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Abstract

Highly multivariate disease mapping has recently been proposed as an
enhancement of traditional multivariate studies, making it possible to per-
form the joint analysis of a large number of diseases. This line of research
has an important potential since it integrates the information of many
diseases into a single model yielding richer and more accurate risk maps.
In this paper we show how some of the proposals already put forward in
this area display some particular problems when applied to small regions
of study. Specifically, the homoscedasticity of these proposals may pro-
duce evident misfits and distorted risk maps. In this paper we propose
two new models to deal with the variance-adaptivity problem in multi-
variate disease mapping studies and give some theoretical insights on their
interpretation.

1 Introduction

The analysis of geographical variations in rates of diseases has a long tradition in
epidemiology and statistics. This area of research, known as disease mapping,
has generated substantial interest from a methodological point of view. In
the beginning, disease mapping studies focused mainly on the modeling of a

*This is a preprint version of the paper: Corpas-Burgos, F; Botella-Rocamora, P; Martinez-
Beneito, MA. On the convenience of heteroscedasticity in highly multivariate disease mapping.
Test, 2019, 28, 1229-1250.
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single disease. However, there may be several diseases with common shared
risk factors. Recently, multivariate disease mapping has received considerable
attention by researchers interested in the simultaneous joint spatial modeling of
several diseases (MacNab, 2016; Macnab, 2016; Martinez-Beneito et al., 2017).
Multivariate disease mapping models attempt to estimate the risk of a disease
in specific locations by using its spatial dependence as well as the geographical
distribution of the risks for other related diseases. By so doing, a greater amount
of information is used in the estimation of the risks than in univariate models,
which allows more precise estimates to be obtained.

Multivariate disease mapping models are often computationally slow, and
therefore most of the existing literature is restricted to multivariate modeling of
two or three diseases at the most. Recently, Martinez-Beneito (2013) developed
a general framework for multivariate disease mapping capable of reproducing
many of the Bayesian multivariate disease mapping models previously proposed
in the literature. Subsequently, Botella-Rocamora et al. (2015) extended the
previous work by developing a simpler and computationally more convenient
form that could handle a considerably large number (tens) of diseases. A second
important advantage of this proposal is that it can be implemented in regular
Bayesian simulation packages such as WinBUGS (Lunn et al., 2000).

In this work, we present an application of the methodology proposed in
Botella-Rocamora et al. (2015) for the spatial modeling of several diseases in the
cities of Alicante, Castellón and Valencia, which belong to the Valencian region,
one of the 17 administrative regions that Spain is divided into. After observing
the results obtained, some limitations of the previous methodology are evidenced
when it is applied to smaller cities, as is the case of Castellón. For this reason,
we propose an enhancement, variance adaptivity, of Botella-Rocamora et al.’s
methodology, which allows the problems evidenced to be solved and thereby
improving multivariate risk estimates.

This paper is organized as follows. Section 2 describes the modeling proposal
in Botella-Rocamora et al. (2015) for multivariate disease mapping. Section 3
shows an application of the previous methodology to real data in the Spanish
cities of Alicante, Castellón and Valencia. In Section 4 we propose a modification
of the previous model that makes it possible to solve some of the problems found
in the estimation of the risk maps for the city of Castellón. Section 5 presents
and compares the results obtained with the new modeling proposal. Finally,
Section 6 contains some conclusions about the models and the results obtained
in the previous sections.

2 The M -model for multivariate disease map-
ping

A general statistical framework for the multivariate disease mapping problem
can be described as follows. Let Oij and Eij denote, respectively, the number
of observed and expected cases for the i-th geographical unit of study and the
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j-th disease. The data likelihood assumes that

Oij ∼ Poisson(EijRRij) i = 1, ..., I, j = 1, ..., J

where RRij is the relative risk for the i-th geographical unit and j-th disease,
and is modeled as log(RRij) = µj + θij . The term µj is just an intercept
for the j-th disease and Θ = {θij : i = 1, ..., I; j = 1, ..., J} is a collection
of random effects whose joint distribution specifies how dependence is defined
within and between diseases. Specifically, dependence among the columns of
Θ induces dependence between diseases and, similarly, dependence among their
rows induces spatial dependence within diseases (geographical units).

The original modeling proposal in Botella-Rocamora et al. (2015) induces
spatial multivariate dependence by setting

Θ = ΦM (1)

where Φ is an IxK matrix of random effects with independently distributed
columns that typically follow some spatially correlated distribution, such as a
proper CAR (Conditional Auto-Regressive) distribution. Nevertheless, several
columns with different dependence structures could also be used to reproduce
more complex spatial dependence structures, such as Besag, York and Mollié’s
model (Besag et al., 1991), BYM henceforth. Those spatial distributions induce
dependence between spatial units and therefore between rows of Θ. Addition-
ally, M is aKxJ random matrix which induces dependence between the different
columns in Θ, that is, between the different diseases considered in the analysis.
UsuallyK = J , although they could be different, such as for the multivariate for-
mulation of the BYM model, where two random effects are included per disease
and therefore K = 2J . The variance parameter of the random effects in the Φ
columns is usually fixed to some value so that M is responsible for controlling the
variability of Θ. On the other hand, as proposed by Botella-Rocamora et al., the
cells of M are independently defined as Mij ∼ N(0, σ2) i = 1, ...,K, j = 1, ..., J ,
where σ could be either a fixed (typically large) value, and therefore the Mijs
would follow vague independent prior distributions, or an additional variable to
be estimated in the model. In the first case, we call the corresponding modeling
fixed effects M-modeling, since M cells would be modeled in that manner and,
alternatively, we call the second case random effects M-modeling, once again
because of the modeling of the cells carried out in M.

To conclude this brief introduction to Botella-Rocamora et al.’s proposal, we
believe it is also wise to mention a theoretical property of this model that will
be used later in this work. Thus, as shown in the original paper, assigning
N(0, σ2) prior distributions to the entries in M yields a Wishart(K,σ2Ij) prior
distribution for the covariance matrix between diseases Σb when all spatial
models share the same spatial distribution, which can be computed as simply
M

′
M. Hence, the independent modeling of the cells of M entails a prior mean

for Σb proportional to an identity matrix or, alternatively, it assumes prior
independence in the columns of Θ.
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3 A motivating analysis

3.1 Multivariate mortality study in Castellón

The multivariate proposal put forward by Botella-Rocamora et al. (2015) has
been implemented to study the geographical distribution of mortality in the
cities of Alicante, Castellón and Valencia. In this section, we present some re-
sults obtained in the city of Castellón, which was composed of 95 census tracts
(the geographical unit for this analysis) and had around 170,000 inhabitants
in 2016. Parallel results for the analyses performed in Alicante and Valencia,
composed of 215 and 553 census tracts respectively, are included as supple-
mentary material to this paper due to lack of space (see supplementary file
Motivating Ali Val.pdf). We consider the multivariate joint spatial modeling
of 20 different causes of mortality and both fixed and random effects M-models
for all three cities separately. In order to evaluate the benefits of multivariate
modeling, we compare the results obtained with Botella-Rocamora et al.’s model
with underlying BYM spatial patterns against those obtained with independent
BYM patterns for each disease.

All models were run in WinBUGS and the R code for calling each of them
can be found as annex material in RCode.pdf. Three chains were run for each
model with 30,000 iterations, the first 5,000 of which were discarded as burn-in
period. Of these, one out of every 75 iterations was saved, thereby yielding a
final sample size of 1,002 iterations. Convergence was assessed by means of the
Brooks-Gelman-Rubin statistic (we required this to be lower than 1.1 for each
variable in the model) and the effective sample size (required to be at least 100
for each variable in the model). Convergence was assessed with the R2WinBUGS

package of R.

Figure 1 shows the results obtained with univariate BYM models (upper
row), fixed effects M-modeling (middle row), and random effects M-modeling
(lower row) for 3 out of the 20 causes of death under study in Castellón: AIDS,
Cerebrovascular disease, and Suicides in men. Results shown for the fixed effects
M-model assume improper Mij ∝ 1 distributions, that is, we implicitly assume
σ to be set to ∞ in this case. Nevertheless, we have also run the same model
with σ set to high fixed values, such as 100 or 1000, obtaining results that are
barely distinguishable. Green colors correspond to census tracts with estimated
low risks (Smoothed Standardized Mortality Ratio (sSMRs)< 0.67 = (1.5)−1 for
darker greens), while brown colors correspond to units of high risk (sSMRs> 1.5
for darker browns). Light-colored units denote milder deviations from the overall
risk for the city.

As can be appreciated, markedly different risk maps are obtained with the
multivariate fixed effects M-model, as compared to the univariate BYM mod-
els. Although the risk maps for AIDS for both models do not present such
marked differences (a map with great variability is obtained for both models),
in the case of Cerebrovascular disease and Suicides, quite distinct risk maps are
obtained. While univariate modeling generally provides maps with low variabil-
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ity, fixed effects M-modeling provides maps with great variability, with hardly
any smoothing, which resemble the corresponding maps of unsmoothed SMRs
(not shown in the paper). This performance of the fixed effects M-modeling
in Castellón has also been observed for most of the diseases in the study. In-
terestingly, this lack of smoothing is noticed, but to a much lesser extent, in
the results drawn from Alicante and Valencia (see the previously mentioned
Motivating Ali Val.pdf document).

The lower row in Figure 1 shows the results for these same three diseases for
the random effects M -model. As can be seen, in this case, there are no major
differences between the risk maps of Cerebrovascular disease and Suicides for the
independent BYM models and the random effects M -model. Both models show
low variability and similar geographical patterns. However, the two risk maps
obtained for AIDS mortality are dramatically different. The univariate model
points out several census tracts with extreme risk in some specific locations in
the city of Castellón that are known to be quite deprived. In contrast, a much
flatter map (more similar in this sense to those of Cerebrovascular disease and
Suicides) is obtained with the random effects M-modeling. On this map, no
census tract shows high risk, as is also the case for Cerebrovascular disease and
Suicides. In general, we observed that random effects M-modeling estimates
in Castellón yield flat risk maps for all 20 diseases studied, which in a few
cases, such as AIDS, are very different from those estimated with univariate
modeling. Strikingly, this performance was only seen in Castellón, but not (or
not so evident) in Alicante or Valencia.

In the next subsection we will attempt to explain why these strange results
are obtained for the fixed and random effects M-models in the city of Castellón.

3.2 A statistical interpretation of the results in the moti-
vating analysis

First, we find it interesting to emphasize that far milder differences were found
between the fixed and random effects risk patterns in Alicante and Valencia.
For these two cities, both multivariate models take advantage of the additional
information provided by the set of diseases considered, depicting more detailed
spatial patterns in general than their univariate alternatives. This suggests that
the results found for Castellón could be due to the smaller size of this city, where
the prior structure that the M -model induces could be more influential than
in Alicante and Valencia. Thus, the prior covariance structure of the M -model
could be having an undesirable effect on the final fit that, when available data
are weaker, might be influencing the spatial patterns determined.

Regarding the fixed effects M -model, we have mentioned that it was equiva-
lent to assuming a Wishart(K,σ2IJ) prior distribution on the covariance matrix
between diseases Σb. Since σ is usually set to a large value for the fixed effects
approach, this entails that the prior mean of Σb is equal to Kσ2IJ , for a high
value of σ. Therefore, this model assumes the prior covariances between dis-
eases to be 0 and prior variances of the log-risks within spatial patterns to be
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high. These prior assumptions could explain the results found in Castellón for
the fixed effects model, where the prior information in M would overwhelm the
information provided by the data. For this city, the cells of Θ do not produce
any smoothing in the risks fitted, as a consequence of their large prior variances
(subsumed in matrix M), which does not produce any shrinkage. As a conse-
quence, the smoothed SMRs estimated for this model reproduce the unsmoothed
original SMRs that disease mapping models typically try to avoid.

The random effects M -model also leads to a prior mean of Kσ2IJ for Σb

but with σ now being a parameter to be estimated within the model. This
would potentially avoid the undesirable non-shrinking effect of the fixed effects
M -model when applied to smaller datasets. In this case the prior mean will
just be proportional to the identity matrix but the proportionality constant
will be estimated by the model itself, which will be set to a common consensus
value for all the diseases. Univariate BYM models for each of the diseases in
Castellón yielded posterior standard deviations for the log-SMRs ranging from
0.05 to 0.42, depending on the disease. AIDS was the disease with a higher
standard deviation, far larger than the median standard deviation for the set
of diseases considered (0.13). Thus, the distribution of the standard deviations
of the log-SMRs for the different diseases has a pronounced asymmetrical right-
tailed distribution. In consequence, the consensus scale parameter σ for the
random effects model takes a value that is much lower than that required to
appropriately describe the spatial variability of AIDS mortality. This could
explain perfectly why the initial pattern highlighted by the univariate BYM
model for AIDS vanishes when the random effects M -model is fitted.

In sum, the Castellón multivariate mortality study above has shown important
prior sensitivity for the M -model, mainly for smaller datasets. Specifically,
the fixed effects M -model has a tendency to yield unsmoothed risk estimates.
Furthermore, the random effects version has an inclination toward the shrinkage
of all diseases to a common point in terms of variability. Although this could be
fine for some particular datasets, in general it will be a restrictive performance
of this model which it would be advisable to improve by seeking more adaptive
models, at least in terms of the variance of the diseases. This is the goal that
we pursue from now on.

4 An heteroscedastic modification of theM -model

Our proposal for fixing the prior sensitivity problems of the M -model consists
in a modification of its random effects version. Specifically, we relax the assump-
tion of a common scale parameter for the cells of M . In particular we propose
two different ways to do this. The first proposal considers Mij ∼ N(0, σ2

i ) for
i = 1, ...,K, while our second alternative proposal considers Mij ∼ N(0, σ2

j )
for j = 1, ..., J . From now on we will refer to these two proposals as the row
variance-adaptive random effect M -model (or simply RVA M -model) and the
column variance-adaptive random effect M -model (or simply CVA M -model),
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respectively. Obviously these two proposals will be more adaptive in terms of
variability than the original random effects M -model, which will, hopefully, al-
low us to solve the shrinkage problems toward a common variability evidenced in
the previous section. Henceforth, we will refer to the random effects M -model
introduced in Section 2 as simply the non variance-adaptive model (NVA model)
in order to emphasize its main feature as compared to the two new variance-
adaptive models that we have just introduced.

4.1 An insight on the log-risks separation strategies for
the RVA and CVA proposals

For all three RVA, CVA and NVA models M can be stated as either DM∗ or
M∗D for D = diag(σ) and M∗ij ∼ N(0, 1), for σ a vector of the appropriate
length. Specifically, M = DM∗ for the RVA model, M = M∗D for the CVA
model, and M can be stated as either M∗D or DM∗ for D = σIJ or simply
M = σM∗ for the NVA model. This allows us to formulate the RVA model as

Θ = ΦDM∗, (2)

or the CVA model as
Θ = ΦM∗D (3)

in terms of Expression (1). In a similar manner, Θ in the original NVA model
could also now be expressed as

Θ = ΦM∗σ, (4)

or as both (2) and (3) for D = σIJ instead of a general diagonal matrix as
for RVA or CVA. We will use these expressions to further study the theoretical
properties of these proposals instead of the RVA and CVA formulations in the
first paragraph of this section. Although the formulation in that paragraph is
more convenient in computational terms (indeed it has been the one used to
implement these models in WinBUGS), the matrix formulations above are more
convenient for studying the statistical properties of the corresponding models.
So we will use them extensively from now on.

Expression (2) evidences an interesting interpretation of the RVA model, that
is, the matrix decomposition there can also be viewed as (ΦD)M∗ and thus the
standard deviations σ in that model may be interpreted as those corresponding
to the underlying spatial patterns in Φ. Hence, this model can be viewed as a
set of underlying spatial patterns of different variability (in contrast to NVA)
that are later made dependent by their postmultiplication by M∗. On the
other hand, the CVA model first makes the spatial patterns in Φ dependent
(which originally had the same variability) and later those unscaled dependent
patterns are scaled by means of the postmultiplication by D. Therefore, the
standard deviations σ in both the RVA and CVA models have very different
interpretations. First, for the RVA model, these standard deviations correspond
to the underlying spatial patterns, whereas for the CVA model they scale the
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(spatial and multivariate dependent ΦM∗) patterns available according to the
variability needed for each particular disease.

Expressions (2) to (4) separate the different sources involved in the multivari-
ate covariance structure into different terms. Similar separation strategies are
also advocated by Barnard et al. (2000) in multivariate (non-spatial) problems
and by MACNAB-SEIO in multivariate disease mapping studies. Our proposal
runs in that same direction, with some advantages that we will describe below.

By this separation of Θ into several components, Φ is in charge of modeling
the spatial dependence of the data, M∗ is in charge of modeling the multivari-
ate dependence between diseases, and D models the scale of Θ. In any case,
note that some confounding will remain between M∗ and D since, ideally, M∗

would be in charge of modeling the correlation matrix between diseases, but it
does not do exactly that. To model the correlation matrix between diseases Cb,
M∗ should be defined so that Cb = (M∗)′M∗. This would entail J column re-
strictions on M∗, specifically {M∗

·jM
∗
·j = 1 : j = 1, ..., J}, which are generally

detrimental for MCMC algorithms (in our experience neither WinBUGS nor Stan
tolerate restrictions of this kind very well). In contrast, we propose modeling
M∗ij ∼ N(0, 1). With this choice we have that M∗

·jM
∗
·j ∼ χ2

J , which will give J
as expected value. Thus, our definition of M∗ does not allow us to set M∗

·jM
∗
·j

to some specific value and therefore it will not model any correlation matrix.
Nevertheless, the feature E(M∗

j·M
∗
·j) = J , which makes J−1(M∗)′M∗ on aver-

age a correlation matrix, sets the scale of M∗M∗. This allows the modeling of
the scale of the multivariate patterns to be separated into the separate matrix
D, since that scale cannot be controlled by M∗.

Hence, we now have two alternative separation strategies that could fix the
non-adaptability, in terms of variability, of the NVA proposal in Botella-Rocamora
et al. (2015). We are now going to explore their differences for modeling Θ
through Σb.

4.2 An insight on the RVA and CVA proposals in terms
of the modeling of Σb

The main difference between the RVA and CVA proposals lies in their inherently
different ways of modeling Σb. Thus, for RVA Σb = M ′M = (DM∗)′(DM∗) =
(M∗)′D2M∗, whereas for CVA Σb = (M∗D)′(M∗D) = D(M∗)′M∗D. Ac-
cording to these decompositions of Σb and expressions (2) and (3), RVA and
CVA have markedly different interpretations. We start by analyzing RVA. Note
that M∗ in Expression (2) could be QR-decomposed as M∗ = QR for suit-
able orthogonal (Q) and upper triangular (R) matrices. Therefore, Expression
(2) could be alternatively stated as Θ = ΦDQR. If R = Ij , then, for RVA,
we would have Σb being equal to (DM∗)′(DM∗) = (QR)′D2QR = Q′D2Q,
that is, Q and D2 would contain the eigenvectors and eigenvalues, respectively,
of Σb. Hence, in this case, we could interpret the RVA model as a PCA de-
composition of Θ, where Φ would be the (spatially correlated) individual scores
corresponding to each geographical unit, D would weight the contribution of
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each axis to the multivariate dependence structure in Θ, and Q contains the
orthogonal axis defining the PCA. In the most general case in which R was not
necessarily equal to Ij , the axis in the PCA would not be justQ, butQR = M∗

and therefore, in that case, RVA can be understood as a PCA of Θ followed by
a subsequent non-orthogonal rotation. In this general case the PCA interpreta-
tion would therefore remain but with the original cloud of points projected onto
a non-orthogonal axis given by M∗. The columns of Φ could be understood
as the individual scores corresponding to each spatial unit when projected onto
those non-orthogonal components. The RVA model assumes that each of those
columns corresponding to a specific linear combination of diseases (hopefully
with a particular sense) follows a spatially structured distribution so, in some
sense, RVA performs a non-orthogonal spatial PCA of the matrix of log-risks
Θ.

The non-orthogonal (spatially-correlated) PCA analysis performed in RVA
could make more sense than it might seem at a first glance, since geographical
patterns of risk factors would be rarely uncorrelated. Think, for example, of
the spatial pattern of alcohol and tobacco consumption throughout a region of
study. It would be hard to assume that both factors are independent. In that
case, if these two risk factors were the two main determinants of the diseases
in our study, a simple orthogonal PCA would induce spatially correlated distri-
butions for both a linear combination of these factors (a weighted mean) and
the corresponding orthogonal combination for these two variables. Assuming
spatial distributions for these two components could not be justified since the
second of them is mainly a residual shape component of the PCA, possibly
showing weak spatial dependence. In contrast, a non-orthogonal PCA analysis,
such as the one performed in the RVA model, would determine the same linear
subspace for fitting the (correlated) effects but without assuming an orthogonal
performance between alcohol- and tobacco-related spatial distributions. Thus,
these two axes could focus on the separate geographical description of alcohol
and tobacco consumption, when the assumption of spatial dependence for these
two patterns is sure to be far more sensible than for the components of the
regular orthogonal PCA.

Regarding CVA, Expression (3) could be alternatively stated as ΘD−1 =
ΦM∗ = ΦQR and, thus, CVA performs a matrix decomposition of the scale-
standardized matrix ΘD−1. Since D−1ΣbD

−1 = D−1D(M∗)′M∗DD−1 =
(M∗)′M∗ = R′Q′QR = RR′ then R will correspond to the Cholesky up-
per triangle of the correlation matrix between diseases. In consequence, the
columns of ΦQ will correspond, respectively, to the individual scores explaining
the (standardized) first disease, the individual scores explaining the (standard-
ized) second disease given the first, and so forth. CVA assumes those vectors of
scores (ΦQ) to be orthogonal combinations of common underlying spatial pat-
terns. Those orthogonal combinations mean that all the columns of ΦQ share
a common distribution (all of them are linear combinations of the same spatial
patterns) and this therefore makes the modeling of Θ order-free with regard to
diseases, i.e., invariant to their ordering (Martinez-Beneito, 2013).
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A second interesting interpretation of the CVA model also comes from the
decomposition Σb = D(M∗)′M∗D = DWD, where W follows a standard
Wishart distribution Wishart(K, IJ). This is a scaled Wishart distribution as
defined in Gelman et al. (2014). The scaled Wishart distribution has a clear
advantage over the regular Wishart distribution as it separates the modeling of
the variance parameters from that of the unscaled covariance structure. This
allows it, for example, to be weakly informative on the scale parameters but
more informative on the correlation structure of Σb, since being too uninforma-
tive on that structure makes the marginal priors of their correlation parameters
accumulate most of its mass at their extremes. In contrast, assuming an in-
verse Wishart(J + 1, IJ) distribution on Σb, which would mean putting flat
prior distributions on its correlation parameters, assumes informative priors
on its standard deviations (see page 286 in Gelman and Hill (2007)). Thus,
the common degrees-of-freedom parameter of the Wishart distribution seems
to introduce modeling conflicts between the correlation and standard deviation
parameters of Σb. Mainly for these reasons, some authors advise the use of
scaled Wishart priors instead of regular Wishart priors for modeling covari-
ance/precision matrices (Barnard et al., 2000; Gelman and Hill, 2007; Gelman
et al., 2014).

From a more practical point of view, the scaled Wishart distribution also
allows specific inference to be performed on the different standard deviations
σ1, ..., σJ in a direct way. For a Wishart distribution, making inference on differ-
ent standard deviations for each disease would require to increase the hierarchy
of the model by setting Wishart(K,D) and putting an additional layer in the
model for D, if the software available allows us to do so. The most popular
inference tools for spatial modeling nowadays (WinBUGS and INLA) have only
implemented the Wishart distribution to model precision matrices in multi-
variate settings. Therefore, the proposed modeling overrides this limitation by
building the scaled Wishart distribution by itself.

The Wishart and scaled Wishart distributions are frequently used as priors
for precision matrices, instead of for covariance matrices, as we have assumed in
our proposal. In our opinion the main reason for this consensus in the literature
could be that the Wishart distribution is the conjugate distribution for preci-
sion matrices of multivariate Normal variables, what yields substantial benefits
in computational and analytical terms. The use of the Wishart(J + 1, IJ) as a
prior distribution for precision matrices is particularly popular as it yields uni-
form marginal prior distributions on the correlation parameters between diseases
(Barnard et al., 2000). Similarly, a scaled Wishart(J + 1, IJ) prior distribution
on the covariance matrix would mean a uniform prior distribution on the par-
tial correlation parameters. Instead, our proposal puts a scaled Wishart(K, IJ)
distribution on the covariance matrix, which means that, for the common case
K = J , this proposal should not be far from a uniform marginal prior dis-
tribution on the partial correlations between diseases. Nevertheless, Figure
2 illustrates the performance of our scaled Wishart(K, IJ) prior for Sigmab,
for K = J + 1, in terms of the correlations between diseases. Each graph
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in that figure corresponds to the marginal distribution (histogram for 50,000
draws) of the correlation parameter between the first two diseases for scaled
Wishart(J + 1, IJ) prior distributions on Σb, for J = 3, 6, 12 respectively.
Figure 2 shows how the prior distributions for these settings concentrates on
0 as we increase the number of diseases. This is in contrast to the scaled
Wishart(J + 1, IJ) prior distribution on the precision matrix, which yielded
uniform prior distributions on the marginal correlations independently of J ,
that is, the number of diseases considered. Results for other reasonable values
of K, such as K = 2J (the value corresponding to the multivariate implemen-
tation of the BYM), depict similar performances although slightly more peaked
toward 0.

Although the preference for small correlations might seem an undesirable ef-
fect for the scaled Wishart(K, IJ) prior distribution on Σb, it could be more
desirable than expected. As we increase the number of diseases, the number
of marginal correlations between diseases in a model increases at a quadratic
rate. Thus, assuming a uniform prior distribution for the marginal correlations
between diseases would also mean a quadratic increase in false ’significant’ cor-
relations as the number of diseases increases. In contrast, a prior concentrating
its mass on 0 when J grows would avoid this effect. This seems an interesting
feature of our proposal as, when we increase the number of diseases in a mul-
tivariate study, we would expect the proportion of closely related diseases to
go down instead of increasing at a quadratic rate. Hence, the prior structure
proposed would perform a kind of multiplicity control on the number of related
diseases (Scott and Berger, 2010), thereby inducing a parsimonious fit of the
multivariate structure between them.

5 A new analysis of the Castellón mortality data

In this section we return to the geographical analysis of mortality in the city of
Castellón and implement the new RVA and CVA variance-adaptive proposals
described in the previous section. In order to evaluate those proposals, we
compare the new estimated risks with those obtained with the NVA M -model
and the univariate BYM models. The models have been executed in WinBUGS

following the specifications introduced in Subsection 3.1. The R code for this
analysis can also be found in the annex material, document RCode.pdf.

Figure 3 shows the estimated risk maps with the new modeling proposals
for AIDS, Cerebrovascular disease and Suicides in men in Castellón. As can
be seen in the case of AIDS, the new modeling proposals provide risk maps
with greater variability than that obtained with the NVA model and closely
similar to those estimated with the univariate BYM model (Figure 1). In the
case of Cerebrovascular disease and Suicide, the risk maps estimated with the
new modeling proposals present a considerable lower variability than the risk
maps for AIDS. This shows that both RVA and CVA have solved the problem
presented by the original multivariate NVA model, which provided risk maps
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Table 1: DICs for the adjusted models in all three cities in the study
Model Alicante Castellón Valencia

BYM with independent diseases 12964 6173 34270
Fixed effects M -model 13212 6675 34416

Random effects M -model 12865 6178 34029
RVA M -model 12798 6148 33918
CVA M -model 12870 6159 34009

with a similar variability for all the diseases in the study. Nevertheless, the
original patterns estimated by the univariate BYM models seem to be reinforced
for both the RVA and the CVA models (mainly for the RVA model), almost
certainly as a consequence of sharing information between diseases. RVA and
CVA estimates for Valencia and Alicante can also be found as annex material
in the file Valencia VarAdapt.pdf and Alicante VarAdapt.pdf, respectively.
Results for these cities confirm the visual conclusions also drawn for Castellón,
although maybe to a lesser extent, since data for these cities are stronger than
for Castellón.

Besides the visual comparison of the estimated risk maps with the different
modeling proposals, we have also compared the fit of these models in general
terms by using the Deviance Information Criterion (DIC) proposed by Spiegel-
halter et al. (2002). The DICs for all models and cities in the study can be
found in Table 1. As can be observed, the model that provides a better fit in
terms of the DIC in all three cities studied is the RVA M -model, followed by
the CVA M -model in two out of three cities in the study. This seems to confirm
that, besides the evident visual differences found, the heteroscedatic nature of
the RVA and CVA models yields an important enhancement of the fit of the
underlying geographical risk patterns.

6 Discussion

As described in this paper, the multivariate modeling proposal in Botella-
Rocamora et al. (2015) for multivariate spatial studies of diseases presents some
limitations when data are weaker. Specifically, in such situations, the prior
structure of the M -model can significantly influence the estimated risk pat-
terns for all the diseases considered. As shown, this fact is caused by the single
common variance parameter in the M matrix of this model, which controls
the overall variability of all risk patterns fitted. As illustrated, the fixed effects
M -model has a tendency to yield barely smoothed risk estimates as a conse-
quence of assuming a high prior variance for the log-risks for all diseases. On the
other hand, the random effects M-model is prone to take all diseases, in terms
of variability, to a common point that will be estimated by the model. If the
variability of the risk patterns considered was different, these prior assumptions
may produce evident misfits in the risk patterns that are estimated. One of the
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main contributions of this work has been to highlight these limitations, which
are particularly worrisome when the original NVA proposal is applied to small
regions of study.

In this work we have proposed two modifications of the previous multivariate
model that incorporate several different parameters to model the variability of
the risks for each disease and which allow us to solve the problems evidenced
in the study. These new heteroscedatic proposals allow the spatial patterns for
each disease to have greater or lesser variability when necessary. This has made
it possible to obtain more flexible and accurate risk estimates.

Regarding the two modeling proposals introduced in this paper, RVA has
shown a better performance in empirical terms according to DIC. Thus, in
practical terms, these proposals seem to be more advisable despite the appeal-
ing interpretation of the CVA model as a scaled Wishart prior on Σb. Beyond
these empirical results we also find the RVA model proposed more interesting
for several reasons. First, the PCA interpretation of the RVA approach seems
quite interesting. Further work should be carried out under this approach in
order to extract the ’principal maps’ underlying this model since, as currently
implemented, these factors cannot be identified by the model (some order re-
striction should be imposed, for example, in the vector of standard deviations σ
in order to identify those ’principal maps’). Nevertheless, those ’principal maps’
with the municipal scores corresponding to the different principal axes is an in-
teresting idea that is certainly worth exploring. Moreover, the spatial modeling
of the ’principal maps’ that the RVA model makes is also appealing. Assuming
a spatial distribution for these components could be a sensible assumption since
these common underlying components could perfectly reflect the spatial distri-
bution of risk factors throughout the region of study. In contrast, CVA assumes
spatial distributions for the residual variability of each disease conditioned to
the previous diseases in the study. We find this assumption much harder to
support in practical terms. Nevertheless, the CVA proposal is interesting by
itself because of its interpretation as a scaled Wishart prior for Σb. As shown,
the CVA model makes it possible to implement the scaled Wishart within some
regular Bayesian packages, such as WinBUGS, and this could be of interest even
beyond the disease mapping literature.
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Figure 1: Choropleth maps for the estimated risk patterns using traditional
univariate modeling (BYM), above, fixed effects M-modeling, center row, and
random effects M-modeling, below
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Figure 2: Prior marginal distributions for the correlation for the first two dis-
eases, out of a set of J = 3, 6, 12, assuming a Wishart(J+1, IJ) distribution for
Σb. Histograms correspond to samples of 50,000 draws from the corresponding
distribution of that marginal correlation
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Figure 3: Choropleth maps for the estimated risks using the new heteroscedastic
RVA and CVA M -models
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