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Abstract

Zero excess in the study of geographically referenced mortality data
sets has been the focus of considerable attention in the literature, with
zero-inflation being the most common procedure to handle this lack of fit.
Although hurdle models have also been used in disease mapping studies,
their use is more rare. We show in this paper that models using particular
treatments of zero excesses are often required for achieving appropriate fits
in regular mortality studies since, otherwise, geographical units with low
expected counts are oversmoothed. However, as also shown, an indiscrim-
inate treatment of zero excess may be unnecessary and has a problematic
implementation. In this regard, we find that naive zero-inflation and hur-
dle models, without an explicit modeling of the probabilities of zeroes do
not fix zero excesses problems well enough and are clearly unsatisfactory.
Results sharply suggest the need for an explicit modeling of the probabili-
ties that should vary across areal units. Unfortunately, these more flexible
modeling strategies can easily lead to improper posterior distributions as
we prove in several theoretical results. Those procedures have been re-
peatedly used in the disease mapping literature and one should bear these
issues in mind in order to propose valid models. We finally propose sev-
eral valid modeling alternatives according to the results mentioned that
are suitable for fitting zero excesses. We show that those proposals fix
zero excesses problems and correct the mentioned oversmoothing of risks
in low populated units depicting geographic patterns more suited to the
data.

*This is a preprint version of the paper: Corpas-Burgos, F; Garćıa-Donato, G; Martinez-
Beneito, MA. Some findings on zero-inflated and hurdle poisson models for disease mapping.
Statistics in Medicine, 2018, 37.
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1 Introduction

Zero excesses have been frequently addressed within the disease map-
ping literature, see for example Ugarte et al. (2004); Song et al. (2011);
Nieto-Barajas and Bandyopadhyay (2013); Musenge et al. (2013); Arab
(2015). We consider this problem from a Bayesian perspective, a paradigm
frequently adopted in this context (the last four references above are
Bayesian). This topic has received considerable attention in recent years.
For example, popular Bayesian software such as INLA Rue et al. (2009)
has included up to 5 different functions that implement specific models
to handle situations of zero excesses. This issue is not exclusive to dis-
ease mapping problems but, on the contrary, is related to any type of
data taking in general positive integer values (including 0), such as for
example Poisson, binomial or negative-binomial distributed data. Zero
excesses are a source of overdispersion caused by a disagreement between
the data and the distribution assumed: we have more zeroes in our data
set than the proposed distribution could reasonably explain. As a con-
sequence, zero excesses are features inherent to particular combinations
of distributions (or models in general) and data sets, but not intrinsic to
particular data sets. The presence of a large number of zeroes is symp-
tomatic of a zero excess situation, but not necessarily indicative of one
since observing many zeroes could be perfectly compatible with a Poisson
distribution with a low expected value. Therefore an indiscriminate use
of models dealing with zero excesses is, in principle, not necessary. In this
sense several procedures have been developed for assessing zero excesses
in specific problems like Van Der Broek Van Der Broek (1995) or Bayarri
et al. Bayarri et al. (2008) which deal with this issue on Poisson data with
constant or covariate-dependent expected cases.

Many disease mapping studies have incorporated zero excesses mod-
eling strategies in the analysis of mortality spatial data. Nevertheless, to
our knowledge, it has not been extensively tested whether zero-specific
treatments should be routinely used in this context or if, on the contrary,
the standard Poisson assumption (with spatially varying random effects)
fits regular mortality data well enough. Moreover, it is rarely the case
that the pursued positive effect of such treatments is checked with the
unexpected possible consequence that the original data misfit, in terms
of zero counts, still remains. A motivating aspect of this research is to
shed some light on these two relevant questions using a real extensive
setting with 540 areal units and 46 geographical patterns corresponding
to roughly 27 different causes of mortality. In particular we consider the
zero-inflated and hurdle Poisson models, the most popular models in the
related literature. With respect to the first question, in roughly 15 pat-
terns out of the 46 considered (barely 32% of the cases) we have observed
a serious departure from the number of zeroes predicted with traditional
disease mapping models, while the need for specific zero excess treatment
for the rest is questionable. Our findings for the second question are more
worrisome from a practical point of view. As we report, a preventive ex-
tra zero modeling may be totally innocuous for the zero-inflated approach
without a particular modeling of the zero-specific component. For hurdle
models the situation is even worse, since the estimations of the underly-
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ing risks can be dramatically influenced by spurious circumstances like the
spatial distribution of the population along the region of study. The con-
sequence is relevant since, for many cases, we could be reporting nonsense
estimations based on an unneeded zero excess treatment.

The results observed in the real application indicate that for regular
zero-inflated and hurdle Poisson proposals a specific modeling of the prob-
ability of zero-excess is needed in order to construct satisfactory methods.
This is admittedly the path followed by many applied works in the litera-
ture (references will be given). Nevertheless, as we prove, such modeling
has an unforeseen important difficulty, namely that conditions for impro-
priety of the posterior distribution (an invalidating fact for many not so
formal related approaches) are very soft. These theoretical results make
the assignment of the prior distributions a very delicate issue, preventing
the use of highly popular “casual” non-informative priors frequently im-
plemented by-default in specialized Bayesian software. Our result is quite
general and affects several components of the model (like fixed effects or
variances of the random effects) and many of the link functions (e.g. logit
or probit). Additionally, we propose alternative modeling strategies that,
as we argue, are safer in terms of validity of the results.

This paper is divided into 6 sections. Section 2 introduces the BYM
model Besag et al. (1991), the most popular proposal for disease mapping
and two specific refinements, zero-inflation and hurdle Poisson modeling,
in order to cope with zero excesses. Section 3 shows the performance of
these proposals in the analysis of the Valencian Mortality Dataset. Section
4 contains the main theoretical results about conditions for impropriety
of posterior and presents some valid proposals to overcome the problems
encountered. Section 5 illustrates the dangers of using vague prior distri-
butions on some particular variables of models treating zero excesses and
reassesses the behavior of the proposals made in Section 4 on the previous
Valencian Mortality Dataset. Finally, Section 6 draws some conclusions
from the results derived in this paper.

2 Some proposals for treating zero ex-
cesses in disease mapping

The goal of disease mapping is dealing with the sparse information in the
observed counts of some health outcome over a set of areal units. In gen-
eral these units are small in statistical terms, with frequent low observed
counts, that makes them noisy and weakly informative of the underlying
risk of the disease for many of them. Thus, statistical modeling is needed
for drawing acceptable risk estimates in those units. The models used for
this task mainly rely on spatial conditional autoregressive random effects
to induce geographical dependence on the risk estimates and therefore to
increase the amount of information used to estimate them. Among the
models using these random effects we highlight one that is particularly
popular, the Besag, York and Mollié’s model Besag et al. (1991), BYM
henceforth. For this model, data {Oi : i = 1, ..., I} representing observed
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counts on the areal units are modeled as

Oi|Ri ∼ Poisson(EiRi), i = 1, ..., I

where Ei are the expected counts for each unit, typically calculated by
means of some age standardization, and Ri are the corresponding risks
that we would like to estimate. Regarding the modeling of this last term,
BYM defines the log-risks as:

log(Ri) = µ+ φi + θi, (1)

where µ stands for an intercept modeling the mean of the log-risks and
the two subsequent terms are Gaussian random effects. The term φ fol-
lows an intrinsic conditional autoregressive (ICAR) distribution, i.e. their
components are assumed to have the following prior conditional distribu-
tions:

φi|φ−i, σφ ∼ N

(
n−1
i

∑
j∼i

φj , n
−1
i σ2

φ

)
, i = 1, ..., I

where ni stands for the number of neighboring areas of unit i, the subindex
in φ−i indicates all terms in φ excepting its i-th component and the
subindex j ∼ i denotes all those units j which are neighbors of i. This
definition can be further elaborated introducing some parameters in order
to weight the contribution of some units with respect to others, although
we will not use that option. This term induces spatial dependence on
R and accounts for those factors of regional scope which take effect on
several contiguous units, making them similar. In contrast, the term θ
in expression (1) accounts for risk factors of very limited geographical
scope that take an effect just on isolated areal units and make their risks
different to those of their surrounding units. The terms introducing in-
dependent variability on the risks are modeled as independent Gaussian
random effects, i.e

θi|σθ ∼ N(0, σ2
θ), i = 1, ..., I.

The amount of spatial dependence in R depends on the balance between
σφ and σθ. If the first has higher (respectively lower) values, in comparison
to the second, the final pattern will show substantial spatial dependence
(independence).

Besides the spatial modeling that could be done with the BYM model
the data available may require a specific treatment of the observed zero
counts if the model fitted could not explain the amount of observed ze-
roes in the data set. The most used tool for dealing with zero excesses
is zero-inflation. Specifically, in case of modeling observed counts with a
Poisson likelihood, the resulting model is known as Zero-inflated Poisson
(ZIP) Lambert (1992). In its simplest form ZIP models assume the ob-
served counts to follow a mixture of a degenerate distribution with all its
mass at zero and a Poisson(λ) distribution, with weights 1− πZ and πZ ,
respectively. This inflates the amount of zeroes expected by the Poisson
distribution as a function of πZ .

ZIP models for disease mapping fuse the simplest ZIP approach just
introduced with spatial models (such as BYM). This yields flexible ZIP
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models with different (and dependent) λis, acknowledging that the studied
data set may have more zeroes than those reproduced by BYM. Being
more precise, a ZIP version of the BYM model could be formulated as
follows: The observed data are assumed to follow a Poisson distribution of
mean EiRiZi, where Ei stands for the expected cases, Ri for the spatially-
varying risks in the Poisson distribution of the BYM model and Zi for a
binary variable modeling if the observed counts correspond to an extra-
Poisson zero (Zi = 0) or correspond to a value coming from the Poisson
distribution (Zi = 1). The risks Ri would be modeled as in equation (1)
and the Zis would follow a Bernoulli(πZ) distribution, with unknown
πZ . For this model the smoothed Standardized Mortality Ratios (SMR)
would be computed as RiZi, i.e. a mixture of the BYM-based risks and
0. Examples of applications that adopt this modeling approach include
Gschlößl and Czado (2008); Song et al. (2011); Musenge et al. (2013)

As an alternative to ZIP, data sets showing zero excesses are some-
times modeled as hurdle Poisson models Mullahy (1986), simply hurdle
models henceforth. This proposal assumes the data to follow a mixture of
a degenerate distribution with all its mass at zero and a Zero-truncated
Poisson distribution. That is, in contrast to ZIP models, all observed
zeroes in hurdle models are assumed to come from the zero-degenerate
distribution. Thus, the parameter 1−πH in hurdle models represents the
probability that a given areal unit has zero observed cases instead of the
percentage of extra-Poisson zeroes, the interpretation of 1−πZ in ZIP. As
for ZIP, hurdle models are combined with specific disease mapping pro-
posals, such as BYM, in order to yield flexible spatial models accounting
for zero excesses.

More specifically, for a hurdle version of the BYM model the observed
counts Oi are assumed

P (Oi|πH ,µ) = (1−πH)I{0}(Oi)

(
πH
(
exp(−µi)

µOi
i

Oi!
(1− exp(−µi))−1

))I(0,∞)(Oi)

where µi = EiRi and IΩ(x) is the indicator function for the condition
x ∈ Ω. The risks Ris in this model would follow expression (1). For
this proposal the smoothed SMR for the i-th unit should be computed as
πH(µi/(1−exp(−µi)))/Ei Neelon et al. (2013) where πH is the probability
of belonging to the truncated Poisson component and µi/(1−exp(−µi)) is
the expected value given that the observation belongs to that component.
This term is divided by the expected cases Ei since πH(µi/(1−exp(−µi)))
would be the mean of Oi but we want to draw an estimate of Oi/Ei
instead.

Both ZIP and hurdle versions of the BYM model, as introduced above,
are posed under a Bayesian approach since BYM is also originally formu-
lated from a Bayesian point of view. As a consequence all the parameters
in BYM, ZIP and hurdle in this paper will have their own prior distribu-
tion. We will discuss prior distributions for these models more in depth
in Section 4. Nevertheless, for now, we will not pay them further atten-
tion as they will be mostly irrelevant for the issues discussed in the next
Section. Anyway, the prior distributions used in our analyses could be
considered as regular prior choices for these models in the literature. Full
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details on the priors used can be found at Annex C of this paper in the
supplementary material, which contains all the code used for its analyses.

In the next section, we implement these three different approaches in
a real extensive setting in order to assess their practical utility. As we will
see, the results are far from being as satisfactory as expected.

3 An initial analysis of the Valencian Mor-
tality Data: A motivating application

Now that we have introduced the BYM model and two potential tools to
cope with zero excesses, we are going to test their performance in an ex-
tensive real setting. We will pay particular attention to their fit in terms
of the number of predicted zeroes in comparison to those actually ob-
served. Our particular data set for this task is the mortality data used in
the Spatio-temporal Mortality Atlas of the Valencian Region (1987-2006)
Zurriaga et al. (2010) in which we have ignored the temporal compo-
nent. This atlas studies 46 geographical patterns corresponding to the
distribution of 27 causes of mortality for each sex, excepting some par-
ticular combinations without enough deaths or without biological sense
(e.g. prostate cancer in women). Mortality is disaggregated at the mu-
nicipal level in a total of 540 municipalities of very different sizes, ranging
from 22 to about 750,000 inhabitants (year 2000). Thus, observed deaths
are expected to show substantial variability between municipalities, with
some locations showing systematically 0 deaths for most of the causes.

The number of observed zeroes for the 46 geographical patterns an-
alyzed ranges from 4 to 243. As we mentioned, such numbers, although
sometimes high do not necessarily mean zero excesses. They can simply
represent low mortality for any of those causes or low population for some
municipalities. Thus, for assessing zero excesses with regard to the models
introduced in Section 2 we have run each of them on the available data.
For each model and cause of death we have sampled values from the pos-
terior predictive distribution of the observed deaths for each municipality
and we have compared those samples against the observed values. Specif-
ically, we have compared the number of zeroes observed for each cause of
mortality and those predicted by the models from the MCMC.

Table 1 shows the results obtained for some causes of deaths, specif-
ically the first 10 causes. The full table with all 46 analyses made is
annexed as supplementary material to this paper (Annex B [PROVISION-
ALLY AVAILABLE AT http://www.uv.es/mamtnez/Zeroes.htm DUE TO
THE SIZE OF THIS DOCUMENT]). The second column of Table 1 con-
tains the number of zeroes observed for each data set meanwhile the next
3 columns correspond to that same number as predicted by each model
run. Namely, we have run the BYM model without any particular treat-
ment of zeroes as well as ZIP and hurdle versions of that same model.
Bold fonts in Table 1 denote those combinations of models and data sets
evidencing zero excesses according to their predictive intervals.

All models in this paper were run in WinBUGS and the code for each
of them can be found as annex material at Annex C. An R-markdown
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document with all the analysis carried out can be found in that Annex.
Three chains were run for each model and data set with 50,000 iterations,
whose first 5,000 iterations were used as burn-in period. Of these, one
of every 135 iterations was saved yielding a final sample size of 1,002
iterations. Convergence was assessed by means of the Brooks-Gelman-
Rubin statistic (we required this to be lower than 1.1 for each variable in
the model) and the effective sample size (required to be at least 100 for
every variable in the model) implemented with the R2WinBUGS package of
R.

[INSERT TABLE 1 HERE]

Table 1 (and in more detail the full table in Annex B) shows how BYM
may fit quite poorly the number of zeroes for certain data sets. Namely, for
15 out of the 46 data sets considered the 95% posterior predictive intervals
for the number of zeroes in BYM did not contain the real observed zero
counts and for 5 additional data sets the upper limit of that interval
coincided with the observed zeroes –this seems excessive since we would
expect a priori just 2 or 3 of the observed zeroes to lay outside of the
predictive intervals–. The main conclusion is a substantial lack of fit for
BYM in terms of the number of zeroes predicted and therefore a general
advice for specific treatment of those cases. On the contrary, BYM seems
to accommodate well the number of zeroes in the rest of datasets (26),
making it questionable the need for particular treatments of excess of
zeroes in those settings.

With respect to the approaches with a particular treatment of zeroes,
the results are not satisfactory for different reasons. Surprisingly, ZIP
does not help much in fitting more zeroes and 11 out of the 46 original
data sets showed 95% posterior predictive interval which do not contain
the real observed number of zeroes and in 1 occasion the upper limit of the
interval coincided with those zeroes. This performance, although better
than that of BYM is also unacceptable since the number of predictive
intervals that do not contain the corresponding observed value is far above
of that corresponding to the nominal probability of the interval. On the
contrary, for hurdle, all intervals contained the observed number of zeroes.
Nevertheless, this better fit of the proportion of zeroes has a pernicious
effect on the estimations of the SMRs that make them barely reliable. To
understand this effect, we have represented in Figure 1 choropleth maps
for the SMRs fitted for all three models in Table 1 for rectum cancer in
males, one of the cases where the presence of a zero excess for BYM and
ZIP is evident.

[INSERT FIGURE 1 HERE]

We first highlight that the maps for BYM and ZIP are quite similar
for this data set and in general for all diseases fitted (maps not shown).
This is not surprising according to the fit of the πZ parameter in ZIP for
all the causes. The posterior mean for this parameter, which measures
the weight of the Poisson side of ZIP models, for all 46 data sets ranges
from 0.973 to 0.998. Thus even though ZIP models should be able to fit
zero excesses, they refuse to do it by minimising the weight of the zero-
specific component. This may be a consequence of the implementation
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where the πZ parameter is common to all municipalities. So, decreasing
πZ for making room to more zeroes in smaller municipalities also entails
an increase in the probability of observing zeroes in large cities where that
probability is virtually zero. Since the amount of information available
in large municipalities is much higher than that in the smaller ones, ZIP
decides to reject the zero-specific term as its contribution is more harmful,
in likelihood terms, for the large municipalities than beneficial for the
smaller ones (those with potential lack of zeroes).

The SMR map for hurdle shows a weird pattern completely different
to BYM. This map shows a polarized pattern with high SMRs in the
smaller municipalities and low SMRs for the rest. This pattern is system-
atically repeated for most of the data sets analyzed (maps not shown),
being more evident for those data sets with more observed zeroes. In our
opinion, this is also an effect of having a common πH parameter for all the
municipalities. In contrast to ZIP now πH for the different data sets is not
so close to 1, being its posterior mean always very close to the proportion
of non-zero observed counts for each data set. Nevertheless, as mentioned
in the previous Section, πH takes also an effect on the calculation of the
SMRs for this model, decreasing the mean of the Poisson component in
that same proportion. For the small cities this makes the number of pre-
dicted zeroes to be increased but, alternatively, for the non-small cities
this makes the SMRs to be underestimated as evidenced in Figure 1.

These results suggest that in our case both zero-specific treatments
using these naive proposals which put the same zero-specific probabilities
to all units do not seem a good choice. At least in our extensive analy-
sis, ZIP does not seem to have a clear effect with regard to the baseline
BYM model. For hurdle the particular (naive) treatment of zeroes makes
misleading the corresponding SMRs map. Since considering a common
probability for the zero-specific side seems to be the cause of these prob-
lems, we will explore from now on the opportunities and benefits that the
modeling of those probabilities could bring.

4 Modeling of the probability of observ-
ing a zero

One of the most valuable advantages of Bayesian hierarchical models is
the possibility of modeling particular features of the data that we could
be interested in. Nevertheless, that ability is not always good as it can
lead us to models which are not necessarily well formulated and therefore
to misleading or plainly wrong results.

As introduced in the previous section, both ZIP and hurdle models
require a particular treatment of the assignment of the observed counts
to any of the two processes intervening in each of them. That assignment
follows a binary process which, up to now, has depended on a single
parameter π common to all areal units. We will denote π when we refer
indistinctly to either πZ or πH . The obvious alternative to a common
probability is modeling unit-specific πis by means of, for example, logistic
regression. This has been repeatedly done in the disease mapping context
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for both ZIP Dalrymple et al. (2003); Gschlößl and Czado (2008); Neelon
et al. (2010); Musenge et al. (2013); Nieto-Barajas and Bandyopadhyay
(2013) and hurdle models Dalrymple et al. (2003); Neelon et al. (2010,
2013); Upfill-Brown et al. (2014); Neelon et al. (2014); Arab (2015). That
is, following several of the proposals in the literature, for both ZIP and
hurdle models we will consider from now on

logit(πi) = xiβ + ϕi (2)

where β model the effect of some set of covariates X and ϕ is a vector
of (possibly spatial) Gaussian random effects modeling the effect of those
factors that cannot be explained by X.

In the next subsection we introduce a series of results of great interest
for the models that we want to explore now. Namely, we have found im-
portant posterior impropriety problems in hurdle and ZIP models when
the vector of probabilities π is modelled with either fixed or random ef-
fects. This makes that modeling quite tricky and caution has to be taken
in order to avoid flawed modeling proposals. These results will deter-
mine some ZIP and hurdle specific proposals that should be avoided in
general. We will discourage the use of those models particularly in a non-
informative or objective setting. Additionally, Subsection 4.1 will allow
us to focus on some valid proposals with different πis, that will be later
developed at Subsection 4.2.

4.1 Some theoretical results warning against the
use of certain popular casual non-informative pri-
ors

Once a suitable model is specified, when it comes the need to assign the
prior distribution, the applied literature is flooded with casual possibilities
that include, for example, a uniform prior on fixed effects parameters or its
‘proper’ counterpart of a normal density with an arbitrarily large variance.
Obviously, these proposals are valid (in the sense that results are covered
by laws of probability) as far as the associated posterior distribution is
proper (see below the comment on the ‘vague’ counterparts), a property
that it is rarely checked in practice. We do so here and conclude that
the conditions for propriety of the posterior are quite severe and are not
fulfilled by many popular non-informative choices.

We start by introducing some results for hurdle models which consider
πH as proposed in (2). The proofs and full formulation of the results in-
troduced in this subsection are provided in Annex A of the supplementary
material to this paper.

First, we have shown that the hurdle model with πH modeled as in
(2) is problematic since some issues arise on the use of both fixed and
random effects in that expression. As stated in Corollary 1 (Annex A)
the use of random effects with improper prior distributions for σ, the
standard deviation of the random effects, yields an improper posterior
distribution regardless of the other elements in the model. This means
that the use of random effects in (2) with many of the default prior choices
in the literature for their variability should be avoided. Besides, if for the
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j∗ column of X, xij∗ is positive for every i with Oi > 0 and negative
otherwise (or vice versa) and the prior distribution of βj∗ is improper for
large positive (respectively negative) values then the posterior distribution
is also improper. So, we could also have posterior impropriety problems
using fixed effects for modeling πH . Fortunately, this condition (although
just a sufficient condition, not necessary, for impropriety) will not be
fulfilled easily since it depends in a binary manner on all the (random)
values of the outcome of the model. That binary condition should be
fulfilled for all the observed outcomes which is not that easy, especially
for regions with a large number of units. Additionally, Corollary 1 is very
general since as stated there, these results above would hold equally for
other common link functions in (2) such as probit or tobit; they would
also hold for non-Poisson based likelihoods such as binomial or negative
binomial and for other different spatial structures (with positive-definite
covariance matrices) besides BYM.

The situation for ZIP models is not better. As stated in Corollary 2
(Annex A) the use of random effects in (2) for ZIP models is as problematic
as for hurdle models, since it yields an improper posterior distribution
under the same premises. Moreover, the results for ZIP are equally general
since they also apply for different link functions, likelihood families and
spatial structures for the mean of the non-zero process. Nevertheless, the
case of fixed effects is substantially different (worse) for ZIP since these
yield posterior impropriety more easily than hurdle models. Thus, we
have found that a sufficient condition for posterior impropriety in ZIP
would be that for any column j∗ of X, xij∗ > 0 (respectively xij∗ < 0)
for all i and βj∗ to diverge for large positive (respectively negative) values.
This condition is much more general since this could be fulfilled by design
of the covariates, regardless of the observed counts O. In principle we
could easily get rid of this issue by, for example, subtracting the mean of
any of the covariates in the model but the problem would remain for the
intercept. The intercept is positive for all the units in the model so any
improper prior distribution on its corresponding term in β would yield an
improper posterior distribution, independently of the additional problems
that the rest of covariates in the model could also entail.

One could be tempted to use vague proper prior distributions, in-
stead of improper priors, as a possible strategy to avoid impropriety is-
sues. This is a procedure frequently found in the literature, supposedly
to avoid MCMC convergence problems. Nevertheless, according to the
results stated above, these ’convergence problems’ are a numerical mani-
festation of the more worrisome fact of having an improper limiting pos-
terior distribution. Berger Berger (2006) argues that the use of a vague
prior mimicking an improper prior with an associated improper posterior
can only hide but not solve the problem. In our context, this of course
invalidates the use of standard approaches like a vague Normal priors on
each component of β, vague Gamma priors on the precision of the ran-
dom effects or Uniform prior distributions with a large upper limit on
their standard deviations. Interestingly though, a tentative use of vague
proper priors could serve as a diagnostic test to detect possible underlying
problems of posterior impropriety. For instance, results assuming a uni-
form prior on the standard deviation of ϕ with an arbitrary large upper
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limit show high sensitivity to such upper limit, warning clearly about the
possible impropriety of the posterior distribution.

4.2 Some valid proposals for modeling π

The previous subsection has stated some procedures to be avoided when
modeling the probabilities π in both ZIP and hurdle models. One option
would be to use informative prior distributions for β and σ. In this sense
Agarwal et al. Agarwal et al. (2002) have made one proposal of infor-
mative prior distributions for β for ZIP models. Nevertheless, we would
rather avoid informative prior distributions. So, we will propose some
(non-informative) procedures for modeling π that do not fulfill the condi-
tions for posterior impropriety stated above. Regretfully, we do not have
a proof for the posterior propriety of these proposals since the impropriety
conditions formulated are just sufficient but not necessary. In any case,
these new proposals do not fall into the premises of those results, in con-
trast to many of the proposals formulated in the literature. Moreover, in
our experience, these new proposals do not seem to show at all any of the
MCMC convergence problems appearing when one of the models yield-
ing improper posterior (according to the conditions stated in the previous
subsection) were used. We formulate now 3 separate modeling proposals.

Fixed effects modeling:

Although, as described above, the use of random effects for modeling π
is quite problematic, the use of fixed effects for modeling πH in hurdle
seems a much less troublesome option. Thus, a potentially valid modeling
proposal (we will refer to this as FE (Fixed Effects) henceforth) would be
to consider a hurdle model as defined in Section 2 with

logit(πH) = Xβ.

A suitable proposal that could be used in principle for any disease mapping
model would be: X = [1I , log(E)], where E stands for the vector of
expected values used in the Poisson likelihood of hurdle models. We have
taken the logarithm of the expected values to avoid any potential effect
of the usually skewed distribution of this variable caused by the presence
of very few large cities. According to the results above this could yield
an improper posterior distribution if Oi is positive for each region with
Ei > 1 and Oi = 0 otherwise (or vice versa). But, for a reasonably high
number of areal units this condition seems very unlikely to be fulfilled.

This proposal models the logit of the probabilities of non-zeroes as
a function of the expected observations at each areal unit. This seems
quite reasonable since units with lower expected counts would show more
easily zero observed counts meanwhile those larger units will show pos-
itive counts in general. This could be achieved for β2 (the coefficient
corresponding to the log-expected cases) taking positive values. For this
proposal we will consider an improper uniform prior distribution for each
component of β. This is because we specifically want to avoid the use of
vague prior distributions that could hide posterior impropriety problems
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into just MCMC convergence problems due to the almost impropriety of
posterior distributions.

Interestingly, note the link between this proposal and the EZIP1 pro-
posal in Song et al. (2011) Song et al. (2011). In that paper a ZIP model
with πZi = Ei

δ+Ei
is proposed. A logit transformation of this expression

yields logit(πZi ) = log(Ei) − log(δ) which would be a ZIP version of the
FE model just proposed. However, note that this model is valid since δ is
assumed to have a Unif(0, 1) prior distribution in the EZIP1 model which
yields an exponential distribution of mean 1 on −log(δ). This proper prior
obviously avoids any potential impropriety on the posterior distribution.

Nested fixed effects modeling:

The use of expected values as a surrogate of the (population) size of the
areal units in the FE modeling seems quite reasonable. Nevertheless, this
does not depend at all on the probabilities of non-zeroes resulting from
the Poisson side of hurdle models: πP = 1 − exp(−µ). Although these
probabilities have been evidenced to produce some misfit in the data in
terms of zero excesses, they could be also used as sensible covariates for
modeling the probabilities of zeroes πH , instead of just E. This approach
was already introduced in the zero-altered model of Heilbron (1994) Heil-
bron (1994). These probabilities πP would not just take into account
the size of the areal units, through the expected counts E, but also the
risk attributed to any of them by the Poisson side of the model. These
risks could be an additional source of information making considerable
improvements as compared to the use of simple expected counts. Thus,
our second proposal for modeling πH in Hurdle models would be

logit(πHi ) = logit(πPi ) + γ.

This would be an alternative fixed effects logistic modelling of πH using
logit(πP ) as an offset. The values of that offset would be leveraged by
γ so that if it takes values close to 0 this model would reproduce the
probabilities in the Poisson layer, even for zero-counts, meanwhile for
γ < 0 the zero-specific probabilities would be inflated in regards to the
Poisson model. Note that in case of adapting this modeling to the hurdle-
BYM model in Section 2, the original (uninflated) BYM model could be
reproduced within this proposal by making γ = 0, thus we will henceforth
refer to this model as NFE, Nested Fixed Effects model. Once again we
will consider an improper uniform prior distribution for γ so that any
potential posterior impropriety problem in this model appears.

Geometric modeling:

Since resorting to logit (or probit, tobit) regression has proved to bring
lots of problems into ZIP and hurdle models, we could try to avoid those
transformations in order to make sensible proposals. Thus, making

πi = 1− (1− πG)Ei
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seems a reasonable proposal for both ZIP and Hurdle models. For this
proposal we would have that the probability of observing a zero count for
a unit with n expected cases is (1 − πG)n, where 1 − πG is that same
probability for a unit with 1 expected case. This geometric progression
also holds for the Poisson process where the probability of observing ze-
roes with n expected cases exp(−n λ) = exp(−λ)n follows that same
relationship. Thus, the probabilities of zero counts for this proposal are
in agreement with the Poisson side of the model. For πG, which can be
interpreted as the probability of observing a positive count for units with
one expected case, we set a Uniform prior distribution between 0 and
1. Since this prior is proper we avoid any posterior impropriety coming
from this term. One of the main advantages of this model is that since
the modeling of π does not rely on any improper prior distribution this
model could be also set up for ZIP modeling. This is contrast to the pre-
vious proposals whose ZIP counterparts would be discouraged since they
rely on fixed effects logit modeling. We will refer to the ZIP and hurdle
versions of this model henceforth as ZGeo and HGeo respectively.

5 Empirical illustration of the modeling
proposals introduced

We start this Section by illustrating the problems induced on ZIP and
hurdle models by arbitrary prior vagueness. With this section we seek
to make clear how prior problems are not just present for improper prior
distributions but also for vague proper priors, which are commonly used
in ZIP and hurdle disease mapping models. Finally, we will show how
the modelling proposals introduced in the previous section perform with
the same datasets used in Section 3 where naive ZIP and Hurdle models
showed a deficient performance.

5.1 An illustration of the prior vagueness prob-
lems in ZIP and hurdle models

We are going to illustrate the dangers of using vague proper priors, instead
of improper priors, for modeling πZ and πH in ZIP and hurdle models.
We have already proved that using improper priors for some variables in
these models would yield improper posteriors but we want to evidence that
using vague proper prior does not seem to be a safe option in any case.
Thus, we have run two separate models in this study: a ZIP model with
logit(πZi ) = α for i = 1, ..., I and a hurdle Model with logit(πHi ) = α+ γi
and γi ∼ N(0, σγ) for i = 1, ..., I. These models are somewhat naive,
indeed, as mentioned in the paper the ZIP model proposed will not fit
in general any risk excess, and additional regressors could be used for
modelling both πZ and πH in order to improve them. Nevertheless, we
have preferred to keep these models as simple as possible in order to
illustrate the prior specification problems that they show. We have run
these two models on the rectum cancer data set that has also illustrated
the results in Section 3. All models were run in WinBUGS.
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Regarding the ZIP model mentioned, we have run it for several dif-
ferent prior choices for α: α ∼ N(0, σ2

α) for σ2
α equal to 10, 100, 1000 and

10000. For the first of these choices α has a posterior mean of 5.26 and
a 95% posterior credible interval of [3.22,8.68]. For σ2

α = 100 we ob-
tain a posterior mean of 10.85 and a credible interval of [3.98,24.33]. For
σ2
α = 1000 we obtain a posterior mean of 18.87 and a credible interval

of [5.18,35.15]. Finally, for σ2
α = 10000 WinBUGS finds a numerical error

(TRAP 66) and is not able to run this model. As we see, posterior inference
on α completely depends on the prior distribution set for this parameter.
None of the models run, excepting that with σ2

α = 10000, show any ev-
ident convergence problem. Thus, someone fitting these models without
an additional sensitivity analysis, such as ours, will accept as good the
results for any of the models run, when these models are just hiding the
impropriety problems of an hypothetical improper prior choice for α. Note
that as we increase σ2

α, α increases steadily, giving zero probability to the
zero-specific component. This reinforces the idea that naive ZIP proposals
with logit modeling of πZ do not fit appropriately zero excesses.

Regarding the random effects hurdle model, we have run it also with
different prior distributions for σγ : σγ ∼ Unif(0, Uγ) for Uγ equal to
2, 10 and 100. For Uγ equal to 2 the posterior mean of σγ is equal to
1.1 with 95% posterior credible interval [0.1,2.0]. For Uγ equal to 10 the
posterior mean of σγ is equal to 6.4 with 95% posterior credible interval
[0.7,9.8]. Finally, for Uγ equal to 100 the posterior mean of σγ is equal to
69.2 with 95% posterior credible interval [17.0,99.0]. Note how the upper
limits of the posterior credible intervals for σγ are always very close to
Uγ , pointing out the informativeness of these supposedly uninformative
choices. Thus, in summary, we see how the posterior distribution of σγ
heavily depends on the (arbitrary) vagueness of its prior distribution,
which makes unadvisable the use of arbitrary vague proper priors for σγ
as a safe substitute of an improper prior distribution.

5.2 A re-analysis of the Valencian Mortality Dataset

We turn back once again to the analysis of the Valencian Mortality Dataset
in Section 3. We have run all 4 models proposed in the previous subsection:
FE, NFE, HGeo and ZGeo, on the diseases considered there. First, we
have assessed their fit in terms of the number of zero counts reproduced,
i.e. the equivalent of Table 1 but for these new models. Table 2 in
Annex B of the supplementary material to this paper shows, for all of
them, the posterior medians and 95% credible intervals for the number of
predicted zeroes. As a summary, in contrast to the results shown in Table
1, the posterior predictive distribution for the number of zeroes in all 4
models agree with those numbers observed for the real data sets. Namely,
all 3 hurdle models yield similar results to the hurdle model in Table 1
with the posterior predictive median for the number of zeroes in the data
sets always very close to the real observed zeroes. The modeling of the
probabilities of zeroes in ZGeo has made a great improvement over naive
ZIP models since for ZGeo the predictive posterior median for the number
of zeroes is always very close to the real observed zeroes. All 95% credible
intervals for the number of predicted zeroes for all diseases and models
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contain the real observed zeroes as would be expected in models which
are performing an explicit modeling of that particular feature in the data.

Second, we have also compared the fit of these models in general terms
by using the Deviance Information Criterion (DIC) proposed by Spiegel-
halter et al. Spiegelhalter et al. (2002). The DICs for all models and
46 data sets, with their corresponding deviances and number of effective
parameters, can be found at Table 3 of Annex B. Regarding the FE model
its DIC is higher than that of the BYM model for 43 out of 46 data sets so
its performance in general does not seem very satisfactory. Although the
FE model is more complex than BYM (has two additional parameters)
the deviances obtained are in general substantially higher than those of
BYM models. This suggests that the modeling proposed in FE is worse
than that of the BYM model, thus maybe a linear function of log(E) is
not as good as it could seem in principle. As a consequence we will not
pay further attention to this model from now on. The NFE model attains
better DICs for 11 out of the 15 data sets identified as having zero ex-
cesses. Meanwhile, for just 5 out of the remaining 31 data sets with no
evidence of zero excess NFE was better in terms of DIC, as could be ex-
pected since BYM is less complex than NFE and for these data sets NFE
should not yield any improvement. Thus, NFE attains in general lower
DICs in those settings where it would be expected. Regarding HGeo, it
attained 6 out of 15 DICs lower than BYM for those data sets needing a
particular treatment for zeroes and 2 out of 31 times was lower for those
data sets that did not need that treatment in principle. Finally, ZGeo also
obtained similar results to HGeo, improving BYM in 5 out 15 times where
zero excesses were evidenced and 8 out of 31 times when these were not
so evident. Thus the results of Geometric models are overall satisfactory
although not as good, in terms of DIC, as those of NFE.

Regarding the estimates of the parameters in the models proposed,
those of NFE showed a particularly coherent performance. Thus, for all
data sets needing zero treatment the parameter γ in the model attained
a 95% posterior credible interval completely below 0 (we mentioned that
γ < 0 should be a sign of zero correction with respect to BYM). On the
contrary, for only 1 out of the 31 data sets not showing zero excesses the
95% credible interval for γ was completely below zero. Posterior means
and 95% credible intervals for γ for all 46 data sets can be found at
Table 4 in Annex B to the paper. We do not find anything particularly
interesting in the πG estimates obtained in the Geometric models. These
parameters have a cumbersome interpretation since they are referred as
the probability of the zero-specific term for units having E = 1, but
each data set and spatial unit have different expected values. Thus, no
particularly intuitive result is drawn from their estimates.

[INSERT FIGURE 2 HERE]

Figure 2 shows choropleth maps with the smoothed SMRs for rectal
cancer in men for BYM, NFE, HGeo and ZGeo. Recall that this pattern
was one of those needing some zero treatment. Both hurdle maps (NFE
and HGeo) are similar as their modeling of the probabilities of zeroes is
also similar, as mentioned in Section 4. They mainly modify the risks in
those regions less populated and more prone to zeroes (upper-left side of
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the maps) decreasing their risks in order to get those extra zeroes needed.
As seen in Section 3 this differential performance of the low populated
areas could not be achieved with the naive models introduced in Section
2. In contrast, regions having high SMRs hardly show any change. Thus
hurdle models mainly modify the left tail of the distribution of the SMRs
in order to fit the zero excess, but leaves the right tail of the distribution
mostly unchanged. ZGeo introduces more differences with regard to BYM
in both tails of the distribution. New regions with both high and low risks
have emerged in this map. Several regions of very low risk have emerged
in the upper-left side of the map. This result of ZGeo is very common and
can also be seen in many of the diseases studied (see Annex B for seeing
all 4 maps for the whole set of diseases).

Although the choice of a particular model for treating zero excesses is
not a goal of this work, we would recommend to use NFE as benchmark
proposal between all those introduced in this paper. We have found par-
ticularly satisfactory that NFE shows a better performance in terms of
DIC than the rest of models and the estimates of its γ parameter seems
very coherent. Moreover, this model seems to yield conservative results in
that the change in their geographic patterns compared to BYM is milder
than that for the rest of models, yet enough to correct the original zero
excesses in the BYM models. Finally, the logit formulation of NFE makes
it particularly well suited for further modelling πH if needed in contrast to
the Geometric proposals. Thus we overall find NFE a convenient proposal
for modeling data sets showing zero excesses.

6 Conclusions

Disease mapping models with zero-specific treatment can be considered
as enhanced disease mapping models controlling overdispersion in the ob-
served counts inducing also dependence on the underlying risks. Never-
theless, overdispersion fitting procedures in general may not be enough
for solving zero excesses problems, which are a unique kind of overdis-
persion. Thus, specific models are needed to deal with this problem. As
shown in this paper zero excesses are present in certain data sets con-
cerning mortality data, at least for the Valencian Mortality Dataset. A
relevant proportion of the diseases studied have been found to show zero
excesses, even after accounting for overdispersion with disease mapping
models. Thus, as evidenced, zero excesses require attention for mortality
geographic studies in general.

The Valencian Mortality Dataset is somewhat particular in some senses
due to the high demographic variability of the units of study. This could
have made naive ZIP and hurdle models (without modeling of the prob-
abilities of the zero-specific component) seem particularly bad as zero-
specific components also put substantial probability to zero counts in large
cities. As a consequence the zero-specific components are discarded. Nev-
ertheless, we expect substantial differences in the expected cases for reg-
ular disease mapping studies since otherwise those expected values would
not be omnipresent in so many studies. In any case the Valencian Mortal-
ity Dataset is comprehensive enough and representative of real mortality
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data so that the need of zero-treatment evidenced in this dataset could
be a signal of a general fact in mortality data sets of other regions.

Maybe one reason why mortality data may show frequent zero ex-
cesses when smoothing the SMRs is inherent to the smoothing process.
Smoothing procedures usually combine information on the observed data
and the prior structure defined by the model. When that observed infor-
mation is low (small units) the shrinkage towards the prior structure is
stronger. As a consequence the risks in the smaller units may be easily
oversmoothed towards the mean, or a local mean, yielding conservative
risk estimates. Models treating zero excesses with a different probabil-
ity of the zero-specific component solve this problem by decreasing the
risk in the smaller units (those which are more likely to show zeroes) and
therefore increasing the number of zeroes predicted. Nevertheless, a sim-
ilar oversmoothing could exist in small units showing high risks. In that
case their SMRs should be higher but they are oversmoothed towards the
mean because of the small information in each of them. Proposals model-
ing zero excesses in no way would fix this issue which only alleviates the
oversmoothing of small units showing low risks.

In our opinion the theoretical results in Subsection 4.1 are also of
high importance from an applied point of view. They show that propos-
als leading to wrong (improper) results have been frequently proposed in
the literature. These problems can have different consequences such as
plain improper posterior distributions or, if arbitrary vague prior distri-
butions are used, arbitrary posterior distributions which are extremely
sensitive (possibly unnoticedly) to prior parameters. These problems are
often interpreted in the literature as simple MCMC convergence prob-
lems. Although this may seem obvious, we would advice modelers to pay
further attention to those convergence problems. In our experience those
problems have been an excellent guidance for formulating the theoretical
results in Subsection 4.1 since they clearly warn that something suspi-
cious could be happening. In our opinion this is an additional advantage
of MCMC inference since convergence problems can be treated, at least
in this context, as a trace of problems in model formulations instead of
simple drawbacks inherent to MCMC as an inferential tool.

The main purpose of this paper has not been to propose a particu-
larly suitable model for dealing with zero excesses. Besides showing the
high prevalence of zero excesses problems in regular mortality data, which
would deserve further epidemiological research, the purpose of this paper
is double. On one hand, we pretend to show some theoretical pointing out
wrong procedures in this area. In our opinion this is quite important in
order to avoid works proposing flawed models. The main value of this side
of the paper is warning modelers on what procedures not to do instead of
setting what to do with zero excesses. Our results are just sufficient, not
necessary, conditions for posterior impropriety in these models. On the
other hand, this paper illustrates several ‘valid’ proposals for modeling
zero excesses, i.e. we wanted to illustrate suitable proposals for handling
this particular issue that were admissible in light of the results shown in
Section 4. It would be desirable to have a proof of the posterior propriety
of these proposals, or even better necessary conditions for the posterior
impropriety of zero-specific models in general. Regretfully we do not have
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that proof but anyway the value of the results proved still remain since
they guide us on what procedures not to follow which is a valuable guid-
ance according to many models already proposed in the literature.

A more thorough comparison of the models in Subsection 4 and possi-
bly some further models would be greatly advisable although that compar-
ison is beyond the scope of this paper. We have found more interesting
to illustrate several modeling proposals instead of exposing just one of
them. Nevertheless, the results of this paper suggests the need for further
research but also a high dose of caution when making modeling proposals
in this area.

Finally, we would like to point out that according to Natarajan and
McCulloch Natarajan and McCulloch (1995) the conditions stated there
for posterior impropriety in the modeling of binary data are similar to
those formulated in Albert and Anderson (1984) Albert and Anderson
(1984) for non-existence of MLE in logit frequentist modeling. Indeed,
the conditions for posterior impropriety in the Bayesian approach are
more restrictive than those for non-existence of the MLEs in the frequen-
tist context. The conditions set at Natarajan and McCulloch Natarajan
and McCulloch (1995) have been those also set as conditions for posterior
impropriety for the modeling of the probability of the zero-specific compo-
nent with random effects in our work. Thus, the frequentist formulation
of ZIP and hurdle models from a frequentist setting could be in principle
as problematic as that same formulation from a Bayesian point of view.
The conditions under which frequentist ZIP and hurdle models yield valid
(or unvalid) MLEs should be further explored but the results of this paper
and the work of Albert and Anderson Albert and Anderson (1984) shed
some doubts on those formulations from a frequentist point of view.
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Table 1: Observed zeroes for each data set and posterior predicted zeroes for
each model and for the first 10 mortality causes. Values in the Obs. zeroes
column correspond to the real observed zeroes for each data set. For the next 3
columns, numbers correspond to the posterior predictive medians for this same
quantity for each model run and the corresponding unilateral 95% posterior
predictive intervals. Bold fonts denote those combinations of models and data
sets evidencing zero excesses according to their predictive intervals.

Sex & Cause Obs. zeroes BYM ZIP Hurdle
(Men, All tumours) 4 2 [0,5] 3 [0,5] 5 [0,11]

(Women, All tumours) 7 6 [0,10] 6 [0,10] 8 [0,15]
(Men, Mouth) 216 196 [0,211] 199 [0,215] 216 [0,242]

(Men, Stomach) 105 91 [0,103] 92 [0,104] 105 [0,127]
(Women, Stomach) 150 137 [0,151] 138 [0,152] 150 [0,173]
(Men, Colorectal) 73 58 [0,68] 59 [0,69] 74 [0,93]

(Women, Colorectal) 74 72 [0,82] 73 [0,83] 74 [0,93]
(Men, Colon) 96 79 [0,91] 84 [0,96] 96 [0,119]

(Women, Colon) 98 91 [0,102] 92 [0,104] 99 [0,119]
(Men, Rectum) 201 180 [0,196] 183 [0,199] 202 [0,228]

... ... ... ... ...
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