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Thermogalvanic corrosion generated between two electrodes of Alloy 31, a highly-

alloyed austenitic stainless steel (UNS N08031), has been investigated imposing 

different temperature gradients in three deaerated LiBr solutions, under open circuit 

conditions by using a zero-resistance ammeter (ZRA). Besides EIS spectra were 

acquired in order to explain the obtained results. On the whole, cold Alloy 31 electrodes 

were anodic to hot Alloy 31 electrodes, since an increase in temperature favoured the 

cathodic behaviour of the hot electrode. Thermogalvanic corrosion of Alloy 31 in the 

LiBr solutions studied was not severe, although it negatively affects the corrosion 

resistance of the cold anode. The protective properties of the passive film formed on the 

anode surface were found to improve with thermogalvanic coupling time. 
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INTRODUCTION 

Most vapour compression systems commonly use CFCs refrigerants, because of their 

thermophysical properties. However, the use of CFCs is banned or extremely restricted, 

and HCFCs, although are less damaging to the ozone layer, will be also prohibited 

globally by 2040 (Montreal Protocol, 1988). Absorption technology which uses aqueous 

lithium bromide solutions as working fluid appears to be a promising alternative to 

vapour-compression. Having zero ozone depletion and global warming potentials, -

absorption systems are completely friendly to the environment [1-6]. Moreover, these 

systems are heat-powered and need very little electricity.  

Nevertheless, LiBr solutions attack the equipment material during normal operation 

conditions. Therefore, many corrosion problems take place inside the absorption 

refrigeration units, decreasing the operating efficiency and leading to safety problems 

[1,6-13]. One method to solve these corrosion problems is to develop high corrosion 

resistant materials. Austenitic and duplex stainless steels are commonly used as 

structural components in absorption machines [1,13,14], but failures in form of pitting 

corrosion are sometimes observed in the hottest parts of the system. High-alloyed 

austenitic stainless steels, such as Alloy 31, present greater amounts of alloying 

elements, namely chromium (Cr), molybdenum (Mo) and nickel (Ni), as compared with 

the established 18% Cr, 10% Ni baseline steels, showing higher corrosion resistance 

than conventional stainless steels. 

 

The existence of zones with different temperatures inside the absorption machines can 

aggravate the corrosion problems of the construction materials, giving rise to a type of 

corrosion known as thermogalvanic corrosion. Thermogalvanic corrosion is a form of 
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galvanic action that results from the action of a macrocouple formed when different 

pieces of the same metal immersed in an electrolyte have different temperatures. The 

piece of metal that forms the anode in such a macrocouple becomes corroded, providing 

some degree of protection to the piece of metal that behaves as a cathode. It has been 

shown [15-17] that the extent of thermogalvanic corrosion depends, among others, on 

the potential difference between the cold and hot electrodes, the electrical conductivity 

of the solution, the distance between the electrodes and the overvoltages of the anode 

and cathode processes. The original definition of thermogalvanic corrosion was made 

under the assumption that the electrode reactions were the reverse of each other, so the 

oxidizing agent which was reduced at the cathode was then regenerated at the anode 

[18,19]. This definition restricts the use of the term to reversible electrodes and excludes 

subsequent changes which may occur at either electrode as a result of a continued 

current flux (e.g. the formation of a passive film on the anode surface), so it is not 

suitable. Thus, in practice, any enhanced corrosion as a consequence of the apparition of 

a temperature gradient between different zones of the same metal is regarded as 

thermogalvanic corrosion [20-23]. 

 

The importance of thermal gradients in contributing to corrosion of industrial equipment 

has been reported in numerous studies [17,23-30]. Thermogalvanic corrosion resulting 

from temperature gradients can cause the early failure of copper pipes exposed to a 

sustained temperature gradient. Most of the work that has been done on this subject 

demonstrates that large temperature differences between sections of copper metal can 

cause serious corrosion problems [24-26]. Other works have been directed at heat 

exchangers materials [27,28]. Several authors have noted thermogalvanic corrosion as a 
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corrosion mechanism within pressurized water nuclear reactor steam generators (SGs) 

[29,30], as well as in supercritical water oxidation reactors [17]. 

The aim of the present investigation is to determine the thermogalvanic corrosion 

behaviour of a highly alloyed austenitic stainless steel (Alloy 31) immersed in LiBr 

solutions and submitted to different temperature gradients. 

 

EXPERIMENTAL PROCEDURE 

Materials and specimen preparation 

 

The material tested was the highly alloyed austenitic stainless steel Alloy 31 (UNS 

N08031: 26.75% Cr, 31.85% Ni, 1.50% Mn, 0.10% Si, 6.60% Mo, 1.21% Cu, 31.43% 

Fe, 0.002% S, 0.017% P, 0.005% C, 0.193% N), provided by ThyssenKrupp VDM. 

Alloy 31 electrodes were cylindrically shaped (8-mm diameter and 55 mm long) and 

covered with a polytetrafluoroethylene (PTFE) coating. The exposed area to the solution 

was 0.5 cm
2
. All specimens were wet abraded from 500 SiC (silicon carbide) grit to 

4000 SiC grit, and finally rinsed with distilled water. 

The samples were tested in 400 g/l (4.61 M), 700 g/l (8.06 M) and 992 g/l (11.42 M) 

LiBr solutions, prepared from LiBr (98 wt.%), from PANREAC. 

 

Thermogalvanic corrosion behaviour (open circuit measurements) 

 

The open circuit measurements were performed by using the potentiostat as a zero-

resistance ammeter (ZRA). The electrochemical cell employed to carry out 
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thermogalvanic corrosion tests, which has been designed by the authors, consisted of 

two half cells (Figure 1). Each half cell was thermostated separately so that the 

temperature of one half cell was T1 (25º C), whereas that of the other half cell, T2, varied 

between 25, 50, 75 and 100º C (when using the 400 g/l LiBr solution, the maximum 

temperature was 75º C, since at 100º C the solution showed signs of boiling). The 

reference electrode (Ag/AgCl 3M KCl) was immersed in the cold compartment during 

the open circuit measurements and a deaerated atmosphere was created by purging N2 

over the electrolyte solution. Both compartments were separated by a sintered glass disc 

(porosity 3). This separator serves as a thermal and diffusional barrier between the half 

cells, which prevents the hot and cold electrolytes from mixing and over which the 

stable temperature gradient occurs [20,31-35]. Besides, the use of this glass membrane 

or a salt bridge over the region of the temperature gradient diminishes the so-called 

thermal liquid junction potential (TLJP) to a small value, and prevents this potential 

from varying with time, so that the TLJP does not affect the thermogalvanic potential 

value [36]. However, this separation of the two half cells by the sintered disc produced 

an internal resistance of 5-10 Ω, depending on the temperature of the cell. This value is 

lower than that obtained by other authors working with sintered glass membranes 

[20,31], so the internal resistance introduced by the sintered glass membrane is 

acceptable. 

 

Alloy 31 samples were coupled through the Autolab PGSTAT302N potentiostat used as 

a ZRA, and both the potential and the current density of the thermogalvanic couple were 

recorded every 0.5 s. for 6 hours. The current sign was positive when the direction of 

the electrons was from working electrode 1 (WE1) to working electrode 2 (WE2), that 

is, when WE1 was corroding. Current values were negative when the electrons flowed 
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in the opposite direction. The tests were designed with the cold electrode (at 25º C) as 

WE1 and the hot electrode (at 25, 50, 75 and 100º C) as WE2. 

 

EIS measurements 

 

The EIS measurements were made with the Autolab PGSTAT302N potentiostat, before 

and after the 6 hours of open circuit measurements (ZRA) at the open circuit potential 

value, in order to study the effect of the thermogalvanic couple on the electrolyte/metal 

interface. The voltage perturbation amplitude was 10 mV, in the frequency range of 100 

kHz to 10 mHz. The conditions of EIS experiments were the same as those in ZRA 

tests. 

 

RESULTS AND DISCUSSION 

Thermogalvanic corrosion 

 

Open circuit measurements (ZRA) 

 

The data of thermogalvanic potentials and thermogalvanic current densities versus time 

have been studied in the 400 g/l, 700 g/l and 992 g/l LiBr solutions, imposing different 

temperature gradients (from 25º C to 75º C in the 400 g/l LiBr solution and to 100º C in 

the rest of solutions), by using the potentiostat as ZRA. Figure 2 shows, as an example, 

the thermogalvanic potential and current density data of the pair Alloy 31 (at 25º C) – 

Alloy 31 (at 75º C), in the three LiBr solutions under study. The positive sign of 

thermogalvanic current density indicated that the cold electrode was the anode of the 

pair in these tests at 25ºC-75ºC. In the 992 g/l LiBr solution, after the second hour of 
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thermogalvanic coupling, a polarity reversal took place and the hot electrode became 

the anode, as it will be explained below. 

 

There was a general tendency for the thermogalvanic current density to decrease during 

the immersion time, as the anode of the pair passivated by oxide film growth [11,21,37-

40]. Besides, in all the LiBr solutions, thermogalvanic potential shifted towards less 

negative values with time, which also meant an improvement in the protective 

properties of the passive film formed on the anode surface [11,39,41]. The most 

remarkable characteristic of a passive system undergoing uniform corrosion is to 

present very frequent voltage and current density transients, but with quite low 

amplitudes [11,42,43], like those registered in Figure 2. The magnitude of 

thermogalvanic current density experienced very low oscillations, lower than 0.2 

µA/cm
2
 during all the test, indicating that the anode of the pair was in the passive state 

[11,43]. 

 

Figures 3 and 4 show the mean values of thermogalvanic current density (ithm) and 

potential (Ethm), respectively, registered between the thermogalvanic couple formed by 

the pair hot Alloy 31 - cold Alloy 31 electrodes during each hour of the test. It can be 

seen from Figure 3 that the values of ithm were very small, lower than 0.2 µA/cm
2
 in all 

the cases, which evidences the development of a passive film on the anode surface that 

made the current flow difficult [41]. 

 

For the 400 g/l LiBr solution, the cold electrode was the anode in all the experiments, 

since values of ithm were positive during the 6h of the test. Several authors have also 

obtained cold anodes when studying other thermogalvanic systems [21,22,26]. Besides, 
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the anodic nature of the cold electrode was favoured as temperature in the hot half-cell 

raised, since ithm values increased (Figure 3a). It has been reported that temperature has 

a marked influence on the cathodic branch of the polarisation curves for Alloy 31 in 

heavy brine LiBr solutions [44,45]. Therefore, these results could be explained by this 

effect that temperature had on the cathodic branch of the polarisation curves. Thus, in 

spite of the fact that the passive film formed on the cold electrode surface (anode) was 

more protective than on the hot electrode (cathode) [13,44-54], the enhancement of the 

cathodic reaction with temperature seems to prevail on determining the polarity of the 

thermogalvanic pair. 

 

For the 700 g/l LiBr solution the cold electrode was the anode of the thermogalvanic 

couple and a raise in temperature favoured this anodic behaviour (or the cathodic 

behaviour of the hot Alloy 31electrode), since the values of ithm recorded increased with 

temperature (Figure 3b), the same as in the 400 g/l LiBr solution. 

 

For the 992 g/l LiBr solution, the hot electrode was the anode of the pair up to the 25ºC-

50ºC test. In the test performed at 25ºC-50ºC, current density values are lower than at 

25ºC-25ºC, which evidences the formation of a more protective passive film at 50ºC. In 

the test done at 25ºC-75ºC, the cold electrode was the anode during the first two hours 

of immersion, but then there was a polarity reversal and the hot electrode became the 

anode of the pair (Figure 3c). In the test carried out at 25ºC-100ºC, a similar polarity 

reversal took place at the end of the fifth hour of coupling (Figure 3c). The influence 

that temperature had on the cathodic reaction [44,45] made the hot electrode be the 

cathode of the thermogalvanic pair during the first hours of the tests. However, when 

the passive film formed on the anode (cold electrode) was enough protective, a polarity 
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reversal took place and the hot electrode became the anode of the pair until the end of 

the tests. Therefore, in these cases, the higher protectiveness of the passive film formed 

on the cold electrode surface prevailed over the positive effect that temperature had on 

the cathodic reaction on establishing the final polarity of the thermogalvanic pair. Other 

authors have reported changes in the polarity of the electrodes with time due to the 

intervention of passive film formation [21,22,25,41,55]. In the 992 g/l LiBr solution, 

when the hot Alloy 31 electrode behave as the anode of the thermogalvanic pair in the 

test performed at 25ºC-100ºC (within the sixth hour of experiment), current density 

values were higher than in the other tests, indicating worse protective properties of the 

passive film formed on the hot electrode at 100ºC, since temperature favours the 

kinetics of corrosion reactions, and more specifically, the anodic dissolution of the 

metal [40,41]. 

 

It is worth noting that the polarity of the tests performed without temperature gradient 

(i.e. 25ºC-25ºC) is not important at all. This polarity is exclusively due to very small 

differences in the surface characteristics between both electrodes, since the material 

composition (Alloy 31), temperature and LiBr concentration were exactly the same in 

both half-cells. These tests with no temperature gradient were carried out in order to 

obtain the cell potential value at ΔT = 0 and to determine the Seebeck coefficient of the 

thermogalvanic system (see the following section). 

 

The previous results regarding thermogalvanic current densities recorded during the 

tests show that thermogalvanic corrosion rates were rather low in all the experimental 

conditions of the present study, since ithm values were very small. However, this kind of 

corrosion will remain as long as temperature differences exist, i.e. during the whole 
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operating period of the absorption plant. Thus, thermogalvanic corrosion represents a 

dormant situation that can accelerate corrosion if the environment changes, e.g. a local 

increase in temperature or bromide concentration. 

 

Concerning the thermogalvanic potential, its values became less negative with 

immersion time for the three LiBr solutions under study (Figure 4), which evidences 

the formation and growth of a passive film on the anode surface [11,39,41]. The Ethm 

values also increased with temperature in all the LiBr solutions. According to Ashworth 

and Boden [20] an increase of the thermogalvanic potential with temperature is 

indicative of a cold anode, since temperature favoured the cathodic behaviour of the hot 

electrode, making its corrosion potential be more positive than that of the cold 

electrode. 

 

Thermogalvanic potentials and Seebeck coefficient 

 

The electromotive force (emf) of a thermogalvanic cell (thermogalvanic potential, Eth) 

has four main contributions [17,56,57]:  

 

                                      21 MMTDTLJPMthE                                  (1) 

 

where ΔΦM is the Metal/solution potential (Galvani potential) difference (that changes 

with temperature), ΔΦTLJP is the thermal liquid junction potential (TLJP), ΔΦTD is the 

thermal diffusion potential (due to the Soret effect) and ΔΦM1-M2 is the potential 

difference as a consequence of the metallic thermocouple between the electrodes and 

the measuring instrument. 
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In most systems, the thermocouple effect is relatively small [17,36,56,58] (of the order 

of tens of µV/ºC). In practice, potential differences due to the Soret effect (because of 

the apparition of a thermal diffusion gradient) are also very small [17,56,57], especially 

when diffusion processes between both half-cells are impeded [59], as in the present 

work with the use of a sintered glass membrane, which makes diffusion and ionic 

migration difficult; consequently, concentration gradients due to temperature gradients 

will not take place in this system, or they will appear after very long times. The TLJP on 

the border of the hot and cold electrolyte can make a significant contribution to the emf, 

especially in the case of acidic electrolyte [17,56,60], although in neutral solutions, the 

TLJP is small [56]. In addition, the use of the sintered glass membrane as a separator 

between both compartments can reduce, to a small value, the TLJP. On this basis, the 

first contribution in equation (1), that is, the changes of metal/solution potentials 

(Galvani potentials) with temperature can be regarded as a guide to the behaviour of a 

thermogalvanic cell [56]. 

 

Equation (1) can be derived with respect to the system temperature, T, obtaining: 
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or in a simpler way: 
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The temperature coefficient of the thermogalvanic cell, thE  , is known as Seebeck 

coefficient, by analogy with thermoelectric phenomena [61-64], and can be determined 

from the slope of the Eth vs ΔT representation, according to: 

 

                                         00 ETEET
T

E
E th

th 



                                        (4) 

 

where Eo is the cell potential when there was no temperature gradient (ΔT = 0). Seebeck 

coefficients provide the sensitivity of the thermogalvanic cell emf (thermogalvanic 

potential) to a variation of the temperature gradient present in the system. Thus, the 

higher the value of the Seebeck coefficient (in absolute value), the smaller the variation 

in temperature gradient required to generate large potential differences between the 

electrodes, and the more prone the metal to undergo thermogalvanic corrosion. 

 

Figure 5 shows the diagrams of Eth vs ΔT for the three LiBr solutions studied (namely 

400, 700 and 992 g/l LiBr), where Eth was the thermogalvanic potential obtained after 

the 6 hours of thermogalvanic coupling, when the system reached a steady state. The 

graph shows typical results of experimental measurements of Seebeck coefficients in 

thermogalvanic cells in this temperature range [31,57,58,65,66]. It can be seen from this 

figure that for all three LiBr solutions, the Eth–ΔT pairs are straight lines, which means 

that the emf of the thermogalvanic cell, that is, the thermogalvanic potential Eth, depends 

linearly on the temperature. Moreover, according to Kasap [62], if the Seebeck 

coefficient is positive, electrons diffuse from the cold zone to hot zone. Thus, the 

positive Seebeck coefficients (positive slopes) obtained in this study indicate that the 

hot electrode of the cell was the cathode of the thermogalvanic pair [31,58,62].  
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As it can be observed from Figure 5, Seebeck coefficients, whose values are 

approximately 3 mV/ ºC, seem not to depend on LiBr concentration, within the 

concentration range investigated. Other authors [57-59,66,67] have obtained a decrease 

in Seebeck coefficient with increasing concentrations in their respective thermogalvanic 

systems, although Szabó and Holeschovsky [57,58] have found that in CuSO4 solutions 

of higher concentration than 6.4 wt.% (in the present study, LiBr solutions have 

concentrations higher than 31 wt.%), the value of Seebeck coefficient did not depend on 

electrolyte concentration and remained constant. Therefore, the effect of the 

concentration dependence of any of the parameters in equation (3) on thE   is negligible. 

Particularly, if TD does not depend on the electrolyte concentration, TD will not be 

concentration dependant either, and the contribution of TD to the Eth value will be 

negligible, as well. This affirmation is consistent with the explanations given above 

concerning the thermal diffusion potential (due to Soret effect) when defining the 

thermogalvanic potential in equation (1). 

 

EIS measurements 

 

EIS spectra 

 

The characterization of Alloy 31/electrolyte interface was done through EIS 

measurements carried out before and after the 6 hours of thermogalvanic coupling, for 

the three LiBr solutions studied (400, 700 and 992 g/l LiBr), at different imposed 

temperature gradients (Figures 6, 7 and 8). In all the cases, the EIS diagrams exhibit a 

typical passive state shape characterized by high impedance values with non-ideal 

capacitive behaviour, suggesting that a highly stable film formed on all the electrodes 
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surface [68-71]. For the tests performed at 25ºC-25ºC the EIS spectra was the same for 

both cold and hot electrodes before thermogalvanic coupling. 

 

For the 400 g/l LiBr solution, the anode of the thermogalvanic pair was always the cold 

electrode (Figure 3a). Figure 6 shows the EIS diagrams (in form of Nyquist and Bode-

phase representations) for the 400 g/l LiBr solutions, at the three different temperature 

gradients (25ºC-25ºC, 25ºC-50ºC and 25ºC-75ºC) for both cold and hot Alloy 31 

electrodes, before and after the thermogalvanic coupling (BTC and ATC, respectively). 

 

As it can be seen from EIS plots in Figure 6, both electrodes had higher Faradic 

impedance after the 6 hours of test for all the temperature gradients. Moreover, in the 

Bode-phase representation it is observed that the capacitive behaviour of both electrodes 

is also better after the thermogalvanic coupling, so the characteristics of passive films 

formed on the electrodes surface improved with immersion time, as reported in 

literature [72-74]. These facts are especially significant for the cold electrode, which 

was the anode of the thermogalvanic coupling. For the hot electrode (the cathode of the 

pair), the improvement of the passive film characteristics after the thermogalvanic 

coupling was far less significant than for the cold electrode (anode). Thus, the passive 

film formed on the anodic member of the pair during the 6 hours of test developed 

better protective properties than that formed on the cathode surface. It is noteworthy that 

at 25ºC-75ºC, two time constants are perfectly discernible from Bode-phase plots.  

 

For the 700 g/l LiBr solution, the anode of the thermogalvanic pair was always the cold 

electrode (Figure 3b). Figure 7 shows the Nyquist and Bode plots for the pair cold 
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Alloy 31 – hot Alloy 31 in the 700 g/l LiBr solution before and after the thermogalvanic 

coupling.  

 

In the Nyquist and Bode diagrams depicted in Figure 7, an increase in the low 

frequency limit of the impedance after the 6 hours of thermogalvanic coupling is 

observed for both electrodes. Besides, the Bode-phase diagrams also show a tendency to 

a more capacitive behaviour at the low frequency limit with immersion time, which 

suggests an improvement in the protective properties of the passive film formed on the 

electrodes surface [72-74]. These changes in the EIS spectra after the thermogalvanic 

coupling were more significant for the anode of the pair than for the cathode, in a 

similar way as in the 400 g/l LiBr solution. Nevertheless, for the temperature gradient of 

25ºC-50ºC, this trend was not followed. In the test performed at 25ºC-50ºC, the 

impedance response of the hot electrode (which was the cathode during the whole test) 

was somewhat better than that of the cold electrode (which was the anode). Thus, 

despite the fact that the cold electrode was the anode of the pair, the passive film formed 

on its surface was slightly less protective than the passive film formed on the hot 

electrode (cathode). This fact can be explained in terms of thermogalvanic current 

density values. Although mean current density values in this test were positive (Figure 

3b), which indicates a cold anode, thermogalvanic density values were very close to 

zero after the second hour of coupling, appearing many negative peaks in the 

thermogalvanic current density signal (Figure 9). These negative peaks imply 

continuous polarity inversions in the pair, so the hot electrode acted as the anode in 

several times during the test. 
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For the 992 g/l LiBr solution, the hot electrode was the anode of the thermogalvanic 

pair for the test performed at 25ºC-25ºC and 25ºC-50ºC. For the temperature gradients 

of 25ºC-75ºC and 25ºC-100ºC, the cold electrode was initially the anode of the pair, 

becoming the cathode after a polarity reversal took place (Figure 3c). Figure 8 shows 

the Nyquist and Bode plots for the pair cold Alloy 31 – hot Alloy 31 in the 992 g/l LiBr 

solution before and after the thermogalvanic coupling. 

 

In general, it is observed in Figure 8 that the amplitude of the Nyquist plot was higher 

after the 6 hours of thermogalvanic coupling. The value of the phase angle at low 

frequencies was higher, as well. These observations suggest an improvement in the 

protective properties of the passive film formed on its surface with time [72-74].  

 

For the tests performed at 25ºC-25ºC and 25ºC-50ºC, the passive film formed on the 

anode surface (hot electrode) had superior protective properties than the film formed on 

the cathode surface, as in the rest of LiBr solutions investigated.  

 

For the temperature gradient of 25ºC-75ºC, the improvement of the impedance response 

after the 6 hours of thermogalvanic coupling is more important for the cold electrode, 

which was the anode of the pair during the first two hours of the tests.  Thus, it can be 

said that during the first two hours when the cold electrode acted as the anode, the 

passive film which formed on its surface was more compact and gave the metal a higher 

degree of protection than the passive film which grew on the hot electrode surface. 

When the hot electrode became the anode (within the third hour of thermogalvanic 

coupling), the passive film formed on its surface became more protective than before 

the coupling but, because of the high temperature (75º C), this film had worse properties 
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than the film formed on the cold electrode. Accordingly, in spite of being the anode 

only the first two hour of the thermogalvanic coupling, the passive film formed on the 

cold electrode surface was more protective than that which formed on the hot electrode 

for the last four hours. For the test performed at 25ºC-100ºC, the increase of the Faradic 

impedance with immersion time was hardly observed for both electrodes. However, for 

this temperature gradient, the capacitive response of both electrodes improved in the 

range of low frequencies, indicating better insulating properties of the passive film at 

the end of the thermogalvanic coupling. 

 

Equivalent circuit and interpretation 

 

The superior corrosion resistance of stainless steels, such as Alloy 31, is closely related 

to the passive film formed on their surface. It is generally accepted that the passive film 

formed on the surface of stainless steels in neutral to alkaline pH is composed of two 

layers [46,75-83]. The compact inner layer, known as barrier layer, is composed 

principally of chromium oxides and is the major contributor. The porous outer layer is 

composed principally of iron oxides and hydroxides. 

 

From Figures 6-8 it can be readily observed that in most cases two time constants are 

apparent in the EIS spectra, i.e., a high- and low-frequency capacitive response (for 

those spectra where these two time constants are not discerned, it is assumed that they 

exist but are overlapped). This feature is often considered as the response from an 

inhomogeneous film, which consists of a compact inner layer and a less compact 

(porous) outer layer [69,71,76,84-86]. Figure 10 shows the equivalent circuit (EC) that 

has been usually used to interpret EIS spectra of passive films having a two-layer 
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structure [69,71,76,84], so this circuit (two hierarchically distributed time constants) has 

been used to simulate the electrochemical behaviour of the present system Alloy 

31/LiBr solutions. An example of the quality of the fitting achieved using the equivalent 

circuit of Figure 10a is shown in Figure 10b for the tests performed in the 400 g/l LiBr 

solution at 25ºC-75ºC. In this model, RS corresponds to the resistance of the electrolyte, 

and R1, CPE1 and R2, CPE2 to the resistance and capacitance of the outer porous layer 

and inner barrier layer, respectively. The sum of R1 + R2 is defined as the polarisation 

resistance, Rp, and is related to the corrosion resistance of the metal. 

 

A constant-phase element (CPE) representing a shift from the ideal capacitor was used 

instead of the capacitance itself. CPEs are used to model frequency dispersion 

behaviour corresponding to different physical phenomena such as surface heterogeneity 

which results from surface roughness, impurities, dislocations, formation of porous 

layers, etc [70,72,76,87]. The impedance of a constant-phase element is defined as: 

 

                                                   1




jCZQ CPE                                                     (5) 

 

where α, defined as a CPE power, in an adjustable parameter that lies between -1 and 1. 

For α = 1 the CPE describes and ideal capacitor, and for α = 0 the CPE is an ideal 

resistor. When α = 0.5 the CPE represents a Warburg impedance with diffusional 

character and for 0.5 < α < 1 the CPE describes a frequency dispersion of time constants 

due to local heterogeneities in the dielectric material. A pure inductance yields α = -1.   

 

Therefore, the theoretical impedance of the EC in Figure 10a can be calculated as: 
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The CPE of each subcircuit (inner and outer) has been converted into a pure capacitance 

(C) by means of the following equation [68,88,89]: 

 

                                                         
 

R

RQ
C

/1


                                                     (7) 

where Q = ZCPE (eq. (5)). 

The conversion shown in Eq. (7) has been done in order to relate pure capacitance 

values (C) to the thickness of passive film layers, according to the following equation 

[90,91] 

 

                                                               
d

C 0 
                                                          (8) 

 

where ε denotes the relative dielectric constant of the layer, ε0 is the permittivity of 

vacuum (8.85·10
-14

 F cm
-1

) and d is the layer thickness. A value of 15.6 was assumed 

for ε, as in literature for austenitic stainless steels [75,92]. This value is reasonable, 

since the dielectric constants of the bulk oxides formed on stainless steels (Cr2O3, FeO, 

Fe3O4, Fe2O3) are about 10-20 [92,93]. It is complicated to obtain an accurate thickness 

value of the passive film when the dielectric constant is not well established and when 

the surface roughness vary substantially during oxidation processes [76,89,93,94]. 

Moreover, because of the open porous structure, it is difficult to calculate the thickness 

of the outer layer from the C1 values [71]. Nevertheless, neglecting some variation in 
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the surface roughness and the dielectric constant, the capacitive response under different 

conditions can give an indication of how the passive film thickness changed with the 

changing system conditions.  

 

The resistance, capacitance and α values of the porous and barrier layers obtained by 

adjusting the experimental data, as well as the thickness of both porous and barrier layer 

obtained from eq. (8) and the total passive film thickness, are given in Tables 1-3 for 

the 400, 700 and 992 g/l LiBr solutions at the different imposed temperature gradients. 

 

According to the proposed model, the passive film consists of two layers: the inner 

barrier layer, whose resistance values (R2) were significantly larger than the values 

associated to the outer porous layer (R1) (Tables 1-3), which is consistent with the 

chosen physical model. These results indicate that the protection provided by the 

passive film was predominantly due to the barrier layer. Other authors have obtained 

similar results for stainless steel [76]. The value of R1 (the resistance of the outer layer) 

depends strongly on the existence of pores, channels or cracks, into which the 

electrolyte can penetrate and thus provides a sensitive indication of the appearance of 

such defects in the passive film. If the outer layer is very porous, the parameter R1 may 

correspond approximately to the resistance of the electrolyte inside pores [76]. 

However, in the present study, R1 values were far higher than RS values for all the LiBr 

solutions (on the order of 1-100 kΩ·cm
2
, Tables 1-3), which indicates that the outer 

film, in spite of being more porous than the inner barrier layer (since R1 < R2), did not 

have a high degree of defects. 
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From Tables 1-3 it can be seen that high Rp values (on the order of 0.1-1 MΩcm
2
) were 

obtained in all the tests, suggesting a high corrosion resistance in the LiBr solutions 

employed, because of the formation and growth of a stable and protective passive film. 

Furthermore, the high values of the exponent αi reveal that CPEs correspond to a nearly 

capacitive response, and support the physical validity of the proposed equivalent circuit, 

showing that a better agreement between theoretical and experimental data was obtained 

if a CPE was introduced rather than pure capacitance and/or Warburg impedance. 

 

In general, both outer and inner layer exhibited similar capacitance values, except for 

the test performed in the 992 g/l LiBr solution, where the inner layer exhibited higher 

capacitance (C2) than the outer layer (C1), which means that this inner layer was thinner 

than the outer one at the highest LiBr concentration. However, since R2 > R1, the above 

results regarding passive layers thickness do not mean worse protective properties of the 

barrier layer. C2 values were high compared to the double-layer capacitance expected 

for a metal/solution interface (10-50 µF/cm
2
) [95,96], especially in the 992 g/l LiBr 

solution, and were on the order of those obtained by Pan and Zhang  [76,97] for 

capacities of passive films on stainless steels. 

 

The estimated values of dT = d1+d2 show that the layers formed on Alloy 31 were 

typically on the order of nm in thickness and within the typical range for passive films 

formed on stainless steels (1-3 nm) [98]. In some cases, these values were slightly 

higher than 3 nm. As it has been mentioned above, thickness data are only 

approximations, since changes in the oxide film composition or morphology, as well as 

changes in the active area due to oxidation processes can alter the dielectric properties, 
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ε, of the film [76,89,93,94]. Moreover, when the passive film is very thin, the double 

layer capacitance may not be negligible [93]. Nevertheless, these values give an 

important indication of how thermogalvanic coupling altered the passive film thickness 

on the Alloy 31 electrodes. 

 

For the 400 g/l LiBr solution (Table 1), R1 increased for the cold electrode (which was 

always the anode of the pair), indicating that the outer layer formed on this electrode 

was less defective after the thermogalvanic coupling, whereas it hardly changed for the 

hot electrode (cathode). It can be seen that the increase in R1 for the anode was more 

noticeable as temperature increased, since higher temperatures favoured the anodic 

behaviour of the cold electrode. According to the C1 and d1 values, it can be said that 

the outer layer barely grew on both electrodes with time. R2 and Rp increased with 

coupling time for both electrodes, especially for the cold one (anode), evidencing an 

improvement of the protective properties of the inner layer. The inner layer grew 

significantly for the anode (cold electrode) during the thermogalvanic coupling, while 

its thickness remained constant for the cathode (hot electrode), as it can be observed 

from C2 and d2 values. The increase in R2 for the anode could be related to the 

considerable thickening of the inner layer without a noticeable increase in defect level 

or porosity, which implies a uniform growth of the passive film. 

 

For the 700 g/l LiBr solution (Table 2), R1 hardly varied at the end of the 

thermogalvanic coupling. In general, the outer layer of both electrodes grew to some 

extent at any temperature gradient. R2 and Rp increased with coupling time for both 

electrodes, especially for the anode, suggesting the development of a more protective 
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inner layer and, consequently, a more protective passive film. Nevertheless, in the case 

of the test carried out at 25ºC-50ºC, the raise in R2 and Rp was somewhat higher for the 

cathode (hot electrode), so the passive film formed on its surface was slightly more 

protective than the passive film formed on the anode (cold electrode). As it has been 

mentioned above, the latter result could be related to thermogalvanic current density 

values, since they were very low and continuous polarity reversals took place over the 6 

hours of test. The inner layer of the anode (cold electrode) grew uniformly with 

thermogalvanic coupling time, which was more perceptible at the highest temperature 

gradients (25ºC-75ºC and 25ºC-100ºC), whereas the C2 value for the cathode (hot 

electrode) hardly changed. 

 

For the 992 g/l LiBr solution (Table 3), at 25ºC-25ºC and 25ºC-50ºC, the hot electrode 

behaved as the anode of the pair, which was reflected in higher values of R2 and Rp, 

although neither the outer nor the inner layer grew with coupling time, suggesting an 

improvement in the passive film insulating properties and protectiveness without 

becoming thicker. The properties of the outer layer barely changed for both electrodes at 

these imposed temperature gradients. For the tests performed at 25ºC-75ºC and 25ºC-

100ºC there was a polarity reversal so both electrodes were the anode of the pair at 

some point in the tests. Thus, the impedance response of both cold and hot electrodes 

was similar in general terms, since the thickness of the passive film formed on both 

electrodes barely changed and R2 and Rp values increased significantly with coupling 

time. However, because of temperature (the hot electrode was submitted to 75ºC and 

100ºC), the total corrosion resistance of the cold electrode was better at the end of the 

tests, as the higher values of R2 and Rp denote. 
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Conclusions 

 

Thermogalvanic corrosion generated between the pair cold Alloy 31 – hot Alloy 31 in 

the studied LiBr solutions was not severe, since thermogalvanic current densities were 

rather small. However, the thermogalvanic coupling negatively affects the corrosion 

resistance of the cold anode. Furthermore, thermogalvanic corrosion will remain as long 

as temperature gradient exist, representing a dormant situation that can accelerate 

corrosion if the environment changes. 

 

Seebeck coefficient for the thermogalvanic pair cold Alloy 31 – hot Alloy 31 was found 

not to be dependant on LiBr concentration within the concentration range investigated. 

The positive values of this Seebeck coefficient indicate that the cold electrode of the cell 

was the anode of the thermogalvanic pair, validating the preceding results. 

 

Alloy 31 exhibited a passive behaviour in the three LiBr solutions and in the 

temperature range under study, according with the EIS diagrams, whose shape was 

characterized by very high impedance values with a highly capacitive behaviour, 

suggesting that a stable passive film formed on the electrodes surface. 

 

The EIS results indicated that the passive film formed on Alloy 31 in the studied LiBr 

solutions is composed of a bi-layered oxide consisting of an inner barrier layer an outer 

porous layer. The resistance of the outer layer (R1) depends strongly on its defective 

structure; thus, since R1 was far higher than the resistance of the LiBr electrolytes (RS), 

it indicates that the outer porous layer did not have a high degree of defects. 
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Nevertheless, it was the inner barrier layer that provided more protective properties to 

the passive film, since its impedance was higher than that of the outer layer. 

 

The protective properties of the outer layer did not experienced important changes at 

any temperature gradient, except for the tests performed in the 400 g/l LiBr solution, 

where the insulating properties and protectiveness of this outer layer improved for the 

anode of the pair (higher R1 values). 

 

The resistance of the inner layer increased with coupling time for both electrodes, 

especially for the anode. For the anode in 400 and 700 g/l LiBr solutions, this raise in R2 

was accompanied by a uniform thickening of the inner barrier layer. For the anode in 

the 992 g/l LiBr solution, the inner layer did not grow with coupling time, suggesting an 

improvement in the passive film insulating properties without becoming thicker. The 

thickness of the inner layer remained constant for the cathode of the thermogalvanic 

pair. These results evidence better protective properties of the passive film formed on 

the anode surface after the thermogalvanic coupling. Thus, the polarity of the electrodes 

during the thermogalvanic coupling had influence on the passive film properties. 
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Tables captions 

 

 

Table 1. 

 

Equivalent circuit parameters obtained by fitting the experimental results of EIS, for the thermogalvanic 

pair cold Alloy 31 – hot Alloy 31 in the 400 g/l LiBr solution at different imposed temperature gradients 

(BTC: before thermogalvanic coupling; ATC: after thermogalvanic coupling). 

 

 

Table 2. 

 

Equivalent circuit parameters obtained by fitting the experimental results of EIS, for the thermogalvanic 

pair cold Alloy 31 – hot Alloy 31 in the 700 g/l LiBr solution at different imposed temperature gradients 

(BTC: before thermogalvanic coupling; ATC: after thermogalvanic coupling). 

 

 

Table 3. 

 

Equivalent circuit parameters obtained by fitting the experimental results of EIS, for the thermogalvanic 

pair cold Alloy 31 – hot Alloy 31 in the 992 g/l LiBr solution at different imposed temperature gradients 

(BTC: before thermogalvanic coupling; ATC: after thermogalvanic coupling). 
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Figures captions 

 

 

Fig. 1.  

Electrochemical cell used for thermogalvanic corrosion tests. 

 

Fig. 2. 

Thermogalvanic potential and thermogalvanic current density temporal data of the pair cold Alloy 31 – 

hot Alloy 31 for a temperature gradient of 25ºC-75ºC in the (a) 400 g/l LiBr, (b) 700 g/l LiBr and (c) 992 

g/l LiBr solutions. 

 

Fig. 3. 

Mean values of thermogalvanic current density registered between the pair cold Alloy 31 – hot Alloy 31 

during each hour of the test at different imposed temperature gradients in the (a) 400 g/l LiBr, (b) 700 g/l 

LiBr and (c) 992 g/l LiBr solutions. 

 

Fig. 4. 

Mean values of thermogalvanic potential registered between the pair cold Alloy 31 – hot Alloy 31 during 

each hour of the test at different imposed temperature gradients in the (a) 400 g/l LiBr, (b) 700 g/l LiBr 

and (c) 992 g/l LiBr solutions. 

 

Fig. 5. 

Thermogalvanic potential (Eth) vs. temperature gradient (ΔT) for the three LiBr solutions under study. 

 

Fig. 6. 

Nyquist and Bode-phase plots for the pair cold Alloy 31 – hot Alloy 31 at OCP in the 400 g/l LiBr 

solution at the temperature gradients of (a) 25ºC-25ºC, (b) 25ºC-50ºC and (c) 25ºC-75ºC, before and after 

the thermogalvanic coupling (BTC and ATC, respectively). 

 

Fig. 7. 

Nyquist and Bode-phase plots for the pair cold Alloy 31 – hot Alloy 31 at OCP in the 700 g/l LiBr 

solution at the temperature gradients of (a) 25ºC-25ºC, (b) 25ºC-50ºC, (c) 25ºC-75ºC and (d) 25ºC-100ºC, 

before and after the thermogalvanic coupling (BTC and ATC, respectively). 
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Fig. 8. 

Nyquist and Bode-phase plots for the pair cold Alloy 31 – hot Alloy 31 at OCP in the 992 g/l LiBr 

solution at the temperature gradients of (a) 25ºC-25ºC, (b) 25ºC-50ºC, (c) 25ºC-75ºC and (d) 25ºC-100ºC, 

before and after the thermogalvanic coupling (BTC and ATC, respectively). 

 

Fig. 9. 

Thermogalvanic potential and thermogalvanic current density temporal data of the pair cold Alloy 31 – 

hot Alloy 31 for a temperature gradient of 25ºC-50ºC in the 700 g/l LiBr solution. 

 

Fig. 10. 

(a) Representation of the equivalent circuits used for a two-layer model of passive film and proposed for 

the interpretation of EIS spectra; (b) experimental results and simulated data for the pair cold Alloy 31 – 

hot Alloy 31 at OCP in the 400 g/l LiBr solution at the temperature gradient of 25ºC-75ºC, before and 

after the thermogalvanic coupling (BTC and ATC, respectively). 

 

 

 

 

 



Electrode RS (Ωcm
2
) R1 (kΩcm

2
) C1 (µF/cm

2
)  d1 (nm) R2 (kΩcm

2
) C2 (µF/cm

2
)  d2 (nm) RP (kΩcm

2
) dT (nm) 

25ºC-25ºC            

Cold and hot (BTC) 1.2 57.8 48.0 0.74 0.3 209 19.8 0.81 0.7 266.8 1.0 

Cold (ATC) 1.2 92.3 26.4 0.93 0.5 925 4.9 0.92 2.8 1017 3.3 

Hot (ATC) 1.5 31.7 26.4 0.95 0.5 522 23.8 0.83 0.6 554 1.1 

            

25ºC-50ºC            

Cold (BTC) 1.2 57.8 48.0 0.74 0.3 209 19.8 0.81 0.7 266.8 1.0 

Hot (BTC) 0.9 17.1 29.8 0.95 0.5 146 29.8 0.80 0.5 136.1 1.0 

Cold (ATC) 1.1 179 31.9 0.91 0.4 1140 3.2 0.86 4.3 1319 4.7 

Hot (ATC) 0.9 16.8 28.9 0.93 0.5 493 46.9 0.76 0.3 509.8 0.8 

            

25ºC-75ºC            

Cold (BTC) 1.2 57.8 48.0 0.74 0.3 209 19.8 0.81 0.7 266.8 1.0 

Hot (BTC) 0.7 1.9 31.6 0.95 0.4 178 72 0.84 1.9 179.9 2.3 

Cold (ATC) 1.1 922 31.5 0.90 0.4 1880 1.5 0.90 9.3 2802 9.7 

Hot (ATC) 0.7 1.7 30.7 0.90 0.4 427 187 0.83  > 0.1 428.7 0.4 

 

 

Table 1



Electrode RS (Ωcm
2
) R1 (kΩcm

2
) C1 (µF/cm

2
)  d1 (nm) R2 (kΩcm

2
) C2 (µF/cm

2
)  d2 (nm) RP (kΩcm

2
) dT (nm) 

25ºC-25ºC            

Cold and hot (BTC) 1.2 15 35.6 0.93 0.4 212 50 0.76 0.3 226.9 0.7 

Cold (ATC) 1.6 13.6 22.9 0.96 0.6 1950 52.2 0.81 0.3 1963.6 0.9 

Hot (ATC) 1.2 9.9 39.2 0.94 0.4 419 70.3 0.79 0.2 428.9 0.6 

            

25ºC-50ºC            

Cold (BTC) 1.2 15 35.6 0.93 0.4 212 50 0.76 0.3 226.9 0.7 

Hot (BTC) 0.9 6.9 35.0 0.92 0.4 222 63.7 0.77 0.2 228.9 0.6 

Cold (ATC) 1.1 10.4 24.2 0.95 0.6 1380 117 0.68 0.1 1390.4 0.7 

Hot (ATC) 1.0 7.0 28.3 0.92 0.5 1830 69.2 0.81 0.2 1837 0.7 

            

25ºC-75ºC            

Cold (BTC) 1.2 15 35.6 0.93 0.4 212 50 0.76 0.3 227 0.7 

Hot (BTC) 0.8 0.6 27.9 0.94 0.5 153 49.7 0.85 0.3 153.6 0.8 

Cold (ATC) 1.1 15.9 25.1 0.94 0.6 1390 22.3 0.83 0.6 1421.9 1.2 

Hot (ATC) 0.8 1.4 26.1 0.92 0.5 576 43.1 0.89 0.3 577.4 0.8 

            

25ºC-100ºC            

Cold (BTC) 1.2 15 35.6 0.93 0.4 212 50 0.76 0.3 227 0.7 

Hot (BTC) 0.6 1.7 38.3 0.92 0.4 79.3 100 0.85 0.1 81 0.5 

Cold (ATC) 1.0 4.2 20.7 0.89 0.7 3640 2.5 0.93 5.6 3644.2 6.3 

Hot (ATC) 0.6 0.4 26.9 0.96 0.5 86.2 183 0.82 0.1 86.6 0.6 

 

Table 2



Electrode RS (Ωcm
2
) R1 (kΩcm

2
) C1 (µF/cm

2
)  d1 (nm) R2 (kΩcm

2
) C2 (µF/cm

2
)  d2 (nm) RP (kΩcm

2
) dT (nm) 

25ºC-25ºC            

Cold and hot (BTC) 2.1 5.6 35.8 0.89 0.4 154 407 0.71 > 0.1 159.6 0.4 

Cold (ATC) 3.1 4.0 35.5 0.92 0.4 2900 1390 0.66 > 0.1 2904 0.4 

Hot (ATC) 2.2 9.2 32.4 0.95 0.4 796 101 0.83 0.1 805.2 0.5 

            

25ºC-50ºC            

Cold (BTC) 2.1 5.6 35.8 0.89 0.4 154 407 0.71 > 0.1 159.6 0.4 

Hot (BTC) 1.6 2.8 44.3 0.90 0.3 188 198 0.78 > 0.1 190.8 0.3 

Cold (ATC) 1.8 7.3 41.6 0.89 0.3 337 613 0.75 > 0.1 344.2 0.3 

Hot (ATC) 1.6 1.6 55.8 0.93 0.2 930 146 0.85 > 0.1 931.6 0.2 

            

25ºC-75ºC            

Cold (BTC) 2.1 5.6 35.8 0.89 0.4 154 407 0.71 > 0.1 159.6 0.4 

Hot (BTC) 0.9 6.4 34.2 0.82 0.4 147 703 0.84 > 0.1 153.4 0.4 

Cold (ATC) 2.5 5.0 31.8 0.92 0.4 6150 150 0.87 > 0.1 6155 0.4 

Hot (ATC) 0.9 1.8 25.9 0.85 0.5 1150 345 0.83 > 0.1 1151.8 0.5 

            

25ºC-100ºC            

Cold (BTC) 2.1 5.6 35.8 0.89 0.4 154 407 0.71 > 0.1 159.6 0.4 

Hot (BTC) 1.0 2.8 50.7 0.93 0.3 53.2 182 0.81 > 0.1 56 0.3 

Cold (ATC) 1.8 0.9 28.7 0.91 0.5 1630 2800 0.74 > 0.1 1630.9 0.5 

Hot (ATC) 0.9 3.0 51.4 0.93 0.3 545 207 0.83 > 0.1 548 0.3 

 

Table 3
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Figure 8
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