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Abstract

Conditional autoregressive distributions are commonly used to model
spatial dependence between nearby geographic units in disease mapping
studies. These distributions induce spatial dependence by means of a spa-
tial weights matrix that quantifies the strength of dependence between any
two neighboring spatial units. The most common procedure for defining
that spatial weights matrix is using an adjacency criterion. In that case,
all pairs of spatial units with adjacent borders are given the same weight
(typically 1) and the remaining non-adjacent units are assigned a weight
of 0. However, assuming all spatial neighbors in a model to be equally
influential could be possibly a too rigid or inappropriate assumption. In
this paper, we propose several adaptive conditional autoregressive distri-
butions in which the spatial weights for adjacent areas are random vari-
ables, and we discuss their use in spatial disease mapping models. We will
introduce our proposal in a multivariate context so that the spatial de-
pendence structure between spatial units is shared and estimated from a
sufficiently large set of mortality causes. As we will see, this is a key aspect
for making inference on the spatial dependence structure. We show that
our adaptive modeling proposal provides more flexible and accurate mor-
tality risk estimates than traditional proposals in which spatial weights
for neighboring areas are fixed to a common value.

1 Introduction

Disease mapping has attracted considerable attention over the last three decades
(Lawson, 2018; Martinez-Beneito and Botella Rocamora, 2019). This area of
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research pursues the study of the geographical distribution of health-related
events, such as mortality from, or incidence of diseases, aggregated over areal
units, in order to identify mainly those locations which show higher risks. In
disease mapping problems, the units of study usually considered are as small as
possible, which can lead to what are known as small areas estimation problems.
As a consequence, many modeling proposals have been formulated in order to
deal with this problem and thereby derive reliable risks estimates. Most of
these models consider dependence among nearby spatial units, assuming them
to show similar risks. Therefore the spatial dependence hypothesis is the main
key to improving risks estimates in disease mapping studies.

A large number of disease mapping models have been proposed, most of them
following a Bayesian approach; see Besag et al. (1991) or Leroux et al. (1999)
for two of the most frequently used models in applied studies. These proposals
are frequently specified as generalized linear models that incorporate spatial
dependence between nearby geographical units through random effects following
some spatial prior distribution. Although some other spatial modeling tools have
been also used (Ad́ın et al., 2017), the most popular spatial prior distributions
in disease mapping models belong to the family of Conditional Autoregressive
(CAR) distributions (Besag, 1974; Besag et al., 1991), also known as Gaussian
Markov Random Fields (GMRF) (Rue and Held, 2005). CAR distributions
induce spatial dependence by considering a schematic neighborhood structure
which accounts for the geographical arrangement of the spatial units. That
neighborhood structure is summarized by means of a spatial weights matrix
quantifying the relative influence that the random effects of the geographical
units have on each other, so those weights should reflect the strength of the
dependence between any pair of spatial units. Moreover, that weights matrix is
usually sparse, reflecting an implicit Markovian assumption which considers the
conditional distribution of any random effect, given its neighbors, independent
of the random effects in any other spatial location.

Different proposals of spatial weights matrices for CAR distributions have
been made in the literature. By far, the most common procedure is using an
adjacency criterion for defining that matrix. In that case all pairs of spatial
units with adjacent geographical borders are given the same weight, typically
1, and the remaining non-adjacent units are assigned a weight of 0, reflecting
independence given the remaining spatial units (Besag et al., 1991). As pointed
out by Raftery and Banfield (1991), this choice could be sensible for regular
lattices but less so for irregular lattices such as those typically used in disease
mapping problems. Weighted versions of this common choice also exist which
are available in some common Bayesian inference packages, such as WinBUGS or
OpenBUGS; while some others, such as INLA, do not allow for this option. This
allows the strength of the dependence of nearby pairs of units to be modulated,
thereby allowing each neighboring pair of units to show a different strength.
However, the CAR distributions in WinBUGS or OpenBUGS do not allow those
weights to be estimated as variables within a model; on the contrary, they have
to be supplied as constants to the corresponding model. Best et al. (1999) and
Earnest et al. (2007), for example, propose the use of weights matrices with dif-
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ferent weights which are a function of the geographic distance between spatial
units (usually, the Euclidean distance between their centroids); in this manner
random effects of closer geographic units will show stronger dependence. How-
ever, it could happen that geography is not necessarily the main determinant of
dependence between units; thus areas with similar values of certain covariates,
for example, would take similar risks estimates in general even though they are
distant. In this regard, Kuhnert (2003) defines the weights matrix of the ran-
dom effects as a function of the absolute difference between the values of some
covariate for the spatial units. Likewise, Earnest et al. (2007) define the weights
as a function of both the geographical distance and their similitude in terms of
some covariate. A comparison of models of this kind is undertaken in Duncan
et al. (2017).

Despite their interest to researchers, the use of the weight matrices above
shows some limitations. Firstly, unweighted adjacency-based matrices do not
have clear support beyond their simplicity and convenience. In the end, as-
suming all spatial neighbors in a model to be equally influential is an arbitrary
assumption that should be checked in some way. Nevertheless, the mentioned
convenience of that choice has led most disease mapping practitioners to ac-
cept and use that matrix, without further justification, and to avoid question-
ing that assumption. On the other hand, the use of functions of geographic
distance for setting weights matrices assumes equal weights for all locations
which are equally distant, which could be somewhat simplistic for some settings
(consider regions with mountains, rivers or other barriers). Additionally, those
distance weighted proposals assume parametric relationships between distances
and weights, which could also be rigid or sometimes inappropriate. Finally, the
definition of weights as a function of some covariate poses an additional problem
since the corresponding covariate may not always be available for all locations.
Therefore, the requirements for this option are higher than for pure geometric
criteria.

The objective of this work is to propose a procedure for estimating the spatial
weights matrix in disease mapping studies solving the issues above. Specifically,
we focus on the barely explored adaptive CAR distributions which consider
the weights of the spatial weights matrix as additional random variables in the
model. Some works can be found in the literature, such as MacNab et al. (2006);
Brezger et al. (2007); Lu et al. (2007); Congdon (2008); Ma et al. (2010), that
follow this approach. Our proposal, in contrast to the previous works, estimates
a common weights matrix from the joint study of several diseases, which would,
presumably, capture the different dependence strengths shown by the neigh-
boring spatial units in the region of study. As we will see, that multivariate
feature of our proposal will be a key aspect for its success. The multivariate
estimated weights matrix could be subsequently used in future studies on that
same region of study. In principle the enhanced weights structure estimated
for that region would allow improved risk estimates to be derived incorporating
the dependence structure shown by some set of diseases in that region. That
spatial structure should reflect physical/social barriers, data artifacts, geograph-
ical/geometrical/social features etc., which would be recommendable to consider
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in subsequent spatial analyses on that same region.
This paper is structured as follows. Section 2 introduces some traditional

spatial modeling proposals widely used in disease mapping studies and makes a
brief review of the main adaptive CAR models already proposed in the literature.
Section 3 describes our multivariate modeling proposal for the weights matrix
of CAR distributions. Section 4 illustrates how the developments proposed at
Section 3 can be used for estimating the spatial dependence structure in a real
setting and how that estimation improves subsequent analyses in comparison
to studies with unweighted dependence matrices. Finally, Section 5, discusses
some results and conclusions drawn from this study.

2 Some modeling proposals in disease mapping

2.1 Some popular disease mapping models

Disease mapping studies consider regions of interest discretely divided into I
spatial units, generally of small size, such as census tracts or municipalities.
The main aim of these studies is to determine the geographical distribution of
the risks for some disease for these spatial units. The collection of observed cases
per spatial unit are jointly denoted by O = (O1, . . . , OI)

′, where Oi denotes the
number of observed cases in the i-th unit. Typically, disease mapping models
assume:

Oi ∼ Poisson(EiRi), i = 1, . . . , I,

where E = (E1, . . . , EI)
′ contains the number of expected cases per spatial

unit for the corresponding disease and R = (R1, . . . , RI)
′ is the collection of

location specific risks that we would want to estimate. Typically, the log-risks
are modeled as:

log(Ri) = µ+ zTi β + ηi, (1)

where µ is an intercept, zi is a vector of covariates, with β = (β1, ..., βp)
′ being

its vector of associated parameters, and η = (η1, . . . , ηI)
′ a vector of random

effects. The random effects η are introduced to explain the variability that
cannot be explained by the covariates and η is typically assumed to show spatial
dependence since that residual variability could easily exhibit that feature. From
now on, for simplicity, we will assume that no covariates are available and the
log-risks are simply modeled as the sum of the intercept and the set of random
effects.

The random effects vector η is habitually modeled by using spatially cor-
related CAR prior distributions. A particularly popular case of CAR prior
distribution is the Intrinsic CAR (Besag et al., 1991) distribution (ICAR from
now on), which for a vector φ may be defined by the following set of I univariate
conditional distributions:

φi|φ−i, σ2
φ ∼ N

(
1

wi+

I∑
k=1

wikφk,
σ2
φ

wi+

)
, i = 1, ..., I. (2)
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In this expression, the subindex in φ−i denotes all the terms in φ excepting its
i-th component, wik weighs the contribution of the k-th random effect to the
mean of φi, wi+ =

∑I
k=1 wik and σ2

φ is a variance parameter. These conditional
distributions can be shown (Besag, 1974) to yield the following joint distribution
for φ:

φ|σ2
φ ∼ NI(0, σ2

φ(D −W )−),

where D = diag(w1+, ..., wI+), W = (wik)Ii,k=1 and the superindex in (D −
W )− denotes the Moore-Penrose inverse of D −W . Covariance between ele-
ments of φ is determined by the spatial weights matrix W , whose elements wik
are typically non-zero if areas (i, k) are considered neighbors and zero other-
wise. Therefore, if two areas are considered neighbors, their random effects are
conditionally dependent, while random effects of non-neighboring areas are con-
ditionally independent. As mentioned previously, the most common approach
is to assume that areas (i, k) are neighbors if they share a common border (ad-
jacency) and in that case set wik = 1 for all neighboring pairs of units (i, k). In
that case, the conditional distributions above reduce to simply:

φi|φ−i, σ2
φ ∼ N

(
1

ni

∑
k∼i

φk,
σ2
φ

ni

)
, i = 1, ..., I, (3)

where ni stands for the number of neighboring areas of unit i and the subindex
k ∼ i denotes all those units k which are neighbors of i. Now, the conditional
mean of φi is equal to the raw (unweighted) mean of the random effects in its
neighboring areas and its conditional variance is inversely proportional to the
number of neighbors ni.

One of the most popular specifications for η in disease mapping studies is
that introduced in Besag et al. (1991) (BYM from now on). In this proposal,
the random effects vector η is considered to be the sum of two vectors of ran-
dom effects η = φ + θ. The term φ, which follows an ICAR distribution as
just introduced, will be responsible for inducing spatial dependence on R and
accounts for those risk factors of regional scope which take effect on several
contiguous spatial units, making them in principle similar. The second term, θ,
whose components follow independent Normal distributions of mean zero and
common variance σ2

θ , accounts for risk factors of very limited geographical scope
that take an effect just on isolated areal units, making their risks different to
those of their surrounding units. Thus, this second term induces additional
unstructured variability in η. The amount of spatial/unstructured variability
in R depends on the balance between σφ and σθ, which is determined by the
model/data itself. If the former has higher (respectively lower) values, in com-
parison to the latter, the final pattern will show substantial spatial dependence
(respectively independence).

A second popular CAR prior distribution for inducing spatial correlation on
the random effects vector η in Expression (1) is that introduced in Leroux et al.
(1999). In contrast to the BYM model, η in this alternative proposal is not
the sum of two additional components. In this case, the determination of the
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amount of spatial/unstructured variability is controlled by a spatial correlation
parameter ρ ∈ [0, 1] so that the special case of ρ = 0 simplifies to a model with
independent random effects and ρ = 1 corresponds to the ICAR distribution
above. All intermediate values of ρ ∈ (0, 1) induce patterns mixing both sources
of dependence. Specifically, for the Leroux et al. proposal, the prior conditional
distributions corresponding to ηi are given by:

ηi|η−i, ρ, σ2
η ∼ N

(
ρ

ρwi+ + 1− ρ

I∑
k=1

wikηk,
σ2
η

ρwi+ + 1− ρ

)
, i = 1, ..., I.

Note the obvious coincidence of this proposal with a weighted CAR distribution
for ρ = 1 and with a heterogeneous Normal distribution for ρ = 0. For the usual
assumption of wik = 1 for adjacent spatial units, and 0 otherwise, the Leroux
et al. proposal reduces to:

ηi|η−i, ρ, σ2
η ∼ N

(
ρ

ρni + 1− ρ
∑
k∼i

ηk,
σ2
η

ρni + 1− ρ

)
, i = 1, ..., I.

In the same manner as for the ICAR distribution, these conditional distributions
yield a joint Normal distribution, specifically:

η|ρ, σ2
η ∼ NI(0, σ2

η((1− ρ)II + ρ(D −W ))−1), i = 1, ..., I,

where, as for BYM, W = (wik)Ii,k=1 denotes the spatial weights matrix consid-
ered.

As described in the introduction, setting the same weights wik = 1 to all
the random effects of adjacent locations in CAR distributions could be an in-
appropriate or rigid assumption. This makes all neighboring regions equally
influential on any particular risk, which may not correspond to reality. In order
to solve this limitation, models with alternative stochastic weight matrices have
been proposed and are reviewed in the next subsection.

2.2 Adaptive CAR distributions

A few CAR models with adaptive weights matrices can be found in the Bayesian
disease mapping literature. The goal of these proposals is to model spatial cor-
relation through the fitting of an stochastic spatial weights matrix W . This
approach is undertaken within Bayesian hierarchical models where the corre-
sponding CAR distributed random effects are defined as η|W , σ2

η, ... and an
additional layer is considered in the model for estimating the elements in W .
Next, we briefly summarize several of the contributions in this area. There is
obviously a huge body of literature proposing the stochastic modeling of vari-
ances or covariances between variables in many different contexts: state space
models (Carter and Kohn, 1996), function estimation (Lang et al., 2002), etc.
Nevertheless, we will restrict the review below just to CAR spatial models in
order to focus on the particular topic that we are discussing where the variance
matrix is defined as a function of a particular weights matrix W .
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Wombling (Lu and Carlin, 2005; Lu et al., 2007; Ma and Carlin, 2007; Ma
et al., 2010) would be a first attempt of stochastic modeling of the spatial weights
matrix W in CAR distributions. Specifically, Wombling assumes the cells of
W as binary stochastic values, which are modeled as Bernoulli distributions.
The probability of wij = 1 for any pair of spatial units (i, j) could be modeled
by means of a logistic regression as a function of some covariates (Lu et al.,
2007), such as the adjacency matrix of the area of study or some other related
quantity. Obviously, the number of elements in that logistic regression will in-
crease quadratically as a function of the number of spatial units in the study,
which could be a problem for large lattices. In addition, a large collection of
sensible covariates would be required under this approach in order to define a
rich enough spatial weights matrix. More flexible alternatives are also consid-
ered for estimating W within the Wombling approach, although in this case
only the weights of the cells corresponding to adjacent elements in the lattice
are estimated. In this case, since wij are modeled as Bernoulli variables for
adjacent units, this procedure will prune the adjacency graph originally consid-
ered. Ma et al. (2010) proposes a spatial Ising model (see for example Geman
and Geman (1984) or Green and Richardson (2002)), which favors contiguous
edges in the graph (those sharing one of their nodes) to take the same values
in the weights matrix. This proposal has also been applied to multivariate data
sets, for the joint study of three diseases, as in Ma and Carlin (2007). Al-
though this proposal seems much more flexible than the naive use of covariates
for modeling P (wij = 1), the binary treatment of the elements of the weights
matrix in Wombling studies seems somewhat restrictive. Moreover, the use of
Ising models for estimating the non-zero cells of W induces important computa-
tional problems (Ma and Carlin, 2007) for estimating the penalizing parameter
of that model, at least in the multivariate case. This forces this parameter to be
fixed/tuned according to previous runs of the models. However, as reported by
the authors, the fit of this model even for a fixed penalizing parameter becomes
challenging for medium/large lattices.

On the other hand, MacNab et al. (2006) and Congdon (2008) consider
adaptive versions of the Leroux et al. CAR prior distribution. This approach
could be also used for estimating weights matrices in CAR distributions as will
become evident in the next section. These proposals allow the spatial correlation
parameter ρ of Leroux et al. to vary for each geographical unit. Specifically,
MacNab et al. (2006) propose defining an unweighted (adjacency-based) spatial
process as the following set of conditional distributions:

ηi|η−i,ρ, σ2
η ∼ N

(
ρi

ρini + 1− ρi

∑
k∼i

ηk,
σ2
η

ρini + 1− ρi

)
, i = 1, ..., I.

The problem with this proposal is that this set of conditional distributions does
not yield a valid CAR prior distribution since the symmetry condition (Besag
and Kooperberg, 1995), necessary for η to have a symmetric covariance ma-
trix, does not hold in this case. Interestingly, regarding the spatial correlation
parameters ρ = (ρ1, ..., ρI), MacNab et al. (2006) mention that ’the analysis
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showed very little prior-to-posterior updating for the ρjs, an indication that the
data did not provide enough information for useful posterior inference’. Con-
gdon (2008), also in the unweighted case for simplicity, proposes the following
set of conditional distributions:

ηi|η−i,ρ, σ2
η ∼ N

(
ρi

ρini + 1− ρi

∑
k∼i

ρkηk,
σ2
η

ρini + 1− ρi

)
, i = 1, ..., I,

which fulfills the mentioned symmetry condition. Although this proposal is
supposed to extend the Leroux et al. CAR distribution to having different
correlation parameters ρi, i = 1, ..., I, strikingly it does not coincide with that
proposal when all those ρi take a single common value ρ. Moreover, this process
yields the following joint covariance matrix:

σ2
η(diag(1I − ρ)II + diag(ρ)(D −W diag(ρ)))−1.

In this case the covariance matrix is not a combination of II and D−W since
this latest term is replaced by D−W diag(ρ). As a consequence, this proposal
does not seem such a straightforward generalization of the Leroux covariance
matrix. Congdon (2008) suggests several different prior distributions for the
components of ρ, such as beta, probit-normal or logit-normal distributions which
allow further modeling of these variables. This adaptive CAR distribution is
proposed and used in the univariate context where a single spatial pattern is
studied.

Brezger et al. (2007) propose an alternative adaptive model which makes it
possible to make inference on the spatial weights matrix of ICAR prior distri-
butions. The context of this paper is spatio-temporal modeling in human brain
mapping, but their ideas could be also useful for regular disease mapping stud-
ies. Brezger et al. uses an ICAR as prior distribution for the coefficients of some
basis of functions modeling the time trend for a set of brain voxels; a different
ICAR distribution is used for each element in that basis. Under this approach,
the cells of the weights matrices for those ICAR random effects are considered
equal to 0 for all non-adjacent pairs of units and are modeled as positive ran-
dom variables, following an informative Gamma(0.5,0.5) prior distribution for
the adjacent areas. Posterior sensitivity to that informative prior distribution
is not assessed in the paper. Additionally, the likelihood for the Brezger et al.
proposal is Normal so the applicability of their model and results to regular
disease mapping studies, usually with Poisson or binomial likelihoods, should
be further explored.

3 A new adaptive CAR distribution and its use
in multivariate models

Aa an alternative to the commonly used adjacency criterion, which considers
all the weights in W as fixed binary quantities, we propose to model the spatial
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weights as random variables within the model so as to allow variability between
them. We begin by describing two proposal in the simplest univariate case
for both ICAR and Leroux et al. spatial distributions. Subsequently, we will
describe their equivalents in the context of the multivariate study of several
diseases since, as we will argue, this is the appropriate context where adaptive
proposals should be implemented.

3.1 Univariate case

We start first by introducing the estimation of spatial weights matrices for ICAR
distributions. Let φ = (φ1, . . . , φI)

′ be a random effects vector with ICAR
distribution, that is, φ|σ2

φ ∼ NI(0, σ
2
φ(D −W )−). For this expression we will

assume thatD andW are defined according to adjacency between spatial units,
i. e. D = diag(n1, · · · , nI) for ni the number of neighbors of unit i and
W = (wik) where wik = 1 if (i, k) are adjacent units and 0 otherwise.

Let us now consider a random vector c = (c1, · · · , cI)′ of positive values,
a new spatial weights matrix W ∗(c) = diag(c)1/2W diag(c)1/2 and D∗ =
diag(w∗1+, ...w

∗
I+). With this, we propose the following adaptive CAR prior

distribution:
φ|c, σ2

φ ∼ NI(0, σ2
φ(D∗ −W ∗(c))−)

ci ∼ Gamma(α, α).

The elements of the vector c are assumed to be positive since the non-zero
weights of the new spatial weights matrix W ∗ are w∗ij = (cicj)

1/2 so, in this
manner they will all be well defined and positive. Accordingly, we have used
a Gamma prior distribution for its elements, which seems a natural choice.
The Gamma distribution considered has mean 1, in accordance with the value
of the non-zero cells of W when an adjacency criterion is considered. Thus,
W ∗(c) will be on average equal to W , although its non-zero weights will not
necessarily have to be equal to 1. Hence the new adaptive distribution will
be more flexible than the regular ICAR distribution. Note that, as defined,
the (a priori) standard deviation of any element of c is equal to α−0.5, which
could guide us to set a prior distribution for this parameter. In fact, we have
considered a uniform prior distribution on α−0.5, with lower and upper limits
intended to make it vague, in order to complete the hierarchical structure above.

Alternatively, the definition of the adaptive ICAR distribution above could
be restated as a set of conditional distributions φi|φ−i, c, σ2

φ, i = 1, ..., I, of
mean

E[φi|φ−i, c, σ2
φ] =

1

w∗i+

I∑
k=1

w∗ikφk =
c
1/2
i

∑
k∼i c

1/2
k φk

c
1/2
i

∑
k∼i c

1/2
k

=

∑
k∼i c

1/2
k φk∑

k∼i c
1/2
k

(4)

and variance

V ar[φi|φ−i, c, σ2
φ] =

σ2
φ

w∗i+
=

σ2
φ

c
1/2
i

∑
k∼i c

1/2
k

. (5)
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These two expressions provide some quite valuable insights about on the model
proposed. The expected value in Expression (4) is just a weighted mean of the
random effects for the corresponding neighbors. The weights in that expression
are given by the vector c, thus if ci had a low value for some i, that region will
have a low contribution to the means of its surroundings units. Additionally,
Expression (5) suggests that if ci is low, then the conditional variance of φi will
be in contrast high. Thus, if ci was low, these two expressions suggest that it
is as if spatial unit i was ’disconnected’ from its spatial neighbors, since φi will
be less influential on them and will have higher variance, allowing it to move
independently from the rest of the units. Conversely, if ci was high, unit i will
become more influential on its neighbors and will take a value in close agreement
with them. Therefore, in some manner, the adaptive ICAR distribution would
impose a tighter dependence between this unit and its neighbors.

Besides the enhanced interpretation just made, the conditional statement of
the adaptive ICAR distribution above allows its implementation in conventional
Bayesian software packages such as WinBUGS, JAGS ... Additional care should
be taken for the adaptive ICAR distribution since sum-to-zero restrictions are,
in general, imposed on ICAR distributions in order to solve the rank-deficiency
of its precision matrix (Besag and Kooperberg, 1995). This can be done in
practice, in a computationally convenient manner, by imposing

∑
i φi ∼ N(0, ε)

for some small value ε. Details of the coding of this constraint for the adaptive
ICAR distribution can be found in the supplementary material of the paper
(RCode.pdf file).

In the case of the Leroux et al. model φ is distributed as φ|ρ, σ2
φ ∼ NI(0, σ2

φ((1−
ρ)II + ρ(D −W ))−1). Following the development above, several adaptive ver-
sions of the Leroux et al. distribution could be made. For example, let us
assume φ|ρ, c, σ2

φ ∼ NI(0, σ
2
φ((1 − ρ)diag(c1/2) + ρ(D∗ −W ∗(c)))−1), where

D∗ and W ∗(c) are defined as for the adaptive ICAR distribution. In this
manner, for ρ = 1 this distribution would be equivalent to an adaptive ICAR
distribution, while for ρ = 0 it would yield a collection of independent Nor-
mal random effects with adaptive (heteroscedastic) variance. If preferred, an
alternative formulation of adaptive Leroux distribution could be derived as
φ|ρ, c, σ2

φ ∼ NI(0, σ
2
φ((1 − ρ)II + ρ(D∗ −W ∗(c)))−1) which for ρ = 0 yields

non-adaptive (homoscedastic) independent random effects. Nevertheless, we
will focus in the first of these options as it seems more flexible and appealing,
from our perspective. For that proposal, the conditional mean and variance of
the random effect φi can be expressed as:

E[φi|φ−i, ρ, c, σ2
φ] =

ρ

(1− ρ)c
1/2
i + ρw∗i+

I∑
k=1

w∗ikφk

=
ρc

1/2
i

(1− ρ)c
1/2
i + ρc

1/2
i

∑
k∼i c

1/2
k

∑
k∼i

c
1/2
k φk

=
ρ

1− ρ+ ρ
∑
k∼i c

1/2
k

∑
k∼i

c
1/2
k φk
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and

V ar[φi|φ−i, ρ, c, σ2
φ] =

σ2
φ

(1− ρ)c
1/2
i + ρw∗i+

=
σ2
φ

c
1/2
i (1− ρ+ ρ

∑
k∼i c

1/2
k )

.

Once again, these conditional expressions allow the adaptive Leroux CAR distri-
bution to be implemented in conventional Bayesian software, such as WinBUGS.
Note that similar, although somewhat different, adaptive CAR distributions
have been already proposed in MacNab (2018). Nevertheless, those proposals
had as a goal the formulation of more general (adaptive) CAR distributions.
Our goal will now be to estimate spatial weight matrices W ∗(c) suitable to be
used in subsequent spatial analyses in that same area of study. It is hoped that
W ∗(c) will capture the geometric/demographic/geographic features of the re-
gion of study which make some neighboring units more similar to their neighbors
than others.

3.2 Multivariate case

Although the univariate models above seem quite appealing, one could be con-
cerned about including another level in the hierarchy of the model containing
that adaptive CAR distribution. Moreover, that additional layer would contain
as many variables as observations in the univariate model, so this modification
increases the number of variables in the model in a quite significant manner. As
a consequence, data in univariate disease mapping models may be not strong
enough as to make inference on vector c possible. As mentioned earlier, this was
already suggested by MacNab et al. (2006) and we agree with that point of view.
For example, let us assume that we performed an univariate disease mapping
study with an adaptive CAR distribution where the weights vector c should be
estimated. Let us also assume that the number of observed events for spatial
unit i was abnormally higher than the corresponding number of expected cases.
This would make the corresponding log-risk φi take a large positive value. It
seems clear that, in this case, if ci was low, this would help φi to reach that
goal by allowing it to have a more independent performance, in comparison to
its neighbors, and a higher variance. But, what makes the risk of this disease so
strange for this spatial unit? Is it the specific particularities of the disease under
study in that precise unit (φi) or the spatial unit itself that, for some structural
(geographical, social, environmental, etc.) reason, is far different in general to
its surrounding spatial units (ci)? With a single observation per spatial unit the
model does not have enough information to distinguish these two settings and
therefore to estimate c properly. In contrast, if we had several risk estimates for
several diseases φij depending on a common weights matrix W ∗(c), we would
be able to know if the risk of the original disease in the i-th spatial unit was
really different, or the differential factor was the spatial unit. In the first case,
among all the log-risks of the i-th spatial unit, only that corresponding to the
original disease should take a high value and ci should not therefore take a low
value since that unit does not have a different performance in general than its
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neighbors. In the second, all (or most of) the log-risks for the i-th spatial unit
would take extreme values and ci should take a low value in order to accommo-
date that behavior. As a consequence, the use of adaptive CAR distributions in
the context of multivariate studies could improve the fit of the spatial weights
vector c to a considerable extent. This issue will become clearer in the real case
study in the next section.

In accordance to the previous paragraph, we now introduce now a multi-
variate model integrating adaptive CAR distributions, one per disease, with a
common spatial weights matrix. This formulation allows an appropriate esti-
mation of the vector c and therefore an appropriate estimation of the weights
matrix W ∗(c) corresponding to the set of diseases and region of study con-
sidered. The following formulation implements an adaptive BYM model per
disease, although a similar formulation could be analogously proposed for the
case of the Leroux et al. CAR distribution.

Let Oij represent the observed number of cases for the i-th spatial unit and
j-th disease, i = 1, ..., I, j = 1, ..., J . We will assume:

Oij ∼ Poisson(EijRij),

where Eij is the number of expected cases, and Rij the relative risk for the
corresponding spatial unit and disease. In accordance with the univariate model,
the log-risks can be expressed as:

log(Rij) = µj + ηij , (6)

where µj stands for an intercept modeling the mean of the log-risks for each dis-
ease and ηij are random effects accounting for spatial or unstructured variability
for those risks. We will model the columns of η = (ηij) by means of a BYM
model, i.e. ηij = φij + θij , where θij are independent Normal random effects
and the columns of φ = (φij) follow adaptive ICAR distributions, all of them
depending on a common weights matrix W ∗(c) with a common weights vector
c, as described in the univariate case. Also, in parallel to the univariate case,
the components of c will be assumed to follow a Gamma(α, α) distribution.
Different standard deviations would be considered for the columns of the φ and
θ matrices in order to allow the relative risk geographical patterns to show more
or less spatial dependence. The prior distribution for α will be chosen similarly
to the univariate case above.

Note that the model just introduced, although posed in a multivariate set-
ting, does not take into account the hypothetical dependence between diseases
that these could show. In that case, that proposal could incorporate and take
advantage of that dependence. In fact, we have explored that possibility by
proposing a multivariate M-model (Botella-Rocamora et al., 2015) with a com-
mon adaptive spatial weights matrix and therefore a common spatial dependence
structure. We have not noticed any evident benefit of that proposal in terms
of the estimation of the spatial weights matrix in comparison to the proposal
above. Since our goal in this paper is focused on that estimation, we have pre-
ferred to pose the ’independent’ multivariate version in order to keep its content
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simpler. In any event, if the main goal was to estimate the risks R for several
diseases with an adaptive spatial dependence structure, the use of pure multi-
variate models, as the M-model mentioned, would obviously yield a significant
improvement.

4 Application

4.1 Spatial weights matrices estimation from multivariate
data sets

In this section, we evaluate the performance of the multivariate adaptive spatial
model described in the previous section in some real scenarios. The main data
set for this analysis corresponds to the observed and expected deaths in the
city of Valencia (Spain), for a total of 15 different mortality causes in men for
the period from 1996 to 2015. Mortality data are available for each of the 531
census tracts of Valencia, the geographical unit for this analysis. The main goal
of this analysis is to estimate a suitable weights matrix for the Valencian census
tracts that reflect the dependence structure of mortality causes in general over
the whole city. We will use the multivariate adaptive extension developed in
Section 3.2 for both the BYM and Leroux models, and the mortality data set
described to estimate that matrix. Subsequently, in the next subsection, the
estimated spatial structure matrix will be used in posterior univariate analyses
in order to assess the improvement that its use could bring, in comparison to
the traditional adjacency criterion that assumes fixed weights, equal to 1, for
each adjacent pair of units.

Both BYM and Leroux et al. multivariate models were run in WinBUGS

and the corresponding R code for all the analyses in this section can be found as
annex material to this paper in the document RCode.pdf. For each model, three
chains were run with 200,000 iterations, whose first 50,000 iterations were used
as a burn-in period. Of these, one of every 150 iterations was saved yielding a
final sample size of 3,000 iterations. Convergence was assessed by means of the
Brooks-Gelman-Rubin statistic (we required this to be lower than 1.1 for each
variable in the model) and the effective sample size (required to be at least 100
for each variable in the model).

We start by taking a look to the estimated weights vector c for our analyses.
These weights should reflect the strength of spatial dependence between each
neighboring pair of spatial units. For the BYM model, the values of the spatial
weights c (their posterior means) range from 0.098 to 2.042, with a mean value
of 1.240, while for the Leroux et al. model these values range from 0.027 to
1.886, with a mean value of 1.264. Figure 1 shows the corresponding ci for
each geographic unit for both models run. The census tracts with dark red
color represent those with a lower estimated spatial weight ci. According to the
comments of Section 3, these census tracts should show a different behavior in
comparison to their surrounding census tracts and, as a consequence, the model
tries to separate/isolate those units. In contrast, the census tracts in yellow
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are those that have been found to have a greater influence on the risk of the
surrounding areas or, in other words, those most dependent on their neighbors.
As shown in this figure, both adaptive proposals of the BYM and Leroux models
estimate a closely similar spatial dependence structure for the region of study.
The correlation between the estimated spatial weights vector c for the adaptive
BYM and Leroux models is 0.956, which shows the agreement of the spatial
dependence structure estimated for both models.

Adaptive BYM model Adaptive Leroux model

 

(0,0.3]
(0.3,0.7]
(0.7,1]
(1,1.2]
(1.2,1.4]
(1.4,1.6]
(1.6,2.05]

Figure 1: Estimated spatial weight ci for each census tract of Valencia according
to all 15 diseases in the data set. Each choropleth map corresponds to either
BYM (left) or Leroux et al. (right) models for the log-relative risks.

We have explored the results in Figure 1 in order to interpret the spatial
dependence structure estimated by the models. In particular, we have observed
that the census tracts with lowest ci values have certain peculiarities that make
them special with respect to their adjacent units. On the one hand, residential
homes for elderly or socially excluded people are frequently located in some of
those ”special” census tracts. As a consequence, these units often show higher
observed deaths than expected for most of the mortality causes considered,
which makes them exhibit a different behavior from those of their neighbors.
Anyway, if our main goal was just to detect and model spatial units of this kind,
with a different behaviour than their neighbors, the use of models accounting for
discontinuities (Knorr-Held and Raßer, 2000; Denison and Holmes, 2001; Adin
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et al., 2019) would be possibly a more suitable modeling choice. On the other
hand, new building areas and socially marginal regions of the city also frequently
show cis in the darkest red zones. The use of a broad set of mortality data, with
15 diseases, has allowed the models to identify those census tracts with these
particularities that lead them to exhibit a very particular behavior in terms of
mortality. That behavior requires an adaptation of the spatial weights matrix,
otherwise their risks would be oversmoothed and estimated more similarly to
their neighbors than they should. The low estimated value of their spatial
weights will allow them to show the separate behavior that they require. As
will be shown in the next subsection, a more flexible modeling of the risks is
obtained in this manner, avoiding the excessive smoothing problems that many
of the most frequent disease mapping models entail (Richardson et al., 2004;
Botella-Rocamora et al., 2012). In contrast, Figure 1 shows some other regions
where high spatial weights have been fitted. Note that several of these units are
located in spatial units at the borders of the graph where the geometry of the
graph would impose lesser spatial dependence. See for example the yellow unit
in the north of the city or those in the southeast of the city, which connect some
other spatial units in its south which are not completely shown at the choropleth
maps. The high values of the spatial weights vector seem to be used to connect
more tightly those regions of the map in the outskirts that would otherwise
have an excessively independent behavior, preventing them from being isolated.
Thus, the adaptive proposal run seems to change some geometric properties of
the graph that could make some census tracts less connected to the rest of the
graph than would be desirable.

The two tables shown in the AdditionalResults.pdf document reinforce
also these results. The first of these tables show, for each disease, the mean
absolute difference between the risks of the adjacency and adaptive models.
These results are separately presented for the regions with low, medium and
high weights. These results point out that the main risk differences for both
models occur there where the spatial weights vector takes more extreme values,
more different to 1. Thus, this is where these two models particularly differ. On
the other hand, the second of these tables show the risk differences between each
area and its neighbours for the regions taking low and high weights, respectively.
In average, the spatial units taking low weights show higher differences in com-
parison to their neighbours than the adjacency based model. Thus, these low
weights allow these units to have a more independent performance. In contrast,
the spatial units with high weights have risk estimates more similar to their
neighbours than the corresponding adjacency based estimates. Therefore, the
performance of these regions is just the opposite of that of the regions taking
low spatial weights.

Similar conclusions are drawn from a parallel analysis that we have made
for the whole of Spain at the municipal level (see more detailed results for this
analysis in the supplementary material). In this case, a multivariate analysis
of 18 mortality causes has been carried out and a common spatial structure is
estimated from this analysis. As a summary, 7 of the 10 municipalities with
the lowest spatial weights (those which are disconnected) are municipalities in
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Figure 2: Variability of c (standard deviation) in the Valencia city data set
when estimated with the adaptive multivariate BYM model as a function of
the number of diseases considered in the analysis. The black line connects the
mean of the observed standard deviations of c and the gray band delimits the
minimum and maximum observed standard deviations of c for each number of
diseases.

the Costa Blanca, a Spanish region with a large foreigner community of elderly
retired people from northern Europe who have moved to this Spanish region.
The presence of this community has been shown to have a clear impact on the
mortality of this region; see Zurriaga et al. (2008). The three remaining munici-
palities with low spatial weights are all provincial capitals, which correspond to
municipalities with substantially higher population than their neighbors. The
spatial adaptive model used seems to have been sensitive to both data artifacts,
making these municipalities different to their neighbors. On the contrary, we
have found that 8 out of the 10 municipalities with the highest spatial weights
belong to coastal municipalities, that is, they are placed at the borders of the
graph of the region of study, which seems to confirm the impression that we
have drawn from the Valencia city data set.

Before concluding the study of the estimated spatial weights vector, we want
to illustrate the importance of the multivariate feature of the models imple-
mented for that estimation. Figure 2 shows, once again for the BYM model in
the Valencia city data set, the variability (standard deviation) of the estimated
vector c (its posterior mean) as a function of the number of diseases considered.
Thus, for one disease we have run 15 different models, one per disease, and we
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have repeated this for another 15 (randomly chosen) pairs of diseases, 15 trios
and so forth until reaching groups of 14 diseases. The black line in Figure 2
connects the mean of the observed standard deviations of c for each number of
diseases considered. The gray band delimits the minimum and maximum stan-
dard deviations observed for c for each number of diseases. Figure 2 shows how
the multivariate model proposed describes an increasing trend for the variability
of c as a function of the number of diseases considered. Thus, for the univariate
studies, c hardly learns from the data, which means that the resulting spatial
weights matrix closely resembles the adjacency based weights matrix. In other
words, the adaptive feature of the model has hardly any effect when a low num-
ber of diseases is considered. By way of contrast, Figure 2 shows substantial
variability in c when the number of diseases is higher. Thus, in summary, Fig-
ure 2 clearly points out the need to perform multivariate studies if inference is
pursued for the spatial dependence structure of a region of study.

4.2 Use of the estimated spatial weights matrix in subse-
quent univariate studies

Once the spatial weights matrix of the spatial random effects has been estimated
for a region, it could be used for subsequent univariate disease mapping analyses
on that same region. That is, the multivariate estimates above of W ∗(c) could
be used as estimates of the spatial dependence structure for later uses, instead
of the traditional (although arbitrary) adjacency matrix W . It is hoped that
W ∗(c) would have captured the geographical structure and particularities of
mortality in that region of study. In this section, we are going to assess that
procedure on our data set comparing the use of the W ∗(c) matrices estimated
in the previous subsection with the most traditional procedure which uses the
adjacency criterion. Specifically, for all 15 diseases in our data set we have fitted
univariate BYM and Leroux et al. models assuming either the spatial depen-
dence structure estimated from the multivariate analysis above or the traditional
adjacency-based weights matrix. Next, we compare the results of both analyses
for each mortality cause according to the Standardized Mortality Ratios (SMR)
of both alternatives and also according to the Conditional Predictive Ordinate
(CPO) and the Deviance Information Criterion (DIC) proposed by Spiegelhalter
et al. (2002).

In order to make a fair comparison, avoiding the use of the data twice (once
for estimating c and once for estimating the SMRs with the corresponding uni-
variate models), we have used different W ∗(c) in our comparisons. Thus, for
the case of AIDS mortality, for example, we have estimated c with a multi-
variate study of 14 diseases, all excepting AIDS, which avoids using the data
twice for the univariate (preestimated) adaptive analyses. We have repeated
this procedure for all 15 causes of mortality considered. Interestingly, the corre-
lations between the spatial weights vectors c for the analyses with 14 mortality
causes and that with 15 mortality causes are rather high, ranging from 0.94
to 0.97 depending on the cause removed. As a consequence, we would not ex-
pect important differences if W ∗(c) had been estimated just once with all 15
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diseases.
Figure 3 shows the estimated Standardized Mortality Ratios (SMR) with the

BYM model for the Valencian census tracts for cirrhosis mortality (similar choro-
pleth maps for the remaining of diseases are shown in the AdditionalResults.pdf
file at the supplementary material of this paper). The map on the left side corre-
sponds to the model assuming an adjacency-based relationship between spatial
units, while that on the right side uses the spatial weights matrix previously
estimated. The Leroux et al. model provides similar results and these are also
shown in the AdditionalResults.pdf file.

BYM model Adaptive BYM model

SMR

< 0.67
0.67 − 0.80
0.80 − 0.91
0.91 − 1.10
1.10 − 1.25
1.25 − 1.50
> 1.50

Figure 3: Standardized Mortality Ratios for Cirrhosis in Valencia estimated with
the BYM model and with spatial weights matrices of either unitary weights (left)
or using the values obtained from the multivariate analysis of 14 diseases (all
mortality causes of study except Cirrhosis) (right).

As can be seen, both models provide risk maps with similar spatial patterns.
However, the model using the adaptive spatial weights reproduces higher vari-
ability than its adjacency-based alternative allowing some of Valencia’s meigh-
borhoods to be reproduced more clearly and making it possible for some census
tracts to reproduce more extreme risks. In particular, the adaptive analysis
depicts more clearly some particular high risk zones scattered throughout the
city which usually correspond to high deprivation areas. Thus, as previously
pointed out, the adaptive weights avoid the excessive smoothing of the SMRs
previously described in the literature by allowing additional flexibility wher-
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ever it is required according to previous information synthesized in the previous
multivariate adaptive analysis.

Afterwards, we have compared the fit of the adaptive vs the non-adaptive
weights models according to the CPO and DIC criterion. Table 1 shows the
DIC and CPO of the BYM and Leroux models for both spatial weights ma-
trices considered. For each model and mortality cause we have marked the
proposal providing a better fit, according to DIC and CPO, in bold. As can
be observed, according to DIC (CPO), BYM and Leroux et al. models with
adaptive weight matrices provide a better fit than the corresponding adjacency
based model in 14 (13) and 13 (9), respectively, out of the 15 mortality causes
considered. This confirms that the greater flexibility of the adaptive models
really improves the SMRs estimates in comparison to the traditional adjacency-
based analyses. In addition, as it can be confirmed at the annex document
AdditionalResults.pdf, those mortality causes with a more substantial im-
provement in terms of DIC or CPO in general coincide with those showing a
spatial pattern of higher variability (AIDS or COPD for example). Thus, an im-
provement is achieved mainly when there is spatial variability to be explained,
otherwise the gain achieved is very modest as might seem logical.

5 Discussion

As described in this paper, CAR distributions are usually considered to model
the spatial dependence between geographic units in disease mapping studies.
Although CAR distributions are undoubtedly useful and powerful tools, the
parameterization used to induce dependence by means of its structure matrix
is usually arbitrary. We have introduced a procedure to estimate that spatial
weights matrix according to retrospective multivariate data. As shown, our
adaptive procedure makes CAR models more flexible and improves the fit of
subsequent analysis adopting the estimated weights matrix, which in principle
should have captured the particularities that mortality data could show in that
region. Additionally, the multivariate character of our proposal has shown itself
to be an indispensable tool for appropriately estimating the spatial structure of
the data.

The methodology introduced could have several different uses. First, the
multivariate adaptive model introduced could be used in multivariate studies
with adaptive spatial structures. These models should provide more accurate
risk estimates that could take advantage of the adaptive character of the spatial
dependence considered. In any event, if that was the main goal of our analysis,
a multivariate model, considering the dependence between mortality causes,
would be much more advisable. A second use of adaptive CAR models would
be the one emphasized in this paper, that is, making inference on the spatial
weights matrix of a region of study. In this case, we would be more interested in
the values of the weights c than the own risks. As a consequence, that vector c,
and thus the adaptive weights matrix could be later used in subsequent enhanced
spatial disease mapping studies with a non-arbitrary spatial structure based on
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Table 1: DIC and CPO for the BYM and Leroux at al. models with adaptive
and unweighted spatial weights matrices.

Causes
Adjacency Adaptive Adjacency Adaptive

BYM model BYM model Leroux model Leroux model

AIDS
DIC 1648.11 1631.87 1653.57 1647.39
CPO -857.98 -842.16 -865.67 -853.49

Stomach cancer
DIC 1771.57 1771.43 1770.46 1770.30
CPO -884.84 -884.77 -884.56 -884.49

Colorectal cancer
DIC 2354.53 2354.42 2354.07 2353.52
CPO -1176.82 -1176.95 -1176.69 -1176.65

Lung cancer
DIC 2861.52 2857.85 2872.61 2872.34
CPO -1430.85 -1429.09 -1436.90 -1438.01

Prostate cancer
DIC 2126.24 2126.08 2124.63 2124.51
CPO -1062.46 -1062.34 -1061.91 -1061.83

Bladder cancer
DIC 2051.48 2052.19 2056.07 2053.80
CPO -1027.02 -1027.55 -1029.16 -1027.80

Hematological cancer
DIC 1955.37 1955.17 1953.59 1953.26
CPO -977.43 -977.34 -976.51 -976.35

Mellitus diabetes
DIC 1976.97 1975.01 1978.35 1976.38
CPO -987.946 -987.03 -988.85 -987.54

Dementia
DIC 2335.17 2333.21 2341.74 2342.03
CPO -1168.47 -1168.05 -1172.21 -1172.41

Ischemic heart disease
DIC 3055.33 3048.46 3061.86 3061.53
CPO -1537.51 -1535.37 -1541.93 -1542.05

Ictus
DIC 2662.95 2659.86 2665.66 2664.25
CPO -1331.24 -1329.64 -1332.84 -1332.18

COPD
DIC 2681.81 2668.87 2698.39 2679.29
CPO -1348.43 -1342.04 -1359.55 -1347.98

Liver cirrhosis
DIC 2130.23 2128.75 2139.20 2141.70
CPO -1071.21 -1070.22 -1075.66 -1077.16

Suicides
DIC 1488.94 1488.86 1488.43 1488.36
CPO -744.36 -744.33 -744.09 -744.25

Traffic accidents
DIC 1506.68 1506.17 1506.76 1506.75
CPO -752.97 -752.80 -753.13 -753.22
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previous data and knowledge.
In this sense, we find it convenient to mention a couple of limitations of the

proposed methodology. Our adaptive model proposes a kind of meta-analysis of
the spatial structure of several causes of death. It would be obviously convenient
that these causes of death were as homogenous as possible. In an ideal situa-
tion, all of them should be cardiovascular diseases, or tumoural causes of death
... since these settings should probably share a common spatial dependence
structure, as assumed by our model. Considering congenital deaths or senility,
for example, as causes of death with a common spatial structure could be pos-
sibly a bit risky since that assumption would be hard to maintain in that case.
Although we do not find any reason why adjacency could be a better option in
this setting. Anyway, this limitation should be born in mind when using the
estimated spatial weights matrix in new studies, since the new causes of death
in those cases should be as related as possible to those used for estimating the
spatial weights matrix.

In the same manner, as suggested by one reviewer, it would be convenient to
bear in mind that adding covariates to disease mapping problems could possibly
change the spatial dependence structure of the region of study. For example,
if an adaptive spatial dependence structure gives a low weight to a particular
spatial unit, separating it from its neighbours, this could be also reproduced by
a covariate taking in this spatial unit very different values than in its neighbours.
Thus, a weights matrix that could be suitable for disease mapping studies for
a region of study could be not so good for ecological regression studies on that
same region.

Although in principle the main uses of our model would be those mentioned
in the previous paragraphs, we have also found a third practical use of the
model that we did not expect. This use would be quality control of systematic
problems that could be present in health data sets. Being more precise, the
Valencia city mortality data used in Section 4 belongs to a large Spanish project
studying mortality in large cities, the MEDEA project. All the deaths in that
data set have been geocodified by using several geocoding tools, in particular the
Google geocoding API and a second geocoding tool (Cartociudad) of the Spanish
Geographic National Institute. These tools, as with any other geocoding tool,
are not perfect and they have errors for some particular streets, groups of cases
that are geocodified in the city center etc. that could distort the spatial analyses
of that data base. We have found that the multivariate adaptive model on
those data bases give low spatial weights to those census tracts with systematic
geocoding errors since their mortality data are somewhat different from their
surrounding areas. This has allowed us to distill those errors by focusing on those
census tracts with low spatial weights and no potential alternative explanation
(no residential homes, no socially marginal areas, no new building areas, etc.) for
them. In most cases we have found that those regions contained some geocoding
error. Note that the results shown in Section 4 correspond to the distilled
database without geocoding errors, which have been already fixed otherwise
Figure 1 would have also pointed out the census tracts with geocoding errors.
This is just a single example of the many uses that adaptive CAR models could
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have in practice. This work illustrates just some potential uses of adaptive
CAR models, although we suspect there are many more than those that we
have found. We encourage readers to keep exploring new potential uses of this
approach.

acknowledgements

The autors acknowledge the support of the research Grant PI16/01004 (co-
funded with FEDER grants) of Instituto de Salud Carlos III and the predoctoral
contract UGP-15-156 of FISABIO.

References

Ad́ın A, Martinez-Beneito MA, Botella-Rocamora P, Goicoa T, Ugarte MD
(2017) Smoothing and high risk areas detection in space-time disease map-
ping: a comparison of P-splines, autoregressive and moving average models.
Stochastic and Environmental Research and Risk Assessment 31:403–415,
DOI 10.1007/s00477-016-1269-8, URL http://dx.doi.org/10.1007/s00477-
016-1269-8

Adin A, Lee D, Goicoa T, Ugarte MD (2019) A two-stage approach
to estimate spatial and spatio-temporal disease risks in the pres-
ence of local discontinuities and clusters. Statistical Methods in
Medical Research 28(9):2595–2613, DOI 10.1177/0962280218767975,
URL https://doi.org/10.1177/0962280218767975, pMID: 29651927,
https://doi.org/10.1177/0962280218767975

Besag J (1974) Spatial interaction and the statistical analysis of lattice systems.
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
36:192–236

Besag J, Kooperberg C (1995) On conditional and intrinsic autoregressions.
Biometrika 82(4):733–746
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