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Abstract

Global estimation of Gross Primary Production (GPP) – the uptake of at-

mospheric carbon dioxide by plants through photosynthesis - is commonly

based on optical satellite remote sensing data. This presents a source-driven
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Wouter.Dorigo@geo.tuwien.ac.at (Wouter A. Dorigo)

Preprint submitted to Remote Sensing of Environment March 7, 2019

*Revised Manuscript with no Changes Highlighted
Click here to download Revised Manuscript with no Changes Highlighted: ms_teubner_et_al.pdf



approach since it uses the amount of absorbed light, the main driver of pho-

tosynthesis, as a proxy for GPP. Vegetation Optical Depth (VOD) estimates

obtained from microwave sensors provide an alternative and independent

data source to estimate GPP on a global scale, which may complement ex-

isting GPP products. Recent studies have shown that VOD is related to

aboveground biomass, and that both VOD and temporal changes in VOD

relate to GPP. In this study, we build upon this concept and propose a

model for estimating GPP from VOD. Since the model is driven by vege-

tation biomass, as observed through VOD, it presents a carbon sink-driven

approach to quantify GPP and, therefore, is conceptually different from com-

mon source-driven approaches. The model developed in this study uses sin-

gle frequencies from active or passive microwave VOD retrievals from C-, X-

and Ku-band (Advanced Scatterometer (ASCAT) and Advanced Microwave

Scanning Radiometer for Earth Observation (AMSR-E)) to estimate GPP

at the global scale. We assessed the ability for temporal and spatial extrap-

olation of the model using global GPP from FLUXCOM and in situ GPP

from FLUXNET. We further performed upscaling of in situ GPP based on

different VOD data sets and compared these estimates with the FLUXCOM

and MODerate-resolution Imaging Spectroradiometer (MODIS) GPP prod-

ucts. Our results show that the model developed for individual grid cells

using VOD and change in VOD as input performs well in predicting tempo-

ral patterns in GPP for all VOD data sets. For spatial extrapolation of the

model, however, additional input variables are needed to represent the spa-
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tial variability of the VOD-GPP relationship due to differences in vegetation

type. As additional input variable, we included the grid cell median VOD (as

a proxy for vegetation cover), which increased the model performance dur-

ing cross validation. Mean annual GPP obtained for AMSR-E X-band data

tends to overestimate mean annual GPP for FLUXCOM and MODIS but

shows comparable latitudinal patterns. Overall, our findings demonstrate

the potential of VOD for estimating GPP. The sink-driven approach pro-

vides additional information about GPP independent of optical data, which

may contribute to our knowledge about the carbon source-sink balance in

different ecosystems.

Keywords: microwave remote sensing, vegetation optical depth, ecosystem

productivity, ASCAT, AMSR-E, AMSR2

1. Introduction1

The uptake of the greenhouse gas carbon dioxide by vegetation during2

photosynthesis, i.e. Gross Primary Production (GPP), is a key ecosystem3

process. Estimation of GPP from satellite observations commonly uses op-4

tical data together with empirical or semi-empirical models (Gilabert et al.,5

2017; Running et al., 2004) or machine learning approaches (Beer et al.,6

2010; Jung et al., 2011; Tramontana et al., 2016; Yang et al., 2007). Bio-7

physical properties obtained from optical remote sensing that are often used8

to estimate GPP include the fraction of Absorbed Photosynthetically Active9

Radiation (fAPAR), Normalized Difference Vegetation Index (NDVI), or Leaf10
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Area Index (LAI). These approaches rely on the light-use efficiency theory11

(Monteith, 1972) whereby GPP depends on the incoming Photosynthetically12

Active Radiation (PAR), the fraction of PAR that is absorbed, i.e. fAPAR,13

and the efficiency of converting light to assimilated carbon (Beer et al., 2010;14

Gilabert et al., 2017; Jung et al., 2011; Running et al., 2004; Tramontana15

et al., 2016; Yang et al., 2007). Another variable retrieved from optical data16

is Solar-Induced chlorophyll Fluorescence (SIF), which is a measure for pho-17

tosynthetic activity (Frankenberg et al., 2011; Guan et al., 2016). SIF has18

received much attention in recent years, because of its linear relationship with19

GPP at canopy scale (Damm et al., 2015; Frankenberg et al., 2014; Guanter20

et al., 2014; Zhang et al., 2016), especially at coarser temporal resolution21

like monthly sampling (Guanter et al., 2014). SIF has also been used for22

estimating GPP globally through the use of artificial neural networks (Ale-23

mohammad et al., 2017). Optical biophysical properties provide an estimate24

for the amount of carbon that is taken up by plants based on the absorption25

(fAPAR) or re-emission (SIF) of sunlight (source-driven). In recent years,26

however, it has been proposed that plant growth may be stronger limited by27

sink- rather than source-activity (Fatichi et al., 2014; Körner, 2015), and that28

considering sinks of fixed carbon can improve constrains in global vegetation29

models (Leuzinger et al., 2013).30

Microwave Vegetation Optical Depth (VOD) is a measure of the atten-31

uation of microwave radiation caused by vegetation (Woodhouse, 2005) and32

thus relates to the total vegetation water content (Jackson and Schmugge,33
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1991). VOD can be retrieved from different frequencies/wavelengths in the34

microwave region, which can provide information on different parts of the35

canopy. In theory, lower frequencies like L-band are more sensitive to large36

plant structures like stems and large branches, while higher frequencies like37

X-band are more closely related to small structures like leaves and twigs38

(Woodhouse, 2005). Microwave satellite observations at frequencies below39

10 GHz are not affected by cloud cover (Woodhouse, 2005). Therefore, VOD40

can provide valuable information on the vegetation layer in addition to prod-41

ucts derived from optical remote sensing data.42

In recent years, studies have proposed to use VOD to estimate above-43

ground living biomass (Liu et al., 2011, 2015; Momen et al., 2017; Rodŕıguez-44

Fernández et al., 2018; Tian et al., 2016). Biomass and/or temporal change45

in biomass, however, relate to Net Primary Production (NPP) (Clark et al.,46

2001a,b; Girardin et al., 2010; Gower et al., 2001; Lavigne and Ryan, 1997;47

Luyssaert et al., 2007) and to Autotrophic Respiration (Ra) (Lavigne and48

Ryan, 1997; Ryan, 1990), the sum of which constitutes GPP (e.g. Bonan,49

2015; Odum, 1959). Due to this causal relationship between biomass and50

GPP, a relationship is expected between VOD and GPP. Teubner et al.51

(2018) showed that both the original VOD time series (V OD) and the tem-52

poral change in VOD (ΔV OD) are correlated to GPP and suggested that53

the combination of V OD and ΔV OD has the potential to provide comple-54

mentary information to GPP estimates from optical data.55

In this study, we build upon the explorative work of Teubner et al. (2018)56

5



and develop a model to estimate GPP based on VOD using Generalized57

Additive Models (GAM; Hastie and Tibshirani, 1987). Complementary to58

source-driven approaches, we are proposing a model that is driven by vegeta-59

tion biomass, as expressed through VOD, which thus presents a sink-driven60

approach that does not depend on PAR as model input. We assessed the61

performance of VOD observations from different sensors and multiple fre-62

quencies, since it is not clear which frequencies most closely relate to GPP.63

As input variables to the model, we use different VOD variables, i.e. V OD,64

ΔV OD and the temporal grid cell median VOD (mdnV OD). The latter65

serves as a proxy for land cover and thus aids the spatial extrapolation of66

the model to different vegetation types without requiring further ancillary67

data. Due to the complex relationship between VOD and GPP, we con-68

ducted a separate analysis based on SIF using similar experimental setups69

as for VOD. This additional analysis gives insight into differences in model70

performance between setups that are not caused by using VOD variables as71

input to the model. The aim of this study is 1) to assess the model’s ca-72

pability for temporal extrapolation, 2) to evaluate the model’s performance73

in spatial extrapolation and determine the required model structure using74

model selection, and 3) to perform upscaling of in situ FLUXNET GPP and75

compare the upscaled VOD-based GPP estimates with global GPP estimates76

from FLUXCOM and the MODerate-resolution Imaging Spectroradiometer77

(MODIS).78
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2. Data sets79

The analysis is based on the period from 2007 to 2015 and uses VOD80

data from C-, X- and Ku -band and various GPP data sets. The data sets81

have different temporal coverage, which is summarized for VOD and GPP82

data in Table 1. Global temporal median maps of the remotely sensed VOD83

and GPP data sets are displayed in Fig. S1. For FLUXNET data, a list of84

the sites and graphs illustrating the location and data coverage are given in85

Table S1 and Fig. S2.86

Our analysis was carried out for different passive VOD frequencies from87

both the Advanced Microwave Scanning Radiometer for Earth Observation88

System (AMSR-E) and its successor the Advanced Microwave Scanning Ra-89

diometer 2 (AMSR2). The overlap period between AMSR2 and in situ90

FLUXNET data, however, is considerably short (2 years and 5 months) and91

is further reduced by the lower number of FLUXNET sites in the later period,92

which potentially leads to less robust results in some parts of the analysis.93

For this reason and because AMSR-E and AMSR2 generally yielded similar94

results, the study focuses on results for AMSR-E. For results using AMSR295

frequencies, please see the supplement.96

2.1. VOD data sets97

2.1.1. ASCAT VOD98

The Advanced Scatterometer (ASCAT) is an active microwave sensor99

measuring C-band (5.25 GHz) backscatter in vertical co-polarization and flies100
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onboard the meteorological operational satellite A (MetOp-A). The retrieval101

of daily VOD at 12.5 km sampling is based on the TU-Wien change detection102

model developed by Wagner et al. (1999). VOD is derived using slope and103

curvature of the angular backscatter dependency, which describe the volume104

scattering caused by vegetation (Melzer, 2013; Vreugdenhil et al., 2016a,b).105

The VOD retrieval uses observations from both ascending and descending106

mode (ascending/descending at 9:30 a.m./p.m. equatorial crossing).107

2.1.2. AMSR-E VOD108

AMSR-E is a passive microwave sensor measuring brightness tempera-109

ture at different frequencies. VOD was retrieved using the Land Parameter110

Retrieval Model (LPRM) v06 (van der Schalie et al., 2017). LPRM is a radia-111

tive transfer model, which estimates VOD and soil moisture simultaneously112

with the use of an analytical solution based on the Microwave Polarization113

Difference Index (Meesters et al., 2005; Mo et al., 1982). We analyzed VOD114

from C- (6.9 GHz), X- (10.7 GHz) and Ku-band (18.7 GHz) obtained for115

descending mode (equatorial crossing at 1:30 a.m.), since the assumption in116

LPRM that soil and vegetation temperature are similar is best met during117

nighttime. Data are available at daily, 0.25� sampling.118

2.1.3. AMSR2 VOD119

AMSR2 measures brightness temperature both at the same frequencies120

as AMSR-E as well as at additional frequencies. VOD was retrieved anal-121

ogously to AMSR-E using LPRM v06. In the analysis, we used VOD from122
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C- (C1: 6.9 GHz, C2: 7.3 GHz), X- (10.7 GHz) and Ku-band (18.7 GHz) in123

descending mode (1:30 a.m. equatorial crossing) at daily, 0.25� sampling.124

2.2. GPP data sets125

2.2.1. FLUXCOM GPP126

FLUXCOM is a global GPP product that is based on upscaling site-level127

eddy covariance estimates of GPP by using variables from optical satellites128

and different machine learning algorithms including tree-based methods, re-129

gression splines, neural networks and kernel methods (Tramontana et al.,130

2016). For comparability with satellite VOD data, we used the satellite-131

based version of FLUXCOM GPP. The data set represents the median of 18132

ensemble members, which consist of 9 machine learning algorithms applied133

to both daytime and nighttime GPP estimates. Data are available at 8-daily,134

10 km sampling.135

2.2.2. MODIS GPP136

MODIS GPP (Running et al., 2004; Zhao et al., 2005) is based on the137

light-use efficiency concept introduced by Monteith (1972) in which absorbed138

solar energy is related to plant productivity. MODIS GPP is provided by139

the land product MOD17; the algorithm uses fAPAR derived from optical140

data for calculating the absorbed PAR (Running et al., 1999, 2000). Several141

versions of MOD17, differing in spatial and temporal resolution, are available.142

We used the MOD17A2H v006 GPP, which has 8-daily, 500 m sampling.143
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2.2.3. GOME-F SIF144

SIF observations at 740 nm (GOME-F v26) are obtained from measure-145

ments of the Global Ozone Monitoring Experiment-2 (GOME-2) sensor flying146

onboard MetOp-A (Joiner et al., 2013, 2014, 2016). The retrieval algorithm147

of SIF proposed by Joiner et al. (2013) utilizes the filling-in of Fraunhofer148

lines caused by the plants chlorophyll fluorescence. Data are available at149

monthly, 0.5� sampling.150

2.2.4. FLUXNET2015 GPP151

FLUXNET20151 provides a compilation of in situ flux observations spread152

around the world. The stations measure water, heat and carbon fluxes by153

means of the eddy covariance method (Baldocchi, 2003). The carbon diox-154

ide flux, i.e. net ecosystem exchange, is further partitioned into ecosystem155

respiration and GPP using the daytime (Lasslop et al., 2010) or nighttime156

(Reichstein et al., 2005) partitioning method. For our analysis, we used GPP157

estimates from the publicly available Tier 1 data set that were obtained with158

the daytime partitioning method with a variable friction velocity threshold.159

2.3. Meteorological data sets160

2.3.1. Precipitation161

We used daily, 1� precipitation estimates from the Global Precipitation162

Climatology Project (GPCP) 1DD version 1.2 to aid the interpretation of the163

1Fluxnet2015 data set (accessed June 9, 2016): http://fluxnet.fluxdata.org/

/data/fluxnet2015-dataset/
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time series plot. Precipitation is estimated using a combination of satellite164

observations and gauge measurements (Huffman et al., 2001). The satel-165

lite data include microwave observations of frequencies above 10 GHz and166

infrared radiation.167

2.3.2. Temperature and snow depth168

Frozen conditions and snow cover lead to erroneous VOD retrievals. For169

this reason, we masked VOD observations using skin temperature and snow170

depth from ERA-Interim. ERA-Interim is a global atmospheric reanaly-171

sis produced by the European Centre for Medium-Range Weather Forecasts172

which incorporates a 4-dimensional variational analysis (Dee et al., 2011).173

Data are available at 0.7� horizontal sampling at the equator for the period174

from 1979 onwards.175

2.3.3. Aridity Index176

Since water availability is a main driver for plant growth, we analyzed177

results along a gradient of aridity in order to determine whether VOD-based178

GPP estimates perform differently in different climatic regions. The aridity179

index is typically calculated as the ratio of the long-term averages of potential180

evaporation and precipitation (Good et al., 2017; Greve et al., 2014). For181

computing this index, we used long-term averages of potential evaporation182

from the Global Land Evaporation Amsterdam Model (GLEAM; Miralles183

et al., 2011) v3.a (Martens et al., 2017) and precipitation from the Multi-184

Source Weighted-Ensemble Precipitation (MSWEP; Beck et al., 2017) v1.1185
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for the period 1980 to 2017. Both data sets are available at 0.25� sampling.186

3. Theoretical model for estimating GPP based on VOD187

For describing the relationship between VOD and GPP, we consider the188

following equation which relates GPP to NPP and Ra (e.g. Bonan, 2015;189

Odum, 1959):190

GPP = Ra +NPP (1)191

Ra represents the portion of the assimilates that is used by plants for their192

metabolism. Ra can be further separated into growth and maintenance res-193

piration, which are proportional to the change in biomass (dB
dt
) and biomass194

(B), respectively (Lavigne and Ryan, 1997; Ryan, 1990):195

Ra = a0
dB

dt
+ b0 B (2)196

Ra generally depends on temperature and is often modelled by assuming197

an exponential increase of Ra with temperature (Atkin and Tjoelker, 2003;198

Atkin et al., 2005; Smith and Dukes, 2013; Tjoelker et al., 2001; Vander-199

wel et al., 2015; Wythers et al., 2013). Consequently, the coefficients a0200

and b0 in equation (2) are functions of temperature, although this tempera-201

ture sensitivity is mainly attributed to the maintenance term of Ra (Ryan,202

1990). Modelling the relationship between Ra and temperature, however, is203

not straight forward. Acclimation and adaptation of plants to changes in204

temperature further modulate the temperature sensitivity of Ra (Atkin and205
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Tjoelker, 2003; Gifford, 2003; Smith and Dukes, 2013; Vanderwel et al., 2015),206

although these two processes are acting on different time scales (Smith and207

Dukes, 2013). Therefore, representation of Ra in models presents a complex208

task (Atkin and Tjoelker, 2003; Atkin et al., 2005; Gifford, 2003; Ryan, 1991;209

Smith and Dukes, 2013; Vanderwel et al., 2015). For simplicity of our model,210

we assume that the coefficients a0 and b0 are independent of temperature211

and discuss the potential impact of this simplification in Section 6.5.212

NPP is the remaining portion of the assimilates, i.e. the difference be-213

tween GPP and Ra, and contains the following terms (Clark et al., 2001a,b;214

Girardin et al., 2010; Gower et al., 2001; Luyssaert et al., 2007):215

NPP =
dB

dt
+VOC+ Herbivory + Root exudates (3)216

VOC stands for volatile organic compounds and are organic molecules pro-217

duced by plants that are released into the ambient air. VOC may play an218

important role in ecology and atmospheric chemistry but constitute only a219

small fraction of NPP (Guenther, 2002; Kesselmeier et al., 2002). Herbivory220

describes the loss of above- and belowground plant biomass through animals221

that are feeding on these plants. Root exudates are plant-produced com-222

pounds that are released into the ground to enhance nutrient uptake or feed223

mycorrhiza and can also be used as a defense mechanism (Bais et al., 2006;224

Bertin et al., 2003; Jones et al., 2009). All these terms are not directly re-225

flected in VOD and are thus neglected in the current model description for226
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relating VOD to GPP. Combining equations (1)-(3) and setting a = 1 + a0227

and b = b0, we arrive at the following differential equation for GPP:228

GPP = a
dB

dt
+ b B (4)229

a and b represent coefficients for growth and maintenance related terms,230

respectively, analogous to the concept developed by Ryan (1990) for Ra, i.e.231

equation (2), but now extended for GPP.232

The last step in the formulation of the relationship between VOD and233

GPP requires a description of the relationship between VOD and biomass.234

This relationship, or more specifically that between VOD and aboveground235

biomass (AGB), is not straightforward. Liu et al. (2015) proposed an empir-236

ical, non-linear function for converting VOD to AGB using a passive merged237

VOD data set. Similar to this concept, but without explicitly stating the re-238

lationship between AGB and V OD, we assume that AGB can be expressed239

as a function of V OD:240

AGB = f(V OD) = �V OD (5)241

Assuming that above- and belowground terms in equation (4) are pro-242

portional, which allows to express B as a function of V OD, we arrive at the243

relationship between VOD and GPP, which can be described by the following244

15



differential equation:245

GPP = a
d�V OD

dt
+ b �V OD + c (6)246

c is a time-invariant offset, which is added from a mathematical point247

of view and does not necessarily reflect the neglected terms in equation (3)248

but rather aids the conversion of VOD to GPP if the offset is not already249

included in f(V OD).250

Equation (6) presents the theoretical concept in this study, which we aim251

to model for different VOD data sets through the use of GAM (Hastie and252

Tibshirani, 1987).253

4. Methods254

4.1. Generalized Additive Models255

GAM is a regression approach which can utilize different link functions256

for fitting a limited set of predictor variables (x) against the expected value257

of the response variable (y) (Hastie and Tibshirani, 1987). For calculating258

the conditional expected value (E
�
y | x

�
), the algorithm requires specifica-259

tion of the data distribution for the response variable. The approach allows260

non-linear and non-monotonic relationships between a response variable and261

predictor variables, which are represented by fitting smooth spline functions262

(f) for each predictor (Hastie and Tibshirani, 1987, 1990). As such, GAM263

does not require specification of the underlying relationship between pre-264
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dictor and response variable. Since we do not explicitly know the shape of265

the relationship between biomass and each VOD data set, GAM presents a266

suitable method in this study for estimating GPP based on VOD.267

For the analysis, we used LinearGAM from the python package pygam268

(Servén et al., 2018), which uses the normal distribution together with the269

identity as link function. In this case, GAM with p input variables has the270

form (Hastie and Tibshirani, 1987):271

E
�
y | x

�
= α +

p�

j=1

fj(xj) (7)272

We used LinearGAM with 25 splines of order 3, which allows variability in273

the shape of the fitted spline across the data range, together with a value of274

200 for the smoothing parameter lambda, which provides strong smoothing275

to ensure generalizability.276

We applied GAM by fitting different sets of input variables against global277

or in situ GPP estimates. To indicate which set of input variables was used for278

training GAM, we refer to the model as GPP() with a list of input variables279

in parenthesis. For example, GPP(V OD, ΔV OD) denotes a GAM setup280

that uses V OD and ΔV OD as input.281

4.2. Experimental setups282

Our analysis comprises three experiments. The first experiment assesses283

the model’s performance in temporal extrapolation, while the second exper-284

iment evaluates the model’s capability in spatial extrapolation using cross285
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validation and model selection. These experiments allow to determine the286

model’s performance during periods or at locations it has not been trained287

on, which relates to the situation during the upscaling of in situ GPP assessed288

in the third experiment.289

4.2.1. Testing temporal extrapolation290

For testing the model’s ability to reproduce the temporal dynamics of291

GPP, we trained GPP(V OD, ΔV OD) at each grid cell against the global292

GPP from FLUXCOM. The comparison with an existing global GPP product293

has the advantage of minimizing the impact of scale differences, which are294

often observed for in situ observations versus satellite data. It can thus295

demonstrate if the model can be used in general for estimating GPP. For the296

analysis, we split the data in time using the first two years of each data set297

for training the model (AMSR-E, ASCAT, SIF: 1/2007 to 12/2008; AMSR2:298

7/2012 to 6/2014) and the remaining period for testing (AMSR-E: 1/2009299

to 9/2011; ASCAT, SIF: 1/2009 to 12/2015, AMSR2: 7/2014 to 12/2015).300

To support global results, we repeated the analysis using in situ FLUXNET301

observations. For this setup, AMSR2 data are omitted since the overlap302

period with FLUXNET extends only through 2014.303

In addition to the analysis of GPP(V OD, ΔV OD), we determined the304

added value of using the combination of V OD and ΔV OD compared to305

V OD or ΔV OD alone. The reason for treating V OD and ΔV OD sepa-306

rately against our proposed theory, was to exclude the possibility that either307
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signal alone is able to match the GPP signal merely by applying a non-linear308

regression like GAM.309

4.2.2. Testing spatial extrapolation using cross validation and model selection310

Using leave-site-out cross validation with FLUXNET GPP as target vari-311

able, we assessed the model’s ability for spatial extrapolation. For each site,312

GPP(V OD, ΔV OD) or GPP(SIF ) was trained with data from all sites ex-313

cept the site under evaluation. The model was then applied to the data314

that was left out and compared against the target variable. As the data315

were split in space, the training and testing period each span the full overlap316

period with FLUXNET for each data set. Apart from the full signal, we317

also assessed the performance of anomalies of the resulting GPP estimates318

in order to evaluate the strength of the relationship in the absence of season-319

ality. Anomalies were calculated as differences to the mean seasonal cycle320

during the testing period for the VOD- or SIF-based GPP estimates (i.e.,321

after model application) and FLUXNET GPP.322

We further assessed if the additional use of the temporal grid cell median323

of each data set (mdnV OD or mdnSIF ) can improve the spatial extrap-324

olation of the model, i.e. GPP(V OD, ΔV OD, mdnV OD) or GPP(SIF ,325

mdnSIF ). mdnV OD is a static component for each data set, which varies326

with each grid cell and thus does not contribute to the temporal dynamic of327

the resulting estimate. mdnV OD identifies areas of similar biomass and thus328

further relates to land cover, since grassland generally has a lower biomass329
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than shrubland, which in turn has a lower biomass than a dense forest.330

In contrast, mdnSIF identifies areas of similar photosynthetic activity and331

therefore reflects a different property than mdnV OD.332

To assess whether an improvement in model performance can be at-333

tributed to a gain in information through the addition of the respective vari-334

able or is caused by an additional degree of freedom, we computed the Akaike335

Information Criterion (AIC; Akaike, 1974). For this analysis, we randomly336

split the station data into two data sets. We used one half of the stations for337

training and the remaining half for testing.338

4.2.3. Upscaling339

In the third experiment, we estimated GPP globally based on VOD using340

the best performing model setup as assessed during cross validation and341

model selection. The upscaling was performed similarly to cross validation342

with the difference that the model for each setup was trained against all343

available in situ FLUXNET GPP. After applying the model to the global344

VOD data sets, we evaluated the model’s performance by comparing the345

VOD-based GPP estimates with global GPP estimates from FLUXCOM and346

MODIS. For the analysis of mean annual GPP, we additionally performed an347

uncertainty analysis to determine the influence of the choice of the stations348

on the GPP estimation. For this, we repeated the VOD-based upscaling ten349

times, each time reducing the number of stations by 10%. The excluded350

stations were randomly drawn without replacement. Therefore, each model351
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run in the uncertainty analysis is based on data from 90% of the stations.352

4.3. Data preparation353

The analysis is based on two different resolutions: for the comparison354

between VOD, FLUXCOM and MODIS data, the common sampling is 8-355

daily, 0.25� while for the comparison with SIF, the common sampling is356

monthly, 0.5�. We aggregated data sets with a higher resolution using the357

average over 8 days or the average over the grid cell. For data sets with a358

lower spatial resolution like snow depth and temperature data, we performed359

nearest neighbor resampling.360

VOD observations were masked when temperature was below 0�C and361

snow cover was present. The masking was also applied to GPP data sets362

for comparability. In addition to snow and temperature masking, VOD from363

passive sensors was masked for radio frequency interference using the accom-364

panying flags, since it can also lead to erroneous retrievals of VOD (Li et al.,365

2004; Njoku et al., 2005).366

We approximate the derivative of VOD at each grid cell (xi) with the367

change of the smoothed V OD signal between two consecutive V OD obser-368

vations:369

ΔV OD(xi, tj) = V OD(xi, tj)− V OD(xi, tj−1) (8)370

The smoothing was computed using a Savitzky-Golay filter (Savitzky and371

Golay, 1964) with a window size of 11 time steps for 8-daily data and 5 time372

steps for monthly data. The window size for each resolution was chosen after373
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visual inspection of the smoothed time series at the location of the FLUXNET374

sites. Additionally, we performed a cross validation similar to the temporal375

extrapolation experiment for 8-daily AMSRE X and for GPP(V OD,ΔV OD)376

but using different window sizes during the computation ofΔV OD (Figs. S3).377

Results for Spearman correlation and RMSE confirmed that a window size of378

11 time steps is a suitable choice presenting a trade-off between a preferably379

high median correlation, low median RMSE and still relatively low window380

length.381

During cross validation, we additionally assessed the performance of the382

GPP anomalies relative to the mean seasonal cycle. We calculated anomalies383

for sites with more than two years of data using the python package pytesmo384

(Paulik et al., 2015).385

4.4. Statistical analysis386

Prior to the analysis, we tested if grid cell data of the global data sets fol-387

low normal distribution using the D’Agostino and Pearson’s test (D’Agostino,388

1971; D’Agostino and Pearson, 1973). We found that on average 75% of the389

grid cells differ from normal distribution. For this reason, we calculated the390

non-parametric Spearman rank correlation and used the temporal grid cell391

median instead of the mean in the analysis.392

We evaluated model performance by calculating the Spearman rank cor-393

relation coefficient (r) and root mean square error (RMSE). For the leave-394

site-out cross validation, we additionally analyzed the index of agreement395
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(IoA), which is a standardized measure for the model prediction error and396

is defined after Willmott (1981) as:397

IoA = 1−
�n

i=1(pi–oi)
2

�n
i=1(| pi–ō | + | oi–ō |)2 with n = number of observations (9)398

where p represents the model output and o the in situ observations. The399

index ranges between 0 (worst agreement) and 1 (best agreement).400

For model selection, we computed AIC using the python package RegscorePy2.401

AIC is a relative measure for the goodness of fit for different model setups402

while penalizing higher numbers of input variables (Akaike, 1974). The model403

setup with the lowest AIC is then considered as the optimal choice.404

5. Results405

5.1. Temporal extrapolation406

The application of GAM for each grid cell is illustrated for a grid cell dom-407

inated by rainfed cropland in Fig. 1. In this example, GPP(V OD, ΔV OD)408

is able to capture the temporal dynamics of FLUXCOM GPP (Fig. 1a). In409

contrast, V OD shows a positive temporal lag with respect to GPP (Fig. 1b),410

while ΔV OD results in a negative lag with GPP. Making use of both V OD411

and ΔV OD, the model can largely compensate the observed lags for the412

individual signals of V OD and ΔV OD.413

2RegscorePy v1.0: https://pypi.org/project/RegscorePy/
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Figure 1: Time series plot for a grid cell dominated by rainfed cropland (35.125�E,
15.125�S) for different VOD data sets for the period 1/2009 to 12/2010: 8-daily FLUX-
COM GPP and a) GPP(V OD, ΔV OD), b) V OD and c) ΔV OD. GPP(V OD, ΔV OD)
was trained at this grid cell against FLUXCOM data for the period 1/2007 to 12/2008.
Data in (b) and (c) are scaled between 0 and 1 to aid visual comparison of the temporal
dynamics. (d) Monthly precipitation and 8-daily surface temperature.
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Applying the model per grid cell globally at 8-daily, 0.25� sampling, the414

resulting GPP estimates show high temporal agreement with FLUXCOM415

GPP (Fig. 2). Correlations are higher for passive VOD data sets (0.69 ≤416

median r ≤ 0.72) than for the active VOD data set (median r=0.61). For417

passive VOD data sets, correlations are especially high over Africa, parts of418

Australia and Europe. For the active VOD, high correlations are observed419

over Europe, North America and parts of South America. Consistent with420

the correlation results, RMSE (Fig. S4) yields lower global median values for421

passive VOD data sets (0.85 ≤ median RMSE ≤ 0.88 gCm−2d−1) than for422

the active VOD (median RMSE=0.99 gCm−2d−1). Comparing the different423

frequencies of the passive VOD data sets, Ku-band results in the lowest424

median RMSE closely followed by X-band. Regions with lowest RMSE are425

observed over Australia for all VOD data sets, while regions with highest426

RMSE are found mainly in northern latitudes.427

The correlations increase for all data sets when performing the analysis at428

monthly, 0.5� sampling (Table S2), yielding median r between 0.80 and 0.82429

for passive VOD and 0.74 for the active VOD. When repeating the analysis430

using either V OD or ΔV OD alone as input, we found that GPP(V OD,431

ΔV OD) outperforms GPP(V OD) and GPP(ΔV OD) at both resolutions432

(Table S2) with an average difference in median r of about 0.1 and 0.2 for433

GPP(V OD) and GPP(ΔV OD), respectively. The different frequencies of434

AMSR-E generally yield similar results. However, X-band data consistently435

showed the highest correlation at both resolutions. This finding was also436
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observed for AMSR2 frequencies (Table S2). Compared with correlations437

obtained for SIF (median r=0.73), GPP(V OD, ΔV OD) at monthly, 0.5�438

sampling shows comparable or slightly higher median correlations for active439

and passive VOD, respectively.440

The added value of combing V OD and ΔV OD can be further confirmed441

using in situ FLUXNET GPP. Correlations for GPP(V OD, ΔV OD) are442

higher than for the individual signals, i.e. GPP(V OD) and GPP(ΔV OD)443

(Fig. S5) with an average increase in median r of about 0.1 and 0.3 for444

GPP(V OD) and GPP(ΔV OD), respectively. Comparing median correla-445

tions of the in situ analysis with those obtained in the global comparison,446

the median r for SIF yields almost the same value (0.73 obtained for global447

GPP compared to 0.72 for in situ GPP). For VOD data sets, however, me-448

dian r for the in situ analysis is on average lower by 0.1 than for the global449

comparison.450

These results, especially for the global comparison, demonstrate the model’s451

capability in temporal extrapolation and support our theory of representing452

the relationship between VOD and GPP with a differential equation.453

5.2. Spatial extrapolation454

Using leave-site-out cross validation, we evaluated the performance in455

spatial extrapolation of the relationship between VOD and GPP. For the full456

signals (Fig. 3, S6 and S7), the performance for SIF is generally higher than457

for VOD data. Median values of IoA and r are comparable to or lower for458
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Figure 2: Spearman rank correlation (r) between FLUXCOM GPP and GPP(V OD,
ΔV OD) for different VOD data sets for the testing period (AMSR-E: 1/2009 to 9/2011;
ASCAT: 1/2009 to 12/2015). The analysis is based on data at 8-daily and 0.25� sampling.
GPP(V OD, ΔV OD) is trained at each grid cell separately against FLUXCOM using data
from the period 1/2007 to 12/2008. Correlations that are not significant (p>0.05) are
masked in grey. The median values denote the median of significant correlations for each
data set.

VOD than for SIF, while median RMSE is higher for VOD than for SIF in459

all cases. The addition of the temporal median as input to GAM does not460

appear to have the same effect for VOD and SIF. While the performance461

for V OD increases when adding mdnV OD, SIF does not appear to ben-462

efit from including mdnSIF since the correlations do not differ markedly463

between GPP(SIF ) and GPP(SIF , mdnSIF ). For VOD, however, the in-464

crease in performance upon adding mdnV OD indicates that the offset, which465

is already implicitly included in GAM, is not a globally constant value but466

instead varies for each grid cell. The relationship between VOD and GPP467

thus is additionally modified by a static component of vegetation biomass468

within a grid cell as represented by mdnV OD. In contrast, the offset in the469
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relationship between SIF and GPP presents a global value and does not vary470

with mdnSIF .471

Results for the anomalies of the VOD- or SIF-based GPP estimates472

(Fig. 4, S8 and S9) reveal a slightly higher performance for VOD than for SIF.473

Median values of IoA and r are comparable or in some cases higher for VOD474

than for SIF, while median RMSE is lower for VOD than for SIF in all cases.475

Including the temporal median does not affect the metrics except for IoA for476

VOD. In this case, the anomalies for GPP(V OD, ΔV OD, mdnV OD) result477

in slightly higher IoA values than for GPP(V OD, ΔV OD).478

For the different AMSR-E frequencies, the cross validation results further479

reveal that X-band data result in higher performance than C- and Ku-band480

data in most cases, which is especially true for data at 8-daily, 0.25� sampling.481

The two extrapolation experiments for the full signals further show that482

correlations for the spatial extrapolation (Fig. 3) are generally lower than for483

the temporal extrapolation (Fig. S5). Even when adding mdnV OD, median484

r during spatial extrapolation is on average lower by about 0.1 than during485

temporal extrapolation at both resolutions. Similarly, SIF also experiences a486

reduction in correlation during spatial extrapolation compared to temporal487

extrapolation. The difference in median r, however, is about 0.05 and thus488

smaller than for VOD. This indicates that the reduction in performance for489

VOD data is not alone caused by the model representation itself but is also490

strongly affected by scale differences between point measurements and the491

spatial coverage of the grid cell data.492

28



Figure 3: Leave-site-out cross validation for Spearman rank correlation (r) at monthly, 0.5�
and 8-daily, 0.25� sampling. The analysis is based on the full signals of in situ FLUXNET
GPP and GPP estimates based on VOD or SIF. Labels on the x-axis indicate which input
variables are used for each model. Box plot whiskers extend to the 5th and 95th data
percentile. Abbreviations – mdnSIF : temporal grid cell median SIF ; ΔV OD: temporal
change in V OD between two consecutive observations; and mdnV OD: temporal grid cell
median V OD.

Cross validation results for the full signals for AMSR2 (Fig. S10, S11 and493

S12) are generally similar to those obtained for AMSR-E. AMSR2 frequen-494

cies, however, show a slight decrease in performance for r and IoA and a495

slight increase in performance for RMSE compared to AMSR-E frequen-496

cies (Fig. S12). Consistent with AMSR-E data, AMSR2 X-band often shows497

higher performance than the remaining frequencies.498

The previous results suggest that the combination of all three input vari-499

ables, i.e. V OD, ΔV OD and mdnV OD, can improve model performance.500

Results of AIC for the different model setups relative to AIC for GPP(V OD,501

ΔV OD, mdnV OD) in Fig. 5 further confirm this finding. For all VOD data502

sets at both resolutions, the combination of V OD and ΔV OD yields lower503
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Figure 4: As Fig. 3 but for the anomalies of in situ FLUXNET GPP and GPP estimates
based on VOD or SIF.

AIC values than for each input variable alone. When adding mdnV OD, AIC504

is further reduced in the majority of cases. Exceptions from this rule are505

found for AMSRE C and AMSRE X at 8-daily, 0.25� sampling, where the506

use of all three variables increases AIC. Since this finding is not consistent507

with results at monthly, 0.5� sampling for the same frequencies, we suspect508

that this might be an artifact of the choice of stations. We thus still suggest509

the use of all three variables for upscaling GPP based on VOD data. In case510

of SIF, the difference in AIC between GPP(SIF ) and GPP(SIF , mdnSIF )511

is negligible. This confirms that, unlike for VOD, the relationship between512

SIF and GPP does not depend on the data set median.513

5.3. Upscaling of in situ GPP514

Based on the results for cross validation and model selection, we used515

GPP(V OD, ΔV OD, mdnV OD) for the global upscaling with VOD and516
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Figure 5: Difference in AIC between model setups with respect to AIC for GPP(V OD,
ΔV OD, mdnV OD) for each VOD data set. For SIF, the AIC difference between
GPP(SIF ) and GPP(SIF , mdnSIF ) is very low (1.67) compared with VOD data sets
and therefore not displayed. The analysis is based on data at monthly, 0.5� or 8-daily,
0.25� sampling. Positive values indicate model improvement when using all three variables
as input compared to models with a lower number of input variables.

GPP(SIF) for the upscaling with SIF for further analysis. We will put an517

emphasis on the output from X-band due to the overall better performance518

during the temporal and spatial extrapolation experiments.519

5.3.1. Relationship between VOD and GPP520

The partial dependence plots for GPP(V OD, ΔV OD, mdnV OD), which521

are examplified for AMSRE X in Fig. 6, demonstrate the contribution of the522

three input variables to the model. For all VOD data sets, we observed that523

the functions for V OD and ΔV OD mainly increase, while the function for524

mdnV OD decreases. The increase for ΔV OD is true for the region where525

the majority of data are located and the confidence interval is small. For526

AMSRE X, this region ranges between -0.3 and 0.4 (Fig. 6e). The inverse re-527

lationship between V OD and mdnV OD and the additive linking of variables528
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Figure 6: GAM Partial dependence plots for GPP(V OD, ΔV OD, mdnV OD) obtained
during upscaling (a-c) and histogram of input variables (d-f) for AMSRE X at 8-daily and
0.25� sampling. Dashed lines in (a-c) indicate the confidence intervals.

in GAM suggest that mdnV OD is subtracted from V OD.529

5.3.2. Global correlation of upscaled GPP530

Results for GPP(V OD, ΔV OD, mdnV OD) at 8-daily, 0.25� sampling531

show moderate temporal agreement with FLUXCOM and MODIS GPP532

(Fig. 7). Median r ranges between 0.54 and 0.62 for FLUXCOM and be-533

tween 0.52 and 0.60 for MODIS. The correlations also include some negative534

values (Fig. S13). For significant correlations, the fraction of negative corre-535

lations lies between 5 to 9% for passive VOD and about 12% for active VOD.536

Highest median correlations are observed for X-band data, which is consistent537

with the results from temporal and spatial extrapolation. At monthly, 0.5�538

sampling, the global median r increases, ranging between 0.67 and 0.71 for539
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FLUXCOM and between 0.66 and 0.70 for MODIS. For GPP(SIF ), median540

r reaches 0.71 for FLUXCOM and 0.66 for MODIS.541

Results for AMSR2 frequencies (Fig. S15) are generally similar to those542

obtained for AMSR-E, although AMSR2 frequencies yield slightly lower me-543

dian correlations than AMSR-E frequencies.544

Comparing correlations with FLUXCOM between the upscaling and the545

global temporal extrapolation (Section 5.1), median r for SIF is similar.546

For VOD, however, correlations for the upscaling are markedly lower than547

during temporal extrapolation, which is consistent with the reduction in548

model performance during cross validation.549

5.3.3. Comparison of annual GPP550

In addition to assessing the temporal dynamics, we compared mean an-551

nual GPP for GPP(V OD, ΔV OD, mdnV OD) from AMSRE X with mean552

annual GPP for FLUXCOM and MODIS. The analysis is based on data553

points where all three data sets are available. In general, GPP(V OD,ΔV OD,554

mdnV OD) shows the expected spatial pattern with highest values observed555

in tropical regions (Fig. 8a). Nevertheless, GPP(V OD, ΔV OD, mdnV OD)556

for AMSRE X tends to overestimate annual GPP in many regions compared557

to FLUXCOM and MODIS (Fig. 8b-c). Closest agreement between AM-558

SRE X and FLUXCOM or MODIS is observed for tropical regions. Consis-559

tent with these results, we observed lowest differences between AMSRE X560

and FLUXCOM or MODIS at low aridity (Fig. 9), which represents very561
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Figure 7: Spearman rank correlation (r) between GPP data sets (FLUXCOM, MODIS)
and upscaling for GPP(V OD, ΔV OD, mdnV OD) or GPP(SIF ). Data were trained
against in situ GPP estimates (FLUXNET) at 8-daily, 0.25� or monthly, 0.5� sampling.
a) Relative frequency of grid cells with significant and not significant correlations with
respect to all possible land grid cells at each resolution. Areas that do not contain results
relate to gaps obtained during masking for radio frequency interference or to not produced
pixels in the original data products. b) Violin plot of significant correlations. Horizontal
grey lines indicate correlation values of 0.5, 0.8 and 0.9. Dashed lines indicate the median
(long dashes) and the 25th and 75th percentile (short dashes).
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humid regions like the tropics. Under mesic conditions, differences between562

products are slightly higher than for very dry or very humid regions.563

The observed overestimation is also apparent in the zonal mean (Fig. 8d).564

GPP(V OD,ΔV OD,mdnV OD) consistently overestimates annual GPP from565

FLUXCOM and MODIS and is closest to FLUXCOM and MODIS near the566

equator. Despite the overestimation, GPP(V OD, ΔV OD, mdnV OD) shows567

similar latitudinal features as for FLUXCOM and MODIS. The uncertainty568

analysis of GPP(V OD, ΔV OD, mdnV OD) for AMSRE X further demon-569

strates that the choice of stations for the upscaling has an effect on the GPP570

estimation (Fig. 8d). The range of the ten model runs is larger in the trop-571

ics and the southern hemisphere than in the northern hemisphere, which is572

caused by differences in station density in these regions. The map of the573

standard deviation for the ten model runs (Fig. S16) shows that differences574

between the model runs are most pronounced in the tropics, the Sahel, south-575

ern parts of Africa and large parts of Australia.576

GPP(V OD, ΔV OD, mdnV OD) for AMSR2 X results in a higher agree-577

ment with FLUXCOM and MODIS than for AMSRE X. In contrast to AM-578

SRE X, AMSR2 yields smaller differences in annual GPP with FLUXCOM579

and MODIS (Fig. S17a-c), which is in line with the smaller RMSE observed580

for AMSR2 during cross validation. Annual GPP for AMSR2, however, also581

exhibits areas where FLUXCOM and MODIS are underestimated, which are582

located mainly in the Sahel and Australia. The latitudinal distribution of583

annual GPP (Fig. S17d) shows that AMSR2 X overall yields a closer agree-584
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ment between with FLUXCOM or MODIS than for AMSRE X. Similar as585

for AMSRE X, AMSR2 X deviates less from FLUXCOM and MODIS in the586

tropics.587

6. Discussion588

6.1. Relationship between VOD and GPP589

Our study presents a model for estimating GPP based on VOD, which de-590

scribes the relationship between VOD and GPP through a differential equa-591

tion. The model uses different VOD variables, i.e. V OD, ΔV OD, and592

mdnV OD, as input. The approach is based on the assumption that VOD593

provides an estimate for aboveground living biomass (Liu et al., 2011, 2015),594

which has been employed by multiple studies for detecting trends in biomass595

(Andela et al., 2013; Liu et al., 2013b,a, 2015; Marle et al., 2016). In support596

of this theory, Tian et al. (2016) have demonstrated the applicability of the597

biomass-VOD relationship in a dryland ecosystem.598

The relationship between biomass and VOD, however, is rather complex.599

Since VOD presents a measure of vegetation water content (Jackson and600

Schmugge, 1991), it can also be considered as the product of biomass and601

relative water content (Momen et al., 2017), a quantity that is closely related602

to the water potential of vegetation (Barnard et al., 2011; Brodribb and Hol-603

brook, 2003; Momen et al., 2017). For this reason, VOD has also been used as604

a surrogate for fuel moisture in fire modelling (Forkel et al., 2017) or for leaf605

water potential and isohydricity of vegetation (Konings and Gentine, 2016;606
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Figure 8: Mean annual GPP for the period 2007 to 2010: a) upscaling of GPP(V OD,
ΔV OD, mdnV OD) for VOD AMSRE X, b) difference in mean annual GPP between
FLUXCOM and AMSRE X c) difference in mean annual GPP between MODIS and AM-
SRE X. Values in (b) and (c) are displayed between -1 and 1. d) Zonal mean of mean
annual GPP. Estimates for GPP(V OD, ΔV OD, mdnV OD) were produced using data at
8-daily, 0.25� sampling. The area denoted by Min/Max represents the minimum and max-
imum of the zonal means for the ten model runs obtained during the uncertainty analysis
for GPP(V OD, ΔV OD, mdnV OD) with VOD AMSRE X.
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Figure 9: Differences in mean annual GPP between AMSRE X and FLUXCOM or MODIS
stratified along the aridity index. The analysis is based on the period 2007 to 2010 and
uses 8-daily, 0.25� data. Mean annual GPP for AMSRE X is computed using GPP(V OD,
ΔV OD, mdnV OD). Box plot whiskers represent the 5th and 95th data percentile.

Konings et al., 2017a,b). The impact of the relative water content on the607

relationship between biomass and VOD, however, is not entirely clear. Using608

in situ estimates of leaf water potential, Momen et al. (2017) have shown609

that variations in VOD are largely driven by changes in leaf water potential610

or the interaction of leaf water potential and LAI rather than LAI alone.611

Nevertheless, studies connected leaf water potential to maximum stomatal612

conductivity (Klein, 2014; Running, 1976). Since stomatal conductivity con-613

trols photosynthesis by regulating the CO2 uptake (e.g. Damour et al., 2010),614

this can provide an additional indication for the potential use of VOD to es-615

timate GPP. Considering VOD as a proxy for leaf water potential, however,616

cannot explain the increase in temporal agreement when combining the orig-617

inal VOD signal and its derivative as observed in our study. Therefore, we618
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propose that in our context VOD presents an estimate of the metabolically619

active biomass.620

6.2. Impact of VOD frequency on the relationship with GPP621

We observed that VOD data from X-band appear to be a suitable pre-622

dictor for estimating GPP. This finding may be counter-intuitive since VOD623

from lower frequencies (i.e. longer wavelengths), such as L-band, rather624

than from higher frequencies was demonstrated to correlate closely with total625

aboveground vegetation biomass (Rodŕıguez-Fernández et al., 2018). Total626

aboveground biomass, however, is a rather poor predictor of GPP due to the627

presence of large-size plant parts functioning as structural components that628

are less metabolically active (Litton et al., 2007). This is in accordance with629

observations of lower correlations between VOD and GPP for L-band than630

for C- or X-band VOD (Teubner et al., 2018). In contrast, the metabolically631

active plant parts, i.e. leaves and fine roots, present a suitable estimator for632

GPP (Litton et al., 2007). Since metabolically active cells contain water, the633

use of VOD in our model can present a suitable proxy for the aboveground634

metabolically active parts, which in turn can be related to GPP. In addition635

to this, Litton et al. (2007) demonstrated that in forests the partitioning of636

carbon to leaves is a constant fraction of GPP. This implies that total GPP637

can be obtained by estimating the portion of GPP that goes into the leaf638

compartment. Those two concepts together with the theoretically stronger639

sensitivity of higher VOD frequencies to small vegetation parts, i.e. leaves640
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and small structural components (Woodhouse, 2005), can explain why high641

frequency VOD rather than low frequency VOD is suited for retrieving GPP.642

6.3. Extrapolation of VOD-GPP relationship643

In both extrapolation experiments (temporal and spatial), we observed a644

lower agreement of VOD-based estimates with in situ GPP than with global645

GPP. In contrast, SIF only showed a slight reduction in performance dur-646

ing spatial extrapolation. This indicates that subpixel heterogeneity plays a647

more important role for the relationship between VOD and GPP than be-648

tween SIF and GPP. From a mathematical point of view, the relationship649

between VOD and GPP strongly depends on the appropriate weighting of650

the two dynamic terms in the model, V OD and ΔV OD, in order to match651

the temporal dynamic of the reference GPP. Since variations in the weight-652

ing result in a temporal shifting of the VOD-based GPP estimate, weights653

that are not representative for the respective grid cell may decrease model654

performance. Therefore, scale differences potentially have a stronger impact655

on the upscaling of GPP with VOD than with SIF.656

For the spatial extrapolation experiment, we further found that the off-657

set in the VOD-GPP relationship varies between grid cells, unlike for the658

SIF-GPP relationship for which the offset is a global value. The reason for659

this may be linked to the contribution of structural components to VOD.660

VOD contains information both on woody and leaf parts (Tian et al., 2017).661

For estimating total GPP, however, the relevant aboveground information662
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are mainly the leaves (Litton et al., 2007). Larger plant parts, which also663

contribute to the VOD signal, exhibit lower metabolic activity than leaves664

(Litton et al., 2007). Adding mdnV OD as input to GAM thus seems to en-665

sure that structural components within the grid cells are subtracted, thereby666

making the remainder more closely related to the leaves. When considering667

longer periods, the static mdnV OD should thus be replaced with a metric668

that varies over time in order to reflect changes in land cover.669

The extrapolation experiments overall indicated that further input vari-670

ables may be needed to enhance the model’s extrapolation capability. In-671

cluding land cover information, which is commonly used in upscaling of in672

situ GPP (Chen et al., 2010; Jung et al., 2009; Tramontana et al., 2015,673

2016), may help reduce the impact of scale differences. A second variable,674

which may improve extrapolation, is the fraction of C3, C4 and CAM plants675

within a grid cell. These plants employ different strategies for carbon uptake676

and, hence, have a different efficiency in photosynthesis (e.g. Bonan, 2015).677

In turn, this may alter the VOD-GPP relationship.678

6.4. Performance of GPP upscaling679

The VOD-based upscaling of GPP generally compared well with GPP680

from FLUXCOM and MODIS. Some areas exhibit inverse temporal dynamics681

with GPP. This, however, is not an issue of the model formulation but of682

the VOD observations itself. Microwave VOD observations can exhibit an683

inverse relationship to optical vegetation parameters in wet regions for passive684
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VOD and in dry regions for active VOD (Jones et al., 2011; Liu et al., 2011;685

Vreugdenhil et al., 2016b). Without explicitly accounting for this behavior,686

these patterns of negative correlations are propagated through to the VOD-687

based GPP estimates.688

Considering annual GPP, we observed a closer agreement with GPP from689

FLUXCOM and MODIS for X-band VOD from AMSR2 than from AMSR-E.690

On the one hand, this finding may be linked to differences between the sensors691

themselves. Du et al. (2017) reported that small differences between the692

performance for AMSR-E and AMSR2 exist. In line with this, we observed693

lower RMSE for AMSR2 than for AMSR-E during cross validation. On694

the other hand, the differences between AMSR-E and AMSR2 could also695

be caused by the different analysis periods. Considering that the temporal696

coverage of FLUXNET stations varies for AMSR-E and for AMSR2, this697

likely has the same effect as seen for the uncertainty analysis, because stations698

used for upscaling AMSR-E were not necessarily present in the period for699

AMSR2, and vice versa. The reason for these differences still requires further700

investigation.701

Apart from methodological differences between the VOD-based GPP es-702

timation and GPP from FLUXCOM or MODIS, further variations may arise703

from differences in the setup. FLUXCOM and MODIS GPP products both704

have a higher spatial resolution than VOD data, which potentially reduces the705

impact of scale differences. The FLUXNET data set used for the upscaling in706

FLUXCOM also differs in the data period and incorporates a larger number707
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of sites (Tramontana et al., 2016). As shown for the uncertainty analysis,708

the choice of FLUXNET stations has an impact on the VOD-based upscal-709

ing and, thus, likely contributes to observed differences between VOD-based710

GPP and FLUXCOM GPP. In addition, FLUXCOM and MODIS incorpo-711

rate ancillary information on land cover (Running et al., 1999; Tramontana712

et al., 2016), which was already discussed in Section 6.3 as possibility for713

model improvement.714

6.5. Impact of model simplifications715

The framework neglects the temperature dependency of Ra, which is of-716

ten represented as an exponential increase of Ra with temperature (Wythers717

et al., 2013; Vanderwel et al., 2015; Tjoelker et al., 2001; Smith and Dukes,718

2013; Atkin et al., 2005; Atkin and Tjoelker, 2003). Not accounting for this719

effect thus may explain the observed overestimation of the VOD-based GPP720

estimates. The comparison of estimates from AMSR-E and AMSR2, how-721

ever, showed a closer agreement with FLUXCOM and MODIS for AMSR2722

than for AMSR-E even without including temperature in the model. This723

indicates that, in addition to the temperature dependency of Ra, other effects724

play an important role, which need to be considered for a more robust esti-725

mation of GPP based on VOD. These parameters likely include the choice of726

training data as demonstrated by the variability in mean annual GPP during727

the uncertainty analysis.728

Another simplification is that our model assumes similar temporal dy-729
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namics of above- and belowground biomass, which allows expressing biomass730

as function of VOD. The ratio of above- and belowground growth, however,731

may vary between years in response to environmental stresses like droughts,732

as shown by Doughty et al. (2015) for forest plots in the Amazon basin.733

Depending on the strength of this effect, mismatches in above- and below-734

ground dynamics can potentially lead to differences between the VOD-based735

upscaling of GPP and GPP retrieved from optical data.736

In general, differences and temporal shifts between GPP derived from737

microwave and optical data can point towards additional terms of carbon738

loss or storage that were not considered in the simplified model formulation.739

A study conducted by Würth et al. (2005) demonstrated for a semi-deciduous740

tropical forest how seasonal variations in the concentration of non-structural741

carbohydrates can support temporal shifts between carbon assimilation and742

vegetation growth. Therefore, differences between source- and sink-driven743

GPP can potentially give further insight into large-scale patterns of carbon744

partitioning or allocation.745

7. Conclusion746

We have proposed a model for estimating GPP globally based on single747

frequency microwave satellite VOD. The approach uses VOD as proxy for748

aboveground living biomass and describes the relationship between VOD and749

GPP through a differential equation, which connects VOD and its derivative.750

Using temporal changes in consecutive VOD observations (ΔV OD) as ap-751
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proximation for the derivative, we implemented the model using Generalized752

Additive Models. The proposed model is driven by VOD-based observations753

of vegetation biomass, and thus presents a sink-driven approach. Our results754

show that the model performs well in temporal extrapolation but requires755

further input variables like the grid cell median VOD for spatial extrapo-756

lation of the VOD-GPP relationship. We have attributed this behavior to757

varying proportions of structural components captured by the VOD signal,758

which contribute less to the GPP estimation and may be reduced by includ-759

ing median VOD. Our approach tends to overestimate GPP with respect760

to FLUXCOM and MODIS GPP, which is probably caused by the lack of761

temperature dependency of autotrophic respiration in the current model for-762

mulation. Overall, our results demonstrate the global applicability of the763

model and highlight the potential use of microwave VOD for providing GPP764

estimates that are complementary to source-driven approaches based on op-765

tical remote sensing data.766
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