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1 Problem Set on Numerical Methods

1.1 Using Mathematica® in Optics: an introduction

The following is a list of resources available to help you navigate the software:

� Mathematica basics, by James Stewart from CalcLabs with Mathematica: single variable
calculus. This book chapter describes many of the most important and basic elements of
Mathematica® and discuss a few of the more common technical issues related to using
Mathematica®.
This Mathematica® text is suggested for first-time users.

� Mathematica tutorial, by Mark S. Gockenbach. To accompany Partial differential equations:
analytical and numerical methods [1].
This tutorial is my suggested text for students who have minor experience using Mathematica®.

� Comprehensive documentation for Mathematica® and the Wolfram Language, which includes
details and examples for functions, symbols, and workflows.

� Wolfram demonstrations project. Explore thousands of free applications across science, math-
ematics, engineering, technology, and more.

� Wolfram library archive has thousands of downloadable resources for Mathematica, collected
over the full history of Wolfram.

This is a list of resources available in Spanish:

� Gúıa rápida para el nuevo usuario de Mathematica 5.0®, by Eugenio M. Fedriani Martel and
Alfredo Garćıa Hernández-Dı́az.

� Breve manual de Mathematica 5.1, by Robert Ipanaqué Chero and Ricardo Velesmoro León.

� Docencia con Mathematica, by Javier Pérez (Departamento de Análisis Matemático, Univer-
sidad de Granada).

1.1.1 Plotting scalar and vector wave fields

Consider the electric field of a time-harmonic plane wave propagating along the z axis in a vacuum.
The electric field E(z, t) = Re[ ~E(z, t)] can be determined by means of its analytical representation
~E(z, t) = σ̂E(z, t), where E(z, t) = E0 exp(ik0z− iωt). Here, k0 = ω/c is the vacuum wavenumber,
and the unit vector σ̂ = σxx̂+σyŷ gives the state of polarization (here, σ̂ is equivalent to the Jones
vector), where |σx!2 + |σy|2 = 1. For numerical purposes, set the amplitude E0 = 1 V/m and the
vacuum wavelength λ0 = 500 nm (where k0 = 2π/λ0), and c = 3 108m/s.

First, consider a linearly-polarized plane wave, σ̂ = σ̂∗. In practical terms, the electric field can
be represented by the scalar wave function E(z, t).

1. Plot Re[E(z, t)] and |E(z, t)|2 within the range 0 ≤ z ≤ 2λ0 at the instants t = 0 and t = T/4,
where T is the period of the oscillation, that is, ω = 2π/T .
Hint : use the built-in symbol Plot[].

2. Plot Re[E(z, t)] within the range 0 ≤ z ≤ 2λ0 and 0 ≤ t ≤ 2T .
Hint : use the built-in symbols Plot3D[] and ContourPlot[].
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Next, consider a circularly-polarized plane wave with σ̂ = (x̂+ iŷ)/
√

2.

3. Show the locus traced by the tip of the electric field Re[ ~E(z, t)] at a given point of the plane
z = 0 through one cycle, for instance within 0 ≤ t ≤ T , by using a two-dimensional (2-D)
plot, which generates the so-called ellipse of polarization.
Hint : use the built-in symbol ParametricPlot[].

4. Show again the locus traced by the tip of Re[ ~E(z, t)] at z = 0 within the interval 0 ≤ t ≤ 3T ,
however using a 3-D plot, for the same circularly-polarized plane wave. Can you infer from
this figure the polarization handedness of the light: right circular or left circular? Also, create
a 3-D graph of the locus traced by the tip of Re[ ~E(z, t)], now set at the instance t = 0 and
evaluated along the z axis, within the interval 0 ≤ z ≤ 3λ0.
Hint : use the built-in symbol ParametricPlot3D[].

5. Plot the time evolution of the vector field Re[ ~E(z, t)] at different points of the plane z = 0
(for instance, in the domain |x|, |y| ≤ 1 mm) for the same circularly-polarized plane wave.
Hint : use the built-in symbol VectorPlot[] to generate a vector plot of the vector field Re[ ~E]
as a function of x and y, and the built-in symbol Animate[] to generate an animation where
t varies continuously from 0 to T .

1.1.2 Solving second-order linear homogeneous ODEs

Consider a half-space z < 0 filled with an isotropic, homogeneous, lossless, dielectric material of
index of refraction n1. Also, in the half-space z > 0 the medium is isotropic and homogeneous with
index of refraction n2, which is not necessarily real valued but Re[n2] ≥ 0 is assumed without loss
of generality. Finally, the photonic system is free of charges and currents.

In the semi-space z < 0, a 1-D time-harmonic electric field ~E(z) exp(−iωt) satisfies the following
second-order linear homogeneous ordinary differential equation (ODE) with constant coefficients,[

∂2

∂z2
+ k2

1

]
~E(z) = 0, (1.1.1)

which is the so-called Helmholtz equation, where k1 = n1k0 (k0 = ω/c) is the wavenumber in the
medium. Furthermore, one may show that ~E(z) = σ̂E(z), where

E(z) = E0 [exp(ik1z) + r exp(−ik1z)] , (1.1.2)

is a solution of the 1-D Helmholtz equation in z < 0, where σ̂ is a complex, unitary (σ̂ · σ̂∗ = 1),
transverse (σ̂ · ẑ = 0) vector denoting the state of polarization of the wave field, and E0 and r are
complex-valued constants. The electric field given in Eqs. (1.1.2) represents a superposition of two
counter-propagating plane waves: the incident wave has an electric field with amplitude E0, and
thus intensity n1S0 = 1

2n1|E0|2/Z0 (Z0 =
√
µ0/ε0 is the intrinsic impedance of a vacuum), which

propagates along the z axis in direction to the interface set at z = 0, whereas the reflected wave
propagates back from the interface having an amplitude rE0. In fact, r is the well-known reflection
coefficient, which can be estimated by means of

r =
E(0)

E0
− 1, (1.1.3)

and R = |r|2 gives the wave reflectance. Furthermore, the complex Poynting vector, ~S(z) =
1
2
~E(z)× ~H∗(z) = ẑSz(z), has its real part, as measured at z = 0, given by Re[Sz(0)] = n1S0(1−|r|2).
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In the half-space z > 0, the 1-D electric field satisfies the Helmholtz equation,
(
∂2
z + k2

2

)
~E(z) =

0, where k2 = n2k0 is the wave number in this medium. One may verify the validity of the solution
~E(z) = σ̂E(z) to the Helmholtz equation, where

E(z) = E0t exp (ik2z) , z > 0. (1.1.4)

and the unit vector σ̂ represents the same state of polarization of the incident and reflected fields.
The electric field given in Eq. (1.1.4) represents a plane wave propagating along the z axis away
from the interface set at z = 0. In addition, t is the complex-valued transmission coefficient, which
can be estimated by t = E(0)/E0 = 1 + r. Finally, the complex Poynting vector has its real
part, as evaluated at the boundary z = 0, which is given by Re[~S(0)] = ẑS0|t|2Re(n2). Therefore,
T = |t|2 Re(n2)/n1 gives the wave transmittance. Note that T +R = 1 by conservation of energy.

1. Show that the electric field in the half-space z < 0 satisfies the Robin-type boundary condition[
ik1E(z) +

∂E(z)

∂z

]
z=z1

= 2ik1E0 exp(ik1z1), (1.1.5)

which is established at any transverse plane z = z1, called input port, provided that z1 < 0.
In the half-space z > 0, the electric field satisfies the Sommerfeld radiation condition,[

ik2E(z)− ∂E(z)

∂z

]
z=z2

= 0, and z2 > 0, (1.1.6)

which is established at the output port, z = z2.

For numerical purposes, set the amplitude E0 = 1 V/m, the vacuum wavelength λ0 = 500 nm
(where k0 = 2π/λ0), and c = 3 108m/s. Also set the input and output ports at z2 = −z1 = 2λ0.

2. Find numerically the solution to the second-order linear homogeneous ODE,[
∂2

∂z2
+ k2

0n
2(z)

]
E(z) = 0, where z1 ≤ z ≤ z2, (1.1.7)

providing the z dependence of the electric field, E(z), where n(z) = n1 within z1 ≤ z < 0, and
n(z) = n2 within 0 < z ≤ z2. Firstly use n1 = 1 and n2 = 1.5. Apply the Robin boundary
condition (1.1.5) at the input port, and the radiation condition (1.1.6) at the output port.
Hint : use the normalized coordinate x = k0z, and the functions u(x) = E(z) and a(x) =
n2(z), to transform Eq. (1.1.7) into ∂2

xu(x)+a(x)u(x) = 0, to be used with the built-in symbol
NDSolve[].
Alternatively, one may take the following steps:

� use the normalized coordinate x = k0z, and the functions u(x) = E(z), a(x) = n2(z), and
c = −1, in order to transform Eq. (1.1.7) into the coefficient form ∇·(−c∇u)+au = 0 of
ODEs, as managed by Mathematica®, to be used with the built-in symbol NDSolve[].

� use the functions q(x) = in(z) and g(x) = 0, both evaluated at the boundary x2 = k0z2,
in order to transform Eq. (1.1.6) into the Robin boundary condition n̂ · (c∇u) = g −
qu as treated by Mathematica®, and implement it by means of the built-in symbol
NeumannValue[].
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� use the functions q(x) = in(z) and g(x) = 2in(x)E0 exp[in(x)x], both evaluated at the
boundary x1 = k0z1, in order to transform Eq. (1.1.5) into the Robin boundary condition
n̂·(c∇u) = g−qu as treated by Mathematica®, to be implemented by NeumannValue[].

3. Plot the real and imaginary part of the wave function E(z) (or u(x)) which was found previ-
ously. Also plot |E(z)| within the region of computation.
Hint : use the built-in symbol ReImPlot[].

4. Find numerically the reflection coefficient r given in Eq. (1.1.3), and compare with the ana-
lytical expression

r =
n1 − n2

n1 + n2
. (1.1.8)

Estimate the reflectance and transmittance by using your numerical results, and also compare
it with the theoretical predictions.

5. Repeat 2–4 assuming now that n2 = 0.055 + i4.0 (silver at λ0 = 600 nm). For a better
convergence of the numerical evaluation, set z2 = λ0/2 to shift the output port closer to the
vacuum/silver interfase, and use the Dirichlet boundary condition E(z) = 0 at z = z2.
Hint : use the built-in symbol DirichletCondition[].

1.1.3 The Fourier transform, the Fourier series expansion and the DFT

Let us consider an optical signal characterized by a 1-D function f(t), where t may stand for the
time coordinate. The Fourier transform (FT) of f can be represented by the symbol F(f) giving

F(f)(ω) = F (ω) =
1√
2π

ˆ +∞

−∞
f(t) exp(iωt)dt, (1.1.9)

where ω is the spectral coordinate in the Fourier domain. Some useful properties of the FT are:

� If fa(t) = f(t/a) then F(fa)(ω) = |a|F (aω).

� If f0(t) = f(t− t0) then F(f0)(ω) = F (ω) exp(iωt0).

� If fe(t) = f(t) exp(−iω0t) then F(fe)(ω) = F (ω − ω0).

� If f ′(t) = df(t)/dt then F(f ′)(ω) = −iωF (ω).

� F(f ~ g)(ω) =
√

2πF (ω)G(ω), where (f ~ g)(t) =
´ +∞
−∞ f(t′)g(t− t′)dt′.

� F(F(f))(t) = f(−t). As a consequence, f(t) = F(F )(−t) = F−1(F )(t), where F−1 is the
inverse Fourier transform.

� Plancherel theorem (also called Parseval-Plancherel identity):
´ +∞
−∞ |f(t)|2dt =

´ +∞
−∞ |F (ω)|2dω.

1. Find the FT of the following functions:

∗ The rectangle function f(t) = rect(t) = 1 if |t| < 1/2, otherwise vanishing.

∗ The sinc (or sinus cardinalis) function F (ω) = sinc(ω) ≡ sin(ω)/ω.

∗ The modulated time-harmonic signal f(t) = exp(−iω0t) exp[−(t/τ)2], where τ > 0 is
the pulse length and ω0 > 0 is the so-called carrier frequency.

∗ The time-limited Gaussian function f(t) = exp[−(t/τ)2] rect(t/∆t), where τ,∆t > 0.

5
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∗ The normalized hyperbolic secant function f(t) = sech(
√
π/2t).

∗ The Dirac delta function f(t) = δ(t− t0).

∗ The Dirac comb function f(t) = comb(t) =
∑∞

n=−∞ δ(t− n).

∗ The periodic function f(t) = cos2(t).

Hint : use the built-in symbol FourierTransform[] (also Integrate[]). In addition, the op-
tion Assumptions -> τ>0 can be applied to the modulated time-harmonic signal, to mention
an example.

2. Plot f(t) and F (ω) for the functions previously analyzed in 1. Allocate numerical values to
the parameters τ , ∆t, and ω0 freely. In cases involving Dirac delta functions, one may use
that δ(x)→ ε/[π(x2 + ε2)] in the limit ε→ 0+.
Hint : use the built-in symbol ReImPlot[] for complex-valued functions.

In particular, a periodic function, fp(t+ ∆t) = fp(t), has a Fourier series expansion given by

fp(t) =
+∞∑
s=−∞

cs exp (−is∆ωt) , where cs =
1

∆t

ˆ ∆t/2

−∆t/2
fp(t) exp (is∆ωt) dt, (1.1.10)

is the Fourier coefficient of the s-th harmonic, and ∆ω = 2π/∆t is the fundamental frequency.
Therefore, its FT Fp(ω) = F(fp)(ω) is characterized by a discrete but generally infinite number of
coefficients cs, which can be expressed as a modulated comb function,

Fp(ω) =
√

2π
+∞∑
s=−∞

csδ(ω − s∆ω). (1.1.11)

Some useful properties of the Fourier series expansion are:

� Parseval’s theorem: If fp belongs to L2([0,∆t]), then

1

∆t

ˆ ∆t/2

−∆t/2
|fp(t)|2dt =

+∞∑
s=−∞

|cs|2. (1.1.12)

� The integral in Eq. (1.1.10) giving the Fourier coefficient cs can be interpreted as the FT of
the time-limited function f(t) = fp(t) rect(t/∆t), when evaluated at frequencies s∆ω, namely
cs = (

√
2π/∆t)F (s∆ω). As a consequence,

1. Equation (1.1.11) can be written as Fp(ω) = F (ω) comb(ω/∆ω).

2. The FT of the time-limited function f(t), when evaluated at frequencies s∆ω, is directly
proportional to the Fourier coefficients of fp(t), namely F (s∆ω) = (

√
2π/∆ω)cs. This

property is useful when applied to sampled functions, as we will see below.

3. Find the Fourier series expansion of the following periodic functions given in the central unit
cell |t| < ∆t/2:

∗ The squared cosine function fp(t) = cos2(t), with period ∆t = π.

∗ The rectangle function fp(t) = rect(t), with period ∆t ≥ 1.

6
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∗ The truncated Gaussian function fp(t) = exp[−(t/τ)2] rect(t/∆t), with period ∆t, in-
cluding the limiting cases ∆t� τ and ∆t� τ .

∗ The Dirac comb function fp(t) = comb(t), with period ∆t = 1.

Hint : use the built-in symbol FourierCoefficient[] and its option FourierParameters ->

{1,−2π/∆t} to indicate the period (also FourierSeries[] can be used).

4. Plot fp(t) and its Fourier expansion (1.1.10) by considering a finite but increasing number of
Fourier coefficients cs, for the functions previously analyzed in 3. In each case, plot the list
of Fourier coefficients cs in the range |s| ≤ 10. Where required, allocate numerical values to
the parameters ∆t and τ freely.
Hint : use the built-in symbol ReImPlot[] for complex-valued functions and DiscretePlot[]

for the Fourier coefficients.

We may take a step further by sampling the periodic signal fp(t) at a rate N/∆t, giving

fp(t) ≈ f̃p(t) =
∆t

N

N∑
r=1

f(tr)δ(t− tr), and f̃p(t) =

+∞∑
s=−∞

c̃s exp (−is∆ωt) , (1.1.13)

in the range 0 ≤ t < ∆t, where tr = (r − 1)∆t/N . The periodic function f̃p(t) is composed of
N Dirac delta functions which are regularly distributed within one period, ∆t. Such approach is
useful provided that fp(t) is not itself a finite set of Dirac delta functions within one period, so
such cases are disregarded from here on. Some observations can be highlighted:

� The periodic function fp(t) is approximated to

f̃p(t) = fp(t) comb

(
t

∆t/N

)
, (1.1.14)

which is a comb function of period ∆t/N modulated by fp(t) itself.

� Due to the periodicity of fp(t), equations (1.1.13) and (1.1.14) can be transformed into

f̃p(t) =
1

N

N∑
r=1

fp(tr) comb

(
t− tr

∆t

)
, (1.1.15)

set as a combination of N comb functions of period ∆t and mutually shifted by ∆t/N . This
can also be inferred by means of the identity comb(x/∆) = N−1

∑N
s=1 comb[(x − xs)/N∆],

with xs = (s− 1)∆, applied in Eq. (1.1.14).

� The Fourier coefficients of f̃p(t) satisfy the recursive relationship c̃s+N = c̃s. Consequently,
one can find only N independent Fourier coefficients of f̃p(t). From here on we will use the
set {c̃0, c̃1, . . . , c̃N−1}

� Following Eq. (1.1.11), the FT of f̃p(t) yields

F̃p(ω) =

√
2π

N∆ω

N∑
s=1

c̃s−1 comb

(
ω − ωs
N∆ω

)
, (1.1.16)

with ωs = (s− 1)∆ω, which is also a periodic function with period N∆ω. Note that F̃p(ω) is
characterized by a finite number N of Fourier coefficients providing the modulation of the N
delta functions found within one period.

7
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� Namely, the Fourier coefficients of f̃p(t) yield

c̃s−1 =
1

N

N∑
r=1

fr−1 exp

[
2πi(r − 1)(s− 1)

N

]
, for s = {1, 2, . . . , N} , (1.1.17)

where fr−1 = f(tr). Note that the zeroth-harmonic term appears at position 1 in the resulting
list.

Finally, the list of N elements c = {c̃0, c̃1, . . . , c̃N−1} can be evaluated by applying the discrete
Fourier transform (DFT) to the list f = {f0, f1, . . . , fN−1}, such that1 c = (1/

√
N)Fourier[f ],

where Fourier[] is a built-in symbol as defined by default in Mathematica®.

5. Use the DFT to evaluate theN Fourier coefficients c̃s of f̃p(t), derived by sampling the periodic
functions fp(t) which were considered in 3. Where required, allocate numerical values to the
parameters ∆t and τ freely. Employ lists of N = 25 elements. In addition,

� Compare these results with the Fourier coefficients cs of fp(t), derived analytically in 3,
where now s = {−∞, . . . ,−2,−1, 0, 1, 2, . . . ,+∞}.

� Discuss if c̃N−1 is closer to either cN−1 or c−1. Do the same comparing c̃N−2 with the
Fourier coefficients cN−2 and c−2. Can you find a more general rule?

� Discuss the main differences when using N = 26 elements instead.

Hint : use the built-in symbol Table[] to generate a list.

As previously mentioned, a sampled FT of a time-limited signal f(t) of length τ0 can be obtain
by simply replicating such function at different instants in order to generate a periodic function
fp(t) of period ∆t ≥ τ0, the latter used to subsequently calculate its Fourier coefficients cs. These
coefficients provide F (ω) at a discrete number of frequencies, which are multiples of the fundamental
frequency ∆ω = 2π/∆t (see 2). Namely, F (s∆ω) = (

√
2π/∆ω)cs. Finally, the estimation of cs is

reduced to the (analytically or numerically) evaluation of the integral (1.1.10).

6. Analyze the validity of the approximation F (ωs) ≡ Fs−1 ≈ F̃s−1, where F̃s−1 are elements of
the list F = (

√
2π/∆ω)c for s = {1, 2, . . . , N}, and ωs = (s − 1)∆ω. Note that F̃s+N = F̃s.

For that purpose:

� Show that this problem is equivalent to comparing the Fourier transform of fp(t), which
can be set as Fp(ω) = F (ω) comb(ω/∆ω), and F̃p(ω) given in Eq. (1.1.16).

Hint : use the identity comb(ω/∆ω) = N−1
∑N

s=1 comb[(ω − ωs)/N∆ω].

� Use the DFT to evaluate the N elements of F, derived by sampling the functions f(t)
which were considered in 1 at a rate N/∆t. Where required, allocate numerical values
to the parameters τ , ∆t, and ω0 freely. Disregard cases involving Dirac delta functions.
Employ lists of N = 25 elements.

� Compare these results with the Fourier transforms F (ω) derived analytically in 1, when
evaluated at frequencies ωs = (s−1)∆ω, where now s = {−∞, . . . ,−2,−1, 0, 1, 2, . . . ,+∞}.
In particular, discuss if F̃N−1 is closer to either FN−1 or F−1. Do the same comparing
F̃N−2 with FN−2 and F−2. Can you find a more general rule?

1Other definitions of the DFT are used in some scientific and technical fields.
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� Using a given time-limited function f(t) within the working range |t| ≤ ∆t/2, is there
any improvement in the DFT-based estimation of the FT by using N = 26 elements?
And using N = 27 elements? Note that the length ∆t of the working range is kept fixed
but the sampling rate is being doubled in each step.

� Compare the accuracy of the DFT obtained for a given time-limited function f(t) within
the working range |t| ≤ ∆t/2 when using N = 25 points, with the DFT of the same
function but doubling the length of the working range to 2∆t, by applying a zero padding
in the range ∆t/2 < |t| ≤ ∆t, and also doubling the number of points to 2N = 26. Note
that the sampling rate N/∆t is conserved in both cases.

� Plot the lists F and F (ωs) for all the functions previously analyzed.

Hint : consider using the built-in symbol RotateLeft[list,len/2], where len = Length[list],
to swaps the left and right halves of list. The latter serves to transform F into the list{
F̃−N/2, F̃−N/2+1, . . . , F̃−1, F̃0, F̃1, . . . , F̃N/2−1

}
, leaving F̃0 in the center of the list.

9



OPTICS II 2019-2020 COURSE

1.2 Interference by division of wavefront

Introductory notes: rotation of plane waves

Consider a monochromatic plane wave of time frequency ω propagating in free space. The analytic
representation of the electric field can be written as ~E(~r, t) = σ̂E0 exp(i~k ·~r− iωt), where σ̂ is a unit
vector (σ̂ · σ̂∗ = 1) characterizing its state of polarization, E0 is the complex-valued amplitude of
the electric field measured in V/m, ~k = kq̂ is the wave vector, q̂ · q̂∗ = 1, k = ω/c is the wavenumber,
and c = 1/

√
ε0µ0 is the speed of light in vacuum. Note that:

1. The electric field is a transverse wave, i.e. q̂ · σ̂ = 0. In other words, ~E ⊥ ~k.

2. The magnetic field of the plane wave can be set as ~H(~r, t) = π̂H0 exp(i~k · ~r − iωt), provided
that the unit vector π̂ = q̂ × σ̂ and the amplitude of the magnetic field H0 = E0/Z0, where
Z0 =

√
µ0/ε0 (≈ 376.7 Ω) is the intrinsic impedance of free space.

3. Using the fact that the rotation of a vector ~x by an angle θ around the axis characterized by
the unit vector û can be written as2

Ru(θ)~x = û(û · ~x) + cos(θ)(û× ~x)× û+ sin(θ)(û× ~x),

the electric field and magnetic field of the plane wave given above can satisfy Maxwell’s
equations under the rotational transformations Rû(θ)~k, Rû(θ)σ̂, and Rû(θ)π̂, applied simul-
taneously, and occurring independently of the orientation of the rotation unit vector û.
Note: in Mathematica®, one may use RotationMatrix[θ,{ux,uy,uz}] to generate a 3D
rotation matrix equivalent to Ru(θ).

4. A generalization of 3 can be established when the rotation is described by the multiplication
matrix R = Rz(α)Ry(β)Rx(γ), whose yaw, pitch, and roll angles are α, β and γ, respectively,

which is applied to the vectors ~k, σ̂, and π̂ characterizing an electromagnetic plane wave.

1.2.1 Interference of two plane waves

First, consider an optical plane wave whose electric field is E(~r, t) = Re[ ~E(~r, t)], where ~E(~r, t) =
σ̂E0 exp(i~k · ~r − iωt), which propagates along the z-axis (q̂ = ẑ) in free space (k = ω/c), having a
wavenumber k = 4π µm−1 (λ = 0.5 µm), an amplitude E0 = 1 V/m, and a state of polarization
characterized by the unit vector σ̂ = ŷ, i.e. the plane wave is linearly polarized.

1. Plot the time evolution of the electric field E(~r, t) at different points of the 3-D domain Ω3,
given by |x| ≤ λ, |y| ≤ λ, and 0 ≤ z ≤ 2λ. Show that the electric field vector executes a
simple-harmonic oscillation of period T = λ/c (T = 1.67 fs in our case) along the y axis.
Hint : use VectorPlot3D[] to show E(~r, t) in a given instant t within Ω, and Animate[] in
0 ≤ t ≤ T to represent its time evolution.

2. Plot the time evolution of the energy density, U(~r, t) = Ue(~r, t) + Um(~r, t), where

Ue(~r, t) =
1

2
ε0E ·E, and Um(~r, t) =

1

2
µ0H ·H,

where H(~r, t) = Re[ ~H(~r, t)] (see introductory notes), and the Poynting vector,

S(~r, t) = E×H,

2https://en.wikipedia.org/wiki/Rotation_matrix
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in points of Ω3. Show that they exhibit a periodic oscillation of period T/2. Finally, show
that one can set S(~r, t) = Sz(z, t)ẑ, and plot Sz(z, t) in 0 ≤ z ≤ 2λ.
Hint : use ContourPlot[] to represent scalar fields such as U(~r, t) in different planes (y = 0,
for instance) within Ω3.

3. Show that the time-averaged energy density, defined as

w(~r) =
1

T

ˆ T

0
U(~r, t)dt =

1

4
ε0 ~E · ~E∗ +

1

4
µ0
~H · ~H∗,

leads to a uniform pattern, w(~r) = w0, where w0 = ε0|E0|2/2. Also show that the time-
averaged Poynting vector, which is determined by the real part of the complex Poynting
vector

~S(~r) =
1

2
~E × ~H∗,

yields the vector S0q̂ at every point of the space, where the intensity S0 = w0c = |E0|2/(2Z0).

4. Next, consider that the plane wave of electric field ~E(~r, t) is split into two identical plane
waves of amplitude E0/2 each one, giving ~E1 = ~E2 = ~E/2. By optical means, the electric
field ~E1(~r, t) is transformed into ~E′1(~r, t) by a rotation Ry(β0) in the terms given in the

introductory notes (see 3), where the pitch angle β0 = π/4. However the electric field ~E2(~r, t)
is transformed into ~E′2(~r, t) by a rotation Ry(−β0). Finally, consider the interference of the

rotated wave fields, ~E′(~r, t) = ~E′1(~r, t) + ~E′2(~r, t), occurring in the region of interest.

� Plot the time evolution of the electric field, E′(~r, t) = Re[ ~E′(~r, t)], determined at points
in Ω3. Show that the wave field is periodic along the x axis with a spatial period
px = λ/ sin(β0), however it is invariant under translations along the y axis. Analyze the
state of polarization at the observed points in Ω3. Finally, plot the time evolution of the
y component of the electric field, ŷ ·E′(~r, t), in the 2-D domain Ω2 given by |x| ≤ px and
0 ≤ z ≤ 2λ.

� Plot the time evolution of the energy density of the superposition of these two polar-
ized plane waves at points of Ω2. Plot the Poynting vector at points of Ω3. Show
that they exhibit a time-domain oscillation of period T/2. Show that one can set
S(~r, t) = Sx(x, z, t)x̂ + Sz(x, z, t)ẑ, and plot S(~r, t) in Ω2. Is there any periodicity of
the evaluated patterns along the x axis? And along the z axis?
Hint : use ContourPlot[] to represent the scalar field U(~r, t) within Ω2. Use VectorPlot[]
to represent the vector field S(~r, t) in Ω2.

� Plot the time-averaged energy density in Ω2 and the time-averaged Poynting vector at
points of either Ω2 or Ω3. Show that one can set w(~r) = w0[cos2(β0) cos2(2πx/px) +
sin2(β0)/2] and Re(~S) = S0 cos(β0) cos2(2πx/px)ẑ, the latter describing the Young fringes
pattern.

5. Repeat 4 but considering the interference of two plane waves with initial (prior to the appli-
cation of rotation) state of polarization given by the unit vector σ̂ = x̂. In addition, consider
wave rotations of pitch angle: (a) β0 = π/4, and (b) β0 = π/2. Here, one may plot the time
evolution of the x and z components of the electric field in Ω2, simultaneously.

6. Repeat 4 but considering the interference of two plane waves with original state of polarization
given by the unit vector σ̂ = (x̂+ iŷ)/

√
2. In addition, consider a pitch angle β0 = π/4.

11
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1.2.2 Periodic interference patterns (optional)

First, consider an optical plane wave whose electric field is ~E(~r, t) = σ̂E0 exp(i~k · ~r − iωt), which
propagates along the z-axis (q̂ = ẑ) in free space (k = ω/c), having a wavenumber k = 4π µm−1

(λ = 0.5 µm), an amplitude E0 = 1 V/m, and a state of polarization characterized by the unit
vector σ̂ = ŷ, i.e. the plane wave is linearly polarized.

Next, consider that the plane wave of electric field ~E(~r, t) is split into an odd number M = 3 of
identical plane waves with amplitude E0/M each one, giving wavelets of electric field ~Em = ~E/M ,
with m = 0,±1, . . . , (M − 1)/2. By optical means, the electric field ~E1(~r, t) of one wavelet is
transformed into ~E′1(~r, t) by a rotation Ry(β0) in the terms given in the introductory notes (see

3), where the pitch angle β0 = π/18. The electric field ~E−1(~r, t) is transformed into ~E′−1(~r, t) by

a mirror-symmetric transformation Ry(−β0). In general, the electric field ~Em(~r, t) of the m-th

wavelet is transformed into ~E′m(~r, t) by the rotation Ry(βm), provided that

sin(βm) = m sin(β0), (1.2.1)

and |βm| ≤ π/2. Finally, consider the interference of the rotated wave fields, ~E′(~r, t) =
∑

m
~E′m(~r, t),

occurring in the region of interest.

1. Show that the electric field satisfies the following periodicity property:

~E′(x+ px, y, z, t) = ~E′(x, y, z, t),

where px = λ/ sinβ0 is the period along the x axis. Show that the electric field is invariant
under translations in the spatial coordinate y.
Note: Equation 1.2.1 becomes sin(βm) = mλ/px, which is formally equivalent to the grating
equation when light is normally incident on the grating.

2. Plot the time evolution of the electric field, Re[ ~E′(~r, t)], determined at different points of the
plane z = 0, provided that |x| ≤ 2px. Furthermore, analyze the state of polarization at the
observed points of the xy plane.

3. Plot the time-averaged energy density and the time-averaged Poynting vector at different
points of the plane z = 0.

4. Repeat 2–3 but considering the interference of: (a) M = 5, and (b) M = 7 plane waves with
initial state of polarization given by the unit vector σ̂ = ŷ.

5. Find the maximum number (Mmax) of plane waves to interfere under the restriction |m| ≤
1/ sin(β0), which can be derived from | sin(βm)| ≤ 1. Furthermore, repeat 2–3 but considering
the interference of Mmax plane waves with initial state of polarization given by the unit vector
σ̂ = ŷ.

6. Repeat 2–4 but considering the interference of plane waves with initial state of polarization
given by the unit vector σ̂ = (x̂+ ŷ)/

√
2.

12
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1.3 Interference by division of amplitude

Introductory notes: Scattered fields in 1-D domains under normal incidence

Consider a semi-space z < 0 filled with an isotropic homogeneous material of index of refraction n1,
which is real valued and positive for convenience. In z > L (with L > 0) the medium is isotropic
and homogeneous with index of refraction n2, which is not necessarily real valued (Im(n2) ≥ 0 is
always imposed). In the intermediate space, 0 < z < L, the medium is inhomogeneous with index
of refraction n(z). Finally, the photonic systems is free of charges and currents.

1. In z < 0, a 1-D time-harmonic electric field ~E(z) = σ̂E(z) exp(−iωt) satisfies the Helmholtz
equation,

[
∂2
z + k2

0n
2
1

]
E(z) = 0, where k0 = ω/c is the wavenumber in a vacuum, and σ̂ is a

complex, unitary (σ̂ · σ̂∗ = 1), transverse (σ̂ · ẑ = 0) vector denoting the state of polarization
of the wave field. In addition, its magnetic field ~H(z) = π̂H(z) exp(−iωt) can be determined
by means of H(z) = (ik0Z0)−1∂zE(z), where Z0 = (µ0/ε0)1/2 is the intrinsic impedance in
free space, and π̂ = ẑ × σ̂.

(a) Furthermore, E(z) = E0 [exp(ik1z) + r exp(−ik1z)] is a solution of the 1-D Helmholtz
equation in z < 0, E0 and r are complex-valued constants, and k1 = k0n1 is the wave
number in the medium. In fact, r is the reflection coefficient, which can be estimated
by means of r = E(0)

E0
− 1, and R = |r|2 gives its reflectance. Finally, the magnetic field

is set as H(z) = n1H0 [exp(ik1z)− r exp(−ik1z)], where H0 = E0/Z0 is its amplitude.

(b) The complex Poynting vector, ~S(z) = 1
2
~E(z)× ~H∗(z) = ẑSz(z), has its real part at the

boundary z = 0 given by Re[Sz(0)] = n1S0(1−|r|2), where the intensity S0 = 1
2 |E0|2/Z0.

(c) The electric field in z ≤ 0 satisfies the boundary condition [ik1E(z) + ∂zE(z)]z=z1 =
2ik1E0 exp(ik1z1), which can be applied at a transverse plane z = z1 with z1 ≤ 0.

2. In z > L, the 1-D electric field satisfies the Helmholtz equation,
[
∂2
z + k2

2

]
~E(z) = 0, where

k2 = k0n2. Note that, in general, k2 is complex valued, and Im(k2) ≥ 0 always occurs.

(a) One find the solution E(z) = E0t exp [ik2(z − L)] to the Helmholtz equation in z > L,
where ~E(z) = σ̂E(z), and σ̂ represents the same state of polarization of the incident
and reflected fields. Here, t is the transmission coefficient, which can be estimated by
t = E(L)

E0
. Also, the magnetic field ~H(z) = π̂H(z), where H(z) = n2H0t [ik2(z − L)].

(b) The complex Poynting vector yields Re[~S(z)] = Re[~S(L)] exp[−2 Im(k2)(z − L))], if
z > L, where Re[~S(L)] = ẑS0|t|2 Re(n2). Thus, T = |t|2 Re(n2)/n1 gives the optical
transmittance.

(c) In z ≥ L, the electric field satisfies the radiation condition, [ik2E(z)− ∂zE(z)]z=z2 = 0,
which is established at any transverse plane z = z2 provided that z2 ≥ L.

3. In the stratified medium, 0 < z < L, the electric field ~E(z) = σ̂E(z) satisfies the equation,[
∂2

∂z2
+ k2

0n
2(z)

]
E(z) = 0, (1.3.1)

for an arbitrary state of polarization σ̂ of the incident wave field. In addition:

(a) The magnetic field can be evaluated as ~H(z) = π̂H(z), where H(z) = (iωµ0)−1∂zE(z).

13
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(b) Continuity of E(z) and ∂zE(z) can be used as boundary conditions under the presence
of discontinuities of the index of refraction n(z).

(c) For instance, assuming a homogeneous scattering layer, where n(z) = nL:

� One finds the solution to the Helmholtz equation (1.3.1) as follows,

E(z) = E0 [tL exp (ikLz) + rL exp (ikLz)] , 0 < z < L. (1.3.2)

Here, kL = k0nL, and tL and rL are complex-valued constants.

� One may show the validity of the Airy’s formulae given as [2, section 4.2]

r =
r1L + rL2 exp(2ikLL)

1− rL1rL2 exp(2ikLL)
. (1.3.3)

t =
t1LtL2 exp(ikLL)

1− rL1rL2 exp(2ikLL)
, (1.3.4)

tL =
t1L

1− rL1rL2 exp(2ikLL)
, (1.3.5)

rL =
t1LrL2 exp(2ikLL)

1− rL1rL2 exp(2ikLL)
, (1.3.6)

where the Fresnel transmission and reflection coefficients are given by

rαβ =
nα − nβ
nα + nβ

= −rβα, (1.3.7)

tαβ =
2nα

nα + nβ
= 1 + rαβ. (1.3.8)

(d) By applying Poynting’s theorem in the stratified medium, Re[Sz(0)] − Re[Sz(L)] =
n1S0A, one finds the optical absorbance A = 1− T −R.

1.3.1 Antireflection coatings

An antireflection coating can be used to completely eliminate the reflection of light appearing at
a flat interface between two media of distinct indices of refraction, n1 6= n2 [2, sections 4.4.1 and
7.3]. It consists of a quarter-wave layer (kLL = π/2) set in 0 < z < L, with n(z) = nL satisfying
n2
L = n1n2.

1. Show that r1L = rL2 in an antireflection coating and, therefore, the reflection coefficient r
given in Eq. (1.3.3) vanishes.

For numerical purposes, set the amplitude E0 = 1 V/m, and the vacuum wavelength λ0 =
500 nm which the antireflection coating is designed for. Here, n(z) = n1 within z1 ≤ z < 0, and
n(z) = n2 within L < z ≤ z2. Firstly use n1 = 1 and n2 = 1.5. Also set the input and output ports
at z2 = −z1 = 2λ0.

2. Evaluate the index of refraction nL and the layer width L of our antireflection coating.

3. Find numerically the solution to the Helmholtz equation (1.3.1) within the whole interval
z1 ≤ z ≤ z2, providing the z dependence of the electric field, E(z). Apply the Robin boundary
condition (1.1.5) at the input port, and the radiation condition (1.1.6) at the output port.

14
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4. Plot the real and imaginary part of the wave function E(z) (or u(x), see 2) which was found
previously. Also plot |E(z)| within the region of computation.

5. Repeat 3–4 for the boundary wavelengths in the visible, λ0 = 390 nm and λ0 = 780 nm, but
keeping the layer width L (and nL) as evaluated in 2 for λ0 = 500 nm. In addition, calculate
the optical reflectance R = |r|2, both numerically and using Eq. (1.3.3), at both boundary
wavelengths.

6. Repeat 3–4 for an antireflection coating of width: (a) L+λ0/(2nL), and (b) L+λ0/nL, where
L = λ0/(4nL) and λ0 = 500 nm. Discuss these results.

7. Repeat 3–4 considering an antireflection coating made of magnesium fluoride (nL = 1.38),
which is a frequently-used low-index film. Also, calculate the optical reflectance R, both
numerically and using Eq. (1.3.3).

1.3.2 Optical tunneling in ultrathin metal films

It is known that thin films of noble metals have a maximum optical transmittance in the shorter
part of spectrum. This can be in practice used to observe the optical tunneling effect under normal
incidence. It occurs setting in 0 < z < L a layer of index of refraction n(z) = nL, provided that
Re(n2

L) < 0 and k0L� 1. In all cases, transmittance of thin metal films decreases with increasing
film thickness L.

For numerical purposes, consider a silver layer of index of refraction nL = 0.055 + i4.0 at
λ0 = 600 nm, deposited on a glass substrate of index n2 = 1.5 and immersed in air (n1 = 1). Again,
set the amplitude E0 = 1 V/m, and the input and output ports are located at z2 = −z1 = 2λ0.

1. Find numerically the solution to the Helmholtz equation (1.3.1) within the whole interval
z1 ≤ z ≤ z2, providing the z dependence of the electric field, E(z). Consider a metal layer
of thickness L = 20 nm. Apply the Robin boundary condition (1.1.5) at the input port, and
the radiation condition (1.1.6) at the output port.

2. Plot the real and imaginary part of the wave function E(z) (or u(x), see 2) which was
found previously. Also plot |E(z)| within the region of computation. In addition, calculate
the optical reflectance R, transmittance T , and absorbance A, both numerically and using
Eq. (1.3.3).

3. Repeat 1–2 for a silver layer of thickness: (a) L = 50 nm, (b) L = 100 nm, (c) L = 200 nm,
and (d) L = λ0.
Hint : higher accuracy and precision goals may give a different result for long lengths L, and
increasing the goals extends the correct solution further; thus include the following options
in NDSolve[]: AccuracyGoal -> 20, PrecisionGoal -> 20, WorkingPrecision -> 35.

4. Plot R, T , and A as a function of L, derived from Eq. (1.3.3).
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1.4 Diffraction

Introductory notes: diffraction in the paraxial regime

Electromagnetic fields in an isotropic homogeneous medium of index of refraction n > 0 are governed
in general by the scalar Helmholtz equation (∇2 +k2)E(x, y, z) = 0, where E(x, y, z) is the analytic
representation of a (scalar) field distribution that is harmonic in time as exp(−iωt), and k = nω/c ≡
2π/λ.

In the paraxial regime around the z axis, it is convenient to extract the primary exp(ikz) prop-
agation factor out of E, by writing E(x, y, z) ≡ u(x, y, z) exp(ikz). The slowly varying dependence
of u(x, y, z) on z, considered under the so-called slowly varying envelope approximation, can be
expressed mathematically by the paraxial Helmholtz equation [3, chapter 16],

∂2u

∂x2
+
∂2u

∂y2
+ i2k

∂u

∂z
= 0, (1.4.1)

which is valid provided that |∂2
zu| � |2k∂zu|.

A solution to Eq. (1.4.1) can be set by means of Huygens’ integral equation in the Fresnel
approximation,

u(x, y, z) =
1

iλz

¨ +∞

−∞
u0(x0, y0) exp

{
ik

2z

[
(x− x0)2 + (y − y0)2

]}
dx0dy0, (1.4.2)

where u0(x, y) = u(x, y, 0) represents the wave field u evaluated at the reference plane z = 0.
Equation (1.4.2) is also known as the Huygens-Fresnel diffraction integral, and is useful for the
evaluation of diffracted fields by an aperture placed at z = 0. If the aperture has an amplitude
transmittance t(x, y) and is illuminated by a normally-incident plane wave of amplitude E0 at
z = 0, one can set u0(x, y) = E0t(x, y) when applying the Kirchhoff boundary conditions.

Note that Huygens-Fresnel diffraction integral given in (1.4.2) can be set as a 2-D convolution,
u(x, y, z) = (u0 ~ hz)(x, y), where the impulse response hz(x, y) = hz(x)hz(y) and

hz(x) = (iλz)−1/2 exp
[
ikx2/(2z)

]
.

As a consequence, one can use the properties of the Fourier transform, taking into account that
F(hz)(qx, qy) = Hz(qx, qy) = Hz(qx)Hz(qy), where Hz(qx) = (2π)−1/2 exp

[
−izq2

x/(2k)
]

(see 1.1.3).
Assuming that the wave function u0 is invariant under translations along the y axis leading to

u0(x, y) ≡ u0(x), as we will do from here on, the diffracted fields in a plane z 6= 0 are also invariant
under translations along the y axis, and therefore we may write u(x, y, z) ≡ u(x, z). In this case,
the paraxial Helmholtz equation (1.4.1) yields (∂2

x + i2k∂z)u(x, z) = 0. Furthermore, Huygens’
diffraction integral (1.4.2) is reduced to u(x, z) = (u0~hz)(x). As mentioned before, the properties
of the Fourier transform allow us to evaluate the diffracted wave fields as

u(x, z) = F
{
U0(qx) exp

[
−izq2

x/(2k)
]}

(−x), (1.4.3)

where U0(qx) = F(u0)(qx). This method is efficient when applied sufficiently near the reference
plane, that is, for the evaluation of the so-called near field within 0 ≤ z ≤ z1, where z1 = 2k/q2

max

provided that |U0(qx)| reaches significant values in the spectral band |qx| ≤ qmax.
On another note, using the definition of the Fourier transform given in Eq. (1.1.9), Huygens’

diffraction integral can also be set as

u(x, z) =
√

2πhz(x)Fz(qx), (1.4.4)
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where Fz(qx) = F(fz)(qx) is the 1-D Fourier transform of the wave function

fz(x) = u0(x) exp[ikx2/(2z)],

provided that the spatial frequency qx = −kx/z. This method is efficient when applied sufficiently
far from the reference plane, z ≥ z2, with z2 = kx2

max/2 provided that |u0(x)| reaches significant
values in the range |x| ≤ xmax. In the far field (z � z2) one can observe the Fraunhofer diffraction
pattern, which is evaluated by using the approximation fz(x)→ u0(x).

Typically, one may find that qmax is of the order of 2/xmax, yielding z1 ≈ z2 that is a distance
sometimes called Rayleigh range. In this context, diffraction equations can be conveniently rewritten
in terms of normalized spatial coordinates ξ = x/xmax and ζ = z/zR, where zR = kx2

max/2 is the
Rayleigh range. For instance, the 1-D paraxial wave equation yields(

∂2
ξ + 4i∂ζ

)
ũ(ξ, ζ) = 0, (1.4.5)

where u(x, z) = E0ũ(ξ, ζ). Similarly, equation (1.4.3) becomes

ũ(ξ, ζ) = F{Ũ(qξ, 0) exp(−iζq2
ξ/4)}(−ξ), (1.4.6)

where qξ = xmaxqx. Finally, equation (1.4.4) becomes

ũ(ξ, ζ) = (iζ/2)−1/2 exp(iξ2/ζ)F(f̃ζ)(qξ), with f̃ζ(ξ) = ũ(ξ, 0) exp(iξ2/ζ), (1.4.7)

and qξ = −2ξ/ζ.

1.4.1 Diffraction gratings: Talbot effect

Consider a 1-D diffraction grating characterized by an amplitude transmittance t(x), which is
illuminated by a normally-incident plane wave of amplitude E0 at z = 0. The transmittance
function has a period ∆x, i.e. t(x + ∆x) = t(x), and can be set in Fourier series expansion [see
Eq. (1.1.10)], where cs is the Fourier coefficient of its s-th harmonic. Typically, the fundamental
spatial frequency ∆qx = 2π/∆x of a diffraction grating is conveniently given in lines per centimeter.

1. Show that the field u(x, z), evaluated by means of Eqs. (1.4.3) and (1.1.11), can be set as

u(x, z) = E0

+∞∑
s=−∞

cs exp [−i2πs(x/∆x)] exp
[
−i2πs2(z/zT )

]
, (1.4.8)

where zT = 2(∆x)2/λ is the Talbot length. In addition:

� Show that u(x, zT ) = u(x, 0) = E0t(x). Therefore, the wave field of a light diffracting
through a grating is periodically reproduced, with a period given by the Talbot length.3

� Show that u(x, zT /2) = E0t(x + ∆x/2). At half the Talbot length, a self-image also
occurs, but laterally shifted by half the width of the grating period.

2. Calculate the Fourier coefficients cs of the transmittance function t(x) given in |x| < ∆/2,
characterizing the following 1-D diffraction gratings of period ∆x:

� The square-wave amplitude grating composed of evenly spaced parallel slits, giving t(x) =
rect(x/w), where w ≤ ∆x is the slit width.

3https://en.wikipedia.org/wiki/Talbot_effect

17

https://en.wikipedia.org/wiki/Talbot_effect


OPTICS II 2019-2020 COURSE

� The sinusoidal phase grating with t(x) = exp[iϕ0 sin(∆qxx)], where ϕ0 represents the
peak excursion of the sinusoidal phase variation.

� The square-wave phase grating with transmittance function t(x) = 1−[1−exp(iϕ0)] rect(x/w).

� The blazed grating with ‘saw tooth’ phase profile, giving t(x) = exp(iϕ0x/∆x).

Hint : When analytical expressions of cs cannot be found, use the DFT to find them numeri-
cally, namely c̃s, as analyzed in 5.

3. Plot the normalized diffraction pattern |u(x, z)|2 of the transmission gratings analyzed above,
using Eq. (1.4.8) within the range |x| ≤ ∆x/2 and 0 ≤ z ≤ zT . For numerical purposes, use:
(1) E0 = 1, (2) w = ∆/2, (3) ϕ0 = 1.84 rads for the sinusoidal phase grating, ϕ0 = π for the
square-wave phase grating, and ϕ0 = {±π,±2π} for the blazed grating. Also plot the field
Re[u(x, z)] for phase gratings. Take an even number N of Fourier harmonics, ranging from
the (−N/2)-th to the (+N/2 − 1)-th order, and show that accuracy of the estimated wave
fields increases as long as the parameter

η =

∑+N/2−1
s=−N/2 |cs|

2

1
∆x

´ ∆x/2
−∆x/2 |t(x)|2dx

(1.4.9)

approaches to unity, as inferred from Parseval’s theorem (1.1.12).
Hint : use normalized spatial coordinates ξ = x/∆x and ζ = z/zT . Note that using N > 32
in the proposed method may result in a time-comsuming computation.

1.4.2 Diffraction by a slit

Consider a slit characterized by a transmittance function t(x) = rect(x/w), where w is the slit width.
Consider a monochromatic plane wave propagating in free space, which electric field ~E(z, t) =
x̂E0 exp(ikz− iωt), where the wavenumber k = 2π/λ and E0 denotes a field amplitude. By setting
the slit at z = 0, the diffracted field within the paraxial approximation u(x, z) = E0ũ(ξ, ζ), where
[3, chapter 18]

ũ(ξ, ζ) =
1

2

[
erf

(
ξ + 1

2√
iζ

)
− erf

(
ξ − 1

2√
iζ

)]
, ζ > 0. (1.4.10)

Here, ξ = x/w and ζ = z/zR are normalized spatial coordinates, zR = kw2/2 is the Rayleigh range,
and erf(τ) = 2π−1/2

´ τ
0 exp(−t2)dt is the error function.

1. Show the validity of Eq. (1.4.10) by means of Eq. (1.4.6).
Hint : use ũ(ξ, 0) = rect(ξ) and Ũ(qξ, 0) = (2π)−1/2 sinc(qξ/2).

2. Plot the normalized intensity patterns |ũ(ξ, ζ)|2 at planes ζ = 1/(4πNF ) within the range
|ξ| ≤ 1, where the Fresnel number (a) NF = 2, (b) NF = 5, (c) NF = 10, and (d) NF = 20.
Inspection will show that the diffraction patterns have essentially NF large-scale ripples across
the aperture width. Compare the intensity patterns obtained above with that observed at
the slit plane ζ = 0.

3. Repeat 2 by evaluating the DFT of Ũ(qξ, 0) exp(−iζq2
ξ/4) in Eq. (1.4.6). Use N = 25 points,

and analyze the accuracy of these results.
Hint : use a sampling rate ∆qξ = π in order to obtain a DFT in the range |ξ| ≤ 1.
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4. Show that the Fraunhofer diffraction pattern of a slit can be set as:

ũF (ξ, ζ) =
exp(iξ2/ζ)√

iπζ
sinc(ξ/ζ), ζ � 1. (1.4.11)

Hint : use Eq. (1.4.7) with f̃ζ(ξ) = rect(ξ). Alternatively you may use the asymptotic expan-
sion erf(t) = (2t/

√
π) exp(−t2), as t→ 0, in Eq. (1.4.10).

5. Plot the normalized intensity patterns |ũ(ξ, ζ)|2, given in Eq. (1.4.10), at planes ζ = 1/(4πNF )
within the range |ξ| ≤ max(1, 2πζ), where (a) NF = 1/20, (b) NF = 1/10, (c) NF = 1/5, and
(d) NF = 1/2. Compare the intensity patterns evaluated above with |ũF (ξ, ζ)|2 obtained in
the far field (1.4.11).
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