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Preface

The forces and particle content of nature are described by the Standard Model (SM) of

particle physics. This model was developed in the later half of the 20th century thanks

to the progress at the theoretical aspects and the confirmation of the predicted particles

at experiments and colliders. The discovery of the Higgs boson in 2012 represented a

crucial confirmation of the model and initiated an age of exploration at the Large Hadron

Collider (LHC). Even though the success of the SM was confirmed, some theoretical and

experimental issues seem to indicate that this cannot be the ultimate theory. In this thesis,

some of the paths indicating deviations from the SM will be followed.

After a general overview of the SM in Chapter 1, a set of simple extensions of the

scalar sector of the SM will be presented in Chapter 2, namely the N-Higgs doublet models

(NHDMs), containing N Higgs doublets with the same quantum numbers as the SM one.

These models present non-diagonal Yukawa couplings, which cannot be accommodated

experimentally and therefore need to be suppressed. The most general way for suppress-

ing such non-diagonal interactions is tree-level alignment in flavour space, described in

Chapter 2. Flavour alignment is broken at loop level, due to quantum corrections. This

is studied in Chapter 6, where we show that models are phenomenologically safe after

including these corrections. Then, in Chapter 7 a global fit of a CP-conserving NHDM

with N = 2 doublets will be performed, including several theoretical, electroweak, flavour

and Higgs observables. The fit will be performed with the code HEPfit, presented in

Chapter 5.
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The second path that will be explored are the charged B-anomalies. These anoma-

lies are deviations with respect to the SM predictions in b → c transitions, with the

ones appearing in the ratios RD and RD∗ being the most interesting. After a general

overview of the transitions and relevant observables in Chapter 4, two different effective

field theory (EFT) fits will be performed in Chapter 8. In the first one, the most general

Hamiltonian containing dimensions-six operators is considered, working with a minimal

set of assumptions: new physics is only present in the third generation of leptons, the

CP-conserving limit is taken, there are no light right-handed neutrinos and electroweak

symmetry breaking is linearly realized. Later, the last two assumptions are relaxed, and

fits are extended to include operators appearing from non-linear symmetry breaking and

operators describing right-handed neutrinos. The EFT approach, followed in the fits, is

described in Chapter 3.

Finally, the electroweak top and bottom quark couplings will be studied in Chapter 9.

In this chapter, we will present a global fit to the relevant effective electroweak dimension-

six operators, performed using HEPfit. Bounds will be discussed for these operators using

LEP/SLC and LHC data. In addition, prospects on future colliders such as the high-

luminosity phase of the LHC and ILC have been set. The top-quark Yukawa coupling will

be studied in detail, which leads to a percent-level determination.



Chapter 1

The Standard Model

The Standard Model [1–4] is the best and simplest theory we have to describe elementary

particles and their interactions. It is built under symmetry assumptions, so its particle

content, the fields of the SM can be classified into 1/2 spin representations fermions (quarks

and leptons), and bosons corresponding either to spin 0 (Higgs boson) or to spin 1 (weak

bosons W±, Z0, photon γ and gluons g). The SM is a local or gauge theory under the

group SU(3)C ⊗ SU(2)L ⊗ U(1)Y , and therefore the nature of the different weak, strong

and electromagnetic interactions is related to the symmetry principles of this group. For

a review of the SM read [5, 6].

1.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) 1 is a non-Abelian gauge theory based on the symmetry

group SU(3)C [8–11] that describes the interaction between the quarks and the gauge

bosons of the theory, the gluons. Quarks can carry six different flavours (up, down, charm,

strange, top and bottom) and NC = 3 possible colour charges.

1See [7] for futher details about QCD.
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4 The Standard Model

The free Lagrangian of QCD will take the form,

L0 =
∑
f

q̄f (iγµ∂µ −mf )qf , (1.1.1)

where qαf represents the field of a quark with colour α and flavour f and we have adopted a

vector notation in colour space qTf ≡ (q1
f , q

2
f , q

3
f ). The Lagrangian in Eq. (1.1.1) is invariant

under a global SU(3)C transformation,

qαf
SU(3)−−−−→ (qαf )′ = Uαβ q

β
f , UU † = U †U = 1 , detU = 1 , (1.1.2)

where U represents a SU(3)C matrix,

U = exp
{
i
λa
2 θa

}
, (1.1.3)

and λa, a = (1, ...8) are the Gell-Mann matrices, which are the generators of the group in

the fundamental representation. They are traceless, Tr(λa) = 0, and satisfy the commu-

tation relations,

[
λa
2 ,

λb
2

]
= ifabc

λc
2 , (1.1.4)

where fabc are totally antisymmetric structure constants of SU(3)C and θa are arbitrary

parameters. Requiring the QCD Lagrangian to be invariant under local SU(3)C transfor-

mations, i.e θa = θa(x), the quark fields are transformed as,

qαf
SU(3)C−−−−−→

(
qαf

)′
= Uαβ q

β
f ≈ q

α
f + i

(λa
2
)
αβ
δθa q

β
f . (1.1.5)

To keep the invariance under SU(3)C the gauge principle must be applied and new

terms must be added to the Lagrangian of Eq. (1.1.1). These new pieces come from the

replacement of the usual derivatives by covariant derivatives,

Dµqf =
[
∂µ + igs

λa
2 G

µ
a(x)

]
qf ≡

[
∂µ + igsG

µ(x)
]
qf , (1.1.6)

and from the N2
C − 1 = 8 new gauge bosons, the gluons, Gµa , carrying colour a.



1.1 Quantum Chromodynamics 5

The infinitesimal transformations of the quark fields are given by Eq. (1.1.5) while for

gluon fields,

Gµa
SU(3)C−−−−−→ (Gµa)′ = Gµa −

1
gs
∂µ(δθa)− fabc δθbGµc . (1.1.7)

Now one can rewrite the corresponding gauge-invariant kinetic term,

LQCD = −1
4G

µν
a Gaµν +

∑
f

qf (iγµDµ −mf )qf , (1.1.8)

where Gµνa are the fields strengths,

Gµν(x) ≡ − i

gs
[Dµ, Dν ] = ∂µGν − ∂νGµ + igs[Gµ, Gν ] ≡ λa

2 G
µν
a (x) , (1.1.9)

Gµνa (x) = ∂µGνa − ∂νGµa − gsfabcG
µ
bG

ν
c ,

transforming as

Gµν
SU(3)C−−−−−→ (Gµν)′ = UGµνU † . (1.1.10)

Since gauge invariance forbids adding a mass term for the gluon fields, they will remain

as massless spin-1 particles. Expanding the Lagrangian of Eq. (1.1.8),

LQCD = − 1
4(∂µGνa − ∂νGµa)(∂µGaν − ∂νGaµ) +

∑
f

q̄αf (iγµ∂µ −mf ) qαf

− gsG
µ
a

∑
f

q̄αf γ
µ
(
λa
2

)
αβ
qβf

+ gs
2 f

abc (∂µGνa − ∂νGµa)GbµGcν −
g2
s

4 f
abcfadeG

µ
bG

ν
cG

d
µG

e
ν , (1.1.11)

one can identify quadratic terms giving the propagators, the interaction terms between

gluons and quarks and the gluon self interactions, appearing due to the non-Abelian

character of the theory. Such interactions are summarized in Fig. 1.1.
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Gaµ

gs
λαβ

2 γµ

qα qβ

Gaµ

Gbν

Gcσ

gsfabc

Gaµ Gbν

GcσGdρ g2
sfabcfade

Figure 1.1: Cubic and quartic interaction vertices of the QCD Lagrangian. Gluons and

quarks are denoted as green and blue lines respectively.

1.2 Electroweak unification

Weak interactions are described by the Electroweak Standard Model (EWSM), based on

the symmetry group G ≡ SU(2)L ⊗ U(1)Y [1–3]. The EWSM contains left and right-

handed fields interacting through spin-1 mediators: massless photon, γ, and massive weak

bosons, W± and Z0.

The fermionic sector of the SM consists of three families of quarks and leptons that

only differs in their masses and flavour quantum numbers,

1st generation:

νe u

e− d′

 , 2nd generation:

νµ c

µ− s′

 , 3rd generation:

ντ t

τ− b′

 .
In this notation the left column of a given matrix represents the lepton sector of each

generation. The first elements are the neutrinos and the second ones are the charged

leptons. The right column represents the quark sector with up quarks as first elements

and down quarks as second ones. Taking any of these families for quarks we have,

Q1(x) =

qu
qd


L

, Q2(x) = quR , Q3(x) = qdR , (1.2.12)

and for leptons,

L1(x) =

ν`
`−


L

, L2(x) = `−R . (1.2.13)
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The quantum numbers of these fields under SU(3)C ⊗ SU(2)L ⊗ U(1)Y are,

Q1(x) = (3, 2,+1/6) , Q2(x) = (3, 1,+2/3) , Q3(x) = (3, 1,−1/3) ,

L1(x) = (1, 2,−1/2) , L2(x) = (1, 1,−1) . (1.2.14)

The free Lagrangian,

L0 = i
3∑
j=1

Q̄j(x)γµ∂µQj(x) + i
2∑
j=1

L̄j(x)γµ∂µLj(x) , (1.2.15)

is invariant under global G transformations of the fields,

Q1(x) G−−→ Q′1(x) ≡ exp {iyq1β} ULQ1(x) ,

Q2,3(x) G−−→ Q′2,3(x) ≡ exp {iyq2,3β} Q2,3(x) ,

L1(x) G−−→ Q′1(x) ≡ exp {iy`1β} ULL1(x) ,

L2(x) G−−→ L′2(x) ≡ exp {iy`2β} L2(x) , (1.2.16)

where the exponential part of Eq. (1.2.16) represents the transformation under the group

U(1)Y and the parameters yq,`i are the hypercharges. The part corresponding to the

SU(2)L group is related to the non-abelian matrix transformation UL,

UL ≡ exp{iσi2 α
i} , (1.2.17)

where σi are the Pauli matrices and UL only acts on the left-handed components. Requiring

the Lagrangian to be also invariant under local transformations, αi = αi(x) and βi = βi(x)

there will appear four vector bosons: three W i
µ (one for each SU(2)L generator) and Bµ

for the U(1)Y generator. The following covariant derivatives need to be introduced,

DµQ1(x) ≡
[
∂µ + igW̃µ(x) + ig′yq1Bµ(x)

]
Q1(x) ,

DµQ2,3(x) ≡
[
∂µ + ig′yq2,3Bµ(x)

]
Q2,3(x) ,

DµL1(x) ≡
[
∂µ + igW̃µ(x) + ig′y`1Bµ(x)

]
L1(x) ,

DµL2(x) ≡
[
∂µ + ig′y`2Bµ(x)

]
L2(x) , (1.2.18)
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where W̃µ(x) ≡ σi
2 W

i
µ(x).

The covariant derivative fixes the transformation of the gauge fields,

Bµ(x) G−−→ B′µ(x) ≡ Bµ(x)− 1
g′
∂µβ(x) ,

W̃µ(x) G−−→ W̃ ′µ(x) ≡ ULW̃µ(x)U †L + i

g
∂µUL(x)UL(x)† . (1.2.19)

Finally one should add the kinetic term for gauge bosons,

Lkin = −1
4BµνB

µν − 1
2Tr

[
W̃µνW̃

µν
]

= −1
4BµνB

µν − 1
4W

i
µνW

µν
i , (1.2.20)

where the field strengths have been introduced,

Bµν ≡ ∂µBν − ∂νBµ ,

W̃µν ≡ − i
g

[(
∂µ + igW̃µ

) (
∂ν + igW̃ν

)]
= ∂µW̃ν − ∂νW̃µ + ig[W̃µ, W̃ν ] ,

W̃µν ≡ σi
2 W

i
µν ,

W i
µν = ∂µW

i
ν − ∂νW i

µ − gεijkW j
µW

k
ν . (1.2.21)

The field strengths transform as,

Bµν
G−−→ Bµν , W̃µν

G−−→ ULW̃µνU
†
L . (1.2.22)

Since the field strengths of Eq.(1.2.20) contain quadratic pieces, Lkin will contain cu-

bic and quartic self-interactions between the gauge bosons. Mass terms for bosons are

forbidden, since they would break gauge symmetry. Fermion mass terms would imply

interaction between left and right-handed fields, with different transformation properties

and therefore are also forbidden.

The EWSM Lagrangian takes the form,

LEWSM = −1
4BµνB

µν − 1
4W

i
µνW

µν
i + i

∑
j

(
Q̄j /DQj + L̄j /DLj

)
, (1.2.23)

and contains charged, neutral and self-interactions that will be described in the following

sections.
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W

qd qu
g

23/2 (1− γ5)

W

`− ν`
g

23/2 (1− γ5)

Figure 1.2: Charged-current interaction vertices for quarks (left panel) and leptons (right

panel) described in Eq. (1.2.26). Fermions and bosons are described as solid blue and

brown wavy lines respectively.

1.2.1 Charged-current interactions

The EWSM contains terms that allow the interaction between fermions and bosons,

LEWSM ⊂ − g Q1(x)γµW̃µQ1(x)− g′ Bµ
3∑
j=1

Qj(x)γµQj(x)

− g L1(x)γµW̃µL1(x)− g′ Bµ
3∑
j=1

Lj(x)γµLj(x) . (1.2.24)

These interactions can be classified into charged and neutral currents by expanding the

W̃µ terms,

W̃µ = σi

2 W
i
µ = 1

2

 W 3
µ

√
2W †µ

√
2Wµ −W 3

µ

 , (1.2.25)

where the charged-current contribution will be due to the term W †µ ≡ (W 1
µ − iW 2

µ)/
√

2,

and W 3
µ will contribute to the neutral currents, as we will see in the next section. The

Lagrangian of the charged currents, for any family of quarks and leptons is,

LCC = − g

2
√

2

{
W †µ[ūγµ(1− γ5)d+ ν`γ

µ(1− γ5)`−] + h.c.
}
. (1.2.26)

and it will give rise to the vertices of Fig. 1.2.
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1.2.2 Neutral-current interactions

The Lagrangian of Eq. (1.2.24) also contains neutral current interactions, that will come

both from the interactions with W 3
µ and Bµ.

Given that the photon interacts in the same way with both fermion chiralities, the field

Bµ cannot be equal to the electromagnetic field. It should be an arbitrary combination of

W 3
µ and Bµ,

W 3
µ

Bµ

 =

 cos θW sin θW
− sin θW cos θW


Zµ
Aµ

 , (1.2.27)

and the neutral-current Lagrangian can be expressed in terms of these fields,

LNC = −
∑
j

Q̄j(x)
{
/A

[
g
σ3
2 sθW + g′yqj cθW

]
+ /Z

[
g
σ3
2 cθW − g′y

q
j sθW

]}
Qj

−
∑
j

L̄j(x)
{
/A

[
g
σ3
2 sθW + g′y`jcθW

]
+ /Z

[
g
σ3
2 cθW − g′y`jsθW

]}
Lj .

(1.2.28)

where cθW ≡ cos θW and sθW ≡ sin θW .

To recover the Quantum Electrodynamics (QED) Lagrangian from the Aµ piece one

must impose,

g sin θW = g′ cos θW = e , Y = Q− T3 , (1.2.29)

where the electromagnetic charge operator, Q, is expressed as:

Q1 =

Qu/ν 0

0 Qd/e

 , Q2 = Qu/ν , Q3 = Qd/e , (1.2.30)

and T3 ≡ σ3
2 .

The form of the hypercharge, Y , is derived from the fact that it should be a linear com-

bination of Q and T3 and the requirement that it commutes with the involved operators.

The relation of Eq. (1.2.29) fixes the hypercharge of the fermions:
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Quarks: yq1 = Qu − 1
2 = Qd + 1

2 = +1
6 , yq2 = Qu = +2

3 , yq3 = Qd = −1
3 ,

Leptons: y`1 = Qν − 1
2 = Qe + 1

2 = −1
2 , y`2 = Qν = 0, y`3 = Qe = −1.

The neutral-current Lagrangian, containing the interactions of Fig. 1.3 reads,

LNC = LQED + LZNC , (1.2.31)

where the first term is the QED Lagrangian,

LQED = −e Aµ
∑
j

ψ̄jγ
µQjψj ≡ −eAµJµem , (1.2.32)

and the second one the Lagrangian describing the interactions between the Z-boson and

the quarks,

LZNC = − e

2 sin θW cos θW
JµZZµ ,

JµZ ≡
∑
j

ψ̄jγ
µ(σ3 − 2 sin2 θWQj)ψj = Jµ3 − 2 sin2 θWJ

µ
em . (1.2.33)

The former can be rewritten in terms of the fermion fields

LZNC = − 2
2 sin θW cos θW

Zµ
∑
f

f̄γµ(vf − afγ5)f , (1.2.34)

where af = T f3 and vf = T f3 (1− 4|Qf | sin2 θW ).

1.2.3 Gauge self-interactions

The Lagrangian of Eq. (1.2.20) also contains cubic and quartic self-interactions between

the gauge bosons,

L3 = ie
{

cot θW
[
(∂µW ν − ∂νWµ)W †µZν − (∂µW ν† − ∂νWµ†)WµZν +WµW

†
ν (∂µZν − ∂νZµ)

]
+ (∂µW ν − ∂νWµ)W †µAν − (∂µW ν† − ∂νWµ†)WµAν +WµW

†
ν (∂µAν − ∂νAµ)

}
, (1.2.35)
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γ

f f

eQf

Z

f f
e

2 sθW cθW
(vf − afγ5)

Figure 1.3: Neutral-current interaction vertices for quarks (left panel) and leptons (right

panel) described in Eq. (1.2.34). Fermions and bosons are described as solid blue and

brown wavy lines respectively.

γ, Z

W+

W−

W+

W−

W+

W−

W+

W−

γ, Z

γ, Z

Figure 1.4: Self-interaction vertices of the gauge bosons described in the Lagrangians of

Eq. (1.2.35) and (1.2.36). Bosons are described as brown wavy lines.

and

L4 = −e2
{ 1

2 sin2 θW

[(
W †µW

µ
)2
−W †µWµ†WνW

ν
]

+ cot2 θW
[
W †µW

µZνZ
ν −W †µZµWνZ

ν
]

+ cot θW
[
2W †µWµZνA

ν −W †µZµWνA
ν −W †µAµWνZ

ν
]

+
[
W †µW

µAνA
ν −W †µAµWνA

ν
]}

. (1.2.36)

Such interactions generate cubic and quartic vertices as summarized in Fig. 1.4.

1.3 Spontaneous Symmetry Breaking

In our description of Electroweak unification gauge bosons are massless particles, while

experimental results show that W± and Z should be massive bosons.
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|ϕ|

V(|ϕ|)

φ�

φ�

|ϕ|

V(|ϕ|)

Figure 1.5: Potential for the two different values of µ2. The left panel shows the case in

which the potential has only one minimum, while in the right panel there is an infinite

number of degenerate minima. In the last case ϕ1 and ϕ2 are the fields parametrizing

excitations over the ground state.

To generate masses, we need to break gauge symmetry through spontaneous symmetry

breaking (SSB) [12–16]. In this process the Lagrangian is invariant under a group of

transformations that has a degenerate set of states with minimal energy. The fact of

selecting one of these states as the ground state will spontaneously break the symmetry,

leading to the appearance of new spin-0 massless particles, the Goldstone bosons that then

will give mass to our vector bosons through the Higgs mechanism.

1.3.0.1 Goldstone Theorem

To illustrate the main idea of the Goldstone theorem, let’s consider a complex scalar field,

φ(x), and the following Lagrangian,

L = ∂µφ
†(x)∂µφ(x)− V (φ) , V (φ) = µ2φ†φ+ h(φ†φ)2 , (1.3.37)

where L is invariant under a global phase transformation,

φ(x)→ φ′(x) = eiθ φ(x) . (1.3.38)

The parameter h should be positive for the potential to be bounded from below. Depending

on the sign of µ2 two different possibilities will arise, as it can be seen in Fig. 1.5:
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• 1. µ2 > 0: The only minimum of V (φ) is φ = 0.

• 2. µ2 < 0: There is an infinity set of degenerate minima (φ0(x)) satisfying the

condition |φ0(x)| =
√
−µ2

2h = v√
2 .

We will focus in case 2, in which there is a degenerate set of minima. If we choose one

of these minima, for instance, φ0(x) = v√
2 , the symmetry gets spontaneously broken. The

field φ(x) can be parametrized as excitations over the ground state,

φ(x) = 1√
2

(
v + ϕ1(x) + i ϕ2(x)

)
, (1.3.39)

where ϕ1 and ϕ2 are real fields.

Parametrizing the potential in this way it reads,

V (φ) = V (φ0)− µ2 ϕ2
1 + h vϕ1 (ϕ2

1 + ϕ2
2) + h

4 (ϕ2
1 + ϕ2

2)2 , (1.3.40)

where ϕ1 describes a state with mass m2
ϕ1 = −2µ2, and ϕ2 is massless and describes ex-

citations around the flat direction of the potential with same energy (ground state). This

is a general result, known as Goldstone Theorem [16, 17]:

If a Lagrangian is invariant under a continuous symmetry group G, but the vacuum

is only invariant under a subgroup H ⊂ G, then there must exist as many massless spin-

0 particles (Nambu-Goldstone bosons) as broken generators ( i.e. generators of G which

don’t belong to H) .

1.3.0.2 Higgs Boson

The process of SSB described in the previous section seems to be useless to generate masses

for the gauge bosons. However, once one studies the SSB of a local theory the problem is
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solved. Let’s start building a scalar Lagrangian. The simplest way to do this is to consider

a SU(2)L doublet of complex scalar fields,

φ(x) =

φ(+)(x)

φ(0)(x)

 , (1.3.41)

and a gauged scalar Lagrangian invariant under SU(2)L ⊗ U(1)Y transformations,

Ls = (Dµφ)†Dµφ− µ2φ†φ− h(φ†φ)2 , (h > 0, µ2 < 0) ,

Dµφ =
{
∂µ + igW̃µ + ig′yφB

µ
}
φ , yφ = Qφ − T3 = 1

2 . (1.3.42)

The coupling between φ(x) and Aµ(x) fixes the value of the hypercharge.

Looking for the minimum of the potential,

∂V

∂|φ|
= 0→ |φ0(x)| =

√
−µ2

2h . (1.3.43)

Only the neutral component of the doublet will acquire a vacuum expectation value (vev),

| 〈0|φ |0〉 | =

 0

| 〈0|φ(0) |0〉 |

 =

 0√
−µ2

2h

 . (1.3.44)

Eq. (1.3.44) is satisfied by an infinite set of states differing by a phase. Once a particular

ground state is chosen,

〈0|φ(0) |0〉 =

√
−µ2

2h ≡
v√
2
, (1.3.45)

the SU(2)L ⊗ U(1)Y symmetry gets broken to the electromagnetic group U(1)Q, which

remains a symmetry of the vacuum.

The four generators of G are the three generators for SU(2)L, σi2 and the generator of

U(1)Y , Y . The generator of the group U(1)Q into which G gets broken is Q. A generator

is broken if Ta 〈0|φ(0) |0〉 6= 0,
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T1 〈0|φ(0) |0〉 = σ1
2 〈0|φ

(0) |0〉 = 1
2
√

2

v
0

 6= 0 ,

T2 〈0|φ(0) |0〉 = σ2
2 〈0|φ

(0) |0〉 = − i

2
√

2

v
0

 6= 0 ,

T3 〈0|φ(0) |0〉 = σ3
2 〈0|φ

(0) |0〉 = 1
2
√

2

 0

−v

 6= 0 ,

Y 〈0|φ(0) |0〉 = I

2 〈0|φ
(0) |0〉 = 1

2
√

2

0

v

 6= 0 ,

Q 〈0|φ(0) |0〉 = (Y + T3) 〈0|φ(0) |0〉 =

0

0

 . (1.3.46)

The Goldstone Theorem would imply the existence of three massless particles, the

Goldstone bosons. However, if we parametrize our doublet considering excitations over

the physical vacuum,

φ(x) = exp
{
i
σi
2 θ

i(x)
} 0

v+H(x)√
2

 , (1.3.47)

and then using local SU(2)L invariance we choose a particular gauge for which θi(x) = 0,

the Goldstone bosons θi(x) disappear. Consequently, the three massless Goldstone bosons

are eliminated from the Lagrangian by a local gauge transformation and their three degrees

of freedom become the longitudinal polarization of the gauge bosons W± and Z, which

acquire mass as it can be seen at the kinetic part of the Lagrangian,

Lkin = 1
2

{
(∂µH)(∂µH) + (v +H)2

(g2

4 W
†
µWµ + g2

8 cos2 θW
ZµZ

µ
)}

. (1.3.48)
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In the Lagrangian of Eq. (1.3.48) the Goldstone bosons have already been eliminated.

This particular choice of the gauge θi(x) = 0 is known as the unitary gauge. The vev of

the neutral scalar doublet has generated a mass term for the gauge bosons W± and Z,

MZ cos θW = MW = 1
2vg , (1.3.49)

Since Q is an unbroken generator, the photon remain massless, and there is a new

scalar particle: the Higgs boson.

It is often said that the Goldstone bosons have been “eaten” by the gauge bosons,

meaning that the degrees of freedom of the Goldstones have been eliminated and gauge

bosons have acquired a new degree of freedom, the longitudinal mode.

The Lagrangian that describes this new particle, the Higgs boson is:

LS = 1
4hv

4 + LH + LHG2 , (1.3.50)

where

LH = 1
2∂µH∂

µH − 1
2M

2
HH

2 − M2
H

2v H
3 − M2

H

8v2 H
4 ,

LHG2 = M2
WW

†
µW

µ

{
1 + 2

v
H + H2

v2

}
+ 1

2M
2
ZZµZ

µ

{
1 + 2

v
H + H2

v2

}
.(1.3.51)

Eq. (1.3.51) determines the Higgs mass,

MH =
√
−2µ2 =

√
2hv . (1.3.52)

and the couplings that can be seen in Fig. 1.6.

1.3.0.3 Yukawa sector

Once we have introduced the Higgs doublet the right structures to give mass to the fermions

can be formed. The forbidden structures by gauge invariance, that would give mass are of

the form ψψ = ψLψR + ψRψL, with quantum numbers under (SU(3)C , SU(2)L, U(1)Y ),
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Z
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W+

W− H

H
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Figure 1.6: Coupling between the Higgs boson (black dashed lines) and the gauge bosons

(brown wavy lines). The vertices can be obtained from Eqs. 1.3.51.

LL =
(

1, 2,−1
2

)
, eR = (1, 1,−1), uR =

(
3, 1,+2

3

)
,

QL =
(

3, 2,−1
6

)
, νeR = (1, 1, 0) , dR =

(
3, 1,−1

3

)
. (1.3.53)

Combing these fields with the Higgs doublet with quantum numbers φ =
(
1, 2, 1

2

)
the

gauge-invariant structures can be formed (assuming the non-existence of right-handed

neutrinos, nueR),

LY = −
{
c1Q̄L φdR − c2 Q̄L φ

c uR − c3L̄L φ eR
}

+ h.c. , (1.3.54)

where ci are arbitrary parameters and the second term contains the C-conjugate scalar

field, φc ≡ iσ2φ
∗, which in the unitary gauge takes the form,

φc = 1√
2

v +H(x)

0

 . (1.3.55)

The mass of the fermions is generated through the vev of the Higgs doublet,

LY = −
{ 1√

2
(v +H)(c1 d̄ d+ c2 ū u+ c3 ē e)

}
= −

(
1 + H

v

)
(md d̄ d+mu ū u+me ē e) .

(1.3.56)
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H

f

f̄

mf
v

Figure 1.7: Higgs coupling (black dashed line) to the fermions (blue solid line). The

couplings are related to the masses through the vev.

where

md = c1
v√
2
, mu = c2

v√
2
, me = c3

v√
2
. (1.3.57)

The values of ci are arbitrary, and the couplings of the fermions with the Higgs boson

are fixed by the masses, as we can see in Fig. 1.7 and Eq. (1.3.57).

1.3.0.4 Yukawa coupling for three generations

The existence of six quark flavours (u, d, c, s, t, b), three charged leptons (e, µ, τ) and their

corresponding neutrinos (νe, νµ, ντ ) is an experimental and well-proved fact. These par-

ticles are often classified into first (u, d, e, νe), second (c, s, µ, νµ) and third generation

(t, b, τ, ντ ). Since the particles of the second and third generation have the same quantum

numbers and only differ in their masses, we can add more terms to the Lagrangian of

Eq. (1.3.57),

LY = −
(
Q̄′LM′

d φd′R + Q̄′L M′
u φ

c u′R + L̄′LM′
` φ `

′
R

)
+ h.c , (1.3.58)

where d′R, u′R, `′R, Q̄′L and L̄′L are vectors in the 3-dimensional flavour space, and M′
d, M′

u

and M′
` are arbitrary matrices. These non-diagonal mass matrices introduce a total of 54

parameters, in addition to the non-conservation of lepton number. Since the Lagrangian

(but LY ) is invariant under U(3)QL ⊗ U(3)uR ⊗ U(3)dR ⊗ U(3)LL ⊗ U(3)`R (often called

Weak Basis Transformation) we can perform transformations in the fermionic fields to

reduce the number of parameters,
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Q′L →UQ Q′L ≡ QL , L′L → U` L′L ≡ LL ,

d′R → Ud d′R ≡ dR , u′R → Uu u′R ≡ uR , `′R →UR `
′
R ≡ `R .

It is convenient to choose a transformation such that the maximum number of param-

eters of the matrices is reduced, i.e, making them diagonal.
v√
2
U†QM′

dUd = Md ,

v√
2
U†QM′

uUd = Mu ,

v√
2
U†LM′

`UR = M` ,

where Mu and M` are diagonal, positive defined matrices and Md is an hermitian and

positive defined matrix. The latter will contain non-diagonal elements responsible of the

mixture between left-handed up and down quarks in the weak interaction. To diagonalize

this matrix we can perform an SU(3) transformation,

dR → VCKM dR , dL → VCKM dL. (1.3.59)

The resulting mass matrices of our Yukawa Lagrangian will be diagonal

LY = −
(

1 + H

v

)
(dLMddR + uLMuuR + `LM``R + h.c) . (1.3.60)

The neutral current Lagrangian, described in Eq. (1.2.31) will remain flavour invariant

at tree level, while charged current interactions will change flavour,

LCC = − g√
2

W †µ
∑
i,j

ūiγ
µ(1− γ5)Vijdj +

∑
`

ν̄`γ
µ(1− γ5)`

+ h.c.

 . (1.3.61)

The resulting charged current Lagrangian contains the so-called Cabibbo-Kobayashi-Maskawa

(CKM) matrix, VCKM,

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (1.3.62)

which describes the flavour mixing in charged currents.



Chapter 2

The aligned N-Higgs doublet

model

The existence of a Higgs-like boson with mass around 125 GeV was proven by the ATLAS

and CMS collaborations of the LHC [18, 19] in 2012. This particle was already predicted

by the SM and therefore it is well explained within the theory [12–14]. However one can go

beyond the minimal content of the SM and enlarge the scalar sector adding extra Higgs-like

particles. Extended models of perturbative EWSM containing scalar fields transforming

as singlets or doublets under the SU(2)L group with Y = 1/2 satisfy the successful mass

relation MW = MZ cos θW and can fulfil all electroweak precision tests.

Singlets under SU(2)L have been previously studied and constrained by direct searches,

electroweak precision observables (EWPO) and theoretical constriaints [20, 21]. Doublets

give rise to more interesting phenomenological consequences. In addition to the three

electroweak Goldstone bosons the scalar spectrum contains N doublets with N−1 charged

and 2N − 1 neutral scalars, which in general can be complex and generate CP-violating

phases. By adding new doublets there is a rich variety of possible new interactions,

which include Yukawa couplings that are not diagonal in flavour space, giving rise to

phenomenologically constrained flavour-changing-neutral-currents (FCNC).

21
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In this chapter we will describe the basic ingredients of this model, the N-Higgs doublet

model (N2HDM), i.e. the scalar potential and the process of SSB. Later, we will see how

the alignment in flavour space is required in order to avoid FCNCs and the consequences

of this alignment in flavour space.

2.1 Multi-Higgs-doublet models

Let us consider an electroweak model with the SM fermion content and gauge group, and

an extended scalar sector involving N doublets with hypercharge Y = 1
2 ,

φa = eiθa

 φ+
a

1√
2 (va + ρa + i ηa)

 . (2.1.1)

The neutral components of the doublets φa acquire a vev 〈φ0
a〉 = eiθa va/

√
2, which in

general can be complex (va ≥ 0). Since one global phase can always be rotated away

through a U(1)Y transformation we choose θ1 = 0, leaving the relative phases θ̃a = θa−θ1.

2.1.1 Scalar potential

It is convenient to perform a global SU(N) transformation in the space of scalar fields,

Φa =
N∑
b=1

Ωab e−iθ̃b φb , φb = eiθ̃b
N∑
a=1

Ωab Φa , Ω · ΩT = ΩT · Ω = 1 ,

(2.1.2)

such that only the first doublet acquires a vev. This transformation is characterized by

the condition Ω1a = va/v, with v =
(∑

a v
2
a

)1/2
> 0, and defines the Higgs basis,

Φ1 =

 G+

1√
2 (v + S0

1 + iG0)

 , Φa>1 =

 S+
a

1√
2 (S0

a + i P 0
a )

 . (2.1.3)

The electroweak symmetry breaking (EWSB) is then fully associated to the doublet Φ1,

which contains the electroweak Goldstone fields G0 and G+, and plays the role of the SM

Higgs doublet.
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The potential takes the form,

V = Yab
(
Φ†aΦb

)
+ Zabcd

(
Φ†aΦb

) (
Φ†cΦd

)
, (2.1.4)

with

Yab = Y ∗ba , Zabcd = Zcdab , Zabcd = Z∗badc . (2.1.5)

Since the potential is hermitic we have a total of N2(N2 + 3)/2 independent real pa-

rameters. One can minimize the potential and find the following relations in the Higgs

basis,

∂V
∂Φ1

= 0→ Y11 = −Z1111 v
2 ,

∂V
∂Φi 6=1

= 0→ Y1i = −Z111i v
2 . (2.1.6)

The potential of Eq. (2.1.5) can be decomposed into a linear, a quadratic a cubic and

a quartic term,

V = −1
4Z1111v

4 + V2 + V3 + V4 . (2.1.7)

In this decomposition V2 contains the mass terms,

V2 = S+
i M

+
ijS

+
j + 1

2S
0
iM0

ijS0
j , (2.1.8)

whereM+(M0) are the corresponding charged (neutral) non-diagonal mass matrices, that

will depend on the parameters of the potential. The 2N−1 neutral scalar mass eigenstates,

ϕ0
i = RijS0

j , are related to the scalar-doublet field components S0
i = {S0

1 , S
0
2 , P

0
2 , · · · , S0

N , P
0
N}

through an orthogonal transformation R which depends on the parameters of the scalar

potential. CP-violating mixes the CP-even (S0
a) and CP-odd (P 0

a ) scalar particles and the

resulting mass eigenstates do not have, in general, definite CP quantum numbers. Simi-

larly, the N − 1 charged fields S+
i = {S+

2 , S
+
3 , · · · , S

+
N} mix among themselves giving rise
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to the charged mass eigenstates ϕ+
i = R(+)

ij S
+
j , with R(+) a (N − 1)× (N − 1) orthogonal

matrix.

The cubic term of the potential can be written as,

V3 = v
[
Re (Z1bcd)

(
P 0
b P

0
c S

0
d − P 0

b P
0
dS

0
c + P 0

c P
0
dS

0
b + S0

bS
0
cS

0
d + S0

b

(
S−c S

+
d + S+

c S
−
d

))
− Im(Z1bcd)

(
P 0
b P

0
c P

0
d + P 0

b S
0
cS

0
d + P 0

b

(
S+
c S
−
d − S

−
c S

+
d

)
− P 0

c S
0
bS

0
d + P 0

dS
0
bS

0
c

)]
,

(2.1.9)

and the quartic part,

V4 = Zabcd

{
S−a S

+
b S
−
c S

+
d + 1

2
(
S−a S

+
b S

0
cS

0
d + S0

aS
0
bS
−
c S

+
d

)
+ 1

2
(
S−a S

+
b P

0
c P

0
d + P 0

aP
0
b S
−
c S

+
d

)
+ i

2
[
S−a S

+
b

(
S0
cP

0
d − P 0

c S
0
d

)
+

(
S0
aP

0
b − P 0

aS
0
b

)
S−c S

+
d

]
+ 1

4
[
S0
aS

0
bS

0
cS

0
d + S0

aS
0
bP

0
c P

0
d

+ P 0
aP

0
b S

0
cS

0
d + iS0

aS
0
b

(
S0
cP

0
d − P 0

c S
0
d

)
+ i

(
S0
aP

0
b − P 0

aS
0
b

)
S0
cS

0
d

+ P 0
aP

0
b P

0
c P

0
d + iP 0

aP
0
b

(
S0
cP

0
d − P 0

c S
0
d

)
+ i

(
S0
aP

0
b − P 0

aS
0
b

)
P 0
c P

0
d

−
(
S0
aP

0
b S

0
cP

0
d − S0

aP
0
b P

0
c S

0
d − P 0

aS
0
bS

0
cP

0
d + P 0

aS
0
bP

0
c S

0
d

)]}
(2.1.10)

2.1.2 Gauge sector

Once symmetry breaking has undergone, interaction terms between the scalar fields, the

Goldstone fields G± and G0 and the gauge bosonsW±µ , Zµ, Aµ will arise. These terms come

from the covariant derivative, Dµ = ∂µ + i eQAµ− i g
cos θw

Zµ(T3−Q sin2 θw)− i g[T+W
†
µ +

T−Wµ] with T± = 1√
2 (T1 ± iT2),

Lkin +
N∑
a=1

DµΦ†aDµΦa + LGF = LV 2 + Lφ2 + LφV + Lφ2V + LφV 2 + Lφ2V 2 . (2.1.11)
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The term LGF needs to be introduced to fix the gauge and cancel the quadratic terms

mixing the gauge and the Goldstone bosons. Adopting the Feynman-’t Hooft gauge, Rε
(ε = 1),

LGF = −1
2(∂µAµ)2− 1

2(∂µZµ+MZG
0)2−(∂µW †µ+ iMWG

+)(∂νW ν− iMWG
−) . (2.1.12)

Once the gauge is fixed the Goldstone bosons masses MG± = MW = gv/2 and MG0 =

MZ = MW / cos θw are determined. Expanding Eq. (2.1.11) one can distinguish quadratic

terms,

LV 2 = −1
2(∂µAµ)2 − 1

2(∂µZµ)2 + 1
2M

2
ZZµZ

µ − (∂µW †µ)(∂νW ν) +M2
WW

†
µW

µ , (2.1.13)

and,

Lφ2 = 1
2∂µS

0
1∂

µS0
1 +

N∑
a=2

1
2
[
∂µS

0
a∂

µS0
a + ∂µP

0
a ∂

µP 0
a

]
+ ∂µS

+
a ∂

µS−a

+ 1
2∂µG

0∂µG0 − 1
2M

2
Z(G0)2 + ∂µG

+∂µG− −M2
WG

+G− , (2.1.14)

cubic interactions between two scalars and one vector boson,

Lφ2V =
N∑
a=2

{
ie[Aµ + cot(2θw)Zµ]

[
(S+
a

↔
∂µS

−
a ) + (G+↔∂µG

−)
]

+ e

sin(2θw)Z
µ
[
(G0↔∂µS

0
1) + (P 0

a

↔
∂µS

0
a)
]

+ g

2W
µ†
[
(S−a

↔
∂µP

0
a )− i(S−a

↔
∂µS

0
a) + (G−

↔
∂µG

0)− i(G−
↔
∂µS

0
1)
]

+ g

2W
µ
[
(S+
a

↔
∂µP

0
a ) + i(S+

a

↔
∂µS

0
a) + (G+↔∂µG

0) + i(G+↔∂µS
0
1)
]}

, (2.1.15)

cubic interactions between one scalar and two vector bosons,

LφV 2 =
{2
v
S1

[1
2M

2
ZZµZ

µ +M2
WW

†
µW

µ
]

+ (eMWA
µ − gMZ sin2 θwZ

µ)(G+Wµ +G−W+
µ )
}
, (2.1.16)
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and quartic interactions between two scalars and two vector bosons,

Lφ2V 2 =
N∑
a=2

{ 1
v2

[1
2M

2
ZZµZ

µ +M2
WW

†
µW

µ
]

[(S0
1)2 + (S0

a)2 + (P 0
a )2 + (G0)2]

+
{
e2[Aµ + cot(2θw)Zµ]2 + g2

2 W
†
µW

µ

}
(G+G− + S+

a S
−
a )

+ eg

2 (Aµ − tan θwZµ)[S1(G+Wµ +G−W †µ) + S0
a(S+

a Wµ + S−a Wµ)

+ iP 0
a (S−a W †µ − S+

a Wµ) + iG0(G−W †µ −G+Wµ)]
}
, (2.1.17)

with A
↔
∂µB ≡ A(∂µB)− (∂µA)B.

As it can be seen from Eq. (2.1.17) the couplings between the scalar particles and

vector bosons (gϕ0
i V V

) are related to the ones of the SM,

gϕ0
aV V

= Ri1 gSMhV V , (2.1.18)

with V V = ZZ,WW . This implies,

N∑
a=1

g2
ϕ0
aV V

= (gSMhV V )2 , (2.1.19)

and indicates that the scalar coupling to weak bosons cannot be enhanced over the SM

value and must obey custodial symmetry, i.e. g2
ϕ0
aWW = g2

ϕ0
aZZ

.

2.1.3 Yukawa sector

Yukawa interactions take the generic form,

LY = −
N∑
a=1

{
Q̄′L

(
Γaφa d′R + ∆aφ

c
a u
′
R

)
+ L̄′L Πaφa `

′
R + h.c.

}
, (2.1.20)

where Q′L and L′L are the left-handed quark and lepton doublets, and d′R, u′R, `′R the

corresponding right-handed fermion singlets. All fermion fields denote NG = 3 vectors in

flavour space; for instance, d′R = (d′R, s′R, b′R)T . The Yukawa couplings Γa, ∆a and Πa are

NG ×NG complex flavour matrices.
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In the Higgs basis the Yukawa structures of Eq. (2.1.20) take the form

N∑
a=1

Γaφa =
N∑
b=1

Γ̂bΦb ,
N∑
a=1

∆aφ̃a =
N∑
b=1

∆̂bΦ̃b ,
N∑
a=1

Πaφa =
N∑
b=1

Π̂bΦb ,

(2.1.21)

with

Γ̂b =
N∑
a=1

Ωba eiθ̃a Γa , ∆̂b =
N∑
a=1

Ωba e−iθ̃a ∆a , Π̂b =
N∑
a=1

Ωba eiθ̃a Πa .

(2.1.22)

The EWSB mechanism generates the mass matrices

M ′d = v√
2

Γ̂1 , M ′u = v√
2

∆̂1 , M ′` = v√
2

Π̂1 , (2.1.23)

which only involve the Yukawa structures associated with the doublet field Φ1. Their

diagonalization determines the fermion mass eigenstates

Uf†L M ′f U
f
R = Mf , f ′L = UfL fL , f ′R = UfR fR , (2.1.24)

and the fermion masses

Md = diag(md,ms,mb) , Mu = diag(mu,mc,mt) , M` = diag(me,mµ,mτ ) .

(2.1.25)

Neutrinos remain massless because the model does not include νR fields.

In terms of the fermion mass eigenstates, the Yukawa Lagrangian is given by

LY = −
(

1 + S0
1
v

) {
d̄LMddR + ūLMuuR + ¯̀

LM``R
}

− 1
v

N∑
a=2

(
S0
a + i P 0

a

){
d̄LY

(a)
d dR + ūRY

(a)†
u uL + ¯̀

LY
(a)
` `R

}
(2.1.26)

−
√

2
v

N∑
a=2

S+
a

{
ūLVCKMY

(a)
d dR − ūRY (a)†

u VCKMdL + ν̄LY
(a)
` `R

}
+ h.c. ,

where VCKM = Uu†L UdL is the usual CKM quark-mixing matrix [22, 23]. The analogous

mixing matrix in the charged-current leptonic Yukawa, VL = Uν†L U
`
L, has been reabsorbed

through a redefinition of the massless neutrino fields, ν̄L · VL → ν̄L, so that the leptonic
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W± interactions are flavour diagonal. For a 6= 1, the Yukawa structures

Y
(a)
d = v√

2
Ud†L Γ̂a UdR , Y (a)

u = v√
2
Uu†L ∆̂a U

u
R , Y

(a)
` = v√

2
U `†L Π̂a U

`
R ,

(2.1.27)

are not related to the mass matrices and their elements could take arbitrary complex

values. In general, they remain non-diagonal in the fermion mass-eigenstate basis, giving

rise to unwanted flavour-changing couplings of the neutral scalar fields.

2.1.4 Natural flavour conservation

The simplest way to avoid flavour non-diagonal Yukawa matrices Y (a)
f is minimizing dras-

tically the number of flavour structures in the Lagrangian (2.1.20) so that, for a given type

of right-handed fermion f ′R, only one single scalar doublet φaf is allowed to have non-zero

Yukawa coupling. A given choice of three fields {φad , φau , φa`} defines a particular model

with Γa = δada Γad , ∆a = δaua ∆au and Πa = δa`a Πa` .

In the Higgs basis, this implies

Γ̂a = Ωaad eiθ̃ad Γad , ∆̂a = Ωaau e−iθ̃au ∆au , Π̂a = Ωaa` eiθ̃a` Πa` . (2.1.28)

Since there are only three flavour structures, one for each type of fermion, the diagonaliza-

tion of the mass matrices Γ̂1, ∆̂1 and Π̂1 also diagonalizes all Yukawas with a 6= 1 [24,25].

One obtains:

Y
(a)
f = ς

(a)
f Mf , ς

(a)
f =

Ωaaf

Ω1af
. (2.1.29)

This particular form of the Yukawa Lagrangian could be enforced through a discrete

symmetry Zd2 ⊗Zu2 ⊗Z`2, where each separate Zf2 transformation is defined so that f ′R and

φaf reverse sign,

Zf2 : f ′R → −f ′R , φaf → −φaf , (2.1.30)

while all other fields remain unchanged [26]. The symmetry guarantees that the resulting

flavour structure is stable under quantum corrections, ensuring that FCNC local inter-

actions cannot reappear at higher orders. Notice that the assumption of natural flavour
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conservation singles out a particular basis of scalar fields where the discrete symmetry is

defined.

For N = 2, one can choose four different inequivalent options for {ad, au, a`}, where af
labels the doublet to which the fermion f ′R is coupled (the remaining possibilities amount

to a permutation of φ1 and φ2), which are usually taken as

Type I : {2, 2, 2} , ςd = ςu = ς` = cotβ ,

Type II : {1, 2, 1} , ςd = ς` = − tan β , ςu = cotβ ,

Type X : {2, 2, 1} , ςd = ςu = cotβ , ς` = − tan β ,

Type Y : {1, 2, 2} , ςd = − tan β , ςu = ς` = cotβ ,

(2.1.31)

with ςf ≡ ς
(2)
f and tan β ≡ v2/v1. A single Z2 transformation is enough in this case to

define the model: φ1 is odd, while φ2, Q′L, L′L and u′R are all even. The four different

types of models are obtained defining different transformations of the d′R and `′R fields

under Z2. In type I the two fields are even [27, 28], they are both odd in type II [28, 29]

d′R → d′R and `′R → −`′R in type X [30], and d′R → −d′R and `′R → `′R in type Y [30]. If

the Z2 symmetry is imposed in the Higgs basis, all fermions must couple to Φ1 in order to

get their masses and the doublet Φ2 necessarily decouples from the fermion sector. One

gets then a type-I structure (exchanging the labels 1 and 2) with ςf = 0, known as the

inert two-Higgs-doublet model [31].

With N = 3 there are five inequivalent possibilities, up to permutations of the three

scalar-field labels, which we define through the following choices of {ad, au, a`}:

Type A : {1, 1, 1} , ς
(a)
d = ς

(a)
u = ς

(a)
` = Ωa1/Ω11

Type B : {1, 2, 1} , ς
(a)
d = ς

(a)
` = Ωa1/Ω11 , ς

(a)
u = Ωa2/Ω12 ,

Type C : {1, 1, 2} , ς
(a)
d = ς

(a)
u = Ωa1/Ω11 , ς

(a)
` = Ωa2/Ω12 ,

Type D : {1, 2, 2} , ς
(a)
d = Ωa1/Ω11 , ς

(a)
u = ς

(a)
` = Ωa2/Ω12 ,

Type E : {1, 2, 3} . ς
(a)
d = Ωa1/Ω11 , ς

(a)
u = Ωa2/Ω12 , ς

(a)
` = Ωa3/Ω13 .

(2.1.32)

One can easily check that each one of these structures can be enforced by using only two

Z2 symmetries.
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For N > 3, natural flavour conservation implies that three scalar doublets, which can

always be chosen as φ1,2,3, couple to the fermions following one of the five allowed N = 3

types, while the remaining N − 3 doublets decouple.

2.1.5 Flavour alignment

Natural flavour conservation is a very strong assumption, which for N > 3 involves N − 3

fermiophobic scalar doublets (in the scalar basis where the Zf2 symmetries are imposed).

In order to avoid FCNC interacting vertices in LY , what is really needed is that only a

single flavour structure is present for each fR type, i.e., the alignment condition [24,25]:

Γa = e−iθ̃a ξ(a)
d Γ1 , ∆a = eiθ̃a ξ(a)†

u ∆1 , Πa = e−iθ̃a ξ(a)
` Π1 , (2.1.33)

where ξ(1)
f = 1 while ξ(a6=1)

f can be arbitrary complex parameters. All Yukawa matrices

are then simultaneously diagonalized in the fermion mass-eigenstate basis, with the result

Y
(a)
d,` = ς

(a)
d,` Md,` , Y (a)

u = ς(a)†
u Mu , (2.1.34)

where the alignment proportionality parameters are given by

ς
(a)
f =

∑N
b=1 Ωab ξ

(b)
f∑N

b=1 Ω1b ξ
(b)
f

. (2.1.35)

Natural flavour conservation corresponds to the particular cases where the alignment pa-

rameters ξ(b 6=1)
f are either all zero (ς(a)

f = Ωa1/Ω11) or one of them, ξ(af )
f , takes an infinite

value (ς(a)
f = Ωaaf /Ω1af ).

The hypothesis of flavour alignment leads to a very appealing structure for the Yukawa

Lagrangian in Eq. (2.1.26): i) all fermion-scalar interactions are proportional to the cor-

responding fermion mass matrices, ii) FCNCs vertices are absent at tree level, and iii)

the only source of flavour-changing transitions is the charged-current quark mixing matrix

VCKM , which appears in the W± and H± fermionic couplings. In addition to the fermion

masses, the only new parameters introduced by the Yukawa interactions are the 3(N − 1)

complex alignment factors ς(a)
f (a 6= 1), which provide additional sources of CP violation

beyond the SM quark-mixing phase.
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The flavour-alignment condition does not exhaust all possibilities for a tree-level La-

grangian without FCNC interactions. The most general structure is obtained with a set of

N simultaneously-diagonalizable matrices Y ′(a)
f , for each type of fermion f . One can also

describe this generic possibility with the parametrization (2.1.34) through the alignment

matrices

ς
(a)
d,` ≡ Y

(a)
d,` M

−1
d,` , ς(a)†

u ≡ Y (a)
u M−1

u . (2.1.36)

These expressions are completely general because all charged fermion masses are known to

be non vanishing; therefore, detMf 6= 0 and M−1
f is well defined. Since all Y (a)

f matrices

are assumed to be diagonal, the alignment factors become now diagonal matrices (in the

fermion mass-eigenstate basis):

ς
(a)
d = diag(ς(a)

d , ς(a)
s , ς

(a)
b ) , ς(a)

u = diag(ς(a)
u , ς(a)

c , ς
(a)
t ) , ς

(a)
` = diag(ς(a)

e , ς(a)
µ , ς(a)

τ ) .

(2.1.37)

The structure of the resulting Yukawa Lagrangian in Eq. (2.1.26) is formally the same

than for normal alignment (provided one takes care of not commuting the matrix factors

ς
(a)
f and VCKM). However, one loses the hierarchies dictated by the fermion mass spectrum

because there is really no connection between the numerical values of the Yukawa couplings

and the corresponding masses. Small (large) values of mf can be compensated with large

(small) ς(a)
f factors so that y(a)

f = ς
(a)
f mf have acceptable magnitudes in the perturbative

regime.

In the fermion weak-eigenstate basis, the relation between the Yukawa matrices Y ′(a)
f

and M ′f involves the alignment factors

ς
′(a)
f = UfL ς

(a)
f Uf†L , (2.1.38)

which, in general, are no-longer diagonal. Therefore, Y ′(a)
f and M ′f do not necessarily

commute. The absence of FCNC interactions only requires this commutator to be zero in

the fermion mass-eigenstate basis.
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2.1.6 The two Higgs doublet model

The simplest non-trivial NHDM is the so-called two-Higgs doublet model (2HDM) in which

an extra doublet is added. Despite its simplicity the model contains interesting features.

In the case of N = 2 the potential of Eq. (2.1.4) is usually written,

V = µ2
1(Φ†1Φ1) + µ2

2(Φ†2Φ2) + [µ3Φ†1Φ2 + µ∗3Φ†2Φ1]

+λ1(Φ†1Φ1)2 + λ2(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+
[
(λ5Φ†1Φ2 + λ6Φ†1Φ1 + λ7Φ†2Φ2)(Φ†1Φ2) + h.c.

]
. (2.1.39)

where the connexion with Eq. (2.1.4) reads,

λ1 = Z1111, λ2 = Z2222, λ3 = Z1122 + Z2211 = 2Z1122,

λ4 = Z1221 + Z2112 = 2Z1221, λ5 = Z1212, (2.1.40)

λ6 = Z1112 + Z1211 = 2Z1112, λ7 = Z2212 + Z1222 = 2Z2212.

The quadratic term Eq. (2.1.8) can be written as,

V2 = M2
H±H

+H− + 1
2

[
S0

1 , S0
2 , P 0

2

]
M


S0

1

S0
2

P 0
2

 , (2.1.41)

where M2
H± is a function of the parameters of the potential and the mass matrix of the

neutral scalar fields is non-diagonal,

M2
H± = µ2

2 + 1
2λ3v

2 , (2.1.42)

M =


2λ1v

2 v2λR6 −v2λI6

v2λR6 M2
H± + v2

(
λ4
2 + λR5

)
−v2λI5

−v2λI6 −v2λI5 M2
H± + v2

(
λ4
2 − λ

R
5

)
 . (2.1.43)
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with λRi = Re(λi) and λIi = Im(λi).

The matrix M is diagonalized by an orthogonal rotation, R that relates the fields

{S0
1 , S

0
2 , P

0
2 } with the mass eigenstates ϕ0

i = {h,H,A} :

M = RT


M2
h 0 0

0 M2
H 0

0 0 M2
A

R ,

h

H

A

 = R


S0

1

S0
2

P 0
2

 . (2.1.44)

Matching the traces of (2.1.43) and (2.1.44),

M2
h +M2

H +M2
A = 2M2

H± + v2(2λ1 + λ4) . (2.1.45)

In the CP conserving limit (λI5 = λI6 = λI7 = 0) the CP admixture disappears and

P 0
2 does not mix with other neutral fields. The scalar spectrum contains a CP-odd field,

A = P 0
2 , and two CP-even fields, h and H, which are a mixture of S0

1 and S0
2 ,h

H

 =

 cos α̃ sin α̃

− sin α̃ cos α̃


S0

1

S0
2

 . (2.1.46)

The Yukawa couplings take the simple form,

yhd,` = cos α̃+ sin α̃ ςd,` , yHd,` = − sin α̃+ cos α̃ ςd,` , yAd,` = i ςd,` ,

yhu = cos α̃+ sin α̃ ς∗u , yHu = − sin α̃+ cos α̃ ς∗u , yAu = −i ς∗u .

(2.1.47)

We choose the convention Mh ≤MH and 0 ≤ α̃ ≤ π, so that sin α̃ is positive.

In this case, the masses of the scalar fields are:

M2
h = 1

2(Σ−∆) , M2
H = 1

2(Σ + ∆) , M2
A = M2

H± + v2
(λ4

2 − λ
R
5

)
, (2.1.48)

with
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Σ = M2
H± + v2

(
2λ1 + λ4

2 + λR5

)
, (2.1.49)

∆ =

√[
M2
H± + v2(−2λ1 + λ4

2 + λR5 )
]2

+ 4v2(λR6 )2 ,

tan α̃ = M2
h − 2λ1v

2

λR6 v
2 .



Chapter 3

Effective Field Theory

Effective field theory is a useful tool to describe physical problems involving different

energy scales [32–37]. In an EFT approach one uses the appropriate degrees of freedom

(d.o.f.) to describe physical systems, i.e. one isolates the d.o.f. that give relevant effects

for the studied model or process. The main idea is based in the decoupling theorem [38]:

The contribution to physical amplitudes of the heavy d.o.f. are suppressed by inverse

powers of mass up to logarithmic corrections.

This means that the dynamics of a system at low energies cannot depend on the details

at high energies. Referring to high and low energies implies that both an energy scale and

a range of validity has to be set.

The SM has succeed in reproducing many electroweak tests with an extreme precision,

which seems to be a strong confirmation of the model. However, one can also find devi-

ations from the SM predictions (flavour anomalies, (g − 2)µ...), that can be interpreted

as new physics (NP). This apparent incompatibility is understood once we introduce the

EFT formalism. Within this formalism the effect of NP lying in high energy scales is

suppressed at the electroweak scale. Therefore, the SM is recovered at low energies.
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EFT allow us to identify these NP effects though small deviations of the low-energy pa-

rameters of a given effective Lagrangian from the SM ones. Such deviations are accessible

though high-precision low-energy experiments.

3.1 Operator product expansion

Let’s consider a theory whose particle content is a heavy scalar field, ΦH with mass M

and a light field ΦL with mass m,

L = LΦH
kin + LΦL

kin + JΦH , (3.1.1)

where the first two terms are the kinetic terms of the fields,

LΦH,L
kin = −1

2ΦH,L

(
2 +m2

ΦH,L

)
ΦH,L , (3.1.2)

with 2 = ∂µ∂
µ. The last term of Eq. (3.1.1) is the source of ΦH . Note there is not a

similar term for ΦL because we are obtaining an effective Lagrangian whose functional is,

Zeff[J ] =
∫

[DΦL] exp
[
i

∫
d4x(Leff + JLΦL)

]
. (3.1.3)

Our purpose is to study some phenomenological effect of these fields at a given scale

E �M . The normalized generating functional is,

Z[J ] ≡
∫

[DΦL][DΦH ]eiS[ΦL,ΦH ,J ]∫
[DΦL][DΦH ]eiS[ΦL,ΦH ,0] , (3.1.4)

where S[ΦL,ΦH , J ] ≡
∫
dDxL is the action of L and D is the dimension of spacetime.

The field ΦH does not satisfy the equation of motion, but one can rewrite it in terms

of an auxiliary field Φ0 defined as ΦH = Φ̃ + Φ0 that does satisfy such equation,

(
2 +m2

ΦH

)
Φ0 = J(x) . (3.1.5)
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The solution of Eq. (3.1.5) is,

Φ0(x) = −
∫
dDy∆F (x− y) J(y) , (3.1.6)

where ∆F (x− y) is the Feynman propagator,

∆F (x− y) ≡
∫

dDk

(2π)D
e−ik·(x−y)

k2 −M2 − iε
. (3.1.7)

The Lagrangian of Eq. (3.1.1) can be written in terms of Φ0,

L[ΦL,ΦH ] = L[ΦL, Φ̃,Φ0] = LΦL
kin + LΦ0

kin + LΦ̃
kin −

1
2Φ0

(
2 +M2

)
Φ̃

− 1
2Φ̃

(
2 +M2

)
Φ0 + J

(
Φ̃ + Φ0

)
= LΦL

kin + LΦ̃
kin + 1

2J Φ0 −
1
2∂µ

(
Φ0∂

µΦ̃− Φ̃∂µΦ0
)
, (3.1.8)

where we have applied the identity

Φ02Φ̃− Φ̃2Φ0 = ∂µ
(
Φ0∂

µΦ̃− Φ̃∂µΦ0
)
, (3.1.9)

and the equation of motion of Eq.(3.1.5).

The action can be expressed as,

S[ΦL, Φ̃,Φ0, J ] =
∫
dDx

(
LΦL
kin + LΦ̃

kin + 1
2J Φ0

)
, (3.1.10)

where the last term of Eq. (3.1.10) has been eliminated using Gauss’ law. Using Eq. (3.1.6),

S[ΦL, Φ̃,Φ0, J ] =
∫
dDx

(
LΦL
kin + LΦ̃

kin

)
− 1

2

∫
dDx dDy J(x) ∆F (x− y)J(y) , (3.1.11)

the generating functional can be written as,

Z[J ] = exp
(
− i2

∫
dDx dDy J(x) ∆F (x− y)J(y)

)
. (3.1.12)
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This generating function can be obtained from a non-local Lagrangian,

L = −1
2

∫
dDy J(x) ∆F (x− y) J(y) , (3.1.13)

and thus we have obtained the same functional with a simpler Lagrangian than the one

of Eq. (3.1.8). The dependence on the heavy field ΦH has been cancelled out with the

normalization Z[0]. We say that the heavy field has been integrated out.

Now we can consider x ≈ y and perform a Taylor expansion,

J(y) = lim
N→∞

N∑
n=0

(−1)n
n! Ĵµ1...µn(x)(x− y)µ1 ...(x− y)µn , (3.1.14)

where Ĵµ1...µn(x) ≡
(
∂zµ1 ...∂

z
µn

)
J(z)

∣∣∣
z=x

. Then using Eq. (3.1.7),

L = −1
2 lim
N→∞

N∑
n=0

(−1)n
n! J(x) Ĵµ1...µn(x) ·

∫
dDk

(2π)D
1

k2 −M2 ·
∫
dDy (x− y)µ1 ...(x− y)µn e−ik·(x−y)

= −1
2 lim
N→∞

N∑
n=0

(−i)n
n! J(x) Ĵµ1...µn(x) ·

∫
dDk

(2π)D
1

k2 −M2 ·
∫
dDy ∂µ1

k ...∂µnk e−ik·(x−y)

= 1
2

1
M2 lim

N→∞

N
2∑

n=0
J(x)

(
− 2

M2

)n
J(x) , (3.1.15)

where we have used the Dirac Delta
∫
dDzeikz = (2π)Dδ(D)(k) and,

∂µ1
k ...∂µnk e−ik·(x−y) = (−i)n(x− y)µ1 ...(x− y)µneik(x−y). (3.1.16)

We obtain a series of local operators depending on the source J(x). Truncating the series

of Eq. (3.1.15),

Leff ≈
1
2

1
M2

N/2∑
n=0

J(x)
(
− 2

M2

)n
J(x), (3.1.17)

Since E/M < 1, the N + 1 missing corrections are always smaller than the included ones,

assuring the convergence of the series. This is called the operator product expansion

(OPE).
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3.2 Effective Lagrangian

As we have seen an effective Lagrangian can be expressed in terms of a sum of local

operators [39],

Leff =
∑
i,j

c
(j)
i

Λdi−4 O
(j)
i =

∑
i,j

C
(j)
i O

(j)
i , (3.2.18)

where O(j)
i are the operators of dimension di, constructed from the light fields and C(j)

i are

the so-called Wilson coefficients which contain information about the couplings with the

heavy degrees of freedom. Λ is the scale where the heavy fields become relevant, i.e. the

NP scale. The sum over j accounts for all the different operators with the same dimension.

Depending on the dimension of the operators they can be classified into three different

types,

• di < 4: Relevant operators. They are important at low energies. Usually they are

forbidden by symmetries. They are superrenormalizable operators.

• di = 4: Marginal operators. Their effects are not suppressed by powers of the

ratio E/Λ. (they can only receive small logarithmic corrections lnE/Λ). They are

renormalizable operators.

• di > 4: Irrelevant operators. They are suppressed at low energies. Non-renormalizable

operators.

Leff contains an infinite number of terms (power series in Λ). Therefore, we say it is

non-renormalizable in the usual sense, since we would need an infinite number of countert-

erms to renormalize it. However, the effective Lagrangian is usually truncanted at some

dimension N , and, therefore, only a finite number of counterterms are needed [35].
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3.3 Renormalization group equations

Let’s consider the Lagrangian of Eq. (3.2.18) expressed in terms of the bare operators and

Wilson coefficients,

Leff =
∑
i

∑
j

C(j)B
i O(j)B

i

 =
∑
i

∑
j

C(j)B
i

n∑
a

Z
(j)
ia (µ)O(j)

a (µ)


=

∑
i

∑
j

C(j)
i (µ)O(j)

i (µ)

 ≡∑
i

(
CTi (µ)Oi(µ)

)
, (3.3.19)

whereOi are 1-column vectors and CTi are 1-row vectors of dimension di. The matrices Z(j)
ia

are the renormalization constants. In general different operators of the same dimension

mix under renormalization,

O(j)B
i =

n∑
a

Z
(j)
ia (µ)O(j)

a (µ) → C(j)B
i =

n∑
a

(
Z(j)

)−1

ai
(µ) C(j)

a (µ) . (3.3.20)

Or in matrix notation,

O(j)B = Z(j)(µ)O(j)(µ) → C(j)B =
((

Z(j)
)−1

)T
(µ)C(j)(µ) . (3.3.21)

Loop corrections and hence the µ-dependence is included in the Wilson coefficients

so that the renormalized Leff is scale independent. The renormalization group equations

(RGEs) will give us the µ-dependence for C and O. Since the bare operators do not

depend on the scale one can take their derivative with respect to the scale µ,

µ
dO(j)B(µ)

dµ
= 0 = µ

dZ(j)

dµ
O(j) + µZ(j)dO(j)

dµ
. (3.3.22)

This can be written in a more compact way defining the gamma function of O(j),

γ
(j)
O =

(
Z(j)

)−1
µ
d

dµ
Z(j) = γ

(j) (1)
O

(
α

π

)
+ γ

(j) (2)
O

(
α

π

)2
+ ... , (3.3.23)
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where α is the expansion parameter. From Eq. (3.3.22) the RGEs can be written as,

(
µ
d

dµ
+ γ

(j)
O

)
O(µ) = 0 , →

(
µ
d

dµ
−
(
γ

(j)
O

)T)
C(µ) = 0 . (3.3.24)

To solve Eq. (3.3.24) one must find a matrix U(j) that diagonalizes γ(j)
O ,

(
U(j)

)−1 (
γ

(j)
O

)T
U = γ̃

(j)
O , (3.3.25)

where γ̃(j)
O is a diagonal matrix. Inserting Eq. (3.3.25) at (3.3.24),

(
U(j)

(
U(j)

)−1
µ
d

dµ
−U(j) γ̃

(j)
O

(
U(j)

)−1
)
C(j)(µ) = 0 , (3.3.26)

and defining C̃ ≡ U−1C we can write Eq. (3.3.24) in diagonal form,

(
µ
d

dµ
− γ̃(j)
O

)
C̃(j)(µ) = 0 . (3.3.27)

Now the coefficients C(j)
i (µ) obey unmixed RGEs,

(
µ
d

dµ
− γ̃(j)
O, i

)
C̃(j)
i (µ) = 0 , (3.3.28)

where γ̃(j)
O, i are the diagonal terms of γ̃(j)

O . The solution of this equation is,

C̃(j)
i (µ) = C̃(j)

i (µ0) exp


∫ α(µ)

α(µ0)

dα

α

γ̃
(j)
O, i(α)
β(α)

 . (3.3.29)

where

β (α) ≡ − µ

Zα

dZα
dµ

, (3.3.30)

and Zα is the renormalization constant relating the bare parameter α0 to α i.e., α0 = Zα α.

β is the anomalous dimension of the coupling and it can be perturbatively expanded

as,

β(α) = β1

(
α

π

)
+ β2

(
α

π

)2
+ ... =

∑
i

βi

(
α

π

)i
. (3.3.31)
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Finally, changing the basis we can write the solution of the RGEs in terms of our original,

mixed coefficients,

C(j)
i (µ) =

∑
a,k

Uia exp


∫ α(µ)

α(µ0)

dα

α

γ
(j)
O, a(α)
β(α)


((

U(j)
)−1

)
ak
C(j)
k (µ0) . (3.3.32)



Chapter 4

Flavour observables in qu→ qd`ν̄

transitions

A huge effort has been made to build particle colliders that allow us to access regions of

parameter space where deviations from the SM could lie. At present, the most important

experiments operate at the LHC at CERN. This is a pp collider containing different par-

ticle detectors (ATLAS, CMS, ALICE and LHCb). It has been running since 2008, with

energies up to 13 TeV and has collected a luminosity of 140 fb−1 in Run 2. In general, one

can distinguish two different directions that can be followed to access to NP information

at colliders.

First of all, one can try to detect heavy particles through direct searches. A collision

will produce particles that are not described by the SM and could be interpreted as NP, i.e.

in processes such as pp→ XNP. These direct searches have not resulted in the observation

of relevant states up to energy scales of approximately 1 TeV, but have been very useful

to set upper bounds on the masses of particles predicted in different NP models.1 The

other promising way to observe NP at particle colliders is through precision physics. As

described in Chapter 3, deviations from the SM can be observed in precision low-energy

1For a small set of direct searches see Refs. [40–43].
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parameters from an EFT approach. As an example of that, the so-called flavour anomalies

have driven the attention of the particle physics community. They are deviations of flavour

observables from their SM predictions. These flavour anomalies include discrepancies

between the inclusive and exclusive determinations of CKM elements [44], anomalies in

neutral semileptonic decays b → s`` transitions [45–47] and charged-current anomalies

in b → cτν transitions [48]. The latter will be the ones studied in this thesis. Their

basic features and interest will be described in the following sections. The analysis of the

anomalies with the current data can be found in Chapter 8.

To study them, let’s start by considering the effective Hamiltonian of qu → qd`ν̄

transitions containing both left- and right-handed neutrinos at the electroweak scale,

Heff = 4GFVqu qd√
2

OVLL +
∑

X=S,V,T
A,B=L,R

CXAB OXAB

 , (4.0.1)

with the ten four-fermion operators:

OVAB ≡ (q̄u γµPAqd)
(

¯̀γµPBν
)
,

OSAB ≡ (q̄u PAqd)
(

¯̀PBν
)
,

OTAB ≡ δAB (q̄u σµνPAqd)
(

¯̀σµνPAν
)
, (4.0.2)

which are invariant under SU(3)C ⊗ U(1)em. Tensor operators with different lepton and

quark chiralities vanish identically.2

In absence of NP, the only non-zero operator comes from the Wµ mediator, contribut-

ing to the SM Wilson operator OVLL. These dimension-six operators mediate transitions

involving one up and one down quarks, a charged lepton and its corresponding neutrino.

They can be interpreted in terms of NP mediators lying at a high energy scale and de-

scribed in different UV models (see Sections 8.2.3 and 8.3.3.1). The relation between the

2This is a direct consequence of the Dirac-algebra identity σµν = i
2 ε

µναβσαβ , which implies σµν ⊗

σµνγ5 = σµνγ5 ⊗ σµν and σµνγ5 ⊗ σµνγ5 = σµν ⊗ σµν . We use the convention ε0123 = −ε0123 = −1.
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corresponding Wilson coefficients at a high-energy scale and the observables lying at the

electroweak scale is given by the RGEs as it is illustrated in Section 8.2.3.

The Hamiltonian of Eq. (4.0.1) allows us to study both leptonic and semileptonic

decays of pseudoscalar mesons and to build observables that have been already measured

or could be accessed experimentally in the near future. The discrepancies between some of

these observables and their SM predictions are promising hints of NP that will be studied

in Chapter 8. The set of observables that can be built, but have not been measured yet

can help us to disentangle several of the possible NP solutions.

In the case of leptonic decays, the non-perturbative QCD part is the meson decay

constant calculated from lattice QCD (LQCD). For the semileptonic decays, one has to

control several form factors (FFs) depending on the dilepton momentum squared q2.

In the following sections, leptonic and semileptonic decays as well as the relevant ob-

servables that can be built will be briefly described. For the former, the helicity formalism,

typically used to describe semileptonic transitions keeping the polarization of the involved

particles will be summarized.

4.1 Leptonic decays

We will calculate the leptonic decay P−(q) → `(p1)ν̄`(p2). P− is a pseudoscalar meson

JP = 0− formed by q̄u and qd. Some examples of these pseudoscalar mesons are K− =

ūs,D− = c̄d or B− = ūb.

To study observables related to these transitions, the corresponding hadronic currents

are needed. One can write the hadronic parts of Eq. (4.0.1) in terms of vector, axial,

scalar, pseudoscalar and tensor currents,
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V µ(x) = q̄u(x)γµqd(x) = q̄u(x)γµqdR(x) + q̄u(x)γµqdL(x)

Aµ(x) = q̄u(x)γµγ5qd(x) = q̄u(x)γµqdR(x)− q̄u(x)qdL(x) ,

S(x) = q̄u(x)qd(x) = q̄u(x)qdR(x) + q̄u(x)qdL(x)

P (x) = q̄u(x)γ5qd(x) = q̄u(x)γ5qdR(x)− q̄u(x)γ5qdL(x),

Tµν(x) = q̄u(x)σµνqd(x) = q̄u(x)σµνqdR(x) + q̄u(x)σµνqdL(x),

Tµν5 (x) = q̄u(x)σµνγ5qd(x) = q̄u(x)σµνqdR(x)− q̄u(x)σµνqdL(x). (4.1.3)

Due to parity conservation and Lorentz invariance, the vector, scalar and tensor currents

will not contribute to the decay amplitude.3 For the axial current, the matrix element is

parametrized as,

〈0|Aµ(x) |P (q)〉 = ie−iqxfP qµ , (4.1.4)

where fP is the so-called decay constant. Decay constants are well determined from LQCD

and can be found at Refs. [49, 50]. Applying the QCD equation of motion at Eq. (4.1.4)

one gets the pseudoscalar matrix element,

〈0|P (x) |P (q)〉 = − ie
−iqx fP M

2
P

mqu +mqd

. (4.1.5)

Then, the matrix elementsML,R corresponding to the decay into left- and right-handed

neutrinos, respectively, are given by

3Note that a pseudoscalar meson is odd under parity. Therefore only the axial and the pseudoscalar

will contribute to leptonic decays.
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ML = i
√

2GFVqu qd fP ū(p1)
[(

1 + CVRL − CVLL
)
γµ PL qµ

−
(
CSRL − CSLL

)
PL

m2
P

mqu +mqd

]
v(p2) , (4.1.6)

MR = i
√

2GFVqu qd fP ū(p1)
[(
CVRR − CVLR

)
γµ PR qµ

−
(
CSRR − CSLR

)
PR

m2
P

mqu +mqd

]
v(p2) , (4.1.7)

and the branching ratio reads,

B
(
P− → `ν̄`

)
= G2

F |Vqu qd |
2mP m

2
`

8π f2
P τP

(
1− m2

`

m2
P

)2

∣∣∣∣∣1 + CVLL − CVRL + m2
P

m` (mqu +mqd)
(
CSRL − CSLL

)∣∣∣∣∣
2

+
∣∣∣∣∣CVRR − CVLR + m2

P

m` (mqu +mqd)
(
CSLR − CSLR

)∣∣∣∣∣
2

, (4.1.8)

where τP is the lifetime of the pseudoscalar meson. As expected, the contributions of left-

and right-handed neutrinos are symmetric under the interchanges
(
1 + CVLL − CVRL

)
↔(

CVLR − CVRR
)

and
(
CSRL − CSLL

)
↔

(
CSRR − CSLR

)
. One can also note that the parts

involving different neutrino polarizations do not mix. To finish, just recall that since the

non-perturbative content of leptonic decays depend on a single parameter (the leptonic

decay constant), and they are determined with a precision below the percent level [49],

they are extremely clean observables.

4.2 Semileptonic decays

Let us consider the semileptonic decay of a “mother” meson into a “daughter” one,

M(pM )→M ′(pM ′ , λM ′)`(p`, λ`)ν̄`(pν , λν), where M is a pseudoscalar meson
(
JM = 0−

)
and M ′ is either a pseudoscalar meson P

(
JP = 0−

)
with no polarization (we will de-
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note it as λP = s) or vector meson V
(
JV = 1−

)
with polarizations λV = 0,±. The

four-momentum transfer is defined as q = pM − p′M .

Decays into one pseudoscalar meson require minimum input from non-perturbative

QCD. As we did for leptonic decays, applying Lorentz invariance and parity conservation

one can note that only the vector V µ(x), the scalar S(x) and the tensor currents Tµν(5)(x)

contribute,

〈P (pP )|V µ(x)|M(pM )〉 =
[
(pM + pP )µ − m2

M −m2
P

q2 qµ
]
F1(q2) + qµ

m2
M −m2

P

q2 F0(q2),

〈P (pP )|S(x)|M(pM )〉 = m2
M −m2

P

mqd −mqu

F0(q2),

〈P (pP )|Aµ(x)|M(pM )〉 = 〈P (pP )|P |M(pM )〉 = 0,

〈P (pP )|Tµν(x)|M(pM )〉 = −i(pµMp
ν
P − p

µ
P p

ν
M ) 2FT (q2)

mM +mP
,

〈P (pP )|Tµν5 (x)|M(pM )〉 = −εµναβ pMαpPβ
2FT (q2)
mM +mP

, (4.2.9)

where the polarization of the P meson has been omitted since there is no polarization.

Decays into vector mesons require a larger input form LQCD. They depend on more

FFs which are more difficult to study in LQCD. The hadronic matrix elements can be

parametrized as,
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〈V (pV , λV )|V µ(x)|M(pM )〉 = −i εµνρσ εν∗(λV ) pMρpV σ
2V (q2)

mM +mV
,

〈V (pV , λV )|Aµ(x)|M(pM )〉 = (mM +mV )A1(q2)
(
εµ∗(λM )− qµ (ε∗(λM ) · q)

q2

)
+qµ(ε∗(λM ) · q)2mV

q2 A0(q2)

− ε
∗(λM ) · q
mM +mV

A2(q2)
(

(pM + pV )µ − qµ
m2
M −m2

V

q2

)
,

〈V (pV , λV )|S(x)|M(pM )〉 = 0,

〈V (pV , λV )|P (x)|M(pM )〉 = −(ε∗(λM ) · q) 2mV

mqd +mqu

A0(q2),

〈V (pV , λV )|Tµν(x)|M(pM )〉 = εµνρσ
{
−ερ∗(λM )(pM + pV )σT1(q2)

+2(ε∗(λM ) · q)
q2 pMρpD∗σ

(
T1(q2)− T2(q2)− q2

m2
M −m2

V

T3(q2)
)

+ε∗ρ(λM )qσm
2
B −m2

V

q2 (T1(q2)− T2(q2))
}
. (4.2.10)

The FFs depend on the channel studied. For the particular case of B̄ → D(∗)τ ν̄

transitions they can be found at Refs. [51,52]. The FFs of these transitions are summarized

in Appendix A.

4.2.1 Helicity formalism

The matrix elements,

MλM′ ,λ`
λν

∝ 〈M ′(λM ′)| Jαhad |M〉 〈`(λ`)ν̄`(λν)| Jα lep |0〉 , (4.2.11)

with α = 1, µ, µν for scalar, vector, and tensor couplings respectively, are needed to

calculate the relevant observables of semileptonic transitions and will be calculated using

the helicity formalism [53–55], which is based in factorizing the amplitudes of Eq. (4.2.11)

into hadronic and leptonic amplitudes by considering an intermediate off-shell virtual
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boson V ∗ with polarization λV ∗ . Using the completeness relation for the polarization

vectors εµ(λ),

∑
λ

δλ ε
∗
µ(λ) εν(λ) = gµν with δ0 = δ± = −δt = −1 , (4.2.12)

we can write the matrix element as the product of leptonic and hadronic amplitudes,

M[M →M ′(λ′M ) `(λ`) ν̄X ] = GF√
2
Vqu qd

∑
A=L,R

{(
δALδXL + CVAX

) ∑
λ

δλH
λD
VA,λ

Lλ`,XV∓A,λ

+ CSAX HλD
SA

Lλ`,XS∓P + CTAX
∑
λ,λ′

δλ δλ′ H
λD
TA,λλ′

Lλ`,XT∓T5,λλ′

}

≡ GF√
2
Vqu qd M

λD,λ`
L,R . (4.2.13)

where X = L,R denotes the neutrino helicity, λ` the lepton helicity and λM ′ is the pre-

viously defined daughter meson helicity. This formalism is useful to calculate observables

that distinguish the helicities of the process. Note that the terms proportional to CTLR and

CTRL vanish identically.

The problem is then reduced to calculate the leptonic Lλ`,XY and hadronic HλD
Y ampli-

tudes with Y = V ∓ A, λ for vector amplitudes, Y = S ∓ P for scalar and pseudoscalar

amplitudes and Y = T ∓ T5, λλ′ for tensor amplitudes. The kinematics of the processes,

including the polarization spinors is summarized in Appendix B.

4.2.1.1 Leptonic amplitudes

The leptonic helicity amplitudes are defined as,

L
λ`,

L
R

V∓A,λ(q2, θ`, φ) = εµ(λ) 〈`(λ`)ν̄(λν)|¯̀γµ(1∓ γ5)ν|0〉 ,

L
λ`,

L
R

S∓P (q2, θ`, φ) = 〈`(λ`)ν̄(λν)|¯̀(1∓ γ5)ν|0〉 , (4.2.14)

L
λ`,

L
R

T∓T5,λ,λ′(q
2, θ`, φ) = −Lλ`,

L
R

T∓T5,λ′,λ = −i εµ(λ) εν(λ′) 〈`(λ`)ν̄(λν)|¯̀σµν(1∓ γ5)ν|0〉 ,

where εµ(λ) are the polarization vectors of the intermediate virtual boson (λ = t, 0,±) in

its rest frame defined in Appendix B. Notice that the helicity of the neutrino is explicitly
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given in the above equation with the symbols L (λν = −1/2) and R (λν = +1/2) for

left-handed and right-handed neutrinos.

The vectorial leptonic amplitudes for left-handed neutrinos (LHN) are given by:

L+,L
V−A,+(q2, θ`, φ) =

√
2m`β` sin θ` e−2iφ ,

L+,L
V−A,−(q2, θ`, φ) = −

√
2m`β` sin θ` ,

L+,L
V−A,0(q2, θ`, φ) = 2m`β` cos θ` e−iφ ,

L+,L
V−A,t(q

2, θ`, φ) = −2m`β` e−iφ ,

L−,LV−A,±(q2, θv, φ) =
√

2q2 β` (1± cos θ`) e∓iφ ,

L−,LV−A,0(q2, θ`, φ) = −2
√
q2 β` sin θ` ,

L−,LV−A,t(q
2, θ`, φ) = 0 , (4.2.15)

where β` =
√

1−m2
`/q

2. The scalar leptonic amplitudes for LHNs are:

L+,L
S−P (q2, θ`, φ) = −2

√
q2β` e−iφ ,

L−,LS−P (q2, θ`, φ) = 0 . (4.2.16)

The tensor leptonic amplitudes for LHNs take the form:

L+,L
T−T5,+0(q2, θ`, φ) =

√
2q2β` sin θ` e−2iφ ,

L+,L
T−T5,−0(q2, θ`, φ) =

√
2q2β` sin θ` ,

L+,L
T−T5,+−(q2, θ`, φ) = −L+,L

T−T5,0t = 2
√
q2βτ cos θ` e−iφ ,

L+,L
T−T5,+t(q

2, θ`, φ) = −
√

2q2β` sin θ` e−2iφ ,

L+,L
T−T5,−t(q

2, θ`, φ) =
√

2q2β` sin θ` ,

L−,LT−T5,±0(q2, θ`, φ) = ±
√

2m`β` (1± cos θ`) e∓iφ ,

L−,LT−T5,+−(q2, θ`, φ) = −L−,LT−T5,0t = −2m`β` sin θ` ,

L−,LT−T5,±t(q
2, θ`, φ) = −

√
2m`β` (1± cos θ`) e∓iφ . (4.2.17)
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The right-handed vectorial leptonic amplitudes are given by:

L+,R
V+A,±(q2, θ`, φ) =

√
2q2β` (1∓ cos θ`) e∓iφ ,

L+,R
V+A,0(q2, θ`, φ) = 2

√
q2β` sin θ` ,

L+,R
V+A,t(q

2, θ`, φ) = 0 ,

L−,RV+A,+(q2, θ`, φ) =
√

2m`β` sin θ` ,

L−,RV+A,−(q2, θ`, φ) = −
√

2m`β` sin θ` e2iφ ,

L−,RV+A,0(q2, θ`, φ) = 2m`β` cos θ` eiφ ,

L−,RV+A,t(q
2, θ`, φ) = −2m`β` eiφ .

(4.2.18)

The scalar leptonic amplitudes for right-handed neutrinos (RHNs) are:

L+,R
S+P (q2, θ`, φ) = 0 ,

L−,RS+P (q2, θ`, φ) = −2
√
q2β` eiφ . (4.2.19)

Finally, the tensor leptonic amplitudes for RHNs are:

L+,R
T+T5,±0(q2, θ`, φ) = ∓

√
2m`β` (1∓ cos θ`) e∓iφ ,

L+,R
T+T5,+−(q2, θ`, φ) = L+,R

T+T5,0t = −2m`β` sin θ` ,

L+,R
T+T5,±t(q

2, θ`, φ) = −
√

2m`β` (1∓ cos θ`) e∓iφ ,

L−,RT+T5,+0(q2, θ`, φ) = −
√

2q2β` sin θ` ,

L−,RT+T5,+−q
2, θ`, φ) = L−,RT+T5,0t = −2

√
q2β` cos θ` eiφ ,

L−,RT+T5,+t(q
2, θ`, φ) = −

√
2q2β` sin θ` ,

L−,RT+T5,−0(q2, θ`, φ) = −
√

2q2β` sin θ` e2iφ ,

L−,RT+T5,−t(q
2, θ`, φ) =

√
2q2β` sin θ` e2iφ .

(4.2.20)
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4.2.1.2 Hadronic amplitudes

Combining leptonic and helicity amplitudes as in Eq. (4.2.11) the amplitudes for M → P

transitions are:

Hs
V,0(q2) ≡ Hs

VL,0(q2) = Hs
VR,0(q2) =

√
λP (q2)
q2 F1(q2) ,

Hs
V,t(q2) ≡ Hs

VL,t
(q2) = Hs

VR,t
(q2) = m2

M −m2
P√

q2 F0(q2) ,

Hs
S(q2) ≡ Hs

SL
(q2) = Hs

SR
(q2) ' m2

M −m2
P

mqd −mqu

F0(q2) , (4.2.21)

Hs
T (q2) = Hs

TL+− = Hs
TL0t = −Hs

TR+− = Hs
TR0t = −

√
λP (q2)

mM +mP
FT (q2) ,

where λP is the Källén function,

λM ′(q2) ≡ λ(m2
M ,m

2
M ′ , q

2) = m4
M +m4

M ′ + q4− 2mMmM ′ − 2mMq
2− 2m2

M ′q
2 , (4.2.22)

with M ′ = P .

For M → V :

HV,±(q2) ≡ H±VL,±(q2) = −H∓VR,∓(q2) = (mM +mV )A1(q2)∓
√
λV (q2)

mM +mV
V (q2) ,

HV,0(q2) ≡ H0
VL,0(q2) = −H0

VR,0(q2)

= mM +mV

2mV

√
q2

[
−(m2

M −m2
V − q2)A1(q2) + λV (q2)

(mM +mV )2 A2(q2)
]
,

HV,t(q2) ≡ H0
VL,t

(q2) = −H0
VR,t

(q2) = −
√
λV (q2)
q2 A0(q2) ,

HS(q2) ≡ H0
SR

(q2) = −H0
SL

(q2) ' −
√
λV (q2)

mqd +mqu

A0(q2) , (4.2.23)

HT,0(q2) ≡ H0
TL0t(q2) = H0

TL+−(q2) = −H0
TR0t(q2) = H0

TR+−(q2)

= 1
2mV

[
−(m2

M + 3m2
V − q2)T2(q2) + λV (q2)

m2
M −m2

V

T3(q2)
]
,

HT±(q2) ≡ H±TL±0(q2) = ±H±TL±t(q
2) = ∓H∓TR∓t(q

2) = −H∓TR∓0(q2)

= 1√
q2

[
±(m2

M −m2
V )T2(q2) +

√
λV T1(q2)

]
.

where λV is the Källén function of Eq. (4.2.22) with M ′ = V .
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4.3 b→ cτ ν̄ observables

Recently, several deviations from the SM in observables involving b → cτ ν̄ transitions

have been experimentally measured [56–58]. The most important ones are the ratios

RD(∗) defined as,

RD(∗) =
B
(
B → D(∗)τ ν̄τ

)
B
(
B → D(∗)`ν̄`

) , (4.3.24)

where ` = e, µ denotes a light lepton. The latest word averages, performed by the Heavy

Flavour Averaging Group (HFLAV) collaboration [48],

Rave
D = 0.340± 0.027± 0.013 and Rave

D∗ = 0.295± 0.011± 0.008 ,

(4.3.25)

deviate at the 3.1σ level (considering their correlation of −0.38) from the arithmetic av-

erage of SM predictions [59–62] quoted also by HFLAV [48],

RSM
D = 0.299± 0.003 (1.4σ) and RSM

D∗ = 0.258± 0.005 (2.5σ).

(4.3.26)

RD and RD∗ have the advantage of being clean observables: many uncertainties coming

from the FFs and the CKM element Vcb cancel in the ratios of Eq.(4.3.24). This implies

that the discrepancy with respect to the SM prediction is translated into a large violation

of tree-level lepton universality, which cannot be accommodated in the SM.

The HFLAV averages quoted in Eq. (4.3.25) are calculated combining measurements

from several experiments. The ones presenting a stronger discrepancy are the 2012 and

2013 BaBar measurements [63,64], while the most recent experimental values of Belle [65–

67] and LHCb [68–70] are closer to the SM predictions. 4 The q2 differential distributions

4Note that the LHCb measurements only use semimuonic models as normalization channels. Also,

while kinematics are completely known at B-meson factories, momenta of the LHC colliding partons are

unknown.
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of B → D and B → D∗ have also been measured by Belle [65] and BaBar [64], restricting

large deviations from the SM. Another observable related to B → D∗ transitons, the

integrated longitudinal polarization F̄D∗L recently measured by Belle presents a 1.6σ [71]

discrepancy and it is difficult to accommodate within its 1σ uncertainty. A more detailed

overview of the different RD(∗) measurements and how averages have changed through

time will be given in Chapter 8. Besides anomalies in the ratios of B → D(∗) transitions,

the observable,

R(J/ψ) ≡ B(Bc → J/ψ τν̄)
B(Bc → J/ψ µ ν̄) , (4.3.27)

measured by LHCb [72] presents a 1.7σ deviation with respect to the SM prediction. In this

case the τ+ decays leptonically to µ+ν̄µντ and theoretical uncertainties from FFs governing

Bc → J/ψ transitions result in large error bands for the SM predictions. Finally, combining

the inclusive measurement B (Bc → Xcτ ν̄) /B (Bc → Xceν̄) [73], which is independent of

any FFs, with the exclusive measurements B
(
B̄ → Dτν̄

)
+ B

(
B̄ → D∗τ ν̄

)
there is no

room for other B̄ channels such as D∗∗ (the four lightest orbitally excited D meson states),

which should contribute at a 0.5% [74]. 5

The study of these anomalies related to b→ cτ ν̄ observables can be performed through

an EFT approach using the Hamiltonian of Eq. (4.0.1). Different analyses without light

right-handed neutrinos and with these particles will be done Chapter 8. In this Section

we give the list of the relevant observables involving these b → cτ ν̄ transitions that will

be used for the following analyses.

5 The SM prediction of the ratio for inclusive decay rates, R(Xc), can be computed using the OPE

and found to be R(Xc) = 0.222 ± 0.007 [75]. Combining it with the most recent world average B(B− →

Xceν̄) = (10.92± 0.16) % [76, 77] yields to the SM prediction B(B− → Xcτ ν̄) = (2.42± 0.05) %. On the

other hand, using Ref. [78] and taking it into account for the theoretical description of these decays, one

finds B
(
B̄ → Dτν̄

)
B
(
B̄ → D∗τ ν̄

)
+B

(
B̄ → D∗∗τ ν̄

)
∼ 3%, presenting an important tension with the SM

prediction.
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4.3.1 B → Dτν̄

The differential distribution of the decay B → Dτν̄ can be written as

dΓ(B → Dτν̄)
dq2 d cos θτ

= G2
FV

2
cb

256m3
Bπ

3 q
2 λ

1/2
D (q2)

(
1− m2

τ

q2

)2 {
J0(q2) + J1(q2) cos θτ + J2(q2) cos2 θτ

}
,

(4.3.28)

where q2 = (pτ + pν̄)2, θτ is the polar angle of the τ momentum in the rest frame of the

τ ν̄ pair, with respect to the z-axis defined by the momentum of the D meson in the B

rest frame, and λD(∗)(q2) is the Källen function of Eq. (4.2.22) with M = B and M ′ = D.

The coefficient functions of the different angular dependences are given by

J0(q2) =
∣∣∣ÃL0 − 2mτ√

q2 Ã
L
T

∣∣∣2 + m2
τ

q2

∣∣∣ÃLt +
√
q2

mτ
ÃLS
∣∣∣2 + (L↔ R) ,

J1(q2) = 2m2
τ

q2 Re
[(
ÃL0 −

2
√
q2

mτ
ÃLT
)(
ÃL∗t +

√
q2

mτ
ÃL∗S

)]
+ (L↔ R) ,

J2(q2) = −
(

1− m2
τ

q2

) (
|ÃL0 |2 − 4 |ÃLT |2

)
+ (L↔ R) , (4.3.29)

where

ÃL0 =
(
1 + CVLL + CVRL

)
Hs
V,0 , ÃR0 =

(
CVLR + CVRR

)
Hs
V,0 ,

ÃLt =
(
1 + CVLL + CVRL

)
Hs
V,t , ÃRt =

(
CVLR + CVRR

)
Hs
V,t ,

ÃLS =
(
CSRL + CSLL

)
Hs
S , ÃRS =

(
CSRR + CSLR

)
Hs
S ,

ÃLT = 2CSLLHs
T , ÃRT = 2CTRRHs

T . (4.3.30)

The hadronic helicity amplitudes Hs
V,0, Hs

V,t, Hs
S and Hs

T are functions of q2, and their

explicit expressions are given in Section 4.2.1.2 with the FFs of Appendix A. The LHN

contributions to Eq. (4.3.29) are in full agreement with Ref. [79]. Notice that the vector

and scalar Wilson coefficients only appear in the combinations CVLX+CVRX and CSLX+CSRX ,

regardless of the neutrino chirality X.

The helicity amplitudes for the transition B → Dτν are defined as

M[B → D τ(λτ ) νL,R] ≡ −
√

2GF VcbMλτ
L,R , (4.3.31)
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where λτ = ±1
2 denotes the τ helicity in the rest frame of the τ ν̄ pair. The four reduced

amplitudesMλτ
L,R are given by:

M+ 1
2

L = −2
√
q2 βτ e−iφ

{
mτ√
q2

[
ÃLt + cos θτ ÃL0

]
+ ÃLS − 2 cos θτ ÃLT

}
,

M−
1
2

L = 2
√
q2 βτ sin θτ

{
ÃL0 −

2mτ√
q2 Ã

L
T

}
,

M+ 1
2

R = −2
√
q2 βτ sin θτ

{
ÃR0 −

2mτ√
q2 Ã

R
T

}
,

M−
1
2

R = −2
√
q2 βτ eiφ

{
mτ√
q2

[
ÃRt + cos θτ ÃR0

]
+ ÃRS − 2 cos θτ ÃRT

}
. (4.3.32)

Integrating Eq. (4.3.28) over cos θτ , one obtains [80]

dΓ
dq2 (B → Dτν̄) = G2

FV
2
cb

192m3
Bπ

3 q
2 λ

1/2
D (q2)

(
1− m2

τ

q2

)2

×
{(
|1 + CVLL + CVRL|2 + |CVLR + CVRR|2

) [
(Hs

V,0)2
(
m2
τ

2q2 + 1
)

+ 3m2
τ

2q2 (Hs
V,t)2

]

+ 3
2 (Hs

S)2
(
|CSRL + CSLL|2 + |CSRR + CSLR|2

)
+ 8

(
|CTLL|2 + |CTRR|2

)
(Hs

T )2
(

1 + 2m2
τ

q2

)
+ 3Re

[
(1 + CVLL + CVRL) (CSRL + CSLL)∗ + (CVLR + CVRR) (CSRR + CSLR)∗

] mτ√
q2H

s
SH

s
V,t

− 12Re
[
(1 + CVLL + CVRL)CT∗LL + (CVRR + CVLR)CT∗RR

] mτ√
q2H

s
TH

s
V,0

}
. (4.3.33)

The linear term in the θτ distribution given in Eq. (4.3.28) can be accessed via the

forward-backward asymmetry, traditionally defined as

ADFB = 1
dΓ/dq2

[ ∫ 1

0
−
∫ 0

−1

]
d cos θτ

d2Γ
dq2d cos θτ

= 1
2

J1(q2)
J0(q2) + 1

3J3(q2)
, (4.3.34)

and the τ polarization asymmetry can be constructed as

PDτ =
dΓλτ=1/2/dq

2 − dΓλτ=−1/2/dq
2

dΓ/dq2 , (4.3.35)

where the decomposition of the amplitude in τ helicity states is given in Eqs. (4.3.31) and

(4.3.32).
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4.3.2 B → D∗τ ν̄

The vector meson D∗ in the final state provides additional observables compared to the

previous case. The angular analysis of a four-body final state, namely B → D∗(→ Dπ)τ ν̄,

further allows us to construct a multitude of observables that can be extracted from

data [79, 81–87]. The differential decay distribution of the transition process B(pB) →

D∗(pD∗) τ(pτ ) ν̄(pν̄), with D∗(pD∗)→ D(pD)π(pπ) on the mass shell, can be expressed in

the form [79]:

d4Γ(B → D∗τ ν̄)
dq2 d cos θτ d cos θD dφ

≡ I(q2, θτ , θD, φ)

= 9
32π

{
Is1 sin2 θD + Ic1 cos2 θD +

(
Is2 sin2 θD + Ic2 cos2 θD

)
cos 2θτ

+ (I3 cos 2φ+ I9 sin 2φ) sin2 θD sin2 θτ + (I4 cosφ+ I8 sinφ) sin 2θD sin 2θτ

+ (I5 cosφ+ I7 sinφ) sin 2θD sin θτ +
(
Is6 sin2 θD + Ic6 cos2 θD

)
cos θτ

}
.

(4.3.36)

In addition to the lepton-pair invariant-mass squared q2 = (pτ +pν̄)2, we use as kinematic

variables the three angles φ, θτ and θD, which are defined as follows. Taking as positive

z- axis the direction of the D∗ momentum in the B rest frame, θτ and θD are the polar

angles of the τ and the final D meson in the τν and Dπ rest frames, respectively. The

azimuth φ is the angle between the decay planes formed by τν and Dπ. See Fig. 4.1 for

a visual representation of these kinematical variables.

Measuring this four-dimensional distribution is obviously a major experimental chal-

lenge, since the subsequent τ decay involves one (τ → ντ +hadrons) or two (τ → ντ ` ν̄`)

additional neutrinos, making difficult to reconstruct the τ direction. Some information

can be recovered by measuring the distribution of the secondary τ decay [84–86], but we

refrain to enter here into this type of technical (but important) details.

The angular coefficients Ii’s are functions of q2 that encode both short- and long-

distance physics contributions. They can be written in terms of the hadronic FFs given
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Figure 4.1: Schematic representation of the kinematical variables for the B → D∗(→

Dπ)τ ν̄ process.

in Appendix A. Using the global normalization

NF = G2
F |Vcb|2

27 3π3m3
B

q2 λ
1/2
D∗ (q2)

(
1− m2

τ

q2

)2

B(D∗ → Dπ) , (4.3.37)

where B(D∗ → Dπ) is the branching fraction of the D∗ decay into Dπ states described

in Appendix C. The expressions for the angular coefficients are:

Ic1 = NF

[
2
(
1 + m2

τ

q2

)(
|AL0 |2 + 4 |ALT 0|2

)
− 16mτ√

q2 Re[A
L
0ALT 0

∗ ] + 4m2
τ

q2 |A
L
tP |2 + (L→ R)

]
,

Is1 = NF

[1
2
(
3 + m2

τ

q2

)(
|AL⊥|2 + |AL‖ |2

)
+ 2

(
1 + 3m2

τ

q2

)(
|ALT ⊥|2 + |ALT ‖|2

)
− 8 mτ√

q2 Re[A
L
⊥ALT ⊥

∗ +AL‖ALT ‖
∗ ] + (L→ R)

]
,

Ic2 = −2NF

(
1− m2

τ

q2

) (
|AL0 |2 − 4 |ALT 0|2 + (L→ R)

)
,

Is2 = 1
2 NF

(
1− m2

τ

q2

) (
|AL⊥|2 + |AL‖ |2 − 4

(
|ALT ⊥|2 + |ALT ‖|2

)
+ (L→ R)

)
,

I3 = NF

(
1− m2

τ

q2

) (
|AL⊥|2 − |AL‖ |

2 − 4
(
|ALT ⊥|2 − |ALT ‖|

2)+ (L→ R)
)
,

I4 =
√

2NF

(
1− m2

τ

q2

)
Re[AL0AL‖

∗ − 4ALT 0ALT ‖
∗ + (L→ R)] ,



60 Flavour observables in qu → qd`ν̄ transitions

I5 = 2
√

2NF

[
Re[

(
AL0 − 2 mτ√

q2 A
L
T 0
) (
AL⊥
∗ − 2 mτ√

q2 A
L
T ⊥
∗ )− (L→ R)]

− m2
τ

q2 Re[A
L∗
tP

(
AL‖ − 2

√
q2

mτ
ALT ‖

)
+ (L→ R)]

]
,

Ic6 = NF
8m2

τ

q2 Re[A
L∗
tP

(
AL0 − 2

√
q2

mτ
ALT 0

)
+ (L→ R)] ,

Is6 = 4NF Re[
(
AL‖ − 2 mτ√

q2 A
L
T ‖
)(
AL⊥
∗ − 2 mτ√

q2A
L
T ⊥
∗ )− (L→ R)] ,

I7 = −2
√

2NF

[
Im[

(
AL0 − 2 mτ√

q2 A
L
T 0
) (
AL‖
∗ − 2 mτ√

q2 A
L
T ‖
∗ )− (L→ R)]

+ m2
τ

q2 Im[AL∗tP
(
AL⊥ − 2

√
q2

mτ
ALT ⊥

)
+ (L→ R)]

]
,

I8 =
√

2NF

(
1− m2

τ

q2

)
Im[AL0

∗AL⊥ − 4ALT 0
∗ALT ⊥ + (L→ R)] ,

I9 = 2NF

(
1− m2

τ

q2

)
Im[AL‖AL⊥

∗ − 4ALT ‖ALT ⊥
∗ + (L→ R)] . (4.3.38)

In the above expressions, the AL,Rλ denote the transversity amplitudes, which are the pro-

jections of the total decay amplitude into the explicit polarization basis. The contribution

of the RHN transitions to the angular coefficients is equivalent to the LHN ones, i.e.

(L→ R), up to a sign that depends on the relation between right-handed and left-handed

leptonic transversity amplitudes. In the SM, the decay B → D∗τ ν̄ can be described by

a total of four transversity amplitudes that correspond to one longitudinal (A0) and two

transverse (A⊥,‖) directions, and a time-like component (At) for the virtual vector boson

decaying into the τ ν̄ pair. However, with the inclusion of RHNs, we must distinguish the

left and right chiralities of the leptonic current; thus, we get in total eight amplitudes:

AL,R0,⊥,‖,t. Now, in presence of the NP operators given in Eq. (4.0.2), the (axial)vector con-

tributions can be incorporated in the above mentioned eight amplitudes, modified by the

presence of the new Wilson coefficients. Nevertheless, the (pseudo)scalar and tensor oper-

ators induce eight further amplitudes (four for each neutrino chirality): two (pseudo)scalar

amplitudes AL,RP and six tensor transversities AL,RT 0,T ⊥,T ‖. Thus, with the most general

dimension-six Hamiltonian in Eq. (4.0.1), the decay B → D∗(→ Dπ)τ ν̄ can be described

by a total of sixteen tranversity amplitudes. Their explicit dependence on the hadronic
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helicity amplitudes, compiled in Eq. (4.2.23), and the Wilson coefficients is listed below,

AL0 = HV,0 (1 + CVLL − CVRL), AR0 = HV,0 (CVLR − CVRR),

AL‖ = 1√
2

(HV,+ +HV,−) (1 + CVLL − CVRL), AR‖ = 1√
2

(HV,+ +HV,−) (CVLR − CVRR),

AL⊥ = 1√
2

(HV,+ −HV,−) (1 + CVLL + CVRL), AR⊥ = 1√
2

(HV,+ −HV,−) (CVLR + CVRR),

ALt = HV,t (1 + CVLL − CVRL), ARt = HV,t (CVLR − CVRR),

ALP = HS (CSRL − CSLL), ARP = HS (CSRR − CSLR),

ALT0 = 2HT,0 C
T
LL, ART0 = −2HT,0 C

T
RR,

ALT‖ =
√

2 (HT,+ −HT,−) CTLL, ART‖ = −
√

2 (HT,+ −HT,−) CTRR,

AL,RT⊥ =
√

2 (HT,+ +HT,−) CT,RLL , (4.3.39)

where the t and the P amplitudes arise in the B → D∗ observables combined as

AL,RtP =
(
AL,Rt +

√
q2

mτ
AL,RP

)
. (4.3.40)

With these definitions, the left-handed contributions to the angular coefficients in Eq. (4.3.38)

are in agreement with Ref. [79].

Twelve helicity amplitudes (six for each neutrino chirality) can be written in terms of

these amplitudes (see Eq. (4.2.13)). For LHNs they take the form:

M+1,+ 1
2

L = −
√
q2 βτ sin θτ e−2iφ

{
mτ√
q2

(
AL‖ +AL⊥

)
− 2 (ALT ‖ +ALT ⊥)

}
,

M+1,− 1
2
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√
q2 βτ (1 + cos θτ ) e−iφ

{
AL‖ +AL⊥ −

2mτ√
q2 (ALT ‖ +ALT ⊥)

}
,

M0,+ 1
2

L = −2mτ βτ e−iφ
{
ALtP + cos θτ

[
AL0 −

2
√
q2

mτ
ALT 0

]}
,

M0,− 1
2

L = 2
√
q2 βτ sin θτ

[
AL0 −

2mτ√
q2 A

L
T 0

]
,

M−1,+ 1
2

L =
√
q2 βτ sin θτ

{
mτ√
q2 (AL‖ −AL⊥)− 2 (ALT ‖ −ALT ⊥)

}
,

M−1,− 1
2

L = −
√
q2 βτ (1− cos θτ ) eiφ

{
AL‖ −A

L
⊥ − 2 mτ√

q2 (ALT ‖ −ALT ⊥)
}
,(4.3.41)
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while the corresponding amplitudes for RHNs are given by:

M+1,+ 1
2

R = −
√
q2 βτ (1− cos θτ ) e−iφ

{
AR‖ +AR⊥ − 2 mτ√

q2 (ART ‖ +ART ⊥)
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}
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R
T 0

]
,
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√
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2
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√
q2 βτ (1 + cos θτ ) eiφ
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AR‖ −A
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⊥ − 2 mτ√

q2 (ART ‖ −ART ⊥)
}
,

M−1,− 1
2
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q2 βτ sin θτ e2iφ

{
mτ√
q2

(
AR‖ −A

R
⊥

)
− 2 (ART ‖ −ART ⊥)

}
. (4.3.42)

Performing the angular integrations in Eq. (4.3.36), one easily obtains the differential

distribution with respect to q2, given by

dΓ
dq2 ≡ Γf = 1

4 (3Ic1 + 6Is1 − Ic2 − 2Is2) , (4.3.43)
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which written explicitly in terms of the different Wilson coefficients takes the following

form:

dΓ(B̄ → D∗τ ν̄)
dq2 = G2

F |Vcb|
2

192π3m3
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1/2
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q2 (HT,0HV,0 +HT,+HV,− −HT,−HV,+) . (4.3.44)

Differential distributions with respect to a single angle, which can be obtained by

integrating two angles at a time, are also of special interest. These are

d2Γ
dq2 d cos θτ

= 3
8
[
(Ic1 + 2Is1 − Ic2 − 2Is2) + (Ic6 + 2Is6) cos θτ + (2Ic2 + 4Is2) cos2 θτ

]
,

(4.3.45)
d2Γ

dq2 d cos θD
= 3

8
[
(3Is1 − Is2) + (3Ic1 − Ic2 − 3Is1 + Is2) cos2 θD

]
= 3

4 Γf
[
FD

∗
T sin2 θD + 2FD∗L cos2 θD

]
, (4.3.46)

d2Γ
dq2 dφ

= 1
8π
[
(3Ic1 + 6Is1 − Ic2 − 2Is2) + 4I3 cos 2φ+ 4I9 sin 2φ

]
= 1

2π Γf
[
1 +A3 cos 2φ+A9 sin 2φ

]
. (4.3.47)

In the following we define several observables constructed from the coefficients of various

angular dependences. The distribution with respect to cos θD in Eq. (4.3.46) provides the
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longitudinal and transverse polarization fractions for the D∗ meson, defined as [79]

FD
∗

L = 3Ic1 − Ic2
3Ic1 + 6Is1 − Ic2 − 2Is2

, and FD
∗

T = 2(3Is1 − Is2)
3Ic1 + 6Is1 − Ic2 − 2Is2

, (4.3.48)

which satisfy that FD∗L + FD
∗

T = 1. Notice that these quantities are functions of q2. We

define the q2-integrated observables as follows,

Ō ≡ 1
Γ

∫ q2
max

q2
min

dq2O[q2] Γf [q2], (4.3.49)

where Γ is the total decay width and the q2 dependence of the observables has been written

explicitly. The angular coefficients I3 and I9 can simply be extracted by measuring the

terms proportional to cos 2φ and sin 2φ in Eq. (4.3.47),

A3 = I3
Γf

, and A9 = I9
Γf

, (4.3.50)

respectively. Furthermore, we define several asymmetries starting with the well-known

forward-backward asymmetry, defined as

AD∗FB = 1
Γf

[ ∫ 1

0
−
∫ 0

−1

]
d cos θτ

d2Γ
dq2d cos θτ

. (4.3.51)

The coefficients I4 and I5 in Eq. (4.3.36) can be extracted with the two angular asymme-

tries:

A4 = 1
Γf

[ ∫ π/2

−π/2
−
∫ 3π/2

π/2

]
dφ
[ ∫ 1

0
−
∫ 0

−1

]
d cos θD

[ ∫ 1

0
−
∫ 0

−1

]
d cos θτ

d4Γ
dq2d cos θτd cos θDdφ

,

A5 = 1
Γf

[ ∫ π/2

−π/2
−
∫ 3π/2

π/2

]
dφ
[ ∫ 1

0
−
∫ 0

−1

]
d cos θD

∫ 1

−1
d cos θτ

d4Γ
dq2d cos θτd cos θDdφ

.

(4.3.52)

One can further define the following two observables,

A7 = 1
Γf

[ ∫ π

0
−
∫ 2π

π

]
dφ
[ ∫ 1

0
−
∫ 0

−1

]
d cos θD

∫ 1

−1
d cos θτ

d4Γ
dq2d cos θτd cos θDdφ

,

A8 = 1
Γf

[ ∫ π

0
−
∫ 2π

π

]
dφ
[ ∫ 1

0
−
∫ 0

−1

]
d cos θD

[ ∫ 1

0
−
∫ 0

−1

]
d cos θτ

d4Γ
dq2d cos θτd cos θDdφ

,

(4.3.53)
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which are non-vanishing only if NP induces a complex contribution to the amplitude.

This holds true for the coefficient A9 as well. These asymmetries are simply related to the

angular coefficients in (4.3.36):

A4 = 2
π

I4
Γf

, A5 = 3
4
I5
Γf

, AD∗FB = 3
8
Ic6 + 2Is6

Γf
, A7 = 3

4
I7
Γf

, A8 = 2
π

I8
Γf

.

(4.3.54)

Finally, the total branching ratio can be decomposed in terms of the τ polarization,

giving rise to another observable: the lepton polarization asymmetry, defined as

PD∗τ =
dΓλτ=1/2/dq

2 − dΓλτ=−1/2/dq
2

Γf
. (4.3.55)





Chapter 5

HEPfit

The search of NP beyond the SM is one of the most promising paths to follow in order

to obtain a deeper understanding of nature. In the last years, particle colliders have pro-

vided us with a large amount of experimental information. At the same time, theoretical

calculations are improving, giving precise predictions for several observables. Combining

experimental results with theoretical calculations to obtain information in the most effi-

cient way has become an important challenge that makes necessary the development of

sophisticated analysis tools.

To obtain relevant information using all these data, one can think about performing

a parameter scan, i.e., one generates random points, evaluates the different observables

at these points and then takes the points that best reproduce the experimental results.

However, this method is quite inefficient and one may lose some solutions as well as the

statistical meaning of the procedure. A more sophisticated way to perform these analyses

are random scans with a χ2 determination. This method is still inefficient, and the global

mode can also be missed, so it results inconvenient. In the last years several fitters have

been developed to combine the data in a more efficient way. We call fitters to statistical

frameworks that fit the model parameters to the experimentally measured observables by

maximising the likelihood. These fitters are more efficient than the previously mentioned

procedures and have a clear statistical meaning. There are many fitters in the market,

67
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which can be divided into two main categories: frequentist and Bayesian. Frequentist

fitters determine the probability of the data for a given set of parameters and then calculate

the p-value. Bayesian fitters use the Bayes’ theorem and the posterior probability. This

will be explained in detail in Section 5.1.

Several fitters available in the market present features that make them inconvenient for

our purpose: some of them are not open-source codes, they depend on external libraries or

are focused to work on small subsets of observables. The code presented in this chapter,

HEPfit, pretends to be a general purpose code that avoids all these issues.

HEPfit is a general tool designed to combine direct and indirect constraints in EFTs or

particular SM extensions. These extensions are NP models that can be added or modified

by the user. It also offers the possibility of sampling the parameter space using a Markov

Chain Monte Carlo (MCMC) implemented using the BAT library [88–90]. It is written

in C++ and parallelized with Message Passing Interface (MPI) [91]. HEPfit is released

under the GNU General Public License, so that contributions from users are possible and

welcome. The observables included can be classified into theoretical observables, EWPO,

flavour and Higgs observables (direct searches and signal strengths). They are calculated

in several models, such as the SM, the 2HDM or the Minimal Supersymmetric Standard

Model (MSSM).

The developers’ version can be downloaded at [92] and full documentation of the code,

describing the models and observables included can be found in Ref. [93].

The rest of the chapter is organized as follows: in Section 5.1 the statistical framework

used in HEPfit is briefly described. In Section 5.2 three different models implements in

HEPfit are presented: the SM, the A2HDM and the basis operators needed to perform a

fit to top and bottom EW operators. A summary is given in Section 5.3.

5.1 The HEPfit code, statistical framework and usage

HEPfit can be used both as a library to compute observables with fixed values of the

parameters or as a Bayesian analysis framework. For the former, the code is based on
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Bayesian statistics and makes use of the Bayes’ theorem. The MCMC implemented in BAT

is used and the code is parallelized with MPI.

5.1.1 Bayesian statistics

In a Bayesian framework, probability expresses a degree of belief. Let’s consider the model

parameters ~x and the data D. The posterior probability is defined according to the Bayes’

theorem [94] as,

P (~x|D) = P (D|~x)P0(~x)∫
P (D|~x)P0(~x) d~x , (5.1.1)

where P0(~x) is the prior probability of the parameters and represents the prior knowl-

edge about them. This prior knowledge may come from theoretical assumptions, previous

experimental analysis or can just follow a flat distribution where all points are equally

probable. The denominator is called the evidence and can be used to compare different

models defining the Bayes factor [95]. P (D|~x) is the likelihood function, which is inter-

preted as the probability of measuring the data D given ~x. Finally, P (~x|D) is the posterior

probability, i.e. the probability of measuring D after taking into account the evidence or

information about ~x. This posterior distribution depends on several parameters and can

be marginalized using sample methods to obtain the individual 1D probability of xi, from

which credibility regions can be computed,

P (xi|D) =
∫
P (~x|D)

∏
j 6=i

dxj . (5.1.2)

Here, all the variables but the one we want to calculate the distribution of are integrated

over.

5.1.2 Markov Chain Monte Carlo

Determining the 1D probability of Eq. (5.1.2) is not simple, specially when the number

of parameters is large. Using a naive Monte Carlo sampling algorithm is really inefficient

when sampling the parameter space and can lead to an unnaceptable execution time. The
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method implemented in HEPfit is the MCMC procedure, which overcomes this obstacle

and provides an algorithm to make use of Bayes’ theorem and then calculate these prob-

abilities. The implementation of MCMC in BAT uses a Metropolis-Hastings algorithm to

sample the parameter space from the posterior distribution. The steps are the following

(see [93]):

1. Start at a random point in the parameter space ~x

2. Generate a proposal point ~y according to a symmetric probability distribution g(~x, ~y)

3. Compare the value of the function f at the proposal point ~y with the value at the

current point ~x. The proposal point is accepted if:

• f(~y) ≥ f(~x)

• otherwise, generate a random number r from a uniform distribution in the range

[0, 1] and accept the proposal if f(~y)/f(~x) > r

If neither conditions are satisfied the proposal is rejected.

4. Continue from step 1

The function f(~y) corresponds to the denominator of Eq. (5.1.1).

The MCMC implementation contains two parts. First of all, there is a pre-run in

which each chain starts from an arbitrary random point in the parameter space. Then,

the tuning of the proposal function continues until the chains reach a stationary state.

This is reached once the targeted efficiency of the proposal and the R-value are close to

one. The targeted efficiency is a measure of the qualitiy of the proposal point and the

R-value of a parameter is defined as the distance of its mean value in the various chains

in units of the standard deviation of the parameter in each chain [96,97].

The second part is the run. In the run, samples of parameters are collected to obtain

the marginalized probability and the posterior distribution of all the observables defined.

More details about the implementation of the MCMC framework can be found at [88–90].
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5.1.3 BAT

The MCMC framework implemented in BAT is integrated in HEPfit using the library pro-

vided by BAT on compilation. The MonteCarloEngine class inherits from the BCModel

class in BAT and overloads the LogLikelihood function. This generates a numerical likeli-

hood for one point in the parameter space with the values of the observables computed by

HEPfit and the theoretical and experimental constraints provided to it. The parameters

and their distributions are passed by HEPfit to BAT through the MonteCarloEngine class.

Then, HEPfit rotates the correlated parameters to increase the efficiency. BAT is only used

while running in MCMC mode, and it is not necessary if HEPfit is being used as an event

generation.

5.1.4 Parallelization with MPI

One of the main advantages of HEPfit with respect to other codes is that it allows both

for the usage of single CPUs and for clusters with its parallelized version. This is done

parallelizing BAT with OpenMPI and it is very useful because one can run one chain per

core. It is done at the level of the likelihood and of the computation of the observables,

so it is implemented both in the run and in the pre-run. The computation of efficiencies

and the convergence among the chains requires information of the different chains, and

therefore it is not parallelized.

5.1.5 Usage

To use HEPfit one needs a text configuration file (or a set of files). The model configuration

file should include the name of the model, the model parameters (ModelParameter) and

their Gaussian or/and flat errors. These parameters can be correlated with the option

CorrelatedGaussianParameters. The observables (Observable) are computed speci-

fying the name defined in HEPfit, the flag (no)MCMCM that indicates whether the ob-

servable should be included in the likelihood used for the MCMC sampling or not, and

the (no)weight option to specify if the observable weight will be computed or not. If
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the weight option is set, at least a Gaussian or a flat error need to be specified. One

can also use a BinnedObservable, containing two extra arguments, the upper and lower

limit of the bin. Correlations between several observables can also be specified with

CorrelatedGaussianObservables. One or several flags (ModelFlag), controlling spe-

cific options, can also be added. Additional configuration files can be added to the model

configuration file with the IncludeFile directive.

To use HEPfit in Monte Carlo mode, an additional configuration file, the Monte Carlo

configuration file is needed. There are several available parameters and options. The most

relevant are Nchains (the number of chains in the Monte Carlo run), PrerunMaxIter (the

maximum number of iterations that the pre-run will go through) and Iterations (the

number of iterations per chain).

For more details about the configuration files see Section 7 of Ref. [93].

5.2 Models implemented in HEPfit

The building blocks of HEPfit are the Model and Observable classes. Models extend the

base classes sequentially. For instance QCD ← StandardModel ← GeneralTHDM. This

allows to add extensions or models in a very efficient way, since only the new ingredients

with respect to the SM or a previous model need to be added.

The class Observable contains the relevant experimental information of a given phys-

ical observable. It is passed to the class ThObservables, responsible for computing this

observable in a given model.

In the following sections some models implemented in HEPfit will be briefly described.

We start with the StandardModel, which acts as a parent model for several extensions.

Then, we focus in the GeneralTHDM, which contains the A2HDM and can be distinguished

from the THDM where a Z2 symmetry is imposed. Finally we refer to a model class con-

tained in the class NewPhysics (NPSMEFT6dtopquark) that allows to constrain electroweak

dimension-six operators related to the top and bottom quarks.
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5.2.1 The Standard Model

The StandardModel class allows to calculate and fit observables in the SM. It is extended

from the QCD class containing αs(M) and the quark masses m̄q at the scale M in the MS

scheme (except for the top quark, where the pole mass is used). This information allows to

initialize several objects as Particle or Meson. Additional information (lifetimes, decay

widths) are added to HEPfit as model parameters.

The QCD class is extended to the StandardModel class by adding the parameters GF ,

the fine structure constant α, the Z and the Higgs masses (MZ andmh) and the elements of

the CKM mixing matrix. It also fixes the scaleM introduced in QCD to beMZ . It contains

Particle objects for leptons and additional model parameters that describe the hadronic

vacuum polarization contribution to the running of α and uncertainties related to the

EWPO. Moreover, the running of αs is extended to include electromagnetic corrections.

The StandardModelMatching model class provides the matching conditions for the weak

effective Hamiltonian and the class Flavour provides the low-energy Hamiltonians for

∆F = 1, 2 transitions.

As previously mentioned, the StandardModel and QCD classes act as base classes for

many NP models.

5.2.2 The General A2HDM

The NHDM and the particular case of N = 2 doublets, i.e. the 2HDM were studied in

detail in Chapter 2. There are many types of 2HDM models. CP-conserving models with

natural flavour conservation, achieved though a softly broken Z2 symmetry, are imple-

mented in HEPfit in the THDM class. The four independent choices of the Z2 symmetric

types (type I, type II, type X and type Y) can be obtained setting the flag modelTypeflag

in the configuration file to type1, type2, typeX or typeY.

The A2HDM is also implemented in HEPfit in the GeneralTHDM class. This class is

intended to contain a general 2HDM, allowing for off-Yukawa diagonal terms and CP-

violation. However, at this stage only the CP-conserving A2HDM is implemented for the
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observables described in the following. This is selected with the true value of boolean

flags ATHDMflag and CPconserving.

In the A2HDM, the observed Higgs, predicted by the SM, can be either the lightest or

the heaviest CP-even scalar of the model. 1 The boolean flag SMHiggs allows us to select

if the 125 GeV Higgs is the lightest (flag set to true) or heaviest (flag set to false).

Two additional flags are implemented in the GeneralTHDM. The RGEorder determines

the order in perturbation theory of the RGE. At this stage only LO is implemented. The

use_sq_masses allows to use square (true) or linear (false) priors for the scalar masses.

The dependence on the mass priors will be interesting for the interpretation of the fits,

as we will see in Chapter 7. A summary of the flags of the GeneralTHDM is displayed in

Table 5.1.

Flag Possible values Description

ATHDMflag true/false Sets if the model is flavour aligned

CPconservation true/false Sets if the model is CP-conserving

RGEorder LO Sets the order of the RGEs

SMHiggs true/false Sets if the 125 GeV Higgs is light or heavy

use_sq_masses true/false Sets if square or mass priors are used for the masses

Table 5.1: Different flags implemented in the GeneralTHDM class.

The scalar potential of the model (see Eq. (2.1.39)) can be rewritten in terms of 9 inde-

pendent parameters (6 in the CP-conserving limit): the vev (fixed to be v = 246.22 GeV),

the four scalar masses (with the SM Higgs mass fixed to be Mh = 125.10 GeV) and the

complex parameters λ5,6,7. Therefore, the parameters of the model in the CP-conserving

limit are:

• The masses of the three scalars (squared or non-squared, depending on the use_sq_masses

flag), MH± ,MH ,MA: mHp2, mH2sq, mH3sq or mHp1, mH21, mH31

1The option that the 125 GeV Higgs is CP-odd is not considered here.
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• Three parameters of the potential, λR5 , λR6 , λR7 : Relambda5, Relambda6, Relambda7

• The mixing angle between the two CP-even scalars, α̃: alpha1

• The up, down and lepton Yukawa couplings, ςu, ςd, ς`: Nu_11r, Nd_11r, Nl_11r

Two additional mixing angles (alpha2, alpha3), describing a model in which the

CP-even and CP-odd scalars mix, three imaginary potential parameters (Imlambda5,

Imlambda6, Imlambda7) and 51 additional Yukawa couplings, describing complex non-

diagonal terms can be added to the configuration files, but several observables are not

implemented for these cases yet.

The implemented observables can be classified into,

• Theoretical constraints: Vacuum stability, perturbativity and unitarity of the

S-matrix

• Electroweak precision observables: The oblique parameters STU and the ratio Rb

• Flavour observables: Bs → µ+µ−, B → Xsγ,∆MB and (g − 2)µ

• Higgs observables: Direct searches and Higgs signal strengths

Detailed results on a fit to all of these observables, both in the case in which the SM

Higgs is the heavy or the light Higgs can be seen in Chapter 7.

5.2.3 NPSMEFT6dtopquark

Effective dimension-six operators, relevant for the study of top and bottom EW cou-

plings are implemented in the model class NPSMEFT6dtopquark in the class NewPhyics.

This model class contains a total of seventeen parameters, each one corresponding to a

dimension-six operator relevant in observables of the LHC, LEP/SLC as well as in future
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colliders. These parameters are summarized in Table 5.2. The effective Lagrangian takes

the form,

Leff = LSM +
(∑

i

Oi
Ci
Λ2 + h.c.

)
, (5.2.3)

where Λ is the NP scale. A detailed description of the effective Lagrangian and the

operator basis is given in Chapter 9. The implemented observables are of the form,

obs = obsSM +
∑
i

Ci obsi +
∑
j

∑
k

CjCk obsjk . (5.2.4)

The first term, obsSM, is the SM prediction for a given observable. obsi and obsjk arise

from one and two insertions of dimension-six operators (plus interferences with the SM

contributions). In this description, the first, second and third terms are suppressed by

Λ0, Λ−2 and Λ−4 respectively. The Λ−4 terms come from two insertions of Λ−2 and not

from dimension-eight operators. As it will be seen in Chapter 9 this could endanger the

validity of the EFT and thus it is interesting to see the effect of adding the terms obsjk.

This can be done through the flag QuadraticFlag. When QuadraticFlag is set to true,

both obsi and obsjk terms enter in a given observable. If QuadraticFlag is false only

obsi are considered.

Name Parameter Name Parameter Name Parameter Name Parameter

C_phit Cϕt C_tphi Ctϕ C_phitb Cϕtb C_lqP C+
lq

C_phiQ3 C3
ϕQ C_phib Cϕb C_ed Ced C_eu Ceu

C_phiQ1 C1
ϕQ C_bW CbW C_eq Ceq C_lu Clu

C_tW CtW C_bB CbB C_ld Cld C_lqM C−lq

C_tB CtB

Table 5.2: Model Parameters in the NPSMEFT6dtopquark. “Name” refers to the name of the

parameter in HEPfit that can be used in the configuration file. “Parameter” correspond

to the Wilson coefficients defined in Section 9.1 of Chapter 9.
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Results using this class can be seen in Chapter 9.

5.3 Summary

In this chapter the basic features of HEPfit have been presented. HEPfit is a Bayesian

fitter that allows us to combine direct and indirect constraints in the SM and several

NP models. Being a flexible, open-source code makes it a useful tool to implement ad-

ditional models, perform fits and obtain constraints for the parameters of these models.

In this chapter, a basic description of the statistical framework has been presented, i.e.

the Bayesian framework, the Markov Chain Monte Carlo, the integration with BAT and

the parallelization of the code using MPI. Several relevant technical details are omitted

and can be found in Ref. [93]. In this thesis, the HEPfit package has been used for two

different projects. They were presented in Section 5.2. First of all, the GeneralTHDM

class, describing a CP-conserving A2HDM was briefly described in Section 5.2.2. A

global fit of this model using HEPfit can be found in Chapter 7. Then, we presented

the NPSMEFT6dtopquark, a model of the class NewPhysics containing top and bottom

electroweak operators. This class is used in Chapter 9 to perform a global fit to the SM+

LEP/SLC data and find prospects for future colliders.





Chapter 6

Flavour alignment in multi-Higgs

doublet models

Scalar multiplets transforming as doublets or singlets under the SU(2)L gauge group are

the favoured candidates for building extended models of perturbative EWSB, beyond the

SM framework [20]. Assigning a zero hypercharge to the singlets and Y = Q− T3 = 1
2 to

the doublet scalars, these models automatically reproduce the SM electroweak ρ parameter

defined as ρ = M2
W /M

2
Z cos2 θW .

The observable signals of the singlet scalar fields are quite restricted because they do

not have Yukawa interactions with the SM fermions, nor they couple to the gauge bosons.

Therefore, they can only communicate with those SM particles through their mixing with

other neutral scalars in non-singlet multiplets.

Doublet fields present deeper implications and a richer phenomenology. As it was

described in Chapter 2, by adding N scalar doublets the scalar spectrum is enlarged:

the N − 1 charged fields H± and the 2N − 1 neutral scalars, give rise to a rich vari-

ety of possible interactions. In general, these include non-diagonal Yukawa couplings of

the neutral scalars, implying dangerous FCNC transitions, which are tightly constrained

experimentally [98].

79
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To avoid the presence of unwanted FCNC phenomena, one must impose ad-hoc dy-

namical restrictions, suppressing these effects below the empirically forbidden level. The

models most frequently considered in the literature [99–101] assume that only one single

scalar doublet can couple to a given type of right-handed fermion fR. This guarantees

identical flavour structures for the Yukawa interactions and the fermion mass matrices, so

that FCNC vertices are absent as in the SM. While this assumption is quite strong, it can

be easily implemented in the models, enforcing appropriately defined discrete Z2 symme-

tries which forbid the Yukawa couplings of all other scalar doublets to fR [27–31,102–106]

and keep the resulting flavour structure stable under quantum corrections (natural flavour

conservation) [107,108]. One can also relax this assumption using a continuous symmetry

instead of a discrete one [109].

Flavour alignment [24, 25] is a much more general possibility, based on the weaker

assumption that the couplings of all scalar doublets to a given right-handed fermion have

the same flavour structure [24, 25, 110]. All Yukawas can then be diagonalized simulta-

neously, eliminating the FCNC vertices from the tree-level Lagrangian. FCNCs effects

reappear at higher perturbative orders because quantum corrections misalign the differ-

ent Yukawas [111–113]. However, the build-in flavour symmetries strongly constrain the

possible FCNC operators that can be generated at the quantum level [24,25], implying an

effective theory with minimal flavour violation [114,115].

The induced one-loop FCNC Yukawas have been explicitly analysed within the A2HDM

[24,25,112,116–120], and their effects have been found to be small and well below all known

experimental constraints, giving further support to the successful phenomenology of this

particular new-physics scenario [112, 118–144]. However, some recent flavour anomalies

observed in B → D(∗)τν data [63–66, 68, 69, 145–147] have triggered the consideration of

flavour non-universal aligned-like structures [148–155], which have not been explored at

the quantum level.

In the following, we present a detailed study of the stability of flavour alignment under

quantum corrections. We analyse the FCNC operators generated at one loop for a generic

scalar sector with N doublets, both for the flavour-aligned model and for its generalization
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with non-universal aligned-like structures. We want to understand the quantum structure

of these models and their phenomenological viability. The general Yukawa Lagrangian

for the N-Higgs-doublet model has been discussed in Section 2.1.3 and the usual models

with natural flavour conservation were briefly described in Section 2.1.4 of Chapter 2. The

alignment assumption is implemented in Section 2.1.5, where its possible generalizations

are discussed. The one-loop RGEs of the model are used in Section 6.1 to pin down the

induced FCNC operators in the most general case. The result is then particularized to the

different situations we are interested in, and the usual scenarios with Z2 symmetries are

easily recovered. Section 6.2 analyses the underlying symmetries governing the specific

flavour structures obtained through the RGEs. The phenomenological implications are

discussed in Sections 6.3, 6.4 and 6.5, and a brief summary is given in Section 6.6. Some

technical details are summarized in Appendix D. This chapter is based in [156] with an

update of the experimental input when needed.

6.1 Renormalization group equations of the NHDM

The renormalization flow of the Yukawa couplings in a generic two-Higgs-doublet model

was studied in Refs. [157, 158]. The extension to a multi-Higgs-doublet model was first

analysed in the lepton sector, neglecting all quark contributions (Γa = ∆a = 0) [159], and

later extended to the most general case in Ref. [111]. At the one-loop level, the Yukawa
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Figure 6.1: One-loop topologies generating the flavour structures in Eqs. (6.1.1), (6.1.2)

and (6.1.3): scalar self-energies (a), QL and qR self energies (b), and vertex corrections (c).

structures in Eq. (2.1.20) satisfy the RGEs [111,117]:

DΓa = aΓ Γa +
N∑
b=1

[
NC Tr

(
ΓaΓ†b + ∆†a∆b

)
+ Tr

(
ΠaΠ†b

)]
Γb

+
N∑
b=1

(
−2 ∆b∆†aΓb + ΓaΓ†bΓb + 1

2 ∆b∆†bΓa + 1
2 ΓbΓ†bΓa

)
, (6.1.1)

D∆a = a∆ ∆a +
N∑
b=1

[
NC Tr

(
∆a∆†b + Γ†aΓb

)
+ Tr

(
Π†aΠb

)]
∆b

+
N∑
b=1

(
−2 ΓbΓ†a∆b + ∆a∆†b∆b + 1

2 ΓbΓ†b∆a + 1
2 ∆b∆†b∆a

)
, (6.1.2)

DΠa = aΠ Πa +
N∑
b=1

[
NC Tr

(
ΓaΓ†b + ∆†a∆b

)
+ Tr

(
ΠaΠ†b

)]
Πb

+
N∑
b=1

(
ΠaΠ†bΠb + 1

2 ΠbΠ†bΠa

)
, (6.1.3)

where D ≡ 16π2µ (d/dµ), being µ the renormalization scale, and NC = 3 is the number of

quark colours.

The gauge-boson corrections are incorporated through the factors

aΓ = −8 g2
s −

9
4 g

2 − 5
12 g

′2 , a∆ = aΓ − g′
2
, aΠ = −9

4 g
2 − 15

4 g′
2
, (6.1.4)

where gs, g and g′ are the SU(3)C , SU(2)L and U(1)Y couplings, respectively. These

contributions do not change the flavour structure and only amount to a multiplicative

global factor.
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One-loop diagrams involving scalar propagators introduce two additional Yukawa ma-

trices. The terms where these two matrices are traced (first lines in the right-hand sides

of Eqs. (6.1.1), (6.1.2) and (6.1.3)) originate in the scalar self-energies (Fig. 6.1a). They

correct each Yukawa vertex Γb, ∆b, Πb with a different multiplicative factor, leaving un-

touched its own flavour configuration, and mix the different ‘b’ structures. The additional

flavour-dependent quantum corrections in the second lines arise from fermion self-energies

and vertex contributions. The QL self-energy (Fig. 6.1b) generates the (ΓbΓ†b + ∆b∆†b)

terms multiplying the left-hand sides of Γa in (6.1.1) and ∆a in (6.1.2), while the dR and

uR self-energies (Fig. 6.1b) give rise to the ΓaΓ†bΓb and ∆a∆†b∆b contributions, respectively.

The vertex topology (Fig. 6.1c) introduces the remaining structures ∆b∆†aΓb and ΓbΓ†a∆b,

with ‘b’ indices in both sides of the primary ‘a’ Yukawa. The corresponding terms in DΠa

are easily obtained with the changes Γa → Πa, ∆a → 0. We have recalculated all these

topologies, finding complete agreement with Refs. [111,117].

Let us now consider a tree-level Yukawa structure having the generalized aligned-like

form of Eq. (2.1.34) with ς
(a)
f diagonal matrices. Focusing for the moment on the Γa

couplings, one can rewrite Eq. (6.1.1) as

DΓa = e−iθ̃a
{
ξ

(a)
d DΓ1 +

[
δξ

(a)
d + Θ(a)

d,FC + Θ(a)
d,FV

]
Γ1
}
. (6.1.5)

The parameters δξ(a)
d contain those terms in the first line of Eq. (6.1.1) which do not

fit in ξ
(a)
d DΓ1. Since they are constants without flavour structure, these contributions

can be reabsorbed into a quantum redefinition of the alignment factors, e−iθ̃a δξ(a)
d =

D
(
e−iθ̃a ξ(a)

d

)
, promoting them to µ-dependent quantities. The contributions from the

second line of Eq. (6.1.1) have been split in two parts: Θ(a)
d,FC incorporates the flavour-

conserving terms with Γb structures, while Θ(a)
d,FV contains the flavour-violating pieces with

∆b matrices.

A similar decomposition can be performed for D∆a and DΠa. Obviously, one does not

generate any FCNC couplings through DΠa because there is only one flavour structure in

the second line of (6.1.3) (in aligned-like models), i.e., Θ(a)
`,FV = 0.
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Since we are only interested in the flavour-violating structures, we can neglect the

quantum corrections to the vacuum expectation values and work directly in the Higgs basis

where all expressions simplify considerably. Dropping all flavour-conserving contributions,

the integration of the RGEs is quite straightforward. At leading order, one gets the

following local FCNC interactions (in the neutral scalar mass eigenstates basis):

LFCNC = 1
4π2v3

2N−1∑
k=1

ϕ0
k

N−1∑
a=1

{
C(a+1)
d (Rk,2a + iRk,2a+1) d̄LΘ̃(a+1)

d MddR

+ C(a+1)
u (Rk,2a − iRk,2a+1) ūLΘ̃(a+1)

u MuuR
}

+ h.c. , (6.1.6)

where each quark vertex is proportional to the corresponding mass. The structures

Θ̃(a)
d = −V †CKM

N∑
b=1

ς(b)†
u MuM

†
uς

(a)
u VCKMς

(b)
d + ς

(a)
d V †CKM

N∑
b=1

ς(b)†
u MuM

†
uVCKMς

(b)
d + ∆Θ̃(a)

d ,

(6.1.7)

Θ̃(a)
u = −VCKM

N∑
b=1

ς
(b)
d MdM

†
dς

(a)†
d V †CKMς

(b)†
u + ς(a)†

u VCKM

N∑
b=1

ς
(b)
d MdM

†
dV
†

CKMς
(b)†
u + ∆Θ̃(a)

u ,

involve two additional quark mass matrices, two CKM mixing matrices and three align-

ment factors. Thus, the generated FCNC operators have dimension seven and are strongly

suppressed by CKM mixings. The last terms in (6.1.7),

∆Θ̃(a)
d = 1

4

[
V †CKM

(
N∑
b=1

ς(b)†
u MuM

†
uς

(b)
u

)
VCKM , ς

(a)
d

]
= N

4
[
V †CKMMuM

†
uVCKM , ς

(a)
d

]
,

(6.1.8)

∆Θ̃(a)
u = 1

4

[
VCKM

(
N∑
b=1

ς
(b)
d MdM

†
dς

(b)†
d

)
V †CKM , ς(a)†

u

]
= N

4
[
VCKMMdM

†
dVCKM , ς

(a)
d

]
,

are only present in the most general aligned-like scenario with diagonal matrices ς(a)
f ,

otherwise the commutators would vanish identically.
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In the simpler case of normal alignment (see Section 2.1.5), where the factors ς(a)
f are

just family-universal parameters, these expressions adopt the much simpler forms:

Θ̃(a)
d =

(
ς

(a)
d − ς

(a)
u

) ( N∑
b=1

ς(b)†
u ς

(b)
d

)
V †CKMMuM

†
u VCKM , (6.1.9)

Θ̃(a)
u =

(
ς(a)†
u − ς(a)†

d

) ( N∑
b=1

ς(b)†
u ς

(b)
d

)
VCKMMdM

†
d V
†

CKM . (6.1.10)

For N = 2, these results agree with the previously known one-loop misalignment of the

A2HDM [111–113,116–120].

The RGEs determine the µ dependence of the Wilson coefficients C(a)
d,u(µ). At leading

order, one finds (f = d, u)

C(a)
f (µ) = C(a)

f (µ0)− log (µ/µ0) . (6.1.11)

One can easily check that LFCNC vanishes identically for all models with natural flavour

conservation, discussed in Section 2.1.4. Each of these models is characterized by three

numbers {ad, au, a`}, specifying the choice of three scalar fields coupling to the different

types of right-handed fermions, and real alignment parameters ς(a)
f = Ωaaf /Ω1af . There-

fore,

(
ς

(a)
d − ς

(a)
u

) N∑
b=1

ς(b)
u ς

(b)
d = (Ωaad − Ωaau)

∑N
b=1 ΩbauΩbad

(Ω1auΩ1ad)
2 = (Ωaad − Ωaau) δauad

(Ω1auΩ1ad)
2 = 0 ,

(6.1.12)

which implies Θ̃(a)
d = Θ̃(a)

u = 0.

The one-loop FCNC local interactions also disappear if the Yukawa matrices satisfy

the relations
N∑
b=1

∆b∆†aΓb = λΓ Γa ,
N∑
b=1

∆b∆†bΓa = λ′Γ Γa ,

N∑
b=1

ΓbΓ†a∆b = λ∆ ∆a ,
N∑
b=1

ΓbΓ†b∆a = λ′∆ ∆a ,

(6.1.13)

with λΓ, λ′Γ, λ∆, λ′∆ arbitrary complex parameters. In this very particular case, LFCNC

becomes flavour conserving. The conditions (6.1.13) have been analysed in Ref. [113],

within the A2HDM, finding a phenomenologically viable solution with all Yukawa matrices
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proportional to the “democratic” matrix Yij = 1 ,∀i, j. This stable aligned solution is

protected by a Z3⊗Z ′3 symmetry and corresponds to the limit where only one generation

of quarks (top and bottom) acquires mass, while VCKM is the identity matrix.

6.2 Flavour symmetries

The flavour structure of LFCNC can be easily understood with symmetry considerations

[24]. In the absence of Yukawa couplings, the Lagrangian of the N-Higgs-doublet model has

a huge SU(3)5 flavour symmetry, corresponding to independent transformations of the QL,

LL, dR, uR and `R fermion fields in the 3-generation flavour space: fX → SfX fX , SfX ∈

SU(3)fX . One can formally extend this symmetry to the Yukawa sector, assigning appro-

priate transformation properties to the flavour matrices Γa, ∆a and Πa, which are then

treated as spurion fields [114,115]:

Γa → SQL Γa S†dR , ∆a → SQL ∆a S
†
uR
, Πa → SLL Πa S

†
`R
. (6.2.14)

These auxiliary fictitious fields allow for an easy bookkeeping of operators invariant under

the enlarged symmetry, and encode the explicit symmetry breakings introduced by the

Yukawa interactions. Obviously, the renormalization group equations (6.1.1), (6.1.2) and

(6.1.3) transform homogeneously under (6.2.14) because quantum corrections respect the

Lagrangian symmetries (modulo anomalies). Only those structures which are invariant

under this formal flavour symmetry can be generated at higher orders.

Once the symmetry breakings are explicitly included, the Yukawa Lagrangian (2.1.26)

remains still invariant under flavour-dependent phase transformations of the fermion mass

eigenstates, provided one performs appropriate rephasings of all flavour structures (masses,

Yukawa couplings and quark-mixing factors) [24,25,112]:

f iX → eiα
f,X
i f iX , Y

(a),ij
f → eiα

f,L
i Y

(a),ij
f e−iα

f,R
j ,

M ij
f → eiα

f,L
i M ij

f e−iα
f,R
j , V ij

CKM → eiα
u,L
i V ij

CKM e−iα
d,L
j .

(6.2.15)
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Here, f = d, u, `, X = L,R and i, j refer to the three different fermion families. The

generalized alignment condition (2.1.36) implies then

ς
(a),ij
f → eiα

f,L
i ς

(a),ij
f e−iα

f,L
j . (6.2.16)

Since quantum corrections preserve these flavour symmetries, they can only give rise

to FCNC operators of the form

On,md = d̄L(ςd)
p1V †CKM(ς†u)pn(MuM

†
u)n(ςu)p′nVCKM(ςd)

pm(MdM
†
d)m(ς†d)

p′m(ςd)
p′1MddR ,

(6.2.17)

On,mu = ūL(ςu)p1VCKM(ςd)
pn(MdM

†
d)n(ς†d)

p′nV †CKM(ς†u)pm(MuM
†
u)m(ςu)p′m(ς†u)p′1MuuR ,

or similar structures with additional factors of VCKM , V †CKM , (MfM
†
f ) and alignment ma-

trices. To generate a FCNC operator one needs at least two insertions of the CKM mixing

matrix, and the unitarity of VCKM requires the presence of quark mass matrices between

these two insertions, i.e., a product (MfM
†
f )n with n ≥ 1. An additional (single) mass

factor is needed at the end of the chain to preserve chirality. Thus, the lowest-order opera-

tors must contain two quark-mixing matrices and three mass matrices, as explicitly shown

in Eq. (6.1.6).

The alignment factors originate in the Yukawa matrices Y (a)
f = ς

(a)
f Mf . Since ς(1)

f = 1,

the terms (ςf )pk,p′k and (ς†f )pk,p′k in (6.2.17) refer to the possible presence of pk, pk′ ≤ k

non-trivial alignment parameters with possibly different values of the superindex (a). To

simplify notation, we have loosely skipped this superindex and have made use of the com-

mutation property of the diagonal matrices Mf and ς(a)
f (in the fermion-mass eigenstate

basis) to collect together alignment factors of a given type. Thus, the operators Θ̃(a)
d and

Θ̃(a)
u in Eq. (6.1.7) contain up to three alignment factors. Notice that alignment struc-

tures with b 6= a can only appear pairwise, ς(b)
f ς

(b)†
f ′ , since they are generated through the

exchange of a scalar propagator between two ‘b’ Yukawa vertices.

The first possible alignment factor in the r.h.s of Eqs. (6.2.17), just before the first

CKM matrix, has a more subtle origin. It compensates the ς(a)
d DΓ1 terms in Eq. (6.1.5)

which are not present in DΓ2, and the ς(a)†
u D∆1 terms not present in D∆2. Therefore, in
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this position there is at most a single alignment factor which must be either ς(a)
d or ς(a)†

u ,

for On,md and On,mu , respectively, as explicitly shown in Eqs. (6.1.7).

6.3 Phenomenological constraints

In the absence of protecting Z2 symmetries, the alignment hypothesis can only be ex-

actly fulfilled at a single value of the renormalization scale µ = ΛA. Quantum corrections

unavoidably misalign the Yukawa matrices at µ 6= ΛA, generating FCNC vertices that

contribute to processes which are very suppressed in the SM. However, the flavour sym-

metries embodied in the tree-level aligned Lagrangian restrict very efficiently the possible

structures that can be generated at higher perturbative orders. At the one-loop level, the

resulting FCNC local interaction in Eq. (6.1.6) only contains two operators, one for each

quark sector, up or down. Both operators contain two insertions of the CKM matrix and

three Yukawa matrices, which entails a strong phenomenological suppression of FCNC ef-

fects. Nevertheless, it is worth to investigate whether any interesting contributions could

still show up at a level relevant for present or forthcoming experiments.

For simplicity, from now on we will restrict the analysis to the usual A2HDM frame-

work, i.e., a two-Higgs-doublet Lagrangian with aligned Yukawa structures, parametrized

with three alignment constants ςd,u,` as it is described in Section 2.1.6. The one-loop

FCNC effective Lagrangian (6.1.6) reduces in this case to [112]

LFCNC = 1
4π2v3 (1 + ς∗uςd)

3∑
k=1

ϕ0
k

{
Cd(µ) (Rk2 + iRk3) (ςd − ςu) d̄LV †CKMMuM

†
uVCKMMddR

− Cu(µ) (Rk2 − iRk3) (ς∗d − ς∗u) ūLVCKMMdM
†
dV
†

CKMMuuR
}

+ h.c. (6.3.18)

with Cd,u(µ) encoding the renormalization-scale dependence, which at leading order takes

the simple form: Cd,u(µ) = Cd,u(µ0)− log (µ/µ0).

The sum runs over the three neutral scalars of the model. Assuming that CP is a

symmetry of the scalar potential (and vacuum), there are two CP-even neutral scalars

(ϕ0
1 = h, ϕ0

2 = H) which mix through a two-dimensional rotation matrix, while the third
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neutral scalar ϕ0
3 = A is CP-odd and does not mix with the others. Therefore:

R11 = R22 = cos α̃ , R12 = −R21 = sin α̃ , R33 = 1 , R13 = R23 = R31 = R32 = 0 .

(6.3.19)

We adopt the convention 0 ≤ α̃ ≤ π, so that sin α̃ is always positive, and will identify

the CP-even neutral state h with the Higgs particle found at LHC, i.e., Mh = (125.09 ±

0.24) GeV [160]. The data shows that h behaves like the SM Higgs boson, within the

current experimental uncertainties, which constrains the mixing angle to satisfy | cos α̃| >

0.90 (68% CL) [123,124].

One could speculate that flavour alignment originates in some underlying new-physics

dynamics at a high-energy scale ΛA, where alignment is exact due to a flavour symmetry of

the new-physics Lagrangian, i.e., Cf (ΛA) = 0. Several models with this property have been

discussed in the literature [142, 143, 161–163]. In that case, the RGEs determine Cf (µ) =

log (ΛA/µ) at an arbitrary renormalization scale µ. Taking ΛA ≤ MPlanck ∼ 1019 GeV,

one gets Cf (MW ) ≤ 40, which puts an upper bound on the size of any possible FCNC

effects. Tree-level implications of LFCNC have been already analysed in Refs. [116, 120],

with the extreme choice ΛA = MPlanck, while different values of the high-energy scale ΛA
were investigated in Ref. [117].

While being illustrative of the possible phenomenological relevance of the Yukawa mis-

alignment, the simplified tree-level analyses completely neglect the non-local FCNC loop

contributions generated by the A2HDM Lagrangian [112, 118, 119, 121, 122, 129–132, 138],

which are usually dominant. The most important FCNC processes originate in one-loop di-

agrams (penguins and boxes) involving charged-current flavour-changing vertices, through

the exchange of W± gauge bosons and the unique charged scalar (ϕ±1 = H±) present in

the model. Most of these loop contributions generate finite amplitudes (also at higher

orders) because symmetry considerations forbid the presence of the relevant FCNC coun-

terterms in the Lagrangian. This is no-longer true for the effective FCNC interactions

of the neutral scalars; the loop contributions generate in this case ultraviolet (UV) di-

vergences that get exactly cancelled through the renormalization of the Cf couplings in
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b

d̄, s̄ µ+

µ−

ϕ0
k

b

d̄, s̄ b̄

d, s

ϕ0
k

Figure 6.2: Feynman diagrams contributing to B̄0 → µ+µ− (left) and B0–B̄0 mixing

(right). The crossed vertex represents the one-loop effective FCNC neutral interaction in

Eq. (6.1.6).

Eq. (6.3.18) (and similar counterterms at higher orders). The renormalization-scale depen-

dence of the loop contributions cancels also the µ dependence of the Cf (µ) misalignment

parameters. Complete one-loop calculations, including the proper renormalization of the

misalignment Lagrangian LFCNC have been already published for the FCNC transitions

B0
d,s → `+`− [118] and t→ ϕ0

kc [119].

Owing to the quark-mass and CKM suppressions of LFCNC the potentially largest

misalignment effects should appear in the ϕ0
ks̄LbR effective vertex, with a top contribution

proportional to V ∗tsVtbm2
tmb/(4π2v3). In the absence of any direct evidence of FCNC Higgs

decays, this singles out B0
s → µ+µ− and B0

s–B̄0
s mixing as prime candidates to test the

local FCNC interaction. As shown in Fig. 6.2, both processes get tree-level contributions

from LFCNC, through ϕ0
k exchange. There is, however, an important difference between

the two transitions. The leptonic B0
s → µ+µ− decay occurs with a single insertion of the

effective ϕ0
ks̄LbR vertex which, therefore, renormalizes the corresponding one-loop scalar-

penguin contribution [118]. On the other side, to generate a B0
s–B̄0

s mixing transition

through neutral scalar exchange, one needs to insert two FCNC effective vertices. This

contribution is then of a higher-perturbative order and should be considered together with

the relevant two-loop contributions to the meson-mixing amplitude, since it renormalizes

the UV divergence from diagrams with two (one-loop) scalar-penguin triangles. The one-

loop diagrammatic calculation of the meson-antimeson transition is in fact UV convergent

[112].
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6.3.1 Inputs and numerical treatment

We are interested in a scalar sector testable at the LHC, with the masses of the addi-

tional scalars not too far from the electroweak scale. A lower bound MH± ≥ 78.6 GeV

(95% CL) is imposed by LEP searches [164], with the only assumption that the charged

scalar decays into fermions. In addition, the precise measurements of the Z and W±

self-energies, usually encoded through the so-called oblique parameters S, T and U [165],

impose strong constraints on the scalar mass splittings. Together with the requirement

of perturbativity and perturbative unitary bounds on the scalar potential couplings [166],

this implies that the additional neutral scalars H and A should have masses below the

TeV, if MH± < 500 GeV [124].

In order to illustrate the possible phenomenological scenarios, we will adopt the fol-

lowing benchmark configurations for the unknown scalar masses:

A : MH± = 100 GeV , MH = 50 GeV , MA = 50 GeV ,

B : MH± = 100 GeV , MH = 200 GeV , MA = 200 GeV ,

C : MH± = 500 GeV , MH = 500 GeV , MA = 200 GeV ,

D : MH± = 500 GeV , MH = 200 GeV , MA = 500 GeV ,

E : MH± = 1000 GeV , MH = 500 GeV , MA = 1000 GeV ,

F : MH± = 1000 GeV , MH = 1000 GeV , MA = 1000 GeV .

(6.3.20)

These mass configurations satisfy the present experimental constraints on the oblique

parameters [124,167]. The first four choices are representative of a plausible nearby scalar

spectrum, while the last two approach the decoupling regime.

The up-type alignment parameter is strongly constrained by the measured Z → bb̄

decay width, which leads to an upper bound that scales linearly with the charged scalar

mass [112]:

|ςu| < 0.72 + 0.0024 MH±/GeV (95% CL) . (6.3.21)

With MH± ≤ 500 GeV, this gives |ςu| < 1.9 at 95% CL. For the other two alignment

parameters we require the Yukawa couplings to remain in the perturbative regime, i.e.,
√

2
v ςfmf < 1. This implies the absolute upper bounds |ςd| < 50 and |ς`| < 100. Our
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numerical analysis will be performed in the CP-conserving limit to reduce the number of

free parameters.

The choice of CKM parameters is subtle because global CKM fits assume the SM. We

have performed a specific fit to obtain the CKM elements needed for our analysis, taking as

entries determinations which are not sensitive to new physics. First of all Vud is extracted

from the (0+ → 0+) nuclear β decays [168] and CKM unitarity is used to determine

Vus ≡ λ. The values of Vub and Vcb are obtained combining the exclusive and inclusive

averages from b → u`ν̄` and b → c`ν̄` decays, performed by HFLAV [48], and increasing

the error with the usual PDG scale factor to account for their present discrepancy [75].

Then, combining Vcb with the previous value of λ, the Wolfenstein A parameter is obtained.

The apex (ρ̄, η̄) of the ‘bd’ unitarity triangle is determined from Vub/Vcb, λ and the ratio

∆mB0
s
/∆mB0

d
, which fixes Vtd/Vts [48], by performing a χ2 minimization. These ratios are

related to ρ̄ and η̄ through:∣∣∣∣VubVcb

∣∣∣∣ = λ

1− λ2

2
|ρ̄− iη̄| ,

∣∣∣∣VtdVts
∣∣∣∣ = λ

1− λ2

2

∣∣∣∣∣1− λ2

2 − ρ̄− iη̄
∣∣∣∣∣ . (6.3.22)

With that we find |V ∗tsVtb| = 0.0422 ± 0.0009. The rest of inputs used in the analysis are

given in Table 6.1.
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Parameter Value Comment

fB0
d

(192.0± 4.3) MeV [49]

fB0
s

(228.4± 3.7) MeV [49]

fK (155.7± 0.3) MeV [49]

τB0
d

(1.519± 0.004) ps [48]

τBs (1.510± 0.004) ps [48]

1
ΓsH

(1.619± 0.009) ps [48]

1
ΓsL

(1.414± 0.006) ps [48]

∆Γs (0.090± 0.005) ps−1 [48]

∆mB0
d

(0.5065± 0.0019) ps−1 [48]

∆mB0
s

(17.757± 0.021) ps−1 [48]

mt(mt) (165.9± 2.1) GeV [169,170]

|Vud| 0.97417± 0.00021 [168]

λ 0.2258± 0.0009 (1− |Vud|2)1/2

|Vub| (3.99± 0.16) · 10−3 [75]

|Vcb| (39.6+1.1
−1.0) · 10−3 [75]

A 0.828± 0.017 From Vcb and λ

ρ̄ 0.168+0.020
−0.019 Our fit

η̄ 0.37+0.03
−0.04 Our fit

Br(B0
s → µ+µ−) (3.0± 0.6+0.3

−0.2) · 10−9 [171]

Br(B0
d → µ+µ−) (1.4+1.6

−1.4) · 10−10 [75]

Table 6.1: Inputs used in our analysis. Other masses and constants are taken from

Ref. [75].
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6.4 B0
s → µ+µ−

A complete one-loop calculation of the B0
d,s → `+`− decay amplitudes within the A2HDM

was performed in Ref. [118],1 including the effective one-loop FCNC local interaction of

Eq. (6.3.18), which is needed to properly reabsorb the UV divergences. The phenomeno-

logical study needs to be updated in view of the more precise LHCb measurement [171]

of the time-integrated B0
s → µ+µ− branching ratio. Moreover, in Ref. [118] Cd(µ) was

taken to be zero at µ = MW , in order to simplify the numerical analysis, while we are

now interested in finding out how large this parameter could be. The decay B0
d → µ+µ−

is also sensitive to the A2HDM contributions, but it leads to much weaker constraints at

present, so we will concentrate in the B0
s decay mode.

At the B0
q meson mass scale, the decay B0

q → `+`− can be described with the effective

low-energy Hamiltonian

Heff = − GFα√
2π sin2 θW

VtbV
∗
tq {C10O10 + CS OS + CP OP } , (6.4.23)

where

O10 = (q̄γµPLb)(¯̀γµγ5`) , OS = mbm`

M2
W

(q̄PRb)(¯̀̀ ) , OP = mbm`

M2
W

(q̄PRb)(¯̀γ5`) ,

(6.4.24)

with mb = mb(µ) the running b-quark mass and PL/R = (1∓γ5)/2 the chirality projectors.

Operators with the opposite quark chiralities are neglected because their contributions are

very suppressed in the SM and many extensions as the NDHM, being proportional to the

light-quark mass mq.

In the SM the scalar and pseudo-scalar Wilson coefficients are mass-suppressed, so

their contribution is tiny, and only the operator O10 is numerically relevant. However CS
and CP can be much more sizeable in models with extended scalar sectors. Neglecting any

1The one-loop computation has been recently checked within (softly-broken) Z2 models [172]. The two

calculations are in good agreement, except for a small difference in the Z-penguin contribution to CP

which is numerically insignificant and originates in a different matching prescription.
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additional sources of CP violation beyond the CKM phase, the time-integrated branching

ratio can be written as

B(B0
q → `+`−) = B(B0

q → `+`−)SM

{
|P |2 +

(
1− ∆Γq

ΓqL

)
|S|2

}
, (6.4.25)

where

P ≡ C10
CSM

10
+
M2
Bq

2M2
W

(
mb

mb +mq

)
CP − CSM

P

CSM
10

, (6.4.26)

S ≡

√√√√1− 4m2
`

M2
Bq

M2
Bq

2M2
W

(
mb

mb +mq

)
CS − CSM

S

CSM
10

. (6.4.27)

Complete analytical expressions for C10, CP and CS are given in Ref. [118]. In the CP-

conserving limit, they depend on ten A2HDM parameters: 3 Yukawa alignment factors

(ςu, ςd, ς`), 3 scalar masses (MH ,MA,MH±), 2 scalar potential couplings (λ3, λ7), the mix-

ing angle α̃ and the misalignment coefficient Cd(MW ).

The only new-physics contribution to C10 comes from Z-penguin diagrams (Z exchange

between the leptonic current and an effective q̄bZ vertex generated through one-loop dia-

grams with internal H± propagators):

∆CA2HDM
10 = |ςu|2

x2
t

8

[ 1
xH+ − xt

+ xH+

(xH+ − xt)2 (ln xt − ln xH+)
]
. (6.4.28)

It only depends on |ςu|2 and the mass ratios xt ≡ m2
t /M

2
W and xH+ ≡M2

H±/M
2
W .

The neutral scalar exchanges contribute to the scalar and pseudo-scalar Wilson coef-

ficients. In the CP-conserving limit:

∆Cϕ
0
i ,A2HDM

S = xt
2xh

(cα̃ + sα̃ ς`)
{
sα̃ (ςu − ςd) (1 + ςu ςd) Cd(MW )

+ (cα̃ λ3 + sα̃ λ7) 2v2

M2
W

g0 + cα̃ g
(a)
1 + sα̃ g

(a)
2

}

+ xt
2xH

(cα̃ ς` − sα̃)
{
cα̃ (ςu − ςd) (1 + ςu ςd) Cd(MW ) (6.4.29)

− (sα̃ λ3 − cα̃ λ7) 2v2

M2
W

g0 − sα̃ g
(a)
1 + cα̃ g

(a)
2

}
,

∆Cϕ
0
i ,A2HDM

P = −ς`
xt

2xA

[
(ςu − ςd) (1 + ςu ςd) Cd(MW ) + g

(a)
3

]
, (6.4.30)
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where cα̃ = cos α̃ and sα̃ = sin α̃ are the scalar mixing factors, and xϕ0
i
≡ M2

ϕ0
i
/M2

W

with ϕ0
i = h,H,A. The functions g0(xt, xH+ , ςu, ςd) and g

(a)
i (xt, xH+ , ςu, ςd) (i = 1, 2, 3)

can be found in the Appendix of Ref. [118]. We do not reproduce them here to avoid

reiterating lengthy formulae. There are, in addition, box-diagram contributions to CS,P
and Z-penguin contributions to CP , which only depend on the three alignment parameters

ςf and the mass ratios xt and xH+ ; their explicit expressions are also given in Ref. [118].2

The SM Higgs-exchange contribution can be easily recovered from Eq. (6.4.29) by taking

the appropriate limit: ςf , sα̃, λ3,7 → 0, xH,H+ →∞.

Once constrained in the range cos α̃ ∈ [0.9, 1], the mixing angle has a very marginal

impact on the predictions. Therefore, we will choose cos α̃ = 0.95 to simplify the numerical

analysis. Since the results are not very sensitive either to the scalar potential parameters,

we will also set λ3 = λ7 = 1.3 The current (95% CL) experimental constraints on Cd(MW )

are displayed in Figs. 6.3, 6.4 and 6.5, for different choices of the remaining free param-

eters. The left and right panels on these three figures correspond to ς` = 0 and ς` = 30,

respectively. Fig. 6.3 exhibits the correlated constraints on the plane Cd(MW ), ςd, taking

ςu = 0. Fig. 6.4 shows the constraints on Cd(MW ) and ςu, taking ςd = 0, while a large

value ςd = 50 is adopted in Fig. 6.5. Different assumptions on the scalar mass spectrum

are analysed in all these figures.

The plots take also into account the constraints enforced by the weak radiative decay

B̄ → Xsγ [112, 121, 122, 173–176], which drastically reduce the allowed parameter space,

specially for large values of ς∗uςd. The Wilson coefficients that are relevant for this process

take the form Ceff
i = Ci,SM + |ςu|2Ci,uu − (ς∗uςd)Ci,ud, where Ci,uu and Ci,ud contain the

dominant A2HDM contributions from virtual top and H± propagators [112]. The com-

bined result is very sensitive to the ratio ςd/ςu, implying a correlated constraint on ςd,

ςu and MH± that becomes very strong for real values of the alignment parameters. This

2 All gauge-dependent terms have been removed from (6.4.29) and (6.4.30) since they must be combined

with boxes and Z-penguin diagrams to get gauge-independent results. See Ref. [118] for details.
3By varying λ3,7 in the perturbative allowed region the ratio Br(B0

s→µ
+µ−)

Br(B0
s→µ+µ−)SM

varies in less than a 1%.
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Figure 6.3: B0
s → µ+µ− constraints on Cd(MW ) and ςd, in the CP-conserving limit, for

λ3 = λ7 = 1, cα̃ = 0.95 and ςu = 0, with ςl = 0 (left) and ςl = 30 (right). The coloured

areas show the allowed regions (95% CL) for different mass configurations defined in

Eq. (6.3.20): A (red, dotted), B (green, solid line), C (blue, dashed) and D (orange,

dot-dashed).

constraint may be relaxed by including a (CP-violating) relative phase between ςd and

ςu [112,121,122].

The following generic conclusions can be extracted:

• Since the misalignment contribution is proportional to (ςu − ςd)(1 + ςuςd), there are

no constraints on Cd(MW ) at ςu = ςd or ςu = −1/ςd. These specific values of the

alignment parameters correspond to models with natural flavour conservation, where

LFCNC = 0.

• The comparison of the left and right panels shows the importance of the terms pro-

portional to ς`. At ς` = 0 many A2HDM contributions are eliminated: all box cor-

rections with H± exchanges vanish in this limit and all diagrams mediated through

non-SM scalars are removed, up to small mixing effects proportional to sα̃; only

the Z-penguin and the SM Higgs-exchange diagrams survive. ∆Cϕ
0
i ,A2HDM

P vanishes
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Figure 6.4: B0
s → µ+µ− constraints (95% CL) on Cd(MW ) and ςu, in the CP-conserving

limit, for λ3 = λ7 = 1, cα̃ = 0.95 and ςd = 0, with ςl = 0 (left) and ςl = 30 (right). Same

colour coding than Fig. 6.3.
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Figure 6.5: B0
s → µ+µ− constraints (95% CL) on Cd(MW ) and ςu, in the CP-conserving

limit, for λ3 = λ7 = 1, cα̃ = 0.95 and ςd = 50, with ςl = 0 (left), ςl = −30 (middle) and

ςl = +30 (right) . Same colour coding than Fig. 6.3.

identically at ς` = 0, while the misalignment contribution to CS is proportional to

cα̃sα̃(xH − xh), disappearing when the mixing angle or the neutral mass splitting
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Figure 6.6: The left (right) panels show the B0
s → µ+µ− constraints (95% CL) on Cd(MW )

and ςd (ςu), in the CP-conserving limit, for λ3 = λ7 = 1, cα̃ = 0.95 and ςl = 30, with

ςu = 0 (ςd = 50) and the two heavy-mass configurations in Eq. (6.3.20): E (orange, solid

line) and F (violet, dashed).

approach zero. Therefore, if ς` = 0, no constraints on Cd(MW ) can be set at cα̃ = 1

or when MH = Mh.

• When ςu = 0, there are no charged-scalar contributions to B̄ → Xsγ. Therefore

the constraints displayed in Fig. 6.3 and the left panel of Fig. 6.6 fully originate

from the decay B0
s → µ+µ−. Moreover, ∆CA2HDM

10 ∝ |ςu|2 = 0, and the Z-penguin

A2HDM correction to CP is also zero. The misalignment contributions to CS,P

are proportional in this case to ςdCd(MW ), which explains the Cd(MW ) <∼ 1/ςd
scaling exhibited in Figs. 6.3 and 6.6 (left). If additionally ς` = ςu = 0, the only

non-zero scalar contributions are ∆Ch,A2HDM
S and ∆CH,A2HDM

S , which are obviously

independent of MA and generate the strong dependence on MH , roughly scaling as

1/M2
H , displayed on Fig. 6.3 (left). The right panel in Fig. 6.3 shows that much

stronger constraints are obtained with ς` 6= 0. The allowed regions obviously expand

with increasing scalar masses. Notice, however, how the configurations A (red) and
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C (blue), with MA < MH± , generate additional allowed bands, not present for B

(green) and D (orange), which originate in the interference of ∆CA,A2HDM
P with

box-diagram contributions to CP proportional to the product ς`ςd.

• For small values of |ςd,`| ≤ |ςu|, the one-loop contributions to CS,P are negligible

compared to ∆CA2HDM
10 ∝ |ςu|2. The measured rate B(B0

q → µ+µ−) provides then

an upper bound on |ςu| that is stronger than the one extracted from Z → bb̄ and only

depends on MH± [118]. As shown in the left panel of Fig. 6.4, this limit (identical

for configurations A and B, and also for C and D) is independent on Cd(MW ). For

very large values of Cd(MW ), such that the misalignment contribution ∼ ςu Cd(MW )

could be sizeable, the upper bound on |ςu| would obviously become stronger.

• At large values of ς`, the misalignment contribution to CS,P increases proportionally

to ς`. This needs to be compensated with smaller values of both ςu and ςd, in

order to satisfy the B(B0
q → µ+µ−) constraint. Thus, sizeable values of Cd(MW )

imply very small quark alignment parameters. The figures show, however, that this

can be avoided at very specific values of Cd(MW ) where the misalignment and loop

contributions cancel.

• The restrictions imposed by B̄ → Xsγ can completely dominate over constraints

coming from B0
s → µ+µ− at large values of ςd. This is reflected in the horizontal

bands in the left panel of Fig. 6.5. The B0
s → µ+µ− data puts nevertheless a limit

on |Cd(MW )| for non-zero values of ςu. Allowing also for large values of |ς`|, the

combined constraints from B̄ → Xsγ and B0
s → µ+µ− become very stringent, as

shown in the middle and right panels of Fig. 6.5, which also illustrate the impact of

the ςdς` sign.

• When the scalar masses are increased, the new-physics contributions gradually de-

couple and the allowed regions become larger. This is shown in Fig. 6.6, tak-

ing ς` = 30 and two different mass configurations: E (MH± = MA = 103 GeV,

MH = 500 GeV; orange) and F (MH± = MH = MA = 103 GeV; violet). Taking
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MH± = MH = 103 GeV and MA = 500 GeV gives results similar to the E config-

uration. The left (right) panel show the constraints on Cd(MW ) and ςd (ςu), for

ςu = 0 (ςd = 50). They should be compared with the analogous plots for lighter

mass configurations in the right panels of Figs. 6.3 and 6.5.

6.5 Meson mixing

As already commented before, two insertions of LFCNC are needed in order to generate

a misalignment contribution to meson-antimeson mixing. This is a two-loop correction

and, therefore, it is expected to be quite small. Nevertheless, previous tree-level analyses

of LFCNC have focused on the ∆B = 2 transition, owing to the high sensitivity of B0
q–B̄0

q

mixing to new-physics effects,

The one-loop scalar contribution to the neutral meson mixing has been analysed, within

the A2HDM, in Refs. [112,129,132]. It proceeds through box diagrams with internal H±

propagators and provides stringent constraints on |ςu|, which depend on MH± . Actually,

the B0
s–B̄0

s mass difference and the CP-violating εK parameter, both provide bounds on

|ςu| which are quite similar to the ones extracted from Z → bb̄ [112]. So far, we did not

use this information because we would like to get constraints on Cd, which was not taken

into account in those one-loop analyses.

While being a second-order effect, the neutral scalar exchange between two LFCNC

vertices could be of a similar size, or even larger, than the one-loop charged scalar con-

tribution, due to a large Cd coupling or a very light neutral scalar. However, the fact

that the analyses of ∆MB0
q
and εK , without any misalignment contribution, give similar

constraints than Z → bb̄ does not seem to favour this possibility. This is also confirmed

by our previous study of B0
s → µ+µ−, although the constraints on Cd obtained there could

be avoided for some specific choices of A2HDM parameters (for instance, ς` = sα̃ = 0).
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The (one-loop) charged-current and (tree-level) misalignment contributions to B0
q–B̄0

q

mixing are roughly proportional to the factors

ωCC = 1
16π2

m4
t

M2
H±v

4

(
V ∗tqVtb

)2
, ωNC = |Cd(µ)|2

16π4
m2
bm

4
t

M2
ϕ0
k
v6

(
V ∗tqVtb

)2
.

(6.5.31)

Their relative size scales approximately as ωNC/ωCC = |Cd(µ)|2m2
bM

2
H±/(M2

ϕ0
k
v2π2). In

order to have a ratio ωNC/ωCC ∼ O(1), one needs |Cd(µ)|MH±/Mϕ0
k
∼ O(102). A proper

calculation of the misalignment effects would require in any case the inclusion of two-loop

diagrams in order to cancel the renormalization-scale dependence of Cd(µ).4

To estimate the possible size of the misalignment correction, we will consider the tree-

level scalar exchange in Fig. 6.2 (right), taking µ = MW to normalize the coupling Cd. It

contributes to the effective low-energy Hamiltonian,

Heff ⊃
∑

i,j=d,s,b

{
CSRR1,ij OSRR1,ij + CSLL1,ij OSLL1,ij + CLR2,ij OLR2,ij

}
, (6.5.32)

generating ∆S = 2 and ∆B = 2 transitions through the four-quark operators

OSRR1,ij = (d̄iLdjR)(d̄iLdjR) , OSLL1,ij = (d̄iRdjL)(d̄iRdjL) , OLR2,ij = (d̄iRdjL)(d̄iLdjR) ,

(6.5.33)

with

CSRR1,ij =
g2
ij

16π4v6

3∑
k=1

E2
k , CSLL1,ij =

g∗2ji
16π4v6

3∑
k=1

E∗2k , CLR2,ij =
gijg

∗
ji

8π4v6

3∑
k=1
|Ek|2 .

(6.5.34)

To simplify the numerical analysis, we have split the Wilson coefficients into a global

constant that reabsorbs all A2HDM parameters,

Ek ≡ Cd(MW )(ςd − ςu)(1 + ςdς
∗
u) 1
Mϕ0

k

(Rk2 + iRk3) , (6.5.35)

4 In the absence of a complete two-loop computation, one could extract effective µ-independent ϕ0
k q̄b

vertices from the B0
q → `+`− computation presented in Ref. [118]. However, they would still contain small

gauge dependences.
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and a flavour structure which is fully determined by the quark masses and mixings,

gij ≡
(
V †CKMMuM

†
uVCKMMd

)
ij
. (6.5.36)

Neglecting any additional source of CP violation beyond the CKM phase, E1 and E2

are real, while E3 is imaginary; this implies different relative signs for the CP-even and

CP-odd scalar contributions to CSRR1,ij and CSLL1,ij , while they enter with the same sign in

CLR2,ij .

In our phenomenological analysis we have also included the full one-loop charged-

current contribution [112,129,132], which is obviously µ-independent. The hadronic matrix

elements of the ∆F = 2 four-quark operators (6.5.33) are detailed in appendix D. The most

restrictive limits are obtained from B0
s–B̄0

s mixing (slightly weaker bounds result from B0
d–

B̄0
d mixing and εK), taking always into account the correlated restrictions from B̄ → Xsγ.

The measured mass difference in the B0
s–B̄0

s system imposes stringent constraints on ςu, ςd
andMH± , originating in the one-loop contributions, but the sensitivity to the misalignment

parameter is quite small, except at very large values of |ςd|. This is illustrated in Fig. 6.7

which shows two different parametric configurations, ςd = 50 (left) and ςu = 0.5 (right).

In both cases one observes horizontal lines, exhibiting the low sensitivity to Cd(MW ).

Nevertheless, a bound on Cd(MW ) finally emerges when ςdCd(MW ) is large enough to

generate a sizeable misalignment effect. The panels display the same mass configurations

analysed in the previous section (C and D give here equivalent results). Obviously, the

sensitivity to Cd(MW ) is larger for low scalar masses (configurations A and B).

The ∆B = 2 amplitudes are independent of the leptonic alignment parameter ς`.

Therefore, the constraints extracted from the B0
s–B̄0

s mixing may become relevant at small

values of ς` where the B0
s → `+`− limits are somewhat weaker. In Fig. 6.8, we display the

B0
s–B̄0

s mixing constraints obtained for ςu = 0 (left) and ςd = 0 (right), to be compared

with Figs. 6.3 and 6.4, respectively. The left panel shows indeed that at ςu = ς` = 0 (the

one-loop charged contributions to the mixing are proportional to ςu and are thus zero) the

mixing constraints on Cd(MW ) are stronger than the limits from B0
s → `+`−. This may

be related to the much better experimental relative error on ∆mB0
s
(0.1%), compared with
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Figure 6.7: The left (right) panels show the B0
s–B̄0

s mixing constraints on Cd(MW ) and ςu
(ςd) for a fixed value of ςd = 50 (ςu = 0.5), in the CP-conserving limit and with different

mass configurations: A (red, dotted), B (green, solid line) and C/D (blue, dashed).

the present 21.7% of the measured B0
s → µ+µ− branching fraction. At ςd = 0, however,

the previous constraints on Fig. 6.4 are stronger. The dominant one-loop contribution to

B0
s → µ+µ− originates then in ∆CA2HDM

10 ∝ |ςu|2 that puts a quite stringent limit on |ςu|.

With ςd = 0 and ςu small, the B0
s–B̄0

s mixing amplitude becomes insensitive to Cd(MW ),

while B0
s → µ+µ− can still constrain this parameter at large values of ς`.

6.6 Summary

The simplicity and versatility of multi-Higgs-doublet models make them favourable can-

didates for building alternative scenarios of EWSB with extended scalar sectors. The

physical spectrum of these models contains a rich variety of bosonic states, with N − 1

charged and 2N − 1 neutral scalars. The neutral scalar fields can, in general, couple to

fermions through non-diagonal flavour interactions, generating unwanted FCNC transi-

tions at tree level that need to be strongly suppressed in order to satisfy the stringent

experimental constraints.
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Figure 6.8: The left (right) panels show the B0
s–B̄0

s mixing constraints on Cd(MW ) and

ςd (ςu) for a fixed value of ςu = 0 (ςd = 0), in the CP-conserving limit and with different

mass configurations: A (red, dotted), B (green, solid line) and C/D (blue, dashed).

One could force these FCNC effects to be unobservable through very small Yukawa

couplings or very large scalar masses, making these models irrelevant for present experi-

ments. A more interesting possibility, allowing for new scalar particles not too far from

the electroweak scale, is a highly non-generic set of Yukawa couplings. The huge SU(3)5

flavour symmetry of the electroweak Lagrangian is only broken by the Yukawa interac-

tions, but the data clearly indicate that this symmetry breaking only occurs along very

specific directions in the flavour space [114,115].

As we saw in Chapter 2 the simplest way to avoid tree-level FCNCs is minimizing

drastically the number of flavour couplings, imposing most of them to be zero. Usually,

only one scalar doublet is allowed to have Yukawa interactions with a given type of right-

handed fermion, fixing in this way a unique flavour-breaking structure associated with

each f ′R field. Since this requirement can be always imposed through discrete Zd2 ⊗Zu2 ⊗

Z`2 symmetries, the resulting flavour configuration is stable under quantum corrections,

leading to the so-called models with natural flavour conservation [107, 108]. With N > 3
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Higgs doublets, this type of models necessarily involves a minimum of N−3 scalar doublets

that are decoupled from the fermion sector.

The more general assumption of flavour alignment [24,25] is based on the simultaneous

diagonalization of all the Yukawa matrices in the fermion-mass eigenstate basis. This

implies the appearance of 3(N − 1) alignment factors, which in the most general case

are 3 × 3 complex diagonal matrices. In the absence of a specific symmetry protection,

the resulting flavour structure is unstable under quantum corrections, which misalign the

different Yukawa matrices. Nevertheless, the induced misalignment is a quite small effect,

thanks to the residual flavour symmetries of the aligned multi-Higgs Lagrangian, which

tightly constrain the type of FCNC operators that can be generated at higher orders.

In this chapter, we have studied the misalignment local structure LFCNC induced at

one loop, for the most generic aligned multi-Higgs Lagrangian, using the known RGEs of

these models. We have particularized the result to different scenarios of phenomenological

relevance and have discussed in detail the role of the underlying flavour-dependent phase

symmetries. While the misalignment is a very small effect, being suppressed by at least two

insertions of the CKM matrix, three Yukawa couplings and the one-loop 1/(4π)2 factor, it

could still lead to interesting phenomenological effects through VtbV ∗tsm2
tmb contributions

to effective ϕ0
ks̄LbR vertices.

We have investigated the current constraints on the misalignment parameter Cd(MW ),

emerging from the measured B0
s → `+`− branching fraction and B0

s–B̄0
s mixing, taking

into account the strong correlated limits on ςu, ςd and MH± from B̄ → Xsγ. These FCNC

transitions receive non-local one-loop contributions with internal top and H± propagators

[112, 118] that dominate in large regions of the parameter space and were neglected in

previous phenomenological studies of the flavour misalignment [116, 117, 120]. The local

misalignment Lagrangian LFCNC contributes to these processes through tree-level neutral

scalar exchange. For B0
s → `+`−, where only one insertion of LFCNC is needed, this

contribution is actually needed to renormalize the effective ϕ0
ks̄LbR vertex and, therefore,

appears at the one-loop level. The contribution to B0
s–B̄0

s mixing involves, however, two

insertions of LFCNC; it is a two-loop effect that should be considered together with two-loop
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diagrams involving two one-loop effective ϕ0
ks̄LbR vertices. We have nevertheless analysed

whether the neutral-scalar-exchange amplitude could lead to relevant phenomenological

signals through very large values of Cd(MW ).

The present phenomenological constraints on Cd(MW ) are shown in Figs. 6.3 to 6.8,

with different choices of ςu,d,` and several benchmark configurations for the scalar mass

spectrum. To simplify the analysis we have assumed the absence of any CP-violation

effects beyond the usual CKM phase. While stringent bounds emerge on the alignment

parameters ςu,d,`, the sensitivity to Cd(MW ) is very small, as expected, exhibiting the

strong phenomenological suppression of the misalignment. The local LFCNC contribution

is proportional to the product (ςu − ςd)(1 + ςuςd)Cd(MW ), which explains the pattern

displayed by the obtained constraints. Only at large values of ςd and/or ς` (|ςu| is bounded

to be small) one obtains a somewhat enhanced misalignment contribution that can result

in useful limits on Cd(MW ).

The hypothesis of flavour alignment at a very high scale µ = ΛA, i.e., Cd,u(ΛA) = 0,

survives the phenomenological limits in all cases. With ΛA ≤ MPlanck ∼ 1019 GeV, it

implies Cd,u(MW ) = log ΛA
MW
≤ 40, which can easily satisfy all present constraints. This

simple relation between Cd,u(MW ) and ΛA has been obtained at the lowest perturbative

order. For very large values of the Yukawa couplings and ΛA � MW , the long running

between the scales ΛA and MW makes necessary to perform a resummation of large log-

arithmic corrections, through a numerical solution of the RGEs [116, 117, 120] that can

modify the high-scale relation by a factor of O(1). While this slightly changes the scale

ΛA associated with a given value of Cd,u(MW ), it does not modify our conclusion that

high-scale alignment is compatible with all known experimental constraints.

Our phenomenological analyses have been restricted to the simplest case of the A2HDM.

Since this is the most constrained scenario of multi-Higgs flavour alignment (the one with

the smallest number of free parameters), our conclusion is obviously also valid for more

generic situations with N > 2 Higgs doublets and/or generalized alignment structures.





Chapter 7

Global fits in the Aligned

Two-Higgs-doublet model

The NHDM and the particular case of the A2HDM were introduced in Chapter 2.

Constraints on the 2HDM parameters have been widely studied, taking into account

recent LHC data [123,124,140,177–195], together with other requirements from flavour and

LEP physics, and theoretical considerations. However these analyses normally considered

specific 2HDM models with Z2 symmetries [182, 190, 194, 196–201]. In this work we have

performed a global fit to the relevant experimental and theoretical constraints in the most

general CP-conserving model which preserves tree-level flavour alignment, the A2HDM

[24,25]. The fits have been performed using the HEPfit code described in Chapter 5.

This chapter is organized as follows. In Section 7.1 the fit set up and the constraints

considered are explained. Results of assuming the observed 125 GeV Higgs is the lightest

(heaviest) CP-even scalar of the model are presented in Section 7.2 (Section 7.3). These

two possibilities will be referred as the light scenario and heavy scenario. We present a

summary of the work in Section 7.4.

109
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7.1 Fit constraints

For our analysis we assume the CP-conserving limit, so both the parameters of the poten-

tial of Eq. (2.1.39) and the alignment parameters of Eq. (2.1.36) are real. The parameter

space of the A2HDM is then characterized by twelve real quantities: the three alignment

parameters and nine degrees of freedom in the scalar potential which we choose to be v,

the four scalar masses, the CP-even mixing angle α̃ and the quartic couplings λ5,6,7. Two

inputs are already empirically determined: the vacuum expectation value and the Higgs

mass mh = 125.10± 0.14 GeV [75].1

We assume the following priors for the fit parameters in our main Bayesian fit:

|λ5,6,7| < 10 , α̃ ∈
[
−π2 ,

π

2

]
, M2

A,H± ∈ [102, 15002] GeV2 .

ςu ∈ [−1.5, 1.5] , ςd ∈ [−50, 50] , ς` ∈ [−100, 100] . (7.1.1)

The priors of the remaining CP-even scalar mass depend on the scenario studied. Light

(heavy) scenario refer to the case in which the observed Higgs with a mass around 125 GeV

(h) is the lightest (heaviest) CP-even scalar of the model. For the light scenario, selected

with the boolean flag SMHiggs set to true the mass priors are of the non-SM Higgs (H),

M2
H ∈ [1252, 15002] GeV2 , (7.1.2)

while for the heavy scenario, selected with the boolean flag SMHiggs set to false,

M2
H ∈ [102, 1252] GeV2 . (7.1.3)

The scalar masses are chosen in a range such that they are relevant for the future LHC

searches. The parameters of the potential λi are taken in a conservative range, since

larger values are excluded by theoretical constraints. The mixing angle α̃ is varied in its

1From now on we denote by h the already discovered Higgs-like boson, and useH for the second CP-even

boson, irrespective of their mass ordering.
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full range, and the alignment parameters ςf (f = u, d, `) are varied in their perturbative

range, i.e.,
√

2
v ςfmf ≤ 1.

Bayesian statistics do not provide an unambiguous way to determine the prior distribu-

tions. A rule of thumb would be considering as flat priors the ones appearing linearly in our

observables. However, for the mass parameters this does not give a unique choice: while

direct searches depend linearly on the heavy scalar masses, loop-induced processes appear-

ing in flavour observables and in Higgs signal strengths depend on the masses squared. To

avoid a possible bias in the choice of these priors, we have performed fits with two different

mass parametrizations. These two choices of mass priors are selected with the boolean

flag use_sq_mass. If it is set to true (false) square (linear) mass priors are used. The

effect of the choice of mass priors will be commented in the cases of interest. When the

choice of the mass priors is irrelevant, square mass priors will be used.

7.1.1 Theoretical constraints

To assure that the scalar potential is bounded from below, one must impose the following

positivity constraints on the quartic couplings λi [31, 202]:

λ1 ≥ 0 , λ2 ≥ 0 ,
√
λ1λ2 + λ3 ≥ 0 ,

√
λ1λ2 + λ3 + λ4 − |λ5| ≥ 0 ,

1
2 (λ1 + λ2) + λ3 + λ4 + λ5 − 2 |λ6 + λ7| ≥ 0 . (7.1.4)

These necessary conditions restrict the allowed pattern of scalar masses.

By imposing perturbative unitarity of the S-matrix we avoid that a given combination

of parameters results in a too large scattering amplitude that violates the unitarity limit

at a given perturbative order. Thus, we are actually requiring that the perturbative

series does not break down. Here, unitarity is enforced for two-to-two scattering of scalar

particles at leading order (LO), [203] using

(
a

(0)
j

)2
≤ 1

4 , (7.1.5)

where a(0)
j are the tree-level contributions to the j partial wave amplitude. For the high-

energy scattering of scalars, only the S-wave amplitude (j = 0) is relevant at LO. The
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corresponding matrix of partial wave amplitudes is given by

(a0)i,f = 1
16πs

∫ 0

−s
dtMi→f (s, t) , (7.1.6)

and the a0 are the eigenvalues of a0. Again, these conditions are relevant to constrain the

scalar potential parameters λi.

7.1.2 Electroweak constraints

EWPOs measured at LEP and SLC are used in the analysis. We use best-fit fixed values

for the SM inputs MZ , mt, αs and ∆α(5)(MZ). The study of the oblique parameters

S, T and U [165, 204, 205], which are very sensitive to the scalar mass splittings, is not

enough to disentangle the A2HDM contributions because of the presence of additional

Z-vertex corrections [206, 207]. The most relevant ones are the quantum corrections to

Γ(Z → bb̄), which are enhanced by the large top-quark mass [208–210]. We take this into

account through a combined fit of EWPOs, excluding the ratio Rb ≡ Γ(Z → bb̄)/Γ(Z →

hadrons) [210, 211], which updates the analysis of Ref. [212]. The updated results can be

seen in Table 7.1.

Result Correlation Matrix

S 0.093± 0.101 1.00 0.86 -0.54

T 0.111± 0.116 0.86 1.00 -0.83

U −0.016± 0.088 -0.54 -0.83 1.00

Table 7.1: Results for the fit of the oblique parameters S, T and U without Rb.
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7.1.3 Higgs constraints

The Higgs signal strengths are defined as the ratio of the production cross section σi times

the branching ratio Bf , over the SM prediction, for a given production channel (i = ggF,

VBF, VH, ttH) and decay mode (f = b̄b, γγ, µ+µ−, τ+τ−, WW, Zγ, ZZ),

µfi =
(σi · Bf )A2HDM

(σi · Bf )SM
= ri · rf∑

f ′ rf ′ · BSM (h→ f ′) , (7.1.7)

where ri,f are the ratios of the production cross section σi and decay width Γf , respectively,

with respect to their SM predictions.

The signal strengths are calculated in the narrow-width approximation and depend on

the alignment parameters, the mixing angle α̃ and the scalar potential parameters. The

input used contains LHC data (Run I and II) from the ATLAS and CMS collaborations,

and data collected by D0 and CDF at the Tevatron. The data entering our fit are detailed

in Appendix F (Table F.1).

Information about heavy Higgs searches of ATLAS and CMS, both at Run I and II, is

summarized in Tables F.2, F.3, F.4 and F.5, also in Appendix F. The analyses provided are

quoted as 95% upper limits, for different production and decay channels, on either σ ·B or

(σ · B) / (σ · B)SM, as functions of the resonance mass in the narrow width approximation.

7.1.4 Flavour constraints

Since most of the standard CKM fits assume the SM and this would not be consistent with

the study of NP, the choice of the CKM parameters is subtle. To avoid inconsistencies,

a fit to the CKM entries is performed. Vud is extracted from superallowed (0+ → 0+)

nuclear β decays [168]. Given the very small value of Vub, this fixes Vus ≈ λ through

CKM unitarity. |Vub| and Vcb ≈ Aλ2 are obtained by combining exclusive and inclusive

measurements of b → uν̄`` and b → cν̄`` transitions [48]. Finally, the apex (ρ̄, η̄) of

the unitarity triangle is determined with the additional information of the ratio |Vtd/Vts|,

extracted from ∆MBs/∆MBd [48] that is not sensitive to charged scalar contributions [112].



114 Global fits in the Aligned Two-Higgs-doublet model

Input Value

λ 0.2256± 0.0009

A 0.829± 0.017

ρ̄ 0.182± 0.016

ρλ,A −0.39

ρρ̄,η̄ 0.82

Figure 7.1 & Table 7.2: Results of the CKM fit. Fitting only tree-level observables, gives

the allowed regions in yellow. The green regions include ∆MBd and ∆MBs , and the blue

regions the ratio Vtd/Vts from HFLAV [48]. Darker and light colours correspond to 68%

and 95.5% probability, respectively. The black triangle is the best fit point from the SM

CKM fit to all observables [75].

The CKM inputs obtained in this way and later used in our global fits are summarized in

Fig. 7.1 and Table 7.2.

Charged-scalar exchanges contribute to neutral meson mixing through one-loop box

diagrams [112,129,132]. The corrections induced by virtual top quarks are quite sizeable,

specially for ∆MBs,d and εK , and provide strong constraints on |ςu| (also Rb) as function

of MH± . The weak radiative decay B → Xsγ [112,121,122,173–176] gives also important

correlated constraints on ςu and ςd, specially for large values of |ςuςd|. The region ςuςd < 0

is actually excluded, except for very small values of the alignment parameters [112]. NNLO

corrections [213] are quite relevant for this observable and should be taken into account.

A complete one-loop calculation within the A2HDM of the decay Bs → µ+µ− was

performed in [118, 172]. This observable depends on the b → sµ+µ− Wilson coefficients

O10, OS and OP . The decay amplitude involves both charged and neutral scalar contribu-
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tions, and provides complementary information on the alignment parameters ςu,d,` and the

scalar masses. It also includes small contributions from higher-order FCNC interactions,

needed to reabsorb UV divergences, which are assumed to be negligible here. A study of

these effects can be found at [156].

Finally, the muon anomalous magnetic moment, calculated within the A2HDM in

Refs. [127, 214], is of interest because it shows a deviation with respect to the SM and

strongly constrains the leptonic coupling. Its effects will be commented in Section 7.2.

7.2 Results: light scenario

In this section, results of fits in the light scenario, assuming the observed SM Higgs is

the CP-even lightest scalar of the model, are summarized. The complementary possibility

(the observed scalar is the heaviest) will be studied in Section 7.3.

7.2.1 Theoretical constraints

Perturbative unitarity and positivity of the potential set strong limits on the scalar masses

and in the quartic parameters of the potential. The mass differences among H, A and H±

are strongly constrained, as shown in Fig. 7.2,

|Mi −Mj | ≤ 600 GeV, i, j = H,A,H±, (square mass priors). (7.2.8)

From these figures, several conclusions can be obtained. First of all, there is a clear

correlation between the masses of any two scalar particles: large masses of one scalar will

imply that the other scalar is also restricted to be large. This effect is stronger for higher

values of the scalar masses. The effect of the mass priors has also been studied, and has a

minor effect. While the shape for the mass planes are the same, regions with square priors

are slightly larger (see Fig. 7.3).

Theoretical constraints also restrict the allowed ranges of the scalar quartic couplings.

Two-dimensional plots of (λ5, λ6, λ7) are shown in the right panel of Fig. 7.2, which displays



116 Global fits in the Aligned Two-Higgs-doublet model

Figure 7.2: Left panel: Allowed regions for the scalar mass splittings coming from the-

oretical constraints at 100% probability (blue), from EWPO at 95.5% probability (in or-

ange, square mass priors and in light purple, linear priors), and combining all constraints

at 95.5% probability (linear mass priors in purple, square mass priors in red and square

mass priors and lower masses in brown). The “All constraints” contains only the right-sign

branch discussed in Section 7.2.5. Right panel: Two-dimensional bounds on the λ5, λ6

and λ7 parameters of the potential resulting from imposing theoretical constraints with

(blue, 100% probability), and considering all constraints (in brown 95.5% probability, in

red 68% probability).

the correlations among the different couplings of the scalar potential. The blue regions in

the figure satisfy the bounds derived in previous works [99].

7.2.2 Electroweak constraints

Electroweak precision observables restrict the individual masses of the scalar particles in

the low-mass range, and are very useful to constrain their mass splittings. The oblique

parameters are very sensitive to the scalar mass differences, which results in strong upper

limits for the masses. This can be clearly observed in Figs. 7.4 and 7.7. The EWPOs

information complements in a very useful way the theoretical constraints discussed before.
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Figure 7.3: Theoretical constraints at a 100% probability obtained with square mass priors

(dark orange) and linear mass priors (light orange).

Constraints obtained from EWPO present a strong dependence on the mass priors.

Several choices for the mass priors are summarized in Fig. 7.4. Independently of the

priors, large values for the masses and small splitting are favoured. Light and dark blue

regions show the strong dependence in the mass ranges for square priors. If masses are

varied until 1500 GeV, masses below approximately 750 GeV are not allowed at a 68%

probability and if they are reduced to be less than 1000 GeV, masses of 500 GeV are

allowed at the same probability. The same tendency is observed if lower mass regions are

chosen. If the fit is repeated with linear mass priors (purple regions), masses as low as

10 GeV are allowed at a 68% probability. In this case, the dependence in the mass ranges

is also weaker. Masses up to 1500 GeV (1000 GeV) are denoted as dark (light) purple

regions.

7.2.3 Higgs constraints

Since the measured Higgs signal strengths are consistent with the SM, within the current

uncertainties, the Yukawa couplings of the SM-like Higgs boson should be close to the

SM limit. Actually, most Higgs observables are not sensitive to the signs of the Yukawa

couplings and, therefore, the LHC data imply that the modulus of |yhf |−1 cannot be larger

than about 0.1-0.2. This gives two different types of solutions for the Yukawa couplings:
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Figure 7.4: Allowed mass ranges from EWPO at a 68% probability. Light and dark blue

(purple) correspond to square (linear) mass priors withMH±,A ∈ [10, 1500] GeV andMH ∈

[125, 1500] GeV (lighter regions) and with MH±,A ∈ [10, 1000] GeV and MH ∈ [125, 1000]

GeV (darker regions).

there will be a broad range of allowed values of ςf with α̃ ≈ 0, corresponding to yhf ≈ 1,

and another region with larger values of the coupling angle corresponding to yhf ≈ − 1.

For small values of α̃, Eq. (2.1.47) gives yhf = 1 + α̃ ςf +O(α̃2) (assuming h to be the

lightest CP-even neutral scalar), so that the Yukawa coupling is close to -1 for α̃ ςf ≈ −2.

This effect can be observed in the allowed (α̃, ςf ) regions of Fig. 7.5, for the down and

leptonic alignment parameters.

The up Yukawa sign ambiguity gets broken by the two-photon decay amplitude of the

Higgs that involves one-loop contributions from virtual W±, t and H±. Assuming that

the charged-scalar correction is small, the measured H → γγ signal strength determines

the relative sign between yhu and ghWW to be positive.

In the following we will distinguish among the two different possibilities: the “right-

sign” solution, corresponding to yhd,` ≈ 1 and the “wrong-sign” corresponding to yhd,` ≈ −

1. The former was previously analyzed in the A2HDM [124] and, more recently, in the

particular case of Z2 symmetric models [197].
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Figure 7.5: Constraints on the planes ςf − α̃ from the Higgs signal strengths at a 68%

(dark green), 95.5% (light green) and 99.7% (olive green) probability.

For the “right-sign” we find that the value of α̃ is strongly constrained,

|α̃| ≤ 0.003 68% probability,

|α̃| ≤ 0.023 95.5% probability. (7.2.9)

The effect of direct searches restrict the masses of the scalar particles. In order to

access to the information that these observables provide, we first calculate the theoretical

production cross section times branching ratio σ · B in the A2HDM. Then, to compare a

specific σ · B with the experimental upper limit, we define a ratio for the theoretical value

and the observed limit (R ≡ (σ·B)theo

(σ·B)obs ), to which we assign a Gaussian likelihood with zero

central value, which is in agreement with the null results in the searches of heavy scalars

so far. The corresponding standard deviation of the likelihood is adjusted in a way that

the value R = 1 can be excluded with a probability of the 95%.

In general, direct searches prefer larger values of the scalar masses, but the fact that

there are less searches for a low-mass range of the masses gives less restrictive constraints

for masses below 100 GeV.
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Figure 7.6: Constraints at the 95.5% probability on the alignment parameters from (g −

2)µ (light pink), Bs → µ+µ− (magenta), meson mixing (pink), B → Xsγ and all the

flavour observables but (g−2)µ (purple). For clarity observables that do not give relevant

constraints in a given plane are omitted in the plot.

7.2.4 Flavour constraints

Flavour observables are useful to constrain the alignment parameters ςf . As previous works

showed, Fig. 7.6 illustrates that the anomaly in (g − 2)µ cannot be accommodated with

small deviations from the SM. Therefore, a confirmation of the anomaly would require

non-zero values for ς` [214, 215]. In the global fit we will use only observables whose

deviation from the SM is smaller than 2σ, so this anomaly will be excluded. For clarity

the observables that do not give relevant constraints in a given plane are omitted in the

plot.

From Fig. 7.6 it can be seen that the remaining flavour observables prefer values for the

alignment parameters, ςf close to zero. This figure also illustrates the strong correlation

between these couplings. Bs → µ+µ− is the only observable that constrains the leptonic

couplings, excluding large values for |ςu,dς`| as it can be seen in Fig. 7.6. The same effect

can be seen for the ςu − ςd plane.

In meson mixing, box diagrams are dominated by top quarks and therefore ςu couplings,

enhanced by the top mass get strongly constrained, allowing to obtain an upper limit for
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Figure 7.7: Allowed regions on the planes MH–MA (left), MH–MH± (middle) and MA–

MH± (right) from theoretical constraints at 100% probability (blue), from EWPO at

95.5% probability (in orange, square mass priors and in light purple, linear priors), and

combining all constraints at 95.5% probability (linear mass priors in purple, square mass

priors in red and square mass priors and lower masses in brown). The “All constraints”

contains only the right-sign branch discussed in Section 7.2.5.

|ςu|. A similar and stronger effect can be seen in the radiative decay b → sγ. This decay

constrains the ςu − ςd plane.

7.2.5 Global fit

After discussing the separate effect of each type of observables, let us analyze the limits

emerging from the global fit to all experimental and theoretical inputs.

The combined constraints on the scalar masses and mass differences are shown in the

left panel of Fig. 7.2 and in Fig. 7.7. From these plots, it can be seen that theoretical

and EWPOs constraints are complementary and by combining them with the remaining

observables, light values for the masses are excluded. As for the electroweak constraints,

there is a clear dependence on the mass priors. Fits with square mass priors with M2
i ≤

15002 GeV2 and M2
i ≤ 10002 GeV2 are displayed in the figures as red and brown regions,

respectively. Results show that if the mass regions are reduced, lower values of the masses
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Figure 7.8: Constraints on the planes ςf − α̃ from the global fit at a 68% (dark red), 95.5%

(brown) and 99.7% (light red) probability.

are allowed at the same probability. Linear priors are displayed in purple, for Mi ≤

1500 GeV, showing that lighter masses are allowed than with square mass priors. A

similar, but weaker effect is observed for mass splittings. From square mass priors one can

set bounds on the difference

|Mi −Mj | ≤ 150 GeV, i, j = H,A,H±, (square mass priors). (7.2.10)

This strong dependence on the mass priors indicates that the results on the mass con-

straints should be taken carefully.

The effect of imposing all constraints in the λi parameters can be observed in the

right panel of Fig. 7.2. The addition of the Higgs signal strengths and the direct searches

restrict the parameter space obtained before from theoretical observables. This effect is

specially strong for λ7.

Adding the rest of observables to the Higgs signal strengths is subtle because of the two

different branches commented on Section 7.1.3. Convergence is difficult to reach once the

set of observables that do not depend on the Yukawa couplings yhf , but on the alignment

parameters ςf , are combined with the Higgs signal strengths, which contained fine-tuned

“wrong-sign” branches. To solve that, we have performed the fits shown in this section

with the condition yhd,` ≈ 1. The negative branch solution will be discussed in Section 7.2.6.
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Figure 7.9: Constraints at the 95.5% probability on the alignment parameters from a fit

with only flavour observables (purple) and the global fit (brown).

For the positive branch, once we add the rest of observables to the Higgs signal strengths

the constraints of Fig. 7.5 get modified into the ones of Fig. 7.8. The fact of having a wider

range allowed for α̃ is explained from the fact that other observables do not constrict this

parameter in such a strong way, so the combined effect results in weaker limits for α̃. In

particular we find,

−0.015 ≤ α̃ ≤ 0.013 68% probability,

−0.04 ≤ α̃ ≤ 0.04 95.5% probability. (7.2.11)

As commented before, the experimental value of (g− 2)µ, shows large deviations with

respect to the SM prediction. Its effect was commented in Section 7.2.4, but this observable

is removed from the global fit. The effect of a global fit in the ςf − ς ′f planes is displayed

in Fig. 7.9. The allowed parameter space for the down and leptonic coupling gets reduced

once all constraints are considered. This comes from the combined effect of the Higgs

and flavour observables. Again, a strong correlation between up and down alignment

parameters can be observed: larger values of the up coupling will require smaller values

of the down coupling and vice versa. A similar but weaker effect can be observed in the

ςu − ςd and ςd − ς` planes.
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Figure 7.10: Constraints on the mixing angle α̃ and Yukawa coupling planes at 99.7%

(brown), 95.5% (orange) and 68% (yellow) probability. The fits correspond to theoretical

constraints, EWPO, flavour observables and Higgs signal strengths for the “wrong-sign”

solution.

7.2.6 “Wrong-sign” solution

It is complicated to reach convergence in a global fit with the “wrong-sign” solution. In

Fig. 7.10 results of a fit including theoretical constraints, EWPO, flavour observables and

Higgs signal strengths is presented. The region α̃ = 0 is forbidden, since it implies yhf = 1,

independently of the value of the alignment parameter ςf , and therefore corresponds to

the other solution of the fit. As expected,the fitted solutions correspond to
∣∣∣yhf ∣∣∣ ≈ 1.

7.3 Results: heavy scenario

In the previous section we have described the situation in which the observed Higgs cor-

responds to the lightest CP-even scalar of the model. In this section we will analyze the

complementary situation, i.e. the heaviest CP-even scalar is the SM Higgs and there is

an additional neutral scalar with mass below 125 GeV.

Theoretical constraints show the same tendency as for the light scenario. Since the

mass of the CP-even scalar is now bounded to be light, the remaining two scalar masses
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cannot be heavier than 700 GeV. This can be seen in Fig. 7.11 for square mass priors.

Linear mass priors give very similar constraints, so they are omitted in the plot.

Figure 7.11: Constraints on the mass planes in the heavy scenario from theoretical con-

straints (blue, square priors, 100%), from a global fit (red, square priors, 95.5%) and from

EWPO (orange, square priors, 95.5%).

Results from electroweak constraints are similar than the ones of the light scenario.

Lower masses and large mass splittings are excluded. Now MH is bounded to be smaller

than 125 GeV, so regions become narrower. The difference between linear and squared

mass priors is also similar as in the light scenario. Square priors present stronger con-

straints for light masses. These constraints can be seen at Fig. 7.11. For the plane

MA −M±H the two regions overlap, so it not easy to distinguish them.

Higgs signal strengths give similar results as for the light scenario, shifting the angle

α̃ → α̃ − π/2. The “right-branch” now corresponds to the region with α̃ ≈ −π
2 plus a

region with α̃ ςf ≈ −2. The “wrong-branch” is now the region with α̃ ≈ π
2 plus the region

with α̃ ςf ≈ 2. As for the light scenario, the up Yukawa has de same sign as ghV V and

therefore only yhu ≈ 1 is possible. This can be seen in Fig. 7.12. The sharp cut close to

α̃ = −π
2 in the negative branch is a consequence of the correlation between α̃ and the

down coupling ςd. Lower values of the angle will require ςd < −50, not allowed from our

priors. A similar region is found for α̃ ≈ π
2 .
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Figure 7.12: Constraints from Higgs signal strengths at the heavy scenario for α̃ = −π
2 . A

similar region is found for α̃ = π
2 . Green regions represent the positive branch and purple

regions the negative branch.

Finally, flavour constraints are independent of the neutral scalar masses, so they are

identical in the light and heavy scenario. Therefore, constraints from Fig. 7.6 can be

applied to both scenarios.

Global fit results are displayed for mass planes in Fig. 7.11. Larger masses for the

CP-odd and the charged scalar are not allowed at a 95.5% probability. Since one of the

scalars is forced to have a small mass, electroweak constraints restrict the mass spitting

between the two other masses to be small. This can be seen in the MA −MH± plane of

Fig. 7.11.

Global fit results for the α̃− ςf planes in the positive branch are equivalent to the ones

in the light scenario (see Fig. 7.8) shifting the mixing angle α̃→ α̃− π
2 .

7.4 Summary

In this chapter we have performed several Bayesian fits to the CP-conserving A2HDM using

the HEPfit tool. First of all, we have worked in the light scenario, in which the observed

Higgs is the lightest CP-even scalar of the model. Theoretical constraints and EWPO

give important limits on the masses of the scalar particles. These observables present
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a strong dependence on the mass priors, specially EWPO. Consequently, unambiguous

bounds cannot be set on these parameters, but it can be concluded that large values of

the masses and small splittings are preferred. Higgs signal strengths help us to constrain

the mixing angle α̃ and the couplings ςf . Since these observables depend on the squared

Yukawa couplings (yhf )2, two different branches will satisfy the constraints: a “positive-

branch” with yhd,` ≈ 1 and a “negative branch” with yhd,` ≈ −1. Flavour observables also

restrict the values of the couplings, and the correlations among them.

In addition, the heavy scenario has been studied. In this scenario the new CP-even

scalar is assumed to be lighter than the SM one, i.e. MH ≤ 125 GeV. This restricts the

values of the remaining scalar masses to be smaller than approximately 700 GeV at a

95.5% probability. The effect in the mass priors is maintained, and similar results are

obtained for the angle α̃ (shifting α̃→ α̃− π
2 ) and for the couplings ςf .

These results represent the most general global A2HDM fits up to date. While previous

fits focused on Z2 models or used only small subsets of observables, we have worked with

a minimal set of assumptions (aligned, CP-conserved model). In the future this could be

generalized to include non-aligned and CP-violating structures.





Chapter 8

Fits to b→ cτ ν̄ transitions

The success of the SM has reached its climax with the discovery of the Brout-Englert-

Higgs boson [12–14], which seems to suggest the simplest scenario where the electroweak

spontaneous symmetry breaking is linearly realized. In spite of its success as a low-

energy EFT, there are both experimental signals and conceptual issues that cannot be

accommodated in the SM framework and, therefore, motivate the search of NP beyond

the SM. In this context, the series of anomalies in semi-leptonic B-meson decays, recently

reported by several experiments, have caught a great attention in the scientific community.

The unexpected deviations seem to appear in both b → c and b → s semi-leptonic decay

transitions when different generations of leptons are involved, see Ref. [216–218] for recent

reviews.

The b→ c transitions are of particular interest, because the necessary NP effect would

be comparable with the tree-level contribution of the SM, which in turn would require NP

to be either rather light or strongly coupled to the SM particles.

Deviations from the SM predictions in those modes were first observed by the BaBar

collaboration in 2012 [63], with discrepancies around the 25% for B → D(∗) decays. Later,

these deviations or anomalies, as they were called, were confirmed by different measure-

ments at BaBar [64] and by Belle [65,145] in the RD(∗) ratios defined in Eq. (4.3.24). Also

LHCb found a deviation in RD∗ of ∼ 2σ [68]. Combining all these data the word averages

129
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of RD(∗) at 2016 were,

Ravg, 2016
D = 0.403± 0.040± 0.024 and Ravg, 2016

D∗ = 0.310± 0.015 ± 0.008 ,

(8.0.1)

with a correlation of −0.23. At that time it represented a deviation of 3.9σ with respect

to the SM predictions. This is summarized in Table 8.1 and the left panel of Fig. 8.1.

Experiment RD∗ RD ρ 2016 WA 2019 WA

BaBar [63,64] 0.332± 0.024± 0.018 0.440± 0.058± 0.042 −0.27 3 3

Belle [65] 0.293± 0.038± 0.015 0.375± 0.064± 0.026 −0.48 3 3

LHCb [68] 0.336± 0.027± 0.030 3 3

Belle [145] 0.302± 0.030± 0.011 3 7

Belle [66] 0.270± 0.035+0.028
−0.025 3 3

LHCb [69,147] 0.280± 0.018± 0.029 7 3

Belle [67] 0.283± 0.018± 0.014 0.307± 0.037± 0.016 −0.51 7 3

2016 WA [219] 0.310± 0.015± 0.008 0.403± 0.040± 0.024 −0.23

2019 WA [48] 0.295± 0.011± 0.008 0.340± 0.027± 0.013 −0.38

SM 2016 [63,64,220] 0.252± 0.003 0.300± 0.008

SM 2019 [59,60,62] 0.258± 0.005 0.299± 0.003

Table 8.1: Mesurements of RD and RD∗ of different collaborations. The first uncertainty

corresponds to the statistical error and the second one to the systematic. The world aver-

ages are performed by the HFLAV collaboration [48,219]. The SM predictions correspond

to the ones used by Refs. [48, 219] in the year the analysis was made.

Later LHCb performed another measurement of RD∗ [69,147] and Belle measured both

RD and RD∗ with a negative correlation of −0.51 [67]. The experimental situation of 2019

is summarized in the right panel of Fig. 8.1 and in Table 8.1. Combining these results the

new word averages were,

Ravg, 2019
D = 0.340± 0.027± 0.013 and Ravg, 2019

D∗ = 0.295± 0.011± 0.008 ,

(8.0.2)



Fits to b→ cτ ν̄ transitions 131

��� ��� ��� ��� ���
���

����

���

����

���

��� ��� ��� ��� ���
���

����

���

����

���

Figure 8.1: Different experimental measurements of RD and RD∗ . The ellipses and the

bands correspond to the 1σ uncertainty (∆χ2 = 2.3 for the ellipses and ∆χ2 = 1 for the

bands). The word averages and the SM predictions are denoted as red and black ellipses

respectively.

with a correlation of −0.38. Although experimental results were closer to the numerical

values of the SM predictions, the improvement in the precision in the calculation of RD
and RD∗ , related to a best control of the FFs resulted in smaller uncertainties for the

ratios, only reducing the tension slightly to 3.08σ.

Apart from the above observables, also the recent LHCb measurement [72] of the

Bc → J/Ψ ratio defined in Eq. (4.3.27),

RJ/ψ ≡
B(Bc → J/ψτν̄τ )
B(Bc → J/ψµν̄µ) = 0.71± 0.17± 0.18 , (8.0.3)

deviates from the SM predictions RSMJ/ψ ≈ 0.25–0.28 [221–232]. This points naively into

the same direction, although the central value is in fact so large that it cannot be accom-

modated with NP contributions either.

These deviations could be interpreted as hints at lepton flavour universality violation

(LFUV), which cannot be accommodated in the SM and therefore suggest the existence

of NP. The lack of evidence of similar discrepancies in K and π semi-leptonic and purely
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leptonic decays, or in electroweak precision observables, favours a scenario in which the

potential NP contribution responsible for LFUV is only coupled to the third generation

of leptons. The fact that in universality ratios large parts of the hadronic uncertainties

cancel, renders underestimated theory uncertainties as an explanation extremely unlikely.

This remains true considering recent discussions of radiative corrections [233,234], see also,

e.g., Refs. [235, 236] for earlier discussions. The correct inclusion of radiative corrections

is, however, very important for the forthcoming precision analyses.

However, recent measurements of RD∗ by LHCb [69] and Belle [66], which identify the

final τ through its hadronic decays, result in values more compatible with the SM and

yield a downward shift in the average that might suggest that the anomaly is smaller than

indicated by the above numbers. 1

In addition to the ratios defined in Eq. (4.3.24) and summarized in Eqs. (8.0.1) and

(8.0.2), we consider the normalized experimental distributions of Γ(B → D(∗)τ ν̄τ ) mea-

sured by BaBar [64] and Belle [65]. Although this shape information was shown to provide

quite stringent constraints in Ref. [64,74,150,237,238], it has been so far ignored in most

phenomenological analyses. We also analyze the effect of including the value for the in-

tegrated longitudinal polarization F̄D∗L (see Eq. (4.3.48)) by the Belle collaboration [71],

F̄D
∗

L = 0.60± 0.08 (stat) ± 0.04 (syst), (8.0.4)

which differs from its SM prediction by 1.6σ, and discuss its consequences in detail. Other

related observables, such as P̄D∗τ [66] and RJ/ψ [72], present large experimental uncertain-

ties, being less relevant for studying b→ c transitions.

Our analyses started in the early 2019. At that time numerous discussions could be

found in the literature [51,60,70,74,82,149,150,238–264], where the b→ cτ ν̄τ transitions

were studied from a model-independent point of view. However, most of these works

restricted their analyses to either effects from a single NP operator or a single heavy

particle mediating the interaction. The natural step for us was adopting the most general

1The average of these measurements, only, agrees with the SM at the level of 1-1.5σ.
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possible scenario under a set of well-motivated assumptions instead. Working with these

ideas our first project consisted in a global fit in which EWSB is linearly realized, the

CP-conserving limit is taken and there are not light right-handed neutrinos. This project

corresponds to [52]. As previously mentioned, in the middle of 2019 more experimental

data involving b→ c transitions was available. This, combined with the idea of exploring

scenarios beyond our theoretical assumptions yielded into a work containing the relevant

operators to include right-handed neutrinos [265].

In this chapter we start by describing the FFs in Section 8.1.1 and the χ2 that will be

used in our fits in Section 8.1.2. The rest of the chapter is divided into two parts. The

first one is based in Ref. [52] and corresponds to a global fit without light right-handed

neutrinos. The second part of this chapter corresponds to an analysis including right-

handed neutrinos and corresponds to Ref. [265]. Many technical details, such as hadronic

matrix elements, FFs, and the full set of relevant helicity amplitudes common for the two

parts, are compiled in several appendices.

8.1 Generalities

In this section we describe several ingredients used in the two analyses: the FFs and the

general structure of the χ2 that will be used to perform the different fits.

8.1.1 Form Factors

The relevance of hadronic uncertainties in the determination of |Vcb| has opened an intense

debate about the most adequate way to parametrise the relevant hadronic form factors

[59–62,266–269]. It has been suggested that the accuracy of the usually adopted Caprini-

Lellouch-Neubert (CLN) parametrisation [270] has been probably overestimated and the

current experimental precision requires to use more generic functional forms such as the

one advocated by Boyd, Grinstein and Lebed (BGL) [271–273]. However, we note that the

observables considered here are mostly ratios, reducing the overall form-factor sensitivity.

We consider a heavy quark effective theory (HQET) [274,275] parametrization, including
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corrections of order αs, ΛQCD/mb,c and partly Λ2
QCD/m

2
c , mostly following [60, 253]. In

the heavy-quark limit all form factors either vanish or reduce to a common functional

form, the Isgur-Wise function ξ(q2) [276]. Thus, it is convenient to factor out ξ(q2) by

defining [60]

ĥ(q2) = h(q2)/ξ(q2) . (8.1.5)

The leading Isgur-Wise function can be more conveniently expressed in terms of the

kinematical parameters

ω(q2) =
m2
B +m2

D(∗) − q2

2mBmD(∗)
and z(q2) =

√
ω(q2) + 1−

√
2√

ω(q2) + 1 +
√

2
. (8.1.6)

The variable ω(q2) is the inner product of the B and D(∗) velocities, so that ω = 1

corresponds to the zero-recoil point, q2
max = (mB − mD(∗))2, where ξ(q2

max) = 1. The

conformal mapping z(q2) encodes in a very efficient way the analyticity properties of

the form factors, transforming the cut q2 plane into the circle |z| < 1 [277], so that a

perturbative expansion in powers of z(q2) has an optimized convergence. Up to O(z4)

corrections, ξ(q2) can be written as2

ξ(q2) = 1− ρ2 [ω(q2)− 1] + c [ω(q2)− 1]2 + d [ω(q2)− 1]3 +O([ω − 1]4)

= 1− 8ρ2z(q2) + (64c− 16ρ2) z2(q2) + (256c− 24ρ2 + 512d) z3(q2) +O(z4) ,

(8.1.7)

and it is characterized through the parameters ρ2, c and d.

The functions ĥ(q2) introduce corrections of order ΛQCD/mb,c and Λ2
QCD/m

2
c via the

subleading Isgur-Wise functions χ2,3(ω), η(ω) at order 1/mc,b and l1,2(ω) at order 1/m2
c ,

parametrized by the parameters {χ2(1), χ′2(1), χ′3(1), η(1), η′(1)} and {l1(1), l2(1)}, respec-

tively. They also include the corrections of order αs. The detailed parametrization of the

different form factors can be found in Ref. [60, 253]. The main difference to the latter

2The phenomenological necessity to include orders higher than z2 in this expansion has first been found

in [278].
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article is the introduction of the z3 term in the leading Isgur-Wise function, that renders

the fit compatible with the extrapolation of the recent lattice data [266,279] to large recoil.

The corresponding fit to the inputs from LQCD [266, 279–281], light-cone sum rules

[282] and QCD sum rules [283–285] has been updated (see [253] for details); note that this

fit does not make use of experimental data, thereby rendering the form factors independent

of the NP scenario considered. The results obtained for the 10 form-factor parameters are

given in Table 8.2, while the corresponding correlation matrix can be found in Table A.1

of Appendix A.

Parameter Value

ρ2 1.32± 0.06

c 1.20± 0.12

d −0.84± 0.17

χ2(1) −0.058± 0.020

χ′2(1) 0.001± 0.020

χ′3(1) 0.036± 0.020

η(1) 0.355± 0.040

η′(1) −0.03± 0.11

l1(1) 0.14± 0.23

l2(1) −2.00± 0.30

Table 8.2: Inputs used to determine the form factors in the HQET parametrization as

in [60]. The first three parameters determine the leading Isgur-Wise function, while the

last seven enter in the 1/mc,b and 1/m2
c corrections. The correlations between these

parameters can be found in Table A.1 of Appendix A

.
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8.1.2 χ2 of the fit

In order to extract the information on the NP parameters CXAB, we will perform several

standard χ2 fits. The χ2 function can be splitted in two parts,

χ2 = χ2
exp + χ2

FF , (8.1.8)

where χ2
exp contains the experimental information that will be discussed below (Sec-

tions 8.2.1 and 8.3.3) and χ2
FF the information on the form factors discussed in Section 8.1.1

in the form of pseudoobservables with the “experimental” information presented in Ta-

ble 8.2. Each individual χ2 is defined as:

χ2(yi) = F T (yi)V −1 F (yi) , F (yi) = fth(yi)− fexp , Vij = ρijσiσj , (8.1.9)

with yi denoting the input parameters of the fit, i.e., yi = {CXAB, ρ2, c, d, χ2(1), χ′2(1),

χ′3(1), η(1), η′(1), l1(1), l2(1)}, ρij the correlation between the observables i and j, and σi
the uncertainty of the observable i. In the above equation, fth represents the theoretical

expression for a certain observable and fexp its experimental value. The χ2 also contains

information about the Bc → τ ν̄τ branching ratio. Instead of being an additional observable

it is an upper limit that should be fulfilled. More details about this limit will be given

in Section 8.2.1. It is implemented in the χ2 function as a Heavyside Theta function, its

contribution being zero for parameter combinations where the limit is obeyed and infinity

for those where it is not. The uncertainty of a parameter yi is determined as the shift

∆yi in that parameter, where the minimization of χ2|yi=ymin
i +∆yi varying all remaining

parameters in the vicinity of the minimum leads to an increase of ∆χ2 = 1.

8.2 Global fit without right-handed neutrinos

Our work aims at a better understanding of the nature of b → c anomalies, assuming in

the following that they are indeed due to NP contributions and not due to underestimated

systematic uncertainties or statistical fluctuations. Instead of considering any specific

NP model, we follow a bottom-up approach, in which the available experimental input
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is used to constrain any possible higher-scale effect and in this way infer information on

NP without prejudice. Besides the ratios RD(∗) we consider the normalized experimental

distributions Γ
(
B → D(∗)τ ν̄

)
measured by Belle [65] and BaBar [63]. These measure-

ments were previously considered in Refs. [64, 74, 150, 237, 238] but have been ignored in

most of the recent works. The last observable considered is the Belle measurement of the

integrated longitudinal D∗ polarization, F̄D∗L [71], which has an strong impact in our fits.

The effect of this observable and the consequences of its deviation with respect to the SM

are studied in detail.

The rest of the section is organized as follows: in Section 8.2.1, the theoretical frame-

work used in this work is presented, and the physical observables and experimental inputs

are defined. In Section 8.2.2, we discuss our global χ2 fit and detail the resulting values

of the fitted parameters. The interpretation of these results and their relation to NP are

given in Section 8.2.3, where we complete our discussion with several additional fits, re-

laxing some of the assumptions. A set of predictions for relevant observables, for which

measurements will be published or improved soon, is presented in Section 8.2.4. Finally,

we draw conclusions of the fits without right-handed neutrinos in Section 8.2.6.

8.2.1 Theoretical framework and observables of our fit

Here we perform a global fit to b→ cτ ν̄ without right-handed neutrinos. Such transitions

are described by the Hamiltonian of Eq. (4.0.1) with OXAL and A = L,R, X = V, S, T .

This effective Hamiltonian forms the basis of our analysis, restricted only by a minimal

set of well-motivated assumptions:

• Possible NP contributions are assumed to be present only in the third

generation of leptons: This is motivated by the absence of experimental evidence

of deviations from the SM in tree-level transitions involving light leptons; specifically,

precision measurements like the ratio B(τ → µντ ν̄µ)/B(τ → eντ ν̄e) = 0.9762±0.0028

[75] and the analysis of b→ c(e, µ)ν̄(e,µ) transitions in Ref. [253] constrain potential

effects to be negligible in the present context.



138 Fits to b→ cτ ν̄ transitions

• The coefficient CV
RL is assumed to be lepton-flavour universal in our main

fit: This statement can be derived [286–288] in the context of the Standard Model

Effective Field Theory (SMEFT) [289,290], which is the appropriate effective theory

in the presence of a sizeable energy gap above the electroweak scale if the electroweak

symmetry breaking is linearly realized. The experimental facts that no new states

beyond the SM have been found so far up to an energy scale of approximately

1 TeV and that measurements of the Higgs couplings are all consistent with the SM

expectations support this scenario. In this case, CVRL is strongly constrained from

b→ c(e, µ)ν̄(e,µ) data [253], and we set it to zero for convenience. If the assumption

of linearity is relaxed, a non-universal CVRL coefficient can be generated [288]; we will

consider this case separately.

• The CP-conserving limit is taken, so all Wilson coefficients CX
AL are as-

sumed to be real: This is mostly done for convenience; however, none of the

measurements related to the B anomalies refers to a CP-violating observable. Possi-

ble CP-violating contributions have been analyzed before in, e.g., Ref. [150,259,260,

291,292]. Note that in the presence of such couplings other observables can become

relevant, like electric dipole moments, see, e.g., [126, 293]. This assumption will be

briefly commented in Section 8.2.2.

The experimental observables included in the fit are the following,

• The ratios RD(∗): These ratios are defined in Eq. (4.3.24) and as it has been

mentioned at the beginning of the chapter have been measured by Belle, BaBar and

LHCb. This work has been performed with the averages of Eq. (8.0.1). The more

recent measurements of (8.0.2) will also be analyzed in Section 8.2.5.

• Differential distributions of the decay rates Γ(B → D(*)τ ν̄τ ): Belle and

BaBar have also provided data on the measured q2 distributions for B → D(∗)τ ν̄τ [63,

65]. The reported binned values can be found in Table 9 of Ref. [52]. Since the global

normalizations of these distributions are effectively already included via the values
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for RD(∗) in these analyses, they are not independent degrees of freedom. This

can be taken into account either by introducing a free normalization factor for the

distributions as in Ref. [150] or by normalizing the differential binned distributions

in the following way:

Γ̃(B → D(∗)τ ν̄τ )bin ≡
Γ(B → D(∗)τ ν̄τ )bin∑

all bins
Γ(B → D(∗)τ ν̄τ )bin

, (8.2.10)

which keeps the information about the shape of the distribution, independently of

the global normalization. The treatment of systematic uncertainties and correlations

follows Ref. [150].

• The leptonic decay rate Bc → τ ν̄τ : This observable is described in Eq. (4.1.8)

of Chapter 4. The upper bound for the leptonic decay rate B(Bc → τ ν̄) is taken to

be either 30% or 10%. The first limit is derived from the Bc lifetime [70, 150, 294],

while a stronger bound of 10% is obtained from the LEP data at the Z peak [295].3

The bounds are used in a way that only points in the parameter space that fulfil

this constraint will be considered.

• The longitudinal polarization fraction F̄D∗
L : This observable defined in Eq. (4.3.48)

was announced by the Belle collaboration in early 2019 [71]. Being normalized to

the total rate, this observable also enjoys the advantages of the other ratios. To

study the implications of this measurement, we perform fits both considering and

not considering this observable.

3Note, however, that the 10% bound assumes the probability of a b quark hadronizing into a Bc meson

to be the same in LEP, Tevatron and LHCb, which exhibit very different transverse momenta. This has

been proved to be an inaccurate approximation for b-baryons [48]. Since the dominant contribution to

the Bc decay width comes from the decay of the c quark, the 30% limit could also be relaxed to about

60% [259] by lowering the charm mass used in the lifetime analysis [294].
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8.2.2 Fit and results

8.2.2.1 Standard Model

We start by discussing the situation in the SM, corresponding to CXAL ≡ 0. The global fit

to the data discussed above does actually appear to be reasonable: we obtain χ2
min = 65.5

for, naively, 57 d.o.f., corresponding to a naive confidence level (CL) of ∼ 20%. However,

these numbers are misleading for the following reason: the systematic uncertainties added

to the dΓ/dq2 distributions have been chosen to be maximally conservative. Therefore,

it can be expected that the corresponding χ2 contribution is reduced; this is indeed seen

since the contribution from these distributions is χ2
min,dΓ ∼ 43 for, again naively, 54 d.o.f..

Considering instead the contribution from RD(∗) we find a 4.4σ with our SM predictions4

(see also [59–62,219,220,296]),

RSM
D = 0.300+0.005

−0.004 and RSM
D∗ = 0.251+0.004

−0.003 , (8.2.11)

and we do of course reproduce the well-known puzzle, i.e., we obtain χ2 = 22.6 for 2 d.o.f.,

corresponding to a 4.4σ tension. The fact of obtaining a larger discrepancy with respect

to the SM corresponds to a lower uncertainty in our SM predictions. Note also that the

limit from the Bc lifetime is irrelevant in the SM fit.

These observations imply that also NP scenarios should not be judged simply by χ2

vs. d.o.f., but by the improvement they yield when compared to the SM.

8.2.2.2 New Physics

Since the Wilson coefficients enter each observable bilinearly (the coefficient of the left-

handed vector operator being (1 + CVLL)), there is a degeneracy between a set of Wilson

coefficients and a mirror minimum with

CV
′

LL = −2−CVLL and CX
′

AL = −CXAL for X
AL = S

RL,
S
LL,

T
LL . (8.2.12)

4Note that this prediction does not rely on experimental inputs, but includes only part of the 1/m2
q

corrections in heavy quark effective theory.
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The two sets of Wilson coefficients give identical predictions for all observables and con-

sequently have the same χ2 value.5 In the following, we will always discuss the closest

minimum to the SM scenario, i.e., with smaller |CVLL|, and will omit the sign-flipped

solution; this corresponds to considering only values CVLL ≥ −1.

The global fit to the data described in Section 8.2.1 without including the longitudinal

polarization yields a unique global minimum (for CVLL > −1) with χ2
Min 1 = 34.1 for 53

d.o.f.; in addition, we find two local minima, with χ2
Min 2 = 37.5 and χ2

Min 3 = 58.6,

the latter of which is, however, highly disfavoured by the differential distributions. We

summarize the results for the NP parameters in Table 8.3. Including the longitudinal

polarization in the global fit, we find that the overall structure for the lower two minima

(referred in the following asMin 1b andMin 2b) remains the same; however, this observable

reduces slightly the available parameter space for the NP parameters. The central values of

the scalar NP parameters are smaller for the global minimum, while the 1σ-ranges remain

almost constant. The most striking effect is that the already less favoured local minimum

disappears. The results for the NP parameters in this context can be found in Table 8.4.

In both cases the form factor parameters reproduce their input distributions up to very

small shifts. For illustration we show graphically in Fig. 8.2 the NP parameters for the

different minima obtained in the two scenarios. There are important correlations between

the NP parameters obtained from the fit. We illustrate them in the two-dimensional plots

in Fig. 8.3 for the different scenarios. The contours shown there are relative to the global

minimum.

We note that the distributions for, especially, the scalar parameters are highly non-

gaussian. Reasons are the way the upper limit on B(Bc → τ ν̄τ ) is included and the fact that

the first two minima overlap to some extent. The former is also the reason for the strong

asymmetry in the uncertainties for CSLL,RL. Since only their sum and difference enter B →

D and B → D∗ decays, respectively, these parameters are furthermore highly correlated.

5This discrete degeneracy is what is left of the continuous rephasing invariance when considering complex

contributions, i.e., the invariance under shifting all coefficients by the same complex phase.
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Figure 8.2: Wilson coefficients for the minima obtained in the global fit with and without

including the F̄D∗L polarization. On the left (right) panel, B(Bc → τ ν̄τ ) < 10% (30%). See

Tables 8.3 and 8.4 for the explicit values.

The local minima are not very deep, resulting in complications in the determination of

the uncertainties for the Wilson coefficients at these points.

The fit results for the RD and RD∗ ratios at the different minima are presented in

Fig. 8.4. As expected, the predictions obtained from the fit are compatible at the 1σ level

with the experimental data, in the case of Min 1 and Min 1b essentially reproducing them.

From the fit results without including F̄D∗L , the following information can be extracted:

• The reduction of the global χ2 by 31.4 (31.7) for 4 NP parameters implies a strong

preference of NP compared to the SM, taking the present data set at face value and

B(Bc → τ ν̄τ ) ≤ 10% (30%).

• There is no absolute preference of a single Wilson coefficient in the sense that for the

global minimum each individual Wilson coefficient is compatible with zero within at

most 1.1σ.

• On the other hand, considering scenarios with only a single Wilson coefficient present,

there is a clear preference for CVLL: removing the other three Wilson coefficients in-

creases χ2 only by 1.4, corresponding to 0.14σ. Hence, Min 1 is well compatible with

a global modification of the SM, that is, CVLL being the only non-zero coefficient.
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Figure 8.3: Allowed regions for all possible combinations of two Wilson coefficients for

different scenarios: Blue areas (lighter 95% and darker 68% CL) show the minima without

F̄D
∗

L and with B(Bc → τ ν̄τ ) ≤ 30%. The yellow lines display how the 95% CL bounds

change when B(Bc → τ ν̄τ ) ≤ 10%. The dashed lines show the effect of adding the

observable F̄D∗L for both B(Bc → τ ν̄τ ) ≤ 30% (purple) and for B(Bc → τ ν̄τ ) ≤ 10%

(orange).

• The other two minima are numerically further away from the SM; instead of a

single dominant contribution, there are several sizeable Wilson coefficients whose

contributions partly cancel each other in some observables. These minima also imply

different values for the fitted observables: Min 2 corresponds to a slightly worse fit

for both, RD(∗) and their q2 distributions, while Min 3 fits RD(∗) perfectly, but is

essentially already excluded by the (rather coarse) measurements of the distributions

available.
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Min 1 Min 2 Min 3 Min 1 Min 2 Min 3

B(Bc → τν) 10% 30%

χ2
min/d.o.f. 34.1/53 37.5/53 58.6/53 33.8/53 36.6/53 58.4/53

CVLL 0.17+0.13
−0.14 0.41+0.05

−0.06 −0.57+0.23
−0.24 0.19+0.13

−0.17 0.42+0.06
−0.06 −0.54+0.23

−0.24

CSRL −0.39+0.38
−0.15 −1.15+0.18

−0.08 0.06+0.59
−0.19 −0.56+0.49

−0.17 −1.33+0.25
−0.08 −0.14+0.69

−0.18

CSLL 0.36+0.11
−0.35 −0.34+0.12

−0.19 0.64+0.13
−0.49 0.54+0.10

−0.46 −0.16+0.13
−0.22 0.81+0.12

−0.58

CTLL 0.01+0.06
−0.05 0.12+0.04

−0.04 0.32+0.02
−0.03 0.01+0.07

−0.05 0.12+0.04
−0.04 0.32+0.02

−0.03

Table 8.3: NP parameters for the minima obtained from the χ2 minimization and 1σ

uncertainties. There are, in addition, three corresponding sign-flipped minima, as indi-

cated in Eq. (8.2.12). In the first three columns, the constraint B(Bc → τ ν̄τ ) ≤ 10%

has been applied, whereas in the last three columns, this requirement has been relaxed to

B(Bc → τ ν̄τ ) ≤ 30%.

0.25

0.3

0.35

0.4

0.45

Figure 8.4: Predictions forRD (higher numerical values) andRD∗ (lower numerical values)

for the minima obtained in the fit, both with and without including F̄D∗L , with B(Bc →

τ ν̄τ ) ≤ 10% and B(Bc → τ ν̄τ ) ≤ 30%. The experimental values are represented by the

horizontal black lines, with their corresponding uncertainties (grey bands). The blue lines

show the SM predictions, RD = 0.300+0.005
−0.004 (upper blue line) and RD∗ = 0.251+0.004

−0.003

(lower blue line).



8.2 Global fit without right-handed neutrinos 145

Min 1b Min 2b Min 1b Min 2b

B(Bc → τν) 10% 30%

χ2
min/d.o.f. 37.6/54 42.1/54 37.6 /54 42.0/54

CVLL 0.14+0.14
−0.12 0.41+0.05

−0.05 0.14+0.14
−0.14 0.40+0.06

−0.07

CSRL 0.09+0.14
−0.52 −1.15+0.18

−0.09 0.09+0.33
−0.56 −1.34+0.57

−0.08

CSLL −0.09+0.52
−0.11 −0.34+0.13

−0.19 −0.09+0.68
−0.21 −0.18+0.13

−0.57

CTLL 0.02+0.05
−0.05 0.12+0.04

−0.04 0.02+0.05
−0.05 0.11+0.03

−0.04

Table 8.4: NP parameters for the minima obtained from the χ2 minimization including

F̄D
∗

L and their 1σ uncertainties. There are, in addition, the corresponding sign-flipped

minima, as indicated in Eq. (8.2.12).

• All minima saturate the constraint B(Bc → τ ν̄τ ) ≤ 10% (30%). Relaxing the upper

bound allows for a larger splitting between the two scalar Wilson coefficients, and the

contribution of the scalar operators gets enlarged. This constraint is consequently the

main argument at low energies disfavouring a solution with only scalar coefficients.

Any such solution would require a lower value for RD∗ by about 2σ.

• Having solutions with relevant contributions from all Wilson coefficients illustrates

the importance of taking into account scalar and tensor operators in the fit.

• The fit results for the form factor parameters reproduce their input values displayed

in Table 8.2 up to tiny shifts. This implies that the uncertainties of the experimental

data with tauonic final states are large compared to the hadronic uncertainties.

Differently stated, while the ranges obtained for the NP parameters are obtained in

fits varying all form factor parameters simultaneously with the NP ones, they are

essentially determined by the experimental uncertainties at the moment.

• Generalizing the fit to complex Wilson coefficients does not improve the minimal χ2

value, but opens up a continuum of solutions. Hence complex Wilson coefficients

can explain the anomalies as well as real ones, but they do not offer any clear advan-
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tages regarding the fit quality, so they have not been considered here for simplicity.

It should be mentioned, however, that in specific models the option of complex Wil-

son coefficients can open up qualitatively new solutions, as for example the model

proposed in Ref. [291], where only the coefficients CS,TLL (CSLL ∼ CTLL) are present,

requiring a non-vanishing imaginary part in order to accommodate the experimental

data. This fact implies correlations with new observables like electric dipole mo-

ments, which can then be used to differentiate this model from solutions allowing

for real coefficients [293].

• As discussed above, for each minimum given in Table 8.3 there is a degenerate

solution, see Eq. (8.2.12).

Including the recent measurement of the longitudinal polarization F̄D
∗

L in the global

fit, the above statements hold up to the following differences:

• Still there is no clear preference for a single Wilson coefficient. The central values

for the scalar coefficients are smaller for the global minimum, such that the bound

from the Bc lifetime is not saturated even in the 10% case. As a consequence, the

minimum does not change when allowing for larger values of B(Bc → τ ν̄τ ), only the

allowed parameter ranges increase.

• The second local minimum (previously referred to as Min 3) disappears.

It is not straightforward to compare our fit with the results from other analyses in the

literature, because we are including the information from the q2 distributions that has

been ignored in previous fits with the exception of Ref. [74, 150, 237, 238]. Besides that,

some works include additional observables such as RJ/ψ or slightly different bounds on

B(Bc → τ ν̄τ ). Nevertheless, comparing the findings of previous fits with our results is

quite enlightening since it illustrates the relevance of the additional observables we are

considering.

Generic fits to the RD(∗) world averages in Eq. (8.0.1), with the effective Hamiltonian

of Eq. (4.0.1) [51, 60, 70, 74, 82, 149, 150, 238–257, 259, 260], have shown the existence of



8.2 Global fit without right-handed neutrinos 147

many possible solutions, some of them involving only one or two Wilson coefficients. In-

cluding the B(Bc → τ ν̄τ ) upper bound reduces the number of allowed possibilities, but

several different scenarios remain still consistent with the data. Dropping the binned q2

distributions from our fit, we can easily reproduce all those solutions. However, most of

them lead to differential distributions in clear conflict with the BaBar and Belle measure-

ments. While a sizeable new-physics contribution to some Wilson coefficient can easily

generate the needed enhancement of the B → D(∗)τ ν̄τ rates, it tends to distort the shape

of the differential distributions in a way than can no-longer accommodate the data, simi-

larly to what happens for Min 3. Once the full experimental information on RD(∗) (rates

and binned distributions) is taken into account, the χ2 minimization only gives the three

solutions shown in Table 8.3, and when including F̄D∗L in the fit, the number of solutions

is further reduced to two.

8.2.3 Interpretation of results

In Section. 8.2.2 we have described the global fit to the available data on b → cτ ν̄τ

transitions in terms of the Wilson coefficients of an EFT framework defined at the b-

quark mass scale. The EFT in this range is conventionally called Weak Effective Theory

(WET) and is composed of the five lightest quarks and the three generations of leptons,

and ruled by the SU(3)C ⊗ U(1)Q gauge symmetry. This is a valid approach assuming

– as strongly suggested by all available collider data – that no new degree of freedom

exists coupling to this channel with a mass around or lower than the b quark. However,

ultimately the goal is to gain insight into the high-energy structure of the theory. To

that aim, renormalization-group techniques are used to relate the coefficients extracted in

our analysis to those relevant at the scale of the potential new high-energy degree(s) of

freedom. This process involves several scales and thresholds, see Fig. 8.5.

The relation to the coefficients at the electroweak scale is determined by QCD and are

known [297–300]. Above the electroweak (EW) scale, the Lagrangian has not undergone

spontaneous symmetry breaking and, therefore, the fermionic fields should be expressed



148 Fits to b→ cτ ν̄ transitions

ρ0

ρ3

ν

N, N c

EW

GUT⇤NP

SMEFT

WET

O(3)
`q , O`edq, O(1)

`equ, O(3)
`equ

OVL
, OVR

, OSL
, OSR

, OT

Energy

⇤EW

⇤QCD

OV
LL, OV

LR, OS
LR, OS

LL, OT
LL

<latexit sha1_base64="TE/zephu1OfmUDX+Checxyaxz78=">AAACTHicdZBLS8NAFIUnVWutr6hLN4NFcCElEUGXRTcuClbtC9oYJtNJO3TyYGYilJAf6MaFO3+FGxeKCE7SLDTVAwOH797LvXOckFEhDeNFKy0tr5RXK2vV9Y3NrW19Z7crgohj0sEBC3jfQYIw6pOOpJKRfsgJ8hxGes70Mq33HggXNPDbchYSy0Njn7oUI6mQreOhh+QEIxZfJ/ddO242k2NYZLcFdvcPK862MwZtvWbUjUxw0Zi5qYFcLVt/Ho4CHHnEl5ghIQamEUorRlxSzEhSHUaChAhP0ZgMlPWRR4QVZ2Ek8FCREXQDrp4vYUZ/TsTIE2LmOaozPVUUayn8qzaIpHtuxdQPI0l8PF/kRgzKAKbJwhHlBEs2UwZhTtWtEE8QR1iq/KsqBLP45UXTPambRt28Oa01LvI4KmAfHIAjYIIz0ABXoAU6AINH8ArewYf2pL1pn9rXvLWk5TN74JdK5W8e67R+</latexit><latexit sha1_base64="TE/zephu1OfmUDX+Checxyaxz78=">AAACTHicdZBLS8NAFIUnVWutr6hLN4NFcCElEUGXRTcuClbtC9oYJtNJO3TyYGYilJAf6MaFO3+FGxeKCE7SLDTVAwOH797LvXOckFEhDeNFKy0tr5RXK2vV9Y3NrW19Z7crgohj0sEBC3jfQYIw6pOOpJKRfsgJ8hxGes70Mq33HggXNPDbchYSy0Njn7oUI6mQreOhh+QEIxZfJ/ddO242k2NYZLcFdvcPK862MwZtvWbUjUxw0Zi5qYFcLVt/Ho4CHHnEl5ghIQamEUorRlxSzEhSHUaChAhP0ZgMlPWRR4QVZ2Ek8FCREXQDrp4vYUZ/TsTIE2LmOaozPVUUayn8qzaIpHtuxdQPI0l8PF/kRgzKAKbJwhHlBEs2UwZhTtWtEE8QR1iq/KsqBLP45UXTPambRt28Oa01LvI4KmAfHIAjYIIz0ABXoAU6AINH8ArewYf2pL1pn9rXvLWk5TN74JdK5W8e67R+</latexit><latexit sha1_base64="TE/zephu1OfmUDX+Checxyaxz78=">AAACTHicdZBLS8NAFIUnVWutr6hLN4NFcCElEUGXRTcuClbtC9oYJtNJO3TyYGYilJAf6MaFO3+FGxeKCE7SLDTVAwOH797LvXOckFEhDeNFKy0tr5RXK2vV9Y3NrW19Z7crgohj0sEBC3jfQYIw6pOOpJKRfsgJ8hxGes70Mq33HggXNPDbchYSy0Njn7oUI6mQreOhh+QEIxZfJ/ddO242k2NYZLcFdvcPK862MwZtvWbUjUxw0Zi5qYFcLVt/Ho4CHHnEl5ghIQamEUorRlxSzEhSHUaChAhP0ZgMlPWRR4QVZ2Ek8FCREXQDrp4vYUZ/TsTIE2LmOaozPVUUayn8qzaIpHtuxdQPI0l8PF/kRgzKAKbJwhHlBEs2UwZhTtWtEE8QR1iq/KsqBLP45UXTPambRt28Oa01LvI4KmAfHIAjYIIz0ABXoAU6AINH8ArewYf2pL1pn9rXvLWk5TN74JdK5W8e67R+</latexit><latexit sha1_base64="TE/zephu1OfmUDX+Checxyaxz78=">AAACTHicdZBLS8NAFIUnVWutr6hLN4NFcCElEUGXRTcuClbtC9oYJtNJO3TyYGYilJAf6MaFO3+FGxeKCE7SLDTVAwOH797LvXOckFEhDeNFKy0tr5RXK2vV9Y3NrW19Z7crgohj0sEBC3jfQYIw6pOOpJKRfsgJ8hxGes70Mq33HggXNPDbchYSy0Njn7oUI6mQreOhh+QEIxZfJ/ddO242k2NYZLcFdvcPK862MwZtvWbUjUxw0Zi5qYFcLVt/Ho4CHHnEl5ghIQamEUorRlxSzEhSHUaChAhP0ZgMlPWRR4QVZ2Ek8FCREXQDrp4vYUZ/TsTIE2LmOaozPVUUayn8qzaIpHtuxdQPI0l8PF/kRgzKAKbJwhHlBEs2UwZhTtWtEE8QR1iq/KsqBLP45UXTPambRt28Oa01LvI4KmAfHIAjYIIz0ABXoAU6AINH8ArewYf2pL1pn9rXvLWk5TN74JdK5W8e67R+</latexit>

Figure 8.5: Relevant scales for the study of the B anomalies. The dashed lines indicate

the thresholds between different EFTs.

in terms of weak eigenstates rather than mass eigenstates. Moreover, the top quark,

the electroweak gauge bosons and the Higgs boson have to be considered as new degrees

of freedom in the theory. The relevant framework at this scale is the full SM, with the

addition of the effects of NP. For relatively low NP scales . 1 TeV, the relevant new degrees

of freedom can be included explicitly. However, the suggested absence of new degrees of

freedom below ∼ 1 TeV allows us to parametrize any NP contribution in the framework of

another effective theory. This can be the so-called SMEFT under the conditions specified

in Section 8.2.1, or a more general framework with a non-linear representation for the

Higgs, see, e.g., Ref. [301,302].

In SMEFT, the effective Lagrangian can be expanded in inverse powers of the NP

scale, ΛNP, i.e.,

LNP =
∑
d=6

1
Λd−4
NP

∑
i

C
(d)
i O

(d)
i , (8.2.13)

built from a series of higher-dimensional operators in terms of the SM fields and invariant

under the SM gauge group SU(3)C ⊗ SU(2)L ⊗ U(1)Y [289]. A convenient complete and

non-redundant basis of dimension-six operators is the Warsaw basis [290]. In order to



8.2 Global fit without right-handed neutrinos 149

relate both EFTs, the matching between the WET theory and the SMEFT has to be

performed at the EW scale [286, 287, 299, 300, 303, 304]. The matching onto the basis in

the non-linear case [305,306] is given in Ref. [288].

Finally, one has to consider the running from ΛEW to ΛNP [256, 307–310]. The corre-

sponding equations can be solved numerically, but also analytically to very good approx-

imation [311].

As an illustration of the effect of the running, we show the relation between the WET

Wilson coefficients at µb ≈ 5 GeV and the SMEFT Wilson coefficients at an hypothetical

NP scale of Λ = 1 TeV, calculated in Ref. [256,310], which can be trivially inverted:

CVLL(µb) = −1.503 C̃VLL(Λ) ,

CSLL(µb) = −1.257 C̃SLL(Λ) + 0.2076 C̃TLL(Λ) ,

CSRL(µb) = −1.254 C̃SRL(Λ) , (8.2.14)

CTLL(µb) = 0.002725 C̃SLL(Λ)− 0.6059 C̃TLL(Λ) .

For a discussion of the notation used for the SMEFT Wilson coefficients in the Warsaw

basis see Appendix E.

With the coefficients at the potential NP scale at hand, one can try to go beyond the

EFT framework and get an idea about which class of NP might be responsible for the

observed pattern: at the scale Λ, the coefficients CXAL should result from integrating out

the new heavy degrees of freedom. In Table 8.5, the quantum numbers of all possible can-

didates able to participate in the b→ c transitions are listed and their nature is identified

(see also [74]). We note that, in some cases, a given NP mediator may contribute to more

than one Wilson coefficient, thus resulting in correlations among them. In Appendix E,

we list the effective Lagrangians obtained after integrating out each of the possible heavy

degrees of freedom. We show in the last two columns of Table 8.5 the set of Wilson coef-

ficients to which the new degrees of freedom contribute, both in the SMEFT and in the

WET. The RGE running changes the relative size of these coefficients, as seen above, and

causes mixing among the operators OSLL and OTLL. When considering such specific classes

of models, generally other constraints apply. Specifically, searches for the corresponding
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Spin Q.N. Nature Allowed couplings SMEFT WET

0 S1 ∼ (3̄, 1, 1/3) LQ qcL`L, dRucR, ucReR C̃VLL, C̃
S
LL, C̃TLL CVLL, CSLL, CTLL

0 S3 ∼ (3̄, 3, 1/3) LQ qcL`L C̃VLL CVLL

0 R2 ∼ (3, 2, 7/6) LQ uR`L, qLeR C̃SLL, C̃TLL CSLL, CTLL

0 H2 ∼ (1, 2, 1/2) SB qLdR, `LeR, uRqL C̃SR , C̃SLL CSRL, CSLL, CTLL

1 V2 ∼ (3̄, 2, 5/6) LQ dcRγµ`L, ecRγµqL C̃SRL CSRL

1 U1 ∼ (3, 1, 2/3) LQ qLγµ`L, dRγµeR C̃VLL, C̃SRL CVLL, CSRL

1 U3 ∼ (3, 3, 2/3) LQ qLγµ`L C̃VLL CVLL

1 W ′µ ∼ (1, 3, 0) VB `Lγµ`L, qLγµqL C̃VLL CVLL

Table 8.5: Spin, SU(3)C⊗SU(2)L⊗U(1)Y quantum numbers, nature (LQ = leptoquarks,

SB = scalar boson and VB = vector boson) and allowed interactions of the possible

candidates to mediate b→ c transitions. In our notation, Ψc
L ≡ (ΨL)c.

mediators can exclude a large part of the parameter space, or even the whole scenario (like

the W ′) [312–314]. In the following we will not discuss these constraints, but simply give

examples for how the required coefficients could be generated, irrespective of their actual

viability.

We are now in a position to interpret the different solutions obtained in the fit shown

in Table 8.3 and Table 8.4. Let us focus first on the scenarios where F̄D∗L is not included.

The minimum with highest χ2, Min 3, presents relevant contributions from the operators

OSLL and OTLL. The origin of these Wilson coefficients could be explained, for instance,

with the presence of the scalar leptoquarks R2 ∼ (3, 2, 7/6) or S1 ∼ (3̄, 1, 1/3), whose

contributions to the Lagrangian at the NP scale are given in Appendix E. An additional

mediator would be necessary to generate the sizeable contribution to CVLL, however, in
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the former case. Min 2, which exhibits non-zero values for all Wilson coefficients, could

be explained by combinations of several candidates, for instance S1 and H2. Also for

Min 1 there are different possibilities, since the fit does not single out a specific coefficient.

However, the simplest option remains the scenario where the only relevant contribution is

proportional to the SM one, i.e., all Wilson coefficients but CVLL are compatible with zero

at 1.1σ. This possibility could be generated, for instance, by the effect of a W ′ boson,

Leff ⊃ −
g̃`ν` g̃

†
du

M2
W ′

(¯̀
Lγµν`L)(ūLγµdL) , (8.2.15)

with MW ′/(g̃`ν` g̃
†
du)1/2 ∼ 2 TeV. For a sequential W ′ with SM couplings, one would need

MW ′ ∼ 0.2 TeV, which is already ruled out by direct searches [315]. More exotically, but

more realistically given the aforementioned high-energy constraints, one could explain the

modification on the OVLL operator by introducing leptoquarks (LQs), such as the vector

U3 ∼ (3, 3, 2/3) or the scalar S1 ∼ (3̄, 1, 1/3) LQs. However, extra symmetries in the

UV regime would have to be assumed in order to guarantee that other flavour transitions

compatible with the SM are respected.

In Fig. 8.6 we show the dependence of selected observables on individual Wilson coeffi-

cients. The left-top panel in Fig. 8.6 shows that it is straightforward to achieve consistency

with the experimental measurements for RD(∗) by shifting only the Wilson coefficient CVLL,

i.e., modifying the SM coefficient. The polarization observables show a good potential to

differentiate between different contributions. Particularly interesting is the longitudinal

polarization fraction in B → D∗τ ν̄τ , shown in the bottom-right panel, for which the Belle

collaboration recently announced a first measurement [71]. As this sub-figure shows, it is

difficult to accommodate it at 1σ for any of the individual Wilson coefficients [316]. The

only contributions allowing for a significantly larger value of this observable than in the

SM are those from scalar operators; however, values accommodating F̄D∗L are in conflict

with the bound from B(Bc → τ ν̄τ ) < 10% (dashed lines), and extending this bound to

30% still does not allow to accommodate its central value. This figure therefore indicates

why none of the fit scenarios yields values for F̄D∗L in the 1σ range; we take this as a

motivation to investigate the consistency of the different measurements in more detail.
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Figure 8.6: Individual contributions of the Wilson coefficients of the WET Hamiltonian

in different observables (∆X ≡ X − XSM): correlation between ∆RD and ∆RD∗ , and

∆RD∗ , ∆P̄D∗τ and ∆F̄D∗L as a function of the Wilson coefficients. Left-top panel: the

experimental central value is denoted by a black cross and the 1σ, 2σ and 3σ uncertainties

by yellow rings. Right-top and bottom panels: experimental central values are displayed

by a solid yellow line and their 1σ uncertainty by a yellow band. Dashed lines indicate

regions excluded by the constraint B(Bc → τ ν̄τ ) < 10%.

In order to do so, we use the fact that only three combinations of the four Wilson

coefficients enter B → D∗τ ν̄τ observables as well as the leptonic Bc decay: CVLL, CTLL
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and the pseudo-scalar coefficient CP ≡ CSLR − CSLL. Every observable therefore results in

a non-trivial constraint in the CP − CVLL plane if CTLL is fixed to some value. We show

the preferred parameter ranges obtained for the individual observables in Fig. 8.7, for a

representative set of CTLL values. The combination of RD∗ and the bound on B(Bc → τ ν̄τ )

determines a narrow strip in this parameter plane, dominated by the former for the bound

on CVLL and the latter for the bound on CP . The overlap of the other observables varies

with the value for CTLL; however, there is no value of CTLL for which all 1σ bands overlap.

In fact, the 1σ range for F̄D∗L cannot be reached by any NP parameter combination in this

setup, when only imposing the B(Bc → τ ν̄τ ) constraint of 10% or even 30% and at the

same time requiring a positive shift in RD∗ . Agreement can presently be achieved at the

2σ level; nevertheless, a confirmation of the present central values with higher precision

could indicate the inconsistency between the data and any NP with flavour-universal CVLR.

This potential incompatibility would suggest one of several possibilities:

1) One of our theoretical assumptions is incorrect and the SMEFT cannot be applied

at the electroweak scale. This could happen if one or several of the following cases

apply: (a) There is an insufficient gap between the electroweak and the NP scale, i.e.,

there are new degrees of freedom close enough to the EW scale to invalidate an EFT

approach. (b) The electroweak symmetry breaking is non-linear, changing also the

character of the observed Higgs-like particle. In that case CVRL could contribute to

the fitted observables, because it would no-longer be necessarily flavour universal. (c)

There are additional light degrees of freedom like right-handed neutrinos [317–319],

yielding additional operators.

Note that we also assumed the semi-leptonic decays with light leptons to be free

from NP. However, the corresponding constraints are so strong that even relaxing

this assumption would not significantly change our analysis [253].

2) An unidentified or underestimated systematic uncertainty in one or several of the

experimental measurements.
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Figure 8.7: Allowed regions at 1σ from F̄D
∗

L (blue), RD∗ (green), P̄D∗τ (gray grid) and

the q2 distribution of Γ(B → D∗τ ν̄τ ) (red), together with the region satisfying the bound

B(Bc → τ ν̄τ ) < 10% (orange).

In any case, the upcoming experimental studies of not only the LHCb collaboration, but

also the Belle II experiment which started to take data will hopefully resolve this question

soon.

For completeness of our discussion, we have consequently performed the fit relaxing

the condition of flavour universality on CVRL. As a consequence of adding CVRL as an extra

d.o.f. to fit, the number of solutions is enlarged. As shown in Fig. 8.8, one finds now four

different solutions (plus their sign-flipped counterparts), given numerically in Table 8.6.
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Min 4 Min 5 Min 6 Min 7

χ2
min/d.o.f. 32.5/53 33.3/53 37.6/53 38.9/53

CVLL −0.91+0.10
−0.09 −0.85+0.20

−0.10 0.14+0.14
−0.12 0.35+0.08

−0.08

CVRL 1.89+0.19
−0.22 −1.58+0.23

−0.22 0.02+0.21
−0.24 0.34+0.18

−0.18

CSRL −0.44+0.12
−0.45 −0.33+0.52

−0.16 0.10+0.15
−0.59 −0.68+0.54

−0.14

CSLL −1.34+0.49
−0.12 0.56+0.23

−0.54 −0.12+0.65
−0.15 −0.92+0.58

−0.11

CTLL −0.22+0.10
−0.11 0.19+0.10

−0.10 0.01+0.09
−0.07 −0.02+0.08

−0.07

Table 8.6: Minima with their 1σ uncertainties obtained from the global χ2 minimization,

including F̄D∗L and B(Bc → τ ν̄τ ) < 10% in the fit while allowing for CVRL 6= 0. There are,

in addition, the corresponding sign-flipped minima, as indicated in Eq. (8.2.12).

The doubling of minima can be understood qualitatively in the following way: B →

D is dominated by the combination of Wilson coefficients corresponding to the vector

coupling CV = 1 + CVLL + CVRL, while B → D∗ is dominated by the axial-vector coupling

CA = CVRL − (1 + CVLL). Their rates are correspondingly roughly given by |CV,A|2. For

CVRL ≡ 0 we have CV = −CA, and the only remaining discrete symmetry is that discussed

in Section 8.2.2.2, the second solution being eliminated by our choice CVLL > −1. With

a finite coefficient CVRL, these two solutions become four ({CA = ±|CA|, CV = ±|CV |}),

since now |CA| 6= |CV |; two of those are again eliminated by our choice for CVLL, leaving

two solutions per minimum with CVRL ≡ 0. This degeneracy is broken by interference

terms, notably Re(CAC∗V ) in B → D∗, but also the interference with scalar and tensor

operators. Nevertheless, this approximate degeneracy explains the doubling of solutions

for finite CVRL.

As can be seen from the comparison of Table 8.6 with Table 8.4, the previous global

minimum, Min 1b, remains a solution of this more general fit, now called Min 6. Min 7 is
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Figure 8.8: Allowed regions in the CVRL − CVLL plane, for the global fit including F̄D
∗

L ,

restricting B(Bc → τν) ≤ 10%. Lighter and darker blue areas show regions with 95% and

68% CL, respectively. Left: All four minima shown in the chosen parameter convention

with CVLL > −1, relative to the global minimum. Center: the two minima with CVLL ∼ −1,

without restricting CVLL > −1, see text. Right: the two minima with |CVR,L | < 1, relative

to Min 6.

again relatively close toMin 6, however with a significant contribution from CVRL and hence

qualitatively different from Min 2 in the previous fits. The new global minimum Min 4

and the close-lying Min 5 improve the agreement of the fit with the data significantly.

However, in these scenarios the SM coefficient is almost completely cancelled and its effect

replaced by several NP contributions. These are hence fine-tuned scenarios, and should

be taken with a grain of salt.

We have also analyzed the individual observables in B → D∗ and the bound on B(Bc →

τ ν̄τ ) for this case. This is illustrated in Fig. 8.9, for different benchmark values of CVLL
and CTLL, in the plane CVRL−CP . The figure shows again the allowed regions at 1σ for the

different observables. In accordance with the above reduction for χ2
min, we observe that in

this case it is possible to have an overlap of all the bands. However, it is still not possible

to reach the central value for the longitudinal polarization fraction, and as mentioned

above, this scenario corresponds to a highly fine-tuned combination of parameters.
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Figure 8.9: Allowed regions at 1σ from F̄D
∗

L (blue), RD∗ (green), P̄D∗τ (gray grid) and

the q2 distribution of Γ(B → D∗τ ν̄τ ) (red), together with the region satisfying the bound

B(Bc → τ ν̄τ ) < 10% (orange), with CVRL 6= 0.

8.2.4 Predictions

We use our global fits from Section 8.2.2 to predict selected observables that are either

not measured yet, but expected to be measured soon, or presently measured with uncer-

tainties that are larger than those from the fits. These additional measurements serve

two purposes: firstly, they provide additional information that is theoretically related, but

experimentally independent (to varying extent) from existing measurements, thereby help-
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ing to establish NP and excluding underestimated systematic uncertainties as the source

for the anomaly. Secondly, they can provide experimental information on combinations

of Wilson coefficients that are not or only weakly constrained so far, thereby allowing to

distinguish different NP scenarios.

We will first present the predictions for observables of the key modes B → D(∗)τ ν̄τ ,

before focusing on other semi-leptonic decays, specifically Λb → Λc τ ν̄τ and Bc → J/ψ τν̄τ .

We start by analyzing the q2 distributions of several angular observables. While these

distributions can be very effective in distinguishing different NP scenarios, they are difficult

to measure, due to the missing information on the neutrinos. The angular dependence

of the differential decay width B → D(∗)`ν can be parametrized by three independent

angular coefficients,

d2ΓD(∗)

dq2 d cos θ`
= a

(∗)
` (q2)− b(∗)` (q2) cos θ` + c

(∗)
` (q2) cos2 θ` , (8.2.16)

which are in principle experimentally accessible. Here, θ` is the angle between the D(∗)

and charged-lepton three-momenta in the `–ν center-of-mass frame. An angular observ-

able commonly defined in the literature is the forward-backward asymmetry, which is

determined by the b(∗)` (q2) coefficient according to Eqs. (4.3.34) and (4.3.51) of Chapter 4

or in terms of b(∗)` (q2) ,

AD(∗)
FB (q2) ≡ b(∗)` (q2)

/
dΓD(∗)

dq2 . (8.2.17)

This observable yields complementary information, since it does not contribute for quan-

tities integrated over the full range of cos θ`. One can also decompose the differential

branching ratio according to the two possible polarizations of the charged (τ) lepton,

giving rise to another observable named τ polarization asymmetry of Eqs. (4.3.35) and

(4.3.55).

Analogously, one can extract from the angular distribution in the secondary D∗ → Dπ

decay the fraction of longitudinally polarised D∗ mesons by constructing the observable

FD
∗

L (q2) of Eq. (4.3.48). In Fig. 8.10, we show the q2 dependence of the B → D(∗)τ ν̄
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Figure 8.10: Predictions and 1σ uncertainty on the q2 dependence of the B → D(∗)τ ν̄τ

observables, for the solutions of the fit including the Moriond result and FD∗L . An upper

bound of B(Bc → τ ν̄τ ) ≤ 30% has been adopted. The predictions of Min 1b, Min 2b and

the SM are represented by a red, yellow and blue band, respectively.

observables defined above, for the two solutions obtained in the global fit including F̄D∗L ,

Min 1b and Min 2b, together with their SM prediction.

Using these observables, Min 2b could rather clearly be differentiated from both the

SM and Min 1b. The same is not true for Min 1b and the SM, for the simple reason that
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Figure 8.11: The upper panels show the predictions of selected observables for the different

minima without (Min 1, Min 2 and Min 3) and with (Min 1b, Min 2b) the inclusion of F̄D∗L
in the fit. The shaded areas show the experimental results at 1σ where applicable. On

the left (right) panel, a bound of B(Bc → τ ν̄τ ) ≤ 10% (30%) has been applied. The lower

panel shows the predictions of the same observables for the two minima obtained in the

fit including F̄D∗L and the preliminary Belle result, with a bound of B(Bc → τ ν̄τ ) ≤ 10%

and 30%, and for the SM (first column).

this minimum is compatible with only shifting the SM coefficient at 1σ. In that case the

SM predictions are unchanged, which means that the width of the red bands is due to the

possible presence of additional NP operators. Precise measurements of these distributions

could hence show the existence of operators other than OVLL.

Given the aforementioned difficulty with measuring q2 distributions, defined as Ō

(see Eq. (4.3.49)). The Belle collaboration has in fact released results for two integrated

quantities, the τ polarisation asymmetry P̄D∗τ = −0.38 ± 0.51 (stat) +0.21
−0.16 (syst) [146],
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and the recently announced longitudinal polarisation of the D∗ meson, FD∗L = 0.60 ±

0.08 (stat) ± 0.04 (syst) [71,320]. In Fig. 8.11, we show the predictions for the integrated

observables of B → D(∗)τ ν̄τ , together with their experimental values where available.

Clearly already the integrated observables provide a possibility to distinguish the different

NP scenarios. The fitted values for F̄D∗L are closer to the experimental results for the fits

including this observable, which is to be expected. However, they fail to reproduce the

measurement within 1σ, as discussed above, which renders a more precise measurement

of this quantity an exciting prospect.

Another observable that could shed light on the R(∗)
D puzzle is the Λb → Λcτ ν̄τ decay,

in particular the universality ratio

RΛc = B(Λb → Λcτ ν̄τ )
B(Λb → Λc`ν̄`)

. (8.2.18)

This decay mode has not been observed yet, but LHCb has the potential to perform this

measurement in the near future.

On the theoretical side, the differential decay rate Λb → Λc`ν̄` has been calculated in

terms of the helicity amplitudes [321,322]:

dΓ(Λb → Λc`ν)
dq2 = G2

F |Vcb|
2

348π3
q2√Q+Q−

m3
Λb

(
1− m2

`

q2

)2 [
AV A1 + m2

`

2q2 A
V A
2 + 3

2 A
SP
3

+ 2
(

1 + 2m2
`

q2

)
AT4 + 3m`√

q2 A
V A−SP
5 + 6m`√

q2 A
V A−T
6

]
, (8.2.19)

where Q± = (mΛb ±mΛc)2 − q2. The superindices V A indicate vector and axial-vector

contributions (CVRL ± CVLL), SP scalar and pseudoscalar (CSRL ± CSLL), and T tensor con-

tributions (CTLL). Being a baryonic decay, this mode is sensitive to different combinations

of Wilson coefficients than B → D(∗)τ ν̄τ . We use the parametrization of the QCD form

factors from Ref. [321,322], which take the simple form:

f(q2) = 1
1− q2/(mf

pole)2

[
af0 + af1(zf (q2))2

]
, zf (q2) =

√
tf+ − q2 −

√
tf+ − t0√

tf+ − q2 +
√
tf+ − t0

.

(8.2.20)

The numerical values of the corresponding form-factor parameters, extracted from lattice

data [321,322], are displayed in Table 8.7.
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a
f+
0 0.8146± 0.0167 a

h+
0 0.9752± 0.0303 m

f+,⊥
pole 6.332 GeV

a
f+
1 −4.8990± 0.5425 a

h+
1 −5.5000± 1.2361 mf0

pole 6.725 GeV

af0
0 0.7439± 0.0125 ah⊥0 0.7054± 0.0137 m

g+,⊥
pole 6.768 GeV

af0
1 −4.6480± 0.6084 ah⊥1 −4.3578± 0.5114 mg0

pole 6.276 GeV

af⊥0 1.0780± 0.0256 a
h̃⊥,+
0 0.6728± 0.0088 m

h+,⊥
pole 6.332 GeV

af⊥1 −6.4170± 0.8480 a
h̃+
1 −4.4322± 0.3882 m

h̃+,⊥
pole 6.768 GeV

a
g⊥,+
0 0.6847± 0.0086 ah̃⊥1 −4.4928± 0.3584

a
g+
1 −4.4310± 0.3572

ag0
0 0.7396± 0.0143

ag0
1 −4.3660± 0.3314

ag⊥1 −4.4630± 0.3613

Table 8.7: Central values and uncertainties of the nominal form-factor parameters for

Λb → Λc`ν` [321,322].
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Figure 8.12: Predictions for RΛc (left) and RJ/ψ (right) for the minima of Table 8.3 and

Table 8.4, with an upper bound B(Bc → τν) ≤ 10%. The SM prediction is shown as a

blue band. The experimental value of RJ/ψ is given by the gray band.

Fig. 8.12 shows the predicted ratio RΛc and its uncertainty for the three minima of

Table 8.3 (Min 1, Min 2 and Min 3) and the two minima including F̄D
∗

L of Table 8.4

(Min 1b and Min 2b), with the upper limit B(Bc → τν) ≤ 10%, and the SM prediction.

The errors considered here just take into account the variation of the Wilson coefficients

and the parametric error for the lattice input. Other systematic errors are not shown. In

all cases the predicted value of RΛc is above the SM expectation. This agrees with the

observation made in Ref. [259] that the measured enhancement of the ratiosR(∗)
D implies an

enhancement of RΛc for any model of new physics described by the effective Hamiltonian

(4.0.1). The prediction closest to the SM is obtained with the unstable minimum Min 3,

which disappears when F̄D∗L is included, because it involves a larger value of CTLL.

The ratio

RJ/ψ = B(Bc → J/ψτν̄τ )
B(Bc → J/ψµν̄µ) = 0.71± 0.17± 0.18 , (8.2.21)

has been recently measured by LHCb with the run-1 dataset (3fb−1) [72]. We have not

included this observable in our fit because the hadronic uncertainties are not at the same

level as for the observables related to B → D(∗) transitions and the experimental error
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is large. 6 Instead, the predictions for this observable are computed and compared with

the current data. The experimental uncertainties are expected to be significantly reduced

with the larger statistics already accumulated at LHCb.

The differential decay rate for this transition can be expressed in a similar way than

the B̄ → D∗ distribution in Eq. (4.3.44) [325]:

dΓ(Bc → J/ψ`ν̄)
dq2 = G2

F |Vcb|
2

192π3mBc

q2
√
λJ/ψ(q2)

(
1− m2

`

q2

)
×{

(
∣∣∣1 + CVLL

∣∣∣2 +
∣∣∣CVRL∣∣∣2)

[(
1 + m2

`

2q2

)(
H2
V,+ +H2

V,− +H2
V,0

)
+ 3

2
m2
`

q2 H
2
V,t

]

− 2Re
[
(1 + CVLL)CV ∗RL

] [(
1 + m2

`

2q2

)(
H2
V,0 + 2HV,+ ·HV,−

)
+ 3

2
m2
`

q2 H
2
V,t

]

+ 3
2
∣∣∣CSLL − CSRL∣∣∣2H2

S + 8
∣∣∣CTLL∣∣∣2

(
1 + 2m2

`

q2

)(
H2
T,+ +H2

T,− +H2
T,0

)
+ 3Re

[(
1 + CVLL − CVRL

) (
CS∗LL − CS∗RL

)] m`√
q2HS ·HV,t (8.2.22)

− 12Re
[(

1 + CVLL

)
CT∗LL

] m`√
q2 (HT,0 ·HV,0 +HT,+ ·HV,+ −HT,− ·HV,−)

+ 12Re
[
CVRLC

T∗
LL

] m`√
q2 (HT,0 ·HV,0 +HT,+ ·HV,− −HT,− ·HV,+)

}
,

where λJ/ψ(q2) =
[
(mBc −mJ/ψ)2 − q2

] [
(mBc +mJ/ψ)2 − q2

]
is the usual Källén func-

tion and Hi are the hadronic helicity amplitudes.

The predicted values of RJ/ψ for the minima of Tables 8.3 and 8.4 as well as for

the SM, are given in the right panel of Fig. 8.12. Again the errors considered here just

take into account the variation of the Wilson coefficients and the parametric error for the

lattice input. For this observable, there are additional theoretical uncertainties associated

with the parametrization of the form factors, which are difficult to quantify. Given the

large errors, the predictions from all minima are in agreement with the experimental

measurement. We note that the prediction from the global minimum is the one that

approaches closest to the experimental measurement, albeit only slightly.

6After the submission of this thesis the first lattice QCD determination of Bc → J/ψ vector and

axial-vector FFs was presented [323]. This gives a value of RJ/ψ = 0.2601(36) [324].
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8.2.5 Results after Moriond 2019

In summer 2019, after Moriond results the HFLAV collaboration released a new world

average of the RD and RD∗ ratios [219]: 7

Ravg,new
D = 0.340± 0.027± 0.013 and Ravg,new

D∗ = 0.295± 0.011± 0.008 ,

(8.2.23)

with a correlation of -0.38. These averages give a 3.7σ discrepancy with respect to our

SM prediction instead of the 3.1σ calculated by HFLAV. The slightly larger significance

with respect to the value quoted by HFLAV is due to our different SM prediction and

has three aspects: slightly smaller central value and uncertainty for RD(∗) , as well as the

inclusion of the correlation between the SM predictions for RD and RD∗ . Regarding the

central value, note also the ∼ 1σ lower central value of the SM prediction for RD∗ in [44]

compared to [61] after taking into account new data for B → D∗`ν.

In Table 8.8 we update the results of our baseline fit with the new HFLAV averages

(assuming a lepton universal CVRL and including the longitudinal D∗ polarisation, F̄D∗L ).

Comparing it with Table 8.4 one can note that the results vary slightly with central values

for the Wilson coefficients, in general closer to the SM. The conclusion of our work do not

change significantly with this new measurements.

8.2.6 Conclusions

In this first work we have analysed the new-physics parameter space able to explain the

current anomalies in b→ cτν data, taking the available experimental information at face

value, i.e., disregarding the possibility that these anomalies could originate in underesti-

mated systematic uncertainties or statistical fluctuations. We have performed a global fit

7The additional shift with respect to our preliminary average given in Eq. (7) is due to a different

treatment for B(B → D(∗)`ν): in the new HFLAV average a measurement by the BaBar collaboration [326]

is omitted, because it does not allow for a separation of the different isospin modes.
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Min 1b Min 2b

χ2
min/d.o.f. 37.4/54 40.4/54

CVLL 0.09+0.13
−0.12 0.34+0.05

−0.07

CSRL 0.086+0.12
−0.61 −1.10+0.48

−0.07

CSLL −0.14+0.52
−0.07 −0.30+0.11

−0.50

CTLL 0.008+0.046
−0.044 0.093+0.029

−0.030

Table 8.8: Minima and 1σ uncertainties obtained from the global χ2 minimization, in-

cluding the new HFLAV world average on the ratios RD and RD∗ [219] and the FD∗L
polarization, using B(Bc → τ ν̄τ ) < 10%. There are, in addition, the corresponding sign-

flipped minima, as indicated in Eq. (8.2.12).

to the available data in b → cτ ν̄τ transitions, adopting an EFT approach with a mini-

mal set of assumptions: 1) NP only enters in the third generation of fermions. 2) There

is a sizeable energy gap between NP and the electroweak scale, the EFT operators are

SU(2)L ⊗U(1)Y invariant and the electroweak symmetry breaking is linearly realized. 3)

All Wilson coefficients are real (CP is conserved). We have tested the impact of the latter

assumption, but did not find an improved description of the data. In contrast to previous

works, we considered the q2 distributions measured by BaBar and Belle. Moreover, we

study the effect of including the F̄D∗L measurement by the Belle collaboration in the fit.

A comparison with earlier analyses, either not including the q2 distributions, the F̄D∗L
measurement, or considering smaller sets of operators, precisely illustrates the benefits of

our fit: as described in Section 8.2.2, most of the NP solutions found in previous fits are

disfavoured once all the information considered in this work is added.

We performed the global fit in different scenarios. As a baseline, we considered the

full dataset before the announcement of the F̄D∗L measurement with the subset of opera-
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tors implied by our assumptions, i.e. with a flavour-universal coefficient CVRL. We then

performed extensive comparisons to datasets including the recent F̄D∗L measurement, the

preliminary Belle measurement of RD(∗) , and different bounds on B(Bc → τ ν̄τ ), as well as

a second parameter set, allowing for a non-universal CVRL.

In the baseline fit, three minima have been obtained, given in Table 8.3. The global

minimum, referred to in the text as Min 1, has an excellent χ2; while none of the fitted

Wilson coefficients are required to be non-zero for this minimum, the simplest interpre-

tation of this solution is a global modification of the SM: setting all Wilson coefficients

but CVLL to zero increases the χ2 only by ∆χ2 = 1.4, implying an even better fit. The

other two solutions are local minima which numerically exhibit stronger deviations from

the SM, with larger contributions of the tensor and scalar operators. While the global

minimum is compatible with a SM-like scenario, Min 2 and Min 3 require additional oper-

ators. For instance, they could involve scalar LQs with quantum numbers R2 ∼ (3, 2, 7/6)

or S1 ∼ (3̄, 1, 1/3).

The measurement of the D∗ longitudinal polarization fraction F̄D∗L has quite a strong

impact on our EFT analysis. It removes Min 3 as a solution for the fit, which was,

however, already strongly disfavoured by the differential distributions. Fig. 8.7 illustrates

the tension between the present measurement of F̄D∗L , the bound on B(Bc → τ ν̄τ ), and the

observation ∆RD∗ > 0 : the set of operators considered within our assumptions cannot

accommodate all three observations at 1σ for any combination of Wilson coefficients.

Indeed, including the F̄D∗L measurement in the fit increases the minimal χ2 significantly

also for the two lower-lying minima (Min 1b and Min 2b), see Table 8.4.

We find that most of the minima saturate the upper bound B(Bc → τ ν̄τ ) ≤ 10%, and

it is interesting to study the effect of changing this constraint on the fit. As shown in

Tables 8.3 and 8.4, adopting a more conservative upper bound of B(Bc → τ ν̄τ ) ≤ 30%

we find the same number of minima; they are qualitatively similar to the previous ones,

but with larger central values and ranges of the scalar Wilson coefficients, specifically their

pseudoscalar combination. While even this larger upper bound is saturated in most of our

fits, the overall decrease in χ2 is small.
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The fact that F̄D∗L cannot be accommodated within 1σ for CVRL = 0 could have impor-

tant consequences, should the present value be confirmed with higher precision. This led

us to investigate the scenario with non-zero CVRL as a possible resolution of this tension on

the theory side. We find that its inclusion helps to reduce the tension among the experi-

mental B → D∗ data, and it is now possible to satisfy all constraints at 1σ, as illustrated

in Fig. 8.9. The global fit including CVRL leads to four different minima, as Fig. 8.8 shows.

Two of these minima have a significantly lower χ2 than the previous fits, however, they

correspond to fine-tuned solutions where the SM coefficient becomes very small and its

effect is substituted by several sizeable NP contributions, especially CVRL. This scenario

seems therefore not to be a satisfactory resolution of the tension. The new experimental

results, summarized in Section 8.2.5 do not yield to significant different results.

We have also presented predictions for selected b → cτ ν̄τ observables, such as RΛc ,

RJ/ψ or the forward-backward asymmetries and τ polarization in B → D(∗)τ ν̄τ , which

have not been included in the fits because either they have not been measured yet or

their current experimental values have too large uncertainties. We have studied these

observables for the different solutions emerging from our fits, finding that they provide

complementary information to the existing data. This is displayed in Figs. 8.10, 8.11

and 8.12. The future measurement of these observables could both establish NP in these

modes and allow for a discrimination among the currently favoured scenarios.

We conclude that the anomaly in b→ cτ ν̄τ transitions remains and can be addressed

by NP contributions. Apart from RD(∗) , also the differential q2 distributions, FD∗L and

B(Bc → τ ν̄τ ) are important to constrain NP, leaving only two viable minima in the global

fit. Our general EFT approach does not allow to identify uniquely the potential mediator,

since the global minimum can be generated by several combinations of parameters. The

generality of our analysis on the other hand allows to use the obtained parameter ranges

in more general SMEFT analyses. An improved measurement of F̄D∗L close to its present

central value holds the exciting potential to invalidate this general approach, which would

have major implications, like a Higgs sector different from the SM one, the existence of
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NP particles relatively close to the electroweak scale, or new light degrees of freedom. As

we have shown, additional measurements will be able to clarify these questions.

8.3 Global fit with right-handed neutrinos

Light RHNs have been suggested [80, 85, 317–319, 327–332] as a possibility to evade the

current phenomenological constraints on the EFT operators containing LHN fields. Ster-

ile neutrinos are singlets under the SM gauge group and, therefore, their properties are

not linked to any charged electroweak partners. Moreover, the existing limits from the

neutrino sector do not constrain significantly the scale of νR operators beyond what is

probed in b → cτ ν̄ transitions. In order not to disrupt the measured B → D(∗)τ ν̄

invariant-mass distributions [64, 65], one just needs to assume the νR fields to be light,

mνR . O(100) MeV, which also helps to avoid other cosmological and astrophysical lim-

its. Neglecting neutrino masses, there is no interference between the two neutrino chiral-

ities, and the decay probability becomes an incoherent sum of νL and νR contributions:

B(b → cτ ν̄) = B(b → cτ ν̄L) + B(b → cτ ν̄R). Therefore, it is not difficult to increase the

predicted rates towards the experimentally favoured range. However, a large νR contribu-

tion requires the corresponding Wilson coefficients to be large, of the order of the SM νL

interaction, because the rates are quadratic in the νR transition amplitude.

Previous works considering RHNs in B → D(∗)τ ν̄ decays [80,85,317–319,327–332] have

focused on reproducing the integrated rates, most of them within particular scenarios of

NP. All phenomenological analyses need to rely on the underlying assumption that the dif-

ferential decay distributions, and hence the experimental acceptances, are not significantly

modified by the NP contributions. While this assumption is unavoidable, in the absence

of direct access to the data, none of the previous studies have included the measured q2

distributions in their fits. This shape information has been shown to play an important

role, discarding many proposed solutions with νL fields [52,74,150,237,238], and could be

expected to be even more relevant for those solutions based on RHNs, since they induce

distortions in the rates that are quadratic in NP contributions.
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We aim to improve the situation in this section, by extending the EFT analysis of the

previous Section (see also Ref. [52]) to a basis of dimension-six operators that includes

light RHNs. In our fit procedure, we consider all observables measured for B → D(∗)τ ν̄

decays until date; including the data for binned differential distributions with respect to

the lepton-neutrino invariant-mass squared, the D∗ longitudinal polarization fraction F̄D∗L ,

the lepton polarization asymmetry P̄D∗τ and the experimental results for RD(∗) . The last

ratios have been recently altered, reducing the tension with the SM and making a fresh re-

analysis necessary. We also study the differential three-body B → Dτν̄ decay distribution

and derive the four-body angular distribution of the B → D∗(→ Dπ)τ ν̄ decay for the most

general dimension-six Hamiltonian. By identifying the possible high-scale NP mediators

which can generate the operators involving RHNs, we predict several angular observables

that can be tested at the experiment.

The rest of the section is organized as follows. In Section 8.3.1 the experimental status

of the b → c transitions is interpreted from an EFT approach, by looking at the effect

that individual Wilson coefficients may produce in the relevant observables. In addition,

all possible NP mediators that can effectively generate a b → cτ ν̄R transition, and the

corresponding Wilson coefficients that will arise at low energies after their integration, are

listed. In Section 8.3.2 the results of our fits are presented and discussed. We consider

different scenarios, originated by the integration of the relevant NP mediators, and com-

pare their fitted results with the SM case. Section 8.3.4 contains the predicted angular

coefficients of the B → Dτν̄ and B → D∗(→ Dπ)τ ν̄ distributions for the best fit scenar-

ios, including the forward-backward asymmetries AD(∗)
FB , the τ polarization asymmetries

PD(∗)
τ , and the longitudinal polarization fraction FD∗L . Finally, conclusions are exposed in

Section 8.3.5.

8.3.1 Interpreting the anomalies with RHN

This section is devoted to study the origin of the observed experimental deviations from the

SM predictions. We show from a theoretical perspective the implications of new physics
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in the observables involving b → c transitions and discuss the possible ultraviolet (UV)

scenarios that could give rise to such anomalies in the context of b→ c processes involving

both left- and right-handed neutrinos.

8.3.1.1 Fit-independent results

The Wilson coefficients introduced in Eq. (4.0.1) encode all NP contributions that can

enter in b → c transitions at dimension-six operator level, also in the presence of sterile

light RHNs. Therefore, the landscape of possibilities generating the anomalies can be

classified by the impact of these ten parameters on the measurable observables. To get

a general idea about the sensitivity to the different Wilson coefficients, we quote the

numerical expressions of several observables that have already been measured. These

expressions have been obtained setting the FFs at their central values and, therefore,

ignoring the uncertainties and correlations among the different numerical factors. The

complete analytical expressions, with a proper account of hadronic uncertainties, will be

used instead in the data fits that we will present in Section 8.3.2. The observables RD
and RD∗ are normalized to their SM predictions:

RD/RSM
D ≈

(
|1 + CVLL + CVRL|2 + |CVLR + CVRR|2

)
+ 1.037

(
|CSLL + CSRL|2 + |CSLR + CSRR|2

)
+ 0.939

(
|CTLL|2 + |CTRR|2

)
+ 1.171Re

[
(1 + CVLL + CVRL)CT∗LL + (CVLR + CVRR)CT∗RR

]
+ 1.504Re

[
(1 + CVLL + CVRL)(CS∗LL + CS∗RL) + (CVLR + CVRR)(CS∗LR + CS∗RR)

]
,

and

RD∗/RSM
D∗ ≈

(
|1 + CVLL|2 + |CVRL|2 + |CVLR|2 + |CVRR|2

)
+ 0.037

(
|CSRL − CSLL|2 + |CSRR − CSLR|2

)
+ 17.378

(
|CTLL|2 + |CTRR|2

)
− 1.781Re

[
(1 + CVLL)CV ∗RL + CVLR C

V ∗
RR

]
+ 5.748Re

[
CVRLC

T∗
LL + CVLRC

T∗
RR

]
− 5.130Re

[
(1 + CVLL)CT∗LL + CVRR C

T∗
RR

]
+ 0.114Re

[
(1 + CVLL − CVRL) (CS∗RL − CS∗LL) + (CVRR − CVLR) (CS∗LR − CS∗RR)

]
. (8.3.24)
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For the q2-integrated polarization observables P̄D∗τ and F̄D
∗

L , we show their numerical

values multiplied by RD∗ :

P̄D∗τ ×RD∗ ≈ −0.128
(
|1 + CVLL|2 + |CVRL|2 − |CVRR|2 − |CVLR|2

)
+ 0.282

(
|CTLL|2 − |CTRR|2

)
+ 0.010

(
|CSRL − CSLL|2 − |CSRR − CSLR|2

)
+ 0.221Re

[
(1 + CVLL)CV ∗RL − CV ∗RR CVLR

]
+ 0.442Re

[
(1 + CVLL)CT∗LL − CV ∗RR CTRR

]
− 0.592Re

[
CVRLC

T∗
LL − CV ∗LR CTRR

]
+ 0.030Re

[
(1 + CVLL − CVRL) (CS∗RL − CS∗LL) + (CV ∗RR − CV ∗LR) (CSRR − CSLR)

]
,(8.3.25)

and

F̄D
∗

L ×RD∗ ≈ 0.120
(
|1 + CVLL − CVRL|2 + |CVRR − CVLR|2

)
+ 0.010

(
|CSRL − CSLL|2 + |CSRR − CSLR|2

)
+ 0.869

(
|CTLL|2 + |CTRR|2

)
+ 0.030Re

[
(1 + CVLL − CVRL) (CS∗RL − CS∗LL)− (CVRR − CVLR) (CS∗RR − CS∗LR)

]
− 0.525Re

[
(1 + CVLL − CVRL)CT∗LL + (CVRR − CVLR)CT∗RR

]
. (8.3.26)

With the above expressions of the four observables, namely RD, RD∗ , P̄D
∗

τ and F̄D∗L ,

we analyse the modifications induced by each individual Wilson coefficient on the SM

predictions. The corresponding shifts are shown in Fig. 8.13, both for the νL (upper

panels) and νR (lower panels) EFT operators. The experimental central values of the

observables are displayed as yellow lines whereas bands of the same colour are used for

their 1σ uncertainties. For F̄D∗L we also indicate the 2σ uncertainty with brown bands.

The solid (dashed) lines show the parameter space allowed by the constraint B(Bc →

τ ν̄) < 10% (30%). The fainted lines show the ranges for each Wilson coefficient without

imposing the constraint from the leptonic branching ratio B(Bc → τ ν̄).

Different Wilson coefficients could help to reproduce the measured values of RD and

RD∗ . However, the scalar coefficients would need to take values that are already excluded

by B(Bc → τ ν̄), leaving vector and axial-vector contributions as the preferred options to

fit the experimental results. The large uncertainties in the P̄D∗τ measurement make almost

any shift in the Wilson coefficients to be in agreement with the experimental value, being
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Figure 8.13: Individual contributions of the Wilson coefficients involving LHNs (upper

panels) and RHNs (lower panels). The solid (dashed) lines show the parameter space

allowed by the constraint B(Bc → τ ν̄) < 10% (30%), whereas the fainted lines show the

predictions without taking into account this constraint.

the only exceptions large shifts in the vector Wilson coefficients CVLR,RR and a positive

increment of CTLL.

Looking at the dependence of these observables on the RHN contributions, one ob-

serves that all of them are symmetric under the exchanges CVLR ↔ CVRR and CSLR ↔ CSRR.

In particular, F̄D∗L is insensitive to any single right-handed operator because their contri-

bution exactly cancels, since it is defined as a ratio as Eq. (4.3.48) shows. This does not

hold true for CVRL, since there is an interference between this NP operator and the SM

contribution.

It is particularly challenging to reproduce the experimental value of F̄D∗L , regardless of

the type of NP contribution; the ±1σ band cannot be reached varying any of the Wilson
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coefficients individually. Negative non-zero values of CVRL can only slightly increase the

predicted longitudinal D∗ polarization, while the changes induced by the tensor Wilson

coefficients go in the opposite direction of the experimental value, decreasing the SM

predictions. The only contributions that would help are the scalar ones, but for values of

their Wilson coefficients that are already excluded by the constraint B(Bc → τ ν̄) < 30%.

8.3.1.2 UV Physics

Once the impact of individual Wilson coefficients inB → D(∗)τ ν̄ observables is understood,

the following step is to extend the analysis to the combined effect of several coefficients

that are present in these transitions simultaneously. The most general EFT Hamiltonian

in Eq. (4.0.1) includes 10 Wilson coefficients, which in general can be complex. Even

assuming them to be real, a 10-parameter fit would become unstable. Moreover, its

interpretation in terms of NP mediators and UV completions might be unrealistic. Instead,

we consider particular cases, described in Section 8.3.3.1. Most of them are motivated

from the “simplified model” scenarios. In this context, “simplified” refers to a single new

mediator particle that can be integrated out to contribute to one or more of the effective

operators entering into the b → cτ ν̄ transitions. As the main purpose of this work is to

explore the effect of light RHNs, we single out those mediators that can contribute to the

b→ c transitions and involve a gauge-singlet RHN.

These NP fields can be classified into scalars, vector bosons and leptoquarks, as listed

in Table 8.5. Since in most cases both right- and left-handed neutrino operators are

generated simultaneously after a given mediator is integrated out, we will explore both

the effect of considering only the right-handed contributions as well as the scenarios in

which the full set of operators is generated. Unlike in previous references discussing the

role of RHNs in b→ c anomalies [80, 319], we also include a fit to the Wilson coefficients

that will appear if NP is mediated through the leptoquark Ṽ2 ∼ (3̄, 2,−1/6).
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Spin Q.N. Nature νL-WET νR-WET

0 S1 ∼ (3̄, 1, 1/3) LQ CVLL, CSLL, CTLL CVRR, CSRR, CTRR

0 Φ ∼ (1, 2, 1/2) SB CSLL, CSRL CSLR, CSRR

0 R̃2 ∼ (3, 2, 1/6) LQ – CSRR, CTRR

1 Uµ1 ∼ (3, 1, 2/3) LQ CVLL, CSRL CVRR, CSLR

1 Ṽ µ
2 ∼ (3̄, 2,−1/6) LQ – CSLR

1 V µ ∼ (1, 1,−1) VB – CVRR

Table 8.9: Spin, SU(3)C ⊗ SU(2)L ⊗ U(1)Y quantum numbers and nature (LQ = lep-

toquark, SB = scalar boson, VB = vector boson) of the possible candidates to mediate

b→ c transitions involving νR ∼ (1, 1, 0). The fourth and fifth columns list the operators

with left-handed and right-handed neutrinos, respectively, generated by the integration of

the correspondent mediator.

8.3.2 Fit Results

Under the assumption that NP enters only in the third generation of leptons and that

Wilson coefficients are real, we have performed fits in different scenarios of the most general

dimension-six Hamiltonian, taking into account all experimental data available nowadays.

We start by listing the inputs used in the fit, and then we describe the motivated scenarios,

based on the previous section, that we are considering. Finally, the results obtained by

performing global fits in each of the scenarios are interpreted.

8.3.3 Numerical input of the fits

As it has been previously mentioned we will use the full set of dimension six of Eq. (4.0.1).

For the numerical imput of our fits we will use the most recent world-average values of

RD and RD∗ from Ref. [48] (see Eq. (8.0.2)), including a correlation of −0.38 between

them. The longitudinal D∗ polarization, F̄D∗L , measured by BaBar [71] and the value of
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the q2-integrated τ polarization, P̄D∗τ , measured recently by Belle [66] are also taken into

account. The former was not included in the fit without RHNs but its effects can be

relevant in these fits in which the set of Wilson operators is extended. Finally we consider

the q2 distributions of the D and D∗ meson [64, 65], summarized in Table 9 of Ref. [52].

The different experimental inputs used in the fits are collected in Table 8.10.

Observable Experimental Value Reference Comments

RD 0.340± 0.027± 0.013 [48]
RD and RD∗ correlation of −0.38

RD∗ 0.295± 0.011± 0.008 [48]

P̄D∗τ −0.38± 0.51+0.21
−0.16 [66]

F̄D
∗

L 0.60± 0.08± 0.035 [71]

D differential q2 dist. [64, 65]

D∗ differential q2 dist. [64, 65]

B(Bc → τ ν̄) ≤ 10%, 30% [70,150,294,295]

Table 8.10: Experimental inputs used in our fits.

As we did in Section 8.2.1 the upper bound for the leptonic decay rate B(Bc → τ ν̄) is

taken to be either 30% or 10%. In our analyses the stronger 10% limit is first assumed in the

fit and, in those cases where the 10% bound is saturated the fit is repeated by relaxing it to

30%. As Eq. (4.1.8) shows, the Bc → τ ν̄ limit constrains the splitting between the CVLL(RR)

and CVRL(LR) and, specially, between the CSRL(LR) and CSLL(RR) Wilson coefficients. For the

FFs, we follow the same approach as in Section 8.2, which was described in Section 8.1.1.

8.3.3.1 Scenarios and fit results

As previously mentioned, by adding RHN, the set of operators increases from 5 to 10. The

large number of free parameters makes difficult to perform a global fit to the full basis of

operators. Instead, we will work in different motivated scenarios that arise by integrating
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out a single NP mediator and, therefore, contribute to small subsets of operators at the

mb scale. Possible candidates, their quantum numbers and the operators generated once

the given mediator is integrated out are listed in Table 8.9. The last two columns show

the operators involving left-handed and right-handed neutrinos. Following previous works,

we consider scenarios that only take into account the contributions from RHN operators,

labelling them with the letter “a” [319], while “b” scenarios also contain the LHN operators

that are generated in the presence of the corresponding mediators. In addition, we define

Scenarios 1 and 2, which correspond to consider only right-handed operators, with and

without the SM-like contributions, respectively. The set of scenarios that we are going to

analyse and the operators involved in each case are:

1) RHN + SM-like contribution: OVLL ,OVLR ,OVRR ,OSLR ,OSRR ,OTRR ,

2) RHN: OVLR , OVRR ,OSLR ,OSRR ,OTRR ,

3) V µ: OVRR ,

4a) Φ: OSLR ,OSRR ,

4b) Φ: OSLL ,OSRL and OSLR ,OSRR ,

5a) Uµ1 : OVRR ,OSLR ,

5b) Uµ1 : OVLL ,OSRL and OVRR ,OSLR ,

6) R̃2: OSRR ,OTRR with CSRR = 4r CTRR ,

7a) S1: OVRR ,OSRR ,OTRR with CSRR = −4r CTRR ,

7b) S1: OVLL ,OSLL ,OTLL and OVRR ,OSRR ,OTRR with CSLL = −4r CTLL and CSRR =

−4r CTRR ,

8) Ṽ µ
2 : OSLR .

Scenarios 3, 6 and 8 do not generate any left-handed operator, making the “a” and “b”

labelling unnecessary. In Scenarios 6, 7a and 7b, where scalar and tensor couplings arise
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at the NP scale, the renormalization-group running between ΛNP ∼ 1 TeV and the scale

mb generates the factor r ≈ 2. Scenarios 3 to 7 have been also studied at Ref. [319].

Within each scenario we will perform a standard χ2 fit to the data. There are 60

experimental degrees of freedom (d.o.f.), 4 corresponding to RD(∗) , F̄D
∗

L and P̄D∗τ , and 56

to the binned q2 distributions. Therefore, the number of d.o.f. of our fits is 60−NWC−1 =

59−NWC, where NWC is the number of Wilson coefficients entering in the fit.

All solutions resulting from our fits will present up to three flipped minima with de-

generate χ2 values. The first flipped minimum is obtained by reversing the sign of the

LHN Wilson coefficients while keeping the right-handed Wilson coefficients untouched:

CV
′

LL = −2− CVLL , CX
′

iL = −CXiL , CX
′

iR = CXiR , (8.3.27)

for X = S, V, T and i = L,R, except for CVLL. The second flipped minimum is obtained

reversing only the right-handed coefficients,

CX
′

iL = CXiL , CX
′

iR = −CXiR , (8.3.28)

for X = S, V, T and i = L,R, and the last one flipping both left and right Wilson coeffi-

cients,

CV
′

LL = −2− CVLL , CX
′

iL = −CXiL , CX
′

iR = −CXiR , (8.3.29)

for X = S, V, T and i = L,R, except for CVLL. From now on, we will only discuss the

minimum which is closest to the SM scenario.

In the following subsections, we will present the fitted solutions for each considered

scenario. Whenever some uncertainties are marked with the symbol † (i.e., CVRR =

−0.69+0.64†
−0.44 ), this indicates that the χ2 distribution has fallen to another minimum. In

these cases, the uncertainty is defined as the range between the central value and the point

in which the χ2 falls to the other minimum. To complete the discussion, it is interesting

to see the predicted values of the different observables within each fitted scenario. This

information is given in Fig. 8.20 and in Table 8.12, where the numerical predictions are

marked either with a green tick (3) if they agree with the experimental value at 1σ or with
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a red cross (7) if they do not agree. All minima are in agreement with all experimental

observables at the 2σ level.

SM fit

The SM fit, where all the Wilson coefficients are set to zero, i.e. CXAB = 0, gives us the

following χ2:

χ2
SM/d.o.f. = 52.87/59, (8.3.30)

corresponding to a 69.95% probability (p-value, defined below). As in the fit without

RHN of Section 8.2.2 the “apparent” good quality of the fit, i.e. χ2
SM/d.o.f. < 1, might

be surprising since it contrasts with the approximately 3σ discrepancy claimed in the RD
and RD∗ measurements. This can be understood by looking at the split up contributions

of the fit inputs. Considering only the contribution of the q2 distributions we find that

χ2
SM(q2 distributions)/d.o.f. = 36.77/56, while χ2

SM(RD∗ , F̄D
∗

L , P̄D∗τ )/d.o.f. = 16.1/4, cor-

responding to a 2.98σ tension for the later. Taking into account only the χ2 value of RD(∗)

we obtain 13.36 for 2 d.o.f., recovering the well-known 3.2σ tension.

The last results suggest an overestimation of the absolute χ2 value, which is introduced

while considering in the fit multiple inputs with large uncertainties as, in our case, the

q2 distributions for the B-meson semileptonic decays. The goodness of a fit is usually

characterized through the p-value, defined as

p(χ2
min, n) ≡

∫ ∞
χ2

min

dz χ2(z, n) , (8.3.31)

where χ2(z, n) is the χ2 probability distribution function with n d.o.f.. Larger p-values

correspond to better explanations of the experimental data than lower ones. In order

to quantify the quality of our fit, it is convenient to introduce another parameter called

Pull that compares any fitted solution with the SM results. This statistical measure is

defined as the probability in units of σ corresponding to the difference ∆χ2
i ≡ χ2

SM − χ2
i ,

assuming that ∆χ2
i follows a χ2 distributed function with ∆ni ≡ nSM − ni d.o.f., where

the label i refers to the ith scenario. The translation from probability to sigmas is done
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by associating such probability to the one corresponding to a Pull number of standard

deviations in a normal distribution with ∆ni d.o.f.,8 i.e. [248,333]

PullSM ≡ prob(∆χ2
i ,∆ni)[σ] =

√
2Erf−1[CDF(∆χ2

i ,∆ni)
]
, (8.3.32)

where CDF(∆χ2
i ,∆ni) ≡ 1− p(∆χ2

i ,∆ni) is the χ2-cumulative distribution function eval-

uated at ∆χ2
i for ∆ni d.o.f..

In Table 8.11 we display the Pull SM values of the different fitted minima, together with

their corresponding p-values, for all the scenarios analysed. In order to better quantify

how favourable are the fitted scenarios with respect to the SM regarding the different

observables entering in the fit, we also include their pull for the particular pieces of the

χ2, splitting it into three contributions: the polarization observables P̄D∗τ and F̄D
∗

L , the

ratios RD and RD∗ and the q2-distributions of the B → D(∗)τ ν̄ decay. In the former we

ignore the FF contribution to the χ2. As we can see in Table 8.11, all scenarios exhibit a

sizeable improvement with respect to the SM p-value.

Scenario 1: νR + SM-like

Considering only RHN operators and the SM-like contribution, i.e. CVLL, and imposing an

upper bound for B(Bc → τ ν̄) of 10%, we find two different solutions: a global minimum

and a local one with a slightly higher χ2, i.e.

χ2/d.o.f. = 37.26/53 ,

CVLL = −0.36+0.34
−0.64† , CVLR = 1.10+0.46

−0.50 , CVRR = 0.031+0.14
−0.17 ,

CSRR = −0.03+0.18
−0.60 , CSLR = −0.29+0.31

−0.53 , CTRR = −0.105+0.066
−0.084 ,

(8.3.33)

8A probability of (68.3%, 95.5%, 99.7%) equals to (1σ, 2σ, 3σ), respectively.
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and

χ2/d.o.f. = 38.86/53 ,

CVLL = −0.13+0.10
−0.82 , CVLR = −0.09+0.29

−0.27 , CVRR = −0.69+0.64†
−0.44 ,

CSRR = 0.34+0.37
−0.56† , CSLR = −0.030+0.74

−0.18† , CTRR = −0.006+0.239†
−0.082 .

(8.3.34)

Shifting the Wilson coefficients up to 1.2σ, the global minimum becomes compatible with

a solution in which the only non-vanishing Wilson coefficients are CVLR and CTRR. As it

can be seen in Fig. 8.13, both CVLR and CTRR help to reproduce the experimental value of

RD,RD∗ and P̄D∗τ . For F̄D∗L it is a combination of several operators that helps. In the

local minimum, the dominant contribution comes from CVRR.

As it can be seen in Table 8.12, both minima saturate the B(Bc → τ ν̄) ≤ 10% con-

straint. Thus, relaxing it to be up to a 30%, we find

χ2/d.o.f. = 36.42/53 ,

CVLL = −0.50+0.41
−0.49† , CVLR = 1.34+0.25

−0.60 , CVRR = 0.204+0.298
−0.020 ,

CSRR = −0.22+0.27†
−0.27 , CSLR = −0.92+0.22†

−0.15 , CTRR = −0.123+0.069
−0.077 ,

(8.3.35)

and

χ2/d.o.f. = 38.54/53 ,

CVLL = −0.15+0.21
−0.86 , CVLR = −0.15+0.31†

−0.17† , CVRR = −0.69+0.70
−0.42 ,

CSRR = 0.59+0.38†
−0.41 , CSLR = −0.24+0.61

−0.13† , CTRR = 0.007+0.114
−0.087 .

(8.3.36)

The value of the χ2/d.o.f. slightly improves in this case, whereas the scalar Wilson coeffi-

cients are further away from the SM limit.

In both cases one can see that most of the Wilson coefficients have large uncertainties.

This can be understood from the fact that a large set of variables to fit allow for larger



182 Fits to b→ cτ ν̄ transitions

correlations among them, which in turn allows wider ranges for the Wilson coefficients

considered. The global and local minima have in fact quite close values of χ2/d.o.f., and

the χ2 distribution in the region between them is rather flat. Thus, when evaluating their

1σ variations, one minimum falls often into the other one, as indicated by the † symbols.

This scenario is the most general, in the sense that the preferred CVLL solution with-

out considering RHNs [52] is included in the fit, together with all possible contributions

generated as a consequence of having RHNs. No specific NP scenario has been assumed

in here.

Scenario 2: νR

In this scenario we consider solely the contribution to b → c processes coming from the

presence of RHNs in the theory. Again, this assumption is very general and model inde-

pendent, in the sense that no specific types of NP mediators are assumed.

As in the previous scenario, with the constraint B(Bc → τ ν̄) ≤ 10%, a global and a

local minimum are obtained:

χ2/d.o.f. = 38.54/54 ,

CVLR = 0.52+0.13
−0.16 , CVRR = 0.06+0.15

−0.22 ,

CSRR = 0.04+0.35
−0.66 , CSLR = −0.35+0.72

−0.16 , CTRR = −0.057+0.080
−0.058 ,

(8.3.37)

and

χ2/d.o.f. = 39.05/54 ,

CVLR = 0.07+0.30
−0.30† , CVRR = 0.42+0.11

−0.21 ,

CSRR = −0.32+0.74
−0.21 , CSLR = 0.10+0.20†

−0.68 , CTRR = 0.004+0.080
−0.088 .

(8.3.38)

By shifting all the Wilson coefficients within their 1σ uncertainties, the global minimum

is compatible with a solution in which the only non-zero coefficient is CVLR. This coincides
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with the fit dealing only with the LHN operators where the global minimum was compat-

ible with a global shift of the SM-like operator (i.e. CVLL 6= 0 ) [52]. In other words, CVLR
plays a similar role as the νL Wilson coefficient modifying the SM contribution. In the

local minimum, the main contributions to the observables are coming from CVRR.

Since the previous fit saturates the leptonic Bc decay bound, we list below the minima

obtained after relaxing such constraint to B(Bc → τ ν̄) ≤ 30%:

χ2/d.o.f. = 38.33/54 ,

CVLR = 0.47+0.16
−0.20 , CVRR = 0.10+0.21

−0.23 ,

CSRR = 0.28+0.24
−0.97 , CSLR = −0.59+0.80

−0.17 , CTRR = −0.054+0.081
−0.058 ,

(8.3.39)

and

χ2/d.o.f. = 38.80/54 ,

CVLR = 0.12± 0.30 , CVRR = 0.38+0.13
−0.20 ,

CSRR = −0.57+0.57†
−0.28 , CSLR = 0.33+0.20†

−0.48† , CTRR = −0.006+0.081
−0.091 .

(8.3.40)

Similarly to the previous scenario, when relaxing the leptonic decay bound, the χ2 ex-

periences an improvement and the scalar Wilson coefficients further depart from the SM

limit.

Scenario 3: Vµ

The mediator V µ ∼ (1, 1,−1) only involves interactions with RHN regarding b→ c transi-

tions. Note that we call it V µ instead of the usual nomenclatureW ′µ in order to distinguish

it from the SU(2) triplet which does couple to the LHNs. Therefore, this scenario induces

exclusively b→ cτ ν̄R interactions, and particularly the V µ only contributes to the vector

Wilson coefficient CVRR.
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Figure 8.14: Fit-independent plot of Scenario 3. Dark colours indicate the allowed regions

satisfying the experimental constraints at 1σ and the 10% upper limit on B(Bc → τ ν̄), for

a given value of CVRR. There is no allowed region for F̄D∗L at 1σ. The lighter orange and

red shaded areas correspond to the more relaxed 30% bound on the leptonic Bc decay and

the 2σ region for F̄D∗L , respectively.

The global fit gives us the minimum value for this Wilson coefficient together with its

χ2:

χ2/d.o.f. = 39.50/58 ,

CVRR = 0.370+0.051
−0.059 . (8.3.41)

Given that in this case our model depends on a single Wilson coefficient, we can study

the regions of the parameter space that reproduce the different experimental observables

included in the global fit from a fit-independent perspective, as shown in Fig. 8.14. This

figure shows that no region of common overlap can be found at 1σ. This agrees with

Fig. 8.13, which showed that the shift of a single Wilson coefficient with respect to the

SM scenario does not modify the F̄D
∗

L prediction. We also indicate in Fig. 8.14 the

parameter space allowed when relaxing the experimental constraint on F̄D
∗

L to 2σ and

taking B(Bc → τ ν̄) ≤ 30%. As expected, in that context we find full agreement with the

experiment.
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Scenario 4a: Φ

Considering that the mediator Φ ∼ (1, 2, 1/2), with the same quantum numbers as the SM

Higgs, is responsible for the NP interactions, and assuming that only right-handed Wilson

coefficients appear at the low-energy scale, two different minima with the same χ2 value,

χ2/d.o.f. = 49.93/57 ,

CSRR = 0.46+0.05
−0.18 , CSLR = −0.06+0.19

−0.07 , (8.3.42)

and

χ2/d.o.f. = 49.93/57 ,

CSRR = 0.06+0.07
−0.19 , CSLR = −0.46+0.18

−0.05 , (8.3.43)

are found. As one can see, they correspond to degenerate solutions, flipping the values of

CSLR and CSRR. This can be easily understood by looking at the expressions of B → D and

B → D∗ listed in Eqs. (4.3.33) and (4.3.44), respectively. These observables depend on

the absolute values of the right-handed scalar and pseudoscalar combinations of Wilson

coefficients when the vector coefficients are switched off, and therefore remain invariant

under the exchange CSLR ↔ CSRR. The same is true for the D∗ polarization observables

that, as shown in Eqs. (8.3.25) and (8.3.26), are blind to a sign flip of the combination

CSRR − CSLR. As Table 8.12 shows, these minima saturate the B(Bc → τ ν̄) ≤ 10% bound.

Relaxing this constraint to B(Bc → τ ν̄) ≤ 30%, the minima read

χ2/d.o.f. = 44.49/57 ,

CSRR = 0.297+0.074
−0.096 , CSLR = −0.673+0.091

−0.053 , (8.3.44)

and

χ2/d.o.f. = 44.49/57 ,

CSRR = 0.673+0.053
−0.091 , CSLR = −0.297+0.096

−0.074 , (8.3.45)

where, as expected, the pseudoscalar combination of Wilson coefficients increases its value

and the χ2 slightly improves.
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Figure 8.15: Fit-independent plot of Scenario 4, displaying the regions allowed at 1σ.

On the left panel only the RHN Wilson coefficients shown are switched on (Scenario 4a),

whereas on the right panel we set the left-handed neutrino Wilson coefficients entering

in Scenario 4b to their best-fit values. The dashed orange line shows the more relaxed

bound B(Bc → τ ν̄) ≤ 30%, and the red grid shows the parameter space consistent with

the experimental measurement of F̄D∗L at 2σ.

In the left panel of Fig. 8.15 we show the two-dimensional parameter space where the

different observables entering in the fit are satisfied at 1σ. As the figure shows, there is

no overlap at this given probability. In this case, not even relaxing the leptonic Bc decay

upper bound to 30% and the FD∗L experimental measurement to 2σ, an overlap in the

parameter space is achieved.

Scenario 4b: Φ

The Two Higgs Doublet Models are the simplest examples of UV physics generating this

scenario. In addition to RHN operators, a second scalar doublet with the same quantum

numbers as the SM one generates LHN Wilson coefficients. The preferred solution of this

scenario corresponds to vanishing right-handed Wilson coefficients, which eliminates the

degeneracy under CSLR ↔ CSRR. Owing to the interference with the SM-like contribution,
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an analogous symmetry does not exist for the left-handed coefficients and, therefore, we

find in this case a single solution with B(Bc → τ ν̄) ≤ 10%:

χ2/d.o.f. = 43.56/55 ,

CSRL = 0.21+0.03
−0.11 , CSLL = −0.11+0.07

−0.08 ,

CSRR = 0.0± 0.3 , CSLR = 0.0± 0.3 . (8.3.46)

With the relaxed limit B(Bc → τ ν̄) ≤ 30%, the splitting between scalar operators is larger

and the χ2 slightly improves:

χ2/d.o.f. = 40.03/55 ,

CSRL = 0.407+0.032
−0.137 , CSLL = −0.329+0.146

−0.080 ,

CSRR = 0.00± 0.45 , CSLR = 0.00± 0.45 . (8.3.47)

The right panel of Fig. 8.15 shows the two dimensional parameter space where the ob-

servables entering in the fit are satisfied at 1σ. In this figure, the LHN operators are fixed

at their best-fit values. As it can be seen, there is no overlap at this given significance

level. The non-existing overlap is also reflected in Table 8.12 and Fig. 8.15, where one can

see that scalar solutions cannot satisfy RD∗ , nor F̄D
∗

L . The later is also shown in a very

intuitive way in Fig. 8.13.

Scenario 5a: U1µ

The presence of the vector leptoquark U1µ ∼ (3, 1, 2/3) at the high-energy scale will

contribute to both left and right-handed operators at the mb scale. This vector leptoquark

can be UV-completed in Pati-Salam based unification theories [334–339] for instance.

Considering only the RHN operators, the preferred solution is compatible with a non-zero

value of CVRR while CSLR = 0 at 0.4σ, i.e.

χ2/d.o.f. = 39.39/57 ,

CVRR = 0.39+0.07
−0.08 , CSLR = −0.1+0.2

−0.5 . (8.3.48)
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Figure 8.16: Fit-independent plot of Scenario 5, showing the regions allowed at 1σ. On the

left panel only the right handed neutrino Wilson coefficients are switched on (Scenario 5a),

whereas on the right panel we set the LHN Wilson coefficients entering in Scenario 5b to

their best-fit values. The dashed orange line shows the more relaxed bound B(Bc → τ ν̄) ≤

30%, and the red grid indicates the parameter space consistent with the experimental

measurement of F̄D∗L at 2σ.

Since the scalar coefficient is suppressed, the B(Bc → τ ν̄) limit is not saturated. Further-

more, all the observables included in the fit agree at 1σ, except F̄D∗L which is compatible

with the experimental value at 2σ, as illustrated in the left-panel of Fig. 8.16.

Scenario 5b: U1µ

Including the contributions to LHN operators, the value of the χ2 remains almost constant

with respect to Scenario 5a, ∆χ2 = −0.02 for 2 new d.o.f., and the left-handed Wilson

coefficients are compatible with zero within 1σ:

χ2/d.o.f. = 39.37/55 ,

CVLL = 0.01+0.10
−0.65 , CSRL = −0.03+0.07

−0.45 ,

CVRR = 0.38+0.60
−1.40 , CSLR = −0.01+0.56

−0.54 . (8.3.49)
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This indicates that the best solution for a leptoquark with these quantum numbers involves

only RHN operators.

The right panel in Fig. 8.16 shows the small changes on the allowed regions, in com-

parison with Scenario 5a (left panel). Again, all observables are satisfied at 1σ, except for

F̄D
∗

L .

Scenario 6: R̃2

This scenario considers the solely presence of the scalar leptoquark R̃2 ∼ (3, 2, 1/6). It is

genuine from the perspective of having RHNs, since it does not mediate any interaction

involving left-handed ones. The global fit gives:

χ2/d.o.f. = 44.20/58 ,

CTRR = 0.054+0.009
−0.011 . (8.3.50)

In this case, there is only one free parameter, since the two relevant coefficients, CTRR and

CSRR, are correlated by the Fierz identities. Therefore, one can study the predictions of the

fitted observables as a function of only one free parameter in a fit-independent manner,

as we show in Fig 8.17. The region with larger overlap in this figure corresponds to the

minimum listed in Eq. (8.3.50) and its flipped solution. As in previous scenarios, it is not

possible to reproduce the experimental value of F̄D∗L at 1σ. However, agreement can be

find when B(Bc → τ ν̄) ≤ 30% and F̄D∗L is considered at 2σ.

Scenario 7a: S1

The scalar leptoquark S1 ∼ (3̄, 1, 1/3) is considered in this scenario. For Scenario 7a we

obtain a solution dominated by a single Wilson coefficient, CVRR, being CTRR compatible

with zero within 1σ:

χ2/d.o.f. = 39.21/57 ,

CVRR = 0.422+0.071
−0.126 , CTRR = 0.022+0.032

−0.037 . (8.3.51)
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Figure 8.17: Fit-independent plot of Scenario 6, showing the regions allowed at 1σ (dark

colours), for different values of CTRR. There is no allowed region for F̄D∗L at 1σ. The light

orange and red shaded areas correspond to the more relaxed 30% bound on the leptonic

Bc decay and the 2σ region for F̄D∗L , respectively.

The left panel of Fig. 8.18 shows the regions in the two-dimensional parameter space

where the experimental observables can be reproduced at 1σ. Again, at this level of

precision, the longitudinal D∗ polarization cannot be accommodated together with the

other measurements, although it is possible to find overlap between all experimental data

when the value of F̄D∗L is taken at 2σ, shown in the figure as a red grid.

Scenario 7b: S1

Adding the left-handed operators that contribute in the presence of S1, we find a solution

compatible with vanishing left-handed Wilson coefficients (∆χ2 = −0.15 for 2 d.o.f.) and

a slightly shifted value of CVRR:

χ2/d.o.f. = 39.06/55 ,

CVLL = 0.034+0.11
−0.70 , CTLL = 0.010+0.037

−0.041 ,

CVRR = 0.367+0.68
−1.41† , CTRR = 0.004+0.048

−0.055† . (8.3.52)
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Figure 8.18: Fit-independent plot of Scenario 7, showing the regions allowed at 1σ. On

the left panel only the RHN Wilson coefficients are considered (Scenario 7a), whereas on

the right panel we set the LHN Wilson coefficients entering in Scenario 7b to their best fit

values. The dashed orange line corresponds to the more relaxed bound B(Bc → τ ν̄) ≤ 30%,

and the red grid shows the parameter space consistent with the experimental measurement

of F̄D∗L at 2σ.

For the RHN coefficients, CVRR and CTRR, the χ2 distribution turns out to be very flat

between the two flipped minima, which no longer can be separated. This implies a very

broad negative 1σ interval for CVRR, reaching its flipped minimum CV
′

RR = −0.367.

As in the case of the vector leptoquark Uµ1 (Scenarios 5a and 5b), the preferred solution

for an S1 leptoquark involves only RHN operators.

Scenario 8: Ṽ µ
2

This is another genuine scenario of RHNs, since it does not generate any b→ c transition

involving νL operators. The vector leptoquark Ṽ µ
2 ∼ (3̄, 2,−1/6) only contributes to the

Wilson coefficient CSLR. This allows us to study the parameter space preferred by the

experiment from a fit-independent point of view. As Fig. 8.19 shows, there is no overlap

among the different experimental constraints at the 1σ level, nor even considering a more

relaxed 30% bound for the leptonic decay B(Bc → τ ν̄) and the experimental value of F̄D∗L
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Figure 8.19: Fit-independent plot of Scenario 8. Dark colours correspond to the regions

satisfying the experimental constraints at 1σ and a 10% upper limit on B(Bc → τ ν̄), for a

given value of CSLR. Lighter orange and red shaded areas correspond to the more relaxed

30% bound on the leptonic Bc decay and the 2σ region for F̄D∗L , respectively.

at 2σ. Numerically, the fit provides the following minimum:

χ2/d.o.f. = 47.32/57 ,

CSLR = 0.418+0.097
−0.125 . (8.3.53)

8.3.3.2 Comments on the fit results

Table 8.11 summarizes the fit quality of the results obtained in the different scenarios

analysed, quantified through the corresponding χ2/d.o.f., the pull with respect to the SM,

and the p-value. The resulting predictions in each scenario for the observables included in

the fit are also given in Table 8.12, and compared with their experimental measurements

in Fig 8.20. Several conclusions can be extracted from these results:

• In general, it is difficult to reproduce the experimental value of the longitudinal D∗

polarization within its 1σ range. From Fig. 8.20 and Table 8.12 we can see that

the only solutions reproducing all the experimental values (marked with a 3) are



8.3 Global fit with right-handed neutrinos 193

Scenario 1a with either a 10% (Min 1) or 30% (Min 1 and Min 2) upper limit on

B(Bc → τ ν̄), and Scenario 4b with a 30%.

• All solutions exhibit pulls between 1.2 and 3.7 with respect to the SM fit, showing

a clear preference for NP contributions.

• The largest pull with respect to the SM fit is obtained in Scenario 3, which only

contributes to the CVRR coefficient. Note that CVRR plays a similar role than CVLL in

the observables involving b → c transitions. Therefore, the preference of the fit for

this scenario can be easily understood, since a SM-like modification was the best fit

solution in absence of RHN [52].

• Scenarios 4a, 4b, 6 and 8, involving only scalar (and tensor) operators, have the

largest χ2 value. As Table 8.12 and Fig. 8.20 show, Scenarios 4a, 4b and 8 fail

badly reproducing the experimental value of RD∗ .

• Scenarios 4a, 4b, 6, 8 and Scenario 2 Min2, are disfavoured by the q2 differential

distributions of the B → D(∗) decay with respect to the SM, as the corresponding

PullSM in Table 8.11 shows.

• Those solutions further away from the SM (larger pulls) present higher p-values, as

Table 8.11 shows.

• In scenarios with several operators, the best fits correspond to solutions where all

Wilson coefficients but one are compatible with zero. The non-zero Wilson coefficient

is typically CVRR (Scenarios 5a, 5b, 7a and 7b).

• When scenarios with and without LHN operators (“b” and “a” variants, respectively)

are compared, the fit indicates a preference for solutions with all left-handed Wilson

coefficients compatible with zero within 1σ.

Comparing our results with similar fits previously done in the literature, we can quan-

tify the impact of adding the differential q2 distributions and considering recently measured
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observables such as F̄D∗L or P̄D∗τ , together with the update of some experimental measure-

ments. Ref. [319] analysed all mediators that can contribute to the b → cτ ν̄R transition,

except the Ṽ µ
2 vector leptoquark, but only included in the fit the values of RD and RD∗ .

The global minimum obtained in Ref. [319] for an extra gauge boson V ′ (Scenario 3 ) agrees

with ours, while the two minima obtained for our Scenario 4a deviate more from the SM

solution than ours. The latter is due to the fact that the Bc → τ ν̄ constraint, which has a

strong impact on solutions involving scalar Wilson coefficients, was not taken into account

in the fit. Indeed, Fig. 2 from Ref. [319] shows that their minima are excluded by this

constraint, and this is the reason why in our analysis, this χ2 is the most unfavourable

among all the scenarios considered. For our Scenario 5a, mediated by Uµ1 , two minima

are observed in Ref. [319] where the furthest one from the SM solution is ruled out by the

constraint B(Bc → τ ν̄) ≤ 10%. This situation is repeated in the scenario mediated by

S1, Scenario 7a. Finally, in the case of the R̃2 mediator (our Scenario 6 ), both minima

differ slightly from ours since, again, as their Fig. 2 shows, they are excluded by the Bc
leptonic decay limit; however, taking into account the minimum value of the χ2 satisfying

this constraint, our result is compatible with Ref. [319].

8.3.4 Predictions

In this section we show the predictions of different observables for the fitted scenarios

considered in the previous section. As we will discuss in the following, these results can be

used to discriminate between the different scenarios and, in some cases, even distinguish

the contribution originated by light RHNs from the SM one.

8.3.4.1 Predictions of integrated observables

In Table 8.12 we list the predictions of the different integrated observables considered in

the fit, i.e. RD, RD∗ , F̄D
∗

L , P̄D∗τ and the leptonic branching fraction B(Bc → τ ν̄), for each

of the scenarios considered. Those predictions that are in agreement with the measured

values at the 1σ level are marked with a 3, while a 7 mark indicates disagreement. Only in
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Scenario B(Bc → τ ν̄) χ2/d.o.f PullSM PullSM p-value

P̄D∗τ , FD
∗

L RD,D∗ dΓ/dq2

SM 2.16% 52.87/59 69.95%

Scenario 1, Min 1 < 10% 37.26/53 0.007 2.08 0.0414 2.4 95.02%

Scenario 1, Min 2 < 10% 38.86/53 0.001 2.08 0.0006 2.2 92.68%

Scenario 1, Min 1 < 30% 36.42/53 0.022 2.08 0.0866 2.5 96.00%

Scenario 1, Min 2 < 30% 38.54/53 0.011 2.08 0.000 2.2 93.21%

Scenario 2, Min 1 < 10% 38.54/54 0.006 2.32 0.0113 2.5 93.20%

Scenario 2, Min 2 < 10% 39.05/54 0.004 2.32 0.0003 2.4 93.73%

Scenario 2, Min 1 < 30% 38.33/54 0.035 2.32 0.0023 2.5 94.73%

Scenario 2, Min 2 < 30% 38.80/54 0.025 2.32 0∗ 2.4 94.09%

Scenario 3 < 10% 39.50/58 0.150 3.65 0.0835 3.7 97.00%

Scenario 4a, Min 1 < 10% 49.93/57 0.079 2.34 0∗ 1.2 73.52%

Scenario 4a, Min 2 < 10% 49.93/57 0.079 2.34 0∗ 1.2 73.52%

Scenario 4a, Min 1 < 30% 44.49/57 0.311 2.66 0∗ 2.4 88.62%

Scenario 4a, Min 2 < 30% 44.49/57 0.311 2.66 0∗ 2.4 88.62%

Scenario 4b < 10% 43.56/55 0.054 2.07 0∗ 1.9 86.70%

Scenario 4b < 30% 40.03/55 0.218 2.52 0∗ 2.5 93.54%

Scenario 5a < 10% 39.39/57 0∗ 3.22 0.0981 3.2 96.36%

Scenario 5b < 10% 39.37/55 0∗ 3.34 0.0060 2.6 94.47%

Scenario 6 < 10% 44.20/58 0∗ 3.34 0∗ 2.9 90.93%

Scenario 7a < 10% 39.21/57 0.126 3.22 0.0616 3.3 96.53%

Scenario 7b < 10% 39.06/55 0.014 2.56 0.0112 2.7 94.87%

Scenario 8 < 10% 47.32/57 0.259 2.56 0∗ 1.9 81.60%

Table 8.11: Fit quality of the different fits: χ2/d.o.f, pulls with respect to the SM hypoth-

esis and p-values. The ∗ symbol indicates that the χ2 of a given scenario is greater than

the SM one.
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Scenario B(Bc → τ ν̄) RD RD∗ F̄D
∗

L P̄D∗τ

Experiment - 0.340± 0.027± 0.013 0.295± 0.011± 0.008 0.60± 0.08± 0.04 −0.38± 0.51+0.21
−0.16

Scenario 1, Min 1 10% 0.339± 0.030 3 0.295± 0.014 3 0.494+0.025
−0.045 3 0.06+0.43

−0.45 3

Scenario 1, Min 2 10% 0.338± 0.030 3 0.296± 0.014 3 0.472+0.023
−0.044 7 −0.20+0.67

−0.30 3

Scenario 1, Min 1 30% 0.338± 0.030 3 0.295± 0.014 3 0.510+0.014
−0.043 3 0.08+0.32

−0.46 3

Scenario 1, Min 2 30% 0.338± 0.030 3 0.296± 0.014 3 0.488+0.032
−0.0503 −0.24+0.64

−0.28 3

Scenario 2, Min 1 10% 0.341+0.029
−0.028 3 0.296± 0.013 3 0.474+0.010

−0.024 7 −0.42+0.13
−0.07 3

Scenario 2, Min 2 10% 0.339± 0.030 3 0.296± 0.014 3 0.471+0.012
−0.033 7 −0.401+0.094

−0.064 3

Scenario 2, Min 1 30% 0.341+0.029
−0.028 3 0.296± 0.013 3 0.489+0.011

−0.048 7 −0.47+0.15
−0.05 3

Scenario 2, Min 2 30% 0.340± 0.030 3 0.295± 0.014 3 0.484+0.015
−0.045 7 −0.45+0.13

−0.07 3

Scenario 3 2.5% 0.343± 0.012 3 0.294± 0.010 3 0.462± 0.004 7 −0.377+0.031
−0.033 3

Scenario 4a, Min 1 10% 0.353+0.028
−0.027 3 0.2638+0.0034

−0.0049 7 0.4662+0.0039
−0.0057 7 −0.5028+0.0051

−0.0035 3

Scenario 4a, Min 2 10% 0.353+0.028
−0.027 3 0.2638+0.0034

−0.0049 7 0.4662+0.0039
−0.0057 7 −0.5028+0.0051

−0.0034 3

Scenario 4a, Min 1 30% 0.348+0.028
−0.027 3 0.2699+0.0032

−0.0058 7 0.4792+0.0041
−0.0064 7 −0.5144+0.0056

−0.0032 3

Scenario 4a, Min 2 30% 0.348+0.028
−0.027 3 0.2699+0.0032

−0.0058 7 0.4792+0.0041
−0.0064 7 −0.5144+0.0056

−0.0032 3

Scenario 4b 10% 0.353± 0.028 3 0.2708+0.0032
−0.0052 7 0.4815+0.0041

−0.0068 7 −0.442+0.005
−0.026 3

Scenario 4b 30% 0.340± 0.028 3 0.2866+0.0030
−0.0081 3 0.5125+0.0044

−0.0126 3 −0.356+0.006
−0.066 3

Scenario 5a 2.2% 0.335+0.027
−0.017 3 0.2966+0.0043

−0.00423 0.4611+0.0056
−0.0070 7 −0.364+0.048

−0.050 3

Scenario 5b 2.0% 0.334± 0.029 3 0.297± 0.013 3 0.4609+0.0059
−0.0083 7 −0.38+0.77

−0.16 3

Scenario 6 7.6% 0.361+0.022
−0.021 3 0.2748+0.0066

−0.0059 3 0.4522± 0.0050 7 −0.4800+0.0078
−0.0076 3

Scenario 7a 4.6% 0.335+0.021
−0.011 3 0.297± 0.011 3 0.468+0.007

−0.011 7 −0.377+0.033
−0.058 3

Scenario 7b 4.3% 0.328+0.026
−0.025 3 0.299± 0.012 3 0.471+0.014

−0.013 7 −0.38+0.77
−0.12 3

Scenario 8 7.3% 0.359+0.028
−0.027 3 0.2629± 0.0036 7 0.4644± 0.0043 7 −0.5012± 0.0039 3

Table 8.12: Predictions for the fitted observables in the different minima, and their exper-

imental values.
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Figure 8.20: Predictions for the fitted observables, normalized to their measured values,

with their 1σ experimental uncertainties shown as orange bands. For these predictions

B(Bc → τ ν̄) ≤ 10% is taken. The green and red regions indicate the predictions arising

from each NP scenario that are in agreement or not with the experimental value, respec-

tively, at the 1σ level. The labels within brackets specify the minimum within a given

scenario. The numerical values of these predictions are listed in Table 8.12.

Scenarios 1 and 4b it is possible to simultaneously satisfy all experimental constraints. The

second column shows that the upper bound on the Bc leptonic decay is always saturated

in Scenarios 1, 2, and 4, which denotes that larger pseudoscalar and axial combinations

of the Wilson coefficients would still be preferred.

8.3.4.2 Predictions of angular coefficients

The three-body differential distribution in B → Dτν̄ and the full four-body angular anal-

ysis of B → D∗τ ν̄ → (Dπ)τ ν̄ provide a multitude of observables that could be experimen-

tally accessible. The presence of neutrinos in the final state makes the measurement trou-

blesome, compared to the case of well-known neutral-current transitions like B → K∗µµ̄.

Nevertheless, measuring the distribution of the secondary τ decay, some information on

the angular coefficients Ji and Ii, defined in Eqs. (4.3.28) and (4.3.36), could be obtained in

the near future. As it can be seen from their explicit analytic expressions in Eqs. (4.3.29)

and (4.3.38), these q2-dependent functions can be very sensitive to the NP Wilson coeffi-
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Figure 8.21: Dependence on q2 of the forward-backward asymmetries ADFB and AD∗FB, the

longitudinal polarizations PD(∗)
τ and the longitudinal polarization fraction FD

∗
L , for the

best-fit scenarios.

cients present in the theory. In this section, we provide the predictions of such observables

in some relevant NP scenarios considered in this work.

Fig. 8.21 shows the predictions for the forward-backward asymmetries AD(∗)
FB defined

in Eqs. (4.3.34) and (4.3.51), the lepton polarization asymmetries of Eqs. (4.3.35) and

(4.3.55) and the longitudinal D∗ polarization FD
∗

L defined in Eq. (4.3.48), as functions

of q2. For simplicity we have illustrated the four NP scenarios with largest pulls with

respect to the SM. Note that Scenario 3, which contains the single Wilson coefficient

CVRR, will always give the same predictions as the SM scenario for the forward-backward

asymmetries, FD∗L (q2) and the angular coefficients Īi(q2). Therefore, this scenario is only

included in the τ polarization asymmetries. Error bands in these plots correspond only to

the uncertainties arising from the fitted Wilson coefficients. These uncertainties have been

obtained by minimizing the χ2, imposing Oi = Oi,min + ∆Oi,min, and taking the value of

the observable Oi for which χ2 = χ2
min + 1. Other smaller errors such as FF parameters

or additional inputs are not taken into account. Therefore the SM predictions, plotted as

dotted black lines, do not present any uncertainties.

From these plots, we can see that scenarios with a larger number of Wilson coefficients

also have larger uncertainties (Scenario 1, Min 1 ), as expected because of the wider allowed
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range of variation of their Wilson coefficients. The forward-backward asymmetry ADFB
could be useful to distinguish Scenario 6a from the SM, but the large uncertainties make

difficult to discriminate it from other scenarios or to differentiate the SM from Scenarios

1, 6a and 7. A precise measurement of AD∗FB would allow to distinguish Scenarios 1 and

6a from the rest of NP scenarios, which partly overlap with the SM prediction. A similar

situation occurs for FD∗L , where clear differences manifest at low values of q2 while the

different scenarios considered tend to overlap at high q2. The τ polarizations PD(∗)
τ are

useful to distinguish Scenario 3 from the SM, since these are the only observables that are

sensitive to a single shift in CVRR. Moreover, in Scenario 1 PDτ and PD∗τ exhibit a quite

different dependence on q2 compared to the other scenarios, which could be exploited to

distinguish it at low q2 values. In the high q2 region, PD∗τ also allows to discriminate

Scenario 1 from the other possibilities.

In Fig. 8.22 we plot the B → D∗τ ν̄ angular coefficients, as functions of q2, normalized

by the decay width:

Īi(q2) ≡ Ii(q2)
Γf (q2) . (8.3.54)

The CP-odd quantities I7, I8 and I9 are identically zero in our case, because we have

only considered real Wilson coefficients in our fits. It is interesting to notice that despite

the large uncertainties Scenario 1, Min 1 can be easily distinguished from the SM pre-

dictions and from other minima (for instance looking at Ī1s or Ī5). However, being able

to distinguish other scenarios would be more complicated, unless the current errors on

the Wilson coefficients are sizeable reduced. There is always an overlap between the SM

predictions, Scenario 7a and Scenario 5a. Scenario 6a is close to Scenarios 5a, 7a and

the SM predictions, but it is still possible to distinguish it looking at low (Ī1s, Ī5) or high

(Ī2s, Ī2c, Ī3 and Ī4) q2 values.

Using the symmetries of the angular distribution, Ref. [340] has proposed an alternative

measurement of FD∗L (q2), which is only valid in (CP-conserving) scenarios without tensor

couplings. In those scenarios, a difference between the two measurements would signal the

presence of RHN contributions [340].
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Figure 8.22: Īi, defined in Eq. (8.3.54), for different scenarios. Same colour legend as in

Fig. 8.21.

8.3.5 Conclusions

Using an EFT approach, we have explored the impact of various NP operators on the

recently observed anomalies in b→ cτ ν̄ transitions. In particular, the focus of this work has

been to identify the role of NP operators which can arise due to the presence of RHN in the

theory. This has been achieved through a global-fit analysis of all available b→ cτ ν̄ data

until date: RD(∗) , P̄D
∗

τ , F̄D
∗

L and the q2 differential distributions of B → D(∗). Previous

analyses only studied the integrated rates and did not include the polarization information

(P̄D∗τ , F̄D
∗

L ) and the q2 distributions measured by the BaBar and Belle collaborations,

which play an important role in discarding many proposed NP explanations.

We have also studied the differential B → Dτν̄ decay distribution and have derived

the full four-body angular distribution of the decay B̄ → D∗(→ Dπ)τ ν̄, for the most

general dimension-six effective Hamiltonian, which includes (axial)vector, (pseudo)scalar

and tensor operators for both the left- and right-handed leptonic currents. The rich

dynamical information embodied in the coefficients of these angular distributions could
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be, in principle, experimentally accessed. From these distributions, we have constructed

different observables and have analysed their predicted values within the NP scenarios

emerging from our fits. In the next few paragraphs, we briefly summarize the key findings

of our analysis.

NP contributions have been assumed to be present only in operators involving charged

leptons of the third generation, which is well justified since potential NP effects in b→ c ` ν̄

transitions (` = e, µ) are known to be negligible [253]. The NP couplings have been

also assumed to be real, due to the absence of any evidence of CP violation in these

channels. After investigating the separate impact of individual Wilson coefficients, we

have performed multi-dimensional fits to the data within eleven different scenarios. The

first and the second case include all five RHN operators with and without a SM-like

NP contribution, respectively, whereas the remaining scenarios correspond to ‘simplified

models’ obtained by integrating a single mediator above the EW scale: namely, a scalar

boson Φ, a vector boson V µ, two scalar leptoquarks S1 and R̃2, and two vector leptoquarks

Uµ1 and Ṽ µ
2 . In those cases where the tree-level exchange of a mediator generates both νL

and νR operators, we have further analysed two model variants with and without the νL
contributions.

Among all scenarios analysed, the vector boson V µ (Scenario 3 ) seems to be the pre-

ferred option, in terms of the pulls from the SM hypothesis, as shown in Table 8.11. The

next two possibilities are the scalar leptoquark S1 (Scenario 7 ) and the vector leptoquark

Uµ1 (Scenario 5 ), switching on the RHN couplings only, which can also provide good agree-

ment to the data. However, it is important to note that none of these three possibilities

can generate values of the longitudinal D∗ polarization within its current 1σ experimental

range; they can only reach agreement with the F̄D∗L measurement at the 2σ level. Interest-

ingly, the F̄D∗L data can only be explained at 1σ in very few cases, namely, with all RHN

operators plus the SM-like contribution (Scenario 1 ), or with a scalar boson Φ, switching

on both νL and νR operators (Scenario 4b) and with a relaxed upper limit of 30% on

B(Bc → τ ν̄). However, these scenarios are not the best choices in explaining the RD(∗)

measurements in terms of pull, as reflected in Table 8.11. Nevertheless, they do reduce
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the RD(∗) deviation significantly, and bear very important information about simultaneous

agreement of all observables considered in this work. Due to the large uncertainty of the

current P̄D∗τ measurement, all scenarios are compatible (within ±1σ) with it. The RD
measurement is also easily accommodated in all the NP scenarios that we have analysed.

Measurements of additional observables such as polarizations and angular distributions

could help to to disentangle the dynamical origin of the current anomalies. In particular,

we have displayed the information contained in the three-body and four-body angular

distributions of B → Dτν̄ and B → D∗(→ Dπ)τ ν̄, respectively, and their sensitivity to

the different NP scenarios analysed. The experimental measurement of these distributions

is of course very challenging because of the presence of undetected neutrinos, and one would

need to further analyse the decay products of the tau in order to recover the accessible

information.

8.4 Final remarks

In this chapter we have performed several fits to the relevant Wilson coefficients involving

b → cτ ν̄ transitions. Such transitions have been measured at several observables, being

the most relevant ones the ratios RD(∗) . These ratios are relevant for two reasons. First of

all they are extremely clean observables, since both the CKM element Vcb and many FFs

parameters cancel. Furthermore, their experimental measurements present deviations with

respect to the SM related to LFUV that could be interpreted as NP. These anomalies have

driven attention since they were first measured in 2012, and the subsequent measurements,

performed by different collaborations, have confirmed them. Even though the experimental

central values are getting closer to the SM expectations, the improvement in the theoretical

predictions keeps the discrepancy above 3σ.

Our first work consisted in a global fit with a minimal set of assumptions: real Wilson

coefficients, there are no light RHN and EWSB is linearly realized. We analyzed all

the relevant data at the time and found that, while the preferred solution was a global

modification of the SM (i.e. a non-zero value of CVLL while the rest of Wilson coefficients
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are 0), it was difficult to accommodate all the experimental data within their 1σ range.

Motivated by this fact, we relaxed one of our conditions and added the Wilson coefficient

CVRL. The only solutions that improved the situation with this new Wilson coefficient

corresponded to fine-tuned minima and therefore did not provide a suitable explanation.

The second work on these anomalies described here corresponds to relaxing another

of the assumptions. Now RHN were included in the fit, increasing the number of (real)

Wilson coefficients from five to ten. Being impossible to fit all the parameters at the same

time, we worked on several scenarios, corresponding to the integration of a single NP

mediator. Even though several scenarios improved the situation with respect to the SM

case, just a few scenarios were able to reproduce all the experimental information within

their 1σ uncertainty.

For both situations (with and without RHNs), we presented several predictions for

observables involving b → c transitions. These observables are of great relevance: even

though they have not been measured yet they could help us to disentangle different solu-

tions in the future. These measurements together with the forthcoming new data on the

RD(∗) ratios and the improvement in the theoretical calculations will help us to understand

better these anomalies.

The situation of these anomalies will be clarified in the future, when more experimental

information will be available. Despite the fact that the numerical input used in these works

may become obsolete, the framework developed here will be easily adapted to study new

results. Furthermore, the effort made to predict several observables can be used as a guide

to understand which measurements will be the most relevant to uncover the pattern of

NP.





Chapter 9

Fits to electroweak couplings of

the top and bottom quarks

The LHC has suceeded in confirming the particle content predicted by the SM. In the last

years, a broad range of production and decay channels have been measured to characterize

the interactions among all the particles of the model and to search for deviations with

respect to the predicted couplings. In this chapter we will focus on the EW couplings of

the third generation of quarks, which are specially relevant in many extensions of the SM

such as composite Higgs models or extra dimensions scenarios [341,342].

Since setting limits on the top-quark couplings has not been possible with previous

electron-positron colliders, the LHC measurements analyzed in this work provide the first

constraints on top EW couplings. Here we aim to set constraints on these couplings by

including information provided by ATLAS and CMS for collisions at a center of mass

energy of 13 TeV of the associated production tt̄X (with X = Z,W, γ,H), single top

production in the t channel, Wt associated production and tZq production as well as the

W helicity fraction in top-quark decays.

Since top and bottom quarks belong to the same SU(2)L doublet, their couplings are

related [343, 344] and one needs to consider also bottom-quark operators. To constrain

205
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them, it is useful to consider measurements by LEP and SLC, in particular precise mea-

surements at the Z pole of the ratio Rb and the b-quark asymmetry parameter Ab.

The effect of NP at high scales in these observables can be parametrized by an EFT

containing a subset of ten (CP-conserving) operators. These operators can be constrained

performing a global fit and taking into account the experimental information of the LHC

and LEP/SLC simultaneously. Fits have been performed using the HEPfit tool described

in Chapter 5 with the NPSMEFT6dtopquark model class. The resulting bounds can be

interpreted in terms of NP models in which these operators play the most relevant role.

One can also combine these constraints with the limits for other operators (obtained from

different analyses) and reduce the parameter space of models with larger sets of operators.

In the following years, bounds on the Wilson coefficients are expected to become more

stringent. The LHC program expects to sharpen the limits on these operators considerably

in the high-luminosity LHC (HL-LHC) [345]. Further, future e+e− colliders (either linear

colliders as the International Lineal Collider (ILC) [346] and the Compact Linear Collider

(CLIC) [347] or circular colliders as FCCee [348] and CEPC [349]) operating at energies

above the top-quark production threshold will give rise to important bounds for top-

related operators. Operation above this threshold is part of the initial state of the CLIC

project [350] and later stages of FCCee and CEPC. In this chapter we will define some

well-motivated scenarios to set prospects on the constraints that could be obtained in

these future experiments.

This represents the most complete characterization of the EW couplings of top and

bottom quarks up to date. Our fit yields more stringent constraints than previous works

[351–353]. We also present the first comparison between the HL-LHC and the ILC poten-

tial for precision measurements that constrain the top and bottom-quark EW couplings.

The rest of the chapter is organized as follows. In Section 9.1 the effective Lagrangian

containing dimension-six operators is defined, and the fit procedure is briefly explained.

The observables used in the fit and their sensitivity to the effective operators are described

in Section 9.2. Constraints of the current LHC and LEP/SLC data are summarized in

Section 9.3, while prospects for future colliders are displayed in Section 9.4. This section
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is divided into prospects for the HL-LHC and the different energy stages of the ILC,

extending the basis from ten to seventeen operators in the last case. In Section 9.5 the

fit results for the top-quark Yukawa coupling are described in detail both for the LHC-

LEP/SLC data and for future colliders. The conclusions of the work are summarized in

Section 9.6. This chapter is based in Ref. [354].

9.1 EFT and fit set-up

9.1.1 Operator basis

Let us consider the effective Lagrangian,

Leff = LSM +
(

1
Λ2

∑
i

CiOi + h.c.
)

+ O
(
Λ−4

)
, (9.1.1)

where LSM contains the dimension-4 operators of the SM and Oi are gauge-invariant

dimension-six operators suppressed by the NP scale Λ−2. Operators of odd dimension

will lead to baryon or lepton number violation and therefore are ignored. In this work,

terms suppressed by Λ−4 arising from two insertions of the Λ−2 terms and from the in-

terference between two dimension-six operators with the SM part are also considered.

Dimension-eight operators, suppressed by Λ−4 are not included. For typical values of the

Wilson coefficients, Ci ∼ 1 and considering that the NP scale will exceed several TeV,

the expansion parameters of our theory, Ci/Λ2 are expected to give a well-behaved per-

turbative series. Therefore, the non-inclusion of dimension-eight operators will not spoil

the validity of the theory. In some special cases, this truncation requires a more careful

treatment. A summary of the physical situations in which dimension-eight operators can

be relevant, while the EFT expansion is convergent, is summarized in Ref. [355]. They in-

clude (approximate) symmetries of the low-energy theory that suppress dimension-four and

dimension-six operators, processes where the scattering amplitude vanishes without any

symmetry reason, approximate selection rules enhancing the contribution of dimension-

eight operators or fine-tuned situations in which the dimension-six operators are much
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smaller than the dimension-eight ones. To check this assumption, we will perform our fits

with and without considering these Λ−4 terms and the results will be compared.1 This

will be studied with more detail in Section 9.3.

In this analysis we do not consider the full set of dimension-six operator involving a top

and bottom quark, but we consider the operators relevant for the study of our observables.

Further, we will restrict the analysis to CP-conserving coefficients, so imaginary parts are

ignored. Studies dedicated to setting constraints on these complex phases at colliders can

be found in Refs. [357,358] and from low-energy probes in Ref. [359].

The relevant operators defined in the Warsaw basis [290,360,361] are,

O1
ϕQ ≡ y2

t
2 q̄γµqϕ†i←→Dµϕ,

O3
ϕQ ≡ y2

t
2 q̄τ Iγµqϕ†i←→D I

µ ϕ,

Oϕu ≡ y2
t
2 ūγµuϕ†i←→Dµϕ,

Oϕd ≡
y2
t
2 d̄γµdϕ†i←→Dµϕ,

Oϕud ≡
y2
t
2 ūγµdϕT εiDµϕ,

OuW ≡ ytgW q̄τ Iσµνuεϕ∗W I
µν ,

OdW ≡ ytgW q̄τ IσµνdϕW I
µν ,

OuB ≡ ytgY q̄σµνuεϕ∗Bµν ,
OdB ≡ ytgY q̄σµνdϕBµν ,

Ouϕ ≡ q̄uεϕ∗ ϕ†ϕ,
Odϕ ≡ q̄dεϕ∗ ϕ†ϕ.

(9.1.2)

where q ≡ (uL, VCKMdL) , u ≡ uR, d ≡ dR and ε ≡ ( 0
−1

1
0) acts on SU(2)L indices.

The operators O1
ϕQ and O3

ϕQ modify the left-handed couplings between the Z boson

and the top/bottom quarks,

δgtL = −
(
C1
ϕQ − C3

ϕQ

) m2
t

Λ2 , δgbL = −
(
C1
ϕQ + C3

ϕQ

) m2
t

Λ2 . (9.1.3)

A simultaneous fit of the O1
ϕQ and O3

ϕQ Wilson coefficients is motivated by the purpose of

constraining these couplings. The right-handed couplings are modified by the coefficients

Cϕu and Cϕd,

δgtR = −Cϕu
m2
t

Λ2 , δgbR = −Cϕd
m2
t

Λ2 . (9.1.4)

The operators OuW ,OdW ,OuB,OdB are the EW dipole operators. OuW and OuB
(OdW and OdB) give rise to tensor couplings between the photons and the Z bosons to the

1This procedure is the one proposed by the LHC TOP Working Group [356].
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up (down) quarks and induce anomalous dipole moments of the top (bottom) quarks. The

O3
ϕQ and OuW operators modify the charged-current interaction of the top quark with a

W boson and a left-handed b quark. Similarly, Oϕud and OdW give rise to the interaction

between a W boson, a top quark and a right-handed bottom quark.

Finally, the operators Ouϕ and Odϕ shift the Yukawa couplings of up/down quarks.

Shifts in the top-quark Yukawa couplings related to Ouϕ will be of special relevance and

are studied in detail in Section 9.5. A full study of this operator should include Higgs

production and decay rates. Therefore, our EW EFT should be combined with a Higgs

EFT. However, this analysis is beyond the scope of this work. The observables studied

here are insensitive to Odϕ, so this operator is ignored in the analysis.

The chromo-magnetic operatorsOuG ≡ ytgsq̄σµνuεϕ∗Gµν andOdG ≡ ytgsq̄σµνdεϕ∗Gµν ,

or the four-fermion operators of the qq̄tt̄ type are not considered here. The 4-fermion op-

erators could be constrained by pp → tt̄/bb̄ observables and top/bottom production. In

particular, contributions to the associated production pp → tt̄X considered here, could

be sizeable and play an important role in probing all combinations of qq̄tt̄ operators effi-

ciently. Consequently, the validity of our EFT is restricted to BSM models where these

operators are subleading.

In the following we will focus on the third generation of quarks. Therefore, the oper-

ators will be labelled as OtW ,ObW ,OtB,ObB,Otϕ,Obϕ and Oϕtb. The Wilson coefficients

are normalized to the TeV scale.

9.1.2 Fit set-up and implementation

The dependence of the observables of the fit with the Wilson coefficients is calculated

at leading order (LO) with the Monte Carlo generator MG5_aMC@NLO [362]. For most of

the operators the TEFT_EW UFO model [363] is used, with the exception of Ctϕ generated
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with the dim6top UFO model [356], and (CbW , CbB) generated with the SMEFTsim UFO

model [364]. The following input parameters are used,

α = 1/127.9 ,
GF = 1.16637× 10−5 GeV−2 ,

mZ = 91.1876 GeV ,
mH = 125 GeV ,

mb = 0 GeV ,
mt = 172.5 GeV .

The dependence of the observables “obs” on the Wilson coefficients implemented in

the fit can be parametrized as,

obs = obsSM + 1
Λ2

∑
i

Ciobsi + 1
Λ4

∑
j

∑
k

CjCkobsjk + O(Λ−4) , (9.1.5)

where obsSM are the SM part of these observabes, i.e. with all the Wilson coefficients set

to zero. The second terms, suppressed by Λ−2 come from the interference between the

SM and a dimension-six operator. Terms suppressed by Λ−4 come either from the square

of the amplitudes with one insertion of a dimension-six operator or from the interference

of amplitudes involving two of these insertions with the SM. Terms suppressed by Λ−4

corresponding to dimension-eight operators are not considered. The explicit dependence of

all the observables with the Wilson coefficients can be found in Appendix A of Ref. [354].

For several observables the Λ−2 terms of Eq. (9.1.5) are suppressed, so Λ−4 play a

crucial role to set constraints on our coefficients and the EFT is not valid in full generality.

This suppression appears for different reasons:

• σµνqν structure: The σµνqν structure present in associated production pp→ tt̄X

with top-quark dipole operators involves the momentum of a photon or a Z boson

that tends to be soft and therefore is suppressed [363]. The validity of the fit is

recovered for CtW and CtB if the charged-current interaction e+e− → tt̄ is included,

as in future linear colliders.

• Operators suppressed by the bottom mass: The operators ObW ,Oϕtb induce

a t̄bW vertex involving a right-handed bottom quark. ObB also generates a chirality

flipping bb̄ dipole interaction. In the mb = 0 approximation adopted here, the
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dependence on the Λ−2 terms vanishes, and Λ−4 terms present a strong dependence.

Even after the ILC programme, a strong dependence on the Λ−4 terms remains.

The fits are implemented in the HEPfit package [92, 93]. Details on this open-code

source as well as the implementation of the model can be found in Chapter 5.

The results of this chapter have been verified with an independent fitting code based

on the Minuit minimization package in ROOT [365]. Results for individual limits agree

to the 1% level. For the comparison of the global limits we perform an ad-hoc fit in which

we reduce the number of parameters and observables. In this case the results agree to

10%. In general we find HEPfit is more robust when dealing with several local minima,

so all final results are obtained using it. Results are given as intervals on the operator

coefficients with a given posterior probability, typically 68%.

9.2 Observables included in the fits

Here we collect the observables used for the fits. A summary of these observables can be

found in Table 9.1. Measurements of LHC (ATLAS and CMS) correspond to a center of

mass energy of
√
s = 13 TeV and an integrated luminosity of 36 fb−1. Since measure-

ments from different collaborations have not been combined yet and this combination will

require an harmonization of the definition of systematics errors, we take the most precise

measurement for each observable. Measurements of the same observables at 8 TeV are not

included, with the exception of the W boson helicity fractions in top decays, not available

at 13 TeV.

LEP and SLC measurements of Rb and AbbFBLR at the Z pole have been combined in

the EW fit of Ref. [366]. This fit correlates the measurements of several quantities and

reports a complete covariance matrix.

Correlation among different measurements can be relevant in our fits due to systematic

uncertainties. Theory predictions are also correlated through the parton density functions

and the similarity of the matrix elements of the several associated production processes.

The full correlation matrix has been included for the LEP/SLC measurements, and has
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a negligible effect in our results. The inclusion of an ad-hoc 50% correlation between the

results of an associated top production has been also checked, and this has a minor effect.

Consequently, these correlations are ignored.

Process Observable
√
s

∫
L SM Ref.

pp→ tt̄H cross section 13 TeV 36 fb−1 - [367]

pp→ tt̄Z/W cross section 13 TeV 36 fb−1 [363] [368]

pp→ tt̄γ fid. x-sec. 13 TeV 36 fb−1 [363] [369]

single-top (t-ch) cross section 13 TeV 36 fb−1 - [370]

single-top (Wt) cross section 13 TeV 36 fb−1 - [371]

single-top (tZq) cross section 13 TeV 36 fb−1 [372] [373]

t→W+b F0, FL 8 TeV 20 fb−1 [374] [375]

e−e+ → bb̄ Rb , AbbFBLR ∼ 91 GeV 202.1 pb−1 - [366]

Table 9.1: Measurements included in the EFT fit of the top and bottom-quark EW sector.

For each measurement, the process, the measured observable, the center of mass energy

and the integrated luminosity are listed. The last column shows the references for the

measurement that is included in the fit.

The observables included in our fit are the following:

Top-quark neutral current interactions

• pp→ tt̄h production: The production of a Higgs boson in association with a top-

quark pair was observed by ATLAS and CMS in 2018 [367, 376]. Shifts in the top-
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quark Yukawa coupling and therefore in the Wilson coefficient Ctϕ have sensitivity

to this observable.

• pp→ tt̄Z/W production: The associated production of top quarks with a Z

boson gives access to all operators that modify the coupling of the top quark with

neutral EW gauge bosons and is therefore a key channel in a combined fit [363].

The ATLAS and CMS measurements of the inclusive cross section using 36 fb−1 of

data at 13 TeV have reached a precision of approximately 15-20% [368, 377]. The

results on pp → tt̄W production are also included in the fit. A recent preliminary

result [378], with an integrated luminosity of 8 fb−1 and a relative uncertainty of

less than 10%, is not included.

• pp→ tt̄γ production: The rate of pp→ tt̄γ depends on the CtW and CtB coeffi-

cients of EW dipole operators. ATLAS has published a measurement of the pp→ tt̄γ

fiducial cross-section [369] at
√
s = 13 TeV.

• pp→ tZq production: Single top-quark production in association with a Z boson

has been observed by ATLAS and CMS in pp → tZq with a precision of approxi-

mately 15-35% [379,380].

The neutral-current pair production process qq̄ → Z/γ → tt̄ is overwhelmed by the

QCD process and has not been isolated. This contribution to the inclusive pp→ tt̄ process

leads to a dependence of the rate on the EW operators considered, but in practice this

contribution can be ignored so we do not include it in our fits.

Top-quark charged current interactions

• Top-quark decay, t→Wb: The tb̄W vertex is accesible thorugh the t → Wb

decay, which has a branching ratio close to the 100%. For this decay, helicity fractions

are predicted with excellent precision [374] and have been measured by ATLAS

and CMS at center of mass energies of
√
s = 7 and 8 TeV with a precision of

several percent [375, 381–383]. The combination of theoretical and experimental
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information converts these observables in sensitive probes to new physics affecting

the tb̄W vertex [357]. Helicity fractions at 8 TeV (FL and F0) are included and

tightly constrain the Wilson coefficient CtW .

• Single top production: The t-channel process of single top-quark production has

a sizeable contribution with a precision better than 10 % at
√
s = 13 TeV [370,383].

ATLAS and CMS have also published precise measurements of the rate for the Wt

associated production channel [371,384].

Bottom-quark production

• e+e− → bb̄ production: LEP and SLC measurements of bottom-quark pair pro-

duction provide very powerful constraints and complement the top quark production

measurements that allow to constrain C3
ϕQ and C1

ϕQ in a global fit [344]. The combi-

nation of top-quark production observables with Rb and AbbFBLR at the Z pole [366]

yield into strong constraints for both operators [344] .

The pp → bb̄Z/γ associated production, measured at the LHC and Tevatron provide

information about the bb̄Z and bb̄γ vertices. This has been measured by ATLAS and CMS

in early LHC runs [385,386]. Constraints derived from here are considerably weaker than

the ones coming from LEP and SLC measurements and therefore are ignored.

9.2.1 Sensitivity to coefficients

The set of observables summarized in Table 9.1 provides sensitivity to the operators of

Eq. (9.1.2). The associated production of top quarks with Z bosons measured at the LHC

is sensitive to all five top-quark operators and provides relevant constraints. Associated

production with a photon gives access to the dipole operators CtW and CtB. Charged-

current processes such as tt̄W production, EW single top-quark production and top-quark

decay are sensitive to CtW , C3
ϕQ, C

1
ϕQ and Cϕtb. Finally, results on e+e− → bb̄ production

constrain C1
ϕQ and C3

ϕQ and pure bottom-quark operators.
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Figure 9.1: Results of single-parameter individual fits to the Wilson coefficients of the

dimension-six operators introduced in Section 9.1. For each operator the 1σ uncertainty

is shown. The three bars correspond to the result of the combined fit using all data (red),

to the constraint obtained from the most sensitive single measurement (light green), and

to that of the second-best measurement (greyish green).

The sensitivity of the observables to the different operators is summarized in Fig. 9.1.

The first bar (in red) displays the individual limit on a given Wilson coefficients for a fit

with all the data presented in Table 9.1. The second and third bars (in light and greyish

green) show constraints obtained from the first and second most sensitive observables for

that Wilson coefficient. One can note that there is a strong hierarchy in the sensitivity of

the measurements for most of the operators. The most sensitive observables give bounds

that are 2-5 times stronger than the second best. The coefficients C1
ϕQ and C3

ϕQ are

strongly constrained by Rb, 30 times better than for the next most sensitive observables tt̄Z

and tt̄W . For CtB, both the associated production of tt̄Z and tt̄γ have a similar sensitivity.

The combination of these two observables yields into significantly better bounds than

limits from the individual observables. In the case of Cϕtb, the different single top-quark

measurements provide similar sensitivity. The helicity fractions of the W boson in top-
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quark decay provide a strong limit on CtW that is not affected by other observables

significantly.

There are few observables that are sensitive to a larger set of Wilson coefficients: Rb
can constrain five different operators in a stringent way and tt̄Z and tZq are also sensitive

to several operators.

9.3 Present constraints

In this section we present a ten-parameter global fit to the experimental observables of

LHC and LEP of Section 9.2. The obtained 68% probability bounds are summarized in

the left panel of Fig. 9.2 and in Table 9.2. The correlation among the different parameters

can be seen in the right panel of Fig. 9.2. Global or marginalized limits where all the

coefficients are varied simultaneously are denoted with blue solid lines and individual

limits with red dashed lines.

In general, one can note that individual limits yield tighter bounds than limits from

a combined fit, but a global fit still gives relevant constraints. The Wilson coefficient

CtW /Λ2 is strongly constrained, both in an individual and in a global fit. As it can be

seen from Fig. 9.1, several observables have similar sensitivity for the coefficients CtB/Λ2

and Cϕt/Λ2, so the bounds are not degraded very much when we compare individual and

global limits.

For those operators that affect bottom-quark production in e+e− collisions, the indi-

vidual limits from the Z-pole measurements are very tight. Therefore, several observables

have to be used to disentangle the contributions of different operators. Given the large

hierarchy in sensitivities observed in Fig. 9.1 the global limits are typically much weaker

than the individual ones. Even so, tight constraints of order 1 TeV−2 are obtained for

C1
ϕQ/Λ2, C3

ϕQ/Λ2 and Cϕb/Λ2.

The results of our global fit give stronger results than previous works. In particular

the inclusion of the Z-pole measurements leads to considerably stronger constraints than

the ones obtained in Ref. [353].
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Figure 9.2: The 68% probability intervals (left panel) and correlation matrix (right panel)

for the Wilson coefficients of the ten effective operators that modify the EW couplings

of top and bottom quarks derived from a fit of the data included in Table 9.1. The

correlation matrix in HEPfit is calculated following Ref. [88]. Detailed information about

the correlation between the parameters and the complete covariance matrix of the fit are

given in Appendix C.1 of Ref. [354]. Global (marginalized) limits obtained in the fit are

shown as blue (red) bars. The local minima of the χ2 are shown as triangles.

The results summarized in the left column of Table 9.2 and Fig. 9.2, corresponding

to a nominal fit including Λ−2 and Λ−4 terms, show two different allowed regions, almost

symmetric around the SM limit, i.e. Ci = 0, for three Wilson coefficients. This can

be understood by looking at the parametrization of the observables in Eq. (9.1.5), that

includes Λ−2 and Λ−4 terms. The two allowed regions for CbW /Λ2, CbB/Λ2 and Cϕtb/Λ2

are a consequence of the Λ−4 terms. In Table 9.2, the results of a fit with only quadratic

terms and a fit with both Λ−2 and the Λ−4 terms are compared. In the dependence of

tt̄X on CtB, the Λ−2 term is suppressed and Λ−4 term dominates. Therefore, if one drops

the Λ−4 term in this observable the limit is degraded. The same does not happen for

CtW , dominated by the helicity fractions in top-quark decay and single-top production

cross section. For the Wilson operators CbW , CbB and Cϕtb, the Λ−2 term vanishes in the

mb = 0 approximation used here, so no limits can be obtained only from the Λ−2 terms

and Λ−4 parts are needed. The correlation among the different observables propagates
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Λ−2 and Λ−4 terms Λ−2 term only
Cϕt/Λ2 (−16,−2.4) (−2.1,+4.5)
C3
ϕQ/Λ2 (−1.9,−0.4) (−0.7,+0.5)

C1
ϕQ/Λ2 (−1,+1.7) (−0.6,+0.7)

CtW /Λ2 (−0.4,+0.2) (−0.42,+0.24)
CtB/Λ2 (−6.8,+5.6) (−9.6,+38.4)
Ctϕ/Λ2 (−4.6,−0.4) (−4.42, 0)
Cϕb/Λ2 (−5.4,+0.2) (−0.6,+0.2)
CbW /Λ2 (−2.6,+2.1) —
CbB/Λ2 (−31.2,+2.4), (+14.4,+18) —
Cϕtb/Λ2 (−5.2, 5.6) —

Table 9.2: The 68% probability intervals on the dimension-six operator coefficients in

units of TeV−2. These results are obtained with a fit to LHC and LEP/SLC data for two

parametrizations of the dependence of the observables on dimension-six operator coeffi-

cients. The first column lists the results from the fit based on the nominal parametrization,

which includes terms proportional to Λ−2 and Λ−4. The second column is obtained with

a fit based on a parametrization that only includes Λ−2 terms. The coefficient Ctϕ is

marginalized over in the fit, but discussed separately in Section 9.5.

this effect to the other observables. If the fit is repeated excluding ObW ,ObB and Oϕtb the

fits with and without including Λ−4 terms are very similar except for CtB and Cϕt.

The importance of the Λ−4 terms indicates that the expansion of the EFT should be

carefully verified. When these results are applied to a concrete BSM model, the ignored

dimension-eight operators need to be subdominant in comparison with the dimension-six

ones.
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9.4 Future colliders prospects

9.4.1 High-luminosity phase of the LHC

At this point, the ATLAS and CMS experiments have collected a total of 140 fb−1 of pp

collisions at a center of mass energy of
√
s = 13 TeV in Run 2 and the LHC is currently

in a long shut-down (LS2) stage. After the LS2, that will finish in March 2021, the LHC

Run 3 is expected to deliver a total of 300 fb−1 at
√
s = 14 TeV. Between 2025 and the

middle of 2027 the LHC will be upgraded at the long shut-down 3 (LS3) and detectors

will allow operation of five to seven times the nominal LHC luminosity. This is known as

the HL-LHC and will bring a total integrated luminosity of 3 ab−1 by 2037.

The expected precision for the SMmeasurements at the HL-LHC is presented in a series

of Yellow Reports. The chapter on top-quark physics [387] does not provide a quantitavive

basis for the measurements included in our study. Therefore, we adopt two simple scenarios

to present prospects on future measurements based on the HL-LHC Higgs chapter of the

Yellow report [388]. Scenario 1 (S1) envisages that the statistical uncertainty scales with

the inverse square root of the integrated luminosity, while systematics uncertainties in

measurements and predictions do not change. Scenario 2 (S2) envisages an improvement

of a factor of two for the theory uncertainty, while the statistical uncertainty and the

experimental systematic uncertainty scale with the inverse square root of the integrated

luminosity. For the observables included in this analysis, it implies a reduction of the

statistical uncertainty by a factor of 6-10. At that point, comparison with the SM is

limited by the theory uncertainty, that has a minor improvement.

The production of a top quark in association with a gauge boson plays and important

role in the fit. In these observables, the theoretical and experimental uncertainties are

both of a 10%. In S2 the experimental uncertainties are expected to reduce significantly

and therefore the limitation at the end of the HL-LHC phase will come from the theoretical

determination. The improvement by a factor of two in these theoretical determinations,
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assumed in S2, could be achieved by improving the QCD description from NLO to NNLO,

which seems feasible on the time scale of the HL-LHC programme.

More precise measurements of differential observables are expected to improve the

fit substantially. In the current data set, the precision is limited for rare processes, but

with a hundred-fold increase in the data sample, differential analyses at the HL-LHC are

expected to provide powerful constraints [389, 390]. As it was studied at [354], this is

particularly important for the top dipole operators, that will improve substantially from

higher transverse momenta of the photon in pp → tt̄γ differential cross sections, even

exceeding the prospects of S2.

The constraints expected in S2 from the W -boson helicity fraction measurements in

top decays are probably overoptimistic. Unlike in other observables, the theoretical uncer-

tainty for this observable is significatively below the experimental precision, so that it does

not limit the precision for this projection and S2 is found to be optimistic in comparison

with other works, as the one of Ref. [357]. In practise, the effect of an overestimation in

this observable is limited, since these observables are most relevant to constrain CtW /Λ2,

that is already sensitive to other measurements. Even if measurements in top-quark decays

are less precise than the expectations in S2, other measurements (such as single top-quark

production with a Z boson) can take over its role in the global fit. Therefore, an overesti-

mation in the precision of these observables will not affect significantly the results of the

fit for the HL-LHC that will be presented in Section 9.4.3.

9.4.2 Future e+e− collider: ILC

To study the prospects of future e+e− colliders we will focus in the ILC. A future CLIC

collider at its initial stage
√
s = 380 GeV [347, 350, 391] is found to be very similar for

the relevant two-fermion operators, when rescaled by the appropriate integrated luminos-

ity [342].

At an electron-positron collider, the production of a bottom and top-quark pair through

the exchange of a photon or a Z-boson will be among the dominant processes. Therefore,
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a high-energy e+e− collider is the perfect laboratory to study Z/γbb̄ and Z/γtt̄ vertices.

Single top-quark production could also bring valuable constraining power [392], but no

quantitative prospects are currently available, so it is ignored in this work.

These colliders could help us to access to both the bottom and top-quark couplings,

depending on their center of mass energy. For the top to be produced, the center of mass

energy needs to be above the production threshold, i.e. two times the top mass. Only

above these energies top-quark operators could be constrained. Let’s consider three stages

of an e+e− collider like the ILC:

• ILC at
√
s = 250 GeV and 2000 fb−1: This scenario was studied in [351, 393].

These studies considered measurements of the cross section and forward-backward

asymmetries, where the e+e− beams are polarized with ±80% and ±30%. Luminos-

ity is divided equally among the left-right and right-left configurations. The authors

of [351,393] performed full simulations that include the SM background and jet sim-

ulations. We adopt the framework of [393], that includes statistical and systematic

uncertainties.

• ILC at
√
s = 500 GeV and 4 ab−1: For this scenario we adopt an acceptance

times efficiency of 25% and an integrated luminosity of 4 ab−1 as it was done in

Ref. [393]. An e+e− collider at this center of mass energy will also set bounds on top

couplings. Being polarized, the γ and Z vertices could be distinguished [394, 395],

and therefore Ctb and CtW could be simultaneously constrained. Projections on

e+e− → tt̄ are based on optimal observables as described in [344]. These observ-

ables are optimized to exploit the bW+b̄W− differential information (in the narrow

top-quark width approximation). This provides strong constraints for the Wilson

coefficients Cϕt,
(
C1
ϕQ − C3

ϕQ

)
, CtW and CtB. Ref. [344] showed that at least two

center of mass energies are needed to constraint all the two-fermion and four-fermion

operators simultaneously. The experimental uncertainties are studied in full simula-

tion in Ref. [350,394]. Statistical uncertainties are estimated, including the relevant

branching ratios for the lepton+jets final state, the effect of the luminosity spectrum
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and a tt̄ reconstruction efficiency of 50%. This yields an effective efficiency of 10%

that multiplies the e+e− → tt̄ cross-section (see Ref. [344] for more details).

• ILC at
√
s = 1000 GeV and 8 ab−1: With a linear collider operating at 1000 GeV

and making use of the other two energy stages additional four-fermion operators can

be constrained. This will be done in Section 9.4.4.

9.4.3 Global fit on prospects

Several global fits for the scenarios presented in Sections 9.4.1 and 9.4.2 are summarized

in Fig. 9.3. The uncertainty in the Wilson coefficients ∆Ci/Λ2, estimated as half the 68%

probability interval, is shown here. Different colour bars represent the different scenar-

ios, as the plot legend shows: the first (dark brown) column corresponds to the current

LEP/SLC + Run 2 data, the second and third columns (brown and red) are the S1 and S2

scenarios described in Section 9.4.1. The last two columns (dark and light green) describe

the ILC prospects at
√
s = 250 GeV and

√
s = 500 GeV, respectively. Solid lines show

the individual constraints, when a single operator is fitted each time, and the full bars

correspond to ten-parameter fits. Full covariance matrices for all the fits are provided in

Appendix C.2 of Ref. [354]. The top-Yukawa coupling Ctϕ is of special interest and will

be described in detail in Section 9.5.

For the different prospects, the central value of all the experimental observables are

set to their SM prediction. The conservative scenario S1 only improves the situation

marginally. For S2 almost all the limits are tighter than for the LHC+LEP/SLC fit.

The Wilson coefficient Ctb remains poorly constrained, due the limited sensitivity of the

LHC observables. It could be improved with differential tt̄γ measurements [396]. For the

top-quark sector one finds that the individual and marginalized limits are very similar.

Since most top-quark operators are constrained from several observables, the correlation

among them is limited. The same is not true for the bottom sector, where the bounds

are dominated by Rb and therefore the coefficients are considerably correlated. This also

explains the difference between the individual and marginalized bounds.
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Figure 9.3: Prospects for the precision of the Wilson coefficients in future high-luminosity

operation of the LHC and at a high-energy e+e− collider. Assumptions on the operating

scenarios and details of the uncertainty estimates are given in the text. The solid section

of the bars represents the individual constraints, where each parameter is fitted in isola-

tion, the full length indicates the marginalized constraints in the ten-parameter fits. The

complete covariance matrices of the fits that are presented in this figure are available in

Appendix C.2 of Ref. [354].

Future linear colliders could also improve the bounds significantly. At an ILC operating

at 250 GeV, bottom-antibottom pairs can be produced which can help to improve the

bottom-quark operator constraints by an order of magnitude. Since top pair production

is not accessible at these energies, top operators only improve through their correlation

with the bottom ones.

Adding a second energy state at
√
s = 500 GeV, the bottom operators have a similar

sensitivity as at the
√
s = 250 GeV stage, since bb̄ production decreases with the center

of mass energy. Adding e+e− → tt̄ data, improves the top operator bounds by one or two

orders of magnitude. The direct access to the Z/γtt̄ vertices yields into tight constraints.

This situation can be seen at the left column of Table 9.3. The Wilson coefficients C1
ϕQ/Λ2

and C3
ϕQ/Λ2 are expected to improve by one order of magnitude, giving strong limits to
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the top and bottom production couplings
(
C1
ϕQ ± C3

ϕQ

)
. Finally the degeneracy of the

LHC/LEP fit of Section 9.3 is broken.

10-parameter fit 17-parameter fit
ILC250 + ILC500 + ILC1000

Cϕt/Λ2 0.01 0.09
C3
ϕQ/Λ2 0.005 0.04

C1
ϕQ/Λ2 0.005 0.04

CtW /Λ2 0.02 0.014
CtB/Λ2 0.02 0.015
Ctϕ/Λ2 0.54 0.54
Cϕb/Λ2 0.007 0.008
CbW /Λ2 0.09 0.17
CbB/Λ2 0.13 0.17
Cϕtb/Λ2 1.9 1.9
Ceu/Λ2 — 0.0006
Ced/Λ2 — 0.0005
Ceq/Λ2 — 0.0004
Clu/Λ2 — 0.0006
Cld/Λ2 — 0.0009
C−lq/Λ2 — 0.0006
C+
lq/Λ2 — 0.0005

Table 9.3: The marginalized 68% probability bounds on the dimension-six operator coef-

ficients in units of TeV−2. The results in the first column are based on a ten-parameter fit

on pseudo-data from two ILC runs, with an integrated luminosity of 2 ab−1 at 250 GeV

and 4 ab−1 at
√
s = 500 GeV. These results are identical to those of the ILC500 entry

in Fig. 9.3. The second column presents the results of the seventeen-parameter fit. It in-

cludes an additional run, with an integrated luminosity of 8 ab−1 at
√
s = 1 TeV and seven

additional degrees of freedom corresponding to two-lepton-two-third-generation-quark op-

erators.

Again, the validity of our fits has to be checked carefully, since dimension-eight oper-

ators are ignored. Once we move to scenarios giving tighter constraints, we expect the
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validity to increase. At the HL-LHC scenario the tension between the Λ−2 and Λ−4 de-

creases significantly. Most of the observables give better constraints (up to three times

better) for the Λ−2 terms, due to the fact that observables depend on less parameters

because the Λ−4 terms vanish for CbW , CbB and Cϕtb in the mb → 0 limit. However, the

Λ−4 terms still play an important role in CtB, since the linear term is suppressed, as we

mentioned in Section 9.2. High precision e+e− collisions improve the bounds by at least

one order of magnitude, and bring most of the operators to a range where the EFT ex-

pansion is valid in full generality. The difference between the nominal fit and the fit based

in Λ−2 terms is reduced to less than a 20%.

9.4.4 Four-fermion operators of the form e+e−Q+Q−

Here we will consider the complete set of CP-conserving dimension-six operators that

affect the top and bottom-quark EW couplings.

The two-lepton-two-quark operators contributing to e+e−tt̄ and e+e−bb̄ (also νe−tb̄)

are,

O1
lq ≡

1
2 q̄γµq l̄γµl ,

O3
lq ≡

1
2 q̄τ Iγµq l̄τ Iγµl ,

Olu ≡ 1
2 ūγµu l̄γµl ,

Old ≡ 1
2 d̄γµd l̄γµl ,

Oeq ≡ 1
2 q̄γµq ēγµe,

Oeu ≡ 1
2 ūγµu ēγµe,

Oed ≡ 1
2 d̄γµd ēγµe,

OTlequ ≡ q̄σµνu ε̄lσµνe,
OSlequ ≡ q̄u ε l̄ e,
Oledq ≡ d̄q l̄e,

(9.4.6)

where l ≡ (VPMNSνL, eL)T , e ≡ eR, and VPMNS is the Pontecorvo-Maki-Nakagawa-Sakata [397–

399] matrix. We define O+
lq ≡ O1

lq +O3
lq which mediates bb̄ production and O−lq ≡ O1

lq−O3
lq

for tt̄ production in e+e− collisions.

The seven operators in the left column of Eq.(9.4.6) have vector Lorentz structures

similar to SM gauge interactions. The three further scalar and tensor operators of the

second colun have non-standard Lorentz structures and can effectively be constrained with

specialized observables [344] and runs with left-left or right-right beam polarization [400].

In the following, we therefore focus on the seven vector operators.
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The primary handle to constrain 2 and 4-fermion operators in a global fit is their energy

dependence. While the sensitivity for the 4-fermions operators grows strongly with the

energy, it is flat for the two-fermion ones. At hadron colliders, 4-fermions operators can

be constrained by the differential analyses of the pp→ tt̄e+e− process versus the invariant

mass and the transverse momentum of the e+e− system [363]. The fit can disentangle

the contributions from the photon, the Z-boson and the contact interactions. No such

analysis has been made public so far.

A linear e+e− collider with several energy states can set bounds to the four-fermion

operators. A detailed analysis with the basis of ten operators of Section 9.1 was done in

Ref. [344]. Stringent bounds were obtained when at least two energy states were consid-

ered.

In this work we extend the basis of ten Wilson operators with the seven additional op-

erators of the form e+e−Q+Q− of Eq. (9.4.6). To constrain them, we project prospects for

masurements at
√
s = 1 TeV with an integrated luminosity of 8 ab−1. This stage is added

to the previous ones (HL-LHC+ILC250+ILC500). For the top-quark operators we again

adopt the projections of Ref. [344]. For bottom-quark operators, statistical uncertainties

on the cross-section and AFB are propagated, assuming a conservative acceptance times

selection efficiency of 10%.

The marginalized results of this fit at a 68% probability are summarized in the right

panel of Table 9.3. These results can be compared to the ten-parameter fit of the ILC500

at the right column of Table 9.3 and the light green bands of Fig. 9.3.

The fit yields into excellent limits for the four-fermion operators, below 10−3 TeV−2.

These bounds agree with those of Ref. [344] when the larger integrated luminosity in the

1 TeV scenario is accounted for. The bounds on the dipole operators are similar to the

ten-parameter fit: for the top-dipole operators, CtW and CtB the bounds slightly improve,

as the sensitivity increases with the center of mass energy. Bounds on CbW come from

the cross section and AFB measurements. As it has been mentioned, the sensitivity of bb̄

production decays with
√
s, so we do not find an improvement with respect to ILC500,

but constraints become weaker, as additional e+e−bb̄ degrees of freedom are introduced.
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The main consequence of introducing the ILC1000 stage is that the bounds for the

two-fermion operators that modify the left-handed couplings for the top and bottom-

quarks to the Z bosons and the right-handed coupling of the top quark to the Z boson

(Cϕt/Λ2, C1,3
ϕQ/Λ2) are degraded by a factor of eight.

Therefore, and EFT fit including all the dimension-six operators affecting the top and

bottom EW couplings is feasible provided data is collected at two sufficiently distinct

centre of mass energies above the top-quark pair production threshold.

9.5 The top-Yukawa coupling

9.5.1 Direct and indirect constraints

The top Yukawa coupling is one of the most intriguing parameters of the LHC. With a

numerical value close to 1, it is the largest Yukawa coupling of the model and it is sensitive

to many NP models, such as the 2HDM of Chapter 2 or composite Higgs models [401].

Therefore, a precise and robust measurement of this coupling is one of the main targets

for future collider experiments in the next years.

tt̄H production and decay give a direct constrain for these couplings. Other channels

such as gg → H,H → Zγ and H → γγ are sensitive to the top Yukawa coupling and can

set indirect constraints on it. However, even if top loops dominate in the processes, the

effective couplings to the gluon and the photon can also receive contributions from new

particles. In the κ formalism employed in early Higgs fits, contributions other than the top

are assumed to be zero. This, combined with the universality assumption κu = κc = κt

yield into a fit value from Run 1 of κt = 1.40+0.24
−0.21 [358]. Significant sharper results can

be obtained from Run 2 measurements [402, 403]. When these results are combined in a

global fit these bounds weaken considerably.

An e+e− collider below the tt̄H production threshold provide additional information of

these indirect bounds. Besides the processes mentioned above, the precise determination

of the H → cc̄ decay yields into a tight bound in the κ framework with κu = κc =
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κt. Measurements of the Hgg and Hγγ couplings with 1% precision after 2 ab−1 at
√
s = 250 GeV [404] can also be used to set bounds on the top Yukawa coupling. A

global EFT fit is performed in Ref. [405], analyzing the indirect sensitivity of Higgs and

diboson measurements to the EW top-quark Yukawa coupling. It is found that differential

measurements are crucial to disentangle the different tree-level and loop contributions and

therefore set bounds on the top Yukawa coupling.

Several attempts have been done to disentangle the contributions of different operators

to the gg → H and H → γγ rates (see Ref. [406] and references therein) with additional

probes, such as boosted Higgs+jet production, di-Higgs boson production and off-shell

Higgs production. None of these seem sufficiently sensitive to lift the degeneracy between

the operator that modifies the top-quark Yukawa coupling and operators representing

Hgg and Hγγ contact interactions. Therefore we focus on the direct bounds that can be

obtained from the tt̄H couplings.

9.5.2 Associated tt̄H production at the LHC

The associated pp → tt̄H production at the LHC [367] brings a direct probe of the tt̄H

interaction. The parameter µttH , defined as the ratio between the measured cross section

and the SM one, has an experimental precision of 20%, while the theoretical NLO QCD

SM precision is of 8%. Our ten-parameter fit of Section 9.3 contains the measurement

of the pp → tt̄H cross section. Performing a single-parameter fit, we obtain the 68%

probability region,

Ctϕ/Λ2 ∈ [−4.4, 0]TeV−2 (individual). (9.5.7)

A second minimum, far from the SM limit is found, as a consequence of the Λ−4 terms.

Here we only analyze the closest minimum to the SM. Repeating the fit including the ten

parameters, the result is slightly weaker,

Ctϕ/Λ2 ∈ [−4.6, 0.1]TeV−2 (marginalized). (9.5.8)
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Being close to the individual fit, this indicates that the constraint from tt̄H is very robust.

Other operators entering in this observables such as gg-initial production are subdominant

with respect to qq̄ initial production. The correlation between Ctϕ and these observables

(CtW , C1,3
ϕQ, CtB and CbW ) is smaller than 0.1%.

9.5.3 Prospects on the top Yukawa coupling

The fit is repeated with the projections expected for the HL-LHC. Here we focus in S2

described in Section 9.4.1 with 3 ab−1 and
√
s = 14 TeV. The statistical uncertainty of tt̄H

is now negligible and the total uncertainty is dominated by the theoretical one (which now

is reduced to 4%). The precision improves considerably and the 68% probability limits

are reduced,

Ctϕ/Λ2 ∈ [−0.55, 0.55]TeV−2 (HL-LHC marginalized), (9.5.9)

in agreement with [388].

The ILC needs operation above the tt̄H threshold to be able to access the top Yukawa

coupling directly. The cross section is expected to increase sharply around
√
s = 500 GeV.

The unpolarized cross section reaches a maximum of 2 fb−1 at
√
s ≈ 800 GeV. Below the

tt̄H threshold, the tt̄ production rate is two orders of magnitude higher than the tt̄H one,

and forms the most relevant background for H → bb̄. The cross section of the irreducible

tt̄bb̄ background, either from associated tt̄Z production or a hard gluon splitting to a bb̄

pair, is similar to that of the signal.

Full simulation studies [350,407–410] have been performed, with center of mass energies

from 500 GeV to several TeVs. Realistic descriptions of tt̄ and tt̄Z backgrounds, of the

detector response and jet clustering have been included.

Projections of the nominal ILC program [400] with 4 ab−1 and
√
s = 500 GeV are

presented in Ref. [411]. An uncertainity of 13% is expected on the tt̄H cross section,

limited by the statistics. As the nominal ILC energy is very close to the tt̄H production

threshold, operating at a slightly higher energy of 550 GeV enhances the cross section
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by a factor of four and the Yukawa coupling by a factor of two, for the same integrated

luminosity [411].

Our projections for 1 TeV are based in the analysis of Ref. [407] of tt̄H production

followed by the decay H → bb̄. The expected uncertainty on the tt̄H cross section for an

integrated luminosity of 8 ab−1 is of 3.2%, obtained by scaling the signal and background

yields with a flat luminosity factor.

To match the statistical precision, the systematic uncertainties must be controlled to

a challenging level. At 1 TeV, the signal efficiency and background yield must be known

to approximately 1%, which seems feasible with data-driven estimation in control regions.

The theory uncertainty in the cross section at
√
s = 1 TeV must be reduced to the level

of 1-2%, a factor two with respect to currently available calculations [412]. On the other

hand, it is likely that the analysis can be further improved, by reoptimizing the selection,

with the inclusion of other Higgs decay channels and of the τ -lepton plus jets final state.

Significant additional improvements are possible with improved jet clustering algorithms

and the use of kinematic fits.

9.5.4 Summary of the top Yukawa coupling

A summary of the different bounds on Ctϕ/Λ2 can be seen in Table 9.4. For comparison

with other works, recall the relation of these coefficient with the Yukawa coupling:

δyt = −Ctϕv
2

Λ2 . (9.5.10)

The first four columns of Table 9.4 correspond to the different ten-parameter fits described

in the text. The last column shows the seventeen-parameter fit of HL-LHC+ILC250

+ILC500+ILC1000 of the end of Section 9.4.2. For Ctϕ/Λ2 the 68% probability regions

are shown. In the last line the relative uncertainty on the top-Yukawa coupling is displayed

in %. Both the individual and marginalized bounds are shown for each case.

The HL-LHC results of Table 9.4 agree with the projections of Ref. [388]. By con-

struction, the ILC results agree with the summary of the Higgs/EW group for the 2020
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scenario LHC Run 2 HL-LHC S2 ILC500 ILC550 ILC500
+LEP/SLC +LEP/SLC +ILC1000√

s,
∫
L 13 TeV, 36 fb−1 14 TeV, 3 ab−1 500 GeV, 4 ab−1 550 GeV, 4 ab−1 +1 TeV, +8 ab−1

68% probability interval for the effective operator coefficient Ctϕ/Λ2 [TeV−2]
individual [−4.4,+0.0] [−0.55,+0.55] [−1.06,+1.06] [−0.50, 0.50] [−0.27,+0.27]
marginalized [−4.6,−0.2] [−0.55,+0.55] [−1.07,+1.07] [−0.52,+0.52] [−0.32,+0.32]
corresponding relative uncertainty on the top-quark Yukawa coupling ∆yt/yt [%]
individual 13.2 3.3 6.4 3.0 1.62
marginalized 13.2 3.3 6.4 3.1 1.96

Table 9.4: The 68% probability intervals for Ctϕ/Λ2 and the corresponding precision on

the top-quark Yukawa coupling. The results of the first four columns correspond to the

ten-parameter fit that we used to obtain the results of Fig. 9.3. The results for the scenario

with ILC runs at two different center of mass energies in the last column were obtained

with the extended seventeen-parameter fit presented in Section 9.4.4.

update of the European strategy for particle physics in Ref. [413]. The results for oper-

ation at 550 GeV and 1 TeV extend the study to higher energies. In all the cases, the

marginal and individual limits are very close, which means that other operators modifying

the top-quark EW dipole operators do not affect the top Yukawa coupling considerably.

However, it should be kept in mind that operators that affect QCD interactions like CtG
and four fermions (qq̄tt̄) are not included in the fits. These operators can be constrained

using differential tt̄ cross sections. A recent global fit of the top-quark sector on LHC

data [353] finds, however, that the marginalized limit on Ctϕ is approximately a factor 10

weaker than the individual limit, due to strong correlations between operator coefficients.

The addition of Tevatron results or future differential measurements could help reducing

this degeneracy. It is nevertheless likely that a combination of pp → tt̄ and pp → tt̄X

measurements could be needed to constrain simultaneously all qq̄tt̄ operators. In this re-

spect, the extraction of the top-quark Yukawa coupling at future lepton colliders so far

seems more robust.

At a future e+e− collider, we indeed find that the contamination of both four-fermion

and two-fermion operators in e−e+ → tt̄H is limited due to the very tight constraints

on their coefficients deriving from e−e+ → t t̄ production. Even in the most challenging
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case, the ILC scenario at 1 TeV with a precision on the top-quark Yukawa coupling of

1.6% and sixteen competing operator coefficients, the marginalized bound is only about

20% weaker than the individual bound. The extraction of the top-quark Yukawa is then

very clean in this case. We also note that the measurement of e−e+ → tt̄H in addition

to e−e+ → t t̄ does not improve significantly the constraints on operators other than the

top-quark Yukawa one. Only a 14% improvement is observed on CtW .

The results of Table 9.4 demonstrate that the bounds on the Wilson coefficient Ctϕ/Λ2

that shifts the top-quark Yukawa coupling from measurements of the tt̄H production

are robust in the presence of the operators that affect the top and bottom-quark EW

couplings. A precise measurement of this rate is therefore an ideal complement to more

indirect bounds from gg → H production and the H → γγ, H → gg and H → Zγ decays.

9.6 Conclusions

In this work we have performed a global fit to the relevant EFT operators to constrain the

top and bottom EW couplings. The relevant subset of ten effective operators are isolated

and several observables are expressed in terms of them. LHC data on top production in

association with a weak boson, single top-quark production and the W -helicity fraction in

top-quark decay are combined with LEP/SLC bottom-quark measurements at the Z pole

to perform a global fit. Terms suppressed by Λ−4 arising from two insertion of dimension-

six operators are included in the fit, but pure dimension-eight operators contributing to

the same order are omitted. The inclusion of Λ−4 terms is necessary to constraint several

operators, since Λ−2 terms are suppressed in several observables. Thus, the validity of the

EFT expansion has to be checked carefully while studying a concrete BSM model. The

68% probability intervals of the LHC+LEP/SLC fit can be seen in Table 9.2. Bounds

below 1 TeV−2 can be found for CtW /Λ2. Tight bounds are also found for C1,3
ϕQ/Λ2, the

Wilson coefficients that modify the top and bottom-quark right-handed couplings to the

Z boson. From the fit results, one can see how the combination of LEP/SLC and LHC

data has the power to disentangle the operators affecting top and bottom quarks. The
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study of the sensitivity of the different observables, as well as the comparison between the

individual and the marginalized limits show that the observables considered are a suitable

choice. Our fit results provide stronger bounds than previous works.

Projections on the constraints that could be obtained by future colliders have been also

studied. The high-luminosity phase of the LHC is studied through two different scenarios.

At the conservative scenario S1 (statistical uncertainty scales with the inverse square root

of the integrated luminosity and systematic uncertainties in measurements and predictions

do not change) the bounds on the Wilson coefficients only improve slightly. For S2 (SM

theoretical predictions improved by a factor of two and experimental systematics evolve

with luminosity in the same way as statistical uncertainties) the bounds of all the Wilson

coefficients but CtB become tighter.

At a linear e+e− collider operating at
√
s = 250 GeV the bounds of all the bottom

operators are reduced by an order of magnitude. At this energy, the top production

threshold has not been reached, so top operators only improve through the correlation

between them and bottom operators. Adding a second energy state at 500 GeV, top

operators are accessible, and therefore their bounds are reduced by one or two orders of

magnitude. A third energy stage
√
s = 1000 GeV will allow to constraint seven additional

operators of the form e+e−Q+Q−. The limits on these four-fermions operators (normalized

to Λ2) are really good, below 10−3 TeV−2. Some of the other limits, such as for CbW suffer

from the inclusion of additional operators but in general the fit improves and allows to

constraint simultaneously the 17 operators.

Finally, the top-quark Yukawa coupling has been studied in detail. Fits from the

LHC/LEP-SLC data allow to constraint the Ctϕ operator. Values of the Wilson coefficient

that modify the right-handed coupling between a top quark and the Z boson of Ci/Λ2 ∼

101 TeV−2 are still allowed. The similarity between the individual and marginalized fit

shows that tt̄H is indeed a good choice to constrain this coefficient. At the HL-LHC this

bound will improve significantly and at the ILC the bounds will improve even more.

The EW couplings of the third-generation quarks form one of the uncharted corners

of the SM. These couplings are a sensitive probe of broad classes of NP models. It is
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therefore very exciting to see meaningful bounds in a multi-parameter fit on LEP/SLC

and LHC data. Further progress at the LHC, and especially at a future electron-positron

collider can probe subtle contributions from physics beyond the SM at scales well beyond

the direct reach of the collider.



Chapter 10

Resum de la tesi

El Model Estàndard (SM per les seues sigles en anglés) de física de partícules ens pro-

porciona la descripció més adient de l’estructura de la matèria i les seues interaccions.

Aquest model va ser desenvolupat durant la segona meitat del segle XX, gràcies tant a

les contribucions teòriques, com als resultats experimentals a acceleradors de partícules.

El descobriment del bosó de Higgs l’any 2012 va representar una confirmació crucial del

model i va iniciar una època d’exploració i recerca al LHC. Malgrat l’èxit del SM com a

una teoria efectiva a baixes energies, alguns aspectes teòrics i experimentals indiquen que

aquesta no pot ser la teoria definitiva. En aquesta tesi hem seguit algunes de les direccions

que semblen indicar desviacions respecte del SM. El SM es descriu breument al Capítol 1.

10.1 Objectius assolits

L’extensió més senzilla del SM és el model de N doblets de Higgs (NHDM per les seues

sigles en anglés), descrita al Capítol 2. A aquest model, el contingut de partícules del

SM s’estén afegint N doblets escalars amb els mateixos nombres quàntics que el doblet

de Higgs. Com a conseqüència, apareixen interaccions de Yukawa que no són diagonals

a l’espai de sabor, donant lloc a corrents neutres amb canvi de sabor, molt suprimides

fenomenologicament. Per evitar aquests corrents i així reproduir les observacions exper-

235
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imentals, imposem alineament a l’espai de sabor, donant lloc als models coneguts com a

models alineats o models amb N doblets de Higgs alineats (ANHDM). L’alineament de

sabor s’imposa a ordre més baix en teoria de pertorbacions o ordre arbre (tree-level en

anglés) però es veu trencat per les correccions quàntiques a ordres superiors, donant lloc a

termes no diagonals. Aquestes contribucions han d’estar prou suprimides per a reproduir

les dades experimentals. Això s’estudia amb detall al Capítol 6, trobant que els models

alineats estan fenomenològicament permesos. Per al nomenat estudi s’inclouen diferents

observables de sabor, com ara Bs → µ+µ−, la mescla de mesons neutres i restriccions

provinents del decaïment radiatiu B̄ → Xsγ. A més, al Capítol 7 es realitza un ajust

bayesià global a un model alineat amb N = 2 doblets en el límit en el qual la càrrega

CP es conserva, el model de dos doblets de Higgs alineats (A2HDM per les seues sigles

en anglés). L’ajust combina diferents restriccions teòriques, observables electrofebles, de

sabor i relacionats amb el Higgs, com les cerques directes o les Higgs signal strengths.

L’ajust s’ha realitzat amb el codi obert HEPfit, descrit al Capítol 5.

La següent desviació del SM estudiada són les conegudes com a anomalies de B car-

regades (charged B-anomalies en anglés). Aquestes anomalies són desviacions respecte de

les prediccions del SM en mesures experimentals que contenen transicions del quark fons

(bottom en anglés) al quark encant (charm en anglés), mesurades per diversos experiments

i en diferents observables, sent els més rellevants les ràtios RD i RD∗ . Després de presen-

tar els observables d’interés al Capítol 4, mostrem diferents ajusts globals al Capítol 8.

Els ajusts s’han realitzat a partir del formalisme de teories efectives (EFTs), introduïdes

al Capítol 3. Als primers ajusts treballem amb un Hamiltonià efectiu que conté tots els

operadors de dimensió sis rellevants, amb un conjunt mínim d’assumpcions: la nova física

està present sols a la tercera generació de leptons, prenem el límit en el qual la càrrega CP

es conserva i per tant els coeficients de Wilson són reals, la ruptura de simetria electrofeble

es realitza de manera lineal i no hi ha neutrins lleugers amb quiralitat dextrogira (right-

handed neutrinos). Al mateix capítol relaxem alguna d’aquestes assumpcions. En primer

lloc, repetim els ajustos afegint l’operador que apareix a conseqüència de no imposar una

ruptura de simetria lineal
(
CVRL

)
i després, ampliem la base d’operadors per a contenir
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neutrins amb quiralitat dextrogira (augmentant el nombre d’operadors fins a deu). En

tots els casos estudiem els resultats obtinguts, la seua relació amb partícules mediadores

de nova física pesades i les implicacions dels resultats en diferents observables que podrien

ser mesurats experimentalment en el futur pròxim. Per a realitzar aquesta anàlisi s’ha

emprat el formalisme d’helicitats.

Per últim, s’han estudiat els acoblaments electrofebles dels quarks cim (top en anglés) i

fons. Aquests acoblaments són d’especial importància per la seua sensibilitat a la presència

de nova física. Emprant el ja mencionat codi HEPfit, i considerant resultats experimentals

del LHC i LEP/SLC, s’ha realitzat un ajust als operadors de dimensió sis rellevants. A més,

s’han establert perspectives sobre les cotes que es podran obtenir a futurs acceleradors,

com ara la fase d’alta lluminositat del LHC (HL-LHC) o el col·lisionador lineal ILC.

L’acoblament de Yukawa del quark cim és d’especial interés i ha estat estudiat en detall,

establint límits al nivell de l’u per cent.

10.2 Metodologia

La metodologia emprada a aquesta tesi es pot trobar als Capítols 1, 3 i 5. A continuació

es presenta un breu resum dels mètodes i tècniques aplicades.

10.2.1 El Model Estàndard

Com ja hem mencionat, el SM descriu les partícules elementals i les seues interaccions [1–4].

Es basa en principis de simetria, de manera que el contingut de matèria del model es pot

classificar en fermions (quarks i leptons) amb espín 1/2 i bosons amb espín 0 (bosó de

Higgs) o espín 1 (bosons febles, W± i Z0, fotons γ i gluons g). El SM és una teoria local

o de gauge sota el grup SU(3)C ⊗SU(2)L⊗U(1)Y , i per tant la natura de les interaccions

fortes, febles i electromagnètiques està relacionada amb els principis de simetria del grup.
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Figure 10.1: Vèrtexs d’interacció cúbics i quàrtics del Lagrangià de QCD. Els gluons i els

quarks estan representats com a línies verdes i blaves respectivament.

10.2.2 QCD i unificiació electrofeble

La primera peça del SM és la cromodinàmica quàntica (QCD per les seues sigles en anglés),

una teoria no Abeliana basada en grup SU(3)C i que descriu la interacció entre els quarks

i els bosons del grup, els gluons [8–11]. Els quarks poden tindre sis sabors diferents (dalt,

baix, estrany, encant, fons i cim) i NC = 3 càrregues de color.

Els gluons, Gµa amb càrrega de color a apareixen a conseqüència del requeriment de

què el Lagrangià de QCD siga invariant sota transformacions de SU(3)C locals. Com

la invariància gauge prohibeix un terme de massa pels gluons, aquests romandran com

a partícules d’espín 1 sense massa. La transformació sota el grup de simetria també

determina les interaccions entre les diferents partícules del model, resumides a la Fig. 10.1

Les interaccions febles venen descrites pel Model Estàndard Electrofeble (EWSM per

les seues sigles en anglés), basada en el grup de simetria G = SU(2)L ⊗ U(1)Y [1–3].

L’EWSM conté camps amb quiralitat dextrogira i levogira, que interaccionen a través de

mediadors amb espín 1: els fotons sense massa γ, i els bosons febles massius, W± i Z0.

El sector fermiònic del SM conté tres famílies de quarks i leptons, que tan sols es

diferencien per les seues masses i nombres quàntics de sabor,

1era generació:


νe u

e− d′

 , 2na generació:


νµ c

µ− s′

 , 3era generació:


ντ t

τ− b′

 .
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Figure 10.2: Vèrtexs de la interacció de corrents carregats per a quarks (panel de

l’esquerra) i leptons (panel de la dreta). Els fermions i els bosons estan descrits per

línies sòlides blaves i línies ondulants marrons respectivament.
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Figure 10.3: Vèrtexs d’interacció dels corrents neutres per quarks (panel de l’esquerra) i

leptons (panel de la dreta). Els fermions i els bosons estan descrits per línies sòlides blaves

i línies ondulants marrons respectivament.

En aquesta notació la columna de l’esquerra de cada matriu representa el sector leptònic

de cada generació. El primer element són els neutrins i el segon els leptons carregats. La

columna de la dreta representa el sector quark amb els quarks dalt com a primer element

i els quarks baix com a segons. Els fermions de cada columna i cada generació pertanyen

al mateix doblet de SU(2)L.

D’una manera similar a QCD, imposant que el Lagrangià de la nostra teoria siga

invariant sota el grup de simetria G, apareixen els quatre bosons vectorials sense massa

que interaccionen amb els fermions de la teoria. La interacció entre dos fermions de

diferent càrrega i un bosó carregat, denominada interacció de corrents carregats, es pot

veure esquematitzada a la Fig. 10.2. La interacció entre dos fermions amb càrregues

oposades i un bosó neutre dóna lloc als corrents neutres de la Fig. 10.3. A més també
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Figure 10.4: Vèrtexs d’auto-interacció entre els bosons de gauge. Els bosons estan repre-

sentats com a línies ondulants marrons.

apareixen auto-interaccions entre els diferents bosons de la teoria (Fig. 10.4).

10.2.2.1 Ruptura espontània de simetria i el bosó de Higgs

Mentre que bosonsW± i Z0 són descrits a l’EWSM com a partícules amb massa nul·la, les

nostres observacions experimentals ens les mostren com a partícules massives. El procés

conegut com a ruptura espontània de simetria (SSB en anglés) és capaç de generar les

masses de les partícules a l’hora que les simetries de la teoria es mantenen. La idea bàsica

d’aquest procés és que part de les simetries no són respectades pel buit físic i per tant,

pels estats obtinguts una volta el buit és excitat. Al SM el SSB s’implementa a través

del mecanisme de Higgs, introduint el camp de Higgs que en interaccionar amb els bosons

W± i Z0 genera les masses d’aquestes partícules.

El camp de Higgs s’introdueix a la teoria com un doblet de SU(2)L, la qual cosa permet

construir nous termes que seran invariants sota les nostres simetries. En concret, es generen

termes d’interacció entre el doblet de Higgs, un fermió i el seu antifermió. Aquests termes

d’interacció són a priori no diagonals, però gràcies a les propietats de simetria es poden

realitzar transformacions sota els camps, donant com a resultat estructures diagonals que

podem identificar amb les masses dels fermions. Donat que els quarks dalt i baix estan

relacionats (pertanyen al mateix doblet de SU(2)L), aquestes transformacions no són

independents i una transformació addicional és necessària. Els corrents carregats no són

invariants sota aquesta transformació addicional, generant un canvi de sabor als corrents
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neutres, parametritzada amb una matriu no diagonal, la matriu de Cabibbo-Kobayashi-

Maskawa (CKM).

10.2.3 Teories de camps efectives

Les teories de camps efectius ens proporcionen una descripció més senzilla d’una teoria

física, de manera que aquesta és equivalent a l’escala d’energies a la qual estem treballant.

Les EFTs són molt útils per a descriure problemes físics que involucren diferents escales

d’energia. La idea bàsica es basa en el teorema del desacoblament [38] que ens diu que

la dinàmica d’un sistema a energies baixes no pot dependre dels detalls a altes energies.

Per tant, emprant els graus de llibertat adients a la nostra escala d’energies podem donar

una descripció de la natura simplificada. El SM és un exemple de la gran utilitat de les

teories efectives. El fet que el SM alhora ens descriga la realitat amb una gran precisió i

que algunes observacions ens indiquen que una teoria més general ha d’existir, fan del SM

una teoria efectiva aplicable a energies baixes. A més, al SM podem identificar la nova

física a partir de desviacions dels paràmetres mesurats, accessibles a través d’experiments

de precisió.

L’ingredient principal d’una teoria de camps efectiva és el Lagrangià efectiu, expressat

com una suma d’operadors locals,

Leff =
∑
i,j

c
(j)
i

Λdi−4 O
(j)
i =

∑
i,j

C
(j)
i O

(j)
i , (10.2.1)

on O(j)
i són els operadors de dimensió di, construïts dels camps lleugers i C(j)

i són els

coeficients de Wilson, que contenen informació dels acoblaments dels graus de llibertat

pesats. Λ és l’escala on els graus de llibertat passats són rellevants, és a dir, l’escala de

nova física.

Depenent de la dimensió dels operadors, aquests es classifiquen en operadors rellevants

(di < 4, importants a energies baixes), operadors marginals (di = 4, independents de E/Λ)

i operadors irrellevants (di > 4, suprimits a energies baixes). Leff conté un nombre infinit

de termes (potències en Λ), i típicament es trunca a una dimensió N .
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Els operadors reben correccions d’ordres superiors, de manera que els operadors d’igual

dimensió es mesclen entre ells. Les correccions quàntiques i la seua dependència en l’escala

estan incloses en els coeficients de Wilson, de manera que Leff és independent de l’escala.

La dependència dels coeficients en l’escala és expressada per les equacions del grup de

renormalització (RGEs en anglés),

C(j)
i (µ) =

∑
a,k

Uia exp


∫ α(µ)

α(µ0)

dα

α

γ
(j)
O, a(α)
β(α)


((

U(j)
)−1

)
ak
C(j)
k (µ0) . (10.2.2)

10.2.4 HEPfit

El codi obert HEPfit, descrit al Capítol 5, és una ferramenta general dissenyada per a

combinar restriccions directes i indirectes a EFTs o extensions particulars del SM. A més,

ofereix la possibilitat de mostrejar l’espai de paràmetres emprant un Markov Chain Monte

Carlo (MCMC) implementat a la llibreria BAT [88–90]. Està escrit en C++ i paral·lelitzat

amb Message Passing Interface (MPI) [91]. HEPfit està publicat sota la GNU General

Public License, així que les contribucions dels usuaris són possibles i benvolgudes. Els

observables inclosos es poden classificar com a teòrics, observables electrofebles de precisió,

observables de Higgs o de sabor. Estan calculats a diferents models, com ara el SM o el

A2HDM.

HEPfit es basa en l’estadística bayesiana, pel que la probabilitat expressa un grau de

creença. La probabilitat posterior es defineix a partir de teorema de Bayes [94],

P (~x|D) = P (D|~x)P0(~x)∫
P (D|~x)P0(~x) d~x , (10.2.3)

on ~x són els paràmetres del model, D les dades i P0(~x) és la probabilitat prèvia.

Les peces de HEPfit són les classes Model i Observable. Els models estenen la classe

base de manera seqüencial, QCD ← StandardModel ← GeneralTHDM. Això facilita imple-

mentar extensions o modificacions de models, ja que sols els nous ingredients respecte del

model anterior han de ser afegits.
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A la tesi s’han estudiat dos models diferents. En primer lloc, la classe GeneralTHDM

conté un A2HDM en el qual la simetria CP es conserva. Aquest model conté com a

paràmetres els tres acoblaments de Yukawa, les masses dels nous escalars, els paràmetres

del potencial i l’angle de mescla α̃. Diferents observables teòrics (potencial acotat per

baix i unitarietat pertorbativa de la matriu S), electrofebles (paràmetres STU i Rb), de

sabor (paràmetres STU i Rb) i de Higgs estan implementats per a aquest model. A més,

NPSMEFT6dtopquark, a la classe NewPhyics conté els operadors de dimensió sis rellevants

per a l’estudi dels acoblaments electrofebles dels quarks cim i fons. Aquestes classes

s’empren als Capítols 7 i 9.

10.3 Resultats i conclusions

A aquesta tesi s’han tractat d’explorar diverses direccions que serien fonamentals per a

entendre la natura de les partícules fonamentals i les seues interaccions. A continuació,

es presenten algunes conclusions obtingudes a partir dels treballs realitzats a aquesta tesi.

Aquests treballs es poden trobar en detall als Capítols 6, 7, 8 i 9.

10.3.1 Alineament als models de N doblets de Higgs

Al Capítol 6 s’estudien les conseqüències que les correccions quàntiques impliquen per als

ANHDM. L’alineament a l’espai de sabor a ordre arbre s’imposa a una escala d’energia

determinada (típicament a una escala alta), i les correccions quàntiques i el “córrer” dels

paràmetres (running en anglés) donen lloc a que apareguen termes no diagonals, que

tindrien conseqüències fenomenològiques a baixes energies i serien susceptibles de ser ob-

servades als nostres experiments.

Després de calcular les RGEs que ens proporcionen el running d’aquests paràmetres en

el cas més general possible, ens centrem en les conseqüències fenomenològiques d’aquesta

ruptura de l’alineament per al model més senzill (A2HDM). Considerant els observables

més restrictius (Bs → µ+µ−, B → Xsγ i ∆MBs) hem investigat les cotes actuals al
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paràmetre de desalineació Cd(MW ), tenint en compte els límits correlacionats de ςu, ςd i

MH± .

Trobem que, mentre que els acoblaments fermiònics estan molt restringits, la sensi-

bilitat a Cd(MW ) és molt menuda, mostrant la supressió fenomenològica que esperàvem.

Amb ΛA ≤MPlanck ∼ 109 GeV, tenim Cd(MW ) ≤ 40, i per tant, la hipòtesi d’alineament

a l’espai de sabor a altes energies (ΛA amb Cd(ΛA) = 0) sobreviu els límits fenomenològics

en tots els casos i el nostre model no queda descartat. Com que l’A2HDM és el model de

multi-Higgs més restringit, les nostres conclusions són aplicables a models més generals,

amb N > 2 doblets.

10.3.2 Ajust global al A2HDM

El Capítol 7 consisteix en un ajust global a l’A2HDM amb conservació de CP. L’ajust

s’ha realitzat amb el codi obert HEPfit del Capítol 5 i representa l’ajust més general fins

ara. Es consideren observables teòrics, els paràmetres electrofebles de precisió (STU i Rb),

observables de sabor i de Higgs.

Depenent de la massa del nou escalar neutre amb càrrega CP parella del model, es

poden donar dos escenaris. Al primer d’ells, l’escenari l leuger, el Higgs descobert pel LHC

és el de menor massa. En aquest cas, trobem que masses lleugeres i diferències de masses

menudes són afavorides per l’ajust. Els observables de Higgs (Higgs signal strengths) ens

ajuden a restringir el valor de l’angle de mescla α̃, donant restriccions importants als plans

α̃ − ςf . És d’especial interés l’aparició de dues branques per als plans α̃ − ςd i α̃ − ς`,

corresponent al que anomenem com a branca positiva (yHd,` ≈ 1) i negativa yhd,` ≈ −1).

La combinació d’aquestes restriccions amb la resta d’observables ens permet restringir el

valor de l’angle de mescla α̃,

−0.015 ≤ α̃ ≤ 0.013 probabilitat del 68%,

−0.04 ≤ α̃ ≤ 0.04 probabilitat del 95.5%, (10.3.4)

i els paràmetres d’alineament (Fig. 10.5).
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Figure 10.5: Restriccions als plans α̃− ςf a partir d’un ajust global amb una probabilitat

del 68% (roig fosc), 95.5% (marró) and 99.7% (roig clar).

A l’escenari pesat, el Higgs amb massa al voltant de 125 GeV és el més pesat del model.

A aquest cas, les masses dels escalars restants estan restringides a ser menors que 700 GeV.

Les restriccions en els paràmetres d’alineament i l’angle de mescla són semblants a les de

l’escenari anterior, desplaçant l’angle α̃→ α̃− π
2 .

En els dos escenaris és interessant destacar la dependència de la probabilitat prèvia

de les distribucions de les masses. Dependent de l’ús de distribucions de probabilitat

de massa lineals o quadràtics les regions de massa lleugeres estan prohibides o no a una

probabilitat donada. Aquest tret de l’estadística bayesiana ha de ser tingut en compte

quan s’observen les restriccions dels plans de les masses. Observant les dues possibilitats

interpretem que els resultats dels ajustos afavoreixen masses grans i diferències de masses

menudes, independentment de les distribucions de probabilitat prèvia.

10.3.3 Ajusts a les transicions b→ c

Les desviacions experimentals als observables que involucren transicions b → c han atret

l’atenció de la comunitat els últims anys. Sent mesurades a diferents observables i per

diferents col·laboracions experimentals, aquestes anomalies es poden interpretar com a un
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senyal de nova física. Com que aquesta nova física sembla afectar sols a la tercera generació

de leptons, es pot relacionar amb violació de la universalitat leptònica.

Per tal d’entendre aquestes anomalies de B vam treballar en el formalisme de les teories

efectives, realitzant ajusts globals i considerant els operadors de dimensió sis rellevants.

A diferència d’altres treballs hem considerat les distribucions de q2, mesurades per Belle

i BaBar, i l’efecte de l’observable de la mesura de Belle F̄D∗L .

Al nostre primer treball vam considerar un conjunt mínim d’assumpcions: la nova

física sols està present a la tercera generació de leptons, els coeficients de Wilson són reals,

no hi ha neutrins lleugers i la ruptura de simetria és lineal.

Si l’ajust es realitza sense tindre en compte F̄D∗L , es troben tres mínims. El mínim

global té un excel·lent valor del χ2 i és compatible amb una modificació global del SM

(χ2
Min 1 − χ2

SM = 1.4). Els mínims locals presenten valors més grans del χ2 i desviacions

majors respecte del SM. Una vegada afegit F̄D∗L , els ajusts mostren que la solució preferida

encara és una modificació global del SM, però no és possible reproduir totes les mesures

experimentals simultàniament a 1σ. Motivats per aquesta aparent incompatibilitat, vam

relaxar la nostra assumpció sobre la ruptura de simetria lineal. En aquest cas, si bé és cert

que es poden trobar regions de l’espai de paràmetres que satisfan tots els resultats exper-

imentals a 1σ, les regions són molt afinades (fine-tuned) i per tant no donen descripcions

satisfactòries de la realitat.

Al nostre segon treball, vam explorar la generalització dels nostres ajusts afegint els op-

eradors que apareixen en presència de neutrins amb quiralitat dextrogira. El fet de tindre

un elevat nombre de paràmetres impossibilita fer un ajust general, considerant tots els co-

eficients de Wilson de manera simultània. Per això vam treballar en un conjunt d’escenaris

motivats, quantificant la qualitat dels resultats amb diferents paràmetres estadístics (Pull,

p-value).

En tots els casos s’han estudiat les implicacions que la mesura de nous observables

podria tindre per discriminar els possibles escenaris.
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Figure 10.6: Resultats de l’ajust per als observables del LHC i LEP/SLC (marró clar) i

perspectives per a la precisió dels coeficients de Wilson en el HL-LHC (marró fosc i roig) i

futurs col·lisionadors e+e− (verd clar i fosc). Les barres sòlides indiquen cotes individuals

i la barra completa els resultats dels ajusts globals (marginalitzats) amb deu paràmetres.

10.3.4 Ajusts electrofebles als quarks cim i fons

Al Capítol 9 hem realitzat un ajust global al subconjunt de deu operadors de dimensió

sis rellevants per a acotar els acoblaments electrofebles dels quarks cim i fons. Les dades

del LHC de producció del quark cim en associació amb un bosó feble, producció d’un únic

quark cim (single-top) i fraccions d’helicitat del W en el decaïment del cim, es combinen

amb els resultats de mesures del quark fons de LEP/SLC en el pol del Z. A l’ajust es tenen

en compte els termes de dimensió Λ−4, provinents de la interferència de dos operadors de

dimensió sis, però s’ignoren els operadors de dimensió huit. Atés que a molts observables

els termes lineals (amb un únic operador de dimensió sis) estan molt suprimits, aquest marc

de treball és necessari per a poder realitzar el nostre ajust. Les conseqüències d’aquesta

assumpció són estudiades en detall, i es fa un èmfasi en la validesa de l’ajust.

Es realitza un primer ajust a les dades actuals, obtenint cotes més fortes que tre-

balls anteriors. Els resultats es poden trobar a la Fig. 10.6. A continuació, es presenten
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escenari LHC Run 2 HL-LHC S2 ILC500 ILC550 ILC500
+LEP/SLC +LEP/SLC +ILC1000√

s,
∫
L 13 TeV, 36 fb−1 14 TeV, 3 ab−1 500 GeV, 4 ab−1 550 GeV, 4 ab−1 +1 TeV, +8 ab−1

interval de probabilitat del 68% per al coeficient Ctϕ/Λ2 [TeV−2]
individual [−4.4,+0.0] [−0.55,+0.55] [−1.06,+1.06] [−0.50, 0.50] [−0.27,+0.27]
marginalitzat [−4.6,−0.2] [−0.55,+0.55] [−1.07,+1.07] [−0.52,+0.52] [−0.32,+0.32]
incertesa relativa en l’acoblament de Yukawa del quark cim, ∆yt/yt [%]
individual 13.2 3.3 6.4 3.0 1.62
marginalitzat 13.2 3.3 6.4 3.1 1.96

Table 10.1: Intervals del 68% de probabilitat de Ctϕ/Λ2 i precisió corresponent per a

l’acoblament e Yukawa del quark cim. Els resultats de l’última columna estan realitzats

amb un ajust a desset paràmetres.

prediccions sobre les cotes que s’obtindran a futurs acceleradors, com ara a la fase d’alta

lluminositat del LHC o a un accelerador lineal com l’ILC (Fig. 10.6) . A aquest últim cas

s’estén la base d’operadors per contenir set operadors addicionals amb estructura de dos

quarks i dos leptons.

Finalment, l’acoblament de Yukawa del quark cim s’estudia en detall. De l’ajust a les

dades del LHC i LEP/SLC s’obtenen cotes de l’ordre de 101 TeV−2. També es mostra

com aquesta cota milloraria a futurs acceleradors. Aquests resultats estan resumits a la

Taula 10.1.
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Appendix A

Form factors for B → D(∗)

transitions

The FFs F0(q2), F1(q2) and FT (q2) appearing in the B → D matrix elements are defined,

F1(q2) = 1
2√mBmD

[
(mB +mD)h+(q2)− (mB −mD)h−(q2)

]
,

F0(q2) = 1
2√mBmD

[
(mB +mD)2 − q2

mB +mD
h+(q2)− (mB −mD)2 − q2

mB −mD
h−(q2)

]
,

FT (q2) = mB +mD

2√mBmD
hT (q2) , (A.0.1)

while the B → D∗ helicity amplitudes involve the following FFs for vector, axial and

pseudoscalar currents,

V (q2) = mB +mD∗

2√mBmD∗
hV (q2),

A1(q2) = (mB +mD∗)2 − q2

2√mBmD∗(mB +mD∗)
hA1(q2),

A2(q2) = mB +mD∗

2√mBmD∗

[
hA3(q2) + mD∗

mB
hA2(q2)

]
, (A.0.2)

A0(q2) = 1
2√mBmD∗

[
(mB +mD∗)2 − q2

2mD∗
hA1(q2)− m2

B −m2
D∗ + q2

2mB
hA2(q2)

− m2
B −m2

D∗ − q2

2mD∗
hA3(q2)

]
, (A.0.3)
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and for the tensor matrix elements,

T1(q2) = 1
2√mBmD∗

[
(mB +mD∗)hT1(q2)− (mB −mD∗)hT2(q2)

]
,

T2(q2) = 1
2√mBmD∗

[
(mB +mD∗)2 − q2

mB +mD∗
hT1(q2)− (mB −mD∗)2 − q2

mB −mD∗
hT2(q2)

]
, (A.0.4)

T3(q2) = 1
2√mBmD∗

[
(mB −mD∗)hT1(q2)− (mB +mD∗)hT2(q2)− 2 m

2
B −m2

D∗

mB
hT3(q2)

]
.

The reduced functions ĥi(q2) = hi(q2)/ξ(q2) take the form [60]

ĥ+ = 1 + α̂s

[
CV1 + ω + 1

2 (CV2 + CV3)
]

+ (εc + εb) L̂1 ,

ĥ− = α̂s
ω + 1

2 (CV2 − CV3) + (εc − εb) L̂4 ,

ĥT = 1 + α̂s (CT1 − CT2 + CT3) + (εc + εb)
(
L̂1 − L̂4

)
, (A.0.5)

for B → D, and

ĥV = 1 + α̂sCV1 + εc
(
L̂2 − L̂5

)
+ εb

(
L̂1 − L̂4

)
,

ĥA1 = 1 + α̂sCA1 + εc

(
L̂2 − L̂5

ω − 1
ω + 1

)
+ εb

(
L̂1 − L̂4

ω − 1
ω + 1

)
,

ĥA2 = α̂sCA2 + εc
(
L̂3 + L̂6

)
,

ĥA3 = 1 + α̂s (CA1 + CA3) + εc
(
L̂2 − L̂3 + L̂6 − L̂5

)
+ εb

(
L̂1 − L̂4

)
,

ĥT1 = 1 + α̂s

[
CT1 + ω − 1

2 (CT2 − CT3)
]

+ εcL̂2 + εbL̂1 ,

ĥT2 = α̂s
ω + 1

2 (CT2 + CT3) + εcL̂5 − εbL̂4 ,

ĥT3 = α̂sCT2 + εc
(
L̂6 − L̂3

)
, (A.0.6)

for B → D∗. The explicit expressions of the ω(q2)-dependent factors L̂1...6 and the O(αs)

corrections Ci can be found in Ref. [60]. Note that corrections of order Λ2
QCD/m

2
c are

included via the subleading Isgur-Wise functions l1,2(ω). The detailed parametrization of

the different FFs can be found in Ref. [60, 253].

The FF parameters can be seen in Table 8.2 of Chapter 8. The correlation between

these parameters is given in Table A.1.
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ρ2 c d χ2(1) χ2(1)′ χ3(1)′ η(1) η(1)′ l1(1) l2(1)

ρ2 1

c 0.82 1

d -0.57 -0.91 1

χ2(1) -0.29 -0.22 0.13 1

χ2(1)′ 0.01 0.13 -0.13 0.00 1

χ3(1)′ 0.89 0.75 -0.51 0.00 -0.01 1

η(1) 0.09 0.13 -0.14 -0.01 0.01 0.01 1

η(1)′ -0.08 0.04 -0.08 0.03 0.00 -0.07 0.28 1

l1(1) - 0.03 0.01 -0.05 0.00 0.00 0.01 0.34 -0.15 1

l2(1) -0.01 0.00 0.00 0.00 -0.01 -0.01 0.00 0.00 0.01 1

Table A.1: Correlation matrix of the inputs in Table 8.2, used to determine the form

factors in the HQET parametrization.





Appendix B

Kinematics for semileptonic decays

In this appendix we give the explicit form of the helicity spinors and 4-vectors needed to

calculate M →M ′`ν̄ transitions with the helicity formalism [53,79].

B.1 V ∗ rest frame

The spinors describing leptons (antileptons) of helicity ±1
2 , in the V ∗ rest frame, are:

255
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u(p,+) =



√
E` − |~p| cos θ`2√
E` − |~p| sin θ`

2 eiφ`

√
E` + |~p| cos θ`2√
E` + |~p| sin θ`

2 eiφ`


, u(p,−) =



−
√
E` + p sin θ`

2 e−iφ`

√
E` + |~p| cos θ`2

−
√
E` − p sin θ`

2 e−iφ`

√
E` − |~p| cos θ`2


,

v(p,+) =



−
√
Eν − |~p| cos θ`2 e−iφ`

−
√
Eν − |~p| sin θ`

2√
Eν + |~p| cos θ`2 e−iφ`

√
Eν + |~p| sin θ`

2


, v(p,−) =



−
√
Eν + p sin θ`

2√
Eν + |~p| cos θ`2 eiφ`

√
Eν − |~p| sin θ`

2

−
√
Eν − |~p| cos θ`2 eiφ`


,

(B.1.1)

where θ`,ν and φ`.ν are the polar and azimuthal angles of the lepton and the neutrino.

These angles obey the relations θν = π−θ` and φν = φ`+π. The 4-momenta ofM(pM )→

M ′`(p`)ν̄(pν) in the V ∗ rest frame, are given by,

pµM = (EM , 0, 0, |~pM |) ,

pµ` = q2 −m2
`

2
√
q2

(
q2 +m2

`

q2 −m2
`

, sin θ`, 0, cos θ`
)
,

pµν = q2 −m2
`

2
√
q2 (1,− sin θ`, 0,− cos θ`) ,

qµ =
(√

q2, 0, 0, 0
)
, (B.1.2)

The V ∗ polarization vectors read in this frame:
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εµ(q,±) = ∓ 1√
2

(0, 1,±i, 0) ,

εµ(q, 0) = (0, 0, 0,−1) ,

εµ(q, s) = 1√
q2 q

µ = (1, 0, 0, 0) .

B.2 M rest frame

In the M rest frame the z axis is aligned with the momentum of M ′. The 4-momentum

of M and M ′ are,

pµM = (mM , 0, 0, 0) ,

pµM ′ = (EM ′ , 0, 0, pM ′) , (B.2.3)

and the transfered momentum,

qµ = pµM − p
µ
D = (mM − ED, 0, 0,− | ~pD|) = (q0, 0, 0,− | ~pD|) . (B.2.4)

The polarization vectors for V ,

η(pD,±)µ = ∓ 1√
2

(0, 1,±i, 0) ,

η(pD, 0)µ = 1
mD

(pD, 0, 0, ED) . (B.2.5)





Appendix C

Propagation and decay of D∗

To compute the full four-body decay amplitude B → D∗τ ν̄ → (Dπ) τ ν̄, we need to

describe the propagation and the decay of the vector boson D∗ to the Dπ final state. The

D∗ → Dπ amplitude can be parametrized in the form

MλD∗
D∗→Dπ = gD∗Dπ εµ(λD∗) pµD , (C.0.1)

with an effective coupling gD∗Dπ that can be determined from the total decay width,

Γ(D∗ → Dπ) = C
λ3/2(m2

D∗ ,m
2
D,m

2
π)

192πm5
D∗

|gD∗Dπ|
2 , (C.0.2)

where C = 1, 1
2 for a final π±, π0, respectively. The dependence of the effective amplitude

(C.0.1) on the momentum and polarization vectors fixes the angular structure of the three

possible helicity amplitudes:

M0
D∗→Dπ = −gD∗Dπ |~pD| cos θD and M±1

D∗→Dπ = ± 1√
2
gD∗Dπ |~pD| sin θD ,

(C.0.3)

with |~pD| = λ1/2(m2
D∗ ,m

2
D,m

2
π)/(2mD∗) being the three-momentum of the D meson in

the D∗ rest frame.

The propagation of the D∗ can be described through a Breit-Wigner function. Since

the decay width of the D∗ is much smaller than its mass, we can use the narrow-width
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approximation,

1
(m2

Dπ −m2
D∗)2 +m2

D∗Γ2
D∗

ΓD∗�mD∗−−−−−−−→ π

mD∗ΓD∗
δ(m2

Dπ −m2
D∗) , (C.0.4)

and write the decay probability of the process B → (Dπ) τ ν̄ in the form

|M[B → (Dπ) τ(λτ ) νX ]|2 = 1
2 G

2
F |Vcb|2

π

mD∗ΓD∗
δ(m2

Dπ−m2
D∗)

∣∣∣∣∣∣
∑
λD∗

MλD∗ ,λτ
X MλD∗

D∗→Dπ

∣∣∣∣∣∣
2

.

(C.0.5)

Notice that the dependence on gD∗Dπ cancels out from this expression. The interferences

among the unobservable helicity amplitudes of the intermediate D∗ meson generate the

different dependences on θD, appearing in the four-body angular distribution listed in

Eq. (4.3.36).



Appendix D

Hadronic matrix elements for

meson mixing

The Wilson coefficients of the effective Hamiltonian (6.5.32) have been evaluated at the

electroweak scale, µtW ∼ O(MW ,mt,MH± ,Mϕ0
i
), and need to be evolved down to the low-

energy scales where the hadronic matrix elements of the corresponding quark operators are

determined. In addition to the three scalar operators in Eq. (6.5.33), generated through

ϕ0
k-exchange between two LFCNC vertices, one must take also into account the leading

contributions from 1-loop box diagrams with W± and/or H± propagators. Neglecting the

light quark mass (md,s for B0
d,s or md for K0), these charged-current boxes contribute to

CSRR1,ij and to the SM operator [112]

OV LLij = (d̄iLγµdjL)(d̄iLγµdjL) . (D.0.1)

Gluonic corrections give rise to the appearance of additional operators which mix under

renormalization with the previous ones. In general, one must consider a basis of eight

operators including the additional structures [414]:

OV RRij = (d̄iRγµdjR)(d̄iRγµdjR) , OLR1,ij = (d̄iLγµdjL)(d̄iRγµdjR) ,

OSLL2,ij = (d̄iRσµνdjL)(d̄iRσµνdjL) , OSRR2,ij = (d̄iLσµνdjR)(d̄iLσµνdjR) ,

(D.0.2)
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with1 σµν ≡ i
2 [γµ, γν ]. The renormalization group evolution of this operator basis factor-

izes in five different sectors [414,415]:
CX1,ij(µ)

CX2,ij(µ)

 =


[η11(µ)]X [η12(µ)]X

[η21(µ)]X [η22(µ)]X



CX1,ij(µtW )

CX2,ij(µtW )

 , (D.0.3)

CY1,ij(µ) = [η(µ)]Y CY1,ij(µtW ) , (D.0.4)

where X = SRR,SLL,LR and Y = V LL, V RR. Next-to-leading-order expressions for

the coefficients [ηkl(µ)]X (k, l = 1, 2) and [η(µ)]Y can be found in Refs. [414, 415] for

the B0
q and K0 systems. Since in our case the initial conditions are only known at the

lowest order, we have calculated the evolution with leading-order anomalous dimensions

and two-loop running for the strong coupling αs.

The hadronic matrix elements of the ∆F = 2 four-quark operators can be expressed

as:

〈M̄0| OV ZZ1,ij |M0〉 = 2
3 f

2
M m2

M0 BV ZZ
1 (µ) , (D.0.5)

〈M̄0| OLR1,ij |M0〉 = −1
3

(
fM m2

M0

mi(µ) +mj(µ)

)2

BLR
1 (µ) , (D.0.6)

〈M̄0| OLR2,ij |M0〉 = 1
2

(
fM m2

M0

mi(µ) +mj(µ)

)2

BLR
2 (µ) , (D.0.7)

〈M̄0| OSZZ1,ij |M0〉 = − 5
12

(
fM m2

M0

mi(µ) +mj(µ)

)2

BSZZ
1 (µ) , (D.0.8)

〈M̄0| OZZ2,ij |M0〉 =
(

fM m2
M0

mi(µ) +mj(µ)

)2

BSZZ
2 (µ) , (D.0.9)

where Z = L,R denotes the two different operator chiralities, mi,j(µ) are the relevant

running quark masses and the Bi(µ) factors parametrize the deviations from the naive

vacuum-insertion approximation. These parameters have been calculated by the ETM

1Notice that Refs. [414,415] adopt a non-conventional definition of σµν , without the factor ‘i’, and have

then the opposite sign for the operators OSRR2,ij .
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i = 1 2 3 4 5

fBd

√
BBd
i 174± 8 MeV 160± 8 MeV 177± 17 MeV 185± 9 MeV 229± 14 MeV

fBs

√
BBs
i 211± 8 MeV 195± 7 MeV 215± 17MeV 220± 9 MeV 285± 14 MeV

BK
i 0.506± 0.017± 0.003 0.46± 0.01± 0.03 0.79± 0.02± 0.05 0.78± 0.02± 0.04 0.49± 0.03± 0.03

Table D.1: Lattice determinations of fM
√
BM
i (M = B0

d , B
0
s ) [416] and BK

i (M = K0)

[417], in the MS scheme. The B0
q parameters are given at µ = mb, while the K0 values

refer to µ = 3 GeV.

lattice collaboration, employing the ratio method approach on Nf = 2 ensembles for B0
d

and B0
s [416], and simulations with Nf = 2 + 1 + 1 dynamical sea quarks for K0 [417].

The ETM results are given in a different operator basis; the connection reads:

BV ZZ
1 (µ) = B1(µ) , BLR

1 (µ) = B5(µ) , BLR
2 (µ) = B4(µ) ,

BSZZ
1 (µ) = B2(µ) , BSZZ

2 (µ) = 5
3 B2(µ)− 2

3 B3(µ) . (D.0.10)

The numerical values of the Bi parameters are compiled in Table D.1.

The observables relevant for our phenomenological analyses are

∆mB0
q

= 1
mB0

q

∣∣∣〈B0
q |Heff |B̄0

q 〉
∣∣∣ , εK = kε

eiφε√
2
Im

(
〈K0|Heff |K̄0〉

)
2mK ∆mK

, (D.0.11)

where φε ≈ tan−1 [2(mKL −mKS )/(ΓKS − ΓKL)] = (43.52± 0.05)◦ is the so-called super-

weak phase [73] and kε ≈ 0.94 ± 0.02 accounts for small long-distance corrections [418].

We do not extract new-physics constraints from ∆mK because the kaon mass difference

receives large long-distance contributions that introduce sizeable theoretical uncertainties.





Appendix E

Warsaw basis and UV Lagrangian

The operators describing the SMEFT in the Warsaw basis are given by [289,290],

O(3)
lq =

(
¯̀γµτ I`

) (
q̄γµτ Iq

)
,

O(1)
lequ =

(
¯̀je
)
εjk

(
q̄ku

)
,

Oledq =
(

¯̀je
) (
d̄qj
)
, (E.0.1)

O(3)
lequ =

(
¯̀jσµνe

)
εjk

(
q̄kσµνu

)
,

where τ I are the Pauli matrices and εjk is the totally antisymmetric tensor with ε12 = +1.

The fields q and ` are the quark and lepton SU(2)L doublets, respectively, and u, d, e are

the right-handed SU(2)L singlets. Neglecting the small corrections proportional to the

CKM factors Vub and Vcb, the relevant contributions to the b→ cτν transitions originate

in the Wilson coefficients [C(3)
lq ]3323 ≡ C̃VLL, [C(1)

lequ]3332 ≡ C̃SRL, [Cledq]3332 ≡ C̃SLL and

[C(3)
lequ]3332 ≡ C̃TLL, where [CX ]ijkl denotes the coefficient of the corresponding operator OX

with flavour indices i, j, k, l. The effective Lagrangian relevant for the description of the

B anomalies is therefore given by

LSMEFT ⊃
1

Λ2
NP

(
C̃VLL [O(3)

lq ]3323 + C̃SRL [O(1)
lequ]3332 + C̃SLL [Oledq]3332 + C̃TLL [O(3)

lequ]3332
)
.

(E.0.2)
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Notice that there is a correspondence between the effective operators at the SMEFT basis

with those at the WET basis, according to:

O(3)
lq ↔ O

V
LL , O(1)

lequ ↔ O
S
RL , Oledq ↔ OSLL , O(3)

lequ ↔ O
T
LL ,(E.0.3)

which allow us to use the notation C̃i for the Wilson coefficients at the SMEFT basis, with

the aim of making the discussion more intuitive for the reader.

Possible new mediators contributing to the effective Hamiltonian of Eq. (8.2.13) and

their relative effective Lagrangian are summarized in Table E.1.
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Spin NP mediator Contribution Relevant effective Lagrangian (+ h.c.)

0

(3̄, 1, 1/3) ∼ φ
OVLL ∝ 1

2M2
φ

(dLγµuL)(νLγµeL)

OSLL, OTLL ∝ 1
M2
φ

[
(uRdL)(eRνL)− 1

4(uRσµνdL)(eRσµννL)
]

(3, 2, 7/6) ∼
(
φ5/3, φ2/3

)
OSLL, OTLL ∝ 1

M2
φ2/3

[
(eRνL)(uRdL) + 1

4(eRσµννL)(uRσµνdL)
]

(3̄, 3, 1/3) ∼ (φ4/3, φ1/3, φ−2/3) OVLL ∝ 1
M2
φ1/3

(dLγµuL)(νLγµeL)

(1, 2, 1/2) ∼ (h+
2 , h

0
2)

OSRL ∝ 1
M2
h+

2

(uLdR)(eRνL)

OSLL ∝ 1
M2
h+

2

(uRdL)(eRνL)

1

(3̄, 2, 5/6) ∼ (φµ4/3, φ
µ
1/3) OSRL ∝ 1

M2
φ−1/3

(eRνL)(uLdR)

(3, 1, 2/3) ∼ φµ
OVLL ∝ 1

M2
φ

(uLγµdL)(eLγµνL)

OSRL ∝ 1
M2
φ

(uLdR)(eRνL)

(3, 3, 2/3) ∼ (φµ5/3, φ
µ
2/3, φ

µ
−1/3) OVLL ∝ 1

M2
φ2/3

(νLγµeL)(dLγµuL)

(1, 3, 0) ∼ (W ′µ+ ,W
′µ
0 ,W

′µ
− ) OVLL

1
M2
W ′+

(eLγµνL)(uLγµdL)

Table E.1: Possible fields contributing to the effective Hamiltonian of Eq. (8.2.13), at

dimension 6: leptoquarks are denoted by φ and a second Higgs doublet as h2. Their

quantum numbers (SU(3), SU(2), U(1)Y ), contribution to the EFT operators and their

relevant effective Lagrangian after integrating them out are described for each new field.

Their SU(2) decomposition is explicitly shown after the "∼".





Appendix F

Data compilation for the A2HDM

fit

The following tables detail the collider data sources employed in our global fit. Table F.1

compiles the LHC and Tevatron data sources on Higgs signal strengths. The information

on heavy scalar searches at the LHC is collected in Tables F.2, F.3, F.4 and F.5. These

searches are applied either to the neutral scalars ϕ0
i = H,A or to the charged Higgs boson,

H±. Table F.2 contains information about ϕ0
i = H,A decaying into fermions, γγ and Zγ.

In Table F.3 the final channel is either WW , ZZ or V V = ZZ,WW . Information about

a neutral scalar decaying into the SM Higgs boson is summarized in Table F.4. Finally

direct searches related to the charged Higgs boson are displayed in Table F.5. Parenthesis

indicate an specific final state and square brackets that limits are quoted on the primary

final state, measured through the second final state.
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Channel bb̄ γγ µ+µ− τ+τ− WW Zγ ZZ

ggF8 [419,420] [421] [422,423] [424–426] [427,428] [429,430]

ggF13 [431,432] [433,434] [435,436] [437–439] [440,441] [442–444]

VBF8 [419,420] [421] [422,423] [424–426] [427] [429,430]

VBF13 [445,446] [431,432] [433,434] [435,436] [437–439] - [442–444]

VH8 [447,448] [419,420] [421] [422] [424–426] [427] [429,430]

VH13 [449,450] [431,432] [433,434] [435,451] [437–439] [442–444]

ttH8 [452,453] [419,420] [421] [427] [429,430]

ttH13 [454–456] [431,432] [433,434] [439] [442–444]

VH2 [457,458]

ttH2 [457,458]

Table F.1: Higgs signal strengths input used in the fit, for different production and decay

channels, at energies of
√
s = 7, 8 TeV (ATLAS and CMS, Run I),

√
s = 13 TeV (ATLAS

and CMS, Run II) and
√
s = 2 TeV (D0 and CDF collaborations).
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Label Channel Experiment Mass range L

[TeV] [fb−1]

Att13t tt→ ϕ0
i → tt ATLAS [459] [0.4;1] 36.1

Att13b bb→ ϕ0
i → tt ATLAS [460] [0.4;1] 13.2

Cbb8b bb→ ϕ0
i → bb CMS [461] [0.1;0.9] 19.7

Cbb8 gg → ϕ0
i → bb CMS [462] [0.33;1.2] 19.7

Cbb13 pp→ ϕ0
i → bb CMS [463] [0.55;1.2] 2.69

Cbb13b bb→ ϕ0
i → bb CMS [464] [0.3;1.3] 35.7

Aττ8
gg → ϕ0

i → ττ
ATLAS [465] [0.09;1] 20

Cττ8 CMS [466] [0.09;1] 19.7

Aττ8b
bb→ ϕ0

i → ττ
ATLAS [465] [0.09;1] 20

Cττ8b CMS [466] [0.09;1] 19.7

Aττ13
gg → ϕ0

i → ττ
ATLAS [467] [0.2;2.25] 36.1

Cττ13 CMS [468] [0.09;3.2] 35.9

Aττ13b
bb→ ϕ0

i → ττ
ATLAS [467] [0.2;2.25] 36.1

Cττ13b CMS [468] [0.09;3.2] 35.9

Aγγ8 gg → ϕ0
i → γγ ATLAS [469] [0.065;0.6] 20.3

Aγγ13 pp→ ϕ0
i → γγ ATLAS [470] [0.2;2.7] 36.7

Cγγ13 gg → ϕ0
i → γγ CMS [471] [0.5;4] 35.9

AZγ8
pp→ ϕ0

i → Zγ → (``)γ
ATLAS [472] [0.2;1.6] 20.3

CZγ8 CMS [473] [0.2;1.2] 19.7

A``γ13 gg → ϕ0
i → Zγ[→ (``)γ] ATLAS [440] [0.25;2.4] 36.1

Aqqγ13 gg → ϕ0
i → Zγ[→ (qq)γ] ATLAS [474] [1;6.8] 36.1

CZγ8+13 gg → ϕ0
i → Zγ CMS [475] [0.35;4] 35.9

Table F.2: Direct searches for neutral heavy scalars, ϕ0
i = H,A, with quarks, leptons

(` = e, µ), photons and Zγ final states.
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Label Channel Experiment Mass range L

[TeV] [fb−1]

AZZ8 gg → ϕ0
i → ZZ ATLAS [476] [0.14;1] 20.3

AZZ8V V V → ϕ0
i → ZZ ATLAS [476] [0.14;1] 20.3

A2`2L
13 gg → ϕ0

i → ZZ[→ (``)(``, νν)] ATLAS [477] [0.2;1.2] 36.1

A2`2L
13V V V → ϕ0

i → ZZ[→ (``)(``, νν)] ATLAS [477] [0.2;1.2] 36.1

A2L2q
13 gg → ϕ0

i → ZZ[→ (``, νν)(qq)] ATLAS [478] [0.3;3] 36.1

A2L2q
13V V V → ϕ0

i → ZZ[→ (``, νν)(qq)] ATLAS [478] [0.3;3] 36.1

C2`2X
13 pp→ ϕ0

i → ZZ[→ (``)(qq, νν, ``)] CMS [479] [0.13;3] 35.9

C2q2ν
13 pp→ ϕ0

i → ZZ[→ (qq)(νν)] CMS [480] [1;4] 35.9

AWW
8 gg → ϕ0

i →WW ATLAS [481] [0.3;1.5] 20.3

AWW
8V V V → ϕ0

i →WW ATLAS [481] [0.3;1.5] 20.3

A
2(`ν)
13 gg → ϕ0

i →WW [→ (eν)(µν)] ATLAS [482] [0.2;4] 36.1

A
2(`ν)
13V V V → ϕ0

i →WW [→ (eν)(µν)] ATLAS [482] [0.2;3] 36.1

C
2(`ν)
13 (gg+V V )→ ϕ0

i →WW → (`ν)(`ν) CMS [483] [0.2;1] 2.3

A`ν2q
13 gg → ϕ0

i →WW [→ (`ν)(qq)] ATLAS [484] [0.3;3] 36.1

A`ν2q
13V V V → ϕ0

i →WW [→ (`ν)(qq)] ATLAS [484] [0.3;3] 36.1

C`ν2q
13 pp→ ϕ0

i →WW [→ (`ν)(qq)] CMS [485] [1;4.4] 35.9

CV V8 pp→ ϕ0
i → V V CMS [486] [0.145;1] 24.8

A4q
13 pp→ ϕ0

i → V V [→ (qq)(qq)] ATLAS [487] [1.2;3] 36.7

Table F.3: Direct searches for neutral heavy scalars, ϕ0
i = H,A, with vector-boson final

states. V = W,Z, ` = e, µ.
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Label Channel Experiment Mass range L
[TeV] [fb−1]

Ahh8 gg → ϕ0
i → hh ATLAS [488] [0.26;1] 20.3

C4b
8 pp→ ϕ0

i → hh→ (bb)(bb) CMS [489] [0.27;1.1] 17.9
C2γ2b

8 pp→ ϕ0
i → hh→ (bb)(γγ) CMS [490] [0.260;1.1] 19.7

C2b2τ
8g gg → ϕ0

i → hh→ (bb)(ττ) CMS [491] [0.26;0.35] 19.7
C2b2τ

8 pp→ ϕ0
i → hh[→ (bb)(ττ)] CMS [492] [0.35;1] 18.3

A4b
13

pp→ ϕ0
i → hh→ (bb)(bb)

ATLAS [493] [0.26;3] 36.1
C4b

13,1 CMS [494] [0.26;1.2] 35.9
C4b

13,2 CMS [495] [1.2;3] 35.9
A2γ2b

13 pp→ ϕ0
i → hh[→ (bb)(γγ)] ATLAS [496] [0.26;1] 36.1

C2γ2b
13 pp→ ϕ0

i → hh→ (bb)(γγ) CMS [497] [0.25;0.9] 35.9
A2b2τ

13
pp→ ϕ0

i → hh→ (bb)(ττ)
ATLAS [498] [0.26;1] 36.1

C2b2τ
13,1 CMS [499] [0.25;0.9] 35.9

C2b2τ
13,2 pp→ ϕ0

i → hh[→ (bb)(ττ)] CMS [500] [0.9;4] 35.9
C2b2V

13 pp→ ϕ0
i → hh→ (bb)(V V → `ν`ν) CMS [501] [0.26;0.9] 35.9

A2b2W
13 pp→ ϕ0

i → hh[→ (bb)(WW )] ATLAS [502] [0.5;3] 36.1
A2γ2W

13 gg → ϕ0
i → hh→ (γγ)(WW ) ATLAS [503] [0.26;0.5] 36.1

AbbZ8 gg → ϕ0
i → hZ → (bb)Z ATLAS [504] [0.22;1] 20.3

C2b2`
8 gg → ϕ0

i → hZ → (bb)(``) CMS [505] [0.225;0.6] 19.7
AττZ8 gg → ϕ0

i → hZ → (ττ)Z ATLAS [504] [0.22;1] 20.3
C2τ2`

8 gg → ϕ0
i → hZ → (ττ)(``) CMS [491] [0.22;0.35] 19.7

AbbZ13

gg → ϕ0
i → hZ → (bb)Z

ATLAS [506] [0.2;2] 36.1
CbbZ13,1 CMS [507] [0.22;0.8] 35.9
CbbZ13,2 CMS [508] [0.8;2] 35.9
AbbZ13b

bb→ ϕ0
i → hZ → (bb)Z

ATLAS [506] [0.2;2] 36.1
CbbZ13b,1 CMS [507] [0.22;0.8] 35.9
CbbZ13b,2 CMS [508] [0.8;2] 35.9

Cϕ2Z
8,1 pp→ ϕ3 → ϕ2Z → (bb)(``) CMS [509] [0.04;1] 19.8

Cϕ2Z
8,2 pp→ ϕ3 → ϕ2Z → (ττ)(``) CMS [509] [0.05;1] 19.8

AϕZ13 gg → ϕ3 → ϕ2Z → (bb)Z ATLAS [510] [0.13;0.8] 36.1
AϕZ13b bb→ ϕ3 → ϕ2Z → (bb)Z ATLAS [510] [0.13;0.8] 36.1

Table F.4: Direct searches for neutral heavy scalars, ϕ0
i = H,A, with final states including

the SM Higgs boson or other neutral scalars. ϕ3 denotes the heaviest scalar, V = W,Z,

` = e, µ.
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Label Channel Experiment Mass range L

[TeV] [fb−1]

Aτν8 pp→ H± → τ±ν ATLAS [511] [0.18;1] 19.5

Cτν8 pp→ H+ → τ+ν CMS [512] [0.18;0.6] 19.7

Aτν13
pp→ H± → τ±ν

ATLAS [513] [0.09;2] 36.1

Cτν13 CMS [514] [0.18;3] 12.9

Atb8 pp→ H± → tb ATLAS [515] [0.2;0.6] 20.3

Ctb8 pp→ H+ → tb̄ CMS [512] [0.18;0.6] 19.7

Atb13 pp→ H± → tb ATLAS [516] [0.2;2] 36.1

Table F.5: Direct searches for charged scalars.
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