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Summary 
 

Neuroblastoma is an embryonic tumor of the sympathetic nervous system which accounts 

for 15% of childhood cancer-related deaths. It is characterized by a wide spectrum of clinical 

behaviors derived from its great heterogeneity in clinical presentation and biological and genetic 

traits. Pre-treatment risk classification plays a central role in improving survival in these patients, 

however, yet the high-risk patient subgroup continues to have a particularly high mortality rate, 

highlighting a need to identify and validate new therapies, preclinical models and markers of 

therapeutic response. For this reason, it is crucial to keep in mind the concept that a tumor is a 

functional and interconnected tissue, where tumor cells proliferate uncontrollably in a 

dependent relationship with tumor macro and microenvironment, thus establishing a 

continuous and reciprocal dialogue through signaling, which is essential for survival and 

invasion. The biological complexity of neuroblastoma, clearly justifies the increasing use of 

quantitative studies to gain greater knowledge of biotensegrity, mechanotransduction, 

architecture, topology and interaction of its elements. 

We hypothesize that tension signals transferred from the extracellular matrix to tumor cells 

influence growth, differentiation and migration of these cells, necessitating the use of different 

approaches to search for targets at the contact points between these elements. The 

arrangement of patterns derived from morphometric and topological analysis in human tumor 

samples, as well as those derived from in vitro and in vivo models, and their relationship with 

the impact of known clinical and biological prognostic factors, may improve survival in patients 

affected by neuroblastoma, especially those considered high risk. 

The general aim of this research is to demonstrate that the vitronectin present in the 

neuroblastoma tumor microenvironment is a crucial connector within the elements of the 

extracellular matrix, modulating physical and chemical signaling between tumor cells and their 

surrounding elements to facilitate migration. 

The specific objectives of the study in human neuroblastoma tumor samples are: a) 

morphometric and topological characterization of vitronectin expression through the design of 

various algorithms; b) correlating expression of vitronectin and its ligands with patient clinical 

features and other tumor biological characteristics with known prognostic value, to determine 

the histological patterns of vitronectin with different degrees of malignancy; and c) associating 

vitronectin expression and distribution with other tumor biotensegral elements such as reticular 
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fibers, type I collagen, glycosaminoglycans, blood/lymphatic vessels and immune cells, to 

establish a pattern of aggressive biotensegral extracellular matrix. 

The specific objectives of neuroblastoma cell lines study are: a) identification and 

characterization of vitronectin and its binding ligands such as ανβ3 integrin, uPAR, and PAI-1; and 

b) establishing vitronectin and binding ligands patterns of neuroblastoma cell lines compared to 

human neuroblastoma samples.  

 

The defined study aims of the in vivo neuroblastoma models are to: a) generate orthotopic 

tumor xenografts in vitronectin-deficient and immunodeficient mice using the initial inoculation 

of neuroblastoma cell lines and the subsequent implantation of their tumor fragments, to 

determine their clinical-biological homology with high-risk neuroblastoma patients; b) 

characterize various elements of the tumor microenvironment such as vitronectin and its 

ligands, reticular fibers, type I collagen fibers, glycosaminoglycans, blood and lymphatic vessels, 

to determine histological patterns in this model; and c) describe the genetic characteristics of 

the tumors obtained to uncover the impact of extracellular matrix properties on the genomic 

heterogeneity of neuroblastoma, particularly the contribution of vitronectin as an element of 

the tumor macroenvironment.  

 

The present doctoral thesis is presented as a compendium of three publications and newly 

obtained related data providing insight into the mechanical interactions of neuroblastic cells and 

the extracellular elements that surround them, considering vitronectin adhesion glycoprotein as 

a key contact point to facilitate migration. The following articles make up this compendium: 

I. The tumor microenvironment as an integrated framework to understand cancer biology. 

Burgos-Panadero R*, Lucantoni F*, Gamero-Sandemetrio E, Cruz-Merino L, Álvaro T, 

Noguera R Cancer Lett. 2019. 1; 461:112-122. 5-year impact factor: 6.232. 

 

The purpose of this review is to emphasize the importance of identifying biomarkers that 

capture interactions occuring in the tumor microenvironment and that are related to the tumor 

aggressiveness, patient prognosis, and treatment response. A key highlight of the present work 

is the proposed classification of the tumor stroma into three grades, associated with clinical and 

therapeutic involvement, based primarily on data derived from neuroblastoma studies. 

 

II. Vitronectin as a molecular player of the tumor microenvironment in neuroblastoma. 

Burgos-Panadero R, Noguera I, Cañete A, Navarro S, Noguera R BMC Cancer. 2019. 

22;19(1):479. 5-year impact factor: 3.424 
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The objective of this study is to characterize vitronectin as an extracellular matrix target 

molecule, in a cohort of neuroblastic tumors chosen by genetic instability criteria. The initial 

study in in vitro and in vivo models of the vitronectin protein and its ligands associated with 

known clinical-biological prognostic factors has been expanded over a greater time period. 

 

III. The topology of vitronectin: A complementary feature for neuroblastoma risk 

classification based on computer-aided detection.  

Vicente-Munuera P*, Burgos-Panadero R*, Noguera I, Navarro S, Noguera R, Escudero 

LM.  Int J Cancer. 2020 Jan 15; 146(2):553-565. 5-year impact factor: 6.210. 

 

The goal of this research is to detect vitronectin distribution patterns in the tumor stroma 

that reflect neuroblastic cell behavior in a cohort of neuroblastoma tumors at the time of 

diagnosis chosen by criteria of genetic instability. Our discussion focuses on the comparative 

analysis between non-topological and topological characteristics and their association with 

aggressive tumor behavior. 

After applying multidisciplinary approaches used in our studies, fundamentally image 

analysis techniques from patient tumor samples complemented by preclinical models, we 

conclude that it is both possible and useful to characterize the stromal and parenchymal 

architecture of tumors to advance understanding of new therapeutic targets, while also 

promoting collaboration strategies and suitable clinical trial proposals. 
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Resumen 
  

El neuroblastoma es un tumor embrionario del sistema nervioso simpático que representa el 

15% de las muertes relacionadas con cáncer en la infancia. Se caracteriza por un amplio espectro 

de comportamientos clínicos derivados de su gran heterogeneidad en la presentación clínica y 

en los rasgos biológicos y genéticos. La clasificación de riesgo pre-tratamiento desempeña un 

papel central en la mejora de la supervivencia en estos pacientes, sin embargo, el subgrupo de 

pacientes de alto riesgo continúa teniendo una tasa de mortalidad particularmente alta, 

destacando la necesidad de identificar y validar nuevas terapias, modelos preclínicos y 

marcadores de respuesta terapéutica. Por este motivo, es crucial tener en cuenta el concepto 

de que un tumor es un tejido funcional e interconectado, donde las células tumorales proliferan 

sin control en una relación dependiente del macro-microambiente tumoral, estableciendo así 

un diálogo continuo y recíproco a través de la transmisión de señales que es esencial para la 

supervivencia e invasión. La complejidad biológica del neuroblastoma justifica claramente el uso 

cada vez mayor de estudios cuantitativos para obtener un mayor conocimiento de la 

biotensegridad, mecanotransducción, arquitectura, topología e interacción de sus elementos. 

Nuestra hipótesis es que las señales de tensión transferidas de la matriz extracelular a las 

células tumorales influyen en el crecimiento, diferenciación y migración de estas células, lo que 

exige el uso de diferentes enfoques para buscar dianas en los puntos de contacto entre estos 

elementos. La disposición de los patrones derivados del análisis morfométrico y topológico de 

muestras tumorales humanas, así como los derivados de modelos in vitro e in vivo, asociándolos 

con el impacto de factores pronósticos clínicos y biológicos conocidos, pueden mejorar la 

supervivencia en pacientes afectados por neuroblastoma, especialmente aquellos considerados 

de alto riesgo.  

El objetivo general de esta investigación es demostrar que la vitronectina presente en el 

microambiente tumoral del neuroblastoma es un conector crucial dentro de los elementos de 

la matriz extracelular, modulando las señales físicas y químicas entre las células tumorales y sus 

elementos circundantes para facilitar la migración. 

Los objetivos específicos de estudio en muestras de tumor de neuroblastoma humano son: 

a) caracterización morfométrica y topológica de la expresión de vitronectina a través del diseño 

de varios algoritmos; b) la correlación de la expresión de vitronectina y sus ligandos con las 

características clínicas de los pacientes y otras características biológicas del tumor con valor 

pronóstico conocido, para determinar los patrones histológicos de vitronectina con diferentes 
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grados de malignidad; y c) la asociación de la expresión y distribución de vitronectina con otros 

elementos biotensegrales tumorales tales como: fibras de reticulina, colágeno tipo I, 

glucosaminoglucanos, vasos sanguíneos/linfáticos y células inmunes, para establecer un patrón 

de matriz extracelular biotensegral agresivo. 

Los objetivos específicos del estudio en líneas celulares de neuroblastoma son: a) 

identificación y caracterización de vitronectina y sus ligandos de unión tales como: integrina 

ανβ3, uPAR y PAI-1; y b) el establecimiento de los patrones de vitronectina y sus ligandos de 

unión en líneas celulares de neuroblastoma en comparación con muestras de neuroblastoma 

humano. 

Los objetivos definidos de estudio en los modelos in vivo de neuroblastoma son: a) generar 

xenoinjertos de tumor ortotópico en ratones inmunodeficientes y con deficiencia de 

vitronectina, utilizando la inoculación inicial de líneas celulares de neuroblastoma y la 

implantación posterior de sus fragmentos tumorales, para determinar su homología clínico-

biológica con pacientes con neuroblastoma de alto riesgo; b) la caracterización de varios 

elementos del microambiente tumoral, como la vitronectina y sus ligandos, fibras reticulares, 

fibras de colágeno tipo I, glucosaminoglucanos, vasos sanguíneos y linfáticos, para determinar 

los patrones histológicos en este modelo; y c) describir las características genéticas de los 

tumores obtenidos para conocer el impacto de las propiedades de la matriz extracelular en la 

heterogeneidad genómica del neuroblastoma, particularmente la contribución de la 

vitronectina como elemento del macroambiente tumoral. 

La presente tesis doctoral se presenta como un compendio de tres publicaciones y datos 

relacionados, recientemente obtenidos, que proporcionan información sobre las interacciones 

mecánicas de las células neuroblásticas y los elementos extracelulares que las rodean, 

considerando la glucoproteína de adhesión, vitronectina, como un punto de contacto clave para 

facilitar la migración. Los artículos que constituyen el compendio son los siguientes: 

I. The tumour microenvironment as an integrated framework to understand cancer 

biology. Burgos-Panadero R*, Lucantoni F*, Gamero-Sandemetrio E, Cruz-Merino L, 

Álvaro T, Noguera R Cancer Lett. 2019. 1; 461:112-122. Factor de impacto a 5 años: 

6.232. 

El objetivo de esta revisión es enfatizar la importancia de identificar biomarcadores que 

capturen las interacciones que ocurren en el microambiente tumoral y que estén relacionados 

con la agresividad del tumor, el pronóstico del paciente y la respuesta al tratamiento. El punto 

esencial en el presente trabajo, es la clasificación propuesta del estroma tumoral en tres grados, 
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asociada con la implicación clínica y terapéutica, basada fundamentalmente en datos derivados 

de los estudios en neuroblastoma. 

II. Vitronectin as a molecular player of the tumor microenvironment in neuroblastoma. 

Burgos-Panadero R, Noguera I, Cañete A, Navarro S, Noguera R BMC Cancer. 2019. 

22;19(1):479. Factor de impacto a 5 años: 3.424 

El propósito de este estudio es caracterizar la vitronectina, como una molécula diana de la 

matriz extracelular, en una cohorte de tumores neuroblásticos elegidos por criterios de 

inestabilidad genética. El estudio inicial en modelos in vitro e in vivo de la proteína vitronectina 

y sus ligandos asociado con factores clínico-biológicos pronósticos conocidos, se ha ampliado 

durante un mayor período de tiempo. 

III. The topology of vitronectin: A complementary feature for neuroblastoma risk 

classification based on computer-aided detection. Vicente-Munuera P*, Burgos-

Panadero R*, Noguera I, Navarro S, Noguera R, Escudero LM.  Int J Cancer. 2020 Jan 15; 

146(2):553-565. Factor de impacto a 5 años: 6.210 

El objetivo de esta investigación es detectar patrones de distribución de vitronectina en el 

estroma tumoral que reflejen el comportamiento de las células neuroblásticas en una cohorte 

de tumores de neuroblastoma en el momento del diagnóstico, elegido por criterios de 

inestabilidad genética. Nuestra discusión se centra en el análisis comparativo entre 

características no topológicas y topológicas, así como su asociación con el comportamiento 

tumoral agresivo. 

Después de aplicar enfoques multidisciplinares utilizados en nuestros estudios, 

fundamentalmente técnicas de análisis de imagen en muestras tumorales de pacientes 

complementadas con modelos preclínicos, concluimos que es posible y útil caracterizar la 

arquitectura estromal y parenquimal de los tumores para avanzar en la comprensión de nuevas 

dianas terapéuticas, promoviendo a su vez estrategias de colaboración y propuestas de ensayos 

clínicos adecuadas. 

 

 

 

 

 

 

 



12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 

Abbreviations  
 

ALK: Anaplastic lymphoma kinase  

CAFs: Cancer-associated fibroblasts  

CAR: Chimeric antigen receptors  

CDX: Cell-line-derived xenografts    

COG: Children´s oncology group 

D: Deletion 

dNB: Differentiating neuroblastoma 

DCs: Dendritic cells 

ECM: Extracellular matrix 

EFS: Event-free survival 

EGF: Epidermal growth factor  

EMT: Epithelial-mesenchymal transition   

FAP: Fibroblast activation protein  

FDA: Food and Drug Administration  

FN: Fibronectin  

GAGs: Glycosaminoglycans 

GEMM: Genetically engineered mouse models  

GN: Ganglioneuroma 

GPs: Glycoproteins   

HE: Hematoxylin-eosin  

HR: High-risk 

HetMNA: Heterogeneous MNA  

iGNB: Intermixed ganglioneuroblastoma 

IL: Interleukin 

INPC: International Neuroblastoma Pathology 

Classification 

INRG: International Neuroblastoma Risk Group 

INRGSS: International Neuroblastoma Risk 

Group Staging System 

LN: Laminin  

LOX: Lysyl oxidase   

 

 

 

M: metastatic stage 

MS: special metastatic stage 

MKI: Mitosis-Karyorrhexis Index 

MNA: MYCN amplification 

MNNA: MYCN non-amplified 

MMPs: Metalloproteinases 

nGNB: Nodular (ganglioneuroblastoma) 

NB: Neuroblastoma 

NCA: Numerical chromosome aberration 

NK: Natural killer 

OS: Overall survival 

pdNB: Poorly differentiated neuroblastoma 

PDGF-B: Platelet-derived growth factor  

PDOs: Patient-derived organoids  

PDX: Patient derived xenografts  

PEG: Polyethylene glycol 

PGs: Proteoglycans  

PHOX2B: Paired-like homeobox 2B 

RGD: Arginine-glycine-aspartic acid 

SCA: Segmental chromosome aberration 

SIOPEN: Society of Paediatric Oncology Europe 

Neuroblastoma  

aSNP: Single nucleotide polymorphisms array 

TAMs: Tumor-associated macrophages 

TGF: Transforming growth factor 

TILs: Tumor infiltrating lymphocytes  

TMA: Tissue microarray 

TME: Tumor microenvironment or niche 

TN: Tenascin  

Treg: T regulatory 



14 

TSP: Thrombospondin  

uNB: Undifferentiated neuroblastoma 

VEGF: Vascular endothelial growth factor  

VM: Vascular mimicry 

VN: Vitronectin 

 

 

 

  



15 

 

Compendium of articles that support this thesis  

This thesis is based on three publications as a compendium in which the candidate is the first 

author or first co-author. Full text of the publications is shown below. 

 

I. The tumour microenvironment as an integrated framework to understand cancer 

biology. Burgos-Panadero R*, Lucantoni F*, Gamero-Sandemetrio E, Cruz-Merino L, 

Álvaro T, Noguera R Cancer Lett. 2019. 1; 461:112-122.  

 

II. Vitronectin as a molecular player of the tumor microenvironment in neuroblastoma. 

Burgos-Panadero R, Noguera I, Cañete A, Navarro S, Noguera R BMC Cancer. 2019. 

22;19(1):479.  

 

 

III. The topology of vitronectin: A complementary feature for neuroblastoma risk 

classification based on computer-aided detection. Vicente-Munuera P*, Burgos-

Panadero R*, Noguera I, Navarro S, Noguera R, Escudero LM.  Int J Cancer. 2020 Jan 

15; 146(2):553-565.  

 

The asterisk (*) indicates equal contribution. 

 

 

 

 

 

 

 

 

 

 

 



16 

 

  



17 

 

 

 

 

 

Article I: The tumour microenvironment as an integrated framework to 

understand cancer biology 

   

Burgos-Panadero R*, Lucantoni F*, Gamero-Sandemetrio E, 
Cruz-Merino L, Álvaro T, Noguera R. 

 

*Equal colaboration  

 

Cancer Lett. 2019. 1; 461:112-122. doi: 
10.1016/j.canlet.2019.07.010. 

ELSEVIER IRELAND LTD, ISSN: 1872-7980 

 

Impact factor 2018: 6.508 

5-year impact factor: 6.232 

ARTICLE I 
 



 

 

 



 

 

Cancer Letters 461 (2019) 112–122  

 
Contents lists available at ScienceDirect  

 

Cancer Letters 

 
journal homepage: www.elsevier.com/locate/canlet  

 
Mini-review  

The tumour microenvironment as an integrated framework to understand T cancer 

biology  
  
Rebeca Burgos-Panadero

a,b,1
, Federico Lucantoni

a,1
, Esther Gamero-Sandemetrio

a,b
, Luis 

de la Cruz-Merino
c
, Tomás Álvaro

b,d,**
, Rosa Noguera

a,b,*
  

a Departament of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, Valencia, Spain
 

 

b CIBERONC, Madrid, Spain
  

c Departament of Oncology, Hospital Universitario Virgen Macarena, Sevilla, Spain
  

d Hospital Verge de la Cinta, Tortosa, Tarragona, Spain
  

 
 
A R T I C L E  I N F O  
 
Keywords:  
Biophysics  
Bioelectric  
Metabolism  
Cancer treatment  
Extracellular matrix  
Stromal classification 

 
 
 
A B S T R A C T  
 
Cancer cells all share the feature of being immersed in a complex environment with altered cell-cell/cell-ex-tracellular element 

communication, physicochemical information, and tissue functions. The so-called tumour microenvironment (TME) is 

becoming recognised as a key factor in the genesis, progression and treatment of cancer lesions. Beyond genetic mutations, the 

existence of a malignant microenvironment forms the basis for a new perspective in cancer biology where connections at the 

system level are fundamental. From this standpoint, different aspects of tumour lesions such as morphology, aggressiveness, 

prognosis and treatment response can be considered under an integrated vision, giving rise to a new field of study and clinical 

management. Nowadays, somatic mutation theory is complemented with study of TME components such as the extracellular 

matrix, immune compartment, stromal cells, metabolism and biophysical forces. In this review we examine recent studies in 

this area and complement them with our own research data to propose a classification of stromal changes. Exploring these 

avenues and gaining insight into malignant phenotype remodelling, could reveal better ways to characterize this disease and its 

potential treatment.  
 

 
 
 
1. Introduction 
 
Cancer remains a major public health threat and one of the leading causes of 

death worldwide. Great effort has been invested into char-acterising and 

understanding this disease at a cellular, molecular and clinical level, and many 

achievements in the field have helped shape the therapies in use nowadays. 

However, most conventional che-motherapeutic drugs developed so far display 

only a narrow therapeutic window, due to their inability to distinguish 

cancerous from normal cells [89]. Developing new therapies against cancer 

often starts with use of non-physiological models of the disease such as cell 

mono-cultures, with no contribution from extracellular matrix (ECM) com-

ponents. Unsurprisingly, this has meant that observations on cellular network 

functions do not translate readily into in vivo models. This  

 
 
 
 
reductionist approach hinders attempts to turn novel interventions to correct 

dysfunctional cellular behaviour into effective therapies that can be 

successfully translated to the clinic.  
The majority of solid tumours have complex three-dimensional (3D) 

architecture, comprising different populations of abnormal cells divided into 

parenchymal and stromal compartments. The ECM that constitutes the stroma 

has a complex composition and is rich in growth factors and metabolites 

[20,33,100,140,144]. Communication between cancer cells and their 

surroundings contributes to changes and a high degree of heterogeneity at the 

phenotypic and genotypic level. Integrating the stromal components with the 

immune system, the non-cancerous niche and the consequent interplay of 

metabolic pathways sheds a different light on our understanding of cancer 

properties. This integrated view, termed the tumour microenvironment (TME), 

has modified our vision 
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of cancer towards a phenomenon that develops via cellular cooperation, 

moving away from a purely gene-centric framework [13].  
The architectural role of ECM components is clear and central to tissue 

homeostasis [138]. In fact, scaffold architecture has been found to have a 

significant impact on cell growth [91]. Anomalous cell-mi-croenvironment 

interaction results in an aberrant cellular networks. The interaction between 

physical and chemical properties establishes a dynamic reciprocity between 

neoplastic cells, stromal cells, micro-vascularization, innervation, ECM 

scaffolding, bioelectric fields and soluble factors of tumour growth control [50]. 

In this review we highlight how different biological phenomena drive the 

development of the TME and consequently tumour malignancies. Providing an 

in-tegrated perspective of the different components of the TME might yield 

insights into cancer as a whole. 

 

 

2. The TME niche 

 

The ECM is composed of soluble factors and a network of biopo-lymer fibres 

of proteins, proteoglycans (PG), glycosaminoglycans (GAG) and glycoproteins 

(GP), that differ in composition and structure according to the organ and tissue 

[42]. The size and density of the fibre network determine mechanical properties, 

as well as morphology, porosity and size of the mesh. The spatial organisation 

of this network provides a mode of communication thanks to its elasticity, 

which de-pends on the intricate biophysical properties of its components, and 

provides movement and contraction to the matrix [118]. ECM rigidity, which 

depends on the presence of the molecular elements mentioned above with the 

consequent pore size, viscoelasticity, cross-linking, cellular density and 

interstitial pressure, influences the reprogramming of the tumour cell [101]. 

Additionally, electrical charges carried by protein elements such as collagen 

have a powerful impact on the function and diffusion of substances and stimuli 

transmission [83]. PGs, which are glycosylated proteins with covalently 

attached highly anionic GAG, contribute to tissue hydration and swelling 

pressure, and allow it to tolerate compression forces [86]. Fibrous proteins of 

the ECM in-clude collagen, elastin, fibronectin, vitronectin and laminin among 

other elements [42]. Collagen provides the principal structural com-ponent of 

the ECM and is the most abundant protein in the human body [70]. Elastin 

cooperates with collagen and confers elasticity to tissues 

 

[84]. GPs have a similar fibril organisation to collagen and are bound to 

integrins, mediating cell processes such as cell adhesion [42]. Immersed in the 

ECM are the blood and lymphatic vessels and the stromal cells that synthesize 

the matrix and facilitate the immune response. Neoan-giogenesis in particular 

determines blood and lymphatic flow, oxygen and nutrient supply, interstitial 

pH and the bioelectrical and metabolic state of the tumour [131]. Intriguingly, 

the TME is also permeated by nerves, which have been shown to have an 

impact on cancer develop-ment [62]. 

 

The TME is infiltrated with a number of different cells that con-tribute to the 

progression of malignancy, enabling some cancer hall-marks [50]. Among the 

inflammatory cells of TME, tumour-associated macrophages (TAM) represent 

the most abundant population of in-filtrating cells and participate in both 

antitumor control (M1 pheno-type) and in malignant progression (M2 

phenotype) [46], promoting vascularization, invasion, growth, cancer cell 

survival and im-munosuppression [149]. Indeed, it has recently been found that 

in-creased levels of CD163+ TAM at the invasive front are indicative of poor 

prognosis and are responsible for releasing mesenchymal circu-lating tumour 

cells [143]. Throughout tumour progression, tumour-associated neutrophils 

(TANs) change from an antitumor function to a pro-tumorigenic phenotype, 

under the influence of the TME [49,105]. Conversely, T and B lymphocytes are 

also found within the TME and correlate with good prognosis [8]. Another cell 

type abundant in the stroma which has antitumor to pro-tumour switching 

properties is the fibroblast; cancer associated fibroblast (CAF) modifies the 

TME by se-creting ECM remodelling enzymes [3]. Finally, cancer stem cells 

(CSC) 

 

 

represent the source of heterogeneity in the tumour, the reason for resistance to 

chemotherapy and the origin of distant metastasis [27]. The inflammatory TME 

is a determinant of CSC and both are tightly linked [156]. 

 
2.1. Biophysical interactions in the TME 

 
The mechanical properties and the bioelectric signals of the tumour stroma 

determine cellular, biological and clinical behaviour. 
 
2.1.1. Stiffness of the ECM  
One classic characteristic of tumours is stromal stiffness, which al-lows cancer 

detection through palpation or radiological examination and is associated with 

altered ECM profile in the TME [44]. Indeed, increased ECM protein 

deposition can be employed as a prognostic factor [58,78,135,136]. On a 

similar note, previous studies from our group highlighted that ECM 

composition and architecture can define an ultra-high-risk patient subgroup 

with 5-year survival rate < 15% in neuroblastoma [130]. Additionally, 

neuroblastoma patients with poor prognosis possess a reticular and poorly 

porous ECM [132]. Stiffness has been shown to increase from healthy to 

malignant tissues, together with fibrosis, and to be accompanied by chemo-

resistance [111]. This increase in matrix stiffness reduces the elastic modulus 

and the 3D environment affects cell rheology [7]. Cancer cells have shown in-

creased proliferation in a softer matrix that could be linked to the initial growth 

of a tumour lesion, before the development of tumour vascu-lature [26]. 

Likewise, during the invasion process, cancer cells showed increased 

intracellular viscosity, suggesting a mechanism that could facilitate cell 

motility in a dense matrix [147]. 

 

Increased tumour stiffness depends not only on the amount and organization of 

the fibrous elements and other components of the ECM but also on increased 

interstitial fluid pressure [122]. These elements, together with the stromal 

cellular infiltrate, determine phenotypic di-versity, gene expression and the 

therapeutic response of cancer cells [4,47]. Physical stimulus of the tissue has 

a significant effect on the chemical signals of the tumour cell, which is able to 

perceive the me-chanics of the substrate and transduce this information to the 

molecular signalling pathways [47]. The rigidity of the matrix profoundly influ-

ences cellular morphology and behaviour and vice versa [66,121]. In-deed, it 

has been found that pancreatic stellate cell activation and durotactic response 

depends on the stiffness of the substrate [72]. Further investigation has linked 

the retinoic acid receptor to mechan-osensing response process [36]. 

 

Intracellular signalling in response to the mechanics of the TME mainly uses 

the integrin family and affects cancer gene expression, showing how tissue 

mechanics affect carcinogenesis [120]. In this context, it has been proposed that 

actin binds to integrin β3 by com-peting with talin protein; once this happens 

and mature adhesion has been established, forces are transmitted to the ECM 

thereby activating downstream signalling [112]. Partial inhibition of integrin 

results in a softer intracellular state [7] and revert tumour phenotype [108]. Me-

chanosensing of the TME also depends on focal adhesion proteins whose 

signalling cascades promote changes in tumorigenicity [66]. The same 

pathways modulate compression forces, as cancer cells are often subjected to 

mechanical deformation during proliferation [131]. 

 

2.1.2. Bioelectric TME  
Cells are able to generate and receive biological information in the form of 

bioelectric signals [34]. Cellular membranes provide an anchor for ion channels 

and protein pumps; through these avenues, cells can establish action potentials 

and depolarisation levels throughout the human body. Membrane potential 

develops a bioelectric field that en-ables cell-cell and cell-tissue 

communication. Tissues undergoing pro-liferation possess a positive charge 

when compared to quiescent cells [1]. Indeed, when negative charges are 

induced experimentally, cellular proliferation is inhibited [76]. Temporal 

variations in the membrane 
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potential exert a fundamental impact on cell cycle progression: cells become 

hyperpolarised before S phase and depolarise during mitosis, while G1 and G2 

phases fluctuate between the two conditions [150]. The cyclic behaviour of the 

membrane potential during cell cycle can be linked to the dynamic properties 

of the cellular microenvironment [14]. Bioelectric gradients form an important 

part of the morphogenetic in-formation transmitted to structural tissue 

organisation to coordinate cell-cell interaction [28]. A quiescent non-

transformed cell can modify its voltage threshold when switching to 

proliferative or malignant phenotype [1]. A negative membrane potential 

allows passive Ca2+ influx through specific ion channels, with an increase in 

actin poly-merisation, myosin contraction and adhesion decrease [88]. The re-

pulsion of Ca2+ to the anodal side of the cell, mediated by the voltage-gated 

Na+ channel, causes asymmetry in Ca2+ concentration, resulting in actin 

polymerisation and myosin contraction [19]. 

 

Negative charges contract the cytoskeleton and deploy a tensional force with a 

determined directional and migratory vector. In this con-text, ions fluxes have 

been found to drive cell migration and metastasis initiation in several types of 

cancer [119]. Cancer cells are affected by several transcriptional changes that 

are activated by membrane po-tential depolarisation, such as motility regulation 

induced by serotonin, Ca2+ and inositol triphosphate fluxes through gap 

junctions [126]. Membrane depolarisation also triggers the process of 

metastasis which is mediated by the transcriptional and epigenetic dynamics 

induced by serotonin and butyrate fluxes coupled with electrical changes [79]. 

Moreover, forced hyperpolarization has been found to inhibit the for-mation of 

induced tumour structures, even in cells distant from the tumour site [35]. 

 

Ion channels, protein pumps and gap junctions are part of the on-cogene family 

[9] and are considered predictive biomarkers [106], supporting a more 

integrated vision of cancer development, where the TME, rather than the 

mutation of single specific genes, is fundamental in establishing carcinogenesis. 

Indeed, a recent study highlighted that biopotential levels are significantly 

different in cancerous tissue to paired non-malignant tissue; this characteristic 

was shown to be influ-enced by ECM stiffness, and high biopotential values 

correlated with advanced epithelial ovarian cancer stage [31]. Emerging 

theories view cancer as a coherent subsystem with the ability to control 

information exchange with the surrounding environment [125]. Thus, tumour 

le-sions gain independence by creating primitive morphogenetic fields such the 

one observed in the histopathological structure of a metastasis. Indeed, cancer 

cells can “prime” the environment at a distal site in order to set the foundation 

for metastasis establishment in the pre-metastatic niche [97]. Endogenous 

membrane potentials make up the bioelectric TME, an important element with 

the ability to increase or normalise malignancy [75]. In this scenario, the 

bioelectric code ap-plied to the reprogramming of cancer-TME interaction 

constitutes a malignant phenotype that can be used to develop new treatments 

to inhibit cancer membrane potential [74]. 

 

 

 

2.2. Role of metabolism in TME interaction 

 

The physiological complexity of the TME and the 3D cellular or-ganization of 

a tumour also depends on existing metabolic differences. Varying oxygen, 

nutrient and waste diffusion gradients develop within the cancer tissue and 

contribute to its pathogenesis [24,73]. These gradients shape the TME and 

generate subcellular cancer populations with different gene expression patterns 

(Fig. 1) [29].  
Altered metabolism is an emerging hallmark of cancer, proving es-sential to a 

diverse range of cellular properties in malignant lesions [51]. As a result of poor 

or aberrant vascularisation, cancers have limited access to oxygen and nutrients 

[104]. Thus, tumour cells can use a diverse range of nutrients to fuel 

proliferation, invasion and treatment resistance [139]. Furthermore, cancer 

metabolism has a high degree of plasticity, as malignant cells can switch from 

different sources to obtain the energy needed [87]. TME stiffness exacerbates 

the harsh 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Tumour architecture in relation to extracellular gradients. Most solid tumours 

are organized in 3D structures made up of a central core with a high prevalence of necrotic 

cells, a quiescent area with tumour cells in G0 phase, and an external area with cells 

undergoing proliferation. As a con-sequence of this multicellular environment and the 

presence of an external ECM, a set of gradients are established. Typically O2, nutrients, 

pH and drugs are mostly concentrated at the outer zones, while their concentration 

decreases as they diffuse inside the tumour mass. On the other hand, waste and CO2 are 

highly concentrated inside the tumour mass, while outer cells can easily diffuse them in 

the surrounding TME. 
 
 

 

environment for these cells; the extensive fibrosis produced by the ac-

cumulation of ECM proteins increases interstitial pressure and the content of 

macromolecules, which contributes towards sustaining cancer cells by 

recycling these cellular elements [41]. This is particu-larly evident in pancreatic 

cancer, where glucose and glutamine are comparatively low and amino acids 

are scavenged from extracellular proteins such as albumin [37,68]. A similar 

process occurs in breast cancer, where stromal cells deposit large amounts of 

ECM proteins, which sustain metabolism and metastasis initiation [59].  
A higher glycolytic rate is a prominent feature of cancer, due to defective 

oxidative phosphorylation (OXPHOS) and limited oxygen availability: a 

phaenomenon called Warburg's effect [77]. While this is a widely accepted 

process, an emerging idea termed “reverse Warburg effect” has flourished. In 

this scenario, CAFs are metabolically impaired by H202 produced by cancer 

cells, with the consequent switch to aerobic glycolysis and the synthesis of 

metabolites such as lactate, pyruvate, ketone bodies and fatty acids. These 

nutrients are employed by tumour cells through active OXPHOS 

[6,17,95,99,124,145]. Cancer cells internalise the lactate which in turn modify 

NAD+/NADH ratio and increase mitochondrial mass and activity, resulting in 

Krebs cycle deregulation and accumulation of oncometabolites [57]. There is a 

high degree of variability between different cancers in estimated levels of ATP 

production through glycolysis or OXPHOS [159]. The switch be-tween 

OXPHOS and glycolysis is a key process in immune cell activa-tion in the 

TME. Quiescent T cells use fatty acid oxidation and gluta-mine and move 

towards glycolysis when activated [5]. 

 
Fatty acids are also required for a rapid cell division process and are in high 

demand among cancer cells to support their survival [2]. It has been found that 

hypoxic and Ras-driven cancer cells scavenge fatty acid from the TME as they 

possess reduced fatty acid biogenesis [67]. Fur-thermore, adipocytes are 

abundant in the TME [93] and sustain cancer progression and metabolism 

[92,148,155]. Another example of com-munication between components of the 

stroma and cancer cells has been described in leukaemia, where adipose tissue 

stimulates lipolysis in malignancies and protects against chemotherapy [151].  
An aberrant metabolism provides for a set of cancer hallmarks; for example, it 

can promote epithelial-mesenchymal transition (EMT), 
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Fig. 2. Stromal alteration grades. Graphical re-

presentation of the three proposed levels of stromal 

alteration. (A) Grade I represents a lax and porous ECM 

with a low immune response and without modification in 

the tumoural vasculature system.  
(B) In grade II the ECM increases in rigidity and 

distribution, allowing cancer migration and de-creasing 

diffusion of therapeutic agents. A moderate immune 

response is displayed, together with a vasculature system 

that permits cell migration. (C) Grade III is characterized 

by a significant increase in rigidity, and as a consequence, 

augmented cancer migration and heterogeneity with 

decreased diffu-sion of chemotherapy. A severe immune 

response is encountered, together with an increase in the 

vas-culature system which allows blood extravasation, 

haemorrhage and area of cellular necrosis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
which increases glycolysis through the key EMT regulator Snail [154]. Indeed, 

glycolysis has been identified as the main metabolic route uti-lised for cell 

motility [123] and its upregulation is important to main-tain cancer stemness 

and EMT phenotypes [158]. More importantly, the metabolites and waste 

gradient produced by cancer cells provide spatial information on vasculature 

position and modulate cell phenotypes within the TME [25]. 

 

 

3. Stromal alteration grades 

 

Combining the available information with our own findings, the data presented 

shows how the tumour stroma is progressively trans-formed as the tumour 

phenotype advances. We propose classifying these changes into the three levels 

outlined in Fig. 2, according to the intensity of their alteration, clinical and 

therapeutic implications.  
Slight changes in tumour stroma, grade I (Fig. 2A). Good prognosis, associated 

with early stages of various carcinomas and localized sar-comas. TME 

elements confer a minimal increase in stromal rigidity that does not stimulate 

tumour progression and allows diffusion of 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

therapeutic agents. Morphologically, this corresponds to a lax and porous 

ECM, with few type I collagen fibres and poor reticular fibre cross-linking, high 

PG and low GP content, and absence of desmoplasia or perineural invasion 

[21,40,66,132]. Among the ECM elements it is possible to observe numerous 

CAF (without myofibroblasts), limited numbers of tumour stem cells and a mild 

inflammatory response, with a low proportion of macrophages. M2 

macrophages are not identified, and there is a low to moderate number of T and 

NK lymphocytes [8]. A network of regular blood capillaries, open lymphatics 

and collecting vessels that show little or no change in the interstitial pressure 

of the ECM can be observed [21,128]. 

 
Moderate changes in tumour stroma, grade II (Fig. 2B). Uncertain prognosis 

associated with carcinomas and advanced regional sarcomas. TME elements 

generate stromal disruption that serves as a cleavage plane for tumour 

migration and lodges microscopic residual disease. Increased stiffness hinders 

the diffusion of therapeutic agents. There is incipient desmoplasia and a certain 

degree of tension due to the in-crease in the content of type I collagen fibres, 

cross-linking of reticular fibres, decrease in PG and increase in GP content 

[21,40,132]. CAFs are 
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found, with occasional myofibroblasts and limited tumour stem cells. There is 

a variable inflammatory response, characterized by infiltration of type M1 and 

M2 macrophages, T lymphocytes and natural killers (NK) cells. The vascular 

system is made up of regular blood capillaries together with tortuous sinusoids, 

and a moderate presence of small calibre lymphatic capillaries, frequently 

collapsed due to increased in-terstitial pressure in the ECM [21]. 

 
Severe changes in tumour stroma, grade III (Fig. 2C). Poor prognosis 

associated with various carcinomas, sarcomas, melanomas, lymphomas and 

neural tumours. Taken together, the TME elements confer an ap-pearance of 

high tumour heterogeneity, showing a remarkable increase in stromal rigidity, 

migratory capacity of tumour cells, poor response to treatment and very low 

diffusion of chemotherapeutic agents [132]. Perineural invasion and 

desmoplasia are frequently observed, asso-ciated with a rigid ECM due to the 

cross-linking and increased content of collagen I and reticular fibres, low PG 

and high GP content, with the presence of CAFs, myofibroblasts, tumour stem 

cells and a severe in-flammatory response characterized especially by 

infiltration of M1 and M2 macrophages [107]. The vascular system presents 

abundant sinu-soids, long and irregular vascular lakes, intermediate lymphatic 

capil-laries and small collecting vessels [130,133,134]. High interstitial 

pressure in the ECM leads to frequent blood extravasation areas, hae-morrhage 

and areas of necrosis. 

 

 

4. Cancer progression depends on the TME and vice-versa 

 

Previous research examined spatial growth and genetic evolution to model 

tumour progression, without considering the support provided from the 

surrounding environment [141]. While TME it is now con-sidered a key player 

in cancer evolution, there are several concerns that have not been resolved 

regarding the extent of its contribution. 

The impact of the TME in modulating carcinogenesis, tumour de-velopment 

and progression has been documented by studying the effect of the 

physiological microenvironment on cancers. Based on this, a non-malignant 

phenotype could be restored if cancer cells receive adequate signals from a 

physiological environment rather than a malignant one. Metastatic breast 

cancer cells were found to behave like “normal” cells when transplanted into a 

mammary gland microenvironment without forming tumours and contributing 

to tissue development [22]. Another report highlighted that embryonic stem cell 

preconditioned micro-environment suppresses breast cancer tumorigenicity 

through the Stat3 pathway [52]. Exposure of cancer cells to Lefty, a Nodal-

signalling in-hibitor secreted from the embryonic microenvironment, reduces 

their metastatic potential [103]. On a similar note, the embryonic chick 

microenvironment is able to reprogram the metastatic potential of melanoma 

cells following a neural fate [71]. Likewise, culturing pri-mary cells from lung 

tumour resections in in vitro TME-mimetic con-ditions made it possible to 

efficiently obtain and amplify tumour-as-sociated stromal progenitors which 

increased tumour malignancy [115]. 

 

 

Mutation and proliferation rates are not the only players in cancer progression: 

tumour development estimates are also influenced by the differential effect of 

selection processes on different cancer cell sub-populations. Under these 

circumstances, adaptive therapy modulated by chemotherapy minimises the 

competitive advantages between cancer cells to the extent that tumour size is 

not reduced but rather maintained. Notably, this approach increased therapy 

efficacy, as the fittest cancer cells are restrained and tumour proliferation is 

reduced [43]. It is plausible to suppose that the oncosuppressive functions of 

the embryonic microenvironment could be due to evolutionary competition 

between malignant and non-malignant cells [98]. 

 
The nutrients in the TME also have the ability to reprogram cancer cells into a 

more invasive phenotype. Cancer cells have nutrient-sensing mechanisms to 

track the surrounding environment and fine-tune the metabolism accordingly 

[94]. It has been found that extracellular pyr-uvate regulates collagen 

hydroxylation and promotes growth of breast 

 

 
cancer lung metastasis [39]. Stromal and cancer cells compete with each other 

to scavenge nutrients such as glucose from the TME. In-creased glucose 

consumption uptake by tumours outsources and re-stricts metabolism in T cells, 

allowing cancer to progress [32,54].  
Importantly, both the TME and associated cancer change during therapy. 

Indeed, it has been reported that immune checkpoint in-hibitors alter the 

mutational landscape of the tumour and T-cell re-pertoire [110]. The immune 

TME can constrain cancer progression or not based on its composition, and 

different TMEs can co-exist, showing highly heterogeneous therapeutic 

responses [65]. A case-study high-lighted a high-grade serous ovarian cancer 

patient with several me-tastases who showed progression or regression 

depending on immune exclusion or infiltration, respectively [61]. Similarly, 

tumour stroma also evolves with cancer starting from an increase in vasculature 

and leading to the transformation of the stroma into the desmoplastic en-

vironment [23]. A recent study analysing the human metastatic mi-

croenvironment in ovarian cancer found matrisome genes and proteins to have 

prognostic significance. Extension of the disease was accom-panied by an 

increase in fibrinogen, fibronectin, PG and affiliated proteins, indicating that the 

ECM evolves during metastasis [96]. 

 

 

5. Current methods to study TME-tumour cell interactions 

 

Cell monolayers have been employed for decades to study the cel-lular 

pathways involved in cancer progression and as a starting point of the drug 

discovery process. However, several other methods, as mul-ticellular tumour 

spheroids (MCTS), tumour explants, in vivo models, digital pathology and in 

silico models have been developed to better study the TME. 
 
2D cell cultures are easy to set up and relatively cheap. Importantly and in 

relation with the ECM, 2D cultures can be used to analyse the mechanical 

properties at a single cell level. This model also allows to understand how 

down/upregulations of certain proteins/genes inter-vene in the TME. 

Nonetheless, there are a number of issues such as lack of three dimensionality 

and absence of ECM, even when employing co-cultures to increase the 

physiological cell heterogeneity found in the TME. 
 
To overcome these limitations MCTS have been developed using mono or co-

cultures. These add the dimensionality needed to develop the cellular and 

treatment gradients described previously. Spheroids co-cultures are 

fundamental to study the immune cells interaction with a solid tumour. 

However, this model is not as fast as standard mono-layers, in terms of usage 

and the researcher needs to carefully select the best protocol to fit a specific 

biological question [90]. Another dis-advantage would be the lack of a 

physiological ECM architecture. In this context, scaffolded MCTS have been 

developed in order to re-produce ECM contributions, but low reproducibility 

and cost are major disadvantages [30]. 

 
The tumor tissue explants are based on tumor tissue biopsies, which are placed 

in a collagen matrix or gelatin sponges after necrotic tissue clearance. 

Disadvantages include the reduced reproducibility of tumour heterogeneity and 

maintenance of the culture for more than three weeks [113]. An approach to 

overcome all the limitation mentioned above relies on organoids model from 

tissue explants: 3D tissues de-rived from patient-derived pluripotent stem cells, 

which mimic complex feature of the malignant cells, but poorly recapitulate 

TME character-istics. Further advances, known as "tumor on a chip", have been 

aimed at developing a more TME physiological environment with tumor 

perfusion and mechanical stimuli such as shear stress [137]. In this context, 3D 

cell cultures are placed in microfluidic devices connected to perfusion systems 

with the possibility to regulate both fluids (medium, nutrients and waste) and 

gasses (CO2 and O2). 

 
An in vivo model that enables to study tumourigenesis in a natural immune 

microenvironment is the genetically engineered mouse model (GEMM). De 

novo tumors developed in GEMM share molecular and histopathological 

properties with the human counterpart and capture 
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intrinsic and extrinsic factors necessary for tumor initiations and me-tastasis 

[142]. Nonetheless, the validation and experimentation with GEMMs is costly, 

time-consuming and intricate. 

 

 
Table 1  
Major strategies used to target tumour microenvironment for cancer therapy

a
.   

TME element Therapy strategies  
An important model in the study of the TME is patient samples analysis with 

digital pathology. This rely on performing serial sections from a biopsy with 

the pertinent stains and consequent digital analysis. This technique is relatively 

easy to perform and can highlight an ap-proximate profile of the TME-cell 

interaction. With the correct staining it is possible to visualise the ECM 

components or the stromal cells for quantitative/qualitative analysis. The 

sectioning process of paraffin-embedded tissue can almost capture the full three 

dimensionality of the tumour architecture through overlapping the images 

derived of the digital analysis. 

 
 
Desmoplasia  
Activation TGF- β signaling pathway/  
Increased secretion collagen I Increased 

expression of MMPs/collagen  
cross-linkers  
Presence of Cancer-Associated Fibroblasts 

Hypoxia and acidosis 
Oxygen deficit  
Warburg effect 
 
Vascularization 

 

 
Angiotensin II receptor agonists 

 
Targeting MMPs 
 
Targeting FAP-α and TGF-β 
 
Tackle HIF-1 or its targets Inhibitor 

of proton exchangers/ transporters or 

carbonic anhydrase 
 

Finally, all the biological data coming from different methods in the era of 

“omics” techniques and personalized medicine, need to be properly integrated. 

In silico approaches using mathematical modelling and systems biology are 

increasingly being considered in the cancer biology field, because they capture 

the complexity of cellular systems as a whole. These rely on building biological 

networks using ordinary differential equations to analyse high throughput data, 

build predictive models and refine experimental hypothesis. Nonetheless, 

computa-tional models of all TME-cancer cell interactions needs to be carefully 

validated. 

 
 
6. Targeting TME as an anti-cancer strategy 
 
Given both the complexity of the TME, and its interaction with cancer and 

stromal cells, it is essential to identify targetable micro-environmental modules 

(Fig. 3 and Table 1 – reviewed in Refs. [11,113]) and, if present, any synergistic 

interaction with standard of care [65]. Several approaches have aimed at 

perturbing either the re-cruitment or function of stromal cells. As an example, 

modulation of the mesenchymal stromal cell compartment with tyrosine kinase 

inhibitors or immunosuppressive therapy could be a potential approach to limit 

the effect of the TME on cancer progression [102]. Blockage of mac-rophages 

by altering CSF1/CSF1R signalling can enhance the efficacy of conventional 

cytotoxic therapies [114]. CSF-1R inhibition acts 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Therapeutic modules of TME. The stratified cancer environment provides the 

basis for treatment resistance, as cells in the quiescent domain are more refractory to 

chemo- or immunotherapy. The extent of a drug's ability to penetrate the cancer 3D 

structure also affects treatment resistance. Among the therapies being developed 

nowadays, research has focused on blocking tumour angiogenesis, modulating stiffness to 

decrease cell migration and metastasis formation and inhibiting macrophage activity and 

other mesenchymal cells. Finally, several studies are concentrated on altering cellular 

metabolism to block cell proliferation, induce cell death and modulate interaction between 

cancer and immune cells. 

 
Proliferation endothelial cells and anti-VEGF/VEGFR and m-TOR  
pericytes inhibitor  
Altered immune system  
Active macrophages recruitment and anti-CSF1/CSF1R  
differentiation Tyrosine kinase inhibitor  
Chronic inflammation anti-IL-1/IL-1R/IL-6  
Pro-tumoural activity of immune system GM-CSF, CTLA-4, PD-1 and PD-L1  
Combined  
Immune check point PD-1 and anti-PD-1 plus anti-VEGF/PD-L1  
angiogenesis plus anti-VEGF  
 

a Reviewed in Belli et al. and Roma-Rodrigues et al. CTLA-4: cytotoxic T-lymphocyte-

associated protein 4; CSF1: colony-stimulating factor-1; CSF1R: CSF-1 receptor; FAP-α: 

fibroblast activation protein α; GM-CSF: Granulocyte-macrophage colony-stimulating 

factor; GTP: guanine nucleotides guanosine triphosphate; HIF-1: transcriptional factor 

hypoxia-induced factor-1; IL-1: in-terleukin-1; IL-1R: IL-1 receptor; IL-6: interleukin-6; 

MMPs: matrix metallo-proteinases; m-TOR: mammalian Target of Rapamycin; PD-1: 

programmed death 1 receptor; PD-L1: PD-1 ligand; TGF-β: transforming growth factor 

beta; VEGF: vascular endothelial growth factor; VEGFR: VEGF receptor.
 

 

synergistically with platinum-based chemotherapy, releasing an in-tratumoral 

type I interferon response [116]. Notably, iron metabolism, which is important 

for macrophage polarisation, has attracted interest in the development of new 

therapies [38]. Additionally, emerging elements are acquiring a key role in 

reprogramming the TME; vitamin D receptor has been found to have a role in 

metastatic cancer cells, stromal/immune compartment and the microbiota [60].  
Several groups have focused on modulating angiogenesis as a tar-geted therapy 

against the TME. Modulation of VEGFR2 signalling can improve therapeutic 

efficacy [146]. Alteration of hypoxia-related sig-nalling might return aberrant 

vasculature to normal while decreasing tumour malignancy [82]. Promoting 

normal vasculature could also increase chemotherapy uptake in the hypoxic 

TME and avoid boosting the more aggressive cancer cell subpopulation 

[146,153]. Conversely, vasculature reduction by inhibiting tumour stiffness 

using β-amino-propionitrile decreased metastasis [18]. 

 
Modulating ECM stiffness and the prosurvival signals derived from the TME 

is another approach to improve the efficacy of conventional therapies. 

Treatment of melanoma-associated fibroblasts with BRAF inhibitor PLX4720 

resulted in ECM deposition and resistance to treat-ment; thus, modulation of 

integrin β1 or FAK signalling in combination with BRAF inhibition induced 

cell death in melanoma [53]. Further-more, it has been shown that 

overexpression of laminin-411 correlates with poor outcome in glioblastoma 

multiforme and its inhibition in-creased in vivo survival [127]. In pancreatic 

cancer, depletion of βIG-H3, an ECM component, reduced tumour size and 

increased cancer cell clearance [45]. Inhibition of the GP vitronectin binding to 

its ligands (αvβ3 integrin, uPAR or PAI-1) has been tested as a potential ther-

apeutic [55,81,109]. 

 

Several approaches have aimed at efficiently blocking aberrant metabolism and 

its interaction with the TME. Hypoxia, a potent barrier in radiotherapy, 

chemotherapy and immunotherapy, has been used to develop targeted drugs 

[48]. Several reports showed the efficacy of HIF-1α blockade on tumour 

progression [15,80,152]. Lactate production, 
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Fig. 4. TME as an integrated platform to understand cancer. Despite the classical view of cancer as a disease driven by mutation accumulation, emerging evidence highlights the 

role of the TME in tumorigenesis. In order to identify new biomarkers, improve drug development and better characterize this disease, cancer researchers need to keep in mind the 

integrated vision of a malignant lesion immersed in all the elements of the TME, the most important of which are showcased in this figure. A malignant metabolism contributes to 

carcinogenesis and cancer cell interaction with the immune system and mesenchymal cell compartments (with the help of the microbiota). Remodelling the ECM allows cancer migration 

and metastasis formation, and impedes chemotherapy diffusion. The bioelectric field gen-erated in the TME regulates cell division and cell cycle. Finally, new blood vessel formation 

facilitates nutrient diffusion and creates a hub for cancer cells to disseminate from the primary tumour site. 

 

 
which correlates with tumour aggressiveness, increases in the TME as a 

consequence of the Warburg effect [117]. Indeed, inhibition of lactate uptake 

through MCT transporters has been found to reduce cancer growth, alone and 

in combination with current therapies [10,12,16,56,85]. The acidic TME has 

also been employed for specific targeting of cancer cells. In this context, a 

tumour acidic micro-environment targeted drug delivery system has been 

developed to carry doxorubicin to breast cancer [157]. Similar studies also 

focused on the production of pH/redox dual stimuli-responsive polymeric 

micelles for the intracellular delivery of doxorubicin [63,64]. 

 
 

 

7. Conclusions and perspectives 

 

An optimal strategy to avoid therapeutic obstinacy and superfluous tests in 

cancer patients could be to develop new terminology to replace the word cancer 

in conditions showing low clinical aggressiveness. From a general point of 

view, carcinogenesis appears to be a differ-entiation phenomenon, which also 

includes proliferation and senes-cence alterations. The fact that cancer cells 

rewire their malignant phenotype to a normal one when grafted into a healthy 

micro-environment allows us to view carcinogenesis from a developmental 

change perspective (Fig. 4). This is in line with recent tissue 
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organization field theory, where cancer is viewed as a disease affecting the 

entire tissue rather than single cells [129].  
Cells with similar proteomic and genomic profiles possess different 

physiological properties, and vice-versa. The biophysical forces that maintain 

the structural integrity of a tumour greatly influence cell ad-hesion, motility and 

proliferation. Changes in the bioelectric field can control tumorigenesis and 

cancer progression without major DNA da-mage. The metabolic interaction of 

cancer cells with the surrounding microenvironment shape not only the ECM 

architecture, but also the cellular/immune niche. The different TME elements 

promote angio-genesis and a set of changes that alter the tumour stroma. 

Moreover, therapeutic cytotoxic damage allows the tissue to remodel the en-

vironment with different oncogenic changes such as growth factor ex-pression, 

cytokines and stromal disruption that ultimately generate new migratory signals 

for cancer cells [69]. 

 
In summary, integrating all these information levels could lead to tumour 

normalisation by remodelling to healthy tissue morphogenesis (including the 

stromal and cellular compartment) in a non-malignant bioelectric/biophysical 

field and metabolism. With an integrated per-spective, it is possible to view 

carcinogenesis as a reversible process which is not necessarily linked to 

mutation. In order to achieve this objective, it would be helpful to record the 

integrated TME information in a standardized and homogeneous manner. The 

framework proposed in this review could be useful in finding new biomarkers 

and treatments that could potentially benefit cancer patients. 
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Abstract 
 
Background: Vitronectin is a multifunctional glycoprotein known in several human tumors for its adhesive role 

in processes such as cell growth, angiogenesis and metastasis. In this study, we examined vitronectin expression 

in neuroblastoma to investigate whether this molecule takes part in cell-cell or cell-extracellular matrix 

interactions that may confer mechanical properties to promote tumor aggressiveness.  
Methods: We used immunohistochemistry and image analysis tools to characterize vitronectin expression 

and to test its prognostic value in 91 neuroblastoma patients. To better understand the effect of vitronectin, 

we studied its in vitro expression using commercial neuroblastoma cell lines and in vivo using intra-adrenal 

gland xenograft models by immunohistochemistry.  
Results: Digital image analysis allowed us to associate vitronectin staining intensity and location discriminating 

between territorial vitronectin and interterritorial vitronectin expression patterns. High territorial vitronectin 

expression (strong staining associated with pericellular and intracellular location) was present in tumors from 

patients with metastatic undifferentiating neuroblastoma, that were MYCN amplified, 11q deleted or with 

segmental chromosomal profiles, in the high-risk stratification group and with high genetic instability. In vitro 

studies confirmed that vitronectin is expressed in tumor cells as small cytoplasmic dot drops. In vivo experiments 

revealed tumor cells with high and dense cytoplasmic vitronectin expression.  
Conclusions: These findings highlight the relevance of vitronectin in neuroblastoma tumor biology and 

suggest its potential as a future therapeutic target in neuroblastoma. 
 
Keywords: Extracellular matrix, Vitronectin, Digital pathology, Migration, Neuroblastoma 

 
Background  
The composition, morphology and organization of the 

extracellular matrix (ECM) is key to both healthy and 

pathological environments. In healthy tissue, the ECM 

regulates development and homeostasis, whereas in tu-

mors it displays mechanical properties such as stiffness that 

confer malignant characteristics to cell behaviour including 

proliferation, cell-death resistance, angiogen-esis, invasion 

and metastasis [1–3]. The interaction be-tween tumor cells 

and their surrounding elements is the first step in the 

development of metastasis, since cell movement requires 

firm cell-ECM adhesions to break down, as well as 

molecules to guide the migration.  
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Different cancer-promoting biological pathways of inter-

est for further exploration are cell-cell or cell-ECM ad-

hesions, proteases and chemokines [4]. In addition, recent 

studies show that cancer invasion and metastasis are driven 

by physical and chemical interactions between tumor cells 

and the ECM that translate into a stiff neo-plastic ECM and 

soft or deregulated tumor cells, which in turn lead to a more 

favorable microenvironment for cancer dissemination [5–

8].  
Vitronectin (VN) is an adhesive glycoprotein that acts as a 

link between cells and the ECM through several li-gands 

such as: integrins, plasminogen activator inhibitor-1(PAI-

1) and urokinase plasminogen activator receptor (uPAR). 

VN is present in plasma as a mono-meric or dimeric 

structure (folded or native form) and in the ECM of several 

tissues as a multimeric formation (unfolded or active form) 

[9, 10]. It is mainly synthesized 

 
© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and 

reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the 

Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver 

(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated 

mailto:rnoguera@uv.es
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


 

Burgos-Panadero et al. BMC Cancer (2019) 19:479 
 
 
 

 

by hepatocytes in the liver, although it has also been found 

in smaller amounts in extrahepatic tissues such as: brain, 

lung, kidney and vascular wall of adrenal gland [11–13]. It 

has also been observed that some tumor cells secrete VN 

as well as tumor-infiltrating T-lymphocytes (TIL) which 

bind to VN through TIL uPAR expression [14, 15]. The 

biological functions of VN, derived from its domains 

which bind several ligands in its activated form, are: 

preservation of vascular homeostasis (thrombosis and 

fibrinolysis), control of the innate immune system, 

facilitating cell adhesion and participation in migration in 

tissue repair and regeneration [16]. VN has a role in the 

provisional matrix of tumors, where it can promote cell 

adhesion and matrix degradation by binding to integrins, 

PAI-1 and uPAR [17]. In fact, in several hu-man 

neoplasms, VN is associated with tumor invasion, 

metastasis and angiogenesis [18–20].  
Neuroblastoma (NB) originates from the neural crest in the 

Sympathetic Nervous System and is one of the most 

common pediatric solid tumors [21]. Although sev-eral 

clinical, biological and genetic markers define the risk of 

progression in NB patients [22], the mechanisms that 

control communication between tumor cells and the ECM, 

and can influence aggressiveness are not yet clear. Our 

group has already described the aggressive pattern of a stiff 

ECM defined as: ECM with cross-linked and disorganized 

reticulin fiber networks, scant amount of collagen type I 

fibers and glycosamino-glycans and large and abundant 

irregularly-shaped and high blood vessels, associated with 

a poor outcome in NB patients [23–26]. Hence, to better 

comprehend this tumor cell-ECM communication we 

searched for targets within the ECM elements. Previous 

studies in NB have noted VN expression in ganglion cells 

that could suggest 

a differentiation role for this molecule [12] and its αvβ3 

integrin receptor, which is highly expressed in high-risk 
NB [27].  
In this study, we used digital image analysis to exam-ine 

the immunohistochemical expression of VN in NB to better 

understand the mechanical signals between neuroblasts and 

the ECM and their influence on tumor growth, 

differentiation and dissemination. In addition, we have 

done in vitro and in vivo experiments to assess if VN 

present in tumor or host microenvironments shows any 

modification on NB behavior since previous research 

showed the relationship between VN and me-tastasis and 

tumor progression in several human neoplasms. 
 

 

Methods  
Patient samples  
A total of 91 primary NB tumors (at least two represen-

tative cylinders of 1 mm) included in tissue microarrays 

(TMAs) were chosen according to NB genetic instability 
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criteria [28], and classified into the following categories: 

very low instability (numerical chromosomal aberration 

(NCAs) profiles, defined as gains or losses of a whole 

chromosome), low instability (≤3 typical segmental 

chromosomal aberrations (SCAs), excluding 11q deleted 

(11qD) profiles, defined as gains or losses of chromo-

somal fragments), medium instability (profiles with 

MYCN amplified (MNA) or 11qD, both genetic markers 

of worse prognosis or > 3 typical SCAs) and high in-

stability (profiles with chromothripsis, defined as a local 

breaking with subsequent aleatory reassembly of frag-ment 

in a single event [28], or > 3 gene amplifications), these 

categories were dichotomized as low instability (very low 

and low groups) versus high instability (medium and high 

groups). All samples had been re-ferred to the Spanish 

Reference Centre for NB Biological and Pathological 

studies (Department of Pathology, Uni-versity of Valencia-

INCLIVA) from 2000 to 2015. The samples were also 

classified according to INRG clinico-biological parameters 

[22] (Additional file 1: Table S1). This study was approved 

by the Ethical Committee of the University of Valencia 

(reference B.0000339 29/01/ 2015). Participants or their 

family members/legal guard-ians provided written 

informed consent for histological and genetic studies 

performed in our laboratory. Clinical data were provided 

by the pediatric oncologists in charge or by the Reference 

center for NB clinical studies. 

 
Immunohistochemistry  
One 3 μm section of each TMA was cut and immuno-

stained with rabbit monoclonal antibody against VN 

(EP873Y, Clone; ab45139, Abcam, Cambridge, MA, 

USA) at 1:100 using OptiView Amplification Kit (Ven-

tana Medical Systems Inc., Tucson, EE.UU.) in the 

BenchMark XT automated slide staining system (Ven-tana 

Medical Systems Inc., Tucson, USA). To determine the 

optimal antibody dilution, normal liver tissue and whole 

NB sections were used. As controls we stained several 

normal tissues (liver, kidney, salivary gland, smooth 

muscle, striated muscle, trachea, pancreas, spleen, adrenal 

gland, colon and placenta). Immunoreac-tivity was 

assessed by two researchers. VN immunoreac-tion was 

rated as no staining (0), and weak (1+), moderate (2+), and 

strong (3+). This category was di-chotomized as weak to 

moderate vs strong. This was used to determine the 

adequacy of a further image ana-lysis and help setting the 

image analysis parameters. 

 
Image analysis  
All immunostained slides were digitized with the whole-

slide Pannoramic MIDI scanner (3DHISTECH Ltd., 

Budapest, Hungary) at 20x magnification. We used two 

applications to quantify VN in NB samples: Image Pro-

Plus (IPP) software v.6.0 (Media Cybernetics Inc., 
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Silver Spring, MD, USA) and DensitoQuant module 

(DensitoQ), Pannoramic viewer software 1.15 (3DHIS-

TECH Ltd., Budapest, Hungary). The second was used as 

a validation tool of the first as it allows quick segmenta-

tion based on immunohistochemical staining intensity. The 

steps used for IPP and DensitoQ macro customization are 

described in Additional file 2: Table S2. Examples of how 

these two applications work are pro-vided in Additional 

file 3: Figure S1.  
IPP: To characterize VN expression, a macro was cus-

tomized using control tissues through RGB color seg-

mentation; restrictive values were used to distinguish 

between VN staining intensity and location. We quanti-fied 

VN staining as weak to moderate or strong, and VN 

distribution was identified as intercellular only or peri-

cellular plus intracellular location. In addition, the per-

centage of VN stained area (%SA) per cylinder and the 

mean of the two cylinders belonging to the same case were 

calculated as the area positive for VN divided by the total 

area of the cylinder, multiplied by 100. The %SA and 

density (number of objects/mm
2
) of cell nuclei of each case 

were also quantified.  
DensitoQ: The measures obtained were: negative, weak, 

moderate and strong pixels intensity and H-score. The H-

score (or “histo” score), is a score that indicates if the 

sample can be considered positive or negative on the basis 

of a specific discriminatory threshold, ranging from 0 to 

300 [29]. 

 

Statistical methods  
All data were analyzed using SPSS statistical analysis 

software (version 24). The consistency between the sub-

jective assessment and the VN image analysis was ana-

lyzed using the non-parametric Kruskal-Wallis test. 

Samples with no immunoreactivity for VN were ex-cluded 

from the statistical analysis. The VN numerical continuous 

variables derived from the morphometric analysis that did 

not follow a normal distribution were related to the INRG 

prognostic categories using the non-parametric Mann-

Whitney and Kruskal-Wallis tests and were dichotomized 

using the third quartile (Q3) to perform a survival analysis 

using the Kaplan-Meier curves and log-rank test. Cox 

survival regression using Wald (step back) test was used to 

estimate the influence of VN linked to INRG prognostic 

factors as independent variables on event-free and overall 

survival (EFS and OS, respectively). We considered p-

values less than 0.05 as statistically significant. 

 

In vitro and in vivo models  
In vitro and in vivo models were used to evaluate the 

changes in neuroblasts VN expression independently of the 

hepatic/extrahepatic VN synthesis. 

 
 
 
 

 

SH-SY5Y and SK-N-BE (2) NB cell lines were a gener-

ous gift from Miguel F. Segura (Laboratory of Transla-

tional Research in Child and Adolescent Cancer, Hospital 

Universitari Vall d’Hebron) and were grown, since VN is a 

fetal bovine serum component, in complete and serum-free 

media as indicate in Additional file 4: Table S3. To detect 

VN expression, cells were detached by Trypsin/EDTA 

0.25% (Gibco; Thermo Fisher Scientific Inc.), deposited 

onto poly L-lysine coated (Sigma) slides using Shandon 

CytoSpin  
III Cytocentrifuge at 1200 rpm for 10 min, fixed with 

methanol/acetone (1:1) for 10 min at room temperature 

and stained as indicated previously. 

Mice deficient in VN
−/−

 (B6.129S2 (D2)-Vtn
tm1Dgi

/J) and 

RAG1
−/−

 (B6.129S7-Rag1
tm1Mom

/J) were obtained  
from Jackson Laboratory (USA) and Charles River La-
boratories (France) and interbred to homozygosis for  
both alleles. Four-to six-week-old female or male 

RAG1
−/−

 VN
+/+

 (control) and RAG1
−/−

 VN
−/−

 (experi-  

mental) mice were used for left adrenal injection of 1 × 10
6
 

SH-SY5Y (n = 20) and SK-N-BE (2) (n = 20) NB cells 

lines in 30 μl of (1:1) Dulbecco’s phosphate-buffered sa-

line (DPBS; Gibco; Thermo Fisher Scientific Inc.) and 

Matrigel (Corning; Cultek S.L.U, Barcelona, Spain). Mice 

were anaesthetised using 4–5% isoflurane in a glass 

chamber for induction and anesthetic plan was main-tained 

by face mask with 1–2% isoflurane and subse-quently 

buprenorphine (0.1 mg/kg) was administered 

subcutaneously as analgesia. All experiments were car-ried 

out in accordance with the standards and care approved by 

the institutional ethical animal care com-mittee (reference 

2015/VSC/PEA/00083). Tumor growth was checked 

visually weekly and mice were sacrificed by overdose of 

isoflurane at 8 weeks after taking blood from anaesthetised 

mice (as described previously) via the car-diac puncture 

method. After fixing in formaldehyde 4% and embedding 

in paraffin, xenograft tumors and mice organ samples were 

stained with Hematoxylin-eosin (HE) and with anti-VN as 

indicated previously. The Discovery anti-rabbit HQ 

reagent (Ventana Medical Systems Inc., Tucson, EE.UU.) 

was only used to detect VN expression in human NB cells. 

 

Results  
VN is present in NB samples  
Positive VN immunoreactivity was observed in 85 out of 

91 samples (93.4%). A good consistency between sub-

jective and digital image analysis was observed (p-value  
= 0.000). The subjective assessment of VN pattern was 

weak to moderate (61 samples) and strong, (24 samples) 

(Fig. 1). Using digital image analysis, we found that: 1) 

Strong VN intensity was associated with a pericellular and 

intracellular location; it is mostly present in the pericellular 

region and stored intracellularly to a lesser 
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Fig. 1 Vitronectin pattern in neuroblastic tumors. Images immunostained with antibody anti-vitronectin (VN) at 40X. a Sample corresponding 

to negative VN. b and c Samples corresponding to weak to moderate VN expression and ECM distribution only (defined as interterritorial 

VN). d Sample with strong VN expression with pericellular and intracellular location (defined as territorial VN) 

 

 

extent. The pericellular region concerned two tiny sites: the 

matrix adjacent to the cell membrane like a capsular 

territory, and a layer surrounding the capsular matrix of 

each cell or nests of grouped cells; we labeled this ex-

pression pattern territorial VN. 2) Weak to moderate VN 

intensity was associated with intercellular location 

(peripherally to territorial matrix); we named this ex-

pression interterritorial VN (Fig. 1).  
The objective quantification patterns were considered as 

the %SA of interterritorial VN, territorial VN and H-score. 

We noted that the %SA of interterritorial VN and H-score 

was low in control tissues, high in liver tis-sues and 

intermediate in NB samples. Nevertheless, the highest 

%SA of territorial VN was found in NB samples. All VN 

and nuclei morphometric measurements are shown in 

Table 1. Median values of VN and nuclei quantity in 

relation to the INRG clinicopathological cri-teria are 

shown in Additional file 1: Table S1. 

 
High territorial VN expression pattern is associated 

with poor prognostic factors 

Mann-Whitney and Kruskal-Wallis tests demonstrated that 

strong VN intensity, territorial VN and high H-score were 

statistically associated with unfavorable prognostic factors. 

These VN features were present in tumors from patients 

with metastatic stage (excluding high H-score), uNB/pdNB 

histopathology, MNA, SCA profile, 11qD (excluding high 

H-score), high-risk pre-treatment stratification group and 

high genetic instabil-ity. No significant statistical 

relationship was observed between VN quantity and ploidy 

or histopathology 

 
 

 

category. The quantity of cell nuclei was higher in sam-ples 

from patients aged ≥18 months, metastatic stage, 

uNB/pdNB histopathology, MNA, high-risk pretreat-ment 

stratification and high genetic instability. p-values for the 

relationship between VN patterns and INRG pre-treatment 

risk classification are shown in Table 2. 

 
The highest territorial VN expression pattern is 

related to poor survival 

Samples with the highest VN levels and corresponding to 

strong staining intensity, territorial location and H-score ≥ 

Q3 were associated with poorer 5-year EFS and lower 5-

year OS, compared to patients whose sam-ples presented a 

low VN level (<Q3), (p-value< 0.05). Furthermore, 

samples with nuclei density ≥ Q3 were re-lated to poorer 5-

year EFS and lower 5-year OS (Fig. 2). To perform the 
multivariate survival analysis using Cox proportional 
hazards regression, we considered all INRG variables 
together with the VN morphometric variables considered 
as statistically significant by the log-rank test (Kaplan-
Meier curves). This test showed that age ≥ 18 months, 
uNB/pdNB histopathology and 11qD remained significant 
predictors for EFS. OS was influenced by age ≥ 18 months, 

11qD (p-value< 0.05), MNA and terri-torial VN 
expression (p-value< 0.1) (Table 3). 

 
In vitro and in vivo studies demonstrate VN expression 

by malignant neuroblasts  
Regarding VN expression in malignant neuroblasts, we 

observed low amounts of cytoplasmic VN dot drops ex-

pression in around 50% of cells in both growth conditions 
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Table 1 Description of the vitronectin and nuclei morphometric measurements of control tissues and NB primary tumors   

Parameter   Median Mean SD Range Q3 

Normal control tissues other than liver (n = 12)      

IPP Nuclei Density 308.10 305 99.75 94.10–477.70 355 

  %SA 7.30 7.90 3.35 4–14 8.80 

 Inter. VN %SA 1.57 3.92 5.70 0.42–17 3.67 

 Terr. VN %SA 0.04 0.07 0.07 0–0.20 0.15 

Densito VN ratio of pixels Weak 0.04 1 1.50 0–4 1.75 

  Moderate 2.25 10.95 13 0.06–35 22.90 

  Strong 1 2 2.60 0–9 2.95 

 H-score  20.45 46.40 52.51 0.16–163 82.50 

Liver samples (n = 5)       

IPP Nuclei Density 616 1846.70 2384.30 472–6051.70 3767.80 

  %SA 4 3.80 2.05 2–7 5.50 

 Inter. VN %SA 20 19 11.40 3–31 29.50 

 Terr. VN %SA 3 2.50 1.30 0.65–4 3.50 

Densito VN ratio of pixels Weak 2.50 2.85 2.30 0.30–6 5.15 

  Moderate 67 64.55 8.30 50–71 69.50 

  Strong 12.75 13.50 2.70 10–17 16 

 H-score  175.80 172.60 11.60 152.25–181.35 179.55 

Primary tumors (n = 91)       

IPP Nuclei Density 560 1074.25 1455.80 95–6793 739 

  %SA 11.75 11.70 6.30 0.35–29.70 15.50 

 Inter. VN %SA 9.35 12.25 10.95 0.02–40.97 18.20 

 Terr. VN %SA 0.71 2.95 4.45 0.01–20.70 4.50 

Densito VN ratio of pixels Weak 0.80 1.60 2.40 0.01–14.65 2.10 

  Moderate 35 36.10 24.70 0.05–88.10 56.75 

  Strong 3.55 12.85 17.85 0.01–61.85 20.40 

 H-score  110.91 112.85 78.55 1.07–257.60 183.80   
Descriptors of vitronectin (VN) immunoreactivity and nuclei according to their morphometric measurements are shown. IPP: Image Pro-Plus; Densito: DensitoQuant; 
Inter.VN: Interterritorial VN; Terr.VN: Territorial VN. Density: number of objects/mm2; %SA: percentage of stained area. SD: Standard deviation; Q3: third quartile 
 

 
Table 2 p-values and relationship between vitronectin and nuclei morphometric measurements and poor prognostic factors   
Parameter   Age: ≥18 Stage: M Hist.D: uNB/ MYCN: Gen. profile: 11q: 11qD Risk group: Gen. 
   months  pdNB MNA SCA  high-risk Instab.:High 
           

IPP Nuclei Dens. – 0.005↑ 0.007↑ 0.001↑ – – 0.001↑ 0.003↑ 

  %SA 0.004↑ – – – 0.018↓ – – – 

 Inter.VN %SA – – – – – – – – 

 Terr.VN %SA – 0.010↑ 0.001↑* 0.024↑ 0.001↑ 0.035↑ 0.008↑ 0.000↑ 

Densito VN ratio of pixels Weak – – – – – – – – 

  Mod. – – – – – – – – 

  Strong – 0.037↑ 0.010↑* 0.011↑ 0.002↑ 0.021↑ 0.004↑ 0.010 ↑ 

 H-score  – – 0.019↑ 0.040↑ 0.011↑ – 0.008↑ 0.001↑   
Only morphometric variables for vitronectin (VN) expression and nuclei having a statistically significant relationship with pre-treatment risk stratification factors are shown (p-

value< 0.05). IPP: Image Pro-Plus; Densito: DensitoQuant; Dens. Density (number of objects/mm2); %SA: percentage of stained area; Inter. VN: Interterritorial VN; Terr.VN: 

Territorial VN; Mod.: moderate. M: metastatic; Hist.D: histopathologic differentiation; uNB: undifferentiated neuroblastoma; pdNB: poorly differentiated neuroblastoma; NOS was 

excluded from statistical analysis; Gen. Profile: genetic profile; SCA: segmental chromosomal aberration; MNA: MYCN amplified; 11qD: 11q deletion; Gen. Instab.: genetic 

instability. -: not statistically significant, ↑/↓: higher or lower median value for the poor-prognostic group(s). *There are statistically significant differences between pdNB and uNB, 

within Strong VN (p-value< 0.05) and %SA Territorial VN (p-value< 0.1) morphometric variables 
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Fig. 2 Kaplan–Meier graphs showing the EFS (a-d) or OS (e-h) depending on different variables. In all cases, the black and grey lines correspond to the 

group above and below the third quartile (Q3) used for dichotomization, respectively. Only morphometric variables for vitronectin (VN) quantity with a 

statistically significant relationship with event-free survival (EFS) and/or overall survival (OS) are shown (p-value< 0.05). p-values and 5-year survival 

rates are shown. a and e Nuclei density. b and f Territorial VN. c and g VN Strong ratio of pixels. d and h H-score 

 

(complete and serum-free media) of both cell lines (Fig. 3). 
Tumor development after SH-SY5Y and SK-N-BE (2) in-

oculation was observed in RAG1
−/−

 VN
+/+

 mice (SH-

SY5Y = 7/10 and SK-N-BE (2) = 10/10) and RAG1
−/−

 

VN
−/−

 mice (SH-SY5Y = 9/10 and SK-N-BE (2) = 9/10). 

 
Table 3 Cox Regression of morphometric vitronectin 

variables and INRG prognostic factors   
Variable B S.E Wald Exp (B) (95% CI) p-value 
       

EFS       

Age (≥18 month) 1.361 0.526 6.696 3.898 (1.39–10.92) 0.010 

Hist.D (uNB/pdNB) 1.073 0.411 6.806 2.924 (1.30–6.54) 0.009 

11q status (11qD) 0.883 0.424 4.332 2.418 (1.05–5.55) 0.037 

OS       

Age (≥18 month) 1.320 0.603 4.797 3.745 (1.14–12.20) 0.029 

11q status (11qD) 1.309 0.469 7.785 3.702 (1.47–9.28) 0.005 

*MYCN (MNA) 0.857 0.472 3.296 2.357 (0.94–5.94) 0.069 

*Terr. VN_Q3 0.852 0.480 3.154 2.344 (0.92–6) 0.076 
         
Significant INRG prognostic parameters and morphometric vitronectin (VN) 
measurements predictive of poor outcome in neuroblastoma (NB) patients 

based on event-free survival (EFS) and overall survival (OS) with p-value < 
0.05 and *p-value < 0.1. Hist.D: histopathologic differentiation; uNB: 
undifferentiated neuroblastoma; pdNB: poorly differentiated 

neuroblastoma; 11qD: 11q deletion; MNA: MYCN amplified; Terr.VN_Q3: 

Territorial vitronectin dichotomized at the third quartile. B: Beta coefficient; 
S.E: Standard Error; CI: Confidence interval. Coefficients Exp (B) > 1 
indicate that high values of this parameter increase the probability of it 
being an independent poor prognostic factor 

 

 

We found no significant differences between tumor growth in 

control compared to experimental RAG1
−/−

 VN
−/−

 in any of 

the cell lines. Tumors displayed small and limited intra-

adrenal, and large abdominal solid masses with a 

heterogeneous macroscopic appearance, as well as moderate 

infiltrative growth into surrounding tissues such as perirenal 

fat, pancreas and liver, both in animal models and in NB cell 

lines. Regarding histopathology, solid tu-mors from the SH-

SY5Y cell line presented 30–90% undif-ferentiated 

neuroblastic cells, non-evident nucleolus, high mitosis-

karyorrhexis index (IMK) and between 5 and 50% necrosis. 

With respect to the samples derived from cell line SK-N-BE 

(2), these were characterized by being uNB with a mean of 

40–70% neuroblasts with evident nucle-olus, high IMK, and 

5–50% necrosis. Highly dense cyto-plasmic VN staining was 

similar in control and experimental mice derived from both 

cell lines (Fig. 3). 

 

Discussion  
VN is an attachment glycoprotein that directs cell migra-

tion, progression, adhesion and differentiation in many 

biological and pathological processes [13, 15, 30, 31]. By 

introducing advanced morphometric methodology, we 

have been able to demonstrate and robustly quantify VN as 

an important ECM component in aggressive NB 

synthetized by undifferentiated neuroblasts. We have 

found two VN expression patterns which reflect the 
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Fig. 3 Examples of in vitro (a-d) and in vivo (e-h) vitronectin expression. Vitronectin (VN) expression in SK-N-BE (2) cells maintained in: a  
Complete medium. b Serum-free medium. VN expression in SH-SY5Y cells maintained in: c Complete medium. d Serum-free 

medium. VN expression in orthotopic neuroblastoma (NB) mice after SK-N-BE (2) injection. e RAG1−/− VN+/+ mice. f RAG1−/− 

VN−/− mice. VN expression in orthotopic NB mice after SH-SY5Y injection. g RAG1−/− VN+/+ mice. h RAG1−/− VN−/− mice 

 
secretion time and role of this glycoprotein that has typic-ally 

been described for ECM constituents in cartilage: the 

territorial VN pattern, where VN is synthetized and re-cently 

incorporated to the newly formed matrix facilitating 

mechanical stresses of tumor cells, and the interterritorial VN 

pattern, where VN has been integrated some time ago to the 

matrix contributing to metabolic and biomechan-ical 

properties of several tumor tissue elements.  
Some contradictory studies of VN expression in NB have 

been described [12, 27, 32]. Gladson et al. 1997, showed 

VN expression in differentiating neuroblastic tu-mors and 

noted its attachment role in retinoic-acid dif-ferentiated 

neuroblastic cells stimulating in vivo differentiation [12]. 

Later NB studies detected an overex-pression of αvβ3 

integrin and uPAR, both of which are important VN 

ligands, in high-risk NB [27, 32]. From a larger cohort of 

neuroblastic tumors, our immunohisto-chemical results 

revealed VN expression in NB and GNB, with a high 

territorial VN expression in undiffer-entiated neuroblasts. 

Our findings are in agreement with the most recent studies 

mentioned above and the differ-ences from the earlier 

study [12] could be explained by cohort size. Using digital 

pathology techniques, we were able to accurately provide 

a connection between inten-sity and location. These 

techniques assure the standardization of all measurements 

and minimize inter-observer differences [33, 34] and can 

easily be reproduced in future studies. We are currently 

carrying out topological analysis on the histopathological 

images to evaluate non-cellular VN distribution features 

related to the tumor microenvironment. Our topological ap-

proach will capture different aspects of the VN 

 
 

distribution to improve the classification of biopsy sam-

ples from NB samples.  
The in vitro and vivo preliminary results in the present 

study mainly focused on human NB, were to emphasize the 

VN secretion by both NB cell lines and highlight the tumor 

and/or host microenvironment influence in their VN 

synthesis. We found that in vitro NB cells expressed a low 

quantity of VN as a small cytoplasmic dot drops pat-tern 

and that the in vivo experiments revealed a high amount of 

VN as a dense cytoplasmic pattern with no dif-  
ferences in VN staining pattern or tumor growth rate be-

tween RAG1
−/−

 VN
+/+

 and RAG1
−/−

 VN
−/−

 mice. The  
increased VN secretion by tumor cells, which produces 

mechanical stress, generates an initial stiff matrix and re-

sults in disrupted cell-cell and cell-ECM interactions, pro-

moting tumor proliferation in both mice strains, as 

described in ovarian cancer, through the breakdown of VN 

bonds to improve metastasis [35]. We confirmed that:  
a) Fetal bovine serum (FBS) does not contribute to a 

higher amount of VN in tumor cells as reported by Glad-

son et al. [36] and b) the importance of VN in NB tumor 

growth due to its high presence in vivo. These findings 

reinforce the previously described VN role in improving 

the migratory ability of tumor cells in NB and suggest that 

in vivo tumor cells produce VN to achieve greater migra-

tory capacity. Furthermore, given the importance of VN in 

breast cancer [37], we are developing experiments to clar-

ify the role of VN in vivo in NB tumor growth. Serial tumor 

passages will allow VN secretion by neuroblasts to be 

modified in relation to a host microenvironment, af-fecting 

tumor growth and genetic instability, as occurs in 

hormone-dependent tumors [38]. Therefore, although 
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xenotranplanted neuroblastic cells continue to synthe-tize 

VN, the absence of liver VN in the host would have a subtle 

role in the secretory ability of malignant neuro-blasts, but 

some long-term influence on cell proliferation and tumor 

aggressiveness.  
We stress that a high territorial VN expression pattern 

could contribute to tumor cell adhesion, thus promoting 

invasion and metastasis in NB, suggesting that VN or its 

ligands could be used as targets when developing thera-

peutic strategies for modulating the relationship between 

tumor cells and the ECM. In fact, the highest presence of 

territorial VN protein in the present cohort is related to 

unfavorable independent prognostic INRG variables. The 

high presence of territorial VN staining in tumors from 

patients with metastasic stage and unfavorable histology, 

would lead to higher migration ability of tumor cells by 

anchorage to fibers and proteoglycans, as well as disrupted 

cell adhesion and spreading via interactions with specific 

ανβ3 and ανβ5 integrins, uPAR and PAI-1 in a stiff matrix. 

In the case of tumors with genetic instability, a huge pres-

ence of territorial VN would generate mechanical alter-

ations in ECM, which would be transmitted to the nuclear 

matrix and would modulate the response of intracellular 

signals activating genetic and epigenetic mechanisms of 

instability in these tumors [39].  
The main therapeutic goal would be to focus on de-

creasing VN expression or to inhibit its joining with αvβ3 

integrin, uPAR or PAI-1, thus depriving the tumor cells of 

the mechanical forces necessary to create the ap-propriate 

environment for invasion [40–42]. Via its li-gands, VN has 

a role in biochemical cell-ECM pathways which could be 

used as therapeutic targets; however, no drug against cell-

ECM interactions has yet been approved, although some 

trials are ongoing as described below. 

 

αvβ3 and αvβ5 integrins bind to the arginine-glyci-ne-

aspartate (RGD) VN sequence and are key factors in 
angiogenesis. It has been observed that VN activates vas-
cular endothelial growth factor receptor 2 (VEGFR-2) via 

αvβ3, thus contributing to angiogenesis [43]. As anti-αvβ3 

integrin targeted drugs: Vitaxin, Intetumubab (CNTO 95) 
and 17E6 (EMD 525797) are in different phases of clinical 
trials [44], also in vitro melanoma re-search has displayed 

metastasis retardation using IH1062, an αvβ3 integrin 

inhibitor that blocks the bind-ing of this integrin to VN 
[45].  
uPAR is a protease that binds to VN in the RGD motif or 

N-terminal somatomedin B (SMB) domain. It has been 

observed that this union initiates integrin pathways that 

promoting migration [46, 47]. In addition, when uPAR 

binds to urokinase plasminogen activator (uPA), it causes 

the cleaving of plasminogen to produce plasmin that 

mediates the degradation of the ECM [48]. An in vivo 

study into a monoclonal anti-uPAR antibody 

 
 
 
 

 

(ATN-658) reported that this antibody inhibits tumor cell 

proliferation in prostate cancer [49].  
Finally, PAI-1 is a protease inhibitor of the serpins family 

that binds to the SMB domain of VN where its main 

function is uPA inhibition. Thus, PAI-1 partici-pates in the 

uPA/uPAR proteolytic cascade, as well as interfering in the 

binding of uPAR and αv integrins fam-ily in the SMB 

domain and RGD motif to VN, respect-ively [50]. In fact, 

an in vivo study of NB using PAI-1 deficient mice showed 

a reduction in tumor size [51]. In vitro and in vivo studies 

on the inhibition of PAI-1 using compounds such as 

TM5441, TM5275 and SK-216 have demonstrated toxic 

effects in cancer cells [52, 53]. 

 

Conclusions  
In conclusion, NB samples of patients with poor prog-

nostic factors are characterized by the highest territorial 

VN expression pattern. Our findings suggest the import-

ance of extensive studies on VN as a possible target for 

inhibiting interactions in NB. 
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Additional file 1: Table S1. Descriptors and median values of vitronectin and nuclei morphometric 

variables in the present cohort. 

Variable and 

category 

Nº 

cases 

Nuclei 
Inter. 

VN 

Terr. 

VN 
VN ratio of pixels  H-

score 
Density %SA %SA %SA Weak Mod. Strong 

Age  
<18months 51 534.15 12.95 10 0.66 0.70 34 3.20 95.40 

≥18months 40 614.20 9.45 7.95 0.85 0.82 37.80 3.90 131.30 

Stage 
 L1,L2,MS 65 527.25 12 9.90 0.55 0.82 34.30 2.50 80.80 

M 23 669.40 9.90 9.10 2.65 0.60 37.90 13.45 143.40 

Hist. C. 
GNB 9 219 6.50 2 0.50 1 44.25 4 80.10 

NB 82 570.60 12.20 9.90 0.75 0.75 34.60 4.39 111.30 

Hist.D. 

dNB 10 456.25 13.90 5.95 0.20 0.85 30.25 2 71.25 

pdNB 57 563.94 12.20 9.90 0.80 0.80 36.40 3.55 110.70 

uNB 13 1567 8.60 11.80 6.30 0.60 34.30 24.60 198 

MYCN 
MNNA 71 534.15 12.20 11.80 0.50 0.80 34.30 2.25 97.30 

MNA 19 2173.90 8.60 9 2.30 0.60 37.70 17.12 156.80 

11q 
ND 65 563.95 12.50 10 0.60 0.95 34.95 2.85 110.90 

D 19 603.40 9.60 13.10 2.90 0.75 38.35 16 143.75 

Ploidy 
Hiperp. 48 570.60 12.10 9.95 1.35 0.60 38 5.25 112.95 

Dip+tetrap 11 739 9.80 10.50 0.90 0.95 36.35 5.60 137 

Gen. 

profile 

NCA 26 551.40 14.10 5.80 0.30 1.10 21.60 1.60 69.80 

SCA 57 600.60 11.60 11.80 1.30 0.80 37.90 7.10 143.40 

Risk 

group  

Non-HR 64 530.70 12.60 9.10 0.50 0.80 32.30 2.20 81.60 

HR 27 1120 9.40 9.90 2.30 0.80 38.37 13.45 163.70 

Gen. 

Instab. 

Low 46 538.60 13.60 9.20 0.43 1 27 1.70 75.70 

High 26 793 9.10 10.85 2.87 0.70 38.36 16.57 169.87 

Density: number of objects/mm2; Inter. VN: Interterritorial VN; Terr.VN: Territorial VN; %SA: percentage 

of stained area. L1 and L2: localized and MS: special metastatic; M: metastatic; Hist. C.: histopathologic 

category; GNB: ganglioneuroblastoma; NB: neuroblastoma; Hist. D: histopathologic differentiation; dNB: 

differentiating neuroblastoma; pdNB: poorly differentiated neuroblastoma; uNB: undifferentiated 

neuroblastoma; NOS was excluded from statistical analysis; MNNA: MYCN non-amplified; MNA: MYCN 

amplified; ND: non deletion; D: deletion; Gen. Profile: genetic profile; NCA: numerical chromosomal 

aberration; SCA: segmental chromosomal aberration; Hiperp.: Hiperploid; Dip.: diploid; Tetrap.:tetraploid; 

HR: High-risk; Gen. Instab.:genetic instability. 

 

  



 

   Additional file 2: Table S2. Description of the image analysis process. 

Element Material Software Algorithm segmentation 

VN 

-Individual images 

-JPEG format, quality 80 

-RGB colour model 

Image Pro-

Plus (IPP) 

software v.6.0 

(Media 

Cybernetics 

Inc., Silver 

Spring, MD, 

USA) 

Customized macro: 
 

-Image pre-processing: contrast enhancement 

to better distinguish between blue and brown 

hues, in the following values: 50, 70, and 1 and 

for the high intensity VN cases: 70,70,1. 

 

-Morphological filters: Erode/Dilate and the 

enhancement HiGauss filter. In this step, an 

optimization of the appearance of the image 

without altering the true immunoreactivity of 

the cases was got to facilitate the segmentation 

process. 

 

-RGB channel segmentation: 

 

• The values for nuclei segmentation were R: 0-

169, G: 0-214 and B: 82-255 (R: 0-202, G: 0-

214 and B: 43-255 for high intensity VN cases). 

To a proper nuclei separation we used Autosplit 

and Watershed, followed by a restriction area 

>10μm2. 

 

• The color ranges for interterritorial VN were 

R:166-255, G:4-193 and B:0-135 (R:166-255, 

G:39-123 and B:0-135 for high intensity VN 

cases) and for territorial VN R:0-90, G:0-90 

and B:0-90 (R:0-136, G:0-90 and B:0-90 for 

high intensity VN cases). A restriction area > 

5μm2 was used in both cases. 

-Whole-digitized slide 

(identification of 

cylinders corresponding 

to the different samples) 

-TIFF format 

-RGB color model 

Pannoramic 

viewer 

software1.15 

(3DHISTECH 

Ltd., 

Budapest, 

Hungary) 

 DensitoQuant module: 

 

-Color adjustments: Blue detection: 0.8 and 

brown tolerance: 1. (In high VN intensity 

images the brown tolerance changes to 1.8). 

 

-The score levels were: 6.41, 15.13, and 44.28. 

(In case of high VN intensity images, the last 

score level 44.28 changes to 56.14). 

 

VN: Vitronectin; JPEG: joint photographic expert group format; RGB: R=red, G=green and B=blue color 

model; TIFF: tagged image file format. 

 

 

  



 

 

Additional file 3: Figure S1. Examples of how these applications work in vitronectin samples. A. Liver 

sample image immunostained for vitronectin (VN) without segmentation. B. Image of liver control sample 

segmentation with the DensitoQuant module (Pannoramic viewer software). C. Image of liver control 

sample segmentation with Image Pro-Plus software. D. Primary neuroblastoma (NB) sample 

immunostained for VN without segmentation. E. Image of NB sample segmentation with the DensitoQuant 

module (Pannoramic viewer software). F. Image of NB sample segmentation with Image Pro-Plus software. 

Color coding of VN analysis: in DensitoQuant segmented image, blue=negative, yellow=weak, orange= 

moderate and red=strong; in Image Pro-Plus segmented image, green=nuclei, brown= weak to moderate 

(interterritorial VN) and red=strong (territorial VN). 

  



 

 

       Additional file 4: Table S3. Growth conditions of NB human cell lines. 

Complete medium Serum-free medium 

 

Iscove's Modified Dulbecco's Medium 

(IMDM; Gibco; Thermo Fisher Scientific 

Inc., Waltham, MA, USA). 

 

Iscove's Modified Dulbecco's Medium 

(IMDM; Gibco; Thermo Fisher Scientific 

Inc., Waltham, MA, USA). 

 

10% Fetal bovine serum (FBS; Gibco; 

Thermo Fisher Scientific Inc.). 

 

F-12 (F-12 Nutrient Mix, GlutaMAX™; 

Gibco; Thermo Fisher Scientific) 

Insulin-transferrin-selenium (ITS; Gibco; 

Thermo Fisher Scientific, Inc.). 

 

Insulin-transferrin-selenium (ITS; Gibco; 

Thermo Fisher Scientific, Inc.). 

 

100 U/mL penicillin/100 μg/mL 

streptomycin (Gibco; Thermo Fisher 

Scientific Inc.). 

 

100 U/mL penicillin/100 μg/mL 

streptomycin (Gibco; Thermo Fisher 

Scientific Inc.). 

Plasmocin (Ibian Technologies, S.L., 

Zaragoza, Spain) to prevent mycoplasma 

contamination. 

Plasmocin (Ibian Technologies, S.L., 

Zaragoza, Spain) to prevent mycoplasma 

contamination. 
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Tumors are complex networks of constantly interacting elements: tumor cells, stromal cells, immune and stem cells, blood/lympathic vessels, 

nerve fibers and extracellular matrix components. These elements can influence their microenvironment through mechanical and physical 

signals to promote tumor cell growth. To get a better understanding of tumor biology, cooperation between multidisciplinary fields is needed. 

Diverse mathematic computations and algorithms have been designed to find prognostic targets and enhance diagnostic assessment. In this 

work, we use computational digital tools to study the topology of vitronectin, a glycoprotein of the extracellular matrix. Vitronectin is linked 

to angiogenesis and migration, two processes closely related to tumor cell spread. Here, we investigate whether the distribution of this molecule 

in the tumor stroma may confer mechanical properties affecting neuroblastoma aggressiveness. Combining image analysis and graph theory, 

we analyze different topological features that capture the organizational cues of vitronectin in histopathological images taken from human 

samples. We find that the Euler number and the branching of territorial vitronectin, two topological features, could allow for a more precise 

pretreatment risk stratification to guide treatment strategies in neuroblastoma patients. A large amount of recently synthesized VN would create 

migration tracks, pinpointed by both topological features, for malignant neuroblasts, so that dramatic change in the extracellular matrix would 

increase tumor aggressiveness and worsen patient outcomes. 
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Introduction  
The interplay between different fields of basic science has been 

revealed as an efficient way to advance in medicine. Physics and 

mathematics-related terms like tensegrity, topology and 

tessellations (see Glossary) are now used to improve under-

standing of biology and biomedicine.
1–3

 In parallel, a robust and 

efficient analysis of histopathological images is required due to 

their increasingly accepted use. Image analysis land-scape has 

enormous potential to improve the quality of histo-logical image 

interpretation, supporting without overruling pathologists in 

decision-making.
4,5

 In the oncology field, a plethora of 

computational tools is being designed to capture medical 

information with the help and supervision of a variety of 

professionals such as pathologists, biologists or physicists.
6–8

 

Morphometric analysis has often been used as a first approach, 

successfully highlighting new prognostic indicators.
9–11

 However, 

more sophisticated techniques are needed to model highly 

complicated diseases like cancer. In particular, computerized image 

analysis has proven useful to find relevant features in different types 

of cancer.
12–14

 For instance, features related to texture analysis, 

which is based on the intensity and colors of the images, or 

morphological fea-tures considering the shape of the detected 

elements, are broadly used. These approaches did not consider the 

spatial relationship between its components
12,13

 or were restricted 

to nuclei.
14

 However, morphometric techniques assure the stan-

dardization of all measurements and minimize interobserver 

differences.
15,16

 Understanding how biopsy elements are orga-

nized is important to find potential new markers for improv-ing 

treatment strategies and outcome prediction.  
There  is  an  increasing  emergence  of  network  theory  
methods in biology.

17–20
 In cancer, graph theory (see Glos-

sary) is commonly used to analyze gene networks.
21,22

 In the 

case of histopathological images, three reconstructions have 

recurrently been used to obtain a graph that connects the ele-

ments of the image: Delaunay triangulation, Voronoi diagram 

(see Glossary) and minimum spanning tree.
23–25

 However, 

these approaches did not consider the importance of the spa-tial 

context of the extracellular matrix (ECM) for patient out-comes. 

Likewise, small nonisomorphic induced subgraphs (graphlets, 

see Glossary) have been used as a means to charac-terize 

biological networks,
26–28

 but as yet they have not been used to 

topologically characterize histopathological samples regarding 

outcomes. 

 
 

 

The tumor microenvironment, particularly ECM, has a strong 

influence on cancer malignancy.
29,30

 Specifically, vitronectin 

(VN), a glycoprotein belonging to the ECM, is considered to 

promote angiogenesis and vascular permeability, aiding tumor 

migration.
31–33

 In particular in neuroblastoma (NB), a 

heterogeneous tumor in childhood with widely vary-ing 

prognosis according to several clinical and genetic factors in the 

International Neuroblastoma Risk Group (INRG) 

classification,
34

 the role of VN remains incompletely defined, 

although our previous studies suggested a connection to tumor 

progression.
35

 Despite efforts to fully characterize the impact 

of the NB microenvironment on patient pretreatment risk 

evaluation and tumor genetic instability, it still remains  
unclear how ECM topology and the interplay of its elements 

affect patient prognosis.
9,36,37

 Our hypothesis is that tumor  
cells affect the organization of the different elements sur-

rounding them, including ECM elements such as VN. Working 

from this, our aim is to identify independent tumor tissue 

parameters, like VN topology, which could help to assess the 

risk group of NB patients and/or tumor genetic instability. 

 

Materials and Methods  
Material  
Ninety-one primary NB tumors (at least two representative 

cylinders of 1 mm
2
 from each tumor) included in eight tissue 

microarrays were chosen according to INRG classification 

parameters and/or tumor genetic instability criteria related to 

segmental chromosome aberrations (SCAs)
34,38

 (Supplemen-

tary Table 1). Tissue microarray slices of 3 μm were stained 

with anti-VN (1/100) (clone EP873Y, isotype IgG, code 

ab45139, Abcam), scanned at 20x with Pannoramic MIDI 

(3DHistech Ltd., Budapest, Hungary), and analyzed objec-

tively with Image Pro-Plus v.6.0 (Media Cybernetics, Inc., 

Rockville, MD 20850 USA) and DensitoQuant module from 

Pannoramic viewer software 1.15 (3DHistech Ltd.). For each 

biopsy (Figs. 1a and 1b), we obtained three markup images 

(area of each image: 1 mm
2
, see Glossary) and their morpho-

metric data: hematoxylin stained nuclei (Fig. 1c); territorial VN 

location (Fig. 1d), strongly stained intensity; and inter-

territorial VN location (Fig. 1e), represented by low and 

medium intensity. These biopsy results were classified as high-

risk group (≥18 months and stage M or <18 months, stage 

M/MS and MYCN amplified [MNA]) and non-high-risk 
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What’s new? 
The tumor microenvironment has a strong influence on cancer malignancy. Here, the authors investigate whether the organization 
of the extracellular matrix glycoprotein vitronectin in the tumor stroma may confer mechanical properties affecting neuroblastoma 
aggressiveness. Combining image analysis and graph theory, they identify two topological features of vitronectin that could 
potentially be used to improve patient pre-treatment risk stratification. The data also point to the creation of vitronectin migration 
tracks for malignant neuroblasts, so that dramatic changes in the extracellular matrix would increase tumor stiffness and 
aggressiveness and worsen patient outcomes. 
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Figure 1. Segmentation of biopsy images from neuroblastoma (NB) patients. (a) Image of an immunohistochemical biopsy stained to detect vitronectin 

(VN) (brown scale). Hematoxylin is highlighted in blue, corresponding to nuclei and fibers of extracellular matrix. (b) Segmented image differentiating 

between territorial VN (red) and interterritorial VN (brown). The cell nuclei are also shown in the resulting image (green). (c–e) Markup images showing 

the segmented elements separately, but all in white: cell nuclei (c), territorial VN (d) and interterritorial VN (e). Scale bar in black, 50 mm. 
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group (very low, low and intermediate categories following the 

INRG classification) patient material (additional Table 2). 

Regarding tumor genetic instability criteria, results were also 

grouped as higher SCA patient material (genetic profiles with 

>3 typical SCAs plus MNA or 11q deleted or >3 gene amplifi-

cations or with hyperrearranged chromosomal segments) and 

lower SCA patient material (genetic profiles with numerical 

chromosomal aberration or ≤3 typical SCAs, excluding 11q 

SCA).
35

 Our study was approved by the Ethics Committee 

(reference B.0000339 29/01/2015). Participants or their family 

members/legal guardians provided written informed consent. 

 
Topological features  
To characterize our biopsies, we have extracted a set of 47 fea-

tures, where 25 captured the organization of both types of VN 

(territorial and interterritorial), separately. First, considering the 

impossibility of measuring VN as if it were individual objects in 

our black-and-white markup images (Figs. 1c–1e), we decided to 

discretize the space in hexagonal regions of a fixed side of, 

approximately, 8.05 mm (50 pixels) (Fig. 2 and Fig. S1b). 

Considering that hexagonal regions filled with VN staining 

 
represented by nodes (see Glossary), we quantified the follow-

ing parameters (Table 1a): (i) quantity of VN staining inside it 

(features with ID 4, 5, 16 and 17). (ii) Euler number (see Glos-

sary): defined as the number of objects minus the number of 

holes within a region (7, 8, 19 and 20). (iii) Branching (see 

Glossary): We measured the number of crosslinks (11, 12, 23 

and 24). (iv) Difference in quantity between interterritorial and 

territorial VN (feature with ID 25).  
To get the final value of the features, we calculated the average 

of each parameter considering all the regions (fea-tures with 

suffix “per region,” Table 1a) or only the nodes (suffix “per 

node,” Table 1a) of the Euler number and branching, while the 

deviance (standard deviation [std]) of either the nodes or all the 

regions were computed to all the parameters. In addition, we 

computed a series of features that did not consider the 

hexagonal region (Table 1a): the holes inside VN staining 

regions and the deviance of their area (features with ID 9, 10, 

21 and 22). We also computed the Euler number per VN 

staining area of the whole image (6 and 18). All the topological 

features were extracted with Matlab R2014b (MathWorks). 
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nodes. To connect the nodes with a link (edge, see Glossary), 

we considered the “ordinary” (Euclidean) distance between 

them. We, therefore, started with all the nodes having no con-

nections amid them. Aiming to model how the regions are 

distributed throughout the sample, we linked the nodes to  
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Figure 2. Legend on next page. 
 

 

                          

Pure topological features. We used graph theory to obtain a 

subset of “pure topological” features. Briefly, to extract this set 

of characteristics, we collected the position and number of the 

hexagonal regions of our images (Fig. 2). In our network 

(graph), hexagonal regions filled with VN staining stand for 
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obtain a connected network (i.e., any node can reach any node 

using the edges as a vehicle) using three different algorithms 

(iteration, sorting or minimum spanning tree, Supplementary 

Methods). Note that, for a given markup image, we will have 

three networks with the same number of nodes (one per 

algorithm).  
Once we had the networks, which connect the regions filled with 

VN, we extracted the different configurations that can be 

achieved with a small number of nodes (graphlets
26

 of up to five 

nodes). Specifically, we used the ORCA (Orbit Cou-nting 

Algorithm) computer program for graphlet identifica-tion and 

calculation,
39

 to extract the different graphlets of each network. 

In order to obtain the final tensegrity index (see Glossary) 

features, we compared, using the graphlet degree distribution 

distance,
40

 the graphlets obtained from the biopsy markup 

image with an in silico control, which tries to mimic a sample 

where the VN is equally distributed through-out the sample 

(represented by a homogeneous Voronoi tes-sellation, 

Supplementary Methods).  
We computed the average distance between ten in silico 

generated controls with its tumor markup image specific net-

work. Therefore, a tensegrity index represents how the real 

distribution of territorial or interterritorial VN differs from a 

homogeneous distribution. Finally, we obtained the six 

tensegrity indices (Table 1a): three algorithms from two loca-

tions (features 1, 2, 3, 13, 14 and 15). The whole pipeline is 

explained in Figure 2. 

 

Nontopological characteristics  
We captured an additional set of nontopological features (Fig. 

2), which involve morphometric characteristics: 
 
1. Nuclei (Fig. 1c). We obtained the number, area, ratio and 

percentage of hematoxylin stained nuclei (from non-VN 

secretory cells) and the total nuclei number (from non-

secretory and VN secretory cells) from the total markups.  
2. Percentage of stained area (Fig. S1b). We quantified the VN 

stained areas in each delimited hexagonal area. We cal-

culated the mean and std of the whole grid. In addition, we 

computed this mean and std using only the nodes. In the  

 
 

total markups, we also calculated VN location (percentage of 

stained area and number/mm
2
), pixel intensity ratio (ratio of 

positive stained pixels), positive or negative H-score (based on 

a specific discriminatory threshold, ranging from 0 to 300) and 

number of VN secretory cells (percent-age of VN positive 

cells).  
3. Number of holes. We also identified the holes in an image.  
4. Difference between interterritorial and territorial VN. We 

computed the average difference between interterritorial and 

territorial VN per region. For each hexagonal area, we 

operated territorial minus interterritorial. 

 
Statistical analysis  
We have adapted the pipeline shown in past studies

41,42
 to obtain 

complementary features to refine the risk-group assign-ment for NB 

treatment stratification and genetic instability in the present cohort. 

In particular, we have performed a multi-variate analysis using 

logistic regression to collect these relevant features. See 

Supplementary Information for more details. 

 
Data availability  
The data set used and analyzed in the current study is avail-able 

upon request. 

 
Code availability  
The code is available at: https://github.com/Complex 

OrganizationOfLivingMatter/NeuroblastomeIntegration. 

 

Results  
Capturing organization from NB biopsy images  
We processed and analyzed 91 histological images taken from 

human samples stained with anti-VN antibody to visualize VN 

distribution (Figs. 1a and 1b, Methods). Using these images, we 

obtained the hematoxylin stained nuclei markup image for each 

biopsy (Fig. 1c). We also distinguished two dif-ferent 

localizations of VN according to intensity, as previously 

described
35

: strong intensity was assigned to a territorial VN, 

whose location is pericellular and intracellular (Fig. 1d); and the 

intercellular location (peripherally to territorial matrix), which 

was named interterritorial VN, corresponded to low  
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Figure 2. Pipeline overview of how the features are extracted. The process starts with the initial markup image, which in this example corresponds to 

territorial VN. A region of interest (ROI) from the initial image was selected (in dark gray) to show the space discretization and further operations. Below, 

the nodes (in red) are identified when a hexagon has VN inside. This information is used to obtain the pure topological features (dark blue, left side), a 

subset of the topological characteristics. In particular, the number of nodes is used to create the control with a uniform node distribution, while the position 

and number of nodes are utilized to gain the markup node distribution. Thereafter, each distribution of nodes is connected using a network algorithm 

(sorting, iteration or minimum spanning tree methods) and the graphlets degree distribution (GDD) is computed for both control and markup networks. 

To obtain the tensegrity index, the distance between the control GDD and the markup GDD is calculated. For topological characteristics (blue, right side), 

excluding the pure topological ones, two sources of information are used: the hexagonal grid and detected nodes (arrows in darker gray), and properties 

quantification performed directly on the markup image (lighter gray arrows). Two topological features are highlighted: Euler number per node, where the 

Euler number is calculated by subtracting the two objects (in brown) against the five holes within them (in light brown) resulting in a Euler number of 

minus three; and Branches per node in which the crosslinks (circles in light brown) from territorial VN shapes (in brown) were detected. Likewise, the 

nontopological features (orange, bottom right) use information extracted directly from the markup image and from the space discretization. 
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Table 1. Statistically significant features. (a) Index of feature name and identifier used in the study, divided into topological (in white) or 
nontopological (gray). Topological features are the ones who capture organization, while the nontopological characteristics are 
morphometric measurements and other nonorganizational quantifications. (b) Results from the univariate analysis performed for tumor 

genetic instability criteria and high-risk pretreatment stratification group. Only statistically significant characteristics (χ2 < 0.05) are shown. 

The features are ranked by their p-values obtained on the chi-square test, in ascending order. The selected features to be used in the next 
steps are underlined. The characteristics of territorial vitronectin (VN) are marked in bold (12/21 in the risk group and 15/27 in tumor 
genetic instability criteria). Highly statistically significant common features in tumor genetic instability criteria and risk group were marked 
with an asterisk. MST, minimum spanning tree; std, standard deviation  

(a) Definition of features  (b) Univariate analysis    

ID Characteristics  Rank ID  Characteristics 
Chi-
square  

Topological  Tumor genetic instability criteria    

1 Interterritorial—sorting tensegrity index      1    20  Territorial—Euler number per node* 8.20E-07  
                    

2 Interterritorial—iteration tensegrity index  2    24  Territorial—mean quantity of branches per node* 4.03E-06  
                    

3 Interterritorial—MST tensegrity index      3    37  Territorial—percentage of stained area* 6.58E-05  
                    

4 Interterritorial—std percentage of VN stained area  4   16  Interterritorial—std percentage of VN stained area 9.05E-05  
 per region        per region      

5 Interterritorial—std percentage of VN stained area      5   39  Total nuclei 1.27E-04  
 per node                   
                   

6 Interterritorial—Euler number per VN stained area  6   29  Territorial—mean percentage of VN stained area 1.75E-04  
         per node     
                    

7 Interterritorial—Euler number per region      7   16  Territorial—std percentage of VN stained area 2.74E-04  
         per region      
                    

8 Interterritorial—Euler number per node  8   45  Territorial—ratio of strong positive pixels to total 2.74E-04  
         pixels     
                    

9 Interterritorial—number of holes per VN stained      9 27  Territorial—mean percentage of VN stained area 3.87E-04  
 area        per region    
                   

10 Interterritorial—std area of holes  10 23  
Territorial—mean quantity of branches per 
region 3.87E-04  

11 Interterritorial—mean quantity of branches per      11 7  Territorial—Euler number per region 5.34E-04  
 region                   
                   

12 Interterritorial—mean quantity of branches per  12 40  Percentage of hematoxylin stained nuclei area 6.11E-04  
 node                   

13 Territorial—sorting tensegrity index       13 22  Territorial—std area of holes 8.44E-04  

14 Territorial—iteration tensegrity index  14 43 Interterritorial—ratio of weak positive pixels to 1.46E-03  
         total pixels    

15 Territorial—MST tensegrity index       15 47  H-score 0.002   
                   

16 Territorial—std percentage of VN stained area per  16 38  Territorial—VN stained area/mm2 0.002   
 region                   

17 Territorial—std percentage of VN stained area per       17 46  Ratio of all positive pixels 0.004   
 node                   
                   

18 Territorial—Euler number per VN stained area  18 31  Territorial—mean area of holes 0.005   
19 Territorial—Euler number per region      19 42  Ratio of hematoxylin stained nuclei pixels to total 0.006   

        pixels    
                   

20 Territorial—Euler number per node  20 36  Interterritorial—VN stained area/mm2 0.009   
21 Territorial—number of holes per VN stained area      21 12  Interterritorial—mean quantity of branches per 0.014   

        node    
                   

22 Territorial—std area of holes  22 34  Hematoxylin stained nuclei/mm2 0.016   
23 Territorial—mean quantity of branches per region      23 2  Interterritorial—iteration tensegrity index 0.017   

                   

24 Territorial—mean quantity of branches per node  24 19  Territorial—Euler number per region 0.024   

25 Std difference territorial and Interterritorial      25 21  Territorial—number of holes per VN stained area 0.030   

Non-topological      26 9  Interterritorial—number of holes per VN stained 0.034   
        area    

26 Interterritorial—mean percentage of VN stained  27 6  Interterritorial—Euler number per VN stained area 0.045   
 area per region                   
                  

27 Interterritorial—mean percentage of VN stained  Risk pretreatment stratification group    
 area per node                   

28 Interterritorial—mean area of holes  1 20  Territorial—Euler number per node* 0.001    
(Continues)
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Table 1. Statistically significant features. (a) Index of feature name and identifier used in the study, divided into topological (in white) or 
nontopological (gray). Topological features are the ones who capture organization, while the nontopological characteristics are morphometric 
measurements and other nonorganizational quantifications. (b) Results from the univariate analysis performed for tumor genetic instability 

criteria and high-risk pretreatment stratification group. Only statistically significant characteristics (χ2 < 0.05) are shown. The features are 

ranked by their p-values obtained on the chi-square test, in ascending order. The selected features to be used in the next steps are 
underlined. The characteristics of territorial vitronectin (VN) are marked in bold (12/21 in the risk group and 15/27 in tumor genetic instability 
criteria). Highly statistically significant common features in tumor genetic instability criteria and risk group were marked with an asterisk. 
MST, minimum spanning tree; std, standard deviation (Continued)  

(a) Definition of features  (b) Univariate analysis     
 

ID Characteristics  Rank  ID Characteristics Chi-square  
 

29 Territorial—mean percentage of VN stained area         2  24 Territorial—mean quantity of branches per node* 0.003   
 

 per region                        
 

30 Territorial—mean percentage of VN stained area  3    39   Total nuclei    0.003   
 

 per node                        
 

                          

31 Territorial—mean area of holes  4     37 Territorial—percentage of stained area*   0.006   
 

                          

32 Mean difference territorial and Interterritorial  5     16    Territorial—std percentage of VN stained area   0.010   
 

          per region        
 

33 Percentage of hematoxylin stained nuclei area  6     22 Territorial—std area of holes    0.010   
 

                          

34 Hematoxylin stained nuclei/mm2  7    34 Hematoxylin stained nuclei/mm2    0.010   
 

                          

35 Interterritorial—percentage of stained area  8    36 Interterritorial—VN stained area/mm2   0.010   
 

 

Interterritorial—VN stained area/mm2 
                        

36  9     45    Territorial—ratio of strong positive pixels to total    0.010   
 

          pixels       
 

37 Territorial—percentage of stained area       10 43 Interterritorial—ratio of weak positive pixels to 0.014   
 

          total pixels     
 

38 Territorial—VN stained area/mm2  11 17 Interterritorial—std percentage of VN stained area 0.016   
 

          per node     
 

                          

39 Total nuclei        12 29 Territorial—mean percentage of VN stained area 0.019   
 

          per region     
 

40 Percentage of hematoxylin stained nuclei  13 23 Territorial—mean quantity of branches per region 0.019   
 

41 Percentage of VN positive cells       14 19 Territorial—Euler number per region 0.019   
 

42 Ratio of hematoxylin stained nuclei pixels to total  15 47 H-score 0.019   
 

 pixels                        
 

                         
 

43 Interterritorial—ratio of weak positive pixels to       16 27 Territorial—std percentage of VN stained area 0.019   
 

 total pixels        per node     
 

44 Interterritorial—ratio of moderate positive pixels to  17 38 Territorial—VN stained area/mm2 0.019   
 

 total pixels                        
 

                          

45 Territorial—ratio of strong positive pixels to total       18 33 Percentage of haematoxylin stained nuclei area 0.028   
 

 pixels                        
 

46 Ratio of all positive pixels  19 42 Ratio of haematoxylin stained nuclei pixels to 0.028   
 

          total pixels     
 

                         
 

47 H-score       20 30 Territorial—mean percentage of VN stained area 0.033   
 

          per node     
 

                                                                                      21 46 Ratio of all positive pixels 0.033   
 

                         
   

The asterisk indicated three features that presented low values of chi-square in both categories. 
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and medium intensity (Fig. 1e). In this way, we detected the objects 

(VN stained areas) in the markup images, and over-lapping a 

hexagonal grid with the related markup image, we divided the 

image into regions. In addition, we detected which hexagons were 

filled with VN objects becoming our nodes of the future graph 

(Figs. S1a and S1b, Methods). Using the infor-mation from the 

overlapped images and markup images, we studied the organization 

of the two locations of VN, by obtaining 25 features characterizing 

the topology of VN (Table 1a and Fig. 2). In particular, we 

quantified (i) the general topology of the distribution of cells with 

interterritorial (features 

 
 
with ID 1, 2 and 3) or territorial (13, 14 and 15) VN; (ii) the variance 

in quantity of VN per hexagonal region (characteristics 4, 5, 16 and 

17); (iii) the Euler number, which corresponds to the number of 

objects minus the holes (6, 7, 8, 18, 19 and 20 (Fig. S1b); (iv) the 

number of holes per object (9 and 21) and the variation of the area 

of the holes (10 and 22); (v) branching, representing how many 

crosslinks are found (11, 12, 23 and 24) and (vi) the variation on 

the difference between interterritorial VN and territorial VN in 

terms of its quantity (25).  
The values for the pure topological features (network char-

acteristics 1, 2, 3, 13, 14 and 15) were obtained in three steps 
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(Fig. 2). First, we used the superimposed images and its nodes 

to build a graph using different methods to connect these nodes 

(with edges). Specifically, we developed three different 

algorithms that consider the distance between the nodes: 

sorting, connecting all the closest distances between nodes, 

obtaining a highly-linked graph (Fig. S1c); iteration, which 

links the closest neighbors of the nodes emphasizing local 

topologies (Fig. S1d); and minimum spanning tree, which 

connects all the nodes together minimizing the total edge dis-

tance, creating a minimum topological structure (Fig. S1e). The 

three algorithms were designed to construct a connected graph, 

meaning that no nodes were isolated (Methods). Sec-ond, for 

each original markup image of a given VN location (Figs. 1d 

and 1e), ten control images were generated by taking the 

number of nodes in a biopsy (Fig. S1b) and distributing them 

homogenously in the regions where it was possible to find VN 

(i.e., tears of the tissue were discarded) (Figs. S1f and S1g). The 

nodes of the control images were connected to obtain a 

corresponding control graph (Methods and Figs. S1f and S1g). 

Third, to get the final value of these features (the tensegrity 

indices), we calculated a descriptor of the similarity between 

each graph and its control (Fig. 2). To this end, we used the 

graphlet degree distribution distance
26

 (Methods). As a result, 

we obtained six tensegrity indices for each biopsy (three types 

of algorithms from two different locations of VN). 
 

 

A combination of morphometric and topological features  
In addition to the topological features, we captured 22 non-

topological characteristics (Table 1a), 7 of them obtained using 

the information from the hexagonal grid overlapped with the 

original markup image (Fig. 2): (i) percentage of VN (features 

26, 27, 29 and 30); (ii) area of holes of the VN objects (28 and 

31) and (iii) difference between territorial and interterritorial 

VN regarding their quantity (32). The remaining 15 

morphometric features (33–47) did not consider the hexagonal 

grid and were acquired in a previous study.
35

  
Altogether, we had 47 VN characteristics (Table 1a and 

Supplementary Table 1): 19 came from interterritorial VN, 18 

from territorial VN, 5 from both VN location, 4 from nuclei and 

1 from total cells presented in their related markup images. We 

combined all this information to see if we could obtain a new 

supporting feature to enhance our two possible criteria: 

pretreatment risk stratification group (high-risk vs. non-high-

risk, 91 cases) and tumor genetic instability (higher vs. lower, 

82 cases). 

 
The pattern of VN is more homogeneous in patients with 

higher tumor genetic instability  
As a preliminary analysis of the relation between the pure 

topology of the VN in the biopsy and the risk group of the 

patients or tumor genetic instability, we compared the distri-

bution of our six tensegrity indices in high-risk vs. non-high-

risk groups and higher vs. lower tumor genetic instability. 

 
 

 

Regarding risk criteria, no feature was statistically significant 

between different prognoses. On the contrary, for the tumor 

genetic instability, both Iteration algorithms, interterritorial 

(lower instability: 0.22 0.08; higher instability: 0.18 0.10, p < 

0.01) and territorial VN (lower instability: 0.26 0.08, higher 

instability: 0.21 0.09, p < 0.01), were statistically sig-nificant to 

divide between lower and higher genetic instability (Methods). 

Even though only the two mentioned results (2 out of 12) were 

statistically relevant, a trend was found among all the tensegrity 

indices: higher risk group or higher tumor genetic instability 

was associated with lower values in tensegrity indices, that is, 

differences between biopsy and con-trols (Fig. 3a and Table 

S2). This means that using these indi-cators, low-risk group and 

low tumor genetic instability cases were distributed more 

heterogeneously than low-risk group patients and higher tumor 

genetic instability. 

 
The territorial Euler number could enhance the prediction of 

poor risk group-related prognosis  
Next, considering the whole data set (47 features), we looked 

for variables that could improve the current tumor-tissue pre-

dictors of patients’ risk group or tumor genetic instability. For 

this purpose, we used a multivariate logistic regression pipe-line 

based on the statistical analysis previously performed.
41,42

 The 

first step of the pipeline was a univariate logistic regres-sion 

analysis. This test checked whether the individual contri-bution 

of each feature was statistically significant for each criterion. 

Then, we retained only the features with statistical significance 

(p < 0.05) that could be independent factors in the study cohort 

(Table 1b). Among them, the three most sta-tistically significant 

in tumor genetic instability were related to territorial VN 

features and they also presented low chi-square values 

predicting the high-risk pretreatment stratification group. In 

addition, the majority of possible independent fac-tors were 

characteristics of territorial VN (12/21 in high-risk pretreatment 

stratification group and 15/27 in tumor genetic instability 

criteria, Table 1b).  
The second step of the pipeline was a multivariate logistic 

regression analysis, whose outputs are characteristics that 

should generate new insights; thus, they cannot overlap with 

variables that have known predictive power. Therefore, we 

coupled all the INRG variables, with values known to assess 

patient prognosis, with the top eight VN features of each cri-

terion considered as the most statistically significant (nine fea-

tures with p < 0.011 in risk group; eight characteristics with p 

< 3e-04 for tumor genetic instability) by the univariate anal-ysis 

(Methods and Table 1b). Thereafter, we performed the 

multivariate logistic regression, which yielded a set of charac-

teristics formed by age ≥18 months, Euler number per node 

from territorial VN, MYCN status (MNA) and metastatic stage 

(M) (Table 2), which was the best model characterizing the 

INRG pretreatment risk classification (nagelkerke R
2
: 

0.47).Using these four features, we obtained a significant model 

(χ
2
 < 0.005) with a specificity of 0.89 (non-high-risk 
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Figure 3. The topology of territorial vitronectin (VN) is relevant to patient outcome. (a) Iteration tensegrity index values for the biopsies shown. For the 

same case, both VN locations are illustrated: interterritorial (top, connecting brown hexagonal areas) and territorial (bottom, connecting red hexagonal 

regions). (b) Region of interest (ROC) curve for the final model of risk pretreatment stratification group. (c) Territorial VN Euler number per node feature. 

Values are for the whole image, but the representative image is from a ROI. (d) ROC curve resulting from the model of tumor genetic instability criteria. 

(e) Branches per node from territorial VN. ROI taken from an image stained with territorial VN. The branches found are presented in dark orange. The 

skeletonized region of the marker is in light orange. Scale bar, 20 mm. Note that images from patients related to the non-high-risk group and lower tumor 

genetic instability are represented in green. Burgundy shows examples of cases belong to high-risk group and higher tumor genetic instability. (f ) 

Representative drawing of neuroblastoma microenvironment. Tumor with a close-up of a stiff area: rich territorial vitronectin regions (dark brown) were 

associated with a desmoplastic extracellular matrix (represented by a low amount of glycosaminoglycans, crosslinked reticulin fibers, collagen I fibers 

and interterritorial vitronectin), tortuous blood and lymph vessels as a scaffold of tumor and stromal cells.
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Table 2. Multivariate logistic regression. The models using the final set of features for each criterion. Each model is defined by the 
different coefficients (B column) of the intercept and independent variables (features). For tumor genetic instability criteria, both regular 
logistic regression and Firth’s logistic regression are shown. SE stands for standard error. The odds ratio and confidence score are 
presented (exp(B) 95% CI column). In regular logistic regression, Z-score and its associated p-value are represented, while in Firth’s 
logistic regression chi-squared and its p-value are presented  

Features B SE Exp (B) (95% CI) Z-value  Pr(>|z|)  
Risk pretreatment stratification group         

(Intercept) −3.95 0.91 0.019 (0.003–0.114) −4.36 1.32E-05 

Territorial—Euler number per node 0.65 0.26 1.92 (1.15–3.20) 2.49  0.013  

Age (≥18 month) 2.66 0.61 14.36 (4.34–47.50) 4.36 1.28E-05 
        

Stage −6.05E-03 0.01 0.99 (0.97–1.02) −0.51  0.610  

MYCN (MNA) −5.45E-03 0.01 0.99 (0.97–1.02) −0.50 0.620  

Tumor genetic instability criteria         

Regular logistic regression         
       

(Intercept) −23.64 2,914.00 5.45E-11 (0–Inf) −0.01  0.994  
Territorial—mean quantity of branches per node 1.50 0.58 4.46 (1.44–13.80) 2.60 0.009  
       

SCA 19.89 2,914.00 4.37E+08 (0–Inf) 0.01  0.995  

MYCN (MNA) 22.58 3,245.00 6.43E+09 (0–Inf) 0.01 0.994  
        

Ploidy −2.83E-03 1.32E-03 1.00 (0.99–1.00) −2.15  0.032  

Firth’s logistic regression         

Features B SE Exp (B) (95% CI) Chi-square  p  

(Intercept) −6.53 2.10 1.42E-04 (4.58E-06–4.64E-02) 21.99 2.73E-06 

Territorial—mean quantity of branches per node 1.24 0.47 3.45 (1.42–10.96) 8.00  0.005  

SCA 3.45 1.58 31.45 (3.04–4.45) 10.20 0.001  
       

MYCN (MNA) 5.26 1.95 192.31 (9.81–4764.41) 20.04  7.56E-06 

Ploidy −2.21E-03 1.04E-03 1.00 (1.00–1.00) 5.46 0.019  
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group) and a sensitivity of 0.74 (high-risk group) (Fig. 3b). The 

selected independent prognostic predictor was based on the 

Euler number for territorial VN (Fig. 2). It stands for the number 

of objects in a sample minus the number of holes within those 

objects. Although the feature Euler number per node from 

territorial VN is related to the quantity of peri-cellular VN, it 

also takes into account the compactness of the territorial VN 

stained area including intracellular VN. More-over, it considers 

the hematoxylin-stained nuclei of active VN secretory cells 

with intracellular VN accumulation. In particu-lar, we found 

that a greater number of objects and a lesser number of holes (a 

higher Euler number per node) from terri-torial VN was 

associated with the high-risk pretreatment stratification group 

(p < 0.05) (Fig. 3c). 

 

 
Territorial crosslinks can assess tumor genetic instability  
We repeated the second step of the pipeline to obtain the most 

relevant independent factors in the study cohort for tumor 

genetic instability. The final set was composed of the mean 

quantity of branches per node of territorial VN and the INRG 

variables: genetic profile (SCA), MYCN status (MNA) and 

ploidy (diploid and tetraploid) (nagelkerke R
2
: 0.84), although 

it yielded quasi-completion separation odd ratios, as can be seen 

in the standard errors of the results (Table 2). To avoid this 

issue, we performed a Firth’s logistic regression. 

 

The output of this logistic regression was a penalized model (χ
2
 

< 0.005) with a specificity of 0.91 and a sensitivity of 0.89 (Fig. 

3d). For tumor genetic instability, the mean quantity of 

branches per node of territorial VN was selected as an individ-

ual predictor in the study cohort. It considers the number of 

crosslinks after skeletonizing the image, taking into account 

only the filled hexagons (Figs. 2, 3e and Supplementary Fig. 

S1b). This feature highlights the proximity of VN secretory 

cells with merged areas of recent VN secretion, mainly located 

per-icellularly. We found that a higher number of branches 

corre-lated with higher tumor genetic instability. In addition, we 

also found a trend with the four defined levels from the genetic 

instability of the tumors (very low: 1.81 0.8; low: 2.30 1.6; 

medium: 2.43 1.1; high: 7.05 5.4; Table S1). 
 

 

Discussion  
In this work, we show that capturing VN organization can help 

improve understanding of how VN, essential to the structure of the 

ECM, affects or is affected by tumor progres-sion, and thus patient 

prognosis. To acquire the characteristics for this purpose, we used 

two defined VN expression patterns that indicate the duration of 

time in the ECM:
35

 a territorial pattern indicates VN that has just 

been synthesized (also, intracellular) and/or was recently secreted 

into the surround-ing matrix (pericellular); interterritorial VN has 

been present 
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for a while in the intercellular space. In the same study, the 

optical analysis was used to determine the adequacy of further 

image analysis and to set the image analysis parameters. A good 

consistency (in terms of intensity) between the visual analysis 

and the digital image analysis quantification was observed using 

Kruskal-Wallis test (p < 1e-4). Our automatic image analysis 

approach can capture relevant information, which could be 

missing with traditional methods, to improve the classification 

of biopsy samples from NB patients. As a result, our different 

sets of experiments using different types of features indicate 

that territorial VN is relevant to evaluate the risk group of 

patients affected by NB and their tumor genetic instability.  
The preliminary results of the pure topological features 

highlighted the iteration tensegrity index for both territorial and 

interterritorial VN with respect to tumor genetic instabil-ity 

(Fig. 3a). In addition, the tensegrity index for inter-territorial 

VN is the only relevant attribute of our novel features 

classifying tumor genetic instability (Table 1b). Nei-ther 

sorting nor minimum spanning tree tensegrity index appeared 

relevant to capture the patient’s outcome. A possible reason 

could be the density of the resulting networks. The sorting graph 

(Fig. 2 and Supplementary Fig. S1c) is likely too dense, while 

the network of minimum spanning tree (Fig. 2 and 

Supplementary Fig. S1e) may be insufficiently connected for 

the graphlets to find differences between cases and con-trols. 

Thus, the intermediate graph of Iteration tensegrity index (Fig. 

2 and Supplementary Fig. S1d), neither too dense nor too 

sparse, has the correct attributes to characterize the topology of 

the VN in these samples.  
Although only one of our defined pure topological features was 

an independent factor in the study cohort, we found a trend in 

all the tensegrity indices: more homogeneous territo-rial and 

interterritorial VN patterns in node distribution emerged where 

patient prognosis was worse (Table S2 and Fig. 3a). Here, 

rather than the direct quantity of VN, homoge-neous reflects that 

VN is equally distributed throughout the sample: VN is spread 

over the tissue without restrictions in patients with poor 

prognosis. This is consistent with recent studies on the 

matter,
35,43

 suggesting that VN enhanced the migratory 

capacity of tumor cells located in focal areas, thus associating 

VN with intratumor heterogeneity, tumor inva-sion, 

angiogenesis and metastasis.
44

 It could also be the case that 

endothelial cells migrate to a fibronectin and VN-rich  
environment as a way to create new blood vessels in the pro-

cess of neoangiogenesis.
31,33,45,46

  
We found an individual independent predictor in the study 

cohort for each of the criteria analyzed (pretreatment risk 

stratification group and tumor genetic instability). Both are 

topological features that can predict prognosis without over-

lapping with the existing known variables (age, stage, MYCN 

status and genetic profile). In the risk stratification group, the 

Euler number per node from territorial VN, which was a com-

pendium between VN quantity and organization, came out as 

 
 

a remarkable feature. In our topological feature Euler number 

per node, we only consider the regions with information and 

computed the Euler number of each region separately. There-

fore, a higher number of this feature, related to tumors with 

MNA from high-risk patients, stage M and ≥18 months, might 

indicate that existing territorial VN is compacted with stretch 

marks in focal areas, as previously indicated. In sum-mary, our 

results suggest that the topology of territorial VN would aid 

tumor cell migration, mechanically altering the ECM, which 

translates into disrupted tumor cell adhesion and easier 

spreading into a stiff matrix. It has been shown that the Euler 

number is able to characterize the aggressiveness of prostate 

cancer, distinguishing between tubular and cribriform growth 

patterns associated with lower and higher aggressive behaviors, 

respectively.
47

 These organization patterns resemble the ones 

we encounter in territorial VN, where a higher Euler number is 

related to worse prognosis (Fig. 3c). One possibility is that the 

territorial VN forms cribriform-like structures that try to 

surround the cancer cells with a stiff ECM, allowing migration. 

VN-rich territorial regions would facilitate the dis-ruption of 

ECM–cell or cell–cell interactions (Fig. 3f ). Inter-estingly, this 

pattern is similar to the fibrosis areas previously described in 

human lung cancer.
48

 
 
For the tumor genetic instability criteria, we obtained the 

topological feature branches per node from territorial VN, 

related to the shape of VN and its number of crosslinks, as an 

individual independent factor. Irregular shapes (not straight), 

which may be surrounding the cells (Fig. 3e, right), appeared in 

tumors with higher genetic instability. The displacement of 

malignant neuroblasts in a stiff ECM could be mediated by 

cycles of formation and rupture of binding glycoproteins, VN 

and/or fibronectin, as described in these studies in ovarian and 

oral squamous carcinoma tumor cells.
32,49

 Likewise, VN 

branching could represent migration tracks with a large amount 

of VN, connecting integrins and fiber elements of the ECM. 

Furthermore, these irregular territorial VN branches would 

represent migrating tracks facilitating invasion by acti-vating 

nuclear intracellular signaling pathways that would modify 

genetic and epigenetic mechanisms, increasing tumor instability 

in these patients (Fig. 3f ).  
The digital analysis tools are increasingly numerous and 

powerful as a result of the growing demand for an automatic 

objective method that allows rapid and effective analysis 

(reduce inter and intraobserver variability) of the huge num-  
ber of tumor samples required at a routine clinical diagnosis and 

research.
50,51

 In particular, previous works had used tex-  
tural analysis to improve the current methods of grading pros-

tate cancer
24

 or malignancy detection in breast tumors,
12

 

among others.
13,23

 Although these studies achieved accurate 

results, the features they got did not directly unlock biological 
mechanisms. NB is considered a heterogeneous and complex  
cancer dependent on many known variables, such as age and 

MYCN oncogene amplification,
37,52

 but there are still 
unknown biological factors. Thus, interpret and relate features 
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with biology are essential to extract new insights. Likewise, 

most of the works using computerized image analysis rely on  
recognizable objects to capture the morphology or topology, 

such as the nuclei of the cells within the sample.
14,24,25

 In our  
case, VN cannot be captured as an object due to its variability 

in size and shape (Figs. 1d and 1e). We propose that these 

automatic methods can be enhanced with the use of mathe-

matical tools that can capture the organization of the elements 

identified in the biopsies. Our approach discretizes the space to 

extract different topological and morphological features 

avoiding these two issues while obtaining statistically signifi-

cant characteristics.  
Overall, our conclusion is that the particular organization of 

territorial VN markedly changes the constitution and mechan-

ics of the ECM by the rapid addition of new synthesized VN 

creating migration tracks, which may lead to more aggressive 

NB. However, the molecular mechanism behind these results 

remains unclear. In conclusion, combining topology and mor-

phometric features seems an effective strategy to find comple-

mentary factors that could obtain a more precise pretreatment 

risk stratification to guide treatment strategies. We have shown 

that VN may play a greater role than previously assumed in 

prognostic assessment of human patients, in agreement with our 

previous work that suggested the importance of territorial 

VN.
35

 There remains a wealth of information to be captured 

from these biopsies. Human samples are an excellent source of 

information that should be thoroughly analyzed. On this sense, 

our topological approach requires long computational 

processing to obtain high-quality and reliable markups. How-

ever, once the markup images have been validated, their topo-

logical properties can be easily extracted using our pipeline. Our 

mathematical approach shows a big potential in histopath-

ological images of NB samples. In the near future, the integra-

tion of histopathological consecutive slices will be the first step 

to approach the 3D tumor’s structure. These studies will be 

needed to reveal the true role of VN in NB to test whether the 

results of our study are consistent. 

 

Glossary  
Tensegrity: Stabilization of structures constituted by continu-

ous elements of tension and discontinuous elements resistant to 

compression. Topology: How a set of elements are struc-tured 

and connected in a given space. Tessellation: A sur-face 

covered by geometric components (or tiles) with no gaps and 

without overlapping. Graph/network: A set of elements 

 
 

 
connected between them following determined rules that rep-

resent binary relations. A graph is formed by nodes (the ele-

ments) and edges that link them. Voronoi diagram: A 

particular tessellation formed by convex polygons. Each con-

vex polygon is a Voronoi cell. Every Voronoi cell emerges from 

a seed. All the points of a Voronoi cell are closer to its own seed 

that to any other seed of the surface. Graphlets: Graphs with a 

small number of nodes extracted from a larger network. A 

network can be quantitatively characterized by its graphlets 

composition. Markup image: A binary immuno-

histochemistry microscopic image in which the white regions 

represent detected objects, and the black ones, the background. 

Euler number feature: In an image where a set of objects has 

been identified, the Euler number is the value of the number of 

objects minus the number of holes inside them. Branching 

feature: In an image where a set of objects has been identified, 

the Branching is the value of the number of crosslinks that are 

found on the objects. Node: A representation of an object. In 

our case, it stands for a hex-agonal area filled with vitronectin. 

Edge: The link between nodes. Two nodes connected by one 

edge are considered adjacent. Tensegrity index: Represents 

how different is the VN (interterritorial or territorial) organized 

in the biopsy compared to a homogenous distribution. 
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SUPPLEMENTARY INFORMATION 

Algorithms of the pure topological features 

To model how the VN is organized in the biopsy, we have created a graph in which nodes 

represent the hexagonal regions with VN. How these nodes are linked (by edges) depends on 

the rules we use. For this reason, we computed three algorithms to obtain three different 

connected networks: 

a) Iteration (Supplementary Fig. 1D). Obtains a network connecting its closest regions. It 

reviews all the neighbours of each node, connecting the closest ones until the network 

is fully connected. The algorithm follows these steps: 1) Create a matrix, whose rows 

and columns are the detected nodes of the image (the first row and the first column 

correspond to the same node) representing the distance between any two nodes. 2) 

Perform an iteration that involves going through all the rows and 2.1) getting the 

smallest distance of each row; 2.2) adding the column’s node and row’s node as edges. 

2.3) Remove that same edges from the distance matrix. 3) Once an iteration is over, 

check if the network is connected. Step 2 begins again if there are still isolated nodes. 

b) In contrast to Iteration, Sorting algorithm (Supplementary Fig. 1C) entails ordering all 

the distances and connecting them one at a time until the output network is connected. 

The algorithm follows this flow: 1) Sort from closest to furthest all the distances between 

any pair of regions. 2) Take as a threshold, the largest distance of the closest node of 

every node from the list. 3) Add all the edges with a distance smaller or equal to the 

previously defined threshold. 4) Remove the added edges and distances from the list. 5) 

Perform steps 2 to 4 until the output graph is connected. 

c) Minimum Spanning Tree (Supplementary Fig. 1E). Although the two previous algorithms 

were designed for this study, the last algorithm, Minimum Spanning Tree (MST), has 

already been used in other studies 1. It was already implemented on a Matlab function 

named graphminspantree (Matlab R2014b, MathWorks). The resulting network of the 

MST is a network with the minimum possible number of edges. Moreover, this network 

is a tree, whose particularity is that any two nodes are connected by exactly one path. 

 

 

 

 

 

https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Path_(graph_theory)


 

Building the controls 

The pipeline of control creation follows these steps: 1) Collect the number of nodes from the 

mark-up image. 2) Randomly place that number of seeds inside an image. The seeds should 

avoid the regions of the original image where it was not possible to find the marker (i.e. tears of 

the tissue). 3) Create a Voronoi partitioning space into regions starting from the seeds. In a 

Voronoi, every point of the image is associated with a seed and all the points will be closest to 

its seed than to any other seed. 4) Perform Lloyd’s algorithm ten times, homogenizing the 

Voronoi cells to become more hexagonal 2,3. As a result, we obtained a control in which the 

regions are homogeneously spread throughout the mark-up image of the biopsy. Once the 

nodes were distributed, we computed the algorithm of Sorting and Iteration for the controls, 

whose output is a graph (Supplementary Fig. 1F-G). These graphs were compared with the 

tumor specific network. Iteration control network served as a control to MST. Note that the 

control is not overlapped with a hexagonal grid; instead, a Voronoi is created with the same 

number of seeds as the original. 

Statistical analysis 

We first performed a Shapiro test to check if the tensegrity indices came from a normal 

distribution. Next, we performed the non-parametric Mann-Whitney test using Wilcoxon R 

function 4 to test if the distribution of the tensegrity indices were statistically different, as a 

preliminary experiment.  

Thereafter, we computed the pipeline to obtain individual independent factors (based on 

previous works 5,6) from our dataset of features that could not overlap with known predictive 

variables (INRG variables like age or MYCN status). First, we categorized the continuous variables 

regarding the quartiles preparing them to perform the logistic regression. Due to a large number 

of features, when performing the logistic regression with all the values we did not know what 

features were contributing more. Therefore, in the second step, we computed a univariate 

analysis with each variable and calculated an ANOVA chi-square (chi-sq, which refers to how the 

addition of a new feature differs significantly from the expected outcome), keeping only the 

statistically significant features (Table 1A). Third, using the results from the univariate analysis, 

we performed a multivariate logistic regression (Table 2), with a ‘best subset’ approach. We 

gathered the eighth and ninth characteristics with a lower p-value in the high-risk pre-treatment 

stratification group and tumour genetic instability criteria, together with the known INRG 

variables, to perform this first step. To do this, initially, we applied an exploratory analysis of 

what probabilities the selected variables have, to obtain a good subset using mplot 7. Afterwards, 

we performed one main subset selection using glmulti 8, and a second selection to check for the 



 

most relevant features with bestglm 9. Both obtained a model with a minimum Akaike 

Information Criterion (AIC) and we reported nagelkerke R2 as a measure of fitness of the model. 

Using the ‘VIF’ function in the car library in R 10, we removed the most redundant features 

(collinearities, when two features can be represented, approximately, with the same regression 

line), retaining all the features with a value below three (we ran the function each time after 

removing a feature). Since we encountered with coefficients of one of the final models 

converging to infinity (p-values nearly 1, very large coefficients and standard errors larger than 

its own coefficients), we used the library of R logistf, which implements Firth’s logistic regression 

11, to avoid this issue. Firth’s method let us obtain real odds ratio by penalized profile likelihood. 

The results of the multivariate analysis are variables that can independently and individually 

classify the prognosis of NB patients (Fig. 3C, E). Therefore, the outputs of the pipeline are 

complementary features that cannot overlap and which add new insights to the existing ones 

(INRG variables) refining both classification criterion. 

 



 

 

 

Supplementary figure 1. Features derived from the mark-up images of a neuroblastoma (NB) 

biopsy. A) A segmented image representing territorial vitronectin (VN), the same as in Fig. 2. 

Coloured in light blue is a ROI that represents the region of (B). B) A cropped region from (A), 

where the regions with information become the nodes of the graphs in (C-E). A single hexagonal 

cell from the light blue grid is selected to characterize: the percentage of stained area (left 

hexagon), which is the number of white pixels found on it divided by the total area of the 

hexagon; branching (central hexagon), after skeletonizing (light orange), crosslinks (7 in orange) 

are identified; and the Euler number (right hexagon), that needs to recognise the objects (2 in 

red) and the holes (1 in yellow). Note that a hole should be inside an object (the background of 

the image is not a hole). C-E) Networks or graphs resulting from applying the algorithms in the 

(A) mark-up image: Sorting (C), Iteration (D) and Minimum Spanning Tree (E). F-G) A Voronoi 

control generated using the same number of nodes as in the original case (A), covering the 

biopsy homogenously. Regions where the marker could not be found are in black, while in 



 

hexagonal white areas represent the uniform node distribution. Blue represents the graph 

computed with the algorithm Sorting (F) and Iteration (G). The control for the MST algorithm 

was the same as in Iteration (G). 

Supplementary table 1. Raw data of topological and non-topological vitronectin (VN) features. 

Risk groups and tumour genetic instability criteria for each case are indicated. Note that tumour 

genetic instability criteria includes cases with no data, corresponding to atypical genetic profiles 

with unknown clinical implication marked as -. The identification (ID) list of topological and non-

topological VN features is enumerated in Table 1A.  See online: IJC-146-553-s003.xlsx 

 

Supplementary Table 2. Tensegrity indices per criteria and prognosis. Mean and standard 

deviation for each tensegrity index. In addition, results from Shapiro normality test and Mann-

Whitney test. In bold, distributions that are statistically different regarding risk group or tumour 

genetic instability criteria. std: standard deviation. See online: IJC-146-553-s004.xlsx

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899647/bin/IJC-146-553-s003.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899647/bin/IJC-146-553-s004.xlsx
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1.1 Neuroblastoma (NB) 

1.1.1. General aspects  
 

Neuroblastoma (NB) is an extracranial malignancy in childhood that belongs to the peripheral 

neuroblastic tumors group being the most common and aggressive form of these neoplasms. It 

is found among the largest diagnosed tumors in patients younger than 15 years of age after 

leukemia, CNS neoplasms, and lymphomas, accounts for 7% of pediatric cancers worldwide and 

15% of children related-deaths. NB is the greatest prevalent solid tumor in kids younger than 5 

years, being the median age of presentation between 17 and 22 months [1-4]. In a cohort of 

Spanish NB patients between 1980-2016, 86.7% of the 1,964 diagnosed patients presented less 

than five-year age, and only 2.3% with a 10-14 years age [5]. Moreover, this neoplasia may 

appear also in adolescents and young adults, this patient group has a poor outcome [6-8]. The 

general 5-year survival rate for NB is around 80% being only 36% in adolescents and adults [9, 

10]. 

  NB is an embryonic neoplasm that derives from progenitor cells of the sympathoadrenal 

lineage of the neural crest. This assumption is reinforced by the expression of neuronal 

differentiation markers and the characteristics of self-renew and migration that is found in the 

NB cells [11-13]. NB can appear in any location throughout the sympathetic nervous system, 

being the most common primary place in the adrenal gland, followed by the thoracic, cervical, 

and pelvic ganglia [14-16]. Metastatic disease is mainly found in bone marrow, bone, lymph 

nodes, and liver, and rarely in the skin, lungs, or brain [17]. The clinical symptoms vary according 

to the location of this primary neoplasm, the site of its metastatic spread, and in a less frequency 

depending on paraneoplastic manifestations such as opsoclonus-myoclonus syndrome [18]. In 

the case that the primary tumor appears in the abdomen some normal manifestations are 

abdominal distension, diarrhea, constipation, and abdominal pain. Thoracic NB presents 

scoliosis or compression of the airway. If the NB develops in the chest may cause signs like 

wheezing and chest pain. Some general symptoms can be bone pain, fever, and unexplained 

weight loss [19, 20]. 

Since the symptoms are variable, there are some standards for the diagnostic of NB such as 

the imaging study through computed tomography, magnetic resonance, and 

metaiodobenzylguanidine scan, that determines the place and size of the primary tumor and 

even the existence of metastasis, the screening of catecholamines or their derived metabolites 
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in urine or serum, however, the key in the diagnosis is the histopathological analysis after 

acquiring a biopsy of the primary tumor and bone marrow aspiration to evaluate the extent of 

this neoplasm [21-23]. 

A remarkable feature of NB is its high heterogeneity that depends on clinical presentation 

and several biological features, existing a possibility of spontaneous regression and a better 

outcome in the youngest children than a more aggressive disease and worse prognosis in older 

ones [24]. Indeed, we have to keep in mind that the prognosis depends on many factors, 

particularly on the risk stratification group of the tumor. Considering that, the survival rate in 

high-risk (HR) patients is characterized by 50%, whereas low- or intermediate-risk patients have 

a long-term survival between 85-90% [25, 26]. 

NB represents an enigmatic and complex entity due to its clinical, molecular, and genetic 

variability generating an influence on the progression and treatment response. Its tumor 

heterogeneity can derive from cellular clonal evolution changes that originate the acquisition of 

higher plasticity and molecular characteristics by neuroblastic cells or to the presence of diverse 

genomic alterations such as the status of MYCN oncogene, ploidy, deletion (D) of 1p or 11q and 

gain of 17q [27-29]. In addition, although NB is known by a low rate of mutations, it has been 

described some genetic mutations in paired-like homeobox 2B (PHOX2B) and anaplastic 

lymphoma kinase (ALK) that are related to familiar NB [30, 31]. 

 

1.1.2 Clinical, histological and genetic factors according to INRG classification system 
 

As NB is an intricate disease to perform a proper and established risk stratification of the 

patients the International Neuroblastoma Risk Group (INRG) classification system has been 

developed. This system provides a pre-treatment categorization based on imaging of the disease 

extent and image defining risk factors rather than postsurgical grading that was used by the 

previous staging system (INSS). The INRG classification system has into account factors like 

clinical traits (age and stage), tumor histology, and genetic aberrations to classify the patients 

into very low, low, intermediate, or HR categories (table 1). In this way, this system facilitates 

comparisons across international clinical trials and is used to predict the clinical behavior of the 

tumor and how it will respond to treatment [32, 33]. 
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Table 1. INRG pre-treatment classification system, established by consensus in 2009 [32]. 

GN, ganglioneuroma; GNB, ganglioneuroblastoma; Amp, amplified; NA, not amplified; L1, localized tumor confined 
to one body compartment and with an absence of image-defined risk factors (IDRFs); L2, locoregional tumor with the 
presence of one or more IDRFs; MS, metastatic disease confined to skin, liver and/or bone marrow in children < 18 
months of age; M, distant metastatic disease (except stage MS). 

 Clinical factors 

Age 

Age at the time of diagnosis was one of the first prognostic indicators identified. Older 

patients are associated with poor outcome.  After several analyses in different patient’s cohort 

with an age range between 15-18 months, the established age cutoff by the task force was 18 

months. Nonetheless, for the group of patients with diploid, stage M, MYCN non-amplified 

tumors, the Task Force proposed an age cutoff of 12 months [32, 34].  

Stage 

The new INRG staging system (INRGSS) distinguishes between localized tumor which is 

defined by the absence or presence of image-defined risk factors (L1 and L2, respectively)  [33, 

35]. Metastatic disease, that corresponds to distant metastatic disease (stage M). Special 

metastatic disease (stage MS), when the metastases are restricted to the skin, liver, and/or bone 

marrow in patients younger than 18 months and is normally related to favorable biological 

features including spontaneous regression [33]. 
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Tumor histology 

The currently used International Neuroblastoma Pathology Classification (INPC) was 

suggested by Shimada et al. and considered a histological typing of tumors into favorable and 

unfavorable categories based on the age at diagnosis, the amount of Schwannian stromal 

content, the grade of tumor differentiation and the mitosis-karyorrhexis index (MKI). Then, the 

neuroblastic tumors are classified into four histological types: 1) NB (Schwannian stroma-poor), 

2) intermixed ganglioneuroblastoma (iGNB) (Schwannian stroma-rich), 3) nodular 

Ganglioneuroblastoma (nGNB) (composite Schwannian stroma-rich/stroma-dominant and 

stroma-poor) and 4) Ganglioneuroma (GN) (Schwannian stroma-dominant). Besides, there are 

three grades of tumor differentiation: undifferentiated (u), poorly differentiated (pd) and 

differentiating (d) [36, 37]. 

 Genetic aberrations 

MYCN status 

MYCN is an oncogene located on the chromosome 2p24 involved in cell growth, proliferation, 

and apoptosis. MYCN amplification (MNA), defined as more than 10 gene copies, appears in 20% 

of primary NB being considered a high specific biomarker in the routine management of NB for 

that it was incorporated as the first genomic factor in the risk classification. MNA is associated 

with poor outcome independently on the status of the rest of the prognostic factors. Patients 

with MNA tumors are classified as HR-NB. Nowadays the Society of Paediatric Oncology Europe 

Neuroblastoma (SIOPEN), as well as the Children´s Oncology Group (COG), uses fluorescent in 

situ hybridization to determine the status of MYCN [38, 39]. A remarkable feature of MNA, is 

the presence of intratumoral heterogeneous MNA (hetMNA), it is referring to exist together 

MNA clones and MYCN non-amplified clones, this is an infrequently feature with poorly defined 

clinical consequences  [40, 41]. 

DNA ploidy 

The DNA index has a prognostic value in NB patients younger than 18 months with 

metastatic disease and MYCN non-amplified (MNNA) tumors. Diploid and tetraploid tumors 

are correlated with poorer outcomes causing more structural rearrangements [42, 43]. 
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11q  

Loss of chromosome 11q is a relevant molecular marker that remains in 30% of primary NB 

associated with unfavorable prognosis defining the HR tumor group [44]. Normally it is 

inversely correlated with MNA which involves different genetic categories of clinically 

aggressive NB, although some exceptions have been described [45]. 

Other genetic markers 

Pangenomic studies have acquired a great role to improve the staging of the patients, being 

incorporated in the genomic profiles recently to the risk classification system [46]. Molecular 

analysis of NB defined that the appearance and also a high amount of segmental (SCA) versus 

numerical chromosome aberrations (NCA) has been related to a non-favorable clinical behavior 

of the tumors [46, 47].  Therefore, these results denoted a presence of chromosomal instability 

in neuroblastic cells playing a major role in NB tumorigenesis [48, 49]. In fact, in MNNA tumors, 

the appearance of SCA has been related to a major probability of relapse and it was observed 

that tumors of patients older than 18 months and 11q deleted tumors have a high number of 

SCAs [50, 51]. Besides MNA and 11qD, other typical SCAs that are frequently seen in NB are 

deletions of 1p, 3p, and 4p and gains of 1q, 2p, and 17q. Loss of 1p chromosome has been found 

in 30% of the cases [52] and gain of 17q is the most common alteration observed in 50% of the 

NB patients; both aberrations associated with poor prognosis in MNA tumors  [53]. 

The application of next-generation techniques as whole exome or genome sequencing to 

identify gene mutations has been developed to establish a targeted therapy. Although NB is 

defined by a low mutation rate, it has been observed the presence of some somatic gene 

mutations with a frequency of 12% as much. Some of these genes are ARID1A and ARID1B 

(related to chromatin regulation that implicates a nonsense or missense alteration improving 

NB oncogenesis), ALK (where F1174 and F1245 mutations are exclusive of this NB form), PTPN11 

(plays a role in growth factor signaling and missense mutations has been associated with 

developmental diseases), TIAM1 (results in a loss of function that controls neuritogenesis) and  

ATRX (involves a loss of function that results in lengthened telomeres and is normally found in 

NB of adolescents and young adults) [53-55]. Another frequent somatic genetic alteration 

implicates structural rearrangements in TERT that is related to poor prognosis, besides it has 

been observed coexistence of MNA, TERT, and ATRX mutations in HR-NB [56]. Another curious 

phenomenon associated with a poor outcome that is found in 18% of the high NB stage is called 

chromothripsis, which is a random organization along a chromosome of chromosomal 

fragments [53]. All these molecular disorders together with the rest of the genetic alterations 
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above mentioned belonging to the sporadic NB group that is the most prevalent form in NB 

patients. 

Familiar NB is only found in 1-2% of patients and the vast majority of the cases are 

represented by mutations in ALK or PHOX2B genes. The ALK receptor tyrosine kinase is the most 

common mutated gene representing 80% of hereditary NB where a gain of function increases 

the proliferation rate. One aspect of this gene is that not all ALK mutations are related to familiar 

NB since 8% of ALK mutations are associated with sporadic NB. An infrequent activation 

mechanism of ALK implicates the amplification of this gene, although the coexistence of 

mutation and amplification of this gene in the same tumor is rare [57]. The PHOX2B accounts 

for 6,4% and is the main regulator gene of the neural crest development. The PHOX2B mutations 

in NB implicate a loss of function of the gene [54]. 

Sequencing studies between primary and relapse tumors, suggest an association of 

mutations in RAS-MAPK pathway with a significant increase to relapse in NB patients and 

implicate genes such as ALK, NRAS, and HRAS; also new recurrent mutations genes like CHD5, 

DOCK8 and PTPN14 have been found in relapsed NB [58]. These data evidences a complexity on 

the NB genomics events that have to be considered for the design of future therapeutic 

approaches.  

 

1.1.3. Therapy and novel targets 
 

Clinical strategies in NB patients are based on the INRG patient stratification system (table 1) 

due to the molecular and clinical features of NB, exist a variety in the treatment standards. 

Patients with very low, low, and intermediate-risk are characterized by a good outcome. Then, 

the ordinary treatment plan for very and low-risk patients is only surgery. However, in some 

exceptions such as a difficulty in the tumor elimination process or presence of remaining tumor 

cells, minimal chemotherapy is applied. Even, the peculiar MS stage with some molecular 

markers as MNNA and children younger than 18 months do not need any treatment caused by 

spontaneous tumor regression  [59]. Patients belonging to the intermediate-risk receive surgery 

plus moderate-chemotherapy [54]. On the other hand, as it is mentioned above, HR NB patients 

present the lowest survival rate and the treatment approach is classified into three main steps: 

1) intensive chemotherapy induction that consists in vincristine, doxorubicin, 

cyclophosphamide, cisplatin, and etoposide [60](COJEC)  which is followed up by surgery; in 

certain clinical trials some little modifications as the incorporation of topotecan were 
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introduced, 2) the consolidation phase aims to eliminate the persisting tumor cells with a 

myeloablative dose of chemotherapy followed by a reinfusion of stem cell and local radiation 

therapy, and 3) the maintenance phase that includes the 13-cis retinoic acid administration to 

prevent the relapse since is a clinical marker in the majority of HR patients. Currently, to improve 

the overall survival (OS) in this group of patients also received the anti-ganglioside 

immunotherapy in addition to granulocyte-macrophage colony-stimulating factor and 

interleukin-2 (IL-2) [54, 61, 62]. A recent study of the chemoimmunotherapy approach has 

observed that an antitumor activity in patients with relapsed/refractory NB [63]. 

Regarding some progress as immunotherapy, in contrast with other tumors, NB expresses a 

scant quantity of neoantigens that restrict the chances for immunotherapeutic strategies; 

nonetheless, clinical trials are using novel strategies as the combination of chemotherapeutics 

and dinutuximab, a chimeric anti-GD2 antibody, or even inducing the expression of chimeric 

antigen receptors (CAR) targeting GD2 by effector T cells [64, 65]. 

The principle of targeted therapy is the replacement of the cytotoxic effect of chemotherapy 

for a cytostatic effect. Some targeted therapies can include: crizotinib, that is an ALK inhibitor, 

this treatment has been approved for lung cancer, and it was observed an effective response in 

NB cell lines that express R1275Q-mutated ALK or present the ALK amplification  [66]. 

Nowadays, new ALK targeted therapies have emerged as entrectinib, ceritinib, and alectinib, 

showing better efficacy than rizotinib [59, 67]. The elevated presence of MNA in HR patients 

drives in other key elements for determining a goal therapy such as PI3K/AKT/mTOR and Aurora 

A kinase inhibitors to destabilize N-Myc protein [59, 68]. Besides, some studies have shown that 

the inactivation of CDK2 works in MNA tumors [69]. On the other hand, p53 mutations that 

derive in an increased MDM2 expression are related to the half cases of NB relapses, then 

inhibitors of MDM2 have demonstrated optimistic preclinical results in NB in vitro and in vivo 

models [59]. The RAS-MAPK pathway occurs in 78% of relapsed NB being another good 

objective; some studies show that MEK inhibitor and retinoic acid treatment can be useful [70]. 

Another important signaling pathway in NB involves the TrkA and TrkB neurotrophin receptors 

and, the anti-tumor role has been demonstrated using GNF-4256 and AZD6918, two Trk 

inhibitors [59]. NK1R belongs to neurokinin receptors and plays a role in several adult and 

childhood cancers; the use of NK1R inhibitor in NB in vitro and in vivo models showed a reducing 

effect in tumor growth [70]. 

In another way, as chemotherapy implicates high toxicity driving in future complications or 

cognitive dysfunctions for children, new treatment strategies are being developed as the use of 
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nanomedicines that have benefits as having control in drugs releasing [71]. Some researches in 

NB found a decrease in the toxicity using encapsulated cisplatin or SN-38 (an active metabolite 

of irinotecan) and also the precise advantage of the application of anti-GD2 conjugated 

nanoparticles [71-73]. The outcome for NB patients has been improved during the last years, 

however, a considerable group of patients is distinguished by poor survival and recurrent 

relapses. For that, is necessary to identify new biomarkers for developing novel treatment 

methodologies. Articles I, II, and III included in this thesis are focused on the investigation of a 

novel framework to look for targets and a specific target molecule included on it, related to the 

tumor microenvironment. 

1.2. Tumor microenvironment  

 1.2.1. General aspects 
 

A tumor is a functional and interconnected tissue where malignant cells proliferate 

uncontrollably being dependent on their tumor niche or microenvironment (TME). The TME is 

composed of cellular and noncellular components to provide support and a proper scaffold for 

cell proliferation and migration playing a relevant role in the progression of several malignancies 

[74, 75]. The elements that comprised this intricate network are the cellular components as 

tumor and stromal cells (fibroblasts, adipocytes, endothelial and immune cells) and the non-

cellular part constituted by the extracellular matrix (ECM), growth factors, cytokines and 

chemokines (figure 1) [76]. The cross-talk between neoplastic cells and their surrounding 

elements is the first step in the initiation of a tumor [77]. This reciprocal communication derives 

in the activation of biological and molecular events where tumor cells are sculpting their 

convenient TME. Understanding the nature of these interactions will allow the discovering of 

specific targets inside of the TME. It has been demonstrated that dialogs between tumor and 

stromal cells like mesenchymal cells have a relevant role in NB progression [78]. The importance 

of the TME study in tumorigenesis is reflected in the article I: The tumour microenvironment as 

an integrated framework to understand cancer biology, where we presented a classification of 

the tumor stroma according to the structural and mechanical changes in the TME elements 

according to tumor dynamics, prognosis and treatment responses. 

Tumor tissues required cellular and ECM biophysical forces originating a mechanical balance 

between compression and tension stimuli to keep the framework architecture stability. The 

architectural principle, known as tensegrity, was conceived by Buckminster Fuller in the 1960s 

which can be applied to every level of the human body with the term of biotensegrity, defined 



     INTRODUCTION 

79 

by Donald Ingber [79, 80]. According to this principle, the ECM can be treated as a dynamic and 

multifunctional controller with its biotensegral system composed of fibers and fundamental 

amorphous substance [81].In the TME the biotensegral network between cells and ECM can 

modify the cellular and molecular functions triggering a rigidity tumor scaffold. Rigidity or 

stiffness is defined as the resistance deformation degree after applying a force. It has been found 

that stiffness of primary tumors is higher than normal tissue and also has been related to cancer 

progression and metastasis, which becomes it in a potential therapeutic target [82-84]. 

 

Figure 1. Representation of the interplay among the tumor microenvironment components [76]. 

 1.2.2. Cellular components 
 

Tumor cells do not exist in isolation, they interact with themselves via molecules that have 

been mentioned in the above subsection, residing in a proper scaffold together to other non-

malignant host cells such as immune cells, fibroblasts, blood and lymphatic endothelial cells, 

pericytes, adipocytes and stem cells [85]. 

The immune system has a central role in cancer through the inflammation link, and 

consequently, diverse immune cells infiltrate the TME due to the secretion of cytokines and 

chemokines by cancer cells. Within the TME, exist a co-development of cancer cells and immune 

cells through an interaction where tumor cells can be recognized by immune cells and suffer cell 

death (immunosurveillance), or on the other hand, tumor cells can escape by avoiding immune 

checkpoints [86]. 
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One of the main immune cells, that are charged with this selective stress are the T 

lymphocytes.  Exist different T cell populations in the TME that are located inside tumor core or 

in the invasive area; it has been observed that a high amount of CD8+ T and CD4+ T (TH1 helper) 

cells in the TME are associated with good prognosis. The CD4+(TH2 helper) cells are related to 

promoting tumor growth, being the immunosuppressive CD4+ cells (T regulatory, Treg) the cells 

most implicated in this event. Regarding B lymphocytes, which are usually located in the invasive 

margin, there is a controversy about their role in tumor prognosis [85]. 

Natural killer (NK) cells take also part in tumor cell interactions. The NK cells present a 

cytotoxic ability and carry out this function through the recognition of MHC class I absence in 

response to infections and, are also involved in tissue remodeling homeostasis and 

morphogenesis. In cancer, the NK cells can control tumor growth thanks to its cytotoxic ability; 

however, tumor cells have developed some mechanisms to evade NK cell immunosurveillance 

[87]. Besides, it has been observed in some neoplasias that NK cells tend to place in the stroma, 

rather than in direct contact with malignant cells, a low NK activity has been correlated with 

poor outcome [88]. 

Macrophages are crucial elements in the immune system; there are two different 

phenotypes according to the cytokines production and the environment type where they are 

embedded: M1 (classically activated, pro-inflammatory) and M2 (alternatively activated, anti-

inflammatory). The M1 presents an antitumor activity whereas the M2 phenotype is associated 

with immunity suppression, ECM remodeling, and angiogenesis that drives to tumor invasion. In 

cancer, we found tumor-associated macrophages (TAMs) that are typically related to pro-

tumorigenic behavior and functionally mostly closer to the M2 macrophages [89]. Although in 

the early stages of tumorigenesis there is a presence of M1 macrophages, they change to an M2 

phenotype in the advanced stages [90]. The M2 phenotype, in solid tumors, presents an inverse 

correlation with treatment success and longer survival rates. Also, hypoxia that is a common 

feature of solid tumors, leads to aggressive features in tumor cells reprogramming the 

phenotype towards M2 [91]. 

Dendritic cells (DCs), together with macrophages and B lymphocytes, belong to the antigen-

presenting cells (APC) and are vital for the activation of T lymphocytes. The DCs, that are 

presented in the TME, are usually damaged so they are unable to recognize the tumor-

associated antigens, contributing to the immune suppression [92]. However, their function in 

the tumor is controversial, since DCs can act to improve anti-tumor immunity or may suppress 

mechanisms that promote tumorigenesis [93]. Furthermore, the maturation stage of DCs could 
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be key for its role in the TME. It has been found a slower maturation rate of DCs in patients with 

lung cancer than in control patients [94]. Regarding NB, the immune system plays a critical role 

since the spontaneous regression observed in the MS stage is related to immunity [95]. Indeed, 

it has been observed that NB presents CD8+ T cells activated by survivin being able to act by IFN-

ɣ, which influences on the caspase-8 expression inducing the apoptosis of neuroblastic cells and 

avoiding the tumoral evasion [96, 97]. Besides, another important NB feature is the immune 

escape pathway, such as a defective expression of the HLA class I avoiding the T cells (mainly 

cytotoxic lymphocytes) function [98]. 

Fibroblasts are support elements, representing one of the most abundant stromal cells that 

constitute the tumors and have a role in ECM remodeling and deposition. In cancer, the 

fibroblasts change their phenotype to cancer-associated fibroblasts (CAFs), due to stimuli 

(transforming growth factor (TGF-β) expression by malignant cells existing robust crosstalk)[99]. 

And it correlates with a modification of this function resulting in an increment of matrix proteins 

secretion and defective production of proteolytic enzymes that aid tumor invasion. CAFs can 

enhance tumor growth and cell survival by the production of molecules such as vascular 

endothelial growth factor (VEGFA), CXCL12, and IL-6  [100]. A notable characteristic of CAFs is 

their heterogeneous markers expression that leads both suppressing and promoting tumor 

abilities [99]. 

It is known that tumors need the creation of vascular networks to cover the essential 

nutritional and metabolic needs for growth and also for tumor dissemination. For these vital 

supplies, tumors have created two main strategies, one is angiogenesis that consists of the 

sprouting of new blood vessels from preexisting ones that are promoted by the secretion of pro-

angiogenesis factors like VEGF-A or TGF-α by malignant cells or inflammatory cells. The second 

one is lymphangiogenesis which is the growth of lymphatic vessels supported by the production 

of VEGF-C and VEGF-D pro-lymphangiogenic factors by tumor cells or macrophages[85]. Then, 

malignant cells can spread via blood or lymphatic vessels; the path chosen depends on the 

location of the primary tumor, the presence of factors in the environment, and the cell adhesion 

molecules produced by blood and lymph endothelial cells establishing a cross-talk between both 

cells [101]. The hematogenous spread implicates the seeding directly into body cavities whereas 

the lymphatic spread involves an intermediated step that consists of the invasion of lymph nodes 

[102]. 
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Moreover, it is observed that pericytes, which are perivascular cells that provide structural 

support and maintenance to blood vessels, acquire properties that contribute directly or 

indirectly to tumor growth, metastatic spread, and resistance to therapy [103, 104]. 

The adipose tissue is defined by being energy storage, although presents a regulatory role in 

the endocrine signaling, as well as in hematopoiesis and lymphopoiesis. Its role in tumor 

progression is not well known yet. It has been described that adipocytes can support the 

metabolic requirements of malignant cells that allow tumor growth. Besides, it has been 

established a connection between dysfunction of the adipose system (obesity/adiposity) and 

elevated risk of cancer appearance [90, 105]. 

Stem cells are characterized by self-renewal ability and the capacity to differentiate into 

several specialized cell types. These features are acquired by the cancer stem cells that reside in 

the TME contributing to the tumorigenesis and non-treatment response [106, 107]. 

In conclusion, the TME related with non-malignant cell component plays a relevant role in 

cancer; researches show that the cellular components of NB microenvironment could be 

considered for inclusion in optimal treatment determination [108, 109]. 

1.2.3. Non-cellular components: extracellular matrix (ECM) and vitronectin (VN) 
 

The ECM is composed of water, minerals, proteins, proteoglycans (PGs), and glycoproteins 

(GPs) making a structure where malignant and non-malignant cells, neural fibers, vascular, and 

accompanied elements reside. A notable feature is that the ECM constitution and organization 

are highly dynamic, ranging from regulating tissue homeostasis and development to participate 

in disease processes like cancer or fibrosis when their elements are dysregulated [81]. Among 

structural ECM of the TME, we found all these components as well as cytokines, chemokines 

growth factors, matrix and inflammatory enzymes that guide the cell-cell and cell-ECM 

interactions. These elements and molecules are relevant in cancer since tumor cells need 

physical contacts through receptor-ligand synergies or secreted stimuli from surrounding 

stromal cells and/or matrix elements to orchestrate the behavior of the tumor [82]. Besides, 

biochemical features also have an influence on this interaction like the metabolic status, such as 

the deprivation of oxygen (hypoxia) or nutrients (lack of energy) [110]. The huge variety of ECM 

elements act as a structural scaffolding to cells and control biochemical and biophysical 

characteristics that influence cell proliferation, adhesion, migration, polarity, differentiation, 

and apoptosis [111]. 
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The major structural protein of the ECM is the collagen which provides architectural support 

and directs cell migration and chemotaxis. There are 28 subtypes of collagen, distinguishing 

between fibrillar (collagen types I, II, III, V, and XI) and non-fibrillar collagens. The type I collagen 

is the most abundant in the human body, found in bones and skin, among other locations. The 

type III collagen is known as the component of reticulin fibers and is the main collagen form 

within the walls of blood vessels and also is found connected to the thicker type I collagen fibers 

[112]. The reticulin fibers are fine fibers that form a branching network in certain tissues and 

organs working as a support for the cells and playing a relevant adhesive role. Another structural 

protein is elastin that forms part of the elastic fibers closely linked with collagen, involved in the 

elasticity of our tissues. It provides support and may regulate cell communication [112, 113]. 

In tumors, the collagen scaffold is transformed showing a chaotic organization and an 

increase in the number of fibers resulting in desmoplasia (collagen type I and reticulin fibers 

accumulation). This deregulation appears in several malignancies and offers a suitable 

environment for tumor cells to successfully establish metastasis and, activate therapy resistance 

programs [114, 115]. It has been found a messy and remodeling of the fibrous component 

associated with more anaplastic and aggressive forms of several cancers as in prostate tumors 

[116]. 

PGs constitute the ground substance in the ECM and are composed of a core protein attached 

to glycosaminoglycans (GAGs) by covalent bonds. GAGs are long, linear, and anionic polymers 

made up of repeating disaccharide units. GAGs are classified into: hyaluronic acid, dermatan 

sulfate, keratan sulfate, chondroitin sulfate, and heparan sulfate or heparin. The great quantity 

of PGs confers to the ECM a hydrophilic attribute due to the negative charges of GAGs producing 

a network that acts as a diffusion barrier resisting compression stresses and enduring 

deformation. The PGs constitute a gel-like skeleton in which the fibrillary proteins are 

embedded. Also, PGs interact with growth factors, chemokines, and cell surface receptors, 

presenting a regulatory role in cell signaling and biological processes, including angiogenesis [81, 

117]. Furthermore, PGs have a role in cancer pathogenesis, as the hyalectan, versican, and 

perlecan as pro-angiogenic factors or serglycin that is overexpressed in several malignancies 

[118, 119]. 

GPs are matricellular proteins finding in a minor amount in the ECM, some of them are 

laminin (LN), fibronectin (FN), thrombospondin (TSP), tenascin (TN) and vitronectin (VN). These 

GPs are characterized by an adhesive function [111, 120]. Besides, they participate in ECM 

assembly, in ECM-cell interactions by acting as a link between cells and ECM elements and 
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connecting the ECM to soluble molecules within the extracellular space. These bridge elements 

tend to present several domains in their structure that contain binding motifs for other ECM 

proteins, growth factors, and cell surface receptors [120]. The best-known receptors in the ECM 

are the integrins, transmembrane proteins that connect cells to the ECM detecting chemical and 

mechanical cues from the ECM and promote the activation of intracellular signaling pathways 

[121]. Due to this adhesion function derived from the integrin-binding, the GPs participate in 

some phases of tumorigenesis as FN and their α5β1 integrin ligand, overexpressed in breast 

cancer and also this interaction participates in metastasis in ovarian cancer. In pancreatic cancer 

tissues, it has been observed increased levels of FN, VN, and LN or even the pro-migratory effect 

of VN in driving metastasis [122-125]. Therefore, GPs play an important role in tumors. Since, to 

allow the contact between ECM and tumor cells, focal adhesions are needed, and integrins are 

the molecules responsible for carrying it out. Among the various ECM GPs, VN as a 

multifunctional protein has particular importance in physiological and pathological states due 

to its role in the regulation of pericellular proteolysis, vascular hemostasis, cell adhesion, and 

migration. These functions of VN derived from the multiple ligands that bind to its four domains 

[126, 127]. The main domain for VN cell adhesion is the RGD (arginine-glycine-aspartate) 

sequence located adjacent to the somatomedin B domain. These three amino acids form a loop 

to which some integrins as ανβ1, ανβ3, ανβ5, αvβ6, αvβ8, and αIIbβ3 can join strongly. The αν integrin 

family is related to angiogenesis; besides abundant experimental data suggest that ανβ3 and ανβ5 

integrins are found in blood vessels associated with tumors, so they can be used as therapeutic 

targets to inhibit angiogenesis processes and therefore tumor metastasis [128]. Furthermore, 

VN presents more binding sites, such as for uPAR and PAI-1, both bind to the somatomedin B 

domain and also uPAR binds to the RGD sequence [129]. The study of VN in the cancer field is 

important since it is involved in functions such as cell adhesion, ECM remodeling, and tumor cell 

migration, through three main ligands as uPAR, PAI-1, and integrins. From those functions derive 

its role in processes such as tumor growth, angiogenesis, and metastasis in several malignancies 

[130-132]. 

Also, the ECM includes the interstitial fluid where the cells and secreted molecules are 

disposed. The ECM can store and capture inside of the interstitial fluid: growth factors, 

cytokines, and chemokines, establishing concentration gradients and regulating spatially and 

temporally their bioavailability [81]. Growth factors, cytokines, and chemokines are molecules 

that promote growth signals to activate the proliferation in normal tissues. In cancer, they are 

secreted by stromal and malignant cells and may be captured by the ECM, where provide these 

spreading stimuli taking part as tumor-promoting components. These molecules increase the 
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risk of cancer since they promote cell survival signals to avoid apoptosis, proangiogenic factors, 

and epithelial-mesenchymal transition (EMT) by metalloproteinases (MMPs) [133]. It has been 

observed an association of overexpression of the epidermal growth factor (EGF) and the TGF-α 

with poor prognosis in colon cancer [134] or a pleiotropic role of TGF-β in cancer [135]. The 

therapeutic importance of these molecules is reflected by the presence of mutations in EGFR, a 

ligand of EGF, in pancreatic cancer, and non-small cell lung cancer [136, 137]. Likewise, the 

inflammatory process is another important factor in the initiation of a tumor, where also growth 

factors, cytokines and chemokines have an attraction role. Among the variety of cytokines that 

are related to tumor progression, the necrosis factor and IL-6 are the best characterized pro-

tumorigenic cytokines in several neoplasias [138]. Regarding chemokines, some of the most 

cancer-related are CXC and CC families [139]. For example, CXCR4 is the most common 

chemokine receptor expressed in several malignancies or CCR8 is overexpressed in non-small 

cell lung cancer [140]. 

There are several types of proteolytic enzymes which substrates are collagens and other ECM 

elements such as MMPs, the most predominant, ADAMs family proteins (a disintegrin and 

metalloproteases), ADAM with thrombospondin motifs (ADAMTS), and also proteases such as 

cathepsin G and elastase. They play a vital role in physiological events, including development, 

tissue remodeling, or repair. In pathological events, like cancer, MMPs perform the ECM 

degradation which is associated with invasion facilitation by breaking the ECM physical barriers, 

releasing molecules as active growth factors or active ECM fragments, and exposing signaling 

components like integrins [141]. Another derived consequence is the activation of the 

inflammatory response via specific cytokines induction. MMPS aims to create an environment 

conducive to tumor development, for that could be promising therapeutic targets [141, 142]. 

Indeed, several MMPs are over-expressed in different types of tumors such as MMP2 in gliomas 

or MMP1 in breast cancer [143, 144]. Another relevant enzyme is lysyl oxidase (LOX) which is 

necessary for the mechanical integrity of the collagen. Then, LOX acts in the ECM stabilization 

and its deregulation is related to fibrotic processes, tumor progression, and metastasis [145]. 

 As we can summarize the mesh of the ECM turns into a stiff ECM that derives in an increased 

deposition of matrix proteins and activates integrins generating a cytoskeleton tension 

promoting adhesion, cell motility, and cell interactions. The rigidity of the ECM support tumor 

progression and increase the aggressiveness in NB, liver, and pancreatic cancer [142, 146, 147]. 
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1.2.4. Use of this knowledge for treating patients 
 

According to Weinberg et al., [148] the hallmarks of cancer are defined by the increase of 

proliferation, growth induction, death resistance, replicative immortality, angiogenesis, 

activation of invasion and metastasis, metabolism deregulation and the escape of immune 

response which are caused by the cell-cell and cell-ECM interactions. These strategies together 

with the heterogeneous composition of the TME suggest that targeting the TME elements can 

be relevant for the development of more specific treatments that could be used to supplement 

the conventional therapies applied currently, which involve severe side effects and therapeutic 

resistance [90]. Then, the goal of the therapeutic approach against TME is a multitargeted effect, 

where tumor cells and the TME are simultaneously inhibited to normalize the TME for 

preventing the formation of premetastatic niches in a tumor-friendly environment. 

There are several studies whose aim is targeting directly ECM components; nonetheless, it is 

a difficult task due to the complexity of components interplay. Below, we present a review 

mainly focus on diagnostic strategies and therapies related to the ECM elements studied in this 

compendium. 

An important fact is that in tumor progression exists a chaotic ECM in terms of the 

composition and organization of its elements.  Collagen is one of the predominant elements and 

therefore an important target; in fact, the inhibition of the TGF-β signaling pathway results in a 

low presence of this element and it decreases desmoplasia; since this factor stimulates CAFs to 

produce collagen [149]. It is also known that MMPs degrade collagen inducing angiogenesis; 

then the combination of an anti-MMP-9 antibody plus nab-paclitaxel (as standard cytotoxic 

therapy) showed a decrease of type I collagen in tumors [150]. Regarding the importance of 

GAGs as a target in cancer, derived from its interaction with multiple ligands. For that function, 

several types of research aim to target GAGs through some drugs, as non-anticoagulant heparin 

analogs (SST0001 or Roneparstat) with a decrease of tumor size, already used in preclinical 

studies; non-anticoagulant hexasaccharide sequence of heparin (HS06) presenting a specificity 

in GAGs-protein interactions and inhibitors of the activity of heparanase (PI-88) that has already 

been used in phase III clinical trials for hepatocellular carcinoma [151]. 

Integrins are significant receptors involved in cell-cell and cell-ECM communication 

integrating extracellular and intercellular signals. They are ligands to several proteins and GPs of 

the ECM such as collagen, FN, LN, and VN through recognition of the RGD sequence and other 

sites like LVD motif that are present in vascular cell adhesion molecule 1 and FN. Indeed, all αv 

integrins present the capacity to find ECM elements that contain this RGD sequence [152]. These 
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αv integrins play a key role in tumor growth, invasion, and metastasis, and although therapeutic 

approaches are mainly focused on the inhibition of these integrins, several studies using anti-

integrins have experimented success and others failed in preclinical studies. Two pan-αv integrin 

antibodies that have been evaluated in late-stage clinical trials: abituzumab (DI17E6, EMD 

525797) and intetumumab (CNTO95), showing an anti-metastasis activity[153]. Also, αvβ3 and 

αvβ5 integrins have been involved in tumor angiogenesis, for this reason, inhibitors as vitaxin 

(MEDI-523) and etaracizumab, (abegrin; MEDI-522) have been applied with high specific results. 

Cilengitide (EMD121974) is a peptide that inhibits both integrins; preclinical studies in breast 

cancer supported its efficacy reducing bone metastasis. However, phase III clinical studies in 

late-stage glioblastoma did not show any effect [153]. The anti-αvβ3 antibody etaracizumab 

(MEDI-522) has been used in phase I and II clinical studies and showed good tolerability, also in 

combination with chemotherapy, but without anti-angiogenesis evidence. Another integrin that 

showed a fundamental therapeutic profit in cancer as a target is the α5β1 integrin; the antibody 

M200/volociximab was shown to inhibit angiogenesis in preclinical studies [154]. To improve 

the targeting of integrins in cancer, new treatment methodologies are being developed as the 

use of nanotechnology to overcome some known limitations. Some examples are the production 

of liposomes nanoparticles coating with polyethylene glycol (PEG), which are RGD based 

peptides, with a major specificity for targeting integrins, or with cilengitide that showed 

improvement against the conventional cilengitide treatment in glioblastoma [155, 156].  

Several efforts have been made to target ECM-modifying enzymes such as MMPs and LOXs. 

Due to the relevance of MMPs in tumor progression, synthetic inhibitors have been developed 

as neovastat (Benefin/AE-941) that blocks MMPs-2, 9, and 12, which is well tolerated by cancer 

patients in phase I/II clinical trials. Regarding LOXs, there are some clinical trials using 

tetrathiomolybdate in breast cancer patients [157]. In the TME occurs an immune cell 

adaptation to the metabolic needs of cancer cells and therefore the immune cells take part in 

resistance to treatments being important as targets for immunotherapy [158, 159]. Some 

common types of immunotherapy include: 1) Immune checkpoint inhibitors, such as anti-CTLA4 

or PD-1/PD-L1 (that are based on T cells suppression) by using monoclonal antibodies. Indeed, 

ipilimumab, an anti-CTLA-4 antibody, was approved by the Food and Drug Administration (FDA) 

in 2011 for melanoma patients with metastatic disease and antibodies targeting PD1 or PD-L1, 

that include pembrolizumab nivolumab (anti-PD1), were approved by the FDA for melanoma 

and non-small-cell lung carcinoma. Other checkpoints in preclinical studies include lymphocyte 

activation gene 3 (LAG3) proteins and mucin domain-containing protein 3 (TIM3). 2) T-cell 

transfer therapy, which consists of the transference of immune cells for the initiation of systemic 
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antitumor immunity, increasing the number of active tumor-infiltrating lymphocytes (TILs) in the 

tumor. In this category, the CAR T-cell is also an important therapy; in fact, Kymriah has been 

approved in hematologic neoplasias. 3) Cancer vaccines, whose aim is specific immunologic 

responses against tumor antigens; however, some obstacles as inducing immune tolerance 

appear to be challenged as the proper tumor antigen definition and understanding the role of 

DCs. 4) Combination therapies as the association of immune checkpoint inhibitors (combination 

of anti-CTLA-4 and anti-PD1) therapies have been demonstrated a synergic effect; integration of 

immune checkpoint inhibitors, conventional therapies (like the combination of ipilimumab with 

dacarbazine) and VEGF, due to the latter acts in immunity by enhancing the number of Treg cells 

in several clinical trials [159, 160]. Besides, one example of immunotherapy in NB is the use of 

an anti-GD2 monoclonal antibody, since the GD2 is a ganglioside expressed by NB and other 

tumors. In clinical studies with HR-NB patients, the combination of anti-GD2 plus cytokines as 

IL-2 and GM-CSF and retinoic acid therapy showed good results and, the generation of CAR T-

cells that express anti-GD2 was also tested in clinical trials [161, 162]. 

As mentioned previously, CAFs are another possible target since are the most abundant cell 

types in TME. The fibroblast activation protein (FAP), is a protease that contributes to the 

fibroblast phenotype, being more specific to the tumor stroma. Several attempts to target FAP 

have failed, nevertheless, there are ongoing studies that are using RO6874281, an IL-2 variant 

that recognizes and also binds to FAP, in combination with other drugs as atezolizumab, an anti-

PD-L1 antibody, gemcitabine, and vinorelbine, in solid tumors [158]. 

Tumor vessels are abnormal, with a chaotic structure as a consequence of endothelial 

disorganization; this vascular alteration is related to a low effect of chemotherapy. The defective 

formation of tumor blood vessels is due to irregular levels of growth factors like VEGF, 

angiopoietins, platelet-derived growth factor (PDGF-B), and TGF-β. Another aspect to keep in 

mind is the ‘‘vascular mimicry’’ (VM) that refers to tumor cells which behave as endothelial cells 

expressing several markers and forming vessels-like structures.  Modifying this unsuitable tumor 

vasculature can prevent tumor invasion and improves the power of antitumor treatments [163]. 

For that reason, although new anti-angiogenic therapies are needed, several approaches and 

drugs have been developed, such as a) VEGF signaling inhibitors, bevacizumab, humanized anti-

VEGF-A monoclonal antibody, that had a potential synergy with conventional treatments; 

however this treatment was defined by side effects and drug resistance [164, 165]; b) 

ramucirumab, a fully human monoclonal antibody that targets VEGFR2 by blocking its 

interaction with VEGF, that is currently in a phase III trial; c) angiopoietin inhibitors, as the 

antibody MEDI3617, impeding the angiopoietin function or AMG-386 (trebananib) preventing 
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angiogenesis by blocking the joining of angiopoietin 1 and 2 to their Tie2 receptor,  that is in 

phase I trials for advanced solid tumors; d) PDGF-B/PDGFR interaction involved in the pericyte 

coverage in new blood vessels. Some PDGF-B inhibitors, CR002 and IMC-2C5 or CDP860 have 

been used. The use of PDGFR inhibitors like imatinib, sunitinib, regorafenib, and pazopanib 

which also present an anti-VEGFR function showed an improvement in anti-angiogenesis 

therapies as well as the combination of Ang-2 and VEGF inhibitors as vanucizumab; e) and finally 

an optimized human monoclonal antibody targeting the C‐type lectin‐like domain of CLEC14a 

inhibits VEGF microvessel formation, CLEC14a is a marker that is exclusively expressed on tumor 

blood vessels in several neoplasias [165]. Moreover, it is known that the VEGF-C/VEGF-D/VEGFR-

3 signaling pathway is a key regulator of tumor lymphangiogenesis. Some anti-lymphangiogenic 

therapies that include monoclonal antibodies to VEGF-C and VEGF-D, which block VEGFR-2 and 

VEGFR-3 binding and small molecules (sorafenib, sunitinib, pazopanib, and axitinib) that go 

inside the cell such as inhibitors of the VEGFR-3 tyrosine kinase, are in clinical trials [166, 167].  

In conclusion, the TME participates in tumorigenesis and the crosstalking between its 

components has to be taken into account to get achieving anticancer therapy and for seeking 

future targets. The use of experimental models to advance in this field is needed. 
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1. 3. Experimental models in cancer  

1.3.1. General aspects 
 

Cancer represents serious healthcare defiance worldwide, being the understanding of cell-

cell and cell-ECM interactions that occurs in the TME one of the main limitations to fight against 

this disease. For the comprehension of the cancer mechanisms, several approaches have been 

developed over time. Due to the complexity of this malignancy and its intra-and inter-tumor 

heterogeneity, reliable models are required; however, only one model is not enough to simulate 

all the cancer features. For that fact, a broad spectrum of preclinical models that include in vitro 

and in vivo prototypes have been implemented for the detection of therapeutic targets and 

biomarkers or testing and assessing drug effects and response. The final aim of these models is 

to supply knowledge that improves the development of better treatment strategies and 

patient’s prognosis [168, 169]. We have reviewed those that we have used. 

1.3.2. In vitro models 
 

The range of in vitro models has progressed from cancer cell lines that grew on monolayer to 

the generation of 3D models that have emerged in the last decades. The purpose of these 

models is to provide information about the behavior of cells to observe how they mediate a role 

in tumor progression, invasion, and drug resistance [168].  

Established human cell lines have been used for decades in the cancer field and are essential 

for the comprehension of the basic biological and molecular principles of cancer. Indeed, today 

they are the most common tool used in cancer research [169]. Cancer cell lines are normally 

maintained in culture for a long time which derives in the adaptation of in vitro conditions 

through the acquisition of reversible and irreversible phenotypic and genotypic alterations 

[170]. These changes induce the appearance of clonal evolution, since the cell clones that grow 

faster, control the culture leading in a modification of cell behavior [171]. Nonetheless, it has 

been observed that molecular features of colon cancer cell lines are equal that those described 

in vivo colon models [172]. Another issue of handling cell lines is the cross-contamination or 

misidentification of cells that can influence on getting controversial results [173, 174]. To avoid 

this drawback is recommendable to authenticate the identity of each cell line, as employing 

genotypic identification through short tandem repeats [174]. These aspects normally imply a 

controversy for the utility of cell lines as a preclinical model in cancer. However, the benefits of 

cell lines are their availability, low cost, and easy manipulation to study cellular roles in cancer. 
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Stable cell lines as tools in preclinical studies represent a broad platform for multidrug screening 

or functional studies through the use of a panel of cancer cell lines, using them as standards, 

that allow the comparison of researches worldwide [171]. 

Regarding NB,  there are a wide range of available cell lines, that are classified into three 

phenotypes according to their origin, morphology and genetic alterations: neuroblastic, N-type 

as SH-SY5Y and LA1-55n, are sympathoadrenal neuroblasts; the substrate-adherent, S- type like  

LA1-5s and  SH-EP1, resembles non-neuronal precursor cells; and the intermediate, I-type as SK-

N-Be(2)C and SH-I, because its morphology is intermediate between N and S phenotypes, and 

this type restrains the abilities of stem cells. A comparison study among the tumorigenic ability 

of these three cell phenotypes showed that the I-type may be the most aggressive due to their 

stem cell features [172]. On the other hand, the culture media is also a critical key for the 

molecular and biological features of cell lines. Indeed, there are pieces of evidence that support 

that NB cell lines grown in serum-free medium retain the genetic and phenotypic characteristics 

of primary NB tumors in comparison to serum complete medium [175, 176]. 

Cancer cell lines continue being the first step in the scale of preclinical trials, and then 

achievements in the application of these in vitro systems are ongoing. One example is the co-

culture of cancer cell lines and stromal cells like fibroblasts, endothelial and immune cells. 

Nevertheless, the 2D in vitro culture does not recapitulate entirely the biophysical and 

mechanical properties of the TME since monolayer cell lines cannot simulate the intricate 

network of cells and non-cellular elements of the TME [168]. 

To resemble the complexity of TME architecture, some 3D prototypes have been developed 

to overcome some limitations of 2D cultures. It has been observed that when cells are in 3D 

respond to drugs differently than cells in 2D, giving results more similar to those observed in 

vivo. 3D models are more suitable prototypes for drug screening because they can recapitulate 

physical barriers, so drugs do not penetrate as easily as in 2D cultures. Besides, the 3D migration 

models are more comparable to in vivo spreading being in all directions as well as restrain its 

interaction with their surrounding elements [169, 177]. Also, the gene expression profiles in 3D 

models are more similar to in vivo systems finding some differences regarding 2D systems [178]. 

The use of a scaffold in 3D systems also acts as a support and can be adjusted to the stiffness or 

pore size to replicate the TME. In general, we can say that 3D cellular morphology and the 

interactions with its 3D environment is more like in vivo [179]. 

There are several types of 3D in vitro models, one typical are spheroids that are clusters of 

cells without a tissue structure; in case that they derived from tumor cells are known as tumor 
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spheroids. Spheroids can be generated using hanging drop methods [180, 181]. Cells inside of 

spheroids replicate the in vivo features found in tumors since in the center, due to the decrease 

of nutrients and oxygen, they usually become hypoxic and necrotic. However, due to their 

sphere shape, they present some limitations such as not being able to simulate vascularized 

tumors or not mimicking some types of metastasis initiation [182-184].  

Other in vitro 3D models recreated the TME by combining malignant and non-malignant cells 

over a supporting scaffold based on natural or synthetic materials that act as ECM. A key point 

is the choice of a proper scaffold that depends on the TME you want to get. Generally, natural 

scaffolds are proteins that form the ECM like collagen, fibrin, and hyaluronic acid, or other 

natural biomaterials as gelatin or silk. A remarkable feature of natural scaffolds is its 

biodegradability that can limit the duration of the study, causing uncontrolled effects [185]. On 

the other hand, synthetic scaffolds are made of polymers, bioactive glasses, or self-assembled 

peptides. The essential profit of using these scaffolds is, due to their defined composition, their 

reproducibility. Another different approach to classify scaffolds is discerning between hydrogels 

and solid scaffolds, which can be generated through natural or engineered structures. Normally 

cells are mixed or encapsulated in a soft tissue-like environment in hydrogels, while in solid 

scaffolds they can be fibrous or porous [185, 186]. An emerging method to generate naturally 

derived scaffolds consists of decellularizing ECM from the tissues; this approach keeps the 

natural architecture and removes the allogenic cellular antigens, however, it is a hard technique 

[187]. Another novel methodology is the combination of microfluidic technology with 3D culture 

to create an entire system called organ-on-a-chip that constitutes a complex and dynamic 

model. It has been used to recreate several neoplasms as breast cancer tissue [188]. 

Recently, some 3D strategies to simulate the TME in NB have been developed. Research 

showed that tumor cells retrain their nature proliferative features in bioprinted type I collagen 

scaffolds [189]. In another study, after building NB models through two different collagen 

frames, discovered that the treatment response in these 3D culture prototypes was much more 

similar to in vivo models [190]. Our group described a study analyzing the effects of the 

surrounding biomaterial stiffness over time and defining how aggressiveness increases in SK-N-

BE (2) NB cell line [191]. 

Summarising, the main advantage of in vitro studies is that they offer a high control of the 

cellular and biochemical constituents of the tumor network, representing reliable tools. 3D in 

vitro systems recreate more real models in comparison to 2D. However, it is desirable to use 

simultaneously both systems, since the 2D models are an easy way to start experiments and 
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changing to 3D culture models should be a progressive procedure since it is required more 

complex technologies [178]. 

1.3.3. In vivo models 
 

Investigations using in vivo models improve the comprehension of cellular processes in a 

physiological and entirely natural TME, being relevant in the oncology field to assess different 

therapies and to identify possible targets and potential side effects easier than employing in 

vitro models [192]. However, we have to keep in mind that some animal models displayed 

discrepancies regarding human physiology. This fact explains the high proportion of drug failure 

on humans which presented a good response in animal models. Nonetheless, the divergence 

issue is being solved by the application of humanized animals [193]. For cancer research, the 

most powerful in vivo models are rodents such as rats and mice, emerging the usage of 

complementary animals like zebrafish [194]. Nowadays, the dominant employment of mice is 

due to the high homology sharing with humans, and the substantial contribution of clinical 

animal models have derived in the existence of a wide range of mouse models for cancer studies  

[193, 195]. 

One of the straightforward and most normally used in vivo model system is based on the 

engraftment of established human cell lines to generate cell-line-derived xenografts (CDX). 

Another enhanced in vivo strategy consists in the creation of patient-derived xenografts (PDX). 

In the latter case, the human tumor material excised from the patient or primary cells derived 

from the disintegration of the tumor into single cells is implanted/injected directly into the mice 

[196, 197]. For this purpose, immunodeficient models are needed to allow the acceptance of 

human cell lines or tissue, permitting the development of tumors. Exist a large variety of 

immunocompromised mouse strains from the athymic nude mice, SCID, Rag, to highly 

immunodeficient mice as NOG and NSG [195, 198]. NOG and NSG represent excellent recipients 

with the highest human tissue engraftment [199]. 

Both CDX and PDX models can be engrafted heterotopically or orthotopically. In the 

heterotopic implantation, cells or tissue are implanted into a different location unrelated to the 

original tumor site, generally subcutaneously. This procedure has benefits as easy as 

implantation and tumor growth monitoring [200]. Orthotopic models involve the implantation 

of cell lines or tissue into the proper place where the primary tumor is commonly developed.  

The generation of these models is more technically challenging and time-consuming and it is 

required the use of precise imaging techniques to control tumor development. However, 
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orthotopic models recapitulate more accurate aspects of the original TME being more clinically 

relevant than heterotopic models [201]. 

The traditional CDX possesses some disadvantages as they do not acquire the heterogeneity 

that characterized the tumors. As well, the generation of orthotopic CDX models have the 

drawback that the stromal component is murine, despite this, are used as initial screening tools 

of drug toxicity and efficacy [202, 203]. A study using orthotopic CDX NB models showed a 

rigorous invasion behavior and vascularization features with spontaneous metastasis in places 

like bone marrow and liver that recapitulate common characteristics in NB [204]. Another 

research with orthotopic NB models displayed different invasion tropism patterns in different 

established NB cell lines [205]. 

PDX models were developed to overcome some CDX limitations, such as decreasing the risk 

of cells in vitro adaptation. During the last years, PDXs are becoming the preferred preclinical 

tools being platforms of characterized PDX models [206]. This is supported by numerous pieces 

of evidence where are suggested that PDXs retrain original features of tumor patients, as 

histology traits, genetic aberrations, and malignant phenotypes in several malignancies, like 

colorectal cancer, breast cancer and NB [207-209]. Besides, stable PDXs tumors can be serially 

passaged in vivo without molecular or phenotypical modifications, however, it is 

recommendable to keep relatively low passage number (<10) [210]. 

Despite the potential benefit of PDX models in the cancer field, it has been observed some 

limitations [211]. One is, due to host mice are immunocompromised, PDXs do not resemble the 

immune system that normally appears in TME. For solving this problem, the generation of 

humanized mice, as well as the emerging of different approaches, is being developed to simulate 

the human immune system such as the transplantation of human hematopoietic stem cells in 

NOG and NSG mouse strains [212, 213]. Another disadvantage is the gradual replacement of 

human stromal components by murine stromal elements like ECM, fibroblasts and endothelial 

cells that it has been observed in NB and colorectal PDX models [214, 215]. It can be explained 

by the recruitment of murine stromal cells though cytokines production by human tumor cells 

and also to Matrigel substrate, a murine basement membrane, that is commonly used to 

increase the engraftment rate in PDX models. Then, some strategies like the co-injection of 

human stromal cells may be used to simulate and study the TME interactions [216]. The last 

issue is the lack of intratumor heterogeneity related to the fact that PDX establishment is based 

on a small representation of the whole tumor and to the selection pressure of specific clones 

that also occurs during the engraftment and passaging. In fact, this heterogeneity has been 

demonstrated after the generation of NB PDXs using tumor pieces with different locations [217]. 
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Therefore, the implantation of several samples derived from distinct tumor places may be a 

potential solution.  

Another point is that the establishment of PDX models will take considerable time. A wide 

range of growth time has been reported, between one to ten months [218]. This difficulty is 

influenced by the aggressively of tumor, implant location, and strain of immunodeficient mice 

utilized [199]. An association between successful engraftment with adverse clinicopathological 

features in the pancreatic PDX model has recently shown [219]. Moreover, the median rate of 

engraftment in NB PDX models is around 50%, exhibiting a major successful rate the HR-NB 

tumors [217]. 

As we mentioned above, the generation of PDX can come from two inputs: the non-

dissociated tumor fragments, which is the preferred way since trying to avoid the molecular and 

phenotypic modifications from cell culturing or cell suspension from tumor dissociation and 

culturing. Some NB studies had established several 3D spheroids in serum-free medium from 

orthotopic PDX models (known as patient-derived cell lines models) demonstrating that cells, 

up to at least 30 passages, recapitulate the features of the original tumor [175, 176]. Another 

strategy used is to get patient-derived organoids (PDOs), which consists of patient-derived cell 

lines that grow embedded in a scaffold-like Matrigel or collagen. A recent study has established 

various NB PDOs demonstrating that these cells preserve histological, genetic, and 

heterogeneity features of the original tumor [220]. These 3D human tumor cells are a relevant 

tool to replace animals in experimentation. 

On the other hand, in vivo strategies as the genetically engineered mouse models (GEMM) 

represent an important tool in cancer that has the benefit of spontaneous tumor development 

in the proper site, with an effective immune system; however, tumors consist of murine cancer 

and stromal cells. As other model systems have limitations as tumor usually takes a long time to 

develop and because the majority of GEMMs only have few genes modified they present a less 

cellular heterogeneity [196, 221]. One of the common GEMM NB models is the TH-MYCN that 

demonstrated the MYCN role in NB pathogenesis and is important for preclinical studies of 

MYCN therapies. Another model, TH-MYCN/ALK(F1174), examines the role of ALK mutation to 

provide drug ALK inhibitors [213]. 

For the progression of effective therapies, preclinical studies need to employ several models. 

They must integrate the challenges of biology and genetics to achieve successful results by 

improving patient prognosis and guiding clinical trials. To do this, it is important to be aware of 
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the use of the right model for research, and the most objective tools to analyze tumor 

biomarkers such as the computer-aid image analysis. 

 

1.4. Digital pathology in cancer  

1.4.1. General aspects 
 

Tumor growth and metastasis are well-known processes in the tumor biology field derived 

from communication signals that tumor cells exchange with their surrounding 

microenvironment. [222, 223]. In the development of these processes, some of the attractive 

activities to consider their study are: how to act tumor cells clones to create a phenotypic and 

genetic heterogeneity, stromal and immune cells to be required as companion constituents, the 

ECM elements to establish and remodeling an appropriate scaffolding and finally, vascular 

elements to provide crucial nutrients [110, 224, 225]. 

For the understanding of these processes, not only in vitro and in vivo models are used to 

study the underlying mechanisms that cause tumor progression, but many computational 

approaches can be also found nowadays in the literature [226-229]. Digital pathology, a sub-

field of pathology that focuses on data management based on information generated from 

digitized specimen slides, uses virtual microscopy and computer-based technology. Glass slides 

are converted into digital slides that can be viewed, managed, shared and analyzed on a 

computer monitor. Mathematical modeling, dynamic methods, and the application of equations 

have shown how is possible to simulate physical and biological alterations that occur in tumor 

invasion such as adhesion or migration [230, 231]. Current computational strategies are not only 

focused on recreating the context of a tumor, allowing the identification of tumor growth 

patterns in cervical cancer [232] or the tumor cells ability to spread in non-small cell lung cancer 

[233], nonetheless these methodologies go beyond being able to detect therapeutic drugs 

through a virtual examination in lung cancer [234]. This multidisciplinary network gives us 

information to detect key targets and simulates the mechanisms that take place in tumor growth 

and metastasis events. Indeed, the application of novelty image tools provides complementary 

information to be functional to clinical practice [235]. Morphometric techniques through the 

use of computer-automated segmentation algorithms attempt to decrease human error. These 

techniques intend to increase assessment efficiency, due to the huge amounts of tumor samples 

that are generated in the diagnostic routine and create reproducible results since they decrease 

the subjectivity in the analysis allowing standardization of the measurements [236-238]. The use 
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of morphometric quantitative image analysis to determine the nuclear role in breast cancer 

evidenced an association between nuclear shape and clinicopathological features [239]. Also, 

the employment of image analysis tools observed differences in nuclear characteristics between 

benign and malignant squamous neoplasms, being the nuclear pleomorphism the most useful 

feature [240]. On the other hand, topological approaches like network analysis in combination 

with Vonoroi tessellations are useful in quantifying the risk of developing a disease through the 

detection of associated clusters at the molecular level [241]. The use of Voronoi Diagram and its 

subgraphs showed the ability to assess the tissue architecture extracting structural features 

being able to discriminate between normal and cancerous oral mucosa and the outcome in 

patients with prostatic and cervical carcinoma [242]. Also, the application of topological 

characteristics can potentially identify predictive biomarkers through network-based 

classification in breast cancer [243]. 

Another relevant approach is the development of machine-learning algorithms to be applied 

as a computer-aided tool in cancer research. Its purpose is to discover different patterns based 

on clinical, proteomic, genomic, epidemiological, or histological information to establish 

datasets according to the best combination. These datasets can discriminate for example among 

prognostic outcomes or risk of cancer, in several malignancies as breast and liver cancer [244-

246]. 

Regarding the wide positive aspects of using image tools for cancer modeling, its application 

in routine diagnosis is being implemented. All these novel approaches required a global 

validation to be used in the clinical diagnostics routine [247]. With the practice of Whole-Slide 

Imaging, which is another name for virtual microscopy, the field of digital pathology is growing 

and has applications in diagnostic medicine, to achieve efficient and cheaper diagnoses, 

prognosis, and prediction of diseases.  

1.4.2. Computer-aided analysis in NB 
 

Over the last decades, the survival rate has improved due to the application of an 

international NB pre-treatment risk classification system, however, HR and relapsed patients are 

characterized by the need for innovative therapies or strategies to enhance their outcome [14, 

62]. The biological pathways that are hidden in these patients are some weaknesses share by 

the NB studies. In this way, novel approaches as computer tools are needed to complement the 

conventional pre-treatment strategies and to discover potential biomarkers or targets that could 

imply in NB pathogenesis and therapies. 
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Indeed, image analysis algorithms applied to hematoxylin-eosin (HE) stained NB whole-

sections have been used to discriminate the grade of neuroblastic differentiation automatically, 

through the selection of representative features such as cytoplasm and neuropil [248]. NB 

belongs to the small round cell tumors family, being the uNB category a diagnostic challenge to 

the rest of tumors because of morphological similarities, requiring the use of specific 

immunohistochemical markers. The application of morphometric image tools to discriminate 

among this tumor family showed that Ewings/PNET presented more tumor necrosis and mitosis 

compared to the rest of related tumors [249]. 

Greater efforts in NB using mathematical approaches allowed the characterization of TME 

elements; our group has described that tumor patients with poor prognosis presented a firm 

scaffold between neoplastic cells described as crosslinked and branching reticulin fibers, scarcity 

of collagen type I fibers and GAGs [147, 250, 251]. Regarding the vascular elements, large and 

abundant irregularly-shaped blood vessels and a high amount of irregular intermediate 

lymphatic capillaries and irregular small collector vessels were present in tumors from patients 

with metastatic stage, undifferentiating neuroblasts and/or classified as HR [252, 253]. This 

tumor architecture reflects a chaotic situation that promotes the spreading of tumor cells. In 

this way, novel methodologies are needed for a better understanding of the ECM elements and 

their interplay with tumor cells. Therefore, in articles II and III, computational tools were used 

to define novel features related to the morphometric characteristics and organization between 

tumor cells and ECM elements. These recent tumor modeling systems emerge as techniques to 

add detail diagnostic information as well as an attempt to study the significance of new markers 

in NB tumorigenesis. 
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2.1. Hypothesis 

We consider the microenvironment of neuroblastoma to be a complex network of stromal 

cells and surrounding non-cellular elements, which influences and is influenced by the behavior 

of neuroblastic cells. In fact, malignancies often precipitate intensive remodeling of the 

extracellular matrix, as well as increased rigidity, which confers reciprocal biotensegral 

mechanical stress between continuous cell traction forces and discontinuous compression 

resistance presented by extracellular matrix elements, all of which facilitate the aggressiveness 

of the malignant cell. We hypothesize that vitronectin, an extracellular matrix glycoprotein 

characterized by its linking role between cells and elements of the extracellular matrix and/or 

soluble molecules within extracellular space, is a key molecular player in the aggressive tumor 

environment and should be studied in neuroblastoma with digital pathology. 

2.2. Aims 

General 

In this thesis, our general purpose is to define vitronectin as a crucial connector within the 

extracellular matrix which helps modulate of the physical and chemical signaling between tumor 

cells and their surrounding elements, hence designating vitronectin ligands as new therapeutic 

candidates. 

Specifics 

 Studies in neuroblastoma human samples:  

1. Morphometrical and topological characterization of vitronectin expression through the 

design and use of various algorithms, to uncover its role.  

2. Correlate vitronectin and vitronectin ligands binding expression to clinical 

characterisitics of patients and biological features of tumors with known prognostic 

value, to determine different degrees and/or histological patterns of aggressiveness. 

3. Associate vitronectin expression and distribution with other biotensegral elements of 

the tumor microenvironment such as reticular fibers, type I collagen, 

glycosaminoglycans, blood/lymphatic vessels and immune cells, in order to establish an 

extracellular matrix pattern related to aggressiveness. 
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 2D studies in neuroblastoma cell lines:  

1. Identify vitronectin and its binding ligands such as ανβ3 integrin, uPAR and PAI-

1 in several established neuroblastoma cell lines. 

2. Define the contribution to tumor aggressiveness of vitronectin patterns and 

binding ligands by comparing their expression with that obtained in human 

neuroblastoma samples. 

 

 In vivo neuroblastoma xenografts 

1. Generate xenografts using a selection of the established neuroblastoma cell 

lines in knockout vitronectin and Rag1 immunodeficient mice to determine the 

influence of the tumor macroenvironment. 

2. Characterize several tumor microenvironment elements such as reticular fibers, 

type I collagen fibers, glycosaminoglycans, blood/lymph vessels and immune 

cell infiltration along with those obtained from vitronectin and its ligands, to 

determine their histological patterns of aggressiveness. Comparison with results 

obtained in human tumor samples for suitability as therapeutic targets. 

3. Describe the genetic characteristics of the tumors obtained to gain insight into 

the impact of extracellular matrix properties on neuroblastoma genomic 

heterogeneity, particularly as regards the vitronectin role as an element of the 

tumor macroenvironment. 

 

2.3. Justification of the thesis as publication compendium 

The present doctoral thesis research is presented as a compendium of three publications and 

newly obtained relevant data to advance current understanding of the mechanical interplay 

between neuroblastic cells and extracellular elements, pinpointing the adhesive glycoprotein 

vitronectin as a key contact point inside the extracellular matrix. 

All the findings of these papers have the same point of convergence: the search for 

therapeutic targets at the contact points of the tumor cell with its extracellular matrix in 

neuroblastic tumors, as is summarized briefly below. 

The objective of the review carried out in article I, The tumour microenvironment as an 

integrated framework to understand cancer biology, and indeed the main focus of this 

dissertation, is to highlight the importance of tumor microenvironment interactions 
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underpinning tumor aggressiveness and patient prognosis, and identify possible biomarkers and 

targets with which to modulate the tumor niche and response to treatment. We highlight a 

proposed classification of tumor stroma into three grades of aggressiveness based on new data 

obtained in human tumor samples. 

In article II, Vitronectin as a molecular player of the tumor microenvironment in 

neuroblastoma, we seek to characterize vitronectin as an extracellular matrix target molecule 

in a cohort of neuroblastoma patients grouped by diagnosis of tumor genetic instability, 

including an initial description of the in vivo study. Our thesis defense has centered on extending 

the in vitro and in vivo analyses of the vitronectin protein and its ligands to reinforce our 

conclusions regarding its importance as a future therapeutic target. 

The objective of research summarized in article III, The topology of vitronectin: A 

complementary feature for neuroblastoma risk classification based on computer-aided 

detection, is to detect vitronectin distribution patterns in tumor stroma that could explain the 

behavior of neuroblastic cells in the cohort previously described in article II. Our dissertation 

centers on comparative analysis between non-topological and topological features of the 

various extracellular matrix elements, which generate complex stress forces to the cells, 

conducting a more in-depth exploration of this area. 
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Several NB tumorigenesis studies have been performed to unravel how the cooperation is 

carried out between tumor cells and the surrounding elements being focusing preferentially on 

tumor cells (malignant neuroblasts and/or cancer stem cells) as the main players [108, 254]. 

However, other strategies that are mainly based on the TME elements have to gain interest as 

more physiopathological approaches to study common problems in NB such as metastasis or 

drug resistance. Therefore, discover new predictive markers to understand the interactions 

between all tumor elements is an option to locate specific therapeutic targets [78, 255, 256]. 

To describe how is the communication inside of the NB tumor ecosystem, we have paid 

attention to the study of VN, a glycoprotein of the ECM that supports cell adhesion. Since the 

attachment is a critical attribute that allows cell mobility, VN carried out its functions through 

the interaction with several ligands. It is recognized by cells or elements that express VN ligands 

or present binding sites along with its structure, promoting the adherence to other cells or ECM 

elements. The cell recognition and their communications are elemental steps that may promote 

migration in physiological processes [257-259] and even triggering pathological processes such 

as metastasis [260-262]. 

The main objective of our investigation is to focus on the study of VN and its ligands as well 

as its relationship with other NB microenvironment elements, to guide specific VN therapeutic 

assays shortly. For that purpose, we carried out the morphometric and topological 

characterization of VN in human NB, and link the emerging VN data to image analysis 

information of microenvironment elements, that we have previously obtained and published, 

to better define a tumor stroma classification. We have used 2D in vitro and in vivo experimental 

NB models, to also define the different expression patterns of VN in NB cell lines, to understand 

the influence of VN secretion related to microenvironmental and/or macroenvironmental 

factors, respectively. 

In this chapter, we describe and discuss the updated and expanded results of the present 

thesis by article compendium related to the expression studies of VN and its ligands, the 

morphometric and topological measurements used and the ECM patterns found in three types 

of NB samples (human, cell cultures and xenografts) as well as the translational application of 

research studies. 
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3.1 Human NB samples 
 

We have analyzed 8 tissue microarrays (TMAs) containing at least two representative 

cylinders of 1mm of 198 NB cohort, comprised between 2004 and 2015, which were referred to 

the Spanish Reference Centre for NB Biological and Pathological studies (Department of 

Pathology, University of Valencia/Incliva Biomedical Institute). In most cases (n=154), the tumor 

material belong to primary tumors, and in 127 cases, the tissue included in the cylinders was 

representative of the histology of the primary NB observed in the whole tumor section; the 

artifacts or non-evaluable samples were eliminated of the study. The present study was 

approved by INCLIVA’s Clinical Research Ethics Committee (ref. B.0000339). 

The morphometric and topological quantification was focused on the 91 samples out of 127 

with previous single nucleotide polymorphisms array (aSNP) results, to carry out the 

classification according to genetic instability criteria. Genomic instability is a known cancer 

hallmark [263, 264] and our goal for routine future diagnosis is to link ECM stiffness with 

chromosomal instability; the SCAs have a known impact in NB [265]. The genomic instability 

criteria [based on structural chromosomal changes: very low (profiles without SCAs); low (≤3 

typical SCAs, excluding 11qD; medium (profiles with 11qD or MNA or >3 typical SCAs); high 

(profiles with chromothripsis, or > 3 gene amplifications)] that we have applied, has a 

relationship with the prognosis in the NB patient’s cohort; in fact, patients grouped in medium 

and high categories presented worse prognosis being worst when both groups come together 

(figure 2). 
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Figure 2. Kaplan-Meier graphs showing the EFS (C, D) or OS (A, B) depending on the genetic instability category. A and 
C. These graphs show the four categories of the genetic instability and their association with EFS and OS. B and D. 
These graphs show the dichotomized relationship between genetic instability categories and their relation to EFS and 
OS. EFS: event-free survival; OS: overall survival. 

 

3.1.1 The importance of an adequate biopsy in the era of personalized treatment 
 

We verified that the patient cohort analyzed in this research accomplish the clinicobiological 

and genetic features defined by the INRG classification [32]. We confirmed that the different 

risk factors defined by the INRG (age, stage, the grade of tumoral differentiation, genetic profile, 

MYCN, 11q, 1p, and 17q status) were in agreement with the patient survival described in the 

bibliography [32, 33, 262] (tables 2-4, appendix). 

Nonetheless, the histopathology category and ploidy do not match the published patterns. 

The difference may be due to an increased number of included cases with the GN plus iGNB 

histopathology category (13%) and an underrepresented diploid category (13%); the cohort 

included in 2009 to elaborate the INRG classification, considered 4% and 29%, respectively. We 

have also to keep in mind that we have only around 70% of ploidy data from the total cohort. 

Finally, a recent INRG project, concludes that replacing INPC with individual histologic features 

in the COG risk classification will eliminate confounding, facilitate international harmonization 

of risk classification, and provide a schema for more precise prognostication and refined 

therapeutic approaches [266].  
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3.1.2. Expression studies of VN and its ligands highlight its relevance in NB biology 

 

We have observed VN expression in tumor cells (as differentiated and undifferentiated 

neuroblastic cells) and stromal cells as some lymphocytes. Focusing on tumor cell staining 

intensity, we have distinguished 113 (89%) positive samples: 82 with weak-moderate staining 

and 31 with strong staining; and 14 (11%) negative samples (figure 3). The subjective assessment 

of VN was used to validate the subsequent customization of the algorithms, and positive control 

samples were used to verify its known location (e.g., specific cell type, intracellular 

compartment, among others) and whose histomorphology and cytomorphology can be 

visualized by a “stain”. This stain intensity distinction allows us to detect a significant statistical 

association of strong VN presence in M stage (p-value:0.030), undifferentiated tumors (p-

value:0.022), SCAs presence (p-value:0.010) and in HR patient subgroup (p-value:0.010), finding 

only a statistical tendency regarding the expression of strong VN and high frequency of relapses 

and poor OS (p-values:0.09 and 0.07, respectively). The abovedescription and other specific 

information were collected in article II of the current compendium. 

 

Figure 3. VN expression pattern in neuroblastic tumors. A. Image cylinder of negative VN sample. B. Image cylinder 
of the sample corresponding to weak to moderate VN expression. C. Image cylinder of the sample with strong VN 
expression. A´, B´ and C´. Immunostained images at 40x. 

 

Going deeper into the VN structure (figure 4), this glycoprotein presents several domains, 

that are recognized for specific ligands to carry out adhesion and dissemination functions.  
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Figure 4. Structure of VN adapted from [127]. 

We have subjectively characterized the expression of some VN ligands using 

immunohistochemical methodology; employing the same NB cohort that has been stained for 

VN (127 samples). Nevertheless, due to those TMAs have been cut several times, the number of 

available cases for VN ligands decreased. We have focused on both, the study of three ligands: 

uPAR, PAI-1, and αvB3 integrin and their contribution through a proteolytic cascade and/or over 

the mechanical transmission of intracellular signaling pathways have been described to 

reinforce the adhesive role of VN to promote tumor growth and metastasis in several neoplasias, 

including NB [267-270]. Specifically, in NB, a previous study showed that uPAR is expressed by 

tumor cells, being elevated in HR patient’s samples and tumors with unfavorable histology and 

with high invasiveness [271]. Controversially, it was observed in primary NB tumors that the 

uPAR mRNA expression was weak, whereas PAI-1 was presented in biopsies of patients with 

metastatic stage, being expressed by endothelial and stromal cells around tumor cells [272]. 

Also, Sugiura et al., demonstrated that increased PAI-1 expression by endothelial cells in tumor 

tissue stimulates metastasis, through the detachment of tumor cells from VN [272]. This last 

event was also confirmed by other investigations that demonstrated coexpression among PAI-

1, VN, and αvB3 in blood vessels, which will explain its modulatory effect in angiogenesis. 

Furthermore, the authors observed that PAI-1 inhibits αvB3 integrin mediating cell adhesion to 

VN and promotes migration facilitated by binding α5B1 integrin to FN [273]. From all integrins 

that recognize the RGD VN domain, we have chosen the αvB3 integrin due to its role as a marker 

for angiogenesis and as a target for the treatment of various cancer entities [274-276]. Erdreich-

Epstein et al., evidenced a high expression of αvB3 integrin by microvessels in NB patients with 

metastatic stage remarking that the inhibition of the RGD integrin-binding site would avoid the 

attachment of endothelial cells to VN or FN [277]. Gladson et al., in 1996 observed an expression 

of αv and B3 integrin subunits in undifferentiated NB, outlining that in these unfavorable tumors 

the αvB3 integrin would be produced by tumor cells [278]. Besides, in posterior research carried 

out by Erdreich-Epstein et al., confirmed a high αvB3 integrin expression in blood vessels and an 

association with poor prognosis features (patients with stage 3, MNA and unfavorable tumor 

histology), inversely correlated with low PTEN in tumor cells. This tumor suppressor gene is 
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associated with the PI3K/AKT pro-survival pathway. They also demonstrated that the use of an 

RGD-conjugated pan PI3K inhibitor blocked tumor growth and tumor angiogenesis in NB 

xenografts [279]. 

Regarding uPAR expression, we observed that its expression was limited to immune stromal 

cells, 73% of the samples (55/75) showed no positivity, and 27% of the samples (20/75) were 

positive, of which, 18 samples presented positive stromal immune cells staining pattern with 

some positive stromal endothelial cell. We also found 2 samples with positive ganglion cells, 

nevertheless, for statistical analysis, we did not consider these 2 samples since ganglion cells 

normally presented a nonspecific immunoreactivity being able to disrupt the results (figure 5). 

Despite we were not able to confirm the results obtained in the above-mentioned NB study 

[271], our data are similar to those obtained in other cancers. Dohn et al. characterized the uPAR 

expression in terms of the number of positive cells and location patterns that discern between 

the tumor core and the tumor periphery in the bladder neoplasm. The authors observed that 

uPAR was expressed mainly in macrophages and myofibroblasts, finding a low percentage of 

positive cancer cells. They also found a significant relationship between uPAR expression in the 

above mentioned stromal cells at the two locations correlated with advanced the tumor stage 

and grade [280]. Another study on uPAR expression, matching our results, showed its expression 

in tumor cells (being low) and in stromal cells (macrophages, endothelial cells, and 

myofibroblasts) and observed a significant association between the survival of the patient with 

colorectal cancer and the uPAR expression in stromal cells [281]. Our observations are in line 

with these findings; however, we find no statistical association with INRG prognostic features, 

despite having grouped all the positive samples.  
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Figure 5. uPAR expression patterns in neuroblastic tumors using the antibody (ab218106,1:500 Abcam). A. Image with 
positive ganglion cells. B. Image with positivity in endothelial cells. C and D. Image with positive stromal immune cells. 
Immunostained images at 40x. 
 

With PAI-1 staining, we observed that 73% of the samples (57/78) were negative and for the 

rest, 27% (21/78) were positive: 11 cases in tumor cells (nuclear and prolongation staining) and 

10 cases in endothelial and blood cells (leukocytes and erythrocytes) (figure 6). Using the Chi-

square test, we found a statistical association between PAI-1 expression in MNA tumor cells (p-

value: 0.037) and HR patients (p-value: 0.015). As for survival, using the log-rank test we found 

a significant statistical relationship between the expression of PAI-1 in tumor cells and a higher 

rate of relapse (figure 7). The results of the PAI-1 expression in our NB analyzed cohort, showed 

a heterogeneous cell expression pattern, and therefore different from the previously mentioned 

NB study that only found the expression of PAI-1 in stromal cells [272]. However, in both studies, 

an association between increased PAI-1 expression and NB poor prognosis factors has been 

shown. We observed low PAI-1 expression in tumor cells following the results found in other 

neoplasias [282]. The role of PAI-1 in tumors is intricate and its proteolytic and non-proteolytic 

activity should be taken into account [283]. Some researches have described that PAI-1 inhibits 

cell adhesion and migration by blocking VN binding to integrins or by detaching the VN-uPAR 

connection [284, 285]; other studies reported that PAI-1 promotes cell adhesion of cancer cells 

[286, 287]. Research in oral squamous cell cancer found a predominantly PAI-1 expression in 

cancer cells and a low expression in stromal cells (fibroblast-like cells). In the same study, the 

expression of uPAR was observed, preferably in stromal cells, stating the low presence of uPAR 

in some cancer cells. These findings suggest that these two molecules are involved in the cascade 

of plasminogens promoting invasive characteristics in this neoplasm [282]. Other research on 

PAI-1 in ovarian cancer showed that strong expression of this molecule by cancer cells was 
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associated with shorter progression-free survival time, and also that in vitro use of the anti-PAI-

1 compound reduced the expression of this molecule, resulting in the inhibition of signaling 

cascades related to cell adhesion to VN in those cells with PAI-1 expression [288]. Additional PAI-

1 research showed that this serpin is also predominantly expressed in myofibroblasts, 

endothelial cells, and cancerous cells in invasive ductal breast cancer [289], with a special 

colocalization in the ECM close to VN positive cells [289, 290]. Henceforth, we could take into 

account that in a similar way to other neoplasms, the expression of PAI-1 in NB, would be related 

to the over-regulation of the plasminogen system involved in tumor invasion and angiogenesis. 

 

Figure 6. PAI-1 expression patterns in neuroblastic tumors using the antibody (ab125687, 1:200, Abcam). A and B. 
Image with positive tumor cells, nuclear and neuropile, respectively. C. Image with positivity in endothelial cells. D. 
Image with positive blood cells. Immunostained images at 40x. 

 

 

Figure 7. Kaplan Meier curves showing the relation among the PAI-1 expression patterns in neuroblastic tumors and 
EFS. The discontinuous line corresponds to negative samples, the grey line to positivity in endothelial and blood cells, 
and the black line positivity in tumor cells. EFS: Event-free survival. 
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Concerning the expression of αvB3 integrin, we found that 57% of the samples (43/75) 

showed no positivity and 43% of the samples (32/75) were positive in endothelial cells and 

monocyte/macrophage lineage cells (figure 8). Using the Chi-square test, we found a statistical 

association between αvB3 integrin expression in endothelial cells and 17q gain (p-value: 0.028). 

Our findings of predominant expression in endothelial cells are following the findings described 

in NB, as mentioned before [277, 279], and in other neoplasms [291-293]. A research carried out 

on prostate cancer showed that the expression of this integrin was in the intratumoral blood 

vessels, being tumor cells mainly negative [291]. However, a study in glioblastoma found that 

the expression of this integrin was not limited to endothelial cells; the authors discovered that 

tumor cells cooperate with their secretion, being its expression increased in both types of cells 

in high-grade gliomas compared to low-grade gliomas [292]. Other research on breast cancer 

demonstrated an important expression of αvB3 integrin in blood vessels, stressing that in very 

few samples it also appeared in tumor cells [293]. 

 

 

Figure 8. αvB3 integrin expression patterns in neuroblastic tumors using (ab7166, 1:50, Abcam). A. Image with 
positivity in endothelial cells. B. Image with positive monocyte/macrophage and endothelial cells. Immunostained 
images at 40x. 

 

Using Kendall’s Tau correlation coefficient, we observed a tendency to a positive correlation 

between VN and αvB3 integrin (0.066) and a negative correlation between VN and uPAR/PAI-1 

expression patterns (-0.052 and -0.078, respectively). However, a trend was found to be 

positively correlated when we associate VN ligands: αvB3 integrin and uPAR (0.007), αvB3 

integrin, and PAI-1 (0.166), and uPAR and PAI-1 (0.111). The positive but not significant 

correlation found between VN and αvB3 integrin could be explained by the fact that in the 

analyzed samples, we observed that some endothelial or macrophage cells are positive for both 

molecules (figure 9, appendix). A study in meningiomas showed an association between VN and 

αvB3 integrin expression in microvessels located in the tumor margin [294]. Another study has 
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recently described coexpression between uPA (that is the main ligand of uPAR) and PAI-1 in 

stromal cells also related to poor prognosis in early breast cancer [295]. Figure 10 shows a NB 

biopsy with positive cells for VN, αvB3 integrin, and PAI-1 associated with negativity for the uPAR 

marker. We want to highlight the evidence that VN is a relevant molecule in aggressive NB 

mainly secreted by non-differentiated neuroblastic cells. Related with the potential implication 

of our results, through the application of morphometric and topological tools, we will get a more 

defined characterization of the expression and organizational pattern of VN in neuroblastic 

tumors. 

 

Figure 10. Immunohistochemically stained images for VN and their ligands belong to the same NB biopsy. A. αvB3 
integrin positive expression in endothelial cells. B. PAI-1 positive expression in endothelial cells. C. Negative uPAR 
expression. D. VN positive expression in tumor cells. Immunostained images at 40x. 

 

3.1.2.1 Morphometric measurements generate knowledge about tissue biotensegral responses 

 

Using morphometric measurements, we concluded that the VN patterns are related to the 

secretion time of this glycoprotein and its integration into the ECM: territorial pattern, defined 

by newly VN synthesized (intracellular location) and recently integrated to the matrix 

(pericellular location) characterizing by strong staining; and interterritorial pattern, denoted to 

VN that has been incorporated to the ECM some time ago, distinguishing by weak-moderate 

staining. This means that the territorial VN would participate in linking the biomechanical 

properties of the tumor cells and the surrounding elements, facilitating the migration of tumor 

cells (article II). 



                                                                                                                                                               RESULTS AND DISCUSSION 

117 

Our findings showed that a high presence of territorial VN was associated with unfavorable 

INRG independent variables (figure 11) and the highest expression of this pattern was related 

to poor Event-free survival (EFS) and low OS, therefore we included it as a complementary 

predictor factor in the studied NB cohort. Figures 12- 13 (appendix) showed how the 

morphometric parameters were distributed in the subcategories of the clinical and biological 

INRG variables.  

 

Figure 11. Summary representation of the main associations between VN morphometric features and the INRG 

parameters. A. Immunohistochemical sample lacking territorial VN, with interterritorial VN that was presented as VN 

pattern in tumors with differentiated histopathology, NCA profile, MNNA, and included as low genetic instability 

tumors groups related to non-high-risk patient subgroups. A´. Binarized image (markup image) to better distinguish 

interterritorial VN staining in A. B. Immunohistochemical sample of high territorial VN expression that was the VN 

pattern often found in tumors with non-differentiated histopathology, SCAs profiles, including MNA,11qD and 1pD 

and included as high genetic instability tumors belonged to HR patient subgroup and metastatic stage. B´) Binarized 

image (markup image) to highlight the territorial VN in B.    

 

The use of digital analysis tools in pathological processes, such as in cancer, are becoming 

more frequent and the results more robust. This occurs as a need to have an automatic objective 

method that allows a quick and efficient analysis of the huge amount of tumor samples that 

must be analyzed in routine clinical diagnosis and the field of research [237, 296, 297]. Indeed, 

these approaches have been applied to get a better knowledge of tumor stroma interactions. 

Using morphometric analysis, it has been demonstrated the existence of changes in some 
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stromal elements that are part of the TME such as reticular and collagen fibers, and blood vessels 

in colon cancer [298]. A study performed in oral squamous cell carcinoma observed that the 

metastatic samples presented a high amount of tortuous lymph vessels after their quantification 

[299]. Several kinds of research carried out by our group using digital image analysis techniques, 

revealed the importance of using these tools for studying how is the organization of ECM to 

define different tumor stroma architecture of HR and ultra-HR NB patients [147, 251] or 

clarifying vascular and lymphatic morphometric patterns to provide targets related to NB 

prognosis [252, 253]. These studies statement the intricate communication between the tumor 

cells and the surrounding stromal elements or tissues that can be modified to promote proactive 

tumor behavior. 

To obtain some relevant results included in the present compendium, we have used two 

different software (Image Pro-plus (IPP, Media Cybernetics) and DensitoQuant module 

(DensitoQ), Pannoramic viewer (3DHISTECH). It was the approach to find a more accurate image 

segmentation. An advantage of IPP software is that presents a range of image pre-processing 

tools to solve different problems derived from the pre-analytical processes. However, it is always 

necessary to validate the used image tools and standardize all the parameters obtained for a 

faithful representation of reality [300, 301]. In our study, we have been able to validate the 

objective method based on the subjective evaluation, comparing the results obtained in both 

methods. The tests performed indicate that the algorithms were standardized, correlated with 

subjective assessment, and reproducible to be applied in different samples with minimal 

algorithm customization (tables 5 and 6, appendix). It is important to note that for a good 

reproducibility of this study it is advisable to maintain the same software configurations. It is 

also advisable to perform the staining and scanning images under similar conditions. 

Using morphometric approaches, we have defined two specific VN patterns in NB, remarking 

that an increase of the territorial one is found in tumors with non-differentiated histopathology. 

However, there are some controversial investigations related to our VN results in NB. C. L. 

Gladson et al., described the presence of VN in differentiated NB biopsies, but non or weak 

expression in undifferentiated NB, suggesting that it plays a role in neural differentiation. They 

also evidenced in vitro, that VN mediates attachment through αvB5 integrin of retinoic-acid-

differentiated and undifferentiated neuroblastic cells, being lower in undifferentiated cells. 

Since both types of cells produce this integrin, it proposed that the production of VN by 

differentiated neuroblastic cells could lead them to an adhesive phenotype. The same study 

described that VN has a role in neurite formation and polarization of neural progenitor cells 

during development [302]. The last phenomenon was confirmed by research carried out by Pons 
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et al., which informed that VN contributes to the regulation of proliferation, differentiation, and 

neurite elongation in mouse cerebellar granule cell precursors [303]. Also, a recent study 

confirmed that mouse cerebellar granule cell precursors differentiation is promoted by the 

recognition of VN through αvB5 integrin [304]. S. Shimizu et al. evidenced a possible mechanism 

mediated by Foxa for explaining the increased VN presence during differentiation in mouse NB 

cells (Neuro2a) stimulated by retinoic acid [305]. In recent research, using the same cells, as a 

retinoic acid-induced neurogenesis model demonstrated that VN regulates the transition from 

multipolar to bipolar morphology and the cell cycle exit, remarking that Par6 (a cell polarity 

regulator) and αvB5 cooperated in the morphological transition [306]. 

 

3.1.2.2 Topological measurements facilitate architectural tissue findings 

 

One of the bases of topology is to know how objects are linked. Taking into account tumor 

proliferation, as a non-static process in which neoplastic cells and cellular/non-cellular elements 

have to cooperate and gradually change to obtain a significant growth rate, the topological 

methodology is beneficial for detecting key points in tumor organization and tumor elements 

behavior [307]. Topological analysis in NB, described by Marinaro G et al., revealed that N2A 

cells exhibited organizational changes in designed networks depending on the culturing 

substrate to acquire an effective formation influenced by cellular communication [308]. The 

nuclear topology of the MYCN gene was also subjected to topological analysis focused on 

distinguishing the location when this gene is amplified and forms double minutes (dmins) or 

homogeneously staining regions (HSRs) [309]. 

The application of topological analysis (widely described in the doctoral thesis of Pablo 

Vicente-Munuera, University of Sevilla) allowed us to understand how the distribution of VN 

affects the ECM scaffolding in NB (article III). Results after applying pure topological features 

showed that the iteration tensegrity index for both VN patterns was the only significant pure 

topological characteristic to classify NB patients concerning tumor genetic instability. Regarding 

topological characteristics, we identify that the Euler number per node of territorial VN, a 

feature that mixes its quantity and organization, as a notable attribute to improve the 

established pre-treatment risk classification. We noted that a high index was related to tumors 

of HR NB patients, which meant that territorial VN had been compacted into focal areas. These 

findings suggest that this VN distribution could alter the ECM structure, leading to tumor cell 

adhesion perturbation and tumor cell spreading. It has been shown in cervical cancer that Euler’s 

number is related to aggressiveness being able to discriminate between metaplasia, or cell 
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adaptation, and neoplasia, abnormal and excessive cell growth that can invade vessels and 

migrate to different places [310]. 

Moreover, we noted that branches per territorial VN node were related to tumor instability; 

this feature considers the VN structure in terms of intersections number. Therefore, we showed 

that tumors with high genetic instability had a high territorial VN branching, in other words, 

presented a non-solid VN distribution around cells. So, this topological feature could represent 

migratory pathways with a huge amount of VN that promote clonal expansion with limited 

genetic variability and significant adaptive advantage, by activating nuclear pathways that alter 

genetic machinery generating high genomic instability. For the study and measurement of 

networks in other biological events, such as vasculogenesis, non-static approaches based on 

topological methodologies have also been applied that consider branching parameter relevant 

[311]. In fact, in the study of several organs, such as the small bowel, mammary gland or 

pancreas due to the need to exchange nutrients, metabolic products, and chemical or physical 

signals have developed structures that follow branching mechanisms to facilitate these 

processes [312]. Then, extrapolating this information to our branching results, we can suggest 

that this modification in the VN organization pattern could also be the selective cost of 

adaptation to achieve an effective proliferation and migration, which are two key pieces in 

tumor aggressiveness. 

 

3.1.3 ECM elements generate complex stress forces to cells 

 
To find how tumor stroma progressively transforms as the malignant phenotype progresses, 

in the current cohort of NB patients (91 samples) we obtained different patterns (categories) of 

previously analyzed TME elements (article I). This was achieved thanks to the extraordinary 

experience of our group after several published articles [147, 250-253, 313], doctoral theses 

[314, 315], and descriptions presented in national and international conferences (some included 

in my CV), and in the available literature. A huge amount of morphometric data on TME 

components (reticulin fibers, type I collagen, GAGs, VN, blood/lymph cells, immune cells, and 

stem cells), which have had an association with the patient prognosis of NB is available. Some 

categories that we have described come from analyzed variables from different elements that 

constitute models of morphometric patterns that had been found after performing a univariate 

and multivariate linear regression of dichotomized variables (GAGs, reticulin fibers, and 

blood/lymph vessels) in a cohort of 400 primary NB samples (table 7). 
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Table 7. Variables that compose models of morphometric patterns. 

 

                                                                 SA: stained area 

These models allowed predicting probability to define patterns of varying degrees of 

aggressiveness according to the state of several variables (article I). Collagen type I was not 

taken into account for this statistical analysis in NB, since in nerve tissues (both central and 

peripheral) it is scarce, however in the tumor stroma classification that we have designed was 

taken into account, and its data were extracted from results previously obtained in other tumors 

[147]. As for the rest of the variables, we have chosen those according to our previous results 

presented a significant statistical relationship with the worst prognosis in NB patients. From VN, 

we selected the %SA of territorial VN, from immune cells we chose several markers (the % of 

macrophages associated with tumors -using anti-CD68, a broad marker of 

monocytes/macrophages and anti-CD163, which is expressed predominantly in M2-type 

macrophages - and % of DCs -using CD11c marker-), from stem cells we also chose several 

markers (the % of positive cells to CD133, OCT4, S100A6, and CD105). As several elements had 

different measured parameters, we compiled them to differentiate between categories of 

different prognosis (good, intermediate, and poor). The distribution of samples within the 

different categories of data available for each item is found in table 8. Appendix section 

(morphometric and topological features to obtained and ECM patterns) provides more detailed 

information on how to achieve these categories. 

Table 8. Descriptive data of analyzed parameters from each element grouped in stromal alteration grades according 

to patient outcome. 

 

TME: tumor microenvironment 
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We have found that reticulin fibers, VN and immune cells grades were significant according 

to survival results (EFS and OS), regarding blood vessels grade we only observed a significant 

relation with OS (figures 14 and 15). 
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The overall results invite us to propose a classification of tumor stroma changes at three 

levels: grade I, defined by minimal changes in the biotensegrity of the tumor stroma and 

characterized by the presence of variables related to good prognosis; grade II, represented by 

slight changes given some rigidity to the stroma and with the characteristics of the variables 

associated with indeterminate prognosis; and grade III, characterized by stiff stroma, where the 

elements that form this category are associated with poor prognosis. We have found that some 
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categories are not significant according to survival results (EFS and OS) or there is even a trend 

where the intermediate category might be better than a good prognosis (as in GAGs). The first 

problem can be explained by the low proportion of samples examined since we have analyzed 

91 samples, and as can be shown in table 8, however, we do not have that total for many 

elements due to the lack of some variables.  The second situation can be clarified by the fact 

that we have obtained three different categories derived from the combination of several 

variables of each element. In the case of GAGs, in previous publications we showed that a low 

amount of this element was correlated with a poor prognosis in NB patients, then we have 

followed this criterion to generate the category [250]. As can be seen in figures 14 and 15, the 

poor category presents a significant rate of relapse and worse OS. 

This proposed classification aims to provide information on the complexity of the tumor 

milieu, underscore the knowledge about the neoplastic and non-neoplastic cells, ECM elements, 

and vascular networks that are necessary to determine targeted therapies. Therefore, this 

integrative vision tries to decipher what remodeling events occur in tumor stroma during 

tumorigenesis leading to the search for new treatments that could serve as a benefit for cancer 

patients. Some publications reinforce that interactions through mechanical and biophysical 

forces can influence the tumor framework. Kumar and Weaver in 2009, described this process 

as a transformation event involving remarkable modifications in the phenotype of tumor cells 

and their surrounding environment [316]. Similarly, a later study showed that the 

transformation ranging from a soft stroma until a stiff tumor has a relationship to metastatic 

progression [82]. Rakesh et al. evidenced how mechanotransduction cues exchanged within the 

tumor entity have significant implications to improve treatments through the normalization of 

the abnormal tumor environment [317]. A more recent investigation also showed the 

importance of communication between crucial stromal cells in breast cancer microenvironment 

and the progression of this neoplasia [318].  

We faced all the mentioned grades, which we obtained from clinical and biological studies, 

to know which one has the greatest influence on the outcome of NB patients. Our results 

detailed that the VN and immune cell grades had more influence to define a poor EFS and OS 

(table 9). Also, we determined the statistical power of these categories compared to clinical 

variables with a known independent prognostic value in NB as age, stage, histological 

classification, MYCN status, and 11q aberration. We found that reticulin fibers grade is the only 

morphometric category together with age/stage, MNA, and 11qD that had a strong influence on 

poor EFS and OS, respectively (table 10). In both models, blood vessel grade also reached until 

the last step without statistically significant association. 
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Table 9. Cox regression of the morphometric categories of TME elements. 

 

 Significant predictive morphometric measurements of poor outcome in NB patients based on EFS and OS with p-

value<0.05. S.E: standard error; CI: confidence interval. EFS: event-free survival; OS: overall survival. 

 

Table 10. Cox Regression of the morphometric categories and INRG prognostic factors. 

 

Significant predictive morphometric measurements of poor outcome in NB patients based on EFS and OS with p-
value<0.05 and *p-value<0.1. S.E: standard error; CI: confidence interval; 11qD: 11q deletion; MNA: MYCN amplified; 
M: metastatic; EFS: event-free survival; OS: overall survival. 

 

These findings reveal the idea that reticulin fibers, VN, and immune cells have to be 

considered as important targets in NB stroma. Since their statistical significance is maintained 

after the integration of the stromal elements and clinicobiological features of the INRG 

classification. Some researches also noted the importance to develop tumor classifications 

according to standards similar to those criteria presented in this doctoral thesis. A triple-

negative breast cancer study evidenced that the generation of an immune model focused on the 

expression phenotype of these specific cells is an independent prognostic indicator for this 

malignancy [319]. A model constructed through the detection of stromal features in 

hepatocellular carcinoma, and the combination of this data with clinicopathological 
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characteristics resulted in two categories of this neoplasia with robust discrimination of 

patient´s outcome [320]. A study focusing on tumor heterogeneity of hepatocellular carcinoma 

also identified a classification of this tumor in three types representing diverse clinical situations 

in patients [321]. Wartenberg et al. demonstrated that the integration of immune patterns and 

data from molecular features also resulted in the distinction of three biologically relevant 

pancreatic ductal adenocarcinoma subtypes [322].  

For this reason, the next step was to use a set of different morphometric variables from TME 

components in NB (GAGs, reticulin fibers, collagen type I fibers, VN, blood, and lymph vessels) 

to know if some of them could improve the results obtained with the topological characteristics 

of VN to classify NB samples according to the pre-treatment risk stratification or tumor genetic 

instability criteria. We used the morphometric parameters of all these elements, and also the 

two relevant VN topological features described previously (Euler's number per node of territorial 

VN and number of branches per node of the territorial VN). Regarding tumor genetic instability, 

firstly we performed a selection of statistically significant morphometric features (% SA and 

relative density of capillaries, roundness, deformity, and shape of post-capillaries/metarterioles 

and shape of sinusoids). Next, we combined these significant morphometric variables with the 

known INRG classification variables (age, presence of SCAs, stage, histology MYCN status, 11q 

aberration, and ploidy) plus VN topological variables. Using Discriminant analysis (DA) 

characteristics selection, the deformity of the post-capillaries/metarterioles variable could be 

added to the patient classification. After logistic regression, the variables that better predicted 

the different groups of high and low tumor genetic instability were: MYCN status, age, number 

of branches per node of the territorial VN, presence of SCAs, and deformity of post-

capillaries/metarterioles (figure 16A). This model improved specificity (0.96 vs 0.91) with equal 

sensitivity (0.89).  

As for risk criteria, we followed the same approach, described above. The morphometric 

variables that were previously statistically significant (length, perimeter-ratio, vertices, %SA, and 

relative density of capillaries, roundness, and shape of post-capillaries/metarterioles and shape 

of sinusoids) were joined to INRG factors and VN topological features. We noted that the 

resulting variable, which could potentially be used for classification is the shape of sinusoids. 

Through logistic regression, the variables that best predicted the different risk pre-treatment 

groups were in the order of importance: age, the shape of sinusoids, stage, Euler number of 

territorial VN, and MYCN status (figure 16B). This model improved specificity (0.89%) according 

to the model that takes into account only the VN topological feature being now 0.94 but 

decrease sensitivity (0.70 vs 0.75). 
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Figure 16. Graphs of the best predictor variables associated with A) tumor genetic instability and B) risk stratification 

in NB patients. 

 

3.1.4. Studies to strengthen clinically relevant biomarkers or therapeutic targets 
 

The vast majority of NB investigations are focused on the VN role in cell differentiation 

processes, which is one of the cellular functions promoted by the interaction of its binding 

domains to multiple receptors [257]. However, VN acts not only in differentiation processes in 

NB but also in other cellular pathways, including spreading, adhesion, and migration [129, 323]. 

Our findings in tumor samples from patients with poor prognosis indicate that the synthesis of 

VN by neuroblastic cells could reflect the formation of pathways to facilitate cell leakage and 

invasion by allowing easy attachment-detachment cycles between cells and reticulin fibers 

and/or mucopolysaccharides with neoplastic cells. The role of VN in this interaction has been 

demonstrated by several studies in different malignancies [260, 261, 324, 325]. Other studies 

also showed increased expression of VN receptors related to poor prognosis in NB patients [271-

273, 277-279]. The expression results of VN and its ligands by tumor and/or stromal cells imply 

that these molecules could develop a multifunctional role in NB, which reinforces the 

protagonism that has the tumor stroma in tumorigenesis, prognosis and in the search for specific 

therapeutic targets. Findings in biopsy samples of the present compendium of researches 

suggest that although there is no significant correlation between the expression of VN and its 

ligands, they could provide a synergy effect with the secretion of VN in aggressive NB, as has 
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been observed in other malignancies [267-270]. The communication between cancer cells and 

the surrounding environment can trigger essential signaling cues that determine cell fate and 

influence the evolution of the malignant phenotype; several studies have described that TME 

plays a supporting role acting as a major contributor in the onset of tumorigenesis [77, 326, 327]. 

We combined quantitative and topological morphometric features since beyond the 

morphology of the components it is interesting to know how the elements of the biopsy are 

organized. To this end, we wanted to find new independent individual factors to generate a 

model that will help us to establish new and multidisciplinary forms of cancer research. The use 

of mathematical approaches results in the generation of models that represent predictive 

patterns to improve patient outcomes, relying on different algorithms. Some researches have 

been carried out in this field; for example, a NB study that has used deep neural networks to 

analyze genomic and transcriptomic data has been able to identify topological characteristics 

that support predictive clinical outcomes [328]. Radhakrishnan et al. also established a 

morphometric platform in combination with genomic methods to detect nuclear-level 

alterations that are important for cancer diagnosis [329]. These researches that applied 

mathematical models bring out the underlying biological mechanisms to offer new therapeutic 

strategies. Our results, along with the previously published references, determine that 

identifying specific markers of TME, as VN and its ligands would help establish an individualized 

treatment approach for NB patients.  

Our histological characterization VN results together with previous studies that extended the 

prognostic role of this glycoprotein in tumors [129, 130, 132, 304, 324, 325] lead us to search 

for a more specific VN pattern using digital analysis tools. In this way, we can better understand 

how VN acts in different tumor context and look for new therapeutic approaches by sensitizing 

tumors to anti-VN therapy through suppressing its metastatic phenotype. In fact, in breast 

cancer research, the unification of nuclear morphometry data and tissue topology 

characteristics resulted in a better assessment of the tumor margin to distinguish between 

normal and tumor tissue [330]. Similarly, in a renal carcinoma study, after using these 

approaches was possible the characterization of different types of cells within the TME and the 

description of the topological characteristics of tumor cells and stroma [331]. Therefore, the use 

of digital analysis of microscopic images is a relevant tool for finding new therapeutic targets in 

the context of TME to understand the interactions that occur within a malignancy and improve 

the patient's outcome [332-334].  
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The combination of morphometric and topological methodologies is useful for describing the 

characteristics of various VN-related molecules, which are associated with unfavorable 

prognostic factors and could lead to the detection of new therapeutic targets using in vitro and 

in vivo models. 

3.2 In vitro NB models  
 

Cell cultures are accessible experimental models widely used for biological research and drug 

improvement. We have used in vitro models to describe the presence and characteristics of the 

VN and its links in a wide set of NB cell lines. It is a great challenge for knowledge to identify and 

validate multiple biological molecules that can be applied in an extensive variety of tumors, 

including VN and its links, as new therapeutic agents for the progression of cancer medicine. 

3.2.1. Cell lines used 
 

The following table shows the human NB cell lines panel that has been used with their 

main features:  

 
Table 11. Summary of NB cell lines.

 
       cnLOH=copy neutral loss of heterozygosity; WT: wild type. Information obtained from references:[335-340]. 

 

We have used this group of NB cell lines for the characterization of VN and its ligands. The 

reason to use this in vitro cell lines panel is to have a range representation of candidates for 

morphological and molecular features of HR-NB. They represent different clinical features like 

age, origin site of the tumor, and stage (although they are predominantly metastatic stage) 

Cell line Stage Age 

(months) MYCN status Chromosomal aberrations 

SK-N-BE (2) 4 24 Amplified 
1p- ((cnLOH pter- p21.3), (p21.3-p12)), +1q(q11-qter), 3p-

(pter-p14.2), +11q(q13.1-qter), +17q (q12-qter), ALK WT, p53 

(p.C135F) 

SK-N-BE (2)c 4 24 Amplified 1p- (cnLOH pter-p21.3), 3p-(pter-p14.2), + 11q (LOH q11-

qter; q13.4-qter), +17q (q12-qter) ALK WT, p53 (p.C135F) 
NGP Unknown 30 Amplified 1p- (cnLOH pter-p32.3), 3p- (Gain pter-p25.3), 11q- (q22.1-

qter), +17q (q21.1-qter), ALK WT, p53 (p.A159D, p.C141W) 
NB-5 (SJNB-5) 3 24 Amplified 1p- (LOH) 

SH-SY5Y 4 48 Non amplified +1q (q12-q44), +2p (pter-p16.3), +17q (q21.31-qter), ALK 

(F1174L), p53 WT 

SK-N-SH 4 48 Non amplified +2p (pter-p16.3), +17q (q21.31-qter), ALK (p.F1174L), p53 

WT 
CHLA-90 4 102 Non amplified p53 not functional, ALK (p.F1245V) 

NBL-S 3 42 Non amplified 11q- (q14.1-qter), ALK WT, p53 WT 
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[335]. Moreover, we have to keep in mind that heterogeneity is a key point in neuroblastic 

tumors and it implies to test several cell lines [28]. The NB cell lines used in this study were kindly 

provided by Miguel F. Segura (Laboratory of Translational Research in Child and Adolescent 

Cancer, Hospital Universitari Vall d´Hebron) purchased from the ATCC (American Type Culture 

Collection). 

3.2.2. Expression of VN and its receptors by neuroblastic cells 

 
We have grouped and compared in table 12 since MYCN oncogene status is a prognostic 

relevant factor in NB, the immunocytochemical results of VN, uPAR, PAI-1, and αvβ3 integrin, in 

MNA vs MNNA cell lines [32, 33]. 

Table 12. Summary of VN, uPAR, PAI-1, and ανβ3 integrin expression in NB cell lines. 

 

MNA and MNNA identification cell lines are marked in dark and light gray, respectively. The staining intensity was 

graded as high (+++), medium (++), and low (+). The immunocytochemistry of VN was performed with and without 

serum medium. No differences in VN expression was found. 

 

The range of positive cells for VN was 70-80% and 30-70% with a medium-high and low-

medium staining intensity, in MNA and MNNA cell lines, respectively. The location was 

predominantly in the cytoplasm, cell membrane, and dendritic prolongations. This pattern was 

a rule for all NB cell lines regardless of MYCN status, except for the NB5, MNA cell line, where 

only 10% of positive cells were observed with low-intensity staining. In the case of uPAR, 15-30% 
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and 80-90% of positive cells were observed, with a medium and high intensity in almost all MNA 

and MNNA cell lines, respectively; uPAR staining presented a diffuse cytoplasmic and 

paranuclear (Golgi-like pattern) expression pattern predominantly. However, two MNNA cell 

lines (SK-N-SH and NBL-S) were negative for this molecule. Regarding PAI-1 staining, it was 

positive at 10-20% and 40-50% in MNA and MNNA cells, with a low staining intensity and diffuse 

cytoplasm location. Remarking that two MNNA cell lines were negative (SK-N-SH and NBL-S). 

Finally, αvβ3 was found in about 10-50% and 20-85% of positive cells in all MNA and MNNA cell 

lines, with a low-medium staining intensity that was characteristically found as a diffuse pattern 

cytoplasm and cell membrane locations. Table 12 shows more detailed information about each 

cell line and figure 17 shows the in vitro patterns of the biomarkers analyzed.  

In conclusion, both cell lines presented high expression of VN, marked differences in the 

percentage of positive cells, intensity and ubication of uPAR and αvB3 expression (lower in MNA 

cells than in MNNA) and little dissimilarities of PAI-1 expression, being PAI-1 the less abundant 

VN receptor in the neuroblastic cells analyzed. However, the characterization of these molecules 

shows their intra culture heterogeneity with different degrees of expression in 2D NB models, 

confirming our previous results [272, 341, 342].  

Taking these aspects into account, we have chosen SK-N-BE (2) and SH-SY5Y to perform a 

deeper description analysis through the generation of xenografts; the selection criteria is based 

on the fact that both cell lines had the morphological feature as a predominance of N-type cells 

[343] and presented specific genetic characteristics each one related to HR-NB patients (MNA 

and ALK mutation, respectively). The molecular aspects of SK-N-BE (2) cell line derive in 

simulating a tumor situation found in HR-NB patients with relapse, whereas SH-SY5Y represents 

a tumor relevant condition of 20% of HR-NB patients at the time of initial diagnosis [344]. 

Comparing these findings with those obtained in human samples, where VN ligands are 

predominantly expressed by non-tumoral cells is remarkable. The fact that tumor cells 

expressed these molecules during in vitro conditions could be explained because cells have to 

survive in an environment that is not the natural human macroenvironment forcing them to 

synthesize the mentioned molecules to promote and support essential needs as an attachment. 

Moreover, the expression level of PAI-1 that in 2D NB cells is low or even negative, in patients 

with a metastatic stage was observed that malignant neuroblasts are stimulated to express PAI-

1 by adjacent endothelial and stromal cells. The level of PAI-1 increased when coculture NB cell 

lines with endothelial cells [272] as evidence that the reciprocal interaction between cancer cells 

and TME determines the recruitment, activation, and reprogramming of stromal, inflammatory 

and immune cells. 
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Figure 17. Examples of VN and receptors expression in 2D NB models. 1) SK-N-BE (2), MNA cell line expression patterns 

A. VN, C. uPAR, E. PAI-1, G. αvB3
 
integrin. 2) SH-SY5Y, MNNA cell line expression patterns: B. VN, D. uPAR, F. PAI-1, H. 

αvB3
 
integrin. Images at 40x in the overviews and 63x in the close‐ups. 
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3.3. In vivo NB models (orthotopic xenografts) 

The therapeutic approaches currently used in the treatment of metastatic NB, unfortunately, 

show limited effectiveness. Modest therapeutic progress, especially in the most aggressive cases 

of NB, highlights the urgent need for identifying predictive preclinical models to propose more 

effective therapeutic strategies. Orthotopic xenograft models are relevant tools for in vivo drug 

testing in the early stages against aggressive NB. The main reason is their clinical relevance since 

they may retain biological characteristics of the tumors [204] and it is a clear advantage to the 

classic in vitro models used for the development of treatments, which are questionable due to 

the low success rate [345]. Then, we have chosen orthotopic models for studying and targeting 

molecules that could promote in vivo invasion and metastasis since targeted therapy rather than 

conventional treatment approaches would be more likely to be curative for HR-NB patients. 

However, as we have recently reported, 3D bioprinting technology can contribute to the 

standardization of NB-targeted therapies by further reducing the use of laboratory animals 

[191]. 

3.3.1. Excellent growth adaptation in deficient VN mice 
 

We have generated orthotopic NB xenografts using the two established cell lines mentioned 

previously in four-to six-week-old RAG1-/- VN-/- (experimental or VN knockout) and RAG1-/- VN+/+ 

(control or VN wildtype) mice. Several studies affirmed that xenograft tumors for at least two 

passages can be considered established by observing consistent morphological and molecular 

characteristics and a good engraftment rate, being from the third generation normally used for 

pharmacological treatment [346, 347]. Our experimental study arrived until passage 5 to 

become cells adapted to experimental in vivo conditions. The serial passages consisted in 

choosing 4 representative tumors for each mouse model and cell line of the 10 animals, those 

that had tumor growth in passage 0 (after local inoculation of cell lines), implanting them in at 

least two mice successively up to passage 5, to compare tumor growth and morphological and 

genetic modifications between experimental and control models. All experiments were carried 

out under the standards and care approved by the institutional ethical animal care committee 

(reference 2015/VSC/PEA/00083). The in vivo experiment described in this research was 

performed using homozygous mice (the detailed procedure appears in the appendix, in vivo 

experiments section). 

The animals that belonged to passage 0 were sacrificed at 8 weeks, allowing a maximum of 

16 weeks between the rest of the passages to obtain a morphological, immunophenotypic, and 
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molecular characterization. In the MNA cell line, we detected tumors in 18 out of 38 mice in the 

VN-KO group, with a tumor success of 47.4%, compared to 24 out of 37 tumors detected in the 

VN WT-group (65% success). Regarding, the MNNA cell line, we observed tumors in 25 out of 41 

mice in the VN-KO group, which accounts for 61% of engraftment, related to 10 out of 30 in the 

VN-WT group, that is a 33% of tumor success. Detail information of tumor engraftment is shown 

in figures 18-19.  

 

Figure 18. Bar diagrams of percentage (%) tumor growth rate in the MNA-derived xenografts. 

 

 

Figure 19. Bar diagrams of percentage (%) tumor growth rate in the MNNA-derived xenografts. 

 

To assess tumor growth rate, tumor volume was measured using a modified ellipsoid 

formula, [344, 348] in control and experimental models.  All tumor volumes were classified 
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according to the five groups of passages (figure 20 A-B) and the three times of necropsy (at 8, 

12, and 16 weeks) (figure 20 C-D).  

 

 

Figure 20. Tumor growth curves. A-C Representation of the MNA cell line, SK-N-BE (2); B-D Illustration of of the MNNA 
cell line, SH-SY5Y. A-B Volumes according to tumor passage; C-D Volumes according to necropsy time. VN-/-: black 
lines, VN+/+: grey lines. Error bars represent the SEM (standard error of the mean). Each passage (p) and weeks (w) 
had a diferent number (n) of mice with tumor growth. A.VN-/-: p0 (n=9), p1 (n=2), p2 (n=2), p3 (n=2), p4 (n=2), p5 
(n=1); VN+/+: p0 (n=10), p1 (n=5), p2 (n=4), p3 (n=1), p4 (n=2), p5 (n=2). B. VN-/-: p0 (n=9), p1 (n=4), p2 (n=3), p3 (n=4), 
p4 (n=3), p5 (n=2); VN+/+ p0 (n=7), p1 (n=3). C. VN-/-: 8 w (n=11), 12 w(n=5), 16 w (n=2); VN+/+: 8 w (n=14), 12 w(n=6), 
16 w (n=4). D. VN-/-: 8 w (n=10), 12 w (n=6), 16 w (n=9); VN+/+: 8 w (n=8), 12 w (n=1), 16 w (n=1). 

 

For SK-N-BE (2) tumor passages, we observed that significant tumor volume was reached in 

passage 4 in both mouse models (figure 20A). The growth time pattern was constant in both 

tumor models, presenting a higher tumor volume in the VN-/- model than in the VN+/+ (figure 

20C). Regarding SH-SY5Y tumor passages, we also observed a high tumor volume at passage 4 

in the VN-/- model (figure 20B). Concerning the growth time pattern of this cell line in VN-/- 

showed stable growth, while an exponential pattern was observed followed by a contraction 

pattern in VN+/+ (figure 20D). Although both cell lines showed high tumor volume in passage 4, 

we observed a slowdown in tumor growth in the SH-SY5Y cell line in VN-/- mice, which could be 

related to the non-presence of MYCN amplified. The lack evidence of statistically significant 

results can be explained by the wide range of dispersion of the tumor volume, as well as by the 
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size of the sample analyzed, since we have not had such as a high graft success rate as that 

described by Pirazzoli et al., [268] (figures 18, 19 and 20).  

The cellular composition of a tumor greatly influences the growth, spread, immune activity, 

and other aspects of the xenografts. Reasons, why we did not observe increased tumor growth, 

include the histological heterogeneity of the selected NB tissue with non-viable areas or 

presence of minor aggressive subclones, the state of the tumor tissue used (mainly 

cryopreserved) fueling resistance to growth, not detection of a small tumor growth followed by 

tumor regression and/or the murine strain (Rag1) used with lower susceptibility of tumor 

growth. Our results showed a similar success rate of tumor growth from fresh/ cryopreserved 

tissue in MNA xenografts of 50%/45% and in MNNA xenografts of 33%/40%, which agreed with 

described studies [349, 350]. Related to the issue of the murine strain used, several kinds of 

research showed that the type of immunodeficient murine host should not affect tumor growth 

[268, 351]. The low engraftment rate of SH-SY5Y in the control background, although several 

types of research showed an adequate tumor rate in similar immunodeficient strains [352, 353], 

could be explained by some reasons mentioned above or by the inconsistent growth behavior 

and the observed regression event observed in xenografts generated from their parental SK-N-

SH cell line [354]. 

3.3.2. Maintaining cell morphology of patient tumors 
 

Macroscopically, xenograft tumors derived from MNA and MNNA cell lines, both in control 

and experimental mice models, were limited to the adrenal gland or generated large abdominal 

solid masses with heterogeneous areas, being MNA tumors more hemorrhagic than MNNA 

(figure 21). We differentiated between metastasis and adjacent implants (invasion versus cancer 

cells that grew in surrounding tissues such as the spleen, kidney, pancreas, liver, mesentery, or 

perirenal fat without penetrating them) [355]. Both types of growth can be explained by the 

propagation behavior found in orthotopic models to specific organs [356]. Tumors showed 

moderate implant growth in surrounding tissues. The number of metastases that we found in 

these models was low, located mainly in the liver. As for implants, we find a high number in p0 

MNA-derived tumors in VN-/- with statistical significance (p-value: 0.023) compared to p1-5, and 

no statistical significance in xenografts derived from MNNA (table 13, appendix). Regarding 

metastasis, we observed no significant differences in xenografts derived from the MNA cell line, 

while xenografts derived from MNNA in the VN-/- model showed a higher state of metastases in 

p0 compared to p1-5 (p-value: 0.014) nonetheless, in VN+/+ the number of metastasis was 

greater in p1-5 (p-value: 0.016). Detailed data are shown in table 13 (appendix).  
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 Figure 21. Representative tumor masses (*) and HE stain images of MNA (A) and MNNA-derived xenografts (B) to 
passages classification (p0 vs p1-5).  

 

We characterized these tumors histologically by HE stain. All tumor xenografts showed the 

same histological category and grade of differentiation standing out for a uniform pattern of 

small round blue tumor cells with scant cytoplasm, none or minimal schwannian stroma, no 

neuropil and numerous mitotic figures and classified as undifferentiated NB category following 

the INPC system (figure 21). To perform the subsequent statistical analysis related to 

histopathological characterization, we grouped all the tumor-mice into initial (belonged to the 

passage 0), and subsequent passages (from 1 to 5) keeping a similar sample size per group (SK-

N-BE (2) cell line: in VN-/- (p0, n=9; p1-5, n=9) and in VN+/+ (p0, n=10; p1-5, n=14); SH-SY5Y cell 

line: in VN-/- (p0, n=9; p1-5, n=16) and in VN+/+ (p0, n=7; p1-5, n=3)). We subjectively assessed 

the percentage of neuroblastic cells, necrosis, and hemorrhagic areas without finding any 

statistically significant variation (tables 14-16, appendix). SK-N-BE (2) tumors present a minor 

amount of neuroblasts and a greater percentage of necrosis and hemorrhage in VN-/- p0 and p1-

5 compared to VN+/+ tumors. These results could indicate that this cell line tends to be more 

aggressive at initial passages to adapt to a VN deficient environment. SH-SY5Y, presented a 

minor amount of neuroblasts in VN-/- p0 tumors, however, the number of neuroblasts increases 

in p1-5 tumors in comparison to VN+/+ in those tumor passages. The percentage of necrosis is 

higher in VN+/+ tumors and the hemorrhage decreases respect to VN-/- tumors in p0 and p1-5. 

Comparison of both cell lines evidenced that the percentage of neuroblastic cells is quite similar, 

existing a higher amount of necrosis and hemorrhage in xenograft tumors derived from SK-N-BE 

(2), mainly in the VN-/- model. Since these two features are hallmarks related to poor prognosis 

in tumors [148], it would indicate higher tumor cell proliferation and aggressive behavior in SK-

N-BE (2) cells than in SH-SY5Y cells. These findings are confirmed by other studies, where the 
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authors observed an association of tumor necrosis and hemorrhagic phenotype with MNA [357, 

358]. 

3.3.3. Hallmarks of microenvironmental components  
 

Taking into account the relevant role of the TME in tumor progression, metastasis, and 

treatment responses, we investigated different stromal elements (VN and other ECM 

components, vascular structures, and immune cell infiltration) and cellular receptors (uPAR, αvβ3 

integrin, and PAI-1) in xenografts derived from MNA and MNNA cell lines, grouping them as p0 

vs p1-5. We performed a subjective assessment following the staining criteria below: negative = 

no presence or <5% of stained area; positive 1 + = weak staining, 5-10% of stained area; positive 

2 + = moderate staining, 10-50% of stained area and positive 3 + = strong staining,> 50% of 

stained area.  

Neuroblastic cells increased in vivo VN expression compared to in vitro conditions. This data 

emphasizes the secretory ability of the malignant neuroblasts related to the previous evidence 

defined by us in human NB (article II). VN staining was found as a pattern of the cell membrane 

and cytoplasmic stains, without observing differences between the two mice models or cell 

lines; these findings suggest, at least when we subjectively analyzed the VN amount, that VN 

deficiency of the host macroenvironment does not influence tumor synthesis of VN; (figures 22 

and 23). Besides, we performed inoculations of the two cell lines cultivated over a period of 3-7 

days in serum-free medium and found that the xenografts obtained showed no differences in 

the VN staining pattern. 

uPAR staining was found in stromal immune cells as described above in human NB samples, 

also characterized by a Golgi-like staining pattern (figures 22 and 23). In MNA-derived 

xenografts we observed a statistically significant increase in the expression level of this molecule 

in both mouse models: uPAR was negative in p0 tumors (100% of the cases, 9/9), being positive 

in p1-5 tumors, (33% of the cases, 3/9) in VN-/-; VN+/+ p0 tumors were not positive (100% of the 

samples, 10/10), and in tumors p1-5 (36%, 5/14) were positive (figures 23 and 24). Xenografts 

derived from the MNNA cell line were characterized by a positive expression also characterized 

by a Golgi-like pattern without discrepancies in the four groups analyzed (figures 22 and 24).  

 



                                                                                                                                                               RESULTS AND DISCUSSION 

139 

 

Figure 22. Histological sections of different stains of TME elements in MNA-derived xenografts. Images at 63x. 
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Figure 23. Histological sections of different stains of TME elements in MNNA-derived xenografts. Images at 63x. 



                                                                                                                                                               RESULTS AND DISCUSSION 

141 

 

Figure 24.uPAR expression in MNA and MNNA-derived xenografts according to their aggrupation in passages. 

Statistical significant relationships are shown. 

 

These findings are related to the greater amount of this molecule secreted by SH-SY5Y 

under in vitro conditions. The in vivo expression of uPAR by these tumors in both models of VN 

mice together with the high expression of VN could explain that no differences in tumor growth 

were found. It would also reinforce the central idea of the research developed by Pirazzoli et al., 

where they observed that an interaction between the two molecules is required for the 

development of tumors [268]. In addition, NB researches have shown that inhibition of uPAR 

using CRISPR / Cas9 technology evidenced a decrease in cell proliferation as well as the enabling 

role in the EMT process (derived from the interaction of uPAR/uPA reduces cell adhesion) [359, 

360]. Our results, in combination with these recent observations, would allow uPAR to be 

considered as a possible NB therapeutic target.  

As for PAI-1, no important distinction was found, characterized by a very low or negative 

presence as our in vitro results have already shown (figures 22 and 23).  

Regarding αvB3 integrin, the samples showed positivity in endothelial cells and 

monocyte/macrophage lineage as described above in human NB (figures 22 and 23), remarking 

that in MNA-derived xenografts, significant differences were found in p0 VN-/- tumors that 

showed a higher positive expression of this integrin than in p1-5 (67% (6/9) moderate and 11% 

(1/9) strong vs 89% (8/9) weak and 11% (1/9) moderate, respectively), while the expression in 

VN+/+ was positive without statistically significant modifications as in the MNNA-derived 

xenografts (figure 25). The fact that xenografts derived from MNA cell lines increase the αvB3 

integrin expression, in contrast to the in vitro situation and essentially in the p0 tumors of the 
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VN KO model may be due to the need to create “special” anchorage points to establish a suitable 

environment for tumor proliferation while maintaining a stable positive expression in successive 

passages to promote cell migration. These results could evidence the cooperation between VN 

and αvB3 integrin in NB, as described in ovarian cancer, where it has been shown that by cleaving 

the interactions of VN- αvB3 integrin and FN- α5B1 integrin by MMP-2, tumor cells achieve rapid 

migration [361]. In fact, for tumor cell migration, continuous attachment and detachment of 

cells concerning ECM components are required; tumor cells need to break down strong 

adhesions with ECM, as well as molecules that guide their migration [361]. The modified 

expression of uPAR and αvβ3 integrin with an increase of VN characterizing xenografts derived 

from the MNA cell line in VN-/- can be considered as key conditions in successful tumor growth; 

it has been shown that the interplay between these molecules can affect intracellular pathways 

related to cell adhesion and migration [362, 363]. 

For xenografts derived from MNNA, we found no significant discrepancies in any expression 

of this molecule to the 2D condition, being able to be explained by their already high levels of in 

vitro expression. Therefore, it seems that this cell line does not need to modify them to 

proliferate in the in vivo condition. 

 

Figure 25. ανβ3 integrin expression in MNA and MNNA-derived xenografts according to their aggrupation in 

passages. Statistical significant relationships are shown. 

 

Aggressive human NB ECM contains numerous reticulin fibers and few collagen type I fibers 

and GAGs [147, 250, 251]. Similarly, reticulin fibers were found surrounding blood vessels as 

well as forming bundles or networks in the in vivo models used. Collagen type I fibers distribution 

was limited to large trabecules and around large blood vessels. GAGs were scarce, appearing in 
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fibrous areas of the stroma. Previous investigations have observed that orthotopic NB models 

retain stromal traits of aggressive lesions, finding that the murine stroma exhibits important 

clinical features of aggressive and metastatic NB [211, 214]. We found a statistically significant 

increase in the number of reticulin fibers in advanced passages in MNA-derived xenografts in 

both mouse models: in VN-/-  p0 66% were positive (6/9 cases, with weak amount) and in p1-5 

100% were positive (9/9 cases, presenting 83% moderate amount and 17% high amount); in 

VN+/+ p0 70% were positive (7/10 cases with a weak amount) and in p1-5 100% were positive 

(10/10, characterized 20%, 60% and 20% with few, moderate and high amount (figure 26)). In 

the MNNA-derived xenografts, the findings showed a notable difference between passages in 

the VN+/+ background, being low in advanced passages: in p0, 100% were positive (7/7 cases, 

71% with a slight and 29% a moderate quantity) and in p1-5, 67% not presented reticulin fibers 

and 33% have a small amount (figure 26). As for collagen type I fibers, in the MNA-derived 

xenografts, the amount decreases in both mice models, being only statistically significant in VN-

/- where in p0, 100% of the cases were positive (9/9) in comparison to p1-5 with 83% of the cases 

negative (5/6 cases). No differences in the amount of collagen type I were found in MNNA-

derived xenografts (figure 27). Regarding GAGs, the MNA-derived xenografts in VN-/- were lacked 

this ECM element, whereas a low amount was observed in the VN+/+: in p0 50% presented some 

positivity (5/10 cases) and in p1-5 20% had positivity (2/10); no difference was observed in the 

MNNA-derived xenografts (figure 28).  

 

Figure 26. Reticulin fibers amount in MNA and MNNA-derived xenografts according to their aggrupation in 

passages. Statistical significant relationships are shown.  
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Figure 27. Collagen type I fibers distribution in MNA and MNNA-derived xenografts according to their aggrupation 

in passages. Statistical significant relationships are shown. 

 

 

Figure 28. GAGs distribution in MNA and MNNA-derived xenografts according to their aggrupation in passages. 

Statistical significant relationships are shown. 

 

All these ECM elements imply that the MNA-derived xenografts, mainly in the VN-/-  

background acquire matrix features related to aggressiveness which facilitate proliferation and 

invasion of tumor cells, as described in section 3.1 in human NB. Indeed, several investigations 

have observed an association between a great rigidity of the ECM, which is represented by 

disorganization and/or increase in the quantity of some elements, with high tumor 

aggressiveness [364, 365].  
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The orthotopic models are vascularized tumors characterized by presenting tortuous 

vessels (blood and lymphatic) as it has been described previously [211, 356] (figures 22 and 23). 

To describe the vascular component, we used the mouse CD34 antibody to detect murine 

endothelial cells. We did not find relevant differences between MNA and MNNA-derived 

xenografts. With regard lymph vessels results, we used the mouse-specific LYVE-1 antibody and 

found significant statistical associations: MNA-derived xenografts were characterized by a 

decrease in the amount between passages in VN-/- mice [in p0, 33% (3/9 cases) had a low amount 

and 66% (6/9 cases) a moderate amount, compared to 100% of samples with a low amount (6/6) 

in p1-5]; whereas a stable and moderate amount of lymph vessels was found in all passages from 

VN+/+. Regarding MNNA-derived xenografts, the amount of lymph vessels also decreases in more 

advanced passages: in VN-/- mice, p0 44% presented a scant amount (4/9 cases) and 56% a 

moderate amount (5/9 cases) compared to 100% of samples (6/6) in p1-5 with a low amount; in 

VN+/+ mice, 43% (3/7 cases) of p0 was characterized by a low amount and 57% (4/7 cases) by a 

moderate amount compared to 33% with a weak in p1-5 (figure 29). These results indicate that 

the tumor xenografts contained numerous blood and lymphatic vessels related to angiogenesis 

and lymphangiogenesis processes in aggressive NB [255, 366] remarking the MNNA-derived 

xenografts from VN+/+ was the group with minor lymphatic vessel density. 

 

Figure 29. Lymph vessels distribution in MNA and MNNA-derived xenografts according to their aggrupation in 

passages. Statistical significant relationships are shown. 

Concerning the immune cell infiltration compartment, we used the F4/80 and CD45 

antibodies to detect murine TAMs and lymphoid cells in the NB orthotopic xenografts. We 

observed, as clusters in stromal or single cells in perivascular areas, a moderate and low amount 

of intratumoral F4/80 and CD45 positive cells, respectively (figures 22 and 23) without any 

relevant difference between the xenografts. Our results were confirmed by previous studies that 
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showed a relation between TAMs infiltration with metastatic NB and a high population of TILs 

(predominantly T cells) correlated with better survival [367, 368]. 

3.3.4. VN cooperation in genomic instability 
 

To investigate whether the MNA and MNNA-derived xenografts that grown in VN-/- host 

mice recapitulate the genetic features of the original cell lines or acquire genomic alterations 

that might confer growth advantage, we performed aSNP and new generation sequencing using 

a customized NB mechanosequencing panel (NB-mechanopanel (figure 30, appendix) from 

frozen and paraffin-embedded tumor tissues. In addition, as tumor heterogeneity is a hallmark 

in cancer [148], we also performed aSNP from liquid biopsy (circulating tumor DNA, ctDNA) of 

some mice. As for tumor xenografts, we have performed the genetic characterization in 

representative samples, choosing the longest and entire phylum. The genomic profiles from SK-

N-BE (2) and SH-SY5Y cultured in 2D, showing the existence of previously described SCAs and 

gene mutations [335, 337, 369]. 

Regarding MNA-derived xenografts, from p0 to p3 and p5 were analyzed in VN-/- and VN+/+, 

respectively. We have found: 1) SCAs that were retained in VN-/- and VN+/+: 3p- and 17pq-. 2) 

Other SCAs that were turned into the smallest region of overlap (SRO) in VN-/-: 1p-(21.3-12, 2 

2Mb) that contains genes related to ECM proteins (COL11A1) and for the nervous system 

development (NTNG1 and NGF); +2p (pter-21, 43 Mb) in p0 and p1, being shorter in p2 and p3, 

and the fragment of the chromothripsis-like 21q-(22.13-22.2). 3). New chromosomal aberrations 

in VN-/-: +1q (21.1-1-qter, 105 Mb) (where are genes related to cytoskeleton (ARPC5 and 

ACTN2)), laminins (LAMB3, LAMC1 or LAMC2) and α10 integrin (ITGA10), 4 focal chromosomal 

aberrations (FSCA): 9p-(24.3), +9p (24.3-24.2), 9q- (21.13) and 9q- (21.13-21.2) and a SCA of 8 

Mb (+9q (21.2-21.33)) on chromosome 9. A fact to remark is that 9p-(24.3) contains two genes 

associated with migration (KANK1 and DOCK8). On the other hand, some SCAs that appeared on 

SK-N-BE (2) cell line in chromosomes 7,11,19 and 20 were not present or only in a scant cell 

proportion in VN-/-. The SCAs in VN+/+ showed an unsteady behavior between tumor passages 

compared to VN-/-, they experimented a change of 1p-(21.3, 96 Mb) by a copy number/neutral 

loss of heterogeneity (CNLOH); and from p3 to p5 some new SCAs were added, missing others 

that appeared in the cell line as +7q (32.3-qter, 28.5 Mb) and the chromothripsis-like on 

chromosome 21. This situation can be explained by investigations that described this cell line as 

genetically heterogeneous and also by the observation of SCA fluctuations throughout the 

passages in various xenografts of different tumor types [369, 370] (figure 31).  
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Figure 31. Schematic representation of the chromosomal aberrations detected by aSNP in some of the samples 
derived from the SK-N-BE (2) cell line. SK-N-BE (2) refers to the genomic analysis of the cell line acquired from the 
ATCC and cultured in 2D. Soft and stiff hydrogels refer to cells cultured in gelatine scaffolds with 0.5% and 2% of 
methacrylated alginate respectively.  Tumor samples from the experimental VN−/− mice (VN-KO) and control VN+/+ 
mice (VN-WT) are followed by the initial and the last analyzed passage (P0-P5). For each altered chromosome, gains 
of genomic material are represented in blue, deletions in red, and CNLOH in green boxes. MNA is highlighted with a 
small purple box. As the percentage of cells affected by the chromosomal aberrations decreases the background color 
of the box representing them becomes lighter. 

 

As for MNNA-derived xenografts, we did not observe SCA variations compared with the cell 

line in culture, only in VN+/+ p1 remark a loss (+2p (ter-16.3, 49 Mb)) that could be related to the 

unsuccessful engraftment in this mice background (figure 32). 

 

 

Figure 32. Schematic representation of the chromosomal aberrations detected by aSNP in some of the samples 
derived from the SH-SY5Y cell line. SH-SY5Y refers to the genomic analysis of the cell line acquired from the ATCC and 
cultured in 2D.  Soft and stiff hydrogels refer to cells cultured in gelatine scaffolds with 0.5% and 2% of methacrylated 
alginate respectively. Tumor samples from the experimental VN−/− mice (VN-KO) and control VN+/+ mice (VN-WT) are 
followed by the initial and the last analyzed passage (P0-P5). For each altered chromosome, gains of genomic material 
are represented in blue, deletions in red, and CNLOH in green boxes. As the percentage of cells affected by the 
chromosomal aberrations decreases the background color of the box representing them becomes lighter. 

 

With regard, the intratumor genetic heterogeneity in MNA and MNNA-derived xenografts 

an elevated consistency was observed when the aSNP of ctDNA were done, except from the 
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single detection in ctDNA of 2 SCAs in MNA-derived xenografts in VN+/+, one in p1 and other in 

p2 but a lower proportion of clones  

Besides, the use of a customized NB sequencing panel (figure 30, appendix) confirmed the 

previous aSNP results showing that both SK-N-BE (2) cell line and its derived xenografts, 

presented the two mutations described in TP53 and ATRX genes, as well as the SH-SY5Y cell lines 

and derived tumors presented the ALK mutation. Moreover, the COL11A1 variants (p.I1590= 

and p.P1323L) and two polymorphisms of DOCK8 (intronic variants of c.1680-9045C>G and c.54-

20738C>T) were not detected in MNA-derived xenografts of VN-/-, finding them in the rest of 

samples and even in the cell line (0.4 of allelic frequency). 

These modifications evidenced a clonal selection of cells that responds to experimental 

biotensegral signals acquiring a competitive cell phenotype as described in other studies [365, 

371]. A remarkable fact that we have observed was that the genomic aberrations mentioned 

above in VN-/- tumors appeared when SK-N-BE (2) cell line was cultured in stiffer scaffolds for 

long times in an independent 3D study using hydrogels as a scaffold [191]. These results together 

with recent researches where it has been observed that SK-N-BE (2) presents great proliferation 

rate in rigid 3D scaffolds [191], and with the fact that 3D growing cells capture phenotypic 

heterogeneity [372], suggest a cancer clonal evolution by selective pressures also in the in vivo 

VN host deficient used.  No effect of the environment into the genomic compartment was 

evidenced in the 3D culture of SH-SY5Y [373]. 
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Our research approach shifts focus away from tumor cells alone, towards considering tumors 

as complex and dynamic microenvironments with interactions between cells, fibers, vascular 

structures, and various molecules, whose physical properties emerge in response to mechanical 

stimuli, with aim of using them as therapeutic targets. In children suffering from high-risk 

neuroblastoma, a comprehensive view of their disease is needed, taking into account the tumor 

macroenvironment (various circumstances of patients and their environment) and applying the 

previously outlined microenvironmental approach, to elucidate factors that improve pre-

treatment risk stratification and/or that could be validated as possible therapeutic targets. 

The research carried out in this doctoral thesis, showing the necessity and benefits of 

microscopic study of neuroblastoma elements, has led to the following conclusions:  

1. Vitronectin is a significant component in the extracellular matrix of neuroblastic tumors, 

produced mainly by undifferentiated neuroblastic cells and some stromal cells, and increased 

expression by tumor cells is associated with unfavorable independent variables in the INRG 

classification system. 

2. The novel and precise morphometric tools that we developed allow the characterization 

of the recently synthesized, territorial vitronectin pattern, with an intracellular and pericellular 

location, and the interterritorial vitronectin pattern, earlier incorporated into the extracellular 

matrix, located away from the tumor cell. With these tools, we can confirm an elevated presence 

of territorial vitronectin in neuroblastic tumors with aggressive behavior. Future validation 

studies are necessary to prove that territorial vitronectin helps generate the biomechanical 

properties of tumor cell attachment-detachment with the surrounding elements, promoting cell 

migration. 

3. Mathematical methodology based on graph theory has been automatized for analysis of 

histopathological neuroblastoma images, and can objectively capture the predominant pattern 

of the arrangement of vitronectin in the tumor. This methodology has detected two important 

topological characteristics of territorial vitronectin, the Euler number and the branching, which 

as independent biological factors in our tumor cohort, improve neuroblastoma patient 

classification by pre-treatment risk stratification system, and tumor genomic instability, 

respectively. This described organizational pattern of territorial vitronectin, modifying the 

architecture of the tumor extracellular matrix and creating preferential migration tracks and 

therefore aggressive tumor behavior, needs validation in international collaborative studies. 
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4. Vitronectin is an extracellular matrix protein that interacts with several receptors, building 

interaction points between cell-cell and cell-extracellular matrix. Expression of vitronectin, 

uPAR, αvβ3 integrin, and PAI-1 by tumor and/or stromal cells in human tumor samples infers that 

these molecules could play a multifunctional role in conjunction with other molecules. This 

reinforces the need to continue investigating other vitronectin interactions, given their key 

importance in the tumor stroma of neuroblastoma. 

5. 2D neuroblastoma cultures show that both MYCN-amplified and non-amplified cell lines 

express vitronectin. Some variations in uPAR and αvB3 integrin expression patterns can be 

observed, both to a lesser extent in MYCN-amplified cells, and the particularly low PAI-1 

expression in all the cell lines studied underlines that it is the least abundant vitronectin 

receptor. In synthesis, the heterogeneity of neuroblastoma cell lines is also evident in the 

expression of these biomarkers.  

6. Tumors derived from in vivo orthotopic models retain the histopathological characteristics 

of patient tumors. Adequate growth of the neuroblastoma cell lines studied in the vitronectin-

deficient host, VN-KO mice, has been evidenced. Emphasizing slow tumor growth in the SH-SY5Y 

cell line with ALK gene mutation. Tumor results in terms of percentage of neuroblastic cells, 

necrosis, and hemorrhage show that SK-N-BE (2), MYCN-amplified cells, adapt more aggressively 

to the vitronectin-defective in vivo macroenvironment. We confirm that mutation and 

amplification of ALK and MYCN genes, respectively, in our model generates differences in 

aggressiveness, in parallel to what is observed in patients.  

7. Neuroblastic cells from both studied cell lines show increased vitronectin expression in 

xenotransplanted tumors compared to in vitro culture. Modulation of vitronectin secretion 

appears to be a strategy by which malignant neuroblasts respond to local microenvironmental 

in vivo changes. The host vitronectin-deficient macroenvironment does not seem to influence in 

vivo vitronectin synthesis, although high levels of territorial vitronectin and MYCN amplification, 

together with modified αvβ3 integrin expression and increased uPAR expression in SK- N-BE (2) 

xenografts are key conditions for more pronounced tumor progression. 

8. Integrating the constant remodeling processes of the multiple extracellular matrix 

elements occurring within the macro-microenvironment tumor, related to stromal changes, has 

clinical and therapeutic importance in our tumor cohort. The proposed stromal grade 

classification provides predictive patterns of reticular fibers, vitronectin, and immune cells that 

have to be considered as important targets in the tumor stroma of neuroblastoma patients. 
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9. Morphometric and topological analysis, applied in combination to study the intricate 

network of elements that build the neuroblastoma microenvironment, such as vitronectin, 

fibrous scaffolding, and the vascular system, demonstrates that adding morphometric 

characteristics of blood vessels (sinusoids shape and metarterioles deformity) to the previous 

topological model of vitronectin improves pre-treatment risk stratification and the criteria of 

tumor genetic instability. 

10. The characteristics associated with stiffness of the extracellular matrix described in 

aggressive neuroblastoma are maintained in the tumor passages of orthotopic models. SK-N-

BE(2) derived xenografts show a decrease in glycosaminoglycans along with an increase in 

reticular fibers in the vitronectin-deficient model, whereas non-remarkable differences were 

observed in SH-SY5Y-derived xenografts. 

11. The influence of tumor macro-microenvironments on the cellular adaptation process in 

the vitronectin-deficient in vivo model is confirmed by the pattern of intratumoral genetic 

heterogeneity of segmental chromosomal alterations of MYCN-amplified cells, SK-N-BE (2), and 

the stable genomic pattern of the ALK-mutated cells, SH-SY5Y. 

Evaluating the combined application of morphometric, topological and genetic strategies in 

human tumors and in vitro and in vivo systems to determine the contact points of the tumor cell 

with its extracellular matrix in neuroblastoma, our general conclusion is that there is a need to 

establish immediate preclinical models to shine light on the future use of vitronectin as a new 

therapeutic target in high-risk neuroblastoma.
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Nuestro abordaje de investigación aleja el enfoque de las células tumorales solo hacia los 

tumores considerados como microambientes complejos y dinámicos, con interacciones entre 

células, fibras, estructuras vasculares y diversas moléculas, cuyas propiedades físicas emergen 

en respuesta a estímulos mecánicos, con el objetivo de usarlos como dianas terapéuticas. En los 

niños que padecen neuroblastoma de alto riesgo, se necesita una visión integral de su 

enfermedad, teniendo en cuenta el macroambiente tumoral (diversas circunstancias de los 

pacientes y su entorno) y aplicando el enfoque microambiental descrito anteriormente, para 

dilucidar los factores que mejoren la estratificación del riesgo previo al tratamiento y/o que 

podrían validarse como posibles dianas terapéuticas. 

La investigación realizada en esta tesis doctoral, muestra la necesidad y los beneficios del 

estudio microscópico de los elementos del neuroblastoma, ha llevado a las siguientes 

conclusiones: 

1. La vitronectina es un componente importante en la matriz extracelular de los tumores 

neuroblásticos, producida principalmente por células neuroblásticas indiferenciadas y algunas 

células del estroma, un aumento de la expresión por parte de las células tumorales se asocia con 

variables independientes desfavorables del sistema de clasificación de la INRG. 

2. Las herramientas morfométricas novedosas y precisas que desarrollamos, permiten la 

caracterización del patrón de vitronectina territorial, sintetizado recientemente, con una 

ubicación intracelular y pericelular, y el patrón de vitronectina interterritorial, incorporado 

anteriormente en la matriz extracelular, ubicada lejos de la célula tumoral. Con estas 

herramientas, podemos confirmar una presencia elevada de vitronectina territorial en tumores 

neuroblásticos con comportamiento agresivo. Futuros estudios de validación son necesarios 

para demostrar que la vitronectina territorial ayuda a generar las propiedades biomecánicas de 

unión-desunión de las células tumorales con los elementos circundantes, promoviendo la 

migración celular. 

3. La metodología matemática basada en la teoría de grafos ha sido automatizada para el 

análisis de imágenes histopatológicas de neuroblastoma, y puede capturar objetivamente el 

patrón predominante de la disposición de la vitronectina en el tumor. Esta metodología ha 

detectado dos características topológicas importantes de la vitronectina territorial, el número 

de Euler y la ramificación, que, como factores biológicos independientes en nuestra cohorte 

tumoral, mejoran la clasificación de pacientes con neuroblastoma de acuerdo con el sistema de 

estratificación de riesgo pretratamiento y la inestabilidad genómica del tumor, respectivamente. 

Este patrón organizativo descrito de vitronectina territorial, que modifica la arquitectura de la 
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matriz extracelular del tumor y crea vías de migración preferenciales y, por lo tanto, un 

comportamiento tumoral agresivo, necesita validación en estudios de colaboración 

internacional. 

4. La vitronectina como proteína de la matriz extracelular interactúa con varios receptores, 

construyendo puntos de interacción entre célula-célula y célula-matriz extracelular. La expresión 

de vitronectina, uPAR, integrina αvβ3 y PAI-1 por las células tumorales y/o estromales en las 

muestras tumorales humanas, implica que estas moléculas podrían desarrollar un papel 

multifuncional, junto con otras moléculas. Esto refuerza la necesidad de continuar investigando 

otras interacciones de vitronectina, dada su importancia clave en el estroma tumoral del 

neuroblastoma. 

5. Los cultivos de neuroblastoma 2D, muestran que tanto las líneas celulares amplificadas 

como las no amplificadas del gen MYCN expresan vitronectina.  Se pueden observar algunas 

variaciones en el patrón de expresión de uPAR e integrina αvB3, siendo menor ambas en células 

con MYCN amplificado, así como la expresión particularmente baja de PAI-1 en todas las líneas 

celulares estudiadas, subraya que es el receptor de vitronectina menos abundante. En definitiva, 

la heterogeneidad de las líneas celulares de neuroblastoma también es evidente en la expresión 

de estos biomarcadores. 

6. Los tumores derivados de los modelos ortotópicos in vivo conservan las características 

histopatológicas de los tumores de los pacientes. Se ha evidenciado un crecimiento adecuado 

de las líneas celulares de neuroblastoma estudiadas en el huésped deficiente en vitronectina, 

ratones VN-KO, destacando un crecimiento tumoral lento de la línea celular SH-SY5Y que 

presenta mutación del gen ALK. Los resultados tumorales en términos de porcentaje de células 

neuroblásticas, necrosis y hemorragia evidencian que células con MYCN amplificado, SK-N-BE 

(2), se adaptan de forma más agresiva al macroambiente in vivo defectuoso en vitronectina. 

Confirmamos que la mutación y amplificación de los genes ALK de MYCN, respectivamente, en 

nuestro modelo generan diferencias en la agresividad, en paralelo a lo que se observa en los 

pacientes.  

7. Las células neuroblásticas de ambas líneas celulares estudiadas muestran una mayor 

expresión de vitronectina en tumores xenotrasplantados en comparación con el cultivo in vitro. 

La modulación de la secreción de vitronectina parece ser una estrategia mediante la cual los 

neuroblastos malignos responden a los cambios microambientales locales in vivo. El 

macroambiente deficiente en vitronectina del huésped no parece influir en la síntesis de 

vitronectina in vivo, aunque la elevada cantidad de vitronectina territorial y la amplificación de 
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MYCN, junto con la expresión modificada de integrina αvβ3 y el aumento de uPAR en los 

xenoinjertos derivados de SK-N-BE (2), son condiciones clave para una progresión tumoral más 

acusada. 

8. La integración de los procesos constantes de remodelación de los múltiples elementos de 

la matriz extracelular que ocurren dentro del macro-microambiente tumoral, relacionados con 

los cambios del estroma, tiene importancia clínica y terapéutica en nuestra cohorte tumoral. La 

clasificación propuesta de grados estromales proporciona patrones predictivos de fibras de 

reticulina, vitronectina y células inmunes que deben considerarse como dianas importantes en 

el estroma tumoral de pacientes con neuroblastoma. 

9. El análisis morfométrico y topológico, aplicado en combinación para estudiar la intrincada 

red de elementos que construyen el microambiente del neuroblastoma, como la vitronectina, 

el andamiaje fibroso y el sistema vascular, demuestra que añadir características morfométricas 

de los vasos sanguíneos (forma de los sinusoides y deformidad de  las metarteriolas) al modelo 

topológico anterior de vitronectina, mejora la estratificación del riesgo previo al tratamiento y 

los criterios de inestabilidad genética del tumor. 

10. Las características asociadas con la rigidez de la matriz extracelular descrita en el 

neuroblastoma agresivo, se mantienen en los pases tumorales de los modelos ortotópicos. Los 

xenoinjertos derivados de SK-N-BE (2) muestran una disminución de los glucosaminoglucanos 

junto con un aumento de las fibras reticulares en el modelo deficiente en vitronectina, mientras 

que no se observaron diferencias notables en los xenoinjertos derivados de SH-SY5Y. 

11. Se confirma la influencia de los macro-microambientes tumorales en el proceso de 

adaptación celular, en el modelo in vivo deficiente de vitronectina, por el patrón de 

heterogeneidad genética intratumoral de alteraciones cromosómicas segmentarias de las 

células MYCN amplificadas, SK-N-BE (2), y el patrón genómico estable de las células ALK 

mutadas, SH-SY5Y. 

Al evaluar la aplicación combinada de estrategias morfométricas, topológicas y genéticas en 

tumores humanos y sistemas in vitro e in vivo para determinar los puntos de contacto de la 

célula tumoral con su matriz extracelular en neuroblastoma, nuestra conclusión general es que 

es necesario establecer modelos preclínicos inmediatos para revelar el uso futuro de la 

vitronectina como nueva diana terapéutica en neuroblastoma de alto riesgo. 

  



                                                                                                                                                                                    

160 

 

 

  



                                                                                                                                                                                    

161 

 

 

 

 

 

 

 

 

 

 

 

 

References 



                                                                                                                                                                                      

162 

 

 



                                                                                                                                                                                        REFERENCES 

163 

 

1. Maris, J.M., et al., Neuroblastoma. Lancet, 2007. 369(9579): p. 2106-20. 
2. Kaatsch, P., Epidemiology of childhood cancer. Cancer Treat Rev, 2010. 36(4): p. 277-

85. 
3. Gatta, G., et al., Embryonal cancers in Europe. Eur J Cancer, 2012. 48(10): p. 1425-33. 
4. Howlader, N., et al., SEER Cancer Statistics Review (CSR) 1975-2017. National Cancer 

Institute, 2019. 
5. Peris-Bonet, R., et al., Cáncer infantil en españa. Estadísticas 1980-2016. Registro 

Nacional de TumoresInfantiles (RNTI-SEHOP). . Edición preliminar presentada en el X 
Congreso de la SEHOP Madrid., 2017. 

6. Castel, V., et al., Neuroblastoma in adolescents: genetic and clinical characterisation. 
Clinical & Translational Oncology, 2010. 12(1): p. 49-54. 

7. Suzuki, M., et al., Treatment and outcome of adult-onset neuroblastoma. Int J Cancer, 
2018. 143(5): p. 1249-1258. 

8. Stark, D.P. and G. Vassal, Tumors in Adolescents and Young Adults. Progress in Tumor 
Research, 2016. 43. 

9. Siegel , R.L., M. K.D., and A. Jemal, Cancer Statistics, 2019. CA Cancer J Clin, 2019. 
69(1): p. 7-34. 

10. Esiashvili, N., et al., Neuroblastoma in adults: Incidence and survival analysis based on 
SEER data. . Pediatric blood & cancer. , 2007. 49(1): p. 41-46. 

11. Kholodenko, I.V., et al., Neuroblastoma Origin and Therapeutic Targets for 
Immunotherapy. J Immunol Res, 2018. 2018: p. 7394268. 

12. Johnsen, J.I., C. Dyberg, and M. Wickstrom, Neuroblastoma-A Neural Crest Derived 
Embryonal Malignancy. Front Mol Neurosci, 2019. 12: p. 9. 

13. De Preter, K., et al., Human fetal neuroblast and neuroblastoma transcriptome analysis 
confirms neuroblast origin and highlights neuroblastoma candidate genes. Genome 
Biol, 2006. 7(9): p. R84. 

14. Russel, H.V., et al., Solid tumours of childhood. , in DeVita, Hellman, and Rosenberg's 
Cancer: Principles & Practice of Oncology, V.T. DeVita, T.S. Lawrence, and S.A. 
Rosenberg, Editors. 2008, Lippincott Williams and Wilkins. p. 2043-2084. 

15. Brodeur, G.M., Neuroblastoma: biological insights into a clinical enigma. Nat Rev 
Cancer, 2003. 3(3): p. 203-216. 

16. Pizzo, P.A., Neuroblastoma. In: Principles and Practice of Pediatric Oncology. . 2016: 
Lippincott Williams & Wilkins. 

17. DuBois, S.G., et al., Metastatic sites in stage IV and IVS neuroblastoma correlate with 
age, tumor biology, and survival. J Pediatr Hematol Oncol, 1999. 21(3): p. 181-9. 

18. Mueller, S. and K.K. Matthay, Neuroblastoma: biology and staging. Curr Oncol Rep, 
2009. 11(6): p. 431-8. 

19. Joyner, B.D., Neuroblastoma. Medscape, 2017. 
20. Alvi, S., et al., Clinical manifestations of neuroblastoma with head and neck 

involvement in children. Int J Pediatr Otorhinolaryngol, 2017. 97: p. 157-162. 
21. Brodeur, G.M., et al., Revisions of the international criteria for neuroblastoma 

diagnosis, staging, and response to treatment. J Clin Oncol, 1993. 11(8): p. 1466-77. 
22. Kembhavi, S.A., et al., Imaging in neuroblastoma: An update. Indian J Radiol Imaging, 

2015. 25(2): p. 129-36. 
23. Verly, I.R.N., et al., Catecholamines profiles at diagnosis: Increased diagnostic 

sensitivity and correlation with biological and clinical features in neuroblastoma 
patients. European Journal of Cancer, 2017. 72: p. 235-243. 



                                                                                                                                                                                        REFERENCES 

164 

24. Newman, E.A., et al., Update on neuroblastoma. J Pediatr Surg, 2019. 54(3): p. 383-
389. 

25. Ladenstein, R., et al., Validation of the mIBG skeletal SIOPEN scoring method in two 
independent high-risk neuroblastoma populations: the SIOPEN/HR-NBL1 and COG-
A3973 trials. Eur J Nucl Med Mol Imaging, 2018. 45(2): p. 292-305. 

26. Maris, J.M., Recent advances in neuroblastoma. N Engl J Med, 2010. 362(23): p. 2202-
11. 

27. Shackleton, M., et al., Heterogeneity in cancer: cancer stem cells versus clonal 
evolution. Cell, 2009. 138(5): p. 822-9. 

28. Ngan, E.S., Heterogeneity of neuroblastoma. Oncoscience, 2015. 2(10): p. 837-8. 
29. Hiyama, E. and H. Hiyama, Molecular and Biological Heterogeneity in Neuroblastoma. 

Current Genomics 2005. 6(5): p. 319-332. 
30. Mosse, Y.P., et al., Germline PHOX2B mutation in hereditary neuroblastoma. Am J Hum 

Genet, 2004. 75(4): p. 727-30. 
31. Mossé, Y.P., et al., Identification of ALK as a Major Familial Neuroblastoma 

Predisposition Gene. Nature, 2008. 455(7215): p. 930-935. 
32. Cohn, S.L., et al., The International Neuroblastoma Risk Group (INRG) classification 

system: an INRG Task Force report. J Clin Oncol, 2009. 27(2): p. 289-97. 
33. Monclair, T., et al., The International Neuroblastoma Risk Group (INRG) staging system: 

an INRG Task Force report. J Clin Oncol, 2009. 27(2): p. 298-303. 
34. Moroz, V., et al., Changes over three decades in outcome and the prognostic influence 

of age-atdiagnosisin young patients with neuroblastoma: A report from the 
International Neuroblastoma Risk Group Project. . European journal of cancer 2011. 
47(4): p. 561-571. 

35. Brisse, H.J., et al., Guidelines for imaging and staging of neuroblastic tumors: 
consensus report from the International Neuroblastoma Risk Group Project. Radiology, 
2011. 261(1): p. 243-57. 

36. Shimada, H., et al., International neuroblastoma pathology classification for prognostic 
evaluation of patients with peripheral neuroblastic tumors: a report from the Children's 
Cancer Group. Cancer, 2001. 92(9): p. 2451-61. 

37. Shimada, H., et al., Terminology and morphologic criteria of neuroblastic tumors: 
recommendations by the International Neuroblastoma Pathology Committee. Cancer, 
1999. 86(2): p. 349-63. 

38. Ruiz-Perez, M.V., A.B. Henley, and M. Arsenian-Henriksson, The MYCN Protein in 
Health and Disease. Genes (Basel), 2017. 8(4). 

39. Campbell, K., et al., Association of MYCN Copy Number With Clinical Features, Tumor 
Biology, and Outcomes in Neuroblastoma: A Report From the Children's Oncology 
Group. Cancer, 2017. 123(21): p. 4224-4235. 

40. Berbegall, A.P., et al., Heterogeneous MYCN amplification in neuroblastoma: a SIOP 
Europe Neuroblastoma Study. Br J Cancer, 2018. 118(11): p. 1502-1512. 

41. Bogen, D., et al., The genetic tumor background is an important determinant for 
heterogeneous MYCN ‐amplified neuroblastoma. International Journal of Cancer, 2016. 
139(1): p. 153-163. 

42. Cohn, S.L., et al., Analysis of DNA ploidy and proliferative activity in relation to 
histology and N-myc amplification in neuroblastoma. Am J Pathol, 1990. 136(5): p. 
1043-52. 

43. George, R.E., W.B. London, and S.L. Cohn, Hyperdiploidy Plus Nonamplified MYCN 
Confers a Favorable Prognosis in Children 12 to 18 Months Old With Disseminated 
Neuroblastoma: A Pediatric Oncology Group Study. J Clin Oncol 2005. 23(27): p. 6466-
6473. 

44. Mlakar, V., et al., 11q deletion in neuroblastoma: a review of biological and clinical 
implications. Mol Cancer, 2017. 16(1): p. 114. 



                                                                                                                                                                                        REFERENCES 

165 

45. Villamon, E., et al., Genetic instability and intratumoral heterogeneity in 
neuroblastoma with MYCN amplification plus 11q deletion. PLoS One, 2013. 8(1): p. 
e53740. 

46. Schleiermacher, G., et al., Segmental chromosomal alterations lead to a higher risk of 
relapse in infants with MYCN-non-amplified localised unresectable/disseminated 
neuroblastoma (a SIOPEN collaborative study). Br J Cancer, 2011. 105(12): p. 1940-8. 

47. Schleiermacher, G., et al., Chromosomal CGH identifies patients with a higher risk of 
relapse in neuroblastoma without MYCN amplification. British Journal of Cancer, 2007. 
97(2): p. 238-246. 

48. Fusco, P., M.R. Esposito, and G.P. Tonini, Chromosome instability in neuroblastoma. 
Oncol Lett, 2018. 16(6): p. 6887-6894. 

49. Tonini, G.P. and M. Capasso, Genetic predisposition and chromosome instability in 
neuroblastoma. Cancer Metastasis Rev, 2020. 39(1): p. 275-285. 

50. Defferrari, R., K. Mazzocco, and I.M. Ambros, Influence of segmental chromosome 
abnormalities on survival in children over the age of 12 months with unresectable 
localised peripheral neuroblastic tumours without MYCN amplification. Br J Cancer. , 
2015. 112(2): p. 290-295. 

51. Caren, H., et al., High-risk neuroblastoma tumors with 11q-deletion display a poor 
prognostic, chromosome instability phenotype with later onset. Proc Natl Acad Sci U S 
A, 2010. 107(9): p. 4323-8. 

52. Attiyeh, E.F., W.B. London, and Y.P. Mossé, Chromosome 1p and 11q deletions and 
outcome in neuroblastoma. 2005. 353(21): p. 2243-2253. 

53. Liu, Z. and C.J. Thiele, Molecular Genetics of Neuroblastoma., in Diagnostic and 
Therapeutic Nuclear Medicine for Neuroendocrine Tumors. Contemporary 
Endocrinology. , K. Pacak and D. Taïeb, Editors. 2017, Humana Press, Cham. 

54. Nakagawara, A., et al., Neuroblastoma. Jpn J Clin Oncol, 2018. 48(3): p. 214-241. 
55. Pugh, T.J., et al., The genetic landscape of high-risk neuroblastoma. Nat Genet, 2013. 

45(3): p. 279-84. 
56. Peifer, M., et al., Telomerase activation by genomic rearrangements in high-risk 

neuroblastoma. Nature, 2015. 526(7575): p. 700-4. 
57. Trigg, R.M. and S.D. Turner, ALK in Neuroblastoma: Biological and Therapeutic 

Implications. Cancers (Basel), 2018. 10(4). 
58. Schramm, A., et al., Mutational dynamics between primary and relapse 

neuroblastomas. . Nat Genet., 2015. 47(8): p. 872-877. 
59. Johnsen, J.I., et al., Molecular mechanisms and therapeutic targets in neuroblastoma. 

Pharmacol Res, 2018. 131: p. 164-176. 
60. Ladenstein, R., U. Pötschger, and A.D.J. Pearson, Busulfan and melphalan versus 

carboplatin, etoposide, and melphalan as high-dose chemotherapy for high-risk 
neuroblastoma (HR-NBL1/SIOPEN): an international, randomised, multi-arm, open-
label, phase 3 trial. Lancet Oncol., 2017. 18(4): p. 500-514. 

61. Smith, V. and J. Foster, High-Risk Neuroblastoma Treatment Review. Children (Basel), 
2018. 5(9). 

62. Matthay, K.K., et al., Neuroblastoma. Nat Rev Dis Primers, 2016. 2: p. 16078. 
63. Mody, R., et al., Irinotecan, Temozolomide, and Dinutuximab With GM-CSF in Children 

With Refractory or Relapsed Neuroblastoma: A Report From the Children's Oncology 
Group. J Clin Oncol, 2020: p. JCO2000203. 

64. Mody, R., et al., Irinotecan-temozolomide with temsirolimus or dinutuximab in children 
with refractory or relapsed neuroblastoma (COG ANBL1221): an open-label, 
randomised, phase 2 trial. Lancet Oncol, 2017. 18(7): p. 946-957. 

65. Richards, R.M., E. Sotillo, and R.G. Majzner, CAR T Cell Therapy for Neuroblastoma. 
Front Immunol, 2018. 9: p. 2380. 



                                                                                                                                                                                        REFERENCES 

166 

66. Ou, S.H., et al., Crizotinib for the treatment of ALK-rearranged non-small cell lung 
cancer: a success story to usher in the second decade of molecular targeted therapy in 
oncology. Oncologist, 2012. 17(11): p. 1351-75. 

67. Durand, S., et al., ALK mutation dynamics and clonal evolution in a neuroblastoma 
model exhibiting two ALK mutations. Oncotarget, 2019. 10(48): p. 4937-4950. 

68. Gustafson, W.C., J.G. Meyerowitz, and E.A. Nekritz, Drugging MYCN through an 
allosteric transition in Aurora kinase A. Cancer Cell, 2014. 26(3): p. 414-424. 

69. Dolman, M.E., E. Poon, and M.E. Ebus, Cyclin-Dependent Kinase Inhibitor AT7519 as a 
Potential Drug for MYCN-Dependent Neuroblastoma. Clin Cancer Res, 2015. 21(22): p. 
5100-5109. 

70. Greengard, E.G., Molecularly Targeted Therapy for Neuroblastoma. Children (Basel), 
2018. 5(10). 

71. Rodríguez-Nogales, C., R. Noguera, and P. Couvreur, Therapeutic Opportunities in 
Neuroblastoma Using Nanotechnology. J Pharmacol Exp Ther, 2019. 370(3): p. 625-
635. 

72. Zhen, X., et al., Cellular uptake, antitumor response and tumor penetration of cisplatin-
loaded milk protein nanoparticles. Biomaterials, 2013. 34(4): p. 1372-82. 

73. Monterrubio, C., S. Paco, and N. Olaciregui, Targeted drug distribution in tumor 
extracellular fluid of GD2-expressing neuroblastoma patient-derived xenografts using 
SN-38-loaded nanoparticles conjugated to the monoclonal antibody 3F8. J Control 
Release. , 2017. 255: p. 108-119. 

74. Stack, M.S., et al., The Tumor Microenvironment of High Grade Serous Ovarian Cancer. 
Cancers (Basel), 2018. 11(1). 

75. Soysal, S.D., A. Tzankov, and S.E. Muenst, Role of the Tumor Microenvironment in 
Breast Cancer. Pathobiology, 2015. 82(3-4): p. 142-52. 

76. Lin , C.N., C.Y. Chien, and H.C. Chuang, Are friends or foes? New strategy for head and 
neck squamous cell carcinoma treatment via immune regulation. Int J Head Neck Sci. , 
2017. 1: p. 105-113. 

77. Wang, M., et al., Role of tumor microenvironment in tumorigenesis. J Cancer, 2017. 
8(5): p. 761-773. 

78. Pelizzo, G., et al., Microenvironment in neuroblastoma: isolation and characterization 
of tumor-derived mesenchymal stromal cells. BMC Cancer, 2018. 18(1): p. 1176. 

79. Ingber, D.E., The architecture of life. Sci Am, 1998. 278(1): p. 48-57. 
80. Ingber, D.E., Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol 

Biol, 2008. 97(2-3): p. 163-79. 
81. Noguera, R., et al., Extracellular matrix, biotensegrity and tumor microenvironment. An 

update and overview. Histol Histopathol, 2012. 27(6): p. 693-705. 
82. Emon, B., et al., Biophysics of Tumor Microenvironment and Cancer Metastasis - A Mini 

Review. Comput Struct Biotechnol J, 2018. 16: p. 279-287. 
83. Handorf, A.M., et al., Tissue stiffness dictates development, homeostasis, and disease 

progression. Organogenesis, 2015. 11(1): p. 1-15. 
84. Cacho-Díaz, B., D.R. García-Botello, and T. Wegman-Ostrosky, Tumor 

microenvironment differences between primary tumor and brain metastases. J Transl 
Med. , 2020. 18(1): p. 1. 

85. Balkwill, F.R., M. Capasso, and T. Hagemann, The tumor microenvironment at a glance. 
. J Cell Sci., 2012. 125: p. 5591-5596. 

86. Dunn, G.P., et al., Cancer immunoediting: from immunosurveillance to tumor escape. 
Nat Immunol, 2002. 3(11): p. 991-8. 

87. Bassani, B., et al., Natural Killer Cells as Key Players of Tumor Progression and 
Angiogenesis: Old and Novel Tools to Divert Their Pro-Tumor Activities into Potent Anti-
Tumor Effects. Cancers (Basel), 2019. 11(4): p. 461. 



                                                                                                                                                                                        REFERENCES 

167 

88. Cantoni, C., et al., NK Cells, Tumor Cell Transition, and Tumor Progression in Solid 
Malignancies: New Hints for NK-Based Immunotherapy? J Immunol Res, 2016. 2016: p. 
4684268. 

89. Sica, A., et al., Tumour-associated macrophages are a distinct M2 polarised population 
promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer, 
2006. 42(6): p. 717-27. 

90. Ribeiro Franco, P.I., et al., Tumor microenvironment components: Allies of cancer 
progression. Pathol Res Pract, 2020. 216(1): p. 152729. 

91. Lin, Y., J. Xu, and H. Lan, Tumor-associated macrophages in tumor metastasis: 
biological roles and clinical therapeutic applications. J Hematol Oncol, 2019. 12(1): p. 
76. 

92. Veglia, F. and D.I. Gabrilovich, Dendritic cells in cancer: the role revisited. Curr Opin 
Immunol, 2017. 45: p. 43-51. 

93. Wylie, B., et al., Dendritic Cells and Cancer: From Biology to Therapeutic Intervention. 
Cancers (Basel), 2019. 11(4). 

94. Schneider, T., et al., Non-small cell lung cancer induces an immunosuppressive 
phenotype of dendritic cells in tumor microenvironment by upregulating B7-H3. J 
Thorac Oncol, 2011. 6(7): p. 1162-8. 

95. Squire, R., et al., The relationship of class I MHC antigen expression to stage IV-S 
disease and survival in neuroblastoma. J Pediatr Surg, 1990. 25(4): p. 381-6. 

96. Coughlin, C.M., et al., Immunosurveillance and survivin-specific T-cell immunity in 
children with high-risk neuroblastoma. J Clin Oncol, 2006. 24(36): p. 5725-34. 

97. Raffaghello, L., et al., Multiple defects of the antigen-processing machinery 
components in human neuroblastoma: immunotherapeutic implications. Oncogene, 
2005. 24(29): p. 4634-44. 

98. Pistoia, V., et al., Immunosuppressive microenvironment in neuroblastoma. Front 
Oncol, 2013. 3: p. 167. 

99. Liu, T., et al., Cancer-associated fibroblasts: an emerging target of anti-cancer 
immunotherapy. J Hematol Oncol, 2019. 12(1): p. 86. 

100. Fiori, M.E., S. Di Franco, and L. Villanova, Cancer-associated Fibroblasts as Abettors of 
Tumor Progression at the Crossroads of EMT and Therapy Resistance. Mol Cancer, 
2019. 18(1): p. 70. 

101. Lee, E., N.B. Pandey, and A.S. Popel, Crosstalk between cancer cells and blood 
endothelial and lymphatic endothelial cells in tumour and organ microenvironment. 
Expert Rev Mol Med. , 2015. 17: p. e3. 

102. Paduch, R., The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell 
Oncol (Dordr), 2016. 39(5): p. 397-410. 

103. Sinha, D., et al., Pericytes Promote Malignant Ovarian Cancer Progression in Mice and 
Predict Poor Prognosis in Serous Ovarian Cancer Patients. Clin Cancer Res, 2016. 22(7): 
p. 1813-24. 

104. Guerra, D.A.P., et al., Targeting glioblastoma-derived pericytes improves 
chemotherapeutic outcome. Angiogenesis, 2018. 21(4): p. 667-675. 

105. Cozzo, A.J., A.M. Fuller, and L. Makowski, Contribution of Adipose Tissue to 
Development of Cancer. Compr Physiol, 2017. 8(1): p. 237-282. 

106. Yu, Z., et al., Cancer stem cells. Int J Biochem Cell Biol, 2012. 44(12): p. 2144-51. 
107. Xiao, J., et al., Dig the root of cancer: targeting cancer stem cells therapy. Journal of 

Medical Discovery, 2017. 2(2): p. JMD17003. 
108. Zhong, X., et al., Cellular components in tumor microenvironment of neuroblastoma 

and the prognostic value. PeerJ, 2019. 7: p. e8017. 
109. Borriello, L., R.C. Seeger, and S. Asgharzadeh, More than the genes, the tumor 

microenvironment in neuroblastoma. Cancer Lett, 2016. 380(1): p. 304-314. 



                                                                                                                                                                                        REFERENCES 

168 

110. Pickup, M.W., J.K. Mouw, and V.M. Weaver, The extracellular matrix modulates the 
hallmarks of cancer. EMBO Rep, 2014. 15(12): p. 1243-53. 

111. Mecham, R.P., Overview of extracellular matrix. Curr Protoc Cell Biol, 2012. Chapter 
10: p. Unit 10 1. 

112. Heino, J., The collagen family members as cell adhesion proteins. Bioessays, 2007. 
29(10): p. 1001-10. 

113. Kular, J.K., S. Basu, and R.I. Sharma, The extracellular matrix: Structure, composition, 
age-related differences, tools for analysis and applications for tissue engineering. J 
Tissue Eng, 2014. 5: p. 2041731414557112. 

114. Egeblad, M., M.G. Rasch, and V.M. Weaver, Dynamic interplay between the collagen 
scaffold and tumor evolution. Curr Opin Cell Biol, 2010. 22(5): p. 697-706. 

115. Sun, Y. and P.S. Nelson, Molecular pathways: involving microenvironment damage 
responses in cancer therapy resistance. Clin Cancer Res, 2012. 18(15): p. 4019-25. 

116. Vilamaior, P.S.L., S. Suzigan, and H.F. Carvalho, Structural characterization and 
distribution of elastic system fibers in the human prostate and some prostatic lesions. 
Braz. J. morphol. Sci, 2003. 20(2): p. 101-107. 

117. Mouw, J.K., G. Ou, and V.M. Weaver, Extracellular matrix assembly: a multiscale 
deconstruction. Nat Rev Mol Cell Biol, 2014. 15(12): p. 771-85. 

118. Nikitovic, D., et al., Proteoglycans-Biomarkers and Targets in Cancer Therapy. Front 
Endocrinol (Lausanne), 2018. 9: p. 69. 

119. Iozzo, R.V. and R.D. Sanderson, Proteoglycans in cancer biology, tumour 
microenvironment and angiogenesis. J Cell Mol Med, 2011. 15(5): p. 1013-31. 

120. Xu, J. and D. Mosher, Fibronectin and Other Adhesive Glycoproteins, in The 
Extracellular Matrix: an Overview. Biology of Extracellular Matrix. , R. Mecham Editor. 
2011, Springer, Berlin, Heidelberg. p. 41-75. 

121. Yue, B., Biology of the extracellular matrix: an overview. J Glaucoma, 2014. 23(8 Suppl 
1): p. S20-3. 

122. Nam, J.M., et al., Breast cancer cells in three-dimensional culture display an enhanced 
radioresponse after coordinate targeting of integrin alpha5beta1 and fibronectin. 
Cancer Res, 2010. 70(13): p. 5238-48. 

123. Mitra, A.K., et al., Ligand-independent activation of c-Met by fibronectin and 
alpha(5)beta(1)-integrin regulates ovarian cancer invasion and metastasis. Oncogene, 
2011. 30(13): p. 1566-76. 

124. Pan, S., T.A. Brentnall, and R. Chen, Glycoproteins and glycoproteomics in pancreatic 
cancer. World J Gastroenterol, 2016. 22(42): p. 9288-9299. 

125. Schneider, G., E. Bryndza, and A. Poniewierska-Baran, Evidence that vitronectin is a 
potent migration-enhancing factor for cancer cells chaperoned by fibrinogen: a novel 
view of the metastasis of cancer cells to low-fibrinogen lymphatics and body cavities. 
Oncotarget. , 2016. 7(43): p. 69829-69843. 

126. Preissner, K.T., Structure and biological role of vitronectin. Annu Rev Cell Biol, 1991. 7: 
p. 275-310. 

127. Schvartz, I., D. Seger, and S. Shaltiel, Vitronectin. Int J Biochem Cell Biol, 1999. 31(5): p. 
539-44. 

128. Tabatabai, G., The Role of Integrins in Angiogenesis, in Biochemical Basis and 
Therapeutic Implications of Angiogenesis. Advances in Biochemistry in Health and 
Disease, J. Mehta, P. Mathur, and N. Dhalla, Editors. 2017, Springer. p. 1-13. 

129. Leavesley, D.I., A.S. Kashyap, and T. Croll, Vitronectin—Master Controller or 
Micromanager? IUBMB Life 2013. 65(10): p. 807-818. 

130. Ortega-Marínez, I., Vitronectin and dermicidin serum levels predict the metastatic 
progressiob of AJCC I-II early-stage melanoma. Int. J. Cancer 2016. 139(7): p. 1598-
1607. 



                                                                                                                                                                                        REFERENCES 

169 

131. Aaboe, M., et al., Vitronectin in human breast carcinomas. Biochim Biophys Acta, 2003. 
1638(1): p. 72-82. 

132. Zhu, W., et al., Vitronectin silencing inhibits hepatocellular carcinoma in vitro and in 
vivo. Future Oncol, 2015. 11(2): p. 251-8. 

133. Yuan, Y., et al., Role of the tumor microenvironment in tumor progression and the 
clinical applications (Review). Oncol Rep, 2016. 35(5): p. 2499-515. 

134. Sasaki, T., K. Hiroki, and Y. Yamashita, The role of epidermal growth factor receptor in 
cancer metastasis and microenvironment. Biomed Res Int, 2013. 2013: p. 546318. 

135. Seoane, J. and R.R. Gomis, TGF-beta Family Signaling in Tumor Suppression and Cancer 
Progression. Cold Spring Harb Perspect Biol, 2017. 9(12). 

136. da Cunha Santos, G., F.A. Shepherd, and M.S. Tsao, EGFR mutations and lung cancer. 
Annu Rev Pathol, 2011. 6: p. 49-69. 

137. Oliveira-Cunha, M., W.G. Newman, and A.K. Siriwardena, Epidermal growth factor 
receptor in pancreatic cancer. Cancers (Basel), 2011. 3(2): p. 1513-26. 

138. Grivennikov, S.I. and M. Karin, Inflammatory cytokines in cancer: tumour necrosis 
factor and interleukin 6 take the stage. Ann Rheum Dis, 2011. 70 Suppl 1: p. i104-8. 

139. Nagarsheth, N., M.S. Wicha, and W. Zou, Chemokines in the cancer microenvironment 
and their relevance in cancer immunotherapy. Nat Rev Immunol. , 2017. 17(9): p. 559-
572. 

140. Bikfalvi, A. and C. Billottet, The CC and CXC chemokines: major regulators of tumor 
progression and the tumor microenvironment. Am J Physiol Cell Physiol, 2020. 318(3): 
p. C542-C554. 

141. Jabłońska-Trypuć, A., M. Matejczyk, and S. Rosochacki, Matrix metalloproteinases 
(MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a 
target for anticancer drugs. . J Enzyme Inhib Med Chem, 2016. 31: p. 177-183. 

142. Walker, C., E. Mojares, and A. Del Rio Hernandez, Role of Extracellular Matrix in 
Development and Cancer Progression. Int J Mol Sci, 2018. 19(10). 

143. Takahashi, M., et al., In vivo glioma growth requires host-derived matrix 
metalloproteinase 2 for maintenance of angioarchitecture. Pharmacol Res, 2002. 46(2): 
p. 155-63. 

144. Poola, I., R.L. DeWitty, and J.J. Marshalleck, Identification of MMP-1 as a putative 
breast cancer predictive marker by global gene expression analysis. Nat Med, 2005. 
11(5): p. 481-483. 

145. Kumari, S., T.K. Panda, and T. Pradhan, Lysyl Oxidase: Its Diversity in Health and 
Diseases. Indian J Clin Biochem, 2017. 32(2): p. 134-141. 

146. Dong, Y., Q. Zheng, and Z. Wang, Higher matrix stiffness as an independent initiator 
triggers epithelial-mesenchymal transition and facilitates HCC metastasis. . J Hematol 
Oncol. , 2019. 12(1): p. 112. 

147. Tadeo, I., et al., A stiff extracellular matrix is associated with malignancy in peripheral 
neuroblastic tumors. Pediatr Blood Cancer, 2017. 64(9). 

148. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 
144(5): p. 646-74. 

149. Diop-Frimpong, B., et al., Losartan inhibits collagen I synthesis and improves the 
distribution and efficacy of nanotherapeutics in tumors. Proc Natl Acad Sci U S A, 2011. 
108(7): p. 2909-14. 

150. Xu, S., et al., The role of collagen in cancer: from bench to bedside. J Transl Med, 2019. 
17(1): p. 309. 

151. Morla, S., Glycosaminoglycans and Glycosaminoglycan Mimetics in Cancer and 
Inflammation. Int J Mol Sci, 2019. 20(8). 

152. Ahmad, K., et al., Targeting integrins for cancer management using nanotherapeutic 
approaches: Recent advances and challenges. Semin Cancer Biol, 2019. 



                                                                                                                                                                                        REFERENCES 

170 

153. Raab-Westphal, S., J.F. Marshall, and S.L. Goodman, Integrins as Therapeutic Targets: 
Successes and Cancers. Cancers (Basel), 2017. 9(9): p. 110. 

154. Alday-Parejo, B., R. Stupp, and C. Ruegg, Are Integrins Still Practicable Targets for Anti-
Cancer Therapy? Cancers (Basel), 2019. 11(7). 

155. Zhao, Y.Z., Q. Lin, and H. Wong, L,, Glioma-targeted therapy using Cilengitide 
nanoparticles combined with UTMD enhanced delivery. . J Control Release., 2016. 224: 
p. 112-125. 

156. Kang, W., et al., Cyclic-RGDyC functionalized liposomes for dual-targeting of tumor 
vasculature and cancer cells in glioblastoma: An in vitro boron neutron capture therapy 
study. Oncotarget, 2017. 8(22): p. 36614-36627. 

157. Eble, J.A. and S. Niland, The extracellular matrix in tumor progression and metastasis. 
Clin Exp Metastasis, 2019. 36(3): p. 171-198. 

158. Roma-Rodrigues, C., et al., Targeting Tumor Microenvironment for Cancer Therapy. Int 
J Mol Sci, 2019. 20(4). 

159. Farkona, S., E.P. Diamandis, and I.M. Blasutig, Cancer immunotherapy: the beginning of 
the end of cancer? BMC Med, 2016. 14: p. 73. 

160. Gun, S.Y., et al., Targeting immune cells for cancer therapy. Redox Biol, 2019. 25: p. 
101174. 

161. Yu, A.L., et al., Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for 
neuroblastoma. N Engl J Med, 2010. 363(14): p. 1324-34. 

162. Scarfo, I. and M.V. Maus, Current approaches to increase CAR T cell potency in solid 
tumors: targeting the tumor microenvironment. J Immunother Cancer, 2017. 5: p. 28. 

163. Viallard, C. and B. Larrivee, Tumor angiogenesis and vascular normalization: 
alternative therapeutic targets. Angiogenesis, 2017. 20(4): p. 409-426. 

164. Zirlik, K. and J. Duyster, Anti-Angiogenics: Current Situation and Future Perspectives. 
Oncol Res Treat, 2018. 41(4): p. 166-171. 

165. Kong, D.H., et al., A Review of Anti-Angiogenic Targets for Monoclonal Antibody Cancer 
Therapy. Int J Mol Sci, 2017. 18(8). 

166. Achen, M.G., G.B. Mann, and S.A. Stacker, Targeting lymphangiogenesis to prevent 
tumour metastasis. Br J Cancer, 2006. 94(10): p. 1355-60. 

167. Hsu, M.C., M.R. Pan, and W.C. Hung, Two Birds, One Stone: Double Hits on Tumor 
Growth and Lymphangiogenesis by Targeting Vascular Endothelial Growth Factor 
Receptor 3. Cells, 2019. 8(3). 

168. Nishida-Aoki, N. and T.S. Gujral, Emerging approaches to study cell-cell interactions in 
tumor microenvironment. Oncotarget, 2019. 10(7): p. 785-797. 

169. Klinghammer, K., W. Walther, and J. Hoffmann, Choosing wisely - Preclinical test 
models in the era of precision medicine. Cancer Treat Rev, 2017. 55: p. 36-45. 

170. Ben-David, U., et al., Genetic and transcriptional evolution alters cancer cell line drug 
response. Nature, 2018. 560(7718): p. 325-330. 

171. Kasai, F., et al., Changes of heterogeneous cell populations in the Ishikawa cell line 
during long-term culture: Proposal for an in vitro clonal evolution model of tumor cells. 
Genomics, 2016. 107(6): p. 259-66. 

172. Medico, E., et al., The molecular landscape of colorectal cancer cell lines unveils 
clinically actionable kinase targets. Nat Commun, 2015. 6: p. 7002. 

173. Gillet, J.P., S. Varma, and M.M. Gottesman, The clinical relevance of cancer cell lines. J 
Natl Cancer Inst, 2013. 105(7): p. 452-8. 

174. Horbach, S.P.J.M. and W. Halffman, The ghosts of HeLa: How cell line misidentification 
contaminates the scientific literature. . PLoS One, 2017. 12(10): p. e0186281. 

175. Persson, C.U., et al., Neuroblastoma patient-derived xenograft cells cultured in stem-
cell promoting medium retain tumorigenic and metastatic capacities but differentiate 
in serum. Sci Rep, 2017. 7(1): p. 10274. 



                                                                                                                                                                                        REFERENCES 

171 

176. Bate-Eya, L.T., et al., Newly-derived neuroblastoma cell lines propagated in serum-free 
media recapitulate the genotype and phenotype of primary neuroblastoma tumours. 
Eur J Cancer, 2014. 50(3): p. 628-37. 

177. Petrie, R.J. and K.M. Yamada, At the leading edge of three-dimensional cell migration. J 
Cell Sci, 2012. 125(Pt 24): p. 5917-26. 

178. Edmondson, R., et al., Three-dimensional cell culture systems and their applications in 
drug discovery and cell-based biosensors. Assay Drug Dev Technol, 2014. 12(4): p. 207-
218. 

179. Longati, P., et al., 3D pancreatic carcinoma spheroids induce a matrix-rich, 
chemoresistant phenotype offering a better model for drug testing. BMC Cancer, 2013. 
13: p. 95. 

180. Yılmaz, Ö. and S. Sakarya, Is ‘Hanging Drop’ a Useful Method to Form Spheroids of Jimt, 
Mcf-7, T-47d, Bt-474 That are Breast Cancer Cell Lines. Single Cell Biol 2018. 7(1): p. 
170. 

181. Kuo, C.T., J.Y. Wang, and Y.F. Lin, Three-dimensional spheroid culture targeting 
versatile tissue bioassays using a PDMS-based hanging drop array. Sci Rep, 2017. 7(1): 
p. 4363. 

182. Hickman, J.A., R. Graeser, and R. de Hoogt, Three-dimensional models of cancer for 
pharmacology and cancer cell biology: capturing tumor complexity in vitro/ex vivo. 
Biotechnol J. , 2014. 9(9): p. 1115-1128. 

183. Kienast, Y., et al., Real-time imaging reveals the single steps of brain metastasis 
formation. Nat Med, 2010. 16(1): p. 116-22. 

184. Fang, D.D., et al., Expansion of CD133(+) colon cancer cultures retaining stem cell 
properties to enable cancer stem cell target discovery. Br J Cancer, 2010. 102(8): p. 
1265-75. 

185. Knight, E. and S. Przyborski, Advances in 3D cell culture technologies enabling tissue-
like structures to be created in vitro. J Anat. , 2015. 227(6): p. 746-756. 

186. Naahidi, S., et al., Biocompatibility of hydrogel-based scaffolds for tissue engineering 
applications. Biotechnol Adv, 2017. 35(5): p. 530-544. 

187. Chan, B.P. and K.W. Leong, Scaffolding in tissue engineering: general approaches and 
tissue-specific considerations. Eur Spine J, 2008. 17 Suppl 4: p. 467-79. 

188. Kucinska, M., M. Murias, and P. Nowak-Sliwinska, Beyond mouse cancer models: Three-
dimensional human-relevant in vitro and non-mammalian in vivo models for 
photodynamic therapy. Mutat Res, 2017. 773: p. 242-262. 

189. Duarte Campos, D.F., et al., Exploring Cancer Cell Behavior In Vitro in Three-
Dimensional Multicellular Bioprintable Collagen-Based Hydrogels. Cancers (Basel), 
2019. 11(2). 

190. Curtin, C., et al., A physiologically relevant 3D collagen-based scaffold-neuroblastoma 
cell system exhibits chemosensitivity similar to orthotopic xenograft models. Acta 
Biomater, 2018. 70: p. 84-97. 

191. Monferrer, E., et al., A three-dimensional bioprinted model to evaluate the effect of 
stiffness on neuroblastoma cell cluster dynamics and behavior. Sci Rep, 2020. 10(1): p. 
6370. 

192. Holen, I., et al., In vivo models in breast cancer research: progress, challenges and 
future directions. Dis Model Mech, 2017. 10(4): p. 359-371. 

193. Landgraf, M., et al., Rational Design of Mouse Models for Cancer Research. Trends 
Biotechnol, 2018. 36(3): p. 242-251. 

194. Zhao, S., J. Huang, and J. Ye, A fresh look at zebrafish from the perspective of cancer 
research. J Exp Clin Cancer Res, 2015. 34: p. 80. 

195. Zhou, Q., J. Facciponte, and M. Jin, . Humanized NOD-SCID IL2rg–/– mice as a 
preclinical model for cancer research and its potential use for individualized cancer 
therapies. Cancer Lett, 2014. 314(1): p. 13-19. 



                                                                                                                                                                                        REFERENCES 

172 

196. Day, C.P., G. Merlino, and T. Van Dyke, Preclinical mouse cancer models: a maze of 
opportunities and challenges. Cell, 2015. 163(1): p. 39-53. 

197. Lai, Y., X. Wei, and S. Lin, Current status and perspectives of patient-derived xenograft 
models in cancer research. J Hematol Oncol, 2017. 10(1): p. 106. 

198. Okada, S., K. Vaeteewoottacharn, and R. Kariya, Application of Highly 
Immunocompromised Mice for the Establishment of Patient-Derived Xenograft (PDX) 
Models. Cells, 2019. 8(8). 

199. Collins, A.T. and S.H. Lang, A systematic review of the validity of patient derived 
xenograft (PDX) models: the implications for translational research and personalised 
medicine. PeerJ, 2018. 6: p. e5981. 

200. Siolas, D. and G.J. Hannon, Patient-derived tumor xenografts: transforming clinical 
samples into mouse models. . Cancer Res. , 2013. 73(17): p. 5315-5319. 

201. Zhan, B., S. Wen, and J. Lu, Identification and causes of metabonomic difference 
between orthotopic and subcutaneous xenograft of pancreatic cancer. Oncotarget, 
2017. 8(37): p. 61264-61281. 

202. Jung, J., Human tumor xenograft models for preclinical assessment of anticancer drug 
development. Toxicol Res, 2014. 30(1): p. 1-5. 

203. Zhang, Z., L. Song, and J. Guo, The Application of Pre-clinical Animal Models to 
Optimise Nanoparticulate Drug Delivery for Hepatocellular Carcinoma. Pharm 
Nanotechnol, 2018. 6(4): p. 221-231. 

204. Khanna, C., et al., Biologically relevant orthotopic neuroblastoma xenograft models: 
primary adrenal tumor growth and spontaneous distant metastasis. In Vivo, 2002. 
16(2): p. 77-85. 

205. Daudigeos-Dubus, E., et al., Establishment and characterization of new orthotopic and 
metastatic neuroblastoma models. In Vivo, 2014. 28(4): p. 425-34. 

206. Hidalgo, M., et al., Patient-derived xenograft models: an emerging platform for 
translational cancer research. Cancer Discov, 2014. 4(9): p. 998-1013. 

207. Gao, H., J.M. Korn, and S. Ferretti, High-throughput screening using patient-derived 
tumor xenografts to predict clinical trial drug response. Nat Med, 2015. 21(11): p. 
1318-1325. 

208. Huang, K.L., S. Li, and P. Mertins, Proteogenomic integration reveals therapeutic 
targets in breast cancer xenografts [published correction appears in Nat Commun. 
2017 Apr 25;8:15479]. Nat Commun. , 2017. 8: p. 14864. 

209. Braekeveldt, N., et al., Neuroblastoma patient-derived orthotopic xenografts retain 
metastatic patterns and geno- and phenotypes of patient tumours. Int J Cancer, 2015. 
136(5): p. E252-61. 

210. Rubio-Viqueira, B., et al., An in vivo platform for translational drug development in 
pancreatic cancer. Clin Cancer Res, 2006. 12(15): p. 4652-61. 

211. Braekeveldt, N. and D. Bexell, Patient-derived xenografts as preclinical neuroblastoma 
models. Cell Tissue Res, 2018. 372(2): p. 233-243. 

212. Allen, T.M., et al., Humanized immune system mouse models: progress, challenges and 
opportunities. Nat Immunol, 2019. 20(7): p. 770-774. 

213. Ornell, K.J. and J.M. Coburn, Developing preclinical models of neuroblastoma: driving 
therapeutic testing. BMC Biomedical Engineering, 2019. 1: p. 33. 

214. Braekeveldt, N., et al., Neuroblastoma patient-derived orthotopic xenografts reflect the 
microenvironmental hallmarks of aggressive patient tumours. Cancer Lett, 2016. 
375(2): p. 384-389. 

215. Chao, C., et al., Patient-derived Xenografts from Colorectal Carcinoma: A Temporal and 
Hierarchical Study of Murine Stromal Cell Replacement. Anticancer Res, 2017. 37(7): p. 
3405-3412. 

216. Yoshida, G.J., Applications of patient-derived tumor xenograft models and tumor 
organoids. J Hematol Oncol, 2020. 13(1): p. 4. 



                                                                                                                                                                                        REFERENCES 

173 

217. Braekeveldt, N., et al., Patient-Derived Xenograft Models Reveal Intratumor 
Heterogeneity and Temporal Stability in Neuroblastoma. Cancer Res, 2018. 78(20): p. 
5958-5969. 

218. Morton, C.L. and P.J. Houghton, Establishment of human tumor xenografts in 
immunodeficient mice. Nat Protoc, 2007. 2(2): p. 247-50. 

219. Pergolini, I., V. Morales-Oyarvide, and M. Mino-Kenudson, Tumor engraftment in 
patient-derived xenografts of pancreatic ductal adenocarcinoma is associated with 
adverse clinicopathological features and poor survival. . PLoS One, 2017. 12(8): p. 
e0182855. 

220. Fusco, P., et al., Patient-derived organoids (PDOs) as a novel in vitro model for 
neuroblastoma tumours. BMC Cancer, 2019. 19(1): p. 970. 

221. Kersten, K., et al., Genetically engineered mouse models in oncology research and 
cancer medicine. EMBO Mol Med, 2017. 9(2): p. 137-153. 

222. Mizejewski, G.J., Breast cancer, metastasis, and the microenvironment: disabling the 
tumor cell-tostroma communication network. Journal of Cancer Metastasis and 
Treatment, 2019. 5: p. 35. 

223. Ren, B., et al., Tumor microenvironment participates in metastasis of pancreatic 
cancer. Mol Cancer, 2018. 17(1): p. 108. 

224. Dagogo-Jack, I. and A.T. Shaw, Tumour heterogeneity and resistance to cancer 
therapies. Nat Rev Clin Oncol, 2018. 15(2): p. 81-94. 

225. Weis, S.M. and D.A. Cheresh, Tumor angiogenesis: molecular pathways and 
therapeutic targets. Nat Med, 2011. 17(11): p. 1359-70. 

226. Orcid, L.J.B. and C. Werner, Evaluation of Three-Dimensional in Vitro Models to Study 
Tumor Angiogenesis. ACS Biomaterials Science and Engineering 2017. 4(2). 

227. Tovar, E., C. Essenburg, and C.R. Graveel, In vivo Efficacy Studies in Cell Line and 
Patient-derived Xenograft Mouse Models. bio-protocol, 2017. 7(1). 

228. Zhao, P., et al., Application of a Three-Dimensional Reconstruction System in Breast 
Cancer with Ipsilateral Supraclavicular Lymph Node Metastasis: A Case Series. Breast 
Care (Basel), 2019. 14(3): p. 176-179. 

229. Finley, S.D., L.H. Chu, and A.S. Popel, Computational systems biology approaches to 
anti-angiogenic cancer therapeutics. Drug Discov Today, 2015. 20(2): p. 187-97. 

230. Gerisch, A. and M.A. Chaplain, Mathematical modelling of cancer cell invasion of 
tissue: local and non-local models and the effect of adhesion. J Theor Biol, 2008. 
250(4): p. 684-704. 

231. Kolev, M. and B. Zubik-Kowal, Numerical solutions for a model of tissue invasion and 
migration of tumour cells. . Comput Math Methods Med, 2011. 2011: p. 452320. 

232. Kubitschke, H., et al., Roadmap to Local Tumour Growth: Insights from Cervical Cancer. 
Sci Rep, 2019. 9(1): p. 12768. 

233. Bilous, M., C. Serdjebi, and A. Boyer, Quantitative mathematical modeling of clinical 
brain metastasis dynamics in non-small cell lung cancer. . Sci Rep. , 2019. 9(1): p. 
13018. 

234. Baptista, L.P.R., V.V. Sinatti, and J.H. Da Silva, Computational evaluation of natural 
compounds as potential inhibitors of human PEPCK. Adv Appl Bioinform Chem, 2019. 
12: p. 15-32. 

235. Cornelis, F., et al., In vivo mathematical modeling of tumor growth from imaging data: 
soon to come in the future? Diagn Interv Imaging, 2013. 94(6): p. 593-600. 

236. Gavrielides, M.A., et al., Observer variability in the interpretation of HER2/neu 
immunohistochemical expression with unaided and computer-aided digital microscopy. 
Arch Pathol Lab Med, 2011. 135(2): p. 233-42. 

237. Feuchtinger, A., et al., Image analysis of immunohistochemistry is superior to visual 
scoring as shown for patient outcome of esophageal adenocarcinoma. Histochem Cell 
Biol, 2015. 143(1): p. 1-9. 



                                                                                                                                                                                        REFERENCES 

174 

238. Stalhammar, G., et al., Digital image analysis outperforms manual biomarker 
assessment in breast cancer. Mod Pathol, 2016. 29(4): p. 318-29. 

239. Abdalla, F., et al., Correlation of nuclear morphometry of breast cancer in histological 
sections with clinicopathological features and prognosis. Anticancer Res, 2009. 29(5): 
p. 1771-6. 

240. Mudaliar, K. and K. Hutchens, Morphometric Image Analysis as a Tool in the Diagnosis 
of Transected Squamous Neoplasms. Journal of Clinical and Anatomic Pathology, 2013. 
1: p. 102. 

241. Chen, L., et al., Disease Risk Assessment Using a Voronoi-Based Network Analysis of 

Genes and Variants Scores. Front Genet, 2017. 8: p. 29. 
242. Sudbo, J., R. Marcelpoil, and A. Reith, New algorithms based on the Voronoi Diagram 

applied in a pilot study on normal mucosa and carcinomas. Anal Cell Pathol, 2000. 
21(2): p. 71-86. 

243. Ramadan, E., S. Alinsaif, and M.R. Hassan, Network topology measures for identifying 
disease-gene association in breast cancer. BMC Bioinformatics, 2016. 17 Suppl 7: p. 
274. 

244. Kourou, K., T.P. Exarchos, and K.P. Exarchos, Machine learning applications in cancer 
prognosis and prediction. Comput Struct Biotechnol J, 2014. 13: p. 8-17. 

245. Dhahri, H., et al., Automated Breast Cancer Diagnosis Based on Machine Learning 
Algorithms. J Healthc Eng, 2019. 2019: p. 4253641. 

246. Kim, S., S. Jung, and Y. Park, Effective liver cancer diagnosis method based on machine 
learning algorithm, in 7th International Conference on Biomedical Engineering and 
Informatics. 2014, IEEE: Dalian, China. 

247. Heindl, A., S. Nawaz, and Y. Yuan, Mapping spatial heterogeneity in the tumor 
microenvironment: a new era for digital pathology. Lab Invest, 2015. 95(4): p. 377-84. 

248. Kong, J., et al., Computer-aided evaluation of neuroblastoma on whole-slide histology 
images: Classifying grade of neuroblastic differentiation. Pattern Recognit, 2009. 42(6): 
p. 1080-1092. 

249. D’Cruze, L., M. Susruthan, and G. Barathi, Morphometrical analysis of the spectrum of 
small round cell tumors in a tertiary care centre Indian Journal of Pathology and 
Oncology, 2018. 5(2): p. 314-317. 

250. Tadeo, I., E. Gamero-Sandemetrio, and A.P. Berbegall, 1p36 deletion results in a 
decrease in glycosaminoglycans which is associated with aggressiveness in neuroblastic 
tumors. Histol Histopathol. , 2018. 33(5): p. 487-495. 

251. Tadeo, I., A.P. Berbegall, and V. Castel, Extracellular Matrix Composition Defines an 
Ultra-High-Risk Group of Neuroblastoma Within the High-Risk Patient Cohort. Br J 
Cancer, 2016. 115(4): p. 480-489. 

252. Tadeo, I., E. Gamero-Sandemetrio, and A. Berbegall, Lymph microvascularization as a 
prognostic indicator in neuroblastom. Oncotarget, 2018. 9(40): p. 26157-26170. 

253. Tadeo, I., et al., Vascular patterns provide therapeutic targets in aggressive 
neuroblastic tumors. Oncotarget, 2016. 7(15): p. 19935-47. 

254. Aravindan, N., et al., Cancer stem cells in neuroblastoma therapy resistance. Cancer 
Drug Resist, 2019. 2: p. 948-967. 

255. Roy Choudhury, S., et al., Targeting angiogenesis for controlling neuroblastoma. J 
Oncol, 2012. 2012: p. 782020. 

256. Yoon, K.J. and M.K. Danks, Cell adhesion molecules as targets for therapy of 
neuroblastoma. Cancer Biol Ther, 2009. 8(4): p. 306-311. 

257. Felding-Habermann, B. and D.A. Cheresh, Vitronectin and its receptors. Curr Opin Cell 
Biol, 1993. 5(5): p. 864-8. 

258. Czekay, R.P., et al., Plasminogen activator inhibitor-1 detaches cells from extracellular 
matrices by inactivating integrins. J Cell Biol, 2003. 160(5): p. 781-91. 



                                                                                                                                                                                        REFERENCES 

175 

259. Madsen, C.D., et al., uPAR-induced cell adhesion and migration: vitronectin provides 
the key. J Cell Biol, 2007. 177(5): p. 927-39. 

260. Annis, M.G., et al., Integrin-uPAR signaling leads to FRA-1 phosphorylation and 
enhanced breast cancer invasion. Breast Cancer Res, 2018. 20(1): p. 9. 

261. Schneider, G., et al., Vitronectin in the ascites of human ovarian carcinoma acts as a 
potent chemoattractant for ovarian carcinoma: Implication for metastasis by cancer 
stem cells. J Cancer Stem Cell Res, 2016. 4. 

262. Shimada, H., et al., Histopathologic prognostic factors in neuroblastic tumors: 
definition of subtypes of ganglioneuroblastoma and an age-linked classification of 
neuroblastomas. J Natl Cancer Inst, 1984. 73(2): p. 405-16. 

263. Pikor, L., et al., The detection and implication of genome instability in cancer. Cancer 
Metastasis Rev, 2013. 32(3-4): p. 341-52. 

264. Negrini, S., V.G. Gorgoulis, and T.D. Halazonetis, Genomic instability--an evolving 
hallmark of cancer. Nat Rev Mol Cell Biol, 2010. 11(3): p. 220-8. 

265. Ambros, I.M., et al., Ultra-High Density SNParray in Neuroblastoma Molecular 
Diagnostics. Front Oncol, 2014. 4: p. 202. 

266. Sokol, E., et al., Age, Diagnostic Category, Tumor Grade, and Mitosis-Karyorrhexis 
Index Are Independently Prognostic in Neuroblastoma: An INRG Project. J Clin Oncol, 
2020. 38(17): p. 1906-1918. 

267. Hurt, E.M., K. Chan, and M.A. Serrat, Identification of vitronectin as an extrinsic inducer 
of cancer stem cell differentiation and tumor formation. Stem Cells, 2010. 28(3): p. 
390-398. 

268. Pirazzoli, V., G.M. Ferraris, and N. Sidenius, Direct evidence of the importance of 
vitronectin and its interaction with the urokinase receptor in tumor growth. Blood, 
2013. 121(12): p. 2316-23. 

269. Placencio, V.R. and Y.A. DeClerck, Plasminogen Activator Inhibitor-1 in Cancer: 
Rationale and Insight for Future Therapeutic Testing. Cancer Res, 2015. 75(15): p. 
2969-74. 

270. Smith, H.W. and C.J. Marshall, Regulation of cell signalling by uPAR. Nat Rev Mol Cell 
Biol, 2010. 11(1): p. 23-36. 

271. Li, P., et al., Role of urokinase plasminogen activator and its receptor in metastasis and 
invasion of neuroblastoma. J Pediatr Surg, 2004. 39(10): p. 1512-9. 

272. Sugiura, Y., et al., The plasminogen-plasminogen activator (PA) system in 
neuroblastoma: role of PA inhibitor-1 in metastasis. Cancer Res, 1999. 59(6): p. 1327-
36. 

273. Isogai, C., et al., Plasminogen activator inhibitor-1 promotes angiogenesis by 
stimulating endothelial cell migration toward fibronectin. Cancer Res, 2001. 61(14): p. 
5587-94. 

274. Brooks, P.C., et al., Antiintegrin alpha v beta 3 blocks human breast cancer growth and 
angiogenesis in human skin. J Clin Invest, 1995. 96(4): p. 1815-22. 

275. Burke, P.A., S.J. DeNardo, and L.A. Miers, Cilengitide targeting of alphavbeta3 integrin 
receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in 
breast cancer xenografts. Cancer Res, 2002. 62: p. 4263–4272. 

276. Gladson, C.L., Expression of integrin alpha v beta 3 in small blood vessels of 
glioblastoma tumors. J Neuropathol Exp Neurol, 1996. 55(11): p. 1143-9. 

277. Erdreich-Epstein, A., H. Shimada, and S. Groshen, Integrins alpha(v)beta3 and 
alpha(v)beta5 are expressed by endothelium of high-risk neuroblastoma and their 
inhibition is associated with increased endogenous ceramide. Cancer Res, 2000. 60(3): 
p. 712-721. 

278. Gladson, C.L., S. Hancock, and M.M. Arnold, Stage-specific expression of integrin 
alphaVbeta3 in neuroblastic tumors. Am J Pathol. , 1996. 148(5): p. 1423-1434. 



                                                                                                                                                                                        REFERENCES 

176 

279. Erdreich-Epstein, A., A.R. Singh, and S. Joshi, Association of high microvessel αvβ3 and 
low PTEN with poor outcome in stage 3 neuroblastoma: rationale for using first in class 
dual PI3K/BRD4 inhibitor, SF1126. Oncotarget, 2016. 8(32): p. 52193-52210. 

280. Dohn, L.H., H. Pappot, and B.R. Iversen, uPAR Expression Pattern in Patients with 
Urothelial Carcinoma of the Bladder--Possible Clinical Implications. PLoS One, 2015. 
10(8): p. e0135824. 

281. Boonstra, M.C., F.P. Verbeek, and A.P. Mazar, Expression of uPAR in tumor-associated 
stromal cells is associated with colorectal cancer patient prognosis: a TMA study. BMC 
Cancer., 2014. 14: p. 269. 

282. Lindberg, P., A. Larsson, and B.S. Nielsen, Expression of plasminogen activator 
inhibitor-1, urokinase receptor and laminin gamma-2 chain is an early coordinated 
event in incipient oral squamous cell carcinoma. Int J Cancer, 2006. 118(12): p. 2948-
56. 

283. Lijnen, H.R., Pleiotropic functions of plasminogen activator inhibitor-1. J Thromb 
Haemost, 2005. 3(1): p. 35-45. 

284. van der Burg, M.E., S.C. Henzen-Logmans, and E.M. Berns, Expression of urokinasetype 
plasminogen activator (uPA) and its inhibitor PAI-1 in benign, borderline, malignant 
primary and metastaticovarian tumors. . Int J Cancer, 1996. 69: p. 475-479. 

285. Stefansson, S. and D.A. Lawrence, The serpin PAI-1 inhibits cell migration by blocking 
integrin alpha V beta 3 binding to vitronectin. Nature, 1996. 383(6599): p. 441-443. 

286. Waltz, D.A., et al., Plasmin and plasminogen activator inhibitor type 1 promote cellular 
motility by regulating the interaction between the urokinase receptor and vitronectin. J 
Clin Invest, 1997. 100(1): p. 58-67. 

287. De Lorenzi, V., et al., Urokinase links plasminogen activation and cell adhesion by 
cleavage of the RGD motif in vitronectin. EMBO Rep, 2016. 17(7): p. 982-98. 

288. Nakatsuka, E., K. Sawada, and K. Nakamura, Plasminogen activator inhibitor-1 is an 
independent prognostic factor of ovarian cancer and IMD-4482, a novel plasminogen 
activator inhibitor-1 inhibitor, inhibits ovarian cancer peritoneal dissemination. 
Oncotarget, 2017. 8(52): p. 89887-89902. 

289. Offersen, B.V., et al., The myofibroblast is the predominant plasminogen activator 
inhibitor-1-expressing cell type in human breast carcinomas. Am J Pathol, 2003. 163(5): 
p. 1887-99. 

290. Yasuda, T., et al., Localization of plasminogen activators and their inhibitor in 
squamous cell carcinomas of the head and neck. Head Neck, 1997. 19(7): p. 611-6. 

291. Heß, K., C. Böger, and H.M. Behrens, Correlation between the expression of integrins in 
prostate cancer and clinical outcome in 1284 patients. Ann Diagn Pathol. , 2014. 18(6): 
p. 343-350. 

292. Schnell, O., B. Krebs, and E. Wagner, Expression of integrin alphavbeta3 in gliomas 
correlates with tumor grade and is not restricted to tumor vasculature. Brain Pathol, 
2008. 18(3): p. 378-386. 

293. Beer, A.J., et al., Patterns of alphavbeta3 expression in primary and metastatic human 
breast cancer as shown by 18F-Galacto-RGD PET. J Nucl Med, 2008. 49(2): p. 255-9. 

294. Bello, L., J. Zhang, and D.C. Nikas, Alpha(v)beta3 and alpha(v)beta5 integrin expression 
in meningiomas. Neurosurgery, 2000. 47(5): p. 1185-1195. 

295. Singer, C.F., et al., Stromal coexpression of uPA/PAI-1 protein predicts poor disease 
outcome in endocrine-treated postmenopausal patients with receptor-positive early 
breast cancer. Breast, 2019. 46: p. 101-107. 

296. Theek, B., et al., Semi-Automated Segmentation of the Tumor Vasculature in Contrast-
Enhanced Ultrasound Data. Ultrasound Med Biol, 2018. 44(8): p. 1910-1917. 

297. Webster, J.D., E.R. Simpson, and A.M. Michalowski, Quantifying histological features of 
cancer biospecimens for biobanking quality assurance using automated morphometric 
pattern recognition image analysis algorithms. J Biomol Tech, 2011. 22(3): p. 108-118. 



                                                                                                                                                                                        REFERENCES 

177 

298. Despotović , S.Z., N.M. Milićević , and D.P. Milošević, Remodeling of extracellular 
matrix of the lamina propria in the uninvolved human rectal mucosa 10 and 20 cm 
away from the malignant tumor. Tumour Biol, 2017. 39(7): p. 1010428317711654. 

299. Iizuka, Y., T. Utsunomiy, and S. Fushimi, Morphometric analysis of tumor stromal 
lymphatic vessels and lymphangiogenesis in oral squamous cell carcinoma. Journal of 
Oral and Maxillofacial Surgery, Medicine, and Pathology, 2019. 31(1): p. 47-51. 

300. Peck, A.R., et al., Validation of tumor protein marker quantification by two independent 
automated immunofluorescence image analysis platforms. Mod Pathol, 2016. 29(10): 
p. 1143-54. 

301. Aeffner, F., et al., Introduction to Digital Image Analysis in Whole-slide Imaging: A 
White Paper from the Digital Pathology Association. J Pathol Inform, 2019. 10: p. 9. 

302. Gladson, C.L., et al., Vitronectin expression in differentiating neuroblastic tumors: 
integrin alpha v beta 5 mediates vitronectin-dependent adhesion of retinoic-acid-
differentiated neuroblastoma cells. Am J Pathol, 1997. 150(5): p. 1631-46. 

303. Pons, S., et al., Vitronectin regulates Sonic hedgehog activity during cerebellum 
development through CREB phosphorylation. Development, 2001. 128(9): p. 1481-92. 

304. Abe, A., et al., alphavbeta5 integrin mediates the effect of vitronectin on the initial 
stage of differentiation in mouse cerebellar granule cell precursors. Brain Res, 2018. 
1691: p. 94-104. 

305. Shimizu, S., et al., Foxa (HNF3) up-regulates vitronectin expression during retinoic acid-
induced differentiation in mouse neuroblastoma Neuro2a cells. Cell Struct Funct, 2002. 
27(4): p. 181-8. 

306. Sugahara, M., Y. Nakaoki, and A. Yamaguchi, Vitronectin is Involved in the 
Morphological Transition of Neurites in Retinoic Acid-Induced Neurogenesis of 
Neuroblastoma Cell Line Neuro2a. Neurochem Res, 2019. 44(7): p. 1621-1635. 

307. Munn, L.L., Dynamics of tissue topology during cancer invasion and metastasis. Phys 
Biol, 2013. 10(6): p. 065003. 

308. Marinaro, G., et al., Networks of neuroblastoma cells on porous silicon substrates 
reveal a small world topology. Integr Biol (Camb), 2015. 7(2): p. 184-97. 

309. Solovei, I., et al., Topology of double minutes (dmins) and homogeneously staining 
regions (HSRs) in nuclei of human neuroblastoma cell lines. Genes Chromosomes 
Cancer, 2000. 29(4): p. 297-308. 

310. Pogue, B.W., M.A. Mycek, and D. Harper, Image analysis for discrimination of cervical 
neoplasia. J Biomed Opt, 2000. 5(1): p. 72-82. 

311. Varberg, K.M., et al., Kinetic Analysis of Vasculogenesis Quantifies Dynamics of 
Vasculogenesis and Angiogenesis In Vitro. J Vis Exp, 2018(131). 

312. Hannezo, E. and B.D. Simons, Statistical theory of branching morphogenesis. Dev 
Growth Differ, 2018. 60(9): p. 512-521. 

313. Monferrer, E., et al., High Oct4 expression: implications in the pathogenesis of 
neuroblastic tumours. BMC Cancer, 2019. 19(1): p. 1. 

314. Tadeo, I., Estudio del armazón arquitectónico y del  sistema vascular de los tumores 
neuroblásticos. , in Departament de Patologia. 2014, Universitat de Valencia. 

315. Zuñiga, V., Análisis microscópico digital del infiltrado inmune en neuroblastoma. 
impacto pronóstico, in Departament de Patologia. 2018, Universitat de Valencia. 

316. Kumar, S. and V.M. Weaver, Mechanics, malignancy, and metastasis: the force journey 
of a tumor cell. Cancer Metastasis Rev, 2009. 28(1-2): p. 113-27. 

317. Jain, R.K., J.D. Martin, and T. Stylianopoulos, The role of mechanical forces in tumor 
growth and therapy. Annu Rev Biomed Eng, 2014. 16: p. 321-46. 

318. Zhu, Z., et al., Yin-yang effect of tumour cells in breast cancer: from mechanism of 
crosstalk between tumour-associated macrophages and cancer-associated adipocytes. 
Am J Cancer Res, 2020. 10(2): p. 383-392. 



                                                                                                                                                                                        REFERENCES 

178 

319. Zheng, S., et al., Development and validation of a stromal immune phenotype classifier 
for predicting immune activity and prognosis in triple-negative breast cancer. Int J 
Cancer, 2020. 147(2): p. 542-553. 

320. Li, W., et al., Integrated tumor stromal features of hepatocellular carcinoma reveals 
two distinct subtypes with prognostic/predictive significance. Aging (Albany NY), 2019. 
11(13): p. 4478-4509. 

321. Zhang, Q., et al., Integrated multiomic analysis reveals comprehensive tumour 
heterogeneity and novel immunophenotypic classification in hepatocellular 
carcinomas. Gut, 2019. 68(11): p. 2019-2031. 

322. Wartenberg, M., et al., Integrated Genomic and Immunophenotypic Classification of 
Pancreatic Cancer Reveals Three Distinct Subtypes with Prognostic/Predictive 
Significance. Clin Cancer Res, 2018. 24(18): p. 4444-4454. 

323. Preissner, K.T. and U. Reuning, Vitronectin in vascular context: facets of a multitalented 
matricellular protein. Semin Thromb Hemost, 2011. 37(4): p. 408-24. 

324. Shi, K., et al., Vitronectin significantly influences prognosis in osteosarcoma. Int J Clin 
Exp Pathol, 2015. 8(9): p. 11364-11371. 

325. Heyman, L., et al., Vitronectin and its receptors partly mediate adhesion of ovarian 
cancer cells to peritoneal mesothelium in vitro. Tumour Biol, 2008. 29(4): p. 231-44. 

326. Pietras, K. and A. Ostman, Hallmarks of cancer: interactions with the tumor stroma. 
Exp Cell Res, 2010. 316(8): p. 1324-31. 

327. Bussard, K.M., L. Mutkus, and K. Stumpf, Tumor-associated stromal cells as key 
contributors to the tumor microenvironment. Breast Cancer Res, 2016. 18(1): p. 84. 

328. Tranchevent, L.C., et al., Predicting clinical outcome of neuroblastoma patients using 
an integrative network-based approach. Biol Direct, 2018. 13(1): p. 12. 

329. Radhakrishnan, A., et al., Machine Learning for Nuclear Mechano-Morphometric 
Biomarkers in Cancer Diagnosis. Sci Rep, 2017. 7(1): p. 17946. 

330. Nyirenda, N., D.L. Farkas, and V.K. Ramanujan, Preclinical evaluation of nuclear 
morphometry and tissue topology for breast carcinoma detection and margin 
assessment. Breast Cancer Res Treat, 2011. 126(2): p. 345-54. 

331. Cheng, J., et al., Identification of topological features in renal tumor microenvironment 
associated with patient survival. Bioinformatics, 2018. 34(6): p. 1024-1030. 

332. Bulin, A.L., M. Broekgaarden, and T. Hasan, Comprehensive high-throughput image 
analysis for therapeutic efficacy of architecturally complex heterotypic organoids. Sci 
Rep, 2017. 7(1): p. 16645. 

333. Lee, S.L., et al., Computer-assisted image analysis of the tumor microenvironment on 
an oral tongue squamous cell carcinoma tissue microarray. Clin Transl Radiat Oncol, 
2019. 17: p. 32-39. 

334. Ehteshami Bejnordi, B., M. Mullooly, and R.M. Pfeiffer, Using deep convolutional 
neural networks to identify and classify tumor-associated stroma in diagnostic breast 
biopsies. Mod Pathol. , 2018. 31(10): p. 1502-1512. 

335. Thiele, C.J., Neuroblastoma Cell Lines, in Human Cell Culture, J. Masters, Editor. 1998, 
Lancaster, UK: Kluwer Academic Publishers. p. 21-53. 

336. Brodeur, G.M., G. Sekhon, and M.N. Goldstein, Chromosomal aberrations in human 
neuroblastomas. Cancer, 1977. 40(5): p. 2256-63. 

337. Kryh, H., H. Carén, and J. Erichsen, Comprehensive SNP array study of frequently used 
neuroblastoma cell lines; copy neutral loss of heterozygosity is common in the cell lines 
but uncommon in primary tumors. BMC Genomics, 2011. 12: p. 443. 

338. Harenza, J.L., et al., Corrigendum: Transcriptomic profiling of 39 commonly-used 
neuroblastoma cell lines. Sci Data, 2017. 4: p. 170183. 

339. Carpenter, E.L., et al., Dielectrophoretic capture and genetic analysis of single 
neuroblastoma tumor cells. Front Oncol, 2014. 4: p. 201. 



                                                                                                                                                                                        REFERENCES 

179 

340. Stock, C., et al., Genes proximal and distal to MYCN are highly expressed in human 
neuroblastoma as visualized by comparative expressed sequence hybridization. Am J 
Pathol, 2008. 172(1): p. 203-14. 

341. Meyer, A., et al., Integrin expression regulates neuroblastoma attachment and 
migration. Neoplasia, 2004. 6(4): p. 332-42. 

342. Horwacik, I. and H. Rokita, Modulation of interactions of neuroblastoma cell lines with 
extracellular matrix proteins affects their sensitivity to treatment with the anti-GD2 
ganglioside antibody 14G2a. Int J Oncol, 2017. 50(5): p. 1899-1914. 

343. Ciccarone, V., et al., Phenotypic diversification in human neuroblastoma cells: 
expression of distinct neural crest lineages. Cancer Res, 1989. 49(1): p. 219-25. 

344. Tomayko, M.M. and C.P. Reynolds, Determination of subcutaneous tumor size in 
athymic (nude) mice. Cancer Chemother Pharmacol, 1989. 24(3): p. 148-54. 

345. Murayama, T. and N. Gotoh, Patient-Derived Xenograft Models of Breast Cancer and 
Their Application. Cells, 2019. 8(6). 

346. Cornillie, J., et al., Establishment and Characterization of Histologically and Molecularly 
Stable Soft-tissue Sarcoma Xenograft Models for Biological Studies and Preclinical Drug 
Testing. Mol Cancer Ther, 2019. 18(6): p. 1168-1178. 

347. Tentler, J.J., et al., Patient-derived tumour xenografts as models for oncology drug 
development. Nat Rev Clin Oncol, 2012. 9(6): p. 338-50. 

348. Pettan-Brewer, C., J. Morton, and S. Cullen, Tumor growth is suppressed in mice 
expressing a truncated XRCC1 protein. Am J Cancer Res, 2012. 2(2): p. 168-177. 

349. Linnebacher, M., et al., Cryopreservation of human colorectal carcinomas prior to 
xenografting. BMC Cancer, 2010. 10: p. 362. 

350. Sorio, C., et al., Successful xenografting of cryopreserved primary pancreatic cancers. 
Virchows Arch, 2001. 438(2): p. 154-8. 

351. Bajou, K., et al., Plasminogen activator inhibitor-1 protects endothelial cells from FasL-
mediated apoptosis. Cancer Cell, 2008. 14(4): p. 324-34. 

352. Morscher, R.J., et al., Inhibition of Neuroblastoma Tumor Growth by Ketogenic Diet 
and/or Calorie Restriction in a CD1-Nu Mouse Model. PLoS One, 2015. 10(6): p. 
e0129802. 

353. Lakoma, A., et al., The MDM2 small-molecule inhibitor RG7388 leads to potent tumor 
inhibition in p53 wild-type neuroblastoma. Cell Death Discov, 2015. 1. 

354. Teitz, T., et al., Preclinical models for neuroblastoma: establishing a baseline for 
treatment. PLoS One, 2011. 6(4): p. e19133. 

355. Martin, T.A., L. Ye, and A.J. Sanders, Cancer Invasion and Metastasis: Molecular and 
Cellular Perspective, in Metastatic Cancer Clinical and Biological Perspectives, J. Rahul, 
Editor. 1970, Landes Bioscience. p. 135-168. 

356. Patterson, D.M., J.M. Shohet, and E.S. Kim, Preclinical models of pediatric solid tumors 
(neuroblastoma) and their use in drug discovery. Curr Protoc Pharmacol, 2011. Chapter 
14: p. Unit 14 17. 

357. Bomken, S., et al., Percentage tumor necrosis following chemotherapy in 
neuroblastoma correlates with MYCN status but not survival. Pediatr Hematol Oncol, 
2011. 28(2): p. 106-14. 

358. Zormpas-Petridis, K., et al., MRI Imaging of the Hemodynamic Vasculature of 
Neuroblastoma Predicts Response to Antiangiogenic Treatment. Cancer Res, 2019. 
79(11): p. 2978-2991. 

359. Rysenkova, K.D., et al., CRISPR/Cas9 nickase mediated targeting of urokinase receptor 
gene inhibits neuroblastoma cell proliferation. Oncotarget, 2018. 9(50): p. 29414-
29430. 

360. Semina, E.V., et al., Downregulation of uPAR promotes urokinase translocation into the 
nucleus and epithelial to mesenchymal transition in neuroblastoma. J Cell Physiol, 
2020. 235(9): p. 6268-6286. 



                                                                                                                                                                                        REFERENCES 

180 

361. Kenny, H.A., et al., The initial steps of ovarian cancer cell metastasis are mediated by 
MMP-2 cleavage of vitronectin and fibronectin. J Clin Invest, 2008. 118(4): p. 1367-79. 

362. Mahmood, N., C. Mihalcioiu, and S.A. Rabbani, Multifaceted Role of the Urokinase-
Type Plasminogen Activator (uPA) and Its Receptor (uPAR): Diagnostic, Prognostic, and 
Therapeutic Applications. Front Oncol, 2018. 8: p. 24. 

363. Chandrasekar, N., et al., Downregulation of uPA inhibits migration and PI3k/Akt 
signaling in glioblastoma cells. Oncogene, 2003. 22(3): p. 392-400. 

364. Lu, P., V.M. Weaver, and Z. Werb, The extracellular matrix: a dynamic niche in cancer 
progression. J Cell Biol, 2012. 196(4): p. 395-406. 

365. Craig, A.J., et al., Tumour evolution in hepatocellular carcinoma. Nat Rev Gastroenterol 
Hepatol, 2020. 17(3): p. 139-152. 

366. Ribatti, D., et al., Podoplanin and LYVE-1 expression in lymphatic vessels of human 
neuroblastoma. J Neurooncol, 2010. 100(1): p. 151-2. 

367. Asgharzadeh, S., et al., Clinical significance of tumor-associated inflammatory cells in 
metastatic neuroblastoma. J Clin Oncol, 2012. 30(28): p. 3525-32. 

368. Mina, M., et al., Tumor-infiltrating T lymphocytes improve clinical outcome of therapy-
resistant neuroblastoma. Oncoimmunology, 2015. 4(9): p. e1019981. 

369. Cariati, F., et al., Dissecting Intra-Tumor Heterogeneity by the Analysis of Copy Number 
Variations in Single Cells: The Neuroblastoma Case Study. Int J Mol Sci, 2019. 20(4). 

370. Ben-David, U., et al., Patient-derived xenografts undergo mouse-specific tumor 
evolution. Nat Genet, 2017. 49(11): p. 1567-1575. 

371. Greaves, M. and C.C. Maley, Clonal evolution in cancer. Nature, 2012. 481(7381): p. 
306-13. 

372. Calandrini, C., et al., An organoid biobank for childhood kidney cancers that captures 
disease and tissue heterogeneity. Nat Commun, 2020. 11(1): p. 1310. 

373. López-Carrasco, A., Impact of extracelular matrix properties on neuroblastoma 
heterogenity. 2020. p. Article in preparation. 



                                                                                                                                                                                         

181 

 

 

 

 
 

 

 

 

 

 

Appendix  
 

  



  

182 

 



                                                                                                                                                                                             APPENDIX                   

183 

 

-Clinical and biological section 

 

Tables 2 and 3. Descriptors of the clinical and genetic data regarding OS and EFS, respectively. 

    

  

 

 

Table 4.p-values resulting of the Kaplan Meier test comparing INRG variables with EFS and OS. 

 

L1 and L2: localized and MS: special metastatic; M: metastatic; GN: ganglioneurona nGNB: ganglioneuroblastoma 

nodular; NB: neuroblastoma; dNB: differentiating neuroblastoma; pdNB: poorly differentiated neuroblastoma; 

uNB: undifferentiated neuroblastoma; MNNA: MYCN non-amplified; MNA: MYCN amplified; ND: non deletion; D: 

deletion; NCA: numerical chromosomal aberration; SCA: segmental chromosomal aberration; Hiperp.: Hiperploid; 

Dip.: diploid; EFS: event-free survival; OS: overall survival. 
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L1 and L2: localized and MS: special metastatic; M: metastatic; GN: ganglioneuroma; nGNB: ganglioneuroblastoma 

nodular; NB: neuroblastoma; dNB: differentiating neuroblastoma; pdNB: poorly differentiated neuroblastoma; 

uNB: undifferentiated neuroblastoma; MNNA: MYCN non-amplified; MNA: MYCN amplified; ND: non deletion; D: 

deletion; NCA: numerical chromosomal aberration; SCA: segmental chromosomal aberration; Hiperp.: Hiperploid; 

Dip.: diploid; EFS: event-free survival; OS: overall survival. 

 

 

Figure 9. Histopathological NB image of A) ανβ3 integrin, B) VN, C) CD68 marker for macrophages and D) CD45 marker 

to detect lymphoid cells. Images at 40x. 

-Morphometric measurements section 

 

Figure 12. Distribution of the amount of VN using IPP software depending on the INRG clinical and biological variables. 
The median value is shown. Variables in grey means that median is not statistically significant; colored variables show 
significant statistical relationship; dark colour of the INRG category is the group that presents the high median value. 
L1 and L2: localized and MS: special metastatic; M: metastatic; Hist. C.: histopathologic category; GN:ganglioneuroma; 
nGNB: ganglioneuroblastoma nodular; NB: neuroblastoma; Hist. D: histopathologic differentiation; dNB: 
differentiating neuroblastoma; pdNB: poorly differentiated neuroblastoma; uNB: undifferentiated neuroblastoma; 
NOS was excluded from statistical analysis; MNNA: MYCN non-amplified; MNA: MYCN amplified; ND: non deletion; 
D: deletion; NG: no gain;G: gain;  Gen. Profile: genetic profile; NCA: numerical chromosomal aberration; SCA: 
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segmental chromosomal aberration; Hiperp.: Hiperploid; Dip.: diploid; Tetrap.:tetraploid; HR: High-risk; Gen. 
Instab.:genetic instability. 

 

 

Figure 13. Distribution of the amount of VN using DensitoQ. software depending on the INRG clinical and biological 

variables. Data obtained through DensitoQuant module from Pannoramic MIDI software. The median value is shown. 

Variables in grey means that median is not statistically significant; colored variables show significant statistical 

relationship; dark colour of the INRG category is the group that presents the high median value; %SA: percentage of 

stained area. L1 and L2: localized and MS: special metastatic; M: metastatic; Hist. C.: histopathologic category; 

GN:ganglioneuroma; nGNB: ganglioneuroblastoma nodular; NB: neuroblastoma; Hist. D: histopathologic 

differentiation; dNB: differentiating neuroblastoma; pdNB: poorly differentiated neuroblastoma; uNB: 

undifferentiated neuroblastoma; NOS was excluded from statistical analysis; MNNA: MYCN non-amplified; MNA: 

MYCN amplified; ND: non deletion; D: deletion; NG: no gain; G: gain;  Gen. Profile: genetic profile; NCA: numerical 

chromosomal aberration; SCA: segmental chromosomal aberration; Hiperp.: Hiperploid; Dip.: diploid; 

Tetrap.:tetraploid; HR: High-risk; Gen. Instab.:genetic instability. 

 

Table 5. Results of the correlation between the morphometric data obtained after two algorithm customization in 

different softwares. 

 

 

 

 

 

 

SA: stained area; VN: vitronectin. 

 

 

Parameter 
Spearman´s 
correlation 

p-value 

%SA 
Interterritorial VN and weak pixels 

0.260 0.031 

%SA 
Interterritorial VN and moderate pixels 

0.785 0.000 

%SA 
Territorial VN and strong pixels 

0.896 0.000 

%SA 
Interterritorial and H-score 

0.757 0.000 

%SA 
Territorial VN and  H-score 

0.814 0.000 
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Table 6. Correlation between the subjective scoring and the morphometric data. The mean % of stained area is 

shown. 

SA: stained area; VN: vitronectin. 

 

-Morphometric and topologycal features to obtained and ECM patterns 

section 

Obtention of morphometric categories variables 

Regarding our findings, the % SA of GAGs, as a low amount of this element was found in NB 

patients with poor prognosis, we differentiated the following categories: good: > % SA of GAGs 

over the median value, intermediate: ≤median and ≥1 (first quartile), and bad: values below 1% 

of SA. For reticulin and blood/lymph vessels as you can find in publications and in the table 7, 

we had 3 parameters, and for lymph vessels only 2, in case of reticulin: when length/dendrites 

were below and in case of width over the median values, were related to poor prognosis. In 

blood/lymph vessels when the 3 or 2 parameters, respectively  were over the median were 

associated with poor outcome, then  we distinguished: good: when the parameters have a value 

related to good prognosis (in reticulin: length and dendrites over the median, and width under 

the median or in blood/lymph vessels  when all parameters below the median), intermediate: 

only 1 parameter is related to poor prognosis as long as it was not that presented the highest 

Exp (B) value,  for the 3 elements, and bad: when the respective element (in lymph vessels is 

only possible 2), presented 2 or more parameters related to poor prognosis. 

As for VN, as you know a high %SA of territorial VN is associated with poor prognosis, we 

discriminated: good: when the %SA is under the median value, intermediate: %SA is below the 

third quartile, bad: %SA over the third quartile. 

With regard, the immune system, our studies showed that a high infiltraction of CD68 and 

CD163 (over the median) together with a low infiltration of CD11c (under the median) were 

related to poor prognosis, so: good: when the infiltration of macrophages were low and high 

infiltration of DCs, intermediate: when only one variable was related to poor outcome and bad: 

when two o more variables are associated to poor prognosis. And finally, with regard to stem 

cells, we have observed that a high amount of positive cells of the previously named markers 

are correlated with poor outcome (all the markers over the median, except for CD105 that we 

Subjective score 
%SA 

Interterritorial 
VN 

%SA 
Territorial VN 

Weak Moderate Strong H-score 

Negative (0) 0.25±0.23 0.06±0.04 0.16±0.10 1.30±1.30 0.40±0.40 6.3±3.5 

Weak-Moderate(1+-2+)     8.8±7.25 1.40±2.40 1.90±2.70 32.55±22.35 7±10.70 85.90±63.40 

Strong (3+)  24±10.80 7.40±5.70 1.10±0.90 53.90±20.20 30.25±22.20 199.10±38.25 
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have used the third quartile). Then, we discriminate among: good: when all the variables are 

connected to grate prognosis, intermediate: when one variable was related to poor outcome, 

and bad: two or more variables were related to unsuccessful outcome. 

-In vivo experiments section 

Genotyping protocol 

The genotype of each animal (total 122 animals) was determined by PCR of the genomic DNA 

extracted from ear tissue fragments at 21 days of age. By using the Maxwell® 16 FFPE Plus LEV 

DNA Purification Kit (Promega). To perform the PCR, we followed  the cycling steps by The 

Jackson Laboratory protocol since we purchased the animals from this repository (B6.129S7-

Rag1tm1Mom/J and B6.129S2 (D2)-Vtntm1Dgi/J)  and the  primers that were used: 

 

- VN - / - strain: 

 

-RAG1-/- strain: 

 

There is a common forward primer for both alleles, and two reverse primers, one for the wild-

type allele and one for the mutant allele. After a 38 cycle reaction, the amplification product for 

the VN strain is for the wild-type 393 bp allele and for the 250 bp mutant allele. While for the 

RAG1 strain after 38 cycles, the amplification product for the wild-type allele is 192 bp and for 

the mutant allele 197 bp. 

https://www.jax.org/strain/002216
https://www.jax.org/strain/002216
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Electrophoresis results of VN in different mice:  samples lanes 2-6 and 8-11 were mutant and lane 12 was wild type. 

 

 

Electrophoresis results of RAG1 in different mice:  samples lanes 1,3,6,7 and 10 were heterozygous. Lanes 2,4,9 and 

12 were mutant and lanes 5 and 8 were wild type. 
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Table 13. Description of data and p-valuues related to metasatasis and adjacent implant presence in MNA and MNNA-

derived xenografts.  

 

In white the MNA-derived xenografts are marked, and in light grey the MNNA-derived xenograft. Chi-square test 

used to compare the number of positive implants and metastasis. P-values in the columns refer to the comparison 

within the same mouse background but different passage, while p-values in the rows compare different background 

within the same passage. *(p-values<0.05). 

 

Table 14. Description of data and p-values related to % of neuroblastic cells in MNA and MNNA-derived xenografts. 

 

In white the MNA-derived xenografts are marked, and in light grey the MNNA-derived xenografts. Chi-square test 

was used to compare the number of neuroblastic cells. P-values in the columns refer to the comparison within the 

same mouse background but different passage, while p-values in the rows compare different background within the 

same passage. 
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Table 15. Description of data and p-values related to % of necrosis in MNA and MNNA-derived xenografts. 

 

In white the MNA-derived xenografts are marked, and in light grey the MNNA-derived xenografts. Chi-square test 

was used to compare the amount of necrosis. P-values in the columns refer to the comparison within the same 

mouse background but different passage, while p-values in the rows compare different background within the same 

passage. 

 

Table 16. Description of data and p-values related to % of hemorrhagic areas in MNA and MNNA-derived 

xenografts. 

 

In white the MNA-derived xenografts are marked, and in light grey the MNNA-derived xenografts.  Chi-square test 

was used to compare the amount of hemorrhagic areas. P-values in the columns refer to the comparison within the 

same mouse background but different passage, while p-values in the rows compare different background within the 

same passage 
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