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This work studies the electrochemical and photoelectrochemical properties of a new 

type of TiO2 nanostructure (nanosponge) obtained by means of anodization in a 

glycerol/water/NH4F electrolyte under controlled hydrodynamic conditions. For this 

purpose different techniques such as Scanning Electronic Microscopy (SEM), Raman 

Spectroscopy, Electrochemical Impedance Spectroscopy (EIS) measurements, Mott-

Schottky (M-S) analysis and photoelectrochemical water splitting tests under standard 

AM 1.5 conditions have been carried out. Obtained results have shown that electron-

hole separation is facilitated in the TiO2 nanosponge if compared with highly ordered 

TiO2 nanotube arrays. As a result, nanosponges enhance the photoelectrochemical 

activity for water splitting. 
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1. INTRODUCTION 

 

Titanium dioxide (TiO2) is widely used as a pigment, as a catalyst support and as a 

photocatalyst, among others 1. This last application has attracted a great scientific and 

technological interest over the last years [1-38] due to the exclusive set of properties of 

TiO2, such as a high chemical stability, resistance to photocorrosion and favourable 

band-edge position relative to the redox potentials for the decomposition of water, 

allowing for effective direct water splitting using light. 

 

TiO2 is habitually used in form of nanostructures, such as nanoparticles [24, 30, 37], 

nanorods/nanowires [20, 26, 37] or nanotubes [1, 6-9, 13-15, 17-19, 22-36, 38], to 

obtain high specific surfaces areas and, thus, to increase the photocatalytic activity. In 

the last years, TiO2 nanotubes have gained increasing attention since they have several 

advantages with respect to other nanostructures due to their perfectly defined geometry 

(highly ordered nanotube arrays and a very precise control of their dimensions using the 

process of anodization for their synthesis) [1]. Furthermore, as the oxide nanotubes 

formed by anodization are grown directly on the metal substrate (back contact), they can 

be used directly as photoanodes, thus avoiding compaction or sintering of TiO2 

nanoparticles on the metallic substrate. 

 

In recent publications, the influence of hydrodynamic conditions on the anodization 

process has been evaluated [31], and it has been observed that under flux conditions the 

geometry of the formed nanostructures is different from that obtained under stagnant 

conditions, i.e., nanotubes. This new nanostructure, called nanosponge, provides better 

performance than tube morphologies, for example, for the water splitting process [31]. 



 3 

In the present work, TiO2 nanotubes and nanosponges have been obtained by 

anodization in a glicerol/water/NH4F mixture using different hydrodynamic conditions. 

The morphology and electronic properties of both nanostructures have been studied 

through different techniques, such as Scanning Electronic Microscopy (SEM), Raman 

Spectroscopy, Electrochemical Impedance Spectroscopy (EIS) measurements and Mott-

Schottky (M-S) analysis. These properties have been correlated to the performance of 

both nanostructures as photocatalysts for water splitting. 

 

2. MATERIALS AND METHODS 

 

Anodization under hydrodynamic conditions was performed in a 2-electrode 

electrochemical cell with a rotating electrode configuration. The anode was a Teflon 

coated titanium rod (8 mm diameter, 99.3% purity) in a rotating electrode setup. For all 

experiments, 0.5 cm
2
 of the sample was exposed to the electrolyte. Prior to the 

anodization process, the titanium rod surface was abraded with 500 to 4000 silicon 

carbide (SiC) papers, in order to obtain a mirror finish. After this, the sample was 

sonicated in ethanol for 2 min and dried in a N2 stream. For anodization a voltage 

source was used, where the titanium rod served as working electrode and a platinum 

mesh acted as counter electrode. The electrolyte for these experiments was a mixture of 

glycerol/water/ammonium fluorine at a concentration of 0.27 M NH4F in glycerol/water 

(60:40 vol.%). Different rotation speeds were used: 0, 654, 1307, 1961 and 2614 rpm 

corresponding to Reynolds numbers (Re) of 0, 100, 200, 300 and 400. The Reynolds 

numbers (Re) were calculated as follows:  

 

                                                               
μ

·ρω·r
Re

2

                                                      (1) 
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where ω is the rotation speed expressed in rad s
−1

, r is the radius of the working 

electrode in cm and ρ and μ are the density in g cm
−3

 and dynamic viscosity in               

g cm
−1

 s
−1

 of the solution, respectively [39].  

 

The specimens were anodized at 30 V by increasing the potential from zero to the 

desired value at a rate of 200 mV s
−1

, followed by keeping the end potential for 3 hours. 

To compare the electrochemical and photoelectrochemical behavior of TiO2 

nanostructures with that of a compact TiO2 layer, this layer was obtained anodizing the 

titanium rod in the same electrochemical cell, i.e., using platinum as counter electrode 

in 1M H2SO4 at 30 V for 20 min under stagnant conditions. 

 

After each test, a field-emission scanning electron microscope (FE-SEM) was used for 

morphological characterization of the obtained samples. For electrochemical (EIS and 

M–S measurements) and photoelectrochemical water splitting measurements, the 

asformed TiO2 layers were annealed in a furnace at 450 °C (heating at 30 ºC s
-1

) in air 

for 1 h. The materials were also examined by Raman spectroscopy (“Witec Raman 

microscope”) after the heat treatment, in order to evaluate their crystalline structure. For 

these measurements, a 632 nm neon laser with 420 W was used. 

 

For the electrochemical and photoelectrochemical water splitting tests, a three-electrode 

configuration was used. The area of the TiO2 nanostructures (working electrode) 

exposed to the test solution was 0.13 cm
2
. A saturated Ag/AgCl (3 M KCl) electrode 

was the reference electrode, and a platinum tip was the counter electrode. 
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The electrochemical measurements were conducted in a 0.1 Na2SO4 solution using an 

Autolab PGSTAT302N potentiostat under dark conditions (without irradiation). EIS 

experiments were conducted at the open circuit potential (OCP) over a frequency range 

from 100 kHz to 10 mHz with a 10 mV (peak to peak) signal amplitude. Mott–Schottky 

plots were subsequently obtained by sweeping the potential from the OCP in the 

negative direction at 10 mV s
-1

 with an amplitude signal of 10 mV at a frequency value 

of 10 kHz. 

 

The photoelectrochemical experiments were carried out under simulated sunlight 

condition AM 1.5 (100 mW cm
2
) in a 1M KOH solution. Photocurrent vs. voltage 

characteristics were recorded by scanning the potential from −0.8 V to +0.5 V with a 

scan rate of 2 mV s
-1

. Photocurrent transients as a function of the applied potential were 

recorded by chopped light irradiation (60 s in the dark and 20 s in the light). Samples 

were left at +0.5 V in the light for one hour, in order to evaluate their stability to the 

photocorrosion attack.  

 

3. RESULTS AND DISCUSSION 

 

Figure 1 shows the scanning electron microscope (SEM) images of the TiO2 

nanostructures obtained under stagnant conditions (Re = 0, Figure 1a) and under 

hydrodynamic conditions (Re = 300, Figure 1b). Under stagnant conditions, organized 

nanotubes of 1.3 m in length with pore diameters of 130 and 224 nm in inner and outer 

diameter were formed. On the other hand, the hydrodynamic conditions changed the 

morphology of the formed nanostructures from nanotubes to nanosponges, i.e., a 

connected and highly porous TiO2 structure. Figure 2 shows that the thickness of the 
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nanosponges is enhanced in comparison to that obtained for the nanotubes. 

Additionally, an increase in the rotation rate made nanosponges thicker (from 2 to 

nearly 3.5 m). The formed nanosponges have pore openings of roughly 50 nm. 

 

3.2. Raman Spectra 

As an example, Figure 3 shows the spectra of as-prepared and annealed TiO2 

nanostructures for Re = 0 and Re = 300. Raman peaks originate from the molecular 

bond and provide useful information such as crystal structure, phase purity and 

crystallinity. The as-prepared TiO2 does not clearly show defined peaks and only a 

single baseline is present. According to other studies [40, 41], there are six active RS 

bands for anatase, i.e.: 144 cm
-1

 (Eg), 197 cm
-1

 (Eg), 399 cm
-1

 (B1g), 513 cm
-1

 (A1g), 519 

(B1g) and 639 (Eg). For species after annealing, the specific bands were recorded in the 

range of 149 cm
-1

, 197 cm
-1

, 398 cm
-1

, 516 cm
-1

, 637 cm
-1

. These results show that the 

heat treatment improves the crystallinity of TiO2 and the peaks obtained correspond to 

TiO2 anatase phase. 

 

3.3. EIS measurements 

 

Figure 4 shows the experimental Nyquist and Bode plots for the compact TiO2 film and 

TiO2 nanostructures formed at different Re, measured in a 0.1M Na2SO4 solution at 

open circuit potential under dark conditions and at 25º C. In the case of the compact 

TiO2 film, Nyquist and Bode plots exhibit the typical passive state behavior 

characterized by a semicircular shape and high impedance values in the Nyquist and 

Bode-module plots (Figures 4(a) and 4(d)), as well as phase angles close to 90 degrees 

(Figure 4(c)), suggesting the formation of a highly stable TiO2 passive film on the Ti 
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electrode [42]. The presence of a shoulder in the Bode-phase plot at intermediate 

frequencies (Figure 4(c)) suggests the existence of two time constants. 

 

In the case of the TiO2 nanostructures (nanotubes and nanosponges), the presence of 

two well-defined time constants can be observed, which could be associated with the 

nanoporous nature of the TiO2 layer [27]. The shape of the EIS plots is characterized in 

this case by a distorted small semicircle at high frequencies followed by an unfinished 

semicircle at low frequencies, with a much higher amplitude (Figures 4(b) and 4(c)). In 

this case, impedance values are clearly lower than for the compact TiO2 film (Figures 

4(a) and 4(d)). It can be observed from the inset in Figure 4(b) that the amplitude of 

the small semicircle at high frequencies is larger for Re = 0 and decreases with 

increasing Re values. Furthermore, two peaks are perfectly discernible from Bode-phase 

plots, the peak at low frequencies being always higher than that at high frequencies, 

regardless of the value of Re.  

 

Experimental EIS data can be represented with an electrical equivalent circuit made up 

of two RC time constants associated in series (Figure 5). This equivalent circuit has 

been used in the literature to model the impedance data of compact and nanoporous 

TiO2 films [7, 8, 14, 27, 34, 43]. Constant phase elements (CPEs) have been used 

instead of pure capacitors to account for frequency dispersion and non-ideality. CPEs 

have been converted into pure capacitances, C, by using the following equation [44, 

45]:  

 

                                                              
 

R

RQ
C

/1


                                                   (2) 
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where Q is the impedance of the CPE and R corresponds to R2 when determining 

capacitance values of the second time constant in Figure 5. To determine C1 from 

CPE1, R has been calculated as follows:  

                                                               

                                                               
1

111

RRR S

                                                   (3) 

 

The values of the equivalent circuit parameters are shown in Table 1, where RS is 

always the electrolyte resistance. In the case of the compact TiO2 film the time constant 

at high frequencies (R1CPE1) is related to the outer layer of the passive film, and the 

low-frequency behavior is attributed to the inner layer of the film, more compact than 

the outer one [42, 43]. In the case of the nanostructured TiO2 layers, and according to 

the obtained values, the R1CPE1 time constant is related to the TiO2 nanoporous 

structure [5, 14, 22], whereas the R2CPE2 time constant is associated with the charge 

transfer processes at the bottom of the TiO2 layer [5, 14] or with a compact TiO2 

underlayer [7, 8, 22]. 

 

The values of R1 and R2 for the compact TiO2 film are of the order of hundreds of       

kΩ cm
2
 (Table 1). In the case of the nanostructures, it can be observed that R2 values 

are similar to those obtained for the compact TiO2 film and are significantly higher (two 

orders of magnitude) than the values associated with the internal resistance of the 

nanostructures, R1. These results imply, first, that in the case of the TiO2 nanostructures 

R2 can be associated with a compact TiO2 underlayer; second, that the nanoporous 

overlayer (TiO2 nanotubes and nanosponges) has a higher surface area and higher 

density of defects than the compact TiO2 underlayer, leading to a higher conductivity 

compared to the base oxide [22, 27].  
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The CPE1 constant, α1, takes values of 0.7-0.8 and is always lower than α2, the latter 

being close to unity in all cases. These results imply a significantly rough morphology 

of the nanoporous TiO2 overlayer (nanotubes and nanosponges), more conductive and 

defective than the underlying TiO2 layer whose behavior approximates that of an ideal 

capacitor [27, 34]. For the nanoporous structures, C1 values are considerably lower than 

those of C2, regardless of the value of Re. Besides, C2 values are visibly higher in the 

case of the nanostructures than for the compact TiO2 film. The high values obtained for 

C2 can be explained by a decrease in the TiO2 underlayer thickness or by an increase in 

the porosity of this layer as a consequence of a transition from a mostly compact inner 

layer to a porous layer [7, 27]. 

 

Concerning the comparison between the different nanostructures obtained in this work 

(nanotubes and nanosponges), the resistance of these nanostructures, R1, decreases with 

increasing Re, indicating that the nanosponges formed under hydrodynamic conditions 

possess higher electrical conductivity than the nanotubes formed under stagnant 

conditions. No clear tendency of R2 values is observed with Re, indicating that the 

electrical properties of the compact TiO2 underlayer are not dependant on the 

hydrodynamic conditions. Together with the lower values of α1 in the case of Re > 0, 

the previous results indicate a higher degree of porosity in the nanosponges formed 

under hydrodynamic conditions compared with the nanotubes formed with Re = 0 . The 

decrease in C1 with increasing Re can be explained by a decrease in the density of 

charge carriers in the nanosponges [35], as it will be verified later with Mott-Schottky 

analysis. 
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3.4. Mott-Schottky analysis 

 

Figure 6(a) shows the Mott-Schottky plots at a frequency of 10 kHz for the compact 

TiO2 film and TiO2 nanostructures formed at different Re, measured in a 0.1M Na2SO4 

solution at open circuit potential under dark conditions and at 25º C. These plots have 

been obtained at a frequency of 10 kHz since at this high value the capacitance 

dependence on frequency is eliminated [16, 42, 46]. Figure 6(b) is a magnification and 

only shows the M-S plots for the TiO2 nanostructures. The positive slopes of the M-S 

plots are characteristics of n-type semiconductors, with the dominant defects in TiO2 

being oxygen vacancies due to their lower formation energy compared with Ti
3+

 

interstitials [22, 38, 47-51]. It can be observed that capacitance values are notably lower 

for the compact TiO2 layer (higher values of C
-2

), which is consistent with capacitance 

values obtained above by EIS (Table 1). 

 

The donor density, ND, can be determined from the positive slopes of the straight lines 

in the M-S plots using the Mott-Schottky equation for an n-type semiconductor. 

Although the M-S equations were derived based on a flat electrode, this analysis has 

been widely used to irregular geometries with porous surfaces such as nanostructures [7, 

8, 22, 25, 27, 30, 37, 38, 46, 52]. Hence, a qualitative comparison between ND values 

obtained for different TiO2 layers and nanostructures is valid. The M-S expression for 

ND is [42, 47, 53]: 

 

                                                             
 e

N D

0

2
                                                       (4) 
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where ε is the dielectric constant of the TiO2 layers (a value of 60 has been assumed for 

the compact TiO2 film [49] and a value of 100 for the TiO2 nanostructures [34, 38]), ε0 

is the vacuum permittivity (8.85·10
-14

 F/cm), e is the electron charge (1.60·10
-19

 C) and 

σ is the positive slope of each straight line in the M-S plots.  

 

The ND values have been calculated using the geometric area of the electrodes and are 

presented in Table 2. It can be observed that ND is of the order of 1 × 10
18

 cm
-3

 for the 

compact TiO2 film, while the values for the different nanostructures are considerably 

higher, of the order of 1-4 × 10
19

 cm
-3

. The increase in oxygen vacancies density should 

improve the n-type character of the TiO2 nanostructures and thus enhance the electron 

transport along the nanostructures [22, 30, 37].  

 

On the other hand, in the case of the TiO2 nanostructures, ND decreases with increasing 

Re, that is, ND is lower for the nanosponges than for the nanotubes. Although the 

increase in ND can be a positive effect, since this fact increases the electrical 

conductivity of TiO2, an increase in ND can also lead to a decrease in the depletion layer 

thickness, resulting in an increase of recombination losses [4, 16, 54]. If the depletion 

layer is very thin, photons can penetrate beyond this layer and light will be absorbed in 

the bulk semiconductor, where the electrical field is absent [4, 16, 54, 55]. The lack of 

an electrical field prevents the photo-excited electron-hole pairs from being effectively 

separated, thus increasing the probability of recombination [4, 16, 27, 54]. Furthermore, 

oxygen vacancies in TiO2 have been found to act as recombination centers for electron 

and holes, playing a critical role in the trapping process: an excess of oxygen vacancies 

will result in more photogenerated electrons being trapped thus decreasing their 

contribution to the photoelectrochemical processes [37, 56, 57]. 
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The recombination probability is also affected by the flat-band potential, ϕFB, which is 

the potential that needs to be applied to the semiconductor to reduce the band bending to 

zero, that is, at this potential there is no depleted space charge layer. The ϕFB value is 

related to the potential drop at the depletion space charge layer, ϕSC, and the applied 

external potential, ϕA, according to: 

 

                                                          FBASC                                                          (5) 

 

Assuming a constant value of ϕA, the higher and more negative the value of ϕFB, the 

higher the value of ϕSC and, consequently, the stronger the electrical field within the 

depleted space charge layer, which is the driving force to separate the photogenerated 

electron-hole pairs. Therefore, to reduce the recombination probability ϕFB should be 

high and negative [16, 37]. 

 

Values of ϕFB can be determined from the intercept of the straight line in M-S plots with 

the potential axis. These values for the compact TiO2 film and for the different 

nanostructures are also shown in Table 2. It can be observed that ϕFB is more negative 

for the compact TiO2 film, which indicates that the recombination probability is lower 

than for the TiO2 nanostructures. However, the low values of ND in the compact film 

reduce considerably its photoelectrochemical performance, as it will be demonstrated 

later. On the other hand, ϕFB becomes more negative with increasing Re, that is, 

nanosponges formed under hydrodynamic conditions possess more negative values of 

ϕFB than nanotubes formed under stagnant conditions. This negative shift of ϕFB leads to 

a displacement of the Fermi level towards the conduction band edge and, consequently, 

to a larger band bending and electrical field within the depleted space charge layer [22, 
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26, 37]. Therefore, from the point of view of the charge recombination probability, 

these results indicate that this probability is lower in the case of the nanosponges. 

 

3.5. Photoelectrochemical water splitting measurements 

 

Figure 7 shows the photoelectrochemical water splitting performance under simulated 

sunlight AM 1.5 conditions for the different nanostructures. It can be observed in terms 

of the photocurrent transient vs. potential curves, that the nanostructures obtained under 

hydrodynamic conditions, present a higher performance in comparison with the 

nanotubes (anodized at the same potential, time and electrolyte as the nanosponges but 

at Re = 0) and a significantly higher photoelectrochemical behavior with respect to the 

compact TiO2 layer. The high photocurrent density of the nanosponges, especially when 

Re increases, is directly related to their superior electrical conductivity [14]. These 

results are in well agreement with the EIS (resistance values) and MS measurements 

(ND and FB values). It is known that a large population of surface-active sites due to the 

increase in thickness in the nanosponges will lead to the enhanced rate of the 

photoelectrochemical reaction over the photoelectrode [28, 58]. In order to know if the 

photocurrent increase was due to the higher thickness of the nanosponges or due to its 

intrinsic morphology which could proporcionate a high surface area, photocurrent 

transient vs potential curves were performed for thicker nanotubes (~4 m, anodized at 

55V in ethylenglycol based electrolytes with 2 wt. % of water and 0.1M of NH4F and 

annealed at 450 ºC). Figure 8 shows that the photocurrents obtained for the nanotubes 

are lower than for the thicker nanosponges (obtained at Re = 400). In fact, the 

photocurrent obtained for the nanotube morphology is lower than the obtained for the 
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rest of thinner nanosponges. This confirms the suitability of the nanosponge 

morphology for photocatalysis purposes. 

 

Furthermore, the maximum and minimum for light on and light off shown in Figure 7 

describe two competitive processes, i.e., the former related to the generation of electron-

hole pairs at the semiconductor/electrolyte interface and the latter to the recombination 

of theses pairs [2, 4, 16, 59, 60]. Figure 7 shows that the initial anodic peak (maximum) 

is present for all the nanosponges and nanotubes. On the other hand, when the light is 

switched off, a cathodic peak is observed only for the nanotubes and for the 

nanosponges synthesised at the lowest Re (Re = 100), due to the recombination of the 

conduction band electrons with the holes trapped at the surface, consequently 

decreasing their photocurrent response. 

 

It is remarkable that for both nanotubes and nanosponges, the photocurrent under 

illumination increases with the applied potential until a potential value of -0.2 V 

whereas for the compact layer photocurrents remains almost constant from the 

beginning of the tests. On the other hand, a dark current remains very low in all the 

studied samples.  

 

Additionally, it is important to highlight that the nanosponges obtained under 

hydrodynamic conditions do not deteriorate with time. Figure 9 shows as an example, 

the photostability in 1 M KOH solution during 1 hour of the different nanostructures 

holding at 500 mV the potential under AM 1.5 illumination. From Figure 9 it can be 

clearly observed that nanosponges synthesized at higher Reynolds numbers are stable 

with time. 
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4. CONCLUSIONS 

 

The use of controlled hydrodynamic conditions during titanium anodization generates a 

TiO2 interlinked with high surface area morphology (nanosponge morphology).  

 

An increase in ND has been observed for the TiO2 nanostructures (nanotubes and 

nanosponges) compared with the compact TiO2 layer, which improves the n-type 

character of the nanostructures and enhances electron transport. On the other hand, ND 

is lower for the nanosponges than for the nanotubes, which results in thicker depleted 

layers in the case of the nanosponges that provide a strong electric field essential for a 

successful separation of photogenerated electrons and holes.  

 

The displacement of the ϕFB towards more negative values in the case of the 

nanosponges (with increasing Re) results in an up-shift of Fermi level towards the 

conduction band and a somewhat larger band bending, which facilitate electron-hole 

separation.  

 

TiO2 nanosponges enhance the photoelectrochemical activity for water splitting 

compared with nanotubes and compact TiO2 layers, in particular those anodized at 

higher Reynolds numbers, as a consequence of higher surface areas and a better charge 

separation. 

 

TiO2 nanosponges synthesized at high Reynolds numbers have been demonstrated to be 

stable with time. 
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Tables captions 
 

 

Table 1. Equivalent circuit parameters for TiO2 compact layer and TiO2 nanostructures 

(nanotubes and nanosponges) at different values of Re. 

 

Table 2. Values of ND and ϕFB for TiO2 compact layer and TiO2 nanostructures 

(nanotubes and nanosponges) at different values of Re. 

 

Figures captions 

 

 

Figure 1. SEM images of the TiO2 nanostructures (a) under stagnant conditions (Re = 

0) and (b) under hydrodynamic conditions (Re > 0). 

 

Figure 2. Length of the nanotubes (Re = 0) and nanosponges (Re > 0) as a function of 

Re. 
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Figure 3. Raman spectra of as-prepared and annealed TiO2 nanostructures for Re = 0 

and Re = 300. 

 

Figure 4. Experimental Nyquist (a, b), Bode-phase (c) and Bode-module (d) plots for 

the compact TiO2 film and TiO2 nanostructures formed at different Re values. 

 

Figure 5. Electrical equivalent circuit used to simulate experimental EIS data. 

 

Figure 6. (a) Mott-Schottky plots obtained at a frequency of 10 kHz for the compact 

TiO2 film and TiO2 nanostructures formed at different Re values; (b) magnification of 

Figure 6(a) showing only the M-S plots for the TiO2 nanostructures. 

 

Figure 7. Photocurrent transient vs. potential curves for the compact TiO2 film and 

TiO2 nanostructures formed at different Re values under simulated sunlight AM 1.5 

illumination. 

 

Figure 8. Photocurrent transient vs. potential curves for ~4 m nanotubes and ~3.5 m 

nanosponges under  AM 1.5 illumination. 

 

Figure 9. Photostability experiments carried out in a 1M KOH solution at 500 mV 

under AM 1.5 illumination. 

 

 

 

 

 

 

 



Re RS/Ω cm2 C1/µF cm-2  R1/kΩ cm2 C2/µF cm-2  R2/kΩ cm2 x10-3) 

0 41 ± 4 69 ± 12 0.84 ± 0.05 8.9 ± 2.6 365 ± 63 0.95 ± 0.09 576 ± 42 5 

100 36 ± 6 71 ± 10 0.65 ± 0.03 3.6 ± 1.2 434 ± 101 0.98 ± 0.04 289 ± 27 4 

200 43 ± 6 40 ± 8 0.68 ± 0.02 2.8 ± 0.5 505 ± 112 0.99 ± 0.01 454 ± 55 2 

300 31 ± 7 33 ± 5 0.68 ± 0.07 2.4 ± 0.2 477 ± 116 0.97 ± 0.07 432 ± 104 8 

400 31 ± 3 10 ± 2 0.70 ± 0.03 2.1 ± 0.4 902 ± 208 0.89 ± 0.06 860 ± 282 9 

         

COMPACT 39 ± 6 3 ± 1 0.71 ± 0.02 201 ± 23 29 ± 6 0.96 ± 0.04 255 ± 43 0.3 

 

Table 1



Re ND (× 10
19 

cm
-3

) FB/V vs (Ag/AgCl) 
0 3.6 ± 0.6 -0.15 ± 0.07 

100 1.4 ± 0.3 -0.17 ± 0.04 

200 1.1 ± 0.1 -0.17 ± 0.02 

300 1.1 ± 0.2 -0.21 ± 0.01 

400 0.9 ± 0.1 -0.33 ± 0.03 

   

COMPACT 0.17 ± 0.01 -0.55 ± 0.01 

 

Table 2



a) Re = 0 

1 mm

 
 

b) Re = 300 

1 mm
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