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Resum

El Model Estandard de la fisica de particules és una teoria que descriu
amb gran precisio 1'estructura i el comportament de la materia. Va ser
desenvolupat als anys 70 i ha pogut explicar amb éxit I'observaci6 de
noves particules al llarg de les tltimes decades. Segons aquest model,
els neutrins son particules sense carrega i sense massa. No obstant
aixo, I'observacié experimental d’oscil-laciéns de neutrins demostra
que aquestes particules han de tenir una massa no nul-la, ja que aquest
fenomen ocorre per la diferencia entre els estats de sabor i de massa
parametritzada en la matriu de mescla Uppns. Per aquest motiu, el
Model Estandard ha de ser ampliat.

Hi ha diversos mecanismes per dotar de massa al neutrins. Una
possibilitat és que el neutri siga una particula de Majorana, és a dir,
particules identiques a les seues antiparticules, al contrari que la res-
ta de fermions. El neutri de Majorana permetria interaccions que
violen la conservacié del nombre leptonic. En aquest cas, els neutri-
nos podrien explicar, mitjangant la leptogenesis, part de 1’asimetria
materia-antimateria observada en 1'univers. Aixi mateix, es podria
explicar la seua petita massa a través del mecanisme de “see-saw”.

La principal tecnica experimental per discernir si el neutri és una
particula de Majorana és la recerca de desintegracions doble beta
sense neutrins (OvBp). Es tracta d"una hipotetica i extremadament rara
desintegraci6 radioactiva en la qual un nucli de nombre atomic Z i
nombre massic A es transforma en el seu isobar de nombre atomic
Z + 2 emetent dos electrons,

OX — 25X +e +e . 1)

Aquest procés encara no ha sigut observat per cap experiment. Encara
que qualsevol mecanisme que impliqui la violaci6é del nombre leptonic
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podria induir la desintegracié OvBg i contribuir a la seua amplitud, el
teorema de la caixa negra garanteix que, si s’'observa una desintegracio
OvBp, llavors els neutrins sén particules de Majorana.

El mecanisme més simple per induir Ovpp seria l'intercanvi d"un
neutri lleuger de tipus Majorana. La semivida d’aquest procés ve
donada per

ov \ 1 Ov ov|2 [ pp 2
(1)t = m P (B2) ®
on G% és una integral d’espai de fases, M és ’element de matriu
nuclear del procés, 1, és la massa de 'electr6 i mgg és I'anomenada
massa efectiva de Majorana. Aquesta es defineix com

> 2
Z Uz; m;
i=1

on U,; son els elements de la primera fila de la matriu de mescla i m;
son les masses dels neutrins. Per tant, 'observacié del procés oferiria
una mesura indirecta de 1’escala absoluta de masses dels neutrins,
inobservable en experiments d’oscil-lacions.

Detectar aquesta desintegraci6 és una tasca complexa. La tecnica
consisteix en mesurar la suma de les energies dels dos electrons emesos
al procés. En una desintegracié doble beta sense neutrins, aquesta
suma seria sempre igual al valor Q del procés, és a dir, a la diferencia
de masses entre els atoms inicial i final,

Qps = M(A,Z) — M(A,Z +2). (4)

Aquesta mesura és crucial per distingir aquest procés de la desintegra-
ci6 doble beta amb neutrins (2vBp), permesa al Model Estandard, a la
qual I'energia dels dos electrons segueix un espectre continu per sota
de Qpp. La resoluci6 energetica finita de qualsevol detector donaria
com a resultat una distribuci6 gaussiana al voltant de Qgg en el cas
d’esdeveniments OvBp. Per aquest motiu, podria passar que algun
altre procés contribuira al soroll de fons dipositant energia al detector
al voltant d’aquest valor, fent més dificil la mesura. Per minimitzar la
quantitat de soroll, els detectors es construixen amb materials radiopurs
i s’operen en laboratoris subterranis per disminuir 1’efecte dels raigs
cosmics.
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Hi ha diverses aproximacions tecnologiques per cercar les des-
integracions OvBB. Per poder comparar el seu rendiment potencial,
sutilitza la sensibilitat a mgg donada per

N ©)

1/4
S(ﬂ’llglg)O(\/l/S (bAE> ’

on ¢ és l'eficiencia de deteccié de 'experiment, M és la massa de
I'isotop OvBB usada en I'experiment, t és el temps de mesura, AE és la
resoluci6 energetica del detector i b és la taxa de soroll de 1’experiment
en la finestra de energia d’interes (ROI) (expressada, normalment, en
comptes per keV, kilogram i any).

Entre els experiments de la generaci6 actual, la cota més estricta
per a la semivida de la desintegracié 0vBg del '**Xe I'ha establerta
I'experiment KamLAND-Zen, amb un valor de Tf'/’z(l%Xe) > 1.07 x
10%¢ anys (90% CL), resultant una massa menor de 61 — 165 meV.
En el cas de l'isotop "°Ge, I’experiment GERDA ha establert la cota
T, ("Ge) > 1.8 x 10% anys (90% CL), corresponent a una massa
efectiva menor de 80 — 182 meV.

L’experiment NEXT

La col-laboracié NEXT (Neutrino Experiment with a Xenon TPC) pro-
posa 1'tis d"'una camera de projeccié temporal (TPC) amb xen6 gasés
a alta pressi6 per a la recerca de desintegracions doble beta sense
neutrins. L'experiment usara xené enriquit al 90% en l'isdtop **Xe,
ja que aquest es pot desintegrar doble beta. A més, en aquest procés
s’allibera una energia alta (2458 keV), facilitant ’eliminacié de gran
part del fons radiactiu natural.

La propagaci6 dels electrons en el xen6 gasés deixa un patré carac-
teristic d’energia dipositada. Els electrons perden energia per ionitza-
ci6 de forma gairebé constant fins que deixen de ser relativistes. En
aquest punt, el ritme amb que perden 'energia creix, degut principal-
ment al scattering multiple, i les particules perden la resta de la seua
energia en una distancia petita, produint una gran deposici6 d’energia,
anomenada blob.

En el cas d’esdeveniments doble beta sense neutrins, es produi-
rien en el detector dos electrons amb una energia total de 136xe Qpp
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(2458 keV) procedents del mateix vertex. Per tant, els electrons deixa-
rien una Unica traca en el detector amb dos blobs, un a cada extrem.
La rellevancia de les potencials fonts de fons radioactiu depen de la
seua probabilitat per generar una traca similar a la produida per un
esdeveniment de senyal amb una energia al voltant de 136Xe Q Bp-

En principi, les particules carregades (muons, betes, etc.) que en-
tren al detector poden ser rebutjades amb una eficiencia alta definint
una petita regi6 de vet (alguns centimetres) al voltant de les vores del
detector. D’altra banda, les traces completament contingudes produi-
des per particules neutres externes, com gammes d’alta energia, o per
les impureses del gas poden donar lloc a una traga tinica amb energia
Qpp- Aquests esdeveniments, perd, poden ser rebutjats mitjangant
I’analisi de la topologia de la seva deposicié energetica. Ates que la
majoria d’ells sén esdeveniments amb un tnic electrd, crearan una
traca amb un blob en només un dels seus extrems.

Aquesta diferéncia entre el comportament dels esdeveniments de
senyal i de fons es pot aprofitar per rebutjar esdeveniments de fons
establint una energia minima per als blobs en ambdoés extrems de ca-
da traca. Aquesta idea és una de les claus de I'experiment NEXT,
dissenyat per tenir una excel-lent resoluci6é energetica i ser capag de
reconstruir aquesta informacié topologica. Els requisits perque els sen-
sors puguin complir aquestes tasques s6n prou diferents, de manera
que cadascun dels planols de la TPC de NEXT esta especialitzat en un
tipus de mesura diferent. Aquest concepte es coneix com Separated
Optimized Function TPC (SOFT).

L'experiment NEXT es basa en una TPC asimetrica en la qual un
dels plans, el pla d’energia, esta instrumentat amb tubs fotomulti-
plicadors (PMTs) per aconseguir una mesura precisa de 1’energia de
I'esdeveniment. En I’altre extrem de la TPC es troba al pla de tracking,
instrumentat amb una matriu de fotomultiplicadors de silici (SiPMs)
per aconseguir la reconstruccié topologica de I'esdeveniment. Per
aconseguir la resolucié energetica oOptima, NEXT amplifica el senyal
mitjangant electroluminescéncia. Aixo0 requereix d’un intens camp
electric per provocar 'emissié de llum a través de l'excitacié dels
atoms de xeno.

El procés de deteccié en NEXT funciona de la segiient manera:
una o diverses particules carregades interactuen amb el xen6 a alta
pressi6, transferint la seva energia mitjangant excitaci6 i ionitzacio.
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L'excitacié produeix un centelleig primari (51) emetent llum ultraviola-
da (~ 178 nm). Els electrons arrencats en la ionitzacié sén arrossegats
per un camp electric moderat que evita la seva recombinacié. Aquests
electrons continuen la seva deriva cap a I'anode de la TPC, on un
camp electric de més intensitat accelera els electrons proporcionant
energia suficient per excitar els atoms de xen6é. D’aquesta forma, es
generen més fotons ultraviolats, donant lloc al centelleig secundari
(S2). Per operar a la regi6 optima dels sensors, la llum ultraviolada es
converteix en llum blava (~ 430 nm) mitjangant 1'as d"un canviador
de longitud d’ona (tetrafenil butadie, o TPB).

El pla d’energia és capag de mesurar la llum emesa pel centelleig
primari, marcant el comengament de ’esdeveniment. Mesurant la llum
emesa en el centelleig secundari és possible aconseguir una mesura
molt precisa de I'energia de I'esdeveniment. La diferencia temporal
entre el S1i el S2 proporciona la posici6 longitudinal de I’esdeveniment
ala TPC.

D’altra banda, el pla de tracking utilitza la llum emesa en el S2 per
determinar amb precisi6 les dues coordenades transversals dels elec-
trons de ionitzacié. Combinant aquesta informacié amb ’obtinguda
pel pla d’energia és possible aconseguir una reconstruccié tridimensi-
onal detallada de cada esdeveniment.

Seguint aquests principis, la col-laboracié NEXT esta construint el
detector NEXT-100 per a la recerca de desintegracions Ovpg del *®Xe.
El detector consisteix en una camera de projeccié temporal (TPC) elec-
troluminescent capag de contenir 100 kg de xené enriquit al 91% en
136Xe a 15 bar de pressi6. El detector es construira i operara al Labora-
tori Subterrani de Canfranc. Les seues caracteristiques principals sén
una excel-lent resoluci6 energetica (fins 0.3% FHWM a Qgg) i la possi-
bilitat de realitzar una reconstruccié topologica dels esdeveniments
per discriminar senyal i soroll. A més a més, presenta altres avantatges
com escalabilitat a grans masses, la facilitat per purificar el gas xen6
eliminant impureses o el cost del seu enriquiment en comparacié a
altres isotops.

Dins del programa d’investigacié de NEXT, com a prototip s’ha
construit el detector NEXT-White amb la finalitat de provar les soluci-
ons tecnologiques ideades per NEXT-100. Aquest detector té ~ 5 kg
de xené i és una versi6 a escala 1:2 de NEXT-100. NEXT-White esta
operant al Laboratori Subterrani de Canfranc des de I'any 2016 en con-
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dicions de baix fons radioactiu. El programa de fisica de NEXT-White
inclou la caracteritzacié del fons radioactiu del laboratori, aixi com la
mesura de la semivida de la desintegraci6 2v B8 del **Xe.

Aquesta tesi doctoral s’ha realitzat dins de la col-laboracié6 NEXT
amb els segiients objectius:

* Desenvolupament del sistema d’adquisicié de dades de NEXT-
White. Escriptura i manteniment del software necessari per po-
der descodificar la informaci¢6 llegida pels sensors i enviada als
servidors per 'electronica d’adquisicié. Aquest software ha de
traduir les dades a un format d’alt nivell adequat per al software
d’analisi. El sistema desenvolupat ha de ser escalable per a la
seva futura utilitzacio en el detector NEXT-100.

¢ Estudi de el fons radioactiu de NEXT-100. Realitzar mitjangant
simulacions detallades del detector i del seu comportament una
analisi sobre el nivell de soroll esperat en el detector NEXT-
100, tenint en compte les tltimes mesures disponibles sobre
la radiopuresa dels materials emprats en els components del
detector. Estudiar el possible impacte de la difusi6 del ntivol
d’electrons durant el seu arrossegament i, si escau, possibles
algoritmes per pal-liar-ne els efectes.

¢ Estudi de possibles aplicacions mediques de la tecnologia desen-
volupada en NEXT. Avaluacié mitjan¢ant simulaci6é d"un esca-
ner de Tomografia per Emissié de Positrons (PET) emprant xen6
liquid i fotomultiplicadors de silici.

Sistema d’adquisicié de dades

En aquest treball es presenta el sistema de adquisici6é de dades (DAQ)
de NEXT-White. El sistema esta basat en 1’arquitectura ATCA-SRS dis-
senyada per NEXT, el CERN i IFIN-HH en el marc de la col-laboracié
RD51. EI DAQ es compon de tres subsistemes: (a) el pla d’energia amb
12 PMTs, (b) el pla de tracking compost per 1792 SiPMs agrupats en 28
Front-End Boards, i (c) el sistema de trigger. Els PMTs son digitalitzats
amb una freqiiéncia de 40 MHz utilitzant 12 bits per mostra. En el cas
dels SiPMs la freqiiencia de digitalitzacié és d'1 MHz, també amb 12
bits per mostra.
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El software utilitzat per al sistema online és DATE, de la col-laboracié
ALICE del CERN. DATE és un software capag de gestionar fluxos de
dades en paral-lel procedents de diferents subsistemes del detector. El
sistema utilitza Gigabit Ethernet i el protocol UDP per comunicar les
diferents maquines implicades en el procés d’adquisicio.

L’arquitectura del sistema inclou dos nivells de servidors: con-
centradors locals de dades (LDC) i concentradors globals de dades
(GDC). El primer nivell esta format pels LDC, que reben subevents
amb les dades d’un subconjunt de sensors de detector. D’aqui, sén
enviats als GDC per al procés final de construccié de 'esdeveniment.
Per aconseguir aix0, els LDC i GDC estan connectats via xarxa. Els
GDC poden implementar mecanismes de balanceig de carrega per
millorar la freqiiencia de trigger del sistema. El més simple d’ells és
un algoritme Round Robin que envie un esdeveniment a cada GDC
seguint un ordre circular.

Per poder transferir i emmagatzemar de forma eficient la informa-
cio relativa als esdeveniments presos, la col-laboracié NEXT ha definit
un format binari de dades especific per complir els requisits del siste-
ma. Aquest format ha de ser conegut per 1’electronica que processa
la informaci6 recollida dels sensors, aixi com pel software de recons-
truccié i analisi. Amb aquesta finalitat, s’ha desenvolupat un software
de decodificacié que tradueix els fitxers creats pel DAQ en format
binari a un altre format de més alt nivell, HDF5, utilitzat pel software
de reconstruccié. El desenvolupament d’aquest software ha estat la
principal contribucié al DAQ d’aquesta tesi. Per assegurar la qualitat
del mateix, s’ha implementat un sistema de proves automatiques que
avaluen el correcte funcionament del software.

El sistema de detecci¢ d’esdeveniments de NEXT és capag de detec-
tar amb alta eficiencia una gran varietat d’esdeveniments. Els esdeve-
niments de calibratge de baixa energia procedents d’una font de #"Kr
produeixen senyals petits, mentre que les fonts d’alta energia (***Rn,
#2Th), esdeveniments de fons o muons produeixen esdeveniments
amb topologies molt diferents segons la direcci6 de les particules en el
gas.

El sistema de trigger de NEXT-White ofereix una gran flexibilitat
per a la selecci6 dels esdeveniments. La manera normal d’operacié
inclou un trigger dual. El trigger 1 es configura per als esdeveniments
de baixa energia (calibratge de Kr), mentre que el trigger 2 es reserva
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per als esdeveniments d’alta energia, normalment prop de Qgg. Aix0
permet que el sistema puga ser calibrat en tot moment usant els esde-
veniments de baixa energia. Per minimitzar la probabilitat de perdre
un esdeveniment d’interes, el trigger 2 té prioritat sobre el trigger 1,
que és molt més freqiient que el trigger 2.

El rendiment del sistema s’ha millorat mitjangant la implementa-
ci6 d’un algoritme de compressié basat en codis de Huffman. Amb
aquest procediment s’aconsegueixen taxes de compressié superiors
al 85%, permetent una reducci6 significativa del temps mort del de-
tector. NEXT-White ha pres satisfactoriament més de 1600 milions
d’esdeveniments, demostrant la robustesa del sistema. Per a NEXT-100
s’utilitzara la mateixa arquitectura amb petis canvis al sistema.

Estudi del fons en NEXT-100

El detector NEXT-100 compta amb dos plans instrumentats, estant
cadascun d’ells optimitzat per a una funci6 diferent. Els electrons
procedents de la desintegracié B produixen centelleig i ionitzacié en
el xend. La llum de centelleig és registrada per un conjunt de tubs foto-
multiplicadors (PMT) situats al catode, que marquen el temps d’inici
de 'esdeveniment (fg). Els electrons d’ionitzaci6 sén derivats cap a
I’anode per un camp eléctric moderat fins a la regié de electrolumines-
cencia. En aquest punt sén accelerats per un camp eléctric més intens
capag de produir un centelleig secundari proporcional al nombre de
electrons que hi arriben. Els PMTs registren aquesta llum donant com
a resultat una mesura precisa de l'energia de I'esdeveniment. D’altra
banda, al costat de ’anode es troba el pla de tracking instrumentat amb
fotomultiplicadors de silici (SiPM) formant una matriu amb un espaiat
regular d’l cm. Mitjangant aquests sensors és possible aconseguir
una reconstruccié detallada de la trajectoria de les particules que han
travessat el detector.

El patr6 de deposicié d’energia és diferent per als esdeveniments
de senyal i els de fons. En un esdeveniment de senyal es produixen dos
electrons que parteixen del mateix vertex i es mouen dipositant la seua
energia. Al final de la seua trajectoria dipositen energia a major ritme
(a cause de el pic de Bragg), deixant un patr¢ caracteristic consistent
en una traca allargada amb dues grans deposicions d’energia (blob)
als seus extrems. En el cas de I’esdeveniments de fons, la traca només
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tindra un blob en un dels seus extrems, perd no en I'altre. Mitjangant un
tall en I’energia minima dels extrems de la traga és possible aconseguir
una major separacié de senyal i fons.

En estudis previs s’han avaluat els diferents possibles fons que po-
drien afectar NEXT-100. La contribucié dominant (97%) prové de fonts
radiogeniques, aixo és, de la contaminacié radioactiva dels materials
amb que es construeix el detector. Els isotops més problematics sén
el 1Bi i el *®T1 presents en las cadenes de desintegraci6 natural de
"urani i del tori, respectivament. Les seues gammes de desintegracio
tenen una energia molt propera al valor Qgg del 136xe.

En aquesta tesi es presenta un estudi actualitzat de la contribu-
ci6 dels fons d’origen radiogenic a NEXT-100 utilitzant les tultimes
mesures de radiopuresa obtingudes en la col-laboraci6. Els estudis
previs van ser realitzats amb una simulacié Monte Carlo simplificada
que no tenia els detalls implementats en el software més recent de la
col-laboracié NEXT. El present estudi inclou una simulaci6 detallada
de la deriva del ntivol d’electrons, aixi com de ’efecte de ’electronica
i la reconstruccid.

’analisi estandard en la col-laboracid, anomenat analisi clissic, in-
clou correccions geometriques i de vida mitjana dels electrons. També
s’ha realitzat una optimizaci6 dels parametres dels talls topologics. Els
resultats obtinguts amb aquest analisi son significativament pitjors
que el que ofereix una reconstrucci6 ideal: el soroll esperat es 2.75
vegades major. La difusi6 del ntivol d’electrons a la TPC és el principal
origen de l'escas rendiment obtingut amb I'analisi classic.

Modificant els talls implementats en 1’analisi classic és possible
millorar el resultat, encara que no prou. La forma de solucionar el
problema és mitjancant 1'ts de 1’algoritme Richardson-Lucy. Aquest
procediment és capag de recuperar una imatge subjacent alterada per
una funcié de dispersi6é de punt (PSF) coneguda. En el caso de NEXT,
aquestes PSFs es poden construir mitjangant 1’analisi d’esdeveniments
puntuals de baixa energia procedents de una font de %"Kr. Mitjan-
cant I'as de diferents PSFs depenent de la posici6 longitudinal de
I’esdeveniment, és possible deconvolucionar 1'efecte de la difusié del
nuvol d’electrons. Aquest algoritme aconsegueix una millora signifi-
cativa en els resultats, sent comparables als resultats obtinguts amb la
reconstrucci6 ideal.

El fons esperat trobat usant la deconvoluci6é R-L és 4.29 x 1074
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cts keV~! kg~! yr~1. Aquests resultats posen de manifest la importan-
cia critica que té la difusi6 del ntavol d’electrons en detectors grans.
Algoritmes com Richardson-Lucy sén una de les eines per tractar
aquest problema. Més enlla de solucions basades en millores del pro-
cediment de reconstrucci6, la investigacié sobre additius per al gas
xend que disminueixen la difusi6 és també una opcié de gran interes.

Dels resultats obtinguts també es dedueix que reemplacar els PMTs
per SiPMs produiria una rebaixa important del nivell de fons del
detector, ja que el pla de PMTs és la major font d’esdeveniments de
fons.

Aplicacions mediques de NEXT

Per acabar, la tecnologia desenvolupada per als detectors NEXT té
també aplicacions més enlla de la fisica fonamental, concretament en
imatge medica. L'ts del xen6 com a medi de deteccié de radiacions,
amb fotomultiplicadors de silici per registrar la seua resposta, permet
el desenvolupament d"un nou sistema de tomografia per emissi6 de
positrons (PET).

El sistema PET és una técnica d’imatge medica no invasiva em-
prada per observar els processos metabolics del cos. No mostra trets
anatomics com una Ressonancia Magnetica o un TAC, siné 'activi-
tat de les cel-lules. Els escaners PET s’usen en investigacio clinica i
preclinica per estudiar les bases moleculars de la malaltia i els seus
tractaments.

El principi d’operaci6 consisteix a injectar al pacient una molecula
amb alguna activitat biologica, modificada per incloure un radioisotop,
anomenada tragador. Un tragador comu és la fluorodeoxiglucosa, que
consisteix en una molecula de glucosa en la qual un oxigen ha estat
reemplacat per un 8F, emissor 7. El radionucli es desintegra dins el
pacient i el positré emes s’aniquila amb un electr6é després de travessar
una curta distancia en els teixits propers. Aquesta aniquilaci6 produ-
eix dos fotons de 511 keV en direccions oposades. La trajectoria dels
fotons defineix una linia de resposta (LOR) que pot ser reconstruida
mitjancant la mesura de la direcci6 de les dues particules. Aixo s’acon-
segueix observant la interaccié d’aquestes particules amb un detector
situat al voltant del cos del pacient. La intersecci6 de moltes LOR
mostra el punt d’emissi6 del radiotragador. La mesura de la diferencia
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temporal entre 1’arribada dels dos fotons (time-of-flight, TOF), permet
millorar la sensibilitat del sistema.

El projecte PETALO planteja la construccié d"un escaner PET basat
en xeno liquid instrumentat amb SiPMs. Aquesta nova tecnologia pre-
senta importants avantatges: (a) una resposta de centelleig molt rapida
i amb una gran quantitat de llum; (b) el xen6 liquid ofereix un medi
continu amb resposta uniforme; (c) potencialment, la identificaci6 i
reconstruccié d’esdeveniments Compton.

En aquesta tesi es presenta un estudi mitjangant simulacié de la
llum Cherenkov produida en el xen6 liquid. L'interés d’aquest tipus
de resposta és que és extremadament rapida, per la qual cosa el seu
Us podria permetre el disseny de sistemes PET amb informaci6 del
temps de vol (TOF) amb una resolucié temporal de coincidencies (CRT)
extraordinaria. L’analisi de la simulacié implementada mostra com un
CRT de ~ 30 ps seria possible amb sensors i electronica suficientment
rapids.

Conclusions

Els objectius d’aquesta tesi s’han complert satisfactoriament. S’ha
desenvolupat un sistema d’adquisicié de dades escalable que ha de-
mostrat sobradament la seua fiabilitat i rendiment durant diversos
anys d’operacié del detector NEXT-White al Laboratori Subterrani
de Canfranc. L'ts de la compressié mitjangant codis de Huffman ha
permes una millora notable de el temps mort de I'detector.

Les simulacions detallades realitzades del fons radioactiu natural
de NEXT-100 han mostrat la importancia crucial de tractar el problema
de la difusi6 del ntvol d’electrons al llarg de la seva deriva en la TPC.
L’algoritme de deconvolucié Richardson-Lucy permet corregir aquest
efecte aconseguint resultats similars als obtinguts en una simulacié
ideal sense incloure la difusi6. Aquest resultat també posa de manifest
I'interes de 'estudi de diferents additius per al gas que disminueixin
la difusié.

Finalment, els resultats obtinguts en la simulacié de sistema PETA-
LO mostren la gran potencialitat d'un escaner PET basat en xené liquid
per obtenir una resolucié temporal de coincidéncies extraordinaria.






Resumen

El Modelo Estandar de la fisica de particulas es una teoria que describe
con gran precision la estructura y el comportamiento de la materia.
Fue desarrollado en los afios 70 y ha podido explicar con éxito la
observacién de nuevas particulas a lo largo de las tltimas décadas.
Seguin este modelo, los neutrinos son particulas sin carga y sin masa.
Sin embargo, la observacién experimental de oscilaciones de neutrinos
demuestra que estas particulas tienen que tener una masa no nula,
pues este fendmeno ocurre por la diferencia entre los estados de sabor
y masa parametrizada en la matriz de mezcla Uppns. Por este motivo,
el Modelo Estandar debe ser extendido.

Existen diversos mecanismos para dotar de masa a los neutrinos.
Una posibilidad es que el neutrino sea una particula de Majorana, esto
es, particulas idénticas a sus antiparticulas, al contrario que el resto
de fermiones. El neutrino de Majorana permitiria interacciones que
violan la conservacién del ntiimero lepténico. En tal caso, los neutri-
nos podrian explicar, mediante la leptogénesis, parte de la asimetria
materia-antimateria observada en el universo. Asimismo, se podria
explicar su pequefia masa a través del mecanismo de “see-saw”.

La principal técnica experimental para discernir si el neutrino es
una particula de Majorana, es la biisqueda de desintegraciones doble
beta sin neutrinos (OvBp). Se trata de una hipotética y extremadamente
rara desintegracion radiactiva en la que un nicleo de nliimero atémico
Z y nimero mésico A se transforma en su is6baro de ntimero atémico
Z + 2 emitiendo dos electrones,

éX—>Z+"§X+e_+e_. (6)

Este proceso no ha sido observado a dia de hoy por ningtin experi-
mento. Aunque cualquier mecanismo que implique la violacién del
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nimero lepténico podria inducir la desintegracion Ovpp y contribuir
a su amplitud, el teorema de la caja negra garantiza que, si se observa
una desintegracién OvppB, entonces los neutrinos son particulas de
Majorana.

El mecanismo mas simple para inducir OvBg seria el intercambio
de un neutrino ligero de tipo Majorana. La semivida de dicho proceso
viene dada por

ov \—1 Ov ov |2 m.Bﬁ 2
(T),)  =G™ |M»| (me> , )

donde G% es una integral de espacio de fases, MY es el elemento
de matriz nuclear del proceso, m, es la masa del electrén y mgg es la
llamada masa efectiva de Majorana. Esta se define como

> 2
Z Uz m;
i=1

donde U,; son los elementos de la primera fila de la matriz de mezcla y
m; son las masas de los neutrinos. Por tanto, la observacién del proceso
aportaria una medida indirecta de la escala absoluta de masas de los
neutrinos, inobservable en experimentos de oscilaciones.

Detectar esta desintegracion es una tarea compleja. La técnica con-
siste en medir la suma de las energias de los dos electrones emitidos
en el proceso. En una desintegraciéon doble beta sin neutrinos, dicha
suma seria siempre igual al valor Q del proceso, esto es, a la diferencia
de masas entre los d&tomos inicial y final,

Qps = M(A,Z) — M(A,Z+2). 9)

Esta medida es clave para distinguir este proceso de la desintegracién
doble beta con neutrinos (2vpp), permitida en el Modelo Estandar, en
la que la energia de los dos electrones sigue un espectro continuo por
debajo de Qpgg. La resolucion energética finita de cualquier detector
daria como resultado una distribucién gaussiana en torno a Qgg en
el caso de eventos OvBp. Por este motivo, podria ocurrir que algtn
otro proceso contribuyera al ruido de fondo depositando energia en
el detector en torno dicho valor, haciendo maés dificil la medida. Pa-
ra minimizar la cantidad de ruido, los detectores se construyen con
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materiales radiopuros y se operan en laboratorios subterrdneos para
disminuir el efecto de los rayos c6smicos.

Existen diversas aproximaciones tecnoldgicas para buscar las de-
sintegraciones OvBp. Para poder comparar su rendimiento potencial
se utiliza la sensibilidad a mgg dada por

1/4
S(Mﬁ'g) xv1/¢ (b]\/IAf> ’ (10)

donde ¢ es la eficiencia de deteccién del experimento, M es la masa
de is6topo OvBB usada en el experimento, ¢ es el tiempo de medida,
AE es la resolucién energética del detector y b es la tasa de ruido del
experimento en la ventana de energia de interés (ROI) (expresada,
normalmente, en cuentas por keV, kilogramo y afio).

Entre los experimentos de la generacién actual, la cota més es-
tricta para la semivida de la desintegracién OvBB del **Xe ha si-
do establecida por el experimento KamLAND-Zen, con un valor de
Tf}’z(l%Xe) > 1,07 x 10% afios (90 % CL), resultando una masa me-

nor de 61 — 165 meV. En el caso del is6topo "°Ge, el experimento
GERDA ha establecido la cota Tf}’z(%Ge) > 1,8 x 10% afos (90 % CL),
correspondiente a una masa efectiva menor de 80 — 182 meV.

El experimento NEXT

La colaboracién NEXT (Neutrino Experiment with a Xenon TPC) pro-
pone el uso de una cdmara de proyeccién temporal (TPC) con xenén
gaseoso a alta presion para la bisqueda de desintegraciones doble
beta sin neutrinos. El experimento usard xenén enriquecido al 90 % en
el isétopo '**Xe, ya que este puede desintegrarse doble beta. Ademas,
en dicho proceso se libera una energia alta (2458 keV), facilitando la
eliminacién de gran parte del fondo radiactivo natural.

La propagacion de los electrones en el xenén gaseoso deja un
patrén caracteristico de energia depositada. Los electrones pierden
energia por ionizaciéon de forma casi constante hasta que dejan de
ser relativistas. En ese punto, el ritmo al que pierden la energia crece,
debido principalmente al scattering multiple, y las particulas pierden
el resto de su energia en una distancia pequefia, produciendo una gran
deposicion de energia, denominada blob.
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En el caso de eventos doble beta sin neutrinos, se producirian en
el detector dos electrones con una energia total de '3Xe Qpp (2458
keV) procedentes del mismo vértice. Por tanto, los electrones dejarian
una Unica traza en el detector con dos blobs, uno en cada extremo. La
relevancia de las potenciales fuentes de fondo radiactivo depende de
su probabilidad para generar una traza similar a la producida por un
evento de sefial con una energia en torno a **Xe Qpgg.

En principio, las particulas cargadas (muones, betas, etc.) que en-
tran al detector pueden ser rechazadas con una eficiencia alta defi-
niendo una pequeria regién de veto (algunos centimetros) alrededor
de los bordes del detector. Por otra parte, las trazas completamente
contenidas producidas por particulas neutras externas, como gammas
de alta energia, o por las impurezas del gas pueden dar lugar a una
traza tnica con energia Qgg. Estos eventos, sin embargo, pueden ser
rechazados mediante el anélisis de la topologia de su deposicién ener-
gética. Dado que la mayoria de ellos son eventos con un tinico electrén,
creardn una traza con un blob en solo uno de sus extremos.

Esta diferencia entre el comportamiento de los eventos de sefial
y de fondo se puede aprovechar para rechazar eventos de fondo es-
tableciendo una energia minima para los blobs en ambos extremos
de cada traza. Esta idea es una de las claves del experimento NEXT,
disefiado para tener una excelente resolucion energética y ser capaz
de reconstruir esta informacion topolégica. Los requisitos para que los
sensores puedan cumplir esas tareas son bastante diferentes, por lo
que cada uno de los planos de la TPC de NEXT esta especializado en
un tipo de medida diferente. Este concepto se conoce como Separated
Optimized Function TPC (SOFT).

El experimento NEXT se basa en una TPC asimétrica en la cual
uno de los planos, el plano de energia, esta instrumentado con tubos
fotomultiplicadores (PMTs) para conseguir una medida precisa de la
energia del evento. En en el otro extremo de la TPC se encuentra el
plano de tracking, instrumentado con una matriz de fotomultiplica-
dores de silicio (§iPMs) para conseguir la reconstruccién topolégica
del evento. Para conseguir la resolucién energética 6ptima, NEXT
amplifica la sefial mediante electroluminiscencia. Esto requiere un
intenso campo eléctrico para provocar la emisiéon de luz a través de la
excitacion de los atomos de xenén.

El proceso de deteccion en NEXT funciona de la siguiente manera:
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una o varias particulas cargadas interacttian con el xenén a alta presion,
transfiriendo su energia mediante excitacién e ionizacién. La excita-
cién produce un centelleo primario (S1) emitiendo luz ultravioleta
(~178 nm). Los electrones arrancados en la ionizacién son arrastrados
por un campo eléctrico moderado que evita su recombinacién. Estos
electrones contintan su deriva hacia el dnodo de la TPC, donde un
campo eléctrico de mayor intensidad acelera los electrones proporcio-
nédndoles energia suficiente para excitar los 4&tomos de xenén. De esa
forma, se generan mds fotones ultravioleta, dando lugar al centelleo
secundario (S2). Para operar en la regién 6ptima de los sensores, la luz
ultravioleta se convierte en luz azul (~430 nm) mediante el uso de un
cambiador de longitud de onda (tetrafenil butadieno, o TPB).

El plano de energia es capaz de medir la luz emitida por el cen-
telleo primario, marcando el comienzo del evento. Midiendo la luz
emitida en el centelleo secundario es posible conseguir una medida
muy precisa de la energia del evento. La diferencia temporal entre el
S1y el S2 proporciona la posicién longitudinal del evento en la TPC.

Por otro lado, el plano de tracking utiliza la luz emitida en el S2
para determinar con precision las dos coordenadas transversales de
los electrones de ionizacién. Combinando esta informacién con la ob-
tenida por el plano de energia es posible conseguir una reconstruccién
tridimensional detallada de cada evento.

Siguiendo esos principios, la colaboracion NEXT esta construyen-
do el detector NEXT-100 para la busqueda de desintegraciones OvB
del 13¢Xe. El detector consiste en una cdmara de proyeccién temporal
(TPC) eletroluminiscente capaz de contener ~100 kg de xenon enri-
quecido al 91 % en '*®Xe a 15 bar de presion. El detector se operard
en el Laboratorio Subterrdneo de Canfranc. Sus caracteristicas princi-
pales son su excelente resolucion energética (hasta 0.3 % FHWM en
Qpp) y la posibilidad de realizar una reconstruccién topolégica de los
eventos para discriminar la sefial y el ruido. Ademas de lo anterior
presenta otras ventajas como escalabilidad a mayores masas, la facili-
dad para purificar el gas xenén eliminando impurezas o el coste de su
enriquecimiento en comparacion a otros isétopos.

Dentro del programa de investigacion de NEXT, a modo de pro-
totipo se ha construido el detector NEXT-White con el fin de probar
las soluciones tecnolégicas ideadas para NEXT-100. Este detector tiene
~ 5 kg de xenén y es una version a escala 1:2 de NEXT-100. NEXT-
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White estd operando en el Laboratorio Subterraneo de Canfranc desde
el afio 2016 en condiciones de bajo fondo radiactivo. El programa de
fisica de NEXT-White incluye la caracterizacién del fondo radiactivo
del laboratorio asi como la medida de la semivida de la desintegracién
2vBp del ¥Xe.

Esta tesis doctoral se ha realizado dentro de la colaboracién NEXT
con los siguientes objetivos:

* Desarrollo del sistema de adquisicién de datos de NEXT-White.
Escritura y mantenimiento del software necesario para poder
decodificar la informacién leida por los sensores y enviada a los
servidores por la electrénica de adquisicion. Este software debe
traducir los datos a un formato de alto nivel adecuado para el
software de anadlisis. El sistema desarrollado debe ser escalable
para su futura utilizacién en el detector NEXT-100.

¢ Estudio del fondo radiactivo de NEXT-100. Realizar mediante
simulaciones detalladas del detector y su comportamiento un
andlisis sobre el nivel de ruido esperado en el detector NEXT-
100, teniendo en cuenta las tltimas medidas disponibles sobre la
radiopureza de los materiales empleados en los componentes del
detector. Estudiar el posible impacto de la difusién de la nube de
electrones durante su arrastre y, en su caso, posibles algoritmos
para paliar sus efectos.

¢ Estudio de posibles aplicaciones médicas de la tecnologia desa
rrollada en NEXT. Evaluacién mediante simulacién de un escé-
ner para Tomografia por Emisién de Positrones (PET) empleando
xenén liquido y fotomultiplicadores de silicio.

Sistema de adquisicion de datos

En este trabajo se presenta el sistema de adquisicién de datos (DAQ)
de NEXT-White. El sistema esta basado en la arquitectura ATCA-SRS
disefiada por NEXT, el CERN e IFIN-HH en el marco de la colabo-
racion RD51. El DAQ se compone de tres subsistemas: (a) el plano
de energia con 12 PMTs, (b) el plano de tracking compuesto por 1792
SiPMs agrupados en 28 Front-End Boards, y (c) el sistema de trigger. Los
PMTs son digitalizados con una frecuencia de 40 MHz utilizando 12
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bits por muestra. En el caso de los SiPMs la frecuencia de digitalizacién
es de 1 MHz, también con 12 bits por muestra.

El software utilizado para el sistema online es DATE, de la cola-
boraciéon ALICE del CERN. DATE es un software capaz de gestionar
flujos de datos en paralelo procedentes de diferentes subsistemas del
detector. El sistema utiliza Gigabit Ethernet y el protocolo UDP para
comunicar las distintas maquinas implicadas en el proceso de adquisi-
cion.

La arquitectura del sistema incluye dos niveles de servidores: con-
centradores locales de datos (LDC) y concentradores globales de datos
(GDCQ). El primer nivel esta formado por los LDC, que reciben subeven-
tos con los datos de un subconjunto de sensores del detector. De ahi,
son enviados a los GDC para el proceso final de construccién del even-
to. Para conseguir esto, los LDC y GDC estan conectados via red. Los
GDC pueden implementar mecanismos de balanceo de carga para
mejorar la frecuencia de trigger del sistema. El més simple de ellos es
un algoritmo Round Robin que envie un evento a cada GDC siguiendo
un orden circular.

Para poder transferir y almacenar de forma eficiente la informaciéon
relativa a los eventos tomados, la colaboracién NEXT ha definido un
formato binario de datos especifico para cumplir los requisitos del sis-
tema. El formato empleado incluye diferentes cabeceras para los datos
de los PMTs, de los SiPMs y los relacionados con la informacién del
trigger. Este formato debe ser conocido por la electrénica que procesa
la informacién recogida de los sensores asi como por el software de
reconstruccion y andlisis. Con esta finalidad, se ha desarrollado un soft-
ware de decodificaciéon que traduce los ficheros creados por el DAQ en
formato binario a otro formato de més alto nivel, HDF5, utilizado por
el software de reconstruccion. El desarrollo de este software ha sido la
principal contribucién al DAQ de esta tesis. Para asegurar la calidad
del mismo, se ha implementado un sistema de pruebas automaticas
que evaltan el correcto funcionamiento del software.

El sistema de deteccion de eventos de NEXT es capaz de detec-
tar con alta eficiencia una gran variedad de eventos. Los eventos
de calibraciéon de baja energia procedentes de una fuente de ®"Kr
producen sefiales pequefias, mientras que las fuentes de alta ener-
gia (222Rn, 232Th), eventos de fondo o muones producen eventos con
topologias muy diferentes segtn la direccién de las particulas en el
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gas.

El sistema de trigger de NEXT-White ofrece una gran flexibilidad
para la seleccién de los eventos. El modo normal de operacién incluye
un trigger dual. El trigger 1 se configura para los eventos de baja
energia (calibraciéon de Kr), mientras que el trigger 2 se reserva para los
eventos de alta energfa, normalmente cerca de Qgg. Esto permite que
el sistema pueda ser calibrado en todo momento usando los eventos
de baja energfa. Para minimizar la probabilidad de perder un evento
de interés, el trigger 2 tiene prioridad sobre el trigger 1, que es mucho
maés frecuente que el trigger 2.

El rendimiento del sistema se ha mejorado mediante la implemen-
tacién de un algoritmo de compresién basado en cédigos de Huffman.
Con este procedimiento se consiguen tasas de compresién superiores
al 85 %, permitiendo una reduccién significativa del tiempo muerto
del detector. NEXT-White ha tomado satisfactoriamente mds de 1600
millones de eventos, demostrando la robustez del sistema. Para NEXT-
100 se utilizarad la misma arquitectura con pequefios cambios en el
sistema.

Estudio del fondo en NEXT-100

El detector NEXT-100 cuenta con dos planos instrumentados, estan-
do cada uno de ellos optimizado para una funcién diferente. Los
electrones procedentes de la desintegracién B producen centelleo e
ionizacion en el xenén. La luz de centelleo es registrada por un con-
junto de tubos fotomultiplicadores (PMT) situados en el cdtodo que
marcan el tiempo de inicio del evento (t(). Los electrones de ionizacién
son derivados hacia el &nodo por un campo eléctrico moderado hasta
la region de electroluminiscencia. En ese punto son acelerados por un
campo eléctrico més intenso capaz de producir un centelleo secundario
proporcional al ntimero de electrones que llegan. Los PMTs registran
esta luz dando como resultado una medida precisa de la energia del
evento. Por otro lado, junto al &nodo se encuentra el plano de tracking
instrumentado con fotomultiplicadores de silicio (SiPM) formando
una matriz con un espaciado regular de 1 cm. Mediante estos sensores
es posible conseguir una reconstruccion detallada de la trayectoria de
las particulas que han atravesado el detector.
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El patrén de deposicién de energia es diferente para los eventos de
sefial y los de fondo. En un evento de sefial se producen dos electrones
que parten del mismo vértice y se mueven depositando su energfa.
Al final de su trayectoria depositan energia a mayor ritmo (debido al
pico de Bragg), dejando un patrén caracteristico consistente en una
traza alargada con dos grandes deposiciones de energia (blob) en sus
extremos. En el caso de los eventos de fondo, la traza solo tendra un
blob en uno de sus extremos, pero no en el otro. Mediante un corte en
la energia minima de los extremos de la traza es posible conseguir una
mayor separacion de la sefial y el fondo.

En estudios previos se han evaluado los distintos posibles fondos
que podrian afectar a NEXT-100. La contribucién dominante (97 %)
proviene de fuentes radiogénicas, esto es, de la contaminacién radiac-
tiva de los materiales con los que se construye el detector. Los isétopos
més problematicos son el 2Bi y el *%®*T1 presentes en las cadenas de
desintegracion natural del uranio y del torio, respectivamente. Sus
gammas de desintegracion tienen una energia muy préxima al valor
Qﬁ,B del 136Xe.

En esta tesis se presenta un estudio actualizado de la contribucién
de los fondos de origen radiogénico a NEXT-100 usando las tltimas
medidas de radiopureza obtenidas en la colaboracién. Los estudios
previos fueron realizados con una simulacién Monte Carlo simplifi-
cada que carecia de los detalles implementados en el software mds
reciente de la colaboracién NEXT. El presente estudio incluye una
simulacién detallada de la deriva de la nube de electrones, asi como
del efecto de la electrénica y la reconstruccién.

El anélisis estdndar en la colaboracién, llamado andlisis cldsico,
incluye correcciones geométricas y de vida media de los electrones.
También se ha realizado una optimizacién de los parametros de los
cortes topoldgicos. Los resultados obtenidos con este andlisis son sig-
nificativamente peores que lo que ofrece una reconstruccién ideal: el
ruido esperado es 2.75 veces mayor. La difusién de la nube de electro-
nes en la TPC es el principal origen del escaso rendimiento obtenido
con el analisis clasico.

Modificando los cortes implementados en el andlisis clasico es
posible mejorar el resultado, aunque no lo suficiente. La forma de solu-
cionar el problema es mediante el uso del algoritmo Richardson-Lucy.
Este procedimiento es capaz de recuperar una imagen subyacente
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alterada por una funcién de dispersién de punto (PSF) conocida. En el
caso de NEXT, estas PSFs se pueden construir mediante el anélisis de
eventos puntuales de baja energfa procedentes de una fuente de ¥"Kr.
Mediante el uso de distintas PSFs dependiendo de la posicién longitu-
dinal del evento, es posible deconvolucionar el efecto de la difusion de
la nube de electrones. Este algoritmo consigue una mejora significativa
en los resultados, siendo comparable a los resultados obtenidos con la
reconstruccion ideal.

El fondo esperado encontrado usando la deconvolucién R-L es
4,29 x 10~ cts keV~! kg! yr~1. Estos resultados ponen de manifiesto
la importancia critica que tiene la difusiéon de la nube de electrones en
detectores grandes. Algoritmos como Richardson-Lucy son una de las
herramientas para tratar este problema. M4s alld de soluciones basadas
en mejoras del procedimiento de reconstruccion, la investigacion sobre
aditivos para el gas xenén que disminuyan la difusién es también una
opcién de gran interés.

De los resultados obtenidos también se deduce que reemplazar los
PMTs por SiPMs produciria una rebaja importante del nivel de fondo
del detector, ya que el plano de PMTs es la mayor fuente de eventos
de fondo.

Aplicaciones médicas de NEXT

Para terminar, la tecnologia desarrollada para los detectores NEXT
tiene también aplicaciones mds allé de la fisica fundamental, concreta-
mente en la imagen médica. El uso del xenén como medio de deteccién
para radiaciones, con fotomultiplicadores de silicio para registrar su
respuesta, permite el desarrollo de un nuevo sistema de tomografia
por emisién de positrones (PET).

El sistema PET es una técnica de imagen médica no invasiva em-
pleada para observar los procesos metabélicos del cuerpo. No muestra
rasgos anatémicos como una Resonancia Magnética o un TAC, sino la
actividad de las células. Los escéneres PET se usan en investigacion cli-
nica y preclinica para estudiar las bases moleculares de la enfermedad
y sus tratamientos.

El principio de operacion consiste en inyectar al paciente una mo-
lécula con alguna actividad biolégica, modificada para incluir un
radioisétopo, denominada trazador. Un trazador comtn es la fluoro-
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deoxiglucosa, que consiste en una molécula de glucosa en la que un
oxigeno ha sido reemplazado por un '8F, emisor 8. El radionticleo se
desintegra dentro del paciente y el positrén emitido se aniquila con un
electrén después de atravesar una corta distancia en los tejidos cerca-
nos. Esta aniquilacion produce dos fotones de 511 keV en direcciones
opuestas. La trayectoria de los fotones define una linea de respuesta
(LOR) que puede ser reconstruida mediante la medida de la direccién
de ambas particulas. Esto se consigue observando la interaccién de
dichas particulas con un detector situado alrededor del cuerpo del
paciente. La interseccion de muchas LOR muestra el punto de emisién
del radiotrazador. La medida de la diferencia temporal entre la llegada
de los dos fotones (time-of-flight, TOF), permite mejorar la sensibilidad
del sistema.

El proyecto PETALO planea la construccién de un escaner PET
basado en xenén liquido instrumentado con SiPMs. Esta nueva tec-
nologia presenta importantes ventajas: (a) una respuesta de centelleo
muy rdpida y con una gran cantidad de luz; (b) el xenén liquido ofrece
un medio continuo con respuesta uniforme; (c) potencialmente, la
identificacién y reconstruccién de eventos Compton.

En esta tesis se presenta un estudio mediante simulacién de la
luz Cherenkov producida en el xenén liquido. El interés de este tipo
de respuesta es que es extremadamente rapida, por lo que su uso
podria permitir el disefio de sistemas PET con informacién del tiempo
de vuelo (TOF) con una resolucién temporal de coincidencias (CRT)
extraordinaria. El andlisis de la simulacién implementada muestra
como un CRT de ~ 30 ps seria posible con sensores y electrénica
suficientemente rdpidos.

Conclusiones

Los objetivos de esta tesis se han cumplido satisfactoriamente. Se
ha desarrollado un sistema de adquisicién de datos escalable que
ha demostrado sobradamente su fiabilidad y rendimiento durante
varios afios de operacion del detector NEXT-White en el Laboratorio
Subterraneo de Canfranc. El uso de la compresién mediante cédigos
de Huffman ha permitido una mejora notable del tiempo muerto del
detector.
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Las simulaciones detalladas realizadas del fondo radiactivo na-
tural de NEXT-100 han mostrado la importancia crucial de tratar el
problema de la difusion de la nube de electrones a lo largo de su deriva
en la TPC. El algoritmo de deconvolucién Richardson-Lucy permite
corregir ese efecto logrando resultados similares a los obtenidos en
una simulacién ideal sin incluir la difusién. Este resultado también
pone de manifiesto el interés del estudio de diferentes aditivos para el
gas que disminuyan la difusién.

Por altimo, los resultados obtenidos en la simulacién del sistema
PETALO muestran la gran potencialidad de un escaner PET basado en
xenén liquido para obtener una resolucién temporal de coincidencias
extraordinaria.



The nature of neutrinos

1.1 Brief history of neutrinos

In the 1920s there was a problem with the energy spectrum of p-decays.
Protons and electrons were considered to be elementary particles, with
nuclei being bound states of them. In that framework, the emission of
a single e~ with a fixed kinetic energy Q = (Ma,z — Ma z+1) — M, was
expected. Instead, experiments such as William Wooster’s in 1927 [1]
found a continuous B spectrum, with end-point energy equal to Q, as
shown in Figure 1.1.

Moreover, molecular band spectra established [2] that the spin of
1N is 1, implying the violation of angular momentum conservation
too, as the process 14C — N + ¢~ would involve the spins 0 — 1+ 1.

A desperate answer to those experimental facts was proposed by
Niels Bohr, when he postulated that energy conservation was true only
in a statistical sense [3]. Nevertheless, his proposal could not solve the
problem of the angular momentum.

In 1930, Wolfgang Pauli addressed the problem in a famous letter
sent the 4th of December to the participants of the Tiibingen conference
[4]. The solution came in the form of a new neutral 1/2-spin particle,
with a mass less than 1% of the proton mass, invisible to the detectors
of that time. Hence, the decay would be a three-body process with
the energy shared between the electron and the new particle, showing
a continuous spectrum for electron energy. The angular momentum
problem could also be solved as the reaction would be 14C — 1IN +
e~ +v, withspins0 — 1+ % + %, an allowed transition.

Enrico Fermi made the next fundamental contribution to the neu-
trino history in 1934, as he built the first theory of the B-decay of
nuclei [5] based on Pauli’s assumptions and called the new particle
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Figure 1.1: B decay electron energy spectrum from Wooster’s experi-
ment. Taken from Ref. [1]

the neutrino, because the neutron had been discovered by James Chad-
wick in 1932 [6]. He proposed a four-fermion coupling (Figure 1.2)
describing the reactions

n—pte +7,
p—nte +uv. (1.1)

As seen, his model for B decay required the existence of the (yet)
unobservable neutrino to work.

In 1937, Ettore Majorana proposed a new theory for neutral, spin-
1/2 particles, called today Majorana particles, in which particles and
antiparticles are identical [7].

During the following years, physicists started to think about how
the neutrino could be detected experimentally. Using Fermi’s the-
ory, Hans Bethe and Rudolf Peierls estimated in 1934 [8] the mean
absorption length of neutrinos in solid matter, finding it to be a discour-
aging 10'* km. Neutrinos could traverse the Earth without interacting,
leading them to conclude that "it is absolutely impossible to observe
processes of this kind".
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Figure 1.2: Four-fermion vertex in Fermi’s p-decay theory.

Bruno Pontecorvo proposed the first technique for neutrino de-
tection in 1946 [9]. He wrote “The Object of this note is to show that the
experimental observation of an inverse 3 process produced by neutrino is not
out of the question with the modern experimental observation feasible”. He
considered a CI-Ar reaction

v+3Cl —» e~ + YAr, (1.2)

as an appropiate candidate for neutrino detection. In a big sample
of ¥Cl, long irradiated by neutrinos, a few atoms of 37 Ar could be
produced. Since argon is a noble gas, atoms of 37Ar could be easily
extracted and placed in a proportional counter in which their decay
would be detected.

The first neutrino detection was done in 1956 in an experiment by
Fred Reines and Clyde Cowan [10]. They observed the process

T4p et +n (13)

using the Savannah River reactor as a 7 source, and tanks filled with
liquid scintillator (1.4 x 10° liters of cadmium chloride, CdCl) as
target. They were able to detect the two 511 keV gammas from positron
annihilation in coincidence with the nuclear gamma

n+1%cd — 1%cd + o (1.4)
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due to the de-excitation of the 'Cd nucleus after the neutron was
captured by CdCl, molecules.

Their experiment not only discovered the antineutrino, but intro-
duced a detection technique that is still being used in state-of-the-art
detectors. Reines received the Nobel Prize in 1995 for the discovery.

By the time of the antineutrino discovery, two charged leptons
were known: electrons and muons. The latter appears in pion decay, a
process similar to § decay that involves also an antineutrino,

T —u +v. (1.5)

Whether pion decays and beta decays have the same neutrinos, or
not, was an open question until 1962. The Brookhaven neutrino experi-
ment was the first one to measure antineutrinos from pion decays [11].
Leon Lederman, Melvin Schwartz and Jack Steinberger created the
first neutrino beam by aiming a boosted proton beam against a tar-
get, producing pions and other hadrons that decay emitting neutrinos
among other particles. A neutrino detector was placed behind the
shield. If the charged-current interaction of the neutrinos with the
target produced both electrons and muons, the experiment would
have proven that there is a single type of neutrino. On the other hand,
only muons were found in the detector, showing the existence of two
different neutrino flavors. It established two families of leptons: (v, ¢)
and (v, p).

This result suggested that the total electron and muon lepton num-
bers L, and L,, which are called flavor lepton numbers, were con-

served: . _
ZL(EZ) = const; ZL;}) = const (1.6)
i i

The third type of neutrino, v, the partner of the 7 lepton, was
discovered in 2000 by the DONUT Collaboration in Fermilab [12] with
the measurement of T appearance in the process

ve+ (A Z) = T+... 1.7)

All of these experiments detected artificially produced neutrinos,
yet it was well-known that high fluxes of neutrinos, mainly produced
in the Sun or the Earth’s atmosphere, could be detected with this
technology as well.
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The first attempt to measure the solar neutrino flux came shortly
after the discovery of the neutrinos by Reines and Cowan. Raymond
Davis and collaborators started an experiment with chlorine-37 as pro-
posed by Pontecorvo, but they only measured a third of the neutrino
flux predicted by the theory [13]. At the beginning, those discrepancies
were not taken too seriously due to a lack of confidence in the theory,
and throughout the years, different experiments kept systematically
observing less flux than predicted.

By the end of the 1980s Kamiokande-1I, a solar neutrino experiment
measuring the recoil electrons from the elastic scattering v +e — v +e¢
from the solar reaction

8Be — ®Be + e + 1, (1.8)

observed 46(£13)% of the predicted flux of high energy neutrinos
(>9.3 MeV). At the beginning of the nineties two new solar neutrino
experiments based on gallium came to the same conclusion. GALLEX
[14] and SAGE [15] detected v,’s via the observation of radioactive
IGe atoms produced in the process

Ve + 'Ga — e~ + "'Ge. (1.9

The fluxes measured were 62(£10)% smaller than the predicted
flux for energies > 0.233 MeV.

With all those experimental results, the solar neutrino problem was
a real puzzle in the 1990s: all the experiments were seeing a deficit
in the solar neutrino flux. Since it was different for different energies,
it was unlikely to be an experimental issue. In that context, the most
plausible solution was the hypothesis of neutrino oscillations, pro-
posed by Pontecorvo in 1957 [9]. Neutrinos could have different flavor
and mass eigenstates, leading to quantum mechanical oscillations.

In 1998, the Super-Kamiokande atmospheric neutrino experiment
measured a significant up-down asymmetry in high-energy muon
events, consistent with the oscillation picture, as shown in Figure 1.3.
Neutrinos produced in the atmosphere above the detector (down-
going) travel distances from 20 km to 500 km, while atmospheric
neutrinos arriving to the detector through the Earth (up-going) travel
distances from 500 km to 12000 km. Looking at high-energy muon
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Figure 1.3: Super-Kamiokande observed and predicted number of
muon neutrinos with and without oscillations as a function of the
zenith angle. The difference between the experimental results and the
prediction without oscillations increases with the traveled distance.
Taken from Ref. [16].
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neutrino events, Super-Kamiokande showed that the number of up-
going neutrinos was about half of those down-going.

The next experimental breakthrough arrived in 2002 with the Sud-
bury Neutrino Observatory (SNO) experiment [17] measuring high-
energy solar neutrinos from ®Be decay both through charged currents
(CC) and neutral currents (NC). The detection of CC events allowed
them to measure the v, flux, while NC events were sensitive to all
neutrino flavors (v, v, and v¢). The observed solar v, flux was a third
of the flux of all three neutrinos combined. Therefore, it showed that
v,'s were changed to v, and v; on their way from the Sun to the Earth.

A few years later, in 2002-2004, the reactor neutrino experiment
KamLAND, observed evidence of v, oscillations [18]. The detector
measured neutrinos coming from 55 nuclear reactors at an average
distance of 170 km. The total number of v, events was about 60% of
the expected amount without oscillations.

Further confirmation of the oscillation paradigm using accelerator
neutrinos was found by the K2K experiment in 2006 [19], and so the
question of whether neutrinos undergo flavor oscillations has been
answered using all major types of neutrino sources.

This historical consolidation of the neutrino oscillation picture has
thus established some unique properties of these elusive particles.
Even though there are further measurements needed to precisely de-
termine all details of the oscillation model, a fundamental conclusion
is already clear: neutrinos need to be massive particles in order to
undergo oscillations, and their masses are direct evidence of physics
beyond the Standard Model.

1.2 Massive neutrinos

The Standard Model (SM) of particle physics, illustrated in Figure 1.4,
describes electromagnetic, weak and strong interactions. It was devel-
oped in the 1970s and has received extensive experimental support in
the following decades. There are, though, some open questions in it,
several of them related to the nature of neutrinos.

Neutrinos in the SM are massless particles that interact only through
the weak force as they do not have electromagnetic charge nor color.
All neutrinos are left-handed while antineutrinos are right-handed.
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Figure 1.4: Elementary particles described in the Standard Model.
Notice the mass scale of neutrinos compared with that of other funda-
mental particles. Taken from Ref. [20].

There are three types of neutrinos, one for each lepton family (e, v,),
(1, vyu), (T,v7) with their own lepton number conserved separately.
Neutrinos and antineutrinos are distinct.

Neutrino oscillations, which have been experimentally confirmed,
are only possible if neutrinos are massive, and they break the conser-
vation of flavor lepton number: only the global lepton number L is
conserved. Oscillations are a quantum mechanical effect arising from
the fact that flavor eigenstates are a superposition of different mass
eigenstates. When a neutrino is produced it has a well-defined flavor
state that can be expressed as a combination of mass eigenstates:

va) = Y Uz i), (1.10)
k

where |v,) is a neutrino with flavor & = e (electron),  (muon) or T
(tau), and |v) is a neutrino state with definite mass my (k = 1,2, 3).
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Figure 1.5: Representation of the three mass eigenstates and the three
flavour eigenstates, with all the mixing angles involved in the rotation
between them. Taken from Ref. [21].

Since neutrinos are relativistic particles their energy is E = +/p? + m?
and their propagation is expressed in terms of mass eigenstates as

e |y,) ZLI* B ) (1.11)

with a different phase for each massive neutrino. When a neutrino is
detected it has a probability to be measured as each different flavor

Pu(t) = ‘W\ e Ht \va>’2. (1.12)

The mixing matrix U governing the rotation between flavor and
mass eigenstates bases is the Pontecorvo-Maki-Nakagawa-Sakata ma-
trix, usually parametrized as

—id

€12€13 512€13 5 513€
_ is i
UpMmNs = | —512023 — 0125235136 (c12023 — 512523513€' 'z)S sa3c13 |, (1.13)
S12823 — C12€23€" —C12523 — $12€23513€"°  €23C13

where ¢;; = cos 8;; and s;; = sin 0;;.
The oscillation probability depends on the three mixing angles 6;;
(illustrated in Figure 1.5), the CP phase § and phase differences of the
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mass eingenstates in Eq. (1.11). Since neutrinos are ultrarelativistic
and their energy is

mz
Ekw+2—;, mi < p?, (1.14)

these phase differences can be expressed as

Amisz

2E 7

AEjt = (1.15)

where Amf]. =m? — m]2 Therefore, neutrino oscillations experiments

can probe the Uppns matrix and the mass differences between neutri-
nos, but not their absolute mass scale.

Global analyses of neutrino oscillation data [22] have determined
with good precision (at the few percent level) the value of the three
mixing angles: the solar angle 61, ~ 34°, the atmospheric angle 63 ~
50° and the reactor angle 613 ~ 9°; each named according to the its
main measurement channel. Experiments using solar and reactor
neutrinos have measured one mass difference, the so-called solar mass
splitting: Am? | ~ 7.4 x 107> eV2. Atmospheric and accelerator-based
oscillation experiments have measured the other mass difference, the
atmospheric mass splitting: |Am?,,| ~ 2.5 x 1073 eV? > Am?2 .

Due to the unknown sign of the atmospheric mass splitting, there
are two possible orderings of the neutrino masses: normal and in-
verted, illustrated in Figure 1.6. In the normal ordering Am?, is the
difference between the squared masses of the two lightest mass states,
while in the inverted ordering it corresponds to the difference between
the two heaviest states. Table 1.1 shows the latest values for neutrino
mass differences and mixing angles.

1.2.1 Neutrino mass experimental measurement

Neutrino oscillations do not provide information regarding the ab-
solute neutrino mass scale. This value is of utmost importance to
understand the formation and evolution of the universe as well as to
extend particle physics beyond the Standard Model. There are several
processes that provide access to this information: single S-decay, elec-
tron capture and neutrinoless double decay (see Chapter § 2). Also,
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Figure 1.6: Possible neutrino mass orderings, with the mass eigenstates
vk separated by the known atmospheric and solar mass splittings; the
unknown absolute mass scale m,;, is also shown. The colored areas
show the flavor fraction |LL,¢k|2 of each vy for « = e (red), u (green), T
(blue). The change in |U,Xk\2 from the bottom to the top of the boxes
corresponds to changing cos d from 1 to -1. Taken from Ref. [23].

cosmological observations can put bounds on the sum of all neutrino
masses.

Conceptually, the simplest way to measure the absolute neutrino
mass is to look at the high-end of the energy spectrum from a -
decay source, as shown in Figure 1.7. In a beta decay, an electron and
an antineutrino are emitted, with the transition energy (Qp) shared
among their kinetic energies and masses. The difference between the
maximum energy of the electron and Qg can provide an estimation for
the effective neutrino mass

3
my =Y |Uy|* m? . (1.16)
i=1

Given the very small value of this mass, such a measurement is
very challenging. The most promising experiment using this approach
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Table 1.1: Neutrino mixing parameters according to the most recent

global oscillation analysis [22].

Parameter Normal ordering

Inverted ordering

best fit + 10 30 range

best fit = 10 30 range

612 (°) 34.3£1.0 [31.4,37.4]  34.3%+1.0 [31.4,37.4]
623 (°) 48797052 [41.63,51.32] 4879119  [41.88,51.3]
013 (°) 8.58™0 11 [8.16,8.94] 8.6370 11 [8.21,8.99]
Scp (©) 216151 [144, 360] 27753 [205, 342]
Am3, (1075 eV?) 7507023 (6.94,8.14]  7.507032 (6.94,8.14]
|Am3,| (1073 eV?) 256100 [246,2.65]  246+0.03  [2.37,2.55]
g 0
=] entire spectrum k]
b = .
S region close
to endpoint

electron energy Qs

T
Qﬂ - muc2 Qﬂ

Figure 1.7: Energy spectrum of beta decay showing the endpoint
region. The black line corresponds to zero neutrino mass and the red
line to finite neutrino mass. Taken from Ref. [25].

is KATRIN, which using tritium as the source (Qg = 18570 eV) is
expected to reach a sensitivity of 0.2 eV (90% CL) on mg. Their first
results were published in 2019 with the upper limit mg < 1.1 eV (90%

CL) [24].

Massive neutrinos could have a big impact in cosmology too since
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they are the most abundant population in the universe after photons.
Neutrinos could produce a measurable effect on the universe’s struc-
ture by having affected in the past the rate of expansion and the growth
of cosmological perturbations [26].

The study of anisotropies in the Cosmic Microwave Background
radiation (CMB), distribution of galaxies and the structure of the uni-
verse can set different limits on the sum of the three neutrino masses
depending on the cosmological model used. In 2019 the Planck collab-
oration published its latest results [27]: combining Planck data with
Baryon Acoustic Oscillations (BAO) the limit was set to

Y m, <0.12eV  (95%CL). (1.17)
v

1.3 Dirac and Majorana neutrinos

Despite the fact that neutrinos are massless in the Standard Model, it is
known that they have to be massive due to observations like neutrino
oscillations. This requires a modification to the SM lagrangian to
include a neutrino mass term. Depending on how that is done two
kinds of neutrinos are possible: Dirac and Majorana.

Dirac neutrinos get their mass in the same way as quarks and
charged leptons: via a Yukawa coupling with the Higgs field [28,29].
This interaction requires both left- and right-handed neutrinos, al-
though only left-handed neutrinos have been observed experimentally.
The lagrangian would include a term of the form

— Lp = mp(VLvR + VrvL) (1.18)

adding therefore right-handed neutrinos that are sterile, i.e. they only
interact through gravitation. This mechanism needs Yukawa couplings
for neutrinos that are orders of magnitude smaller than the couplings
of the other fermions, making it rather unnatural.

In addition to that approach, the neutrino masses can be added
to the SM with a Majorana mass term. Ettore Majorana proposed the
removal of two degrees of freedom of a massive Dirac spinor [7]. This
can be achieved by applying the Majorana condition, i.e. making the
neutrino field v equal to its CP conjugate

v=1° (1.19)
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where 1¢ = Ci7'T, with C being the charge-conjugation operator. This
condition implies that there is only one field to describe neutrino and
antineutrino states. Decomposing the neutrino field into left- and
right-handed components Eq. (1.19) implies

Vg = (vp)° (1.20)

The relationship can be applied to the SM lagrangian contribution
from Eq. (1.18) to obtain the Majorana mass term

— L= %mL(W(VL)C + (vr)vr), (1.21)

where m is a free parameter with mass dimensions. Once a Majorana
term is generated for a left-handed neutrino, the same term can be
built for the right-handed one

~ L = Smr(R(R) + (R)vR). (1.22)

The Majorana mass term coming from this new mechanism con-
verts particles into their own antiparticles, thus violating the SM total
lepton number L = L, + L, 4 L by two units (|AL| = 2). Those mass
terms are only possible for neutrinos, since all charged fermions would
otherwise violate charge conservation.

The Majorana nature of the 3 light neutrinos would open the door
to extra sources of CP violation in the lepton sector, which are usually
parametrized by adding two extra phases to the PMINS matrix,

1 0 0
Uppmns — Upmns X |0 €%/2 0 (1.23)
0 0 ¢h2

These extra phases are unobservable in neutrino oscillations, but they
affect all processes where the Majorana nature of neutrinos play a role.

1.3.1 The see-saw mechanism

The see-saw mechanism is a generic model used to understand why
neutrino masses are orders of magnitude smaller than those of other
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fermions [28]. After adding the Majorana mass term to the SM la-
grangian, it can be expressed as

1
—Lpir = iNLCMNL + h.c, (1.24)

written in terms of the neutrino-fields vector N = (VL, VICQ) and the

mass matrix
M= ( 0 mD) (1.25)
mp MR

Therefore, the two components in AV, do not have a definite mass. To
get definite-mass states the matrix has to be diagonalized, yielding
two new fields v and v, with their associated eigenvalues m; and
my. A unitary matrix U can be computed satisfying

uMu = ("51 WZ) ) N = Ung . (1.26)

which diagonalizes the mass matrix and relates NV}, to the vector of
eigenstates n;, = (111, var).
Using this transformation, the lagrangian term (1.24) becomes

1 — —
— ﬁD—i—R = E (mlvaVlL + szELVQL) + h.c., (1.27)

in terms of definite-mass states. Using the approximation mp < mg
the mass states would be
2
m
my~ —L . my ~mpg (1.28)
MR

with m; being much smaller than m5, hence the name of the model.

The procedure described above can be generalized to 3 neutrino
flavors, resulting in 3 light neutrinos and 3 heavy neutrinos. The light
ones would correspond to the 3 neutrinos observed experimentally,
while the heavy ones have not been observed due to the high energies
required (close to the GUT scale [28]) and the fact that the mixing
angles between light and heavy neutrinos are very small.
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1.3.2  The missing antimatter

Our current cosmological models predict an equal amount of mat-
ter and antimatter at the beginning of the universe, but now only a
matter universe is observed. Majorana neutrinos could contribute
to explaining the origin of this asymmetry according to leptogenesis
theories [30].

Heavy Majorana neutrinos could decay into leptons [, and Higgs
bosons ¢ and, since they are their own antiparticles, also into their
corresponding antiparticles (I, ¢). An unbalance in the decay rates of
the two modes would directly translate into a lepton asymmetry which
can be converted into a baryon asymmetry through a sphaleron pro-
cess [31]. In order for a process to induce a non-vanishing contribution
to baryogenesis, the Sakharov’s conditions [32] must be met:

1. Violation of the baryon number. In the case of heavy Majorana
neutrino decay the total lepton number is violated and, through a
sphaleron process, baryon number conservation can be violated
too.

2. Violation of both C and CP symmetries, which can also happen
if there is more than one heavy Majorana neutrino field.

3. The universe went through a stage of non-equilibrium. This
can be produced if the decay rate was slower than the expansion
rate of the universe when the universe’s temperature was of the
of the order of the mass of the heavy neutrino.

The lepton flavor asymmetry is defined as

an = ——, 1.29
€ ) (1.29)

where I’ is the decay rate of the corresponding channel. To explain the
baryon asymmetry observed in the universe the condition |€x,| > 107
must be met [31]. Majorana neutrinos would not necessarily imply the
existence of this mechanism in nature, but would make it very likely.
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1.3.3 Observables sensitive to the neutrino nature

The nature of neutrinos, whether they are Dirac or Majorana particles,
is still unknown. If neutrinos are Majorana particles a series of lepton
number violating (LNV) processes would be allowed. The simplest
|AL| = 2 process is

WZW™ = g (1.30)
with &, B = e,v, 7. If light Majorana neutrino exchange is the only
contribution to lepton violation, the matrix element for the previous
process is

i 3
Mg = (U*diag(ml,mz,ms)u*)“ﬁ = Z% UyUgmi, — (1.31)
1=

where U is the PMNS matrix, m; are the light neutrino masses and
Mlight is the mass matrix for light neutrinos. This gives the effective
neutrino mass for a given process and it is useful to compare |AL| = 2
processes. Table 1.2 shows some LNV processes with their possible
experimental techniques and the bounds found for each of their ef-
fective Majorana masses. Neutrinoless double beta decay is the most
promising one in terms of putting a bound on the effective neutrino
mass.
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Table 1.2: Limits on the effective neutrino masses for total lepton number violating processes according to
the flavors involved. Numbers taken or derived from [33,34].

Flavors Exp. technique Exp. bound Mass bound (eV)
(e,e) BBOV T1/2(130Ge —136 Se +2¢7) > 9 x 102 |m,| < 0.16

_ 4 . I(Ti+p~ — e +Cags)/ 7
(e, ) i~ — e" conversion I'(Ti + y—capture) < 1.7 x 10-12 |mey| < 1.7 x 10
(e, T) Rare T decays H? — e ) /Tiot <88 x 1078 |mer| < 2.6 x 1072
(u,i)  Rare kaon decays I'(Kt — N+§ )/ Tiot <11 x 1077 [my,| < 2.9 x 10°
(4, T)  Rare T decays Aﬂ — T )/ Tiot <37 x107°  [my]| < 2.1 x 10"
(t,1)  — —




Neutrinoless double beta decay

2.1 Introduction to double beta decay

Double beta decay is a very rare process in which a nucleus with Z
protons decays into another one with Z+2 or Z-2 protons and the same
mass number. The ordinary mode, known as 2vp, emits two electrons
and two antineutrinos in the process

(Z,A) = (Z+2,A) +2¢ +27, 2.1)

and was first proposed in 1935 by Maria Goeppert-Mayer [35]. Lepton
number is conserved in this process and it is allowed by the Standard
Model.

Although the first evidence for the process appeared in 1950 using
geochemical techniques for the isotope *°Te [36], it was not until 1987
that a direct observation was possible. The measurement was done
for 82Se using a time projection chamber and showed a half-life of
1.1 x 10% years [37]. Such a long half-life makes the single p-decay
of most nuclides an intense source of background for 2vpp detection.
Only when single B-decay is forbidden or strongly suppressed is the
detection of 2vpp possible. Figure 2.1 shows the mass parabola for
isobars with A = 136; in the case of '**Xe, single -decay is forbidden
due to energy conservation, so it can only decay through double beta
to 136Ba. The higher mass of the odd-odd isotopes is due to smaller
value of the pairing term in their nuclear binding energy [38]. This
condition is fulfilled for 35 naturally-occurring isotopes, with 12 of
them already having a measurement of their half-life with typical
values in the order of 10'® — 10?! years. Table 2.1 shows a list of the
latest values.



52 Chapter 2. Neutrinoless double beta decay
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Figure 2.1: Atomic masses of isobars with A = 136 given as differences
with respect to the most stable one, 1**Ba. The red levels indicate odd-
odd nuclides, whereas the green indicate even-even ones. The arrows
show the type of nuclear transition connecting the levels. B (either
plus or minus) transitions are possible because the intermediate state
(AZ = £1) is less stable, forbidding the  decay.

Besides the normal mode of the decay, in 1939 Wendell Furry
proposed a neutrinoless process (0vpp) [39]

(Z,A) = (Z+2,A) +2¢~ 2.2)

as a method to test the Majorana nature of the neutrinos [7]. This pro-
cess would violate total lepton number and is, therefore, not allowed
by the Standard Model: it would only be possible if neutrinos are
Majorana particles. No experimental evidence of this decay has ever
been found yet.

The nuclear recoil is negligible in both decay modes, so the emitted
leptons share almost all the energy available. By looking at an energy
spectrum of the sum of the two electrons, it would be possible to
identify both decay modes. In the neutrinoless case, the sum of the
kinetic energies of the two electrons would be a mono-energetic line
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Table 2.1: Half-lives for two-neutrino double beta decay (2vBf) from
the best direct measurements [33].

Isotope T/, (10°! yr) Experiment
BCa  0.0647) 0070002 NEMO-3
76Ge 1.926 +0.094 GERDA
BKr 92132413 BAKSAN

52Ge 0.0939 £ 0.0017 £ 0.0058 NEMO-3
%Zr  0.0235+0.0014 +0.0016 NEMO-3
100Mo  0.0068 + 0.00001 3000  NEMO-3

ecd  0.026370901) AURORA
130Te  0.82+£0.02+0.06 CUORE-0
BiXe  >0.87 EXO-200

136Xe  2.165 % 0.016 = 0.059 EXO-200
10Nd  0.00934 + 0.00022(90%¢5  NEMO-3

at Q BB defined as the mass difference between the two nuclides,

while in the two neutrino mode, the spectrum is continuous, ranging
from 0 to Qpg with a peak below Qgg/2. Both cases are illustrated in
Figure 2.2.

2.2 Standard neutrinoless double beta decay mechanism

The simplest way in which neutrinoless double beta decay can occur
is from a diagram in which a parent nucleus emits a pair of virtual
W bosons, which exchange a light Majorana neutrino to produce the
outgoing electrons (see Figure 2.3). The lifetime for the Ov S process
mediated by a light Majorana neutrino can be expressed as [40]

2
(19%) " = G™(Q,2) [M™|* <er€5> , 2.4)

where G% is the phase-space factor that depends on the transition
Q-value and on the atomic number Z of the parent nucleus and can be
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Figure 2.2: Illustration of the spectra for the sum of the kinetic energies
of the two emitted electrons for 2vBg (blue) and OvBB (red). The
relative amplitudes are arbitrary.

computed accurately [41,42]; M% is the nuclear matrix element (NME)
and can be computed using different nuclear models, which will be
discussed in Section 2.4.1; and m BB is an effective Majorana neutrino
mass given by

i

where U is the PMNS matrix and m; are the neutrino masses.

Following Eq. (2.4), a non-zero Ovpp rate measurement can pro-
vide a value for the effective Majorana neutrino mass, providing direct
information on the absolute neutrino mass scale, although with uncer-
tainties coming mainly from M. In the same way, a non-observation
of the Ovpp process by an experiment can lead to an upper bound on

The information about the neutrino masses m1; that can be extracted
from mgpg is affected by the uncertainties in the oscillation parameters,
on the unknown phase angles of the mixing matrix (Dirac and Ma-
jorana) and on the mass hierarchy. Furthermore, some additional
unknown neutrino physics could be affecting this relationship too.
Figure 2.4 shows the dependence between mgg and mjjgp;.
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Figure 2.3: Feynman diagram for the 2vSp (left) and the OvBg (right)
decay modes.

2.3 The black box theorem

Beyond this standard mechanism, there are many other theories pre-
dicting LNV processes and all of them can lead to Ov3p decay. Irrespec-
tive of the mechanism, they imply neutrinos are Majorana particles,
as was proven by Joseph Schechter and Jose Valle in 1982 [44]. This
is known as the black box theorem and is due to the fact that any dia-
gram that does not conserve the total lepton number would contribute
to the Majorana mass matrix as illustrated in Figure 2.5.

Quantitatively, the diagram corresponds to a small mass generated
at four-loop level and it is not enough to explain the mass splittings
observed in neutrino oscillation experiments [45]. Therefore, other
still unknown Dirac or Majorana mass contributions must exist. The
theorem cannot clarify which physics mechanism is the dominant
contribution to the OvBp decay. The dominating mechanism could be
directly or indirectly connected to oscillations or not related at all to
neutrino oscillations phenomenology [46].

2.4 Design of double beta decay experiments

The observation of OvBp events would be a major discovery in particle
physics, as it would prove neutrinos are Majorana particles. Neverthe-
less, the design of detectors capable of measuring OvBp events is a big
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Figure 2.4: Effective Majorana neutrino mass, mgg as a function of the
lightest neutrino mass, g, for both Normal (green) and Inverted
(blue) Hierarchies. Solid lines show the limits for the best-fit configura-
tion (Table 1.1), dashed lines show the limits changing the parameters
in their 20 ranges. Current experimental bounds are also shown for
the Ovpp KamLAND-Zen bound [43] (red), f-decay KATRIN sensitiv-
ity [24] (orange), and cosmological Planck results [27] (gray). Taken
from Ref. [23].

experimental challenge, since the lifetimes of the decays are extremely
large. For instance, with a m s of 50 meV the expected lifetime would
be on the order of 10%° to 10>’ years, depending on the isotope and the
nuclear model.

Quantitatively, the number of events expected in an observation
time much smaller than the half-life can be approximated as

MNy
NOV‘Bﬁ = lng T T}/z €, (26)

where M and W are the mass and the molar mass of the 8 emit-
ter respectively, N4 is the Avogadro constant and € is the detector
efficiency.



2.4. Design of double beta decay experiments 57

w f np W

P n

Figure 2.5: Diagram of the black box theorem showing how any neu-
trinoless double beta decay mechanism induces a transition from 7 to
v, which translates into an effective Majorana mass term.

Combining this number of events with the half-life in Eq. (2.4), the
sensitivity of a OvBp experiment can be defined as the upper limit on
mgg that can be inferred from an experiment with no observations,

1
mgg = Kj——, 2.7
pp =R (2.7)
where Kj is a constant depending only on the OvSp isotope. This is
not realistic as experiments are affected by background, especially for
such long half-lifes. If the background is intense enough, it can be
added easily to the previous equation as

Vb
v eMt ’

where K, depends on the isotope and the proportionality of signal and
background. Non-uniform backgrounds can be described in terms of
the count rate c expected in the energy window AE around Qgg in a
given exposure Mt, having then b = cMtAE. In terms of this count
rate, usually expressed in number of events per kilogram and keV in a
year, the sensitivity reads:

1 ,/cAE

mﬁﬁ - KZ% m . (2.9)
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The aim of a OvBp experiments is to probe a mgg as small as pos-
sible. As seen, there are several key parameters involved in the mgg
sensitivity, which we discuss in detail in the following.

2.4.1 Isotope

The selection of the isotope is of utmost importance for B experiments
as it influences many factors. First of all, the half-life depends on the
the nuclear matrix element, M. This quantity can be computed using
different nuclear models such as the Interacting Shell Model (ISM) [47],
the Quasiparticle Random Phase Approximation (QRPA) [48,49], the
Interacting Boson Model (IBM-2) [50] or the Energy Density Functional
Method (EDF) [51,52]. There are large uncertainties and mismatches
between values coming from different models. Figure 2.6 shows M%
for several different isotopes and models. It is clear from this that after
measuring T{h/’z, the uncertainty from M would be transfered to m BB
producing broad intervals. In the same way, using M%" to select the
best isotope is not feasible due to this huge variability.

One critical parameter is the Qgg, with higher values being more
favorable. On one hand, higher energies have less background coming
from natural radioactivity. On the other hand, the half-life Tfyz also
depends inversely on the phase space factor G%, which varies as
Q% 5 [42], making isotopes with large Qpg values strongly favored. The
most commonly used isotopes in OvBp experimental searches have
Qﬂﬁ > 2 MeV.

The two-neutrino mode of the f3-decay can become a considerable
background source for OvpBp if the rate is sufficiently high and the
energy resolution is not good enough.

In addition to these physical properties, some other considera-
tions must be taken into account, such as the procurement cost or the
possibility of enriching the sample in the desired isotope.

2.4.2  Energy resolution

Good energy resolution is a critical characteristic of a OvBf detector,
since it is the only tool that allows one to discriminate between Ov
and 2vpp events in the higher-energy end of the spectrum. A better
energy resolution also improves the signal-to-noise ratio in the Qpgg
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Figure 2.6: Nuclear matrix elements (M%) for OvBB decay candidates
given by their of mass number A. Taken from Ref. [53].

region. Figure 2.7 shows three different experiments with the same
signal and background but different energy resolution. As seen, better
energy resolution improves the discovery potential. Experiments with
worse energy resolution must compensate with lower backgrounds or
higher exposures.

2.4.3 Background rate

The main source of background in a OvppB-decay experiment is natural
radioactivity, in most cases. Particularly notorious are *®TI from the
Thorium series, and 2'*Bi from the Uranium series, present at some
level in any material. This requires extensive screening campaigns to
select the most radiopure materials for use in detector construction.
Radon gas is also a concern since it is emanated from all materials
and, being a noble gas, is chemically not very reactive and can therefore
often end up in the active region of the detector. Furthermore, the
byproducts of radon decay, also radioactive, can become attached to
the detector’s surface. Providing a radon-free environment becomes,
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Figure 2.7: Signal (red) and background (gray) in the region of interest
around Qpgg for three Monte Carlo experiments with the same signal
strength (50 counts) and background rate (1 count/keV), but different
energy resolution (top: 1% FWHM; middle: 3.5% FWHM; bottom: 10%
FWHM). The signal is distributed normally around Qgg, while the
background is assumed to be flat. Taken from Ref. [54].
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therefore, another requirement for OvB-decay experiments. Avoiding
these backgrounds can be achieved by using radon traps in the air
circulation system.

Cosmic rays also represent an important source of background.
The easiest way to mitigate them is installing the experiment in an
underground lab [55], shielding the detector and reducing the flux by
several orders of magnitude compared to that of the Earth’s surface.

By going underground cosmic backgrounds are strongly suppressed,
but it is not enough, since natural radioactivity from the surround-
ing rock can produce high-energy gammas and neutrons that could
interact in the detector. These backgrounds can be reduced by plac-
ing additional shielding around the detector, typically made of dense
radiopure materials such as lead, copper or water.

In addition to material selection and shielding, some experiments
employ active methods to reduce background such as using the event
topology, pulse-shape discrimination and decay-product identifica-
tion [56-58].

2.4.4  Detection efficiency

Detection efficiency is an important requirement for OvBp experiments
since the process they are looking for is very rare. Assuming the same
level of background, the sensitivity to mgg achieved by doubling the
efficiency would be equivalent to increasing the mass by a factor 4.

In general, simpler detection techniques achieve higher efficiencies.
Experiments performing only calorimetry have better efficiency rates
than more complex ones including features such as tracking recon-
struction. Detectors using the same material as OvBp source and as
detection medium generally have higher efficiencies, although they
lose some efficiency due to the use of a fiducial volume.

2.4.5 Exposure

To completely explore the inverted hierarchy of neutrino masses, thou-
sands of kilograms of B source will be needed. Many experiments
are already planning tonne-scale detectors for the future, although
not all technologies can scale up easily. All Bf isotopes are rare on
Earth and require isotopic enrichment to achieve those quantities,
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making the process very expensive. The most cost-effective technique
is centrifugal separation [59-61], but it is only possible for elements
with a stable gas compound. Xenon, being a noble gas, is easier and
cheaper to centrifugate, so **Xe is a strong candidate for a tonne-scale
experiment.

2.5 Current experiments

Neutrinoless double beta decay is a very active field in particle physics,
with several experiments already running and some newer ones being
built now. As discussed in the previous section, there are several
considerations to make when designing a Ov experiment, leading to
different technologies for its detection. Below we present a review of
the main ones and their results.

2.5.1 KamLAND-Zen

Located in Kamioka, the KamLAND-Zen experiment searches for
Ovpp using '*Xe [43]. The detector is a modification of KamLAND
carried out in the summer of 2011. The B source and detector are 13
tons of Xe-loaded liquid scintillator (Xe-LS). The technique was first
proposed by Ramaswamy Raghavan in 1994 [62]. The detector has an
inner spherical balloon (IB) with a 3m diameter containing Xe-LS. The
IB is made of transparent nylon film and is surrounded by 1 kiloton of
LS in a 13m-diameter outer balloon (OB), used as an active shield for
external gammas and as a detector for radiation coming from the IB.
An oil buffer separates the OB from a stainless-steel containment tank
instrumented with 1879 PMTs. Finally the whole detector is placed
inside a 3.2-kton water Cherenkov tank which serves as a veto for
cosmic-ray muons. A scheme of KamLAND-Zen is shown in Figure
2.8.

The detector took data in two phases, the first one with 345 kg
of 3Xe and the second with 383 kg. Overall, a background rate of
0.01 cts keV~! kg~! yr~! [63] was achieved by making a tight selection
cut in the fiducial volume and by Bi-Po tagging 2'*Bi events [64].

The first phase began in 2011 and accumulated an exposure of 89.5
kg year with an energy resolution of 9.89 % FWHM at Qgg, setting the

bound T{)}’z(BéXe) > 1.9 x 10% yr at 90 % CL [65]. They were also



2.5. Current experiments 63

Chimney
Corrugated Tube
S Film Pipe
/) // p
/ Suspending Film Strap
\

|~ Photomultiplier Tube
- ThO:W Calibration Point

Xe-LS 13 ton (P!
m — Buffer Oil

e o TR
QOuter LS N W s a2 77 D\\ Quter Balloon

1 kton ARNT IS L (13 m diameter)

™. Inner Balloon
? (3.08 m diameter)
|

Figure 2.8: Schematic drawing of the KamLAND-Zen detector. Taken
from Ref. [66].

able to measure the half-life of the two-neutrino mode with a value of
T2, ("Xe) = (2.38 - 0.02(stat.) £ 0.13(sys.)) x 10*! yr.

The second phase took place between December 2013 and October
2015 and improved the bound to T{%(BéXe) > 9.6 x 10% yr at 90 %
CL, despite a worse resolution at Qgg, 10.94 % FWHM. Combining the
two data campaigns, the final result is Tf‘/’Z(l%Xe) > 1.07 x 10%° yr at
90 % CL, implying an effective majorana mass below 61 — 165 meV,
depending on the NME [43].

2.5.2 EXO

The Enriched Xenon Observatory (EXO) is the other leading **Xe
Ovpp experiment. The detector is a liquid xenon (LXe) Time Projection
Chamber (TPC), located in the Waste Isolation Pilot Plant (WIPP) in
New Mexico (USA), since May 2011. The first phase of the experiment,
EXO-200 [67], uses 200 kg of xenon enriched to 80% in the 136xe isotope.
Of the total mass, 175 kg are in liquid phase and 110 kg are in the active
volume of detector.
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The EXO detector, shown in Figure 2.9, consists of a symmetrical
TPC with a central transparent cathode. The ionization signal is read
by two wire planes, one on each end of the TPC, while the scintilla-
tion light is read by two arrays of large-area avalanche photodiodes
(LAAPDs). The inner sides of the chamber are covered by teflon sheets
to improve light collection efficiency. LXe is contained in a thin copper
vessel inmersed in cryofluid at ~ 167 K, inside a double-walled copper
cryostat. Lead blocks surrounding the cryostat are used as shield-
ing and there is also an active muon veto made of plastic scintillator
panels.

Due to the high density of LXe, electrons only travel a few millime-
ters. Therefore, B events are single-site (SS) events, typically. On the
other hand, background events produce multi-site events (MS). This,
combined with a cluster reconstruction that can achieve millimeter
precision, allows EXO-200 to remove some extra background.

The energy resolution in LXe is worse than in xenon gas, reducing
the sensitivity of the experiment. However, reading both ionization
and scintillation signals allows for anti-correlation corrections [68].
The resolution obtained at Qgg is (3.60 = 0.15)% FWHM for SS events
and (3.88 £ 0.12%) FWHM for MS events [69].

The experiment measured a background rate of (1.7 +-0.2) x 103
cts keV 1 kg~!yr~!, which combined with a large exposure of ~
100 kg yr yields a very competitive result on mgg sensitivity.

For the two neutrino mode, EXO-200 had an efficiency of (87.4 +
2.53)% for events inside the fiducial volume. With an exposure of
23.14kg yr, the half-life of the process was measured to be T2/, (**Xe) =
(2.165 + 0.016(stat.) £ 0.059(sys.)) x 102! years [70].

In the case of the neutrinoless pB-decay, with an exposure of
234.1 kg yr and a signal efficiency of (96.4 & 3.0)%, the collaboration
reported the limit T{)yz > 3.5 x 10% yr at 90% CL, which corresponds
to an effective mass below 78 — 239 meV, depending on the NME [71].

Finally, the EXO collaboration also published a limit on both Bg-
decay rates of '**Xe, yielding the results (at 90% CL): T1272(134Xe) >

8.7 x 10% yr and T}, (***Xe) > 1.1 x 10% yr [72].
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Figure 2.9: Drawing of the EXO-200 detector, cryostat and shielding.
Taken from Ref. [67].

2.5.3 GERDA

The GERmanium Detector Array (GERDA) experiment, located at
the Laboratori Nazionali del Gran Sasso (LNGS), searches for OvSf
using high-purity germanium (HPGe) diodes. They are made of large
germanium crystals enriched to ~ 86% in “°Ge that operate as source
and detector for OvBB decays. The detectors are placed in arrays
suspended inside a cryostat filled with liquid argon (LAr), which
serves as both a cooler and a shield. The inner surface of the cryostat
is covered with 6 cm of pure copper to reduce background coming
from the vessel. A water tank surrounds the cryostat providing extra
shielding for external gammas and neutrons. It has 66 PMTs for the
detection of Cherenkov light and also scintillator panels on the top
that serve as a muon veto system. A schematic drawing of the detector
is shown in Figure 2.10.

GERDA has run in two phases, improving the detector between
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Figure 2.10: Artistic view of the GERDA detector at LNGS. Taken from
Ref. [75].

them. The first one took place between November 2011 and March
2013 using 8 refurbished semi-coaxial HPGe detectors from the HdM
and IGEX experiments. In July 2012, 5 broad-energy germanium
(BEGe) diodes were added to the detector. The second phase included
7 HPGe and 30 BEGe diodes.

The use of BEGe diodes improved notably the performance of the
detector, as they have much better resolution than HPGe detectors.
The resolution measured at Qpg is (3.2 +0.2) keV (0.23 4 0.01%) for the
BEGe detectors and 4.8 + 0.2 keV (0.16 £ 0.01%) for the HPGe ones [65].
Furthermore, the signals from single-site events (SS) and multi-site
events are different (MS), so GERDA can also use pulse shape discrim-
ination to separate SS (signal) and MS (background) events, enhancing
the experiment’s sensitivity to mgg. The estimated background re-
ported for Phase I'is (11 £2) x 1073 cts keV~! kg~! yr~! [73], while for
Phase IT it was improved to (0.715+) x 1073 cts keV~! kg =1 yr~1 [74],
reaching a nearly background-free regime.

The collaboration reported a measurement of the two neutrino
mode with Phase I data, yielding a half-life of (1.926 +0.095) x 10?! yr
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with an exposure of 20.3 kg yr [76]. The OvBp analysis with Phase
I data resulted in the limit Tf}’z(%(}e) > 2.1 x 10®° yr at 90% CL
[73]. Combining Phase I and Phase II data, the limit was updated
to Tf'/’z(%Ge) > 1.8 x 10%° yr at 90% CL [77], corresponding to an
effective Majorana mass below 80 — 182 meV, depending on the NME.

2.5.4 CUORE

The Cryogenic Underground Observatory for Rare Events (CUORE),
located at LNGS, searches for neutrinoless double beta decay in 130T
using TeO, crystal bolometers. A bolometer is a device capable of
measuring small changes of temperature in the crystals. Particle in-
teractions are detectable through small temperature increases due to
the small heat capacity of the detector at 10 mK. With this method an
outstanding energy resolution of 4.2 keV (0.2%) FWHM at Qg has
been achieved [78].

The CUORE detector, shown in Figure 2.11, is composed of 988
bolometers divided in 19 towers with a total isotope mass of 206 kg.
Each bolometer has a TeO, crystal cube of 5 x 5 x 5 cm?® with a ther-
mal sensor and a resistive heater. The towers are located inside a
copper cryostat that can reach a temperature of 10 mK. The cryostat
is surrounded by several layers of lead used to shield from external
background.

The collaboration reported a background rate of (1.38 + 0.07) x
1072 ctskeV~ 1 kg=! yr~! in the OvBB region. With an exposure of
372.5 kg yr they set the lower limit T{%(B()Te) > 3.2 x 10% yr at 90%
CL [79], yielding an upper limit on the effective Majorana mass of
75 — 350 meV, depending on the nuclear matrix elements.

2.5.5 SNO+

The SNO+ experiment is a follow-up of the Sudbury Neutrino Obser-
vatory (SNO) [81], reusing many of the components of its predecessor.
SNO+, located in the SNO-LAB (Ontario, Canada), is a multipurpose
liquid scintillator experiment. The detector, shown in Figure 2.12,
consist of a 12m-diameter acrylic vessel filled with 780 tonnes of Te-
loaded liquid scintillator, read out by 9500 8-inch PMTs providing a
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Figure 2.11: Schematic drawing of the CUORE detector. Taken from
Ref. [80].
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54% coverage. The space between the vessel and the cavern walls is
filled with ultra pure water for background reduction.

The primary goal of SNO+ is searching for Ovpg decay of **Te. In
Phase I the detector will be loaded with 1.3 tonnes of *°Te, dissolved
in the scintillator, but this quantity could be increased in further up-
grades.

The SNO+ approach is similar to that of KamLAND-Zen, where
large BB-emitter masses compensate for the poor energy resolution of
detector, expected to be ~ 10.8% FWHM at *°Te Qpp- Therefore, the
two-neutrino mode of the p-decay will be an important background.
External background will come mainly from uranium and thorium
in the liquid scintillator, but can be suppressed via Bi-Po tagging [82].
A tight fiducial cut will be set to reject external backgrounds. The
expected sensitivity after 5 years of data taking is T{% > 1.9 x 10%° yr
at 90% CL, corresponding to a limit of mgg < 41 — 99 meV, depending
on the NME [83].

Figure 2.12: Artistic view of the SNO+ detector showing the acrylic
vessel and the support structure of the photomultiplier tubes. Taken
from Ref. [82].
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2.6 The future of neutrinoless double beta decay experiments

To completely explore the mgg region corresponding to the inverted
hierarchy, experiments at the tonne-scale will be needed. The next
generation of experiments is already planning to reach those levels.
It seems possible that in the future there will be a consolidation of
experiments to one per isotope or technique due to the high costs
required to scale up. A brief summary of different future experiments
is presented in the following, more details can be found in Ref. [84].

LEGEND

One of the most promising experiments is LEGEND, resulting from
the merge of the GERDA and MAJORANA [85] collaborations. The
aim is to build a tonne-scale detector to search for the Ovpp decay
of "°Ge with discovery potential at a half-life beyond 10? yr [86]. A
tirst phase of the experiment, LEGEND-200, will reuse the existing
GERDA infrastructure to run an experiment with about 200 kg of "°Ge.
LEGEND-200 will be operated to achieve an exposure of 1000 kg yr
with a discovery potential of 10% yr. The background in LEGEND-200
will be reduced to < 2-107* cts keV~! kg™! yr~! which corresponds
to a factor of 3 with respect to GERDA. LEGEND-200 is operating
since February 2020 and the first calibration runs have been taken
already [77].

In a subsequent stage, LEGEND-1000 will deploy up to 1000 kg of
7®Ge. The background index needs to be reduced by another factor
of 10 with respect to LEGEND-200 to operate background-free for
approximately 10 tyr. The goal is to achieve a discovery sensitivity
beyond 10? years. The underground laboratory for LEGEND-1000
will be decided at a later stage.

nEXO

The next-generation Enriched Xenon Observatory, nEXO, is designed
to optimize the unique features of a massive monolithic and homoge-
neous detector using 5-tons of isotopically enriched liquid xenon. The
implementation of LXe-based time projection chambers has already
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been successfully demonstrated on a smaller scale by the predecessor
EXO-200.

nEXO, as the evolution of EXO-200, will be a LXe single-phase TPC.
The primary goal is the optimization of the energy resolution near the
Q-value. The nEXO TPC is designed to read out both ionization and
scintillation light, in order to exploit the anti-correlation between these
two channels and to obtain the best possible energy resolution. Charge
collection will be achieved at the top of the TPC. Scintillation readout
will be obtained with VUV-sensitive Silicon Photomultipliers (SiPMs)
installed behind the field-shaping rings. This arrangement will allow
for larger coverage compared to that of EXO-200. The LXe TPC is
at the center of different active and passive shielding layers, each
containing components made of materials which are progressively
lower in radioactive contamination the deeper they are in the detector.

nEXOs sensitivity reach is based on assumptions on the detector
and analysis performance, and on using only measured radioassay
inputs to build the background model. nEXO’s expected median
sensitivity on the T7/, at 90% C.L. reaches 9.2 x 10% yr in a 10 year
run [87].

CUPID

CUPID (CUORE Upgrade with Particle IDentification) is a proposed
next-generation Ov BB experiment based on scintillating bolometers to
be installed in the cryogenic infrastructure currently hosting CUORE
at LNGS [88]. The bolometer crystals will be grown from Li;®MoO4
enriched to 95% in 1%Mo. The CUPID collaboration has designed
cylindrical crystals with 50 mm diameter and 50 mm height, corre-
sponding to a mass of 301 g each. The flat surfaces of the crystals will
be exposed to bolometric light detectors fabricated from Ge wafers
with 5 cm diameter, using an NTD Ge thermistor as a thermal sensor.
The crystals will be stacked in detector towers conceptually similar to
those of CUPID-0 [89] and CUPID-Mo [90], two smaller prototypes.
With this design, about 1500 crystals will be hosted by the CUORE
cryostat, corresponding to about 250 kg of 1Mo.

The background goal is 10 “cts keV~! kg~ ! yr~!, yielding a 3¢ dis-
covery sensitivity on mgg of 12-20 meV in 10 yr live time. Further up-
grades are possible to improve the background level of the experiment,
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leading to two possible scenarios after CUPID. The first one is to oper-
ate the same CUPID detector in a zero-background mode, which corre-
sponds to the background index of 2 x 10~ >cts keV ! kg~! yr~1. The
second, and more ambitious one, is CUPID-1T: a detector with 1.8 tons
of Li;MoOQy, or 1000 kg of 100Mo. For such experiment, the background
should be further reduced to the level of 5 x 10~ %cts keV~! kg~ ! yr—1.
The 30 half-life discovery sensitivity of these two future searches
would be 2 x 10 yr and 8 x 10% yr respectively in 10 yr live time.

Loaded liquid scintillators

Large volume liquid scintillator detectors loaded with a B isotope
represent a cost-efficient way of scaling up an experiment to large
isotope masses. KamLAND-Zen and SNO+ are experiments of this
kind and are already planning future phases to increase their sensi-
tivity. Both experiments plan to increase their photocathode coverage
to achieve a better light collection. This improvement would allow
them to reach an energy resolution of 4-5% FWHM at the Qgg of 136xe
and *’Te. Additionally, the isotope loading would be increased hav-
ing, therefore, more B emitter mass. Nevertheless, the sensitivity of
these approaches might ultimately be compromised by the intrinsic
two-neutrino background.

Towards the normal hierarchy

If the neutrino hierarchy turns out to be normal, the search for Ovpp
becomes even more complicated. Experiments would need to be in
the background-free regime and their scalability to multi-tonne scale
would become critical. For such large masses, modular detectors that
can be split and placed in different laboratories would probably be the
best option. Cost and availability of 5§ emitters would also have an
important role in the discussion.



The NEXT Experiment

3.1 Introduction

As explained in the previous chapter, measuring Ovpp is extremely
challenging, given the very long half-life of the process. This search
requires large pp-emitter masses, good energy resolution and back-
ground rejection capabilities. The NEXT! experiment searches for
OvBp in 136X e using a High-Pressure Xenon (HPXe) Time Projection
Chamber (TPC). The experiment is located at the Laboratorio Subter-
raneo de Canfranc (LSC), under the Spanish Pyrenees [91] and offers
an excellent energy resolution, topological signature for background
rejection and scalability.

All radiation detectors are based on the same fundamental princi-
ple: the transfer of part or all of the radiation energy to the detector
mass, where it is converted into some other form more adequate for hu-
man perception or electronic processing. Xenon is extensively used as
a radiation detector medium since it has both scintillation and ioniza-
tion signals, and, being a noble gas, it is easy to purify. Detectors using
xenon can be found in medical imaging, dark matter experiments,
X-ray astronomy and double beta decay experiments [92-96].

Xenon has two isotopes that can undergo fB-decay: **Xe and
136Xe. The latter is preferred for OvB searches since it has a higher
Qpp, 2458 keV. 136x o represents only 8.86% of natural xenon, but the
enrichment procedure is easy and cheap in comparison to other B
isotopes.

The idea of using '**Xe to search for Ovpp is already several decades
old [97]. In the late 1980s, the Milano experiment at LNGS built a
multi-wire proportional chamber filled with xenon gas enriched in

INeutrino Experiment with a Xenon TPC
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136Xe [98]. Another pioneering experiment was the Gotthard TPC
built by a Caltech-PSI-Neuchatel collaboration and operated at the St.
Gotthard road tunnel (Switzerland) in the 1990s. This TPC demon-
strated the effectiveness of tracking in xenon to discriminate signal
from background [99,100]. In 2009 it was pointed out that xenon gas
can provide very good energy resolution, better than 0.5% FWHM at
the Qg value of Xe [101].

3.2 Xenon gas as a detector medium

3.2.1 Primary signals in xenon: scintillation and ionization

The energy released by the p particles in the S process can be trans-
ferred to xenon atoms in the form of heat, ionization or excitation. In
the excitation process, one electron from the atom is raised to a higher
energy level, while in ionization the transferred energy is high enough
to remove an electron from the atom, creating an electron-ion pair.
Atomic de-excitations and recombination of these ionization pairs lead
to the emission of scintillation photons with a spectrum peaking at
172 nm (in the VUV region). All these processes are summarized in
Figure 3.1.

The Platzman equation expresses the relation between radiation
energy absorbed and the scintillation and ionization processes [102]:

Eg = Ni(E;) + Nici(Esci) + Ni(e) (3.1)

where Ej is the energy absorbed by the gas, N; is the number of
electron-ion pairs ultimately produced with an average energy ex-
penditure (E;), Ny, is the number of atoms excited at an average
energy expenditure (Eq;), and (€) is the average kinetic energy of
sub-excitation electrons, with energy lower than the first excited level,
which ultimately is released as heat.

Both the electron-ion pairs and the scintillation photons can pro-
vide information on the identity, energy and kinematics of the ionizing
radiation. Therefore, the performance of a detector depends, among
other things, on the properties of those signals. The ionization and
scintillation amplitudes are usually expressed in terms of the aver-
age energies required to produce respectively, an electron-ion pair: W;
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Figure 3.1: Main processes responsible for the ionization and scintil-
lation signals in xenon. The symbol X indicates ionizing radiation.
Taken from Ref. [103].
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(so-called ionization W), and a scintillation photon: W, (so-called scin-
tillation W). According to Equation (3.1), W; and W;; can be written
as

E N..:
Wi =1 = (E) + (i) 17 + (€) (3.2)
i i
_Ep _ N; N;
WSCZ - Nsci B <El> Nsci * <ESC1> * <€> Nsci (33)

Among all noble gases, 136X e has the smallest W; value and, there-
fore, the largest ionization yield. In the gaseous phase W; = 21.9 eV [104],
while in the liquid phase W; = 15.6 eV [105]. The energy available in
Ovpp from ¢Xe is Qpp = 2458 keV, therefore the average number of
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primary ionization electrons is:

Qpp 2458 keV
W, 219eV

Gas. 3°Xe N; = = 112237 electrons (3.4)

Qpp 2458 keV
W,  15.6¢V

In the case of scintillation, the emission spectrum is the result
of a complex system of discrete atomic lines, and bands originated
from many excited states and from various collision and transfer pro-
cesses [106,107]. It is dominated by the vacuum-ultraviolet (VUV)
region (20-200 nm). The value of W;,; is affected by the presence of
an external electric field, as that can affect the recombination pro-
cess [103,107]. In the absence of an electric field, all ions and electrons
recombine (r ~ 1), while a very intense field prevents recombination
at all (r ~ 0). These two situations correspond, respectively, to the
maximum and minimum scintillation yields and, therefore, to the
minimum and maximum values of W,. In the literature there are
several measurements of W;.; for xenon gas [108-110], but they are not
in agreement with the theoretical predictions and present important
discrepancies among them.

The NEXT collaboration made a measurement of W;.; based on
the ratio of excited to ionized atoms produced in xenon gas by alpha
particles in the NEXT-DEMO detector, yielding a result of W;,; =
39.2 £3.2 eV [111]. For the liquid phase, Aprile et al. published
a measurement of W,,; = 13.8 eV [107]. Taking those values, the
average numbers of primary scintillation photons are equal to:

Lig. ¥%Xe N; = = 157564 electrons (3.5)

Qpp 2458 keV

Gas. 135Xe Ny = P8 —
45 A Nsd = W =T 392V

= 62704 primary photons (3.6)

Qps 2458 keV

Lig. 3Xe N, = =
1 T oo T 138eV

= 178116 primary photons (3.7)

3.2.2  Detection of the ionization and scintillation signals

In order to detect the ionization signal, an external electric field has
to be applied to transport the ionization pairs through the gas. This
process, known as drift, accelerates electrons and ions in opposite
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directions towards, respectively, the anode and the cathode. The
acceleration is interrupted by collisions with the gas atoms, limiting
the maximum average velocity the drifting charges can achieve. For
low enough fields, the drift velocity of electrons, v4, is proportional to
the field strength. At high fields, the drift velocity saturates, becoming
independent of the field. The drift velocity of ions is several orders of
magnitude smaller than that of the electrons.

Diffusion also comes into play during the drift. Due to the colli-
sions with gas atoms, ionization charges undergo gaussian deviations
from the trajectories defined by the field lines in both the longitudi-
nal and transverse directions. This effect limits the intrinsic position
resolution of gaseous detectors. The magnitude of the spread is pro-
portional to the drift time, t4:

0, = /Drty, o1 = /Dr ty, (3.8)

where Dy, and Dr are, respectively, the longitudinal and transverse
diffusion coefficients of the gas.

Impurities in the gas can also degrade the performance of the de-
tector as electron attachment can significantly decrease the ionization
signal along the drift. This effect can be described, in general, by an
exponential distribution:

N(tq) = N(0) exp(—tq/71), (3.9)

where N is the number of drifting electrons, which is a function of
the drift time, t4, and 7 is the electron lifetime in the gas, which
becomes shorter with higher concentration of impurities. Achieving
long enough electron lifetimes is possible by continuously circulating
the gas through appropriate purifying filters.

In most applications, the total ionization charge collected is too
low to be measured precisely by the electronics, leading to poor signal-
to-noise ratios. Electroluminescence (EL) can improve this situation.
The technique consists of amplifying the primary-electron signal using
electric fields of higher intensity than those typically applied for the
drift. If the amplification field is high enough to transfer energy to
the electrons above the excitation threshold but below the ionization
threshold, the electrons will excite gas atoms that will decay later emit-
ting light, known as secondary scintillation. In this way, each primary
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ionization electron produces a measurable, proportional optical signal
(see Figure 3.2). If the amplification field is such that the energy gained
by the electrons is above the ionization threshold, they will produce
new electron-ion pairs while drifting. These secondary ionization
electrons can also ionize further atoms, leading to a charge avalanche
with an electron yield orders of magnitude higher than the number of
primary ionization electrons. This charge signal is then large enough
to be detected by the electronics.

NEXT detectors use EL for amplification and avoid the production
of charge avalanches. The absolute electroluminescence gain 7, under
a uniform and constant E/p, defined as the number of scintillation
photons produced by a single ionization electron, is given by [112]:

7 =140 (E/p — 0.83) p Ax (UV photons/e™) (3.10)

where E/p is given in kV.cm ™! bar~!, p in bar, and the separation Ax
between the meshes generating the secondary drift field in cm.

The VUV scintillation photons emitted by noble gases are diffi-
cult to detect because they are strongly absorbed by most materials.
Moreover, light sensors have their optimal efficiency in the visible or
near-visible region, where highly transparent or reflective materials
are also available. Therefore, the VUV light is shifted using photo-
fluorescent coatings deposited on the surfaces exposed to the gas.
Popular wavelength shifters used in xenon detectors are p-terphenyl
(TPH) and tetraphenyl butadiene (TPB) [107].

3.2.3 Intrinsic energy resolution of xenon gas

The number of ionization electrons (N;) is a good measure of the
energy deposited in the medium. The resolution achievable is limited
by stochastic fluctuations in the number of electron-ion pairs produced.
Events of a given energy will deposit via ionization an average energy
of E = N;W,;, where W; is the average energy needed to produce
an ionization electron. Ugo Fano showed [113] that the fluctuations
associated with N; are well described by

E
0} =FN; = Fov (3.11)
1
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Figure 3.2: Reduced electroluminescence yield (Y/p) of gaseous
xenon as a function of the reduced electric field, E/p. The results
of Garfield / Magboltz microscopic simulations [104] are compared
to the experimental measurements by Monteiro et al. (2007) [112]. A
linear fit to the simulation data points is also shown. The EL yield is
linearly proportional to the reduced electric field above a threshold
of 0.83 kV cm~! bar~! and up to approximately 5.5 kV cm~! bar~!,
where secondary-ionization effects become visible. Figure redrawn
from Oliveira et al. (2011) [104].
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where the number F depends on the medium and is known as the
Fano factor. The best energy resolution (FWHM) achievable with an
ionization detector is, therefore, given by

%E =235 7ﬁgw =235 \/% (3.12)

The Fano factor of noble gases is well understood. For xenon gas
different experimental measurements have shown values between 0.13
and 0.17 [114-116], in agreement with Monte Carlo computations [117].
On the other hand, the value found for liquid xenon is much higher
F > 20[68,107], in contradiction with the theoretical calculations [118].

According to Eq. (3.12), the intrinsic energy resolution for HPXe
detectors is much better than for those with LXe:

(8E/E) g e 1300 = 2.35 \/0.15 -21.9 / Qg = 0.38% FWHM

(OE/E) iy voxe = 235 1/20-15.6 / Qs = 2.65% FWHM  (3.13)

Bolotnikov and Ramsey measured the energy resolution as a func-
tion of the xenon gas density using 662-keV gammas from a '*'Cs
source (see Figure 3.3) [119]. For densities below p; ~ 0.55 g/cm?
(P ~ 100bar) the resolution is approximately constant, but quickly
deteriorates for higher densities, transitioning to the values typical of
liquid xenon. Below the transitioning point, in the regime correspond-
ing to typical operation pressures in NEXT, the energy resolution mea-
sured at 662 keV is 0.6% FWHM, near the Fano limit (0.523% FWHM).

It has been suggested [101, 107] that the contribution of globs of
liquid xenon coexisting with the gas could introduce anomalous fluc-
tuations. The liquid phase fraction would grow for higher densities,
and so would the impact of the fluctuations, reaching the maximum at
the density of the liquid phase, while being practically non-existent
below py.

Beyond all of the above, at a practical level, all detectors are affected
by noises and fluctuations that may worsen the energy resolution. It
can be assumed that any possible fluctuations associated with the
signal s; are uncorrelated with those intrinsic to the ionization process,
described by Eq. (3.12). Therefore, both variances can be added in
quadrature, with the overall variance being

0} =0 +0:=FN,+GN; = (F+G)N;, (3.14)
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Figure 3.3: Density dependence of the energy resolution (% FWHM)
measured in xenon using the ionization signal generated by 662-keV
gamma rays from 1%’Cs. Taken from Ref. [119].

where G is the variance of signal s;. Therefore, the energy resolu-
tion (FWHM) of a gaseous detector, including the effect of detection
fluctuations, is given by

SE/E=235/(F+G) Wi/ E. (3.15)

The factors F and G are fundamentally different, despite the fact
that they enter in the previous equation in the same way: F reflects
a constraint on fluctuations in energy partitioning for a fixed total
energy, while G reflects the impact of statistical fluctuations in the
detection process for a single electron [101]. In the case of detectors
using electroluminescence amplification, like NEXT, G includes fac-
tors such as fluctuations in the optical amplification process or in the
photosensors themselves. All experimental approaches aim to have
the smallest G possible. In the case where F = G = 0.15, the obtained
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energy resolution at Qg value in a HPXe detector would be:
0E/E = 0.42% FWHM (3.16)

This value is in agreement with the one obtained in [120], where a
HPXe TPC was used to measure the energy resolution of a 122 keV -
ray source. An energy resolution of 2.2 % FWHM was obtained at this
energy, so if an extrapolation as E~1/2 is done, the energy resolution
at Qpp of 136X e would be

SE/E = 0.49% FWHM (3.17)

3.3 The SOFT concept

A xenon gas detector optimized for neutrinoless double beta decay
searches can provide an excellent energy resolution and information
on the event topology useful for background discrimination. The
most adequate design is a Time Projection Chamber (TPC), invented
by David Nygren in the 1970s [121,122]. Its working principle is il-
lustrated in Figure 3.4. A uniform electric field is applied along the
symmetry axis of a cylindrical chamber filled with a gaseous (or liquid)
detection medium. Charged particles traversing the cylinder create
ionization electrons along their trajectory which are drifted by the
electric field towards an amplification and readout plane with 2D spa-
tial segmentation. This plane records the amplitudes and transverse
positions of the ionization electrons. The longitudinal coordinate is
computed from the arrival time of the signals. Thus, the TPC provides
a 3D measurement of the trajectory and energy deposition pattern
(dE/dx) of a charged particle.

Achieving an excellent energy resolution requires a large photon
collection area and single-photon sensitivity. On the other hand, the
spatial reconstruction of events requires a dense sensor matrix. De-
signing one readout plane able to comply with both requirements is
very hard. For this reason, the NEXT experiment uses two different
sensor planes, each of them optimized for its function. This is known
as the Separately-Optimized Functions TPC (SOFT) concept [101].

The design of NEXT detectors is an asymmetric TPC instrumented
with photomultiplier tubes (PMTs) on one side to do precise calorime-
try (the energy plane), and with an array of silicon photomultipliers
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CATHODE

Figure 3.4: Working principle of a TPC [121]: the ionization electrons
produced along the path of a charged particle (represented by the
red trace) are drifted under the influence of an external electric field
towards an amplification and readout plane that registers the signal
amplitudes and transverse positions. The longitudinal coordinate is
obtained from the arrival time of the signals.

(5iPMs) on the other side for topology reconstruction (the tracking
plane). NEXT uses electroluminescence amplification as this is the
most appropriate option to achieve an optimal energy resolution in
xenon gas. This requires an additional electric field after the drift vol-
ume. A sketch showing how the detector works is shown in Figure 3.5.

The energy plane is located at the cathode plane of the TPC. PMTs
are convenient for energy measurement since they can cover large
areas at a reasonable cost and they have low noise and high gain,
providing a very good energy resolution. On the other hand, PMT
radioactivity levels are too high, so the detector must contain the
minimum number of PMTs necessary to obtain a robust measurement.

The tracking plane is located at the anode plane, behind the EL
region and can provide the transverse coordinates of the signals with
high precision. The small signal coming from the primary scintillation
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light of xenon can be read by the PMTs, providing the start time of the
event, ty. Taking the difference between t; and the time of arrival of
the ionization signals to the tracking plane, the longitudinal coordinate
can be obtained. Thus, the combination of signals from both planes
yields a full and precise 3D reconstruction. The procedure is illustrated
in Figure 3.5. To improve the resolution, the internal walls of the active
volume are covered with a reflector, increasing the light collection
efficiency.

A detector designed according to these principles would be able to
reconstruct the track of each particle of an event. Given that the detec-
tion medium is xenon gas, a high energy electron would travel along
several centimeters depositing energy. The pattern of those energy
depositions is different for signal and background events, defining
what we call the topological signature which can be used as an extra

Cathode

>
=]
/o

o

o

Energy Plane (PMTs)

AAARAAAARN

Tracking Plane (SiPMs)

EL region /'

Figure 3.5: The SOFT concept [101]. EL light generated at the EL
region is recorded in the photosensor plane right behind it and used
for tracking. It is also recorded in the photosensor plane behind the
transparent cathode and used for a precise energy measurement. The
cathode is also used to detect primary scintillation light and provide
to information.
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handle to separate signal and background events.

3.4 NEXT detectors

The goal of the NEXT experiment is to search for neutrinoless double
beta decay of '**Xe using a High Pressure Xenon gas TPC. During
the first phase of the project (2009-2014) two small prototypes were
developed: NEXT-DEMO and NEXT-DBDM. Their purpose was to
demonstrate the detector concept and to gain technical expertise to
design and build larger detectors.

Currently, the collaboration is operating NEXT-White (NEW), a
medium-size detector running at the Laboratorio Subterraneo de Can-
franc under low-background conditions. This detector is a demonstra-
tor of the technological solutions that will be implemented in larger
?&stems. Its physics goal is to measure the 2vB3 decay half-life of

Xe.

NEXT-100, currently under construction, is the following step of
the project. This detector will contain 100 kg of xenon gas at 15 bar,
aiming to measure the Ov8p decay of **Xe. This detector will demon-
strate the scalability of the technology and will serve as well as a test
bench for technologies needed in a future tonne-scale detector.

3.4.1 R&D prototypes
NEXT-DEMO

Designed as a proof-of-concept of the NEXT technology, the NEXT-
DEMO detector was a HPXe TPC that operated from 2009 to 2014 in a
clean room at the Instituto de Fisica Corpuscular (IFIC), in Valencia,
Spain. It consisted of a stainless steel vessel capable of withstanding
up to 15 bar that contained a 30-cm drift length TPC with a 16-cm
radius hexagonal cross section. The TPC included a 5 mm long EL
amplification region delimited by stainless steel wire grids. A uniform
electric field of 0.5 kV cm™! was applied in the drift region, while
the EL field had a higher intensity of 0.86 kV cm~! bar~!, above
the excitation threshold of xenon. Inside the electric-field rings, six
reflecting panels made of polytetrafluoroethylene (PTFE) are mounted
forming an hexagonal tube. The panels were coated with tetraphenyl
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butadiene (TPB), which shifts the VUV light emitted by xenon to blue
light to improve the light collection efficiency. A schematic of NEXT-
DEMO is shown in Figure 3.6.

The tracking plane, located at the anode, included 256 Hamamatsu
S10362-11-050P SiPMs (1 mm? active area) arranged in a 1-cm-pitch
square grid. The sensors were distributed in 4 boards, each of them
housing an 8 x 8 matrix of SiPMs. Since they are not sensitive to VUV
light, a TPB coating was added.

For calorimetry, the energy plane was instrumented with 19 1-inch
Hamamatsu R7378A photomultiplier tubes [123]. These sensors resist
a pressure up to 20 bar and have a quantum efficiency of ~15% in the
VUV region and ~25% at the TPB emission wavelengths. The setup
achieved a photocathode coverage of 39%. The gain was adjusted
to about 5 x 10%, so the sensors were able to distinguish a single
photoelectron.

The detector was filled with natural xenon which was circulated
through a gas system that included purifying filters to remove elec-
tronegative impurities. The DAQ was based on the Scalable Readout
System developed by the RD51 Collaboration [124]. Further details
of the detector can be found in several publications by the collabora-
tion [103,111,125-127].

The detector was calibrated using a 1-uCi ?*Na source in a lat-
eral port. A positron emitted via B7 decay in the source annihilates
resulting in two back-to-back 511-keV gammas. The readout was trig-
gered detecting both gammas in coincidence using an external Nal
scintillator coupled to a PMT.

NEXT-DEMO showed an energy resolution for the K, peak of
(5.691 £ 0.003)% FWHM, and (1.62 = 0.01)% FWHM for the Na pho-
topeak [128]. These values can be extrapolated to the Q value of
136X e assuming an E~1/2 dependence resulting in a predicted energy
resolution of 0.63% FWHM and 0.74% FWHM, respectively.

The reconstruction of event topology was also studied using NEXT-
DEMO data. Background was represented by single electrons resulting
from the interactions of 2Na 1275 keV gammas, while the signal
was mimicked by electron-positron pairs produced by conversions
of gammas from the 2%T1 decay chain. Track reconstruction and the
identification of the energy deposited at the end-points yielded an
extra rejection factor of 24.3 = 1.4 %, while keeping an efficiency of
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Figure 3.6: Cross-section drawing of the NEXT-DEMO prototype with
major parts labelled (top), and image of the field cage standing upright
(bottom).
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66.7 £ 1.% for signal events [129].

NEXT-DBDM

Designed to demonstrate near-intrinsic energy resolution in HPXe,
the NEXT-DBDM prototype was built and operated from 2009 to 2014
at the Lawrence Berkeley National Laboratory (USA). As in the case
of NEXT-DEMO, the detector was made of a stainless steel cylindri-
cal vessel (20 cm diameter, 33.5 cm length) containing a TPC with a
hexagonal cross section. It had only one instrumented plane with 19
1-inch Hamamatsu 7378 A PMTs [123] to measure the energy. The field
cage was made of teflon panels supported by a plastic frame. The
drift length was 8 cm and the EL region 5 mm long. The xenon was in
constant recirculation through a gas system to remove electronegative
impurities. A schematic of detector is shown in Figure 3.7.

The main result from this detector is the energy resolution study
performed using 662 keV gammas from a '¥Cs source. The energy
resolution achieved for those 662-keV gammas was 1.1% FWHM at
10 bar and 1.0% FWHM at 15 bar [130]. These results can be extrapo-
lated to 0.5% FWHM at the Qg value for 136Xe, near the Fano limit of
xenon gas.

3.4.2 NEXT-White

The NEXT-White?> (NEW) detector is a 1:2-scale version of NEXT-100,
currently running under low-background conditions at Laboratorio
Subterrdneo de Canfranc. NEW serves as a large scale validation of the
technological solutions described in the NEXT-100 Technical Design
Report [96]. From a physics point of view, the detector will provide
an assessment of the background model, a characterization of the 2-
electron tracks coming from signal events as well as a measurement of
the 2vBB-decay half-life of '**Xe.

NEXT-White started operations at LSC in October 2016. After
a short commissioning run (Run I), it was operating under stable
conditions for over eight months (Run II) at 7.2 bar. Run III was short
due to a technical problem, with operation being resumed at 10.2 bar
in May 2018 for a low background run (Run IV). Since February 2019

2Named after Prof. James White
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Figure 3.7: Cutaway drawing of the NEXT-DBDM detector with major
parts labelled (top), and image of the complete setup of NEXT-DBDM
in operation mode (bottom).
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the detector has been running with xenon enriched in the **Xe isotope
to take data for the 2v S half-life measurement.

Detector operation during Run II established a calibration proce-
dure based on #"Kr decays [131] and also provided the first measure-
ment of the energy resolution [132], electron drift parameters such as
drift velocity, and transverse and longitudinal diffusion [133] and a
measurement of the impact of *’Rn in the radioactive budget, which
was found to be small [134].

Runs IV and V have shown an excellent stability, with negligible
leaks and a very low spark rate. These two operational aspects were
among the critical issues to be demonstrated by NEXT-White. Further-
more, an excellent electron lifetime has been achieved, in excess of
10 ms or 20 times the maximum drift length of the TPC.

The main results obtained so far with NEXT-White are:

* Energy resolution at Qpg better than 1% FWHM. For the high
energy calibration, two 228Th sources were placed in the upper
ports of the detector and a '3’Cs source in the lateral one. The
137Cs source provides a 661.6 keV gamma, while 2Th decays
into 2T1, which provides a 2614.5 keV gamma and also the
double-escape peak resulting from e*e™ pair production interac-
tions of the gamma in which the two 511 gammas escape. The
energy spectrum is shown in Figure 3.8. The resolutions ob-
tained are 1.20 + 0.02% FWHM at 662 keV, 0.98 & 0.03% at 1592
keV and 0.91 + 0.12% FWHM at 2615 keV [132,135], the fits are
shown in Figure 3.9. This means NEXT-White is the xenon-based
detector with the best energy resolution in the world, less than
1% FWHM at Qpg.

¢ Performance of the topological signature. Using events near
the 2®T1 double escape peak at 1593 keV, it is possible to statisti-
cally separate a sample of signal-like, double-electron events
(induced by pair production interactions) from a sample of
background-like, single-electron events (induced by Compton
interactions from the 2615 keV 2%T] gammas with the same de-
posited energy as the double-escape peak). Applying a threshold
on the energy of the ends of the tracks, most of the background
can be removed while keeping the signal. This procedure can
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Figure 3.8: The full energy spectrum for calibration events from two
228Th sources and a '%Cs source. Taken from Ref. [135].

be applied both to data and Monte Carlo, allowing for a com-
parison between them. The optimal value for the threshold is
265.9 £ 0.65ys keV, giving an efficiency for signal-like events of
71.6 &= 1.55tat £ 0.35y5% for a 22.3 &= 0.4stat &= 0.55y5% background,
compatible with the Monte Carlo result [136]. This represents an
improvement over the results obtained with NEXT-DEMO [129].

¢ Low background run. During Run IV, using an exposure of
34.5 days, a comparison between the predicted and the mea-
sured background rate was carried out [137]. The expected rate
was computed using a detailed background model including 4
isotopes (60Co, 40 2l4g; 208Tl) and 22 detector volumes. The
model relies on the extensive radiopurity measurement cam-
paign conducted by the NEXT collaboration [138-140]. Fig-
ure 3.10 shows that the background in NEXT-White can be well
described with the model.

In the following, a detailed description of each part of NEXT-White
is provided.

Electroluminescent TPC

One of the main technological challenges in building NEXT detectors
is designing a large scale field cage. NEXT-White is an intermediate
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Figure 3.9: Energy spectra of three energy peaks from the ??Th and
137Cs sources (nominally at 662 keV, 1592 keV, and 2615 keV). Taken

from Ref. [135].
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Figure 3.10: Run-IVc background fit. Data (black dots) are superim-
posed on the best-fit background model expectation (solid histograms),
for which the different isotopes’ contributions are shown. Taken from
Ref. [137].

step between the NEXT-DEMO TPC, which was 16 cm in width and
40 cm long and NEXT-100, which will be 1 m width and 1.2 m long.

The main body of the TPC is an open-ended high-density polyethy-
lene (HDPE) cylinder of 49 cm external diameter. The vessel provides
structural support for other components, such as the copper rings, and
it also electrically insulates the TPC from the vessel. The field cage
is divided into three regions: the buffer, the drift region and the EL
region.

The buffer extends from the PMTs to the cathode along 11.2 cm. Its
purpose is to downgrade uniformly the high voltage from the cathode
(50 kV) to zero, in order to protect the PMTs.

The drift region encloses the active volume of the detector, extend-
ing from the cathode to the gate along 52.7 cm. The cathode and the
gate are made of 1-cm pitch stainless-steel wire meshes. A set of ultra
pure copper [138] rings is placed in the inner side of the HDPE shell.
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Figure 3.11: Detailed view of field cage copper rings (left) and resistor
chain (right).

They are interconnected with low background 10 GOhm resistors (see
Figure 3.11) to degrade the high voltage, providing a homogeneous
and uniform electric field (300/600 V/cm). A teflon cylinder coated
with tetraphenyl butadiene (TPB) is placed inside the HDPE shell to
increase light collection efficiency.

The EL region, extending from the gate to the anode, is designed
to hold up to 20 kV. The anode is a fused-silica rigid plate with a
diameter of 52 cm. It is coated with Indium Tin Oxide (ITO) to make
its surface conductive and with TPB to convert the VUV light to a range
of wavelengths in the blue region, at which SiPMs have maximum
photodetection efficiency and fused silica have excellent transparency.

The feedthroughs are designed to provide up to 50 kV between
the cathode and the gate. They consist of an inner conductive rod
surrounded by an HDPE insulator (see Figure 3.12).

Energy Plane

The first small prototypes, NEXT-DEMO and NEXT-DBDM, showed
an outstanding energy resolution using electroluminescent TPCs with
PMT readout. NEXT-White follows the same approach, perform-
ing the energy measurement with 12 Hamamatsu 3-inch R11410-10
PMTs [141]. They are arranged in two rings: 3 PMTs are placed in an
inner ring and the other 9 in an outer ring, leading to a 35% photo-
cathode coverage (see Figure 3.13). In order to protect them from the
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Figure 3.12: Detailed view of a NEW high voltage feedthrough.

Figure 3.13: NEW energy plane with 12 PMTs coupled to sapphire
windows, arranged in two concentric rings.

high voltage, the PMT plane is located 13 cm behind the cathode mesh,
leaving enough space to downgrade the electric field.

PMTs cannot withstand the high pressure inside the vessel, so
they need to be separated from the xenon. To achieve this, PMT
windows are coupled to sapphire windows with optical gel (NyoGel
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OCK-451) to match their refraction indices. The sapphire windows are
also coated with TPB, to improve their transparency to scintillation
photons. The shifted photon wavelengths also match the peak of the
PMT quantum efficiency:.

High voltage supply to the PMTs and signal extraction is done
using shielded twisted pair cables. Each PMT is controlled with a
Kapton circuit board, placed behind the PMT. They are mounted with
heat dissipators connected to the copper shield.

Tracking Plane

One of the key advantages of NEXT detectors is the use of topological
reconstruction as an extra handle to reject background events. In
order to achieve a good reconstruction a high granularity of sensors
is needed. However, extracting too many signals from the detector
is challenging for the feedthrough designs as space for the cables is
limited, and therefore a compromise is necessary.

NEXT-White uses SensL. MicroFC-10035-SMT-GP SiPMs [142], with
an active area of 1 x 1 mm?. These sensors have a high quantum
effiency for photons re-emitted by TPB (~ 50%), low dark count
rate and they are very radiopure. Given that the charge diffusion
in xenon gas is about 1 cm/ \/m for electric fields around 0.5 kV/cm,
the pitch was selected to be 1 cm [96]. A smaller pitch would worsen
the background budget, increase the costs and would not contribute
significantly to a better reconstruction, while a larger one would lead
to worse results in the topological reconstruction.

SiPMs are arranged in Kapton Dice Boards (DBs) housing 8 x 8
sensors each. All the sensors in the same DB share the same bias
voltage, and therefore they must have similar gains. To achieve this,
all the SiPMs are selected after an automated characterization proce-
dure [143]. Each DB also includes a blue LED for calibration and a
NTC temperature sensor. To increase light collection efficiency, a teflon
mask is placed on top of the DB, as shown in Figure 3.14.

The dice board material, Kapton, has been chosen due to its low
radioactivity [139]. The design is a flexible circuit with a long tail,
allowing one to put the SiPM connectors behind the copper plate and,
therefore, shielding their background contribution [144].
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Figure 3.14: The NEW tracking plane during the assembly process. It
is made of 28 dice boards, with 64 (1 x 1 mm? SensL) SiPMs each with
a 1 cm pitch. The right half of boards is covered with reflective teflon
masks. Once the assembly is finished, all DBs have a teflon mask in
front of them.

Vessel

The NEW pressure vessel is made of a Ti-stainless steel alloy from
Nironit [145,146]. The dimensions are between those for NEXT-DEMO
and NEXT-100, with an internal diameter of 64 cm and a length of
950 cm. The cylindrical body is enclosed by two 30 cm long endcaps
(see Figure 3.15). The vessel is certified for up to 20 bar operation and it
includes several ports for high-voltage feedthroughs, gas recirculation
and calibration sources.

Inner Copper Shielding

The vessel material produces large amounts of background that must
be shielded. For that purpose an ultra-pure copper shield has been
installed inside the vessel. This Inner Copper Shielding (ICS) has
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Figure 3.15: NEW vessel during its first assembly in its operational
horizontal position. The tracking plane endcap is opened, showing
the tracking plane copper shielding.

three sections. The cylindrical main body of the vessel is covered with
6 cm thick copper bars. The tracking plane endcap is shielded by the
support plate, a 12 cm thick copper plate with rectangular holes for the
Kapton cables from the dice boards. Similarly, the energy plane endcap
is shielded by the carrier plate supporting the PMTs. The PMT holes
are compensated with small copper caps 6-cm thick placed behind the
sensors. The ICS is shown in Figure 3.16.

External shielding

To shield NEW from external backgrounds coming from the walls of
the laboratory, the pressure vessel is placed inside a lead castle with
a wall thickness of 20 cm, made of layers of staggered lead bricks
supported by a steel structure. The bricks have an activity lower
than 0.4 mBq/kg and they were bought by LSC from the OPERA
experiment [147].

The lead castle dimensions are 195 cm in width, 265 cm in height
and 293 cm in length. The lead bricks have a size of 200 x 100 x 50 mm?.
The total weight is 65 tonnes. The lead castle is made of two separate
halves that can move via a system of wheels and rails between two
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Figure 3.16: Detailed view of copper bars shielding the vessel body,
with the energy plane viewed from the anode.

positions: open and closed. The former is used when some operation
is needed on the detector and the latter is for regular operation of the
detector, see Figure 3.17. A lock system fixes the castle to the floor in
both configurations to avoid accidental displacements.

Due to the mild seismic activity of the part of the Pyrenees where
the LSC is located, a seismic structure holds the vessel inside the
castle. In this way, the system can be isolated from ground vibrations.
All the electrical and gas connections are flexible to allow relative
displacements between the vessel and the working platform in case of
an earthquake.

Gas system

The gas system has several purposes: pressurization and depressur-
ization of the detector, recirculation and cleaning of the gas, and evac-
uation of the detector. All these operations must be performed with
maximum reliability since a loss of xenon, especially enriched xenon,
would be too costly. For this reason, the gas system has been fully au-
tomated using an FPGA-based PLC (Programmable Logic Controller)
from National Instruments named Compact RIO. This controller runs
a real-time LabView-based monitoring of the different parts of the
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Figure 3.17: Top: Detailed view of the NEXT shielding structure in
its open position, with the NEW vessel placed on the anti-seismic
platform. Bottom: View of the shielding structure in its closed position
during installation.
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system: valves, pressure gauges, compressor, chiller, etc. and operates
them when needed to control the gas flow.

The different parts of the gas sytem are illustrated in Figure 3.18
and the three operation modes are detailed in the following:

* Depressurization of the detector: Before filling the detector
with xenon, a vacuum level of 107> bar must be achieved to
eliminate most of the impurities the detector could contain. To
do this, several turbo-molecular pumps are used. In order to
improve the efficiency of the process, the detector is heated to
remove more easily the water vapor attached to the surfaces.
This process is monitored using a Residual Gas Analyzer (RGA)
that measures the level of impurities with a mass spectrometer.

¢ Pressurization and recirculation: After reaching the desired
vacuum level, the vessel is filled with gas. To ensure everything
works properly a cheaper gas, typically argon, is used before
the enriched xenon. Once the detector is filled with xenon, the
system starts to recirculate the gas to keep it clean and avoid
electronegative impurities that could compromise the electron
collection efficiency of the detector. To do this, a compressor
from the SERA company keeps the gas flowing through a closed
loop including two SAES MC4500-902 cold getters [148] and
one SAES PS4-MT50-R-535 hot getter [149]. In the first days
after the filling, cold getters allow for a faster purification, but
at some point they have to be turned off given the large radon
contamination they create. During a physics run, only the hot
getter can be in operation.

* Recovery: There are two different cases in which all the xenon
in the gas system must be evacuated: controlled evacuations
and emergency recoveries. The first situation is addressed by a
liquefaction process using a cryo-recovery bottle that is cooled
using liquid nitrogen, creating a pressure gradient that slowly
recovers the gas. After that, a vacuum pump is used to recover
the residual gas from the vessel and the pipes. The emergency
recovery is triggered automatically if a dangerous situation oc-
curs, like an overpressure that could lead to an explosion or an
underpressure indicating a leak. In these cases, the gas in the
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Figure 3.18: Different parts of the NEXT-White gas system.
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system is moved to a large recovery tank which can store all the
gas at a pressure of ~ 1 bar. This expansion tank is connected to
the system through a Carten valve which opens automatically.

Data acquisition

The NEXT-White Data Acquisition system (DAQ) uses the Scalable
Readout System (SRS), developed by the RD51 Collaboration in 2011
[150], in an effort to which the NEXT collaboration also contributed.

To read out sensor signals, front-end electronics are connected to the
PMTs and SiPMs. As the requirements for the two different sensor
types are different, there is a specific front-end design for each. A
detailed description of the front-end modules can be found in [144,
151].

The interfaces between application specific front-end modules and
DAQ computers are called Front-End Concentrator (FEC) cards. NEXT
uses three types of FEC cards: one for PMT readout digitization, an-
other for SiPM readout digitization, and the last one to control the
trigger of the system.

The last part of the DAQ is a two-level server farm running the
DATE software [152]. A first level is made by the Local Data Con-
centrators (LDCs), which are servers directly connected to the DAQ
electronics cards via Gigabit ethernet optical links. Each of these com-
puters receives a sub-event with the information of the FECs connected
to it. All of them are sent to the next level: Global Data Concentrators
(GDCs). In this second step, the GDC will package all the information
together, saving the entire event to disk for offline analysis. A detailed
description of the system is given in Chapter § 4.

All the electronics (front-ends, power supplies, slow controls, etc.)
are installed close to the detector, to reduce losses from signal trans-
mission, but outside the shielding castle, so as to not contaminate the
detector with their intrinsic radioactivity (see Figure 3.19). They are
also connected to the LSC main power line via UPS units to increase
protection and reliability.
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Figure 3.19: NEW electronic racks and the Slow Control PC during
installation.

Slow control

NEXT-White operation requires a set of advanced control systems.
This type of system is called Slow Control (SC). An internal network
connects all detector systems and several industrial computers running
the SC software that monitors and controls the hardware. The control
panel is shown in Figure 3.20.

There are six SC programs involved in the detector operation:

* High voltage: Monitors and controls the voltages set on the
anode and cathode of the field cage. The system is able to detect
sparks and performs an autorecovery process or shuts down the
system depending on the configuration.

* Gas sytem: Monitors and controls all the parameters related
to the gas system: valves, pressure gauges, vacuum pumps,
compressor, chiller, RGA, etc. The software reacts automatically
to anomalous values. If the current status is dangerous for the
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Figure 3.20: The Slow Control for the NEXT-White detector.

setup, the program would trigger a change to a safe state. It also
allows for manual activation of an emergency stop.

* Power supplies: Monitors and controls all the power supplies
used by the electronics in the experiment.

¢ PMT High Voltage: Monitors and controls PMT power supplies
and detects overcurrents.

¢ Sensors: Monitors the temperature and some other parameters
of the electronics and DAQ computers.

* Main: Shows a summary of the more relevant parameters. It has
a button to trigger an emergency stop of the system to prevent
damage in case of any error, and it can remotely switch off the
other slow control computers.

Since the behavior of a particular slow control can affect other
subsystems, all of them are interconnected. They generate reports
including all the events registered and also send alerts by email when
any warning or alarm is triggered.
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3.4.3 NEXT-100

The NEXT experiment was formally proposed to the Laboratorio Subter-
rdaneo de Canfranc (LSC) in 2009 in a Letter of Intent [153] that outlined
the physics case and basic design concepts of an EL TPC for OvBp-
decay searches with a source mass of the order of 100 kg of 1*Xe.
The detector design was narrowed down in the NEXT-100 Conceptual
Design Report [154] published in 2011, and fixed a year later in the
Technical Design Report (TDR) [96]. The construction and comissioning
of the detector is planned for 2021, although a delay of several months
has been introduced by the COVID-19 crisis.

As mentioned before, the NEXT-White detector is a ~1:2 scale
version of the NEXT-100 detector. There are, though, some differences
in their current designs. Therefore, some elements can be reused, but
some others have to be scaled up or modified. In the following, the
most relevant changes are explained.

Pressure vessel and shielding

The NEXT-100 pressure vessel has a cylindrical section of 160 cm
length, 136 cm inner diameter and 1 cm wall thickness, enclosed by
two torispherical heads of 35 cm height, 136 cm inner diameter and
1 cm wall thickness. As in the case of NEW, it has been fabricated with
316Ti stainless steel due to its radiopurity. A schematic of the detector
is shown in Figure 3.21.

The vessel will be installed inside the same lead castle used cur-
rently by NEXT-White. The radioactivity coming from the vessel is
shielded by 40 copper bars that are installed inside the vessel. This in-
ner copper shield is analogous to that of NEXT-White, with a thickness
of 12 cm.

Electroluminescent TPC

The NEXT-100 field cage has a design different from the one imple-
mented in NEW. It has a nearly cylindrical shape, but it is made of
60 teflon reflector panels supported by a structure made of 20 HDPE
struts with holes to house 45 copper rings. This design allows for less
material usage, reducing the background produced near the active
volume, with which it is in direct contact. There are 12 resistor chains
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Figure 3.21: Cross-section view of the NEXT-100 detector. A stainless-
steel pressure vessel (A) houses the electric-field cage (B) and the two
sensor planes (energy plane, C; tracking plane, D) located at opposite
ends of the chamber. The active volume is shielded from external
radiation by at least 12 cm of copper (E) in all directions.

to degrade uniformly the electric field along the drift length. The inner
diameter is 100.2 cm and the total length is 140.7 cm, with 26 cm of
those being for the buffer region. The inner surface of the teflon re-
flector panels is coated with TPB to increase light collection efficiency.
The design is illustrated in Figure 3.22.

Tracking plane

NEXT-100 will have 56 Dice Boards with 64 SiPMs each, leading to a
total of 3584 sensors. To reduce background, in NEXT-100 the kapton
dice boards will only have kapton on one side, leaving the PCB traces
exposed. The design is an 8 x 8 SiPM matrix, as in NEW, but the pitch
has been increased from 1 cm to 1.55 cm. Although the feedthroughs
have been redesigned, keeping a 1 cm pitch is not possible because the
amount of channels needed exceeds the maximum number of cables
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Figure 3.22: Drawing of the NEXT-100 field cage, including the teflon
reflector panels, the HDPE struts for structural support and the resistor
chains.

that the feedthroughs can accommodate. The increased pitch allows
for a total coverage of the active volume.

Energy plane

The design of NEXT-100 has 60 Hamamatsu 3-inch R11410-10 PMTs
(the same model used in NEW) [141], providing a coverage of approxi-
mately 37%. Given the fact that they are one of the main contributors
to the background, a new design of the PMT base circuit with fewer
capacitors is being tested out. The copper plate and the mechanical
elements of the energy plane have the same structure as those of NEW,
adapted to the bigger size.
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Gas system

NEXT-White’s gas system has proven to be a reliable gas recircula-
tion, purification, pressurization, recovery, and storage setup, having
passed three external safety reviews. To better serve NEXT-100 a few
upgrades will be implemented.

To prevent dead spots with almost no flow inside the detector, a
new piping system will allow for reversal of the gas flow without
opening the detector. This change in the gas flow has proven very
useful in NEW to increase gas purity. For the same reason, the gas
input lines have been moved from the lateral side to the Energy Plane.
Some extra pipes will be added to prevent excessive recovery times,
given the larger size of NEXT-100. Finally, to better control the krypton
calibration source, the manual valve will be replaced by a more precise
metering valve.

Data acquisition

The design of the DAQ will remain without changes aside from the
overall scaling. It will need more front-end cards to read all the sensors
and, possibly, some more computer servers to deal with the extra load.
A more detailed description is given in § 4.8.

3.5 Future generation detectors

To completely scan the inverted hierarchy of neutrino masses tonne-
scale detectors will be needed. The NEXT Collaboration is intensely
working in that direction with a two-phase approach [155]. In the
first one, named NEXT-HD, incremental improvements over NEXT-
100 will be done such as: replacing PMTs with SiPMs as they are the
main background source, operating at lower temperatures to reduce
dark noise and using a low diffusion gas mixture to improve the
performance of the topological signature [156-158].

The second phase, NEXT-BOLD?, will be a detector capable of
performing barium tagging, that is, detecting with high efficiency the
presence of the Ba*™ ion produced in the '**Xe OvpBp decay. Since
natural radioactivity does not create Ba™* ions, if the barium ion

3Barium atOm Light Detector
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could be detected in coincidence with the two-electron signal (and for
events in the narrow ROI allowed by the good energy resolution), the
expected background rate drops to zero.

In 2015, Nygren proposed a Ba™" sensor based on fluorescent
molecular indicators that could be incorporated within a high-pressure
gas xenon TPC (HPXe) [159], such as those developed by the NEXT
collaboration. Fluorescent indicators are molecules whose response
to optical stimulation changes when it forms a supramolecular com-
plex with a specific ion. The concept was further developed in [160]
and followed by an initial proof of concept [57] which resolved indi-
vidual Ba™* ions on a scanning surface with more than 12 standard
deviations.

After this seminal work, the NEXT collaboration launched an in-
tense R&D program. Two complementary approaches are being pur-
sued. The GodXilla R&D explores the possibility of a barium-tagging
detector based on radio-frequency (RF) carpets whose goal is to fo-
cus the Ba™™ ion in a small scanning region, while the SABAT (Sin-
gle Atom BArium Tagging) R&D envisions a cathode fully equipped
with sensors and scanned by a movable microscopy system. Both ap-
proaches use dry molecular indicators to capture the Ba™ ion. Those
currently explored by GodXilla are of the type On-Off (light emission is
greatly enhanced for molecules which have chelated an ion w.r.t. unco-
ordinated states). SABAT is based in a new type of fluorescent bicolor
indicator (FBI) which responds to coordination with Ba*™ enhancing
the emission and shifting its color [58].

The NEXT collaboration is intensely working on these R&D pro-
grams to produce a technical design of a detector implementing a fully
operative Ba™ " tagging system.

The next-generation HPXe-EL experiment could deploy one or
more modules based on the HD or BOLD approaches, depending on
the status of the technologies. A sensible scenario would be to deploy
first an HD module, followed by a second BOLD module. If the BOLD
approach could be fulfilled, NEXT would be a background free ex-
periment with a technology scalable to very large masses that would
therefore potentially be able to scan the entire inverted hierarchy pa-
rameter space.
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41 NEXT-White Data Acquisition System

The NEXT collaboration, the RD51 Collaboration at CERN and IFIN-
HH Bucharest co-developed SRS (Scalable Readout System) in 2011
[124,150]. SRS was designed as general purpose multi-channel read-
out solution for small and medium scale experiments. The first SRS
version used 6U Eurocard mechanics and had a generic FPGA-based
readout card: the Front-End Concentrator card (FEC card). Several
add-in cards were developed to read out popular ASICs in the RD51
community, to digitize analog channels (like PMTs) and to interface
digital front ends.

In 2014, SRS was ported to the ATCA (Advanced Telecommunica-
tions Computing Architecture) standard which includes redundant
power supplies and cooling, making it a more reliable solution for
prolonged operation in experiments than the original SRS. NEXT-
White DAQ system adopted the SRS-ATCA approach [161]. Each
ATCA blade consists of two interconnected FPGAs (Xilinx Virtex-6
XC6VLX240T-1££1156), two mezzanine slots, two event buffers, and
I/0 interfaces (Gigabit Ethernet and NIM trigger signals). Therefore,
an ATCA blade is equivalent to two "classic" SRS FEC modules.

The DAQ system is divided into three parts: the energy plane
(12 PMTs), the tracking plane (1792 SiPMs grouped in 28 Front-End
Boards, FEBs) and the trigger. The PMTs are digitized at 40 MHz with
12 bits per sample and the SiPMs at 1 MHz and also 12 bits per sample.
In raw mode at a 10 Hz trigger rate the PMTs generate 10 MB s~ while
the SiPMs produce 35 MB s~ !. The amount of data generated by the
trigger is negligible.

A diagram of the system for NEXT-NEW is shown in Figure 4.1. It
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Figure 4.1: NEXT-White’s DAQ structure including the server farm
for online and offline event processing (left part) and the ATCA blade
with the FEC cards for PMTs, SiPMs and trigger.

has 3 ATCA frames with 6 FECs boards: one for the trigger, two for
the 12 PMTs and 3 for the 1729 SiPMs. They communicate through
a DTC (Data, Trigger, Clock) link in order to be able to control and
trigger the system.

The system is recording data continuously to a circular buffer until
the trigger processor finds an event fulfilling all the conditions set in
the configuration. Then data would be framed and sent to the different
LDCs to be compounded later in a GDC.

4.2 DATE online system

The online system for the NEXT-White detector is using the DATE
software from ALICE at CERN and the electronics developed within

FE for PMTs
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the RD51 collaboration from CERN [152]. The main advantage of this
option is the scalability of the system.

DATE is a software that runs on Scientific Linux and can handle
parallel data streams produced by different subsystems from the detec-
tor. All these subevents would be later be combined into an event by
the event builder. The system uses Gigabit ethernet and the UDP pro-
tocol [162] to communicate between the different computers involved
in the data acquisition process.

The architecture of the system includes two levels of servers: Local
Data Concentrators (LDC’s) and Global Data Concentrators (GDC'’s),
as they are named by DATE. The first level includes LDCs, that will re-
ceive the data from a subset of the sensors in the detector as subevents.
From there, subevents are sent to the GDCs for the final event build-
ing process. In order to do so, LDC’s are connected to the GDC’s
via network. GDCs can have load balancing mechanisms to improve
the trigger rate of the system, the simplest of which is a round robin
algorithm where events go to different GDCs following a circular
order.

DATE has an internal database with all the IPs of the different
nodes and their roles. A different software (see Section 4.4) written
in Java by the NEXT collaboration configures the trigger and sends
control commands to the FEC cards.

The DATE framework can work with Gigabit Ethernet networks
using the User Datagram Protocol (UDP). This protocol allows com-
munication over IP networks with commercial network cards. UDP is
a standard for fast communications since the protocol imposes a very
little overhead and only has an optional checksum mechanism. There
are no ACK packets in response. The integrity and coherence of the
message has to be checked at a higher level afterwards.

After the UDP header, DATE inserts a sequence counter (32 bits) to
check for lost or duplicates packages, raising an error if any are found.
The packet size is fixed to 9 KB to maximize throughput. This may
be a problem for some old network equipment, but nowadays most
networks cards and switches support jumbo frames (packets bigger
than 1500 bytes).

The data collection is organized by runs. Using the DATE control
program (Figure 4.2) a run can be started. Before starting a new run,
the software checks whether all the equipment is reachable through
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Figure 4.2: DATE run control panel.

the network and, then, a start command is sent. DATE takes control of
the buffer of the network cards and maps part of the computer mem-
ory for its internal event building processes. Each LDC will get the
subevents of the equipment connected to it and add some headers to
them. These headers are defined by DATE and they are optimized for
accelerator experiments. They contain important information for data
quality monitoring, such as the origin equipment, machines involved,
timestamps, sizes of the events and some words for error checking.
Finally, each subevent (including DATE headers) is forwarded to a
GDC where the whole event will be built and stored in disk in a binary
file.

During data taking, DATE provides a monitoring utility (Figure 4.3)
showing the trigger rate, byte rate, number of events, number of files
written to disk and a few more relevant parameters. This information
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Figure 4.3: DATE monitoring window.

can be seen for each LDC and GDC.

An event is closed when a special packet is received with only the
UDP header and a special word defined by the RD-51 collaboration:
OxFAFAFAFA. The structure of the packets is shown in Figure 4.4. The
information that comes after DATE’s headers is the payload, whose
format is defined by the NEXT collaboration according to the needs
of the experiment. This part is totally transparent to DATE and will
not be modified in any way during the transmission or event building
procedures.

4.3 NEXT data format

The data generated by the detector must be written in a common
format understood both by the FPGAs in the electronics and the com-
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Ethernet Header (14 bytes) — Ethernet Header (14 bytes)
IP Header (20 bytes) |, Packet IP Header (20 bytes)
Header
UDP Header (8 bytes) UDP Header (8 bytes)
Sequence counter (4 bytes)
End of Event
L Dat OxFAFAFAFA
ata 4 bytes
Payload (8968 bytes)
2242 words B

Figure 4.4: Structure of DATE packets (left). IP and UDP are used
for communication and are not stored. A sequence counter is used
to check the integrity of the data. A special datagram with the word
OxFAFAFAFA is used to mark the end of an event (right).

puters that will run the analysis later. This format definition must
include all the relevant information taken during the operation of the
detector, from all PMTs, SiPMs and the trigger.

In the case of NEXT, the data format has evolved throughout time
depending on the needs of the experiment. The different versions of
the firmware are named according to the NATO phonetic alphabet,
the current one, version 9, being India.

The firmware produces datagrams using 16-bit words while the
DATE bulffer has 32 bits, adding an extra requirement for the decod-
ing software that will need to rearrange the words to interpret them
properly. If 32-bit words are needed, they are split between the 16
Most Significant Bits (MSB) and the 16 Least Significant Bits (LSB)
comprising two words.

There are different data formats defined for PMT, SiPM and Trigger
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FECs. In the cases of PMTs and SiPMs the packet size is fixed to 9KB.
If the last package is not filled with data, the remaining space would
be padded with ones (OxFFFF) until the ending word (0xFAFAFAFA).
Trigger packets are shorter, requiring only 48 bytes.

A detailed description of the format can be found in [163]. As a
summary, the main fields defined in the headers are the following;:

Sequence counter: 32 bit counter used by DATE to check for
missing or duplicate packets. If a packet arrives with a wrong
sequence counter, there has been an error in the transmission
and data has been lost.

Format ID: Defines the type of data (PMT, SiPM or Trigger) and
the firmware version. It also defines whether the data is in raw
format or compressed/zero suppressed.

Wordcount: 16-bit counter with the number of 16-bit words until
the end of the frame.

Event ID: Contains an absolute trigger counter for each run and
the type of trigger for each event. In normal mode, trigger 1 has
the code 1 and trigger 2 has code 9.

Event conf: Information related to the system configuration
including buffer size, pre-trigger size and channel mask. In the
case of PMTs the channel mask indicates which channels are
connected for a given FEC; for the SiPMs it indicates which FEBs
are connected to each FEC.

FEC-ID: FEC identifier. Each card has two links and therefore
two identifiers. They are related to the IP address they have in
the network.

#Ch and #FE: Number of PMTs/FEBs connected.

Coarse Timer (CT): UNIX timestamp in milliseconds for each
event in 42 bits. It is the number of milliseconds since 00:00:00
Thursday, 1 January 1970.

Fine Timer (FT):17-bit timer with the sampling frequency of
the PMTs (40 MHz). It indicates the position of data in the
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circular buffer. Therefore, the timer goes up to the buffer size
and then is reset to zero.

Data: Charge values are concatenated in 16 bit-words, requiring
12-bit for each value. If operating in compression mode, then
the length of each data value can be different. More details in
Section § 4.6.

FEB ID and FEB info: FEB identifier and error bit that signals
synchronization errors between the FEB and the DAQ.

Channel mask: For the SiPMs there are four 16-bit words, one
bit per channel (64 in total) indicating which ones are sending
data in that particular time bin.

Trg conf: Contains information related to trigger configuration
such as trigger code, auto-trigger, external trigger, dual trigger,
etc.

Ch info: Channel mask spanning four 16-bit words, indicating
which PMT channels have triggered the system. Since NEXT100
is planned to have 60 PMTs, 64 bits are enough to address all of
them.

Figure 4.5 shows the data format for PMTs in raw mode. The zero

suppressed mode is shown in Figure 4.6. The SiPMs have the same
data format both for raw and zero suppressed modes, illustrated in
Figure 4.7. Finally, trigger information headers are shown in Figure 4.8.
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MAC+IP+UDP headers

Sequence CounterH
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— 14+20+8 bytes

| Data Type (PMT, SiPM, Trigger), Frame Type (Data, Control),
Format Type (Raw, ZS), Format Version, Baseline info(Y/N)

. 16-bit words from here to the end of the frame

Provided by the trigger module in the Trigger command: Trigger
[ type and counter

| Event configuration: Total waveform length, pre-trigger and
system configuration info

— Auto calculated channel baseline value

— Trigger Channel Configuration values

— FEC identifier and number of PMTs connected

 Provided by the trigger module in the Trigger command

— FTy, is sent only once to identify the initial FT

FT Block: It is repeated N times (N is the total waveform length)

Figure 4.5: Data format for PMTs in raw mode.
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14+20+8 bytes

Data Type (PMT, SiPM, Trigger), Frame Type (Data, Control),
Format Type (Raw, ZS), Format Version, Baseline info(Y/N)

16-bit words from here to the end of the frame

Provided by the trigger module in the Trigger command: Trigger
type and counter

Event configuration: Total waveform length, pre-trigger and

system configuration info

Auto calculated channel baseline value

Trigger Channel Configuration values

— FEC identifier and number of PMTs connected

Provided by the trigger module in the Trigger command

FT Block: Every time #ch mask # 0 for a given FT

Figure 4.6: Data format for PMTs with zero suppression.
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MAC+IP+UDP headers

Sequence CounterH
Sequence Counter L
Format ID H
Format ID L
Wordcount
Event ID H
Event ID L
Event CONF,

Event CONFy
FECID  “| #FE®

CT Timestamp H

CT Timestamp L

il ] cTTsms

FT, *
FEBN-ID°| FEBNinfo *
FT, *

#ch mask FEBN,  *°

#ch mask FEBN;  *

12 4
DmaskCHO:l | DCHl
8 8

DmaskCH1=1 DmaskCH2=1

2 X 7]
| DCH | DmaskCHi=1 |

FEBM-ID°| FEBM info
FT; *

#ch mask FEBM,

#ch mask FEBM;  *°

12 4
DmaskCH0=1 | DCHl

8 8
DmaskCHl=1 DmaskCH2=1

[Dge’| 111111111111 7]

— 14+20+8 bytes

. MSBIt: ‘0’, Data
LSByte: 1h, SiPM data
— MSByte: Format version
— 16-bit words from here to the end of the frame

Provided by the trigger module in the Trigger command: Trigger
type and number

Event configuration: Total waveform length, pre-trigger and
system configuration info

— # FE: Number of FEB cards connected (up to 16)

Provided by the trigger module in the Trigger command
— FTy is sent only once to identify the trigger FT
" FEB info connected to de FEC

— FEB data mask

FEB Block: Every time for a given FT with data to be sent

Figure 4.7: Data format for SiPMs both in raw mode and with zero

suppression.
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MAC+IP+UDP headers

Sequence CounterH

Sequence Counter L

Format ID H

Format ID L

Wordcount

Event ID H

EventID L

Event CONF,

Event CONFy

FECID  “[#FECS

CT Timestamp H

CT Timestamp L

Frf | cTTsms

FT,

TRG conf 8

TRG conf O

Chinfo 3

Ch info 2

Chinfo 1

Chinfo O

TRG Lost Type 2 H

TRG Lost Type 2 L

TRG Lost Type 1 H

TRG Lost Type 1L
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— 14+20+8 bytes

Data Type (PMT, SiPM, Trigger), Frame Type (Data, Control),
Format Type (Raw, ZS), Format Version, Baseline info(Y/N)

— 16-bit words from here to the end of the frame

Provided by the trigger module in the Trigger command: Trigger
type and counter

Event configuration: Total waveform length, pre-trigger and
system configuration info

— FEC identifier and number of FECs connected

CT is the UNIX time in seconds

—, FTyis sentonly once to identify the initial FT
CT TS is the time in ms added to the CT

Trigger configuration data

~ Channels producing the trigger (1 bit per channel)

<

~ Number of triggers lost for Type 1 and 2

Figure 4.8: Data format for trigger information.
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4.4 Trigger system

The event detection system for NEXT must be able to detect with high
efficiency a wide variety of events. Low-energy calibration with a
83mKr source produces events with small signals, while high-energy
sources (222Rn, 232Th), low-background runs or muons produce events
with many different topologies depending on the direction of the
particles in the gas.

The trigger in NEXT-White is an evolution of the trigger for NEXT-
DEMO [164] that has a lot of flexibility for event selection. The maxi-
mum buffer size is 3.2 ms, about 6 times the maximum drift time for
NEXT-White and 3 times the length of NEXT100.

The trigger implemented is a two-level system. In the first level,
the Double Event Processor (DEP) generates one event candidate per
each PMT sensor, based on an early energy measurement. From there,
event candidates are sent to the second level, located in the Control
Module. Then, the Coincidence Event Processor (CEP) produces an
Event Accept signal that triggers a data download from the DAQ
internal buffers to the online system’s LDCs. A schematic is shown in
Figure 4.9.

The system allows for a dual trigger to be configured. To do that,
both the DEP and the CEP are each a double processor. Each pro-
cessor can be configured with its own set of parameters to search
for a different type of event. The default mode of operation during
physics data-taking campaigns is to use the dual trigger. Trigger 1 is
configured for low energy events (Kr calibration), while Trigger 2 is
reserved for high energy events, usually near Qgg. This is an important
requirement as it allows the system to be calibrated at all times using
low energy events. In order to minimize the probability of losing an
interesting event, trigger 2 has priority over trigger 1, which is much
more frequent than trigger 2. Additionally, to minimize the dead time,
the DAQ is able to store two events using a double circular buffer.

When the system is running, PMTs are sampled every 25 ns and
SiPMs every 1ps. The Double Event Processor generates event can-
didates based on several configurable thresholds: baseline deviation,
event energy and event duration. Although a different configuration
can be set for each PMT, in standard physics operation all the PMTs
have the same trigger parameters. Table 4.1 shows the configuration
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Figure 4.9: NEXT-White trigger scheme showing the Double Event
Processor that generates event candidates and the Coincidence Event
Processor that produces an event accept signal that triggers buffer data

download to LDCs.

for different types of events. A JAVA program is used to set all the
parameters for each run (see a screenshot in Figure 4.10).

PMT front-end electronics are designed with an AC coupling
scheme. At first order, they produce an output signal that is the
derivative of the input and it is characterized by a null total area. Since
the energy estimation is done by computing the area of the input pulse,
a baseline restoration (BLR) algorithm has to be applied [151]. To be
able to include the event energy as a trigger configuration parameter,
PMT FEC cards include an online implementation of a BLR algorithm.
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Table 4.1: Trigger configuration parameters for different type of events.
The same configuration is applied for all PMTs. In standard operation
the buffer size is set to 1600 us with a pre-trigger of 800 ps.

Event Detection Parameters
Event

Coincidence Event
Processor Parameters

Type Energy

Accumulation of
ADC counts

Amplitude
Relative to

the baseline

Min Max Min Max

Min

Time Time Coincident
us Coincidence events
Window Number of
PMTs

Max us

100000 16777215°
5000 50000

220000 16777215

100000 16777215

10 -
10 1000

10 2000
10 -

pp
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600
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0.5
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Figure 4.10: Trigger control program. Using this JAVA GUI it is pos-
sible to configure all the data taking parameters: buffer size, trigger

configuration, active channels, etc.
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Figure 4.11: Sample waveform with the estimated parameters to be
used by the Double Event Processor to generate event candidates. It
includes measurements related to the signal amplitude, event energy
and event duration.

The online system computes the baseline using a configurable mov-
ing average filter. Then, an energy estimation can be computed by
integrating the difference between the signal and the baseline when-
ever the baseline deviation is higher than a configurable threshold.
Figure 4.11 shows an example with a waveform.

Finally, after event candidates have been generated, the Coinci-
dence Event Processor checks whether a minimum number of them
are in a coincidence time window. If that is the case, an Event Accept
signal is generated, triggering an event download and sending the
buffer contents to the LDCs.
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In addition to the modes described above, the system also has an
external trigger mode in which an external signal is read to trigger the
system. This mode is mainly used to calibrate the sensors using LEDs.
The same square signal sent to the LEDs is used as external trigger,
therefore saving waveforms containing LED pulses.

For debugging purposes, the system also has an autotrigger mode
in which the trigger does not depend on neither sensors nor external
signals but on an internal clock with a tunable frequency.

4.5 Decoding software

In order to read the information written in binary format by DATE, a
decoder program is needed. This decoder has been my main contri-
bution to the DAQ development. This tool translates the information
sent by the DAQ to some higher-level format that would be the input
for the event reconstruction framework. In our case, Invisible Cities is
the software to run both reconstruction and analysis steps [165]. This
software is written in python and uses the HDF5 file format [166] for
persistency. Therefore, the decoder needs to translate the waveform
information from DATE binary format to HDF5.

The software for this task is a program written in C++ that orig-
inally was integrated in the ART framework [167] that was used in
the NEXT collaboration. When Invisible Cities was ready, the ART
framework was deprecated and we took all the decoder functionality
out of the ART module and implemented a new standalone program.

The decoder input is a JSON file [168] with all the relevant configu-
ration parameters:

* max_events: Maximum number of events to be read from the
input file. Default value: 100000.

* verbosity: Sets the level of information to be printed at execu-
tion time. Debug information will be printed to standard output
while errors would go to standard error. Default value: 0.

e ext_trigger: Channel number for external PMT if used. Default
value: 15.
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e two_files: If true, the program will try to load at the same
time the file from GDC1 and GDC2 and will read the events
from them in chronological order (reading one event at a time
alternating between files). Default: false.

¢ file_in: DATE input file. If two_files is true this file must be
the one corresponding to GDCI.

e file_out: Path for the HDF5 output file. If split_trgis true,
only events marked with trg_code1 will be saved in this file.

e file_out2Ifsplit_trgistrue, only events marked with trg_code2
will be saved in this file.

e split_trg: If true, the output will be split between file_out
and file_out2 according to trg_codel and trg_code2. Default:
false.

* trg_codel: If split_trgis true, events for file_out. Default: 1
(events with trigger 1 in normal mode).

® trg_code2: If split_trgis true, events for file_out2. Default:
9 (events with trigger 2 in normal mode).

e discard: If true, events with the error bit set are not decoded. If
false, the program will try to decode them, but depending on the
origin of the error segmentation faults are possible. Only to be
used when debugging the DAQ. Default: true.

* copy_evts: If true, it will copy the events between skip and
max_events in binary format into file_out. This mode is useful
to extract particular events for testing purposes. Default: false.

¢ skip: Number of events to be skipped. Default: 0.

* host: Hostname of the MySQL server with the mapping between
electronic and simulation channels.

* dbname: Database name in host. Must have a table named
ChannelMapping. This table contains the mapping between elec-
tronic channels (ElecID) and the corresponding channels in the
software simulation (SensorID).
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* user: Username for host with read permission on dbname.
e pass: Password for host.

* no_db: If true, no channel mapping would be used, the wave-
forms would be written sorted by ElecID. If false, the program
will read the mapping from dbname and sort them by SensorID.
More details in Section § 4.5.2. Default: false.

4.5.1 File structure

The output of the decoder is one or two files in HDF5 format [166].
HDF5 stands for Hierarchical Data Format 5 and is a format designed
to store large amounts of data. It was originally developed at the
National Center for Supercomputing Applications and is supported
by the HDF Group, a non-profit organization whose mission is to
ensure continued development of HDF5 technologies and the con-
tinued accessibility of data stored in HDF. Therefore, libraries and
APIs are available for many different programming languages and
environments with open source licenses.

At a high level, HDF5 files are organized with three kinds of nodes
arranged in a tree structure. The inner nodes of the tree are called
groups and they behave like folders in a filesystem; the leaves are
datasets, which can be multidimensional arrays and tables. The mul-
tidimensional arrays must have a unique datatype (integer, string,
etc.) for all the elements in the dataset while the tables are like a
M x N matrix where each of the different N columns can have differ-
ent datatypes, including compound ones.

The structure of the files written by the decoder is the following:

¢ Group RD: All datasets within this node are three-dimensional
arrays with dimension Events x Sensors x Samples and 16-bit
integer elements. Since the DAQ is using 12 bits for each sample,
16-bit integer are enough to store those values. These integers
are also a basic type both in HDF5 and in most programming
languages.

- pmtrwf: PMT waveforms. Only present if PMT data was
sent by the DAQ. The order of the sensors is the same one
as in the table /Sensors/DataPMT.
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— pmtblr: BLR waveforms. The DAQ can operate in a dual
mode that sends both real channels and the output of the
online BLR algorithm. This dataset will contain the BLR
version of the PMT channels. The order of the sensors is the
same one as in the table /Sensors/DataBLR.

— sipmrwf: SiPM waveforms. If the DAQ is working in zero
suppression mode, the time bins that are not sent will be
zeros. Only present if SiPM data was sent by the DAQ.
The order of the sensors is the same one as in the table
/Sensors/DataPMT.

— extpmt: External PMT waveform. In case an external PMT
is used, usually to trigger in coincidence with a ?Na source,
a 2D-array (Events x Samples) with the waveform is writ-
ten. The channel number is specified in the ext_trigger
configuration parameter.

¢ Group Run:

- events: Table with two columns: evt_number and timestamp.
Event number is a 32 bit integer and event timestamp is a
64 bit integer with the UNIX timestamp in milliseconds. It
has one entry per event.

— runinfo: Table with one column: run_number. It has only
one row with the run number of the files read from DATE.

* Group Sensors: In this group there are two-column tables con-
taining the mapping between electronic channels and those con-
figured in the simulation software. More details in Section § 4.5.2.

— DataPMT: PMT sensor mapping. Only present if PMT data
was sent by the DAQ.

— DataBLR: PMT-BLR sensor mapping. Only present if PMT-
BLR data was sent by the DAQ.

— DataSiPM: SiPM sensor mapping. Only present if SiPM data
was sent by the DAQ.
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* Group Trigger:

— configuration: Table with two columns: param and value.
One row per parameter received in the Trigger conf words
in the trigger headers.

- events: Two dimensional array with dimension Events x
#PMTs. Boolean array where the element events;; is 1 if pmt
number j (according to /Sensors/DataPMT) has triggered
on event 7, 0 otherwise.

— trigger: Table with one column: trigger_type. Contains
one row per event with the trigger code sent by the DAQ
for each event.

4.5.2 Database structure

Each sensor in the detector (both for PMTs and SiPMs) is identified
by two numbers SensorID and ElecID. The former is the ID given to
a sensor in a particular position in the simulation software and does
not change over time, while the latter corresponds to the physical
electronic channel to which each sensor is connected. This can be
different for different runs depending on how the connections are
made. For instance, if a channel is too noisy one may try to use
another one that works better.

Since we need to compare simulations and real data, we need to
store the relationship between those identifiers along different runs.
There is a ChannelMapping table in the MySQL database of each detec-
tor with the mapping between SensorID and ElecID. The structure of
the table and some sample rows can be found in Figure 4.12.

Due to the architecture of the software that will read the HDF5
waveform files, Invisible Cities, there is an extra constraint on the
structure of the datasets. The number of sensors in /RD/pmtrwf and
/RD/sipmrwf must be equal to the number of sensors defined for the
detector in the database, regardless of how many sensors are actually
sent by the DAQ. Missing channels will be filled with zeros. This does
not create a storage issue because the datasets in the HDF5 file are
compressed.

In the case of NEXT-White, the number of PMTs is 12 and the
number of SiPMs is 1792. For NEXT-DEMO++ there are 3 PMTs and



132 Chapter 4. Data Acquisition System

mysql> select * from ChannelMapping where SensorID = 3;

fomm e o omm Hmmm e +
| MinRun | MaxRun | ElecID | SensorID |
oo omm Homm Hmmm +
| 0 | 1273 | 3 | 3 |
| 1274 | 1754 | 6 | 3|
| 1755 | 1765 | 3 | 3 |
| 1766 | 1978 | 19 | 3 |
| 1979 | 3292 | 19 | 3|
| 3293 | 3913 | 0 | 3 |
| 3914 | 5024 | 23 | 3|
| 5025 | 5203 | 13 | 3 |
| 5204 | 5366 | 17 | 3|
| 5366 | 100000 | 13 | 3 |
fomm o omm Homm Hmmm o +

10 rows in set (0,00 sec)

Figure 4.12: Sample data from ChannelMapping table. Shows the
evolution of SensorID=3 along different runs.

256 SiPMs. For this to work, there must be consistency between the
state of the database and the actual connections between sensors and
electronic channels in the detector. This will not always be the situation,
especially when debugging the DAQ. For those occasions, there is an
extra mode (activated with the no_db parameter) that does not use the
database.

In no_db mode the decoder will write only the number of channels
actually sent by the DAQ. For example, if there are only 11 PMTs and
512 SiPMs, that will be the size of the second dimension of the datasets
in /RD and /Sensors. The waveforms would be sorted according to
their ElecID and all SensorIDs would be set to —1, since they are not
read from the database.

4.5.3 Automated testing and quality control

Given the complexity of the software needed to interpret binary files
using the NEXT data format and its proper translation to HDF5 files,



4.5. Decoding software 133

we implemented an automated testing system to ensure the software
works as expected. This is especially interesting for development
purposes, as the developer can know easily whether the latest modifi-
cation to the code base has broken or affected a part of the code that
was previously working. It also avoids the need to manually check the
program with a few files that may not catch a newly introduced bug.

The first type of test implemented are unit tests. They define a
test case for a particular function consisting of a known input and its
corresponding output. The test checks that running the tested function
for the known input actually produces the expected output. These
tests are useful for checking small parts of the code, but they do not
ensure the proper function of the whole program.

Functions must be correctly connected to each other to obtain
the expected HDF5 file for a given binary input file. To assess this,
integration tests are used. They run the whole program with known
input and configuration files and check the structure and contents of
the HDFS5 file given as output.

Given that the software is written in C++, a testing framework
compatible with that language must be used. The one we chose is
Catch2 [169], a simple framework that fulfills all the requirements
for this project. There are many test cases to check the decoding of
different headers. In some cases, a particular test generates automati-
cally many different possible inputs (for instance, different numbers of
sensors connected) and checks that the decoder reads them properly.
Each check is called an assertion. Figure 4.13 shows the output after
running the tests implemented with Catch2. Currently there are 36
tests cases that produce more than a million assertions.

For the integration tests, since they are higher level tests that do not
involve calling particular C++ functions, the framework pytest [170]
has been used. Some particular events have been extracted from
different runs in binary format and they are used as input for several
pytest tests. In this way, functionalities like splitting the output into
two HDF5 files depending on the event trigger code can be tested
easily.

Software testing is a complex discipline and achieving a good
enough coverage takes time, especially if the tests are not defined
as the software is being developed but afterwards, as has been the
case for this code base. The current test suite provides a wide check
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tests is a Catch v1.10.0 host application.
Run with -7 for options

test cases: 36 | 36 passed | 0 failed
assertions: 1217808 | 1217806 passed | 0 failed

Figure 4.13: Sample output after running the automated tests imple-
mented using Catch2.

of all software functionalities, but there may still be some untested
features. More tests will be implemented in the future, especially
when the software may need to be reviewed and updated for NEXT-
100 operation. So far, the software has been working properly both for
NEXT-White and NEXT-DEMO++ detectors.

4.6 Huffman compression

In order to improve the performance of the DAQ, we have imple-
mented compression modes both for PMTs and SiPMs. If an event is
triggered, there is some amount of time (called dead time) that the DAQ
needs to send buffer data to the LDCs before it can write again in the
circular buffer. Any event that occurs during that time would be lost.
One way to reduce this time is sending less data by compressing the
information.

There are two types of compression algorithms: lossless and lossy.
The former allows for the recovery of all the original information from
the reduced data while the latter only recovers part of the information.
Zero suppression is a lossy compression mechanism where the system
only sends the parts of the waveform that fulfill certain criteria (such as
deviation from baseline). In this way the DAQ can send only S1 and S2
candidates with some pre/post-trigger information without sending
the whole waveforms. Zero suppression is being used successfully in
the operation of NEXT-NEW for SiPMs.
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Table 4.2: Huffman codes obtained from real NEXT-White waveforms.

Value Code Value Code

0 1

1 001 -1 000

2 0111 -2 0110

3 010011 -3 010010
4 010001 -4 010000
5 0101011 -5 0101010
6 0101001 -6 0101000
7 0101101 -7 0101100
8 0101111 -8 0101110

For the PMTs, we also implemented zero suppression but it has
not been used due to the BLR step that is run offline afterwards. This
algorithm could be sensitive to missing parts of the waveform and has
not been properly evaluated yet. Therefore the PMTs have to operate
in raw mode. With this conditions of raw PMTs and ZS SiPMs the
system can operate without errors at a rate of 35 Hz.

Using a lossless compression algorithm one could decrease further
the dead time and/or increase the trigger rate without affecting in any
way the BLR step that would come later, since it would have the whole
waveform available as in raw mode. We implemented a mechanism
along these lines and tested it in NEXT-DEMO++ before setting it up
for NEXT-White in Canfranc.

The idea is to apply a Huffman code [171] to the differences be-
tween one sample and the previous one for each PMT. A Huffman
code is a variable-length code where the most frequent words use
the least bits and the less frequent ones use longer codes. In the case
of NEXT, we obtained Table 4.2 using real data from NEXT-White
waveforms.

With this scheme there would be two types of values: those whose
difference with the previous one is included in the Huffman tree (now
from -8 to 8) and those which are not. In the first case, a 1 would be
sent, indicating the following code is a Huffman one, followed by the



136 Chapter 4. Data Acquisition System

Table 4.3: Comparison between raw data and Huffman compressed
data using codes from Table 4.2. In the Huffman mode row, the first
value is expressed in hexadecimal (with a 0 bit preceding it) and the
rest of them are in binary.

Time ‘ to tl tz t3 t4
Value 2323 2322 2322 2321 2322
t—ti 2323 -1 0 -1 1

Code in raw mode | 0x913 0x912 0x912 0x911 0x912
Huffman mode 0-0x913 1000 11 1000 1001

code. In the second case, a 0 would be sent indicating the following
code will be a 12-bit one, and then the code.

Therefore, the first value of each channel would always be sent
with 13 bits (1+12) and then, the rest of the waveforms will depend on
the differences between t; and t;_; and can have a different number of
bits. A short example of how this work is shown in Table 4.3. A small
waveform of 5 samples is shown. In raw mode it takes 60 bits while in
Huffman mode the same data can be expressed with only 27 bits.

In a first step, we studied a simulation of the procedure using
real NEXT-White waveforms (Kr, calibration sources, background...),
showing that a compression rate of ~ 85% was possible. We first
implemented the system in NEXT-DEMO++ as a test bench, achieving
an 87.8% compression level. Then, we deployed it at Canfranc for
NEXT-White with similar results. Currently, this compression mode
is part of the standard NEXT-White operation, running flawlessly
with a smaller dead time than before thanks to the compression rates
achieved.

Having this new strategy available, we considered whether Huff-
man compression could work better than zero suppression for SiPMs.
Our current configuration for SiPMs sends only ~ 15% of the wave-
forms, but the compression rate is ~ 74%. The overhead is due to the
rest of the headers sent (FEB-ID, channel mask, etc.). Using a Huffman
tree with 16 codes the compression achieved in simulation is 64.4%,
while for 32 codes it is 69.5%. Zero suppression is 6 — 7% better.

With the aim of having a more flexible and robust system, Huffman
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trees are saved in a MySQL database indexed by run number. There-
fore, the decoding software can read each data file with the proper
code table. Potentially, different tables could be used for different
kinds of runs to optimize the compression as much as possible. The
offline software is prepared for this.

4.7 NEXT-White setup in Canfranc

The DAQ and computing system deployed in Canfranc for NEXT-
White is shown in Figure 4.14. There is one Cisco Catalyst 2960x switch
with 48 1Gb ethernet ports and 2 SFP+ 10Gb ports for monitoring and
remote access. The internal network for the computing cluster and
distributed storage is connected via a Cisco SG350x switch with 24
10Gb ethernet ports.

There are 3 LDCs running in 3 DELL R320 servers, each of them
with 6 CPU cores at 2.2 GHz, 16 GB of RAM and 2 network cards with
2 gigabit ethernet optical fibre ports connected to the ATCA cards. In
total, there are 12 links to retrieve the data from the detector.

The two GDCs are running on 2 DELL R520 servers with an 8-core
CPU at 2.2 GHz and 16 GB of RAM. Each GDC stores the events locally
in ~500 MB files before sending them to the distributed storage system
used by the analysis cluster.

The storage and analysis cluster is composed of two Supermicro
SSG-6048R-E1CR24N servers with 12 CPU cores at 2.6 GHz and 128 GB
of RAM, one Supermicro SSG-6049P-E1CR36H server with 28 CPU
cores at 2.6 GHz and 128 GB of RAM, and one Bull R421-E4 server
with 28 CPU cores at 2.6 GHz and 128 GB of RAM. In total, there are
110 CPU threads available for event processing on-site at Canfranc
and 300 TB of distributed storage space (DFS) using GlusterFS [172].
To store long-term data an IBM Library TS 2900 tape robot that can
handle up to 8 tapes is used. By moving old data from the DFS to tape,
free storage space can be obtained in the analysis cluster to continue
with the data taking.

The system has performed very well over the years and has shown
great stability taking data continuously. For documentation purposes,
an electronic logbook software, ELOG [173] is used. A new entry is
created automatically for each run, containing the related metadata
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Figure 4.14: NEXT-White DAQ infrastructure in Canfranc.
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such as type of run, trigger configuration parameters, number of
events taken, etc. Up to August 2020, nearly 1.6 billion events have
been recorded by the system.

Figure 4.15 shows the number of events taken over the years, with
the different run periods shown in a different color. Run I was a short
commissioning run that lasted from September to December 2016.
After some hardware updates, mainly related to the field cage, Run II
started on March 2017 with a pressure of 7.2 bar until October, when it
was raised to 9 bar. Run II was stopped in November 2017 for some
gas system updates to allow for higher pressures and some radiopurity
updates in the field cage and PMT bases. Run III was started by the
end of February 2017 but due to an issue with the EL voltage, it was
stopped to allow for an upgrade in April 2017. Run IV lasted from June
2018 to the end of December 2018; it was a run devoted to calibration
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Figure 4.15: Number of events recorded as a function of time. Colors
denote different run periods (details in the text). The system has
shown to be extremely reliable, and has acquired so far nearly 1.6
billion events.



140 Chapter 4. Data Acquisition System

and background characterization. In February 2019 the detector was
filled with enriched xenon, and Run V was started during that month.
Run V lasted until July 2020, taking low background data for a lifetime
measurement of the 282v decay of '*Xe.

4.8 Towards NEXT-100's DAQ

The DAQ for NEXT-100 will be a scaled-up version of that in NEXT-
White, at least in the first phase of the experiment. It will be based on
DATE with the same NEXT-White FEC cards for PMTs and SiPMs. The
tirst version of NEXT-100 will have 60 PMTs and 3584 SiPMs. Given
the amount of data the detector will produce, the designed system
includes three extra LDCs, each of them with 3 dual optical fiber 1GB
ethernet network cards. Therefore, including NEXT-White LDCs, a
total of 6 LDCs with 30 data links will be connected to the ATCA.
LDCs will send subevents to 4 GDCs that will finish the event building
and store the data to disk. There will be an extra node available that
could take the role of an LDC or GDC if needed. One extra server will
be added in the distributed storage to increase fault tolerance. The
space available will be 300 TB. An outline of the system is shown in
Figure 4.16.
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Neutrinoless B searches with
NEXT-100

NEXT-100 is a detector devoted to the search of **Xe 0vBpB decays.
As shown in previous chapters, a low background rate is critical to
achieve that goal since different background sources can produce
signal-like tracks in the detector.

Electrons propagating in xenon gas leave a characteristic energy
deposition pattern. Below their critical energy (12.3 MeV in gaseous
xenon [33]) they lose energy via ionization with a more or less constant
dE/dx until they become non-relativistic. Then, their effective energy
deposition rate rises (see Figure 5.1), mainly due to the occurrence of
strong multiple scattering, and the particles lose the remainder of their
energy in a relatively short distance, generating a blob.

In neutrinoless double beta events, two electrons with a total en-
ergy of 13Xe Qg (2458 keV) are generated from the same vertex.
Therefore, they will leave a single track with two blobs at both ex-
tremes (see Figure 5.2). The relevance of any potential background
source depends on its probability to generate a signal-like track in the
active volume with an energy around **Xe Qgg. In principle, charged
particles (muons, betas, etc.) entering the detector can be rejected with
very high efficiency by defining a small veto region (a few centimeters)
around the boundaries of the active volume. On the other hand, con-
fined tracks produced by external neutral particles, like high-energy
gammas or internal contamination in the xenon gas, could lead to a
single-track with Qgg energy. These events, however, could be rejected
by analyzing the topology of their energy deposition. Since most of
them are single electrons, they will create a track with only one blob
in one of the extremes, as shown in Figure 5.2.

In 2015 the NEXT Collaboration published the estimated sensi-
tivity of the detector [174]; later some updates were included in the
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Figure 5.1: Stopping power for electrons in argon and xenon as a
function of energy. Note the steep increase in dE/dx below 50 keV
that results in the end-of-track blobs. Taken from Ref. [59].
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Figure 5.2: Monte Carlo simulation of signal (OvBp decay of 1**Xe) and
background (single electron of energy equal to the Q value of **Xe)
events in gaseous xenon at 15 bar. The ionization tracks left by signal
events feature large energy deposits, or blobs, at both ends.
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study done in Ref. [175]. Those studies were based on a simplified
fast Monte Carlo simulation. In this chapter we assess the precision
of those results using a detailed simulation software very similar to
the one used for the NEXT-White detector. That software can be vali-
dated with data-Monte Carlo comparisons, leading to a more realistic
extrapolation for the possible NEXT-100 results.

There are several sources of background for the NEXT experiment,
such as radiogenic backgrounds from material contamination, cosmo-
genic muons, 222Rn activity or neutrons from lab walls. Among them,
the radiogenic backgrounds represent 97% of the whole background
activity, according to previous studies [175]. Therefore, the analyses in
this chapter are focused only on backgrounds of radiogenic origins.

5.1 Radiogenic backgrounds in NEXT-100

Natural radioactivity in detector components is the main source of
background in NEXT, as in many other OvB decay experiments. The
OvBp peak of *°Xe (Qpp = 2458.1 + 0.3 keV [176,177]) is between the
photopeak of high-energy gammas from 2!4Bi and 28Tl decays.

From the uranium chain (see Figure 5.3), the daughter of 214po,
214Bj, has a line at 2447 keV with 1.57% intensity [178] that overlaps
with the signal peak even with resolutions as good as 0.5% FWHM
[174]. The rest of the lines have very low intensity and are negligible.

From the thorium chain (see Figure 5.4), the decay product of
208T], 208Pb, emits a de-excitation photon of 2615 keV with an intensity
of 99.75% [178]. Electrons from the photo-peak can lose energy via
bremsstrahlung and fall into the region of interest (ROI) around Qgg.
Additionally, even though the Compton edge of the 2.6 MeV gamma
is well below Qpgg at 2382 keV, the Compton-scattered photon can
generate other electron tracks close enough to the initial Compton
electron to be reconstructed as a single track with energy around Qpg.

Lower-energy gammas from long-lived radionuclides like ®°Co
and YK dominate at energies below 1.5 MeV, well below **Xe Qgs.
Although they are significant for the 2v3 measurement, they do not
represent a relevant contribution to the OvBp background.

2l4Bi and 2%8TI are present at some level in almost any material.
The NEXT Collaboration has done an extensive campaign of material
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screening and characterization [138-140, 180-183]. Many activities
have been determined using gamma-ray spectroscopy with ultra-low
background high purity germanium (HPGE) detectors of the LSC’s
Radiopurity Service [138]. In some cases, where only upper limits
could be set, other techniques like Glow Discharge Mass Spectrometry
(GDMS) and Inductively Coupled Plasma Mass Spectrometry (ICPMS)
have been used to improve limits of materials, samples of which could
be destroyed.

The results of those measurements are presented in the following
tables: Table 5.1 shows the 21*Bi and 2% Tl activities for the materials
used in the NEXT100 detector; Table 5.2 includes the total activity
for each detector component; and Table 5.3 contains the NEXT100
radioactive budget for each detector subsystem.

In previous studies [174,175], the radioactivity assumptions used
were different from the ones used now. Figure 5.5 shows a comparison
between the older version [184] and the current one [185]. The latter
has updated materials and measurements taken from NEXT-White
components, and some upper limits have been improved to central
values as well. In particular, the main differences are in the PMT
bases, the Dice Board connectors and the vessel. To achieve better
readability, Figure 5.5 does not include the shielding castle activity
since it is much higher than the other activities shown. Its activity
is now ~10 times higher than its value in the previous analysis: it
changed from the previous 530 mBq (5460 mBq) TI (Bi) to the current
7339.55 mBq (73743.0 mBq) T1 (Bi). This difference is due the inclusion
in the model of the steel structure that supports the lead bricks and
the anti-corrosion painting on its surface.

Finally, the rock walls of the underground laboratory are an in-
tense source of high-energy gammas due to the presence of radioac-
tive contaminants in their composition. The total gamma flux in
Hall A at LSC is 1.06 + 0.24 cm~2 s~!, with contributions from K
(0.52 £0.23 cm2s71), 238U (0.35 4+ 0.03 cm 2 s~ 1) and 2*?Th (0.19 +
0.04 cm~2 s71) [186]. Nonetheless, the external lead shield of NEXT
(see Section § 3.4.2) will attenuate this flux by more than 4 orders of
magnitude, making its contribution negligible in comparison to that
of the detector components.
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Detector Subsystem Material Provider Quantity 2“Bi (mBq)  2%TI (mBq)
Trk Support Copper Lugand Aciers 158 kg 1.99 x 1071 6.81 x 1072
DB Plug Connectors FX11LA Hirose 107 units ~ 2.95 x 102 2.26 x 102
Dice Board Dice Boards Flexiblecircuit 107 units ~ 7.49 1.11
SiPM SensL 6848 units < 6.09 x 10! < 1.92x 107!
Total < 8.10 <130
Carrier Plate Copper Lugand Aciers 511.6kg  645x10°!  220x 10!
Enclosure Window  Sapphire Swiss Jewel Company 8.1 kg <251 3.56 x 107!
Optical Gel Nye Lubricants Inc 0.1284kg < 2.82 <831x107!
Total < 534 <119
PMT PMT Hamamatsu 60 units 210 x 10 1.14 x 10
PMT Base PMT base 60 units 4.20 x 10 5.35 x 10
Field Cage Copper Lugand Aciers 80.4 kg 1.01 x 1071 3.47 x 1072
HDPE Simona 122.7 kg < 7.61 <9.26 x 1071
Resistor HVF 2512 1G ~ Ohmite 178 units  3.19 5.50 x 101
Total < 1.09 x 10 < 1.51
Anode Quartz Fused Silica Kvartzsteklo 6.85 kg 1.44 233 x 107!
ICS Copper Lugand Aciers 8310.1kg 1.05x 10 3.58
Vessel Stainless Steel 316Ti Nironit 1310 kg <6.03x10> < 5.65x 10
Shielding Lead Lead Britannia & OPERA 15600 kg  5.46 x 103 5.27 x 102
Shielding Struct Antioxidant HEMPEL 1296kg  6.78 x 10* 6.10 x 10°
Steel 5275 PRYCON 419 kg 5.03 x 10? 7.08 x 102
Total 6.83 x 10* 6.81 x 103

Table 5.2: 24Bi and 2%Tl activities for each detector component. Some components are made of several
materials, and in those cases the total is computed in the final row for each group. Some values are upper
limits due to the uncertainties in the measurements.
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Table 5.3: 214Bi and 28Tl activities for each detector subsystem. Some
values are upper limits.

Volume 214 Bi (mBq) 2%Tl(mBq) Total (mBq)
TRACKING PLANE < 3.03 x 102 < 227 x10*> < 5.30 x 102
DB Plug 2.95 x 102 2.26 x 102 5.21 x 102

Dice Board < 8.10 < 1.30 < 940
ENERGY PLANE <683x10 <6.60x10 < 1.34 x 102
Enclosure Window < 5.34 < 1.19 < 6.52
PMT 2.10 x 10 1.14 x 10 3.24 x 10
PMT Base 4.20 x 10 5.35 x 10 9.55 x 10
FIELD CAGE <123x10 < 1.74 < 1.41 x 10
Field Cage <1.09x10 <151 <124 x 10
Anode Quartz 1.44 2.33 x 107! 1.67
COPPER SHIELD 1.13 x 10 3.87 1.52 x 10
ICS 1.05 x 10 3.58 1.41 x 10
Tracking Support ~ 1.99 x 10! 6.81 x 10? 267 x 107!
Carrier Plate 645 %1071  220x10"!  8.65x 107!
VESSEL <6.03x10%2 <565x10 < 6.59 x 10>
SHIELDING 7.37 x 10% 7.34 x 103 8.11 x 10%
Shielding Lead 5.46 x 103 5.27 x 10? 5.99 x 103

Shielding Struct 6.83 x 10* 6.81 x 10° 7.51 x 10*

5.2 The NEXT-100 detector simulation

The detector geometry is implemented in nexus [54], a Geant4-based
[187] software developed by the NEXT Collaboration. For a variety
of reasons, there are some differences between the current design of
NEXT-100 and the one originally proposed in the TDR [96]. At the
time of this study, the design of NEXT-100 was the one proposed in
the TDR [96]. At a later time, some parts of it have been updated, as
described in Section § 3.4.3, and therefore there are some differences
between these simulations and the current design of the detector.
However, preliminary studies of the updated geometry show that a
comparable performance can be achieved. In the following, a brief
description of the simulation used is described. A schematic of the
detector is shown in Figure 5.6.
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Figure 5.5: Comparison between the activities used in this study
(green) and those used in [175] (blue). Shielding is omitted in the
plot to improve readability of the remaining volumes.

The active volume is a cylinder of about 1.15 m® and can hold
around 100 kg of Xe gas at 15 bar. It is surrounded by the field cage,
which is a high density polyethylene (HDPE) cylinder of 148 cm length,
107.5 cm inner diameter and 2.5 cm wall thickness that provides electric
insulation and supports, in its inner surface, copper rings for electric
tield shaping. One end of the field cage, the TPC anode, is closed by
a 1-cm thick fused-silica window coated with indium tin oxide (ITO)
and tetraphenyl-butadiene (TPB). The two other electrodes, EL gate
and cathode, are positioned 0.5 cm and 106.5 cm away from the anode,
respectively. They are built with a highly transparent stainless steel
wire mesh.

The energy plane of NEXT-100 is composed of 60 Hamamatsu
R11410-10 PMTs, the same model used in NEXT-White. They are lo-
cated behind the cathode and offer a 37% coverage. Since they do
not withstand the pressure, they have to be sealed into individual
pressure-resistant, vacuum-tight copper enclosures coupled to sap-
phire windows. PMTs and enclosure windows are optically coupled
using an optical gel with a refractive index between those of fused
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Figure 5.6: Cross-section view of the NEXT-100 detector inside its lead
castle shield. A stainless-steel pressure vessel (A) houses the electric-
tield cage (B) and the two sensor planes (energy plane, C; tracking
plane, D) located at opposite ends of the chamber. The active volume
is shielded from external radiation by at least 12 cm of copper (E) in
all directions.

silica and sapphire. All the copper enclosures are mounted into a
carrier plate made of radio-pure copper.

The tracking plane is made of an array of 6848 SiPMs mounted in
107 Kapton boards with 8 x 8 sensors each, placed at a pitch of 1 cm.
They are positioned behind the fused-silica window closing the EL
gap. The boards have long tails following a zigzagging path through
the copper plate to avoid a straight path for external gammas, and to
allow for the placement of the SiPM connectors behind the plate.

The pressure vessel consists of a cylindrical section of 160 cm
length, 136 cm inner diameter and 1 cm wall thickness, and two iden-
tical torispherical heads of 35 cm height, 136 cm inner diameter and
1 cm wall thickness. It is made of stainless steel Type 316Ti due to its
radiopurity. Inside the vessel, surrounding the field cage, there is a set
of 12 cm thick copper bars along the drift axis, as well as one 12 cm
copper plate for each sensor plane. Finally, the vessel is placed inside
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Figure 5.7: Section of the NEXT-100 geometry implemented in nexus.
The outer rings represent the vessel and field cage. The 60 gray circles
are PMTs and the green-square pattern is the tracking plane. Each
green square represents a Dice Board with 64 SiPMs. Notice how the
tracking plane does not reach the edge of the vessel.

a 20 cm thick lead shield.

There is an important caveat in this design: the tracking plane does
not cover a complete section of the active volume, so many events
cannot be reconstructed. Figure 5.7 shows a section of the detector
as it is implemented in nexus. As seen, depending on the direction,
there are up to 10cm not instrumented with tracking sensors. This
limitation has implications for the analysis procedure to be used, as
will be shown in the following sections.

5.3 Simulation and classical reconstruction

The simulation for this study includes ~ 10!° events generated with
nexus from all detector volumes, weighted according to the activity
of each component. Nexus simulates the propagation of the particles
produced in each event through the different volumes of the detector
and calculates the energy deposited in the xenon gas. The simulation
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of the sensor response to primary and secondary scintillation are
done by the detsim package, within the Art framework [167], using
a parametrization of the charge recorded by the sensors, extracted
from look-up tables [131]. Detsim includes the effects of transverse
and longitudinal diffusion in the electron cloud, as well as the EL
gain. The values of these parameters have been extrapolated from
NEW measurements and are shown in Table 5.4. Detsim also simulates
electron attachment, which describes how many electrons are captured
by the impurities in the gas along the drift region. This can be modeled
as an exponential distribution with a given lifetime, 10 ms in this study,
several times the drift time for the whole chamber.

The output of detsim is an HDF5 file with PMT and SiPM wave-
forms with photoelectrons without any noise. PMT waveforms are
binned at 25 ns and SiPM waveforms at 1 ys. Those photoelectron
files will be the input for Invisible Cities [165] which will simulate the
sensor responses. It adds the effect of single photoelectron resolution
for PMTs and SiPM noise using PDFs taken from NEXT-White.

Starting from the PMT and SiPM waveforms, the event reconstruc-
tion takes place. The reference system is the natural one for a TPC,
with z axis along the drift direction and x and y perpendicular to z
creating a right-handed reference frame. Charged particles moving
through xenon gas will deposit energy via scintillation and ionization
processes. The primary scintillation light (S1) is detected by the PMTs,
measuring the initial time of the event (fp). The ionization charge
is drifted by an electric field to the EL region, which is 5 mm wide,
where a more intense electric field amplifies the signal, creating the
secondary scintillation (S2) signal. The S2 light is read by both PMTs

Table 5.4: Simulation parameters.

Pressure 15 bar
Lifetime 10 ms
EL gain 410 photons/ie

Transverse diffusion 1.072 mm/+/cm
Longitudinal diffusion 0.237 mm/\/cm
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and SiPMs. The PMTs provide a precise measurement of the energy
while the SiPMs, placed ~5 mm away from the EL region, reconstruct
the position.

S1 and S2 signals are searched for using a peak finder algorithm
over the sum of all individual PMT waveforms. Events with one S1
and one or more S2s are selected for track reconstruction.

To eliminate dark current and electronic noise a cut on SiPM charge
is applied. Time bins with less than 1 photoelectron (pe) are eliminated,
after which the total integrated charge of a SiPM must be at least 5 pe
to be considered in the reconstruction. After this cut, SiPM charges are
rebinned to 2 us time slices. A 3D hit is created for each SiPM with a
charge larger than 30 pe, with x and y positions set to the position of
the SiPM and z equal to the difference between the time of the slice
and the time of S1, multiplied by the drift velocity of the electrons in
the gas. The purpose of this cut is to alleviate the effect of diffusion by
eliminating the charge far from the center of the hit while keeping the
information about the position of the source of light.

The energy measured by the PMTs is divided among the recon-
structed hits, proportionally to the charge of the SiPMs used to create
the hits. In the case of a slice where no SiPM charge is above the
minimum threshold, the energy of that slice will be assigned to the
closest slice of the same S2.

Once all the hits of a given event are reconstructed, they have to
be grouped into tracks. To achieve that, the gas volume is divided
into 3D pixels (voxels) with a fixed dimension and with the energy
corresponding to the sum of the hits inside each particular voxel.
Adjacent voxels are grouped into separated sets using a Breadth First
Search (BFS) algorithm. These sets are the particle tracks of each
event. The end-point voxels of each track are also identified by the
BFS algorithm as the pair of voxels with longest distance between
them along the track. A maximum size of the voxels is fixed, but the
actual voxel size varies event by event, being optimized according to
the distribution of the hits in space. This optimization tries to avoid
having voxels with only one hit on a border, as the position of that
voxel would not be representative of the charge distribution used to
build the voxel. Figure 5.8 shows the hits produced by a 2Tl event
and the subsequent voxelization of that event.

The next step is finding two blobs for each track. They are defined
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Figure 5.8: Sample event from the simulation. The left panel shows
the voxels obtained after the procedure described in the text. The right
panel shows the true energy depositions generated in the simulation
for the same event.

by summing the energy of the hits contained in a sphere of fixed
radius centered on the end-points previously identified with the BFS
algorithm. It can happen that hits are included in the blob candidate
that are far away from the extreme in terms of distance measured along
the track, but have a short Euclidean distance from it (as, for example,
in the case of a winding track). In order to avoid this, only the hits
belonging to the voxels that have a distance along the track shorter
than the radius plus an allowance are considered. The allowance is
needed because the voxel position is discretized, and therefore an extra
distance equivalent to the size of the voxel diagonal is added to the
radius, only for the purpose of selecting the voxels, to ensure that all
the hits within the spheres are taken into account correctly. Once the
voxel candidates are selected, only the hits belonging to those voxels
and that have a Euclidean distance shorter than the radius from the
end-points of the tracks are considered for the blob candidates.

Figure 5.9 shows the blob energy distributions for signal and back-
ground events. It can be seen that they defined two different popu-
lations that, up to a certain level, can be discriminated by setting an
energy threshold for the lowest-energy blob. Improving the recon-
struction algorithm can lead to a better separation between signal and
background events, as will be shown in Section § 5.7.
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5.3.1 Geometrical and lifetime corrections

The first corrections that must be performed on the data are the geomet-
rical and electron attachment (lifetime) corrections. The geometrical
one is related to the fact that PMTs will see a different amount of light
depending on where the event has occurred due to factors such as the
solid angle or the reflectivity of different surfaces. Electron attachment
can be obtained by fitting an exponential to the S2 energy along the
z axis and, then, computing normalization factors for each z value
according to the curve.

The procedure used in NEXT-White to apply those corrections is
to put a 3" Kr source in the gas system to produce low-energy events.
These events produce a gamma of 41.5 keV that can be considered as a
point-like event, giving us a perfect tool to characterize the behavior of
the chamber. After reconstructing them, an XY-map can be produced
with the geometrical correction factors and the corresponding lifetime
for each bin [131]. In principle, the same procedure is expected to be
used in NEXT-100, therefore a simulation of several millions of #"Kr
has been done to compute the correction maps in the same way.

Figure 5.10 shows the geometrical and lifetime Kr maps, as well as
a fit of the 83" Kr peak with a resolution of 3.11% FWHM. The precision
of these maps is high (~0.13% for the geometrical map and ~1.5% for
the lifetime map). The areas with larger uncertainties are those on the
borders of the active volume, where the light collection varies more
abruptly and the lower number of events in those areas affects the
lifetime fit. Since a fiducial cut is imposed, these larger uncertainties
do not pose a problem.

5.3.2  Analysis cuts

Once the reconstruction is done, the analysis includes the following
steps:

1. Fiducial cut: Select events with no hits outside a fiducial region,
defined as zmin > 20 mm, Zmax < 1280 mm and rma < 400
mm. The tight fiducial cut in r is due to the tracking problem
explained in Section § 3.4.2.
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2. Broad energy cut: Select events whose energy is between 2.4
and 2.5 MeV.

3. 1-track filter: Select events with only one reconstructed track.

4. Region of Interest (ROI): Select events in a narrow region of
interest near Qgg, whose energy is in: E € [2.448,2.477] MeV.

5. Blob 2 cut: Select events having more energy than a given thresh-
old in the lowest-energy blob.

The efficiency ¢ of each of those steps is defined as the fraction of
events that fulfill the conditions impose by each filter. Therefore, for
signal events the aim is to achieve the highest efficiency possible, while
for background events the objective is to minimize the efficiencies.

Figure 5.11 shows the energy resolution for the 1**Xe peak after
fiducial and 1-track cuts. The obtained value (0.42%) is close to the
intrinsic resolution achievable in a xenon gas detector.
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Figure 5.11: Energy resolution for Ovfp events from 3°Xe after fiducial
and single-track cuts have been applied.
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5.3.3 Topological optimization

The blob cut has several parameters to be optimized. Taking the NEXT-
White analysis as a reference, the voxel sizes used are 10, 12 and 15 mm,
while the blob radius varies between 15 and 33 mm with a step of 3
mm. According to Eq. 2.9, the maximization of the ratio s/ v/b —where
s is the signal efficiency and b is the background efficiency—optimizes
the experimental sensitivity to mgg. Therefore, the figure of merit
defined to evaluate the performance of each configuration is defined
as f.o.m. = s/v/b and is computed varying the energy threshold for
the second blob. Figure 5.12 shows the maximum of the f.o.m. for each
pair of values, showing that the best are 15 mm voxel size and 27 mm
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Figure 5.12: Blob energy cut optimization for the classical algorithm.
Each plot shows the figure of merit (s /+/b) of the blob cut for a given
configuration. On the x axis different blob radii are shown, and on the
y axis the energy threshold for the lower-energy blob is shown. The
first row is for 214Bi events, and the second row for ?%Tl events. Each
column corresponds to a voxel size of 10, 12 and 15 mm, respectively.
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Figure 5.13: Figure of merit using classical reconstruction for 21*Bi
(red) and 2°8T1 (blue) events with 15 mm voxels and a blob radius of
27 mm.

blob radius. Figure 5.13 displays the f.o.m. curves for those selected
values. Setting the threshold at 675 keV (near the f.o.m. peak) a signal
efficiency of 72.0% is achieved for a background acceptance of 20.4% in
214Bj events and 30.4 in 2°8T1 events. The figure of merit for NEXT-100
with this algorithm is 1.47 in 214Bj and 1.30 in 298T], indicating there is
some problem with the latter reconstruction and analysis.

In a previous study performed with NEXT-White, a comparison
between data and Monte Carlo was done using events from the %T1
double escape peak. The energy of the blobs was rescaled in the simu-
lation by a constant factor, to match the distribution found in the data.
Having calibrated the Monte Carlo with the data, an extrapolation to
the 0v 3 region was carried out using **TI events generated from the
light tube that surrounds the active volume and Ovfg decays of **Xe
in the active volume. Using the same classical analysis described in
this section, a signal efficiency of 71.5% with a background acceptance
of 13.6% were found, corresponding to a figure of merit of 1.58 [136].
Figure 5.14 shows the signal efficiency as a function of background
rejection for both detectors. It can be clearly seen that NEXT-White is
working better as for the same background level it has a higher signal
efficiency.
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Figure 5.14: Signal efficiency as a function of background rejection.
This plot is obtained by varying the required minimum energy of the
blob candidate 2 for events in the Ovp region.

54 FANAL

The software used in previous studies [174,175] is FANAL, which
stands for Fast Analysis and is a simplified way of estimating the per-
formance of a detector. In the fast analysis, the sensor response is not
simulated, and therefore it is not analyzed to provide a reconstruction,
but the true MC information of the deposited energy is used, with
some smearing to make it more realistic. The same files produced for
the current study have been run through FANAL to get a performance
baseline to which the new results can be compared. The FANAL
analysis flow is the following:

1. Read MC hits: Read all energy depositions (hits) stored in the
Monte Carlo files. This information is the truth from the nexus
simulation, and no noise has been added nor effects of electron
drifting or diffusion.
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2. Fluctuate energy: Each event energy is varied following a gaus-
sian distribution with a sigma corresponding to the energy reso-
lution of the detector.

3. Voxelize hits: The energy depositions are voxelized with a given
voxel size. This step simulates the effect of position resolution.

4. Track reconstruction: Voxels are grouped into separated sets
using a BFS algorithm. These sets of voxels are regarded as the
particle tracks of the event.

The same optimization procedure has been applied to obtain the
best topological parameters for this algorithm. Figure 5.15 shows the
figure of merit for each voxel size, blob radius and energy threshold.
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Figure 5.15: Blob energy cut optimization for the FANAL algorithm.
Each plot shows the figure of merit (s/+/b) of the blob cut for a given
configuration. On the x axis different blob radii are shown, and on the
y axis the energy threshold for the lowest-energy blob is shown. The
first row is for 214Bi events, and the second row for 2°8T1 events. Each
column corresponds to a voxel size of 10, 12 and 15 mm, respectively.
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Figure 5.16: Figure of merit using FANAL for 24Bi (red) and 28Tl
(blue) events with 10 mm voxels and a blob radius of 21 mm.

In this case, values obtained for the f.0o.m. are much higher than those
seen in Section § 5.2 for the classical reconstruction. Figure 5.15 shows
the maximum value of the f.o.m. for each pair of values. Within the
space of parameters, FANAL works best with 10 mm voxels and a
blob radius of 21 mm. Figure 5.16 displays the f.o.m. curves for those
values as a function of the energy cut of the lowest-energy blob. Setting
the threshold at 735 keV, a signal efficiency of 85.2% is achieved for a
background acceptance of 16.6% yielding a f.o.m of 2.09.

5.5 The problem of diffusion

Most of the difference between the results obtained with FANAL and
the classical algorithm is explained by the inclusion of diffusion in the
latter. Diffusion spreads the charge in three dimensions as it drifts
towards the anode, creating several problems for the reconstruction
and analysis of events. The most important of them is that the 30 pe
cut applied to each individual SiPM, for long-drift events, can remove
completely secondary tracks created by lower-energy particles, giving
a false positive in the one-track filter. This effect is expected to be more
important in 208T] events, as they frequently contain lower-energy
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secondary gammas, which are rare for 2Bi events.

Figure 5.17 shows the efficiency of the one-track cut for ***T] events
from different volumes. The first three volumes are the enclosure
windows (the sapphire windows that separate the high pressure region
from the PMTs), the PMTs, placed just behind them, and the PMT
bases, which are behind the PMTs. These volumes are all sources of
background events occurring at high drift (high z). The fourth volume
contains the dice boards, which produce background events very close
to the anode (low z).

We are also comparing three different analyses in Figure 5.17: 1)
FANAL, which does not simulate diffusion, 2) Full simulation includ-
ing diffusion (with the values in Table 5.4), and 3) Full simulation
without diffusion. The effect that is clearly shown is that the 1-track
cut efficiency is quite similar for the two cases without diffusion but
very different for high-drift volumes when diffusion is simulated, in
which case it is significantly higher.

To understand that difference we have to take into account how

Im FANAL
15.0 Il Full with diffusion
Il Full with no diffusion
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Figure 5.17: Efficiency of 1-track cut for *®®T1 events originating in
different volumes. Enclosure Window, PMT and PMT Base are high-
drift volumes situated in the Energy Plane, while Dice Board is a
low-drift volume in the Tracking Plane.
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208T] decays: it has a 2615 keV gamma, accompanied by a 511 keV
gamma in 20% of the cases and a 585 keV gamma in 85% of the cases.
If a 2%8T1 decay occurs near the anode (low drift), diffusion does not
come into play and the 30 pe cut per SiPM in the reconstruction is
low enough not to remove any secondary particle, which is why the
efficiency of the 1-track cut is very similar for the three simulations in
the Dice Board volume. The opposite happens in the volumes from the
Energy Plane (high drift), where diffusion strongly affects the spatial
charge distribution, and the 30 pe per SiPM cut can remove secondary
particles as if they were noise, giving the false impression that the
event contains a single track while it does not.

It can be seen as well in Figure 5.17 that the 1-track cut efficiency
follows also this additional pattern: Enclosure Window < PMT < PMT
Bases, being lower for volumes closer to the active region. This fact can
be understood since gammas produced farther from the active volume
have to cross more materials, and therefore secondary gammas have
a higher probability of being absorbed before reaching the gas. Thus,
farther volumes produce a higher proportion of single-track events.
Also, the higher the efficiency, the more similar the three simulations
are, because for genuine 1-track events diffusion does not play a role.

False positives in the single-track cut are not the only (negative)
effect that diffusion has in the analysis. It blurs the whole event and
makes it more difficult to find the ends of the track and measure
properly their energy. This can be seen in Figure 5.18, where the same
event is shown after full simulation with and without diffusion as well
as the FANAL version. The version with diffusion has lost secondary
tracks, while the one without it has preserved them, being more similar
to the FANAL result. Among the three versions, FANAL offers the
sharpest track.

There are two possible strategies to mitigate the effect of diffusion,
which lead to two additional analyses:

* Lower the threshold for the individual SiPM charge cut. The
purpose of such a high cut was to improve the efficiency of the
lowest-energy blob cut, since a cleaner track makes it easier to
find the extremes. This strategy creates the need for a dual cut
analysis, since a lower-energy cut is needed for the single-track
cut while a higher-energy cut is needed for the blob energy cut.
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Figure 5.18: All panels show the same event, the top one reconstructed
with FANAL, without diffusion; the bottom ones using the full simu-
lation with and without diffusion. Notice how the secondary tracks
disappear when the diffusion is added.

* Try to deconvolve diffusion using a Richardson-Lucy algorithm.
This requires the generation of a Point Spread Function (PSF) to
describe the effect of diffusion.

5.6 Dual cut analysis

We start this Section examining the effect of the 30 pe SiPM charge cut
on the single-track cut in the presence of diffusion. We thus evaluate
how the signal efficiency of the single-track cut changes with different
SiPM energy thresholds between 0 and 30 pe.

For a low-drift volume (near the anode), such as Dice Board, there

0.1

(¢) Full simulation without diffusion
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Figure 5.19: Efficiency of single-track cut for different individual SiPM
charge thresholds. Horizontal lines are the efficiency in FANAL while
the dots corresponds to the full simulation. Left panel: 2%TI events
generated in both high-drift (Enclosure Window, red) and low-drift
(Dice Board, blue) regions. Right panel: signal events of 1*Xe gener-
ated in the active volume.

should not be a strong dependence between the charge threshold and
the cut efficiency: the signal produced in the SiPMs by secondary
gammas is high enough that even high SiPM charge thresholds would
not affect their reconstruction. On the other hand, for a high-drift
volume (near the cathode), such as Enclosure Window, the efficiency
should be higher for higher thresholds as a multi-track event would
lose its secondary tracks, passing as a false-positive single-track event.
Those effects are shown in Figure 5.19, where the efficiency is flat for
low-drift events and grows with the charge cut for high-drift events.
In the case of signal events, the efficiency stays around 75-80% for all
thresholds except 5 pes. The lowest cut is not enough to remove all
the noise and spurious depositions, leading to false negatives in the
1-track filter that decrease the efficiency.

Lowering the SiPM charge threshold can also have an effect on
the efficiency of the second blob energy cut. At the topology level, a
higher cut can lead to cleaner tracks, where finding the extremes is
easier. Figure 5.20 shows the signal efficiency of the cut for different
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Figure 5.20: Second blob energy threshold cut efficiency for signal
events.

charge thresholds. As can be seen, the efficiency is higher for higher
cuts, proving that a higher SiPM charge cut increases the efficiency of
the second blob energy cut.

These facts lead to a strategy in which a first low charge threshold
is used to assess the single-track cut and, then, a higher one for the
blob cut. According to Figure 5.19, the optimal value for the first cut
should be between ~10 to 15 pe. This procedure raises some concerns,
as it could happen that some events pass the single-track filter with
a low SiPM charge threshold, but a higher one could disconnect the
track and break it into a multi-track event. Figure 5.21 shows the
proportion of events under each of these circumstances. In general,
a large proportion of events (30-50% depending on the volume for
background and 20% for signal) become single-track events with the
lower cut but not with the higher one. In this study, only those events
that are single-track with both cuts are considered for the rest of the
analysis.

Having seen that the optimal cut for the single-track filter seems
to be in the 10 to 15 pes range, we have evaluated the performance of
different cut levels: 8, 10, 12 and 15 pes. To do this, the final step is
to compute the figure of merit of the single-track and blob cuts, both
separately and combined, to assess which is the best combination of
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Figure 5.21: Left panel: proportion of signal events that are single-track
for different first low cuts (8, 10, 12 and 15 pe) and single or multi-track
for a second higher cut of 30 pe (in blue and in green respectively).
Right plot: the same for background events (Tl) shown for different
origin volumes. Each volume displays 4 subcolumns corresponding
to a first cut of 8, 10, 12 and 15 pe, from left to right. Events that are
filtered out by the energy filter after passing the single-track cut are
shown in red.

thresholds for individual SiPM charge. Figure 5.22 shows how the
figure of merit for the single-track cut slightly increases for higher
SiPM charge threshold values. The variation is much more subtle
for the blob cut, as shown in Figure 5.23, which is expected, taking
into account that this cut depends mostly on the second, higher SiPM
charge cut, which is constant at 30 pe. Combining both the single-track
and blob cuts, a stronger difference can be seen in the f.0.m., as shown
in Figure 5.24. The optimal set values for the dual cut strategy are a
first cut at 15 pe and a second one at 30 pe.
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Figure 5.22: Figure of merit (s/+/b) of the single track cut for different
individual SiPM charge thresholds. The red points correspond to 2%Tl
events and the blue points to 21Bi events.
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Figure 5.23: Figure of merit (s//b) of the second blob energy cut for
different pairs of thresholds for SiPM charge. The first value (8, 10, 12,
15 pe) is used to assess the single-track filter and the second one, fixed
to 30 pe, for the blob cut. The left panel corresponds to 2Tl events
and the right panel to ?1*Bi events.
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Figure 5.24: Figure of merit (s/v/b) of single-track and second blob
energy cuts combined for different pairs of thresholds for SiPM charge.
The first value (8, 10, 12, 15 pe) is used to assess the single-track filter
and the second one, fixed to 30 pe, for the blob cut. The left panels
correspond to 20871 events and the right panels to 214Bj events. The
second row is a zoom of the peak region.

5.7 Richardson-Lucy deconvolution

The Richardson-Lucy algorithm is an iterative procedure with the aim
of recovering an underlining image that has been blurred by a known
Point Spread Function (PSF) [188,189]. It can be expressed as

fo(x,y) = g(x,y),

(5.1a)
g(x,y)

fer1(xy) = fil(x,y) |h(x,y) ®

h(x,y) ® f(x,y)

) (5.1b)

where g is the observed image (the SiPM response), f is the ideal image
(reconstructed image) and / is the PSE.
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One fundamental input for this algorithm is the PSF, which can be
computed using 83" Kr events. The procedure consists of reconstruct-
ing the " Kr as a point-like event and then computing a 2D map with
the XY-distances from each SiPM to the event position and the fraction
of total charge read by each sensor.

One way of modeling the diffusion with PSFs is dividing the de-
tector in z-bins and computing one PSF for each bin. Therefore, only
83mKr events within each particular bin are taken into account for each
PSE. Later, upon reconstruction, depending on the z position of each
particular hit, a different PSF would be used. In this study 52 z-bins
have been computed, each one with its own PSF. Figure 5.25 shows
two of them, one near the anode, rather focused, and the other one
near the cathode, much wider, showing clearly the effect of diffusion
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Figure 5.25: PSFs for two different z bins. The upper row plots are
for a bin centered at z=37.5 mm and the lower row at z=1037.5 mm.
The left column shows the X projection of the 2D maps and the right
column shows the maps themselves.
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along the chamber.

This algorithm allows for a smaller voxel size, since it can better
reconstruct the energy depositions. For this study a voxel size of 5 mm
has been used. An example of the finer reconstruction achieved with
the Richardson-Lucy algorithm with respect to the classical reconstruc-
tion is shown in Figure 5.26.

Figure 5.27 shows the blob energy distributions for signal and
background. The populations are much different than the ones ob-
tained with the classical analysis (see Figure 5.9), suggesting that the
reconstruction method is working better than the classical one. This is
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Figure 5.26: All panels show the same 2%Tl event. The top panel
shows the Monte Carlo energy depositions, and the bottom row shows
a comparison of the voxels obtained with the classical analyis and with
the Richardson-Lucy reconstruction.
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reflected as well in the figure of merit of the second blob energy cut
for 29871 and 21Bi events, shown in Figure 5.28. The maximum value
of the f.o.m., around 2.25, is larger than that achieved by the other
reconstruction methods.

The best value of the threshold is chosen with the requirement that
it lies in an interval for which the figure of merit is within 10% of the
maximum and that the minimum amount of signal is lost. Following
this criterium, the energy threshold chosen is 480 keV.
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dates using the Richardson-Lucy reconstruction.
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Figure 5.28: Figure of merit of second blob energy cut for 2%TI and
214Bj events using 5 mm voxels with Richardson-Lucy reconstruction.

5.8 Results

This section shows how all the different methods described above
compare to each other. For this purpose, FANAL has also been run
with the same voxel size used with the R-L algorithm (5 mm). The first
relevant comparison is the efficiency of the single-track filter for all
methods. As seen in Figure 5.29, diffusion has a very strong effect on
high-drift volumes, with the biggest difference between FANAL with
10 mm voxels and the classical reconstruction coming from the Energy
Plane. This effect is more important for 2Tl events than 2'*Bi due to
the different decay mode, as 2Tl events usually have secondary tracks
that could be lost in the reconstruction due to the effect of diffusion.
A dual cut strategy can fix the problem for the single-track cut, but
using a Richardson-Lucy deconvolution further improves the result.
The best possible result is obtained using FANAL with 5 mm voxels.

Figure 5.30 shows the efficiency of the blob energy cut, where
again FANAL performs better than both the classical and dual cut
procedures. Diffusion has also a strong effect here, as is evident in the
fact that the Energy Plane is the volume with the largest difference in
the efficiency with respect to FANAL. This is reasonable since for high-
drift events it is harder to locate the extremes of the tracks and measure
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Figure 5.31: Single-track and blob energy cuts efficiencies for signal
events using different reconstructions.

their energy properly. Richardson-Lucy deconvolution removes the
diffusion effect and achieves results better than FANAL with 10 mm
voxels. This is a very good result, because it proves that deconvolution
algorithms provide a performance comparable with the one of an
ideal reconstruction. An ideal reconstruction with the same voxel size
as R-L (5 mm) gives even better results, as expected. In the case of
signal events (Figure 5.31), all results are more similar, and there is no
significant difference as events are spread uniformly along the active
volume.

Figure 5.32 shows the background index for each detector sub-
system. It has been computed assuming a fiducial mass of 90 kg
and the radioactivities from Section 5.1. In order to compare with
Refs. [174,175] a ROI of 29 keV has been used (from 2448 keV to 2477
keV). Energy Plane is the biggest contributor, especially in the case
of 2%T1 with the classical analysis. As expected from this study, a
dual cut strategy can palliate the effect of diffusion, in particular for Tl
events, where there are lower-energy secondary gammas. This is not
the case for Bi events, where the main problem is not related to missing
secondary tracks, but with the difficulty of finding the extremes of the
tracks and their energies since diffusion makes them more blurry.

Figure 5.33 shows the contribution to the background index of each
detector subsystem for each isotope, using the R-L deconvolution re-
construction. The Energy Plane is still the greatest background source.
Table 5.5 contains the final contribution of each detector component
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Figure 5.34: Total background index computed with all the algorithms
described. Richardson-Lucy deconvolution is the best performing
among the realistic simulations.

after all the analysis cuts. PMT bases are the largest contributors to
the 2Tl background and PMTs themselves have the greatest 2!4Bi
activity.

Putting everything together, Figure 5.34 and Table 5.6 show the
total background index for each reconstruction method. Classical re-
construction is much worse than FANAL even after the improvements
due to the dual cut strategy. Richardson-Lucy offers a performance
similar to that of FANAL.

All of the above results are obtained with a very tight fiducial
cut of 400 mm due to the limitation of the simulation explained in
Section § 5.2. Since FANAL does not depend on the sensors it is
possible to make an extrapolation to looser fiducial cuts. The idea is to
compute the efficiency of different fiducial cuts, considering that the
efficiency of the remaining steps does not depend on the fiducial cut. In
that way, the FANAL efficiency can be combined with the efficiencies
found for later cuts in different algorithms. This extrapolation is
shown in Figure 5.35. Using a fiducial cut of 2 cm in every border the
background index obtained is 7.16 x 10~* cts keV~! kg~ ! yr~!, with a
global signal efficiency of 27.14%.
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Table 5.6: Background index (cts/keV/kg/yr) for each analysis.
Richardson-Lucy has the best result among the realistic simulations
and is comparable to the latest result from Ref. [175].

Bkg. (cts/keV/kg/yr) 20811 214Bj Total
Ref. [175] 130 x 107% 278 x10~* 4.09 x 10~
FANAL 10mm 272x107% 3.02x10"* 574x10°*
Classical 1.04 x 1073 538x10% 158 x 1073
Dual cut 448 x107* 640 x107* 1.09 x 1073
Richardson-Lucy 1.63x107% 267 x107* 429x 1074
FANAL 5mm 643 x107° 6.60x 107> 1.30x 10
g x107* ‘
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Figure 5.35: Extrapolation to higher fiducial cuts. The left axis (red)
is the total background index (cts/keV /kg/yr). The right axis (blue)
is the global efficiency for signal events. The dotted vertical line
corresponds to a fiducial cut of 2 cm in each border.
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5.9 Conclusions

The analysis presented is an update of previous NEXT-100 sensitivity
studies to neutrinoless double beta decay [174,175]. A new detailed
software simulation has been used, similar to the one in use in the
already operating NEXT-White detector. The materials used in the de-
tector and their radioactivities have been updated, too, and, although
the geometry implemented in the simulation does not follow exactly
the current design, it is an important step to understand the sensitivity
of NEXT-100.

The most important finding of this analysis is that diffusion of
the electron cloud in the TPC has an important effect on the classical
reconstruction algorithm, especially since NEXT-100 has twice the drift
length of NEXT-White. An ideal reconstruction is provided by the fast
analysis, which does not account for diffusion and is not completely
realistic, but can be used as a baseline to compare with. The realistic
classical analysis can be modified to improve its performance, until
reaching similar levels to those of FANAL. One option is to split the
charge cut per SiPM into two, a first low cut to assess the single-
track filter and a second, higher one, for the blob cut. This strategy
improves the result by a factor 1.44, but presents some problems, since
a substantial fraction of the events that pass the one-track cut are
multi-track after applying the higher threshold. Another option is to
include a Richardson-Lucy deconvolution step with different Point
Spread Functions for different z bins. In this way the diffusion effect
is accounted for in the model and can be factored out during the
reconstruction.

The background index obtained with the R-L deconvolution is
429 x 104 cts/keV/kg/yr, in between FANAL 5 mm, 1.30 x 104
cts/keV/kg/yr and FANAL 10 mm, 5.74 x 10~* cts/keV /kg/yr, and
much better than the 1.58 x 1072 cts/keV/kg/yr obtained with the
classical analysis. These results are compatible with previous studies
[174,175] and show how electron cloud diffusion is an important issue
for next generation high pressure xenon gas detectors that needs to be
taken care of, probably via both software and hardware.

At the reconstruction level, a Richardson-Lucy deconvolution
seems to be able to palliate the effect of diffusion, but other meth-
ods like deep neural networks can potentially offer further improve-
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ments [190].

From a detector design perspective, the NEXT collaboration is
studying different gas mixtures that could reduce the effect while still
providing enough light to measure precisely S1 and S2 signals [156—
158]. Besides that, to achieve a lower radioactive budget, future detec-
tors or NEXT-100 upgrades will replace PMTs (which are the leading
source of background in NEXT-100) with SiPMs, which are more ra-
diopure, resistant to pressure and able to provide better light collection.
For further improvements, the kapton circuit boards, which are the
dominant background source in the tracking plane, could be replaced
by ultra-low-background quartz circuits.



Medical applications of NEXT
technology

Particle physics has made important contributions to the develop-
ment of instrumentation for biomedical research, diagnosis and ther-
apy. Among these applications one can find X-rays, radiotherapy,
Computational Tomography (CT) and Positron Emission Tomography
(PET) [191]. Medical imagining has especially benefited from develop-
ments in particle detectors, including new scintillators, pixel detectors,
high performance electronics and reconstruction algorithms.

The technology and expertise developed for NEXT can also have
uses beyond basic research on the nature of neutrinos. The material
used for the detector, xenon, is a scintillator that could be used to
design new detectors for medical uses. The SiPMs used for the precise
tracking of NEXT could be applied to reconstruct with high precision
the origin of particles coming from the body of a patient, as is done in
a PET scan. This chapter discusses one of the possible advantages of
a new concept for PET scanners: PETALO!, a PET scanner based on
liquid xenon (LXe) with SiPM readout.

6.1 Positron Emission Tomography

Positron Emission Tomography is a non-invasive functional imaging
technique used to observe metabolic processes in the body. It does
not show anatomic features like an MRI? or a CT scan, but the activity
of the cells. PET scanners are used both in clinical and pre-clinical
research to study the molecular bases and treatments of disease.

The principle of operation consists of injecting into the patient a
biologically active molecule, modified to include a radioactive iso-

IPositron Emission TOF Apparatus with Liquid xenOn
2Magnetic Resonance Imaging



190 Chapter 6. Medical applications of NEXT technology

tope called a tracer. One common tracer is fluorodeoxyglucose, which
is a glucose molecule where one oxygen is replaced by a f emit-
ter 18F. The radionuclide decays within the patient and the positron
annihilates with one electron after traveling a short distance in the
neighboring tissues. This annihilation produces two back-to-back
511 keV photons. The trajectory of the photons defines a line of re-
sponse (LOR) that can be reconstructed by measuring the direction of
both particles observing their interaction in a detector surrounding
the body of the patient. The intersection of many LORs shows the
emission point of the radiotracer. An illustration of the technology is
shown in Figure 6.1.
A LOR can be produced in three different situations:

¢ True coincidence: Both photons from an annihilation event are
detected without any other prior interaction.

¢ Scattered coincidence: One of the photons has at least one
Compton interaction before reaching the detector, changing its
direction and creating an erroneous LOR. To minimize the back-
ground produced by this type events a good energy resolution
is needed, as those photons will have less than 511 keV.

* Random coincidence: Two photons from different events are de-
tected in the same time window. Improving the time resolution
of the electronics can palliate the effect of this kind of events.

The sensitivity of a PET scanner is defined as the number of counts
per unit time detected by the detector for each unit of activity present in
a source. It can be defined as S = E¢ x E;, where E; is the geometrical
efficiency (solid angle covered by the detector), and E; is the intrinsic
coincidence detection efficiency. The latter depends on the thickness of
the detector along the gamma path, packing fraction and the capacity
to set narrow windows for energy and time.

The measurement of the time difference between the arrival of the
two photons (time-of-flight, or TOF) improves the scanner sensitiv-
ity and signal to noise ratio. A sketch is shown in Figure 6.2. The
resolution in TOF (proportional to the commonly used coincidence
resolving time or CRT) depends on: (a) the physical properties of the
radiator (e.g, the yield and the emission time of the photons); (b) the
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Figure 6.1: Schematic of a PET scanner showing the positron emission,
annihilation and subsequent detection. Taken from Ref. [192].
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Figure 6.2: TOF reconstruction. With conventional reconstruction (left),
all pixels along the LOR have the same probability. The location of the
source can be constrained with the TOF measurement (right). Taken
from Ref. [193].

time resolution (time jitter) introduced by the photosensors and the
readout electronics.

Current commercial PET scanners use inorganic scintillating crys-
tals as detectors, such as LYSO (lutetium yttrium oxyorthosilicate),
which enables TOF measurements, resulting in a CRT of 300 — 600 ps
FWHM [194,195]. The most recent investigations performed in small
laboratory systems, deploying detectors of a few tens of mm? volume,
obtain a CRT of ~ 80 — 120 ps FWHM [196, 197].
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The PETALO concept

Relying on the knowledge and experience gathered from NEXT, we
proposed in 2016 a new scintillator detector called PETALO based on
liquid xenon cells read out by silicon photomultipliers (SiPM) [198].
The excellent properties of liquid xenon as scintillator are clearly es-
tablished in the literature [199-203]. The main advantages are:

1.
2.

A high scintillation yield (~ 30 000 photons per 511 keV gamma).

Fast scintillation which can be parametrized as the sum of two
exponentials with decay times of 2.2 and 27 ns [204].

LXe is a continuous medium with uniform response. There-
fore, the design of a compact system is much simpler than in
the case of solid detectors of fixed shape. It is also possible to
provide a 3D measurement of the interaction point, and, thus, a
high resolution measurement of the depth of interaction (DOI).

In principle, in LXe it is possible to identify Compton events
depositing all their energy in the detector as separate-site inter-
actions, due to its relatively large interaction length. Once an
event in the region of interest (around 511 keV of total deposited
energy) is identified, the pattern of recorded light on the SiPMs
can be inspected to find one or more depositions, using, for in-
stance, neural networks [205]. Compton events can commonly
lead to incorrect LORs as the interaction point reconstructed can
be misplaced, contributing to the noise of the image. Identifying
correctly the first interaction of a Compton event would improve
the sensitivity of the system.

. The temperature at which xenon can be liquefied at a pressure

very close to the atmospheric pressure is high enough (~161 K)
as to be reached using a basic cryostat. Also, at this temperature
SiPMs can be operated normally, and their dark count rate is
essentially negligible (see, for instance Ref. [206]).

An initial Monte Carlo study was carried out to assess the TOF
measurement performance of such a detector, using xenon scintilla-
tion light. If the scanner is equipped with (currently available) VUV-
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sensitive SiPMs, an excellent CRT of 70 ps can be obtained [198]. This
chapter shows a possible improvement for PETALO using Cherenkov
radiation published in [207].

6.3 The Cherenkov radiation

A charged particle propagating in a dielectric medium, at a speed
higher than the speed of light in the medium, excites the surrounding
molecules, which subsequently relax, emitting radiation. If a particle
travels at a speed lower than that of light, the light emitted by the
molecules of the medium at different points along its trajectory never
interferes (see Fig. 6.3-top). However, if the particle speed is higher
than that of light, the electromagnetic waves emitted at different points
interfere constructively and emit a glow sufficiently intense as to be
detected. The wave front propagates at an angle 6 with the direction
of the particle such that:

Olight

- (6.1)

cosf =

where vyigp is the speed of light in the medium and v is the speed of
the particle (see Fig. 6.3-bottom). Cherenkov photons are emitted with
wavelengths following the distribution:

N 27w 1
son = 1 (1~ ) 62

where « is the fine-structure constant, B = v/c, n is the refraction
index of the medium, A is the photon wavelength and x is the distance
travelled by the charged particle. Eq. (6.2) does not diverge for high
photon energy, because n(A) — 1 for short wavelengths (or high wave
frequencies). Most Cherenkov radiation is emitted in the blue and
ultraviolet range. Emission stops when the speed of the particle drops
below that of light in the medium, thus resulting in a threshold for
light emission at a given wavelength of

c
v > W/\) (6.3)
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Figure 6.3: Schematic of light emission when a particle travels at a
speed lower (top), or higher (bottom) than that of light in the medium.

6.3.1 Using Cherenkov light in PET scanners

The promptness of Cherenkov light (few picoseconds, to be compared
with tens of nanoseconds for scintillation light, see Fig. 6.4) is a very
attractive feature for TOF applications of PET scanners, since it could
lead to a dramatic improvement of the CRT, provided that: a) the yield
of Cherenkov photons is sufficiently high and b) the noise introduced
by photosensors and electronics is sufficiently low.

In the last decade, the idea of using Cherenkov light for TOF-PET
in scintillation crystals has been vigorously pursued and numerous
measurements as well as Monte Carlo studies have been carried out.
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Figure 6.4: Emission time of Cherenkov (left) and scintillation (right)
photons in liquid xenon. Notice that the range of time axis for scintil-
lation is 10° times larger than that of Cherenkov radiation.

The main difficulty found is the very low efficiency of detecting two
photons in coincidence, due to the high absorption of UV and blue
light in conventional PET detectors, such as LYSO [208]. The best
results so far have been obtained with PbF; scintillator crystals read
out by microchannel plate photomultipliers [209], which give a CRT of
71 and 95 ps FWHM in small setups (5 and 15 mm long respectively).

Liquid xenon, on the other hand, is transparent to UV and blue

light. Furthermore, scintillation and Cherenkov light separate natu-
rally, as will be shown below. Last but not least, operation at moderate
cryogenic temperatures may be an advantage (e.g, negligible dark
count rate in sensors such as SiPMs [206]). Therefore, liquid xenon
appears to be an optimal candidate for TOF measurements using
Cherenkov radiation.

6.4 Monte Carlo simulation

To study the performance of a Cherenkov radiation TOF-PET based
on liquid xenon, we have simulated a two-cell set-up using the Geant4
toolkit with version number 10.01.p01 [187,210]. Our set-up is the same
as the one described in Ref. [198] and consists of two cells of 2.4 x 2.4

x 5 cm? filled with liquid xenon, at a distance of 20 cm along the z axis,

on the opposite sides of a back-to-back 511 keV gamma source. The
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cells are instrumented in their entry and exit faces with a dense array of
8 x 8 photosensors with an active area of 3 x 3 mm? and configurable
photodetection efficiency. The photosensors are placed at a pitch of 3
mm, thus they cover the whole box face. The uninstrumented faces
are covered by polytetrafluoroethylene (PTFE), which reflect optical
photons according to a lambertian distribution with an efficiency of
97%. This value for the reflectivity has been chosen following Ref. [211]
and references therein. A reflectivity higher than 99% is reported for
the spectral range 350-1800 nm, and slightly lower values from 350 nm
down to 200 nm. A simple extrapolation to 175 nm would give 95%.
For the scintillation spectrum of LXe (155-200 nm) values between
88% and 95% are found to produce a good fit of Monte Carlo to data,
varying the absorption length of LXe to UV light from 1 m to infinity.
We have chosen to use 97% for all wavelengths as an average value
and an absorption length > 1 m, which is virtually the same as infinity,
given the dimensions of our cells. The physical properties used in the
simulation which are relevant for the generation and propagation of
optical photons are summarized in Table 6.1, together with the main
characteristics of the geometry.

The coverage of the instrumented faces is assumed to be 100%. We

Table 6.1: Summary of the Monte Carlo set-up specifications and the
LXe relevant properties used in the simulation.

Geometry
Cell dimensions 24 %24 x5cm?
Distance between cell entry faces 20 cm
Sensor pitch 3 mm
Number of sensors per face 64

Physics properties

LXe density 2.98 g/cm? [212]
LXe attenuation length for 511 keV gammas | 4 cm [213]
LXe Rayleigh scattering length 36.4 cm [214]

Refraction index of sensor entrance window | 1.54
Reflectivity of PTFE walls 0.97
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take into account the effect of a non-perfect coverage in a global detec-
tion efficiency (GDE), which encloses the probability of the photon to
fall within the active area of a sensor and its photodetection efficiency.

Back-to-back 511 keV gammas are shot isotropically, at t = 0
from a vertex at equal distance from both boxes. The photons can
interact in the liquid xenon via photoelectric absorption or Compton
scattering. In this study we focus on photoelectric events, only, in
which all the available kinetic energy (511 keV) is deposited in one
point. The Cherenkov radiation emitted by the electrons produced
in such processes is simulated, with a wavelength distribution that
follows Eq. (6.2) and is shown in Fig. 6.5-left. A cutis set at 155 nm,
because no reliable measurements of the refraction index of liquid
xenon exist for energies higher than ~ 8 eV, which corresponds to ~
155 nm (see, for instance, Ref. [215]). This assumption will not affect
our results, since the fastest photons (which dominate the CRT, as
will be demonstrated below) have much higher wavelengths (Fig. 6.5-
right), mainly in the blue and near UV region. The upper cut at 1200
nm is conservative, being well beyond the typical sensitivity of the

photosensors proposed.

The Cherenkov photons are propagated inside the box and eventu-
ally either reach a photosensor where they may produce a photoelec-
tron, depending on the GDE, or are absorbed by the uninstrumented
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Figure 6.5: (Left) Distribution of the Cherenkov radiation wavelength
used in the simulation. (Right) Cherenkov radiation wavelength as a
function of the group velocity of the photons. The plot shows that in
the 350-600 nm range the photon velocity has very little variation.
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Figure 6.6: LXe refraction index as a function of the wavelength of the
optical photon, as results from the parametrization in Ref. [215]. For
wavelengths above 300 nm the refraction index is practically flat, and
has a value of around 1.4.

faces. The LXe refraction index dependence on the energy of photons
is simulated according to the Lorentz-Lorenz equation [215]

n?—1

215 = —AE) dy (6.4)

where 7 is the LXe refraction index, d) is the molar density and A(E)
is the first refractivity virial coefficient:

A(E) =Y T
B

(6.5)

with P(eV?- cm®/mole) = (71.23,77.75,1384.89) and E;(eV) = (8.4,8.81,13.2).
This dependence is illustrated in Fig. 6.6 in terms of the wavelength.

In Table 6.2 the properties of Cherenkov radiation production in
liquid xenon are summarized for the wavelengths of relevance in
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Table 6.2: Properties of Cherenkov light simulation in liquid xenon.

Bin range | Refraction | Energy threshold # photons
(nm) index (keV) for 511-keV e-
155-250 2.58-1.46 43-189 41
250-350 1.46-1.41 189-214 10
350-450 1.41-1.39 214-224 5
450-550 | 1.39-1.38 224-229 3
550-650 1.38 229-232 2

this study. The kinetic energy threshold Ey,, for electrons to produce
Cherenkov radiation at a fixed wavelength A is calculated by

1 2

— — 1| mec
/1 _ 22
C2

where v = ¢/n(A) according to Eq. (6.3) and m, is the electron mass.
The range of a 511-keV electron in liquid xenon is of a few mm, which
is enough to produce ~60 Cherenkov photons on average, as can be
seen in Fig. 6.7. The same figure shows that in the ideal case of a perfect
GDE the distribution of the detected photons is almost coincident with
that of produced photons. This is due to the high collection efficiency
of the PETALO set-up, made possible thanks to the transparency of
liquid xenon to all the wavelengths involved and the almost perfect
reflectivity of PTFE.

Ethr(/\) = (6.6)

6.4.1 CRT calculation

We denote d, as the distance from the centre of the LOR to the in-
teraction vertex of each 511 keV gamma, d; as the displacement of
the gamma emission vertex from the centre of the LOR and d,, as the
distance from the interaction vertex to the detection vertex (i.e., the
position of the sensor), as illustrated in Fig. 6.8. If t;, t; are the times
of the first photoelectron recorded in each one of the cells, the time
difference between them can be written as:

dy Mg | A,

H—ty = 27 (6.7)

c [
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Figure 6.7: Distribution of the number of Cherenkov photons pro-
duced and detected in one photoelectric interaction of a 511-keV
gamma in our set-up, varying the GDE of the sensors between 10%
and 100%.

where v is the velocity of the Cherenkov photon and c is the speed of
light in vacuum. Therefore, the difference in time between the gamma
emission vertex and the centre of the LOR can be expressed as:
Ad, Ad
AtEdCd:;(tl—tz—cg—vp) (6.8)
The CRT, 6At, is defined as the variance, expressed in FWHM, of the At
distribution. Therefore, the factors that affect the fluctuation of At are:
a) the number of detected Cherenkov photons; b) the fluctuations in the
velocity of propagation of Cherenkov photons in liquid xenon; c) the
precision in the measurement of the recorded time of photoelectrons,
which is driven by the time jitter of the sensors and the front-end
electronics; and d) the determination of the interaction point of the 511-
keV gammas, which depends on the spatial resolution of the detector.
Notice that the velocity of propagation of optical photons in Geant4
is the group velocity, which depends on the refraction index of the
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Figure 6.8: Schematic of the Monte Carlo simulation set-up, where
dg is the distance between the centre of the LOR and the interaction
point of the 511-keV gamma, d;; is the distance between the centre of
the LOR and the emission point of gammas and d, is the distance that
a Cherenkov photon covers between its emission and detection point.

medium in the following way:

dn -

v=cx |n(E +> (6.9)
(6 + Fegien

where E is the energy of the photon and 7 is the refraction index of the

medium.

6.5 Analysis and results

6.5.1 Speed of Cherenkov photons

The calculation of the CRT depends on the speed of the Cherenkov
photons in liquid xenon (Eq. 6.9), which, in turn, depends on the
wavelength of the photon. Since the wavelength of a detected photon
is not known, it is necessary to use an average value 7 in the calculation
of the CRT, thus introducing a fluctuation.

Fig. 6.9 shows the CRT as a function of 9, assuming the ideal case
of perfect spatial resolution and no jitter in the sensor response and
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Figure 6.9: Variation of the CRT as a function of the value of the optical
photon speed used for the calculation.

in the front-end electronics. The CRT has a minimum around 200-210
mm/ns, as expected, since most of the radiation is emitted in the blue
and near-UV range, where the photon speed varies very little (Fig. 6.5-
right.) In the rest of the paper, a value of 210 mm/ns will be used for
the speed of all photons, regardless of their wavelength.

6.5.2 Intrinsic CRT

Our initial calculation assumes an ideal sensor with no time jitter
or fluctuations introduced by the electronics. The uncertainty in the
determination of the 511-keV gamma interaction position in the cell is
simulated as a gaussian fluctuation with 2-mm r.m.s., as in Ref. [198].
In this case, the CRT is dominated by the GDE. Fig. 6.10 shows that
the variation of the CRT with the GDE is small: using the time of the
first photoelectron detected in each cell to compute the CRT, a perfect
sensor with 100% GDE exhibits a CRT of 12 ps, while a sensor with
a GDE of 10%, shows a CRT of some 17 ps. This result demonstrates
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Figure 6.10: Dependence of the CRT on the sensor photodetection effi-
ciency assuming all wavelengths are detected with the same efficiency.

that, in spite of the low average number of detected photons in the
case of low GDEs, the CRT is not affected sizeably, since it depends
only on the arrival time of the first detected pair of photons.

On the other hand, Fig. 6.5-right shows that the speed of photons in
liquid xenon varies very little for wavelengths above 300 nm. It follows
that the CRT can improve using sensors with a detection threshold
above 300 nm (e.g, detectors sensitive to the near UV and blue light),
provided that the number of detected photons is high enough. Fig. 6.11
shows that, indeed, limiting the sensitivity of the sensors down to soft
UV wavelengths improves the CRT to some 10 ps almost independent
of GDE. As shown in Table 6.2, the number of emitted Cherenkov
photons that survive this cut is around 15-20, large enough to ensure
that the CRT is not spoiled. This result has very relevant implications
for our study, since it shows that: a) an intrinsic CRT of near 10 ps can
be reached in a LXe detector; b) the required sensors do not need to be
sensitive to hard VUV light (as is the case to detect scintillation light,
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Figure 6.11: Dependence of the CRT on the PDE with a threshold of
300 nm on the detected wavelengths.

where 170-nm sensitive SiPMs must be used for optimal results, as
discussed in Ref. [198]); and c) it is possible to decouple the detection
of scintillation light and Cherenkov light (which can be done, for
example, using micro-channel plate PMTs sensitive to the near UV and
optical spectrum). This decoupling allows one to optimize separately
sensors dedicated to energy and position measurement and those
dedicated to time measurement.

6.5.3  Effect of the sensor and front-end electronics jitter

Given that the intrinsic CRT achievable with Cherenkov light in LXe
approaches 10 ps, the obvious requirement for the sensors and asso-
ciated electronics is to achieve a time uncertainty of the same order.
With a time jitter of around 80 ps current SiPMs are far from satisfying
this requirement. On the other hand, state-of-the-art fast electronics
introduce a time fluctuation in the vicinity of 30 ps [216]. When com-
bined with very fast sensors such as single photon avalanche diodes
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Figure 6.12: Dependence of the CRT on the total jitter (sensor + elec-
tronics) with a threshold of 300 nm on the detected wavelengths.

or micro-channel plate photomultipliers, featuring time jitters of about
the same order (see, for instance, Ref. [217] for the latter sensors), it
appears that an overall time uncertainty of some 40 ps may be possible
with today’s technology.

To quantify the effect, we have simulated gaussian noise (corre-
sponding to the combined time jitter of sensors and front-end elec-
tronics) for sensors with a minimum detection wavelength of 300 nm.
The results, shown in Fig. 6.12 as a function of the GDE, show that the
worst case (time jitter of 80 ps corresponding to SiPMs) yields a CRT
between 50 and 80 ps (which is still better than the state-of-the-art),
while jitters around 40 ps, which appear reachable with fast detectors
and electronics, result in a CRT between 30 and 55 ps, depending on
the GDE. In the case of micro-channel plates, their quantum efficiency
nowadays reaches 20-25% [218].
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6.6 Summary and outlook

In this work we have shown the potential of liquid xenon, and in par-
ticular for a detector along the lines of the recently proposed PETALO
scanner, of using Cherenkov light to provide an excellent CRT. The
intrinsic CRT of LXe (using detectors sensitive to near UV and blue
light) approaches 10 ps. In a PETALO cell, designed to cover two of the
faces (entry and exit along the line of flight of the gammas) with VUV-
sensitive SiPMs, one can cover the up to four additional faces with
fast detectors (e.g., single photon avalanche diodes or micro-channel
plate photomultipliers) sensitive to near-UV and blue light. While the
CRT achieved reading scintillation light with SiPMs can be as good
as 70 ps, the corresponding Cherenkov CRT may be up to a factor of
two better, and the combined CRT may approach 30 ps for sufficiently
fast sensors and electronics. Thus, the PETALO technology may truly
result in a break-through for TOF-PET scanners.



Conclusions and prospects

The observation of neutrino oscillations in the past few decades im-
plied the first evidence of physics beyond the Standard Model (§1.1):
this phenomenon confirmed that neutrinos have masses and opened
the door to a new possible explanation of the neutrino nature (§1.2).

Once neutrino masses are added to the Standard Model lagrangian,
the gauge symmetry allows for a Majorana mass term to be added.
The Majorana nature of the neutrinos could explain the smallness of
the neutrino masses as well as the baryon asymmetry observed in the
universe (§1.3).

Furthermore, the Majorana mass term would introduce violation
of total lepton number, which is otherwise conserved in the Standard
Model. Such a term allows for processes that were forbidden in the
SM, with neutrinoless double beta decay being the best experimental
method to confirm whether the neutrino is a Majorana particle (§2.1).

A positive measurement of Ov 3 decay would give a half-life mea-
surement and, from there, a neutrino mass value (§2.2). The search for
OvBpB decays has become an attractive field, with different techniques
(§2.4) and experiments running all over the world (§2.5).

The NEXT collaboration proposes a high pressure xenon Time
Projection Chamber (TPC) to search for Ovpf decays of *Xe at Labo-
ratorio Subterraneo de Canfranc (§3.1). NEXT has two salient features:
an excellent energy resolution and topological reconstruction to sup-
press backgrounds. The NEXT collaboration designed and operated
two R&D detectors (DEMO and DBDM, §3.4.1) before installing NEXT-
White at LSC. NEXT-White has been operating under radiopure condi-
tions since October 2016. The NEXT-White detector has been used to
characterize the backgrounds at LSC and to test the technologies and
designs for NEXT-100 (§3.4.2).
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In this work we have presented the Data Acquisition system (DAQ)
of NEXT-White (§4.1). The DAQ is an upgrade of that of NEXT-DEMO.
It is based on the ATCA-SRS architecture designed by NEXT, CERN
and IFIN-HH Bucharest within the RD51 collaboration. The DAQ has
three subsystems: the energy plane (12 PMTs), the tracking plane (1792
SiPMs grouped in 28 Front-End Boards) and the trigger. The online
system used is DATE, from the ALICE experiment at CERN (§4.2). To
transfer efficiently and store all the relevant information regarding the
events detected, a specific-purpose binary format has been defined
by the NEXT collaboration (§4.3). A decoding software that translates
those binary files to higher-level HDF?5 files has been implemented
and described in detail (§4.5). The output of this software is the input
for the analysis and reconstruction software. To ensure quality, an
automated testing system has been implemented.

The performance of the system has been improved by adding
the possibility of using a Huffman compression algorithm, already
implemented in NEXT-White (§4.6). The results achieved show a
compression rate of ~ 85%, allowing for a significant reduction in
the dead time of the detector. NEXT-White has successfully taken
more than 1.6 billion events, showing the robustness of the system
implemented (§4.7). The same architecture with few changes will be
employed for the NEXT-100 detector (§4.8).

Chapter 5 presented an upgrade on the sensitivity studies for the
NEXT-100 detector using the latest radiopurity measurements (§5.1).
Previous studies relied on a fast Monte Carlo simulation that lacked
the details of the latest software used by the NEXT collaboration. The
study presented in this thesis includes a detailed simulation of the
drift, the effect of the electronics and the reconstruction (§5.2, §5.3).

The standard cut-based analysis (classical analysis) includes ge-
ometrical and lifetime corrections. The topological cuts have been
optimized as well. The classical analysis leads to significantly worse
results than those from an ideal reconstruction (FANAL): the back-
ground index found is a factor of 2.75 larger than the one yielded
by FANAL (85.4). The main effect responsible for this performance
difference is the diffusion of the electron cloud along the drift in the
TPC (85.5).

A modified cut-based analysis was evaluated, showing it can im-
prove the situation but not as much as needed (§5.6). The solution to
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the problem came in the form of a Richardson-Lucy algorithm (§5.7).
This iterative procedure can recover an underlying image blurred by a
known Point Spread Function (PSF). In the case of NEXT, these PSFs
can be produced by analyzing point-like %"Kr events. Using differ-
ent PSFs along the z axis allows for a deconvolution of the electron
cloud diffusion effect. This algorithm achieves a large improvement
in the results making it comparable to the ideal reconstruction (§5.8).
The total background index found using the R-L deconvolution is
429 x 104 ctskeV kg lyr1.

The results found highlight the critical importance of dealing with
the electron cloud diffusion in larger detectors (§5.9). Algorithms such
as Richardson-Lucy can be used for this purpose. Beyond improved
reconstruction techniques, the R&D on low-diffusion gas mixtures
could potentially be very useful too. Another strategy to improve the
detector would be to replace the PMTs by SiPMs, as the energy plane
is the main source of background.

Lastly, the technology developed for the NEXT detectors can also
be applied to medical imaging (§6.1). PETALO is a PET scanner based
on liquid xenon (LXe) with SiPM readout (§6.2). This technology offers
several advantages: a very fast scintillation with a high light yield;
LXe is a continuous medium with uniform response; and, potentially,
identification and reconstruction of Compton events. LXe produces
Cherenkov radiation that could be used to achieve a very fast Coin-
cidence Resolving Time (CRT) in a TOF-PET (§6.3). A Geant4-based
Monte Carlo simulation was carried out to assess the performance
of such a detector (§6.4). The study presented is a proof-of-concept
showing that a CRT of ~ 30 ps could be achieved with sufficiently fast
sensors and electronics (§6.5).
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