
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=rspb20

Sports Biomechanics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/rspb20

Relationship between muscular extensibility,
strength and stability and the transmission of
impacts during fatigued running

Alberto Encarnación-Martínez , Roberto Sanchis-Sanchis , Pedro Pérez-
Soriano & Antonio García-Gallart

To cite this article: Alberto Encarnación-Martínez , Roberto Sanchis-Sanchis , Pedro Pérez-
Soriano & Antonio García-Gallart (2020): Relationship between muscular extensibility, strength
and stability and the transmission of impacts during fatigued running, Sports Biomechanics, DOI:
10.1080/14763141.2020.1797863

To link to this article:  https://doi.org/10.1080/14763141.2020.1797863

Published online: 24 Aug 2020.

Submit your article to this journal 

Article views: 35

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=rspb20
https://www.tandfonline.com/loi/rspb20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/14763141.2020.1797863
https://doi.org/10.1080/14763141.2020.1797863
https://www.tandfonline.com/action/authorSubmission?journalCode=rspb20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=rspb20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/14763141.2020.1797863
https://www.tandfonline.com/doi/mlt/10.1080/14763141.2020.1797863
http://crossmark.crossref.org/dialog/?doi=10.1080/14763141.2020.1797863&domain=pdf&date_stamp=2020-08-24
http://crossmark.crossref.org/dialog/?doi=10.1080/14763141.2020.1797863&domain=pdf&date_stamp=2020-08-24


Relationship between muscular extensibility, strength and 
stability and the transmission of impacts during fatigued 
running
Alberto Encarnación-Martínez a, Roberto Sanchis-Sanchis a, Pedro Pérez-Soriano a 

and Antonio García-Gallart b

aResearch Group in Sports Biomechanics, Department of Physical Education and Sports, University of 
Valencia, Valencia, Spain; bDepartment of Sports Sciences, Catholic University of Murcia, Murcia, Spain

ABSTRACT
The aim was to analyse the relationship between isokinetic 
strength, dynamic stability, muscular extensibility and impacts 
transmission during fatigued running. Low- and high-frequency 
impacts—related to body movements and the severity of impacts, 
respectively—were assessed in 17 male recreational runners, before 
and after a treadmill running fatigue protocol, using a triaxial accel
erometry system. High-frequency impacts in the tibia were nega
tively correlated to the knee angle at which the quadriceps peak 
torque was reached (p = 0.014), and also to the extensibility of the 
hamstrings and soleus (p = 0.001 and p = 0.023, respectively). The 
increases of high-frequency impacts in tibia caused by fatigue were 
positively related to the knee angle at which the hamstrings peak 
torque was reached (p = 0.001) and to stability after landing 
(p = 0.007). The attenuation of high-frequency impacts was posi
tively related to hamstrings/quadriceps ratio of strength (p = 0.010) 
and to stability (p = 0.006). Limiting possible deficits in hamstring 
and soleus range of motion, improving stability after landing, 
developing hamstring and quadriceps strength in elongated mus
cle range, and maintaining a balanced ratio of hamstring/quadri
ceps strength could help to reduce the injury risk in running.
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Introduction

The number of runners has increased continuously in recent decades, and 40–50% of runners 
get injured yearly (Fields et al., 2010). It has been suggested that strength programmes could be 
a crucial aspect in order to reduce sports injuries to less than a third (Lauersen et al., 2014). 
Moreover, strengthening has been shown to be beneficial in the treatment of certain running 
injuries and could be favourable to avoid injuries during running (Fields et al., 2010). It has 
also been described that lower limb stability training could be beneficial for injury prevention 
(Lauersen et al., 2014), as other authors have suggested that postural control deficits could 
increase the risk of injury (Brazen et al., 2010; Gribble et al., 2012). In contrast to strength and 
stability training, although stretching has been considered as a good strategy to reduce 
running-related injuries (Baxter et al., 2017), it has not been shown to be a beneficial effect 
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on injury prevention in runners (Baxter et al., 2017; Fields et al., 2010; Lauersen et al., 2014). 
Nonetheless, joints’ range of motion values outside the normal range (i.e., low or high muscle 
extensibility) could be harmful (Baxter et al., 2017). So, joint range of motion can have a major 
effect on maintaining a healthy running pattern.

During running, an impact is generated with each foot contact with the ground. This 
impact produces vertical forces from 1.5 to 2.5 times the body weight (Derrick et al., 2002). 
As a product of that impact with the ground a shock wave is generated, which is 
transmitted through the whole body (Encarnación-Martínez et al., 2018; Gruber et al., 
2014; Mercer et al., 2003), where musculoskeletal structures, active movements and external 
implements are responsible for absorbing the impact (Mercer et al., 2003). When this rapid 
deceleration produced by the foot contact with the ground is measured on the tibia, it is 
commonly referred to as tibial acceleration (Encarnación-Martínez et al., 2018).

Biomechanical changes associated with fatigue can increase injury risk during running 
(Hreljac, 2004). It has been shown that fatigued running can affect lower limb kinematics 
(Jewell et al., 2017). Significant increases in rearfoot eversion, knee adduction and 
internal rotation peak angles, and hip internal rotation are some of that changes observed 
during fatigued running (Benson & O’Connor, 2015). Moreover, kinematic changes 
produced during fatigued running can increase the stress and impact forces received 
by lower extremities (Milgrom et al., 2007). Sample entropy has been shown to be 
reduced in runners with medial tibial stress syndrome in fatigued running, meanwhile 
shock attenuation increased (Schütte et al., 2018). Furthermore, 2 days after a marathon, 
fatigue could be detected by a higher self-reported pain and higher peak mediolateral 
acceleration. (Clermont et al., 2019). It has also been shown that greater muscular 
activation can reduce these impacts (Potthast et al., 2010), and that poor stability after 
landing could increase the vertical forces received (Brazen et al., 2010). However, there 
are no studies that analyse these factors during fatigued running and how they could 
affect impact transmission.

Tibial accelerations have been traditionally evaluated in the time domain 
(García-Pérez et al., 2014; Lucas-Cuevas et al., 2015; Mizrahi, Verbitsky, Isakov et al., 
2000). However, the analysis in the frequency domain allows for the analysis of the 
frequency contents of the tibial and head acceleration signals. Vertical acceleration of the 
centre of mass (COM) and voluntary motion is contained in the low-frequency band 
(3–8 Hz), while rapid deceleration related to foot contact with the ground, and with the 
severity of the impact, is contained in the high-frequency band (9–20 Hz) (Gruber et al., 
2014; Shorten & Winslow, 1992). Unlike time domain analysis, frequency domain 
analysis allows us to directly determine the attenuation of the impact in the human 
body. Knowing that impact attenuation ability could be decreased during fatigued 
running and that less attenuation has been related to an increased injury risk, frequency 
domain analysis to assess impact attenuation might provide useful information to help 
understand running injury risks (Derrick et al., 2002; Lucas-Cuevas et al., 2015; Mizrahi, 
Verbitsky, Isakov et al., 2000).

Therefore, the aim of this study was to analyse the relationship between isokinetic 
strength, dynamic postural control, and muscular extensibility with impact transmission 
during fatigued running. Based on the existing literature, we hypothesised that (a) lower 
quadriceps and hamstrings isokinetic strength values would be related to a greater power 
in the high-frequency tibial acceleration range; (b) lower hamstrings muscle range of 
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motion values would not be related to a greater power in the high-frequency tibial 
acceleration range; (c) lower dynamic stability would be related to a greater power in 
the high-frequency acceleration range at tibial location.

Methods

Participants

Seventeen male recreational runners (age of 28.7 ± 8.3 years, height of 1.78 ± 0.07 m, body 
weight of 72.2 ± 8.2 kg), with a running experience of 7.6 ± 5.1 years and experienced in 
treadmill running, participated in this study. The inclusion criteria were: not competitive 
(i.e., recreational), ran a minimum of twice a week and more than 20 km/week in the 
last year, and had no injuries in the previous 6 months. Informed consent was provided to 
all participants before inclusion in the study, which was approved by the Catholic 
University of Murcia Ethics Committee (registry number: 6775).

Experimental protocol

Participants were evaluated over 2 days (Figure 1). On the first day, maximal aerobic 
speed was calculated using a maximal effort 5 min running test on a 400-m track 
(Berthon et al., 1997; García-Pérez et al., 2014; Lucas-Cuevas et al., 2015). On 
the second day, isokinetic strength, dynamic postural control, and muscular extensi
bility were assessed before the fatigue protocol. Muscle extensibility was evaluated 
before the warm-up exercises (López-Miñarro & Rodríguez-García, 2010). Once fin
ished, the familiarisation with the treadmill (Excite®+ Run MD Inclusive, Technogym 
Trading S.A., Cesena, Italy) and a self-determined 10-min warm-up were carried out 
(García-Pérez et al., 2014; Lucas-Cuevas et al., 2015). Finally, postural control in 
landing and reaching tasks, and quadriceps and hamstrings isokinetic strength were 
assessed in a random order in the dominant limb.

Impact transmission was evaluated before and after a treadmill running fatigue 
protocol. Running accelerations were recorded in a 2-min treadmill running period at 

Figure 1. Experimental protocol flow diagram.
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3.89 m/s (Lussiana et al., 2017) and 0% slope through 3 series of 10 s using a wireless 
triaxial accelerometry system (Blautic®, Valencia, Spain; sampling frequency 300 Hz, 
range ± 16 G, mass 2.5 g). Accelerations were analysed from the acceleration-signal 
data of the vertical axis. One accelerometer was placed on the distal and anteromedial 
portion of the tibia (Lucas-Cuevas et al., 2017) on the dominant leg, and the second one 
on the participant’s forehead (Encarnación-Martínez et al., 2018; García-Pérez et al., 
2014; Gruber et al., 2014; Mercer et al., 2003). Skin was prepared and accelerometers were 
fixed according to Encarnación-Martínez et al. (2018) recommendations.

Treadmill running fatigue protocol

Participants were instructed to run for 30 min on a treadmill (0% slope) at 85% of 
maximal aerobic speed (García-Pérez et al., 2014), which was calculated on the first day 
from the 5-min running field test (Lucas-Cuevas et al., 2014). Also, according to Hafer 
et al. (2017), a minimum rating of 17/20 (‘Very Hard’) of perceived exertion on the 
Borg´s Scale 6–20 (Borg, 1982) was also set.

Muscular extensibility evaluation

A manual goniometer and inclinometer were used to evaluate the range of motion of the 
hip flexor musculature, quadriceps, hamstrings, gastrocnemius (ankle dorsiflexion with 
extended knee) and soleus (ankle dorsiflexion with flexed knee) (Figure 2). In order to 
reduce the measurement variability, all the measures were taken by the same researcher. 
The modified Thomas test, proposed by Wakefield et al. (2015) (Figure 2(a)), was used to 
measure the hip flexor musculature extensibility following the recommendations to stan
dardise the pelvic tilt and lumbar lordotic curve. In the same position, quadriceps exten
sibility was evaluated by measuring knee flexion angle (Cejudo et al., 2015) (Figure 2(b)).

Figure 2. Hip flexor musculature (A), quadriceps (B), hamstrings (C), gastrocnemius (D) and soleus (E) 
extensibility measures.
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To evaluate hamstrings extensibility, the passive straight leg raise test was used as described 
by López-Miñarro and Rodríguez-García (2010) (Figure 2(c)). The gastrocnemius muscle 
extensibility was evaluated in standing position with their feet parallel hip-width apart. 
Participants took a step forward, resting their hands on the wall or stretcher, and performing 
a dorsiflexion of the ankle slowly and progressively until the maximum sensation of stretch
ing was reached or compensatory movements were detected (Cejudo et al., 2015) (Figure 2 
(d)). Finally, an ankle dorsiflexion and knee flexion were performed slowly and progressively 
in this position to record the soleus extensibility (Phillips, 2007) (Figure 2(e)).

Dynamic postural control evaluation

The Modified Star Excursion Balance Test (mSEBT) and Dynamic Postural Stability Index (DPSI) 
were used to evaluate dynamic postural control in reach and landing tasks, respectively. According to 
Gribble et al. (2012), mSEBT evaluates the reach in anterior, posterolateral and posteromedial 
directions (Figure 3). Before the assessment, four familiarisation attempts in each direction were 
performed (Doherty et al., 2015; Van Lieshout et al., 2016). Three randomised attempts in each 
direction were then recorded (Doherty et al., 2015). The average reach in anterior, posterolateral and 
posteromedial directions and the summation of the three were saved. The reached distance was 
normalised to the limb length as previously reported (Whyte et al., 2015).

Figure 3. Anterior (A), posterolateral (B) and posteromedial (C) directions of Modified Star Excursion 
Balance Test (mSEBT) and Modified Dynamic Postural Stability Index (DPSI) test.
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Dynamic postural control after landing was evaluated using an adaptation of the DPSI test 
proposed by Wikstrom et al. (2005) and Ross et al. (2005). Participants were placed 0.7 m 
from the centre of a force platform (Kistler 9286 BA, Kistler Group, Winterthur, Switzerland), 
and they were instructed to double-leg jump over an elastic band (set at 50% of their 
maximum jump height) with hands on hips and looking to the front, landing on their 
dominant limb, and stabilising as quickly as possible. On landing, participants remained in 
a single-leg stance for 20 s with the first 3 s from impact being used for further analysis 
(Wikstrom et al., 2010). This impact was identified as the instant when vertical ground 
reaction forces (VGRFs) exceeded 10 N (Meardon et al., 2016) (Figure 3).

Fifty percent of runners maximum jump height was calculated from the highest jump of three 
valid countermovement jumps (Wikstrom et al., 2010). A minimum of three practice attempts were 
allowed (Williams et al., 2016), and three attempts were performed to evaluate the mediolateral, 
anteroposterior, vertical, and global stability indices, understood as the dispersion of forces from the 
centre of pressure in each of the axes. Ground reaction force signals were recorded at a frequency of 
1000 Hz using the formulas proposed by Wikstrom et al. (2010). It is important to note that these 
dynamic postural stability variables do not have specific units because they are dimensionless. Thus, 
higher values (i.e., 0.500) indicate worse stability and lower values (i.e., 0.200) indicate better stability.

Quadriceps and hamstrings isokinetic strength evaluation

Peak concentric torque values were recorded in the quadriceps and hamstring muscles of the 
dominant lower extremity using an isokinetic dynamometer (Biodex System Pro 3™, Biodex 
Medical Systems, Inc., New York, USA). Testing was performed in a seated position with 
a hip flexion angle of 85º; the trunk, waist and thigh were stabilised with straps (Kellis et al., 
2011; Soleimanifar et al., 2012). The fulcrum of the dynamometer was aligned with the lateral 
femoral epicondyle, and the shin pad was placed 0.02 m above the medial malleoli.

Peak torque values were evaluated by performing two sets of concentric/concentric knee 
flexion-extension movements at 120º/s, in which the motion ranged from 0º (full extension) 
to 90º of knee flexion (Kellis et al., 2011; Soleimanifar et al., 2012). In the first set, three 
submaximal and three maximal contractions were performed as familiarisation (Soleimanifar 
et al., 2012). Quadriceps and hamstrings torque were evaluated in the second set, performing 
three repetitions of maximal effort and recording the highest value (Kellis et al., 2011; 
Soleimanifar et al., 2012). The angle at which the quadriceps and hamstrings concentric 
peak torque was reached and the hamstrings/quadriceps strength ratio were evaluated.

Data processing

A custom routine performed with MatLab R2013b program (Mathworks Inc, Natick, MA, USA) was 
used to analyse the acceleration data. To calculate power spectral density (PSD) and convert the 
unfiltered time domain data to frequency domain data the process used by Gruber et al. (2014) was 
followed. So, in the low (3–8 Hz) and high (9–20 Hz) frequency range, the maximum and total signal 
power magnitude in tibia and head were evaluated, as well as shock attenuation (Gruber et al., 2014) 
(Figure 4). The following equation was used to evaluate the shock attenuation (Derrick et al., 2002; 
Gruber et al., 2014; Mizrahi, Verbitsky, and Isakov 2000; Shorten & Winslow, 1992): 

Shock Attenuation ¼ 10 x log10 PSDhead= PSDtibiað Þ (1) 
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Finally, delta (Δ), or the variation between pre-fatigue and post-fatigue values, was 
calculated in the running impacts variables.

Figure 4. Power spectra of the tibia (A) and head (B) acceleration and shock attenuation (C) in the low 
(3–8 Hz) and high (9–20 Hz) frequency ranges of the frequency domain analysis. Low: Low-frequency 
range, High: High-frequency range, MTSM: Maximum Tibial Signal Magnitude, TTSM: Total Tibial 
Signal Magnitude, MHSM: Maximum Head Signal Magnitude, THSM: Total Head Signal Magnitude, 
ATT: Shock Attenuation. Inspired by figure of Gruber et al. (2014).
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Statistical analysis

Statistical analysis was performed using SPSS 19.0 (IBM Armonk, New York, USA). 
Descriptive statistics were described as mean ± standard deviation (SD). Normality and 
homoscedasticity were checked with the Shapiro–Wilk test and Levene Test, respectively. As 
inferential analysis, impact transmission characteristics between pre- and post-fatigue con
ditions were compared using a one-way repeated measure analysis of variance or the non- 
parametric alternative (Friedman Test). Besides, the effect size (ES) was assessed using 
Cohen’s d (Cohen, 1992) through the formula proposed by Hunter and Schmidt (2004), 
and was interpreted as 0.0–0.2 = very small, 0.2–0.5 = small, 0.5–0.8 = medium, 0.8–1.2 = large, 
1.2–2.0 = very large, and >2.0 = huge (Sawilowsky, 2009). To estimate the a priori sample size 
and desirable effect size for the primary outcome of each condition, G*Power 3.1.2 software 
was used (Erdfelder et al., 1996). Significance was defined as p < 0.05.

Finally, a correlational analysis through Pearson’s Correlation Coefficient was made to 
evaluate the relationship between research factors and post-fatigue impact characteristics. 
The magnitude was interpreted as <0.1 = trivial, 0.1–0.29 = small, 0.3–0.49 = moderate, 
0.5–0.69 = large, 0.7–0.89 = very large, ≥0.9 = extremely large (Hopkins et al., 2009). 
Moreover, the coefficient of determination (r2), or the percentage of the variance in the 
dependent variable that can be explained by variations in independent variables, was 
calculated by squaring r and multiplying it by 100 (Congelosi et al., 1983).

Results

All participants (N = 17) completed the 30-min treadmill running fatigue protocol. Average 
speed during the fatigue protocol was 4.2 ± 0.3 m/s, and perceived effort was 17.6 ± 0.5 on 
the Borg’s Scale. Descriptive results of extensibility, dynamic postural control and isokinetic 
concentric strength are presented in Table 1. Runners demonstrated an increase in the 
maximum and total high-frequency tibial acceleration signal power magnitude after the 
treadmill running fatigue protocol (Table 2).

Table 1. Descriptive results of extensibility, dynamic postural control and isokinetic concentric 
strength.

Mean SD Min Max Range

Hip flexor musulature ROM (º) −22.8 7.1 −38.0 −12.0 26.0
Quadriceps ROM (º) 118.6 8.7 102.0 136.0 34.0
Hamstrings ROM (º) 68.8 5.7 60.0 81.0 21.0
Gastrocnemius ROM (º) 34.1 7.6 22.0 50.0 28.0
Soleus ROM (º) 35.9 7.3 23.0 46.0 23.0
Anterior mSEBT (%LL) 74.0 6.1 65.3 87.6 22.4
Posterolateral mSEBT (%LL) 94.2 6.2 84.4 111.6 27.2
Posteromedial mSEBT (%LL) 96.8 5.9 83.9 110.1 26.2
∑ mSEBT (%LL) 264.9 14.3 240.0 309.3 69.3
Vertical Stability Index * 0.325 0.056 0.236 0.443 0.207
Mediolateral Stability Index * 0.114 0.010 0.093 0.133 0.040
Anteroposterior Stability Index * 0.031 0.005 0.023 0.042 0.019
Dynamic Postural Stability Index * 0.346 0.055 0.261 0.465 0.203
Quadriceps TORQ (Nm/BW) 245.28 39.60 175.66 313.08 137.42
Hamstrings TORQ (Nm/BW) 124.77 31.26 70.76 188.87 118.12
Quadriceps ANG-TORQ (º) 56.71 5.08 46.00 65.00 19.00
Hamstrings ANG-TORQ (º) 40.65 11.28 23.00 70.00 47.00
Hams./Quad. ratio (%) 50.6 8.2 33.8 61.4 27.6

SD: Standard Deviation, Min: Minimum, Max: Maximum, *: Dimensionless, ROM: Range of Movement, %LL: Percentage of 
Lower Limb, BW: Body Weight, TORQ: Peak Torque, ANG-TORQ: Peak Torque Angle, mSEBT: modified Star Excursion 
Balance Test, ∑: summation.

8 A. ENCARNACIÓN-MARTÍNEZ ET AL.



As shown in Table 3, the knee angle at which the quadriceps concentric peak torque 
was reached was negatively correlated to the maximum and total high-frequency tibial 
acceleration signal power magnitude (r = −0.646 and r = −0.584, respectively). In 
addition, the angle at which the hamstrings concentric peak toque was reached was 
positively correlated to the delta of the maximum high-frequency tibial acceleration 
signal power magnitude (r = 0.713), while the hamstrings/quadriceps strength ratio 
was positively correlated to the delta of high-frequency attenuation (r = 0.606).

Table 2. Results of the frequency domain acceleration changes after fatigue.
Condition Pre-Fatigue Post-Fatigue

Δ Mean ± SD ES 95% CIVariable Mean ± SD Mean ± SD

Maximum Head Signal Magnitude (g2/ 
Hz)

0.26 ± 0.02 0.25 ± 0.02 −0.01 ± 0.01 - -

Maximum Tibial Signal Magnitude (g2/ 
Hz) §

0.18 ± 0.02 0.19 ± 0.02 0.01 ± 0.01 - -

Total Head Signal Magnitude (g2/Hz) 0.97 ± 0.07 0.93 ± 0.07 −0.03 ± 0.03 - -
Total Tibial Signal Magnitude (g2/Hz) § 2.15 ± 0.21 2.37 ± 0.21 0.01 ± 0.01 - -
Maximum Head Signal Magnitude 

low (g
2/Hz)

0.18 ± 0.01 0.17 ± 0.01 −0.02 ± 0.01 - -

Maximum Tibial Signal Magnitude 
low (g

2/Hz) §
0.13 ± 0.01 0.13 ± 0.01 0.00 ± 0.00 - -

Total Head Signal Magnitude low (g
2/Hz) 1.75 ± 0.13 1.63 ± 0.14 −0.12 ± 0.09 - -

Total Tibial Signal Magnitude low (g
2/Hz) 

§
4.14 ± 0.45 4.20 ± 0.37 0.06 ± 0.12 - -

Maximum Head Signal Magnitude 
high (g2/Hz) §

0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 - -

Maximum Tibial Signal Magnitude 
high (g2/Hz)

0.06 ± 0.01 0.08 ± 0.01** 0.02 ± 0.01 0.595 −0.027/- 
0.013

Total Head Signal Magnitude high (g
2/Hz) 

§
0.40 ± 0.04 0.41 ± 0.05 0.01 ± 0.05 - -

Total Tibial Signal Magnitude high (g
2/Hz) 

§
3.56 ± 0.36 4.37 ± 0.47** 0.81 ± 0.32 0.488 −1.094/- 

0.526
Shock Attenuation low (dB) § −54.73 ± 15.81 −59.25 ± 16.12* 7.61 ± 2.39 −0.283 −6.295/ 

15.335
Shock Attenuation high (dB) −128.40 ± 14.95 −147.41 ± 11.98** 22.21 ± 8.88 −1.396 9.833/ 

28.187

ES: Effect Size, §: Non-parametric variables (Friedman´s Test), SD: Standard Deviation, Δ: Delta, low: lower frequency 
range, high: higher frequency range, *: p < 0.05 pre-fatigue vs post-fatigue, **: p < 0.01 pre-fatigue vs post-fatigue.

Table 3. Relationship between isokinetic strength, muscular extensibility and dynamic stability with 
acceleration transmission modifications.

Research Factors Variable r P r2 Intensity

Hamstrings ROM Total Tibial Signal Magnitude −0.620 0.008** 38.4 Large
Hamstrings ROM Maximum Tibial Signal Magnitude high −0.565 0.018* 31.9 Large
Hamstrings ROM Total Tibial Signal Magnitude high −0.711 0.001** 50.5 Very Large
Soleus ROM Maximum Tibial Signal Magnitude high −0.584 0.014* 34.1 Large
Soleus ROM Total Tibial Signal Magnitude high −0.548 0.023* 30 Large
Posterolateral mSEBT ∆ Total Tibial Signal Magnitude low −0.540 0.025* 29.2 Large
Posteromedial mSEBT ∆ Total Tibial Signal Magnitude low −0.515 0.035* 26.5 Large
Vertical Stability Index Maximum Tibial Signal Magnitude low 0.496 0.043* 24.6 Moderate
Vertical Stability Index Maximum Tibial Signal Magnitude high 0.550 0.022* 30.3 Large
Vertical Stability Index ∆ Maximum Tibial Signal Magnitude 0.634 0.006** 40.2 Large
Dynamic Postural Stability Index Maximum Tibial Signal Magnitude low 0.497 0.042* 24.7 Moderate
Dynamic Postural Stability Index Maximum Tibial Signal Magnitude high 0.555 0.021* 30.8 Large
Dynamic Postural Stability Index ∆ Maximum Tibial Signal Magnitude 0.631 0.007** 40.2 Large
Quadriceps ANG-TORQ Maximum Tibial Signal Magnitude high −0.646 0.005** 41.7 Large
Quadriceps ANG-TORQ Total Tibial Signal Magnitude high −0.584 0.014* 34.1 Large
Hamstrings ANG-TORQ Maximum Tibial Signal Magnitude −0.579 0.015* 33.5 Large
Hamstrings ANG-TORQ Maximum Tibial Signal Magnitude low −0.483 0.049* 23.3 Moderate
Hamstrings ANG-TORQ ∆ Maximum Tibial Signal Magnitude high 0.713 0.001** 50.8 Very Large
Hams./Quad. ratio ∆ Shock Attenuation high 0.606 0.010** 36.7 Large

r2: Coefficient of Determination. Δ: Delta changes = post—pre values, ROM: Range of Movement, ANG-TORQ: Peak Torque Angle, 
low: lower frequency range, high: higher frequency range, mSEBT: modified Star Excursion Balance, *: p < 0.05, **: p < 0.01.
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Regarding muscular extensibility (Table 3), hamstrings extensibility was negatively 
correlated to the total power magnitude in all the tibial signal (r = −0.620), as well as the 
maximum and total high-frequency tibial acceleration signal power magnitude 
(r = −0.565 and r = −0.711, respectively). Moreover, the soleus extensibility was nega
tively correlated to the maximum and total high-frequency tibial acceleration signal 
power magnitude (r = −0.584 and r = −0.548, respectively).

Finally, concerning the stability variables (Table 3), the vertical stability index and the 
dynamic postural stability index were positively correlated to the maximum high 
(r = 0.550 and r = 0.555, respectively) and low-frequency tibial acceleration signal 
power magnitude (r = 0.496 and r = 0.497, respectively). Furthermore, the vertical 
stability index and the dynamic postural stability index were positively related to the 
delta of the maximum power magnitude in all the tibial signal (r = 0.634 and r = 0.631, 
respectively). Posterolateral and posteromedial reaches of mSEBT were negatively corre
lated to the delta of the total low-frequency tibial acceleration signal power magnitude 
(r = −0.540 and r = −0.515, respectively).

Discussion and implications

The aim of this study was to analyse the relationship between isokinetic strength, 
dynamic postural control, and muscular extensibility with impact transmission during 
fatigued running. The first hypothesis was that lower quadriceps and hamstrings iso
kinetic strength values would be related to a greater power in the high-frequency 
acceleration range. The first hypothesis was confirmed.

High-frequency range in the impact analysis is directly related to the severity and 
transmission of the impact (Shorten & Winslow, 1992). Our results showed an increased 
magnitude of tibial high-frequency acceleration and a greater high-frequency attenuation 
during fatigued running. These results are in line with those reported by with Mizrahi, 
Verbitsky, Isakov et al. (2000) in level running. Attenuation in the low-frequency zone 
increased with fatigue, but with a low effect size. We interpreted it as the optimisation of 
the intrinsic damping systems of the human body in order to prevent the disruption of 
the vestibular and visual systems that is produced by excessive accelerations in the head 
caused by fatigue (Gruber et al., 2014). Fatigue tends to increase knee flexion during the 
foot-strike (Mizrahi, Verbitsky, Isakov et al., 2000), increasing the displacement of the 
lower extremities. In our study, the accelerations in the head were constant, as previously 
reported (Gruber et al., 2014; Lucas-Cuevas et al., 2015), so this hypothetical increase in 
the athlete’s own movements would explain the increase in low-frequency attenuation.

To our knowledge, there are no studies that directly analysed the relationship between 
strength and impact transmission during running, with or without fatigue. Only one study 
has analysed the relationship between impacts and different muscular activation levels. 
Potthast et al. (2010) used a pneumatically driven impactor under the heels in supine 
position to analyse tibial acceleration impacts with different muscular preactivation levels 
(0%, 30%, and 60%) of gastrocnemius, hamstrings, and quadriceps. In their study, tibial 
acceleration impacts decreased as muscle activation increased, with different interface 
hardness and knee angle. Hamner et al. (2010) analysed running accelerations during the 
initial contact phase. They reported that during the early part of the stance phase the main 
contributor to braking and support is the quadriceps muscle group. Moreover, the muscles 

10 A. ENCARNACIÓN-MARTÍNEZ ET AL.



that showed the earliest signs of fatigue during running are biceps femoris and rectus 
femoris, are both required during the contact phase (Hanon et al., 2005).

It has been suggested that local muscular endurance during concentric action of hip 
extensors, and during eccentric action of knee flexors is important to maintain a stable 
running style or stride mechanics, preventing or delaying the kinematic changes asso
ciated with fatigued running (Hayes et al., 2004). Our results support this idea, because 
modifications in high-frequency impact during fatigued running were smaller in those 
participants that achieved greater hamstring peak torque with the leg less extended. 
Therefore, our results suggest that the development of knee flexors and hip extensor 
strength, as well as eccentric muscle actions of the hamstrings, should be introduced into 
a training programme for runners, as previous studies indicated (Hayes et al., 2004). 
Furthermore, a greater quadriceps muscle activation in a more flexed knee position was 
related to lower impact acceleration (Potthast et al., 2010), similar to our results in which 
we found an association between lower high-frequency impact components and quad
riceps peak torque in a more flexed position, revealing a protective mechanism against 
high-frequency impacts during fatigued running. So, improving the strength of this 
muscle group and maintaining a balanced hamstrings/quadriceps ratio should also be 
considered in complementary training programmes.

The second hypothesis, that lower hamstrings muscle range of motion values would 
not be related to a greater power in the high-frequency acceleration range at the tibia, was 
not accepted. As far as we know, there are no investigations that analyse the relationship 
of muscular range of motion on the impact transmission during running. According to 
Baxter et al. (2017), the scientific literature has not shown positive effects of stretching on 
performance, recovery or injury prevention for endurance runners. Other investigations 
reported similar results, excluding flexibility training as an injury prevention measure 
(Fields et al., 2010; Lauersen et al., 2014; Thacker et al., 2004).

Our results showed that runners with lower hamstrings and soleus range of motion 
showed higher high-frequency impacts in tibia during fatigued running. For Hardin et al. 
(2004), the kinematic changes that may modify impact force during running are ankle 
dorsiflexion and knee flexion. Soleus range of motion is directly related to the ankle 
dorsiflexion that occurs during the initial contact in order to absorb the impact (Hardin 
et al., 2004). So, gastrocnemius and/or soleus tightness limits ankle dorsiflexion and 
could decrease the body’s ability to attenuate the impact (Leardini et al., 2001; Macrum 
et al., 2012; Piva et al., 2005; Witvrouw et al., 2000). It has been shown that this limited 
dorsiflexion may cause an excessive subtalar joint eversion and tibial internal rotation 
during stance as compensation to improve the range of motion (Leardini et al., 2001; 
Macrum et al., 2012; Piva et al., 2005; Witvrouw et al., 2000). Despite the possible 
compensatory movements performed by athletes with limitations in the ankle range of 
motion to maintain adequate running technique described in previous studies, our 
results show that high-frequency impacts were higher during fatigued running in athletes 
with soleus tightness.

Athletes with hamstring tightness have been shown to exhibit the typical gait patterns 
during the middle and late swing phases during running (Davis Hammonds et al., 2012). 
Athletes could maintain the same range of hip flexion movement during swing phase, 
but with an increased knee flexion in the late swing (Davis Hammonds et al., 2012). This 
limitation in range of motion results in a greater knee flexion during the initial contact 
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phase (Whitehead et al., 2007). Potthast et al. (2010) suggested that the knee angle 
during the ground contact explains around 25–29% changes of the variance of the tibia 
accelerations, being higher as knee angle increases. Thus, the greater tibial impact shown 
by runners with hamstrings tightness in our study could be related to a greater knee 
flexion during initial contact phase. Moreover, some studies have shown that fatigue 
increases knee flexion in the initial contact (Derrick et al., 2002; Mizrahi, Verbitsky, 
Isakov et al., 2000). This would further increase the severity of the impact transmission 
in runners with hamstring shortening. Therefore, coinciding with another study that 
describes hamstring and ankle dorsiflexion range of motion deficits as independently 
associated with the injury risk (Van Dyk et al., 2018), we suggest that athletes and 
coaches pay more attention to improving the extensibility of soleus and hamstrings 
because it could reduce impact severity and injury risk.

The third hypothesis was that lower dynamic stability would be related to 
a greater power in the high-frequency acceleration range at tibial location. 
According to our results, the hypothesis was accepted. Running is a dynamic task 
that demands an adequate control of the centre of mass over a narrow and changing 
base of support (Meardon et al., 2016). So, the mechanism of landing and energy 
absorption is similar to anteroposterior jumps and unilateral landing tasks. In our 
study, runners with greater vertical and global stability indexes in landing task 
generated lower values of high-frequency impacts and minor modifications in 
maximum acceleration of the whole tibia frequency signal during initial contact in 
running. Meardon et al. (2016) observed that injured runners reached a greater 
VGRF variability in vertical and global stability after landing than non-injured 
runners.

In addition, fatigue increases VGRFs and time to stabilisation (Wikstrom et al., 2004; 
Brazen et al., 2010) as well as knee and ankle flexion (Brazen et al., 2010) after landing, 
increasing the injury risk. These detrimental mechanisms manifested during landing 
could be similar to those that occur during running. Therefore, athletes with limited 
postural control would have a diminished neuromuscular control. It could make them 
more susceptible to injuries because the increase of the stabilisation time would represent 
a decrease in response or reaction time to high impact forces (Brazen et al., 2010). Thus, 
an adequate dynamic postural control should be maintained to control the severity of 
impacts received in the initial contact during fatigued running. Also, it will avoid 
excessive loads on the passive structures responsible to absorb the impact and could 
reduce the injury risk.

The study is not without limitations. Although our sample size was similar to other 
studies that analysed impacts transmission during fatigued running (Derrick et al., 2002; 
Encarnación-Martínez et al., 2018; Gruber et al., 2014), perhaps a higher sample size 
could explain more precisely the relationship between strength, extensibility, and stability 
and the impact transmission during fatigued running. Furthermore, although we used 
a validated method to estimate the maximal aerobic speed, it may be less accurate than 
a direct calculation with a gas analyser. Similarly, even though Borg’s scale has been 
shown as an effective method to measure subjective effort perception, other direct 
techniques, like lactate analysis, could be more accurate to evaluate the fatigue level. 
Also, although the tests employed to evaluate range of motion are reliable, these assess
ments could be influenced by examiner’s or participants’ subjectivity, as well as stretch 

12 A. ENCARNACIÓN-MARTÍNEZ ET AL.



tolerance. Likewise, only a single joint strength assessment was performed, so more 
muscle groups could have been analysed, or using a more functional protocol (i.e., 
quadriceps concentric and hamstrings eccentric contraction). Therefore, we think it 
would be interesting to carry out more research in the future with a higher number of 
runners and using direct methods to register and monitor the maximal aerobic speed or 
VO2max and fatigue level.

Conclusion

Greater hamstring and soleus range of motion, greater dynamic postural control after 
a landing task, greater hamstring and quadriceps strength with the lower leg less extended 
and an adequate quadriceps/hamstring strength compensation may protect against high- 
frequency impacts in tibia during fatigued running. Considering these observations, 
flexibility, postural stability, and strength training should be considered in training 
programmes for recreational runners because they could reduce the increase of the severity 
of high-frequency impacts as fatigue increases during running. High-frequency accelera
tions are directly related to the reception and absorption of impacts and represents one of 
the parameters most related to running injuries. Therefore, reducing deficits in hamstring 
and soleus range of motion, improving stability after landing, developing hamstring and 
quadriceps strength in elongated muscle range, and maintaining a balanced ratio of 
hamstring/quadriceps strength could help to reduce the injury risk in running.
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