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ABSTRACT 

Nanostructured WO3 photoanodes have been synthesized by electrochemical 

anodization under controlled hydrodynamic conditions in acidic media in the presence 

of 0.05M H2O2. Subsequently, samples have been subjected to a thermal treatment 

(annealing) at different temperatures (400º C, 500º C and 600º C) and under different 

gaseous atmospheres (air, N2, Ar). The influence of these annealing conditions on the 

morphology, crystallinity, photoelectrochemical behavior and dopant chemistry of the 

different photoanodes has been investigated through Electronic Microscopy, Raman 

Spectroscopy, Photoelectrochemical Impedance Spectroscopy and Mott-Schottky 

analysis. In general, higher annealing temperatures resulted in samples with higher 

degrees of crystallinity, which in turn favored the transport of electron-hole pairs 

through the semiconducting photoanodes. Besides, an increase in annealing temperature 

implied higher densities of donor species within the samples structure, which can 

explain the observed enhancement in charge transfer. Annealing temperature was 

observed to have a more marked impact on the photoelectrocatalytic performance of 

WO3 nanostructures than the gaseous atmosphere. 

Keywords: WO3 nanostructures, photoanode, anodization, annealing conditions, 

photoelectrochemical impedance spectroscopy (PEIS). 
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1. INTRODUCTION 

Tungsten oxide (WO3) is considered as one of the most important photocatalytic 

materials due to its excellent properties such as its earth-abundance, its highly 

modifiable composition, high chemical stability in a range of moderate pH and excellent 

electrical conductivity [1–3], and its great variety of applications such as its use as a 

producer of clean energy. The global energy consumption is expected to increase even 

more during the next years as a result of the technological advances of society on a day-

to-day basis. Nowadays, most of the consumed energy comes from fossil fuels [4] such 

as oil, coke and natural gas but they will end up being depleted in the future. Moreover, 

these fossil fuels are not sustainable, leading to the drastic climate change that is 

occurring through global warming, as well as generating other types of pollution. Then, 

there is a great need to find renewable and environmentally friendly energy sources to 

reduce the environmental impact of fossil fuels and the full cost that this impact entails. 

WO3 is composed of units of perovskite, making it one of the most attractive candidates 

for its use in photoelectrocatalysis (PEC), since it can absorb up to 12% of the solar 

spectrum with a band gap (Eg) between 2.5 and 2.8 eV, a moderate hole diffusion length 

(~ 150 nm) compared to α-Fe2O3 (2-4 nm) and better electron transport (ca.12 cm2 V-1 s-

1) compared to TiO2 (0.3 cm2 V-1 s-1) [5–8]. In addition, WO3 is a n- type material, so it 

is used as a photoanode. It presents a high stability at low pH where the evolution of H2 

happens more efficiently. As mentioned above, WO3 absorbs a greater part of the 

sunlight than TiO2 and shows higher photocurrent densities in a steady state since it has 

a higher incident photon to current efficiency (IPCE) than the Fe2O3. Therefore, WO3 is 

considered more appropriate than, for instance, TiO2 and Fe2O3 for PEC applications. 

However, this material exhibits high recombination of the photogenerated electron-
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holes during the PEC process, which is an inconvenient when PEC is carried out in 

practice [9]. 

The crystal structure of WO3 is based on an ABO3 perovskite structure with three-

dimensional networks where WO6 octahedra are shared in the corners. However, due to 

the distortions related to antiferroelectric displacements of the W atoms and the mutual 

rotation of the oxygen octahedra, the structure of WO3 shows significant differences 

from the ideal perovskite structure showing five stable phases in a range of temperature 

that goes from 900⁰C to -180⁰C called tetragonal (α-WO3), orthorhombic (β-WO3), 

monoclinic I (γ-WO3), triclinic (δ-WO3) and monoclinic II (ε-WO3) [10]. Due to the 

distortion of the original octahedra, WO3 band gap increases significantly. This means 

that the crystallographic arrangement determines the band gap of the semiconductor, 

increasing from 1.6 eV to 2.4 eV of the monoclinic structure [11]. Among all crystalline 

structures, the monoclinic structure is the most stable and the most efficient in PEC 

applications [12,13]. In addition to the crystal structure, the crystalline facet also has a 

great effect on the PEC processes where WO3 participates since the overpotential that is 

required for photooxidation on the surface of WO3 is totally conditioned on the 

orientation of the crystals [14]. Among all the crystalline facets, (002) is the most 

suitable for adsorption, redox reactions and degradations of organic pollutants [15]. It 

has been shown that the facet (002) of WO3 facilitates the separation of photo-induced 

charges carrier and represses the formation of peroxo-species, producing a higher 

photocurrents and better photostability. 

It has been reported that 2D nanostructures (nanoflake / nanoplate / nanosheet) have 

improved properties with respect to 1D nanostructures since they can orthogonalize the 

directions of the absorption of the incident light by the long axes and charge carriers can 

move through the short radius, causing greater efficiency in the absorption of light and 
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in the collection of charge carriers, resulting in higher PEC efficiencies. In addition, the 

characteristic porous morphology allows photogenerated minority carriers to be 

accumulated in an orthogonal direction over short distances. With low minority carrier 

accumulation distances, high quantum yields (both external and internal) can be 

produced for accumulation of photogenerated charges [10]. 

Another important parameter to study is the temperature of the heat treatment that is 

given to the samples after their synthesis (annealing), since it has a great effect on the 

nanostructures converting their amorphous structure to a crystalline one. As the layers 

of WO3 contain a hydrated region, and therefore an amorphous structure, it must be 

transformed into a crystalline one to be used as electrochromic devices, in 

photoelectrochemical and photocatalytic processes, etc [16,17]. Heat treatment at high 

temperatures has been demonstrated to achieve that change, having a great influence on 

the morphology of the surface, on the crystal structure and on the phase transition 

[18,19]. 

In a previous work [20], it was observed that high annealing temperatures (600º C) 

enhanced the PEC performance of WO3 nanosheets/nanorods, increasing their 

efficiency as photoanodes for the degradation of persistent organic pollutants, such as 

the pesticide chlorfenvinphos. However, an exhaustive investigation about the influence 

of annealing conditions (temperature and atmosphere) on the PEC properties of WO3 

nanostructures is required. It is therefore necessary to develop and implement extensive 

characterization procedures, especially from an electrochemical and 

photoelectrochemical point of view, to systematically study the influence of different 

parameters on the photoelectrochemical performance of new nanostructured 

photoanodes. This is the main objective and the novelty of the present work. To 

accomplish this objective, the structural, morphological and photoelectrochemical 
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properties of WO3 nanostructures formed at various temperatures (400⁰ C, 500º C and 

600⁰ C) and under different atmosphere (air, N2 and Ar) were evaluated through Field 

Emission Scanning Electronic Microscopy  (FESEM), Confocal Raman Spectroscopy, 

Photoelectrochemical Impedance Spectroscopy (PEIS) and Mott-Schottky analysis. 

 

2. EXPERIMENTAL PROCEDURE 

2.1. Nanostructures fabrication 

WO3 nanostructures were fabricated by electrochemical anodization of tungsten 

cylinders (8 mm in diameter). Tungsten substrates were wet abraded with polishing 

paper grade 220, 1000 and 4000, rinsed with distilled water and dried with compressed 

air. Anodization was carried out in a 1.5 M H2SO4 + 0.05 M H2O2 solution, using a 

platinum mesh as the cathode of the electrochemical cell and the tungsten samples as 

the anode. Electrolyte temperature was 50º C and the cell potential 20 V. The tungsten 

electrode was continuously rotated at 375 rpm by using a Rotating Disk Electrode 

(RDE). The circular area of the electrode exposed to the electrolyte was 0.5 cm-2. After 

4 h of anodization, samples were annealed in a tubular oven using different 

temperatures (400º C, 500º C and 600º C; higher temperatures were also used but 

nanostructures were collapsed) and different gaseous atmospheres (air, N2 and Ar). 
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2.2. Morphological and structural characterization 

 

Field Emission Scanning Electronic Microscopy (FESEM) images were taken using a 

Zeiss Ultra 55 microscope, at 2 kV. Raman spectra were obtained with a confocal 

Raman microscope with a blue neon laser (488 nm). 

 

2.3. Photoelectrochemical characterization 

 

Photoelectrochemical characterization of the WO3 nanostructures was performed using 

a transparent quartz cell of 14 mL with a three-electrode configuration: a platinum tip 

counter electrode, an Ag/AgCl (3 M KCl) reference electrode and the nanostructures as 

the working electrodes. All tests were carried out in a 0.1 M H2SO4
 electrolyte by using 

an Autolab PGSTAT302N potentiostat and under simulated sunlight (AM1.5 

conditions) with a power intensity of 100 mW cm-2.  

 

WO3 nanostructures were immersed in the photoelectrochemical cell without 

illumination and an external bias of 1 V was applied. After stabilizing dark current 

densities, samples were irradiated. Photocurrent densities were recorded for 30 minutes 

under these conditions. After that, Photoelectrochemical Impedance Spectroscopy tests 

(PEIS) were carried out from 10 kHz to 10 mHz and applying a potential perturbation of 

10 mV. Subsequently, Mott-Schottky plots were constructed at 5 kHz by scanning the 

potential from 1 V to 0.2 V at a rate of 50 mV s-1. 
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3. RESULTS AND DISCUSSION 

 

Figure 1 shows all the FESEM images for the different WO3 samples after annealing in 

different atmospheres (air, N2 and Ar) at different temperatures (400º C, 500º C and 

600º C). Very small nanosheets or nanorods were formed in all the cases. Nevertheless, 

it can be observed that the morphology of these nanostructures became much more 

defined as annealing temperature increased. In fact, at 400º C and regardless of the 

annealing atmosphere, a nanosheet morphology with very small sizes was obtained, 

which was progressively transformed into nanorods at higher temperatures. At 600º C 

and for samples annealed in air and N2 atmospheres (Figure 1c and Figure 1f, 

respectively), a clear nanorod array morphology can be observed. According to Fan et 

al. [21], this kind of nanostructure offers efficient electron transfer from the WO3 to the 

back contact. The transformation from poorly defined nanosheets to clearly defined 

nanorods with increasing annealing temperature can be related to a higher degree of 

dehydration of the nanostructures, as explained in a previous work [20]. Other authors 

have also observed a change in WO3 nanostructures morphology with annealing 

temperature [21–26]. Concerning the influence of annealing atmosphere on the 

morphology and size of WO3 nanostructures, it can be observed that samples treated in 

air and N2 were similar, regardless of the temperature (Figures 1a-1c (air) and Figures 

1g-1i (Ar)). The samples annealed in an Ar atmosphere at 400º C and 500º C (Figure 1g 

and Figure 1h) were also similar to the ones annealed at the same temperature under air 

and N2. However, at 600º C, the sample annealed in Ar was different, since nanorods 

were not observed. Instead, very small and deformed nanoplates or nanoparticles were 

obtained. This morphology might prevent photogenerated charges from being 
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efficiently separated, hence reducing photoelectrochemical performance of 

nanostructures. 

 

Figure 2 shows the Raman spectra of all the WO3 samples. The shape of all the spectra 

is similar, regardless of the annealing conditions. Characteristics peaks of crystalline 

WO3 are observed in the plots: 125 cm-1, 195 cm-1, 275 cm-1, 715 cm-1 and 822 cm-1 

[27–29]. However, there are some differences. At 400º C, a very low-intensity band can 

be discerned at around 940-950 cm-1, as well as a shoulder at ~650 cm-1, which has been 

associated habitually with amorphous hydrated WO3 (WO3·xH2O) [27–30]. These 

bands disappeared as annealing temperature increased in air and N2 atmospheres 

(Figure 2a and Figure 2b), indicating a higher degree of dehydration and crystallinity 

of nanostructures treated under those conditions. At 600º C for air and N2 atmospheres 

(Figure 2a and Figure 2b), the peak centered at 330 cm-1 became much clearer. This 

peak has also been related to crystalline WO3 [27–29], confirming a higher crystallinity 

of samples annealed at 600º C in air an N2 atmospheres. On the other hand, spectra of 

samples treated at 600º C in Ar atmosphere (Figure 2c) did not show the same tendency 

as samples annealing in the other atmospheres. Therefore, it can be said that this sample 

was less crystalline than the other samples annealed at the same temperature in other 

gaseous atmospheres.  

 

The photoelectrocatalytic performance of the different nanostructures is shown in 

Figure 3. In this figure, the mean photocurrent density (iph) obtained under simulated 

solar light, applying an external potential of 1VAg/AgCl and after 30 min of stabilization, 

is represented for each temperature and annealing atmosphere. It can be seen that iph 
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values increased, in general, with increasing annealing temperature for all the 

atmospheres, except for the sample annealed in Ar at 600º C. The enhancement of 

photoelectrocatalytic performance with annealing temperature can be explained by a 

better crystallinity [25,26,31–33], as observed in Raman spectra, as well as by the 

nanorod morphology obtained at high temperatures, which has been associated before 

with a better electronic transport through the WO3 nanostructure. In fact, the transition 

from poorly ordered nanosheets at 400º C to defined and ordered nanorods at 600º C 

can enhance electron and hole transfer within the nanostructure, hence increasing the 

photoelectrochemical performance of samples annealed at high temperatures [21]. 

According to Figure 3, the best photoelectrochemical performance corresponded to the 

nanostructure annealed at 600º C in an air atmosphere. 

 

In order to study the mechanism of photocurrent generation in the WO3 nanostructures, 

and the influence of annealing conditions on the different electrochemical and 

photoelectrochemical phenomena taking place in the irradiated semiconducting 

nanostructures, Photoelectrochemical Impedance Spectroscopy (PEIS) experiments 

have been carried out. Figure 4 and Figure 5 show the Nyquist and Bode-phase plots 

under illumination for the different WO3 nanostructures, respectively. At first sight, 

only one semicircle was perceptible in the Nyquist plots. However, at high frequencies, 

a very small semicircle was also present (not shown). Besides, two peaks in Bode-phase 

plot for the sample annealed in air at 400º C could be clearly discerned, and a wide peak 

was evident in the rest of Bode plots, probably indicating the overlapping of two 

individual peaks. In Nyquist plots (Figure 4), the high-amplitude semicircle obtained at 

intermediate and low frequencies decreased, in general, with increasing annealing 

temperatures for all the atmospheres. When working with nanostructured semiconductor 
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under illumination conditions, this semicircle has usually been associated in the 

literature with the charge transfer of holes from either the valence band or surface states 

to the electrolyte [34–38], where they can oxidize the media to form species such as 

gaseous oxygen, hydroxyl radicals, oxidized organic matter, etc. Therefore, the low 

frequency semicircle related to charge transfer of holes dominated the impedance 

response of all the samples. Hence, the decrease of impedance values with increasing 

annealing temperatures indicates a better photoelectrochemical response of the 

nanostructures treated at 600º C in air and N2 atmospheres. However, in Ar atmosphere, 

is spite of the semicircle being similar in amplitude for the samples annealed at 500º C 

and 600º C, the photoelectrochemical response was lower at 600º C, due to morphology 

differences (see Figure 1i). The previous results are consistent with the photocurrent 

density responses observed above (Figure 3). To quantitatively analyze impedance 

results, an electric equivalent circuit has been used (Figure 6). In this circuit, RS is the 

electrolyte resistance, the first R1-CPE1 time constant has been related to electron-hole 

trapping in surface states or in the bulk semiconductor, while the second R2-CPE2 time 

constant has been associated with hole transfer from WO3 to the electrolyte [35–38]. 

Constant Phase Elements (CPE) have been used in this equivalent circuit to take into 

account the non-ideality of electrochemical capacitances.  

 

Values of the resistances that make up the equivalent circuit are shown in Table 1 for 

all the samples. It can be observed that R1 was always much lower than R2, as expected. 

In general, R2 decreased with increasing annealing temperature, indicating enhanced 

charge transfer of holes from the nanostructure to the electrolyte. A similar trend was 

observed by Zhu et al. [25]. In the case of the sample annealed at 600º C in an Ar 

atmosphere, it can be seen that the value of R2 was higher than at 500º C in the same 
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annealing atmosphere. This fact may be related to the morphology of nanostructures 

explained above, since at 600º C in Ar, deformed nanoplates were obtained (Figure 1i), 

which increased the charge transfer resistance of holes from the nanostructure to the 

electrolyte. 

 

Impedance results can also be used to determine the density of dopants in a 

semiconductor, by means of the Mott-Schottky equation for an n-type semiconductor 

(such as WO3): 

                                   
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211
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where C is the measured total interfacial capacitance, CH is the capacitance of the 

Helmholtz layer, εr is the dielectric constant of the semiconductor (50 for WO3 

nanostructures [23,39–41]), ε0 is the permittivity of free space (8.85·10-14 F/cm), e is the 

elementary charge (1.60·10-19 C), ND is the density of donors in the semiconductor, E is 

the applied potential, EEF is the flat-band potential, k is the Boltzmann constant 

(1.38·10-23 J/K) and T is the absolute temperature. 

 

According to equation (1), a plot of 1/C2 vs E should have a linear region with positive 

slope (for an n-type semiconductor), from which the value of ND can be obtained. Mott-

Schottky plots are shown in Figure 7. In all cases, a linear region with positive slope 

can be observed (marked in the plots). This region is related to the presence of donor 

species within the crystalline structure of WO3, such as W6+ interstitials or oxygen 
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vacancies. For samples annealed in N2 and Ar atmospheres, besides, another linear 

region with a much lower slope can be clearly observed at high potentials, especially for 

samples annealed at 400º C. The presence of this linear region at high potentials in the 

Mott-Schottly plots can be attributed to near-surface deep-level electronic states which 

are potential dependant [42,43] and that can therefore be charged or discharged, or to an 

unknown geometric factor [43]. The nature of these electronic states is not identified, 

although their relation with non-oxidizing atmospheres during annealing is evident. 

 

All samples provided lower 1/C2 values (higher capacitance values) and lower slopes 

when increasing annealing temperature, regardless of the used atmosphere. Results of 

density of donors are presented in Table 2. It can be seen that ND for samples annealed 

at 400º C and 500º C are similar, although slightly higher at 500º C. However, at 600º 

C, ND extensively increased for all samples, especially for the one annealed in the N2 

atmosphere. In general, there is a correlation between high photocurrent densities, low 

charge transfer resistances (R2) and high donor densities (ND). It is reasonable, since a 

high density of donor species would result in higher mobility of electron and holes 

within the WO3 nanostructures, hence reducing charge transfer resistances and 

enhancing the photoelectrochemical performance of photoanodes. 

 

The sample annealed at 600º C and in an air atmosphere has provided the highest 

photocurrent density values, showing an excellent photoelectrochemical behavior. This 

photoanode is, therefore, suitable to be used as high efficient photoelectrocatalysts in 

many environmental and energy applications. Consequently, besides presenting an 

extensive characterization procedure to investigate the properties of 
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photoelectrocatalysts, the present work can contribute in an important way to the 

progress in photoelectrochemical technology applied to the environmental (degradation 

of recalcitrant organic pollutants, such as pesticides) and energy (generation of H2 

through photoelectrochemical water splitting) fields. 

 

CONCLUSIONS 

• WO3 nanosheets were obtained annealing at 400º C, while nanorods were obtained 

at higher annealing temperatures (600º C). In the Ar atmosphere at 600º C, 

nanostructures were deformed. 

• As temperature increased from 400º C to 600º C, samples became completely 

crystalline and dehydrated. 

• The best photoelectrochemical performance was obtained for the sample treated at 

600º C in air. For samples annealed in Ar, photocurrent densities decreased at 600º 

C due to the poorly defined nanostructures. 

• Hole transfer resistance decreased in general with increasing annealing 

temperatures, indicating enhanced charge transfer of holes and, consequently, 

improved photoelectrocatalytic properties. 

• The density of dopant species (donor) increased with increasing annealing 

temperature. Therefore, there is a direct correlation between high photocurrent 

densities, low hole transfer resistances and high donor densities. 
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Tables and Figures captions 

Table 1. Resistance values of the the WO3 nanostructures annealed at different 
temperatures and in different atmospheres. 

 

Table 2. Density of donors, ND, of the the WO3 nanostructures annealed at different 
temperatures and in different atmospheres. 

 

Figure 1. FESEM images of the WO3 nanostructures annealed in an air atmosphere at 
a) 400º C, b) 500º C and c) 600º C; in a N2 atmosphere at d) 400º C, e) 500º C and f) 
600º C; in an Ar atmosphere at g) 400º C; h) 500º C and i) 600º C. 

 

Figure 2. Raman spectra of WO3 nanostructures annealed at different temperatures in a) 
air; b) N2 and c) Ar. 

 

Figure 3. Mean values of photocurrent density for the WO3 nanostructures annealed at 
different temperatures and in different atmospheres, obtained under simulated solar light 
applying an external potential of 1VAg/AgCl and after 30 min of stabilization 

 

Figure 4. Nyquist plots under simulated solar light AM1.5 for the WO3 nanostructures 
annealed at different temperatures in a) air; b) N2 and c) Ar. 

 

Figure 5. Bode-phase plots under simulated solar light AM1.5 for the WO3 
nanostructures annealed at different temperatures in a) air; b) N2 and c) Ar. 

 

Figure 6. Electric equivalent circuit used to analyze EIS data. 

 

Figure 7. Mott-Schottky plots under simulated solar light AM1.5 for the WO3 
nanostructures annealed at different temperatures in a) air; b) N2 and c) Ar. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Table 1 

Atmosphere T/ºC RS/Ω cm2 R1/Ω cm2 R2/kΩ cm2 

Air 
400 29 ± 3 159 ± 11 11.8 ± 1.6 
500 44 ± 9 107 ± 26 7.6 ± 1.3 
600 28 ± 6 26 ± 7 3.0 ± 0.9 

N2 

400 27 ± 6 5 ± 1 10.1 ± 4.0 
500 32 ± 2 31 ± 5 2.7 ± 0.3 
600 27 ± 3 22 ± 9 2.9 ± 0.4 

Ar 
400 37 ± 8 16 ± 2 14.9 ± 0.8 
500 27 ± 1 32 ± 9 7.4 ± 0.1 
600 22 ± 4 21 ±3 9.6 ± 3.7 
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Table 2 

 

Atmosphere T/ºC ND (× 1019 cm-3) 

Air 
400 2.6 ± 0.3 
500 2.9 ± 0.5 
600 20.4 ± 8.6 

N2 

400 4.7 ± 2.7 
500 5.2 ± 1.5 
600 45.8 ± 27.7 

Ar 
400 3.3 ± 1.6 
500 4.5 ± 3.6 
600 16.1 ± 7.0 

 

 

 

 

 


