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Abstract 

 Recent innovations and trends in analytical chemistry lead to the development and 

application of new instrumental systems, innovative sample treatment techniques, and application to 

problem solving in various fields of analysis. Likewise, the growing concern about the reduction of the 

environmental impact during the analytical process, without impairing benefits in terms of sensitivity 

and sensitivity, have modulated the main topics in this field of research. 

 In this context, the continuous application of miniaturized liquid chromatography (LC) 

systems, including capillary liquid chromatography (CapLC) and nano liquid chromatography (NanoLC), 

has represented important advances, due to their tangible advantages, related not only to their 

performance, such as high sensitivity, but also from an environmental point of view, reducing the use 

of solvents, electricity, involved material, and generated waste. Along these same lines, recent 

applications of portable liquid chromatography systems have a significant potential for solving 

analytical challenges in various applications in situ or at‐situ monitoring, due to their ability to perform 

measurements at the point of sampling. These potential applications are focused on the need to 

obtain results quickly, overcome problems in the preservation of the sample or the remote location 

of the monitoring site. 

 Despite the great advances made at the instrumental level, sample treatment continues to be 

the stage of the analytical process with the greatest investment of time, sources of error and possible 

losses of the analytes of interest, therefore the replacing of conventional offline techniques by novel 

techniques, developed under the green chemistry approach, has become one of the main topics on 

which researchers have put much effort. An important group of these novel techniques is those based 

on the absorption of the analytes of interest in a solid, known as solid‐phase microextraction (SPME), 

which reduce the consumption of solvents and therefore minimize the generation of waste, as well as 

achieve higher productivity due to its automation capacity. In‐tube solid‐phase microextraction (IT‐

SPME) corresponds to a type of dynamic SPME, with figures of merit related to the reduction of solvent 

consumption, easy automation, and miniaturization, allowing it to be easily coupled to miniaturized 

chromatographic systems. Currently, the development and application of new sorbent phases that 

allow increasing the selectivity and sensitivity of IT‐SPME is one of the main lines of investigation of 

this technique.  

 In the framework of the development of this thesis, the research has been focused on the 

application of miniaturized LC systems for the analysis of highly polar and non‐polar compounds in 

various matrices such as biological samples, environmental waters, dietary supplements, and natural 

resins.  Likewise, aspects such as the development of new sorbent phases and the use of new 

commercial phases for IT‐SPME have been evaluated. Furthermore, the evaluation of the portable 

NanoLC system for the analysis of emergent compounds in environmental waters has been 

successfully studied.
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1. INTRODUCTION 
 In the last 30 years, sample treatment techniques have shown an advance in the green 

chemistry point of view, searching for new methodologies friendly with the environment, with less 

waste, toxic solvent volumes, energy consumption and timeless development. In this sense, the work 

of Gałuszka et al. [1] establishes through the mnemonic code SIGNIFICANCE, the 12 principles of 

green analytical chemistry, as Figure 1 shows. 

 

Figure 1. Mnemonic SIGNIFICANCE of the twelve principles of green analytical chemistry by Gałuszka 

et al. [1] 

 Most of these principles have a great impact on the stage of sample preparation of the 

analytical process, so the application of microextraction techniques, preferably online, as well as 

coupled with miniaturized instrumental techniques is of great interest to the green analytical 

chemistry. The current approach for sample treatment techniques aims to increase the selectivity 

and sensitivity of the analysis [2], to extract, purify, concentrate and/or derivatize the analytes, 

without using laborious and tedious procedures, with a high economic and time cost such a case of 

conventional extraction techniques. 

 In this context, the greening of the sample treatment process is a current demand of 

contemporary researchers, so that, classical sample preparation techniques such as solid‐phase 

extraction (SPE) and liquid‐liquid extraction (LLE) are being rapidly replaced by microextraction 

techniques, generally divided into two groups: Liquid‐Phase and Solid‐Phase extractions [3]. In the 
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first one group, single‐drop microextraction (SDME), dispersive liquid‐liquid microextraction (DLLME) 

or hollow‐fiber liquid‐phase microextraction (HF‐LPME) are some examples included.  

 Solid‐phase microextractions techniques (SPME) are based on sorption processes of the 

analytes in a solid, where SPME is the most widely used for several different matrices and using 

alternative sorbent materials [4]. Configurations of SPME can be classified into dynamic and static 

techniques. In the last one, the extraction is carried out in a stirred sample mode. Examples of these 

are thin‐film, fiber microextraction, and rotating‐disk sorptive extraction. On the other hand, 

methods such as in‐tube SPME, in‐tip and in‐needle microextraction, and capillary microextraction 

are classified as dynamic techniques [5]. Other denomination employed are microextraction in 

packed syringes (MEPS), disposable pipette tip extraction (DPX) and stir bar sorption extraction 

(SBSE). Figure 2 shows a schematic summary of microextraction techniques. 

1.1. IN-TUBE SOLID-PHASE MICROEXTRACTION (IT-SPME) 

 As mentioned above, an important group of microextraction techniques includes those that 

use the mechanism of sorption of the analytes in a solid, within which is the solid‐phase 

microextraction (SPME), introduced in 1990 by Pawliszyn et al [6], which manages to miniaturize the 

sample preparation stage, as well as sampling, extraction, and preconcentration in a single stage. 

Later, in order to avoid the disadvantages of SPME, associated with fiber fragility and long desorption 

times, Eisert y Pawliszyn introduced the In‐tube Solid‐phase microextraction (IT‐SPME) [7].  

 IT‐SPME has been widely used because of its advantages such as the elimination of solvent 

extraction, as well as combining the extraction, clean‐up and preconcentration in a single step, so 

that it significantly reduces the analysis time. Likewise, IT‐SPME shows special attention for the on‐

line coupling to liquid chromatography (LC), which facilitates the separation and detection of target 

analytes.  

 Also, it is possible to affirm that IT‐SPME is an environmentally friendly technique, achieving 

the minimization of toxic solvents, waste reduction and being energy‐efficient and cost‐effective, 

capable of maintaining the reliability of performance parameters, such as sensitivity, precision, and 

accuracy [8]. 

 The principal topics of this technique are aimed at developing the coupling with new 

chromatographic modes, such as ultra‐high performance liquid chromatography (UHPLC), capillary 

liquid chromatography (cap‐LC) and Nano liquid chromatography (Nano‐LC) [9], as well as the 

synthesis of new extraction phases, off‐line development, and applications.  
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Figure 2. Schematic summary of microextraction techniques. 
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 The application of IT‐SPME has increased since its appearance, which is supported by the 

linear increase in papers and citations. The database ISI Web of Science shows more than 430 entries 

at the end of 2019, with an H index of 69 and more than 15,000 citations (Figure 3) for the research 

topic “in‐tube solid phase microextraction”.  

 

Figure 3. Evolution in the number of works of the topic "in-tube solid-phase microextraction" since 

1997. Source Web of Science (May 2020). 

1.1.1. Theoretical considerations 
 In IT‐SPME the sample is passed throughout a capillary, generally a fused‐silica tube coated or 

packed on its inner surface with a sorbent phase, where analytes are retained and concentrated by a 

process of sorption. Once the analytes are retained, they are desorbed by filling the capillary with a 

proper solvent, to be collected for further processing or transferred to the analytical instrument 

(static desorption), or if the mobile phase was used, dynamic desorption was carried out [17]. Due to 

the amount of sample processed is generally higher than extracting sorbent, IT‐SPME is considered a 

not exhaustive technique [18]. 

 For those analytes with strong interactions with the extractive phase, the static mode is 

preferred, as well as in the case of an off‐line technique application. In other case, analytes are 

desorbed and transferred simultaneously to the analytical instrument by the mobile phase (dynamic 

desorption).  
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 As well as in other sorptive techniques, some experimental parameters, such as phase 

thickness, capillary length and diameter, processed sample volume, pH, ionic strength and washing 

solvent, must be optimized in order to achieve the greatest benefits of this technique. The coupling 

with a suitable chromatographic system is important for decreasing the LODs. Although IT‐SPME has 

been used in combination with gas chromatography (GC), liquid chromatography (LC) is by far the 

most used system in assays. 

 Commercial GC columns have been used to perform IT‐SPME, typically with two class of 

sorbents: Si‐based (polysiloxane coating) and C‐based (divinylbenzene, polyethylene glycol, and 

carbon molecular sieves). More than 70% of the studies use Si‐based sorbents [19]. Although the use 

of conventional capillary coatings has allowed the popularity of this technique, it represents its main 

limitation, the low extraction efficiency that can be achieved, attributed to the low sorbent loading 

capacity, stability, and in some cases, the long extraction times involved in the extraction due to the 

slow diffusion of the analytes from the sample to the capillary coating.  

 Due to this, in recent years the research works have been focused on finding more efficient 

capillary coatings, as well as exploring new extraction phases of IT‐SPME. These capillary coatings can 

tune the interaction, obtaining substantial improvements and counteracting the aforementioned 

limitations. 

1.1.2. Settings for IT-SPME 
 The coupling of IT‐SPME with LC has been established through two types of configurations, 

which require specific configurations as well as different levels of instrumentation. These are referred 

to as draw/eject IT‐SPME and flow‐through IT‐SPME, each one with its advantages and limitations. 

 In draw/eject mode, the sample is repeatedly passed through the extractive capillary, that is 

placed between the needle and the injection loop (or the metering pump) of the autosampler, by 

cyclic reversing of the flow direction of the sample (draw/eject) by means of a programmable 

autosampler. When the sample is aspirated from the sample vial, it becomes into contact with the 

extractive capillary. As a result, a fraction of the analyte molecules migrates from the sample to the 

extractive phase. After a number of cycles, the analytes are desorbed and injected (Figure 4.A).  

 Draw/eject IT‐SPME additional solvents (water or buffers) can be placed in different vials and 

flushed though the capillary in order to eliminate selectively matrix components before the 

desorption stage, or to clean and condition the capillary before loading the next sample [20]. This 

mode of IT‐SPME has been especially used in the analysis of biological samples, where the sample 

volume is limited, typically a few millilitres are used [21].  
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 The distribution equilibrium of the extraction is achieved with a number of cycles, generally 

greater than 20: however, it is not always possible to achieve it, since the analytes are partially 

desorbed with each loading cycle. Likewise, the times involved in the extraction stage can be much 

longer than those required for the chromatographic separation. 

 In the flow‐through IT‐SPME setting the sample is passed through the extractive capillary once 

without reversing the flow direction. The extractive capillary is directly or indirectly connected to the 

chromatographic column so that the compounds are desorbed by filling the capillary with a 

desorption solvent (off‐line) before transferring them to the chromatographic column, or by flushing 

through the capillary the mobile phase (on‐line). This configuration has versatility because it is 

possible to use a variable combination of pumps, switching valves or external accessories (such as 

those intended to create magnetic or electric fields or control the temperature) to implement the 

flow of IT‐SPME, making it more useful. 

 

Figure 4. Schematic representation of configurations in IT-SPME-LC: A) draw/eject mode; B) in valve 

with one pump and C) in valve with two pumps. 
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 In the simplest configuration (Figure 4.B) the extractive capillary is used in replacement of the 

inner loop of the injection valve (in‐valve IT‐SPME) so that the analytes are retained in the extractive 

phase during the sample loading, with the valve in the load position. Other steps as clean‐up and 

derivatization can be implemented, if necessary. When the valve is switched to the inject position, 

the mobile phase desorbs and transfers the analytes to the chromatographic analysis. This 

configuration permits to process higher amounts of sample volume (with multiple filling of the loop), 

which represents a great advantage when a higher sensitivity is required, as it is the case of the 

environmental analysis, regardless of the possible low extraction efficiency. Obviously, a precise 

control of the volume of sample introduced in the capillary is needed to obtain adequate analytical 

responses. Other assemblies involve the incorporation of 2 valves and 2 pumps [22‐24], which leads 

to more powerful systems, with which it is possible to process high volumes of samples, combine two 

(or more) IT‐SPME capillaries or even attach systems of different dimensions in reference to liquid 

chromatography (LC) (Figure 4.C). 

 Although the absolute recoveries in IT‐SPME are generally low, there are three ways to 

achieve the required sensitivity. In the first instance, processing higher sample volumes, until the 

amount of retained analyte is adequate [25]. On the other hand, since efficiency depends directly on 

the affinity of the analytes for the microextraction phase, the development and application of new 

microextraction phases are essential [26]. Finally, the coupling with miniaturized chromatographic 

systems (CapLC and NanoLC) influence the sensitivity significantly [27]. 

1.1.3. Coupling with liquid chromatography 
 Although there are applications in the literature with other instrumental techniques such as 

capillary electrophoresis [28], capillary electrochromatography [29], or atomic absorption 

spectrometry (AAS) [30], IT‐SPME coupling has been used mainly to LC with UV‐vis [31], fluorescence 

[32] or mass spectroscopy (MS) detection [33] applied to environmental, food, industrial and 

biological samples. 

 The coupling of the IT‐SPME with LC facilitates also the derivatization of the analytes, if 

necessary, being able to be carried out online and in a simple way by successively adding the 

derivatizing agent and the sample, allowing the reaction to be carried out, and finally, the formed 

derivative is transported to the analytical column [34]. 

 This coupling offers significant advantages related to enhancing sensitivity or easy 

hyphenation with MS detector [35]. The coupling of this technique with miniaturized 

chromatographic methods has been the subject of specialization of the research group 

“Miniaturization and Total Methods of Analysis” (MINTOTA) where this thesis has been developed, 
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contributing since 2006, in particular with miniaturized LC techniques such as CapLC and NanoLC. 

Unlike NanoLC, the coupling to CapLC can be carried out with minor modifications concerning the 

conventional LC, therefore the IT‐SPME‐CapLC coupling is sufficiently resolved, achieving its 

application in several fields of analysis such are the environmental, food, biological , industrial and 

forensic [36‐40], being mainly the one employed in this work. 

 The coupling IT‐SPME to NanoLC has recently been introduced [41], so studies are needed to 

elucidate and demonstrate the benefits and possibilities of this configuration. There are two practical 

aspects to overcome in this coupling. On the one hand, the low mobile‐phase flow rates used in 

NanoLC makes it essential to use capillaries with low inner diameters (≤ 100 µm). On the other, as 

the number of coatings of commercially capillaries compatible with these systems is still rather 

limited, new sorbents with improved extraction capabilities are needed to be developed [23].  

1.1.4. Extraction phases for IT-SPME 
 Initially in IT‐SPME, sorbent phase available in the capillary columns of gas chromatography, 

called conventional phases, were used. However, as mentioned above, the development of new 

sorbent phases is one of the main topics in which researchers and users of the technique have made 

continuous efforts. It is known that the nature of the extraction phase will directly affect the 

sensitivity of the technique since the ability of the analytes to interact with it, plays an important role 

in retention and preconcentration in the sorption stage. Therefore, in the following lines, the main 

extraction phases used in IT‐SPME are discussed, with special attention to those used in the 

development of this work. 

1.1.4.1. Conventional capillary columns 
 The use of this type of capillaries makes it possible to have a variety of sorbent phases with 

different polarity and thickness or sorbent layer. As mentioned before, the sorbents can be made of 

polymeric material of carbon or silicon, which can be modified with other molecules, which allows 

increasing the selectivity for the analytes of interest.   

 To date, columns based on polydimethylsiloxane (PDMS) are the most used for this technique. 

PDMS is a polymer of the silicon family consisting of flexible chains of Si‐O(CH3)2 units, which has a 

transparent appearance that due to its marked hydrophobic character does not react with most 

chemical products, including hydrophilic solvents, and with the advantages of not being toxic or 

bioaccumulative [42]. When IT‐SPME is coupled to LC, the use of PDMS based sorbents is extremely 

convenient, since its hydrophobic character will favor the adsorption of the hydrophobic compounds 

present in the sample, being an ideal phase for chromatographic separations in reverse phase. 
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 The use of conventional columns of modified PDMS, through the incorporation of functional 

groups, mainly variable percentages of polydiphenylsiloxane and others, has been very useful in the 

application of IT‐SPME. With these modifications, it is possible to reduce the hydrophobicity of the 

extractant phase, as well as to establish new interactions of π‐π type of the analytes with the aromatic 

groups, which will lead to greater retention [43]. To date, the results achieved with PDMS capillaries 

modified with diphenyl groups have been reflected in works in the literature that report the use of 

these, in various fields of analysis, such as environmental pollutants [44], pharmaceuticals [39], 

industrial products [45], biologicals [46] and study of nanoparticles [23]. 

 A few applications with commercial GC columns based on other silicon derivatives, such as 

cyanopropylmethylsilicone or dimethylsiloxane, have also been reported for the study of biological 

matrices [47]. In relation to conventional columns with C‐based sorbents, mainly those that use 

polymeric sorbents of divinylbenzene type (Supel‐Q PLOT and/or Valco PLOT) or molecular carbon 

(Carboxen 1006) have shown excellent results. The sorbent in these columns, PLOT type (open porous 

layer tubular columns), has a larger surface area which leads to an increase in the retention of the 

extracted target compounds. Some papers of the literature have demonstrated the applicability of 

these sorbents for the determination of compounds of relative polarity [48]; and mainly for the 

determination of non‐polar compounds in environmental [49], food [50] or bioanalysis [51]. 

 It is important to point out the performance of the CP‐Pora PLOT amines column, which due 

to dipole‐dipole interactions, hydrogen bonds or ion exchange, has a higher extraction efficiency for 

relatively polar compounds, such as medicines for influenza treatment [52]. Table 1 shows selected 

examples of different methods of IT‐SPME coupled to LC in which commercial capillary columns of 

gas chromatography are used. In the present thesis, commercial columns have been used for the 

determination of trimethylxanthines and triazine pesticides in biological and environmental samples, 

including those of fused‐silica coated with PDMS, with different percentages of diphenyl groups (5, 

20, 35 and 50%), as well as commercial Carbowax columns coated with polyethylene glycol (PEG), 

FFAP columns coated with PEG modified with nitroterephthalic groups, and two polystyrene‐

divinylbenzene (PS‐DVB) columns with different coating thickness. 
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Table 1. Examples of different procedures specified in LC systems with capillary columns methods used 

in IT-SPME. 

Extraction 
Phase 

Application field Analytes System Reference 

TRB‐5 Environmental DEHP CapLC‐DAD [53] 

TRB‐5 Food DEHP CapLC‐DAD [54] 

TRB‐5 Environmental Ethylenediamine HPLC‐FLD [55] 

TRB‐35 Biological Meropenem CapLC‐DAD [39] 

Supel‐Q PLOT Biological Anabolic steroids LC‐MS [56] 

Supel‐Q PLOT Biological 
Heterocyclic 

amines 
LC‐MS/MS [57] 

Carboxen 
1006 PLOT 

Food Patulin LC‐MS [58] 

CP‐Pora PLOT 
amine 

Environmental 

Perfluorooctanoic 
acid, 

Perfluorooctane, 
sulfonate 

LC‐MS [59] 

 

1.1.4.2. Development of new sorbent phases for IT-SPME 
 Despite the good results achieved with commercial capillary columns, treated in the previous 

section, the variety of sorbents available is still limited, especially for smaller diameter columns 

typically used in miniaturized LC systems. In addition, the phase thickness of these columns becomes 

insufficient in those determinations where it is essential to reach lower detection limits. In this way, 

the functionalization of the capillary columns, as well as the synthesis of new sorbent materials, 

capable of tune the interaction, thereby, improving the sensitivity, selectivity, stability and extraction 

time are an important subject matter in IT‐SPME. The sorbent extraction phases recently developed 

for use in IT‐SPME are discussed below. 

Metal nanoparticles and metal oxides. In recent years the use of nanomaterials has extended to 

numerous fields of knowledge, such as medicine, electronics, agriculture, food industry or 

biotechnology. In the specific case of Analytical Chemistry, its application as sorbents in different 

extraction techniques has been proposed [60, 61]. In that sense, the increase in nanomaterial 

extraction capacity is due to two different and complementary effects. In the first place, its presence 

in the extraction phase modifies the morphology of the sorbent, thereby increasing its porosity [62]. 

On the other hand, new interactions, as well as an increase in the number and intensity of existing 

ones, are obtained by immobilizing the materials in the extraction phase, which will also favor the 

useful life of the capillary, reducing its fragility. Castillo‐García et al., point out that the main 
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advantages of the use of nanomaterials as extraction sorbents include increased adsorption and 

preconcentration capacity, easy functionalization and possibility of reuse [63]. 

 Metal nanoparticles and metal oxides are nanomaterials formed by one, two or three metals 

and/or metal oxides. These materials have a large surface area and high absorption efficiency, hence 

the special interest in their application as a sorbent phase [64]. In the case of metal oxides, the active 

sites contain hydroxyl groups. These nanoparticles have the characteristic of establishing ion 

exchange interactions, depending on the pH they can act as cation or anion. Likewise, both the metal 

oxide NPs and the metal NPs can act as Lewis acids, presenting a strong interaction with species that 

can act as Lewis bases [65]. To date, the most used nanomaterials of this type are those of Au, Ag, 

Al2O3, Fe3O4, CeO2, SiO2, TiO2, ZnO and ZrO2. However, despite its wide use in fiber microextraction 

techniques and other extraction formats, its use in IT‐SPME is still reduced [66, 67]. 

 Interesting applications have been carried out with NP's of TiO2 and SiO2, the first ones for the 

extraction of phosphopeptides [68], and the latter's, due to their high hydrophobic grade, for the 

extraction of PAHs and endocrine disruptors by IT‐SPME‐UV [26]. The NPs of Fe3O4 are a 

superparamagnetic material that can be used in magnetic IT‐SPME. By applying a magnetic field to 

the extraction phase, it creates a magnetic order with regions of a different magnetic gradient. Upon 

entering the sample through the extraction capillary, subjected to the magnetic field, a retention 

effect is achieved for diamagnetic analytes in regions where the magnetic field is minimal, which leads 

to an improvement in the extraction capacity. In the elution part, the external magnetic field is 

eliminated, making the analytes easily eluted with the appropriate solvent or the mobile phase [69, 

70]. 

 The influence on the extraction capacity of a polymeric material of tetraethylorthosilicate 

(TEOS) and trimethoxyethylsilane (MTEOS) fortified with NPs of SiO2, TiO2, ZrO2, CuO and ZnO has 

been an object of study in this work, for the determination of trimethylxanthines in biological and 

environmental samples. 

Ionic liquids (IL). Ionic liquids are defined as ionic salts that are in a liquid state at room temperature, 

formed by an organic cation (for example, imidazolium, pyridinium or quaternary ammonium) and an 

inorganic or organic anion (Cl‐, Br‐, PF6‐, trifluoromethylsulfonate ) [71]. The application of ionic 

liquids to increase the extraction capacity in SPME techniques, including IT‐SPME, has been gaining 

popularity in the last years. This is due to its retention capacity of analytes through different 

interaction mechanisms, such as hydrophobic and hydrophilic interactions, ion exchange, π‐π type or 

hydrogen bonds  [72]. 
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 Initially, ionic liquids were linked to the extraction phase by covalent bonds. However, at 

present, they are being part of the polymer network that forms the extraction phase, as one monomer. 

Some works of literature apply ionic liquids for determination of PAHs in water, based on the 

monolithic polymer 1‐dodecyl‐3‐vinylimidazolium, which was used to coat steel fibers that were 

subsequently packaged in a PEEK capillary for this purpose [73]. The sensitivity achieved by this 

sorbent phase improved 200 times the extraction capacity than other SPME techniques, and the 

detection limits were lower than those obtained when conventional phases were used. 

Monoliths. One of the most active areas of research efforts for IT‐SPME is the development of 

monolithic capillary columns. Monolithic materials have special structural characteristics since they 

have macropores and mesopores. The first ones facilitate rapid dynamic transport, which allows 

increasing the flow of the mobile phase, this reduces the analysis time without a significant increase 

in pressure compared to the use of particulate capillary columns. Other advantages include a rapid 

mass transfer, high stability, and loading capacity, as well as a wide variety of surface chemistry[74]. 

 According to the nature of the monomers that form the monolith sorbent, this can be 

classified into organic, silicon‐based, and hybrid monoliths. The two most common procedures for 

the synthesis of monolith capillary columns are the thermal and UV‐polymerization, typically using as 

support capillaries fused silica, PEEK and PTFE. The modification of the capillary surface can be done 

in‐situ if the molecule, material or nanomaterial to be immobilized is added to the monomer mixture 

or carried out in another stage different from the synthesis. 

 For fabrication of these monoliths, generally, five steps are required, include activation, 

modification of the capillary surface, deposition of the polymeric mixture, polymerization, and 

washing and drying. Activation of capillary columns is necessary to activate silanol groups and 

normally is carried out by a rinse with methanol, then the modification of the surface is needed to 

achieve the covalent binding of the capillary inner wall and polymeric material [75].  

 A mixture composed of monomers, such as choline‐chloride, acrylamide, divinylbenzene or 

methacrylic acid, a crosslinking agent, commonly azobisisobutyronitrile (AIBN), and a solvent mixture 

such as isopropanol, toluene, methanol, and isooctane, called porogen, whose function is to form the 

pores, are needed to obtain the monolith, which is passed through the capillary column. Finally, if a 

thermal treatment is applied, typically temperatures up to 80°C with times between 3 and 24 hours 

are required. In UV‐treatment, UV radiation for less than 30 minutes is necessary. 

 The application of organic monoliths as sorbent phases for IT‐SPME to resolve different 

analytical problems has been reported in the literature. In food analysis, Wu et al. [76] reported the 

use of poly (octadecyl methacrylate‐co‐ethylene dimethacrylate) monolith for the analysis of trans 
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fatty acids in samples of instant coffee. In environmental analysis, the determination of thiazoles in 

water samples by the application of a poly (4‐vinylpyridine‐co‐ethylenedimethacrylate) monolith has 

been described by Pang et al., [77]. Likewise, the analysis of alkaloids derived from tobacco in urine 

samples has been carried using IT‐SPME coupled to LC‐MS with a poly (N‐isopropylacylamide‐co‐

divinylbenzene‐co‐N, N`‐methylenediacrylamide) monolith [78]. 

Molecularly Imprinted Polymers (MIPs). In MIPs the specific gaps of these three‐dimensional 

polymers allow a selective interaction with those compounds whose structure is similar to that 

molecule. These specific gaps are induced by a template molecule. The application of these sorbent 

phases has been studied extensively for SPE applications, as a mechanism to improve the selectivity 

for target analytes, which can be used too for capillary columns. The application of these sorbents 

represents advantages such as high thermal, mechanical and chemical resistance, easy synthesis and 

low cost, and mainly, their selectivity can result in an improvement in the extraction efficiency [79]. 

 The preparation of this type of polymers is quite similar to that described in monoliths 

synthesis, with the difference that the template molecule, with a similar structure to analytes, must 

be added to the monomer mixture and not polymerize with them. After the polymerization process 

is done, the polymer chains grow around the template molecule in all three dimensions, and finally, 

the template molecule is removed, and the sorbent phase obtained has a size, shape, and chemical 

interactions specifics for the analytes of interest [80]. 

 Recently, the preparation of a MIPS as an extraction phase in IT‐SPME‐LC for the 

determination of citrin in food matrices such as cereals and food supplements has been reported by 

Lhotská et al. They used 1‐hydroxy‐2‐naphthalic acid as the template molecule, acrylamide as the 

functional monomer, ethylene glycol dimethacrylate as the crosslinker, and acetonitrile as the pore 

generator, improving the sensitivity and selectivity compared with traditional sorbents as a C18 phase 

[81]. 

Restricted Access Materials (RAMs). Restricted access materials are sorbent materials with a capacity 

for the retention of different types of analytes regardless of the presence of proteins in the analyzed 

sample, based on a process of molecular exclusion, which increases the selectivity. The use of these 

materials has an important application for analysis of biological samples, where the presence of 

macromolecules as proteins affects the sensitivity and selectivity of the extraction, as well as, they 

can obstruct tubing and columns of the chromatographic system. 

 In RAMs preparation, the sorbent's surface is modified by the addition of hydrophilic 

compounds that prevent the interaction of proteins with the sorbent, that means a protective layer 

is created on the sorbent that acts as a filter, and only the smallest molecules can be retained in the 
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sorbent [82]. The resulted material can be easily combined with other materials to produce improved 

sorbents. Souza et al. [83] reported the determination of parabens in breast milk samples using IT‐

SPME‐UHPLC‐MS/MS without the need for any prior treatment of the sample. Likewise, Huang et al. 

synthesized a RAM based on an inorganic monolith of methyltrimethoxysilane and APTES for the 

determination of antibiotic residues in the same matrix [82]. 

1.1.5. Off-line development 
 It is possible to hold out the IT‐SPME procedure offline, although only 20% of the literature 

reports its use [84], due to the loss of some advantages of the technique, as not all the extracted 

analytes are introduced within the determination system, whereby a brand new step is introduced, 

and automation is not achieved. Nevertheless, the best advantage of the operation is that, once the 

target analytes are extracted, cleaning operation are often administrated that facilitate the 

compatibility with chromatographic or detection systems, as an example, to derivatize the extracted 

compounds [85]. 

 Normally IT‐SPME offline has been used with electrophoretic techniques, HPLC, UHPLC and 

mass spectrometry detectors [86, 87]. This work is pioneering to develop a method based on IT‐SPME 

offline combined with a hand‐portable LC for the determination of trimethylxanthines in 

environmental samples. 

1.2. MINIATURIZED LIQUID-CHROMATOGRAPHY 

 The first work of the literature using a column with an internal diameter (i.d.) of 1 mm to 

obtain the separation of ribonucleotides was developed by Horváth et al. at the end of the ´60s [88]. 

Ten years later, Tsuda and Novotny established the required equipment for working with capillary LC, 

implementing modifications on conventional injection and detector systems aiming to reduce the 

band‐broadening effects [89]. In the following decades, some publications continued to use columns 

below that internal diameter. Nowadays, it is possible to find columns with an internal diameter 

below 0.1 mm, as it is the case with columns for NanoLC [90]. 

 Among the main advantages of miniaturized systems, we can point out the decrease in the 

consumption of the mobile phases that promotes a reduction in both solvent consumption and 

analysis waste. It is also possible to achieve a reduction in sample consumption, which may be 

important in some fields of analysis. On the other hand, the use of analytical columns with low 

internal diameter allows reducing the dispersion of the analytes by decreasing the chromatographic 

dilution, which translates into an improvement in the signal‐to‐noise ratio, resulting in a significant 

increase in sensitivity with respect to conventional LC systems. Additionally, the low flow rate allows 
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direct hyphenation with mass spectrometry (MS) and flame ionization detector (FID) [91, 92]. It is 

known that the use of capillary columns with small i.d. values improve chromatographic efficiency, 

as well as minimizes band broadening [93]. 

 Despite the advantages obtained with the decrease of the i.d. in miniaturization of the LC 

systems, another parameter of interest is the particle size of the stationary phase. In that sense, these 

particles have undergone modifications, such as the decrease of the diameters, superficially porous 

particles and a more diverse range that has contributed to a better separation performance [94].  

Other instrumental components of miniaturized systems must be modified, so, in the following lines, 

the main components of miniaturized LC instrumentation are briefly discussed. 

 The solvent delivery for miniaturized LC systems involves important challenges to ensure the 

generation of precise, accurate and pulseless pumping at low flow rates, achieving µL or nL per min. 

The first commercial devices developed included a mobile phase split valve coupled in the pump 

outlet, to achieve a nano and capillary flow rate. However, this system has some drawbacks, such as 

not achieve a significant decrease in waste generation, irreproducible results due to variable split 

ratios, and flow fluctuations due to the varying viscosity of the gradient solvent mixtures [95]. 

 Nowadays, piston and syringe pumps continue being the pump of choice in new miniaturized 

HPLC systems. The miniaturized dual‐piston reciprocating pump with an electronic controller is 

capable of assuring reproducible flow rate under isocratic and gradient elution without splitters. 

However, most commercial systems still use a splitter after the mixer chamber, so a high amount of 

the mobile phase goes to waste. On the other hand, a syringe pump may be thought of as a type of 

piston pump without pulsation. Nevertheless, they find limited to a finite volume of solvent in the 

inner reservoir for the separation. A way to overcome this limitation is the configuration of LC 

miniaturized with two or more syringe pumps, it allows a continuous mobile phase flow in isocratic 

mode or performing gradient mode with a finite volume of solvent [96]. 

 In the last years, the application of electroosmotic pumps (EOPs) has been popularized, due 

to the growing trend in microanalytical systems. These pumping systems use electroosmosis through 

charged porous media (pumping elements) to generate pressure and flow pulse‐free, offering a cost‐

effective and simplistic method, readily miniaturized and integrated [97]. Despite their advantages, 

the EOPs show some limitations, as pump‐solution incompatibility with high organic contents, flow 

rate fluctuations, unstable voltage sources, and/or chemical breakdown within the pumping element 

itself [98]. However, more efforts in research are needed to overcome its limitations before they will 

ever reach the market. 
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 Injector choice influences at void volume, flow disturbance, and precision to reduce band 

broadening and increase resolution. However, due to their inherent small size, injectors not 

undergone big transformations over the years. Until now, two categories are available: (1) stop‐flow 

and (2) continuous‐flow injectors. The last one has been widely used in prototypes and commercial 

systems; nevertheless, they typically cause an increased dead‐volume. On the other hand, Stop‐flow 

injectors allow for much lower dead‐volume, so in the last few years they have been used with either 

manual control or an actuated switch [99]. The extra‐column dispersion in miniaturized LC must be 

avoided by the use of connections tubing and fittings of reduced inner diameter (25‐75 µm). 

 The miniaturization of the rest of the components of the chromatographic system involves 

the resizes the detectors, in order to maximize the detectability, resolution, and efficiency. The 

simplest class of detectors is absorbance detectors, such as UV‐Vis absorption detector, which cell 

volume in miniaturized LC is reduced in comparison with conventional instruments [100]. Recently, 

the development and application of the small size LED‐UV absorption detector has shown good 

results in portable miniaturized LC [101]. Likewise, miniaturized mass spectrometry development and 

commercialization are progressing rapidly [102], and many applications are anticipated since MS 

presents good selectivity, detectability, and can generate additional chemical structural information. 

 In general, liquid chromatography systems can be classified according to the size of the 

internal diameter of the analytical column or the flow used in the mobile phase, both criteria being 

dependent on each other, as well as critical when defining their performance, coupling and 

applications. Figure 5 shows the currently accepted classification for liquid chromatography systems 

and their typical values. 
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Figure 5. Classification of liquid chromatography systems and operational parameters. 

 The application of LC miniaturized systems has been important for the resolution of analytical 

problems, becoming effective and versatile tools for the study of various matrices and analytes. Table 

2 presents some selected examples of the application of miniaturized liquid chromatography found 

in the literature. 

1.3. PORTABLE LIQUID-CHROMATOGRAPHY 

 The development of miniaturized systems has opened the possibility of the introduction of 

hand‐portable LC instruments, which have significant potential for solving analytical challenges in 

various applications in situ or at‐situ monitoring, due to their ability to perform measurements at the 

point of sampling. The potential applications of portable LC systems focus on the need to obtain 

results quickly, overcome problems in the preservation of the sample or remote location of the 

monitoring site. 
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Table 2. Examples of application of different procedures based on miniaturized LC. 

LC system-
Detector 

Application 
Column specification 

Stationary phase 
or coated material 

Reference i.d. 
(µm) 

Length 
(cm) 

Flow rate 
(µL/min) 

CapLC‐UV 
Pharmaceuticals in 
biological sample 

300 15 4 C18, 2 µm [103] 

CapLC‐
DAD 

Sulfonylurea 
herbicides in 

environmental water 
300 15 10 C18, 5 µm [104] 

CapLC‐MS 
Antidepressants in 
human blood drop 

500 25 20 C12, 4 µm [105] 

NanoLC‐
UV 

Pharmaceutical drugs 
in commercial 
preparations 

75 20 0.23 

Poly (glycidyl 
methacrylate‐

coethylene 
dimethacrylate) 

monolith 

[106] 

NanoLC‐
DAD 

∆9‐
tetrahydrocannabinol, 

cannabidiol and 
cannabinol residues 
on different surfaces 

75 5 0.80 C18, 3.5 [107] 

NanoLC‐
MS 

Pesticides in food 75 15 0.30 C18, 3 [108] 

DAD: diode array detection, MS: mass spectrometry, UV: ultraviolet absorption. 

 Like any other LC instrument, the main components that a portable LC system must include 

are (a) an eluent pump; (b) an injector assembly to introduce the sample; (c) a column that separates 

the analytes, and (d) a detector to record and, ideally, quantify the individual components that leave 

the column [109].  At this point, it is important to establish that there can be three types of portable 

instruments, based on their size: handheld, person‐portable, and transportable [110]. In that sense, 

until a few years ago the use of these systems has involved an important challenge, mainly due to the 

inconveniences associated with the reduction of solvent consumption and requirements for size, 

weight and system power [111].  

 According to Sharma et al [112], there are at least ten essential requirements to consider an 

LC system as portable, related to aspects of size, performance, operation and functionality: 
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 (1) weighs <7 kg and measures < 16,387 cm3; 

 (2) contains all necessary electronics, digital interface and software integrated; 

 (3) allow at least 8 hours of operation; 

 (4) is easily operable with minimal supervision; 

 (5) is rugged enough to withstand changes in temperature and humidity; 

 (6) needs short instrument warm‐up time; 

 (7) uses low amounts of toxic organics; 

 (8) is customized for capillary column use with a non‐splitting flow arrangement, non‐splitting 

 injector, and low extra column volume to minimize dispersion; 

 (9) is integrated with a small detector that has excellent sensitivity; and 

 (10) is capable of binary gradient generation, competitive in performance to benchtop 

 instruments. 

 To date, some works have reported on the development of hand‐portable LC systems, the first 

of which was developed by Baram et al. [113] in 1996, with a power requirement similar to 

conventional LC systems and was used for the analysis of various compounds of environmental 

interest. In the following years other systems appeared, however some presented operational 

problems or limited applications [111]. Some other commercial systems were deprecated, while 

certain works that attribute the term of portability do not complete the requirements to be 

considered as a portable. 

 Recently, Lam et al. published the results of the development and application of a homemade 

miniature capillary LC system for the determination of small pharmaceutical molecules by UV 

detection and capable of coupling to a mass detector, with excellent performance [114]. Axcend® 

company has introduced in 2019, a new portable nano liquid chromatograph with an on‐column UV‐

absorption detector [115]. Flow rate of the mobile phase in the order of 2 µL in gradient elution is 

achieved. Here, the performance of this instrument was checked and evaluate what variables are 

needed to optimize for obtaining suitable results. Table 3 includes a comparison of current and 

historical portable LC systems reported in the literature, with special attention to their applications 

and compliance with the portability criteria established by Sharma. 
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Table 3. Summary of modern and historical portable LC systems reported in the literature. 

Portable LC 
systems 

Application field 
/ analytes 

Size and weight 
specifications 

Essential requirements a 

Total 
weight 

(kg) 

Total 
dimension 

(cm3) 

Physical 
characteristics 

Performance Operation Functionality 

Baram (1996) 
[113] 

Environmental / 
Pesticides, 

phenols and 
phthalates 

14 31800 0 + ++ + 

Tulchinsky 
(1998) [116] 

Environmental / 
Organic and 

inorganic 
compounds 

9.5 23575 0 + ++ ++ 

Ishida (2012) 
[117] 

Environmental / 
Alquilphenols 

2.0 9828 +++ + +++ ++ 

Sharma 
(2014) [111] 

Standards / 
Uracil and alkyl‐

substituted 
benzenes 

4.4 7812 +++ ++ +++ +++ 

Lam (2019) 
[115] 

Environmental / 
Pesticides, 

phenols and 
phthalates 

2.7 7252 +++ +++ ++ ++ 

Chatzimichail 
(2019) [118] 

Environmental / 
Pesticides, 

phenols and 
phthalates 

6.7 13398 ++ ++ ++ +++ 

Abonamah 
(2019) [110] 

Forensic / 
Fentanyl and its 

derivatives 
37 61560 0 +++ + + 

Current work 
(2020) 

Environmental / 
Trimethylxanthines 

7.8 14720 ++ +++ +++ +++ 

 

a The essential requirements are evaluated on a scale of 0 for noncompliance and +++ as a higher grade of 

compliance. 
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1.4. MATRIX AND ANALYZED COMPOUNDS 

 The study of this thesis has focused on the applications of the analytical methodologies 

described above, in biological, environmental, food and natural product matrices, to study a series of 

compounds belonging to several families and with different polarities. Therefore, the approach of 

this chapter will be based on the matrices analyzed. 

1.4.1. Biological samples: trimethylxanthines 
 Analysis of biological samples represents an important challenge to overcome in the 

development of analytical methods due to very demanding requirements in terms of method 

reliability, sensitivity, speed of analysis and sample throughput. The terms “specimen” and “sample” 

are accustomed denote a portion of a body fluid, tissue, incubation medium, etc., collected under 

defined conditions [119]. Biological samples usually encompass fluids like whole blood, serum, 

plasma, urine, saliva, breast milk, sweat, cerebrospinal fluid, gastric fluid; exhaled breath (gas 

sample); and solid samples include a different kind of tissue (i.e., hair, nail, skin, bone, muscle). 

 Despite this large number of specimens, it is possible to indicate as those of greatest analytical 

interest the blood, including serum and plasma, urine and, recently, saliva, for the analysis of drugs, 

metabolites, xenobiotics or biomarkers. Plasma, serum and blood are normally used if quantitative 

measurements are needed. In urine the concentrations of target compounds, and their metabolites, 

tend to be higher than the ones found in blood, thereby facilitating detection [120]. In recent years, 

saliva has attracted attention due to advantages for its collection as it is a non‐invasive procedure. 

 Serious complications for analysis of biological samples include the presence of endogenous 

or exogenous macromolecules, small molecules, and salts that interfere with analysis; the low analyte 

concentration and, generally, the incompatibility of these kind of samples with analytical instruments 

[121]. In that sense, sample preparation is of paramount importance to obtain the target analytes, 

meeting at least four requirements: (a) reduce or eliminate matrix or unwanted interference 

endogenous compounds; (b) increase selectivity for interest analytes; (c) pre‐concentration effect to 

improve sensitivity; and, (d) stabilize the sample by reconstituting it in an inert solvent [122]. 

 In general, analysis of biological samples involves the application of some pretreatment 

procedures, which can facilitate instrumental analysis (dilution), minimize the presence of 

endogenous substances (centrifugation, filtration and saponification), reduce quantitative errors due 

to the extraction procedure (internal standards) and/or release metabolized analytes as conjugated 

substances (enzymatic hydrolysis) [123]. 
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 Other aspects no less important, related to the analysis of biological samples, are several 

ethical, legal and social issues co‐exist. The confidentiality, ownership, export, storage and secondary 

use of samples (individual good) with specific consent, regulations and policies must be established 

in accordance with the guidelines of the Research Policy Ethics Committees (REC). [124].  

 In the following lines of this section, aspects related to the collection, storage, preservation 

and important issues of the biological samples studied during the development of this thesis will be 

discussed. In the final part, a description of the analyzed compounds is presented. 

1.4.1.1. Blood, plasma and serum 
 Whole blood is probably the most widely used complex biological matrix in bioanalysis and 

shows the best correlation between the pharmacological effect and the concentration of the 

compound [125], so is preferentially selected for quantitative analyzes. However, it has some well‐

known disadvantages, such as invasive collection, the trained required personnel and the need for 

special storage conditions. Whole blood is a complex but relatively homogeneous matrix, composed 

of blood cells suspended in blood plasma. Plasma constitutes more than 50% of blood fluid, is 

constituted by water, proteins, glucose, mineral ions, hormones, and erythrocytes, leukocytes, and 

platelets.  

 Plasma and serum are derived from whole blood that undergone different biochemical 

processes after blood collection, by refrigerated centrifuging. The serum is obtained from blood that 

has coagulated and centrifuged to separate blood cells and coagulation factors. To obtain plasma, an 

anticoagulant is added before the removal of blood cells. So, the major difference between both, that 

no anticoagulants are used in the collection of serum and all the fibrinogen and associated proteins 

are removed through the clotting process [126].  

 Although plasma and serum are generally considered to have similar compositions and 

properties, some analytes, as in the case of metabolomic studies, show differences in both. However, 

in some cases, it is preferred to work with serum, because it produces less precipitate by freezing and 

thawing cycles, and additionally, there is an absence of additives that may interfere. This has special 

attention in miniaturized techniques.  

 Normally, for the routine collection of plasma and serum samples, venous blood is 

immediately divided into two tubes, one is a tube containing anticoagulant for obtaining plasma, and 

the other a blank tube, for serum. Then, both tubes are isolated by centrifugation and then stored 

until analysis. Whole blood, plasma or serum samples are recommended to be stored at ‐20°C, and 

thawed at least twice if possible using a warm bath to prevent the protein unfolding [127].  
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 Recently, dried blood spot (DBS) has gained a great interest in the bioanalysis field. Here, a 

blood sample is deposited onto a filter paper, followed by drying in the air for several hours. 

Subsequently, a disk is punched out from the blood spot and this disk is extracted for the target 

analytes. Some advantages of this technique include the ease of sampling (less invasive), small 

sampling volume, long‐term analyte stability, and low solvent volumes needed in the extraction [128]. 

1.4.1.2. Urine 
 Normal and healthy urine is mainly composed of water, plus ions such as Na+, K+, Mg2+, Ca2+, 

Cl− and NH4
+, urea, creatinine, proteins, and products processed by the kidney and liver, including 

drugs and metabolites [129]. Urine sample has its own advantages, compared with serum and 

plasma: a large volume of non‐invasive sampling can be obtained, sampling repetition is not a 

problem, requires less complex sample preparation due to the lower amounts of protein, lipids, and 

other substances of high molecular‐weight that it contains. However, the lack of proteins and lipids 

can cause issues in bioanalysis, as these compounds perform a number of useful functions, prevents 

adsorption to containers, binds analytes and helps to solubilize them [130]. 

 From the bioanalytical point of view, urine analysis has the advantage of the high 

concentrations of analytes and their metabolites, as it represents one of the main routes of 

elimination of the body, which facilitates the detection of the compounds of interest. Urine analysis 

is mainly used as a screening test for the determination of drugs of abuse and prescription drugs. The 

absence of circulating serum proteins, lipids and other related large‐molecular‐weight compounds 

greatly simplify the preparation of the specimen for bioanalysis, enabling the application of 

immunoassays or non‐instrumental spot tests. 

 According to Fernandez‐Peralbo et al. [129], urine samples are collected as random samples, 

timed samples or 24‐h samples. The first is done at any time of the day, instead, while timed samples 

are necessary to study time‐related trends to catalog metabolites with high diurnal variation in 

different species. However, a 24 h sample collection is preferred to eliminate the great variability in 

metabolite profiles. Midstream portions or clean‐catch urine of first‐morning samples are the most 

common and appropriate obtained specimens because the presence of contaminating elements is 

minimized. 

 Urine samples for clinical practice are usually collected in a sterile container, which is not 

endowed with special characteristics or reagents. The storage of urine samples is critical for the 

reliability of analysis results, due to changes in the concentration of analytes or the formation of some 

endogenous urine reactants that can appear [127]. Freeze‐thaw cycles are related to sample handling 

and are another pivotal aspect, as it determines the exposition to degrading environmental 
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conditions, so it is recommended to avoid them and rapidly freeze and store pre‐aliquoted samples 

to minimize potential degradation as much as possible. 

 An important issue related to the reported results in urine analysis is the variability of urine 

volume due to water consumption and other physiological factors. This makes that the concentration 

of targeted and untargeted analytes in urine varies widely. So, volume correction is necessary. 

Although there is no universally accepted procedure for this correction, some approaches based on 

urine volume, creatinine concentration, osmolality, and components that are common to all samples 

are strategies successfully used [131]. 

1.4.1.3. Saliva (oral fluid) 
 Saliva is an “ultra‐filtrate” of blood, very dilute, and composed of about 99% water. Saliva 

contains compounds produced within the salivary glands (immunoglobulin A [IgA] and α‐amylase) 

moreover as compounds diffused within the plasma (electrolytes, proteins, metabolites, and 

hormones) [132]. As this excretion product is actually a fluid mixture, the term “oral fluid” seems 

more appropriate, instead of “saliva” or “whole saliva”. This is of particular interest to define the 

recollection site of the sample: samples collected directly from the saliva glands (mainly the parotid 

glands) are defined as "whole saliva", and “oral fluid“ are the ones collected in the oral cavity. 

 Saliva represents a potential source of clinical information since salivary biomarkers can 

virtually reflect the state of a pathology such as oncological, cardiovascular, autoimmune, viral and 

bacterial diseases, as well as the presence of drugs [133‐135]. Some studies have demonstrated the 

correlation between plasma or serum concentrations with those found in oral fluid for some 

substances, which facilitate the analysis without the need to obtain blood samples. As with urine, 

saliva can be collected through noninvasive means, performed by the patient himself or untrained 

caregivers. Actually, analysis of saliva is a potential substitute for blood, especially for long‐term 

therapeutic drug monitoring or for screening a large number of patients, as well as for developing 

salivary point‐of‐care technology [136].    

 There are two modes of saliva sampling, unstimulated and stimulated collection. For 

stimulated collection, stimulants like paraffin, unflavored chewing gum base, cotton puff, and rubber 

bands will be accustomed to sample saliva by masticatory stimulation, because saliva is 

physiologically secreted in response to those stimulations. In the unstimulated collection, the 

secretions in the mouth are collected in the absence of exogenous stimuli and depend on the daily 

basal salivary flow rate in the oral cavity and is often preferred because it minimizes the dilution of 

analytes.  For this, there are different ways to collect oral fluid including passive drooling and draining, 

spitting, and swab‐based sampling [137]. 
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 The latter is particularly suitable for patients with less or no collaboration, such as disabled 

people, children, the elderly and newborns, which is why it was used in this work. These devices have 

a disposable non‐cellulosic absorbent pad, which is placed under the tongue or near the cheeks and 

can take samples up to about 1.2 mL in a few minutes. Finally, the oral fluid sample is recovered by 

squeezing the pad or centrifuging into a container like an Eppendorf tube. Until now, there is no 

agreement on the storage temperature of oral fluid samples. A normal recommendation is that 

samples should be refrigerated (4°C) if they are processed within 3‐6 h after collection. For long 

periods of storage, they should be kept at ‐20°C to prevent bacterial growth. 

 Recently Abdel‐Rehim et al. have proposed a method called dried saliva spot (DSS), to see the 

quantity of lidocaine in saliva [138]. Some drops of saliva are spotted onto a group card and dry at 

room conditions, using 50 µL of the sample, and allowing easier transportation, storage, and pre‐

treatment of samples. Another application of DSS was reported for analysis of D‐ and L‐lactic acid in 

diabetic patients, pre‐diabetic and nominally healthy persons [139].  

 Table 4 shows a comparison of characteristics, advantages, and disadvantages of the biological 

samples addressed in the previous sections. 

 Table 4. Comparison of the characteristics, advantages, and disadvantages of biological 

samples discussed. Adapted from [140] 

Characteristics 
Blood (Plasma and 

serum) 
Urine Saliva (Oral fluid) 

Sample collection 
Requires medically trained 

personal 

Privacy concerns; 
not easily field 

collected 
Noninvasive 

Amount of sample 
typically available 

1–5 mL >50 mL 1–5 mL 

Speed of 
collection 

Minutes Minutes Minutes 

Drug 
concentration  

High Moderate‐to high Low 

Window of 
detection average 

Narrow 

Moderate, 
usually wider 

than for blood 
 

Narrow, similar 
to blood 

 

Risk of infection Higher than others Low Low 
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1.4.1.4. Determination of trimethylxanthines 
 Trimethylxanthines are a group of substances naturally present in beans, leaves, seeds, and 

fruits of more than 60 plants. The most common sources are coffee and cocoa beans, as well as tea 

leaves and guarana berries [141]. These compounds are alkaloids produced in plants as secondary 

metabolites, with high polar characteristics and low log Kow values (Table 5). 

 Table 5. Chemical structure and log Kow of trimethylxanthines studied. 

Compounds Structure log Kow 

Caffeine 

 

CH3

N

N

O

N

O N

CH3

CH3

 
 

‐0.10 

Theobromine 

 

CH3

N

N

O

NH

O N

CH3  
 

‐0.80 

Theophylline 

 

CH3

N

O

N

O

CH3 N
H

N

 
 

‐0.02 

Paraxanthine 

 

O N
H

N

N

O

N
CH3

CH3

 
 

‐0.22 

 

 Caffeine is the most consumed stimulant of the central nervous system, due to its presence in 

beverages such as coffee, tea, energy drinks, and cola drinks. The metabolic pathway of caffeine 
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(Figure 6) generates three main metabolites, in descending order of their metabolic concentrations, 

paraxanthine, theobromine, and theophylline, which produce different effects in the human body, 

including an increased concentration of adrenaline which then acts in increasing energy consumption 

and fat oxidation. Particularly, caffeine stimulates the respiratory center, increasing mean respiratory 

rate and improve pulmonary blood flow and enhanced diaphragmatic function and breathing pattern 

[142]. 

 

 Figure 6. Metabolic pathway of caffeine. 

 These effects allow the use of caffeine in the treatment of apnea of prematurity in neonates 

to stimulate breathing efforts [143]. Apnea of prematurity (AOP) affects the majority of infants born 

prematurely, before 34 weeks of gestational age, and is defined under the following parameters: a 

recurrent cessation of breathing (>20 seconds) or respiratory pauses of shorter duration and/or 

oxygen desaturations (<90%) [144]. Some studies concluded that methylxanthines, and particularly 

caffeine [145], are effective in reducing the frequency of apnea of prematurity and the use of 

mechanical ventilation in two to seven days after starting treatment. The mechanism of action of 

methylxanthines involves the stimulation of the medullary respiratory centers, causing an increase in 

the detection of CO2 and O2, improving diaphragmatic function and bronchodilation [146]. 
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 Over other therapeutic guides for AOP, caffeine has important advantages related to its long 

half‐life and wide therapeutic range [147]. The loading and maintenance dosage of caffeine in the 

treatment of AOP is 10 mg kg−1 of caffeine (intravenously) and 5–10 mg kg−1 every 24 hours (orally or 

intravenously) [148]. Dose between 5 and 30 mg L−1 is commonly used and under this therapeutic 

scheme, serum levels below 50 mg L−1 are considered safe. In clinical practice, caffeine citrate instead 

of caffeine is administrated, so the doses prepared from this compound are doubled to the aforesaid 

values. 

 In all therapeutic schemes, it is necessary to control the concentrations of the drugs 

administered by determining the blood levels of caffeine throughout the treatment, to ensure the 

expected clinical response, as well as possible signs of toxicity. For this, when therapeutic failure is 

suspected, blood samples should be obtained just before the administration of the next dose, and 

between 2 and 4 h after the previous dose, when toxicity is suspected. Perera et al., found an 

adequate correlation between plasma and salivary concentrations of caffeine when 100 mg of 

caffeine was administered to healthy male non‐smoking volunteers, which may serve as a measure 

in future pharmacokinetic trials [149]. 

 In the literature, many methods have been used for the determination of caffeine and its 

metabolites in biological samples, using traditional sample treatment techniques like liquid‐liquid 

extraction and solid‐phase extraction (SPE) [150‐152]. These procedures involve many stages, high 

consumption of organic solvents and a high quantity of sample volume. This thesis proposes the 

determination of trimethylxanthines in serum, urine and oral fluid using IT‐SPME‐CapLC, which 

provides a simple and fast analytical methodology using micro volumes of samples. 

1.4.2. Environmental samples: trimethylxanthines in waters 
 Pollution represents a significant public health issue in the world, which according to 

Landrigan et al, is responsible for approximately 25% of deaths in the most polluted countries and 

16% of deaths worldwide [153]. The control and monitor of pollutants that can be found in water, air, 

soils, sediments, and biota require the study of environmental matrices. The different environmental 

pollutants can be found in their source of emission (places, objects, activities, or entities) and can be 

transported in the environment through their receiving environmental compartment, which in turn 

can act in some cases as a source of emission and reach human beings, through many processes. In 

this cycle, human beings are at risk of exposure to these contaminants in their daily activities. 

 From all these matrices, water has a particular interest as an environmental compartment, for 

its role in life and constant mobility on the planet by, so pollutants that reach the water cycle could 

eventually travel to other compartments. Factors like population growth and development can alter 
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certain stages of the water cycle, causing increasing contamination in soils, groundwater, air, and, 

other environmental compartments [154].  

 The Directive 2013/39/EU of the European Parliament and of the Council [155] classify the 

waters as continental and coastal waters. Inland waters are understood as all surface or underground 

waters, located towards the ground from the line that serves as the basis for measuring the width of 

territorial waters. They can be classified in groundwater or surface water (rivers, lakes, transition, 

etc.). Waters that extend between this line and a nautical mile inland are the so‐called coastal waters. 

Another important type of water is wastewater, defined as any type of water whose quality has been 

damaged by anthropogenic activities. 

 In the last ten years, the presence of so‐called "emerging" or "new" contaminants such as 

pharmaceutical compounds and their metabolites in the aquatic environment, both water and 

wastewater, has emerged as a major concern for the international scientific community on the need 

to establish controls for their regulation [156]. According to Mackulak et al. [157], more than 200 

active pharmaceutical substances have been identified in the environment, which enters in it 

according to its pattern of usage, as well as the mode of application, and for those coming from 

human use and/or excretion, sewage discharge is a very important source for the aquatic 

environment.  

 Until today, the number and variety of these compounds are constantly increasing, as well as 

their metabolites, which are detected even in natural compartments, which makes its control and 

elimination difficult. Likewise, some of these compounds are considered as indicators of 

anthropogenic activity, since their presence in environmental matrices come mainly for human use 

and elimination [158, 159]. In that sense, wastewater has a wide range of chemical and biological 

markers of human activity, whose study has been used for decades to monitor removal efficiencies 

of wastewater treatment processes and to evaluate wastewater effluent as a point source for 

environmental contamination [160].  

 Trimethylxanthines are an important group of compounds used as biomarkers of human 

activity on wastewater under an epidemiological approach [161], and also as an indicator of lifestyle 

[162] and for the evaluation of their intake [163]. The total daily intakes of these compounds varies 

throughout the world, although coffee usually contributes more significantly more than other drinks 

to overall caffeine consumption (coffee 71%, soft drinks 16% and tea 12%), particularly among adults 

[164]. 

 High stability and high consumption of these products have made it common to detect them 

in considerable concentrations in surface water [165], seawater [166], stormwater [167], drinking 
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water [168] and groundwater [169]. Recently, some studies have reported high concentrations of 

caffeine and paraxanthine in wastewater treatment plants (WWTP) [170]. Likewise, low 

concentrations downstream of WWTPs demonstrate the efficiency in the degradation and 

elimination of these molecules [171]. Figure 7 shows the growing interest related to the study of 

trimethylxanthines in environmental issues, provided by the increase in the evolution of the number 

of citations in the last thirty years. 

 

Figure 7. Evolution in the number of citations on caffeine and trimethylxanthines in the topic 

environment in the last 30 years. Source Web of Science (May 2020). 

 In general, for environmental analysis, pollutant concentrations may be below instrumental 

sensitivity, so nowadays the need for reliable and sensitive analytical methods is highly desirable. 

Likewise, sample treatment techniques with high preconcentration capacity and selectivity are 

necessary [172]. Along these lines, SPE has been widely used with adequate results [173], applying 

new polymeric sorbents, which improve retention by hydrophilic‐hydrophobic mechanism, especially 

for molecules with high polarity characteristics such as trimethylxanthines [174]. Despite the 

advantages of SPE, some drawbacks have been indicated including a large sample volume, the use of 

organic solvents, and time required [175]. 

 Table 6 shows some of the analytical methods developed in the last five years for the 

determination of trimethylxanthines in environmental water samples by liquid chromatography with 

mass spectrometry detection. In terms of extraction techniques, predominate the application of SPE. 
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In those studies, concentrations for caffeine were reported, mainly in upstream of WWTP´s. In this 

thesis, a method with portable NanoLC‐UV has been developed, which has been compared with IT‐

SPME CapLC method, for the analysis of caffeine, theobromine, and theophylline in seawater and 

river samples. 

1.4.3. Dietary supplements: Multiclass analysis 
 Dietary supplements, also called food or health supplements, are defined as products that are 

intended to supplement the diet, which may include, some substances as vitamins, minerals, 

botanicals (herbs), amino acids, or concentrates, and extracts of these [181]. According to the 

European Directive 2002/46/EC, are ‘foodstuffs to supplement the normal diet, with a nutritional or 

physiological effect, alone or in combination, marketed in various dosage forms, such as liquids and 

powders, designed to be taken in measured small unit quantities’ [182]. 

 The rising popularity of these products, especially those offered as natural food supplements 

and alternative herbal medicines, is due in part to be conceived as free of adverse effects. A wide 

variety of these products, administered as tablets, capsules, concentrated extracts, and infusion bags, 

are extensively promoted in marketing campaigns to influence the idea to have "magical results" for 

weight loss, to be anti‐carcinogenic, to improved sports performance, and to be stimulant, revitalizing 

and “healthier” than conventional pharmaceutical drugs [183]. 

 Some researchers have estimated that dietary supplements represent an industry with sales 

gains of more than $ 37 billion annually, only in the USA [184]. Particularly, weight loss products 

constitute a fast‐growing segment of this field which increases annually by 10‐20% [185].  This can be 

explained due to the high availability of these products in grocery stores, supermarkets, and e‐

commerce platforms. Dietary supplements are products registered as food, which in terms of 

requirements for production, quality control and commerce are much more lenient than guidelines 

for pharmaceutical products [186, 187].  

 Although the main components of dietary supplements have a natural origin, a trending topic 

in recent years is the adulteration with pharmaceutical active ingredients as some works have shown 

[188]. These adulterants are added and not reported on the composition of the package label, even 

in almost all cases they are present at potentially dangerous doses. This fact means that consumers 

are not aware that they are taking other compounds, which at high doses can have toxic effects 

and/or drug interactions with other medical treatments [189]. Adulteration of dietary supplements 

with anabolic steroids [190], erectile dysfunction drugs [191], pharmaceuticals and plant toxins [192], 

synthetic drugs [193], antidiabetic [194] and abuse drugs [195] has been reported in the literature. 
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 Additionally, the control in the composition of these products is made even more difficult 

since new formulations are constantly introduced. 
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 In recent years, there is a growing concern about the composition, quality, labeling, and safety 

of dietary supplements, which has resulted in the establishment of new regulations [196, 197]. The 

presence of botanical extracts makes that dietary supplements have a diverse and complex chemical 

composition, and many compounds that may be present, some of them considered as major 

compounds, as well as trace compounds. The following lines present a description of major and trace 

compounds commonly found in dietary products. 

1.4.3.1. Major compounds  
 Nowadays, dietary supplements with different functions and compositions are widely 

available, such as slimming dietary supplements, also called fat burning for weight loss, multivitamin 

formulations, natural extracts, and sexual enhancement. The main compounds responsible for these 

desirable effects are the following. 

Chlorogenic acids 

 Phenolic compounds are widely found in nature, among which chlorogenic acids (CGA) are a 

family of esters formed between certain phenolic acids (trans‐cinnamic acids) and quinic acid. 

Chemically, chlorogenic acids can be classified according to the type, number, and position of acyl 

residues, where the most common isomer is 5‐caffeoquinine acid [198]. Another related compound 

to chlorogenic acids in caffeic acid, which has structure and properties quite similar to these. The 

main subgroups of CGA are caffeoylquinic acids (CQA), dicaffeoylquinic acids (diCQA) and 

feruloyilquinic acids (FQA), each one of these groups have, at least, three isomers.  

 Although these compounds can be found in a variety of plants, mainly green (or raw) coffee 

is a major source of CGA in nature, with an estimated percentage between 5 and 12% [199]. Green 

coffee has a mild aroma similar to the characteristic aroma of coffee during the roasting process. 

According to the literature, the scientific evidence is abundant to support the great health benefits 

of CGA to humans. Recent studies demonstrated that they exhibit antimutagenic, anticarcinogenic 

and antioxidant activities. Additionally, these compounds act as protective agents, reducing the 

oxidative stress of cells, and they are also being investigated for their positive effect on blood pressure 

and glucose regulation [200]. 

 Roshan et al. [201], reported that the ingestion of the green coffee extract could feasibly be 

an effective approach for the management of some of the metabolic syndrome features, as well as 

insulin resistance, and abdominal obesity. Likewise, the ingestion of green coffee seems to facilitate 

weight loss and show a tendency to reduce visceral fat and body weight, that is why green coffee 

extracts are common components of dietary supplements. 
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Caffeine 

 Caffeine, as well as theobromine, has a potential thermogenic effect and reduces energy 

intake. Although these compounds are naturally present in coffee, green coffee or tea extracts, 

powdered pure caffeine is added intentionally as an adulterant in dietary supplements for physical 

fitness and weight loss. This is of special attention for those fortified products with high quantities 

marketed in bulk containers since they can present a significant or unreasonable risk of disease, injury 

or even toxic doses [202]. Furthermore, the combination of trimethylxanthines with other 

thermogenic ingredients, such as adrenergic amines, in these products can represent a major 

problem due to the adverse drug interactions that may occur.  

Synephrine 

 Synephrine is a biogenic protoalkaloid, chemically similar to ephedrine and catecholamines, 

commonly present in various citrus species (C. sinensis, C. limon, C. limoni, etc.), especially in bitter 

oranges (Citrus Aurantium). It has been used in Asian traditional medicine and in the Mediterranean 

region as a cardiac and vascular stimulant, and in the treatment of digestive and gastric problems 

[203]. Normally this molecule can be found in the human body at very low plasma concentrations, 

which is why it is considered as a trace amine. Citrus aurantium extract contains para‐synephrine at 

a 4‐6% level [204]. 

 Both synephrine species have an affinity for adrenergic receptors present in adipose tissue, 

therefore they stimulate lipolysis. Zheng et al. recently reported that this molecule modulates 

NMUR2 receptors in the hypothalamus, achieving appetite suppression in humans [205]. Due to these 

effects, Citrus aurantium extract has been extensively used in dietary supplements as a principal 

constituent in fat‐burning weight‐loss products. The FDA's ban on the use of ephedra alkaloids in 

dietary supplements in 2004, meant that synephrine quickly replaced them, making their use popular. 

 The effectiveness, as well as the safety of the intake of products containing synephrine, is 

frequently questioned. For some authors, there is no solid evidence to support the beneficial effects 

of synephrine as a lipolytic agent [206]; on the other hand, Stohs et al. concluded that modest 

increases in weight loss were observed with bitter orange extract in a study of three months [207]. 

According to Jordan et al. [208], severe cardiovascular symptoms associated with the intake of dietary 

supplements containing synephrine were reported between 1998 and 2004. In 2010 a new guide to 

restrict the daily limit of 30 mg of synephrine as a value for maximum intake was published [209]. 

This makes it necessary to quantify synephrine concentrations in dietary supplements. Recently, 

some studies have denied the risk of the cardiovascular effects of p‐synephrine [210, 211]. 
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 Figure 8 shows the chemical structure and log Kow for major compounds found in dietary 

supplements. 

 

Figure 8. Chemical structure and log Kow for major compounds found in dietary supplements. 

1.4.3.2. Minor compounds  
 Due to the natural origin of dietary supplements, numerous compounds in low 

concentrations, considered as minor compounds, are present. Although they are not normally 

reported, they can have physiological effects that can cause synergistic or antagonistic effects.  

Riboflavin 

 Riboflavin, also called vitamin B2, is a water‐soluble vitamin, normally found in a wide variety 

of foods, including milk, cereals, fatty fish, meats and certain fruits and vegetables. Chemically it is a 

nucleoside with the presence of flavin and ribitol. The deficiency of this vitamin has been linked to 
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some diseases like anemia, cancer, and cardiovascular disease. Likewise, riboflavin is also thought to 

protect tissues from ischemia [212]. Some sanitary guidelines establish the estimated average 

requirements for riboflavin in 0.4 mg per day [213], so the consumption of dietary supplements 

containing this compound may be beneficial. 

Kaempferol 

 Flavonoids are polyphenolic compounds, which have commonly been incorporated into the 

human diet through vegetal foods. Kaempferol is a flavonoid abundantly found in tea, broccoli, 

apples, strawberries, and beans. The presence of these aliments in all food guide models around the 

world [214] ensures a high consumption in all populations. This molecule shows antioxidant and anti‐

inflammatory properties and activates thermogenic processes, which is why it is found in several 

dietary products. Additionally, it has been shown to invoke several different mechanisms in the 

regulation of cancer cells [215]. 

Terpenic compounds 

 Terpenes are organic compounds derivatives of isoprene. They are produced in a high variety 

of plants and are the most representative molecules in essential oils (> 90%). Terpenes have a great 

variety and diversity of structures, the most common in nature being monoterpenes and 

sesquiterpenes. The basic structure of monoterpenes consists of two linked isoprene units, which are 

formed by a 5‐carbon‐base (C5) each [216]. There are different types of monoterpenes in nature, 

including acyclic ones (such as linalool and myrcene), monocyclic monoterpenes (for example, 

limonene among others), and bicyclic monoterpenes (as alpha and beta‐pinene). Sesquiterpenes 

present three isoprene units in its structure, and such as monoterpenes they may be acyclic or contain 

rings. Farnesene is an acyclic sesquiterpene. 

 Numerous studies have attributed the biological activity to terpenic compounds, which is why 

they are used as antioxidants, antifungals, and antibacterial [217]. Likewise, all of these compounds 

present important anesthetic and sedative effects [218‐220]. Historically terpenic compounds have 

been applied in flavorings and fragrance industry, but recently, there is an increasing interest in its 

application in the pharmaceutical and nutraceutical industry. Due to the plant nature of some dietary 

supplements, terpenic substances are expected to be present as minor components. Chemical 

structure and log Kow for trace compounds found in dietary supplements are given in Figure 9. 
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Figure 9. Chemical structure and log Kow for trace compounds found in dietary supplements. 

1.4.3.3. Analysis of dietary supplements 
 The analysis of dietary products can be carried out by two approaches, by the determination 

of specific components or by multi‐class analysis methods, the latter being preferred according to the 

principles of green analytical chemistry. However, multiclass methods involved sophisticated and 

expensive instrumentation such as UHPLC and high resolution mass detectors. Thus, simple and rapid 

methods for the qualitative and quantitative determination of major and trace compounds in dietary 

supplements are highly desirable for improved sample characterization with a minimum of 

experimental effort 
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  Table 7 shows summarized the different methods found in the literature for the analysis of 

dietary supplements by LC, some for individual determination of chlorogenic acids, synephrine, 

caffeine, minerals or vitamins, and others for multi‐class analysis. Due to the increasing concern about 

the composition of dietary supplements, in this thesis, a multi‐class method was developed, based 

on capillary liquid chromatography for the simultaneous analysis of seventeen compounds that can 

be found in those supplements at different concentration levels. 

1.4.4. Natural resins: terpenic compounds 
 According to Langenheim [226] in general terms, resins are a sap or exudate, different from 

other vegetable exudates such as gums, mucilage, oils, waxes, and latex. Natural resins are defined 

as plant secretions formed by a lipid‐soluble mixture of organic compounds, including a volatile and 

non‐volatile terpenoid fraction, and/or secondary phenolic compounds, secreted in specialized 

structures, that can be located internally or on the surface of the same, and that show potential 

importance in ecological interactions.  

 The composition of resins consists primarily of secondary metabolites, which apparently play 

no role in the fundamental physiology of the plant, with two fundamental fractions. In the first place, 

a volatile fragrant fraction called essential oil, and on the other hand, a non‐volatile fraction, usually 

consisting of long‐chain terpenoids [227]. The percentages and quantity of these fractions highly 

depend on two aspects, the botanical origin and the age of the resins. In fresh resins, the presence of 

the essential oil fraction makes the physical aspect of the material to be as translucent liquids, but by 

lossing of this fraction, the material change into brown, yellow, or white solids that, by polymerization 

and oxidation reactions, looks like an amber material. 

 Regarding botanical origin, the family of the Burseraceae, which includes over 20 genera and 

more than 600 species of trees and shrubs from tropical and subtropical regions, three important 

genera have been studied widely, Boswellia, Commiphora, and Bursera. The first one is commonly 

called frankincense, myrrh is the resin of Commiphora, and Bursera resin is often called copal, all of 

them with important use in perfumery and particularly as an incense [228]. The Bursera genus grows 

widely in the Mesoamerica region, from the southwestern United States to the northern part of Brazil 

and includes between 90 and 100 species of trees and shrubs [229], historically has been the source 

of resin for the Aztec and Mayan civilizations. 
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 In Maya languages, the term "pom" was assigned to the resin obtained of diverse trees. Copal 

word derives from "copalli", the term used by Aztecs in Náhuatl language, which means resin or 

incense.  This term was export to the rest of the world when the Spanish arrived in America [230]. 

Nowadays, a variety of copal types can be found in marketplaces, mainly in Mexico and Guatemala, 

includes copal blanco, copal oro, copal negro, copal lágrima, copal incienso and copal de piedra. 

According to Stacey et al [231], “Copal blanco”, most commonly found, is exuded directly from 

incisions made in the tree bark, and “Copal lágrima” (copal in tears) is the product remaining in the 

recipient of collection and the incision in the bark. 

 Natural resins have important industrial applications, which involves the synthesis of flavors 

and fragrances, as painting varnishes, and also in pharmaceutical and cosmetic preparations [232]. 

Specifically, copal has been appreciated and used from ancient times because of their variety of 

purposes including religious ceremonies [233], beauty [234], dental care [235], as well as the 

decoration of artworks [236]. In the last years, some constituents of copal have been an object of 

study for researchers, due to their pharmacological effects as an anti‐inflammatory, antipruritic, anti‐

fungal and others [237–240]. 

 In the study of copal composition, some works have reported the presence of monoterpene 

compounds such as pinene and limonene as the most abundant in volatile fraction, whereas 

triterpenoids such as ursane and oleanane are predominant in the non‐volatile fraction of copal 

[238,241]. As mentioned in the previous section, terpenic compounds are organic derivatives of 

isoprene with general formula (C5H8)n, which are the most numerous and structurally diverse 

secondary metabolites among various natural products (˃50%) [242]. According to the number of 

carbons atoms in their structure can be classified in monoterpenes (C = 10), Sesquiterpenes (C= 15), 

Diterpenes (C =20), Sesterpenes (C =25),Triterpenes (C=30) and Carotenoids (C=40). 

 Triterpenes are widely found in the plant kingdom and have aroused interest from both an 

evolutionary and a functional perspective [243]. Some of them, like the ursane (α‐amyrin) and 

oleanane (β‐amyrin) skeletons, present properties of significant pharmacological importance. Table 

8 shows the chemical structure and log Kow values of terpenic compounds commonly found in copal 

resins, in which low polarity is observed especially for triterpenes compounds. 

 Quantitative analysis of copal resins could be of interest to discriminate resins by their 

botanical origin as well as to explore the age and storage conditions of the samples [244]. In that 

sense, methods capable to provide a better knowledge of the amounts of the major components of 

these natural resins are a point of interest for researchers of natural products. A method for the 

determination of triterpenes as lupeol, α  and β‐amyrin, in copal resins used in folk ceremonies was 
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described by Merali et al. [245]. Liquid chromatography with UV detection is applied, in which 0.5 

grams of resins are needed; although the analytical performance of the method applied was not 

reported, the method may not be suitable for those cases in which the quantity of available samples 

is restricted, as is the case of the study of archaeological pieces and works of art. 

Table 8. Chemical structure and log Kow values of terpenic compounds 

Compounds Structure log Kow 

Limonene 
(C10H16) 

 

CH3

CH2

CH3

 
 

4.57 

Lupeol 
(C30H50O) 

 

CH3

CH2

CH3

CH3

CH3

CH3

OH

CH3

CH3  
 

9.23 

Lupenone 
(C30H48O) 

 

CH3

CH2

O

CH3

CH3

CH3

CH3

CH3

CH3  
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α‐Amyrin 
(C30H50O) 

CH3

CH3
CH3

OH
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CH3 CH3
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β‐Amyrin 
(C30H50O) 
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9.19 
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 In this line, some works have been described in the literature for the chemical analysis of 

resins in archeological pieces, by the application of gas chromatography (GC) with mass spectrometry 

(MS) detection [230, 246]. However, those studies were aimed to define the chemical fingerprinting 

in combination with chemometric tools, and none reported the quantitative composition of the 

target compounds, which may be probably explained by the lack of reliable quantitative methods that 

can be applied to micro samples, as the low amount of sample available is a major limitation in such 

studies.   

 The determination of triterpenic compounds in different vegetal materials has been reported, 

applying traditional and exhaustive sample treatments for large amounts of the samples, and multiple 

steps of extractions, purification, solvent evaporation, and redissolution since the amount of sample 

is not limited [247‐249]. Chromatographic analysis of terpenic compounds in natural resins arises 

several difficulties, such as these samples contain numerous compounds with very wide chemical 

properties. For example, the most abundant high molecular triterpenes are highly nonpolar with high 

octanol‐water partition coefficients (Kow > 109.0), so, application of reverse‐phase mechanism 

represents a challenge because the choice of the mobile phase is rather limited [243]. Additionally, 

the lack of chromophores in those molecules maybe also a limitation when a UV detection is applied, 

especially in the analysis of micro samples. 

 On the other hand, for GC‐based methods, the application of previous derivatization step is 

required, especially for the determination of low‐volatile high‐molecular triterpenes. The complexity 

of resin samples makes that reported assays have been focused only on one family of compounds, 

typically the triterpene fraction. Alternatively, portions of the sample extract can be analyzed under 

two or more different chromatographic conditions to obtain more exhaustive sample 

characterization, which moves away from the principles of the green analytical chemistry. 

 In this thesis, a method was developed for the quantification of representative components 

of copal resins, both volatile (limonene) and non‐volatile (lupeol, lupenone, and amyrins) fractions, 

using capillary chromatography with UV detection, taking the advantages of high sensitivity 

attainable with this miniaturized LC systems, which make them better suited for the analysis of micro 

samples. 
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 As has been discussed in the introductory part of this thesis, the development and applicability 

of miniaturized liquid chromatography systems in recent years have facilitated the resolution of 

analytical problems in fields such as clinical, foodstuff, forensic, omics, and pharmaceutical. The 

emergence and commercialization of these new instruments capable of meeting the needs of these 

fields, and others on the rise, have offered significant advantages like the possibility to work with a 

small sample volume, reduce solvent consumption, thus maintain lower analysis costs, as well as an 

improve the detection as a result of the lower chromatographic dilution. Besides, the development of 

these systems has opened the introduction of hand‐portable LC instruments, which special ability to 

offer results quickly, overcome obstacles related to the preservation of the sample, and allow 

applications in situ or at‐situ monitoring.  

 The main characteristics of miniaturized and portable systems are tuned with the 

environmental approach, in the recent context of green analytical chemistry, which demands the need 

to develop new and sustainable analytical techniques from an ecological point of view, to expand the 

applicability of liquid chromatography. In this sense, the development of new sample treatment 

techniques, alternatives to liquid‐liquid extraction and solid‐phase extraction, traditionally used, 

represents one of the most important topics that researchers address. As noted above, a 

preponderant group of these alternative techniques are the SPME techniques, within which IT‐SPME 

stands out for its characteristics in reducing analysis time and solvent consumption, decrease in waste 

generation, as well as the easy implementation in line with the chromatographic system, making the 

coupling of IT‐SPME with miniaturized and portable systems an ideal option for the development of 

methodologies with high analytical performance and low environmental impact. 

 In this scenario, the use of commercially available extractive phases, as well as the 

development of new sorbent phases for IT‐SPME, and the application of analytical procedures using 

miniaturized and portable LC systems for the study of substances of interest in biological, 

environmental matrices, food and natural products is eminently required. Therefore, the main 

objective of this doctoral thesis is the study of miniaturized and portable liquid chromatography, and 

its on‐line coupling to in‐tube solid‐phase microextraction for the analysis of different matrices. To 

fulfill it, the following specific objectives are set: 

 Develop a methodology based on IT‐SPME coupled with Cap LC for the determination of 

caffeine and its main metabolites in serum, urine, and oral fluid, with characteristics of simple 

and green chemistry sample treatment technique, simple analytical procedure, and use of a 

minimum amount of sample. 
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 Explore the basic characteristics of the merit and operability of a portable NanoLC for the 

determination of trimethylxanthines in environmental waters. 

 Evaluate possible strategies for water sample treatment for on‐site analysis, including the off‐

line IT‐SPME and solid‐phase extraction (SPE) with cartridges. 

 Developed chromatographic strategies for the simultaneous determination of major and trace 

compounds commonly found in dietary supplements based on capillary liquid 

chromatography. 

 Developed a method for the quantification of volatile and non‐volatile representative terpenic 

compounds in micro samples for the characterization of natural resins. 

 The development of this thesis has been possible thanks to doctoral grant “Programa de 

Relevo Docente” from the Universidad Nacional Autónoma de Honduras (Honduras) and the research 

projects awarded to the MINTOTA group, which are detailed below: 

 P. Campíns (PI), R. Herráez, C. Molins, J. Verdú, Y. Moliner. Ref .: CTQ2017‐90082‐P TITLE: 

MICROEXTRATION IN SOLID PHASE IN TUBE COUPLED IN LINE TO LIQUID 

NANOCROMATOGRAPHY: NEW OPPORTUNITIES FOR / FROM NANOESCALA AND LIQUID 

CHROMATOGRAPHY ”. Financing: MCIU / FEDER, 01/01/2018 to 12/31/2021, € 134,310.00 

and FPI contract. 

 Development of new strategies for the design of an in situ analysis device: nano and 

biomaterials. Prometheus Program for research groups of Excellence PROMETEO / 2016/109 

2016‐€ 54,298; 2017‐ € 63,000; 2018‐ € 63,000; 2019‐ € 63,000. Responsible researcher: Pilar 

Campíns Falcó. 

 VLC‐BIOMED PROGRAM: 2016 grants to carry out joint projects between researchers from the 

University of Valencia and researchers / professionals from the Hospital Universitario y 

Politécnico / Instituto de Investigación Sanitària La Fe. Non‐invasive pharmacokinetic study of 

caffeine administered in newborn infants with a diagnosis apnea in prematurity. Financing: € 

4,000. IP: Jorge Verdú Andrés. 

 The knowledge acquired during the development of this doctoral thesis has allowed us to 

obtain as a result publication of 4 scientific articles published or send to high‐impact journals, and one 

pending submissions for publication. 

 Ponce-Rodríguez, H.D., García‐Robles, A.A., Sáenz‐González, P., Verdú‐Andrés, J. and 

Campíns‐Falcó, P. (2020). On‐line in‐tube solid phase microextraction coupled to capillary 

liquid chromatography‐diode array detection for the analysis of caffeine and its metabolites 
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in small amounts of biological samples. Journal of Pharmaceutical and Biomedical Analysis, 

178, 112914. Impact Factor (JCR 2018): 2.983. Contribution 100%.  

 

 Ponce-Rodríguez, H.D., Herráez‐Hernández, R., Verdú‐Andrés, J. and Campíns‐Falcó, P. 

(2019). Quantitative Analysis of Terpenic Compounds in Microsamples of Resins by Capillary 

Liquid Chromatography. Molecules, 24, 4068. Impact Factor (JCR 2018): 3.060. Contribution 

100%. 

 

 Ponce-Rodríguez, H.D., Verdú‐Andrés, J., Herráez‐Hernández, R. and Campíns‐Falcó, P. 

(2020). Innovations in extractive phases for in‐tube solid‐phase microextraction coupled to 

miniaturized liquid chromatography: A critical review. Molecules, 25, 2460. Impact Factor (JCR 

2018): 3.060. Contribution 100%. 

 

 Ponce-Rodríguez, H.D., Verdú‐Andrés, J., Herráez‐Hernández, R. and Campíns‐Falcó, P. 

(2020). Exploring hand‐portable nano‐liquid chromatography for in place water analysis: 

determination of trimethylxanthines as a use case. Science of the Total Environment (In 

revision). Contribution 100 %. 

 

 Ponce-Rodríguez, H.D., Verdú‐Andrés, J., Herráez‐Hernández, R. and Campíns‐Falcó, P. 

(2020). Multi‐class analysis of botanical dietary supplements by capillary liquid 

chromatography. Pending submit. Contribution 100 %. 

 Likewise, the results obtained in the development of this thesis have been disseminated 

through its presentation as a poster or oral presentation in different national and international 

conferences. The works presented include: 

 Ponce-Rodríguez, H.D., Verdú‐Andrés, J., Herráez‐Hernández, R. and Campíns‐Falcó, P. 

(2019). Analysis of terpenic compounds in microsamples of natural resins by capillary liquid 

chromatography. XXII Reunión de la Sociedad Española de Química Analítica. Valladolid, 

España, National congress. Póster.  

 

 Verdú‐Andrés, J., Ponce-Rodríguez, H.D. and Campíns‐Falcó, P. (2019). Determination of 

trimethylxanthines as anthropogenic contaminants in drinking  and wastewater by In‐tube 

Solid‐phase microextraction ‐ CapLC. XXII Reunión de la Sociedad Española de Química 

Analítica. Valladolid, España, National congress. Oral presentation. 
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 Ponce-Rodríguez, H.D., Verdú‐Andrés, J., Herráez‐Hernández, R. and Campíns‐Falcó, P. 

(2019). Chemical Composition of Dietary Supplements by Capillary Liquid Chromatography‐

Diode Array Detection. 25th International Symposium on Separation Sciences. Lodz, Polonia, 

International congress. Oral presentation. 

 

 Verdú‐Andrés, J., Ponce-Rodríguez, H.D., García‐Robles, A.A., Sáenz‐González, P. and 

Campíns‐Falcó, P. (2019). On‐line IT‐SPME coupled to CapLC‐DAD for the Analysis of Small 

Amounts of whole Biological samples. 25th International Symposium on Separation Sciences. 

Lodz, Polonia, International congress. Oral presentation.
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3.1 CHEMICALS 

 For the development of this thesis, analytical grade reagents were used, which are 

presented in the Table 9. Likewise, the chemical supply company and the safety pictograms are 

shown, according to the guidelines R (CE) n ° 1272/2008 of the Parliament and of the Council, 

regarding the classification, labeling, and packaging of substances and mixtures. 

Table 9. List of reagents, chemical supply company and safety pictograms  Flammable,  corrosive,  

toxic,  high-dose side effects,  dangerous for health,  Dangerous for the environment. 1) Sigma: Sigma-
Aldrich; Dr. Ehrenst: Dr Ehrenstorfer; Cayman: Cayman Chemical; Fisher: Fisher Scientific. 

 

Reagent 
Chemical 

supply 
company1       

3‐CQA (Neochlorogenic 
acid) 

Phytopurify 
      

3,4‐diCQA (Isochlorogenic 
acid B) 

Phytopurify 
      

3,5‐diCQA (Isochlorogenic 
acid A) 

Phytopurify 
      

4‐CQA (Cryptochlorogenic 
acid) 

Phytopurify 
      

4,5‐diCQA (Isochlorogenic 
acid C) 

Phytopurify       

5‐CQA (5‐caffeoylquinic 
acid) 

Sigma 
      

α‐amyrin Sigma       
α‐pinene Sigma x   x x x 
β‐amyrin Sigma       
Acetic acid VWR x x     
Acetone Panreac x   x   
Acetonitrilo VWR x   x   
Ammonia Scharlab  x x   x 
APTS Sigma  x  x   
Bovine serum albumin Sigma       
Brij 35 P Merck  x     
Caffeic acid Sigma       
Caffeine Sigma       
Cetyltrimethylammonium 
chloride solution (CTAC) 

Sigma 
 x    x 

Chloroform Romil   x    
Copper(II) sulfate 
pentahydrate 

Merck  x     

Ethanol VWR x   x   
Ethyl acetate Romil x      
Farnesene Sigma    x   
Formic acid 85% VWR x x x    
Hydrochloric acid Scharlab  x  x   
Isopropanol Scharlab x      
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Reagent 
Chemical 

supply 
company1       

Kaempferol Fisher       
Limonene Sigma x   x x x 
Linalool Sigma    x   
Lupenone Sigma       
Lupeol Cayman       
Methanol VWR x  x  x  
MTEOS Sigma    x   
Myrcene Sigma x   x x  
Paraxanthine Sigma       
Phosphoric acid (85%) Scharlab  x     
Poly(vinyl alcohol) Sigma       
Polyethylene glycol (PEG) Sigma       
Riboflavin Guinama       
SiO2 NPs (20 nm) Sigma    x   
Sodium carbonate Prolabo    x   
Sodium chloride Scharlab       
Sodium citrate tribasic 
dihydrate 

Sigma       

Sodium dodecyl sulfate Panreac x x  x   
Sodium 
dodecylbenzenesulfonate 

Sigma 
 x  x   

Sodium hydroxide Sigma  x     
Sodium phosphate dibasic Sigma       
Synephrine Sigma    x   
TEOS Sigma x   x   
Tetrahydrofuran  Scharlab x      
Theobromine Sigma       
Theophylline Sigma       
TiO2 NPs (21 nm) Sigma    x   
ZnO NPs (44 nm) Sigma      x 
ZrO2 NPs (20 nm) Sigma       
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3.2 INSTRUMENTATION 

In the framework of this thesis, different analytical instruments were used, the specifications 

of them are detailed below, including spectroscopy, microscopic and chromatographic techniques. 

3.2.1 Spectroscopic techniques 

3.2.1.1 UV-vis spectrophotometry 

For the acquisition of UV‐vis molecular absorption spectra, a Carry‐60 spectrophotometer 

(Agilent Technologies, Santa Clara, CA, USA) (Figure 10. A) was used. A quartz or plastic cuvette with 

an optical path of 1 cm and a range of measures between 190 and 1000 nm was used in all 

experiments. Acquisition of signals, as well as data processing, was performed with Carry WinUV 

software (Agilent Technologies). Other spectrophotometric measurements were also made with an 

optical fiber device (3.5 mm diameter and 10 mm optical path) coupled to the same instrument (Figure 

10. B). 

 

Figure 10. A) Cary-60 UV-vis spectrophotometer; B) Optical fiber. 

 

3.2.2 Microscopic techniques 

3.2.2.1 Optical microscope 

A microscope ECLIPSE E200LED MV Series (Nikon, Tokyo, Japan) under bright and darkfield 

illumination was used. For images acquisition and processing a Nis‐Elements 4.20.02 software (Nikon) 

was required. Figure 11 shows the microscope, equipped with 3 objective lenses of different 

magnifications (10x, 50x, and 100x). 
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 Figure 11. Microscopic optical ECLIPSE E200LED MV. 

3.2.3 Chromatographic techniques 

Two chromatographic systems were applied to carry out the studies of this work. A CapLC 

miniaturized liquid chromatography system with a DAD detector and coupled to IT‐SPME with in‐valve 

configuration and, a hand‐portable NanoLC with a UV detector. Data acquisition and subsequent 

processing have been done with HP ChemStation software (Agilent Technologies) and Axcend focus 

LC software (Provo, UT. USA). 

3.2.3.1 Capillary liquid chromatography 

Agilent 1200 Series (Agilent Technologies), with a conventional binary pump with a flow split 

that allows working with flows no higher than 20 µL min‐1. For sample introduction, a 6‐port manual 

valve Rheodyne 7721‐i (IDEX Health and Science, Rohnert Park, CA. USA) was used, in which the 

injection loop contained the extraction phase (details in section 3.3). Signals were recorded in a 

wavelength range of 180 and 400 nm with a diode array detector (DAD) equipped with an 80 nL cell 

(Agilent Technologies). Figure 12 shows the system with the configuration described above. 

Chromatographic separations were carried‐out with C18 particulate columns (Section 3.5.1) from 

Agilent and Phenomenex (Torrance, CA, USA).  

 

Figure 12. Cap LC-DAD system, Agilent 1200 Series with binary pump. 
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3.2.3.2 Portable Nano liquid chromatography 

Portable Nano LC Focus LC (Axcend Corp, UT.USA) system was used (Figure 13), consisted of 

two high‐pressure syringe pumps capable of delivering flow rates of 0.8‐50 μL min‐1 at pressures up to 

600 bar, connected to a mixing valve capable of work in isocratic or gradient mode and, manual 

injector port with internal sample loop of 40 nL. The chromatograph is equipped with a 100 mm × 150 

µm i.d. column packed with ODS, 1.7 µm particle size (Section 3.5.1), and On‐capillary UV absorbance 

was measured at 255 nm using a LED. For data acquisition and calculation, the Axcend Focus v2.0 

software was used. 

 

Figure 13. Portable Nano LC, Focus LC Axcend Corp. 

3.3 SAMPLE TREATMENT 

 Sample treatments applied in the development of this thesis, which include IT‐SPME online 

with CapLC, IT‐SPME off‐line and traditional solid‐phase extraction (SPE), are described in detail in the 

next lines. Other pre‐treatment procedures, like dilution, acidification, centrifugation, sonication, and, 

filtration which were necessary to apply, are too explained. IT‐SPME online was used for the analysis 

of water and biological samples, instead, IT‐SPME off‐line and SPE were apply for water samples. For 

solid samples, like dietary supplements and natural resins, simple procedures as sonication and 

filtration were applied. 
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3.3.1 IT-SPME online 

 IT‐SPME online coupled to CapLC was used under in valve setting. Here, the conventional steel 

injection loop of the 6‐port manual injection valve (Rheodyne) is replaced by a capillary, which 

contains the sorbent phase, as Figure 14 shows. Conventional GC capillary columns with two sorbents 

class, Si‐based (polysiloxane coating) and C‐based (divinylbenzene and polyethylene glycol) type were 

used. Additionally, some capillaries with homemade sorbents synthesized with metallic nanoparticles, 

have been used (for more details see Section 3.4). All of these capillaries with an internal diameter of 

320 µm. 

 

Figure 14. IT-SPME assembly with 1 capillary. 

 

 Then, a subsequent washing step is required, in which a certain volume, usually the internal 

volume of the capillary, of nanopure water is passed without changing the valve position. This process 

removes the impurities and compounds from the matrix that were not absorbed in the extraction 

phase and avoid its entrance in the chromatographic system. After that, the valve was rotated to the 

injection position, whereby the mobile phase passed through the extraction capillary, desorbing the 

previously retained analytes and transferring them to the analytical column. 

Biological samples 

 For serum samples, 25 µL were diluted and acidified with 75 µL of 1% aqueous formic acid 

solution and then mixed in a vortex for 30 seconds. 10 µL of saliva and 100 µL of urine samples were 

acidified with 10 µL and 300 µL of the same solution used for serum samples (1% aqueous formic acid) 

respectively. A step of dilution was required for saliva, diluted to 100 µL, and urine, diluted to 1 mL, 

both with ultrapure water and mixed for 30 seconds. Finally, an aliquot of diluted samples was 

processed by IT‐SPME coupled to CapLC. 

Water samples 

 For water samples, include river, sea, and tap water, only if necessary a filtration procedure 

using a 0.22 µm pore size PTFE filter before the analysis was carried out. 
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Dietary supplements samples 

 Accurately weighted homogenized portions of the solid dietary supplements were placed in 5 

mL glass vials and extracted with a proper volume of methanol. Then, the mixture was subjected to 

mechanical agitation for 1 minute. After this time, the solution was placed in an ultrasonic bath for 5 

minutes at 30°C. The supernatants were removed by filtration with 0.22 µm nylon membranes. Finally, 

the extracts were acidified and mixed with 0.1 % hydrochloric acid solution in a proportion 1:10 (v/v) 

and chromatographed. 

Natural resins samples 

 Portions of resins previously homogenized mechanically in a mortar with a pestle were 

accurately weighed (≈1‐15 mg) in 2 mL glass vials. Then, the samples were treated with 1 mL of 

methanol and the mixture was vortexed for 1 minute. Subsequently, the result solutions were filtered 

through 0.22 µm nylon membranes to remove any particulate that could be present. Finally, aliquots 

of filtrated were chromatographed. 

3.3.2 IT-SPME offline 

 For IT‐SPME off‐line a C‐based capillary column (VP‐HayeSep P 50 cm long) with an internal 

diameter of 320 µm was connected to a 6‐port manual injection valve (Rheodyne). In the initial stage, 

the capillary was conditioned with 1 mL of nanopure water,  then 8 mL of standard and water sample 

solutions were passed through the capillary with a precision glass syringe. For desorption of the 

analytes, 50 µL of methanol was passed and this solvent was collected to inject in hand‐portable 

NanoLC. Figure 15 shows a schematic representation of this procedure. As mentioned in the previous 

section, for water samples, the previous procedure only involved filtration with 0.22 µm pore size 

PTFE. 

 

Figure 15. Schematic representation of IT-SPME off-line. 
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3.3.3 SPE 

 The solid‐phase extraction procedure included five steps, which in this work were as follows: 

(1) activation with 1 ml of methanol; (2) conditioning with 1 mL of nanopure water; (3) loading of the 

standard and sample solutions; (4) cleaning‐up with0.1 mL of nanopure water; and (5) elution of the 

analytes with two individual portions of 0.1 mL of methanol. Finally, the two fractions were separately 

filtered and injected into the hand‐portable Nano LC system. Figure 16 shows the schematic SPE 

procedure for the analysis of water samples. 

 

Figure 16. Schematic SPE procedure for the analysis of water samples. 

 

3.4 SYNTHESIS OF NEW PHASES FOR EXTRACTION 

 As previously stated, the implementation of new phases to improve extraction efficiency in 

IT‐SPME is one of the main topics of this technique. In this work, fused silica capillaries were coated 

with a silicon polymer using the sol‐gel process. Also, this polymer was doped with NPs of SiO2 and 

various metals and metal oxides to improve its extraction capacity. The experimental procedures 

carried out for the development of these extraction phases used in the studies in the framework of 

the development of this thesis are discussed in the following sections. 

3.4.1 Capillary columns coated with a silicon polymer 

 Capillary columns of uncoated fused silica with an internal diameter of 320 µm were modified 

with silicon polymeric material using the procedure detailed by Silva et al. [250]. For this, in the first 

instance, the inner wall of the capillary was activated by passing an alkaline solution of 2M NaOH and 

placed for 2 hours at a temperature of 40°C. Next, the capillary was washed with a 0.1M HCl solution 
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and left to act for 30 minutes at room temperature. After this time, it was subjected to heat for 3 

hours at 60°C.  

 Subsequently, the residues were washed with nanopure water, and the polymer dispersion 

was then passed. It was prepared with 65 mg of PEG, 50 µL of H2O, 100 µL of TEOS, 100 µL of MTEOS 

and 2 mL of 0.1M NH4OH. Once the volume filling was assured inside the capillary column, the ends 

of the cap were capped and warmed with a temperature program of 2 hours at 40°C and 12 hours at 

120°C. Finally, the capillary was washed with water and acetonitrile to remove the excess of reagents 

present in the capillary. Likewise, capillary columns were modified following the previous procedure, 

incorporating nanoparticles of SiO2, TiO2, ZrO2, CuO, ZnO or Al2O3 (0.05 mg mL‐1) to the monomer 

mixture [251]. 

3.5 PROCEDURES AND EXPERIMENTAL CONDITIONS 

3.5.1 Chromatographic conditions 

 Experimental conditions employed for the chromatographic separation of all studies and 

procedures developed for CapLC and hand‐portable NanoLC in the framework of this thesis are 

presented in Table 10. In all experiments, the mobile phase was filtered before use with 0.45 µm pore 

size nylon filters, and 0.22 µm for portable NanoLC. 
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3.6 ANALYZED SAMPLES 

 Four types of samples were analyzed for the development of this work, including biological, 

waters, food supplements, and natural resins samples. Figure 17 shows a summary schema for 

analyzed samples and analytes studied. Analysis of all samples was executed in triplicate at room 

temperature. 

 

Figure 17. Summary diagram of the matrices and analytes studied in this thesis. 

 

3.6.1 Biological samples 

 Biological samples were collected from two kinds of patients. For optimization of the analysis 

method, serum, urine, and oral fluid from healthy adult volunteers after 3 days on a 

trimethylxanthines‐free diet, were stored refrigerated until analysis. Serum and oral fluid samples 

from preterm newborns, under treatment with a dosage of caffeine at the pediatric intensive care 

unit (La Fe University and Polytechnic Hospital ‐ Valencia, Spain), were obtained after prior informed 
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consent from their parents. The collection and storage procedures for all specimens are detailed 

below. 

3.6.1.1 Serum 

Blood samples, obtained in plastic tubes containing gel for a total volume of 0.8 mL of sample (Mini 

Collect, Greiner Bio‐One, Kremsmünster, Austria), were filled. Then, the tube was inverted until the 

blood completely mixed with the gel and centrifuged. Finally, the separated serum was stored frozen 

at −20 ◦C pending analysis. 

3.6.1.2 Urine 

 Urine samples were obtained in sterile flasks of 120 mL of capacity, centrifuged and stored 

at −20 ◦C un�l analysis. 

3.6.1.3 Oral fluid 

 Oral fluid samples were collected using cellulose spears devices (EYETEC, North Yorkshire, UK). 

The devices were placed in the mouth of the patient for 1–10 minutes until the spears were saturated 

with the fluid. Then, the saturated end of the spear was placed in the collection cone tube insert and 

cut off. Subsequently, the tube was frozen at −20 ◦C, and just before analysis, a centrifuga�on step 

was applied, and the supernatant was collected. A second procedure for the preservation of oral fluid 

samples was performed, differentiating itself from the first, in that the centrifugation step was carried 

out immediately after obtaining the sample. Although equivalent results were obtained for the same 

sample processed by both procedures, the first procedure shows slightly better repeatability, 

additionally fewer impurities were detected. With the idea of reducing the sample processing time, 

the first procedure will only require one centrifugation step.  

3.6.2 Waters 

 For the development of this thesis, different types of water have been collected and analyzed, 

all of these taken at different points in the Comunidad Valenciana, Spain. All samples were collected 

in amber glass bottles, of 250 mL of capacity, previously cleaned in the laboratory with acetonitrile, 

methanol, and water, and rinsed with the sample water on‐site and filled completely up to the rim to 

eliminate the headspace. The samples were transported from the sampling sites to the laboratory and 

were kept cold (±4 °C) until the analysis, which was done one week later. In all these samples, the 

presence of trimethylxanthines, including caffeine, theobromine, and theophylline, has been analyzed 

as biomarkers of human activity. 
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3.6.2.1 Superficial waters (river and sea water) 

 One‐time water samples were obtained from the Turia river, near Pinedo wastewater 

treatment plant. Two sampling sites were established, the first one in front of WWTP and the second 

one, downstream (500 m) of the WWTP. Three samples from the Magro river, in the southwest of 

Valencia, were collected, following the same procedure above explained. Three sampling sites were 

established, one just before the WWPT, one upstream (1 km), and a third one downstream (100 m) of 

the wastewater treatment plant (WWTP). Finally, regarding the coastal water samples, these were 

taken at different points on the Valencian coast. 

3.6.2.2 Tap water 

 Tap water samples were collected in a house located at Burjassot town, in amber glass bottles, 

following the same procedure for superficial samples. Then the bottles were transported to the 

laboratory and stored in a refrigerator at ±4°C until the analysis. 

3.6.3 Dietary supplements 

 Different types of dietary supplements acquired in local supermarkets were analyzed, three 

brands of green coffee extract based products (GC), two fat burning formulations (FB), and finally, an 

orange herbal preparation (HP). All these products with differences in labeling, some of them specify 

the concentrations of the components present, and others only indicate the presence of some 

substance. 

3.6.3.1 Green coffee extracts 

 Green coffee extract (GC‐1), marketed in the form of bags, was prepared from extracts of 

different plants, including green coffee, and reported the presence of limonene, theobromine, and 

chlorogenic acids; the mean average mass of product per bag was 1.1 g. The sample GC‐2 only 

reported 175 mg of decaffeinated green coffee extract per soft gelatin capsule (0.40 g). The label of 

sample GC‐3 reported the presence of many compounds, including 200 mg of green coffee extract, 50 

mg of green tea extract, 50 mg of Citrus aurantium (with 6 % synephrine), minor amounts of other 

vegetal species, and 0.7 mg of riboflavin per soft gelatin capsule (mean average mass, 0.50 g). 

3.6.3.2 Fat burning capsules 

 Sample FB‐1 reported the presence of a mixed extract of different plants including 125 mg of 

Citrus aurantium (6 % synephrine) per soft gelatin capsule (0.50 g); kaempferol was claimed to be 

present, although the amount was not reported. Sample FB‐2 reported among its ingredients 125 mg 

of Citrus aurantium (also 6 % synephrine) and 55 mg of green tea per capsule (0.25 g), and some of 

the vitamins of the B complex (pantothenic acid and pyridoxine). 
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3.6.3.3 Herbal preparation 

 Sample HP (1.40 g per bag) was composed of a mixture of lime and leaves of orange trees 

intended for the preparation of infusions; the presence of synephrine, chlorogenic acids, linalool, α‐

pinene, and limonene was declared to be present, among other compounds like flavonoids and 

essential oils. 

3.6.4 Natural resins 

 Different commercial samples of natural resins, identified as white copal and copal in tears, 

as well as a resin obtained from ocote trees, were purchased in Sonora market (Ciudad de México, 

México) in the year 2010. Figure 18 shows a photograph of the natural resins studied in this thesis. 

 

Figure 18. Photograph of the natural resins studied in this thesis. A: Copal in tears; B: White copal; C: 

Ocote tree copal. 
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4.1 CAFFEINE AND ITS METABOLITES IN BIOLOGICAL SAMPLES 

 As mentioned in the introductory section of this thesis, caffeine has been used as the drug of 

the first choice in the treatment of apnea of prematurity. The results obtained in the development of 

a procedure by IT‐SPME‐Cap LC for the determination of caffeine and its three main metabolites in 

biological samples are described and discussed below, within the framework of the collaborative study 

"CAFE‐CINETIC. Non‐invasive pharmacokinetic study of caffeine administered in newborns diagnosed 

with apnea in prematurity", between our MINTOTA research group and Neonatal research unit. 

 The main objective of the study was to develop a methodology capable of quantifying the 

serum and salivary concentrations of the target analytes to be used as a routine method in a hospital 

laboratory for preterm infants, and which met some important requirements, such as the use of a 

simple and green chemistry sample treatment technique, simple analytical procedure and a minimum 

amount of sample. 

4.1.1. Optimization of the chromatographic conditions 

 Chromatographic separation of these compounds in previous studies points to the use of 

mobile phases containing aqueous dilutions of acids in conjunction with organic solvents such as 

methanol and acetonitrile [252‐254]. In our study, better results, regarding efficiency and 

chromatographic resolution, were obtained with a mixture of water and methanol and was used as 

the mobile phase. Besides, different columns were tested to reach the total separation of the 

compounds, and satisfactory results were found with the Zorbax SB C18 column. 

 Once the mobile phase and column were studied, several gradient elution programs were 

analyzed to obtain a fast separation, as well as a good resolution of the four compounds, at the lower 

pressure possible. High polarity of these compounds (pKa values between ‐0.8 and ‐0.02) requires the 

use of a mobile phase mixture with low eluotropic power at the beginning of the chromatographic 

separation (percentage of methanol less than 25%), as well as a gradient with a slow increase of the 

organic phase.  

 The final conditions for the gradient were 25% of methanol at 0 min, after up to 30% in 7 min. 

Next, the increase of organic solvent up to 50% was applied in 6 min. Afterward, this percentage was 

held for 4 min to decrease to 0% at min 20. This last change was applied as a cleaning step, necessary 

to clean impurities retained on the column, especially in saliva samples, otherwise, system pressure 

increase with the number of samples processed. Finally, the initial conditions were obtained at 1 min 

and hold for a stabilization time of 2 min. Suitable separation of the analytes before 14 min at a flow 
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of 15 µL min−1 was reached, as Figure 19 shows. In optimized conditions, a library of UV spectra of the 

pure standard solutions was prepared to confirm the identity in biological real samples. 

 

Figure 19. Chromatogram obtained in optimized conditions. Blue: Standard solution 20 µg mL−1; Red: 

Oral fluid spiked at 20 µg mL−1; Green: Serum spiked at 50 µg mL−1 

 Subsequently, an evaluation of the separation of the analytes in fortified real samples was 

carried out. Good results were achieved for serum and saliva samples (Figure 19). On the other hand, 

urine analysis showed a high presence of impurities and endogenous substances of the matrix, in the 

chromatogram. Therefore, an alternative mobile phase, with acidification of the aqueous phase with 

acetic acid was required to minimize the matrix effect in urine samples. Figure 20 shows the 

chromatograms of a fortified urine sample analyzed under conditions with the mobile phase at neutral 

pH (black) and acidified (brown). 

 

Figure 20. Chromatograms obtained in urine analysis optimization. Black: urine sample spiked at 20 

µg mL−1 in mobile phase with neutral pH; Brown: urine sample spiked at 20 µg mL−1 in mobile phase 

with acidification.  
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4.1.2. Optimization of IT-SPME 

 Once the chromatographic separation was optimized, the sample treatment technique was 

optimized, for which the flow‐through mode of IT‐SPME was used. Here, a capillary column was used 

instead of the conventional injection loop connected to a six‐port injection valve (Rheodyne®). The 

different parameters of the technique were optimized to achieve high recovery values. 

4.1.2.1. Capillary sorbent selection 

 The selection of the sorbent phase is the most important step in the optimization of IT‐SPME 

since its nature defines the interaction of the analytes, and hence, the retention and preconcentration 

of these in the sorption stage. In this work, conventional and modified phases, in decreasing order of 

polarity, were tested: SiO2, TiO2, ZB‐FFAP (100% terephthalic modified PEG), ZB‐WAX plus (100% 

polyethylene glycol (PEG)), TRB‐50 (polydimethylsiloxane (PDMS) with 50% of diphenyl groups) and 

ZB1701 (polydimethylsiloxane with 14% of cyanopropylphenyl groups). To obtain the absolute 

recoveries of the IT‐SPME procedure for each capillary column a 1 µg mL−1 solution of the analytes 

was prepared and 100 µL of this solution was processed manually in all experiments. 

 The absolute recoveries were calculated by comparing the amount of analyte extracted (the 

amount of the analyte transferred to the analytical column) to the total amount of analyte passed 

through the extractive capillary column. The amount of analyte extracted was established from a 

direct comparison of the peak areas in the resulting chromatographic analysis. The different 

recoveries values obtained for all analytes with the six different capillaries tested are shown in Figure 

21. The results obtained concluded that caffeine presents a higher recovery value with the FFAP 

capillary, which can be attributed to the fact that this sorbent phase has the highest polarity, which 

generates greater retention for these compounds. For the rest of the compounds, the obtained 

percentages of recuperation were similar for FFAP and TRB‐50 capillaries. This behavior may be due 

to the π‐π interactions of the TRB‐50 capillary, which increases the retention of these compounds in 

IT‐SPME [255]. Finally, for all analytes, the lower recoveries were obtained with the capillary 

containing cyanopropylphenyl groups, the less polar tested phase. 
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Figure 21. Absolute recoveries (%) obtained with the IT-SPME with the capillaries tested: ZB 1701 

(blue), TRB-50 (yellow), ZB-WAX plus (gray), ZB-FFAP (purple), TiO2 (green) and SiO2 (red). The error 

bars represent the standard deviation for n = 3. 

4.1.2.2. Sample preparation, pH and ionic strength 

 Following the requirements initially established for the development of the analytical 

procedure, concerning the use of the minimum sample volume of serum, saliva or urine, which is 

conditioned by the amount of total sample available in preterm newborns patients, the sample 

preparation optimization was carried out with the smallest volume that allows reaching an adequate 

sensitivity. Furthermore, simplifying the preparation procedure, with minimum steps will also 

facilitate its implementation in routine work in a clinical laboratory setting.  

 As mentioned in the introductory part of this thesis, the preparation of biological samples 

requires the application of some pre‐treatment procedures to facilitate instrumental analysis. The 

acidification commonly is used to precipitate proteins, as well as provide similar pH and ionic strength 

for all the samples. Additionally, a sample pretreatment procedure commonly used before 

instrumental analysis is the dilution, with special application in biological fluids with high viscosity, as 

is the oral fluid. This high viscosity can cause increments in the pressure of the chromatographic 

system, so the dilution of the sample is necessary, but it is important to take an account that this 

procedure does not affect the sensitivity of analysis, as well as the analyte adsorption in the sorbent 

phase of the capillary column. Normally, urine sample preparation includes dilution and precipitation 

processes due to the high quantity of impurities present in this kind of sample. 

 Methanol, aqueous dilutions of phosphoric acid 1%, and formic acid 1% were tested as 

modifiers for pH and dilution solvent. Better results were obtained with the formic acid dilution 

because it improves the sensitivity of the compounds and also decreases the pressure in the 
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chromatographic system, as results of precipitation of protein and endogenous interferences. Also, an 

effect in buffer capacities both of ionic strength and pH regardless of the original sample nature was 

obtained. 

 Subsequently, the quantity of diluted acid and dilution factors were optimized. For oral fluid, 

ten microliters of the sample were mixed with the same volume of diluted formic acid, and for urine 

samples, 300 microliters of the diluted acid were added to 100 microliters of the sample. In both cases, 

a dilution factor of ten was employed using nano‐pure water. Serum samples only needed a dilution 

factor of four with formic acid 1% solution. For this, 25 microliters of sample were mixed with 75 

microliters of acid dilution. 

4.1.2.3. Sample volume  

 As some papers of literature have reported, the extraction efficiency of IT‐SPME decrease 

when the inner surface is saturated [17, 256], the extraction efficiency of IT‐SPME decrease when the 

inner surface is saturated, so different sample volumes were prepared and processed to optimize this 

parameter. No significant differences in the analytical signals from 100 µL of saliva, 500 µL for serum 

and 1000 µL of urine to the values obtained with 10 µL, 25 µL, and 100 µL respectively.  

 Once the saturation of the sorbent phase is reached, even if the sample volume passed 

through the capillary column is increased, no more retention of the analytes is obtained. Instead, only 

possible interferences could be retained, but in our case, no effect of the impurities and endogenous 

compounds of the sample in the retention of the analytes in the capillary was found. Based on these 

results, and according to the initial objective of the work, reducing the amount of sample and 

considering the therapeutic concentration range of real samples, the minimum possible volume was 

selected. 

4.1.2.4. Diluted sample volume processed 

 Since the diluted samples must be processed through IT‐SPME, the optimal volume was 

obtained by comparison of the analytical signal of different volumes. This comparison showed that 25 

µL of the diluted sample of oral fluid and serum generated a similar analytical signal to those obtained 

when 100 µL was used. The same behavior was obtained for urine samples since 400 and 1000 µL of 

the diluted sample produced equivalent signals.  

 It is possible to affirm that the absence of a preconcentration effect in the sorption phase for 

these compounds is due to its high polarity that not allows great interactions with the terephthalic 

modified PEG sorbent phase of the FFAP capillary. Therefore, for oral fluid and serum samples, 25 µL 

of the diluted sample was selected as the optimal volume and 400 µL for urine samples. Despite no 
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preconcentration effect was observed, the signal values obtained in the optimized conditions were 

satisfactory for the expected concentrations of the compounds in real samples, likewise, the absolute 

recoveries obtained are agreed with IT‐SPME reported usually values [257]. 

4.1.2.5. Flushing of capillary 

 In IT‐SPME a capillary washing step is required to minimize the presence of impurities of the 

sample in the chromatographic system due to endogenous substances and impurities of the matrix 

that can be retained in the capillary together with the analytes [258]. However, the high polarity of 

the trimethylxanthines studied limits the possibilities of using solvents with strong elution power such 

as acetonitrile. Two solvents were tested: water and a mixture of equal parts of methanol and water. 

In both cases the volume used was the internal volume of the capillary (25 µL). When the 

methanol/water mixture was used, the chromatographic signal of the analytes decreased. On the 

other hand, flushing with water before injection allowed the reduction of impurities without 

decreasing the signal of the analytes. Figure 22 shows the optimized procedure of IT‐SPME for the 

analysis of serum, oral fluid, and urine samples. 

 

Figure 22. Schematic procedure of analysis. 

4.1.2.6 Effect of proteins of oral fluid on the system pressure 

 Because the composition of saliva includes at least more than 400 types of protein, including 

albumin, these solid components may differ from person to person, and can even vary in the same 

individual at distinct times during a day [134]. For some oral fluid samples, a high presence of 
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precipitated matter (endogenous compounds) was observed, and in the analysis of these samples, the 

chromatographic system pressure increased. The quantification of albumin by the Biuret method 

[259] was applied to evaluate its effect on the overpressure. 

 10 µL of a bovine albumin solution prepared in nanopure water at 8 mg mL‐1, was mixed with 

30 µL of water, 10 µL of sodium hydroxide (0.625 M) and 50 µL of biuret reactive. The biuret reactive 

was prepared by mixing 0.9 g copper(II) sulfate pentahydrate, 8.6 g sodium citrate tribasic dihydrate 

and 5.0 g sodium carbonate in 50 mL of nanopure water. The mixture was analyzed in a Carry‐60 

microcell spectrophotometer in a wavelength range between 500 and 700 nanometers, and the 

absorbance value of the complex formed was recorded at 545 nm. This procedure was repeated for 

different oral fluid real samples. 

 High amounts of protein were found in the samples that increased the pressure of the 

chromatographic system. Therefore, to avoid this effect, these samples were centrifuged twice. In any 

case, this additional treatment did not cause changes in the found concentrations of caffeine. 

4.1.3. Analytical performance 

 Different bioanalytical parameters were evaluated to establish that the optimized method is 

suited to the analysis of the study samples with adequate performance, following the 

recommendations of some official guides [260,261]. The results of this evaluation are discussed next. 

4.1.3.1. Calibration curve and matrix effect 

 An important parameter for the evaluation of bioanalytical methods is the matrix effect study 

since biological specimens contain varying levels of impurities and endogenous compounds, which 

probably may interfere in the precision and recovery of the analytes. For this, fortified blank serum, 

oral fluid, and urine samples were prepared and analyzed under the optimized procedure. For this 

purpose calibration standard solutions of the four trimethylxanthines at concentration levels of 5, 10, 

20, 30, and 50 µg mL−1 in oral fluid and urine, and 1, 5, 10, 20, and 30 µg mL−1 in serum, were prepared. 

Then, the corresponding solutions were prepared in nano‐pure water at the same concentration, and 

all the solutions were analyzed with the proposed method, following the procedure described in 

Figure 22. 

 Calibration curves (peak area vs concentration) with five points, by duplicate, were prepared. 

Correlation coefficients greater than 0.99 were observed for all compounds in all the matrix tested 

(Table 11). Likewise, the comparison of slope values obtained for the same analyte in the different 

matrices assayed was different and related to the dilution performed. Finally, the amount of diluted 

sample processed was different in each case. 
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Table 11. Evaluation of linearity, limit of detection and quantification. 

Analytes Parameter 
Serum Oral fluid Urine 

Matrix Water Matrix Water Matrix Water 

Theobromine  

Slope 99 ±6 91 ±5 18.0 ±0.8 21 ±1 45 ±2 43 ±2 

Intercept 890 ±100 100 ±80 50 ±30 ‐80 ±30 ‐130 ±80 ‐20 ±70 

r 0.9949 0.9962 0.9971 0.9969 0.9956 0.9966 

r2 0.989 0.9924 0.9942 0.9938 0.9912 0.9932 

LOD 0.1 0.5 0.5 

MQL 0.4 1.5 1.5 

Paraxanthine 

 

Slope 

 

94 ±2 

 

75±3 

 

31.3 ±0.9 

 

35.8 ±1.2 

 

76.4 ±4 

 

75 ±4 

Intercept 70 ±40 110 ±60 20 ±20 ‐60 ±40 ‐70 ±110 ‐90 ±100 

r 0.9991 0.9968 0.9987 0.9982 0.9962 0.9965 

r2 0.998 0.9936 0.9974 0.9964 0.9924 0.9930 

LOD 0.1 0.5 0.5 

MQL 0.4 1.5 1.5 

Theophylline 

 

Slope 

 

144 ±2 

 

136 ±6 

 

43.6 ±1.7 

 

54.2 ±1.8 

 

102 ±6 

 

106 ±7 

Intercept ‐50 ±40 70 ±100 100 ±50 ‐190 ±50 40 ±170 ‐160 ±190 

r 0.9996 0.9971 0.9976 0.9983 0.9946 0.9937 

r2 0.9992 0.9942 0.9952 0.9966 0.9892 0.9874 

LOD 0.1 0.5 0.5 

MQL 0.4 1.5 1.5 

Caffeine  

 

Slope 

 

66 ±4 

 

69 ±5 

 

28.4 ±1.3 

 

30.8 ±1.4 

 

72.7 ±1.5 

 

77 ±3 

Intercept 150 ±70 98 ±80 ‐60 ±40 ‐80 ±40 ‐40 ±40 ‐180 ±80 

r 0.9936 0.9930 0.9970 0.9967 0.9993 0.9979 

r2 0.987 0.986 0.9940 0.9934 0.9986 0.9958 

LOD 0.1 0.5 0.5 

MQL 0.4 1.5 1.5 

Concentrations in µg mL−1 (Linear range for saliva and urine 5–50 µg mL-1, for serum 1–30 µg mL-1) 

(n=10). Equations expressed as y = ax +b. The values added after the ± sign represent the standard 

deviation of the slope and the intercept respectively. r: correlation coefficient; r2: squared correlation 

coefficient. LOD: Limit of detection; MQL: Method quantification limit. 
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 According to Andrade‐Garda et al. [262], a statistical tool that circumvents the conflict about 

which variance must be used in the Student’s test, represented as P value, was applied for comparison 

of the slopes of regression lines obtained in the analysis of solutions prepared in water, against those 

obtained from the solutions prepared in the biological matrix (serum, oral fluid, and urine). The results 

obtained are shown in Table 12, where is possible to affirm that for a 99% significance level, only 

theophylline in oral fluid showed statistical differences. Thus, the matrix effect is absent, and the 

quantification of the analytes can be done with water calibrations without further corrections (except 

for theophylline, as is explained above). Finally, the percentage of matrix effect (%ME) was also 

calculated according to Kwon et al.[263], using the following equation: 

%ME = [( Sm ‐ Sr) / Sr)] · 100 

where Sm is the slope of matrix‐matched calibration and Sr is the slope of the reagent‐only calibration. 

For all analytes and all matrices, values lower than 25 %ME were obtained (Table 12). 

Table 12. Evaluation of matrix effect for all matrices and analytes. 

Analytes Parameter Serum Oral fluid Urine 

Theobromine  

% ME 9 ± 9 ‐15 ±10 5 ±6 

P value 

 

0.327 

 

 

0.587 

 

0.584 

Paraxanthine 

% ME 25 ± 11 ‐13 ±7 1 ±3 

P value 

 

0.035 

 

 

0.025 

 

0.958 

Theophylline 

% ME 

 

8 ± 6 

 

‐20 ±10 

 

‐4 ±6 

 

P value 

 

0.125 

 

0.005* 0.672 

Caffeine  

% ME 

 

‐4 ± 6 

 

‐8 ±7 ‐6 ±5 

P value 0.702 0.268 0.269 

 

%ME: Percentage of matrix effect. P value: F test significance level for slope equality (* significant 

difference for 99% probability level). 
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4.1.3.2. Limit of detection and quantification 

 For the calculation of the limits of detection (LOD) a signal‐to‐noise ratio (S/N) of 3 was used, 

and the method quantitation limits (MQLs) were estimated via S/N of 10. LOD for all analytes in oral 

fluid and urine was 0.5 µg mL−1, instead, for serum samples was  0.1 µg mL−1, which can be explained 

due to the lower dilution performed (dilution factor of 4). MQLs were 0.4 µg mL−1 for serum samples, 

and  1.5 µg mL−1 for oral fluid and urine samples (Table 11). 

4.1.3.3. Precision 

 For the study of the precision, evaluated in terms of repeatability, values of HorRat(r) were 

calculated according to AOAC for intra laboratory studies [264], from the following equation: 

HorRat(r) = (RSDr / PRSDR) 

where the term RSDr is the Repeatability Relative Standard Deviation, it means the relative standard 

deviation calculated from within‐laboratory data, and the term PRSDR is the Predicted Relative 

Standard Deviation, that is the reproducibility relative standard deviation calculated from the Horwitz 

formula. In that line, PRSDR is calculated according to Horwitz formula: 

PRSDR = 2C−0.15 

Where the term C is expressed as a mass fraction, Horwitz calculation is applicable only for analyses 

that report the concentration in mass ratio units and was based on the statistics calculated for several 

hundred collaborative studies, including several analyte/matrix/level combinations from studies 

dating back to the early 20th century [265]. For repeatability, commonly acceptable HorRat(r) values 

are in the range of 0.3–1.3 [260]. 

 The intra‐day precisions using three determinations at two concentration levels for serum 

samples, three concentration levels in oral fluid samples and one concentration level for urine samples 

are shown in Table 13. According to the acceptance criteria pointed above, HorRat (r) values were 

inside the acceptable limits, except for theophylline at a high concentration level in saliva (50 µg mL−1) 

which a higher value was found, and for caffeine, at a low concentration level in serum (0.4 µg mL−1) 

a slightly lower value was obtained. Finally, the mean HorRat(r) values for serum, oral fluid, and urine 

were 0.65, 0.97 and 0.69 respectively, without significant differences among them. 

 For the inter‐day precisions, using three determinations for serum and oral fluid samples at 

two concentration levels, and one concentration level of urine samples, the HorRat(r) values obtained 

were inside the acceptable limits. In this case, the means HorRat(r) values for serum, oral fluid, and 

urine were 0.63, 0.75 and 0.47, and just like for intra‐day precision no significant differences among 

them were found. 
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Table 13. Precision parameters for methylxanthines in biological samples by IT-SPME 

Analytes Parameter 

Serum Oral fluid Urine 

0.4 µg mL−1 20 µg mL−1 1.5 µg mL−1 5 µg mL−1 50 µg mL−1 20 µg mL−1 

RSD% 
HorRat 

(r) 
RSD% 

HorRat 

(r) 
RSD% 

HorRat 

(r) 
RSD% 

HorRat 

(r) 
RSD% 

HorRat 

(r) 
RSD% 

HorRat 

(r) 

Theobromine  

Intra‐day 

assay 
14.3 0.78 12.4 1.22 13.2 0.88 13.9 1.11 8.4 0.95 5.4 0.53 

Inter‐day 

assay  
12.2 0.66 6.6 0.65 10.9 0.73 9.8 0.79 n.e 6.3 0.62 

Paraxanthine 

Intra‐day 

assay  
4.5 0.25 10.1 1.00 5.6 0.37 11.6 0.93 8.3 0.94 7.0 0.69 

Inter‐day 

assay  
17.2 0.94 8.3 0.82 6.5 0.43 8.2 0.66 n.e 4.9 0.48 

Theophylline 

Intra‐day 

assay  
11.2 0.61 5.9 0.58 8.0 0.54 15.2 1.22 15.7 1.78 5.4 0.53 

Inter‐day 

assay  
8.7 0.48 4.3 0.42 8.5 0.57 11.8 0.95 n.e 6.0 0.59 

Caffeine  

Intra‐day 

assay  
3.2 0.18 5.7 0.56 14.2 0.95 16.6 1.33 5.3 0.60 10.1 1.00 

Inter‐day 

assay 
12.0 0.66 4.6 0.45 14.3 0.96 11.7 0.94 n.e 3.0 0.30 

n.e: not evaluated. In all cases n = 3. Values in bold outside the allowed range.  

4.1.3.4. Recovery 

 Recovery values were calculated as the relative recovery [266] (RR%), comparing the peak 

area ratios of the analytes from the spiked serum, oral fluid, and urine blank samples to those obtained 

from the working standard solutions (prepared with water) at the same concentration. Recovery was 

tested at four different levels of concentrations, according to the FDA Guidance [261]. At the lower 

limit of quantification was evaluated for serum (0.4 µg mL−1) and oral fluid (1.5 µg mL−1) samples. Low‐

concentration for all samples was estimated at 5 µg mL−1, instead, mid‐concentration assayed were 

30 µg mL−1 for oral fluid and urine, while for serum was 10 µg mL−1. Finally, the high‐concentration in 

serum was 30 µg mL−1 and 50 µg mL−1 for oral fluid and urine. 

 The relative recovery values obtained showed acceptable values in the range of 84‐114%, for 

all the compounds at all levels of concentration evaluated, as it is shown in Table 14. For all 

compounds, the mean recovery value in the oral fluid was 96.7%, in serum 102.9% and for urine 

samples of 100.9%. Finally, regarding the compounds, the mean recoveries for all matrices were 

104.3% for theobromine, 101.8% for paraxanthine, 95.1% for theophylline, and 99.3% for caffeine. 
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Table 14. Results of relative recovery  for methylxanthines in biological samples by IT-SPME. 

 Serum Oral fluid Urine 

 Recovery (RR%) 

Lower concentration 0.4 µg mL-1 1.5 µg mL-1 

not evaluated 

Theobromine 

Paraxanthine 

Theophylline 

Caffeine 

111.2 105.0 

97.9 97.0 

95.6 93.0 

95.4 90.7 

Low concentration 5 µg mL-1 5 µg mL-1 5 µ g mL-1 

Theobromine 113.0 104.3 111.8 

Paraxanthine 103.7 99.9 106.8 

Theophylline 86.5 98.8 97.3 

Caffeine 112.2 97.5 108.4 

Mid concentration 10 µg mL-1 30 µg mL-1 30 µg mL-1 

Theobromine 100.7 107.1 97.9 

Paraxanthine 112.2 100.0 98.5 

Theophylline 92.3 96.8 94.9 

Caffeine 101.7 98.3 98.5 

High concentration 30 µg mL-1 50 µg mL-1 50 µg mL-1 

Theobromine 104.6 92.6 99.0 

Paraxanthine 113.8 89.8 99.9 

Theophylline 106.6 84.1 99.7 

Caffeine 99.3 91.9 98.4 

 

4.1.3.5. Specificity and selectivity 

 The specificity and selectivity of the method were established by the analysis of blank and 

spiked samples from five individual sources, in which nonappearance of interferences at the retention 

times of the analytes was shown. Furthermore, the absorption spectra of the corresponding peak for 
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the analytes in the enriched samples were compared with the spectra of a standard solution. Figure 

23 shows the UV spectra recorded for the analytes studied. 

 

Figure 23. UV spectra obtained for the trimethylxanthines studied. 

4.1.3.6. Stability 

 For bioanalytical assays, the stability parameter evaluation includes, at the bench‐top, in 

extracts, freeze‐thaw cycles, stock solution, and long‐term [261]. In this work, the freeze‐thaw and the 

long‐term stability of the analytes were evaluated, being the only ones applicable to the IT‐SPME 

procedure, due to the simplicity of this technique. For the freeze‐thaw stability, two concentration 

levels, high and low, for serum (30 and 1  µg mL−1) and oral fluid (50 and 5  µg mL−1) with three cycles 

of frozen for at least 12 hours between cycles and with three determinations in each cycle, were 

tested. For all concentration levels, the recovery values were between 85.6‐108.4% of the fortified 

concentration, being the acceptance criterion that the recovery at each level should be ± 15% of the 

nominal concentration. 
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 In the same way, a real sample of oral fluid containing caffeine was subjected to freeze‐thaw 

stability evaluations in the conditions explaining above (12 h, 3 cycles). Adequate precision has 

resulted (RSD  %= 0.7). For the long‐term stability of the analytes, a fortified oral fluid sample at 20  µg 

mL−1 concentration level, was analyzed by the proposed method and then stored in the freezer. After 

nine months the sample was re‐analyzed, and the found concentrations of the analytes were within 

15% of control values.  

4.1.3.7. Robustness 

 For the evaluation of the robustness of the method a half fraction 24−1 factorial design was 

applied [267], evaluating four variables according to the proposed methodology, which includes: a) 

columns from different suppliers (Agilent Zorbax SB C18 and Phenomenex Jupiter C18); b) formic acid 

concentration (0.95% or 1.05%); c) ionic strength (addition or not of sodium chloride solution) and 

diluted sample volume processed (24 or 26 µL). The two levels for each variable were combined in 

eight assays for each matrix (serum and oral fluid), using The Unscrambler software, as it is described 

in Table 15. 

Table 15. Half fraction 24-1 factorial design for evaluation of robustness of the method. 

Factor Units 

Evaluated values Assays 

Lower values (-1) Upper values (+1) A1 A2 A3 A4 A5 A6 A7 A8 

Analytical Column  Zorbax SB Jupiter C18 ‐1 +1 ‐1 +1 ‐1 +1 ‐1 +1 

Concentration of 

formic acid solution 
Percentage (%) 0.95 1.05 ‐1 ‐1 +1 +1 ‐1 ‐1 +1 +1 

Modification of ionic 

strength 
Percentage (%) 0.0 0.2 ‐1 +1 +1 ‐1 +1 ‐1 ‐1 +1 

Diluted sample 

volume 
Microliters (µL) 24.0 26.0 ‐1 ‐1 ‐1 ‐1 +1 +1 +1 +1 

 

 To carry out the assays, in the first instance, serum and oral fluid blank samples were fortified 

at 20 µg mL−1 and 10 µg mL−1 respectively. Then for serum samples, 25 µL was mixed with 72 µL of 

aqueous formic acid solution (0.95% or 1.05%) and 3  µL of water or 3 µL of 0.2% NaCl solution. Then 

24  µL or 26  µL were then processed by IT‐SPME in the selected column. On the same way, for an oral 

fluid sample, 10 µL were mixed with the same volume of aqueous formic acid (0.95% or 1.05%), 3 µL 

of water or 3 µL of 0.2% NaCl solution and diluted to 100  µL with nanopure water. Finally, 24 µL or 26 

µL were then processed by IT‐SPME in the selected column. 
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 According to Hund et al., the condition that interactions should be negligible is, in general, 

assumed to be fulfilled in robustness tests [268], therefore, the peak areas (signal responses) for all 

assays in each tested matrix, were statistically analyzed, and the studied variables were found not 

significant (for a 95% probability level) for all four compounds. Finally, through Pareto graphs, the 

visualization of the standardized effects of each variable studied is presented in Figures 24 and 25 for 

serum and oral fluid matrix respectively. For all compounds, the standardized effect was less than the 

established critical value (3.2). 

 

Figure 24. Standardized effects determined using a half-fraction 24-1 factorial design in serum matrix: 

a) Theobromine; b) Paraxanthine; c) Theophylline; and d) caffeine. 
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Figure 25. Standardized effects determined using a half-fraction 24-1 factorial design in oral fluid 

matrix: a) Theobromine; b) Paraxanthine; c) Theophylline; and d) caffeine. 

4.1.4. Analysis of real samples 

 Serum and oral fluid paired samples from preterm newborns were obtained in the framework 

of the non‐invasive pharmacokinetic study of caffeine administered in preterm infants diagnosed with 

apnea at the pediatric intensive care unit of La Fe University and Polytechnic Hospital ‐ Valencia, Spain, 

to determinate the concentrations of caffeine, theobromine, paraxanthine, and theophylline, because 

they are related as it has been reported in some papers of the literature [269‐271].  

4.1.4.1. Concentration of caffeine in serum and saliva samples 

 The developed method was applied for the determination of 35 paired samples by duplicate. 

Representative chromatograms of serum and oral fluid samples, as well as a standard solution, are 

shown in Figure 26. In all samples, the presence of caffeine was determined and none of the 

metabolites were found. The absence of metabolites in the samples can be explained, on the one 

hand, due to the high doses of caffeine that are administered, as Nobile et al. reported [272], and on 

the other hand, some papers have reported that the caffeine plasma half‐life can vary between 65 

and 100 h, and the unmodified caffeine fraction eliminated in the urine is 86% in the first six days 

[269]. In some serum samples, a peak with a retention time near to theobromine was observed. 

However, by comparing the absorption spectrum, it was ruled out that it was one of the analytes 

studied. 
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Figure 26. Representative chromatograms from preterm newborns samples: Blue: Standard solution 

20 µg mL−1; Red: Oral fluid sample; Green: Serum sample. 

 Table 16 shows the caffeine average concentration found in the analyzed samples, with 

concentration range values between 7.0 and 54.0  µg mL−1 in serum samples and between 5.5 and 

56.2  µg mL−1 in oral fluid samples. 

Table 16. Caffeine average concentration found in the analyzed paired samples. 

Sample  

identification 

Caffeine concentration  

(µg mL−1) 
Sample  

identification 

Caffeine concentration  

(µg mL−1) 

Serum Oral fluid Serum Oral fluid 

P1/PK-C/M1 26.99 27.93 P20/PK-C/M1 29.84 20.81 

P3/PK-C/M1 15.88 10.16 P20/PK-C/M2 12.90 8.47 

P3/PK-C/M2 6.96 7.57 P21/PK-C/M1 23.97 12.23 

P5/PK-C/M1 14.23 14.25 P21/PK-C/M2 31.63 26.17 

P7/PK-C/M1 9.36 15.90 P22/PK-C/M1 14.05 11.20 

P7/PK-C/M2 19.86 14.93 P23/PK-C/M1 24.23 18.32 

P8/PK-C/M1 17.34 16.02 P23/PK-C/M2 17.68 15.41 

P8/PK-C/M2 13.96 14.68 P25/PK-C/M1 23.07 15.17 

P9/PK-C/M1 14.74 10.92 P25/PK-C/M2 15.83 13.52 

P9/PK-C/M2 11.10 15.11 P26/PK-C/M1 22.81 17.08 

P11/PK-C/M1 13.04 5.54 P26/PK-C/M2 26.06 16.59 

P12/PK-C/M1 17.51 15.94 P27/PK-C/M1 35.00 20.81 

P13/PK-C/M2 40.67 56.18 P27/PK-C/M2 24.63 20.32 

P16/PK-C/M1 54.01 50.22 P31/PK-C/M2 27.17 17.35 

P18/PK-C/M1 31.67 46.65 P31/PK-C/M3 20.82 13.98 

P15/PK-C/M1 15.95 10.32 P32/PK-C/M1 17.67 14.57 

P19/PK-C/M1 24.51 12.49 P32/PK-C/M2 19.08 10.16 

P19/PK-C/M2 21.36 13.56    
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4.1.4.2. Correlation between serum and saliva concentrations 

 The study of serum caffeine concentrations and those found in oral fluid showed a close 

correlation, as it is shown in Figure 27, with intercept (‐2 ± 3) which is statistically equal to 0; a slope 

equal to 0.99 ± 0.14 (statistically equal to 1), and finally, a correlation coefficient close to 0.8. Likewise, 

when the paired‐samples means were compared by a significance test, no evidence for a significant 

difference in the methods at =0.05 (texp = 1.43; ttab = 2.03) was obtained [273]. 

 

Figure 27. Correlation plot of concentration values of caffeine in serum and saliva (n = 35). Regression 

equation: C saliva = (-2 ± 3) + (0,99 ± 0,14)·C serum. r = 0.786. 

 Since some authors have pointed, the application of simple linear regression and the 

coefficient of determination is not recommended as a method for assessing the comparability 

between analytical methods, due to the correlation studies the relationship between one variable and 

another, not its differences [274]. An alternative way to address the shortcomings of simple linear 

regression and the coefficient of determination for evaluation of laboratory tests is the Bland‐Altman 

method, which yields a plot useful in qualitatively assessing differences in measurements between 

two assays [275,276]. 

 The Bland‐Altman graphic for the concentrations of caffeine in serum (method A) and caffeine 

in oral fluid (method B) of the paired samples is shown in Figure 28. No significant differences in the 

results for both methods were obtained, with mean difference value being statistically equal to 0 at a 

confidence interval of [‐0.80, 4.60]. 
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Figure 28. Bland-Altman graphic (plot of differences between method A (caffeine in serum) and 

method B (caffeine in saliva) vs. the mean of the two measurements). It presents confidence interval 

limits for mean and agreement limits. 

4.1.4.3. Evaluation of precision from duplicate results 

 According to Thompson and Howarth [277], duplicate analytical results can be used to give a 

rapid and realistic estimate of precision in analytical systems. In this thesis, the evaluation of the 

standard deviation from duplicate results of the analysis of serum and oral fluid samples were 

performed according to Synek [278]. The relative standard deviation (% RSD) obtained from all analysis 

was calculated with the following equation: 

% RSD = (S / X) 100 

 Where S is the term for standard deviation and X represents the average concentration. For 

serum samples, the result was 7.6%, and for oral fluid samples, it was estimated at 8.4%, with caffeine 

mean of about 20  µg mL−1 in both cases. These values are consistent with those previously obtained 

at the validation step. Figure 29 shows the graphic representation of the relationship between the 

mean concentration of caffeine and %RSD for duplicate analytical results. 
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Figure 29. Plot of the relationship between the mean concentration of caffeine and % RSD for duplicate 

analytical results. 

4.1.5. Conclusions 

 In the present work, the application of IT‐SPME, using a conventional capillary column with 

terephthalic modified PEG as the sorbent phase, in line with Capillary LC‐DAD, demonstrated a 

remarkable performance for the simultaneous quantitation of caffeine and its three primary 

metabolites, theobromine, paraxanthine, and theophylline in serum, oral fluid, and urine samples. The 

developed method offers a complete analysis in 20 min, with a low sample volume consumption, less 

than 10 µL of serum, oral fluid, and urine samples for a single run. Likewise, no more preparation than 

a dilution of the samples and injection in the IT‐SPME loop is necessary. 

 In terms of analytical parameters, high sensitivity was obtained, with limits of detection of 0.5 

µg mL−1 in urine and oral fluid, and 0.1 µg mL−1 for serum, recovery values of RR% between 84–114%, 

and adequate repeatability with a coefficient of variation lower than 15%. The characteristics of the 

developed method make it useful for its implementation in a pediatric hospital laboratory in the case 

of special patients, as it is the case of preterm newborns, where the sample availability and the 

urgency of the results, are important analytical requirements. 

 The applicability of the newly developed method was demonstrated for the determination of 

caffeine concentrations in paired samples of serum (invasive method) and oral fluid (non‐invasive 

method) from preterm newborns who were given doses of caffeine for the treatment of apnea of 

prematurity, providing similar results between them. 
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4.2 TRIMETHYLXANTHINES IN WATERS 

 As described earlier, the high consumption of coffee, tea, cola, energy drinks, processed cocoa 

products, as well as medications, with trimethylxanthines as components, make possible the presence 

of these substances in environmental matrices, such as water, so they are considered as emerging 

pollutants, indicators of anthropogenic activity and lifestyle. 

 The application of miniaturized and portable liquid chromatography systems has a particular 

interest in water analysis to obtain instant results in the site of sampling. In the development of this 

thesis, two procedures for the analysis of caffeine, theobromine and theophylline in water samples 

have been optimized, using two approaches. On one hand, IT‐SPME‐CapLC‐DAD, and on the other 

hand, SPE with portable NanoLC. Both procedures were applied to the analysis of sea and river water 

samples. The results and the comparison of the two approaches, in terms of advantages and 

limitations, are presented in detail below. 

4.2.1. Optimization of the chromatographic separation 

4.2.1.1. Portable NanoLC 

 At the beginning of the optimization of chromatographic separation with the portable nano‐ 

LC system, initial mobile phase initial conditions were taken from manufacturer recommendations, a 

mixture of water and acetonitrile, adding a 3% of each solvent in the reservoir of the other, which for 

the water reservoir, can be explained as prevention for bacterial growth, and its corresponding 

compensation in the proportions for acetonitrile reservoir. 

 A mixed standard solution of the analytes at 50 µg mL‐1 was prepared in acetonitrile as a 

solvent and analyzed in the chromatograph. It was observed that the peak profiles obtained for the 

analytes, especially for caffeine, in these conditions show a bad efficiency (split and double peaks). 

From these results, the effect of the solvent in which the analyte solution is prepared was studied. For 

this, caffeine solutions with a concentration of 50 µg mL‐1 were prepared in acetonitrile, water, 

methanol and acetonitrile‐water mixtures with different proportions. The solutions were injected into 

the chromatograph and the analyte chromatographic peak was observed, as shown in Figure 30. 

 All solutions prepared with acetonitrile showed a split and double peak, on the other hand, 

those prepared in methanol and water showed improved results in terms of efficiency and signal 

detection, however, the last was ruled out due to incompatibility with sample treatment techniques 

applied. Consequently, methanol was the solvent used in further experiments. 
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 Subsequently, the gradient elution program was optimized, for this, a mix standard solution 

of the analytes at 10 µg mL‐1, prepared in methanol, was injected into the chromatograph. The high 

polarity of the compounds requires a mobile phase composition with low elution strength at the 

beginning of the program. Different percentages of acetonitrile and gradient ranges were assayed to 

obtain the conditions that favor the detection of individual peaks of the compounds, in the shortest 

possible run time. 

 

Figure 30. Chromatograms obtained in the study of the effect of the solvent on the separation 

efficiency. Solution of caffeine standard at 50 µg mL-1 prepared in different solvents. Green: in 

acetonitrile; Black: in a mixture of acetonitrile and water (8:2); Blue: in a mixture of acetonitrile and 

water (5:5); Orange: in a mixture of acetonitrile and water (2:8); Purple: in water; Red: in methanol. 

 The final gradient conditions started with a low percentage of acetonitrile (5%) increased to 

20% at min 4, and to 95% at 4.5 min. This composition was kept constant for 0.2 min, and finally, initial 

conditions were set in 0.3 min and hold until the end of the run (5.2 min). With these conditions, 

satisfactory separation of the analytes in less than 4.5 minutes was obtained (Figure 31.Blue). 

4.2.1.2. Capillary LC 

 For the separation of the three analytes in the CapLC system, the initial conditions were taken 

from the results obtained for the analysis of trimethylxanthines in biological samples discussed in 

section 4.1 of this thesis and the optimized conditions for the portable NanoLC system, explained 
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above. A C18‐column (150 x 0.5 mm, 4 µm) and a mixture of water and acetonitrile in gradient elution 

mode was used for the separation of studied compounds. The percentage of acetonitrile was 

increased from 20 % at 0 min, to 50 % at 5 min, to 75% at 9 min, and to 100 % at 13 min; the mobile‐

phase flow rate was 15 µL min‐1 and the signal was monitored at 275 nm. 

 For manual injection, a 20 cm length and 0.32 mm i.d. segment of a fused‐silica capillary was 

used as an injection loop, so that the sample volume injected was 16 µL (internal volume of the 

capillary) of a standard solution prepared in nanopure water. In these conditions, the resolution was 

also suitable, and the three analytes were separated in less than 8.5 min, as depicted in Figure 31 

(Red). The chromatograms of Figure 31 show that the resolution between the analytes was much 

better with the portable NanoLC as the peaks were much narrower. 

 

Figure 31. Chromatograms obtained under the selected conditions with: (Blue) the portable nano LC; 

(Red) CapLC systems. Concentration of each analyte: 10 µg mL-1 for Blue signal, and 10 ng mL-1 for 

Red signal. 

4.2.1.3. Comparison of analytical parameters achieved by Capillary LC and portable NanoLC 

 The comparison of the relevant features of the two tested chromatographic systems is 

summarized in Table 17. From the experimental results is possible to affirm that the IT‐SPME‐Cap LC 

could be applied to detect and measure lower concentrations of the analytes because instrumental 

limits of detection (LODs) for this system were 20 times lower, which can be explained by the fact that 
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the sample volume injected into the CapLC system was just under 20 µL, whereas in NanoLC 

chromatograph only 40 nL of the working solutions were sent to the analytical column. 

 Moreover, is important to note that with the NanoLC system, the chromatograms were 

registered at 255 nm, whereas in the CapLC the signals were registered at 275 nm, which is the 

maximum wavelength of the UV spectra for caffeine; likewise, the maxima of the UV spectra of 

theophylline and theobromine was close to 275, as Figure 23 showns, and thus, the absorbances of 

the three analytes at 275 nm were higher than those measured at 255 nm. Additionally, with Cap LC 

is possible to register the spectrum of each analyte at any position of the corresponding 

chromatographic peak, which improved selectivity about the measurement at 255 nm with portable 

NanoLC system. 

 The instrumental linearity of each system was evaluated by processing standard solutions, 

prepared in nanopure water, in the concentration ranges of 1‐50 µg mL‐1 and 50‐400 ng mL‐1  for the 

portable NanoLC and CapLC systems, respectively. The determination coefficients for all compounds 

in the two systems were higher than 0.99. By processing consecutively three replicates of the working 

solutions, at 10 µg mL‐1 and 5 ng mL‐1 for the portable NanoLC and CapLC systems, respectively, the 

instrumental precision, expressed as relative standard deviation (% RSD), was calculated for both 

systems, and the values were slightly lower with the portable chromatograph.  

 On the other hand, the comparison of the analysis times showed that the chromatographic 

separation was faster with the portable NanoLC system. This fact, accompanied by the lower mobile 

phase flow rates, resulted in much lower mobile phase consumption with the portable system, being 

of interest from a point of view of green analytical chemistry. Using a rough estimation of the mobile 

phase consumption by injection carried out for both systems, it was possible to establish that the 

portable system only needs 20 µL of the mobile phase per analyzed injection, conversely, the CapLC 

chromatograph, require 10 mL for each injection. That means that the portable system reduces the 

production of waste about 500 times less than the benchtop chromatograph. 
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4.2.2. Sample treatment techniques 

 Once the chromatographic parameters were characterized, sample treatment was optimized 

for the two chromatographic systems. Here, two possible strategies for sample conditioning suitable 

for on‐site analysis with the portable NanoLC system were explored, namely off‐line IT‐SPME and 

solid‐phase extraction (SPE) with cartridge format. On the other hand, for the CapLC system, IT‐SPME 

on‐line was optimized.  

4.2.2.1. On-line IT-SPME 

 As it is mentioned in the introductory part of this work, the selection of the extractive phase 

for IT‐SPME is essential to obtain suitable extraction efficiency, and it is a key parameter especially for 

highly polar compounds like trimethylxanthines studied. According to the explanation of section 

4.1.2.1, various extractive capillaries coated with different sorbents were tested, namely 

polydimethylsiloxane (PDMS) with diphenyl and with cyanopropylphenyl groups, polyethylene glycol 

(PEG), terephthalic acid modified PEG, all of them conventional capillaries, and polymers obtained 

from tetraethyl orthosilicate (TEOS) and triethoxymethylsilane (MTEOS) functionalized with SiO2 and 

TiO2 nanoparticles. It was demonstrated that the best results, in terms of extraction efficiency, were 

obtained with the terephthalic acid modified PEG phase. 

 As an attempt to enhance the analyte detectability by improving the limits of detection of the 

analytes, a polystyrene‐divinylbenzene (PS‐DVB) phase was tested. According to Serra‐Mora et al. this 

sorbent provided excellent results for the IT‐SPME of compounds with aromatic rings [279], and 

considering that because of their structure, the analyzed compounds exhibit aromatic‐like properties 

[280]. Additionally, Villamena et al. demonstrated the nonspecific yet selective adsorption of caffeine 

by some polymers as the divinylbenzene (DVB) [281]. 

 Two different PS‐DVB capillaries columns were tested, HP‐PLOT/Q and VP‐HayeSep P, with 20 

µm and 10 µm thickness, respectively. In the first experiments, the effect of preconcentration on the 

HP‐PLOT/Q capillary was tested. For this, a standard solution mixture of the analytes at 50 ng mL‐1 was 

prepared in nanopure water and variable volumes of this solution were processed through the 

capillary of 25 cm length. The signal intensity of the three analytes versus processed volume is 

represented in Figure 32, and the results showed an increment of the signal when the volume of the 

solution is increased. This behavior of preconcentration was especially marked for caffeine when 4 mL 

of the solution was passed. Therefore, this volume was selected as the optimum. 



Chapter 4. Results and discussion 

94 
 

 

Figure 32. Study of the effect of volume on preconcentration in the HP-PLOT/Q capillary. Experimental 

conditions: standard solution at 50 ng mL-1; capillary length of 25cm; Volume of flushing 100 µL of 

water. Blue: Theobromine; Red: Theophylline; Green: Caffeine. 

 Another strategy to improve the analyte detectability in IT‐SPME is to increase in the length 

of the capillary column. Therefore, two lengths were compared, 25‐cm‐long and 50‐cm‐long columns, 

passing 4 mL of a standard aqueous solution with a concentration of 5 ng mL‐1 in each capillary. Higher 

signal intensity values for the three analytes were obtained when the length was increased. This 

increase in capillary length did not cause changes in system pressures. Figure 33 shows the obtained 

results of the evaluation of capillary length. 

 

 

Figure 33. Study of the effect on capillary length with the HP-PLOT/Q capillary. Experimental 

conditions: standard solution at 5 ng mL-1; processed volume of 4 mL; Volume of flushing 100 µL of 

water. Blue: 25 cm; Green: 50cm. 
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 Finally, when the parameters of IT‐SPME were optimized for HP‐PLOT/Q capillary, the 

extraction efficiency was compared with the performance of VP‐HayeSep P capillary, in equal 

conditions. For this, a standard solution mix of the analytes in nanopure water at 10 ng mL‐1 was 

prepared and 4 mL of the solution were passed through both capillaries, with a length of 50 cm, while 

the manual injection valve was in the loading position. After a flushing step with 100 µL of water, the 

injection valve was changed to the injection position. The peak area intensity obtained for all 

compounds in the two polymeric capillaries was compared with those achieved with the terephthalic 

acid‐modified PEG‐coated capillary (FFAP). For the latter capillary, the IT‐SPME conditions included a 

standard solution concentration of 1 µg mL‐1, 100 µL of the solution were processed, and 25 µL of 

water for flushing. 

 Figure 34 compares the responses obtained with the three capillaries tested. As noted, the 

PS‐DVB phase provided higher peak areas than those obtained with the PEG‐based phase, even 

processing half the mass of the analytes. The comparison of the two polymeric capillaries shows that 

no significant differences between PS‐DVB with coatings of 10 µm and 20 µm were observed. 

However, due to the greater sorbent phase thickness, the 20 µm capillary column retained more 

impurities from the matrix, therefore the background chromatograms were lower with the 10 µm 

thickness capillaries, which were then selected for further work. 

 

Figure 34. Analyte responses obtained SPME with the different capillaries tested coupled on-line to the 

CapLC system. Concentration of each analyte: 1 µgmL-1 in the modified PEG (FFAP) and 10 ng mL-1 for 

the polymeric phases (HP-PLOT/Q and VP-HayeSep P); Processed volume 0.1 mL for FFAP and 4 mL for 

polymeric phases. Blue: Theobromine; Red: Theophylline; Green: Caffeine. Error bars represent 

standard deviation for n = 3. 
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4.2.2.2. Off-line IT-SPME 

 There are two important aspects to consider in the election of the sample treatment 

technique previous the analysis in the portable NanoLC system. On one hand, the design of the 

chromatography instrument constrains the sample treatment to off‐line procedures and, bearing in 

mind that this equipment is intended to field tests, sample treatments should involve a minimum of 

sample handling and, ideally, no additional instrumentation.  

 As is refers in the introduction part of this thesis, IT‐SPME off‐line does not required additional 

instrumentation, as only a manual injection valve and syringes to load the samples and desorb the 

trapped analytes are necessary. Additionally, as previously the IT‐SPME online procedure was 

previously optimized for the CapLC system, off‐line IT‐ SPME was selected as the first choice as a 

sample treatment technique for the portable NanoLC analysis. 

 Consequently, this approach was tested by using the capillary column selected in the previous 

section, the PS‐DBV 10 µm thickness coated capillary. Initially, aliquots of the standard mix solution, 

containing 500 µg mL‐1 of each analyte, prepared in nanopure water, were processed through the 

capillary of 50 cm length (internal volume of 40 µL), followed by 40 µL of water, as a cleanup step. 

Then, the capillary was flushed with a volume of methanol to desorb the retained analytes, and the 

collected extracts were then filtered (0.22 μm nylon membranes) and, finally, injected into the 

portable NanoLC system. The selection of methanol as a desorption solvent was due to the positive 

results observed in the optimization of the chromatographic separation. The minimum volume of 

methanol that led to reproducible volumes of the extracts was 100 µL; for this volume, the volume of 

the collected extracts was about 50 µL. 
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Figure 35. Results obtained by off-line SPME/portable NanoLC: (A) effect of the sample volume on 

analyte responses; (B) chromatogram obtained for a sample volume of 12 mL. Concentration of each 

analyte, 500 µg mL-1. Capillary: VP-HayeSep P (50 cm). Volume of flushing: 40 µL of water. Desorption 

volume: 100 µL methanol. 

 In those conditions, and to increase analytes detectability as much as possible, aliquots of the 

standard solution of 4, 8, and 12 mL were processed though the IT‐SPME device. Increasing the volume 

from 4 mL to 8 mL resulted in an increment in peak areas of the analytes, but a further increment to 

12 mL had a modest effect (Figure 35.A). Even for the higher amount of processed volume of the 

working solutions (12 mL), the peak of theobromine could not be detected, as observed in Figure 35B. 

This could be most probably explained by the breakthrough of the analyte, as this was the most polar 

of the three tested compounds (log Kow value equal to ‐0.8).  

 In the last attempt to improve the detection of the analytes, the capillary length was increased 

from 50 to 100 cm was tested. However, this modifies the internal volume of the capillary, which in 

turn increases the volume necessary to desorb the analytes. As expected, no improvement was seen 

with the longest capillary, since in IT‐SPME the nature of the sorbent and the interactions of the 

analytes with it is more important for the extraction efficiency than the quantity of sorbent phase 

contained in the capillary [257]. 

 Despite all the efforts made to reduce the detection limits, at this point the reached results 

for the off‐line IT‐SPME procedure show that this sample treatment technique could detect levels 

higher than 0.1 µg mL‐1 for caffeine, but it is expected that the trimethylxanthines could be at lower 
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concentration levels in some environmental waters. In this sense, only for raw wastewater samples, 

the reported concentrations of caffeine have been higher than 0.1 µg mL‐1, for example, Bo et al. 

reported the presence of caffeine in influent waters of WWTPs between 0.1 and 0.6 µg mL‐1 [282]. In 

contrast, analysis of samples of treated wastewater and river water has reported maximum 

concentrations of caffeine equal to 0.03 µg mL‐1 [283] and 0.01 µg mL‐1 [284], respectively. 

4.2.2.3. SPE 

 In SPE the aqueous sample passes through a cartridge containing the solvent phase, with 

higher amounts than in IT‐SPME. It allows reaching a better detection limit, due to the greater sample 

loading capacity, as well as a higher preconcentration [285]. Like IT‐SPME, in SPE different parameters 

of the extraction process must be optimized to raise the efficiency of the technique. 

 In this study, different sorbents were tested, including two commercially available cartridges 

with PS‐DVB and C18 phases, and two homemade silica‐amino sorbents with two particle sizes, < 100 

µm and >100 µm, prepared according to the procedure proposed by the LIFE LIBERNITRATE project 

from rice straw. 

 The extraction efficiency of the four tested cartridges was compared. For this, aliquots of 8 

mL of a standard mix solution of the analytes at 500 ng mL‐1 were processed. Then, the analytes were 

desorbed from the cartridges with 100 µL of methanol. Subsequently, the extracts were filtered and 

injected into the portable NanoLC system. Unsuitable results, with an absence of signals for the three 

compounds in the analysis with the silica amino sorbent cartridges, were observed, whereas with the 

PS‐DVB and C18 sorbents satisfactory peak areas were obtained. However, the peak areas measured 

with the last packed cartridge were significantly higher, as seen in Figure 36. This behavior can be 

explained because the C18 sorbent has an end‐capped technology, which improves the retention of 

polar compounds, as is the case of the studied compounds. 
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Figure 36. Analyte responses obtained with two of the four cartridges tested and the portable nanoLC 

system. Concentration of each analyte: 500 ng mL-1; Processed volume: 8 mL.  Blue: Theobromine; Red: 

Theophylline; Green: Caffeine. Error bars represent standard deviation for n = 3. 

 Next, the load volume was optimized and different volumes, between 4 and 35 mL, of the 

same solution of the analytes (500 ng mL‐1) were processed through the C18 packed cartridges. The 

chromatograms of Figure 37 shows that increasing the sample volume up to 25 mL had a linear positive 

behavior on the peak areas concerning the load volume for all compounds. However, no improvement 

was observed when using higher volumes were used (35 mL). 

 

Figure 37. Chromatograms of the analysis for different load volumes: Green: 8 mL; Blue: 16 mL; Red: 

25 mL. Concentration of each analyte: 500 ng mL-1; cartridge: C18-U.   
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 The volume of elution is an important parameter in SPE, since a high volume of the desorption 

solvent will dilute the concentration of the analytes, affecting the detectability in the instrumental 

analysis, and on the other hand, with lower volumes, the analytes could be only partially eluted, 

decreasing the extraction efficiency [286]. To optimize this volume, 25 mL of the standard mix solution 

of 500 ng mL‐1, were processed and, then, three aliquots of 100 µL of methanol were successively 

flushed through the cartridges and the extracts were then collected and processed individually. 

 It was observed that most of the theobromine eluted in the firsts 100 µL, whereas theophylline 

and caffeine were predominant in the second part of the extract. Moreover, the signal of the analytes 

found in the third part of the extract was negligible. Based on these results, another extraction, with 

the same conditions, but using one only fraction of 200 µL of methanol to desorb the analytes was 

carried out. However, the peak area found for caffeine was significantly lower than that observed 

when processing the second eluting extract. The results of these experiments are shown in Figure 38. 

 In brief, processing separately the first eluting extract for theobromine and the second eluting 

extract for theophylline and caffeine was selected as the best option, considering that each 

chromatographic assay with the portable nanoLC chromatograph takes less than four and half 

minutes. Under such conditions, not only the three analytes could be satisfactorily detected and 

quantified, but also the peak areas measured for theophylline and caffeine were much higher than 

those measured by the off‐line IT‐SPME approach.  

 

Figure 38. Analyte responses obtained for the study of the volume of elution in SPE. Concentration of 

each analyte: 500 ng mL-1; Load volume: 25 mL; cartridge: C18-U. Blue: Theobromine; Red: 

Theophylline; Green: Caffeine. 
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 One strategy to increase analyte detectability commonly used in SPE is the evaporation of the 

extract to dryness with subsequent reconstitution. However, in the present study, this option was 

discarded, since it moves away from the portable NanoLC approach, intended to be used for on‐site 

measurements. 

 Due to the high polarity of the analytes studied, the use of organic solvents for cleaning the 

possible impurities of real samples retained in the sorbent was ruled out, so the effect of using water 

at this stage was studied. For it, a seawater sample was fortified with a standard solution of the 

analytes to obtain a final concentration of 500 ng mL‐1. Three extraction procedures, in optimized 

conditions, were carried out as follows: first a sample without fortification or cleaning process; then a 

fortified sample without cleaning process, and finally, a fortified sample and cleaning with 100 µL of 

nanopure water (this volume has previously been shown to be sufficient for the amount of sorbent in 

the cartridge). 

 Figure 39 shows the chromatograms for the analysis of the two fortified samples, with and 

without the cleaning process. No difference for theophylline signal was obtained by the cleaning 

process selected, and a minimal diminution effect was observed for theobromine and caffeine signals. 

Moreover, no signals of the analytes were shown in the chromatogram of the seawater sample 

without fortification. According to these results, a clean‐up stage with 100 µL of water was included 

in the final procedure of SPE. 

 Consequently, SPE with C18 was the option selected for treating the samples when using the 

portable nanoLC system. The conditions finally selected were as follows: C18 cartridges were 

conditioned with 1 mL of methanol and 1 mL of water; next, 25 mL of the samples followed by 100 µL 

of water were flushed through them. Finally, two portions of 100 µL of methanol were passed 

successively through the cartridges, and the extracts were collected separately, filtered, and injected 

into the portable NanoLC equipment. 
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Figure 39. Chromatograms of the optimization of the cleanup process. Blue: Fortified sample without 

cleaning process; Red: Fortified sample and cleaning with 100 µL of nanopure water. The fortified 

concentration of each analyte: 500 ng mL-1; cartridge: C18-U; load volume: 25 mL; desorption with two 

fractions of 100 µL of methanol. 

4.2.3. Analytical performance IT-SPME-CapLC and SPE/portable NanoLC 

 Once the analytical procedures were optimized, the analytical performance of the 

SPE/portable NanoLC and IT‐SPME‐CapLC approaches were evaluated and compared using the 

conditions optimized in the above sections. The results found are discussed below. 

 The concentration intervals tested were 1‐50 µg mL‐1 and 0.2‐15 ng mL‐1 for the SPE/portable 

NanoLC and IT‐SPME‐CapLC approaches, respectively. Suitable linearity for all compounds with the 

two approaches tested was obtained, with determination coefficient values higher than 0.99 in the 

tested range. The LODs for both approaches were calculated as the ratio signal‐to‐noise higher than 

3, which for the IT‐SPME‐CapLC system were 3‐20 times lower than those reached with the 

SPE/portable NanoLC. Nevertheless, it has to be noted that when considering the registers obtained 

by the two methods at 255 nm, the LODs provided by IT‐SPME‐ CapLC were only 2‐10 times lower.  

 The results that some literature papers have reported in the analysis of caffeine in 

environmental water samples indicate the presence in raw wastewater up to above 0.1 µg mL‐1 [287]; 

instead, for surface waters concentrations between 0.7 and 1.6 ng mL‐1 have been found [170]. Thus, 

the LOD for caffeine with the SPE/portable NanoLC method is suitable for the analysis of caffeine in 

these kinds of samples. Finally, LOQs were calculated, with an S/N ratio higher than 10, and adequate 

values were reported. Table 18 summarizes the obtained results for linearity, LODs, and LOQs with 

the two approaches applied. 
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 To evaluate the intraday‐precision (expressed as % RSD), three aliquots of the samples at three 

concentrations within the respective tested concentration ranges were processed consecutively. The 

RSDs values obtained are listed in Table 19. The values obtained by the two approaches were rather 

similar. Given the results of the features of the two chromatographic systems listed in Table 17, it can 

be deduced that the variability associated with the SPE procedure is higher. This can be explained by 

the fact that the manipulation of the sample with the IT‐SPME is reduced only to loading the sample. 

Finally, the inter‐day precision values were obtained by the two methods and are also comparable, as 

Table 19 shows. 

Table 19. Precision of the two tested approaches, RDS (%); n=3. 

Compound / 

 

Concentration  

(ng mL-1) 

SPE/portable NanoLC IT-SPME - CapLC 

Intraday Interday Intraday Interday 

10  50  100  10  50  100  2  5  10  2  5  10  

Theobromine ‐ 2 6 ‐ 7 6 5 5 2 4 5 6 

Theophylline 8 4 4 6 5 5 2 4 4 2 6 4 

Caffeine 3 4 7 5 5 4 4 4 4 5 3 6 

 

 The last parameter evaluated was the extraction recovery. For this, the seawater sample was 

spiked to contain the analytes at three different concentration levels and then processed in order to 

obtain the extraction recoveries. This sample was selected due to, as mentioned in the optimization 

of cleanup solvent selection for SPE procedure, none of the analytes were found. The recovery 

percentages were calculated by comparing the peak areas obtained from the spiked samples with 

those measured for standard solutions with the analytes at the same concentration.  

 Figure 40 shows representative chromatograms obtained for the analysis of seawater, blank, 

and fortified samples by the SPE/portable NanoLC and IT‐SPME – CapLC approaches. The obtained 

values ranged within the 65‐89 % and 83‐103 % with the SPE/portable NanoLC and IT‐SPME‐CapLC 

methods, respectively. Recovery values for the three analytes in all concentration levels, for the two 

procedures, with n = 3, are listed in Table 20.  



Chapter 4. Results and discussion 

105 
 

 

Figure 40. Chromatograms obtained for sea water analysis. A: SPE/portable NanoLC; B: IT-SPME-

CapLC . 

Table 20. Recoveries obtained by the two tested approaches in spiked seawater, RDS (%); n=3. 

Compound 

Extraction recovery (%) (n = 3) 

SPE/portable NanoLC IT-SPME - CapLC 

10 ng mL-1 50 ng mL-1 100 ng mL-1 2 ng mL-1 5 ng mL-1 10 ng mL-1 

Theobromine ‐ 65 ± 4 70 ± 2 94 ± 2 92 ± 5 83 ± 4 

Theophylline 81 ± 7 78 ± 3 78 ± 3 103 ± 8 93 ± 2 87 ± 6 

Caffeine 88 ± 3 89 ± 6 88 ± 4 88 ± 5 92 ± 4 96.9 ± 0.4 

 

4.2.4. Analysis of real samples 

 The developed procedures were applied to the analysis of sea and tap water samples, five 

river water samples, two from the Turia river, and three from the Magro river. Caffeine was found in 

one of the Turia river samples assayed by SPE/portable NanoLC method at a concentration close to its 

LOD. The presence of this compound in such a sample was confirmed by spiking the sample with a 

standard solution of the analytes (Figure 41.A). This was consistent with the results obtained by the 

IT‐SPME‐CapLC method, which led to a concentration of caffeine of (1.94 ± 0.05) µg mL‐1 (n = 3). None 

of the analytes was found in the second Turia river sample analyzed by the SPE/portable NanoLC 
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method; however, this sample was positive for caffeine when using the IT‐SPME‐CapLC method, being 

its concentration (1.79 ± 0.11) µg mL‐1, (n=3).  

 In the rest of the samples, none of the analytes were found by any of both methodologies. 

The application of the second approach allows confirming the presence of caffeine by the concordance 

between the spectra of the suspected peak and that recorded for a standard solution of caffeine, as 

Figure 41.B shows. 

 

Figure 41. Chromatograms obtained for the Turia river water samples: (A) chromatograms obtained 

by the SPE/portable NanoLC approach for a sample positive for caffeine, for an standard solution of 

the analytes (10 ng mL-1, each compound), and detail of the registers obtained for the same sample 

fortified with the analytes (2 ng mL-1, each); (B) registers obtained by the IT-SPME - CapLC approach 

for the samples and for an standard solution of the analytes (10 ng mL-1), and normalized spectra of 

the peak assigned to caffeine in sample 2 and the spectra corresponding to a standard solution of 

caffeine.  

4.2.5. Conclusions 

 In this thesis, a method for the detection and quantification of the emerging contaminant 

caffeine and other trimethylxanthines (theophylline and theobromine) using a portable NanoLC 

chromatograph has been developed. The results obtained along the study indicate that this 

instrument can be applied for the analysis of the contaminants in water analysis, provided that the 

proper sample treatment is applied to the samples. 
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 According to this, a protocol based on SPE has been developed which can be carried out on‐

site, as it involves neither extensive sample manipulation nor additional instrumentation (for solvent 

evaporation, for instance).The proposed method is adequate to quantify the tested methylxanthines 

at µg mL‐1  levels, and provides satisfactory linearity and precession similar to that of the IT‐SPME‐Cap 

LC approach, although the sensitivity attainable is slightly lower. Additional advantages of the 

SPE/NanoLC approach are better resolution, lower times of analysis, and a significant reduction in 

solvents consumption. The work represents a pioneer study in the application of portable NanoLC 

systems for the analysis of organic pollutants in different kinds of water samples. 

4.3 ANALYSIS OF DIETARY SUPPLEMENTS 

 In the framework of the development of this thesis, the application of capillary liquid 

chromatography with UV‐diode array detection (DAD) for the chemical characterization of botanical 

dietary supplements was proposed. As is pointed in the introductory part of this work, the 

development of analytical methods for this type of products can be useful to estimate its effectiveness 

and safety through the consideration of the contents of major constituents such as caffeine, 

chlorogenic acids, and synephrine, whereas minor compounds as theobromine, riboflavin, limonene, 

α‐pinene, farnesene, myrcene, linalool, and kaempferol, with potential physiological effects, can be 

used to evaluate the sensory characteristics of the samples.  

  The advantages that miniaturized chromatographic systems show in terms of high‐resolution 

power and sensitivity attainable, make possible the determination of seventeen compounds that can 

be found in dietary supplements at different concentration levels, under the approach of analysis of 

both major and minor components in this kind of samples. 

4.3.1. Optimization of the chromatographic separation 

 The structural and polarity variety of the compounds, with log Kow values with a wide range, 

from ‐0.8 for theobromine to 6.1 for farnesene, denotes the need to apply a gradient separation. 

Additionally, the reverse‐phase mechanism is the most appropriate for this type of chromatographic 

separation, due to the variety of solvents and stationary phases available for this type of mechanism. 

Based on the UV cutoff wavelength, defined as the wavelength at which solvent absorbs 1.0 AU in a 

10‐mm cell [288], of some of the solvents commonly used in reverse‐phase, and the maximum 

absorption wavelength of the analytes, some eluents such as alcohols, tetrahydrofuran or buffers 

were found unsuitable as they present significant absorbances at the low wavelengths ranges (<210 

nm) required for the detection of the terpenic compounds.  



Chapter 4. Results and discussion 

108 
 

 According to the graph in Figure 42, in addition to the effect of methanol, isopropanol, and 

tetrahydrofuran, the use of aqueous solutions with acetic acid could affect the detection of 

synephrine. For the rest of the compounds, minimal effects can be produced due to its absorption at 

high wavelengths. Finally, the graph shows that water and acetonitrile turn out to be the best option 

to optimize the chromatographic separation. 

 For the initial experiments, diluted standard solutions of the analytes were prepared at 

concentrations of 1 µg mL‐1 for synephrine, caffeine, theobromine, riboflavin, caffeic acid, kaempferol, 

and 5‐CQA, and 5 µg mL‐1 for the rest of analytes, all of them prepared in water. Different gradient 

elution programs were tested to separate the seventeen compounds. However, caffeic acid and the 

chlorogenic acids could not be satisfactorily resolved. It can be explained due to the similarity of their 

chemical structures, and also, because the chlorogenic acids studied are, as stated earlier, structural 

isomers, which increases the difficulty to separate all these analytes in a single run [289]. 

 Consequently, two chromatographic separations were developed. The first one for the 

determination of caffeic acid and chlorogenic acids, called the "chlorogenic acids method", and the 

second one for the rest of compounds called the "multi‐class method". Both are discussed below. 

 

Figure 42. Graphical evaluation of the effect of the UV cutoff wavelength of the solvents commonly 

used as a function of the maximum absorption wavelength of the studied compounds. 
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4.3.1.1. Multi-class method 

 For the correct separation of the most polar compounds, such as synephrine and 

theobromine, it is foreseeable to start the gradient with a low percentage of acetonitrile. On the other 

hand, the terpenic compounds will require a higher percentage of the organic solvent (100%) at the 

end of the separation. In that way, applying 15% of acetonitrile at the beginning of the separation, 

and a slow increase in the first 5 minutes, allows the separation of the polar compounds. 

 However, poor peak profile for synephrine was found in all the conditions tested, which has 

also been reported by some literature papers, such as the case of Roman et al., who have mentioned 

that the high polarity of this biogenic amine causes poor retention in traditional reverse‐phase 

systems, necessitating the use of an anionic ion‐pairing agent to achieve retention [290]. 

 In that sense, the use of a modifier in the working standard solution was tested. Improved 

peak profiles for synephrine were observed by acidifying. Different acids were assayed, included 

phosphoric, formic, and hydrochloric acid, all of them at 1% (v/v). Figure 43 shows the resulting 

chromatograms. Although all acidic solutions prevented peak split, better results, in terms of narrower 

peak, were observed with the use of hydrochloric acid.  

 

 

Figure 43. Chromatograms resulting from the study of the effect of acid modifiers on the 

chromatographic efficiency of synephrine. Blue: without modifier; Red: with hydrochloric acid; Green: 

with ortho-phosphoric acid; Purple: with formic acid. Concentration of synephrine: 1 µg mL-1. 
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 For hydrochloric acid, different proportions were assayed to find the adequate quantity that 

allows a good chromatographic efficiency of the peak, without causing a decrease in the pH of the 

solution below 2, to avoid negative effects on the stationary phase. Adequate results were observed 

when adding 0.1 % hydrochloric acid to the working solutions in a proportion of 1:10 (v/v). Finally, 

with the addition of the modifier, the retention times of the rest of the analytes were relatively 

unaffected. 

 The elution program finally selected was started with a 15% of acetonitrile at zero min, and 

linearly increased to 20% at 5 min, to 50% at 9 min, and to 75% at 11 min. Finally, the percentage of 

acetonitrile was increased to 100 % at 15 min and kept constant until the end of the run. Figure 44 

shows the chromatograms obtained under the selected conditions for a standard solution of the 

analytes at 200, 220, 275, 300, and 370 nm. As observed most compounds were satisfactorily resolved, 

unfortunately, caffeine and riboflavin overlapped.  

 

Figure 44. Chromatograms obtained with the optimized gradient. Blue: at 200 nm; Red: at 220 nm; 

Purple: at 275nm; Green: at 330 nm; Orange: at 370 nm. For a solution containing synephrine (1 µg 

mL-1), theobromine (1 µg mL-1), caffeine (1 µg mL-1), Riboflavin (1 µg mL-1), 5-CQA (1 µg mL-1), caffeic 

acid (1 µg mL-1), linalool (5 µg mL-1), myrcene (5 µg mL-1), limonene, (5 µg mL-1), α-pinene (5 µg mL-1), 

farnesene (5 µg mL-1) and kaempferol (1 µg mL-1). 
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 Although both compounds have different absorption spectra (Figure 45), and riboflavin 

presents an absorption band at 370 nm, for samples with a caffeine content much higher than those 

of riboflavin, overestimated results could be obtained for the latter compound. On the other hand, 

the low signal intensity of riboflavin at 370 nm could affect the detectability of the analyte. Therefore, 

it was decided to develop an alternate gradient, if required, for complete separation of both 

compounds. For this gradient, the initial percentage of acetonitrile was at the minimum value possible, 

5% at 0 min. Then it was increased to 10 % at 5 min, to 25 % at 12 min, to 75 % at 15 min, and finally 

to 100 % at 19 min.  As Figure 45 shows, the proper separation of both compounds was achieved after 

15 minutes. 

 

Figure 45. Chromatogram obtained at 275 nm for a mixture of caffeine and riboflavin (1 µg mL-1 each) 

with the gradient modified for the analysis of these compounds. At the top the absorption spectra of 

each compound appear. 

4.3.1.2. Chlorogenic acids method 

 As stated earlier, the separation of caffeic acid and the chlorogenic acids with the multi‐class 

method was not possible. In those conditions, these compounds eluted as a wide peak between 12.5 

and 14.0 min (Figure 44). Consequently, different elution conditions were tested to achieve his 

separation. Unlike with terpenic compounds, caffeic acid and chlorogenic acids have maximum 

absorbances at high wavelengths, around 330 nm, which allows the use of solvents other than 

acetonitrile and water or even modifiers in the mobile phase. 
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 On this line, initial tests were carried out using water acidified with 0.1% phosphoric acid and 

acetonitrile as the mobile phase, and a standard solution of the compounds at 1 µg mL‐1 level was 

prepared in water and chromatographed. An unsuitable separation resulted in all of the conditions 

assayed, with a coelution of at least three compounds (Figure 46). 

 Therefore, it was decided to modify the selectivity of the mobile phase, replacing acetonitrile 

with methanol, and maintaining the 0.1% phosphoric acid solution. The optimized gradient started 

with a percentage of methanol from 25 % at zero min and increased to 30 % at 7 min, to 50 % at 15 

min, kept constant until 16 min, and then increased to 75 % at 20 min and 100 % at 23 min. In these 

conditions, adequate separation of the analytes was achieved in less than 22 minutes, although the 

separation of 3,4‐diCQA and 3,5‐diCQA was not possible. Other papers have reported the separation 

of these analytes in more than 45 minutes [291, 292]. Figure 46 shows the chromatograms obtained 

at 330 nm for a standard mixture of caffeic acid and chlorogenic acids (1 µg mL‐1) with the mobile 

phases tested. 

 

Figure 46. Chromatograms obtained at 330 nm for a standard mixture of caffeic acid and chlorogenic 

acids (1 µg mL-1) with different mobile phases. Blue: acetonitrile and 0.1% phosphoric acid; Green: 

methanol and 0.1% phosphoric acid. 

4.3.2. Extraction optimization 

 For the isolation of the compounds of interest in the dietary supplements, ultrasound‐assisted 

extraction was the option selected, which has been widely used for the treatment of vegetal origin 
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temperature, frequency, power, solvent type, and solvent to the material ratio, the last two of these 

have a major significance in the extraction efficiency [294]. 

 Due to the high polarity characteristics of some of the analytes, it was decided to start the 

extraction experiments using methanol as the solvent. Preliminary experiments were carried out with 

all the samples, placing 25 mg of each and adding 1 mL of the solvent, and then they were placed in 

the ultrasonic bath for 5 minutes. Supernatants were collected and filtered, and an aliquot of the 

extract was treated with hydrochloric acid as described in the above section and chromatographed. 

The results of these experiments allowed to estimate the present amounts of the analytes, as well as 

selecting the sample GC‐3 to optimize the solvent to material ratio to extract the analytes because 

more intense background signals in the chromatogram were observed with it.  

 Three portions of 25 mg of the sample were placed in glass vials. Then, variable volumes of 

methanol (1, 2, and 5 mL) were added to the vials. The resulting suspensions were first vortexed and 

then placed in an ultrasonic bath for 5 min. The extracts were subjected to the procedure detailed 

above. Then, the sample residue was treated with another portion of methanol, and the extraction 

was repeated.  

 By comparing the chromatograms obtained after the first and the second extractions it was 

observed that, although most compounds were extracted with 1‐2 mL of methanol, significant 

amounts of caffeine and chlorogenic acids remained in the solid residue, as Figure 47 shown. 

 

Figure 47. Chromatograms obtained at 275 nm for sample GC-3, extracted with 2 mL of methanol, 

with a dilution factor of 50 and analyzed by multi-class method. Red: extraction with the first portion 

of methanol; Green: extraction with the second portion of methanol. 
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 In contrast, no significant peaks were observed in the chromatograms obtained for residues 

that had been treated with 5 mL of methanol (Figure 48). Therefore, extraction with 5 mL of methanol 

was the option applied in further assays. 

 

Figure 48. Chromatograms obtained at 275 nm for sample GC-3, extracted with 5 mL of methanol, 

with a dilution factor of 100 and analyzed by multi-class method. Red: extraction with the first portion 

of methanol; Green: extraction with the second portion of methanol. 

4.3.3. Analytical performance 

 To evaluate the analytical performance of the two developed methods, different parameters 

were studied for the estimation of the linearity, limits of detection (LOD) and limits of quantification 

(LOQ), repeatability and reproducibility, and extraction recoveries, following the guide of Eurachem 

group [295]. For these experiments, standard solutions of the analytes, blank, and fortified samples 

were prepared. 

4.3.3.1. Multi-class method 

 First, the concentration ranges were selected to obtain peak areas of approximately the same 

order for all analytes at their respective working wavelengths, which were selected according to their 

UV spectra. Figure 49 shows the UV spectra of compounds that have not been included so far, it is 

important to underline the absence of characteristic absorption bands for terpenic compounds. 
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Figure 49. UV spectra obtained for some of the compounds analyzed by the multi-class method. 

 The linearity was evaluated by processing in duplicate five concentrations within the tested 

range. In all instances, satisfactory results were observed, with determination coefficients between 

0.99 and 0.999. The limits of detection (LODs) and limits of quantification (LOQs) were established as 

the concentrations of analyte that resulted in signal‐to‐noise ratios of 3 and 10, respectively. These 

values were obtained by processing solutions with decreasing concentrations of the analytes; before 

analyzing each solution, water was processed to confirm the absence of contaminants and/or memory 

effects. 

 The LODs ranged from 0.005 to 0.25 µg mL‐1, with the lowest values being found for linalool, 

caffeine, theobromine, and myrcene. On the other hand, as expected, the highest values were those 

presented by terpenic compounds such as limonene, α‐pinene, and farnesene. The LOQs were in the 

0.02‐1.0 µg mL‐1 interval. Finally, to establish the instrumental precision, a successive injection of three 

replicates of standard solutions of the analytes at concentrations of 0.5‐5.0 µg mL‐1 was effected. Then 

the relative standard deviations (RSDs) were obtained, and the values were ranged from 2‐11%. Table 

21 shows the concentration ranges and wavelengths used, as well as the relevant analytical 

parameters obtained. 
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 For the study of the recoveries, a green coffee sample was spiked with known amounts of the 

analytes. The amount of each compound added to the sample was 0.25 µg g‐1. For compounds 

expected at higher percentages, such as caffeine and synephrine, the samples were also spiked with 

25 µg g‐1 of the analytes. The recoveries were calculated by comparing the increments of the peak 

areas in the spiked samples with those obtained for standard solutions containing an equivalent 

concentration of each compound. The values obtained are listed in Table 22. As observed, the main 

recoveries showed adequate results ranged from 82 % to 109 %. 

 It has to be noted that with the recoveries values found and the LOQs presented in Table 21, 

the theoretical minimum amounts of the analytes that could be quantified by the present method (for 

a weight of 25 mg of the samples) ranged from 0.004 mg g‐1 for linalool to 0.2 mg g‐1 for limonene and 

α‐pinene. If required, the minimum amounts could be further reduced by two possibilities. On one 

hand, increasing the amount of sample, and on the other hand, by evaporating the methanolic extract 

to dryness and subsequent redissolution in a lower volume of solvent. 

 Finally, to study the intra‐day precision of the entire procedure, three portions of the samples 

were spiked with the analytes and processed consecutively. The inter‐day precision was obtained in 

the same way, from six replicates of the spiked samples processed on different days. The results are 

shown in Table 22. The RSD values obtained were of about the same order than those found for 

standard solutions of the analytes (instrumental precision) listed in Table 21. 

Table 22. Precision and recovery obtained in spiked green coffee samples for of the multi‐class 

method. 

Compound 
Added amount 

(mg g-1) 

Mean recovery, (n=6) 

(%) 

Precision, RSD (%) 

Intra-day 

(n=3) 

Inter-day 

(n=6) 

Synephrine 
0.25 109 11 12 

25.0 82 7 3 

Theobromine 0.25 105 15 12 

Caffeine 
0.25 94 11 10 

25.0 93 6 5 

Riboflavin 0.25 92 11 9 

Kaempferol 0.25 93 10 11 

Linalool 0.25 96 5 4 

Myrcene 0.25 106 3 10 

Limonene 0.25 95 11 13 

α‐Pinene 0.25 98 10 13 

Farnesene 0.25 105 7 6 
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4.3.3.2. Chlorogenic acids method 

 In a similar way that for the multiclass method, the same parameters were evaluated for the 

chlorogenic acids method, measuring the peak areas at 330 nm as analytical signals, as their UV 

spectra show (Figure 50). The values obtained are shown in Table 23. The analytical responses for all 

compounds were linear within the tested concentration range, being the precision suitable (RSDs ≤ 8 

%) and the determination coefficients between 0.990 and 0.998. The concentration range tested was 

from 0.3 to 2.0 µg mL‐1 for all compounds, except for 3‐CQA and 5‐CQA, where the range was for 0.2 

to 2.0 µg mL‐1.  

 

Figure 50. UV spectra obtained for chlorogenic acid compounds analyzed under the chlorogenic acids 

method. 

 The LODs and LOQs were of 0.05‐0.1 µg mL‐1 and 0.2‐0.3 µg mL‐1, respectively. It has to be 

noted that the slopes of the calibration equations obtained for 3,4‐diCQA and 3,5‐diCQA (both eluted 

at 18.1 min) were equivalent. Therefore, as Figure 46 (green) shows, the area of the obtained for the 

peak observed at this retention time can be used as an estimation of the total amount of both 

compounds in the samples. 
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 To obtain the recoveries and the precision in two aspects, intra‐ and inter‐day, the same green 

coffee sample used above was spiked with 5 µg g‐1 of all compounds. Additionally, another sample 

was spiked with 25 µg g‐1 of 5‐CQA, whose concentration in the samples is expected at higher 

percentages, according to the preliminary experiments with the samples. The obtained results for 

these parameters are shown in Table 24. 

Table 24. Precision and recovery obtained in spiked green coffee samples for chlorogenic acids 

method. 

Compound 
Added amount 

(mg g-1) 

Mean recovery, (n=6) 

(%) 

Precision, RSD (%) 

Intra-day 

(n=3) 

Inter-day 

(n=6) 

3‐CQA 5.0 87 3 6 

5‐CQA 
5.0 85 5 8 

25.0 79 2 8 

4‐CQA 5.0 90 2 6 

3,4‐diCQA 5.0 87 1 1 

3,5‐diCQA 5.0 89 3 2 

4,5‐diCQA 5.0 89 3 2 

Caffeic acid 5.0 85 3 7 

 

4.3.4. Analysis of real samples 

 The proposed methods were applied to the analysis of different dietary supplements, namely 

three green coffee extracts claimed to enhance physical performance, two fat‐burnings for losing 

weight, and one herbal preparation (relaxant). Portions of 25 mg of the samples were treated with 5 

mL of methanol, then vortexed for 30 seconds, and then they were placed in the ultrasonic bath for 5 

minutes. Finally, the supernatants were collected and filtered. One aliquot of the extract was treated 

with hydrochloric acid and diluted with water to adjust the peak areas of the analytes to their 

respective linear intervals, and the resulting dilution was chromatographed by the multi‐class method. 

Another aliquot of the extract only was diluted and injected with the optimized conditions of the 

chlorogenic acids method. Figure 51 shows the schema of the procedure for the analysis of the 

samples. 

4.3.4.1. Multi-class method 

 As mentioned before, the preliminary studies allowed to identify the compounds of the 

samples, what was established from the concordance between the retention times and spectra of the 

suspected peak, and that of a standard solution, and it was further confirmed by spiking the extract 
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with such compound. The concentrations of the analytes in the extracts were calculated from the 

calibration equations of Table 21 and transformed into amounts in the samples considering the 

dilution factors (if applicable) and the recovery values of Table 22. 

 In the analysis of the three green coffee samples, caffeine presence resulted positive in all 

samples, although at variable contents. The highest amount was found in sample GC‐1, which 

contained a mean value of 89 mg per capsule, equivalent to a content of 81 mg g‐1, whereas the lowest 

content (1.30 mg g‐1) was found in sample GC‐2, which was marketed as a decaffeinated product. 

According to the label, this product contained 350 mg of coffee extract. Thus, the sample contained 

about 3.7 mg of caffeine per g of extract, which corresponds to the result for decaffeinating coffee 

extracts reported by Meinhart et al [296]. 

 

Figure 51. Schema of the procedure for the analysis of the samples by the two methods. 

 Figure 52 shows the chromatograms obtained for the three green coffee samples at 275nm. 

GC‐1, which reported higher amounts of caffeine, is shown in Figure 52A, whereas Figure 52B 

represents the analysis for GC‐2 and GC‐3.  A peak identified as theobromine was found in sample GC‐

3. 
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Figure 52. Chromatograms obtained for the analysis of the green coffee samples at 275nm. A: GC-1 

with dilution factor of 200; B: GC-2 (Blue) with dilution factor of 100; GC-3 (Purple) with dilution factor 

of 100. 

 As observed in Figure 52 B of the GC‐3 sample, despite a large amount of caffeine found, 

riboflavin could be identified, which matches with the declared value on its label. Thus, the alternate 

gradient for the separation of caffeine and riboflavin was applied for this sample, and the found 

concentration for riboflavin was 0.56 mg, whereas the declared amount was 0.7 mg. Figure 53 shows 

these results. 

 

Figure 53. Chromatogram obtained at 275 nm for sample GC-3 with the Multi-class method and the 

modified gradient for the analysis of caffeine and riboflavin (purple), and normalized spectra of the 

peak assigned to riboflavin in the sample (red) and the spectra corresponding to a standard solution 

of riboflavin (blue). In green appears the spectra corresponding to the peak assigned to caffeine. 

0

125

250

6 9 12 15
0

20

40

60

80

6 9 12 15

A
b
s
o
rb

a
n
c
e
 (m

A
U

)

Time (min)

C
a
ff
e
in

e
 +

 

R
ib

o
fla

vi
n
e

T
h
e
o
b
ro

m
in

e

A
b
s
o
rb

a
n
c
e
 (m

A
U

)

Time (min)

C
a
ff
e
in

e

C
a
ff
e
in

e

A B

0

40

80

16.5 16.75 17

0

0.5

1

210 260 310 360

Riboflavine

Caffeine

N
o
rm

a
liz

e
d
A
b
s
o
rb

a
n
ce

λ (nm)

A
b
s
o
rb

a
n
c
e
 (m

A
U
)

Time (min)

0

70

140

210 260 310 360
λ (nm)

A
b
s
o
rb

a
n
c
e
 (
m
 a
.u

.)



Chapter 4. Results and discussion 

123 
 

 It has to be noted that different peaks at retention times of 12.5‐14.0 min were observed for 

the three samples assayed, as Figure 52 is shown. The UV spectra registered at different positions of 

such peaks were indicative of the presence of caffeic and/or chlorogenic acids. Consequently, those 

samples were further processed using the chlorogenic acids method. Besides, in sample GC‐3 was 

also found a significant amount of synephrine. This product was labeled to contain 50 mg of Citrus 

aurantium (dry extract) with 6 % of synephrine (w/w). Thus, the theoretical amount of synephrine 

was 3 mg/capsule, being the percentage found equal to 86 % (2.6 mg/capsule). 

 Finally, limonene and myrcene were found in samples GC‐1 and GC‐3. It is interesting to note 

that neither these compounds nor the other minor components were found in sample GC‐2, which 

contained decaffeinated green coffee as the main ingredient. This suggests that minor volatile 

compounds were likely lost during the decaffeination process, as some researchers have attributed 

changes in the levels of important bioactive compounds during this process [297]. 

 Synephrine was the most abundant compound in the fat‐burning supplements. The highest 

amount of synephrine was found in sample FB‐1 (13.2 mg per capsule), which also contained a 

significant amount of caffeine (0.9 mg per capsule), whereas the sample FB‐2 contained 2.56 mg of 

synephrine per capsule. Figure 54 depicted the chromatogram registered at 220 nm for sample FB‐1 

and FB‐2. Unlike the result found for sample GC‐3, the amounts of synephrine found did not match 

with the declared values, which were 7.5 mg and 6.6 mg for FB‐1 and FB‐2, respectively. Interestingly, 

the three products that used Citrus aurantium as ingredient reported the same percentage of 

synephrine, 6 %. This suggests that this percentage is used as a mere reference or mean value for this 

kind of extract. The results of our study indicate that the real concentrations may be significantly 

different. 
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Figure 54. Chromatogram obtained at 220 nm with the multi-class method for the analysis of Fat-

burning supplements. Green: FB-1 with dilution factor of 1000; Red: FB-2 with dilution factor of 500. 

At the top appears the spectra corresponding to the peak assigned to synephrine (blue). 

 Minor compounds of terpenic compounds, including limonene, myrcene, and linalool were 

present at much lower percentages (<0.04 %) in fat‐burning supplements. As an example, the peak 

identified as linalool in the chromatogram obtained at 200 nm for sample FB‐1 is shown in Figure 55A. 

This figure also shows the registers obtained from an extract of the same sample fortified with linalool 

and for a standard solution of this compound. Figure 55B shows the chromatogram obtained at 220 

nm for sample FB‐2 and normalized spectra of the peak assigned to myrcene in the sample. As regards 

the caffeic and chlorogenic acids, only a small peak was observed at 330 nm for sample FB‐1, which 

result was confirmed by the chlorogenic acids method. 
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Figure 55. A: Chromatogram obtained at 200 nm for the analysis of FB-1 sample. Blue: standard 

solution of Linalool (5 µg mL-1); Red: Sample with dilution factor of 2; Green: Sample spiked with linalool 

(1µg mL-1). B: Chromatogram obtained at 220 nm for the analysis of FB-2 sample. Red: Sample with 

dilution factor of 2; At the top appears the normalized spectra of the peak assigned to myrcene in the 

sample (red) and the spectra corresponding to a standard solution of myrcene (blue). 

 Finally, limonene (1.90 mg g‐1) and synephrine (0.51 mg g‐1) were the most abundant 

compounds in the herbal preparation, which is consistent with the declared composition (lime and 

orange tree leaves). The other compounds found were linalool, myrcene, and farnesene, which are 

characteristics of orange essential oils, and responsible for the sensory characteristics of these 

products [298]. In Figure 56 is shown the register obtained for this sample at 200 nm. No peaks 

corresponding to caffeic/chlorogenic acids were observed for this sample.  

 

 

0

10

20

17 17.5 18 18.5 19 19.5

0

0.5

1

210 280 350

0

125

250

15 15.5 16

A
b

s
o

rb
a
n
c
e
 (m

A
U

)

Time (min)

L
in

a
lo

o
l

A B

λ (nm)

A
b

s
o

rb
a
n
c
e
 (m

A
U

)

Time (min)

N
o

rm
a

liz
e

d
 A

b
s

o
rb

a
n

ce

Myrcene

F
a

rn
e

s
e

n
e

L
im

o
n

e
n

e



Chapter 4. Results and discussion 

126 
 

 

Figure 56. Chromatogram obtained at 200 nm for the analysis of HP sample without dilution. Peaks of 

limonene and farnesene were identified. At the top appears the normalized spectra of the peak 

assigned to limonene in the sample (red) and the spectra corresponding to a standard solution of 

limonene (blue). 

The results obtained from the six samples tested with the multi‐class method are listed in Table 25. In 

total nine compounds were identified, of which eight could be correctly quantified. 

4.3.4.2. Chlorogenic acids method 

 Once the samples were analyzed by the multi‐class method, those that resulted positive for 

chlorogenic acids were analyzed using the chlorogenic acids method. These samples were the three 

green coffee samples and sample FB‐1. The peaks corresponding to all the isomers included in the 

study were detected in the three green coffee samples, whereas only 5‐CQA was found in FB‐1. On 

the other hand, caffeic acid was not observed in any of the samples. Figure 57 shows the record 

obtained from the four samples at 330 nm and the comparison between the spectra of the peak 

assigned to 5‐CQA in sample FB‐1 with the theoretical spectrum of the compound. 
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Table 25. Results obtained for the real samples analyzed with the multi-class method (n=3). 

Sample Found compounds 
Dilution 

factor 

Found amount 

mg per unit a mg g-1 

GC‐1 

Chlorogenic acids 

Caffeine 

Limonene 

Myrcene 

200 

200 

2 

2 

detected 

89 ± 4 

0.350 ± 0.004 

0.059 ± 0.003 

‐ 

81 ± 4 

0.318 ± 0.003 

0.054 ± 0.003 

GC‐2 
Chlorogenic acids 

Caffeine 

100 

100 

detected 

0.51 ± 0.01 

‐ 

1.30 ± 0.03 

GC‐3 

Chlorogenic acids 

Caffeine 

Theobromine 

Synephrine 

Limonene 

Myrcene 

Riboflavin b 

100 

100 

100 

100 

10 

10 

10 

detected 

3.34 ± 0.03 

0.24 ± 0.02 

2.71 ± 0.02 

0.84 ± 0.01 

1.3 ± 0.2 

0.56 ± 0.06 

‐ 

6.7 ± 0.1 

0.48 ± 0.05 

5.4 ± 0.3 

1.68 ± 0.01 

2.6 ± 0.3 

1.1 ± 0.1 

FB‐1 

Chlorogenic acids 

Synephrine 

Caffeine 

Limonene 

Linalool 

Myrcene 

2 

100 

100 

2 

2 

2 

detected 

13.2 ± 0.8 

0.9 ±0.2 

0.129 ± 0.001 

0.0031 ± 0.0001 

0.0200 ± 0.001 

‐ 

27 ± 2 

1.8 ± 0.4 

0.258 ± 0.002 

0.006 ± 0.001 

0.039 ± 0.003 

FB‐2 

Synephrine 

Limonene 

Linalool 

Myrcene 

50 

2 

2 

2 

2.56 ± 0.08 

0.130 ± 0.002 

0.003 ± 0.001 

0.003 ± 0.005 

10.4 ± 0.3 

0.520 ± 0.005 

0.012 ± 0.001 

0.012 ± 0.001 

HP 

Synephrine 

Limonene 

Linalool 

Myrcene 

Farnesene 

5 

‐ 

‐ 

‐ 

‐ 

0.71 ± 0.04 

2.60 ± 0.05 

< LOQ 

0.150 ± 0.001 

0.100 ± 0.003 

0.51 ± 0.3 

1.90 ± 0.04 

< LOQ 

0.110± 0.001 

0.070 ± 0.002 

(a) capsule or bag; (b) measured with modified gradient. 
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Figure 57. Chromatograms obtained at 330 nm for the analysis of GC-1, GC-2, GC-3, and FB-1 samples. 

Green: standard solution (each compound at 1 µg mL-1); Blue: GC-2 sample with dilution factor of 300; 

Red: GC-3 sample with dilution factor of 300; Purple: GC-1 sample with dilution factor of 100; Brown: 

FB-1 sample with dilution factor of 5; at the top appears the normalized spectra of the peak assigned 

to 5-CQA in the sample (red) and the spectra corresponding to a standard solution of 5-CQA (blue). 

 It has to be noted that besides the peaks of the chlorogenic acids included in this study, minor 

peaks with spectra similar to chlorogenic acid were observed between 13 and 15 min (Figure 58). As 

is pointed out in the introduction part of this thesis, there are three main subgroups of chlorogenic 

acids, and each one of these groups has, at least, three isomers. Thus, these minor peaks can 

correspond at feruloylquinic acids (FQA) group, which include the 3‐FQA, 4‐FQA, and 5‐FQA, and this 

may coincide with the findings reported by Takahashi et al [299]. 

 

Figure 58. Chromatogram obtained at 330 nm for the analysis of the GC-1 sample with a dilution factor 

of 100; at the top appears the UV spectra of the unknown peaks. 
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 The concentrations of the analytes obtained after the proper dilution of the extracts are 

summarized in Table 26. In this table, the total content of 3,4‐diCQA and 3,5‐diCQA is given expressed 

as 3,5‐ diCQA, as indicated in section 4.3.3.2. The total amounts of chlorogenic acids found were 37.1, 

39.0, and 87.5 mg per capsule or bag in samples GC‐1, GC‐2, and GC‐3, respectively. The amount of 

chlorogenic acids found in this study for sample GC‐3 was slightly lower than the declared value (100 

mg per capsule). The difference can be explained by the presence of other chlorogenic acids not 

included in the present study observed at retention times of 13‐15 min.  

 Nevertheless, the value found for sample GC‐2 was much lower than the declared value (78.75 

mg per capsule), which suggests that other factors (inaccurate label or sample deterioration) may be 

also responsible for the discrepancy. Only a small amount of 5‐CQA was found in sample FB‐1. The 

contents of chlorogenic acids in samples GC‐1 and FB‐1 were not provided by the suppliers of the 

products. 

Table 26. Results obtained for the real samples analyzed with the chlorogenic acids method (n=3). 

Sample Found compounds 
Dilution 

factor 

Found amount 

mg per unit a mg g-1 

GC‐1 

3‐CQA 

5‐CQA 

4‐CQA 

3,4‐diCQA + 3,5‐diCQA 

4,5‐diCQA 

 

100 

6.2 ± 0.7 

12 ± 2 

8.6 ± 0.2 

4.1 ± 0.1 

6.2 ± 0.1 

5.6 ± 0.6 

11 ± 1 

7.8 ± 0.2 

3.7 ± 0.1 

5.6 ± 0.1 

     Total: 37.1 ± 3.1 

GC‐2 

3‐CQA 

5‐CQA 

4‐CQA 

3,4‐diCQA + 3,5‐diCQA 

4,5‐diCQA 

 

300 

8.4 ± 0.1 

13 ± 1 

9.3 ± 0.8 

3.7 ± 0.2 

4.6 ± 0.1 

21.0 ± 0.3 

33 ± 3 

23 ± 2 

9.3 ± 0.5 

12.0 ± 3.0 

     Total: 39.0 ± 2.2 

GC‐3 

3‐CQA 

5‐CQA 

4‐CQA 

3,4‐diCQA + 3,5‐diCQA 

4,5‐diCQA 

 

300 

6.1 ± 0.4 

39 ± 1 

10 ± 1 

16.6 ± 0.9 

14 ± 1 

12.2 ± 0.8 

78 ± 2 

20 ± 2 

33 ± 2 

28 ± 2 

      Total: 85.7 ± 4.3 

FB‐1 5‐CQA 5 0.23 ± 0.01 0.46 ± 0.02 

(a) capsule 
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4.3.5. Conclusions 

 Numerous methods for the analysis of dietary supplements have been described in the 

literature. However, they are focused on individual substances or on a family of compounds. On the 

other hand, the methods presented for multi‐class analysis require expensive and specialized 

instrumentation. In this work, an analytical method has been developed that can be used to obtain 

information not only on major components, but also on minor constituents such as vitamins or those 

compounds present in essential oils (myrcene, limonene), which may have potential effects on health 

consumers. 

 As a treatment technique, ultrasound‐assisted extraction was successfully applied, requiring 

only 5 mL of methanol for the complete isolation of the compounds present in the samples, with a 

minimum of experimental work. Two chromatographic separations were successfully developed and 

applied for the determination of the studied compounds, using a miniaturized CapLC system. On the 

one hand, a multi‐class method capable of identifying and quantifying major components, such as 

caffeine, synephrine, and theobromine, as well as minor compounds, including riboflavin, kaempferol, 

limonene, myrcene, and farnesene. Also, this method is capable of identifying the presence of 

compounds related to chlorogenic acid. In those samples with a positive presence of these 

compounds, it is possible to use a second chromatographic separation for the adequate quantification 

of the isomers of chlorogenic acid and caffeic acid. 

 The analytical parameters obtained were satisfactory and comparable with those described 

in the literature for the analysis of these kinds of products. Therefore, the method can be used as a 

simple alternative for more extensive characterization of the samples and facilitate the detection of 

undeclared substances added to increase the effectiveness of the dietary supplements. 
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4.4 TERPENIC COMPOUNDS IN MICROSAMPLES OF NATURAL RESINS 

 Based on the results achieved in the previous section of this thesis, for the study of terpenic 

compounds by applying capillary liquid chromatography, a method for the quantification of 

representative components in natural resins was developed. The study included the determination of 

both volatile and non‐volatile compounds typically found in these kinds of samples, due to the high 

sensitivity achieved with miniaturized LC systems, especially important for the analysis of micro 

samples, as in natural resins analysis. 

 Limonene, a volatile monoterpene, and lupeol, lupenone, α‐amyrin, and β‐amyrin, triterpenes 

with high molecular weight, all of them with high octanol‐water partition coefficients, have been 

selected as model compounds. The analytical performance of the proposed method has been tested, 

and examples of application to real samples were made. In the following sections, the findings for the 

developed method are discussed in detail. 

4.4.1. Optimization of the chromatographic separation 

 Initially, standard solutions of the analytes at 100 µg mL−1 prepared in methanol with a volume 

of injection of 5 µL was used in order to optimize the separation and detection of the target 

compounds. For this, different acetonitrile‐water mixtures were tested, with percentages of 

acetonitrile ranged from 60% to 95%. As expected, mobile phases with high contents of acetonitrile 

(>70%) were necessary for the analytes to be eluted at reasonable run times (<40 min). For instance, 

see the chromatogram in Figure 59. 

 

Figure 59. Chromatogram obtained at 200 nm for the analysis of Lupenone standard solution at 100  

µg mL-1, employing a mixture of water and acetonitrile (10:90) as mobile phase. 

0

35

70

0 10 20 30 40 50

A
b

s
o

rb
a
n
c
e
 (m

A
U

)

Time (min)



Chapter 4. Results and discussion 

132 
 

 At this point, the UV spectra of all compounds were obtained, and according to Figure 60, all 

the analytes presented decreasing absorbances within the 190‐210 nm range and nearly null 

absorbance at higher wavelengths. Thus, 200 nm was selected as the working wavelength. 

 

Figure 60. UV spectra obtained for analyzed compounds. 

 For the following experiments, a standard solution mix of the analytes at 10 µg mL−1 was 

prepared in methanol. For all the elution conditions assayed suitable separation of the analytes was 

obtained except for limonene since its isolation was particularly difficult due to the presence of an 

intense peak corresponding to the injection solvent (methanol). Due to its high intensity, such a peak 

partially overlapped with that of limonene. An option to improve the resolution between the two 

peaks could be to use a gradient elution program, but this will cause an increase in the total execution 

time. For the rest of the compounds, a good resolution was obtained even with a mobile phase of 

100% acetonitrile. With this eluent, the chromatographic run time was <20 min, as Figure 61 shows. 

Besides the peaks of the solvent and analytes, two minor peaks were detected at 12.1 min and 15.3 

min, which were identified as impurities of β‐amyrin. 
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Figure 61. Chromatogram obtained for standard solution mix of the analytes (10 µg mL−1) in methanol 

injected directly; volume of injection 5 µL; eluent, 100% acetonitrile; detection wavelength 200nm.  

 Since the elution strength of tetrahydrofuran is higher than that of acetonitrile, it was tested 

as an elution solvent. However, due to its significant absorbance at wavelengths <212 nm (as was 

pointed in Figure 42 of section 4.3), the background noise at the wavelength necessary to detect the 

analytes was unacceptable. Therefore, this solvent was no longer used. Then, standard solutions 

mixtures of the analytes at 100 µg mL‐1 were prepared in different solvents (as injection solvents) to 

avoid the overlap of methanol with the peak of limonene.  However, as Figure 62 shows, unsuitable 

results were obtained with chloroform, isopropanol, and ethyl acetate. When using acetonitrile, no 

greater variation was observed in the limonene peak, while for the rest of the compounds, wider and 

lower peaks resulted, that is, a lower sensitivity. Therefore, methanol was maintained as an injection 

solvent. 
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Figure 62. Chromatograms obtained at 200 nm for standard solution mix of the analytes (100 µg mL−1) 

in: Red: methanol; Blue: acetonitrile; Green: Ethyl acetate; Purple: isopropanol; Brown: Chloroform. 

Volume of injection 5 µL; eluent, 100% acetonitrile. 

 Another strategy to try to reduce the solvent peak and to improve the resolution of limonene 

was to test different methanol‐water mixtures as a solvent. For this, standard solutions of the analytes 

at 5 µg mL−1 prepared with mixtures of water‐methanol in percentages of 10, 20 and 35 were injected 

(v/v). Ideally, in LC samples should be injected in an injection solvent with similar to or lower elution 

strength than that of the mobile phase used to avoid peak‐shape problems [300]. However, the results 

showed that the presence of water in the injected solutions caused a diminution of the peak areas of 

some of the analytes, effect which was especially high for α‐amyrin, as Figure 63 shows. This behavior 

suggested that at the working concentration the analytes were not completely dissolved in the 

mixture of methanol‐ water, which is consistent with their high Kow values. 

 As an alternative, the introduction of an aliquot of water in the injection capillary loop was 

tested before loading the sample, because it could prevent peak broadening at the entrance of the 

chromatographic column. Variable volumes of water in the 5‐25 µL range were loaded in the injection 

loop before loading 5 µL of the standard solution prepared in methanol. The resulting chromatograms 

were compared with those observed for the same directly injected solution and are shown in Figure 

61. As a result, the introduction of water into the injection capillary loop had a strong effect, on the 

one hand, on the retention times of the analytes, and on the other hand, on the shapes of the analytes 

peaks. 
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Figure 63. Analyte responses obtained for the study of the percentage of water in injection solvent. 

Blue: 0% of water; Green: 10% of water; Red: 20% of water; Purple: 50% of water. Concentration of 

each analyte: 5 µg mL-1; Volume of injection 5 µL; eluent, 100% acetonitrile. 

 As observed in Figure 64, in the chromatogram obtained after the consecutive introduction of 

5 µL of nanopure water and 5 µL of the working solution all the analytes eluted about 1.5 min later. 

This effect was particularly positive for the complete separation of the limonene peak from the solvent 

peak. Furthermore, the presence of water had also a positive effect on the peak shapes of the other 

compounds. Finally, no substantial differences in the chromatographic registers were observed when 

the volume of water was increased up to 25 µL. 

 

Figure 64. Chromatogram obtained for standard solution mix of the analytes (10 µg mL−1) in methanol 

after loading 5 µL of nanopure water in the injection loop. Volume of injection 5 µL; eluent, 100% 

acetonitrile; detection wavelength 200nm. 
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 Finally, the effect of the injection volume  was evaluated in the range of 5‐25 µL. Although the 

absolute peak areas increased as the injection volume increased as expected, this increment also 

resulted in wider peaks. Besides, the retention times of the compounds decreased, which may be due 

to the increased volume of methanol entering the system. As Figure 65 shows, the increase in the 

injection volume resulted in an unsuitable separation between lupeol and lupenone. 

 

Figure 65. Chromatograms obtained for standard solution mix of the analytes (10 µg mL−1) in methanol 

after loading 5 µL of nanopure water in the injection loop. Red: volume of injection 15 µL; Green: 

volume of injection 5 µL. Eluent, 100% acetonitrile; detection wavelength 200nm. 

 Based on the above results, the successive injection into the loop of 5 µL of water and 5 µL of 

the working and sample solutions was selected as the best option. For the mobile phase, as a 

compromise between resolution and chromatographic run time, a mixture of acetonitrile:water 85:15 

(v/v) was selected as optimum conditions. 

4.4.2. Extraction optimization 

 Optimized chromatographic conditions were applied to the analysis of the target compounds 

in three natural resins, namely white copal, copal in tears, and resin obtained from ocote trees. In the 

first instance, different solubility studies with the resin samples were carried out to optimize the 

solvent extraction. For this, homogenized portions between 1 and 15 mg of the three resins were 

treated with 1 mL of extracting solvent. Then, the resultant solutions were vortexed for 1 minute and 

finally filtered with 0.2 µm nylon membranes. Methanol, acetonitrile, ethyl acetate, isopropanol, and 

chloroform were tested as extraction solvents. 

 According to the results presented in Figure 62 of the above section, the employment of ethyl 

acetate, isopropanol, and chloroform was unsuitable. It was concluded that the use of such solvents 
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would require a step of evaporation of the extracts followed by their redissolution in methanol or 

acetonitrile prior to chromatographic analysis. Thus, to simplify the whole analytical process, as well 

as to avoid possible losses of the volatile analyte limonene, these solvents were not used in further 

experiments. 

 The registered chromatograms for the analysis of white copal resin extract with acetonitrile 

(red) and methanol (green) are presented in Figure 66. Slightly higher signals were observed for the 

extract with methanol, so methanol was finally preferred as an extraction solvent for the following 

experiments. 

 

Figure 66. Chromatograms obtained for the extract of white copal sample. Red: extracted with 

acetonitrile; Green: extracted with methanol. Eluent, 100% acetonitrile; detection wavelength 200nm. 

 Figure 67 shows the photographs of the extracts obtained with methanol for the three resin 

samples. The white copal (67a) and ocote tree (67b) samples were satisfactorily dissolved in methanol, 

however, for 10–15 mg of the copal in tears resin sample was treated in the same way (67c) significant 

amounts of solid matter were observed, most probably due to the presence of highly polar gum 

compounds, characteristics of resins samples [301].  

 Thus, for copal in tears sample, a further study of the solid residue was carried out, applying 

a centrifugation stage after which the liquid phase was separated. Then, the insoluble solid residue 

was treated with 1 mL of water, and complete dissolution was observed (67d), which confirmed the 

presence of a high percentage of gum in this sample. 

0

700

1400

5 9 13

A
b

s
o

rb
a
n
c
e
 (m

A
U

)

Time (min)



Chapter 4. Results and discussion 

138 
 

 

Figure 67. Photographs of the extracts obtained after adding 1 mL of methanol. a: white copal; b: 

ocote; c: copal in tears; left vials in (a–c), 1 mg of homogenized samples; right vials in (a–c), 15 mg of 

the homogenized samples. d: solution obtained after treating the residue insoluble in methanol of 

copal in tears (10 mg) with 1 mL of water. 

4.4.3. Analytical performance 

 The analytical performance of the proposed method was evaluated to establish its suitability 

for the analysis of the natural resins [302]. Working solutions of the target compounds were prepared 

in methanol at concentrations in the range 0.25‐10 µg mL−1 and then were analyzed. With the obtained 

results parameters for linearity, limits of detection (LODs), limits of quantification (LOQs), accuracy, 

and precision were studied.  

 For all tested compounds the peak areas showed a linear relationship with the concentration 

within the range 0.25‐10.0 µg mL−1, with determination coefficients ranging from 0.994 to 0.997 (n 

=15). For checking the accuracy, solutions of the target analytes were prepared and tested at low‐low‐

intermediate (2.5 µg mL−1) and high‐intermediate (7.5 µg mL−1) concentrations. The corresponding 

calibration equations were used to establish the concentration of each compound and the relative 

errors found ranged from −13% to +16%. These values were sa�sfactory according to the standards 

set for these kinds of samples [303], and it was therefore concluded that the accuracy was adequate. 

Table 27 shows the results obtained. 
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Table 27. Evaluation of the linearity and accuracy of the proposed method. 

Compound 

Linearity (n =15) y = ax +b Mean found concentration (n=3) 

Concentration 

range (µg mL-1) 
a ± sa b ± sb R2 2.5 µg mL −1 7.5 µg mL −1 

Limonene 0.25 ‐ 10.0 433 ± 6 ‐ 77 ± 2 0.997 2.3 ±0.1 6.5 ±0.4 

Lupenone 0.5 ‐ 10.0 63.9 ± 1.6 ‐ 22 ± 9 0.994 2.4 ±0.1 70. ±0.1 

Lupeol 0.5 ‐ 10.0 111 ± 2 ‐ 42 ± 12 0.996 2.6 ±0.1 7.4. ±0.2 

β‐Amyrin 0.5 ‐ 10.0 135 ± 3 ‐ 20 ± 17 0.995 2.3 ±0.1 7.5 ±0.6 

α‐Amyrin 0.5 ‐ 10.0 313 ± 8  72 ± 42 0.994 2.9 ±0.2 8.4 ±0.1 

a: intercept; sa: standard deviation of the intercept; b: slope; sb: standard deviation of the slope; R2: squared 

correlation coefficient. 

 

 The precision was evaluated by calculating the relative standard deviations (RSDs) of the areas 

measured for three consecutive injections (intra‐day RSD) and in three different working sessions 

(inter‐day RSDs) for the same solutions used to determinate the accuracy. Intra‐ and inter‐day 

precision were determined at 2.5 µg mL−1 and 7.5 µg mL−1, and although for α‐amyrin the RSDs were 

slightly higher, values <8% were found for the rest of the compounds. 

 Although there are different options available to determinate the LODs and LOQs, in this study 

these parameters were calculated as the concentrations that resulted from signal‐to‐noise ratios of 3 

and 10, respectively [304]. The LODs and LOQs were obtained by injecting solutions with decreasing 

concentrations of the analytes and to prevent errors coming from contaminants and/or memory 

effects, before analyzing each solution, water was processed. The LODs were 0.1 µg mL−1 for limonene, 

whereas for the rest of the analytes was 0.25 µg mL−1. On the other hand, the LOQs were 0.4 µg mL−1 

for limonene and 0.8 µg mL−1 for the other analytes. Table 28 summarized the results obtained. 

Table 28. Evaluation of the precision, LOD and LOQ of the proposed method. 

Compound 

Precision a, (n=3) RSD % 
LOD 

(µg mL-1) 

LOQ 

(µg mL-1) 
Intraday Interday 

2.5 µg mL −1 7.5 µg mL −1 2.5 µg mL −1 7.5 µg mL −1 

Limonene 2 0.6 3 4 0.1 0.4 

Lupenone 4 0.8 7 7 0.25 0.8 

Lupeol 1.4 2 7 8 0.25 0.8 

β‐Amyrin 3 8 8 8 0.25 0.8 

α‐Amyrin 9 17 16 17 0.25 0.8 

rsd: residual standard deviation. 
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 For the study of the effect of the sample matrix in the analytical response, sample extracts 

from copal in tears were fortified with known amounts of the analytes, and the recoveries were 

calculated. The tested concentration was 5 µg mL−1 of each analyte. The increment on the peak areas 

between the spiked and unspiked extracts was used to calculate the added concentration, using the 

calibration equations of Table 27. The concentration values obtained were then compared with the 

added concentrations to calculate the recoveries, and values ranging from 52% to 103% were found. 

Figure 68 shows the chromatograms of the copal in tears sample with and without fortification, 

besides the recovery values found for all analytes. 

 

Figure 68. Chromatograms obtained in the matrix effect study for Copal in tears sample. Green: sample 

without fortification; Purple: fortified sample with 5 µg mL−1 of the analytes. On the right, the 

recoveries values found for all analytes (n=3). 

 According to the LOQs obtained and the recoveries values listed in Figure 68, the minimum 

percentages of the analytes that could be measured were calculated for samples of 10 mg. These 

values were ranged from 0.004% for limonene to 0.02% for β‐amyrin. These values were considered 

low enough for most applications, making unnecessary extra pre‐concentration operations. 

4.4.4. Analysis of real samples 

 Finally, the optimized method was applied for the quantitative analysis of the three resins 

tested. For this purpose, different portions of the homogenized samples ranging from 1 to 15 mg were 

analyzed under the conditions described in the previous sections. In all three natural resin samples, 

the presence of the analytes was evaluated from the concordance between the retention times and 

UV spectra of the suspected peaks and those observed for the standard solutions. Besides, the 

presence of a compound was confirmed by fortifying the extracts with standard solutions of such 

compounds. 
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 α‐amyrin was the only analyte found in the three resins samples analyzed, limonene was 

found in the white copal and ocote resins, whereas lupeol and β‐amyrin were found only in the copal 

in tears sample. As expected  in these kinds of samples, in addition to the peaks of some of the 

analytes, peaks of unknown compounds were observed in the samples, particularly at retention times 

close to that of limonene, which means the polar fraction of the resins. However, they could be easily 

differentiated from limonene through their respective UV spectra. On the other hand, the peaks of 

the impurities found in the standard solutions of β‐amyrin were not identified in any sample. 

 To calculate the percentages of each of the analytes found in the samples, the peak areas of 

the analytes were used, as well as the calibration equations of Table 27 and considering the recoveries 

determined for each compound, listed in Figure 68. The final values are summarized in Table 29, and 

as can be deduced from this table, the percentages of the triterpenic compounds (C=30) were <1%. 

Therefore, for the quantification of these compounds, a higher amount of the sample was used (10‐

15 mg). Whit 1mg of white copal resin sample, the concentration of α‐amyrin was below its LOD, and 

for ocote resin sample the concentration was between its LOD and LOQ. For this last resin, even when 

processing 10 mg of the sample, the concentration of α‐amyrin in the extract was close to its LOQ. 

Table 29. Percentages of the analytes found in the analyzed natural resin samples (n = 3). 

Sample 
Percentage a (%), ( n = 3) 

Limonene Lupenone Lupeol β‐Amyrin α‐Amyrin 

White copal 
1 mg 0.9 ± 0.2 <LOD <LOD <LOD <LOD 

15 mg 1.2 ± 0.2 <LOD <LOD <LOD 0.020 ± 0.002 

Copal in tears 10 mg <LOD <LOD 0.034 ± 0.001  0.069 ± 0.002 0.011 ± 0.001 

Ocote 
1 mg 9.3 ± 0.2 <LOD <LOD <LOD <LOQ 

10 mg 9.3 ± 0.1 <LOD <LOD <LOD 0.093 ± 0.003 

a: All values expressed with digits known plus the first uncertain digit. 

 

 Higher percentages of the monoterpene limonene were found in white copal and ocote 

resins. In fact, for the quantification of this analyte in the ocote tree resin, the extract of the sample 

had to be diluted with methanol whit a dilution factor equal to 20, to adjust the analyte concentration 

to the linear working interval evaluated. Due to its relative abundance in white copal and ocote 

samples ( ≥1%), the percentage of limonene could be established using both 1 mg and 10–15 mg of 

the samples. The values obtained by using different amounts of the samples were then compared 

statistically [305]. 
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 The t calculated values were 2.01 and 0.17 for white copal and ocote resins, respectively, 

whereas the t tabulated at 95% confidence level was 2.776. For this calculation, equivalent variances 

were assumed, as F calculated were 1.15 and 4.86 for the white copal and ocote resins, respectively, 

being the F tabulated at 95% confidence level = 19.00. Therefore, it was concluded that the 

percentages obtained were not dependent on the sample size. Representative chromatograms 

obtained for white copal and ocote tree resins are shown in Figure 69; some of the pictures have been 

zoomed for better visualization of the peaks of interest.  

 

Figure 69. Chromatograms obtained in the analysis of the resin samples. A: White copal; Red: blank of 

methanol; Blue: standard solution at 5 µg mL-1;Green: sample. B: Ocote resin with dilution factor of 20; 

Blue: standard solution at 5 µg mL-1; Green: sample. At the top appears the normalized spectra of the 

peak assigned to limonene in the sample (red) and the spectra corresponding to a standard solution of 

limonene (blue). 

 To evaluate the effect of the thermal stability on the sample composition, portions of copal in 

tears and ocote tree, samples with different composition profiles, were subjected to different 

treatments. For this purpose, homogenized portions of the samples were spread on the surface of 

glass vials. Then the vials were exposed to ambient conditions for five days before analysis. 

Additionally, portions of the same samples were dried at 40 °C in an oven until constant weight and 
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then processed. The results obtained in these experiments are shown in Table 30, and as observed, 

the composition of the copal in tears sample was not significantly modified by any of the treatments 

applied. In contrast, both treatments led to lower contents of limonene in the ocote resin, whereas 

the percentage of α‐amyrin increased. 

 Besides, the results found for this sample indicate that limonene was partially volatilized both 

at ambient conditions and after drying at 40 °C. It is important to note that the loss of limonene, and 

possibly other volatile compounds, resulted in higher percentages of non‐volatile compounds such α‐

amyrin. The absence of limonene in the copal in tears resin, suggests that the volatile compounds had 

been previously lost, which is consistent with the fact that the percentages of the triterpenes 

remained approximately constant after exposing the sample at ambient conditions or after the 

thermal treatment applied. 

Table 30. Percentages of the analytes found in the resin samples after the stability study (n = 3). 

Sample 
Percentage a (%), ( n = 3) 

Limonene Lupenone Lupeol β‐Amyrin α‐Amyrin 

Copal in tears 

10 mg b <LOD <LOD 0.033 ± 0.001 0.074 ± 0.001 0.010 ± 0.003 

10 mg c <LOD <LOD 0.035 ± 0.002 0.082 ± 0.005 0.010 ± 0.004 

Ocote 

10 mg b 7.2 ± 0.1 <LOD <LOD <LOD 0.16 ± 0.01 

10 mg c 7.3 ± 0.3 <LOD <LOD <LOD 0.16 ± 0.02 

a: All values expressed with digits known plus the first uncertain digit. b: Exposed at ambient conditions for 5 

days; c: Dried at 40◦C until constant weight. 

 

4.4.5. Conclusions 

 In the framework of this thesis, a quantitative study for some relevant terpenoids typically 

used to characterize natural resins has been developed based on a method by capillary LC with UV 

detection. The determination of volatile and non‐volatile analytes within the same chromatographic 

run with the adequate sensitivity to be applied when only small size samples are available (a few mg), 

has been accomplished due to the optimization of the extraction and separation chromatographic 

conditions. 

 The results obtained throughout the study for the performance characteristics of the method 

have proved that quantitative performance is suitable. To the best of our knowledge, this is the first 

method validated for the quantification of limonene and representative triterpenes in microsamples 

of resins. Therefore, the developed procedure can be considered a useful tool to increase the 
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knowledge about the chemical composition of natural resins, as most existing methods so far are 

limited to obtaining their chemical fingerprints. Furthermore, it is important to note that, for 

classification purposes, the quantitative composition of these kinds of samples can be used to obtain 

information about the history (age and ambient conditions) of samples of similar origin. 
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 New knowledge was attained about miniaturized and portable liquid chromatography, 

following the current trends of green analytical chemistry, and also its coupling to in‐tube solid‐phase 

microextraction, as a sustainable sample treatment technique, for the analysis of different kinds of 

matrices, including biological samples, environmental waters, dietary supplements, and natural resins.  

 The study of the ability and characterization of commercial and synthesized extractive phases 

for in‐tube solid phase microextraction for the determination of highly polar compounds in serum, 

urine, and oral fluid samples were carried out. A pioneer study with a portable NanoLC for the 

determination on‐site of trimethylxanthines in environmental waters evaluating different strategies 

for sample treatment was made. The high‐resolution power, sensitivity, and the viability to use a small 

sample volume attainable with Capillary LC system were demonstrated from the analysis of natural 

resins and dietary supplements for quantification of a wide number of compounds of very different 

physic‐chemical properties. 

 Good results were achieved by the use of FFAP (100% nitroterephthalic modified polyethylene 

glycol) as the extractive phase in In‐tube solid‐phase microextraction (IT‐SPME) coupled on‐line to 

capillary liquid chromatography with diode array detection for the analysis of caffeine and its three 

primary metabolites (theobromine, paraxanthine, and theophylline) in micro samples of serum, oral 

fluid, and urine samples. With the optimized procedure, the sample amount required for one analysis 

was only 2.5 µL of oral fluid, 6.25 µL of serum or 40 µL of urine, which is of special ability for its 

implementation in a hospital laboratory for preterm newborns.  Analytical performance of the 

proposed method was similar to those proposed by other methodologies but using lower sample 

volume and a faster and simpler sample treatment and analysis. Finally, paired samples of serum and 

oral fluid from preterm newborns treated with caffeine were analyzed by the method, with statistically 

equivalent results for caffeine concentrations. 

 For the analysis of environmental waters, two methods were proposed, for one hand, a fast 

lab method based on IT‐SPME coupled online with a capillary liquid chromatograph (CapLC) with diode 

array detection (DAD), and on the other hand,  using a portable nano liquid chromatograph (NanoLC) 

with UV detection at 255 nm for in‐place analysis. The analytical performance of both procedures for 

the determination of trimethylxanthines as target analytes was done. Different strategies for sample 

treatment technique was applied, included IT‐SPME online and off‐line, and, solid‐phase extraction 

for improving instrumental parameters, related to detection capacity and selectivity. IT‐SPME or 

SPE/portable NanoLC based methods were superior in terms of chromatographic resolution and 

organic solvent consumption per sample, around 200 µL vs 10 mL for IT‐SPME‐CapLC‐DAD, instead, 
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the lab method provided better LOD. Finally, both systems were tested for the analysis of real water 

samples with suitable results. 

 The characterization of botanical dietary supplements by capillary liquid chromatography with 

UV‐diode array detection (DAD) was achieved by the optimization of separation and quantification 

conditions in order to analyze not only the major constituents such as caffeine, chlorogenic acids, and 

synephrine, but also trace compounds as theobromine, riboflavin, limonene, α‐pinene, farnesene, 

myrcene, linalool, and kaempferol. The proposed procedure was used for the analysis of different 

types of products, including green coffee extract‐based supplements, fat burning formulations, and 

herbal preparations; managing to estimate the effectiveness and safety of these products with a 

stimulant, antioxidant, and slimming effects, through the consideration of the contents of major 

compounds, whereas minor compounds can be used to evaluate the sensory characteristics of the 

samples. 

 Despite the difficulties involved in the analysis of natural products such as vegetal resins, a 

method was developed for the separation and quantification of terpenic compounds typically used as 

markers in the chemical characterization of these kinds of samples, based on capillary liquid 

chromatography with UV detection. Notwithstanding the analyzed compounds have different 

polarities and volatilities, a simple sample treatment procedure, an adequate separation, and 

remarkable detectability were achieved in a single chromatographic run for micro samples of three 

resins namely, white copal, copal in tears, and ocote tree resin. According to the state of the art in the 

analysis of this kind of samples, the proposed method can be considered complementary to existing 

protocols aimed at establishing the chemical fingerprint, as a useful tool to increase the knowledge 

about the chemical composition of natural resins. 
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A.1 ABBREVIATIONS 

AAS  Atomic absorption spectroscopy 

AIBN  Azobisisobutironitrilo 

AOP  Apnea of prematurity 

APTS  3‐(Aminopropil)trimetoxisilano 

AU  Absorbance units 

CapLC  Capillary liquid chromatography 

CGA   Chlorogenic acid 

CTAC  Cetrimonium chloride 

d.i.  Internal diameter 

DAD  Diode array detection 

DBS  Dried blood spot  

DHEP  Bis(2‐ethylhexyl) phthalate 

di‐CQA  dicaffeoylquinic 

DLLE   Dispersive liquid‐liquid Microextraction 

DPX  disposable pipette tip extraction 

DSS  Dried saliva spot 

DVB  Divinylbenzene 

ESI   Electrospray ionization 

FD  Fluorescence detector 

FDA  Food and drugs administration of USA 

FFAP  Polyethylene glycol modified with nitro terephthalic acid 

FID  Flame ionization detector 

FQA  Feruloylquinic  
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GC  Gas chromatography 

HF‐LPME  Hollow‐fiber liquid‐phase microextraction 

HILIC  Hydrophilic interaction liquid chromatography 

HLB  Hydrophile‐lipophile balance 

HS‐SPME  Head‐space solid‐phase microextraction 

IgA  Immunoglobulin A  

ILs  Ionics liquids 

IT‐SPME  In‐tube solid‐phase microextraction 

LC  Liquid chromatography 

LLE   Liquid‐liquid extraction 

LLSME  Liqui‐liquid‐solid microextraction 

LOD  Limit of detection 

LOQ  Limit of quantification 

m/v  Mass/volume 

MEPS  Microextraction by packed sorbent  

MIP  Molecular imprint polymer 

MS  Mass spectrometry 

MS/MS  Mass spectrum in tandem 

MTEOS  Triethoxymethylsilane 

NanoLC  Nano Liquid chromatography 

NPs  Nanoparticles 

PAHs  Polycyclic aromatic hydrocarbons 

PDMS  Polydimethylsiloxane 

PEEK  Polyether ether ketone 

PEG  Polyethylene glycol 
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PETE  Polyethylene terephthalate  

PS‐DVB  Divinylbenzene polystyrene 

PTFE  Polytetrafluoroethylene 

QToF‐MS  Quadrupole time‐of‐flight mass spectrometry 

RAM  Restricted access material 

REC  Research ethics committees 

RNA  Ribonucleic acid 

RSD  Relative standard deviation 

SBSE  Stir‐bar extraction 

SDME  Single‐drop microextraction 

SPE  Solid‐phase extraction 

SPME  Solid‐phase microextraction 

TEOS  Tetraethyl orthosilicate 

TQD‐MS  Triple quadrupole mass spectrometer 

tR  Retention time 

TRB‐5  Polydimethylsiloxane modified with 5% phenyl groups 

TRB‐20  Polydimethylsiloxane modified with 20% phenyl groups 

TRB‐35  Polydimethylsiloxane modified with 35% phenyl groups 

TRB‐50  Polydimethylsiloxane modified with 50% phenyl groups 

ua  Arbitrary units 

UE  European Union 

UHPLC  Ultra‐high pressure liquid chromatography 

UPLC  Ultra pressure liquid chromatography 

UV‐vis  Ultraviolet‐visible 

v/v  Volume/volume  
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WWTP  Wastewater treatment plant 
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A.2 LIST OF FIGURES 

Figure 1. Mnemonic SIGNIFICANCE of the twelve principles of green analytical chemistry by Gałuszka 

et al [1] 

Figure 2. Schematic summary of microextraction techniques. 

Figure 3. Evolution in the number of works of the topic "in-tube solid-phase microextraction" since 

1997. Source Web of Science (May 2020). 

Figure 4. Schematic representation of configurations in IT-SPME-LC: A) draw/eject mode; B) in valve 

with one pump and C) in valve with two pumps. 

Figure 5. Classification of liquid chromatography systems and operational parameters. 

Figure 6. Metabolic pathway of caffeine.  

Figure 7. Evolution in the number of citations on caffeine and trimethylxanthines in the topic 

environment in the last 30 years. Source Web of Science (May 2020). 

Figure 8. Chemical structure and log Kow for major compounds found in dietary supplements. 

Figure 9. Chemical structure and log Kow for trace compounds found in dietary supplements. 

Figure 10. A) Cary-60 UV-vis spectrophotometer; B) Optical fiber. 

Figure 11. Microscopic optical ECLIPSE E200LED MV.  

Figure 12. Cap LC-DAD system, Agilent 1200 Series with binary pump. 

Figure 13. Portable Nano LC, Focus LC Axcend Corp. 

Figure 14. IT-SPME assembly with 1 capillary. 

Figure 15. Schematic representation of IT-SPME off-line. 

Figure 16. Schematic SPE procedure for the analysis of water samples. 

Figure 17. Summary diagram of the matrices and analytes studied in this thesis. 

Figure 18. Photograph of the natural resins studied in this thesis. 

Figure 19. Chromatogram obtained in optimized conditions. Blue: Standard solution 20 µg mL−1; Red: 

Oral fluid spiked at 20 µg mL−1; Green: Serum spiked at 50 µg mL−1. 
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Figure 20. Chromatograms obtained in urine analysis optimization. Black: urine sample spiked at 20 

µg mL−1 in mobile phase with neutral pH; Brown: urine sample spiked at 20 µg mL−1 in mobile phase 

with acidification.  

Figure 21. Absolute recoveries (%) obtained with the IT-SPME with the capillaries tested: ZB 1701 

(blue), TRB-50 (yellow), ZB-WAX plus (gray), ZB-FFAP (purple), TiO2 (green) and SiO2 (red). The error 

bars represent the standard deviation for n = 3.  

Figure 22. Schematic procedure of analysis. 

Figure 23. UV spectra obtained for the trimethylxanthines studied. 

Figure 24. Standardized effects determined using a half-fraction 24-1 factorial design in serum matrix: 

a) Theobromine; b) Paraxanthine; c) Theophylline; and d) caffeine. 

Figure 25. Standardized effects determined using a half-fraction 24-1 factorial design in oral fluid 

matrix: a) Theobromine; b) Paraxanthine; c) Theophylline; and d) caffeine. 

Figure 26. Representative chromatograms from preterm newborns samples: Blue: Standard solution 

20 µg mL−1; Red: Oral fluid sample; Green: Serum sample. 

Figure 27. Correlation plot of concentration values of caffeine in serum and saliva (n = 35). Regression 

equation: C saliva = (-2 ± 3) + (0,99 ± 0,14)·C serum. r = 0.786. 

Figure 28. Bland-Altman graphic (plot of differences between method A (caffeine in serum) and 

method B (caffeine in saliva) vs. the mean of the two measurements). It presents confidence interval 

limits for mean and agreement limits. 

Figure 29. Plot of the relationship between the mean concentration of caffeine and % RSD for duplicate 

analytical results. 

Figure 30. Chromatograms obtained in the study of the effect of the solvent on the separation 

efficiency. Solution of caffeine standard at 50 µg mL-1 prepared in different solvents. Green: in 

acetonitrile; Black: in a mixture of acetonitrile and water (8:2); Blue: in a mixture of acetonitrile and 

water (5:5); Orange: in a mixture of acetonitrile and water (2:8); Purple: in water; Red: in methanol. 

Figure 31. Chromatograms obtained under the selected conditions with: (Blue) the portable nano LC; 

(Red) CapLC systems. Concentration of each analyte: 10 µg mL-1 for Blue signal, and 10 ng mL-1 for 

Red signal. 
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Figure 32. Study of the effect of volume on preconcentration in the HP-PLOT/Q capillary. Experimental 

conditions: standard solution at 50 ng mL-1; capillary length of 25cm; Volume of flushing 100 µL of 

water. Blue: Theobromine; Red: Theophylline; Green: Caffeine. 

Figure 33. Study of the effect on capillary length with the HP-PLOT/Q capillary. Experimental 

conditions: standard solution at 5 ng mL-1; processed volume of 4 mL; Volume of flushing 100 µL of 

water. Blue: 25 cm; Green: 50cm. 

Figure 34. Analyte responses obtained SPME with the different capillaries tested coupled on-line to the 

CapLC system. Concentration of each analyte: 1 µgmL-1 in the modified PEG (FFAP) and 10 ng mL-1 for 

the polymeric phases (HP-PLOT/Q and VP-HayeSep P); Processed volume 0.1 mL for FFAP and 4 mL for 

polymeric phases. Blue: Theobromine; Red: Theophylline; Green: Caffeine. Error bars represent 

standard deviation for n = 3. 

Figure 35. Results obtained by off-line SPME/portable NanoLC: (A) effect of the sample volume on 

analyte responses; (B) chromatogram obtained for a sample volume of 12 mL. Concentration of each 

analyte, 500 µg mL-1. Capillary: VP-HayeSep P (50 cm). Volume of flushing: 40 µL of water. Desorption 

volume: 100 µL methanol. 

Figure 36. Analyte responses obtained with two of the four cartridges tested and the portable nanoLC 

system. Concentration of each analyte: 500 ng mL-1; Processed volume: 8 mL.  Blue: Theobromine; Red: 

Theophylline; Green: Caffeine. Error bars represent standard deviation for n = 3. 

Figure 37. Chromatograms of the analysis for different load volumes: Green: 8 mL; Blue: 16 mL; Red: 

25 mL. Concentration of each analyte: 500 ng mL-1; cartridge: C18-U.   

Figure 38. Analyte responses obtained for the study of the volume of elution in SPE. Concentration of 

each analyte: 500 ng mL-1; Load volume: 25 mL; cartridge: C18-U. Blue: Theobromine; Red: 

Theophylline; Green: Caffeine. 

Figure 39. Chromatograms of the optimization of the cleanup process. Blue: Fortified sample without 

cleaning process; Red: Fortified sample and cleaning with 100 µL of nanopure water. The fortified 

concentration of each analyte: 500 ng mL-1; cartridge: C18-U; load volume: 25 mL; desorption with two 

fractions of 100 µL of methanol. 

Figure 40. Chromatograms obtained for sea water analysis. A: SPE/portable NanoLC; B: IT-SPME-

CapLC . 

Figure 41. Chromatograms obtained for the Turia river water samples: (A) chromatograms obtained 

by the SPE/portable NanoLC approach for a sample positive for caffeine, for an standard solution of 
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the analytes (5 µg mL-1, each compound), and detail of the registers obtained for the same sample 

fortified with the analytes (5 µg mL-1, each); (B) registers obtained by the IT-SPME - CapLC approach 

for the samples and for an standard solution of the analytes (10 ng mL-1), and normalized spectra of 

the peak assigned to caffeine in sample 2 and the spectra corresponding to a standard solution of 

caffeine.  

Figure 42. Graphical evaluation of the effect of the UV cutoff wavelength of the solvents commonly 

used as a function of the maximum absorption wavelength of the studied compounds. 

Figure 43. Chromatograms resulting from the study of the effect of acid modifiers on the 

chromatographic efficiency of synephrine. Blue: without modifier; Red: with hydrochloric acid; Green: 

with ortho-phosphoric acid; Purple: with formic acid. Concentration of synephrine: 1 µg mL-1. 

Figure 44. Chromatograms obtained with the optimized gradient. Blue: at 200 nm; Red: at 220 nm; 

Purple: at 275nm; Green: at 330 nm; Orange: at 370 nm. For a solution containing synephrine (1 µg 

mL-1), theobromine (1 µg mL-1), caffeine (1 µg mL-1), Riboflavin (1 µg mL-1), 5-CQA (1 µg mL-1), caffeic 

acid (1 µg mL-1), linalool (5 µg mL-1), myrcene (5 µg mL-1), limonene, (5 µg mL-1), α-pinene (5 µg mL-1), 

farnesene (5 µg mL-1) and kaempferol (1 µg mL-1). 

Figure 45. Chromatogram obtained at 275 nm for a mixture of caffeine and riboflavin (1 µg mL-1 each) 

with the gradient modified for the analysis of these compounds. At the top the absorption spectra of 

each compound appear. 

Figure 46. Chromatograms obtained at 330 nm for a standard mixture of caffeic acid and chlorogenic 

acids (1 µg mL-1) with different mobile phases. Blue: acetonitrile and 0.1% phosphoric acid; Green: 

methanol and 0.1% phosphoric acid. 

Figure 47. Chromatograms obtained at 275 nm for sample GC-3, extracted with 2 mL of methanol, 

with a dilution factor of 50 and analyzed by multi-class method. Red: extraction with the first portion 

of methanol; Green: extraction with the second portion of methanol. 

Figure 48. Chromatograms obtained at 275 nm for sample GC-3, extracted with 5 mL of methanol, 

with a dilution factor of 100 and analyzed by multi-class method. Red: extraction with the first portion 

of methanol; Green: extraction with the second portion of methanol. 

Figure 49. UV spectra obtained for some of the compounds analyzed by the multi-class method. 

Figure 50. UV spectra obtained for chlorogenic acid compounds analyzed under the chlorogenic acids 

method. 

Figure 51. Schema of the procedure for the analysis of the samples by the two methods. 
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Figure 52. Chromatograms obtained for the analysis of the green coffee samples at 275nm. A: GC-1 

with dilution factor of 200; B: GC-2 (Blue) with dilution factor of 100; GC-3 (Purple) with dilution factor 

of 100. 

Figure 53. Chromatogram obtained at 275 nm for sample GC-3 with the Multi-class method and the 

modified gradient for the analysis of caffeine and riboflavin (purple), and normalized spectra of the 

peak assigned to riboflavin in the sample (red) and the spectra corresponding to a standard solution 

of riboflavin (blue). In green appears the spectra corresponding to the peak assigned to caffeine. 

Figure 54. Chromatogram obtained at 220 nm with the multi-class method for the analysis of Fat-

burning supplements. Green: FB-1 with dilution factor of 1000; Red: FB-2 with dilution factor of 500. 

At the top appears the spectra corresponding to the peak assigned to synephrine (blue). 

Figure 55. A: Chromatogram obtained at 200 nm for the analysis of FB-1 sample. Blue: standard 

solution of Linalool (5 µg mL-1); Red: Sample with dilution factor of 2; Green: Sample spiked with linalool 

(1µg mL-1). B: Chromatogram obtained at 220 nm for the analysis of FB-2 sample. Red: Sample with 

dilution factor of 2; At the top appears the normalized spectra of the peak assigned to myrcene in the 

sample (red) and the spectra corresponding to a standard solution of myrcene (blue). 

Figure 56. Chromatogram obtained at 200 nm for the analysis of HP sample without dilution. Peaks of 

limonene and farnesene were identified. At the top appears the normalized spectra of the peak 

assigned to limonene in the sample (red) and the spectra corresponding to a standard solution of 

limonene (blue). 

Figure 57. Chromatograms obtained at 330 nm for the analysis of GC-1, GC-2, GC-3, and FB-1 samples. 

Green: standard solution (each compound at 1 µg mL-1); Blue: GC-2 sample with dilution factor of 300; 

Red: GC-3 sample with dilution factor of 300; Purple: GC-1 sample with dilution factor of 100; Brown: 

FB-1 sample with dilution factor of 5; at the top appears the normalized spectra of the peak assigned 

to 5-CQA in the sample (red) and the spectra corresponding to a standard solution of 5-CQA (blue). 

Figure 58. Chromatogram obtained at 330 nm for the analysis of the GC-1 sample with a dilution factor 

of 100; at the top appears the UV spectra of the unknown peaks. 

Figure 59. Chromatogram obtained at 200 nm for the analysis of Lupenone standard solution at 100  

µg mL-1, employing a mixture of water and acetonitrile (10:90) as mobile phase. 

Figure 60. UV spectra obtained for analyzed compounds. 

Figure 61. Chromatogram obtained for standard solution mix of the analytes (10 µg mL−1) in methanol 

injected directly; volume of injection 5 µL; eluent, 100% acetonitrile; detection wavelength 200nm.  
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Figure 62. Chromatograms obtained at 200 nm for standard solution mix of the analytes (100 µg mL−1) 

in: Red: methanol; Blue: acetonitrile; Green: Ethyl acetate; Purple: isopropanol; Brown: Chloroform. 

Volume of injection 5 µL; eluent, 100% acetonitrile. 

Figure 63. Analyte responses obtained for the study of the percentage of water in injection solvent. 

Blue: 0% of water; Green: 10% of water; Red: 20% of water; Purple: 50% of water. Concentration of 

each analyte: 5 µg mL-1; Volume of injection 5 µL; eluent, 100% acetonitrile. 

Figure 64. Chromatogram obtained for standard solution mix of the analytes (10 µg mL−1) in methanol 

after loading 5 µL of nanopure water in the injection loop. Volume of injection 5 µL; eluent, 100% 

acetonitrile; detection wavelength 200nm. 

Figure 65. Chromatograms obtained for standard solution mix of the analytes (10 µg mL−1) in methanol 

after loading 5 µL of nanopure water in the injection loop. Red: volume of injection 15 µL; Green: 

volume of injection 5 µL. Eluent, 100% acetonitrile; detection wavelength 200nm. 

Figure 66. Chromatograms obtained for the extract of white copal sample. Red: extracted with 

acetonitrile; Green: extracted with methanol. Eluent, 100% acetonitrile; detection wavelength 200nm. 

Figure 67. Photographs of the extracts obtained after adding 1 mL of methanol. a: white copal; b: 

ocote; c: copal in tears; left vials in (a–c), 1 mg of homogenized samples; right vials in (a–c), 15 mg of 

the homogenized samples. d: solution obtained after treating the residue insoluble in methanol of 

copal in tears (10 mg) with 1 mL of water. 

Figure 68. Chromatograms obtained in the matrix effect study for Copal in tears sample. Green: sample 

without fortification; Purple: fortified sample with 5 µg mL−1 of the analytes. On the right, the 

recoveries values found for all analytes (n=3). 

Figure 69. Chromatograms obtained in the analysis of the resin samples. A: White copal; Red: blank of 

methanol; Blue: standard solution at 5 µg mL-1;Green: sample. B: Ocote resin with dilution factor of 20; 

Blue: standard solution at 5 µg mL-1; Green: sample. At the top appears the normalized spectra of the 

peak assigned to limonene in the sample (red) and the spectra corresponding to a standard solution of 

limonene (blue). 
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