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The rich and complex chemistry of tungsten was employed to synthesize innovative 

WO3 nanoplatelets/nanosheets by simple anodization in acidic electrolytes containing 

different concentrations of complexing agents or ligands, namely F- and H2O2. The 

morphological and photoelectrochemical properties of these nanostructures were 

characterized. The best of these nanostructures generated stable photocurrent densities 

of ca. 1.8 mA cm-2 at relatively low bias potentials (for WO3) of 0.7 VAg/AgCl under 

simulated solar irradiation, which can be attributed to a very high active surface area. 

This work demonstrates that the morphology and dimensions of these nanostructures, as 

well as their photoelectrochemical behavior, can be controlled by adjusting the ligand 

concentration in the electrolytes, hence providing an easy and non-expensive route to 

fabricate and customize high-performance nanostructured photocatalysts for clean 

energy production and environmental applications. 
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1. Introduction 

 

Tungsten trioxide (WO3) is an n-type semiconductor oxide which has been studied in 

detail due to its attractive optical, electrical and photocatalytic properties. In particular, 

WO3 is an attractive photoanode material owing to its high electron mobility, moderate 

hole diffusion length (≈150 nm) and non-toxicity. Besides, WO3 can also absorb a part 

of the visible rays of the solar spectrum (its band-gap is Eg ≈ 2.6 eV, which corresponds 

approximately to a wavelength of ∼480 nm) [1-4]. Tungsten trioxide has been employed 

in technologically advanced fields, such as photoelectrochemistry and photodegradation 

of organic pollutants [4-14], dye-sensitized solar cells [15], gas sensors [16] or 

electrochromic devices [17-19]. 

 

The design and fabrication of semiconductor oxides in nanostructured form for their use 

as photoelectrocatalysts is a novel and growing discipline of materials chemistry. 

Nanostructured electrodes can drastically increase the efficiency of 

photoelectrochemical processes, due to their higher specific surface area (which 

enhances the charge transfer kinetics at the photoelectrode/electrolyte interface), to the 

shorter diffusion path lengths for the photogenerated charge carriers, and to the 

existence of quantum size effects [20]. WO3 nanostructures (nanopores, 

nanorods/nanowires, nanoplatelets, etc.) have been synthesized by a number of different 

techniques such as hydrothermal methods [3, 12, 21], solvothermal methods [22, 23], 

sol-gel [24, 25], deposition processes (laser deposition [17], electrodeposition [1, 26-

32], chemical vapor deposition [33], atomic layer deposition [14], RF sputtering [34], 

spin coating [35]), dry chemistry methods (plasma-assisted approach [36]) and 

anodization [1, 6, 7, 15, 37]. 
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It is known that the chemistry of aqueous tungsten solutions is complex, since a wide 

variety of species can be obtained depending on many factors, such as the composition, 

the pH or the temperature of the solutions [38]. The formation of condensed 

isopolytungstates in acidic solutions and, especially, the interaction of WO3 with ligands 

or complexing agents (such as fluoride, hydrogen peroxide or polycarboxylic acids) can 

be used to customize WO3 nanostructures, thus providing a wide range of possibilities 

to obtain new morphologies and improved properties. Although the chemistry of 

tungsten species is incompletely understood, there is increasing interest in tungsten (VI) 

complexation for the fabrication of WO3 nanostructures [1, 6, 8, 9, 23, 28-32, 39-45]. 

However, little work concerning the synthesis of WO3 nanostructures by anodization in 

solutions containing complexing agents has been developed, and most of these studies 

deal with tungsten anodization in the presence of fluoride anions [6, 8, 9, 39, 40, 45]. 

Concentrated H2O2-containing electrolytes (20-30 %) have been used to dissolve 

tungsten powders as a first step to obtain tungsten solutions which will act subsequently 

as precursors in the formation of WO3 nanostructures, mainly using electrodeposition 

techniques [29-32]. However, by using anodization in the presence of very low 

concentrations of H2O2 (lower than 0.5%), formation of WO3 nanostructures could be 

achieved in a simple and non-expensive single step, instead of using several stages 

involving different degrees of complexity and high amounts of H2O2. To our 

knowledge, the formation of WO3 nanostructures by anodization of tungsten in the 

presence of H2O2 has not been reported. Therefore, the aim of this work is to develop 

new WO3 nanostructures by anodization of tungsten in the presence of different ligands, 

namely, fluoride and especially hydrogen peroxide. The influence of the ligand 

concentration on the morphology, composition and photoelectrochemical behavior of 
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the formed nanostructures has been investigated through Field Emission Scanning 

Electron Microscopy (FESEM), Confocal Raman Microscopy and electrochemical and 

photoelectrochemical measurements. 

 

2. Experimental procedure 

 

Tungsten rods of 8 mm in diameter were used as working electrodes in the anodization 

process. Before anodization, the samples were wet abraded with SiC papers, from 220 

to 4000 grit, ultrasonicated in ethanol for 2 minutes, rinsed with deonized water and 

finally dried in an air stream. The abraded and cleaned tungsten cylinders were teflon-

coated (to expose an area of 0.5 cm2 to the electrolyte) and immersed in the anodization 

cell, where a platinum mesh acted as a counter electrode.  

 

All anodization tests were carried out for 4 h applying a cell potential of 20 V, at a 

temperature of 50 ºC and at a rotation velocity (using a rotating disk electrode, RDE) of 

375 rpm. These values were chosen according to a previous work [6]. Anodization 

electrolytes consisted of solutions of complexing agents or ligands in several 

concentrations: fluoride anions (prepared from NaF in the range 0-0.25 M) and 

hydrogen peroxide (in the range 0-0.2 M). The solutions also contained 1.5 M H2SO4 to 

achieve an acidic pH and to favor polycondensation of tungsten species. The electrolyte 

without complexing species (only sulfuric acid) has been labeled in the results as 

“blank”. After anodization, the samples were annealed at 400 ºC for 4 h in a cylindrical 

oven in the presence of oxygen. 
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The morphology of the obtained nanostructures was observed by a Field Emission 

Scanning Electron Microscopy (FESEM). Raman spectroscopy (Witec alpha300 R 

Confocal Raman Microscope) was used to determine the composition and the 

crystalline phase of the nanostructures.  

 

Finally, photoelectrochemical measurements were performed using an Autolab 

PGSTAT302N potentiostat and a solar simulator (AM 1.5 conditions at 100 mW cm-2). 

The photoelectrochemical cell consisted of an Ag/AgCl (3 M KCl) reference electrode, 

a platinum tip counter electrode, and the nanostructures as a working electrode, with an 

area of 0.13 cm2 exposed to the electrolyte (5 M LiCl with 65 mol% methanol, pH 0, to 

assure the photostability of the samples [6]). Photocurrent density vs. potential plots 

were obtained scanning the potential from -0.24 VAg/AgCl to 1.02 VAg/AgCl, at a scan rate 

of 2 mV s-1. The potential scan started in dark conditions and the nanostructures were 

illuminated every 60 seconds for 20 seconds. After the potential scan, the 

nanostructures were kept at 1.02 VAg/AgCl for 1 h under illumination to check their 

photostability. 

 

3. Results and discussion 

 

3.1. Fluoride solutions 

 

In order to investigate the influence of fluoride concentration on the mechanism of 

formation of the WO3 nanostructures, current density transients were recorded during 

the anodization process (Figure 1). In general, three different regions can be discerned. 

In Region I, the sharp decrease in current density observed during the first seconds of 
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anodization indicates the fast formation of a compact WO3 layer which isolated to some 

extent the tungsten surface: 

 

                                            −+ ++→+ 6e6HWOO3HW 32                                        (1) 

 

In the absence of fluorides, this layer was subsequently dissolved by the action of 

protons [46, 47]: 

 

                                             OHWO2HWO 2
2
23 +→+ ++                                          (2) 

 

which resulted in an increase in current density (Region II, Figure 1) as tungsten fresh 

surface was again exposed to the electrolyte. During this dissolution, soluble cationic 

species (WO2
2+ or [W(OH)4(H2O)4]2+ in its hydrated form) were released to the 

electrolyte. At pH < 1 and under the presence of the high electric field at the interface 

between the tungsten oxide and the electrolyte interface, electrochemical dissolution of 

the tungsten substrate through the oxide could also occur, according to [46]: 

 

                                           −++ ++→+ 4e4HWOO2HW 2
22                                        (3) 

 

As the chemical and electrochemical dissolution of the WO3 layer proceeded, increasing 

amounts of tungsten cationic species were formed. It can be assumed that cationic 

tungsten entities were in equilibrium with anionic tungstates (WO4
2- or [W(OH)8]2- in 

its hydrated version), although their concentration was low due to the electrolyte acidic 

pH. These species reacted to form polycondensed tungstates [38]: 
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                            [ ] −+ −−−−→+ 2
323

2
2

-2
4 WOOWOOWOWO2WO                         (4) 

 

Polycondensation can also be considered as a dehydration process due to the addition of 

protons to tungstate ions, and at pH values close to 1 the W:H2O ratio is ∼1:2, which 

corresponds to precipitated tungstic acid [38]. 

 

Hence, after certain time (when supersaturation conditions were reached), 

polytungstates precipitated on the electrode surface in the form of insoluble and highly 

polimeric tungstic acids (WO3·H2O and WO3·2H2O), due to the strongly acidic pH of 

the electrolyte [38, 46]. This precipitate partially blocked the tungsten surface, which 

resulted in a decrease in current density (Region III, Figure 1). 

 
In the presence of fluorides, the initial decrease in current density (Region I, Figure 1) 

was also observed, although i values were higher than in the fluoride-free electrolyte. In 

Region II, current densities were also higher, increasing with fluoride concentration. 

Fluoride ions acted as monodentate ligands which formed stronger bonds with tungsten 

than those formed between tungsten and oxygen (O2- ions), with a coordination number 

up to 8. In acidic media and in the presence of fluoride anions, the WO3 layer formed in 

Region I underwent localized dissolution into soluble fluoride complexes: 

 

                                     [ ]( ) O3HWFnF6HWO 2
n-6

n3 +→++ −+                                   (5) 
 

Therefore, an increase in fluoride concentration resulted in a higher dissolution rate of 

the WO3 layer, increasing the amount of soluble complexes released to the electrolyte, 

and thus in higher current densities due to the oxidation of the tungsten substrate. 
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In Region III (Figure 1), current density values decreased again due to the precipitation 

of polytungstates in the form of tungstic acids, as explained above for the F--free 

electrolyte. This decrease, however, appeared later at 0.15 M and 0.25 M of NaF. In 

fact, the current density decrease in this region was barely observed in the 0.25 M NaF 

solution. This can be explained by the ability of complexing ions, such as fluorides, in 

depressing polycondensation, due to the higher stability of the formed complexes [38]. 

Therefore, fluorides influenced the dissolution/precipitation mechanism in two opposite 

ways: the presence of fluorides increased the dissolution rate of the WO3 layer and the 

amount of soluble species released to the electrolyte but, at the same time, fluorides 

delayed or even suppressed the precipitation of tungstic acids on the electrode surface. 

Whether one effect or the other predominates will depend on the concentration of 

fluoride ions. 

 

The Raman spectra of the samples anodized in the absence and in the presence of NaF 

(0.1 M) are shown in Figure 2. For the rest of NaF electrolytes, the spectra were similar 

to those obtained at 0.1 M NaF. Before the thermal treatment at 400 ºC for 4 hours 

(Figure 2a), at least five common peaks (or regions with close peaks) could be 

discerned, regardless of the absence or the presence of fluorides. The peaks observed 

between 200-270 cm-1 can be associated with the antisymmetric stretching vibration of 

(W-O-W) bonds in the WO3·H2O and WO3·2H2O [48] and/or bending vibration of (O-

W-O) bonds in amorphous WO3 [15, 16, 49-52]. The small peaks which are 

distinguished at 320-350 cm-1 have also been related in the literature to bending 

vibration of (O-W-O) bonds in amorphous WO3 [49, 52], whereas the peaks at ∼380 cm-

1 and ∼430 cm-1 can be attributed to stretching modes arising from (W-OH2) and are 

consistent with the presence of hydrated WO3 [15, 48]. Finally, the broad peak centered 
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at 660-670 cm-1 arises from the symmetric stretching vibration of (O-W-O) bonds in 

hydrated WO3 [15, 16, 44, 48, 50-55] and the high peak at ∼960 cm-1 comes from the 

symmetric stretching mode of short terminal W=O bonds [15, 21, 49-51, 53-57]. This 

last peak has been widely used as an indicator of amorphous tungsten trioxide hydrates 

(tungstic acids) [15, 55]. A specific peak, only noticeable for the sample anodized in the 

F--free electrolyte, was observed at ∼816 cm-1. This peak has normally been ascribed to 

the symmetric stretching vibration of (O-W-O) bonds in crystalline WO3 (monoclinic 

and orthorhombic phases) [10, 15, 17, 21, 42, 52, 56, 57], although it has also been 

associated with the O-W-O stretching mode of hydrated samples [52]. 

 

After annealing, Raman spectra appreciably changed (Figure 2b). It can be observed 

that the broad band between 200-270 cm-1 turned into three separated peaks after the 

thermal treatment. These peaks were consequence of the bending vibration of (O-W-O) 

bonds in crystalline (monoclinic and orthorhombic) WO3 [10, 15, 21, 52]. Moreover, 

the separation of the ample peak around 660-670 cm-1 (Figure 2a) in two different 

peaks at 700-710 cm-1 and 800-810 cm-1 (Figure 2b), together with the disappearance of 

the sharp peak observed at ∼960 cm-1 before annealing, also indicated that the thermal 

treatment resulted in dehydrated crystalline WO3 [10, 15, 17, 21, 42, 52, 56, 57]. 

Energy-dispersive X-ray spectroscopy (EDX) analysis was also performed to elucidate 

whether Na+ and/or F- anions could have been embedded in the WO3 structure during 

anodization (data not shown here), and results indicated that neither fluorides nor 

sodium ions were present in the WO3 nanostructures. 

 

The morphology of the precipitated nanostructures and the influence of NaF 

concentration on the amount of precipitated tungstic acids (WO3·H2O, WO3·2H2O) 
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were studied through scanning electronic microscopy. Figure 3 shows the FESEM 

images of the WO3 nanostructures synthesized in 1.5 M H2SO4 electrolyte without NaF 

(Figure 3a) and with different amounts of NaF (Figure 3b to Figure 3e). 

Nanoplatelets were formed in all the cases, but the aggregation between them visibly 

changed when fluorides were present. In the absence of fluorides (Figure 3a), small 

nanoplatelets grew in a rather disordered way, some of them being almost orthogonal to 

the electrode surface while others were arranged almost horizontally. However, in the 

presence of NaF, nanoplatelets grew orderly in a tree-like fashion, forming 

approximately globular clusters. From Figure 3b to Figure 3e it can be observed that 

the size of these clusters decreased with increasing NaF concentration. As it has been 

mentioned above, fluoride ions acted as monodentate ligands which were more strongly 

bound to the tungsten central atom than the O2- ions. Hence, the presence of fluorides in 

the electrolyte slowed down the condensation/precipitation step, as observed above in 

Figure 3, hindering the formation of large nanoplatelets and favoring their aggregation 

in globular clusters, whose size decreased with increasing fluoride concentrations. At 

0.25 M NaF, the precipitation of tungstic acids in the form of nanoplatelets barely took 

place (Figure 3e), since the concentration of fluorides was too high as to allow a 

complete polycondensation and subsequent precipitation. 

 

The cross-sectional images of the nanoplatelets layers formed at different fluoride 

concentrations are presented in Figure 4. It can be seen that in the fluoride-free 

electrolyte, multiple graphite-like sheets of nanoplatelets were formed (Figure 4a). This 

nanoplatelet layer was more compact than in the presence of fluorides (Figure 4b to 

Figure 4d). The thickness of this layer increased with fluoride concentration up to 0.1 

M NaF and then decreased (at 0.25 M F- the thickness could not be determined due to 
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the very small amount of precipitated nanoplatelets) (Figure 4e). These results are 

consistent with the current density transients obtained during the anodization process 

(Figure 1) and with the morphology and dimensions of the nanoplatelets globular 

clusters (Figure 3). In the presence of F-, and at concentrations up to 0.1 M F-, 

polycondensation of tungsten soluble species and their following precipitation in the 

form of tungstic acids were favored by raising the F- concentration due to the increase in 

the dissolution rate of the initial WO3 layer. However, at higher F- concentrations 

(especially 0.25 M), the formation of stable fluoride complexes was enhanced, making 

polycondensation of tungsten soluble species more difficult and, thus, preventing the 

formation of precipitated nanoplatelets on the electrode surface.  

 

The photoelectrochemical performance of the samples anodized in different fluoride 

electrolytes is shown in Figure 5. It can be observed that the best photoresponse 

corresponds to the sample anodized in the 0.1 M NaF solution, which is consistent with 

the results presented in Figure 3 and Figure 4, where nanoplatelets globular clusters 

were observed to grow in a denser way and with higher layer thicknesses than in the rest 

of fluoride solutions. Thus, the electroactive surface area exposed to the electrolyte was 

at its highest point for the sample anodized in the 0.1 M NaF. Next, the behavior of the 

samples anodized in the F--free solution and in the presence of 0.05 M NaF was similar, 

reaching photocurrent density (iph) values between 0.8 and 0.9 mA cm-2. It has been 

observed in Figure 4 that the nanoplatelets layer thickness of the sample anodized in 

the absence of fluorides, and therefore its surface area exposed to the electrolyte, was 

lower than that of the samples anodized in the 0.05 M NaF solution. However, the 

higher degree of compaction and the morphology of the nanoplatelets in the former 

sample (Figure 3 and Figure 4) could lead to a better pathway for electron transport 
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towards the metallic back contact, thus resulting in a better charge separation and, 

therefore, to similar iph values in spite of having a lower surface area. The sample 

synthesized in the 0.15 M NaF electrolyte showed a lower response to light, due to the 

fact that at this concentration the thickness of the nanoplatelets layer and, especially, the 

degree of surface coverage by these nanostructures decreased with respect to the 

samples anodized in less concentrated fluoride solutions. Finally, this trend was 

amplified for the sample anodized in the 0.25 M NaF, which barely presented 

photoelectrochemical behavior.  

 

It is worth mentioning that, in all cases, current density values increased with increasing 

applied potentials, since the potential drop within the space charge layer and, therefore, 

the thickness of this layer and the strength of the electric field, directly depended on the 

bias potential (insofar as the space charge layer thickness can be accommodated within 

the semiconductor). This increase of photocurrent density with increasing potentials was 

approximately linear in all cases, indicating that the space charge layer could develop 

within the WO3 nanoplatelets without geometrical restrictions. 

 

On the other hand, photocurrent density transients presented in Figure 5b demonstrate 

the good photostability of the samples during operation, especially the one anodized in 

the 0.1 M NaF solution. 

 

3.2. Hydrogen peroxide solutions 

 

The influence of hydrogen peroxide on the mechanism of formation of the WO3 

nanostructures can be studied from the current density transients recorded during the 
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anodization process. Figure 6 shows these current density transients for different H2O2 

concentrations. In general, three differentiated regions can be distinguished and, in all 

cases, current densities were higher in the presence of H2O2 than in its absence. In the 

short zone labeled as Region I in Figure 6, current density values decreased fast, due to 

the formation of a compact thin film of WO3 on the electrode surface (eq. 1), as 

explained above for the case of fluoride solutions. Subsequently, current densities 

started increasing, as the thin WO3 film dissolved due to the action of H+ (eq. 2) and, 

principally, due to the effect of H2O2 (Region II, Figure 6). The peroxo group (O2
2-) is a 

well-known bidentate ligand for tungsten species, substituting the O2- ligands at the 

tungstate ion. Hydrogen peroxide reacts with tungstates and WO3 to form 

peroxotungstates and peroxotungstic acids. In acidic solutions, the prevalent 

peroxotungstate is the dinuclear W2O11
2- [28, 58]. This compound results from the WO3 

dissolution by the action of H2O2 via the following equation: 

 

                                     [ ] O3H2HOWO4H2WO 2
2

112223 ++→+ +−                           (6) 

 

The complex [W2O11]2- can also be obtained by direct reaction between the tungsten 

substrate and hydrogen peroxide, according to [28, 38]: 

 

                                        [ ] O9H2HOWO10H2W 2
2

11222 ++→+ +−                           (7) 
 

After reaching a maximum value, current densities decreased again in Region III 

(Figure 6), due to the precipitation of tungstic acids (WO3·H2O and WO3·2H2O) from 

polytungstates and peroxotungstates. This precipitation took place when supersaturation 

conditions were reached. Besides, since peroxotungstates are thermodynamically 
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unstable, they slowly decomposed. In particular, W2O11
2- can decompose into solid 

WO3, according to [28]: 

 

                                        OH2O2WO2HOW 223
2
112 ++→+ +−                                   (8) 

 

 Is it noteworthy that this Region III started later as the H2O2 concentration increased, 

and current density values increased with increasing H2O2 concentration, which is 

consistent with higher dissolution and substrate oxidation rates, according to eqs. (6) 

and (1), respectively. These results can be explained by taking into account that the 

presence of complexing agents, such as hydrogen peroxide, prevented the 

polycondensation tendency of tungsten species [38], since the bond between tungsten 

and the O2
2- ligand was more stable than the bond between tungsten and O2-. In the 0.2 

M H2O2 solution, the concentration was high enough so as to significantly delay the 

precipitation of tungstic acids and, when formed, to favor their redissolution via eq. (6). 

 

To study the influence of H2O2 on the composition and crystalline structure of the 

formed nanostructures, Raman spectroscopy was carried out for all the samples. Figure 

7 shows the Raman spectra of samples anodized in the peroxide-free solution and in the 

0.05 M and 0.1 M H2O2 solutions, before and after the thermal treatment. The samples 

anodized in higher H2O2 solutions showed similar spectra as those of the sample 

synthesized in the 0.1 M H2O2 solution, so they are not presented here.  

 

The spectra obtained before the heat treatment (Figure 7a) presents two remarkable 

features which were not observed in the samples anodized in the presence of fluoride 

(Figure 2a): (1) the high peak observed at 816 cm-1 for the samples anodized in the 

H2O2 solutions was not observed for the samples anodized in the fluoride solutions (it 



 15 

was only visible in the F--free solution (Figure 2a)); as explained above, this peak has 

been associated with crystalline forms of WO3 [10, 15, 17, 21, 42, 52, 56, 57]; (2) for 

the sample synthesized in the 0.05 M H2O2 solution, the peak at ∼960 cm-1, which has 

been regarded as a marker for amorphous WO3·xH2O [15, 55], disappeared almost 

completely, although it was still visible for the sample anodized in the 0.1 M H2O2 (as 

well as in the peroxide-free solution). These differences in the spectra with respect to 

those obtained in the presence of fluorides (Figure 2a) indicate that the precipitated 

formed on the samples anodized in H2O2 solutions were significantly less hydrated than 

those formed on the fluoride electrolytes. This is a result of the thermodynamic 

instability of peroxotungstates, which decompose into dehydrated WO3 (eq. 8). 

Therefore, the decomposition of peroxotungstates played an important role in the 

formation of the nanostructures. This fact is especially remarkable for the sample 

anodized in the 0.05 M H2O2 solution, where this decomposition process seemed to 

predominate over the precipitation of tungstic acids. 

 

The spectra obtained after the heat treatment (Figure 7b) are similar to those obtained 

for the samples synthesized in the fluoride solutions (Figure 2b). Hence, after 

subjecting the samples to 400 ºC for 4 h, crystalline WO3 was obtained in all cases. 

 

Concerning the morphology of the formed nanostructures, it can be observed from the 

FESEM images in Figure 8 that they are very different from those formed in the 

presence of fluorides (Figure 3). In general, very small nanoplatelets or nanosheets 

were formed on the tungsten surface, forming a kind of spongy layer. These nanosheets 

aggregated forming cones or “mountains”, whose size increased with increasing H2O2 

concentration. At intermediate H2O2 concentrations (0.1 M and 0.15 M), vein-like 
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accumulations of nanosheets seemed to form over the top part of the cones. In the 0.2 M 

H2O2 solution, the mountainous shape disappeared and only veined forms could be 

distinguished. Moreover, at high H2O2 concentrations, especially in the 0.2 M H2O2 

solution, big holes could be observed distributed throughout the surface (a general view 

of the electrode surface is presented as inset in Figure 8g), which indicates a 

redissolution of the WO3 nanostructure by the action of H2O2 (eq. (6)). The differences 

observed in morphology can be related to an alteration in the mechanism of formation 

of the nanostructures, changing from a process in which peroxotungstate decomposition 

to form dehydrated WO3 predominated (at low H2O2 concentrations, especially 0.05 M) 

to a tungstic acid (WO3·xH2O) precipitation mechanism as H2O2 concentration 

increased.  

 

The very small size of the new nanoplatelets or nanosheets, compared with the ones 

formed in the presence of fluorides (Figure 3) or in the 1.5 M H2SO4 solution (in the 

absence of ligands, Figure 3a) is related to the tendency of the bidentate O2
2- ligand to 

form stronger bonds with tungsten than the monodentate F- (and O2-). This fact resulted 

in a slowing down of the decomposition or precipitation rate of peroxotungstates, 

preventing the nanoplatelets/nanosheets from growing, so their size decreased [42]. 

 

Figure 9 shows the cross-sectional views of the nanostructures formed in the presence 

of H2O2. In all cases, many small nanoplatelets/nanosheets ordered in multilayers could 

be observed. These nanosheets were packed in a more compact way than those formed 

in the presence of F- (see Figure 4 for comparison). No morphological change was 

observed with increasing H2O2 concentration. In the concentration range from 0.05 M to 

0.15 M, the thickness of the nanosheet layer increased with respect to that obtained in 
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the blank (peroxide-free) electrolyte (Figure 9e). This increase is related to the higher 

dissolution rate of the initial WO3 film due to the action of H2O2 (eq. 6) which resulted, 

in turn, in a higher amount of deposited WO3. However, at 0.2 M H2O2, the thickness of 

this layer decreased significantly, since the peroxide concentration was too high and the 

deposition of the nanostructures was somewhat impeded, as explained above. 

 

The photocurrent density vs. potential curves and photocurrent density transients for the 

WO3 nanostructures synthesized in H2O2 solutions are shown in Figure 10a and Figure 

10b, respectively. In this case, all the samples anodized in the presence of H2O2 

presented higher photoresponses than the sample anodized in the 1.5 M H2SO4 solution 

(without H2O2). Besides, a low H2O2 concentration in the anodizing electrolyte (0.05 M 

H2O2) resulted in the highest photoelectrochemical performance, while photoelectrodes 

synthesized in the 0.1 M and 0.15 M H2O2 solutions presented a more or less similar 

behavior. The sample produced in the more concentrated solution (0.2 M H2O2) gave 

appreciably lower photocurrent densities. These results are a consequence of the 

nanostructures morphology and dimensions. As observed in the FESEM images (Figure 

8), the cones or “mountains” formed by little nanoplatelets/nanosheets were smaller in 

the 0.05 M H2O2 solution than in the more concentrated ones, leading to higher surface 

area exposed to the electrolyte and, therefore, to higher photocurrent densities upon 

illumination. The comparable results obtained for the nanostructures fabricated in the 

0.1 M and 0.15 M H2O2 solutions are in accordance with their similar morphology and 

size (Figures 8c-8f), while the absence of an ordered morphology in the sample 

anodized in the 0.2 M H2O2 solution (Figures 8g and 8h) resulted in a considerably 

lower photoactivity, although it was still better than the sample anodized in the 

peroxide-free electrolyte. 
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It is important to point out that the sample anodized in 0.05 M H2O2 yielded higher 

photocurrent densities than the best sample anodized in the presence of fluoride anions 

(0.1 M NaF), regardless of the applied potential. This improvement of photocurrent can 

be attributed to enhanced electron transport towards the metallic back contact arising 

from the morphology of the nanostructure obtained in the presence of H2O2, whose 

structure was more compact than that obtained in the presence of F-. Hence, a more 

effective separation of photogenerated charges could be achieved. Moreover, the surface 

area of the nanoplatelets formed in the 0.05 M H2O2 solution could be higher than the 

area of those formed in the presence of fluoride anions, due to the lower 

nanoplatelet/nanosheet dimensions obtained in the former case. 

 

On the other hand, it can be observed from iph-U curves in Figure 10a that, although 

photocurrent density values increased with increasing potential, this increase was not 

linear, contrary to what occurred in the case of photoanodes synthesized in NaF 

electrolytes. In the present case, photocurrent densities drastically increased until a 

potential of ∼0.7 VAg/AgCl was reached, and then this increase was slowed down or even 

stopped. This partial (or complete) saturation of photocurrent density at high applied 

potentials could be related to the width of the space charge layer being constricted by 

the very small dimensions of the WO3 nanoplatelets/nanosheets formed in the presence 

of H2O2. Hence, in this case, at high bias potentials, the space charge layer would reach 

its maximum possible width, that is, the thickness of the nanoplatelets [59, 60], which 

would become completely depleted. This fact can be a positive one, since it reduces the 

applied potential needed to reach the maximum value of photocurrent density and, thus, 

increases the efficiency of photoelectrochemical processes [61].  
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Finally, the photostability of the samples anodized in H2O2 solutions showed a 

satisfactory photostability, as confirmed by the photocurrent density transients shown in 

Figure 10b. 

 

4. Conclusions 

 

Nanoplatelet globular clusters associated in a tree-like manner and formed by 

precipitation of tungstic acids (WO3·xH2O) were obtained by anodization of tungsten in 

the presence of fluoride ions. At low fluoride concentrations (up to 0.1 M) the amount 

of formed nanoplatelets, and therefore the surface area exposed to the electrolyte under 

illumination, increased, but at higher concentrations the excess of fluorides resulted in a 

delay or even suppression of nanoplatelets precipitation. The optimum concentration for 

photoelectrochemical applications was found to be 0.1 M NaF, with an increase in 

photocurrent density of 64% at 0.7 VAg/AgCl compared with conventional nanoplatelets 

(synthesized without ligands). 

 

Very small nanoplatelets/nanosheets composed of (partially) dehydrated WO3 were 

obtained by anodization in acidic H2O2 solutions. This particular form in which 

nanosheets aggregated led to enhanced the charge transfer and charge separation. An 

excess of H2O2, which acted as a powerful ligand with tungstates, led to a reduction in 

the photoactivity of the nanostructures. The optimum concentration for 

photoelectrochemical applications was 0.05 M H2O2, with an increase in photocurrent 

density of 244% at 0.7 VAg/AgCl compared with conventional nanoplatelets. 
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The photoanode synthesized in the 0.05 M H2O2 solution, apart from producing higher 

photocurrent densities than the obtained with the photoanodes anodized in NaF 

solutions (at all applied potentials), could operate at lower bias potentials and, therefore, 

increase the efficiency of photoelectrochemical processes. 
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Figures captions 

 

Figure 1. Current density transient recorded during anodization in different NaF 

solutions, as well as in the absence of complexing agents (blank). 

 

Figure 2. Raman spectra of the samples anodized in the F-‒free (blank) and 0.1 M NaF 

solutions, (a) before the heat treatment and (b) after the heat treatment at 400º C for 4 h. 

 

Figure 3. FESEM images of the WO3 nanostructures formed upon anodization of W in 

a 1.5M H2SO4 + NaF electrolytes at 50º C, imposing a potential of 20V for 4 hours, at 

different NaF concentrations and in the absence of complexing agents (blank). 

 

Figure 4. FESEM cross-sectional images of samples anodized in the different NaF 

electrolytes and in the absence of complexing agents (blank) (a-d); nanoplatelets layer 

thickness as a function of the NaF concentration (e).  

  

Figure 5. (a) Photocurrent density (iph) vs. potential (U) curves of the WO3 

nanoplatelets formed in different NaF solutions and in the absence of complexing 

agents (blank), measured in a 65 mol% CH3OH with 5M LiCl solution under AM1.5 

illumination. (b) Photocurrent density transients obtained under illumination at an 

applied potential of 1.02 VAg/AgCl. 
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Figure 6. Current density transient recorded during anodization in different H2O2 

solutions, as well as in the absence of complexing agents (blank). 

 

Figure 7. Raman spectra of the samples anodized in the H2O2‒free (blank), 0.05 M and 

0.1 M H2O2 solutions, (a) before the heat treatment and (b) after the heat treatment at 

400º C for 4 h. 

 

Figure 8. FESEM images of the WO3 nanostructures formed upon anodization of W in 

a 1.5M H2SO4 + H2O2 electrolytes at 50º C, imposing a potential of 20V for 4 hours, at 

different H2O2 concentrations. 

 

Figure 9. FESEM cross-sectional images of samples anodized in the different H2O2 

electrolytes (a-d); nanoplatelets layer thickness as a function of the H2O2 concentration 

(e).  

 

Figure 10. (a) Photocurrent density (iph) vs. potential (U) curves of the WO3 

nanoplatelets formed in different H2O2 solutions and in the absence of complexing 

agents (blank), measured in a 65 mol% CH3OH with 5M LiCl solution under AM1.5 

illumination. (b) Photocurrent density transients obtained under illumination at an 

applied potential of 1.02 VAg/AgCl. 
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