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Abstract
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ecosystems through photosynthesis is commonly estimated through vegeta-

tion indices or biophysical properties derived from optical remote sensing

data. Microwave observations of vegetated areas are sensitive to different

components of the vegetation layer than observations in the optical domain

and may therefore provide complementary information on the vegetation

state, which may be used in the estimation of Gross Primary Production

(GPP). However, the relation between GPP and Vegetation Optical Depth

(VOD), a biophysical quantity derived from microwave observations, is not

yet known. This study aims to explore the relationship between VOD and

GPP. VOD data were taken from different frequencies (L-, C-, and X-band)

and from both active and passive microwave sensors, including the Advanced

Scatterometer (ASCAT), the Soil Moisture Ocean Salinity (SMOS) mission,

the Advanced Microwave Scanning Radiometer for Earth Observation Sys-

tem (AMSR-E) and a merged VOD data set from various passive microwave

sensors. VOD data were compared against FLUXCOM GPP and Solar-

Induced chlorophyll Fluorescence (SIF) from the Global Ozone Monitoring

Experiment-2 (GOME-2). FLUXCOM GPP estimates are based on the up-

scaling of flux tower GPP observations using optical satellite data, while SIF

observations present a measure of photosynthetic activity and are often used

as a proxy for GPP. For relating VOD to GPP, three variables were analyzed:

original VOD time series, temporal changes in VOD (∆VOD), and positive

changes in VOD (∆VOD≥0). Results show widespread positive correlations

between VOD and GPP with some negative correlations mainly occurring in
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dry and wet regions for active and passive VOD, respectively. Correlations

between VOD and GPP were similar or higher than between VOD and SIF.

When comparing the three variables for relating VOD to GPP, correlations

with GPP were higher for the original VOD time series than for ∆VOD or

∆VOD≥0 in case of sparsely to moderately vegetated areas and evergreen

forests, while the opposite was true for deciduous forests. Results suggest

that original VOD time series should be used jointly with changes in VOD

for the estimation of GPP across biomes, which may further benefit from

combining active and passive VOD data.

Keywords: microwave remote sensing, vegetation dynamics, ecosystem

productivity, ASCAT, SMOS, AMSR-E

1. Introduction1

Vegetation plays an important role in the Earth system as plants take up2

atmospheric carbon dioxide through photosynthesis and transport water from3

the soil into the atmosphere through transpiration (Lambers et al., 2008). In4

addition, vegetation can influence the Earth’s surface energy balance through5

differences in surface albedo compared to bare soil or snow cover, which is6

especially pronounced for boreal forests (Bonan, 2008). Therefore, monitor-7

ing the vegetation state in terms of photosynthetic activity as well as plant8

water status is of importance for hydrological, ecological and climate change9

applications (Bonan, 2015).10

The uptake of atmospheric carbon dioxide by vegetation through pho-11
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tosynthesis is commonly referred to as Gross Primary Production (GPP)12

and is the largest carbon flux in the global carbon cycle (Ciais et al., 2013).13

GPP can be determined at site level from eddy covariance measurements14

of carbon dioxide net exchange, which is partitioned into GPP and ecosys-15

tem respiration (Baldocchi et al., 2001; Reichstein et al., 2005; Jung et al.,16

2011; Lasslop et al., 2012). Another approach is the biometric method, which17

combines estimates of plant growth, chamber flux measurements and stock18

inventories (Campioli et al., 2016). GPP can be assessed from local to global19

scales using process-based models that describe the canopy light absorption20

and the energy and enzyme limitations of the carboxylation rate to estimate21

gross carbon assimilation (e.g. Farquhar et al., 1980; Collatz et al., 1992).22

However, current process-based models show large uncertainties because of23

a limited understanding of the processes that are involved in photosynthesis24

(Rogers et al., 2017). Alternatively, data-driven approaches that combine25

satellite observations with empirical models can be used to estimate GPP at26

large scales (Beer et al., 2010).27

Most of the approaches to estimate GPP from satellite observations use28

optical data to characterize biophysical properties or photosynthetic activity.29

Biophysical properties such as the Fraction of Absorbed Photosynthetically30

Active Radiation (FAPAR) are used in light-use efficiency models to esti-31

mate GPP, assuming a linear relationship between FAPAR and GPP which32

is modulated by temperature and water stress (Monteith, 1972; Nemani et al.,33

2003). Additionally, machine learning algorithms, driven by meteorological34
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and/or satellite data, have been used to upscale site-level observations of35

GPP (Beer et al., 2010; Jung et al., 2011; Tramontana et al., 2016). Alter-36

natively, Solar-Induced chlorophyll Fluorescence (SIF), an estimate of pho-37

tosynthetic activity, has been proposed as a global proxy for GPP in recent38

years (Frankenberg et al., 2014; Guanter et al., 2014; Damm et al., 2015;39

Zhang et al., 2016).40

Optical remote sensing data, however, are often affected by clouds and41

aerosols (Myneni et al., 2002; Forkel et al., 2013) and sun-sensor geometry42

(Dorigo, 2012; Morton et al., 2014). A common method to reduce the in-43

fluence of cloud cover on optical data is temporal compositing (Huete et al.,44

2011; Holben, 1986), which decreases the native temporal resolution. Alter-45

natively, time series filtering can be applied (Chen et al., 2004).46

In contrast to optical data, microwave radiation below a frequency of47

10 GHz is less influenced by clouds and is independent of the sun as source48

of illumination (Woodhouse, 2005). Microwave satellite observations over49

vegetation are thus able to provide crucial information in areas with exten-50

sive cloud cover like the tropics or high latitudes. The penetration depth of51

the microwave radiation into the vegetation canopy depends on frequency,52

dielectric properties, size and geometry of the interacting vegetation parts.53

As such, microwave observations from different frequencies theoretically con-54

tain information from different parts of the vegetation (Woodhouse, 2005).55

Whereas high frequencies (short wavelengths) predominantly interact with56

small structures like leaves and twigs at the top of the vegetation layer, low57
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frequencies (long wavelengths) can penetrate deeper into the vegetation and58

are more sensitive to large structures like branches or trunks (Woodhouse,59

2005). Accordingly, microwave radiation exhibits a higher penetration depth60

than optical radiation due to its longer wavelength, and should theoretically61

be better suited for monitoring denser canopies, as the observed signal does62

not saturate as quickly as for optical sensors (Woodhouse, 2005; Dorigo et al.,63

2007). Therefore, microwave satellite observations have the potential to pro-64

vide valuable information on the vegetation state complementary to optical65

satellite data which are traditionally used for estimating GPP.66

Microwave Vegetation Optical Depth (VOD) describes the attenuation of67

radiation due to scattering and absorption within the vegetation layer, which68

is caused by the water contained in the vegetation (Woodhouse, 2005). At69

low biomass, VOD is linearly related to the vegetation water content (VWC;70

expressed in kg/m2) (Jackson and Schmugge, 1991; Woodhouse, 2005). In71

addition, VOD can be related to aboveground living biomass (Liu et al.,72

2015; Tian et al., 2016) and to Leaf Area Index (LAI), especially in crop-73

and grasslands (Zribi et al., 2011; Kim et al., 2012; Sawada et al., 2016).74

VOD data have been analyzed for different applications such as long-term75

trends in biomass (Andela et al., 2013; Liu et al., 2013a,b, 2015), forest loss76

(Marle et al., 2016), phenology metrics (Jones et al., 2011, 2012), vegetation77

water stress (Miralles et al., 2016), evaporation retrievals (Miralles et al.,78

2011; Martens et al., 2016) and ecosystem resilience (Verbesselt et al., 2016).79

However, short-term variations in VOD have not been assessed with regard80
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to GPP.81

The aim of this study is to explore the relationship between VOD and82

GPP and assess if VOD can provide additional information about GPP on83

top of what is provided by SIF. In addition, this study investigates the effect84

of different microwave frequencies (between 1 and 10 GHz) and of active85

and passive sensors (hereafter referred to as active and passive VOD) on the86

relationship between VOD and GPP.87

2. Data and methods88

2.1. Vegetation remote sensing data89

The analysis is based on five VOD data sets, upscaled GPP estimates, and90

SIF observations (Table 1). The data sets have different temporal coverage91

with a common overlap of about one year. The period from January 2007 to92

December 2015 was selected in order to obtain a minimum number of four93

years of overlap with the GPP data set.94

2.1.1. VOD ASCAT95

Active microwave VOD data were retrieved from microwave backscatter96

measurements of the Advanced Scatterometer (ASCAT) onboard the meteo-97

rological operational satellite A (MetOp-A). ASCAT measures backscatter at98

5.25 GHz (C-band) in vertical co-polarization. The retrieval of VOD is based99

on slope estimates of the angular backscatter dependency, which are calcu-100

lated during the soil moisture retrieval using the TU-Wien change detection101
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algorithm. VOD is obtained by relating the angular sensitivity of measured102

backscatter to the sensitivity of modelled bare soil backscatter (Melzer, 2013;103

Vreugdenhil et al., 2016a,b) and, therefore, represents a measure of volume104

scattering due to vegetation relative to bare soil volume scattering. VOD is105

derived jointly from measurements in ascending and descending mode (9:30106

a.m./p.m. equatorial crossing).107

2.1.2. VOD AMSR-E108

Measurements at 6.9 GHz (C-band) and 10.7 GHz (X-band) were used109

from the Advanced Microwave Scanning Radiometer for Earth Observation110

System (AMSR-E). For both frequencies, VOD was obtained with the Land111

Parameter Retrieval Model (LPRM) v06 (van der Schalie et al., 2017). The112

algorithm uses a radiative transfer model (Mo et al., 1982) and includes an113

analytical solution for VOD using the Microwave Polarization Difference In-114

dex (MPDI) (Meesters et al., 2005). LPRM retrieves VOD and soil moisture115

simultaneously under the assumption of a globally constant single scattering116

albedo and further assumes that soil and canopy temperature are similar117

(Owe et al., 2001). Since the latter assumption generally does not hold for118

daytime observations, we only used observations from the descending mode119

for this analysis (1:30 a.m. equatorial crossing).120

2.1.3. VOD SMOS121

VOD from the Soil Moisture Ocean Salinity (SMOS) radiometer, which122

provides observations at 1.4 GHz (L-band), was also retrieved with the LPRM123
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v06 (van der Schalie et al., 2016, 2017). Only data from the ascending mode124

were analyzed (6 a.m. equatorial crossing) as soil and canopy temperatures125

are usually more similar in the morning than in the late afternoon although126

seasonal and latitudinal variations exist.127

2.1.4. VOD merged128

In addition to the single frequency data sets, a merged passive microwave129

VOD data set developed by Liu et al. (2015) was included in this analysis.130

For the period 2007-2012, the data set comprises observations from AMSR-131

E (6.9 GHz, C-band), WindSat (6.8 GHz, C-band), and the FengYun-3B132

Microwave Radiometer Imager (10.7 GHz, X-band). Prior to merging, the133

single sensor data sets were rescaled by applying the cumulative distribu-134

tion function (CDF) matching technique with AMSR-E as the reference (Liu135

et al., 2009).136

2.1.5. GPP FLUXCOM137

The FLUXCOM GPP data set presents an upscaling of flux tower mea-138

surements based on multiple machine learning algorithms and satellite data139

(Tramontana et al., 2016). Different remotely sensed data in the optical do-140

main from the Moderate Resolution Imaging Spectroradiometer (MODIS)141

were used as input, including the Enhanced Vegetation Index (EVI), LAI,142

band 7 - Middle Infrared Reflectance (MIR), Normalized Difference Vegeta-143

tion Index (NDVI), and Normalized Difference Water Index (NDWI) (Tra-144

montana et al., 2016).145
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Table 1: Data set overview. Acronyms: Enhanced Vegetation Index (EVI), Leaf Area
Index (LAI), MODIS band 7 - Middle Infrared Reflectance (MIR), Normalized Differ-
ence Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Land
Parameter Retrieval Model (LPRM).
Name Data set Period used Frequency/

wavelength/
data input

Spatial
resolu-
tion

Temporal
resolu-
tion

Type Method/
algorithm

Reference

SMOS SMOS 7/2010 -
12/2015

1.4 GHz 0.25° Daily Passive
mi-
crowave

LPRMv06 van der Schalie et al.
(2017)

ASCAT ASCAT 1/2007 -
12/2015

5.25 GHz 12.5 km Daily Active
microwave

TU-Wien
change
detection

Melzer (2013);
Vreugdenhil et al. (2016a,b)

AMSRE C AMSR-E 1/2007 -
9/2011

6.9 GHz 0.25° Daily Passive
mi-
crowave

LPRMv06 van der Schalie et al.
(2017)

AMSRE X AMSR-E 1/2007 -
9/2011

10.7 GHz 0.25° Daily Passive
mi-
crowave

LPRMv06 van der Schalie et al.
(2017)

VODmerged AMSR-E,
WindSat,
FY-3B

1/2007 -
9/2011,
1/2007 -
6/2012,
11/2010 -
12/2012

6.9 GHz,
6.8 GHz,
10.7 GHz

0.25° Daily Passive
mi-
crowave

LPRMv05 Liu et al. (2015)

GPP FLUXCOM 1/2007 -
12/2015

MODIS
EVI, LAI,
MIR,
NDVI,
NDWI

10 km 8-daily Optical Machine
learning

Tramontana et al.
(2016)

SIF GOME2 F v26 1/2007 -
12/2015

740 nm 0.5° Monthly Optical Joiner et al. (2013, 2014)

2.1.6. SIF GOME-2146

The GOME-F v26 SIF data were obtained from the Global Ozone Moni-147

toring Experiment-2 (GOME-2) sensor. The retrieval is based on the filling-in148

of Frauenhofer lines, which is caused by the chlorophyll fluorescence emitted149

from the Earth’s surface (Joiner et al., 2013). The algorithm uses princi-150

pal components analysis and radiative transfer theory to determine SIF at151

740 nm (Joiner et al., 2013, 2014, 2016). In this study, SIF observations from152

the MetOp-A platform were used.153
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2.2. Ancillary data154

2.2.1. CCI land cover155

The European Space Agency (ESA) Climate Change Initiative (CCI)156

global land cover data set v1.6.1 was used for identifying homogenous grid157

cells and stratifying results according to land cover. The data set is derived158

from Medium Resolution Imaging Spectrometer (MERIS) surface reflectance159

time series and has a spatial resolution of 300 m (Bontemps et al., 2013).160

The maps are available for three epochs that cover the periods 1998-2002,161

2003-2007, and 2008-2012, respectively. In this study, the map for the period162

2008-2012 was used as it falls within the overall data period.163

2.2.2. GPCP164

Precipitation data from the Global Precipitation Climatology Project165

(GPCP) are displayed as reference in the time series plot. GPCP 1DD version166

1.2 provides daily precipitation estimates at 1° spatial resolution (Huffman167

et al., 2001). The precipitation estimates are produced from satellite data in168

the high frequency microwave (>10 GHz) to infrared region in combination169

with gauge data (Huffman et al., 2001).170

2.2.3. ERA-Interim171

Skin temperature and snow depth from ERA-Interim were used to mask172

VOD. ERA-Interim is the current global atmospheric reanalysis produced173

by the European Centre for Medium-Range Weather Forecasts for the pe-174

riod from 1979 onwards (Dee et al., 2011). Data are assimilated using a175
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4-dimensional variational analysis. The horizontal resolution is about 0.7°176

at the equator.177

2.2.4. Topographic complexity178

Topographic complexity was used to mask VOD during the analysis of179

homogeneous grid cells. It is described by the standard deviation of elevation180

within a grid cell. A map of topographic complexity is available as ancillary181

data for the ESA-CCI soil moisture v02.2 data set (Dorigo et al., 2015) with182

a spatial resolution of 0.25°. The topographic complexity is computed from183

the USGS 30-Arc-Second Global Elevation Data Set (GTOPO30) (USGS,184

1996).185

2.3. Variables for relating VOD to GPP186

In this study, three variables for comparing VOD with GPP are investi-187

gated: (1) original time series of VOD, (2) change in VOD (∆VOD), and (3)188

positive changes in VOD (∆VOD≥0). The latter two variables treat VOD189

as a proxy for aboveground biomass of the vegetation layer, which includes190

leaves and woody components. Liu et al. (2015) showed that the relationship191

between VOD and forest biomass data is monotonically increasing, which192

makes VOD a suitable proxy for biomass. Changes in VOD may thus relate193

to changes in biomass and hence to Aboveground Net Primary Production194

(ANPP), which contributes to total Net Primary Production (NPP).195

1) Original VOD time series: For crop- and grasslands, VOD is propor-196

tional to total VWC (Jackson and Schmugge, 1991; Woodhouse, 2005)197
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and thus scales with LAI (Zribi et al., 2011; Kim et al., 2012; Sawada198

et al., 2016), which in turn is related to GPP (Suyker et al., 2005;199

Gitelson et al., 2014). The original time series of VOD may thus be200

related to GPP.201

2) ∆VOD: For forests, ANPP is commonly estimated through biomass202

changes between two consecutive measurements (Clark et al., 2001a;203

Campioli et al., 2011; Nunes et al., 2013; Wagner et al., 2013a; Campioli204

et al., 2016). Therein, biomass changes are determined from changes in205

stem circumference, which are converted to whole-tree biomass using206

allometric relations, and from litter traps or LAI. In this study, this207

method is adopted by calculating the change in VOD.208

∆V OD(t) = V ODt − V ODt−1209

where ∆VOD(t) is the change in VOD at time t, and VODt and VODt−1210

are VOD observations at time t and t-1, respectively.211

3) ∆VOD≥0: For grasslands, common metrics for determining annual212

ANPP include peak standing biomass, difference between maximum213

and minimum standing biomass, sum of positive biomass changes with214

negative values set to zero, and change in biomass (Scurlock et al.,215

2002). These metrics are designed for a low number of observations as216

the sampling of herbaceous vegetation is destructive and is often carried217

out once per growing season. Since the study focuses on the temporal218
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agreement instead of annual metrics and the change in VOD is already219

analyzed as the second variable, the method of positive biomass changes220

is used as third variable.221

∆V OD≥0(t) =


∆V OD(t) if ∆VOD(t) ≥ 0

0 otherwise

222

In order to compare the results of all three variables, changes in VOD223

(∆VOD and ∆VOD≥0) are also compared with the FLUXCOM GPP data224

set although, conceptually, they should relate more closely to NPP than225

GPP. However, direct measurements of large-scale NPP are not possible and,226

therefore, NPP is often derived from remote sensing-based GPP estimates227

using either a constant NPP:GPP ratio at annual time scales (Waring et al.,228

1998) or the difference between GPP and autotrophic respiration at shorter229

time scales (Running et al., 2004; Zhao et al., 2005). For this reason, VOD230

variables in this study are related to GPP and not to NPP.231

2.4. Data preparation232

The global data sets of VOD and GPP were resampled to a common res-233

olution of 8 days and 0.25°. Resampling was performed by averaging over the234

8-day period for VOD data sets or over the grid points within each 0.25° by235

0.25° grid cell for GPP. Prior to the resampling of the daily VOD data sets,236

the data were masked for conditions of frozen soil or snow based on ERA-237

Interim. Observations were excluded if the daily mean skin temperature was238
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Table 2: CCI land cover abbreviations.
Abbreviation CCI land cover class

CRO Cropland, rainfed
EBF Tree cover, broadleaved, evergreen, closed to open (>15%)
DBF Tree cover, broadleaved, deciduous, closed to open (>15%)
ENF Tree cover, needleleaved, evergreen, closed to open (>15%)
DNF Tree cover, needleleaved, deciduous, closed to open (>15%)
SHR Shrubland
GRA Grassland

SPARSE Sparse vegetation (tree, shrub, herbaceous cover) (<15%)

≤0 °C or snow cover was present. For consistency with the VOD data sets,239

GPP and SIF were also masked accordingly. Passive microwave observations240

can be affected by radio frequency interference (RFI), which is caused by241

artificial sources of radiation and hence is not related to land surface proper-242

ties (Li et al., 2004; Njoku et al., 2005). Therefore, passive VOD data were243

additionally masked for RFI. For ASCAT, negative values can occur due to244

a lower sensitivity of the modelled bare soil backscatter compared to the245

observed backscatter in the angular dependency (Vreugdenhil et al., 2016a).246

These negative values were not set to zero in order to avoid introducing a247

bias. For the comparison with SIF observations, GPP and VOD data sets248

were further resampled to monthly and 0.5° resolution using temporal and249

spatial means, respectively.250

Land cover data were converted into fractional land cover at 0.25° (or251

0.5°) resolution using the level 1 legend of the CCI classification scheme.252

The resulting map of dominant land cover at 0.25° resolution is displayed in253

Figure S1. The corresponding abbreviations are summarized in Tables 2 and254

S1. For global correlation maps, grid cells with a dominant land cover class255

of permanent snow/ice or water were systematically excluded.256
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For stratifying the results according to land cover, only homogeneous grid257

cells were evaluated in order to minimize the influence of pixel heterogeneity.258

Using the ESA CCI land cover map, a grid cell was considered homogeneous if259

the fraction of dominant land cover within a 0.25° by 0.25° grid cell exceeded260

an arbitrary threshold of 75%. Additionally, grid cells were discarded if either261

topographic complexity or percentage of water bodies were higher than 10%262

following Draper et al. (2012) and Dorigo et al. (2015), since both factors263

have a strong impact on the emitted or reflected microwave signal (Owe et al.,264

2008).265

Data smoothing was applied in two cases: 1) prior to calculating changes266

in VOD (∆VOD and ∆VOD≥0) and 2) for visualization purposes in the time267

series plots. The smoothing was performed using a Savitzky-Golay filter of268

order three with a window size of 11 observations.269

2.5. Statistical analysis270

Linear relationships were assessed using correlation analysis. Prior to271

the correlation analysis, the assumption of normality was tested following272

D’Agostino (1971) and D’Agostino and Pearson (1973). As not all grid cell273

data were normally distributed (p>0.05), the non-parametric Spearman rank274

correlation was used instead of the parametric Pearson correlation. Due to275

this absence of normal distribution for some grid cell data, non-parametric276

measures were used when analyzing full-length time series data: the median277

for displaying the global distribution of the data sets and the coefficient of278
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quartile variation (CQV, Kokoska and Zwillinger, 2000) for assessing sig-279

nal variability. CQV is calculated using the 25th (Q1) and the 75th (Q3)280

percentile:281

CQV = (Q3−Q1)/(Q3 + Q1)282

In addition to the zero-lagged correlation analysis, time lags for which283

the cross-correlations maximized were calculated as an additional measure284

to determine how well the signals match. Results for homogeneous grid cells285

are displayed as violin plots, which are similar to box plots but visualize the286

kernel estimation of the data distribution.287

To compare the data sets independent of the strong seasonal signals that288

affect vegetation properties in many regions, anomalies relative to the mean289

seasonal cycle were calculated. The mean seasonal cycles were obtained290

from the 8-daily or monthly time series by averaging over each valid day in291

a year within the study period. Due to the relatively short data periods, no292

detrending was applied prior to calculating the mean seasonal cycles.293

Residuals of the GPP-SIF relationship were analyzed to assess the poten-294

tial use of VOD for estimating GPP. Residuals were calculated using a linear295

regression model following Guanter et al. (2014) and Damm et al. (2015).296

The regression models were evaluated for each grid cell separately with SIF297

as predictor variable. For grid cells with a significant regression (p<0.05),298

residuals were obtained as the difference between the observed and the SIF-299
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based estimate of GPP.300

In addition to temporal correlations, spatial correlations were calculated301

to assess the similarity between maps. Since the spatial data were not nor-302

mally distributed (p>0.05), Spearman rank correlation was used.303

3. Results304

3.1. Global patterns of VOD, GPP and SIF305

Temporal median values of VOD, GPP and SIF reveal similar spatial306

patterns (Figure 1a-g), although spatial coverage of SMOS is reduced due to307

RFI masking. The spatial agreement with GPP is highest for SIF (r=0.87),308

followed by the passive VOD data sets (0.73<r<0.79) and is lowest for AS-309

CAT (r=0.47). In general, regions of high VOD, i.e. high biomass, coincide310

with highly productive regions, which are primarily located in the tropics. In311

addition, high values are also found at high latitudes. In these regions, data312

masking due to low temperature and snow results in wintertime data gaps,313

which in turn increases temporal median values as they represent medians314

over the growing season only. Nevertheless, these relatively high values of315

productivity or VOD at high latitudes are mainly consistent across data sets.316

Considering the absolute values of the VOD data, the data range differs317

between the data sets, which relates on the one hand to differences in the318

retrieval algorithm and version number and on the other hand to differences319

in sensor frequency. Since the focus of this study, however, is the temporal320

agreement between the data sets, differences in the absolute values were not321
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Figure 1: (a-g) Temporal median value of VOD data sets (a-e), SIF (f) and GPP (g). VOD
is dimensionless, GPP is in gCm−2d−1 and SIF in mWm−2nm−1sr−1. For visualization
purposes, each data set is scaled between the 5th and the 95th percentile. (a-f) r denotes
the spatial Spearman rank correlation between maps of temporal medians of GPP and
VOD or SIF. All coefficients are highly significant (p<0.001). (h) Map of CCI land cover
grid cells with a dominant land cover over 75% that correspond to the analyzed grid cells
in Figure 4. The center of the red circle marks the location of the grid cell shown in
Figure 8. Note that the size of the grid cells is enhanced for clearer visibility.

further analyzed.322

Global temporal correlations between the original VOD time series and323

GPP at lag zero reveal positive agreement across large areas (Figure 2a-e).324

However, also some regions with negative correlations are observed. For AS-325

CAT, negative correlations are found in Central America, South America,326

Africa and Southeast Asia. The passive VOD data sets show negative corre-327
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lations mainly in South America (in particular in the Amazon) and Southeast328

Asia. Although the results for different passive VOD data sets are similar329

in most areas, deviations from this behavior are found for SMOS and the330

merged VOD. For SMOS, negative correlations in central Africa coincide331

with those for ASCAT. For the merged VOD, predominantly positive cor-332

relations with GPP are observed in the Amazon, which contrasts with the333

negative values found for the other passive VOD data sets and may be re-334

lated to differences in the algorithm version. Compared to the VOD data335

sets, the correlation between GPP and SIF (Figure 2f) is positive everywhere336

and on average much stronger. Nevertheless, also regions with no significant337

correlations (p>0.05) occur, which are mainly located in the tropics and in338

Australia. In the tropics, both GPP and SIF exhibit low variability, while339

the opposite, i.e. high variability for both data sets, is found in Australia340

(Figure S2).341

Correlations between the anomalies of VOD and GPP (Figure 3a-e) also342

exhibit predominantly positive correlations. On average, the correlations343

are lower in magnitude than for the original time series but also show a344

lower number of negative values. Regions with relatively high correlations345

for the anomalies coincide with regions of high temporal agreement for the346

original time series, while some regions with negative correlations for the347

original time series result in no significant correlations for the anomalies.348

Highest correlation coefficients are observed in Australia. The correlations349

for the anomalies of GPP and SIF (Figure 3f) are of similar strength as the350
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Figure 2: (a-e) Spearman rank correlation between GPP and VOD data sets at 0.25°

and 8-daily resolution. Correlations that are not significant (p>0.05) are masked in grey.
Corresponding correlations at 0.5° and monthly resolution are displayed in Figure S4. (f)
Spearman rank correlation between GPP and SIF at 0.5° and monthly resolution.

correlations between the anomalies of GPP and VOD.351

3.2. Temporal agreement with respect to SIF352

The direct comparison of correlations between VOD and either GPP or353

SIF at homogeneous grid points (Figure 4) shows that the temporal agree-354

ment between VOD and SIF is similar to that found between VOD and355

GPP. In most cases, however, the median correlation coefficient is lower for356

the correlation between VOD and SIF than between VOD and GPP. This357

is especially pronounced for sparsely vegetated grid cells, which are mostly358

located in Australia (see Figure 1h).359

In order to assess if VOD can provide additional information about GPP360
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Figure 3: As Figure 2 but for the anomalies from the mean seasonal cycle. For a-e, the
corresponding correlations at 0.5° and monthly resolution are shown in Figure S5.

on top of that provided by SIF, VOD was correlated with the residuals of the361

GPP-SIF relationship (Figure 5). The spatial maps reveal mainly positive362

correlations with negative correlations in the same areas as for the original363

time series but show a larger number of not significant correlations. In those364

areas where correlations are significant, VOD can explain variations in GPP365

that are not expressed through SIF using linear regression.366

3.3. Comparison of the three variables for relating VOD to GPP367

For the comparison of the three variables with GPP, only grid cells that368

resulted in significant correlations for all three variables are shown in Figure 6.369

For shrub-, crop-, grassland and sparse vegetation, all three variables yielded370

consistent, mainly positive correlations. Median values are generally lowest371
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Figure 4: Violin plots of Spearman rank correlation between VOD and GPP (green)
and between VOD and SIF (blue) at 0.5° and monthly resolution for grid cells with a
dominant land cover fraction above 75%. Results are grouped according to the CCI land
cover classification and single frequency data sets are ordered along increasing microwave
frequency. The number of grid cells (n) is displayed above each graph. Horizontal lines
within the violins indicate quartiles. Values that are not significant (p>0.05) are excluded.
For the description of the land cover abbreviations see Table 2, for the spatial distribution
of grid cells see Figure 1h. Note that DNF is not displayed since the analysis did not result
in significant correlations for this land cover type.

for the correlation between SMOS and GPP and appear to increase with372

sensor frequency. In most cases, the original VOD time series result in higher373

median correlations with GPP than the changes in VOD. Highest median374

correlations are observed for shrubland for both frequencies of AMSR-E.375

Comparing the changes in VOD, results show that ∆VOD≥0 generally leads376

to higher correlations than ∆VOD.377

For forests, results are not as consistent as for the sparsely to moderately378

vegetated areas. Nevertheless, forests also show on average a lower magnitude379
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Figure 5: As Figure 2a-e but for the correlation between VOD and the residuals of the
GPP-SIF relationship at 0.5° and monthly resolution.

of correlation between SMOS and GPP than for the remaining VOD data380

sets. Similar as for the sparsely to moderately vegetated areas, evergreen381

needleleaf forests exhibit generally higher correlations for the original VOD382

time series than for ∆VOD and ∆VOD≥0. In contrast, deciduous forests383

mainly yield higher median correlations for ∆VOD and ∆VOD≥0 than for384

the original VOD time series. Evergreen broadleaf forests, which exhibit low385

signal variability (see Figure S2) and a high number of negative correlations,386

do not show a consistent pattern for the three variables. Comparing only387

the changes in VOD for all forests, median correlations tend to be higher for388

∆VOD than for ∆VOD≥0 and thus show the opposite behavior as for the389

sparsely to moderately vegetated areas.390
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Figure 6: Violin plots of Spearman rank correlation between GPP and VOD (green),
∆VOD (yellow) or ∆VOD≥0 (orange) at 0.25° and 8-daily resolution. Results are dis-
played for grid cells with a dominant land cover fraction above 75% and grouped according
to land cover (Table 2). n is the number of grid cells. Horizontal lines within the violins
indicate quartiles. Values that are not significant (p>0.05) are excluded. See Figure S3
for the spatial map of the analyzed grid cells.

The spatial distributions of the correlations between GPP and the three391

VOD variables (Figures 2, S6 and S7) tend to complement each other. For392

grid points where the original VOD time series results in high correlations,393

∆VOD and ∆VOD≥0 have lower correlations and vice versa. Since ∆VOD394

and ∆VOD≥0 both represent changes in VOD, their spatial correlation pat-395

terns with GPP are more similar compared to the correlation pattern between396

original VOD time series and GPP (Table S2).397

The lag analysis (Figure 7) is based on the same grid cells as in Figure 6.398

On average, the original VOD time series follow the GPP signal: changes in399

GPP are reflected with some delay by subsequent changes of the VOD signal.400
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Apart from the broadleaf forests, all land cover classes exhibit median lag401

values ranging between 0 and 50 days. For ASCAT in deciduous broadleaf402

forest, the half a year’s lag corresponds to the strong negative correlations403

found before for the zero-lagged correlations (Figure 6). In contrast to the404

positive lag found for the original VOD time series, the lag values for ∆VOD405

and ∆VOD≥0 are negative, which indicates that changes in VOD generally406

precede the GPP signal. In some cases, as for example in the deciduous407

broadleaf forest for AMSRE C, AMSRE X and the merged VOD, the ab-408

solute value of the median lag is smaller for ∆VOD and ∆VOD≥0 than for409

the original VOD time series. In these cases, calculating the change in VOD410

leads to a closer temporal agreement with GPP, which corresponds to the411

higher correlation coefficients found for the zero-lagged correlations.412

This shift from positive to negative lag values for the different variables413

is further illustrated in Figure 8 for a rainfed cropland-dominated grid cell.414

Comparing the data close to the seasonal peaks, the original VOD time series415

decrease slower than the GPP signal, resulting in a positive lag (Figure 8b).416

For ∆VOD, the signal rises earlier than for GPP, which yields a negative lag417

(Figure 8c). Apart from the opposite sign of the lag value, the scaled ∆VOD418

signal shows a different shape than the GPP signal. ∆VOD exhibits a high419

number of values around 0.5, which represent ∆VOD values close to zero and420

are a result of the relatively long period of small changes in VOD. In this421

case, considering only positive changes in VOD appears to result in a higher422

temporal matching with GPP (Figure 8d), which explains the higher cor-423
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Figure 7: As Figure 6 but for the lag. Lag values are excluded if the lag is larger than
half a year or the correlation of the lagged time series is not significant (p>0.05).

relations found for ∆VOD≥0 compared to ∆VOD in sparsely to moderately424

vegetated areas (Figure 6). Despite the overall higher temporal agreement for425

∆VOD≥0 than for ∆VOD, the decline in GPP is better captured by ∆VOD.426

The relationships between the three VOD variables and GPP can be427

further assessed with the corresponding scatter plots (Figures 8e-g). This428

relationship describes a seasonal hysteresis. Comparing all three variables,429

the shape of the mean seasonal cycle appears to be similar for the original430

VOD time series and ∆VOD as they both exhibit a pronounced linear part,431

while this feature is missing for ∆VOD≥0. The linear part for the original432

VOD, however, corresponds to the GPP increase, while for ∆VOD the linear433

part relates to the GPP decrease.434
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Figure 8: Time series (a-d) and scatter plots (e-g) at 8-daily resolution for a cropland-
dominated grid cell in West Sahel, located at 16.125W 14.625N, for the period 2009-
2012 (location is indicated in Figure 1f). (a) Skin temperature (T) and monthly sums of
precipitation (P). (b-d) VOD (b), ∆VOD (c), or ∆VOD≥0 (d) together with GPP. Data
are smoothed and scaled between their minimum and maximum for visualization purposes.
Note that the unscaled ∆VOD includes negative values. (e-g) Scatter plots of scaled VOD
variables against unscaled GPP for the same data as in (b-d).

4. Discussion435

4.1. Temporal agreement between VOD, GPP and SIF436

In this study, large parts of the world reveal positive correlations be-437

tween VOD and GPP both for the original time series and for the anomalies438

from the mean seasonal cycle. In addition, correlations between VOD and439

the residuals of the linear GPP-SIF relationship demonstrate that VOD can440

explain variations in GPP that are not explained by SIF. These findings441
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suggests that VOD provides useful information with regard to GPP.442

Water limitation appears to foster the coupling between VOD and GPP443

as areas with particularly high correlations between VOD and GPP in this444

study seem to coincide with areas of low water availability (Miralles et al.,445

2016; Papagiannopoulou et al., 2017). In these areas, vegetation responds446

more rapidly to changes in water availability (De Keersmaecker et al., 2015),447

which in turn is reflected in a close association between VOD and GPP.448

The most prominent example of low correlations in this study is found for449

evergreen broadleaf forests, which can be attributed to the low signal variabil-450

ity found in the tropics. This is in line with the generally low predictability451

of GPP in tropical forests (Tramontana et al., 2016) and can be linked to iso-452

hydricity, which describes the plant strategy of stomatal control in response453

to water stress (Konings and Gentine, 2016). Evergreen broadleaf forests454

are very isohydric, i.e. they try to minimize changes in leaf water potential455

by closing stomata (Fisher et al., 2006; Konings and Gentine, 2016). This456

closing of stomata may result in a decoupling of VWC and photosynthetic457

activity and hence cause a weaker relationship between VOD and GPP.458

4.2. Occurrence of negative correlations between VOD and GPP459

Negative correlations between VOD and GPP can be attributed to land460

surface properties and vegetation phenology. For ASCAT, negative correla-461

tions can be explained with the contribution of dry soil to volume scattering462

(Vreugdenhil et al., 2016a), which is often found for ASCAT backscatter in463
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arid and semi-arid regions (Wagner et al., 2013b; De Jeu et al., 2008). Liu464

et al. (2016) showed for L-band backscatter that the scattering mechanism465

of the soil shifts from surface scattering under wet conditions to volume scat-466

tering under very dry conditions; below a certain soil moisture threshold,467

the backscatter increases again with decreasing soil moisture. Some grid468

cells showing negative correlations are found in the tropical dry forest biome,469

which regularly experience a pronounced dry season lasting up to six months470

(Olivares and Medina, 1992). Therefore, depending on the duration and471

severity of the seasonal dry period and on the soil properties, volume scat-472

tering of dry soil might lead to spurious signals in the VOD if soil volume473

scattering is not taken into account in the retrieval algorithm, as is the case474

for the ASCAT TU-Wien algorithm (Hahn et al., 2017).475

In contrast to the active VOD, most negative correlations for passive476

VOD data can be linked to wetlands (Jones et al., 2011; Liu et al., 2011;477

Vreugdenhil et al., 2016b). Jones et al. (2011) demonstrated that passive478

VOD data exhibit an inverse relationship with vegetation growth for areas479

that are seasonally inundated.480

For evergreen broadleaf forest, negative correlations with GPP for SMOS,481

AMSRE C, and AMSRE X may partly relate to leaf phenology. Jones et al.482

(2014) reported asynchronous behavior between flux tower GPP estimates483

and AMSR-E C-band VOD for the Amazon forest, which may be linked to484

an inverse relationship between leaf age and photosynthetic capacity. New485

leaves, which flush during the dry season (Wright and van Schaik, 1994; Huete486
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et al., 2006), are photosynthetically more active than old leaves (Kitajima487

et al., 2002; Hutyra et al., 2007) but may also cause overall lower values of488

VOD.489

Similarly, negative correlations found for SMOS in Africa may relate to490

the phenology in tropical dry forests. Early studies demonstrated that de-491

ciduous trees in dry forests minimize their water loss by leaf shedding, and492

that some trees also flower during the dry season or often leaf out at the end493

of the dry season (Olivares and Medina, 1992; Borchert, 1994a,b). In terms494

of the VOD signal, this means that trunks and branches still contain a rela-495

tively high amount of water during the dry season. Since L-band data is most496

sensitive to larger structures (Woodhouse, 2005), this asynchronous behav-497

ior of the stem water content may lead to the observed negative correlations498

between SMOS and GPP.499

4.3. Effect of sensor frequency500

The comparison of different sensor frequencies between 1 and 10 GHz501

(L-, C-, and X-band) showed that for sparsely to moderately vegetated areas502

median correlations increased with sensor frequency. In line with this result,503

Calvet et al. (2011) demonstrated for a dense wheat field that C- and X-504

band microwave observations obtained from a ground-based radiometer are505

more sensitive to VWC than L-band data. Since VWC is linearly related506

to VOD (Jackson and Schmugge, 1991; Woodhouse, 2005), this can explain507

the lower magnitude of the correlation coefficients between SMOS and GPP508
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compared to the remaining VOD data sets. For forested regions, a similar509

behavior, with a low magnitude of the correlation for SMOS, was observed510

in this study. This suggests that C- and X-band microwave observations are511

better suited for relating VOD to GPP than L-band data.512

4.4. Comparison of the three VOD variables in relation to GPP513

Detailed knowledge about land cover is of decisive importance when as-514

sessing VOD in relation to GPP. Large differences exist for the three VOD515

variables between forested and non-forested regions. While ∆VOD shows a516

higher temporal agreement with GPP over forests, the original VOD time se-517

ries yield higher correlations with GPP for sparsely to moderately vegetated518

areas.519

According to the lag analysis, all three VOD variables generally did not520

yield a zero lag. The opposite signs for VOD compared to ∆VOD and521

∆VOD≥0 suggest that at the global scale neither the original VOD time522

series nor the changes in VOD alone can be used for relating VOD to GPP,523

but instead should be combined. The reason why both VOD and ∆VOD524

(or ∆VOD≥0) are linked to GPP, i.e. the sum of NPP and autotrophic525

respiration, can be explained with the contribution of both biomass and526

growth-related terms to GPP.527

NPP relates to the sum of above- and belowground NPP as well as losses528

through volatile organic compounds (VOC), herbivory and root exudates529

(Clark et al., 2001a,b; Gower et al., 2001; Girardin et al., 2010). Assuming530
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that belowground NPP is a fraction of ANPP (Clark et al., 2001a), these two531

terms relate to changes in biomass and, hence, to ∆VOD. The magnitude of532

the VOC flux was estimated to be small compared to NPP or GPP (Guenther533

et al., 1995; Kesselmeier et al., 2002), and losses through herbivory between534

consecutive observations and root exudates are difficult to quantify.535

Autotrophic respiration can be expressed as the sum of maintenance and536

growth respiration; while maintenance respiration is proportional to living537

biomass, growth respiration is a function of the change in biomass (Ryan,538

1990; Lavigne et al., 1996). Hence, VOD and ∆VOD can be related to539

maintenance and growth respiration, respectively. This suggests that GPP540

may be expressed as a combination of VOD and ∆VOD.541

The relationship between VOD, ∆VOD or ∆VOD≥0 and GPP may also542

vary throughout the season leading to hysteresis as shown in this study for543

a cropland-dominated grid cell. Similarly, but for the relationship between544

LAI and GPP, Gitelson et al. (2014) emphasized the importance of seasonal545

hysteresis. In the current study, the hysteresis was also present for ∆VOD,546

which indicates that this behavior is not merely a result of using a state547

(VOD) rather than a flux variable (∆VOD). The presence of a seasonal hys-548

teresis also explains here the on average lower correlations found for GPP vs549

VOD compared to GPP vs SIF, since such a hysteresis decreases the strength550

of the linear relationship. Combining the original VOD time series and the551

change in VOD thus might reduce the strength of the seasonal hysteresis and552

thereby improve the temporal agreement with GPP.553
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5. Conclusions554

The global analysis of VOD from different frequencies (L-, C- and X-555

band) in relation to GPP indicates that microwave VOD, which provides556

complementary information to optical data, has the potential to serve as557

explanatory variable for estimating GPP. Although some negative correla-558

tions occurred in dry and wet areas for active and passive VOD, respectively,559

VOD and changes in VOD (∆VOD or ∆VOD≥0) generally demonstrated a560

high temporal agreement with GPP, especially for C- and X-band data. The561

mainly non-overlapping distributions of negative correlations for active and562

passive observations indicate that active and passive VOD data should be563

used jointly. Land cover based differences in lag and correlation coefficient564

further suggest to combine original VOD time series with changes in VOD565

for relating VOD to GPP. In addition, seasonal hysteresis was observed for566

the relationship between VOD variables and GPP, which demonstrates that567

this relationship may vary both in space and in time. This underpins the568

need to further investigate the spatio-temporal relationship between VOD569

and GPP in order to make full use of microwave satellite vegetation data for570

regional to global ecosystem analyses and vegetation monitoring.571
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in leaf and wood production in tropical forests: a study combining satellite1108

and ground-based measurements. Biogeosciences 10 (11), 7307–7321.1109

URL http://www.biogeosciences.net/10/7307/2013/1110

Wagner, W., Hahn, S., Kidd, R., Melzer, T., Bartalis, Z., Hasenauer, S.,1111

59

http://www.sciencedirect.com/science/article/pii/S0303243415300179
http://www.sciencedirect.com/science/article/pii/S0303243415300179
http://www.sciencedirect.com/science/article/pii/S0303243415300179
http://www.nature.com/doifinder/10.1038/nclimate3108
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=7410033
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=7410033
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=7410033
http://www.biogeosciences.net/10/7307/2013/


Figa-Saldaña, J., de Rosnay, P., Jann, A., Schneider, S., Komma, J.,1112

Kubu, G., Brugger, K., Aubrecht, C., Züger, J., Gangkofner, U., Kien-1113
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