing the costs to 
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females of mating with old “surviving” males. Acknowledging the effects of 

condition dependent ageing may clarify whether male age can actually be a 

source of sexual conflict, and how important such effects may be under natural 

conditions, where condition dependent mortality is likely to be common.  

To address the questions above, we explored the effects of male/female age on 

reproductive success and mating behaviour in the absence/presence of condition 

dependent mortality. For this purpose, we first aged cohorts of flies in the absence 

or presence of condition dependent extrinsic mortality for climbing-speed, a 

proxy of anti-predatory avoidance. This was followed by fully factorial matings 

with respect to age (young and old) and sex (male and female). Finally, we 

assessed the impact of male/female age on mating success, reproductive success 

(number of offspring), fecundity, egg-to-adult viability, mating duration and 

mating latency in both the absence and presence of condition dependent 

mortality.  

5.2. Materials & Methods 

Ageing treatments 

We aged females/males in isolation with excess food for 38 days, during which 

time we measured the climbing speed of each experimental fly once every 8 days 

(starting from 3-4 days after emergence until the mating assays, a total of 5 

different time points). Briefly, we introduced each fly into a graduated glass tube, 

gently tapped the fly to the bottom of the vial and then measured the distance it 

climbed in 10 seconds, which allowed us to calculate its climbing speed in cm/s 

(Cook-Wiens and Grotewiel 2002). For flies that climbed to the top in less than 

10 seconds, the total length of the tube (12 cm) was divided by the time spent to 

reach the top. Climbing speed was calculated as an average of three successive 

measurements for each fly at each time point. At the end of this procedure, we 

divided “old” flies into two groups. The first group consisted of males and 
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females that were not exposed to condition dependent mortality. The second 

group included flies that were exposed to condition‐dependent mortality by using 

a cut‐off point climbing speed below which 60% of flies were considered as 

‘predated’. In other words, any fly for which we had measured a climbing speed 

below the cut-off point during the ageing treatment (at any of the 5 different 

climbing speed measurement time points) was predated. We maintained “young” 

females/males in isolation for four days before mating assays. Young 

females/males were not subject to simulated predation (i.e., we only had one 

control young treatment) because a pilot study (see Appendix) revealed that an 

overwhelming majority of 4 day-old flies survive simulated predation. This was 

confirmed in our experiment during ageing of the old treatment flies, with more 

than 98% of 4 day-old flies lying above the “predation” threshold. This being so, 

implementing “young un-predated” and “young predated” controls would have 

resulted in two virtually identical groups while forcing us to reduce the sample 

size across the rest of the treatments, for which reason we collapsed the two into 

a single young (i.e., 4 day old) treatment. In addition to this, a vast majority of 

flies (both males and females) survived simulated predation early in life (i.e., first 

2-3 weeks of life), so that selective disappearance impacted flies mostly mid-to-

late in their life (i.e., > 90% of males and roughly 85% of females “predated” 

were so after 3 weeks of age; see Figure 5.1). This means simulated predation 

depended greatly on both initial climbing speeds and the rate of functional 

senescence.  

Mating assays 

After ageing treatments, we mated pairs with different age combinations by 

putting a young/old male and a young/old female together into mating vials. 

Observers blind to treatments measured mating latency (time spent until 

copulation) and mating duration until the first mating in each vial. Behavioural 

observations were conducted in a 25°C room, started when the lights were on 
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(i.e., 10 a.m.), and lasted for 7 hours. Pairs that did not mate within these 7 hours 

were considered unsuccessful. After the completion of the first mating, males and 

unmated females were discarded, while once mated females were kept in the same 

mating vials where they were allowed to oviposit for 24 hours. At the end of this 

egg-laying period, we also discarded females and counted the number of eggs 

they laid during this period. Finally, we incubated vials for 16 days to allow all 

viable flies to emerge, froze them and then proceeded to count the number of 

offspring. Our sample size was of ~40 pairs for each of seven different age 

combinations for a total of 272 pairs (young male × young female: 40; young 

male × old female: 40 [no predation], old male × young female: 38 [no predation], 

old male × old female: 38 [no predation]; young male × old female: 39 [with 

predation], old male × young female: 39 [with predation], old male × old female: 

38 [with predation]). 

Figure 5.1. Percentage of flies predated per week. Percentage of males (a) 
and females (b) that were predated per week that sums up to 60% of the total 
number of flies in the second group of old flies. 
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Statistical analysis 

To understand how condition dependent mortality modulates the effect of male 

and female age on reproductive senescence, we run separate analyses for each 

mortality treatment (i.e., absence vs. presence of condition dependent mortality), 

while using the same control group (young male × young female) for both. 

We used the nonparametric Kruskal–Wallis test to analyse whether there is an 

effect of pair age combination (young/old male × young/old female) on 

reproductive success and test whether there is an effect of pair age combination 

on fecundity and egg-to-adult viability (calculated as the proportion of the 

number of adults to the number of eggs). For mating duration, we fitted a Linear 

Model (LM) with male age, female age and their interaction as fixed factors. For 

mating success, we used GLMs with Binomial error distribution (successful: 1, 

unsuccessful: 0) with male age, female age and their interaction as fixed factors. 

Finally, for mating latency, we used the Kruskal–Wallis test to analyse whether 

pair age combination influences latency to mate in the absence and presence of 

condition dependent mortality.  

5.3. Results 

Age effects on reproductive success 

The effect of pair age (i.e., young male-young female, young male-old female, 

old male-young female, old male-old female) was significant in both the absence 

and presence of condition dependent mortality (Absence: Kruskal Wallis test, χ2 

= 32.213, df = 3, p < 0.001, Presence: Kruskal Wallis test, χ2 = 29.644, df = 3, p 

< 0.001). Briefly, old females had lower reproductive success than young ones 

both in the presence and absence of condition dependent mortality (Table 5.1). 

Conversely, old males had lower reproductive success only in the presence of 

condition dependent mortality (Figure 5.2 & Table 5.1).  
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Age effects on fecundity 

The effect of pair age on fecundity was significant in both the absence and 

presence of condition dependent mortality (Absence: Kruskal Wallis test, χ2 = 

49.862, df = 3, p < 0.001, Presence: Kruskal Wallis test, χ2 = 60.459, df = 3, p < 

0.001). Our results showed that fecundity decreases due to female age similarly 

in both the absence and presence of condition dependent mortality, while we did 

not detect an effect of male age on female fecundity (Figure 5.3 & Table 5.2). 

Age effects on egg-to-adult viability 

The effect of pair age was significant in both the absence and presence of 

condition dependent mortality (Absence: Kruskal Wallis test, χ2 = 10.490, df = 3, 

p = 0.015, Presence: Kruskal Wallis test, χ2 = 9.188, df = 3, p = 0.027). Post-hoc 

contrasts showed that male age tended to cause a decline in egg-to-adult viability 

only in the presence of condition dependent mortality. In contrast, the 

Table 5.1. Age and mortality effects on reproductive success. Effect of 
male age, female age and couple age on reproductive success compared to the 
young control pair. 

Response 
Variable Treatment 

Condition 
Dependent 
Mortality 

Z test 
statistics P 

Reproductive 
Success 

(Number of 
Offspring) 

Male Age 
(Old male-Young 

female) 

Absent -1.2109 0.271 

Present -2.8212 0.010 

Female Age 
(Old female-
Young male) 

Absent -4.4591 < 0.001 

Present -4.2190 < 0.001 

Pair Age 
(Old male-Old 

female) 

Absent -4.6029 < 0.001 

Present -4.9757 < 0.001 
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effect of female age on viability was not significant in either the absence or 

presence of condition dependent mortality (Figure 5.4 & Table 5.3).  

 

Table 5.2. Age and mortality effects on fecundity. Effect of male age, 
female age and couple age on fecundity compared to the young control pair. 

Response 
Variable Treatment 

Condition 
Dependent 
Mortality 

Z test 
statistics P 

Fecundity 

Male Age 
(Old male-Young 

female) 

Absent -1.5419 0.148 

Present -1.4915 0.163 

Female Age 
(Old female-
Young male) 

Absent -6.1470 < 0.001 

Present -5.9380 < 0.001 

Pair Age 
(Old male-Old 

female) 

Absent -5.0198 < 0.001 

Present -6.3121 < 0.001 

 

Table 5.3. Age and mortality effects on egg-to-adult viability. Effect of 
male age, female age and couple age on egg-to-adult viability compared to the 
young control pair. 

Response 
Variable Experiment 

Condition 
Dependent 
Mortality 

Z test 
statistics P 

Egg-to-
Adult 

Viability 

Male Age 
(Old male-Young 

female) 

Absent -0.9287 0.353 

Present -2.3476 0.056 

Female Age 
(Old female-
Young male) 

Absent 1.4996 0.201 

Present 0.6802 0.496 

Pair Age 
(Old male-Old 

female) 

Absent -1.8813 0.120 

Present -0.8152 0.498 
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Age effects on mating success 

There was no significant interaction between male and female age for mating 

success in either the absence or presence of condition dependent mortality 

(Absence: χ2 = 0.073, df = 1, p = 0.787, Presence: χ2 = 0.023, df = 1, p = 0.880). 

In the absence of condition dependent mortality, male age was non-significant (χ2 

= 1.669, df = 1, p = 0.196), but female age was (χ2 = 6.459, df = 1, p = 0.011). 

Similarly, in the presence of condition dependent mortality, there was no 

significant male age effect (χ2 = 0.042, df = 1, p = 0.838) but there was a 

significant female age effect (χ2 = 5.864, df = 1, p = 0.015). In general, mating 

success tended to decrease with female age in both the absence and presence of 

condition dependent mortality (Figure 5.5). 

Age effects on mating latency 

The effect of pair age was significant in the absence of condition dependent 

mortality (Kruskal Wallis test, χ2 = 8.092, df = 3, p = 0.044), but not the presence 

of condition dependent mortality (Kruskal Wallis test, χ2 = 5.903, df = 3, p = 

0.116). Post-hoc contrasts showed that ageing tended to increase mating latency 

in the absence of condition dependent mortality but this trend was only evident 

when the mating pair was old (Table 5.4 and Figure 5.6).  

Age effects on mating duration 

There was no significant interaction effect between male and female age in the 

absence or in the presence of condition dependent mortality (Absence: F1,129= 

1.013, p = 0.316, Presence: F1,133= 0.015, p = 0.902). In the absence of condition 

dependent mortality, male age significantly increased mating duration (F1,130= 

4.381, p = 0.038) while female age had no effect (F1,130= 0.002, p = 0.965, Figure 

5.6). Similarly, in the presence of condition dependent mortality, there was a 

significant increase in mating duration with male age (F1,134= 15.809, p < 0.001) 

but not female age (F1,134= 0.010, p = 0.921, Figure 5.7).  
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Figure 5.4. Effect of m
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Figure 5.6. Effect of m
ale/fem

ale age on m
ating latency in the absence and presence of condition 

dependent m
ortality. M

ean ± standard deviation for each treatm
ent follow

ed by an unpaired m
ean difference 

that uses bootstrap resam
pling to com

pute nonparam
etric assum

ption-free 95%
 confidence intervals w

hich 
com

pares each treatm
ent w

ith the control group. 
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5.4. Discussion 

In this study, we explored how condition dependent extrinsic mortality can 

modulate reproductive senescence in male and female D. melanogaster. For this 

purpose, we compared the reproductive success and mating behaviour of males 

and females from cohorts exposed (or not) to condition dependent mortality via 

simulated predation. We found that, while female reproductive senescence was 

unaffected by condition dependent mortality, the age-related decline in male 

reproductive success was higher when condition dependent mortality was 

present. Interestingly, accelerated reproductive ageing in surviving males seems 

driven mainly by ageing effects on post-copulatory processes, given that mating 

success was not differentially affected by age in the presence of condition 

dependent mortality, but egg-to-adult viability was. We discuss our findings in 

the context of sex differences in survival vs. reproduction life history trade-offs 

and their interaction with condition dependent mortality. 

Selective disappearance modulates age effects on reproductive senescence  

We found that female ageing caused a sharp decline in female reproductive 

success and that this effect was not modulated by condition dependent mortality. 

Table 5.4. Age effects on mating latency in the absence of condition 
dependent mortality. Effect of male age, female age and couple age on 
mating latency compared to the young control pair in the absence of condition 
dependent mortality. 

Response 
Variable Experiment Z test 

statistics P 

Mating Latency 

Male Age 
(Old male-Young female) 1.1024 0.324 

Female Age 
(Old female-Young male) 1.3602 0.260 

Male + Female Age 
(Old pair) 2.8324 0.028 
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As expected, female decline in reproductive success with age was mainly due to 

a decrease in fecundity. The effects of age on female reproductive success have 

been studied across taxa (i.e., in mammals, Packer et al. 1998; birds, Holmes et 

al. 2003; reptiles, Patnaik 1994; amphibians, Kara 1994 and fish Reznick et al. 

2002). In D. melanogaster, we have long known that female fecundity declines 

with age (David et al. 1975). Although previous studies have also reported a 

decrease in female egg-to-adult viability with age (Fricke et al. 2013; Bloch Qazi 

et al. 2017), we did not find evidence of such effects in this study. Our failure to 

find similar results could be due to the use of different populations kept under 

different rearing conditions (e.g. diet).  

In contrast to females, we only observed an age-related decline in male 

reproductive success in the presence of condition dependent mortality. 

Interestingly, this effect was mainly driven by a steeper decline in the egg-to-

adult viability of surviving males’ offspring, but not their mating success, 

suggesting a potential role for pre/post-meiotic senescence of male gametes. Pre-

meiotic sperm senescence is the ageing of the male diploid genome, which could 

happen in both somatic (e.g. nurse cell degeneration) and germ cells (e.g. DNA 

damage of the germline) of males (Pizzari et al. 2008). This process could cause 

old males to produce sperm with lower fertilising ability, and/or offspring with 

poor genetic quality. Post-meiotic sperm senescence refers to the ageing of sperm 

after meiosis, potentially leading to sperm transport deficiencies, lower fertilizing 

efficiency and/or a decline in offspring quality (Pizzari et al. 2008). Moreover, 

pre-meiotic senescence might enhance post-meiotic senescence by causing old 

males to produce sperm that is more vulnerable to individual ageing, eventually 

causing old males to have low viability offspring. In line with these predictions, 

male age has been previously shown to affect offspring viability in D. 

melanogaster (Price and Hansen 1998) and other species (Goriely and Wilkie 

2012; Fay et al. 2016). 
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Our finding that male reproductive senescence is on average higher when subject 

to condition dependent mortality can be explained by sex-specific selection 

pressures on life histories. Sexual selection is generally stronger in males than 

females (Bateman 1948; Trivers 1972) and, in many species, strong intrasexual 

competition selects for male adaptations, favouring higher reproductive success 

at the expense of somatic maintenance (Clutton-Brock and Isvaran 2007). In line 

with this idea, males generally exhibit “live fast die young strategies” compared 

to females (Promislow 1992; Maklakov and Lummaa 2013). In addition, 

precisely due to stronger sexual selection, males are generally more prone to 

extrinsic mortality than females (Christe et al. 2006; Costantini et al. 2007). If 

the source of extrinsic mortality is condition dependent, it should favour males 

that allocate more resources to survival (e.g. better anti-predatory escape 

abilities). It follows that, if males are both under stronger selection for early 

reproduction and condition dependent extrinsic mortality, trade-offs against 

reproductive maintenance will be steeper in males than in females (Chen et al. 

2016; Maklakov and Immler 2016). The idea that survival-reproductive trade-

offs might be stronger in males fits nicely with both our results, looking at intra-

generational effects of selective disappearance in cohorts, as well as those from 

recent experimental evolution studies, looking at long-term evolutionary 

responses. In the nematode C. remanei, condition dependent extrinsic mortality 

leads to the evolution of longer male/female lifespan and higher female fecundity, 

but also resulted in a sharper decline in male reproductive success, suggesting a 

trade-off between ageing and reproduction in males, but not females (Chen and 

Maklakov 2012, 2014; Chen et al. 2016). We believe these findings underline the 

importance of understanding the interplay between sex-specific selection 

pressures with respect to condition dependent mortality and sexual selection, and 

the resulting evolution of sex-specific life histories.  
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Selective disappearance and the potential for sexual conflict with age 

In addition to its role in shaping sex-specific life histories, condition dependent 

mortality could also play a role in modulating age-related sexual conflict. Male 

ageing has been suggested to be a potential source of sexual conflict (Dean et al. 

2007), which has been corroborated in at least two species (Dean et al. 2007, 

2010; Carazo et al. 2011). Our results add to this scarce literature by showing 

that, in D. melanogaster, male age effects on female reproductive success are 

exacerbated in the presence of condition dependent mortality. Furthermore, we 

did not find evidence that, under condition dependent mortality, male age affected 

mating behaviour at all, which could have diminished the net costs to females if 

accelerated ageing of males under condition dependent mortality made them less 

successful at mating with females. Average male mating success was not only not 

significantly lower in the presence of selective disappearance but, if anything, our 

results show a trend in the opposite direction. In line with this finding, we found 

some evidence that the mating success of old pairs (i.e., combined effects of male 

and female age) relative to control pairs was lower in the absence of condition 

dependent mortality (Figure 5.4). We found a similar (though clearer) trend for 

mating latency, whereby the mating latency of old pairs was significantly higher 

than young pairs only in the absence (but not presence) of condition dependent 

predation. In conjunction, these results suggest that, as might be expected, males 

that are able to maintain a high escape speed over time (i.e., survive simulated 

condition dependent predation) are if anything better at mating than average 

males in the population. This might be expected if males that are able to maintain 

a high escape speed over time maintain a generally high physiological condition. 

Interestingly, this implies that old males with good survival ability (i.e., old males 

under condition dependent predation) will be at least as successful at mating and 

quicker to mate with females than the average old male (i.e., old males in the 

absence of condition dependent predation). Overall, we show that, for females, 

the net costs of mating with old males is thus predicted to be higher under 
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condition dependent selection, which is likely to be common in nature. Hence, 

our results do not only reinforce the idea that ageing might act as a source of 

sexual conflict, but actually suggest that, in nature, this phenomenon may be more 

important than previously surmised. The scarcity of studies looking at aging and 

sexual conflict is surprising, and we contend this may be a fruitful avenue for 

future research.   

As a corollary, we found that old males in general tended to have higher mating 

duration across treatments. Our findings are in line with previous reports in D. 

melanogaster, where mating duration was found to increase with male age 

(Bretman et al. 2013). Longer matings are associated with the transfer of at least 

two key seminal fluid proteins (sfps): sex peptide and ovulin (Wigby et al. 2009), 

and mating duration can be used as a proxy for ejaculate investment (Friberg 

2006; Bretman et al. 2009). Sfps in the ejaculate are associated with several 

female post-mating responses. For example, sex peptide decreases female 

receptivity and stimulates fecundity while ovulin stimulates the release of oocytes 

from the ovary of females (Chapman et al. 2003; Liu and Kubli 2003). Besides, 

sfps are responsible for several mating costs for females such as lower lifetime 

reproductive success and higher mortality (Chapman et al. 1995; Wigby and 

Chapman 2005). Thus, on the one hand longer matings in old males may reflect 

a higher investment in their ejaculate due to terminal investment (Clutton-Brock 

1984). On the other hand, however, longer mating durations may be due to age 

effects on male ejaculate transfer ability, so that old males may be worse at 

transferring their ejaculates.  

Last but not least, it is important to note that our study population has been 

maintained in cages (both sexes together) with overlapping generations for 

decades and we know that males/females live around 40-50 days when they are 

maintained under mixed sex groups (Zajitschek et al. 2013). This means ageing 

treatments in our experiment (young flies: 4 days old, old flies: 38 days old) 
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resemble the conditions under which they have evolved for thousands of 

generations. Yet, future studies replicating this experiment with wild flies and at 

different ageing treatments would be very informative.
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Chapter 6. Male life history traits and gut 
microbiota in Drosophila melanogaster 

6.1. Introduction 

Exploring the mechanisms underlying life history traits in males and females may 

contribute to our understanding of sex-specific life history evolution. Sex-specific 

selection may favour different life history traits in males and females, but both 

the degree to which this is so and how the sexes respond to these pressures will 

depend on underlying mechanisms. If the mechanisms mediating life history 

trade-offs differ in males and females, this can influence both sex-specific fitness 

peaks and responses to selection (e.g. constraints). For example, there is good 

evidence of trade-offs between male reproductive abilities (e.g. testosterone 

levels, sperm viability) and immunity in a broad range of species, from 

invertebrates to humans (Slater and Schreck 1993; Simmons and Roberts 2005; 

Radhakrishnan and Fedorka 2012), whereas similar trade-offs are not so clear in 

females (Adamo et al. 2001; Mcnamara et al. 2013). Therefore, characterizing 

the mechanisms that mediate life history traits and, in particular, the degree to 

which they have sex-specific effects, may contribute to our understanding of life 

history evolution.  

An arising line of research in the study of the mechanisms of ageing, and life 

history mechanisms at large, is the role of gut microbiota. The effect of gut 

microbiota on female/male lifespan and female reproduction has been well 

studied in model organisms such as D. melanogaster (Brummel et al. 2004; Ren 

et al. 2007; Clark et al. 2015; Gould et al. 2018) and C. elegans (Houthoofd et 

al. 2002; Cabreiro and Gems 2013), as well as in humans (Tiihonen et al. 2010; 

Insenser et al. 2018). Despite the large number of studies indicating the 

contribution of gut microbiota in female ageing and fitness, the link between gut 

microbiota and male reproduction has not received much attention and is not well 
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understood. The relatively few studies that have explored how gut microbiota can 

shape male reproduction do hint at the importance of gut microbiota in both male 

mating behaviour and reproductive success (Ami et al. 2010; Morimoto et al. 

2017). For example, Morimoto (2017) manipulated the gut microbiota of D. 

melanogaster by infecting them with two different species of bacteria: 

Acetobacter pomorum or Lactobacillus plantarum. This two species were chosen 

because they are known to: (1) be among five most abundant species in wild fruit 

flies (Wong et al. 2011) and (2) affect the physiology and behaviour of D. 

melanogaster (Erkosar et al. 2013). They found that males infected with L. 

plantarum had longer mating duration and caused the females to produce more 

offspring in the short-term. Moreover, when females mated with males infected 

with A. pomorum, they were less likely to produce viable offspring. Likewise, 

Ami et al. (2010) studied how gut microbiota can affect the mating behaviour of 

the Mediterranean fruit fly (C. capitata). They found that sterilized males had 

damaged gut bacterial community structure due to the radiation used to sterilize 

them, and that regenerating their original microbiota community (by feeding 

them with bacteria enriched diet) enhanced the mating performance of these 

males compared to controls (Ami et al. 2010).  

Our aim in this study was to explore the potential role of gut microbiota in male 

life history traits by examining the co-variation between life history traits and gut 

microbiota across life. In order to do so, we first characterized the life history 

traits of male fruit flies from 29 different DGRP inbred isolines: i.e., lifespan, 

early/late life reproduction and early/late life physiological 

performance/condition (i.e., anti-predatory escape ability). We then characterized 

the early and late life gut microbiota of these isolines and investigated how gut 

microbiota composition changes with age. Finally, we explored the potential link 

between male life history traits and gut microbiota. 
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6.2. Materials & Methods 

Experimental population 

As focal flies, we used flies from the Drosophila melanogaster genetic reference 

panel (DGRP) (see details in Chapter 3). Hence, individuals within each isoline 

can be considered as clones. Using DGRP isolines (many individuals with the 

same genotype) instead of wild-type flies allowed us to characterize the life 

history traits of different genotypes in standard conditions while characterizing 

the early and late life gut microbiota associated with these same genotypes.  

Life history assays 

We set up replicate vials containing 10 males in same-sex groups for each of the 

29 different DGRP isolines (Table 6.1). We transferred these flies to new vials 

with fresh food once a week throughout their lifespan (or until sacrificed, see 

below), and checked mortality 5-6 days a week by recording the number of dead 

individuals in each experimental vial. Density within vials was kept constant 

between 8-11 individuals until all flies died (Figure 6.1). To estimate the 

reproductive success of focal males, we measured the relative paternity of all 

experimental males competing against standard rivals at two different time 

points: early (4 days old) and late (25 days old) in life. Namely, we introduced 10 

focal males with 10 spa males and 10 spa females into new vials and let them 

interact and lay eggs for 24 hours. At the end of this period, we recovered the 

focal males belonging to the isolines and discarded the individuals with the spa 

mutation. Following the first reproductive assay, on day 5, we sacrificed 15-20 

males per isoline for gut dissection and kept remaining flies for life history 

characterization. We incubated the eggs from the first reproductive assay and left 

them to develop into adults for 16 days, froze them and then counted the 

proportion of wt/spa offspring as a measure of their reproductive success. We 

repeated this procedure on day 25, and again sacrificed 15-20 males per isoline 

for gut microbiota analyses. We calculated reproductive ageing by 
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Figure 6.1. Schematic illustration of the experimental design. (a) We 
monitored replicate vials that contain 10 males in same-sex groups for each 
of the 29 different DGRP isolines. We measured climbing speed once a week 
for the first 4 weeks and reproductive success early and late in life (day 4 and 
day 25). (b) For ageing assays, we checked survival 5-6 days a week until all 
flies died. (c) For reproductive assays, we put 10 focal flies with 10 spa 
females and 10 spa males, counted the number of wt/spa offspring after 16 
days and calculated the relative number of wt offspring (d). For climbing 
assays, we tapped each vial and measured the proportion of flies that were 
able to climb to the top in 5 seconds. 
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Table 6.1. Sample sizes used in this experiment. Isoline codes represent the codes 
in Bloomington Drosophila Stock Center, while isoline ID represent the codes for 
our experiment. Number of replicates per isoline include the number of total flies 
in brackets, while number of flies sacrificed early and late in life include the number 
of biological replicates (also in brackets). 

Isoline Code 
(Bloomington) Isoline ID 

Number of 
Replicates in Life 

History Assays 

Number of Sacrificed 
flies  

Early Late 
38 2 7 (70) NA NA 
88 4 5 (50) NA NA 

101 6 10 (100) 15 (3) 20 (4) 
109 8 6 (60) NA NA 
208 10 10 (100) 15 (3) 20 (4) 
229 11 10 (100) 15 (3) 20 (4) 
239 12 10 (100) 15 (3) 20 (4) 
313 14 10 (100) 15 (3) 20 (4) 
324 15 10 (100) 15 (3) 15 (3) 
357 17 10 (100) 20 (4) 20 (4) 
359 19 10 (100) 20 (4) 20 (4) 
365 20 8 (80) 15 (3) 15 (3) 
375 22 10 (100) 20 (4) 20 (4) 
379 23 10 (100) 20 (4) 15 (3) 
390 24 9 (90) 15 (3) 15 (3) 
391 25 10 (100) 20 (4) 20 (4) 
399 26 10 (100) 20 (4) 20 (4) 
427 27 9 (90) 15 (3) 15 (3) 
437 28 10 (100) 20 (4) 20 (4) 
443 29 10 (100) 20 (4) 20 (4) 
492 30 10 (100) 20 (4) 20 (4) 
517 31 10 (100) 20 (4) 20 (4) 
703 32 7 (70) NA NA 
732 33 10 (100) 20 (4) 20 (4) 
808 35 10 (100) 20 (4) 15 (3) 
812 36 10 (100) 20 (4) 20 (4) 
857 37 7 (70) NA NA 
900 38 10 (100) 20 (4) 20 (4) 
911 39 10 (100) 20 (4) 20 (4) 
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subtracting average late life reproductive success from average early life 

reproductive success per isoline. 

We also estimated the climbing speed of each isoline once a week for 4 weeks 

(i.e., on days 3, 10, 17 and 24) by measuring the climbing speed of each group of 

males in their experimental vials. We repeated this procedure three times per vial 

and took the average. Then, we calculated the average across all replicate groups 

within each isoline as a measure of the climbing speed of each isoline at each 

time point, and estimated functional senescence as the slope of the age-related 

decline in climbing speed in four weeks. 

Gut dissection, bacterial DNA isolation and sequencing  

For gut dissections, 15-20 flies per isoline were sacrificed right after the two 

reproduction time points early and late in life (Table 6.1). The flies were taken 

from the two vials per isoline, the remaining unsacrificed flies in the vials were 

divided to other vials of the isoline to control for density. Dissection of each fly 

was done separately inside PBS droplets under the microscope by using sterilized 

forceps. Isolated guts were collected in groups of five in order to have 3-4 

biological replicates per isoline and immediately flash-frozen in liquid nitrogen 

prior to DNA extraction. DNA extraction from gut tissue was performed with the 

JetFlex ™ Genomic DNA Purification Kit. The DNA was quantified with 

Nanodrop-1000 Spectrophotometer (Thermo Scientific, Wilmington, DE) and 

then sent for sequencing. DNA obtained from gut was used as a template for 

amplification of the bacterial 16S rRNA genes and sequenced using the Illumina 

MySeq technology at the FISABIO Foundation.  

Processing and analyses of the 16S rRNA reads 

Sequence data came in two batches, from independent sequencing runs. Almost 

80% of the original read pairs were successfully merged in the pre-processing 

step provided by the sequencing center. We trimmed the last 3 bases of all reads 
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to remove a large number of Ns, and filtered out the remaining sequences with 

any N. Then we used the dada2 R package (Callahan et al. 2016) to denoise the 

dataset. That is, to infer and correct sequencing errors and to remove potentially 

chimeric reads. Using BLAST (Altschul et al. 1990), we noticed that sequences 

shorter than 433 or larger than 463 bases were mostly artefacts produced by 

unspecific hybridization of primers to the nuclear genome of the host fly, and we 

filtered them out. The resulting dataset consisted of ~12 million reads 

corresponding to 2683 unique sequences (amplicon sequence variants, or ASV) 

and distributed in 177 samples, including 3 or 4 biological replicates of each 

isoline and age combination (Table 6.1). 

We used an implementation of the RDP Naive Bayesian Classifier algorithm 

(Wang et al. 2007) available in the dada2 package and the Silva taxonomic 

databases (Callahan 2018) to attribute taxonomy information to the ASVs. Then, 

we further removed 24 ASVs either missing kingdom information or spuriously 

assigned to the Eukaryota kingdom. Only 16 rDNA ASVs were identified at the 

species level, while 97% of them got a genus assigned. 

The number of times an ASV got sequenced in a sample is assumed to be a 

proportional indication of the ASV’s abundance in that microbiome. Relative 

abundances were computed before further filtering. Because most ASVs had a 

very low abundance, and were suspected to be noise, we used only ASVs present 

in at least 10 samples either early or late in live, and with average relative 

abundances higher than 10-5, in at least one of the two age classes. This is the 

subset, comprising 1236 ASVs, used in all subsequent analyses, unless otherwise 

stated. 

Biodiversity analysis 

We calculated Shannon and Simpson diversity indices with the vegan R package 

(Oksanen et al. 2018) for every sample. We also computed isoline and age 

specific indices by adding up absolute abundances of replicates of the same 
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isoline and age before computing the indices. Unless otherwise stated, diversity 

indices refer to ASV diversity, computed from ASV abundance data. We also 

computed genus diversity, by grouping abundances by genus. 

Principle component analysis for life history traits 

In order to identify potential life history trade-offs and reduce life history 

variables across isolines, we ran a Principal Component Analysis (PCA) on the 

following life history variables from our isolines: (1) Early climbing speed (how 

fast males climbed vertically when young, a proxy for anti-predatory escape 

ability), (2) Functional ageing (the slope of the decline in climbing speed with 

age), (3) Early reproductive success (relative reproductive success of young 

males competing against spa males for spa females), (4) Reproductive 

senescence (the difference between early and late life reproductive success), (5) 

Average lifespan, (6) Acceleration of mortality rate (the beta component in a 

Gompertz fit on the survival curve) of each isoline. These six life history 

measures are important fitness components for flies in the wild, related to 

functional performance (1 and 2), the competitive potential of males during 

sexual selection (3 and 4), and actuarial ageing (5 and 6).  

Age effects on gut microbiota composition 

To study whether gut microbiota composition changes with age we fitted 

Negative Binomial generalized linear models of individual ASV abundances, 

using the DESeq2 R package (Love et al. 2014). Unfortunately, this package does 

not fit mixed models. The three factors included in the model, namely the 

sequencing run, the isoline and the age, were assumed to have fixed effects. The 

merit of this approach is that abundance data is modelled directly, without need 

for normalization, and taking into account the biological variation of abundances 

among replicates (Mcmurdie and Holmes 2014). Then we used a Wald test to 

identify ASVs the abundances of which were significantly affected by age. 
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In order to use microbiome composition data to explain variation in life history 

traits, it was necessary to reduce the dimensionality of the data set. We opted for 

the multidimensional scaling (MDS) implemented in the phyloseq R package 

(Mcmurdie and Holmes 2013), and we chose a binary (presence-absence) 

distance measure among samples. MDS uses all the variation in the data set to 

represent samples in a 2-dimensional space. Using the binary distance, the 

ordination result separated most early samples from most late samples along one 

direction, and it also distinguished quite well between first and second sequencing 

runs along the orthogonal direction. Distance measures taking abundance into 

account did not produce such a neat pattern. Because the orientation of an MDS 

result is arbitrary, we rotated the axes (using recluster R package, Dapporto et al. 

2013) to make coordinates correspond to the two relevant directions, renamed as 

“rotated axis 1” (correlated with age) and “rotated axis 2” (correlated with the 

sequencing run; Figure 6.2). 

As an additional attempt to extract potentially meaningful information from the 

multidimensional abundance matrix, we grouped ASVs by genus and calculated 

the ratio of the total abundance of Lactobacillus ASVs to the total abundance of 

Acetobacter ASVs. The choice to focus on these two genera was motivated by 

their overall large abundance (see results), and by a study showing their potential 

functional roles on male reproduction (Morimoto et al. 2017) 

Linking life history traits to gut microbiota composition 

We analysed whether life history PCs 1-3 were associated with changes in the 

following gut microbiota variables: (1) Diversity (Simpson’s index), (2) Rotated 

axis 1 and 2 early in life (RA1early & RA2early), (3) Rotated axis 1 and 2 late in life 

(RA1late & RA2late), (4) the change in diversity with age (using Simpson’s index) 

and (5) The drop in the ratio of Lactobacillus vs. Acetobacter abundance with 

age. We used exhaustive screening of all candidate models in combination with 

model averaging, owing to a lack of a priori hypotheses about which combination 
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of variables and their interactions may represent biologically relevant models for 

our data (Calcagno and De Mazancourt 2010). Models were evaluated using the 

second-order information criterion (AICc), which is adequate when, as in our 

case, the ratio of parameters to sample size is less than 40 (Burnham and 

Anderson 2002). Model averaging was conducted over a 95% confidence set of 

candidate models, calculated as the set of AICc ranked models with an 

accumulated model weight 0.95 (i.e., a 95% probability that the best model is 

represented within the set; Calcagno and De Mazancourt 2010; Symonds and 

Moussalli 2011). Importance weights are a measure of the probability that the 

explanatory variable is a component of the best model (Symonds and Moussalli 

2011). This model-averaging procedure incorporates uncertainty about which 

model is most appropriate for determining coefficient estimates and variances of 

relevant covariates. We allowed a maximum model complexity of 5 (5 terms in 

 

Figure 6.2. Multidimensional scaling on binary distances.  The axes of 
multidimensional scaling (MDS) were rotated to make coordinates 
correspond to the two relevant directions: “rotated axis 1” and “rotated axis 
2”. 

 



Chapter 6 
 

71 
 

model including intercept), including second order interactions. We identified 

important terms, for which we calculated model-average estimates across all 

models within the 95% confidence set. Finally, we ran a complementary analysis 

by fitting GLMs on models incorporating all the terms identified as important in 

the exhaustive modelling approach.  

In order to assess which amplicons (ASV) or genera are associated with different 

life history variables (i.e., their principle components), we used Lefse (Segata et 

al. 2011). Lefse is a pipeline that evaluates the association of quantitative 

descriptors (e.g. ASV abundances) with a classification of samples, using linear 

discriminant analysis. Its goal is to identify biomarkers, that is, highly informative 

ASVs that could be used to predict the class a sample belongs to. In order to 

classify samples according to the life history traits values of the isoline they 

belong to, we used the signs of isolines’ loadings on the three principal 

components.  Two levels (high and low) were used for each principle component. 

In all cases, high indicates the higher fitness side of the range (i.e., high early 

climbing speed, low functional ageing, high early reproductive fitness, low 

reproductive senescence, high average lifespan and high acceleration of mortality 

rate). We used default parameters for the Lefse run, namely: alpha value for the 

factorial Kruskal-Wallis test among classes: 0.05; alpha value for the pairwise 

Wilcoxon test between subclasses: 0.05; and threshold on the logarithmic LDA 

score for discriminative features: 2.0.  

6.3. Results 

Life history traits of DGRP males 

We found substantial variation across the 29 different isolines with respect to the 

6 life history variables (Table 6.2). The PCA reduced these 6 life history variables 

into 3 principal components that jointly explained ~80% of the variability (Table 

6.3). After reducing the 6 different variables into 3 principal components, we 
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looked at the rotated weights of each variable on each component and focused on 

those with > 0.5 loadings to interpret resulting PCs (Table 6.4).  

PC1 was mainly explained by early climbing speed and functional ageing, 

predicting that the higher the early climbing speed, the more negative is the slope 

of functional ageing. We interpreted this as a component reflecting “anti-predator 

performance”, although it may also reflect an interesting trade-off between early 

life climbing speed and functional senescence. In order to explore the latter 

possibility, we explored the relationship between early climbing speed (climbing 

speed of week 1) and climbing speed difference between week 1 and week 2 (F1,27 

= 37.947, p < 0.001, rm
2 = 0.5689), week 1 and week 3 (F1,27 = 63.483, p < 0.001, 

rm
2 = 0.6906) and, week 1 and week 4 (F1,27 = 211.270, p < 0.001, rm

2 = 0.8825); 

see Figure S.13-16 and Discussion. PC2 was only explained by early reproductive 

success, so we interpreted this PC as “early reproduction”. Finally, PC3 was 

explained by average lifespan and reproductive senescence, showing that isolines 

with higher lifespan experience lower reproductive senescence. We thus 

interpreted this PC as a compound measure of “ageing” (i.e., actuarial and 

reproductive ageing).  

Age-dependent change in gut microbiota diversity & abundance 

 The differential abundance analysis performed with DESeq2 revealed 219 ASVs 

with significant abundance change between early and late ages, with a false 

discovery rate of 0.001. ASVs showed a significant increase in abundance with 

age in only two genera: Acetobacter and Lactobacillus (Figure 6.3).  While 

Acetobacter overwhelmingly dominates in all isolines, Lactobacillus reaches a 

modest abundance at a late age in many isolines, while it was almost absent in 

early age. Indeed, the Lactobacillus/Acetobacter ratio significantly increased 

with age (F1,23 = 8.9603, p = 0.0065). The ASVs with a significant decrease in 

abundance with age belong to two other genera: Ralstonia and Pseudomonas  

(Figure 6.3). 



Chapter 6 
 

73 
 

The reduction is mainly due to the disappearance of species from the genus 

Ralstonia and, to a lesser extent, of Pseudomonas. Figure 6.4 shows the 7 most 

abundant classes found in the microbiomes, belonging to six different phyla, 

Actinobacteria (Actinobacteria); Bacilli (Firmicutes); Alphaproteobacteria and 

Gammaproteobacteria (Proteobacteria); Bacteroidia (Bacteroidetes); 

Oxyphotobacteria (Cianobacteria) and Verrucomicrobiae (Verrucomicrobia). 

Among them, clearly members of the Proteobacteria phylum are the most 

abundant. The reduction of Gammaproteobacteria with age suggests early 

microbiomes are more diverse. However, taking into account ASV diversity 

within genera, alpha diversity indices do not actually drop with age. Only when 

using taxonomic (genus) diversity we do notice a sharp decline in Shannon or 

Simpson diversity indices with age (Figure 6.5).  

 

Figure 6.3. Age-related fold change and taxonomic distribution of 
amplicons. Age-related abundance change and taxonomic distribution of the 
amplicons with most differentiated abundances between early and late life 
samples. 
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Figure 6.4. Age-related changes in the relative abundances of different 
bacterial classes. Early and late life relative abundances of the 7 most 
abundant bacterial classes across 24 different DGRP isolines. 
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Table 6.2. Descriptive statistics of the six life history variables. Mean, 
standard deviation and range of the six life history variables that were analysed 
in this project. 

 Mean SD Range 

Average Lifespan 37.31 7.99 25.08 - 58.61 

Early Climbing Speed 0.51 0.19 0.18 - 0.82 

Functional ageing -0.41 0.16 -0.70 - -0.12 

Early reproductive fitness 0.46 0.16 0.12 - 0.78 

Reproductive senescence 0.15 0.14 -0.15 - 0.40 

Acceleration of mortality rate 0.10 0.06 0.03 - 0.28 

Table 6.3. Principle components describing male life history variation. 
Standard deviation, proportion of variance and cumulative proportion of the 
first four principle components describing male life history variation across 
isolines. 

 PC1 PC2 PC3 PC4 

Standard deviation 1.4319 1.2406 1.0958 0.8358 

Proportion of Variance 0.3417 0.2565 0.2001 0.1164 

Cumulative Proportion 0.3417 0.5982 0.7984 0.9148 

Table 6.4. Rotated weights of male life history variables. Rotated weights 
of 6 male life history variables on 3 different principle components. 

 PC1 PC2 PC3 

Average Lifespan 0.130 -0.471 -0.597 

Early Climbing Speed 0.673 0.096 0.091 

Functional ageing -0.652 -0.246 -0.009 

Early reproductive fitness -0.007 -0.647 -0.041 

Reproductive senescence 0.092 -0.270 0.770 

Acceleration of mortality rate 0.310 -0.464 0.200 
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Interactions between gut microbiota and male life history traits 

Exhaustive model selection for PC1 yielded a 95% confidence set of 81 models 

(best model: PC1~ 1+ L/Adrop , AICc=80.58, wi =0.07), but no important 

variables. Model selection of PC2 yielded a 95% confidence set of 83 models 

(best model: PC2~ 1+ RA1late+ RA2early + RA2late, AICc= 54.15, wi = 0.072), with 

RA1late appearing as the only important predictor (estimate = -99.73 ± 409; 

Figure 6.5. Age related change in bacterial diversity. Age related change 
in (a) Shannon index with respect to ASV diversity, (b) Shannon index with 
respect to genus diversity, (c) Simpson index with respect to ASV diversity, 
(d) Simpson index with respect to genus diversity. 
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importance = 0.85). A LM on the best model showed this model was significant 

overall and explained a substantial proportion of variability in PC2 (F3, 18 = 4.431, 

p = 0.017, R2
adj = 0.33). Backwards model selection confirmed RA1late as a 

significant factor in this model (F 1, 18 = 6.740, p = 0.018), along with RA2late (F 

1, 18 = 6.174, p = 0.023), but not RA2early (F 1, 18 = 0.377, p = 0.547). Finally, model 

selection of PC3 yielded a 95% confidence set of 85 models (best model: PC3~ 

1+ Simpson early + RA1early+ RA2late, AICc= 61.87, wi = 0.07), with RA1early 

appearing as the only important predictor (estimate = -144 ± 613 importance = 

0.93). A LM on the best model showed this model was significant overall and 

explained a substantial proportion of variability in PC3 (F3, 18 = 4.679, p = 0.0138, 

R2
adj = 0.35). RA1early appeared as a marginally non-significant factor in this 

model (F 1, 18 = 3.687, p = 0.071), while RA2late appear as a significant factor in 

this model (F 1, 18 = 8.076, p = 0.011).  

Finally, in order to understand which genera (or amplicons) might be associated 

with low versus high condition traits, we ran a Lefse analysis to compare isolines 

with positive vs. negative values of PC2 (early reproduction) and PC3 (ageing); 

i.e., PC2, 13 isolines with positive values and 11 with negative and PC3, 10 

isolines with positive values and 14 with negative values. Lefse identified no 

genus significantly associated with neither high nor low levels of neither PC2 nor 

PC3. However, it did find significant associations when looking at ASVs. 

Namely, 12 ASVs were associated with low-fitness values of PC3 (shorter 

lifespan, faster reproductive senescence), and one ASV was associated with high-

fitness values of PC3 (longer lifespan, slower reproductive senescence) (Figure 

6.6). All these 13 ASVs belong to the Acetobacter genus.  
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6.4. Discussion 

In this chapter, we explored male life history traits and their potential interaction 

with gut microbiota. First, we did not detect a clear trade-off between 

reproductive success and survival-associated traits (e.g. lifespan, anti-predatory 

escape ability), contrary to what we expected. In fact, when present, correlations 

between life history traits tended to be positive, so that most variability in life 

history traits seemed to reflect differences in quality across isolines. Second, as 

previously shown in the literature, we found age-related changes in male gut 

microbiota diversity and abundance. Finally, we found preliminary evidence of a 

link between male gut microbiota abundance and early reproductive success. 

 

Figure 6.6. ASVs associated with high and low values of PC3 (i.e. ageing 
component). 12 ASVs were associated with low-fitness values of the ageing 
component (shorter lifespan, faster reproductive senescence; in green). One 
ASV was associated with high-fitness values of the ageing component (longer 
lifespan, slower reproductive senescence; in red). 
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Life history variation and potential trade-offs across DGRP lines 

We documented substantial variation in life history traits across isolines. The 

average lifespan across isolines was 37.31 days, with a more than two-fold 

difference between the longest and shortest-lived isolines (longest lived: 59 days, 

shortest lived 25 days). Similarly, the difference between the isoline with the 

highest early reproductive fitness and the one with lowest early fitness was more 

than six-fold (highest early fitness: 0.78, lowest early fitness: 0.12). We also 

found that our isolines have high variation with respect to early climbing speed 

(mean ± standard deviation: 0.51 ± 0.19), functional ageing (mean ± standard 

deviation: -0.41 ± 0.16), acceleration of mortality (mean ± standard deviation: 

0.10 ± 0.06) and reproductive senescence (mean ± standard deviation: 0.15 ± 

0.14; Table 6.2). 

We detected a relationship between early climbing speed and our measure of 

functional ageing, so that isolines with high early climbing speed experienced a 

steeper decline in the climbing speed with age. While this may reflect an 

interesting trade-off, it is also possible that this relationship is due to a floor effect 

driven by how climbing speed decreases with age. That is, because climbing 

speed is bound by 0 in its lower range, it may be that isolines with a high early 

climbing speed necessarily have a steeper functional decline due to the fact that 

all old flies end up having a climbing speed close to 0 by the end of their life. 

Plotting how climbing speed decreases with age (Figure S.16) does seem to show 

a floor effect. However, we found a positive relationship between early climbing 

speed and the decrease in climbing speed between the first and second weeks 

(Figure S13), when climbing speed is unlikely to be bound by cero. Furthermore, 

this relationship appeared non-linear, so that the highest early climbing speeds 

actually showed no relationship with the decrease in early climbing speed (Figure 

S16). Even in the absence of a floor effect, the relationship between early 

climbing speed and our measure of functional ageing could simply be a spurious 

result of both variables being dependent (because early climbing speed is used to 
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calculate functional ageing). All in all, with these results we cannot firmly 

conclude the absence of a trade-off between early climbing speed and functional 

senescence in climbing speed, which suggest should be examined in detail by 

future studies. 

We did not detect evidence of a trade-off between reproduction or survival related 

traits (e.g. lifespan or anti-predatory). In fact, when present, the correlation 

between male life history traits was positive. This might be explained by the fact 

that we used inbred isolines that are expected to have different phenotypes 

compared to the wild-type individuals due to the absence of heterozygous effects. 

DGRP isolines have been the target of a broad range of studies because: (1) the 

same isoline can be characterized with respect to several traits to look for 

correlations and (2) genome-wide association can be done in search of candidate 

genes that are associated with traits such as longevity, fecundity or stress response 

(Ayroles et al. 2009; Durham et al. 2014; Ivanov et al. 2015). However, using 

these isolines also has the disadvantage of looking at phenotypes that may differ 

from those observed in nature (i.e., all recessive alleles are expressed due to 

homozygosity). We suggest that a potential way to complement this study would 

be to replicate it using heterozygotes from DGRP line crosses and/or wild male 

isolines.  

 Age effects on male gut microbiota in Drosophila melanogaster 

We found that the relative abundance of both Acetobacter and Lactobacillus 

increases with age. Moreover, the Lactobacillus/Acetobacter ratio was found to 

be higher in old males. How gut microbiota composition and diversity differs 

between old and young flies has been studied in outbred flies (Wong et al. 2011). 

Wong et al. (2011) found that the relative abundance of Acetobacter increased 

with age, which is consistent with our findings. However, they found a decrease 

in the abundance of Lactobacillus and Lactobacillus/Acetobacter ratio, in 

contrast to our results. One reason behind the different findings may be that Wong 
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et al. (2011) used outbred populations while we used highly inbred isolines. 

Considering that host genome can control gut microbiota composition in D. 

melanogaster (Chaston et al. 2016), the level of inbreeding can also affect age-

related changes in relative microbial abundance. Another explanation could have 

to do with different diets, which could have led to different microbial 

compositions in these studies; particularly, concerning that diet can significantly 

alter the gut microbiota composition (Erkosar and Leulier 2014). In addition to 

the relative abundance of different taxa, we also found age-related changes in 

bacterial diversity. When using genus diversity, bacterial diversity was lower in 

old males compared to young ones (Figure 6.5). This is consistent with previous 

results in outbred flies, where old males had lower species diversity than young 

males (Wong et al. 2011).  

Male gut microbiota and life history traits in Drosophila melanogaster 

Finally, our results suggest a link between gut microbiota abundance and two 

principle components: PC2 “early reproductive success” and PC3 “ageing” (i.e., 

lifespan and reproductive senescence). Although there was no genus significantly 

associated with early reproductive success and ageing, 12 ASVs were associated 

with shorter lifespan and faster reproductive senescence. Interestingly, all 12 

ASVs belonged to the Acetobacter genus. 

Previous studies investigating the interaction between gut microbiota and life 

history traits have generally used germ-free flies inoculated with single or 

multiple bacterial species. This allowed them to determine which species/genera 

had an effect on certain life history traits such as lifespan, fecundity or fertility. 

For example, Tefit et al. (2017) showed that, when compared to axenic flies, 

mono-association with Lactobacillus plantarum resulted in longer lifespan in 

males fed with a low yeast diet; however, it did not affect female lifespan kept on 

a high or low yeast diet. In contrast, Fast et al. (2018) later found that mono-

association of female flies with L. plantarum shortened female lifespan compared 
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to axenic females (Fast et al. 2018). These contradictory results are explained by 

the differential effects of sex, genomic background and diet, which can modulate 

the effect of gut microbiota on fitness traits (Douglas 2018). In another study, 

Pais et al. (2018) demonstrated that mono-association of female and male flies 

with Acetobacter thailandicus leads to faster development and higher fertility of 

emerging adults when compared to axenic flies and other bacterial species (Pais 

et al. 2018). Still, mono-association studies are not ideal for explaining how 

microbiota can shape host fitness because the fly gut includes more than one 

species of bacteria (Wong et al. 2011). Gould et al. (2018) associated female and 

male flies with five species of bacteria (L. plantarum, L. brevis, A. pasteurianus, 

A. tropicalis, and A. orientalis) that commonly exist in the wild fly gut. All 

combinations of bacterial association were conducted, from mono-association 

with each species to poly-association with all five species. They found that 

bacterial combinations that caused high fecundity led to lower lifespan, and 

combinations that caused low fecundity resulted in a longer lifespan. These 

results suggest that gut microbiota composition can induce a life history trade-off 

between reproduction and lifespan in females. As they did not observe a 

consistent differential effect on lifespan between males and females, they 

concluded that bacterial combinations have similar effects on male and female 

lifespan (Gould et al. 2018). In short, the role of gut microbiota on female/male 

ageing and female fecundity has been relatively well-studied using mono/poly 

associations. Yet, to our knowledge there is only one prior study that has 

investigated how bacterial association can modulate male reproduction in D. 

melanogaster (Morimoto et al. 2017). Morimoto et al. (2017) showed that, 

compared to males mono-associated with A. pomorum, males that were mono-

associated with L. plantarum had longer mating duration and their partners 

produced more offspring. 

In addition to mono/poly-association of germ-free flies with different bacterial 

species, host life history traits have also been linked to gut microbiota using 



Chapter 6 
 

83 
 

associative studies. A crucial study in this context compared how the relative 

abundance of acetic acid bacteria (including Acetobacter species) and lactic acid 

bacteria (including Lactobacillus species) changes in fruit flies from different 

latitudinal population that exhibit different life history strategies (Walters et al. 

2020). Walters et al. (2019) found that flies from low-latitude populations (with 

short lifespan and high early reproduction) had more acetic acid bacteria than 

flies from high-latitude populations (with long lifespan and low early 

reproduction). Moreover, this pattern was present in the opposite direction in the 

case of lactic acid bacteria. Yet, this study mainly focused on female lifespan and 

reproduction while the link between the existing gut microbiota and male 

reproductive success was overlooked. The high content of acetic acid bacteria in 

shorter lived populations (Walters et al. 2020), high relative abundance of 

Acetobacter in old males (Wong et al. 2011) and our findings where certain ASVs 

from Acetobacter genus were associated with lifespan and reproductive ageing 

(see Figure 6.6), all underscore the potential importance of this genus for male 

ageing. In addition to ageing, the findings of Morimoto et al. (2017) about the 

effects of two bacterial species on mating duration and number of offspring 

suggest that gut microbiota can also affect male reproductive success. In fact, we 

also found an association between late gut microbiota composition and male 

reproductive success. However, we did not find a specific genus or ASV that was 

connected with high or low reproductive success in males. 

Despite the inconclusive results of mono-association experiments, studies that 

involve the interactions of more than one bacterial species (e.g. poly-association 

studies) have shown that microbial composition has similar effects on the lifespan 

of females and males (Gould et al. 2018, Walter et al. 2020). However, this is not 

the case for reproductive success. For example, the Acetobacter genus that is 

generally associated with high female fecundity has been found to have negative 

effects on male reproductive success (Morimoto et al. 2017). Moreover, in our 

study we also found evidence suggesting that the Acetobacter genus is associated 
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with short lifespan and fast reproductive ageing in males. Hence, host-

microbiome interactions underlying lifespan seem to be similar in females and 

males, but not so those affecting reproductive success.  

Altogether, existing evidence shows that (1) gut microbiota composition can 

affect life history traits in both sexes and (2) both the environment and host 

genome can contribute to shape microbiota composition. Therefore, the link 

between microbiota composition and life history evolution may be complex and 

causally bi-directional (Macke et al. 2017). Our results add to this emerging 

literature by showing that there is a link between gut microbiota composition and 

male life history traits. More detailed analyses are necessary in order to 

understand the exact microbial interactions that shape the link between 

male/female life history evolution and gut microbiota. For example, 

metagenomics and metatranscriptomic studies can provide more information 

about the putative functions and gene expression profiles of bacterial 

communities. However, the current evidence tentatively suggests that gut 

microbiota may constraint male and female life histories in a different way, an 

exciting path for future research that we suggest may yield some insight into the 

mechanisms and trade-offs underlying sex-specific ageing.  
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Chapter 7. The “unguarded‐X” and the genetic 

architecture of sex-specific lifespan in Drosophila 

melanogaster 

7.1. Introduction 

The “unguarded-X” hypothesis (hereafter UXh) posits that sex-specific ageing 

can be caused by the increased expression of deleterious recessive mutations in 

the heterogametic sex, due to the asymmetric inheritance of the sex chromosomes 

(Trivers 1985). While recessive mutations in the X (or Z) chromosome will be 

expressed unconditionally in the heterogametic sex, the same will not happen in 

the homogametic sex due to the second copy of the X (or Z) chromosome, which 

will "guard" against their expression. Hence, the “unguarded-X” effect is 

predicted to influence mutations accumulating both in the germline (inter-

generational effect) and somatic line (intra-generational effect), and generally 

predicts slower ageing and longer lifespan in the homogametic sex.  

In accordance with theory, it is frequently noted that female birds (heterogametic 

sex: ZW) tend to have shorter lifespans than males, whereas female mammals 

(homogametic sex: XX) tend to have longer lifespans than males; although such 

differences might equally be due to overall physiological or sex role differences 

between mammals and birds (Maklakov and Lummaa 2013). Beyond these two 

taxa, Pipoly et al. (2015) conducted a comparative study across 344 species 

belonging to 117 families of tetrapods (including reptiles and amphibians) and 

showed that adult sex-ratios tend to be female-biased in taxa with a XY sex 

determination system, and vice versa in taxa with a ZW sex determination system. 

Interestingly, this effect was particularly strong in taxa with variation in their sex 

determination system (amphibians and reptiles), and remained so even after 

controlling for sexual size dimorphism to account for sexual selection processes. 
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To the extent that adult sex ratios might be taken as an indirect proxy for sex-

specific ageing, these results do seem to fit predictions from the UXh (Pipoly et 

al. 2015). Unfortunately, and despite suggestive correlative evidence at a broad 

comparative level, experimental investigations of the UXh have lagged behind, 

and direct empirical support for the UXh is simply scarce and inconsistent 

(Maklakov and Lummaa 2013; Carazo et al. 2016). 

A fundamental prediction of UXh is that inbreeding should have a more negative 

effect on the lifespan of the homogametic than the heterogametic sex, because 

the sex chromosomes of the latter are always effectively inbred (i.e., 

hemizygous), and thus won’t be affected by inbreeding. To date, the only 

available empirical studies to specifically test the UXh have used this approach 

in seed beetles (Fox et al. 2006; Bilde et al. 2009) and in D. melanogaster (Carazo 

et al. 2016). In seed beetles, results are inconsistent with the “unguarded-X” and 

seem better explained by sexually divergent selection (Fox et al. 2006; Bilde et 

al. 2009). In D. melanogaster, recent results have been more suggestive (Carazo 

et al. 2016), but they were based on a single study that failed to look at the effects 

of inbreeding on reproductive fitness, which is crucial to ascertain whether 

differential inbreeding effects across the sexes are maladaptive or reflect sex-

specific adaptive shifts in life history. D. melanogaster is, for a variety of reasons, 

an ideal species to test predictions of the UXh. First, because it frequently exhibits 

a sexually dimorphic lifespan, with homogametic females usually living longer 

than heterogametic males (Rose et al. 2004). Second, because it only has two 

autosomal macrochromosomes, which means the relative weight of any increase 

in the expression of deleterious alleles in the X chromosome is likely to be 

important (i.e., the X chromosome includes ~20% of the total gene content; 

Mallet et al. 2011). Finally, because it has a special dosage compensation system 

where the expression of the X chromosome is doubled in males (Conrad and 

Akhtar 2012), hence predictably exacerbating the consequences of deleterious 

recessive mutations in the hemizygous male X chromosome.  
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In addition, the “Mother’s curse” hypothesis also predicts sex-specific inbreeding 

effects on lifespan, because sustained inbreeding will tend to create an association 

between male fertility traits and mitochondrial matrilines, and such positive 

assortative mating may give rise to direct selection against mtDNA genotypes 

with deleterious male-specific effects (Wade and Brandvain 2009; Hedrick 

2012). Thus, both the UXh and the “mother’s curse” hypotheses predict sex-

specific lifespan effects of inbreeding, but these predictions occur at different 

time-scales. The UXh predicts sex-specific differences in inbreeding load 

immediately following inbreeding, followed by long-term erosion of these 

differences if inbreeding is sustained in time, due to strong purging selection 

acting on the homozygous sex (Maklakov and Lummaa 2013). In contrast, the 

mother’s curse hypothesis predicts the opposite pattern, with sex-specific 

inbreeding effects arising gradually as a response to selection if inbreeding is 

maintained through time (Wade and Brandvain 2009; Hedrick 2012).  

In this study, we first used random pairs of flies from an outbred population to 

construct a set of isolines de novo by 10 generations of full-sib mating. We then 

set up a series of crosses between randomly paired isolines to set up three 

different inbreeding treatments: inbred, intermediately inbred and outbred (see 

Bilde et al. 2009). Finally, across inbreeding treatments we measured the 

reproductive fitness of males/females as well as their lifespan in different social 

environments: in isolation, in same-sex groups (4 individuals of the same sex) 

and in a mixed-sexes group social environment (2 males and 2 females). We 

explicitly controlled for any mitochondrial effects both by focusing on short-term 

effects in a novel inbreeding process, and by controlling the maternal haplotype 

across inbreeding treatments (Figure 7.1). 
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7.2. Materials & Methods 

Experimental Population and Generation of Isolines 

To obtain the parental flies to start up isolines with, we collected Dahomey eggs 

from our population cages and virgin adults emerging from those eggs using the 

protocol described in Chapter 3 (General Materials and Methods). We kept them 

in same-sex groups of 10 for 72 hours. Then, we randomly set up pairs of males 

and females in a vial and kept them together for 48 hours, at which time adults 

were discarded and eggs incubated under standard conditions (i.e., 25°C room 

with 60% humidity) until offspring emerged. Full-siblings from each resulting 

family were then mated with each other for 10 generations. The expected 

inbreeding coefficient after 10 generations of full-sib crosses is ~0.886, 

conservatively assuming that initial parental pairs were heterozygous at all their 

loci (Falconer 1981). For each generation of inbreeding, we set up three replicate 

full-sib pairings and randomly selected one out of the crosses generating viable 

offspring, in order to minimize line loss. The process to generate isolines took us 

7 months (from March 2016 to August 2016). We started with 80 crosses and 

obtained a total of 50 inbred isolines.  

Construction of Different Inbreeding Levels 

After obtaining 50 isolines, we randomly paired them in 25 sets, within which we 

designed crosses to obtain three different inbreeding treatments: (a) inbred 

[F~0.89], (b) intermediately inbred [F~0.44] and (c) outbred [F~0] flies (Figure 

1). For each set, one of the two isolines was randomly assigned a role as the 

maternal haplotype isoline (i.e., isoline A in Figure 1); i.e., the isoline whose 

cytoplasmic DNA was used in the three inbreeding treatments. Briefly, the 

crosses were set up as follows: a) for the inbred treatment, we collected offspring 

emerging from the 11th generation of inbreeding in isoline A, b) for the outbred 

treatment, a female from isoline A was crossed with a male from isoline B and 

the resulting offspring was used, and c) for the intermediately inbred treatment, a 
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female offspring resulting from the outbred cross above was back-crossed with a 

male from isoline A.  For each set (n = 25) and treatment, we set up 3 pairs to 

hedge our bets against potential loss of the cross due to the infertility of single 

males/females. In all crosses, pairs were kept together for 48 hours, after which 

time adults were discarded and vials with eggs incubated for 16 days to allow 

offspring to emerge. Virgin adult males and females collected within 7 hours of 

eclosion from the crosses above were used for fitness and lifespan assays.  

Fitness Assays 

To estimate female reproductive success, we used two replicates per set and 

paired each focal female with an outbred wt male from our background 

population and left them to interact for 8 days. For wt males, eggs were collected 

from our population cages as described above. Pairs were transferred to a fresh 

vial after 4 days using light CO2 anaesthesia, and discarded after 8 days, and for 

each pair both these vials were incubated at standard conditions for 16 days to 

allow emergence of adults, at which time vials were frozen and eventually 

offspring counted. Measures of early fecundity (i.e., first 5-10 days) can be taken 

as reasonably good indicators of a female’s lifetime reproductive success (e.g. 

Nguyen and Moehring 2015). To estimate male reproductive success, we used 

two replicates per set and put a focal male with two sparkling poliert males and 

females. We left males in these groups to interact for 8 days, transferring them to 

a new vial on the fourth day using light CO2 anaesthesia.  At the end of this period, 

we discarded adults and left eggs to develop into adults for 16 days, and then 

froze them. We then counted the proportion of wt/spa offspring as a measure of 

the reproductive success of the focal male (i.e., all of the focal male's offspring 

should exhibit the wild-type eye phenotype). We took the average of the two 

replicates (per sex, per treatment), except for the intermediately inbred female 

treatment, where due to a contingency with an incubator we lost one of the two 

replicates. For that treatment, we used data from the only available replicate. Final 

sample size for each sex was 25. 
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Social Environment and Lifespan Assays 

We measured lifespan of flies kept in three different social environments: in 

isolation, in same-sex groups, and in mixed sexes groups. For the isolation 

treatment, we kept isolated flies in a vial with excess food throughout their entire 

lifespan, flipping them to fresh vials once per week without anaesthesia. We 

conducted two replicates per sex and set for a total of 100 vials per inbreeding 

treatment.  For the same-sex treatment, we kept 4 flies per sex in a vial throughout 

their entire lifespan and flipped them to a fresh vial once a week using light CO2 

anaesthesia to minimize censors due to escaped flies while flipping the vials. 

Lifespan in these vials was calculated as the mean lifespan of the four individuals. 

Finally, for the mixed-sexes treatment we put 2 females and 2 males from the 

same isoline inside a vial and transferred them to a fresh vial twice a week using 

light CO2 anesthesia. Lifespan was calculated separately for males and females 

as the mean lifespan of the two flies of the same sex. Final sample sizes differed 

for each sex, inbreeding treatment and social environment due to missing data 

and they were as follows: inbred males (n = 24 isolation, n = 23 in same sex group 

and n = 25 in mixed sexes groups), intermediately inbred males (n = 23 isolation, 

n = 24 same sex and n = 24 in mixed sex), outbred males (n = 25 isolation, n = 

24 same sex and n = 24 mixed sex), inbred females (n = 25 isolation, n = 24 same 

sex and n=25 mixed sex) intermediately inbred females (n = 25 isolation, n = 23 

same sex group and n=24 in mixed sex), outbred females (n = 25 isolation, n = 

22 same sex and n = 24 mixed sex). 

Statistical Analysis 

In order to determine the effect of inbreeding on reproductive success in a way 

that is comparable across the sexes, we first standardized data (i.e., calculated z-

scores) on female early fecundity and male early reproductive success. To explore 

the effect of inbreeding level on reproductive success, we used a restricted 

maximum likelihood LMMs approach with sex, inbreeding level and their 
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interactions as fixed factors and set as a random intercept effect. In order to 

determine the effect of inbreeding on lifespan, we used raw data. To explore the 

effects of inbreeding level and social environment on lifespan, we used a 

restricted maximum likelihood LMMs approach with sex, social environment, 

inbreeding level and their interactions (including sex × inbreeding level × social 

environment treatment three-way interaction) as fixed factors and set as a random 

intercept effect. Significant sex interactions were explored by fitting LMMs 

separately for both sexes (i.e., by doing sex-specific models).  

Additionally, we pooled data from the isolation and same-sex treatment in this 

experiment with the isolation and same-sex treatment from Carazo et al. (2016), 

which used flies from the same Dahomey background population and the same 

experimental procedure as described here. This resulted in a combined dataset of 

between 35-40 independent sets of isolines (depending on specific contrast, due 

to some missing values), allowing us to run a series of inter and intrasexual 

correlations to explore the genetic architecture underlying lifespan and lifespan × 

inbreeding effects. Firstly, we explored intrasexual correlations between inbred 

and outbred isolines in order to explore the effect of dominant alleles on the 

lifespan of each sex. We expected to observe a correlation due to autosomal 

dominant alleles because those are the ones expressed in both inbred and outbred 

flies. In addition, for males, we also expected an additional effect due to the 

recessive alleles on X chromosomes, which in this sex are always expressed 

irrespective of inbreeding. We used a restricted maximum likelihood LMMs 

approach with inbred lifespan as response variable, outbred lifespan, social 

environment and their interaction as fixed factors and experiment and set as 

random factors; separately for each sex. Secondly, we looked for intersexual 

correlations between males and females (of the same set) in order to explore the 

shared genetic architecture between the two sexes. We used a restricted maximum 

likelihood LMMs approach with female lifespan as response variable, male 

lifespan, social environment and their interaction as fixed factors and experiment 
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and set as random factors. We ran this analysis separately for inbred and outbred 

treatments, and expected a higher intersexual correlation for inbred isolines due 

to the additional expression of the recessive mutations in inbred isolines.  Finally, 

to further explore for the contribution of shared recessive alleles between the 

sexes, we looked for an association between female and male 𝛥𝛥lifespan (i.e., 

lifespan of outbred – inbred treatment). As the X chromosome does not contribute 

to ID in males, an intersexual correlation in 𝛥𝛥lifespan would be caused by 

autosomal recessive alleles affecting lifespan in both sexes. We again used a 

restricted maximum likelihood LMMs approach with female 𝛥𝛥lifespan as 

response variable, male 𝛥𝛥lifespan, social environment and their interaction as 

fixed factors and experiment and set as random factors.  All r2 values provided 

for the relationships above include effects of fixed effects only (i.e., marginal r2).  

7.3. Results 

Effect of Inbreeding on Fitness 

We did not find a significant inbreeding × sex interaction for fitness (χ2 = 0.9829, 

df = 2, p = 0.612), but we did find a clear effect of inbreeding on fitness for both 

sexes (χ2 = 16.499, df = 2, p < 0.001; Figure 7.2), where outbred flies had 

significantly higher fitness than the inbred flies (estimate = 0.7680 ± 0.1852, z = 

4.148, p < 0.001).  

Effect of Inbreeding on Lifespan 

For lifespan, we did not find a significant inbreeding × sex × social environment 

interaction (χ2 = 1.778, df = 4, p = 0.776). When analysing double-way 

interactions, we did not find a significant inbreeding × sex interaction (χ2 = 

4.5122, df =2, p = 0.105), but we did find a significant inbreeding × social 

environment interaction (χ2 = 9.7329, df = 4, p = 0.045) and a clear social 
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environment × sex (χ2 = 58.217, df = 4, p < 0.001) interaction. Given that these 

three variables are interrelated; to interpret these results we re-ran analyses for 

each sex separately. For males, we did not find effects of either inbreeding (χ2 = 

3.8377, df = 2, p = 0.147), social environment (χ2 = 3.6337, df = 2, p = 0.162), or 

the social environment × inbreeding interaction (χ2 = 6.2347, df=4, p = 0.182) on 

lifespan. In contrast, in females we detected clear effects of both inbreeding (χ2 = 

13.136, df = 2, p = 0.001) and social environment (χ2 = 88.592, df = 2, p < 0.001) 

on lifespan (Figure 7.3), whereas we did not detect an interaction between 

inbreeding and social environment (χ2 = 5.5827, df=4, p = 0.233). 

 We used a post hoc Tukey test to explore the effect of inbreeding and 

social environment in more detail in females. We found that outbred females lived 

  

Figure 7.2. Effect of inbreeding on female and male reproductive success. 
Standardized female and male fitness (mean ± S.E.) across different 
inbreeding levels (inbred, intermediately inbred and outbred). 
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significantly longer than inbred females (estimate = 5.370 ± 1.476, z = 3.639, p 

<0.001). However, we did not detect a significant difference between 

intermediately inbred females and either inbred (estimate = 2.946 ± 1.470, z = 

2.004, p = 0.111) or outbred (estimate = -2.424 ± 1.487, z =-1.630, p = 0.233) 

females, although trends were consistent with a gradual continuous effect of 

inbreeding on lifespan. We also found that, as repeatedly shown in the literature 

(Rose et al. 2004), females have significantly shorter lives when they are in mixed 

groups when compared to both in isolation (estimate = -11.630 ± 1.459, z = -

7.969, p < 0.001) and same-sex groups (estimate = -14.683 ± 1.492, z = -9.840, 

p < 0.001). We also found a non-significant trend for females in same sex groups 

to live longer than females in isolation (estimate = 3.053 ± 1.482, z = 2.059, p = 

0.098).  

Additional post hoc Analyses on the Sex-specific Effects of Inbreeding across 

Social Environments  

Post hoc graphical exploration of raw data depicted on Figure 7.3, and of sex-

specific lifespan data across inbreeding treatments and social environments 

(Figure 7.6), casted doubts about the interpretation of the main sex-specific 

lifespan effects detected in our general model above. The “unguarded-X” predicts 

inbreeding to decrease both male and female lifespan, but these effects to be 

stronger in females. At face value, our initial analysis seemed to confirm this 

prediction, but a breakdown of raw data suggested the possibility that an effect 

of inbreeding on male lifespan could be concealed by a male-specific increase of 

lifespan in mixed sexes environment (Figure 7.6). Hence, in order to explore the 

central prediction that inbreeding does result in a stronger reduction of female 

than male lifespan (while controlling for the unexpected results in the mixed 

sexes social environment), we re-ran our analysis separately for each sex while 

including or not the mixed sexes treatment. We hence fitted four separate LMMs 

(one for each sex with/without the mixed sexes treatment) with lifespan as a 

response variable, inbreeding level as a fixed factor, and isoline set and social 
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environment as random factors, which allowed us to calculate a separate effect 

size of inbreeding on lifespan in each case (Figure 7.4).  

Including the mixed sexes treatment, we failed to detect a significant effect of 

inbreeding on male lifespan (χ2 = 3.870, df = 2, p = 0.146), but we did detect a 

clear effect of inbreeding on female lifespan (χ2 = 12.991, df = 2, p = 0.002), as 

expected. Re-fitting this model without the mixed sexes treatment gave 

qualitatively similar results, with a marginally non-significant effect of 

inbreeding on male lifespan (χ2 = 5.210, df = 2, p = 0.074), and a clear effect on 

female lifespan (χ2 = 14.178, df = 2, p < 0.001). Because this analysis has 

somewhat limited power due to the modest sample size of this study (i.e., ~25 

sets of isolines) we took advantage of the data reported in Carazo et al. 2016 

(same background population of D. melanogaster and exact same methodology) 

to run more powerful models on the combined dataset across the two experiments 

(i.e., ~40 sets of isolines). To estimate the overall effect size of inbreeding on 

male and female lifespan we hence fitted, separately for each sex, a LMMs with 

lifespan as a response variable, inbreeding as a fixed factor, and isoline set, social 

environment and experiment as random factors. We repeated this analysis with 

and without the contribution of the mixed sexes treatment, again to guard against 

the potentially misleading effect of this treatment. In this case, we found clear 

effects of inbreeding on both sexes and in both analyses. Including the mixed 

sexes treatment, inbreeding significantly decreased both male (χ2 = 7.611, df = 2, 

p = 0.022) and female lifespan (χ2 = 35.662, df = 2, p < 0.001), but this effect was 

considerably more marked in females (estimated lifespan for inbred-outbred flies 

± standard error in days; -8.007 ± 1.302) than in males (-2.177 ± 1.296 days). Not 

including the mixed sexes treatment actually resulted in very similar results, with 

inbreeding again significantly decreasing both male (χ2 = 8.326, df = 2, p = 0.016) 

and female lifespan (χ2 = 38.660, df = 2, p < 0.001), but with this effect being 

considerably more important in females (estimated lifespan for inbred-outbred 

flies ± std. error, in days; -9.680 ± 1.493) than in males (-3.643 ± 1.494 days).  
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Intrasexual and Intersexual Correlations for Lifespan and inbreeding 

depression 

We found evidence of a significant (albeit weak) intrasexual relationship between 

the lifespan of inbred and outbred males from the same maternal isoline 

(χ2=6.9568, df = 1, p = 0.008, rm
2 = 0.122), but we did not find evidence of a 

similar effect in females (χ2 =1.2469, df=1, p = 0.264; Figure 7.5a). These 

correlations were not modulated by an interaction with social environment in 

either males (χ2= 0.0963, df = 1, p = 0.756) or females (χ2 = 0.2145, df = 1, p 

=0.643). We found a significant intersexual correlation in the lifespan of males 

and females from the same maternal isoline for both inbred (χ2= 15.365, df = 1, 

p <0.0001, rm
2 = 0.188) and outbred (χ2= 7.1068, df = 1, p= 0.008, rm

2=0.130; 

Figure 7.5b) treatment. Again, this relationship was not modulated by an 

interaction with social environment in either inbred (χ2 = 0.169, df = 1, p = 0.681) 

or outbred (χ2 = 0.8013, df = 1, p = 0.371). Finally, we found a significant 

correlation between males and females of the same maternal isoline in the degree 

to which inbreeding caused a decline in their lifespan (i.e., 𝛥𝛥lifespan, or ID for 

lifespan) (χ2 = 14.952, df = 1, p < 0.001, rm
2= 0.192; Figure 7.5c). This 

relationship was not modulated by an interaction with social environment (χ2 = 

1.2723, df = 1, p = 0.259).  

7.4. Discussion 

In this study, we found evidence supporting the idea that inbreeding decreases 

female lifespan to a greater degree than male lifespan across different social 

environments. These results were further confirmed by a more powerful analysis 

that included data from this study and from a recent study (Carazo et al. 2016) 

using the same population of D. melanogaster and experimental design, showing 

that inbreeding reduces both male and female lifespan across different social 

environments, but that effects on females are considerably larger (i.e., 



Chapter 7 
 

100  
 

  

Figure 7.5. Intra/inter-sexual correlations for lifespan and inbreeding 
depression in lifespan. (a) Intrasexual correlation for lifespan. (b) Intersexual 
correlation for lifespan. (c) Intersexual correlation for inbreeding depression 
in lifespan. 
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approximately double).  We further used this combined dataset to explore the 

underlying genetic architecture of this phenomenon using intra- and intersexual 

correlations on inbreeding effects on lifespan. We found evidence to suggest that, 

as expected, there is a common genetic architecture for the inbreeding effects on 

lifespan across the sexes. Finally, in our study sex-specific effects of inbreeding 

on female lifespan did not seem to be counterbalanced by sex-specific effects of 

inbreeding in the opposite direction for reproductive fitness, suggesting the 

former are potentially maladaptive, as predicted by the UXh. 

Inbreeding, Lifespan and the “Unguarded-X” Hypothesis 

We found that inbreeding resulted in a sex-specific reduction of female lifespan 

across social environments (Figure 7.3a), to the point of removing the female-

biased sexual dimorphism that is frequently reported in this species (but see also; 

Chippindale et al. 1993). At face value, these results seem to strongly support the 

hypothesis that inbreeding depression for lifespan is greater in females than in 

males. We graphically explored raw sex-specific lifespan data across inbreeding 

treatments and social environments to confirm that the sex-specific inbreeding 

effect was consistent across the social environments (Figure 7.6), which was the 

case for females. In males, however, inbreeding reduced male lifespan in the same 

sex and isolation treatments but there was a trend for inbred males to live longer 

than intermediately inbred/outbred males in the mixed sex treatment (Figure 

7.6c). This trend fits well with recent studies reporting relatedness effects on 

reproductive cooperation in male of D. melanogaster where males courted 

females less intensively and lived longer when they were reared with their 

brothers (Carazo et al. 2014; Le Page et al. 2017), but it may have partially driven 

the sex-specific effect reported above. In order to provide a more robust test of 

the idea that inbreeding may result in a greater reduction in female than in male 

lifespan per se, and not due to indirect male-specific effects in the mixed sexes 
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treatment, we ran a series of post hoc analyses. First, we re-analysed data from 

our own experiment by fitting models separately for each sex with/without taking 

into account the mixed sexes treatment. We detected marginal or no effects of 

inbreeding on male lifespan and clear effects on female lifespan irrespective of 

the mixed sexes treatment, showing our initial results were actually robust. 

Second, and in order to provide a yet more powerful test, we pooled our data with 

that from a previous experiment conducted following the same experimental 

procedure on an independently derived set of isolines from the same background 

population of flies (Carazo et al. 2016). This allowed us to estimate the overall 

  

Figure 7.6. Effect of inbreeding on female/male lifespan across different 
social environments. Female and male lifespan (mean ± S.E.) across different 
inbreeding levels for (a) all social environments, (b) same sex groups, (c) 
mixed sexes groups and (d) isolation. 
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effects of inbreeding for each sex using a much larger overall sample size of ~40 

independently derived sets of isolines (i.e., ~80 different isolines in total), while 

including or excluding the mixed sexes treatment. In these analyses, we detected 

a clear effect of inbreeding on both males and females, irrespective of the mixed 

sexes treatment. Importantly, however, effect sizes for females were significantly 

greater than for males (Figure 7.4), strongly suggesting that inbreeding does 

result in a stronger decrease of female than male lifespan in our population of D. 

melanogaster. 

Overall, the findings above are therefore consistent with one of the main 

predictions from the UXh: that inbreeding will have a greater effect on the 

lifespan of the homogametic sex. A complementary explanation for our findings 

could have to do with adaptive sex-specific life history changes in response to 

inbreeding. In as much as inbreeding depression can affect the trade-off between 

current and future reproduction (Stearns 1992), it could in principle cause a  sex-

specific adaptive response on male and female lifespan (e.g. decline in female 

lifespan compensated by increase in early female fecundity). In D. melanogaster, 

it would seem unlikely that inbreeding could improve female reproductive output 

in a way that counterbalances the fitness loss (due to lifespan reduction), because 

previous studies have reported comprehensive negative effects across different 

fitness components (i.e., viability and fecundity; (Mallet and Chippindale 2011; 

Mallet et al. 2011). However, this does not completely discard the potential role 

of adaptive sex-specific responses. Provided the existence of a sex-specific 

relationship between reproduction and lifespan, inbred females and males could 

behave in a way that optimizes their fitness differently under genotoxic stress and 

this could mean differential effects of inbreeding on lifespan. Our results are 

perhaps more parsimoniously explained by the UXh, but they don’t necessarily 

exclude a role for sexually divergent selection.  
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Finally, there are at least two other hypotheses that could also contribute to 

explain the results obtained in this study: sexually antagonistic genes and sex-

specific expression patterns. Previously unexpressed sexually antagonistic 

recessive alleles with negative effects on females and positive effects on males 

will be differentially expressed after inbreeding, due to un-guarding of the X in 

females causing a decline in female lifespan without any effect on male lifespan. 

Such effects could be particularly important in the X chromosome, because 

classical theory predicts it will be a hotspot for the accumulation of sexually 

antagonistic alleles (Rice 1984). In accordance with this theory, an elegant study 

by Gibson et al. (2002) showed evidence strongly suggesting that, in at least one 

lab population of D. melanogaster, the X chromosome is enriched with sexually 

antagonistic alleles (Gibson et al. 2002). Furthermore, in the X chromosome 

sexually antagonistic recessive mutations with positive effects on males and 

negative effects on females (under positive selection in males and mostly 

unselected in females) are expected to be relatively more abundant than recessive 

mutations with negative effects on males and positive effects on females (under 

negative selection in males and mostly unselected in females). In contrast, other 

studies have suggested that sexually antagonistic polymorphisms may actually be 

less frequent in the sexual chromosomes than in the autosomes (Fry 2010; Barson 

et al. 2015), and a recent study reporting the first genome-wide identification and 

characterization of sexually antagonistic SNPs in D. melanogaster found that 

antagonistic SNPs were underrepresented in the X chromosome (Hill et al. 2018; 

but see also Innocenti and Morrow 2010). In any case, the fact remains that any 

recessive sexually antagonistic alleles in the X chromosome could produce sex-

specific lifespan effects in the same direction as those detected in this study, as 

could also similar processes leading to X chromosomes enriched for deleterious 

recessive alleles with female-specific expression.  
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Inbreeding Effects on Male and Female Reproductive Success 

Unlike lifespan, we did not observe a clear sex-specific effect of inbreeding on 

reproductive success, but an apparently similar decrease of fitness with 

inbreeding across the sexes. This finding begs the question of why wouldn’t 

“unguarded-X” phenomena affect female reproductive success in a sex-specific 

way. There are two main reasons why we may not expect fitness to behave as 

lifespan in response to inbreeding. First, the UXh predicts an increase in the 

expression of deleterious recessive mutations in the heterogametic sex. To the 

extent that such mutations have a similar effect in both sexes (i.e., a similar effect 

in inbred individuals of the homozygous sex than in hemizygous individuals of 

the heterozygous sex), they could explain differences in ageing between the 

sexes. However, while we expect mutations affecting lifespan to produce effects 

in the same direction in both sexes, mutations affecting reproductive success will 

frequently produce different effects in males and females. This is mainly because 

the components and measures of female and male reproductive success differ 

markedly, with fecundity being cornerstone for females and intra- and intersexual 

competition being relatively important for males. Because distinct genes and 

adaptations are likely to be involved in each case, the declines in male and female 

fitness with inbreeding may not be directly comparable in magnitude. Second, 

there is considerable empirical evidence that the intensity of sexual selection in 

D. melanogaster is, as is frequently the case (Wade 1979), stronger in males than 

in females (Bateman 1948). This, in turn, is predicted to lead to higher inbreeding 

depression in male fitness, and thus any UXh differential effects of inbreeding on 

female fitness could be partially or completely compensated by the stronger effect 

of inbreeding depression on male fitness. As a matter of fact, previous studies 

using both inbreeding (Mallet and Chippindale 2011) and mutation accumulation 

experiments (Mallet et al. 2011; Sharp and Agrawal 2013) have consistently 

found that this is the case in other populations of D. melanogaster. Mallet and 

Chippindale (2011) measured inbreeding load on D. melanogaster viability and 



Chapter 7 
 

106  
 

adult fitness (but not lifespan) in males and females. They found that, for juvenile 

viability, inbreeding has similar effects on males and females, but male adult 

fitness experienced a sharper decrease compared to females in response to 

inbreeding. Moreover, Mallet et al. (2011) further conducted a mutation-

accumulation experiment on the X chromosome and observed a greater decline 

in male than in female fitness, even after females were made homozygous for the 

X chromosome. This pattern of male-biased fitness inbreeding depression has 

also been shown to hold when mutation-accumulation is restricted to the second 

chromosome (Sharp and Agrawal 2013). In our population, we did not detect any 

sex-specific inbreeding effects on estimates of male and female fitness, but males 

suffered inbreeding in only two of their three major chromosomes (i.e., their X 

chromosome is hemizygous) while females suffered inbreeding across their three 

major chromosomes. Taking this into account, we would expect a greater effect 

on female than on male fitness, and our results are hence not inconsistent with 

previous studies showing greater inbreeding depression for reproductive fitness 

in males.  

Social Environment Effects on Male and Female Lifespan 

Our results further show that the social environment has sex-specific effects on 

aging. This is far from surprising, as there is ample evidence, in Drosophila and 

in other organisms, that the social environment and reproduction in particular can 

drastically modulate aging (Bonduriansky et al. 2008). However, previous studies 

looking at the unguarded-X hypothesis have focused on studying the lifespan of 

males/females kept in isolation and/or same-sex groups (Fox et al. 2006; Bilde et 

al. 2009; Carazo et al. 2016). In isolation, the influence of all social behaviours 

on lifespan is eliminated. In same-sex groups, individuals are able to engage in 

social interactions, but are not able to reproduce and females are not subject to 

sexual conflict/female harm, which in the case of flies is very significant (Wigby 

and Chapman 2005; Perry and Rowe 2015). Not surprisingly, we found that the 

mixed sexes group had a dramatic effect on female lifespan, which is expected 
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given that reproduction (Fowler and Partridge 1989; Wigby and Chapman 2005) 

and exposure to males (Partridge and Fowler 1990) are both well-known to 

decrease female lifespan in fruit flies. More surprising was our finding that, in 

the mixed sexes group, inbred males exhibited a trend to live longer than the other 

inbreeding treatments and inbreeding did not affect females as clearly as it did in 

other social environments. This may be due to the role of within-group 

relatedness in reducing male-male competition for females and/or female harm 

levels (Carazo et al. 2014, 2015; Hollis et al. 2015; Martin and Long 2015; Le 

Page et al. 2017; but see Chippindale et al. 2015), which at least in some cases 

leads to longer male lifespan (Carazo et al. 2014). Similar effects on females, via 

reduced female harm, may explain why inbreeding affected female lifespan 

relatively less in the mixed than in the other social environments. In any case, 

interpretation of our results in the mixed sexes group is complex and inherently 

speculative, especially concerning that a recent study has shown that female harm 

and male-male competition is exacerbated in standard fly vials with respect to 

more natural environments (Yun et al. 2017). Taking all of the above into 

account, we suggest results from the same sex and isolation treatments may 

actually provide a much clearer test of the UXh prediction than mixed sexes 

groups.  

On the genetic architecture of lifespan 

In order to explore the genetic architecture of lifespan effects, we pooled data 

from this and a prior study (Carazo et al. 2016) and looked at intrasexual and 

intersexual associations between the lifespan of males/females of the same 

maternal isoline. We found an intrasexual association between the lifespan of 

inbred and outbred males, but not females. We suggest this difference is probably 

due to the fact that, in males, our analysis would pick up the joint contribution of 

dominant autosomal effects and recessive effects on the X chromosome (see 

Figure 7.1), whereas the latter effects won’t be present in females. Considering 

that males double the expression of X chromosomes during dosage 
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compensation, we may expect such recessive effects to have an important bearing 

on male lifespan. We also found evidence of a shared genetic architecture for 

lifespan across the sexes, as shown by intersexual associations between inbred 

and outbred males and females from the same maternal isoline. We found a more 

pronounced relationship between female and male lifespan in inbred compared 

to outbred treatments, which was expected due to the higher proportion of shared 

genetic material and expression of recessive alleles in inbred flies. Finally, we 

detected a shared male/female genetic recessive background of autosomal 

recessive alleles affecting lifespan. We found a clear association between 

𝛥𝛥lifespan (i.e., ID for lifespan) between males and females. This association 

would be caused by autosomal alleles because the X chromosome of males does 

not cause inbreeding depression (as it is always effectively inbred) and the Y 

chromosome is only present in males. For D. melanogaster, intersexual and 

intrasexual correlations using inbred and outbred isolines have, to the best of our 

knowledge, previously been reported for fitness and viability (Mallet and 

Chippindale 2011), but not for lifespan. Intersexual correlational analysis for 

lifespan and inbreeding depression on lifespan has previously been reported in 

seed beetles (Fox et al. 2006) where, surprisingly, male and female lifespan were 

positively correlated in outbred but not inbred individuals. Also in contrast to our 

experiment, this study did not find a correlation between the inbreeding 

depression of lifespan on males and females. Such differences may be pointing 

out important differences in the genetic architecture of lifespan between these 

two model organisms which would be interesting to explore in the future. 

Final remarks 

The question of why the sexes age differently is an enduring challenge with broad 

evolutionary implications. There is increasing evidence that sex-specific adaptive 

evolution is important to understand the evolution of sex differences in ageing 

and lifespan (Promislow 2003; Arnqvist and Rowe 2005; Bonduriansky et al. 

2008; Maklakov and Lummaa 2013), but the mechanisms underpinning sex-
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specific lifespan remain unclear. Recent evidences in D. melanogaster suggest 

that maladaptive processes such as the asymmetric inheritance of mitochondrial 

DNA, expression of deleterious recessive mutations on the X chromosome (UXh) 

and negative effects of transposable elements on the Y chromosome (“toxic Y” 

hypthesis) are all necessary for a comprehensive understanding of sexual 

dimorphism in ageing (Camus et al. 2012; Carazo et al. 2016; Brown et al. 

2020b). Using the same species, we contribute to this budding corpus of research 

by testing a fundamental prediction of the UXh: that inbreeding will have 

maladaptive sex-specific effects on female lifespan. Our results are indeed 

consistent with this prediction, suggesting the UXh may be important to 

understand sex-specific ageing in D. melanogaster. However, we identify other 

processes, such as sexually antagonistic recessive alleles or sex specific gene 

expression patterns, that could at least partly explain the results obtained here. A 

conclusive test of the UXh has remained elusive since its original formulation a 

few decades ago (Trivers 1985). Despite this fact, the “unguarded-X” is not only 

theoretically solid, but as we show here has the potential to contribute greatly to 

our understanding of sex-specific ageing across a wide diversity of taxa.  
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Chapter 8. Genetic sex determination and sex-
specific lifespan in tetrapods - evidence of a toxic Y 
effect 

8.1. Introduction 

There are several ways in which sex chromosomes can give rise to different 

female and male lifespans (Pipoly et al. 2015; Marais et al. 2018; Xirocostas et 

al. 2020). As discussed in the previous chapter of this Thesis, the unguarded-X 

hypothesis (UXh) predicts increased mortality of the heterogametic sex due to 

the expression of deleterious recessive mutations that accumulate in the non-

recombining parts of the X (or Z) chromosome (Trivers 1985). This idea has 

received indirect support so far. In Chapter 7 we showed that “unguarding” the X 

chromosome in females erases the sex gap in lifespan in D. melanogaster (Carazo 

et al. 2016; Sultanova et al. 2018) but see (Brengdahl et al. 2018). Using a 

comparative approach, Pipoly et al. (2015) showed that adult sex-ratios are 

typically female-biased in tetrapods with XY systems, but male-biased in taxa 

with ZW systems, as expected if biased adult sex ratios result from sex-specific 

mortality. A recent study further shows that the heterogametic sex tends to exhibit 

lower mean/maximum lifespan across a wide taxonomic range, but phylogenetic 

signal and sexual selection could contribute to explain this relationship 

(Xirocostas et al. 2020). 

A recently postulated complementary hypothesis focuses on the role of the 

heteromorphic Y (or W) chromosome. Following recombination suppression, the 

non-recombining regions of Y (or W) chromosomes tend to accumulate 

deleterious mutations through evolutionary time, via processes such as Muller’s 

ratchet, genetic hitchhiking or “Ruby in the rubbish” (Bachtrog 2013; Wright et 

al. 2016). Recombination suppression also leads to an accumulation of repetitive 

DNA in the Y and W chromosomes (Bachtrog 2013; Wright et al. 2016). 
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Interestingly, recent evidence has shown that repetitive DNA on the Y 

chromosome can contribute to sex-specific ageing in D. melanogaster (Brown et 

al. 2020b,a). Brown et al. (2020b) found that repetitive DNA sequences (e.g. 

transposable elements), that are normally repressed with heterochromatin 

structures, were de-repressed with age in both sexes, but more rapidly in males. 

This led to the mis-expression of repetitive sequences across the whole genome 

including the repeats-rich Y chromosome. In order to test if the mis-expression 

of the repetitive sequences in the Y chromosome causes faster ageing, Brown et 

al. (2020b) generated flies with different sex chromosome karyotypes: XXY 

females; X0 and XYY males in addition to wild-type karyotypes: XX females 

and XY males. They found a positive correlation between the de-repression of 

repeats and the number of Y chromosomes, and a negative correlation between 

average lifespan and the number of Y chromosomes (Brown et al. 2020b). 

Moreover, in another study conducted by the same group, Brown et al. (2020a) 

found that Y-chromosome also affects heterochromatin integrity genome-wide 

by decreasing the heterochromatin protection on other normally silenced repeat-

rich sequences  (Brown et al. 2020a). In short, in D. melanogaster there is solid 

evidence of substantial “toxic Y” effects via the expression of repetitive DNA 

elements, resulting in increased mortality of the heterogametic sex. This finding 

in fruit flies could be critical to understand sex-specific ageing across taxa 

because both Y and W chromosomes generally accumulate high amounts of 

repetitive sequences during their evolution (Bachtrog 2013; Wright et al. 2016). 

To our knowledge, the role of the “toxic Y” hypothesis in explaining broad 

patterns of sex differences in ageing has yet to be addressed. 

The UXh and the toxic Y hypothesis are not mutually exclusive as both predict 

that sex differences in lifespan result from increased mortality of the 

heterogametic sex. However, for the former this is due to deleterious mutations 

in the X (or Z) chromosome, while for the latter this is due to the toxic effects of 

the Y (or W). This difference makes it possible to examine specific predictions 
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regarding the relationship between female/male lifespan and the relative size of 

the sex chromosomes (Figure 8.1). Namely, the UXh predicts that the sex gap in 

lifespan (i.e., female - male lifespan) will be positively associated with: a) the 

degree to which the X chromosome is larger than the Y chromosome (and vice 

versa with Z/W), because “unguarded” recessive mutations have to accumulate 

in the non-recombining regions of the X (or Z) chromosome, and the overall size 

of these regions increases with the size difference between the sex chromosomes 

(Figure 8.1A), and b) the relative size of the X chromosome with respect to the 

rest of the genome (or vice versa for the Z), because this provides a measure of 

how much genetic variation in lifespan we expect the X (or Z) chromosome to 

explain (Figure 8.1B). For example, X-linked effects are expected to be 

significant in D. melanogaster, where the X chromosome constitutes ~20% of the 

genome (Mallet et al. 2011), but relatively minor in polar bears (Ursus 

maritimus), where the X chromosome is < 5% of the genome (O’Brien et al. 

2006). In contrast, toxic Y (or W) effects depend exclusively on the size of the 

non-recombining region in the Y (or W) chromosomes. Thus, toxic Y effects 

specifically predict lower male survival with increasing size of the Y (or W) 

chromosome relative to the autosomes (Figure 8.1C). 

We first collected data on sex-specific survival across 138 species of birds, 

mammals, reptiles and amphibians, representing 6 independent origins of XY 

systems and 6 independent origins of ZW system, and used phylogenetic meta-

analytic models to test the general prediction that females are longer lived than 

males in XY systems and vice versa in ZW systems. To tease apart whether 

differences in survival between the sexes are driven by unguarded-X or toxic Y 

effects, we then collected published karyotype data for 31 mammal and 15 bird 

species – the number for which we also had data on sex differences in survival. 

We focused on birds and mammals as we needed substantial variation in the sizes 

of sex chromosomes across species and this was lacking for amphibians and 

reptiles. We used this data to examine the following predictions. If the UXh 



Chapter 8    
 

114  
 

 

 

Figure 8.1. T
he correlations betw

een sex-specific lifespan and relative sizes of the sex chrom
osom

es predicted by 
unguarded-X

 and toxic Y
 hypotheses. The unguarded-X

 hypothesis predicts a positive relationship betw
een the lifespan 

gap (i.e. fem
ale – m

ale lifespan) and the size of the X
 relative to both the Y

 chrom
osom

e (A
) and to the autosom

es (B
), and 

vice versa in the case of the Z chrom
osom

e. The toxic Y
 hypothesis, on the other hand, predicts a direct negative relationship 

betw
een the size of Y

 and W
 chrom

osom
es and the lifespan of the heterogam

etic sex (C). Toxic Y
/W

 effects are expected 
to be stronger in m

am
m

als than in birds (e.g. because of the low
er effective population size of Y

 com
pared w

ith W
). 

 



Chapter 8 
 

115 
 

contributes to the evolution of sex-specific lifespans, we expect: i) female 

mammals to have increasingly higher survival than males as the size of X relative 

to Y increases and as the size of X relative to the autosomes increases and ii) male 

birds to have increasingly higher survival than females as the size of Z relative to 

W increases and as the size of Z relative to the autosomes. If toxic Y (or W) 

effects contribute to the evolution of sex-specific lifespans, we expect: i) female 

mammals to have increasingly higher survival than males as the size of Y relative 

to the autosomes increases and ii) male birds to have increasingly higher survival 

than females as the size of W relative to the autosomes increases. 

8.2. Materials & Methods 

Data Collection 

To detect unguarded-X and toxic Y effects using comparative analyses, we 

required data on sex-specific lifespans across multiple independent origins of XY 

(male heterogametic) and ZW (female heterogametic) systems, as well as 

variation across species in the extent of recombination suppression between the 

sex chromosomes. We therefore limited our search to tetrapods (amphibians, 

reptiles, birds and mammals) with XY or ZW systems because of the abundance 

of species that have been relatively well studied with respect to sex-specific 

lifespans (or proxies thereof, see below). We excluded fish because we did not 

find enough concurrent data on both sex-specific lifespan and genetic sex 

determination system. Data analysed in this study will be available in Dryad 

Digital Repository: [https://doi.org/10.5061/dryad.70rxwdbv1]. 

Sex differences in lifespan 

We used sex-specific survival rates and mean ages as proxies for sex differences 

in lifespan to maximise available data across multiple independent origins of XY 

and ZW systems. Average lifespans are difficult to measure in wild vertebrate 

populations and life-tables (from which adult life expectancy can be calculated) 
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have been reported for relatively few species, primarily mammals and birds 

(Clutton-Brock and Isvaran 2007; Jones et al. 2014). Both survival and mean age 

are directly related to lifespan: life history theory predicts a longer lifespan when 

extrinsic mortality is low and thus survival is high while mean age will be lower 

in populations with a higher proportion of young individuals. Furthermore, 

survival and mean age are typically estimated using mark-recapture methods and 

so have the advantage of being reported with measurement error, which can be 

incorporated into statistical analyses. We excluded maximum lifespan as a proxy 

for average lifespan because it is strongly dependent on sampling effort, it is 

reported without error (by definition) and currently available data come from a 

mixture of wild and captive populations frequently based on very few individuals 

(De Magalhaes et al. 2005). 

We used Scopus and Web of Science (WoS) to identify studies reporting sex-

specific survival rates and mean ages. First, we used the following topic search 

term: "(male or female) AND mark-recapture" (studies published up to 

31/12/2018). This returned 1647 studies from WoS and 2227 studies for Scopus. 

We also conducted backward and forward citation searches on the following 

review papers of survival rates (Karr et al. 1990; Yom-Tov et al. 1992; 

Siriwardena et al. 1998; Peach et al. 2001; DeSante and Kaschube 2007; 

McCarthy et al. 2008). This returned 168, 42, 118, 91, 8 and 31 studies from each 

review respectively. This search strategy primarily returned studies with suitable 

data on birds and mammals. To increase the number of amphibians and reptiles 

in our sample, we therefore conducted two additional searches in WoS and 

Scopus using the following topic search terms “mean age OR average age AND 

male AND female AND amphibian OR reptile” and “skeletochronology AND 

male AND female”. The first search terms returned 25 studies from WoS and 32 

studies from Scopus and the second search terms returned 205 studies from WoS 

and 207 studies from Scopus. We included “skeletochronology” in our second 

search term because this is a widely-used technique for determining mean age in 
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reptiles and amphibians and is typically reported with error for females and males. 

We screened the title of each study in our sample (N = 4801 studies) and the 

abstracts of those which appeared to contain relevant data and identified 157 

studies with suitable data (female and male survival / mean age reported with 

error) and that matched with the reptile and amphibians with known genetic sex-

determination systems (see below). 

Genetic sex-determination system 

We collected data on the genetic sex determination system for each species in our 

database using the tree of sex database (Ashman et al. 2014). We complemented 

this with individual searches for species for which we had data on sex-specific 

lifespan (i.e., survival/mean age), but that did not appear in the tree of sex 

database; using the keywords “species name” AND “karyotype” OR “sex 

chromosome” in Google Scholar, Scopus and WoS and then examining the 

abstracts in search for data on the genetic determination system. All birds were 

assigned as ZW (Nspecies = 69) and all mammals as XY (Nspecies = 45). We assigned 

six amphibian and seven reptile species as ZW and ten amphibian and two reptile 

species as XY. We estimated the number of independent origins of XY and ZW 

systems in our sample of species using data from published sources (Evans et al. 

2012). There were 2 independent XY origins and 2 independent ZW origins in 

our sample of reptiles and 3 independent XY origins and 3 independent ZW 

origins in amphibians. Therefore, in total, our sample included six XY origins 

and six ZW origins. 

Karyotypes 

We collected karyotype data for all available bird and mammal species for which 

we also had sex-specific survival/mean age data. We focused on birds and 

mammals as we needed variation in the sizes of the recombining and non-

recombining chromosomes across species that share the same origin of a genetic 

sex determination system. This was not possible for amphibians and reptiles 
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where each independent origin of XY or ZW systems included seven or fewer 

species. We began by searching 14 chromosome atlases (Hsu and Benirschke 

1967; Benirschke and Hsu 1971; O’Brien et al. 2006) for the karyotypes of 

species for which we had data on sex differences in survival. We identified 

karyotype images for 22 mammal and 4 bird species. For the species that were 

not present in these atlases, we did an additional search using the keywords 

“species name AND karyotype” in Web of Science and Scopus. We then 

examined the content of each article for karyotype images. From these searches, 

we found karyotype images for a further 9 mammal and 11 bird species. In total, 

we found suitable data for 32 mammal and 15 bird species. For each of these 

species, we used the karyotype image to calculate three ratios: i) the ratio of X or 

Z to the rest of the chromosomes (X / autosomes or Z / autosomes), ii) the ratio 

of Y or W to the rest of the chromosomes (Y / autosomes or W / autosomes) and 

iii) the ratio of X to Y and W to Z (X / Y or Z / W). We used ImageJ for calculating 

the relative size of the sex chromosomes from karyotype images (Schneider et al. 

2012). 

Sexual size dimorphism 

We used sexual size dimorphism as a proxy to control for the intensity of sexual 

selection by including this variable as a co-variate in our statistical models (see 

below). We aimed to collect data on female and male head to body length for 

mammals, amphibians and reptiles. However, sex-specific body lengths were not 

available for most of the birds and some of the mammals in our sample, in which 

cases we extracted data on female and male body mass instead. For mammals, 

we compiled data from two online resources: http:// www.arkive.org and 

http://eol.org. For the species that were not present in these databases, we did an 

additional search using the keywords “species name AND body size AND male 

AND female” in WoS and Scopus, and then examining the whole content of the 

articles in search of male/female body length data. For amphibians and reptiles, 

the studies from which we extracted sex-specific mean age data from also 
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provided data on sex-specific body size. For birds, sexual size dimorphism was 

taken from the Handbook of the Birds of the World (del Hoyo et al. 2018). 

Finally, we calculated sexual size dimorphism as the natural logarithm of the ratio 

of female to male body size: ln (female value / male value). 

Phylogenetic trees 

We used the rotl R package, an interface to the Open Tree of Life (McTavish et 

al. 2015), to estimate a phylogenetic tree of the relationships among species in 

our sample. Branch lengths were estimated using (Grafen 1989) method in the 

APE package in R, with each node height raised to the power of 0.5. This tree 

was used in the analysis of sex differences in lifespan across tetrapods (see 

below). For the analysis involving birds only, we downloaded a sample of 1300 

phylogenies (out of 10 000) from the birdtree.org (Jetz et al. 2012). Similarly, for 

the analysis involving mammals only, we downloaded a sample of 1300 

phylogenies (out of 10 000) from the supporting information of Kuhn et al. 

(2011). We calculated a phylogenetic covariance matrix (evolutionary distances 

between species) from each of these trees, which were then used to account for 

dependencies due to shared evolutionary history in our statistical models. 

Effect size calculation 

We compared female and male lifespans using an effect size which allows us to 

take a standardised measure of the magnitude of the statistical difference between 

the sexes that is comparable across studies (Koricheva et al. 2013). We used the 

natural logarithm of the response ratio: 

lnR = ln(�́�𝑋1/�́�𝑋2) 

where �́�𝑋1 is either female mean age or female annual survival and �́�𝑋2 is either 

male mean age or male annual survival depending on which measure was 

available for a given species. Positive values indicate that females live longer than 
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males and negative values that males live longer than females. Each effect size 

was weighted by the inverse of its sampling variance in our statistical models to 

account for differences in sampling effort between studies:  

VlnR = (SE1^2 / �́�𝑋1^2) + (SE2^2 / �́�𝑋2^2) 

where SE1 is the standard error of the female value and SE2 is the standard error 

of the male value. In total, we obtained 255 effect sizes from 157 studies on 138 

species across 6 independent origins of XY systems and 6 independent origins of 

ZW systems. There was significant between-study variance (τ2 = 0.01, I2 = 97.1%, 

Cochran's Q = 8073.7, p < 0.001, Neffect sizes = 255). We detected no evidence of 

publication bias using Egger's regression method (intercept = 0.00, p = 0.96). 

However, a trim and fill analysis suggested that 54 effect sizes were missing from 

our sample. There was no difference in mean lnR between studies reporting 

annual survival and those reporting mean age in XY or ZW systems (XY 

difference = -0.09, se = 0.06, p = 0.13, Neffect sizes = 120; ZW difference = -0.07, se 

= 0.05, p = 0.15, Neffect sizes = 135) suggesting that the proxy used to estimate sex 

differences in lifespan does not bias our effect sizes. We calculated heterogeneity 

statistics for each of the meta-analytic models, including the percentage of 

variation in lnR attributable to phylogenetic history and repeated observations 

made on the same species (Nakagawa and Santos 2012). 

Statistical models 

We used the metafor (Viechtbauer 2010) and MCMCglmm (Hadfield 2010) R 

packages for model fitting when analysing lnR. Metafor uses restricted maximum 

likelihood for parameter estimation while MCMCglmm uses the Markov chain 

Monte Carlo (MCMC) method in a Bayesian framework. For analyses of non-

Gaussian response variables (i.e., sex-specific annual survival rates, described 

below) we used MCMCglmm only which has greater flexibility when fitting 

models with non-normal distributions. We therefore report parameter estimates 
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from MCMCglmm in the results section for consistency between analyses but 

show those from metafor. Parameters are reported as the posterior mode (ß) and 

95 % credible interval (CI) of the posterior distribution of the Markov chain and 

significance is assessed by whether the CI includes zero. For the MCMCglmm 

models, we used uniform priors for fixed effects and inverse-Wishart priors (v = 

1 and nu = 0.002) for random effects and ran each model for 1,300,000 iterations 

with a burn in period of 300,000 and saving every 1000th iteration of the chain.  

Sex differences in lifespan and genetic sex determination system across 

tetrapods 

To test whether females are longer-lived than males in XY systems and males are 

longer-lived than females in ZW systems we modelled lnR (treated as Gaussian) 

as a function of genetic sex determination system (2 level fixed effect: ZW or 

XY) with sexual size dimorphism included as a covariate (z transformed: mean = 

0 and sd = 1) and the phylogenetic covariance matrix from the tetrapod phylogeny 

(see above) as a random effect. We also included a species-specific random effect 

to account for repeated measures made on the same species. Each effect size was 

weighted by the inverse of its sampling variance, VlnR.  

Sex differences in lifespan and the difference in size between the sex 

chromosomes 

We modelled the relationship between sex differences in lifespan and the 

difference in size between the sex chromosomes (X vs. Y and Z vs. W) to test for 

an unguarded-X effect. If recessive mutations accumulate in the non-recombining 

regions of X or Z chromosomes then the larger the size difference between the X 

and the Y (or between Z and W), the larger the non-recombining region, resulting 

in more recessive mutations and greater sex differences in lifespan. First, we 

modelled lnR (treated as Gaussian and with each effects size weighted by the 

inverse of its sampling variance) as a function of the X/Y ratio (log and z 
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transformed) in mammals. We included sexual size dimorphism as a covariate (z 

transformed) and a species identifier and a phylogenetic covariance matrix as 

random effects. We replaced the phylogenetic covariance matrix used in each 

model every 1000 iterations of the Markov chain with the next one in the 

sequence calculated from the 1300 mammal phylogenies downloaded from from 

the supporting information of Kuhn et al. (2011). The values of the variance 

components and latent variables estimated using the previous phylogenetic 

covariance matrix were used as starting values for the next one in the sequence. 

This allowed us to incorporate uncertainty in the mammal phylogeny into our 

analyses. Note that this was not possible for the metafor analysis and parameters 

were calculated based on one randomly sampled phylogenetic covariance matrix. 

Next, we modelled lnR (treated as Gaussian and with each effect size weighted 

by the inverse of its sampling variance) as a function of the Z/W ratio (log and z 

transformed) in birds. Sexual size dimorphism was included as a covariate (z 

transformed) and a phylogenetic covariance matrix and a species identifier were 

included as random effects. The phylogenetic covariance matrix used in each 

model was updated as described for the mammal analyses using the phylogenetic 

covariance matrices calculated from the 1300 bird phylogenies. 

Sex differences in lifespan and the relative sizes of the sex chromosomes 

The UX hypothesis predicts that sex differences in lifespan should correlate with 

the size of the X (or Z) chromosome relative to the rest of the genome, as this 

ratio measures the potential impact of recessive mutations on survival. Similarly, 

the toxic Y hypothesis predicts that sex differences in lifespan should correlate 

with the size of the Y (or W) chromosome relative to the rest of the genome. First, 

we tested for UX effects by constructing two models. In mammals, we modelled 

lnR (treated as Gaussian and with each effect size weighted by the inverse of its 

sampling variance) as a function of the X/autosomes ratio (z transformed) and 

sexual size dimorphism (z transformed) with a phylogenetic covariance (updated 

as described above) and a species identifier included as random effects. We 
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repeated this model for birds, substituting the X/autosomes ratio for the 

Z/autosomes ratio. We then tested for toxic Y effects in mammals and birds by 

repeating the above models but replacing the X/autosomes ratio with the 

Y/autosomes ratio (z transformed) in the mammal analysis and the Z/autosomes 

ratio for the W/autosomes ratio (z transformed) in the bird analysis. All other 

fixed and random effects were the same. Finally, to tease apart toxic Y and 

unguarded-X effects we modelled lnR as a function of both the X/autosomes and 

the Y/autosomes ratios (both z transformed) in mammals and both the 

Z/autosomes and the W/autosomes ratios (both z transformed) in birds. We 

included sexual size dimorphism as a covariate (z transformed) and a 

phylogenetic covariance matrix (updated as described above) and a species 

identifier as random effects in each model. Each effect size was weighted by the 

inverse of its sampling variance. The X/autosome and Y/autosome ratios were 

weakly correlated in mammals (r = 0.23, lwr = -0.23, upr = 0.61, p = 0.32) and 

Z/autosome and W/autosome ratios were weakly correlated in birds (r = -0.31, 

lwr = -0.72, upr = 0.26, p = 0.29). 

Sex-specific survival and the sex chromosomes 

The unguarded-X and toxic Y hypotheses predict reduced survival of the 

heterogametic sex specifically. We tested this in mammals by comparing male 

annual survival rates (males are XY) across species in relation to i) the X/Y ratio 

(log and z transformed), ii) the X/autosomes ratio (z transformed) and iii) the 

Y/autosomes ratio (z transformed). Male annual survival was modelled using a 

binomial distribution (number alive vs. number dead) with a logit link function. 

In each of these three models we included male body mass (z and log 

transformed) and sexual size dimorphism (z transformed) as covariates to control 

for variation in male annual survival rates across species explained by differences 

in the strength of sexual selection and size differences. A phylogenetic covariance 

matrix (updated as described above) and a species level identifier were included 

as random effects in each model. Females are the heterogametic sex in birds, 
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therefore we modelled female annual survival rates (using a binomial distribution 

with a logit link function) as a function of i) the Z/W ratio (log and z transformed), 

ii) the Z/autosomes ratio (z transformed) and iii) the W/autosomes ratio (z 

transformed). In each of these three models, we included female size as a 

covariate, to account for variation in female survival rates across species 

explained by differences in size, and a phylogenetic covariance matrix (updated 

as above) and a species level identifier were included as random effects. 

8.3. Results 

Sex differences in lifespan and genetic sex determination system across 

tetrapods 

Females lived longer than males on average in XY systems while males lived 

longer than females on average in ZW systems (parameter estimate [ß] = -0.13, 

95% Credible Interval [CI] = -0.20 to -0.06; Neffect sizes = 255; Nspecies = 138; Figure 

8.2). The effect of the genetic sex determination system on sex differences in 

lifespan was independent of phylogeny, which explained 33% of the variance in 

sex-specific lifespans across species, and sexual size dimorphism (ß = 0.09, CI = 

-0.05 to 0.18; Neffect sizes = 255; Nspecies = 138), suggesting that differences in 

lifespan between the sexes are not due to overall differences in sexual selection. 

Considering each origin separately, in 6/6 XY systems females lived longer than 

males on average (in only one of these was the difference significant) and in 4/6 

ZW systems males lived longer than females on average (in none of these was 

the difference significant).  

Sex differences in lifespan and the difference in size between the sex 

chromosomes 

The relative size of the X vs. Y chromosomes across mammals was not associated 

with sex-differences in lifespan (ß = -0.01, CI = -0.06 to 0.03; Neffect sizes = 55; 
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Nspecies = 21; Figure 8.3a). In fact, the largest sex-differences in survival in 

mammals occur in species where X and Y appear to be similar in size (Figure 

8.3a), as expected if large Y chromosomes have a negative effect on male survival 

rather than large X chromosomes. Sexual dimorphism in body size was also 

unrelated to lifespan differences between the sexes (ß = -0.02, CI = -0.09 to 0.04; 

Neffect sizes = 55; Nspecies = 21). Similarly, there was no relationship between sex-

differences in lifespan and size differences between the Z and W chromosomes 

 

Figure 8.2. Sex differences in lifespan across 138 species of birds, 
mammals, reptiles and amphibians. A statistical effect size of the ratio of 
female and male lifespan (lnR) is plotted for each species. Bars above the 
black line (the red ring) indicate that females live longer than males, while 
bars below the black line (the blue ring) indicate that males live longer than 
females. ZW systems are coloured in blue and XY systems are coloured in 
red. The blue points in the phylogeny show the 6 independent origins of ZW 
systems and the red circles show the 6 independent of XY systems in our 
sample of species. 
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(ß = 0.02, CI = -0.07 to 0.10; Neffect sizes = 28; Nspecies = 14; Figure 8.3b) or sexual 

dimorphism in body size (ß = 0.02, CI = -0.04 to 0.10; Neffect sizes = 28; Nspecies = 

14) across birds.  

Sex differences in lifespan and the relative sizes of the sex chromosomes 

Across mammals, both the size of the X chromosome relative to the autosomes 

and the size of the Y chromosome relative to the autosomes were positively 

associated with sex differences in lifespan (X/autosomes: ß = 0.05, CI = 0.01 to 

0.09; Neffect sizes = 65; Nspecies = 32; Figure 8.4a; Y/autosomes: ß = 0.05, CI = 0.00 

to 0.11; Neffect sizes = 50; Nspecies = 20; Figure 8.4b). The larger the X and Y 

chromosomes relative to the autosomes, the larger the sex difference in lifespan, 

with females being increasingly long-lived compared with males. This, however, 

would be expected if the relative sizes of the X and Y chromosomes are 

themselves correlated. When modelling the effects of the relative sizes of the X 

and Y chromosomes together, the relationship between relative X chromosome 

size and sex differences in lifespan disappeared (ß = 0.01, CI = -0.05 to 0.06; 

Neffect sizes = 50; Nspecies = 20), while the relationship between relative Y 

chromosome size and sex differences in lifespan remained positive, although it 

was not statistically significant (ß = 0.04, CI = -0.01 to 0.11; Neffect sizes = 50; Nspecies 

= 20). Across birds, neither the size of the Z or W chromosomes relative to the 

autosomes were associated with sex differences in lifespan (Z/autosomes: ß = 

0.01, CI = -0.07 to 0.07; Neffect sizes = 29; Nspecies = 15; Figure 8.5a; W/autosomes: 

ß = 0.00, CI = -0.09 to 0.07; Neffect sizes = 28; Nspecies = 14; Figure 8.5b). 

Sex-specific lifespan and the relative sizes of the sex chromosomes 

Male mammals with high rates of annual survival tend to have small Y 

chromosomes relative to the autosomes whereas males with low annual survival 

had relatively large Y chromosomes (ß = -0.72, CI = -1.19 to -0.26; Nobservations = 

50; Nspecies = 20; Figure 8.6a).  This was independent of the strength of sexual size 

dimorphism (ß = -0.23, CI = -0.87 to 0.25; Nobservations = 50; Nspecies = 20), a proxy 
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for the strength of sexual selection, and differences in body size between species 

(ß = 0.35, CI = -0.01 to 0.76; Nobservations = 50; Nspecies = 20). Moreover, male annual 

survival rates in mammals were not associated with the size of X chromosomes 

relative to autosomes (ß = -0.10, CI = -0.50 to 0.31; Nobservations = 65; Nspecies = 32; 

Figure 8.7a) or with size differences between the X and Y chromosomes (ß = 

0.17, CI = -0.33 to 0.72; Nobservations = 55; Nspecies = 21; Figure 8.7b). In contrast, 

rates of female annual survival across bird species were not associated with the 

sizes of W chromosomes relative to autosomes (W/autosomes: ß = 0.13, CI = -

0.51 to 0.67; Nobservations = 28; Nspecies = 14; Figure 8.6b). Similarly, female annual 

survival in birds was not associated with the size of Z chromosomes relative to 

the autosomes (Z/autosomes: ß = -0.05, CI = -0.39 to 0.37; Nobservations = 29; Nspecies 

= 15; Figure 8.8a) or with differences in size between the Z and W chromosomes 

(ß = -0.15, CI = -0.63 to 0.44; Nobservations = 28; Nspecies = 14; Figure 8.8b).  

8.4. Discussion 

In this chapter, we show that there is a clear link between genetic sex 

determination systems and the sex gap in lifespan. Across 138 species of 

vertebrates reflecting 6 independent origins of XY and ZW systems, females 

survived longer than males on average in XY systems, while males survived 

longer than females on average in ZW systems. Previously, Pipoly et al. (2015) 

identified female-biased adult sex ratios in taxa with XY systems and male-biased 

adult sex ratios in taxa with ZW systems. Along the same line, Xirocostas et al. 

(2020) recently found that mean/maximum lifespan is shorter in the 

heterogametic sex across the tree of life, but they failed to control for the effects 

of phylogenetic signal and the strength of sexual selection. Our results build on 

these studies by showing that, in vertebrates, the relationship between sex 

differences in survival and sex determination system remains after accounting for 

both phylogenetic signal (which in our sample explained ~33% of the variance in 

the sex gap in lifespan) and sexual size dimorphism (a proxy for sexual selection). 
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Figure 8.5. Sex differences in lifespan and the relative sizes of the sex chrom
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Furthermore, we then looked at the relationship between the relative importance 

of the sex chromosomes and sex-specific lifespan in mammals and birds. Our 

results suggest that this relationship is better explained by “toxic Y” rather than 

UXh effects, the prevailing hypothesis to date.  

The most commonly cited hypothesis to explain broad patterns of sex-specific 

lifespan across taxa is the UXh hypothesis put forward by Trivers (Trivers 1985). 

Recent work reporting a link between sex determination systems and different 

proxies for sex-specific lifespan have been interpreted as supporting this 

hypothesis (Pipoly et al. 2015; Xirocostas et al. 2020). Here, we specifically 

tested for the UXh by asking whether there is a correlation between the sex-gap 

in survival and the relative size of the sex chromosomes (X/Z relative to Y/W and 

autosomes; Figure 8.1). We found limited evidence in its support (Figures 8.3 & 

8.4). Despite its long history and intuitive appeal, our results suggest that the UXh 

may in fact not be a fundamental driver of sex-specific mortality. Since it was 

first formulated, more than three decades ago, support for the UXh has been scant 

and indirect (Maklakov and Lummaa 2013; Pipoly et al. 2015; Sultanova et al. 

2018; Xirocostas et al. 2020) and, while this may be due to the inherent 

difficulties in testing this hypothesis, there are also frequently overlooked reasons 

to doubt it plays a major role in explaining sex-specific lifespans. For example, 

the fact that there is likely to be strong selection against big effect X-linked 

recessive mutations in nature (Vicoso and Charlesworth 2006), meaning that any 

mutations that do accumulate on the recombining chromosome should have 

relatively minor effects. Of course, it is possible that the lack of evidence in 

favour of the UXh hypothesis is simply due to a lack of statistical power in our 

study, given the relatively scarce karyotypic data generally available for 

vertebrates. This limitation is bound to be particularly important given the 

complex relationship between the size of the two sex chromosomes. For example, 

due to the accumulation of repetitive and non-functional regions in the Y/W 

chromosomes, the size of the non-recombining region between the two sex 
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chromosomes can vary considerably even across species with the same absolute 

X/Z vs. Y/W size differences (Bachtrog 2013; Wright et al. 2016; Brown et al. 

2020b). We thus suggest that future analysis with more exhaustive datasets 

should aim to replicate our analysis. We note, however, that this same lack of 

power should affect our ability to detect “toxic Y” effects, a recent and until now 

empirically untested alternative that fits with the findings reported here.  

According to theory, toxic Y effects result in reduced survival of the 

heterogametic sex due to the accumulation of both deleterious mutations and 

repetitive DNA elements in the Y and W sex chromosomes (Bachtrog 2013; 

Wright et al. 2016; Brown et al. 2020b). Two main predictions arise. First, that 

genetic sex determination systems predict the sex-gap in lifespan so that the 

heterogametic sex tends to live longer than the homogametic sex across a wide 

range of taxa, as reported here and in a recent study (Xirocostas et al. 2020). 

Second, that the size of the Y or W sex chromosome inversely predicts the 

lifespan of the heterogametic sex in XY and ZW systems respectively. Our results 

show that there is indeed a negative correlation between the relative size of the Y 

chromosome and male lifespan in mammals, although we did not find this effect 

in birds. However, a stronger toxic Y effect is expected in XY than in ZW 

systems. This is due to the Y chromosome having a smaller effective population 

size than the W chromosome (higher variance in male than female reproductive 

success), and to Y chromosomes accumulating more mutations than W 

chromosomes because the male germ line undergoes more cell divisions than the 

female germ line (Drost and Lee 1995). This, in turn, makes degeneration of the 

Y chromosome (and hence accumulation of repetitive DNA) more likely 

(Bachtrog 2013). For example, the mammalian Y chromosome is known to be 

significantly enriched in repetitive DNA compared to the W chromosome in birds 

(Rutkowska et al. 2012; Bachtrog 2013; Zhou et al. 2014; Wright et al. 2016). 

Available evidence also suggests that non-recombining regions are larger in 

mammalian than in bird sex chromosomes, which also seem to exhibit less 
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variability in the Z/W (vs. mammalian X/Y) size ratio (Rutkowska et al. 2012; 

Bachtrog 2013; Zhou et al. 2014; Wright et al. 2016). In agreement with this, the 

X to Y chromosome ratio was twice as high on average than the Z to W 

chromosome ratio in our dataset (X to Y estimate = 4.96 ± 0.74 (sem), Nspecies = 

21; Z to W estimate = 2.23 ± 0.18, Nspecies = 14, Figure 8.9). This is unlikely to be 

a sampling artefact as evidence from the karyotypes of 200 bird species shows 

that the Z to W chromosome ratio does not extend beyond the limit we detected 

(Rutkowska et al. 2012).  

An exciting possibility is that cyto-nuclear interactions may contribute to explain 

marked “toxic Y” effects in mammals, but not toxic W effects in birds. Given that 

Y chromosomes are not inherited along with mitochondrial DNA (and other 

cytoplasmic products), there is less scope for cyto-nuclear co-evolution in males 

vs. females with X/Y genetic determination systems (but see Keaney et al. 2020). 

This is not the case in males of species with ZW sex-determination systems 

because in these species females are the heterogametic sex, and hence copies of 

both sex chromosomes are inherited maternally along with the cytoplasm. Indeed, 

recent evidence shows that cyto-nuclear interactions have sex-specific lifespan 

effects in D. melanogaster (Vaught et al. 2020), which opens yet another exciting 

line of research for future studies. Although it is tempting to interpret our negative 

finding of a toxic W effect in line with the predictions above, this finding must 

be taken with caution for two methodological reasons: our sample size for birds 

was approximately half that of mammals, and autosome size (on which many of 

our relative measures are based) is more difficult to estimate in birds than in 

mammals due to bird karyotypes often including a large number of micro-

chromosomes that increased measurement error in our estimations of bird 

chromosome sizes.  

Other complementary hypotheses that could indirectly explain a role of sex 

chromosomes in determining the sex gap in lifespan have to do with sexual 
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selection and imperfect dosage compensation. First, sexual selection frequently 

favours the accumulation of mutations that increase male reproductive success at 

the expense of male survival (Bonduriansky et al. 2008), but in both our study 

and in Pipoly et al. (2015), correlations between sex determination systems and 

survival/adult sex ratios were independent of sexual size dimorphism, a 

commonly used proxy for sexual selection intensity. Second, imperfect dosage 

compensation is deleterious for the heterogametic sex, explaining why this sex is 

short-lived relative to the homogametic sex (Mank 2013). However, imperfect 

dosage compensation predicts that the sex gap in lifespan should be related to the 

 

Figure 8.9.  The relative size of X (or Z) chromosome with respect to Y 
(or W) chromosome. The relative sizes were calculated as the size of X 
chromosome divided by the size of Y chromosome in mammals and the size 
of Z chromosome divided by the size of W chromosome in birds (also shown 
as mean ± S.E.). 
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size difference between the two sex chromosomes (X relative to Y and Z relative 

to W) because the size difference will be proportional to the imbalance in gene 

dose between males and females, and hence the degree of dosage compensation 

(Mank 2013). Our results show, however, that this was not the case (Figure 8.3).  

To conclude, we report compelling evidence of a link between sex determination 

systems and the sex-gap in survival across vertebrates, which along with recent 

evidence (Xirocostas et al. 2020) strongly suggests that sex chromosomes play a 

role in understanding broad patterns of sexual differences in lifespan. Our data 

suggest that “toxic Y” effects, rather than unguarded-X effects explain this link. 

Future research should aim to explicitly test for toxic Y effects by means of direct 

empirical manipulations (Brown et al. 2020b,a) and by expanding our 

comparative framework to other taxa (e.g. invertebrates).  
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Chapter 9. General Discussion 

Sex-specific ageing is ubiquitously observed across the tree of life (Maklakov 

and Lummaa 2013). In this thesis, I have tried to plug some of the existing gaps 

in our knowledge of the evolution and function of sex-specific ageing. In doing 

so, I have not focused on a particular hypothesis but aimed to explore adaptive 

and maladaptive processes (Maklakov and Lummaa 2013), both of which I 

believe are crucial for a complete understanding of why males and females age 

differently. The overarching idea has been to shed some light into areas of 

research I believe hold more open (and more interesting) questions. This has led 

me to address a broad range of questions, and to combine quite different empirical 

approaches, from classic behavioural and fitness assays to more complex 

inbreeding designs, comparative meta-analyses and the study of gut-microbiota. 

So, what have we learnt from this thesis? 

Sex-specific ageing as a result from adaptive processes 

Due to the presence of sex-specific selection pressures, males and females are 

expected to have different life history strategies resulting in sex-specific ageing 

patterns (Vinogradov 1998; Carranza and Pérez‐Barbería 2007; Clutton-Brock 

and Isvaran 2007; Bonduriansky et al. 2008; Berg and Maklakov 2012; Adler and 

Bonduriansky 2014). This means that external factors such as social context, 

predation or diseases should also have different effects on 

actuarial/reproductive/functional ageing of females and males. Moreover, this 

may also lead to the evolution of different mechanisms that underlie the life 

history strategies of females and males. Within this framework, we set out to 

contribute to three research questions that we believe hold great potential to 

further our current understanding about how adaptive processes can shape sex-

specific ageing. We first investigated how social context (Chapter 4) and 

condition dependent mortality (Chapter 5) can modulate age effects on fitness. 

We then explored the link between gut microbiota and male life history traits: 
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lifespan, actuarial/reproductive/functional ageing and reproductive fitness 

(Chapter 6). 

In Chapter 4, we investigated whether social context can modulate age effects on 

male/female reproductive success in D. melanogaster. A general prediction is that 

pre‐/postmeiotic ageing processes will lead to a decline in the pre‐ and post‐

copulatory abilities of both males and females (David et al. 1975; Economos et 

al. 1979; Service and Fales 1993; Holmes et al. 2003; Kühnert and Nieschlag 

2004; Pizzari et al. 2008; Deng 2012; Tan et al. 2013; Firman et al. 2015).  

However, inasmuch as the sexes have different strategies to optimize their fitness, 

the decline in reproductive success late in life can be modulated by social context, 

such as sex ratio, in a sex‐specific manner. Although social context has been 

found to modulate lifespan and ageing in a sex-specific way (Botev 2012; Leech 

et al. 2017), how it affects reproductive senescence has not been well-studied. As 

expected, we found that male and female age caused a decrease in reproductive 

success across male‐biased and female‐biased social contexts but, contrary to 

previous findings, we did not find social context to modulate the age‐related 

fitness decline in either of the two sexes. The fact that we did not find a sex-

specific effect of social context does not prove the absence of such an effect. This 

experiment was preliminary and future studies are essential to explore the very 

interesting possibility that social context may change the relative importance of 

different sexual selection mechanisms in a sex-specific way. Specifically, 

behavioural and fitness assays aimed to understand how age-related mate choice 

changes across a wider set of social contexts than we tested (e.g. manipulating 

sex ratio and density) are necessary. We believe this type of studies are essential 

for a better understanding of how sexual selection operates in complex (natural) 

environments.  

In Chapter 5, we explored whether condition dependent mortality can modulate 

reproductive senescence. Recent studies show that non-random mortality of ‘low-
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condition’ individuals can lead to an increase in average lifespan (Chen and 

Maklakov 2012; Maklakov et al. 2015). This is a relatively novel finding that can 

contribute significantly to our understanding of how extrinsic mortality can shape 

ageing, a classic conundrum.  However, selective disappearance of low-condition 

individuals may also affect average reproductive senescence at the population 

level due to trade-offs between physiological functions related to 

survival/lifespan and the maintenance of reproductive functions (Chen et al. 

2016). Here, we addressed the idea that condition dependent extrinsic mortality 

(i.e., simulated predation) may, through selective disappearance, increase the 

average age-related decline in male reproductive success. Although female 

reproductive senescence was not affected by predation, male reproductive 

senescence was considerably higher under predation, due mainly to an 

accelerated decline in offspring viability of ‘surviving’ males with age (vs. non-

surviving males). This sex-specific effect suggests that condition dependent 

extrinsic mortality can exacerbate survival-reproduction trade-offs in males, 

which are typically under stronger condition dependent selection than females. 

An exciting future line of research here would be to confirm the existence of 

trade-offs between (1) anti-predatory escape ability and functional ageing and (2) 

anti-predatory escape ability and reproductive ageing in males. It would also be 

exciting, and potentially fruitful, to explore the mechanisms underlying these 

trade-offs.  

In addition to underlining the importance of potential sex-specific life history 

trade-offs, our results also support the recent proposal that male ageing can be an 

important source of sexual conflict (Dean et al. 2007, 2010; Carazo et al. 2011). 

Inasmuch as the ‘surviving’ males have lower offspring viability, mating with an 

old male becomes particularly costly for females in the presence of condition 

dependent mortality. Therefore, our results suggest that male ageing can lead to 

sexual conflict and this effect can be exacerbated in the wild (where condition 

dependent extrinsic mortality is likely common).  
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In Chapter 6, our main aim was to explore the role that male gut microbiota 

composition may play in relation to male life history traits. We believe gut 

microbiota could play a particularly relevant role given its dependence on 

ecology and, particularly, given how inter-individual differences in rearing 

environment, foraging ability and condition are likely to affect it (Erkosar and 

Leulier 2014; Macke et al. 2017). All of these factors are likely to change across 

the sexes. Drosophila melanogaster is a good model to address this because its 

gut microbiome is particularly plastic and relatively simple, compared to other 

insects such as cockroaches (Domínguez-Santos et al. 2020). We did not find 

clear evidence of trade-offs between any of the life history traits that we 

investigated, but we did find age-related changes in bacterial abundance and 

diversity that were generally consistent with what has been found previously 

(Wong et al. 2011). We also found tantalizing evidence that gut microbiota 

composition and male life history traits (mainly early reproductive success and 

ageing) might be linked. The most interesting result is that the genus Acetobacter 

(Proteobacteria phylum) seemed to be particularly important for ageing because 

(1) its abundance changed with age in general and (2) amplicon sequence variants 

(ASVs) associated with short and long-lived isolines were all from the 

Acetobacter genus. In this study, we used DGRP isolines instead of wild-type 

flies because this allowed me to characterize the life history traits of different 

genotypes while sacrificing flies with the same genotype early and late in life for 

gut microbiota characterization. In the future, we think it will be tantamount to 

replicate this study using heterozygotes from DGRP line crosses or wild-type 

males from isofemale inbred lines to see whether different genetic backgrounds 

will lead to different findings. 

Sex-specific ageing and maladaptive processes 

It has long been noted that asymmetric inheritance of different genetic elements 

(from mitochondria to the sex chromosomes) can contribute to sex-specific 

ageing (Camus et al. 2012; Maklakov and Lummaa 2013; Carazo et al. 2016; 
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Brown et al. 2020b). In this thesis, we focused on the potential role of sex-

chromosomes, and more specifically on the “unguarded-X” and “toxic Y” 

hypotheses. It is important to note that these two hypotheses are complementary, 

and hence both are likely to contribute to explain broad taxonomic patterns in 

sex-specific ageing. In Chapter 7, we did an empirical study to test a fundamental 

prediction of the “unguarded-X” hypothesis in D. melanogaster. Whereas in 

Chapter 8, we did a meta-analysis across vertebrates to test how sex determination 

system and the relative importance of sex chromosomes (X vs. Y in mammals 

and Z vs. W in birds) might affect sex-specific ageing. Therefore, in Chapter 8 

the predictions of both the “unguarded-X” and “toxic Y” hypotheses were tested. 

First, in Chapter 7, we examined whether inbreeding bridges the lifespan gap in 

D. melanogaster, as predicted by the UXh, across three different social 

environments (i.e., isolation, same sex groups and mixed sexes groups). We 

found that, across social environments, inbreeding resulted in a greater reduction 

of female than male lifespan, and that inbreeding effects on fitness did not seem 

to counterbalance sex-specific effects on lifespan, suggesting they are 

maladaptative. A potential caveat here is that these results might also be explained 

by sexually antagonistic genes and sex-specific expression patterns (discussed in 

details in the discussion part of Chapter 7). In addition, a recent attempt to 

replicate this in a different lab population of D. melanogaster failed to find a 

similar effect (Brengdahl et al. 2018). All in all, the jury is thus still out on the 

possibility that the “unguarded-X” may play an important role in explaining sex-

specific lifespan in D. melanogaster. Studying how inbreeding affects sex-

specific lifespan in other species is a crucial line of future research.  

Second, in Chapter 8, we conducted a comparative meta-analysis where we 

collected sex-specific lifespan data and correlated it with the sex determination 

system across vertebrates. We found clear evidence that the heterogametic sex 

has a relatively shorter lifespan than the homogametic sex across 138 species of 
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birds, mammals, reptiles and amphibians, as expected if sex chromosomes shape 

sex-specific lifespans. We also did further analyses with the karyotypes of birds 

and mammals where we looked at the relationship between the relative size of 

the sex chromosomes and sex-specific survival. We found that the relative sizes 

of the X and Z chromosomes are not associated with sex-specific lifespans, 

contrary to UXh predictions. In contrast, we found that the size of the Y 

chromosome correlated negatively with male survival in mammals, where toxic 

Y effects are expected to be particularly strong. This interesting finding suggests 

that small Y chromosomes benefit male lifespan in mammals. Overall, these 

results confirm the role of sex chromosomes in explaining sex differences in 

lifespan (Pipoly et al. 2015; Xirocostas et al. 2020), but indicate that, at least in 

mammals, this is better explained by “toxic Y” rather than UXh effects. The 

findings from the meta-analysis across vertebrates, together with the results of 

the empirical study in D. melanogaster, suggest that the asymmetric inheritance 

of the sex chromosomes can be a significant contributor to sex-specific ageing. 

With the progress in molecular methods, hopefully we will learn more about the 

content of Y or W chromosomes in heterogametic sex and hence understand how 

their size can affect sex-specific ageing. 

To conclude, for a complete understanding of sex-specific life history evolution, 

both adaptive and maladaptive hypotheses should be studied in depth. Adaptive 

processes seem fundamental to understand sex-specific ageing at both the 

microevolutionary (i.e., within species and/or closely related taxa sharing mating 

systems and similar ecological niches) and macroevolutionary (i.e., convergence 

evolution in distant taxa with a similar ecology of sexual selection) levels. 

Maladaptive asymmetric inheritance mechanisms likely overlay such adaptive 

processes to produce patterns of sex-specific ageing linked to the evolution of sex 

chromosomes and, potentially, mitochondria and mito-nuclear interactions. 

Within this general picture, sex-specific effects of social and environmental 

factors on reproductive ageing, the mechanisms underlying sex-specific life 
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history traits and asymmetric inheritance of sex chromosomes all are different 

pieces of this puzzle to which I hope I have contributed in this thesis.  
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Chapter 10. Conclusions 

The main conclusions of this thesis are: 

Chapter 4 

• Sex-ratio at mating did not modulate the decline in reproductive success with 

age in D. melanogaster neither in males nor in females. This finding does not 

imply sex-ratios are not important, but rather suggests that different sexual 

selection mechanisms could be counterbalancing each other in different ways 

across different social contexts. Therefore, additional experiments involving 

behavioural observations are required to fully resolve the complex link 

between sex-ratio, age and reproductive success.  

 

Chapter 5 

• In D. melanogaster, we found that condition dependent mortality led to a 

steeper reproductive senescence in a male, but not a female cohort, indicative 

of strong survival/reproduction trade-offs in males. This male-specific effect 

of condition dependent mortality on reproductive senescence fits nicely with 

current theories. Because males are under stronger selection for both early 

reproduction and condition dependent extrinsic mortality, trade-offs against 

reproductive maintenance are expected to be steeper in males than in females.  

In addition, by imposing reproductive costs to females, male ageing can be a 

source of sexual conflict, particularly relevant under natural conditions where 

condition dependent mortality is likely. 
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Chapter 6 

• We found that gut microbiota abundance and diversity changed with male 

age in D. melanogaster. Our results suggest that the genus Acetobacter is 

associated with male ageing. Moreover, the abundance of some taxa was 

associated with early reproduction and both actuarial and reproductive 

ageing, suggesting a link between gut microbiota and male life history.  

 

Chapter 7  

• As predicted by the “unguarded-X” hypothesis (UXh), inbreeding caused a 

greater reduction of female than male lifespan in D. melanogaster. Moreover, 

inbreeding effects on fitness did not seem to counterbalance sex‐specific 

effects on lifespan. These results suggest that the former was maladaptative 

and that UXh may play an important role in the evolution of sex‐specific 

lifespan in this species. 

 

Chapter 8  

• Across 138 species of tetrapods including mammals, birds, amphibians and 

reptiles, we found the heterogametic sex to have lower survival than the 

homogametic sex after correcting for phylogeny and the intensity of sexual 

selection. This strongly suggests that sex chromosomes shape sex-specific 

ageing across vertebrates. Moreover, we found a clear negative correlation 

between the Y (but not X) chromosome size and male survival in mammals, 

which could mean that large Y chromosomes shorten male lifespan. This 

indicates that, at least in mammals, sex-specific lifespan may be affected 

more by “toxic Y” effects than UXh effects. 
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Chapter 11. Resumen en castellano 

11.1. Antecedentes 

Uno de los problemas más complejos en la biología del envejecimiento radica en 

explicar por qué los machos y las hembras envejecen de manera diferente 

(Maklakov and Lummaa 2013). El envejecimiento diferencial en los sexos se 

observa ampliamente a lo largo del árbol de la vida. Por ejemplo, las hembras 

viven tres veces más que los machos en el antechinus marrón, un pequeño 

marsupial, mientras que los machos tienen el doble de probabilidades que las 

hembras de sobrevivir en los charlatanes árabes, un ave paseriforme (Keller and 

Waller 2002; Clutton-Brock and Isvaran 2007). Se han propuesto varias hipótesis 

para explicar este fenómeno, derivadas de dos tipos de procesos complementarios 

pero fundamentalmente distintos: procesos adaptativos y maladaptativos 

(Maklakov and Lummaa 2013). 

En esta Tesis, he abordado algunas de las lagunas existentes en nuestro 

conocimiento sobre la evolución y la función del envejecimiento diferencial en 

los sexos. Al hacerlo, no me he centrado en una hipótesis particular, sino que he 

buscado explorar procesos adaptativos (capítulos 4, 5 y 6) y maladaptativos 

(capítulos 7 y 8), ambos de los cuales creo que son cruciales para una 

comprensión completa de por qué los machos y las hembras envejecen de manera 

diferente. Mi principal objetivo ha sido arrojar algo de luz sobre áreas de 

investigación que creo que contienen preguntas más abiertas (e interesantes). Esto 

me ha llevado a abordar una amplia gama de preguntas y a combinar enfoques 

empíricos muy diferentes, desde ensayos clásicos de comportamiento y eficacia 

biológica hasta diseños de endogamia más complejos, meta-análisis 

comparativos y el estudio de la microbiota intestinal.  
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11.2. Procesos Adaptativos 

El envejecimiento diferencial en los sexos con frecuencia resulta de diferencias 

sexuales en presiones selectivas (Vinogradov 1998; Carranza and Pérez‐Barbería 

2007; Clutton-Brock and Isvaran 2007; Bonduriansky et al. 2008; Berg and 

Maklakov 2012; Adler and Bonduriansky 2014). Debido a la evolución de la 

anisogamia (espermatozoides pequeños, baratos pero numerosos de machos, 

frente  a los grandes, caros y escasos óvulos de hembras) y los costes de gestación 

posteriores, las hembras suelen ser el sexo con mayor inversión parental (Shuster 

and Wade 2003). Como consecuencia, la selección intrasexual tiende a ser más 

fuerte en los machos (Bateman 1948, Trivers 1972). A su vez, esto suele 

favorecer la evolución de diferentes estrategias reproductivas en los sexos 

(Janicke et al. 2016) y, con frecuencia, de historias de vida divergentes. Por 

ejemplo, comparado con las hembras, la intensa competencia intrasexual tiende 

a promover estrategias de vida rápida y muerte joven (“live fast die young”) en 

machos (Trivers 1972; Promislow 1992; Kruger and Nesse 2004; Clutton-Brock 

and Isvaran 2007).  

En este contexto, factores externos como el contexto social, la depredación o las 

enfermedades pueden ser imprescindibles para entender el envejecimiento de 

hembras y machos. Dentro de este marco, en esta tesis me propuse contribuir a 

tres preguntas de investigación que creo que tienen un gran potencial para ampliar 

nuestra comprensión actual sobre cómo los procesos adaptativos pueden moldear 

el envejecimiento de forma diferencial en los sexos. En primer lugar, investigué 

cómo el contexto social (Capítulo 4) y la mortalidad dependiente de la condición 

física (Capítulo 5) pueden modular los efectos de la edad sobre la eficacia 

biológica. Con respecto a los mecanismos, exploré el vínculo entre la microbiota 

intestinal y los rasgos de la historia de vida en machos (i.e., la esperanza de vida, 

el envejecimiento actuarial/reproductivo/funcional y el éxito reproductivo, 

Capítulo 6). 
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11.2.1. Capítulo 4. Contexto social y envejecimiento reproductivo en 

Drosophila melanogaster 

Introducción 

Comprender los efectos de la edad de machos y hembras en el éxito reproductivo 

es vital para explicar la evolución de los rasgos de la historia de vida y el 

envejecimiento diferencial en los sexos. Una predicción general es que los 

procesos de envejecimiento pre/post-meiótico conducirán a una disminución en 

las capacidades pre y post-copulatorias de machos y hembras (David et al. 1975; 

Economos et al. 1979; Service and Fales 1993; Holmes et al. 2003; Kühnert and 

Nieschlag 2004; Pizzari et al. 2008; Deng 2012; Tan et al. 2013; Firman et al. 

2015). Sin embargo, en la medida en que los sexos exhiben estrategias diferentes 

para optimizar su eficacia biológica, el envejecimiento puede ser modulado por 

el contexto social, como la proporción de sexos, de manera diferencial en los 

sexos. Por ejemplo, al influir en factores como la tasa de encuentro de pareja, la 

elección de pareja o la competencia intrasexual (Kvarnemo and Ahnesjo 1996; 

Kokko and Rankin 2006), el contexto social tiene el potencial de modular la 

senescencia reproductiva. 

Métodos y Resultados 

En este estudio, utilizamos D. melanogaster para investigar si la proporción de 

sexos modula los efectos de la edad en el éxito reproductivo en machos y 

hembras. Como esperabamos, encontramos que la edad causó una disminución 

en el éxito reproductivo tanto de machos como hembras, en todos los contextos 

sociales. Sin embargo, el contexto social no moduló la disminución de la eficacia 

biológica con la edad en ninguno de los dos sexos.  
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Discusión 

Como era de esperar, descubrimos que la edad causa una disminución en el éxito 

reproductivo en machos y hembras, pero, en contra de lo esperado, no 

encontramos un efecto claro del contexto social. No obstante, esto no prueba la 

ausencia de tal efecto porque los diferentes mecanismos de selección sexual 

podrían estar equilibrándose entre sí de diferentes maneras en diferentes 

contextos sociales. Este experimento fue preliminar y harán falta estudios futuros 

para explorar la posibilidad de que el contexto social pueda cambiar la 

importancia relativa de los diferentes mecanismos de selección sexual en los 

sexos, y moldear su envejecimiento.  

11.2.2. Capítulo 5. Mortalidad dependiente de la condición, senescencia 

reproductiva y conflicto sexual en D. melanogaster 

Introducción 

Estudios recientes sugieren que considerar el papel de la mortalidad extrínseca 

dependiente de condición es clave para comprender la evolución de las historias 

de vida (Reznick et al. 2004; Chen and Maklakov 2012; Maklakov et al. 2015). 

Por ejemplo, la mortalidad diferencial de individuos de baja condición puede 

conducir a un aumento en la esperanza de vida promedio en la población al 

seleccionar individuos en buena conducción (Chen and Maklakov 2012; 

Maklakov et al. 2015). Sin embargo, esta desaparición selectiva también puede 

afectar la senescencia reproductiva a nivel de la población debido a compromisos 

adaptativos entre funciones fisiológicas relacionadas con la 

supervivencia/esperanza de vida y el mantenimiento de las funciones 

reproductivas (Chen et al. 2016). En otras palabras, los individuos que son buenos 

para sobrevivir podrían ser los que son malos para el mantenimiento 

reproductivo, lo que lleva a una población que consiste en individuos con alto 

nivel de senescencia reproductiva. 
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Métodos y Resultados 

En este capítulo estudiamos el efecto de la mortalidad extrínseca dependiente de 

la condición (i.e., depredación simulada dependiente de la velocidad de escape) 

sobre el envejecimiento reproductivo. Para ello, estudiamos el envejecimiento 

reproductivo en cohortes de machos y hembras de D. melanogaster expuestas (o 

no) a depredación simulada dependiente de la condición a lo largo de su vida. 

Aunque la senescencia reproductiva no se vio afectada por la depredación en 

hembras, en machos fue considerablemente mayor con depredación, debido 

principalmente a una disminución acelerada (con la edad) en la viabilidad de la 

descendencia de los machos "supervivientes".  

Discusión 

Los resultados demuestran que la mortalidad extrínseca dependiente de la 

condición (es decir, la depredación simulada) exagera, a nivel de la cohorte, el 

envejecimiento reproductivo de los machos. Aunque la senescencia reproductiva 

en hembras no se vio afectada por la depredación, la senescencia reproductiva en 

machos fue considerablemente mayor con depredación simulada sobre los 

individuos de baja condición. Esto se debe fundamentalmente a que los machos 

supervivientes, de alta condición, muestran una disminución acelerada en la 

viabilidad de su descendencia con la edad. Este efecto específico de sexo sugiere 

que la mortalidad extrínseca dependiente de la condición puede exacerbar el 

compromiso adaptativo entre supervivencia y reproducción en los machos, que 

generalmente están bajo una selección dependiente de condición más fuerte que 

las hembras. Además, estos resultados apoyan la reciente propuesta de que el 

envejecimiento reproductivo en machos puede ser una fuente importante de 

conflicto sexual (Dean et al. 2007, 2010; Carazo et al. 2011) porque las hembras 

que se aparean con viejos machos sobrevivientes pagarán los costos de la baja 

reproducción. Más aún, sugieren que este efecto podría exacerbarse en la 
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naturaleza (donde la mortalidad extrínseca dependiente de la condición es 

probablemente común).  

11.2.3. Capítulo 6. La relación entre la microbiota intestinal y la historia 

de vida en machos de D. melanogaster 

Introducción 

Explorar los mecanismos subyacentes a los rasgos de la historia de vida en 

machos y hembras puede ayudarnos a entender por qué machos y hembras con 

frecuencia evolucionan historias de vida distintas. Una línea de investigación 

emergente en el estudio de los mecanismos del envejecimiento, y los mecanismos 

de la historia de vida en general, es el papel de la microbiota intestinal. Estudios 

recientes han explorado la importancia de la microbiota intestinal en la esperanza 

de vida, el envejecimiento y la reproducción en hembras de una variedad de 

taxones como Drosophila  (Brummel et al. 2004; Ren et al. 2007; Clark et al. 

2015; Gould et al. 2018), Daphnia (Sison-Mangus et al. 2015; Callens et al. 

2016), o Caernohabditis (Houthoofd et al. 2002; Cabreiro and Gems 2013), 

además de en humanos (Tiihonen et al. 2010; Insenser et al. 2018). Por el 

contrario, sabemos muy poco sobre el vínculo entre el éxito reproductivo y la 

microbiota intestinal en los machos. Si dichos vínculos divergen entre los sexos, 

esto podría permitirnos comprender mejor el envejecimiento específico de sexo 

desde una perspectiva mecanicista, y a la vez alumbrar su evolución.  

Métodos y Resultados 

En este estudio exploramos el papel de la microbiota intestinal en los rasgos de 

la historia de vida en machos al examinar la co-variación entre envejecimiento 

funcional, reproductivo y actuarial y los cambios en la microbiota intestinal a lo 

largo de la vida. Para hacerlo, primero caracterizamos los rasgos de la historia de 

vida de machos de D. melanogaster de 29 diferentes isolinas endogámicas 

DGRP. Luego caracterizamos la microbiota intestinal temprana y tardía de estas 
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isolíneas e investigamos cómo cambia la composición de la microbiota intestinal 

con la edad. Finalmente, exploramos el posible vínculo entre los rasgos de la 

historia de vida y los cambios en microbiota intestinal. En primer lugar, no 

detectamos evidencia clara de compromisos adaptativos entre el éxito 

reproductivo y los rasgos asociados con la supervivencia. Las correlaciones entre 

rasgos de historial de vida que detectamos tendieron a ser positivos. En segundo 

lugar, como se ha mostrado anteriormente en la literatura, encontramos cambios 

relacionados con la edad en la diversidad y abundancia de algunos taxones de la 

microbiota intestinal de machos. Finalmente, encontramos evidencia preliminar 

de un vínculo entre la abundancia de la microbiota intestinal y el éxito 

reproductivo temprano en machos. 

Discusión 

No encontramos pruebas claras de la existencia de compromisos adaptativos entre 

ninguno de los rasgos de la historia de vida que investigamos, pero sí 

encontramos cambios relacionados con la edad en la abundancia y diversidad 

bacteriana que generalmente son consistentes con lo que se ha encontrado en 

estudios previos (Wong et al. 2011). También encontramos evidencia de que la 

composición de la microbiota intestinal y los rasgos de la historia de vida en 

machos (principalmente el éxito reproductivo temprano y el envejecimiento) 

podrían estar relacionados. En nuestro estudio, el género Acetobacter 

(Alphaproteobacteria) parece tener una importancia particular con respecto al 

envejecimiento porque (1) su abundancia cambió con la edad en general y (2) las 

variantes de secuencia de amplicón (ASV) asociadas con las isolíneas de corta y 

larga vida eran todas del género Acetobacter. En este estudio, usamos isolíneas 

DGRP en lugar de moscas de tipo salvaje porque las isolíneas DGRP nos 

permitieron caracterizar los rasgos de la historia de vida de diferentes genotipos 

al tiempo que sacrificamos moscas con el mismo genotipo pronto y tarde en la 

vida para la caracterización de la microbiota intestinal. En el futuro, creo que será 
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valioso replicar este estudio utilizando heterocigotos de cruces de línea DGRP o 

machos de tipo salvaje de líneas endogámicas matrilineales para ver si diferentes 

antecedentes genéticos conducirán a diferentes resultados.  

11.3. Procesos Maladaptativos 

A diferencia de las hipótesis adaptativas, las hipótesis maladaptativas explican 

las diferencias sexuales en el envejecimiento como consecuencia de la herencia 

asimétrica de diferentes componentes del genoma (Maklakov and Lummaa 

2013). En primer lugar, la hipótesis de la "maldición de la madre" (en inglés 

“mother’s curse”) propone que el genoma mitocondrial puede desempeñar un 

papel fundamental en la disminución de la esperanza de vida de los machos, lo 

que contribuiría a explicar el envejecimiento específico del sexo en taxones 

donde las hembras viven más que los machos (Camus et al. 2012). En segundo 

lugar, la hipótesis del "cromosoma X desguarnecido" (en inglés “unguarded-X”, 

en adelante “UXh”) postula que el envejecimiento diferencial en los sexos puede 

deberse en parte a la mayor expresión de mutaciones recesivas perjudiciales en el 

sexo heterogamético (“desprotegido” frente a su expresión por solo disponer de 

una copia de cada cromosoma), debido a la herencia asimétrica de los 

cromosomas sexuales (Trivers 1985). Finalmente, la hipótesis más reciente del 

“cromosoma Y tóxico" (en inglés “toxic Y”) se centra en el papel del cromosoma 

heteromórfico Y (o W) en el envejecimiento (Marais et al. 2018). En esta tesis, 

me concentré en las dos hipótesis que exploraron el papel de los cromosomas 

sexuales en la evolución del envejecimiento diferencial en los sexos. 
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11.3.1. Capítulo 7. La hipótesis del “cromosoma X desguarnecido” y la 

arquitectura genética de la esperanza de vida en machos y hembras de 

D. melanogaster 

Introducción 

La hipótesis del “cromosoma X desguarnecido" (UXh) sugiere que el 

envejecimiento específico de sexo puede deberse en parte a la expresión de 

mutaciones recesivas en los cromosomas sexuales hemizigotos del sexo 

heterogamético, lo que podría ayudar a explicar el envejecimiento diferencial en 

los sexos en multitud de taxones (Trivers 1985). Los estudios que analizan la 

correlación entre el envejecimiento de cada sexo y el sistema de determinación 

del sexo han proporcionado apoyo indirecto a esta hipótesis (Pipoly et al. 2015; 

Xirocostas et al. 2020). Pipoly et al. (2015) usaron el cociente sexual entre 

adultos como un proxy para la supervivencia específica de sexo y descubrieron 

que las proporciones de sexo de los adultos suelen estar sesgadas hacia las 

hembras en taxones con sistema de determinación de sexo XY, y al contrario en 

las que tienen un sistema de determinación de sexo ZW. Más recientemente, 

Xirocostas et al. (2020) encontraron que el sexo heterogamético tiende a tener 

una vida media/máxima más alta en un amplio rango taxonómico, aunque en este 

estudio no corrigieron ni por filogenia ni por la intensidad de selección sexual. 

Finalmente, la evidencia experimental reciente sugiere que desproteger el 

cromosoma X puede reducir la brecha de la vida sexual en D. melanogaster 

(Carazo et al. 2016 pero véase Brengdahl et al. 2018).  

Métodos y Resultados 

Una predicción central de la hipótesis UX es que la endogamia disminuirá la 

esperanza de vida del sexo homogamético más que la del sexo heterogamético, 

porque solo en la primera la endogamia aumenta la expresión de mutaciones 

deletéreas recesivas del cromosoma X (o Z). En este estudio, probamos esta 
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predicción examinando los efectos de la endogamia en la esperanza de vida y la 

eficacia biológica de D. melanogaster en diferentes entornos sociales. 

Encontramos que, en distintos entornos sociales (i.e., aislamiento, grupos del 

mismo sexo y grupos de sexos mixtos), la endogamia resultó en una mayor 

reducción de la esperanza de vida en machos que en hembras, y que los efectos 

de la endogamia en la eficacia biológica no contrarrestaron los efectos específicos 

de sexo en la esperanza de vida, lo que sugiere que los primeros son 

maladaptativos.  

Discusión 

En todos los entornos sociales, la endogamia resultó en una mayor reducción de 

la esperanza de vida en hembras que en machos. Además, los efectos de la 

endogamia en el éxito reproductivo no contrarrestaron los efectos específicos de 

sexo en la vida útil, lo que sugiere que estos efectos son maladaptativos. Aunque 

nuestros resultados apoyan la UXh, también podrían explicarse por el efecto de 

genes sexualmente antagónicos y patrones de expresión específicos de sexo 

(discutidos en detalle en la parte de discusión del Capítulo 7). Además, un intento 

reciente de replicar nuestro trabajo en una población de laboratorio diferente de 

D. melanogaster no logró encontrar un efecto similar (Brengdahl et al. 2018). 

Replicar este estudio en otras poblaciones y especies es, por tanto, una línea 

crucial de investigación futura. 

11.3.2. Capítulo 8. Envejecimiento diferencial en los sexos en 

tetrápodos: evidencia de un efecto tóxico del cromosoma Y 

Introducción 

Una hipótesis alternativa a la UXh es que la acumulación de mutaciones 

perjudiciales y elementos repetitivos en el cromosoma Y/W podría reducir la 

supervivencia del sexo heterogamético ("toxic Y"). Durante la evolución de los 

cromosomas sexuales, la supresión de recombinación conduce a la acumulación 
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de mutaciones deletéreas y de ADN repetitivo (secuencias satélite y elementos 

transponibles) en los cromosomas Y/W (Bachtrog 2013; Wright et al. 2016). 

Estudios muy recientes demuestran que, en D. melanogaster, algunas secuencias 

repetitivas de ADN en el cromosoma Y (que se encuentran formando parte de la 

heterocromatina y, por tanto, no activos) se vuelven activas con la edad, lo que 

resulta en la expresión disfuncional de elementos transponibles (Brown et al. 

2020b). Con el fin de probar cómo la represión de los elementos transponibles en 

el cromosoma Y afecta la esperanza de vida en los sexos, Brown et al. (2020) 

generaron moscas con diferentes cariotipos de cromosomas sexuales: hembras 

XXY, machos X0 y XYY (además de cariotipos de tipo salvaje), hembras XX y 

machos XY. Encontraron una correlación positiva entre la represión de los 

elementos transponibles y el número de cromosomas Y, y una correlación 

negativa entre el promedio de vida y el número de cromosomas Y (Brown et al. 

2020b). Además, en otro estudio, Brown et al. (Brown et al. 2020a) descubrieron 

que el cromosoma Y afecta la integridad de la heterocromatina en todo el genoma, 

disminuyendo la protección de la heterocromatina en otras secuencias repetitivas 

que están presentes en cromosomas distintos de Y. Esto puede contribuir aún más 

a la expresión génica específica de sexo y al dimorfismo sexual en los rasgos de 

la historia de vida, incluida la esperanza de vida (Brown et al. 2020a). Por lo 

tanto, en D. melanogaster existe evidencia sólida de un efecto “toxic Y”, donde 

la acumulación de elementos repetitivos de ADN causa una mayor mortalidad del 

sexo heterogamético (Wright et al. 2016; Marais et al. 2018). Sin embargo, el 

papel de esta hipótesis como factor en la evolución de patrones generales en el 

envejecimiento en los sexos aún no se ha abordado.  

Métodos y Resultados 

Mediante un meta-análisis comparado de datos de longevidad y supervivencia 

(en el que corregimos el efecto de la inercia filogenética y la intensidad de la 

selección sexual), encontramos una menor supervivencia del sexo 
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heterogamético a lo largo de 138 especies de aves, mamíferos, reptiles y anfibios. 

Esto indicaría que los cromosomas sexuales desempeñan un papel importante 

para entender la esperanza de vida diferencial en los sexos. A continuación, 

analizamos los cariotipos de aves y mamíferos y descubrimos que los tamaños 

relativos de los cromosomas X y Z no están asociados con la esperanza de la vida 

diferencial en los sexos, al contrario de lo que predice la UXh. La UXh predice 

esta relación porque el tamaño relativo de X (o Z) proporciona una medida de 

cuánta variación genética en la esperanza de vida esperamos que explique el 

cromosoma X (o Z). No obstante, encontramos que el tamaño del cromosoma Y 

correlaciona negativamente con la supervivencia de los machos en mamíferos, 

donde se espera un efecto “toxic Y” particularmente fuerte.  

Discusión 

En general, nuestros resultados confirman el papel de los cromosomas sexuales 

en las diferencias sexuales en la esperanza de vida observadas a lo largo del árbol 

de la vida (Pipoly et al. 2015; Xirocostas et al. 2020), e indican que, al menos en 

los mamíferos, esto parece encajar mejor con un efecto "Y tóxico" que con un 

efecto de la UXh. Los resultados del meta-análisis en vertebrados, junto con los 

resultados del estudio empírico realizado en D. melanogaster, implican que la 

herencia asimétrica de los cromosomas sexuales puede contribuir de forma 

significativa al envejecimiento diferencial en los sexos. Con el progreso en los 

métodos moleculares, con suerte aprenderemos más sobre el contenido de los 

cromosomas Y o W en el sexo heterogamético y, por lo tanto, entenderemos con 

precisión cómo su tamaño puede afectar el envejecimiento en los machos.  

11.4. Conclusiones finales 

Los resultados de esta tesis ponen de manifiesto cómo para una comprensión 

completa de la evolución de la historia de vida en los sexos se deben estudiar en 

profundidad tanto hipótesis adaptativas como maladaptativas. Los procesos 
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adaptativos parecen fundamentales para comprender el envejecimiento 

diferencial en los sexos tanto a nivel microevolutivo (es decir, dentro de especies 

y/o sistemas de apareamiento de taxones estrechamente relacionados y/o nichos 

ecológicos similares) como macroevolutivo (es decir, evolución convergente en 

taxones distantes con una ecología de la selección sexual similar). Los procesos 

maladaptativos derivados de la herencia asimétrica de material genético 

probablemente se superponen a tales procesos adaptativos para producir patrones 

de envejecimiento diferencial en los sexos vinculados a la evolución de los 

cromosomas sexuales. Dentro de esta visión general, los efectos específicos de 

sexo de los factores sociales y ambientales sobre el envejecimiento reproductivo, 

los mecanismos subyacentes a los rasgos de la historia de vida específicos de sexo 

y la herencia asimétrica de los cromosomas sexuales son piezas diferentes para 

resolver este rompecabezas, a lo que espero haber contribuido en esta tesis. 
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Appendix 

A.1. Pilot Study of Chapter 5 

A.1.2. Materials and Methods 

In the pilot study, we first aged “old” females/males in isolation with excess food 

for 38 days, during which time we flipped them into a new vial once a week. We 

maintained “young” females/males in isolation for four days followed by mating 

assays. Then, we aged a separate batch of flies for the same amount of time but, 

during this time, we simulated condition dependent mortality (i.e., extrinsic 

mortality) by using climbing speed as a proxy for anti-predatory escape ability. 

We measured the climbing speed of each experimental fly once every 8 days. 

Briefly, we introduced each fly into a graduated glass tube, gently tapped the fly 

to the bottom of the vial and then measured the distance it climbed in 10 seconds, 

which allowed us to calculate its climbing speed in cm/s. For flies that climbed 

to the top in less than 10 seconds, the total length of the tube (12 cm) was divided 

by the time spent to reach the top. Climbing speed was calculated as an average 

of three successive measurements for each fly at each time point (a total of 5 

climbing assays). At the end of this procedure, we selected a cut-off point 

climbing speed below which 60% of flies were considered as “predated” (i.e., any 

fly for which we had measured a climbing speed below that point at some point 

during the ageing treatment). Similar to the first part, we maintained “young” 

females/males in isolation for four days followed by mating assays. In both 

ageing treatments (absence and presence of condition dependent predation), 

young females/males were not tested for climbing speed. 

Mating assays were conducted after each ageing treatments by mating pairs with 

different age combinations by putting a young/old male and a young/old female 

together into mating vials. Observers blind to treatments measured mating latency 

and mating duration until the first mating in each vial. Behavioural observations 



Appendix 
 

196  
 

were conducted in a 25°C room, started when the lights were on (i.e., 10 a.m.), 

and lasted for 6 hours. Pairs that did not mate within these 6 hours were 

considered unsuccessful. After the completion of the first mating, males were 

immediately discarded, while females were kept in the same mating vials where 

they were allowed to oviposit for 24 hours. At the end of this egg-laying period, 

we also discarded females and counted the number of eggs they laid during this 

period. Finally, we incubated vials for 16 days to allow all viable flies to emerge, 

froze them and then proceeded to count the number of offspring. 

To understand how condition dependent mortality modulates the effect of male 

and female age on reproductive senescence, we run separate analyses for each 

mortality treatment (i.e., absence vs. presence of condition dependent predation). 

As the first part (absence of predation) and second part (presence of predation) 

were conducted at different times, they were analysed separately. To explore how 

mortality affects the age-related decline in male/female reproductive success 

(number of offspring), distributional assumptions for linear models could not be 

met and transformation of the data was not helpful. Therefore, we used the 

nonparametric Kruskal–Wallis test to analyse whether there is an effect of pair 

age combination (young/old male x young/old female) on reproductive success. 

Similarly, we used nonparametric Kruskal–Wallis test to further understand if 

there is an effect of pair age combination on fecundity and egg-to-adult viability 

(calculated as the proportion of the number of adults to the number of eggs). For 

mating duration, we fitted a Linear Model (LM) with male age, female age and 

their interaction as fixed factors. For mating success, we used GLMs with 

Binomial error distribution with male age, female age and their interaction as 

fixed factors. Finally, for mating latency, distributional assumptions for linear 

models could not be met and transformation of the data was not useful. As a 

result, we used the Kruskal–Wallis test to analyse whether pair age combination 

influences latency to mate in the absence and presence of condition dependent 

mortality. Whenever we found significant effects of age on any given 
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reproductive trait, we continued with Dunn’s multiple comparisons post hoc test 

(for non-parametric analysis) to further disentangle male and female age effects 

under different mortality treatments. All analyses were performed in R v. 3.3.2 

(R Core Team, 2016). 

A.1.2. Results 

Age effects on reproductive success 

The effect of pair age (i.e., young male-young female, young male-old female, 

old male-young female, old male-old female) was significant in both the absence 

and presence of condition dependent mortality (Absence: Kruskal Wallis test, χ2 

= 35.964, df = 3, p < 0.001, Presence: Kruskal Wallis test, χ2 = 54.506, df = 3, p 

< 0.001). To disentangle the effects of male and female age on reproductive 

success, we run post-hoc Dunn tests (Table S.1). Briefly, old females had lower 

reproductive success than young ones both in the presence and absence of 

condition dependent mortality. Conversely, old males had lower reproductive 

success only in the presence of condition dependent mortality (Table S.1, Figure 

S.1 & Figure S.2). 

Age effects on fecundity 

The effect of pair age on fecundity was significant in both the absence and 

presence of condition dependent mortality (Absence: Kruskal Wallis test, χ2 = 

93.263, df = 3, p < 0.001, Presence: Kruskal Wallis test, χ2 = 84.367, df = 3, p < 

0.001). To disentangle the effects of male and female age on fecundity, we run 

post-hoc Dunn tests (Table S.2). Our results showed that fecundity decreases due 

to female age similarly in both the absence and presence of condition dependent 

mortality, while male age caused a decrease in female fecundity only in the 

presence of condition dependent mortality (Figure S.3 & Figure S.4).  
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Age effects on egg-to-adult viability 

The effect of pair age on egg-to-adult viability was not significant in the absence 

of condition dependent mortality (Kruskal Wallis test, χ2 = 1.126, df = 3, p = 

0.771); whereas, it was significant in the presence of condition dependent 

mortality (Kruskal Wallis test, χ2 = 16.257, df = 3, p = 0.001). Post-hoc Dunn test 

results showed that male age caused a decline in egg-to-adult viability only in the 

presence of condition dependent mortality. In contrast, the effect of female age 

on viability was not significant in either the absence or presence of condition 

dependent mortality (Table S.3, Figure S.5 & Figure S.6).  

Age effects on mating success 

We did not find a significant interaction between male and female age for mating 

success in the absence or presence of condition dependent mortality (Absence: χ2 

= 0.154, df = 1, p = 0.695, Presence: χ2 = 0.165, df = 1, p = 0.685). In the absence 

of condition dependent mortality, male age effect was marginally non-significant 

(χ2 = 3.124, df = 1, p = 0.077), whereas female age effect was significant (χ2 = 

7.394, df = 1, p = 0.006). In the presence of condition dependent mortality, there 

was no significant effect of male age (χ2 = 0.404, df = 1, p = 0.525) or female age 

(χ2 = 1.464, df = 1, p = 0.226) on mating success (Figure S.7 & Figure S.8). 

Age effects on mating latency 

The effect of pair age on mating latency was significant in the absence of 

condition dependent mortality (Kruskal Wallis test, χ2 = 20.279, df = 3, p < 0.001) 

but not in the presence of condition dependent mortality (Kruskal Wallis test, χ2 

= 6.202, df = 3, p = 0.102). Post-hoc Dunn test showed that ageing tended to 

increase mating latency in the absence of condition dependent mortality but this 

trend was only evident when the mating pair was old (Table S.4, Figure S.9 & 

Figure S10).  
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 Age effects on mating duration 

There was no significant interaction between male and female age neither in the 

absence nor in the presence of condition dependent mortality (Absence: F1,150= 

0.011, p = 0.917, Presence: F1,163= 1.114, p = 0.293). In the absence of condition 

dependent mortality, the male age effect on mating duration was significant 

(F1,151= 10.092, p = 0.002) whereas the female age effect was not (F1,151= 0.048, 

p = 0.827). Likewise, in the presence of condition dependent mortality, the male 

age effect was significant (F1,164= 18.496, p < 0.001) whereas the female age 

effect was not (F1,164= 2.696, p = 0.102) (Figure S.11 & Figure S.12). 
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A.2. Supplementary Tables 

 

Table S.1. Age and mortality effects on reproductive success. Effect of 
male age, female age and pair age on reproductive success in the absence 
and presence of condition dependent mortality (pilot study). 

Response 
Variable Treatment 

Condition 
Dependent 
Mortality 

Z test 
statistics P 

Reproductive 
Success 

(Pilot Study) 

Male Age 
(Old male-

Young female) 

Absent -1.225272 0.265 

Present -3.630763 < 0.001 

Female Age 
(Old female-
Young male) 

Absent -4.462351 < 0.001 

Present -5.685946 < 0.001 

Pair Age 
(Old male-Old 

female) 

Absent -5.007763 < 0.001 

Present -6.762927 < 0.001 

 

Table S.2. Age and mortality effects on fecundity. Effect of male age, 
female age and pair age on fecundity in the absence and presence of 
condition dependent mortality (pilot study). 

Response 
Variable Treatment 

Condition 
Dependent 
Mortality 

Z test 
statistics P 

Fecundity 
(Pilot Study) 

Male Age 
(Old male-

Young female) 

Absent -0.916443 0.431 

Present -2.775416 0.007 

Female Age 
(Old female-
Young male) 

Absent -7.413340 < 0.001 

Present -7.890024 < 0.001 

Pair Age 
(Old male-Old 

female) 

Absent -7.161654 < 0.001 

Present -7.145784 < 0.001 
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Table S.3. Age and mortality effects on egg-to-adult viability. Effect of 
male age, female age and pair age on egg-to-adult viability in the absence 
and presence of condition dependent mortality (pilot study). 

Response 
Variable Experiment 

Condition 
Dependent 
Mortality 

Z test 
statistics P 

Egg-to-adult 
Viability 

(Pilot Study) 

Male Age 
(Old male-

Young female) 

Absent -0.6411 1.000 

Present -3.0188 0.008 

Female Age 
(Old female-
Young male) 

Absent -0.1135 0.910 

Present -0.3902 0.836 

Pair Age 
(Old male-Old 

female) 

Absent -0.9472 1.000 

Present -3.1584 0.009 

 

Table S.4. Age effects on mating latency in the absence of condition 
dependent mortality. Effect of male age, female age and pair age on 
mating latency in the absence of condition dependent mortality (pilot 
study). 

Response 
Variable Experiment Z test statistics P 

Mating 
Latency (Pilot 

Study) 

Male Age 
(Old male-

Young female) 
3.5468 0.001 

Female Age 
(Old female-
Young male) 

1.8408 0.098 

Male + Female 
Age 

(Old pair) 
2.8324 0.028 

 

 



Appendix 
 

202  
 

A.3. Supplementary Figures 

 

 

Figure S.1. Effect of m
ale/fem

ale age on reproductive success in the absence of condition dependent m
ortality 

(pilot study). M
ean ± standard deviation for each treatm

ent follow
ed by an unpaired m

ean difference that com
putes 

95%
 confidence intervals to com

pare each treatm
ent w

ith the control group (young pair). 
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Figure S.3. Effect of m
ale/fem

ale age on fecundity in the absence of condition dependent m
ortality (pilot 

study). M
ean ± standard deviation for each treatm

ent follow
ed by an unpaired m

ean difference that com
putes 

95%
 confidence intervals to com

pare each treatm
ent w

ith the control group (young pair). 
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Figure S.5. Effect of m
ale/fem

ale age on egg-to-adult viability in the absence of condition dependent 
m

ortality (pilot study). M
ean ± standard deviation for each treatm

ent follow
ed by an unpaired m

ean difference 
that com

putes 95%
 confidence intervals to com

pare each treatm
ent w

ith the control group (young pair). 
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Figure S.7. Effect of m
ale/fem

ale age on m
ating success in the absence of condition dependent m

ortality 
(pilot study). M

ean ± standard deviation for each treatm
ent follow

ed by an unpaired m
ean difference that 

com
putes 95%

 confidence intervals to com
pare each treatm

ent w
ith the control group (young pair). 



Appendix 
 

209 
 

 

 

Fi
gu

re
 S

.8
. E

ff
ec

t o
f m

al
e/

fe
m

al
e 

ag
e 

on
 m

at
in

g 
su

cc
es

s 
in

 th
e 

pr
es

en
ce

 o
f c

on
di

tio
n 

de
pe

nd
en

t m
or

ta
lit

y 
(p

ilo
t 

st
ud

y)
. 

M
ea

n 
± 

st
an

da
rd

 d
ev

ia
tio

n 
fo

r 
ea

ch
 t

re
at

m
en

t 
fo

llo
w

ed
 b

y 
an

 u
np

ai
re

d 
m

ea
n 

di
ff

er
en

ce
 t

ha
t 

co
m

pu
te

s 9
5%

 c
on

fid
en

ce
 in

te
rv

al
s t

o 
co

m
pa

re
 e

ac
h 

tre
at

m
en

t w
ith

 th
e 

co
nt

ro
l g

ro
up

 (y
ou

ng
 p

ai
r)

. 

 



Appendix 
 

210  
 

 

 

 

 

Figure S.9. Effect of m
ale/fem

ale age on m
ating latency in the absence of condition dependent m

ortality 
(pilot study). M

ean ± standard deviation for each treatm
ent follow

ed by an unpaired m
ean difference that 

com
putes 95%

 confidence intervals to com
pare each treatm

ent w
ith the control group (young pair). 
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Figure S.11. Effect of m
ale/fem

ale age on m
ating duration in the absence of condition dependent m

ortality 
(pilot study). M

ean ± standard deviation for each treatm
ent follow

ed by an unpaired m
ean difference that 

com
putes 95%

 confidence intervals to com
pare each treatm

ent w
ith the control group (young pair). 
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Figure S.13. Correlations between the climbing speed of the first week 
vs. the decline in climbing speed in two weeks. Climbing speed of the 
week 1 vs. the difference between week 1 and week 2 for each isoline. 

 

Figure S.14. Correlations between the climbing speed of the first week 
vs. the decline in climbing speed in three weeks. Climbing speed of the 
week 1 vs. the difference between week 1 and week 3 for each isoline. 
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Figure S.15. Correlations between the climbing speed of the first week 
vs. the decline in climbing speed in four weeks. Climbing speed of week 
1 vs. the difference between week 1 and week 4 for each isoline. 
 

 

Figure S.16. Age-related decline in average climbing speed. Decline in 
average climbing speed of isolines per week (mean ± S.E.). 
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