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Abstract

This paper introduces the kernel signal-to-noise ra-
tio (kSNR) for different machine learning and signal
processing applications. The kSNR seeks to max-
imize the signal variance while minimizing the es-
timated noise variance explicitly in a reproducing
kernel Hilbert space (rkHs). The kSNR gives rise
to considering complex signal-to-noise relations be-
yond additive noise models, and can be seen as a
useful signal-to-noise regularizer for feature extrac-
tion and dimensionality reduction. We show that
the kSNR generalizes kernel PCA (and other spec-
tral dimensionality reduction methods), least squares
SVM, and kernel ridge regression to deal with cases
where signal and noise cannot be assumed indepen-
dent. We give computationally efficient alternatives
based on reduced-rank Nyström and projection on
random Fourier features approximations, and ana-
lyze the bounds of performance and its stability. We
illustrate the method through different examples, in-
cluding nonlinear regression, nonlinear classification
in channel equalization, nonlinear feature extraction
from high-dimensional spectral satellite images, and
bivariate causal inference. Experimental results show
that the proposed kSNR yields more accurate solu-
tions and extracts more noise-free features when com-
pared to standard approaches.
Keywords: kernel methods, noise model, signal-to-
noise ratio, SNR, heteroscedastic, feature extraction,
signal classification, causal inference.
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1 Introduction

The signal-to-noise ratio (SNR) describes the propor-
tion of signal power with regard to the noise power,
which is an extremely useful concept for quantifying
the robustness and quality of a system. In order to
reduce the noise, one can try to control the acqui-
sition environment or alternatively look at the noise
characteristics and filter the acquired signal accord-
ingly. In fact, several signal processing and machine
learning tasks, e.g. filter design or regularization, are
linked to the maximization of the SNR, as this en-
forces smoothness by discarding features influenced
by noise while preserving signal characteristics.

In this scenario, a common approach is to trans-
form the observed signal aiming to maximize the
SNR, or alternatively minimizing the amount of
noise. The minimum noise fraction (MNF) trans-
formation [1] maximizes the variance of the signal
and, at the same time, minimizes the estimated noise.
However, MNF is a linear transformation that strug-
gles with settings where signal is correlated with the
noise (also known as heteroscedastic noise scenar-
ios). MNF assumes an additive noise model and
solves a generalized eigenvalue problem taking into
account signal and noise covariances, hence no cross-
covariance is used. Nevertheless, a more important
drawback of the MNF/SNR transformation is that
the method cannot deal with nonlinear signal-to-
noise relations. To cope with this problem, kernel
MNF (kMNF) was presented in [2] for dimensionality
reduction. Originally, given the right kernel function,
the signal and the estimated noise are mapped to a
high-dimensional (feature) space, where the MNF is
minimized. This implicit kMNF/kSNR was limited
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to feature extraction only, and heavily relied on an
accurate noise estimation in the original space.

[3] extended the standard formulation by studying
both signal and noise directly in the feature space
(explicit kMNF). In this way, kSNR can effectively
express nonlinear relations between signal and noise
and, at the same time, reduces the number of pa-
rameters needed [4, 5]. Later, we introduced in [6]
the main ideas for exploiting the presented kSNR in
machine learning applications beyond feature extrac-
tion. In this paper, we analyze the methodology,
both theoretically and experimentally. In particu-
lar, we note that the kernel version of SNR allows
us to consider signal-to-noise dependencies beyond
additive noise models, and can be seen as a power-
ful signal-to-noise regularizer in many applications of
machine learning and data processing. It can be ap-
plied in combination with any kernel method working
under correlated (even non-Gaussian) noise sources.
Therefore, we here showcase the explicit kSNR for
feature extraction, as well as for regression, classi-
fication, and bivariate causal inference. Noting the
important role of noise estimation, we pay special at-
tention to both implicit and explicit ways of doing so
in both structured and unstructured domains, and
relate this to traditional delta tests in multivariate
statistics. We complete the theoretical analysis by
proposing two alternative formulations to reduce the
computational cost involved in the proposed method
based on reduced-rank approximations and projec-
tions on random Fourier features. Experimentally,
we successfully test the method in nonlinear regres-
sion problems under different noise sources, causal
inference under non-additive noise settings, channel
equalization, and nonlinear feature extraction from
hyperspectral satellite images.

Section 2 presents the kSNR framework and the
specific formulation for the aforementioned problems.
Section 3 proposes alternatives to reduce the compu-
tational cost of the proposed method and analyzes
the stability of the framework. Section 4 presents the
experimental results in different applications to show
the capabilities of the method. Finally, conclusions
are presented in Section 5.

2 Kernel signal-to-noise ratio

In this section, we first introduce the common nota-
tion for the nonlinear extensions of the kSNR. In par-
ticular, the kernel signal-to-noise ratio is presented
in three different contexts: kernel feature extraction,
least-squares regression and classification. Finally,
the problem of noise estimation is discussed: critical
assumptions are made in standard noise estimation
in the input space, hence an explicit kernel-based es-
timation in reproducing kernel Hilbert spaces (rkHs)
is introduced.

2.1 kSNR notation

Given a set of training samples X := {xi ∈ Rd | i =
1, ..., n}, we assume an additive noise model, xi =
si + ni, where the signal is noted as si, and the noise
ni may not necessarily follow a normal distribution.
In matrix notation, we can represent observations as
X = [x1 · · ·xn]> ∈ Rn×d, where > denotes matrix
transposition, being typically the number of train-
ing samples n higher than the data dimensionality
d. X can be also expressed as the sum of a signal
S and a noise N matrices, X = S + N. The cen-
tered version of X is indicated by X̃, and the em-
pirical covariance of the observations and noise are
calculated as Cx = 1

nX̃>X̃ and Cn = 1
nÑ>Ñ. The

noise is commonly assumed to be orthogonal (uncor-
related) to signal, S>N = N>S = 0, which is very
convenient for solving signal-to-noise transformation
and blind-source separation problems [1]. The linear
MNF/SNR feature extraction is interested in projec-
tions most driven by signal and simultaneously less
affected by noise. To extract p linear features we
project data onto the subspace characterized by the
projection matrix V, of size d × p, with p 6 d, so
that data projected onto the top p components are
given by X̃′ = X̃V. For extracting only one fea-
ture, this problem can be solved by maximizing the so
called Rayleigh quotient, (v>Cxv)/(v>Cnv), which
measures the ratio between the desired information
and the undesired noise along the direction of v.
For extracting more than one feature one could solve
the trace ratio problem Tr{V>CxV}/Tr{V>CnV},
where Tr{·} denotes the trace of a matrix, which is
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Noise-free data kPCA Feats #1vs.#2 kSNR Feats #1vs.#2

Noisy data kPCA Feats #1vs.#2 kSNR Feats #1vs.#2

kPCA Feat #1 kPCA Feat #2 kPCA Feat #3

kSNR Feat #1 kSNR Feat #2 kSNR Feat #3

Figure 1: kSNR feature extraction in a two-dimensional example. [Left panel ] Correlated noise in the π/4-
direction is added to the dataset: in the noise-free case (top), the kSNR is equivalent to kPCA, while in the
noisy case (bottom) kPCA projections are affected by noise while kSNR are not. [Right panel ] Projected
features for the noisy dataset help to understand this effect: kPCA projections #2 and #3 capture the noise
distribution while, for the kSNR, all extracted projections are invariant to variations in the π/4 direction
where the noise is mostly present, i.e. kSNR avoids projections more affected by noise.

the sum of its eigenvalues and also the cumulative
variance of the projected dimensions. However, the
trace ratio problem does not have a direct closed-
form global optimum solution [7] and it is convention-
ally approximated [1, 2] by solving the associated ra-
tio trace problem Tr{(V>CnV)−1(V>CxV)}, which

can be stated as:

MNF/SNR maximize: Tr{V>X̃>X̃V}
subject to: V>Ñ>ÑV = I.

(1)

Using Lagrange multipliers to solve this constrained
maximization problem shows that the solution (i.e.
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the columns of V) is given by the generalized eigen-
vectors vi associated to the largest generalized eigen-
values λi of the generalized eigenvalue problem with
the signal, Cx, and noise, Cn, covariance matrices:

Cxvi = λiCnvi. (2)

It is important to note for the following discussions
that the MNF/SNR transformation (1) does not con-
sider signat-to-noise cross-covariance, and (2) cannot
cope with nonlinear feature relations.

In this context, kernel methods allow us to ob-
tain nonlinear extensions of linear problems [8, 9].
The observations xi are mapped to a Hilbert space
H via a mapping function φ(·) that yields high di-
mensional vectors φ(xi) ∈ RdH ⊆ H. However, we
do not need a direct access to these mapped vectors
in order to calculate the dot product between sam-
ples in H. It can be computed by using reproducing
kernel functions, K(xi,xj) = 〈φ(xi),φ(xj)〉H. The
squared exponential kernel is typically used in this
setting, K(xi,xj) = exp(-‖xi−xj‖2/(2σ2)), where σ
parameter is the width of this Radial Basis Function
(RBF) kernel. The evaluations of the kernel function
among all training samples are stored in the kernel
matrix K, whose entries are K(xi,xj).

2.2 kSNR feature extraction

Our interest is to maximize the SNR in Hilbert
spaces, which is equivalent to minimize the noise frac-
tion in H:

kSNR maximize: Tr{U>Φ̃
>

Φ̃U}

subject to: U>Φ̃
>
n Φ̃nU = I,

(3)

where Φ̃ and Φ̃n ∈ Rn×dH are the matrices contain-
ing the centered mapped data and noise samples re-
spectively, and U is the projection matrix in H of
size dH × p. However, this problem is not directly
solvable since we do not have access to the mapped
samples in H and its dimension dH might be infinite.
Making use of the representer’s theorem [10] we ex-
press the projection matrix as a linear combination of

the mapped samples, U = Φ̃
>

A, thus reducing the

maximization problem to find the matrix A of size
n× p:

kSNR maximize: Tr{A>K̃2A}
subject to: A>K̃xnK̃nxA = I,

(4)

which is efficiently solved by the generalized eigen-
problem:

K̃2αi = λiK̃xnK̃nxαi. (5)

This method was proposed in [2] and further ex-
tended in [3] for an explicit definition of SNR relations
in reproducing kernel Hilbert spaces (cf. Section 2.4).

Figure 1 shows the performance of kSNR compared
to kPCA in an illustrative example. The proposed
kSNR concentrates on extracting components driven
by signal and less affected by noise. Interestingly,
even though it is not imposed in the signal model, the
method considers signal-to-noise nonlinear relations
implicitly, and hence can deal with heteroscedastic
processes.

Finally, it is worth noting that the kSNR fea-
ture extraction generalizes kPCA to cases of non-
independent noise. Note that when the noise com-
ponents are independent in H, Σn = σ2

nI, then the
solution in (5) reduces to the standard kPCA equa-
tion, K̃αi = λiαi.

2.3 kSNR regression and classification

Kernel-based regression and classification problems
can also benefit from the maximization of SNR ra-
tios in Hilbert spaces. Let us reformulate standard
least squares problems using kernels: the kernel ridge
regression (KRR) [9] and least squares SVM (LS-
SVM) [11]. In both cases we aim to include the
noise covariance matrix in H as a powerful regu-
larizer. The intuitive idea here is to avoid high
variance of the weights in the directions mostly af-
fected by noise. Notationally, the model is given by
y = Φw + b, where Φ is the matrix of mapped sam-
ples, Φ := [φ(x1),φ(x2), . . . ,φ(xn)]> ∈ Rn×dH . The
regularized squared loss function to minimize is

min
w

{
‖y −Φw‖2+λw>Σnw

}
, (6)
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where λ is the regularization parameter, the noise co-
variance in Hilbert space is Σn = Φ>n Φn ∈ RdH×dH ,
and Φn is a matrix containing the estimated noise
samples mapped to H, Φn := [φ(n1) · · ·φ(nn)]> ∈
Rn×dH .

Hereafter, we intentionally drop the bias term b
for simplicity, even though it was taken into account
in all applications. Taking derivatives with respect to
w and applying the representer’s theorem [10], w =
Φ>α, we obtain the solution expressed as a function
of the (dual) weights in α:

α = (K2 + λKxnKnx)−1Ky, (7)

where Kxn contains the similarities between ob-
servations and their estimated noise, i.e. Kxn =
〈φ(xi),φ(nj)〉H. We can write the solution as α =
(K+λK−1KxnKnx)−1y alternatively. Therefore, the
term Ω := K−1KxnKnx can be interpreted as a reg-
ularizer that intuitively discounts the impact of noisy
samples, and reinforces the importance of the noise-
free ones. This essentially goes in the line of dis-
covering relevant directions in feature spaces mainly
governed by signal and less affected by noise [12, 13]
(cf. Fig. 1).

The kSNR regression model can be used for testing
on new incoming examples X∗: we only need to map
them to feature spaces, Φ∗ and project them onto
the solution vector w. This leads to the predictions
ŷ∗ = Φ∗w = Φ∗Φ

>α = K∗α, where matrix K∗ es-
timates the similarities between all test and training
examples. Note that in the test phase, noise estima-
tion (cf. section 2.4) is not necessary either, since its
information is implicitly in model weights.

It is also interesting to note that the kSNR re-
gression generalizes KRR to cases of non-independent
noise. For independent noise in Hilbert space, Σn =
σ2
nI, the solution (7) reduces to the standard KRR,

α = (K + λI)−1y, and λ is related to the noise
power σ2

n. Off-diagonal entries in Ω stand out and
account for signal-to-noise feature relations not ac-
counted when assuming signal and noise to be inde-
pendent.

The least squares SVM classification model [11][ch.
03] equivalently considers the signal model f(xi) =
sign(w>φ(xi) + b), and introduces equality con-
straints yi(w

>φ(xi)+b) = 1−ei, where ei represent

the residuals (slacks). The kSNR for classification
is thus equivalent to the KRR model. Both for re-
gression and classification, the model solution is not
sparse (all training examples are accounted for the
solution). Nevertheless, the kSNR regularizer seeks
for sparsity in feature spaces assigning higher weights
to noise-free samples than to noisy ones. This inter-
estingly allows us to generalize the kernel Fisher’s
discriminant analysis to cope with correlated (possi-
bly nonlinear) signal-to-noise relations [12].

2.4 Noise estimation

kSNR formulation requires estimating the sample
noise, which can be a difficult task. In audio and
image processing and time series analysis, the most
common approach consists in assuming locally sta-
tionary signals that allow to estimate the noise as a
simple difference between observations, n̂i ≈ xi −
xi−1. Other more elaborated approaches approxi-
mate the observed signal using autoregressive mod-
els to describe the local relations in structured do-
mains. Good examples of these local relations are
previous values in a time series or close pixels in an
image, which allow to estimate the noise as n̂i ≈
xi −

∑
l∈Wi

alxl, denoting Wi the neighborhood for
the sample xi. In problems in which there is not a
clear structured domain, it is possible to calculate
k-nearest neighbors (k-NN) estimates of the noise
n̂i ≈ xi − 1/k

∑
l∈C xl, denoting C = {1, . . . , k} the

set of k neighbors of xi. This simple way of noise
estimation goes in the line of the delta test, which
was proposed for time series analysis in [14], and in-
tuitively seeks to estimate the residuals support.

The proposed noise estimation strategies in the in-
put space X are intuitive and straightforward but
present a clear drawback: the two kernels required in
the kSNR formulation, K and Kxn, deal with con-
ceptually different objects (observations and noise).
Therefore, estimating the noise in the input space
(implicit kSNR) implies choosing different kernel pa-
rameters for K and Kxn. Moreover, the signal-to-
noise kernel Kxn handles entities that can be really
different in nature and magnitude, which makes the
selection of the kernel parameters much more diffi-
cult. In fact, by using different kernel parameters for
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K and Kxn, one is mapping signal and noise to differ-
ent Hilbert spaces. In this case, one cannot assume
that the eigenvalues obtained with the kSNR trans-
formation have the meaning of SNR in H anymore.
In order to address this problem, we propose what
we call explicit kSNR, in which the noise is estimated
explicitly in H [3]. Basically, as we do in the input
space, we encode previous knowledge about the prob-
lem to estimate the noise inH in terms of the mapped
samples, φ̂(ni) ≈ φ(xi)−

∑
l alφ(xl). Therefore, the

dot product 〈φ(xi),φ(nj)〉H gives rise to the explicit
signal-to-noise kernel function

Kxn(xi,nj) ≈ K(xi,xj)−
∑
l

alK(xi,xl), (8)

which can be directly used in the solutions obtained
in (5) and (7). Although the performance of the
method will depend on the adopted kernel, this ap-
proach allows more robust noise estimation in the ker-
nel space, since it may not be always guaranteed that
close samples in the input space are also close when
mapped to the rkHs. The main rationale behind this
approach is that, if neighbors are used as a smoothing
in the original space, we should follow the same prin-
ciple in the transformed space. As mentioned before,
the noise estimation coefficients al are given by the
particular problem in structured domains or by the
k-NN approximation in unstructured domains when
no additional information is available.

The explicit kSNR formulation presents obvious
benefits: 1) The hyperparameters of the signal and
noise kernel functions are the same since now Kxn is
also expressed in terms of similarities between sam-
ples in the input space X ; 2) The eigenvalues ob-
tained by the explicit kSNR transformation can be in-
terpreted as data variance and also as the SNR in the
projected space since data and noise are computed in
the same Hilbert space; and 3) Using non-linear ker-
nels in kSNR (Eq. (5)) not only allows to extract
projections that account for higher order signal and
noise relations but in turn introduces (through cross-
kernels Kxn and Knx) the cross-covariance between
signal and noise in the Hilbert space. This allows
to treat problems of signal-dependent noise sources
(such as heteroscedastic noise) and thus extends the
standard assumption of additive noise to more gen-

eral signal-to-noise relations. However it is worth not-
ing that the choice of a suitable kernel for a given
noise reduction problem is still an open question.

3 Computational efficiency and
stability

One of the main shortcomings of kSNR is related to
the computational cost since several n×n kernel ma-
trices are involved. For example, while the standard
SNR algorithm for feature extraction has a cost of
O(d3), our kernel counterparts scale cubically with
the number of samples, O(n3). Here we propose two
alternatives to speed up kSNR. We give the deriva-
tion for the particular case of feature extraction, yet
similar derivations can be readily obtained for the
other developments. In addition, the stability of the
obtained solution can be always a problem when solv-
ing a generalized eigenproblem using a finite number
of samples.

3.1 Reduced-rank kSNR

Besides the high computational cost involved in the
previous formulations, model solutions are not gen-
erally sparse, so application to new data requires the
evaluation of n kernel functions per test example, be-
coming prohibitive for large n. In order to allevi-
ate this problem we propose an alternative low-rank
version of the kSNR by reducing the representation
space. Let us now consider a reduced rank expan-

sion U = Φ̃
>
r A in r vectors rather than all avail-

able n training points in Eq. (3). Let us denote
K̃rx = ΦrΦ

> and Krn = ΦrΦ
>
n , where Φr is a sub-

set of the training data containing r samples (r � n).
Now signal and noise covariance matrices in Hilbert
spaces can be estimated with only r points, which ul-
timately lead to the reduced-rank kSNR (RR-kSNR)
problem

K̃rxK̃xrαi = λiK̃rnK̃nrαi, (9)

which involves a generalized eigenproblem with
smaller matrices of size r×r, and hence its computa-
tional cost only isO(r3), r � n. We want to highlight
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here that this is not a simple subsampling, because
the model considers correlations between all training
data and the reduced subset through K̃rx. This par-
ticular Nyström approximation yields also important
advantages in storage and in prediction time. Fig-
ure 2(a) shows the evolution of the computational
cost as a function of r in a toy example.

3.2 Randomized kSNR

An outstanding result in the kernel methods lit-
erature makes use of a classical definition in har-
monic analysis to improve approximation and scala-
bility [15]. The Bochner’s theorem states that a con-
tinuous kernel K(x,x′) = K(x−x′) on Rd is positive
definite (p.d.) if and only if K is the Fourier trans-
form of a non-negative measure. If a shift-invariant
kernel K is properly scaled, its Fourier transform
p(w) is a proper probability distribution. This prop-
erty is used to approximate kernel functions and ma-
trices with linear projections on a number of D ran-
dom features, as follows:

K(x,x′) =

∫
Rd

p(w)e−iw>(x−x′)dw

≈
∑D

i=1

1
D e
−iw>

i xeiw
>
i x′

where p(w) is set to be the inverse Fourier trans-
form of K, i =

√
−1, and wi ∈ Rd is ran-

domly sampled from a data-independent distribu-
tion p(w) [16]. Note that we can define a D-
dimensional randomized feature map z(x) : Rd →
CD, which can be explicitly constructed as z(x) :=
[exp(iw>1 x), . . . , exp(iw>Dx)]>. Other definitions are
possible: one could for instance expand the exponen-
tials in pairs [cos(w>i x), sin(w>i x)], but this increases
the mapped data dimensionality to R2D, while ap-
proximating exponentials by [cos(w>i x + bi)], where
bi ∼ U(0, 2π), is more efficient (still mapping to RD)
but has proved less accurate [17]. In matrix notation,
given n data points, the kernel matrix K ∈ Rn×n can
be approximated with the explicitly mapped data,
Z = [z1 · · · zn]> ∈ Rn×D, and will be denoted as

K̂ ≈ ZZ>. This property can be used to approximate
any shift-invariant kernel. For instance, the RBF
kernel can be approximated using wi ∼ N (0, σ−2I),

1 ≤ i ≤ D. It is also important to notice that the ap-
proximation of K with random Fourier features con-
verges in `2-norm error with O(D−1/2) when using
an appropriate random parameter sampling distribu-
tion [18].

For the case of kSNR, we have to sample twice,
hence obtain two sets of vectors wx and wn and the
associated randomized data and noise matrices Zx

and Zn. On the one hand, a Randomized kSNR
for feature extraction trivially reduces to solve the
SNR transformation using the explicitly mapped data
in the randomized feature space, which is equiva-
lent to solve the generalized eigenproblem Z>x Zxvi =
λiZ

>
n Znvi, where we can actually extract a maxi-

mum of D features, D � n. On the other hand,
a Randomized kSNR for kernel least squares regres-
sion reduces to solve α = (Z>x Zx + λZ>n Zn)−1Z>x y,
where the (now explicit) noise covariance matrix in
the randomized feature space acts again as a regular-
izer. The associated cost by using the random fea-
tures approximation now reduces to O(nD2). Fig-
ure 2(b) shows the computational cost as a function
of D for a toy example.
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Figure 2: Average computational cost, CPU time [s],
over 10 realizations as a function of r and D for the
(a) reduced rank and (b) randomized kSNR in black
lines (red lines denote full kSNR solution). We used
a synthetic example of n = 1000 samples drawn from
a sigmoid in a 10-dimensional space buried in i.i.d.
noise, N (0, 0.2), and varied r and D accordingly.
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3.3 Stability of the kSNR

The use of kSNR in practice raises the question of
the convergence of the algorithm with the amount of
data available and how the performance changes de-
pending on the dataset at hand. Such results have
been previously derived for the particular case of
kPCA [19], and can be used to analyze the kSNR
properties. Actually, defining K∗ = (KxnKnx)−1K2,
Theorems 1 and 2 in [19] apply to the kSNR, and pro-
vide the upper bounds for the largest and smallest
eigenvalues. Depending on how much non-diagonal
is K∗, i.e. how large the signal-to-noise relations are,
the bounds may be tighter than those of kPCA. With
an appropriate estimation of the noise structure, and
tuning of the kernel parameters, the performance of
kSNR will be at least as fitted as that of kPCA.

4 Experimental results

This section presents the results of different kSNR
methods in several signal processing and machine
learning problems.

Typical kernel functions are the linear K(xi,xj) =
〈xi,xj〉, the polynomial K(xi,xj) = (〈xi,xj〉 + 1)d,
d ∈ Z+, and the Radial Basis Function (RBF),
K(xi,xj) = exp

(
−‖xi − xj‖2/2σ2

)
, σ ∈ R+. In

the experiments, the RBF kernel function is used1.
Therefore, only two parameters have to be tuned: the
kernel width (σ) and the regularization constant (λ).
In order to select the optimal parameters, we split
the data into two sets of equal size for validation pur-
poses. Values tested for kernel width are obtained as
the mean distance between training points multiplied
by a factor in the range [10−3, 103]; and values for
the regularization constant λ are tested in the range
[10−3, 103]. After following this grid-search approach,
the best parameters values in terms of accuracy are
selected by cross-validation.

1Note that specific applications might need particular ker-
nel functions.

4.1 Experiment 1: Function approxi-
mation

First we showcase the behavior of the kSNR as a re-
gression technique under non-Gaussian i.i.d. noise.
For this synthetic experiment, we generate 1000 data
points from a sinc function st = sin(t)/t, with t ∈
[−π,+π], with the addition of a variety of noises,
yt = st+nt: 1) Gaussian, nt ∼ N (0, σ2

n); 2) Uniform,
nt ∼ U(0, 1); 3) Poisson, nt ∼ P(λ), λ ∈ [0, 0.3]; 4)
Scale-dependent multiplicative, nt = mt × |st| where
mt ∼ N (0, σ2

n). In order to assess the performance,
we partition the data into two sets of equal size, for
cross-validation and testing respectively.

The comparison of KRR and kSNR is presented in
Fig. 3. We also show a baseline in blue, which repre-
sents the SNR of the original noise-free data points
sn and is effectively a lower bound on the perfor-
mance. This simple –yet informative– toy problem,
clearly motivates the relevance of this work: while in
the first two cases (Gaussian and uniform) both ap-
proaches work similarly, the differences become clear
in the later two (Poisson and scale dependent). This
suggests that we can exploit the nice properties of
kSNR in scenarios that involve non-Gaussianity or
correlated noise.

4.2 Experiment 2: Channel equaliza-
tion

This experiment consists in equalizing a binary pulse
amplitude modulation signal at the output of a dis-
persive channel, whose low-pass model was a tapped
delay line with h = δi + 0.6δi−1 + 0.2δi−2− 0.1δi−3 +
0.01δi−4. This impulse response can represent a
minimum-phase dispersive channel, which is com-
mon in suburban and hilly terrain environments. We
synthesized N = 128 random binary values yi ∈
{0, 1}, i = 1, . . . , N , that are transmitted through the
previous channel h, and eventually corrupted by an
additive noise n. Therefore, the received signal at the
end is x = h∗y+n, from which we try to estimate the
transmitted signal y. Half of the samples were allo-
cated to train a LS-SVM classifier and the remaining
samples were used for validation purposes to select
the optimal parameters. As an assessment of the per-
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Figure 3: Regression experiment: estimation of a
sinc. RMSE vs SNR for four types of noise.

formance, we studied the bit error rate (BER) of an
independent burst of test 105 samples under additive
and scale-dependent noise n drawn from a gamma
distribution. We show the average results after 10
random iterations, for each SNR in the range of +6
to +20 dB. In Fig. 4 we compare the performance of
the different classifiers. The explicit version of kSNR
provides the best results, especially for SNR values
under 12dB (improvements in the order of 4dB).
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Figure 4: Channel equalization experiment: Bit error
rate (BER) vs SNR.

Figure 5: First 18 features extracted from AVIRIS
bands. From top to bottom: PCA, MNF, KPCA,
and explicit kSNR in the kernel space. From left to
right: subimages (RGB composites) with triplets of
extracted principal components in descending order
of relevance.

4.3 Experiment 3: Hyperspectral im-
age feature extraction

This experiment illustrates the method’s capabilities
in a challenging feature extraction and subsequent
classification problem. In particular, we first reduce
the dimensionality of a hyperspectral image acquired
by the airborne AVIRIS sensor2 and then use the ex-
tracted features for classification. The image consists
of 145 × 145 pixels, and 10366 of them are labeled
into 16 agricultural classes (ground truth). Each
pixel contains 220 contiguous spectral bands, includ-
ing 20 channels in the spectral region affected by
atmospheric water vapor absorptions, which present
high noise levels [20]. Therefore, we reduce the data
dimensionality by extracting features from the orig-
inal 220 channels and benchmark the kSNR perfor-
mance against standard PCA, MNF (aka SNR), and
KPCA. The quality of the first 18 extracted princi-
pal components is analyzed in Fig. 5 by sorting them
from higher to lower importance (eigenvalues). Vi-
sual inspection reveals that kSNR provides the most
noise-free image features.

2https://engineering.purdue.edu/˜biehl/
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Figure 6: LDA classification accuracy (kappa statis-
tics, κ) as a function of: (a) the number of extracted
features used as inputs in LDA; (b) the SNR for dif-
ferent levels of additive noise. Three scenarios are
considered for the PCA based methods: 1) using
noisy data for both finding the transform (training)
and extracting the features (testing); 2) using de-
noised samples to train the transform and then ex-
tract the features from noisy data (*); and 3) denois-
ing both the train and test datasets (**).

In order to test the method’s performance we
added different levels of Gaussian noise to the orig-
inal image (SNR from 0 to 40 dB) and then used
the extracted features as input for a linear discrim-
inant analysis (LDA) classifier. Figure 6(a) shows
the classification accuracy as a function of the num-
ber of extracted features for a SNR of 20 dB. The
proposed kSNR and MNF provide the best accuracy
when confronted with the linear and kernel PCA ver-
sions, which stresses the importance of accounting for
the noise contribution. When the data is denoised be-
fore computing the PCA/KPCA transform (**), the
results are also better but lower than for the pro-
posed method, which illustrates that characterizing
the noise distribution and avoiding directions affected
by noise might be more robust than estimating the
noise and then subtracting it from each independent
sample. Figure 6(b) shows the classification accuracy
for different levels of additive Gaussian noise when
extracting 15 principal components. Under extreme
noise conditions (SNR=0dB) the noise characteristics
(e.g. noise covariance) are poorly estimated and thus
the proposed method shows low accuracy. However,
working in less than 10dB is far from being realis-

(a) (b)

(c) (d)

Figure 7: (a) AVIRIS scene presenting vegetated
crops and bright bare soils; (b) Ground Truth of the
16 land-cover classes; and (c) MNF and (d) explicit
kSNR classification maps.

tic in most applications, and all algorithms perform
poorly in those regimes. When the SNR increases,
the explicit kSNR method outperforms the other ap-
proaches. It is also worth noting that kernel methods
provide better results than their linear counterparts
in all cases. Finally, visual inspection of the classifi-
cation maps for a SNR of 20 dB using the best sets of
extracted features reveals that kSNR provides more
uniform land cover maps (Fig. 7).

4.4 Experiment 4: Causal discovery

Establishing causal relations among random variables
using empirical data is perhaps the most important
challenge in today’s Science. In this experiment, we
use kSNR for causal discovery in bivariate simulta-
neous data. To this end, following [21] we aim at
inferring causal links between two observed random
variables x and y. The experiment is designed to first
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predict y from x. Then we measure the independence
of the residual rf = y−f(x) and the independent (po-
tential cause) variable x. Equivalently, we follow the
same procedure with the backward estimation x from
y, and check for independence of rb = x−g(y) from y.
The direction leading to most independent residuals
suggests the causing mechanism. In the standard ap-
proach [21], Gaussian processes were used for fitting.
Noting that noise additivity can break in real scenar-
ios, we aim here to compare the detection accuracy
and sensitivity using both the implicit and explicit
kSNR to compensate for non-additive noise.

For illustration purposes, we use a standard exam-
ple where the data comes from 349 german weather
stations3 that collected both altitude (meters) and
average temperature per year (oC). We split the data
evenly into cross-validation and test sets. We mea-
sure how independent these variables are using the
p-values from HSIC [22, 23]. In order to get a reliable
estimate of the noise, this was computed as the dif-
ference between the k-nearest neighbors least squares
approximation minus the observed signal [14]. Ta-
ble 1 confirms that the different approaches correctly
infers a causal link from ‘altitude’ to ’temperature’,
however, interestingly, the p-values corresponding to
(explicit) kSNR are significantly smaller, and the dif-
ference between pf and pb becomes smaller, yet more
realistic.

Table 1: ‘Altitude (x) causes temperature (y)’

Method pf pb Conclusion

KRR 2.88× 10−2 3.54× 10−12 x→ y
Implicit kSNR 7.47× 10−4 9.28× 10−11 x→ y
Explicit kSNR 2.94× 10−16 8.83× 10−23 x→ y

5 Conclusions

This paper presented the kernel signal-to-noise ratio
for some of the most relevant tasks in machine learn-
ing, namely, feature extraction, regression, classifica-
tion, and causal discovery. This approach provides
a regularizer that successfully deals with non-linear

3http://webdav.tuebingen.mpg.de/cause-effect/

signal-to-noise relations. Two alternative formula-
tions have been presented to reduce the computa-
tional cost for large-scale problems and the stability
of the method has been analyzed. The empirical eval-
uation shows that the kSNR compares favorably with
the corresponding state-of-the-art methods for each
of these problems, particularly when dealing with cor-
related or non-Gaussian noise. Additionally, both
implicit and explicit estimation of the noise were dis-
cussed and evaluated. Interestingly, the explicit for-
mulation typically turns out to be more accurate and
requires a lower computational burden. Future work
will deal with the design of accurate noise estimation
techniques in rkHs, the extension of the approaches to
estimate conditional independence, and further eval-
uation in challenging causal discovery problems.
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