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ABSTRACT 

A visible-light driven photoelectrochemical degradation process has been applied to a 

solution polluted with the organophosphate insecticide chlorfenvinphos. Different WO3 

nanosheets/nanorods have been used as photoanodes. These nanostructured electrodes 

have been fabricated by anodization of tungsten and, subsequently, they have been 

subjected to a thermal treatment (annealing). The combined influence of annealing 

temperature (400º C and 600º C) and operation pH (1 and 3) on the 

photoelectrocatalytic behavior of these nanorods has been examined through a statistical 

analysis. Morphological, structural and photoelectrochemical characterizations have 

also been carried out. The chlorfenvinphos degradation efficiency depended both on 

annealing temperature and, specially, operation pH. At pH 1 and using an annealing 

temperature of 600º C, chlorfenvinphos has been effectively degraded following 

pseudo-first order kinetics with a coefficient of 7.8×10-3 min-1, and notably mineralized 

(more than 65% of Total Organic Carbon decrease). 

Keywords: Photoelectrochemical degradation; WO3 nanorods; anodization; 

chlorfenvinphos; regression model. 
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1. INTRODUCTION 

 

Organophosphate insecticides constitute a large group of synthetic organic compounds, 

highly toxic in many cases, whose precedent are the so-called “nerve gases” or “nerve 

agents” (sarin, tabun, soman, etc.) which were developed after World War II. The 

properties of these compounds made them very useful against insect plagues, so they 

have been used since then, as active ingredients, in many commercial formulations [1]. 

 

Organophosphate insecticides, such as parathion, diazinon or chlorfenvinphos, have 

been or are still widely used in agriculture, homes, gardens and veterinary practices. 

Once these insecticides have entered the organism of insects (and other animals, 

including human beings), cholinesterase-type enzymes, especially acetylcholinesterase, 

become their target molecules. This enzyme has a prominent physiological function in 

the nervous system. Transmission of nerve impulses from nerve fibers to smooth and 

skeletal muscle cells is inhibited by the reaction with organophosphate pesticides 

through phosphorylation, hence poisoning the organism [2]. Apart from their toxicity, 

these insecticides are also very persistent in the environment, with reported half-lives of 

100-200 days in water [3]. 

 

Chlorfenvinphos –or 2-chloro-1-(2,4 dichlorophenyl) vinyl diethyl phosphate– is 

commonly used for protection against insects in agriculture and to control insect pests 

(flies, fleas, ticks, mites, etc.) on farm animals [4]. According to the European Chemical 

Agency, this insecticide is fatal if swallowed, toxic in contact with skin and very toxic 

to aquatic organisms with permanent effects [5].  
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This insecticide has been found in several aquifers (rivers, lagoons, ...), as well as in 

effluents from sewage treatment plants [3, 6-24]. Chlorfenvinphos can enter the 

environment from runoff due to rainfall, leaching from hazardous waste sites through 

large regions of soil and eventually reaching water resources, including underground 

wells [4], where it may threaten the aquatic environment and human health. The 

detection of this insecticide has been especially noticeable in the Mediterranean area, in 

spite of chlorfenvinphos being withdrawn from the EU [25].  

 

The removal of hazardous pesticides from polluted surface waters and wastewaters 

cannot be efficiently performed by biological techniques, since they are toxic for 

microorganisms, thus hindering biodegradation. Other methods, based on the generation 

of the very oxidizing hydroxyl radicals, called Advanced Oxidation Processes (AOPs), 

have been used to remove chlorfenvinphos from aqueous solutions [10, 26-34]. 

However, most of the used methods involve high energies (gamma irradiation, low 

pressure UV photolysis) or require the use of expensive additional reagents (H2O2, O3, 

etc.) which make them not suitable to treat large volumes of water. Heterogeneous 

photocatalysis (PC) using semiconductor oxides could be an alternative, but the 

efficiencies of these processes are frequently limited by the fast recombination of 

photogenerated electron-hole pairs (e-–h+), due to the absence of an electric field inside 

the semiconductor [35, 36]. This problem can be overcome by using 

photoelectrocatalysis (PEC), where an external low bias is applied to the 

photoelectrocatalyst to help separating e-–h+, hence enhancing the overall efficiency 

[35]. To our knowledge, no photoelectrocatalytic process has been reported yet in the 

literature for chlorfenvinphos degradation.Tungsten trioxide (WO3) is a good candidate 

to be used as semiconductor photoanode in PEC due to its good properties, especially its 
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photoelectrocatalytic properties [37]. No published study where WO3 was used as 

(photo)catalyst for chlorfenvinphos degradation has been found. 

 

The aim of this study is to investigate the influence of two important parameters, 

annealing temperature and operation pH, on the photoelectrocatalytic performance of 

WO3 nanostructures, through a statistical analysis. Solutions of chlorfenvinphos were 

degraded using the WO3 photoanodes under visible-light illumination. Before the 

degradation tests, these photoanodes were morphological, structural and 

electrochemically characterized through Field Emission Scanning Electronic 

Microscopy (FESEM), Raman spectroscopy and Electrochemical Impedance 

Spectroscopy (EIS). 

 

2. EXPERIMENTAL PROCEDURE 

 

2.1. Nanostructures fabrication 

 

Nanostructured WO3 photoanodes were fabricated by anodization of tungsten cylinders 

(8 mm in diameter) under hydrodynamic conditions using a rotating disk electrode 

(RDE) at 375 rpm. Before anodization, tungsten cylinders were wet abraded with 220, 

500 and 4000 grit SiC papers, rinsed with distilled water and dried with compressed air. 

The tunsgten cylinders were coated with teflon in order to expose only a circular area of 

0.5 cm2 to the electrolyte. The anodization electrolyte was a 1.5 M H2SO4 + 0.05 M 

H2O2 solution. A potential difference of 20 V was imposed between the anode 

(tungsten) and the cathode (platinum mesh). The temperature of the electrolyte (50º C) 

was controlled by a thermostatic bath.  
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After anodization, thin slices containing the formed nanostructures were cut from the 

tungsten cylinders and subjected to a thermal treatment for 4 h using two different 

annealing temperatures: 400º C and 600º C, at a heating rate of 15º C min-1. This 

thermal treatment was performed in order to obtain dehydrated and crystalline WO3 

nanostructures. 

 

2.2. Sample characterization 

 

Morphology of WO3 nanostructures was characterized through FESEM, using an 

acceleration voltage of 3 kV, while their composition and crystalline structure were 

studied through Raman spectroscopy, using a Raman Confocal Laser Microscope with a 

neon laser wavelength of 632 nm and a power of 420 µW. Energy Dispersive X-ray 

spectroscopy (EDX) was also used to verify the chemical composition of the WO3 

nanostructures, applying an accelerating voltage of 20 kV. Finally, EIS experiments 

were performed under illumination conditions (using 420 nm light) in order to 

investigate the photoelectroactivity of the samples. For EIS measurements, a three-

electrode transparent quartz cell was used, with the nanostructures acting as working 

electrodes, a platinum tip acting as a counter electrode and a Ag/AgCl (3M KCl) 

reference electrode. An Autolab PGSTAT302N potentiostat was used to apply an 

external polarization of 1 V and to record the impedance values. The frequency range 

varied from 10 kHz to 10 mHz, using a sinusoidal potential perturbation of 10 mV peak 

to peak. 

 

2.3. Photoelectrocatalytic degradation experiments 
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The pesticide used in this study was chlorfenvinphos (SigmaAldrich Pestanal, analytical 

standard). Chlorfenvinphos solutions were prepared from a stock solution of 100 ppm, 

which was stored at 4º C in the absence of light. Degradation tests were performed at 

20º C using the same electrode configuration explained above for the EIS experiments, 

applying an external potential difference of 1 V to the system and under constant 

magnetic stirring. The initial concentration of chlorfenvinphos was 20 ppm and the 

treated volume was 14 mL. Two different operation pH values were used: pH 1 and pH 

3, by adding the necessary amount of H2SO4. Irradiation was provided by a 1000 W Xe 

light source, selecting a visible wavelength of 420 nm. The light power density was 100 

mW cm-2. 

 

2.4. Analytical methods 

 

The pesticide concentration variation with time was monitored by UV 

spectrophotometry, measuring the absorbance within a range of wavelengths (190-320 

nm). Liquid samples of 4 mL were withdrawn from the quartz reactor every 30 min to 

measure their absorbance. After measurements, these samples were returned to the 

reactor to continue with the degradation. The degradation tests lasted 360 min. 

 

Mineralization of chlorfenvinphos after 360 min of degradation was monitored by 

measuring the Total Organic Carbon (TOC) of the treated solutions using a Shimadzu 

TOC-L analyzer.  
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3. RESULTS AND DISCUSSION 

 

3.1. Nanostructures characterization 

 

As explained above in the experimental section, WO3 nanostructures were exposed to 

thermal treatment for 4 h in order to obtain dehydrated and crystalline structures. To 

study the influence of annealing temperature on the photoelectrocatalytic behavior of 

the nanostructures, two different values were selected: 400º C and 600º C. 

 

The morphological characterization of the nanostructures was performed through 

FESEM. Figure 1a and Figure 1b show different images of the formed nanostructures 

after the annealing treatment. It can be observed that in both cases, very small nanorods 

or nanosheets were formed on the electrode surface forming a kind of spongy layer. The 

very small size of these nanostructures and the way they aggregate can be associated 

with the tendency of the bidentate O2
2- ligand to form very strong bonds with tungsten 

during anodization, which made the growth of the nanostructures difficult during their 

synthesis [38]. However, annealing temperature had an important influence on the 

nanostructures morphology. At 600º C, nanorods were much more defined, probably 

implying a higher degree of dehydration of the nanostructure. The cross sections of the 

nanostructures are shown as insets in Figure 1a and Figure 1b. It can be seen that these 

minuscule nanorods or nanosheets aggregated in many layers. From different cross-

sectional images, the thickness of the nanostructured layer was determined to be 2.1 ± 

0.3 µm for the nanostructure annealed at 400º C, and 1.7 ± 0.2 µm at 600º C. This 
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slightly decrease in thickness at the highest temperature may also be a consequence of a 

higher degree of dehydration, resulting in a shrinking of nanorods. 

 

A current density transient recorded during the 4 h of anodization is presented in Figure 

1c, with the aim of studying the formation mechanism of the WO3 nanostructures used 

in this work. Just after applying the 20 V of cell potential difference, a steep decrease in 

current density was observed. This decrease was caused by the formation of a compact 

WO3 layer on the exposed surface, which blocked the tungsten surface, according to the 

following reaction: 

                                         −+++→+ 6e6H3WOO23HW                                         (1) 

 

After that decrease, current density started to increase until about 2500 s, which was 

related to the dissolution of the aforementioned compact WO3 layer due to the 

interaction between the peroxo ligand (O2
2-) and WO3. This reaction resulted in the 

formation of peroxotungstates and peroxotungstic acids, of which the species [W2O11]2- 

seems to be predominant [38]: 

                                [ ] O23H2H2
11O2W2O24H32WO +++−→+                            (2) 

 

When supersaturation conditions were achieved near the electrode due to the continuous 

release of peroxotungstates and peroxotungstic acids, these species precipitated on the 

tungsten surface in the form of tungstic acids (WO3·H2O and WO3·2H2O). Besides, 

W2O11
2- can also decompose into solid WO3, according to: 

                                     [ ] OH2O2WO2HOW 223
2

112 ++→+ +−                                  (3) 

 



 9 

 

Precipitation of tungstic acids and WO3 in the form of nanostructures resulted in a 

constant decrease of current density, which reached low values at the end of the 4 h of 

anodization, similar to those observed at the beginning of the process. 

 

In order to confirm the higher dehydration degree experimented by the nanostructure 

annealed at 600º C, Raman spectroscopy was used. Figure 2a shows Raman spectra of 

the WO3 nanostructures after annealing at 400º C and 600º C. Characteristic monoclinic 

WO3 peaks were clearly seen in both spectra (190 cm-1, 275 cm-1, 715 cm-1 and 807   

cm-1) [38-43]. However, there are two evident differences between both plots. For the 

sample annealed at 400º C, a broad and low-intensity band centered at ∼950 cm-1 can be 

observed, while this band is absent for the sample annealed at 600º C. This band has 

been traditionally associated with amorphous WO3·xH2O [40-44]. This result indicate 

that the nanostructure treated at 400º C was somewhat hydrated whereas at 600º C 

dehydration was complete. Moreover, a peak at 330 cm-1 appeared for the sample 

annealed at 600º C, while this peak was barely visible for the sample treated at 400º C. 

This peak has also been related to crystalline monoclinic WO3 [39-43]. Consequently, it 

can be concluded that the degrees of crystallinity and dehydration of the WO3 

nanostructure annealed at 600º C were higher than those for the sample annealed at 400º 

C. In Figure 2b, an EDX spectrum of the WO3 nanostructure annealed at 400º is 

presented by way of illustration. Peaks of tungsten and oxygen can clearly be seen, 

confirming that WO3 was formed. 

 

With the aim of investigating the influence of annealing temperature on the 

photoelectrochemical activity of the nanostructures, EIS measurements under a 420 nm 
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light were performed. Nyquist and Bode-phase plots for the WO3 nanostructures are 

shown in Figure 3. Two semicircles can be observed in each Nyquist plot (Figure 3a), 

one at high frequencies and the other at intermediate and low frequencies. The 

amplitude of these semicircles was visibly lower for the sample annealed at 600º C, 

which means that charge transfer processes under illumination were, in general, favored 

at this nanostructure (lower charge transfer resistances). Bode phase plots (Figure 3b) 

displayed two clear peaks (400º C) or one broad peak (600º C), which can be the result 

of two overlapping peaks. These results indicate that, at least, an electric equivalent 

circuit with two time constants should be used to fit the EIS results. To quantify charge 

transfer resistances, the electric equivalent circuit shown in Figure 3c has been used. In 

this circuit, RS represents the electrolyte resistance, the R1-CPE1 time constant is related 

to charge-transfer processes at the nanostructure/electrolye interface and the R2-CPE2 

time constant is related to a compact WO3 layer formed beneath the nanorods. Constant 

phase elements (CPEs) have been used instead of capacitors to take the non-ideality of 

the system into account. Charge-transfer resistance values are shown in Table 1. Both 

R1 and R2 were lower for the nanostructure annealed at 600º C, confirming that charge-

transfer processes were enhanced for this nanostructure under illumination. These 

results can be directly associated with the higher degree of crystallinity of this 

nanostructure, which improved electrochemical and photoelectrochemical interfacial 

phenomena. 
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3.2. Photoelectrocatalytic degradation of chlorfenvinphos and mineralization degree 

 

Apart from annealing temperature (400º C and 600º C), the operation pH was also 

modified between two levels: pH 1 and pH 3. Figure 4 shows the temporal evolution of 

chlorfenvinphos UV absorbance spectra for the different experimental conditions. The 

initial chlorfenvinphos spectrum showed two clear absorbance peaks centered at 205 nm 

and 245 nm. The second peak (245 nm) has been related in the literature to the π–π* 

transition of the aromatic ring and it is the peak normally used to track the 

decomposition of this organophosphate pesticide [32, 45]. It can be observed from 

Figure 4 that the intensity of both peaks decreased with irradiation time, regardless of 

the experimental conditions. However, this decrease was much more evident for the 

experiments carried out at pH 1. After 360 min of degradation and at pH 1, the 

absorbance peak centered at 245 nm completely disappeared for the nanostructure 

annealed at 600º C and took values close to zero for the nanostructure annealed at 400º 

C (but was not totally absent). Moreover, this peak was not displaced to lower 

wavelengths during the degradation reaction, indicating that intermediate compounds 

such as 2,4-dichlorophenol or 2,4-dichlorobenzoic acid were not formed. The formation 

of these compounds would imply a red-shift of this peak [32]. On the other hand, 

absorbance between 200-220 nm took values higher than zero. These results mean that 

(1) degradation of chlorfenvinphos likely took place through the aromatic ring opening, 

and (2) this degradation resulted in the formation of other intermediate compounds 

whose molecules absorbed light in the wavelength range between 200 nm and 220 nm. 

Nevertheless, further analytical work is necessary to propose a complete degradation 

mechanism for chlorfenvinphos. This study will be developed in future works. 
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The decrease of the absorbance at 245 nm was related to the concentration of 

chlofenvinphos by using a calibration line. The degradation efficiency was determined 

according to the following equation: 

 

                                                    100
)(

0

0 ×
−

=
C

tCC
η                                                        (1) 

 

where C0 is the initial chlorfenvinphos concentration and C(t) is chlorfenvinphos 

concentration at different times. Degradation efficiencies are shown in Figure 5a. At 

pH 3, little differences were observed between WO3 samples, and degradation 

efficiencies of 37% (600º C) and 34% (400º C) were obtained. At pH 1, although 

differences were not marked, the WO3 nanostructure annealed at 600º C displayed the 

best degradation efficiency (95% vs. 91% for the nanostructure annealed at 400º C). 

 

Pseudo-first order kinetic coefficients for chlorfenvinphos degradation are presented in 

Table 2, as well as the respective correlation coefficients (R2) for the linearization. At 

600º C, higher kinetic coefficients were obtained, regardless of the operation pH. On the 

other hand, at pH 1, these values were much higher, especially at 600º C, which is 

consistent with the previous results. As stated in the introduction, this is the first study 

involving photoelectrocatalytic degradation of chlorfenvinphos. Therefore, kinetic 

coefficients obtained here cannot be compared with other coefficients obtained under 

similar experimental conditions. In order to make a rough comparison, a study about 

photocatalytic degradation of chlorfenvinphos by using suspensions of TiO2 will be 

used [29]. In that work, 200 mg L-1 of TiO2 photocatalyst were used, in a solar reactor 

with a total volume between 72-80 L and using a solar collector composed of four 

compound parabolic collector units. The obtained pseudo-first order kinetic coeffient 
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for chlorfenvinphos degradation was 0.014 min-1, higher than the 0.0078 min-1 obtained 

in this work. However, to adequately compare these kinetic coefficients, experimental 

conditions should be similar, and the solar pilot plant used by Malato et al. is very 

different from the laboratory degradation system used in this work.  

 

Mineralization degree of chlorfenvinphos was determined through the analysis of total 

organic carbon. TOC values for all different conditions, together with the percentage of 

TOC decrease, are shown in Figure 5b. Initial values are also shown for comparison. At 

pH 3, the maximum TOC decrease was obtained for the nanostructure annealed at 600º 

C (19 %), while for the nanostructure annealed at 400º C, that reduction was of 16.9 %. 

At pH 1, TOC values significantly decreased, reaching a 65.3 % of TOC reduction for 

the nanostructure treated at 600º C (and 60.5 % for sample annealed at 400º C). 

 

Consequently, in accordance with the previous results, it can be concluded that WO3 

nanostructures used in the present study are efficient for their use as photoanodes in the 

PEC degradation of chlorfenvinphos. 

 

3.3. Regression analysis: influence of annealing temperature and operation pH 

 

With the purpose of finding the relationship between the two factors studied in this 

work (annealing temperature T and operation pH) on the photoelectrocatalytic behavior 

of WO3 nanostructured photoanodes, a regression analysis was performed. The kinetic 

coefficient (k) was used as response variable and the purpose was to maximize it. A 22 

factorial design was selected, since it combines simplicity and effectiveness. The 

equation of the regression model is: 



 14 

     

                                      pHTpHTk ⋅⋅+⋅+⋅+= 3210 ββββ                                        (2) 

 

According to ANOVA, a statistically significant result is obtained when the p-value is 

lower than the stipulated significance level. In this case, this upper limit was set at 0.05. 

Therefore, for a given factor, p-values lower than 0.05 mean that this factor had a 

significant influence on the response variable, an effect that cannot be explained by 

simple random chance. In Table 3, p-values for each factor and for the interaction 

between them, as well as the regression coefficients β0, β1, β2 and β3, are shown (the 

parameter β0, which is the expected value of k when T and pH are zero, has no physical 

meaning, but its value is also shown in Table 3 to provide a complete version of the 

regression model). It can be seen that all p-values are lower than 10-4, which indicates 

that the effects of both factors and the interaction were significant.  

 

The main effects and interaction plots are shown in Figure 6. Lines observed in the 

main effects plot (Figure 6a) indicate the estimated changes in the kinetic coefficient 

when each factor is moved from its lowest level to its highest level, setting the other 

factor at an intermediate value between the lowest and highest level (i.e. setting T = 

500º C and pH = 2). It is clear that the factor with the most significant effect was 

operation pH, which has to be set at its lowest limit (pH 1) in order to maximize the 

kinetic coefficient (Figure 6a). The influence of annealing temperature was smaller, 

although it was also found to be significant: to maximize k, annealing temperature must 

be set at its maximum value (600º C) (Figure 6a). Concerning the interaction between 

both factors, its effect was also significant, since no parallel lines are observed in 
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Figure 6b. From these results, it can be concluded that optimum values are pH 1 and 

600º C. 

 

The strong influence of operation pH can be explained by taking into account the 

chemistry of tungsten species. WO3 is chemically stable in acidic solutions. In fact, 

precipitation of hydrated forms of WO3 (known as tungstic acids), which was the 

formation mechanism of nanostructures used in this work, is achieved at pH of 1 or 

lower [46]. Hence, a better photoelectrochemical performance of WO3 photoelectrodes 

is expected in acidic environments. On the other hand, the higher degrees of 

dehydration and crystallinity of nanostructures annealed at 600º C (see Figure 2) would 

explain the enhancement of degradation efficiency of these samples in comparison with 

samples treated at 400º C. 

 

 

 

4. CONCLUSIONS 

 

Very small nanorods or nanosheets were formed by electrochemical anodization of 

tungsten, regardless of the annealing temperature. Nevertheless, at 600º C, nanorods 

were much more defined due to a higher degree of dehydration and crystallinity of the 

nanostructure. Hence, annealing temperature had an important influence on the 

nanostructures morphology.  

 

The higher degree of dehydration and crystallinity of nanorods obtained at 600º C was 

confirmed by Raman spectroscopy. A peak directly related to amorphous and hydrated 
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WO3 was observed for the sample annealed at 400º C, but not for the sample annealed 

at 600º C. 

 

Charge-transfer resistances under illumination were lower for the nanostructure 

fabricated at 600º C. This result has been associated with the higher degree of 

crystallinity of this nanostructure, which improved electrochemical and 

photoelectrochemical interfacial phenomena. 

 

The UV absorbance peak associated with the aromatic ring of chlorfenvinphos (at 245 

nm) decreased with irradiation time for all experimental cases. However, this decrease 

was much more pronounced at pH 1 than at pH 3. The temporal evolution of this peak 

indicated that degradation likely proceeded through the cleavage of the aromatic ring, 

rather than through the formation of intermediate compounds such as 2,4-

dichlorophenol or 2,4-dichlorobenzoic acid, although future investigations are necessary 

to confirm this preliminary results. 

 

More than 65% of the initial chlorfenvinphos was mineralized after 360 min of 

degradation reaction for the nanostructure annealed at 600º C and under an operation 

pH of 1.  

 

A statistical analysis has shown that both annealing temperature and operation pH, as 

well as their interaction, had a significant effect on the pseudo-first order kinetic 

coefficient, especially the operation pH. In order to maximize this coefficient, annealing 

temperature must be fixed at its highest value (600º C) and pH at its lowest value (pH 

1). The important influence of operation pH can be explained by taking into account the 
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chemical and photoelectrochemical stability of WO3 in highly acidic environments, 

which enhanced the photoelectrochemical performance of WO3 photoelectrodes. On the 

other hand, the higher degrees of dehydration and crystallinity of nanostructures 

annealed at 600º C explained the improvement of degradation efficiency of these 

samples in comparison with samples treated at 400º C. 
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Tables captions 

 

Table 1. Charge-transfer resistance values (R1 and R2) for the WO3 nanostructures. 

 

Table 2.Pseudo-first order kinetic coefficients for chlorfenvinphos degradation (k) for 

the different experimental conditions. 

 

Table 3. p-values for each factor (A: Temperature; B: pH) and for the interaction 

between them (AB). The regression coefficients defined in equation (2) as β0, β1, β2 and 

β3 are also shown. 

 

 

Figures captions 

Figure 1. FESEM images (at 15 KX) of the formed nanostructures after the annealing 

treatment at different temperatures: (a) 400º C, (b) 600º C; current density transient 

recorded during tungsten anodization (c). 

 

Figure 2. (a) Raman spectra of the WO3 nanostructures after annealing at 400º C and 

600º C; (b) EDX spectrum of the WO3 nanostructure after annealing at 400º C. 

 

Figure 3. EIS experimental results for the WO3 nanostructures presented in the form of 

Nyquist (a) and Bode-phase (b) plots. The equivalent circuit used to fit these results is 

also shown (c). 
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Figure 4. Temporal evolution of chlorfenvinphos UV absorbance spectra for the 

different experimental conditions. 

 

Figure 5. (a) Degradation efficiencies for the different experimental conditions; (b) 

TOC values for all different conditions, together with the percentage of TOC decrease. 

 

Figure 6. Main effects (a) and interaction plots (b) for kinetic coefficient k. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 5 
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Figure 6 
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Table 1 

WO3 sample R1/Ω cm2 R2/Ω cm2 
400º C 109 ± 8 991 ± 34 
600º C 42 ± 7 378 ± 16 

   
 
 
Table 2 

Temperature/º C pH k/min-1 k/s-1 (x10-5) R2 

400 3 0.0012 2.0 0.989 
400 1 0.0062 10.3 0.989 
600 3 0.0013 2.2 0.988 
600 1 0.0078 13 0.971 

 
 
 

Table 3 

Effect p-value Regression coefficient (x10-5; k in 
min-1) 

----- ----- β0 = 400 
A: Temperature <10-4 β1 = 1.175 

B: pH <10-4 β2 = –100 

AB <10-4 β3 = –0.375 
 
 


