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Abstract

Multivariate disease mapping models are attracting considerable at-
tention. Many modeling proposals have been made in this area, which
could be grouped into three large sets: coregionalization, multivariate con-
ditional and univariate conditional models. In this work we establish some
links between these three groups of proposals. Specifically, we explore the
equivalence between the two conditional approaches and show that an im-
portant class of coregionalization models can be seen as a large subclass
of the conditional approaches. Additionally, we propose an extension to
the current set of coregionalization models with some new unexplored
proposals. This extension is able to reproduce asymmetric cross-spatial
covariances for different diseases. This shows that the previously accepted
belief that coregionalization was not able to reproduce models with asym-
metric cross-covariances was wrong.

1 Introduction

Gaussian Markov random fields (GMRFs) are a family of multivariate distri-
butions that make it possible to induce dependence structures on vectors of
variables in a simple way. This has led to GMRFs being used in many different
contexts, although they are particularly popular in disease mapping studies on
sets of small areas. Recently, multivariate disease mapping has been the fo-
cus of considerable attention (Martinez-Beneito and Botella Rocamora, 2019).
These models frequently use multivariate versions of Gaussian Markov random
fields (MGMRFs) for the purpose of inducing both spatial and multivariate de-
pendence (between diseases) for the joint study of several spatially referenced

*This is a preprint version of the paper: Martinez-Beneito, MA. Some links between con-
ditional and coregionalized multivariate Gaussian Markov random fields. Spatial Statistics,
2020.
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vectors, henceforth representing different diseases. In this manner, multivariate
disease mapping models take advantage of the geographical patterns of hypo-
thetically related diseases, which could be an important secondary source of
information that regular (univariate) disease mapping studies typically ignore.

Multivariate disease mapping studies have been gaining interest in the lit-
erature over the last few years. As a result, many modeling proposals in this
area have been put forward. Recently, MacNab (2018) proposed a classifica-
tion of MGMRFs in the literature based on the way they induce spatial and
multivariate dependence. This classification establishes three large groups of
proposals: multivariate conditional models, mainly following the work of Mar-
dia (1988); univariate conditional models, principally following the work of Sain
et al. (2011), and coregionalization models (Gelfand et al., 2004; Jin et al., 2007;
Martinez-Beneito, 2013). This classification includes most of the MGMRF-
based modeling proposals already put forward in the literature. Besides the
undeniable interest of MacNab’s classification, it also raises some new questions
(Martinez-Beneito, 2018), such as: Are the methods used to induce depen-
dence in these three approaches complementary or are all three equivalent? Are
any of these three approaches contained in some of the others or do all three
show separate features that cannot be reproduced by the rest? Additionally,
coregionalization models have sometimes been regarded as a minor family of
multivariate models since they have been said to be incapable of reproducing
asymmetric cross-spatial covariance matrices (covariance matrices for different
diseases) (MacNab, 2018; Martinez-Beneito, 2018). This is in contrast to the
mentioned conditional approaches, which have been able to reproduce those
asymmetric settings (Sain and Cressie, 2007; Greco and Trivisano, 2009; Sain
et al., 2011). These works also adduce several supposed advantages of those
asymmetric models over their constrained symmetric alternatives.

The main goal of this work is to shed light on some of these questions. Par-
ticularly, we seek to establish some relationships among the classes of multi-
variate conditional, univariate conditional and coregionalization models. To do
so, we define three sets of models based on this classification and we study the
relationships among these three sets. Furthermore, when defining the set of
coregionalized models, we formulate a new proposal within this approach that
is more general than those already posited in the literature. This formulation is
able to reproduce asymmetric cross-spatial dependencies, a feature which was
not thought possible under this approach. In this manner, we increase the
scope of the models that may be reproduced within this family. Finally, as an
enhancement of the originally proposed asymmetric coregionalization models,
we develop a particular proposal with much better computational properties,
thereby showing its applicability in real large settings.

This paper is divided into 5 sections. Section 2 performs a brief review of
the coregionalization approach and formulates the new general (asymmetric)
model within this approach. Section 3 defines the sets of multivariate and
univariate conditional models and explores the relationship between these two
sets and coregionalization models. Section 4 applies the new coregionalization
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model proposed in Section 2 to a real setting and, finally, Section 5 draws some
conclusions from the results shown in this paper.

2 Coregionalized multivariate Gaussian Markov
random fields

Coregionalization (Wackernagel, 2003; Gelfand et al., 2004) is one of the main
approaches to MGMRFs. Coregionalization induces dependence among the cells
of a random matrix, which will typically be used to model the log-risks for a set
of diseases, as a product of several random matrices. Several proposals have been
made under this approach for building multivariate GMRFs (Jin et al., 2007;
Botella-Rocamora et al., 2015), which have been even used for multivariate
joint studies of several sexes, time periods... (Martinez-Beneito et al., 2017).
Some other proposals have also been formulated, merging both the conditional
and the coregionalized approaches (MacNab, 2016, 2018), but henceforth we will
focus on pure coregionalization models from independent underlying patterns, in
order to establish a relationship between both approaches. To our knowledge, all
(pure) coregionalized models formulated in the literature are particular cases of
the QR-model by Martinez-Beneito (2013), which yields a covariance structure
equivalent to that of Case 3 in Jin et al. (2007).

Let us now introduce the QR-model mentioned above. Let ε = [ε·1, ..., ε·J ] be
an I×J random matrix with independent cells following a standard Normal dis-
tribution, where I denotes the number of spatial units available and J the num-
ber of diseases to be studied. Let us also consider φ = [(Σ̃w)1ε·1, ..., (Σ̃w)Jε·J ],
for (Σ̃w)1, ..., (Σ̃w)J being J Cholesky lower triangular matrices corresponding
to the spatial covariance matrices (Σw)1, ..., (Σw)J for each of the J diseases.
Obviously, the columns of φ will have different dependence structures given by
the covariance matrices (Σw)1, ..., (Σw)J , which are supposed to induce differ-
ent spatial patterns on each of these vectors. The QR-model proposes defining
a multivariate GMRF ζ = (ζT·1, ..., ζ

T
·J)T as the matrix product:

ζ = φΣ̂T
b = [(Σ̃w)1ε·1, ..., (Σ̃w)Jε·J ]Σ̂T

b ,

where Σ̂b represents a matrix fulfilling Σb = Σ̂bΣ̂
T
b , for Σb a matrix reproduc-

ing the covariance between diseases. Martinez-Beneito (2013) shows that this

definition does not uniquely identify Σ̂b; in fact, the set of matrices fulfilling
that relationship coincides with the set of orthogonal rotations of the Cholesky
lower triangular matrix Σ̃b: {Σ̃bP : PP T = IJ}. The QR-model yields the
following joint covariance matrix for vec(ζ):

(Σ̂b ⊗ II)Bdiag((Σw)1, ..., (Σw)J)(Σ̂T
b ⊗ II),

where Bdiag() denotes a block–diagonal matrix of the corresponding arguments.
Note that if Σw := (Σw)1 = ... = (Σw)J , that covariance matrix would be
equal to simply Σb⊗Σw, providing a separable covariance structure for vec(ζ).
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Alternatively, it is also enlightening to consider the columns of φ to follow
proper CAR (pCAR) distributions of different correlation parameters ρ1, ..., ρJ .
In that case, the covariance matrices for the columns of φ would be simply
{(Σw)j = (D − ρjW )−1}Jj=1, with W the typical I × I adjacency matrix used

for defining GMRFs and D = diag(w1+, ..., wI+) with wi+ =
∑I

i′=1Wii′ . It
follows that, for this case, this covariance matrix for vec(ζ) could be expressed
as:

(Σ̂b ⊗ II)(Bdiag(D − ρ1W , ...,D − ρJW ))−1(Σ̂T
b ⊗ II) =

(((Σ̂T
b )−1 ⊗ II)(IJ ⊗D − diag(ρ)⊗W )(Σ̂−1b ⊗ II))−1 =(

Σ−1b ⊗D − [Σ̃bP diag(ρ−11 , ..., ρ−1J )P T Σ̃T
b ]−1 ⊗W

)−1
,

where P stands for the orthogonal rotation that fulfills Σ̂b = Σ̃bP . By consider-
ing a general Σ̂b matrix in the QR-model formulation, instead of just the lower
Cholesky matrix Σ̃b, the QR-model is no longer order-dependent and, there-
fore, the order considered for the diseases in the analysis becomes irrelevant
(Martinez-Beneito, 2013). This is a particular advantage of QR-models.

2.1 An extension of the coregionalized QR-model

We now consider a variation of the QR-model as it has been defined in the
previous paragraphs. First, as above, we induce different spatial patterns on
the columns of the random matrix ε by making φ = [(Σ̃w)1ε·1, ..., (Σ̃w)Jε·J ].
However, dependence between diseases is induced in a different manner. Thus, if
in the QR-model each row of φ was post-multiplied by the same matrix Σ̂T

b , we

will now multiply each of its rows φi· by a different (Σ̂b)
T
i = (Σ̃bPi)

T = P T
i Σ̃T

b ,
which induces a common covariance structure between diseases Σb, but depends
on location-specific J × J permutation matrices P1, ...,PI . We will refer to this
model henceforth as the QsR-model in order to stress the presence of several
orthogonal matrices instead of just a single one, as was the case for the QR-
model.

Let us now explore the covariance matrix of this ensemble for the particular
case where we had pCAR distributions, of different parameters ρ, for the set of
underlying patterns φ. In that case we would have:

Σvec(φ) = Bdiag((D−ρ1W )−1, ..., (D−ρJW )−1) = (IJ⊗D−diag(ρ)⊗W )−1

or, equivalently (see Section 3 in Henderson and Searle (1979) or Ippoliti et al.
(2018)):

Σvec(φT ) = (D ⊗ IJ −W ⊗ diag(ρ))−1.

The second part of the former proposal, where multivariate dependence is in-
duced, could be algebraically expressed as:

vec(ζT ) = (vec(φT )TBdiag((Σ̃bP1)T , ..., (Σ̃bPI)T ))T

= (vec(φT )TBdiag(P T
1 , ...,P

T
I )(II ⊗ Σ̃T

b ))T

= (II ⊗ Σ̃b)Bdiag(P1, ...,PI)vec(φT ).
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Therefore, if Block() denotes a block matrix of the corresponding arguments,
then:

Σvec(ζT ) = ((II ⊗ Σ̃b)Bdiag(P1, ...,PI))(D ⊗ IJ −W ⊗ diag(ρ))−1

· (Bdiag(P T
1 , ...,P

T
I )(II ⊗ Σ̃T

b ))

= ((II ⊗ (Σ̃T
b )−1)Bdiag(P1, ...,PI)(D ⊗ IJ −W ⊗ diag(ρ))

·Bdiag(P T
1 , ...,P

T
I )(II ⊗ Σ̃−1b ))−1

= ((II ⊗ (Σ̃T
b )−1)(D ⊗ IJ −Block(Pidiag(ρ)P T

i′ wii′))(II ⊗ Σ̃−1b ))−1

= (D ⊗Σ−1b −Block((Σ̃T
b )−1Pidiag(ρ)P T

i′ (Σ̃b)
−1wii′))

−1

= (D ⊗Σ−1b −Block((Σ̃bPi′diag(ρ−1)P T
i Σ̃T

b )−1wii′))
−1.

If we denoted Qii′ = (Σ̃bPi′diag(ρ−1)P T
i Σ̃T

b )−1 and ei the I-vector being 1 in
its i-th component and 0 otherwise, it follows that Σvec(ζT ) could be alterna-
tively expressed as:

Σvec(ζT ) = (D ⊗Σ−1b −Block(Qii′wii′))
−1 = (D ⊗Σ−1b −

I∑
i,i′=1

wii′eie
T
i′ ⊗Qii′)

−1

= (D ⊗Σ−1b −
I∑

i,i′=1

Wii′ ⊗Qii′)
−1 (1)

where Wii′ denotes an I × I matrix with its (i, i′)-th cell being equal to wii′

and the rest of the cells being 0. This expression also allows us to obtain the
covariance matrix of vec(ζ) as:

Σvec(ζ) = (Σ−1b ⊗D −
I∑

i,i′=1

Qii′ ⊗Wii′)
−1. (2)

Note that this covariance matrix, for P1 = ... = PI = P is equal to simply:

Σvec(ζ) = (Σ−1b ⊗D −Q⊗W )−1

for Q = (Σ̃bP diag(ρ−1)P T Σ̃T
b )−1, which coincides with Σvec(ζ) for the QR-

model in Martinez-Beneito (2013), which is therefore just a particular case of
the current proposal.

We are going to look more closely at the covariance structure of the QsR-
model, in particular the asymmetry of its non-diagonal blocks. The precision
matrix for vec(ζ), arising as the inverse of Expression (2), has a particularly
sparse structure. Specifically, it can be expressed as an (IJ)×(IJ) block matrix
with I×I blocks. The (j, j′)th block of this matrix, for 1 ≤ j, j′ ≤ J , is equal to

Bjj′ = (Σ−1b )jj′D −
∑J

i,i′=1(Qii′)jj′Wii′ , where (Qii′)jj′ denotes the (j, j′)-th
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cell of Qii′ . This expression thus has an interesting consequence for j 6= j′ and
i 6= i′:

(Bjj′)ii′ = −(Qii′)jj′wii′ = −((Σ̃bPi′diag(ρ−1)P T
i Σ̃T

b )−1)jj′wii′

6= −((Σ̃bPidiag(ρ−1)P T
i′ Σ̃T

b )−1)jj′wi′i = (Bjj′)i′i.

Therefore, the cross-spatial covariance matrices of the QsR-model are asym-
metric, in contrast to the QR-model and the rest of the pure multivariate core-
gionalized models previously proposed. This makes it possible to reproduce
models with asymmetric cross-spatial covariance matrices within the coregion-
alized framework.

We find it relevant to comment that few modeling proposals with asymmet-
ric cross-covariances have been proposed previously in the literature (Sain and
Cressie, 2007; Greco and Trivisano, 2009; Sain et al., 2011). Nevertheless, a par-
ticular feature is present in most of them (MacNab, 2018). Specifically, for those
previous asymmetric models the order used for the spatial units of analysis has
been found to be relevant, when the order chosen is typically arbitrary. Specif-
ically, Greco and Trivisano (2009) propose a model which, for any two i and i′

with 1 ≤ i < i′ ≤ I and i ∼ i′, have Cov(ζi·, ζi′·) = B̃ for an asymmetric matrix
B̃. The asymmetry of B̃ makes Cov(ζij , ζi′j′) = B̃jj′ 6= B̃j′j = Cov(ζij′ , ζi′j)
for any two j 6= j′. As a consequence, for any two neighboring spatial units i
and i′, the covariance between their j-th and j′-th component for 1 ≤ j, j′ ≤ J
is equal to either B̃jj′ or B̃j′j , depending only on whether i′ > i or i′ < i. This
label dependence, making the final fit sensitive to the ordering used for the spa-
tial units, does not happen for the QsR-model. For this model, Cov(ζij , ζi′j′)
is different for any two spatial units i and i′, as it depends specifically on Pi

and Pi′ , so its cross-spatial covariances will not be restricted to taking just
two values. Moreover, the ordering used for the diseases is irrelevant for the
QsR-model, since by changing Pi by Pi′ , and vice versa, we could transpose the
cross-covariance matrix for these two spatial units. In our opinion, this is an
interesting property of QsR-models that makes them quite appealing.

Finally, we believe it worthwhile mentioning that the MGMRFs arising from
QsR-models are valid by definition, since they are built as matrix operations
involving full-rank matrices, which preserve the symmetry and positive definite-
ness of Σvec(φT ). Consequently, the validity of Σvec(ζT ) depends exclusively on
the validity of Σvec(φT ). This is not a minor advantage, since building models
that fulfill these conditions is one of the main challenges in MGMRF modeling.

2.2 A computationally convenient QsR-model

The QsR-model, as formulated above, has an undeniable theoretical interest as it
is able to reproduce order-free asymmetric coregionalized models. Nevertheless,
that proposal introduces important drawbacks in practical terms. Specifically,
the original QR-model has been reformulated in the literature by considering Σ̂b

to be equal to a general J×J matrix M with independent normal cells (Botella-
Rocamora et al., 2015). This model was called the M -model in contrast to the
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original QR-model, which was parameterized as a function of an orthogonal
matrix P and the Cholesky matrix of the covariance matrix between diseases
Σ̃b. The great advantage of M -models is that they no longer need the direct use
of orthogonal and Cholesky matrices and are therefore computationally much
more convenient, making it possible to perform multivariate analyses on tens of
diseases. Botella-Rocamora et al. (2015) showed the equivalence of the QR and
M -models, although, as mentioned, they are very different in practical terms.

The QsR-proposal posed above as an M -model would require the use of a
different M matrix per spatial unit, but all of them would have to be of the
form Mi = (Σ̂b)

T
i = P T

i Σ̃T
b for different orthogonal matrices Pi. Sampling

from this set of matrices would require working back again with orthogonal and
Cholesky matrices and so the computational advantage of the M -model would
be lost for the general QsR-model. However, the computational benefit of the
M -model is something that we would not want to lose with the above proposal
of coregionalized asymmetric models. Thus, our current goal is to formulate a
variation of the QsR-model with the computational advantages of the M -model.

Asymmetric QsR-models arise as the outcome of using a different orthogonal
matrix Pi for each spatial unit but a common covariance structure between
diseases Σb. Obviously, this general asymmetric model is over-parameterized,
since a different orthogonal matrix should be estimated per spatial unit. Thus,
we could formulate a more convenient modeling proposal by restricting the
orthogonal matrices Pi to a particular subset of the whole set of J×J orthogonal
matrices. As mentioned previously, the general QsR-model can be formulated
as:

vec(ζT ) = (II ⊗ Σ̃b)Bdiag(P1, ...,PI)vec(φT )

= Bdiag(Σ̃bP1, ..., Σ̃bPI)vec(φT ) = Bdiag(MT
1 , ...,M

T
I )vec(φT ),

while the QR-model had a single P matrix which also yielded a common M
matrix. We could simplify the general QsR-model as follows. Let us consider
the orthogonal matrices above to be of the form Pi = PRi for P , a common
orthogonal matrix for all spatial units, and Ri a collection of J×J permutation
(and therefore orthogonal) matrices. The collection of matrices {Pi; i = 1, ..., I},
as just defined, are a subset of the set of J × J orthogonal matrices, and so this
model is a particular (restrictive) case of the general QsR-model, henceforth a
permuted QsR-model.

Obviously, the permuted QsR-model is less parameterized than the general
QsR-model. Algebraically, the permuted QsR-model can be expressed as:

vec(ζT ) = (II ⊗ Σ̃b)Bdiag(PR1, ...,PRI)vec(φT )

= Bdiag(Σ̃bPR1, ..., Σ̃bPRI)vec(φT )

= Bdiag(MTR1, ...,M
TRI)vec(φT )

= Bdiag((RT
1M)T , ..., (RT

I M)T )vec(φT ).

This means that, for the permuted QsR-model, a different matrix Mi = RT
i M

is used to induce multivariate dependence in ζ and these matrices are simple
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copies of a common M matrix with their rows permuted in a different manner
for each spatial unit, according to the corresponding permutation matrix RT

i .
Therefore, sampling from this proposal avoids the need to sample from the space
of orthogonal matrices Pi and the space of Cholesky matrices Σ̃b, and so the
computational advantages of the M -model still remain in the permuted QsR-
model. In any case, the permuted QsR-model is able to reproduce asymmetric
cross-covariance matrices like the original QsR-model.

Note that although the permuted QsR-model is just a particular restrictive
case of the general QsR-model, the set of permuted QsR-models is much larger
than the original QR-model. Specifically, for J diseases there are J ! possible
choices for each Ri and, therefore, for I spatial units and given φ and M , the
permuted QsR-model is able to reproduce (J !)I different combinations of the
underlying patterns. For just J = 2 diseases and a moderate region of study, this
number could easily be quite large. Thus, the permuted QsR-model introduces
considerable additional flexibility in the modeling. For even a moderate number
of diseases, the permuted QsR-model would contain a huge number of variations
as compared to the original QR-model, perhaps also causing it to be over-
parameterized. In that case, a subset of all possible J ! permutations of the rows
of M could be more convenient than considering all the possible permutations.
This would reduce the complexity of the permuted QsR-model, thereby possibly
yielding a more parsimonious fit. We will also consider this possibility in Section
5.

3 Conditional approaches to multivariate Gaus-
sian Markov random fields

Defining MGMRFs through the definition of the conditional distributions of
the cells of ζ is the main alternative to coregionalization models. In this section
we introduce two classes of multivariate and univariate conditional MGMRFs,
respectively. Later on, we will examine the links between these two classes of
models and then explore some relationships between them and two additional
classes of coregionalized models to be defined below.

3.1 The class of multivariate conditional MGMRFs (CM):

Mardia (1988) proposes a way of generalizing univariate GMRFs to multivariate
studies. His work starts with the original formulation of univariate GMRFs
θ by Besag (1974) as a set of univariate conditional distributions on each of
its components θi|θ−i. Specifically, for the zero-mean case, the conditional
formulation of univariate GMRFs correspond to the model arising from the set
of conditional distributions:

θi|θ−i ∼ N

(∑
i′∼i

βii′θi′ , σ
−2
i

)
, i = 1, ..., I,
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where i′ ∼ i denotes all subindexes i′ corresponding to neighboring spatial units
of i, and θ−i stands for the vector θ leaving out its i-th component. Note that
we parameterize this normal distribution and the rest in this paper in terms of
their precision or precision matrices. Some restrictions are imposed on β and
σ so that this set of conditional distributions yields a valid joint multivariate
distribution for θ.

In a similar manner, Mardia’s proposal contains all those models which can
be expressed in the following form. For an (I × J)-matrix ζ, let us consider the
multivariate conditional distributions of each of its rows given the rest as:

ζi·|vec(ζT−i·) ∼ NJ

(∑
i′∼i

βii′ζ
T
i′·,Ωi

)
i = 1, ..., I (3)

where {βii′ : i, i′ = 1, ..., I} stands for a set of general unrestricted J × J
matrices, {Ωi : i = 1, ..., I} is a collection of J × J symmetric, positive definite
precision matrices. Note that, although Mardia originally defines the mean of
the conditional distributions above as a sum for i′ 6= i, it is usually assumed that
βii′ = 0 for i � i′, as we have done, in order to induce Markovianity in the overall
process. Furthermore, for notational convenience, βii, i = 1, ..., I are assumed
to be equal to −IJ (Mardia, 1988). Obviously, as for univariate GMRFs, some
requirements will have to be imposed on βii′ and Ωi in order to guarantee
the symmetry and positive definiteness of the overall precision matrix Ωvec(ζ).
Nevertheless, we do not develop those conditions further as they will not be of
particular interest throughout the rest of this paper. We will refer to this class
of models, for any particular choice of βii′ and Ωi, as CM , where the subindex
M stands for multivariate conditional models, i.e. MGMRFs defined through
the multivariate conditional distribution of the observations for each location
given the rest. See, for example, Billheimer et al. (1997); Carlin and Banerjee
(2003); Gelfand and Vounatsou (2003); Sain and Cressie (2007) and Greco and
Trivisano (2009) for some particular proposals in the literature belonging to CM .

3.2 The class of univariate conditional MGMRFs (CU):

We are now going to define a second class of conditional models that do not be-
long to CM . This class of models corresponds to the set of univariate conditional
models that would be particular cases of the general modeling proposal in Sain
et al. (2011). Specifically, this set of MGMRFs contains all those models which
can be expressed in the following form. For an (I ×J)-matrix ζ, let us consider
the univariate conditional distributions of each of its cells given the rest as:

ζij |vec(ζ−(ij)) ∼ N

∑
i′∼i

βiji′jζi′j +
∑
j′ 6=j

βijij′ζij′ +
∑
i′∼i

∑
j′ 6=j

βiji′j′ζi′j′ , σ
2
ij


for a general I × J × I × J 4-dimensional array β. Some requirements will also
have to be imposed for β and σ in order to guarantee the validity of Ωvec(ζ),
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although, once again, they will not be of particular interest henceforth. We will
refer to this set of models as CU , where the subindex U stands for univariate
conditional models, i.e. MGMRFs defined through the multivariate conditional
distribution of each of its cells given the rest. See, for example, Kim et al. (2001);
Jin et al. (2007) and Sain et al. (2011) for some particular cases of models in
CU .

Thus, to sum up, we have two classes of models CM and CU available, defined
as collections of conditional models. The first set relies on the multivariate
conditional distributions of the rows of a matrix ζ given the rest of the rows,
while the second relies on the univariate conditional distributions of each cell of
ζ given the rest of the cells.

3.3 Multivariate versus univariate conditional models

We are now going to explore the relationship between the two sets of conditional
MGMRFs defined above. Ippoliti et al. (2018) have recently pointed out the
equivalence of these two sets, that is, that any model in CM can be equivalently
reexpressed as a model in CU , and vice versa. The following two results (see
the final Annex for their proofs) shed some more light on that equivalence. In
particular they provide the particular equivalence of any of the MGMRFs in
any of these classes as an element of the other class.

Theorem 1 Let ζ be an MGMRF in CM defined as:

ζi·|vec(ζT−i·) ∼ NJ(
∑
i′∼i

βii′ζ
T
i′·,Σ

−1
i ), i = 1, ..., I,

then ζ also belongs to CU . In particular:

ζij |vec(ζ−(ij)) ∼ N

∑
i′∼i

β∗iji′jζi′j +
∑
j′ 6=j

β∗ijij′ζij′ +
∑
j′ 6=j

∑
i′∼i

β∗iji′j′ζi′j′ , σ
−2
ij


for β∗iji′j′ = (diag(Σ−1i )−1Σ−1i βii′)jj′ and σ−2ij = (Σ−1i )jj.

As a main consequence of this result, we have that any multivariate conditional
model, as defined above, can also be expressed as a univariate conditional model
and therefore CM ⊆ CU . Theorem 1 also provides a way of expressing any
multivariate conditional model as an univariate conditional model. However, the
following theorem gives additional insight into the relationship between these
two sets.

Theorem 2 Given ζ, an MGMRF in CU , ζ can also be formulated as a multi-
variate conditional model in CM . Specifically, if:

ζij |vec(ζ−(ij)) ∼ N

∑
i′∼i

βiji′jζi′j +
∑
j′ 6=j

βijij′ζij′ +
∑
j′ 6=j

∑
i′∼i

βiji′j′ζi′j′ , σ
−2
ij


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then this model can also be equivalently expressed as:

ζ−i·|vec(ζT−i·) ∼ NJ

(∑
i′∼i

β∗ii′ζ
T
i′·, diag(σ−2i· )

)
, i = 1, ..., I. (4)

for β∗ii′ = (βiji′j′)
J
j,j′=1.

As a consequence of this result CU ⊆ CM and therefore, from Theorems 1 and
2, we have that CM = CU , which has also been recently stated by Ippoliti et al.
(2018) as mentioned above. In other words, any multivariate conditional model
can be alternatively formulated as an equivalent univariate model, and vice
versa. So the preference for posing the multivariate or the univariate version
of any conditional model should just be a question of convenience in terms
of software availability, sparser implementations of any of these alternatives,
better convergence of MCMC algorithms, and so forth. Moreover, Theorems
1 and 2 specify for any model in both CM and CU its alternative formulation
as elements of the other set of models. This alternative formulation might be
helpful, for example, to determine conditions on the validity of any conditiona-
lly formulated MGMRF since that alternative formulation could perhaps yield
useful conditions based on the specific theory of that class of models.

Theorems 1 and 2 also have an interesting consequence for multivariate con-
ditional models. Thus, any model in CM can be alternatively expressed as
another equivalent multivariate conditional model with Ωi diagonal for any
i. This is a direct consequence of applying Theorems 1 and 2, consecutively,
to any model in CM . Specifically, any multivariate conditional model formu-
lated as Expression (3) can be equivalently formulated as Expression (4) with
β∗ii′ = diag(Ωi)

−1Ωiβii′ and σ2
ij = (Ωi)jj . Therefore, the subclass of elements

of CM with diagonal conditional precision matrices Ωi for all i is as rich as the
whole CM , since it contains models with joint covariance structures that are
identical to any model in CM . As a consequence, considering general variance-
covariance matrices Ωi in CM seems unnecessary and it would suffice to consider
Ωi to be diagonal matrices in order to generate all the covariance structures con-
sidered in CM .

3.4 Coregionalized versus conditional models

We are now going to explore the relationship between the classes of pure core-
gionalized and conditional models, CU and CM , as defined above. We start by
first defining two classes of coregionalized multivariate models and we will later
explore their relationship with the classes of conditional models.

3.4.1 The classes of coregionalized MGMRFs (CC and C∗C):

We consider as the set of coregionalized models that composed of the QsR-
model, as defined in the previous section, and all its particular cases. As men-
tioned, the covariance matrix of that general model is that of Expression (2),
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which has as (symmetric) particular cases the QR-model and M -models al-
ready mentioned, the Case 3 model in Jin et al. (2007) or that in Gelfand and
Vounatsou (2003), to cite just some particular cases. Obviously this set also
contains the permuted QsR-model. We will refer to this set of models as CC ,
where the subindex C stands for coregionalized models.

Besides the set CC , there is a second extended set of coregionalization models
that could be of interest for this discussion. The models in CC , as introduced
in Section 2, rely on underlying pCAR distributions. Nevertheless, nothing
prevents the underlying patterns φ of coregionalized models from having more
general spatial structures beyond the GMRF framework (see Knorr-Held and
Raßer (2000) or Botella-Rocamora et al. (2012) for two particular examples).
In that case we could define an extended set of coregionalization models C∗C as
that arising when general spatial structures, beyond GMRF, are considered to
build the asymmetric model introduced in Section 2. We do not discuss the
elements of this set in more detail here as it is not required for the subsequent
discussion of the relationship between classes of models. Note that, to our
knowledge, C∗C contains as particular cases all the pure coregionalization models,
with independent columns in φ, already proposed in the literature.

3.4.2 Some links between coregionalized and conditional models

Theorem 2.2 in Mardia (1988) allows us to derive for any MGMRF the multivari-
ate conditional distributions ζi·|vec(ζT−i·) from the joint distribution of vec(ζT ).
For the zero-centered case, that theorem states that if vec(ζT ) ∼ NIJ(0IJ ,Σ

−1)
for a block-precision matrix Σ−1 = Block({(Σ−1ii′ )Ii,i′=1}) of J×J matrices, then

ζi·|vec(ζT−i·) ∼ NJ(µi,Σ
−1
ii ), with:

µi = −
∑
i′∼i

(Σ−1ii )−1Σ−1ii′ ζ
T
i′·.

It is easy to check that this result, when applied to the QsR-model with pCAR
distributions for φ, which had Σ−1ii′ = Dii′Σ

−1
b − wii′Qii′ (see Expression (1)),

yields the following set of multivariate conditional distributions:

ζi·|vec(ζT−i·) ∼ NJ(
∑
i′∼i

βii′ζ
T
i′·, DiiΣ

−1
b ) (5)

where Dii, the i-th diagonal element of D, is just the number of neighbors of
the i-th spatial unit if adjacency is considered as neighboring criterion for the
pCAR distribution, and βii′ = −(Σ−1ii )−1Σ−1ii′ , which for i′ ∼ i is:

βii′ = −(D−1ii Σb)(−wii′Qii′) = (D−1ii wii′)Σb(Σ̃bPi′diag(ρ−1)P T
i Σ̃T

b )−1

= (D−1ii wii′)Σ̃bPidiag(ρ)P T
i′ Σ̃−1b .

Slightly different expressions would be obtained for φ following another uni-
variate GMRFs beyond pCAR. As a consequence, any model in CM of the kind
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above will also be an element of CC , that is, it could be alternatively formulated
as a coregionalization model. Conversely, any conditional model that cannot be
expressed as the expressions above for suitable P1, ...,PI and Σb matrices will
not belong to CC .

In a similar manner, Theorem 1 in the Annex applied to Expression (5) yields
that the QsR-model can be expressed as an univariate conditional model in CU
with

βiji′j′ = (D−1ii wii′diag(Σ−1b )−1(Σ̃bPi′diag(ρ−1)P T
i Σ̃T

b )−1)jj′ (6)

and σ−2ij = Diidiag(Σ−1b )j . Thus, any model in CU with βiji′j′ and σ−2ij of this
kind also belongs to CC and can therefore take advantage of the computational
and theoretical results of that approach. Conversely, if an univariate condi-
tional model could not take the expression above for suitable P1, ...,PI and Σb

matrices, it will not be an element of CC .

The results above are quite interesting as they show that the most general case
in CC , and therefore all models in that family, can be expressed as multivariate
conditional models of CM and CU , and as a consequence CC ⊆ CM = CU . How-
ever, CM or CU are not contained in CC as some of their models cannot be repro-
duced as QsR-models. For example, let us consider the multivariate conditional
model of Greco and Trivisano (2009), which belongs to CM . Their proposal, as
mentioned previously, considered the same asymmetric cross-covariance matrix
B̃ for all neighboring units i and i′, with i′ > i. This will not be possible
for QsR-models since if Qii′ = Qii′′ for all neighboring units i, i′ and i′′ for
1 ≤ i < i′, i′′ ≤ I, then P1 = ... = PI , which would necessarily yield symmetric
(and identical) cross-covariance matrices for any two pairs of spatial units. In
consequence, the former relationship between CC and CM is really of the kind
CC ⊂ CM = CU instead of just CC ⊆ CM = CU .

Expressions (5) and (6) also have a second interesting interpretation. QsR-
models, viewed as such Expressions, yield interesting subclasses of CM and CU
with valid models by construction, when this condition is not so easy to achieve.
Indeed, for these models, necessary and sufficient conditions on ρ exist so that
coregionalized models produce valid proposals. The search for valid elements
in CM or CU is one of the main challenges when proposing new multivariate
conditional models, and sufficient (but not necessary) conditions on ρ are usually
available for those models. Expressions (5) and (6) characterize the elements of
CM and CU that are also elements of CC . Accordingly, necessary and sufficient
conditions on ρ can be formulated for them to produce valid models. Thus,
for these cases we will not miss any model as a consequence of setting only
sufficient conditions that could lead us to consider just a restrictive subset of
models instead of all the possible valid models.

Finally, we consider it appropriate to conclude by mentioning that the set of
coregionalized models is really larger than might be expected according to the
above results. We must recall that we have defined a second extended set of
coregionalized models C∗C which also contained coregionalized models relying on
non-GMRF underlying structures. Therefore, coregionalized models are able to
generate multivariate spatial dependence structures which will not necessarily be
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MGMRFs. In contrast, multivariate conditional models, as sets of conditional
normal distributions, define joint normal distributions which are necessarily
MGMRFs. Consequently, any model in C∗C\CC will not belong to CM = CU ,
thereby confirming that the set of coregionalized models is larger than might
initially be expected.

4 An application of the permuted QsR-model

The aim of proposing QsR-models in this work is mainly theoretical, to make
the family of coregionalized models larger. Nevertheless, we think it is worth-
while illustrating the feasibility and performance of the permuted QsR-model
(its computationally convenient version) in a real setting. Accordingly, we
have performed a three-variate mortality study in the Valencian Region, one
of the 17 regions that Spain is divided up into. In this study we have ana-
lyzed cirrhosis, lung cancer, and oral cancer mortality for males, during the
period 1991-2011, at the municipal level (a total of 540 municipalities). For
the study of these three causes of death, we have considered two particular
models, the (symmetric) M -model of Botella-Rocamora et al. (2015) and the
above mentioned permuted QsR-model, which extends the M -model by per-
muting the rows of its M matrix for each municipality. Both models were
implemented in WinBUGS and the code used to run the whole analysis (with the
required complementary material) can be found as supplementary material at:
http://github.com/MigueBeneito/MatPapersMAMB-CondVsCorreg.

We have implemented different versions of the permuted QsR-model in our
analysis, all of them with pCAR distributions and using adjacency as crite-
rion for defining neighboring sites. First, we considered a model with all 6=3!
possible permutations of the rows of M for each spatial unit (full-QsR model
henceforth). Nevertheless, since M rows are not identifiable for the M -model
(Botella-Rocamora et al., 2015), we could switch any two rows of M by also
switching the two corresponding columns of φ, thereby obtaining exactly the
same risks. Consequently, considering all possible row permutations of M for
each spatial unit could seem excessive. Therefore, in addition to the full-QsR
model, we have also considered additional constrained permuted QsR-models re-
stricting the number of permutations for the rows of M and therefore reducing
their complexity. Thus, we have considered a second permuted QsR-model with
only one possible permutation of the rows of M , switching its second and third
rows ((2→3)-QsR model henceforth). Note that the (1→2), (1→3) and (2→3)-
QsR models would be equivalent given the unidentifiability of the columns of
φ and the rows of M . All of these models basically consider the switching of
two of the fitted underlying patterns in φ. Finally, we have also considered a
second simplified permuted QsR-model, also with a single possible permutation
of the rows of M . For this model ((1→3→ 2)-QsR henceforth), the first row
of M would be moved to the third, the third to the second, and the second to
the first. Thus, this model, in contrast to (2→3)-QsR, switches all three rows
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Table 1: Mean posterior deviance (D̄); Effective number of parameters (pD);
Deviance Information Criterion (DIC) and logarithmic score (sum of the log-
CPO values) for each of the models fitted.

Model D̄ pD DIC log-score
M -model 6968.1 419.8 7387.9 -3776.5
Full-QsR 6962.5 433.1 7395.5 -3768.2

(2→3)-QsR 6955.1 419.9 7374.9 -3759.1
(1→3→ 2)-QsR 6951.3 436.6 7387.9 -3772.7

of M instead of just two. Note that the two restricted permuted QsR-models
considered, given φ and M , may reproduce 2I different patterns in contrast to
the full-QsR model, which is able to reproduce 6I different patterns. As a result
it is far more flexible and, therefore, far more parameterized.

Table 1 shows the Deviance Information Criterion (DIC) (Spiegelhalter et al.,
2002), and its components (mean posterior deviance and effective number of
parameters) for all the models fitted. Additionally, Table 1 also reports the
logarithmic score (sum of the log-CPO values) for each model (Gneiting and
Raftery, 2007). Both DIC and logarithmic scores have been proposed as model
selection criteria. Models with lower DICs are generally preferred, whereas for
the logarithmic score models with higher values are considered as preferable. As
shown in Table 1, the QsR-model outperforms the original M -model in terms
of DIC, but only for the simplest (2→3)-QsR model. Specifically, the (2→3)-
QsR and the M -model show similar complexity (pD), but the first shows a
substantially better fit. In contrast, the (1→3→ 2)-QsR and (2→3)-QsR models
show a similar fit but the second is more complex. Finally, the full-QsR model
does not greatly improve the fit but it does visibly increase the complexity,
as compared to the M -model. Regarding the logarithmic score, the M -model
achieves the worst performance according to this criterion and, in contrast, the
(2→3)-QsR model once again shows the best results. Interestingly, according
to this criterion, all three QsR-models run achieve a better performance than
the original M -model.

We focus now our attention on the results of the (2→3)-QsR model, the most
appropriate option in terms of both DIC and log-CPOs. We have calculated the
Probability Integral Transform (PIT) (Stern and Cressie, 2000; Czado et al.,
2009) for each observation in our data set as a validation of the fit of the models
run. PITs are used as model assessment tools since they should be uniformly
distributed between 0 and 1 if the observed data has really been generated from
the corresponding model. Figure 1 shows a histogram for the PITs obtained for
the (2→3)-QsR model. No evident departures can be appreciated on this same
figure for the rest of the models fitted in this study, and thus the histograms
for those models have been omitted. Figure 1 shows a distribution close to
uniform on the interval [0,1], withperhaps a smaller probability for the higher
values of the PITs. In any event, the Kullback-Leibler divergence for that
sample of PITs versus a uniform distribution on [0,1] is equal to 0.497 units for
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Figure 1: PITs histogram for the (2→3)-QsR model.

the (2→3)-QsR model, 0.512 units for the (1→3→2)-QsR model, 0.513 units
for the full-QsR model and 0.518 units for the M -model. Therefore, the most
compatible PITs sample with a uniform distribution on [0,1] is obtained for
the (2→3)-QsR model, while, on the contrary, the largest difference with that
distribution is observed for the M -model, in accordance with the model selection
criteria already mentioned.

The results for the (2→3)-QsR model show some particularly enlightening
features. For example, we have calculated for Valencia (the largest city in
our study) the posterior probability of its corresponding permuted M matrix,
MV alencia, being equal to that of each of its neighbors. We have calculated this
as the proportion of iterations of the MCMC in which those matrices coincided
for Valencia and for each of its neighboring towns (see document Rcode.pdf in
the Annex material). We have found that, for the 32 neighbors of Valencia, that
posterior probability varies between 3.0% and 99.8%, and thus we have towns
with a high probability of having the same Mi matrix as Valencia and, on the
contrary, other towns where that probability is quite low.

Table 2 shows the observed cases of each disease for Valencia and those towns
with Mi matrices that are the most and least similar to that of Valencia. Focus-
ing on cirrhosis and lung cancer (the causes with the highest mortality rates),
we see that the ratio of those mortalities for Valencia is 2.92(=7938/2722). For
the municipalities with a similar Mi matrix to that of Valencia the ratio is 2.65
and for the towns with the most different Mi matrices the ratio is 5.34, which
is very different to that of Valencia. Note that this same relationship also holds
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Table 2: Observed cases of mortality for each cause and group of towns and
cities: Valencia, towns with the most similar M to that of Valencia and towns
with the least similar M matrix, respectively.

Region Cirrhosis Lung Cancer Oral Cancer
Valencia 2722 7938 734

Neighbors i with P (MV alencia = Mi) > 0.8 542 1439 126
Neighbors i with P (MV alencia = Mi) < 0.2 120 641 65

for oral cancer and cirrhosis but, conversely, the ratio between lung and oral
cancer is approximately constant for the three groups considered. Thus, the
permuted (2→3)-QsR-model seems to permute the M matrix for those pairs
of neighbors whose data show a markedly different performance for cirrhosis
in comparison to the tumor-related causes of death. This permutation allows
neighbors with a different performance in terms of cirrhosis to be weighted in
a different manner to the rest of the neighbors. Interestingly, the log-CPOs for
the (2→3)-QsR-model (see the supplementary Rcode.pdf document) show that
this model achieves the largest benefit for this disease, in comparison to the
M -model, while that improvement for the remaining diseases is much milder.

Table 3 shows the cross-covariance matrices (their posterior means) fitted for
Valencia-Sollana and Valencia-Moncada, respectively. Sollana and Moncada are
Valencia’s neighbors with the lowest and highest posterior probabilities, respec-
tively, of their Mi matrices to be equal to that of Valencia. On the one hand,
we see that the cross-covariance matrix is symmetric for Valencia-Moncada, up
to 3 digits, but not for Valencia-Sollana. This illustrates how having different
Mi matrices makes the corresponding cross-covariance matrix for two munici-
palities asymmetric. Moreover, that cross-covariance matrix will be different for
any two pairs of neighbors depending on the resemblance of their data, in con-
trast to other asymmetrical modeling proposals in the literature. On the other
hand, important differences can be noticed between both two cross-covariance
matrices in Table 3, particularly for their first diagonal cells, those in charge
of controlling the covariance for cirrhosis mortality for this pair of sites. Thus,
we see that the value of this cell is high between Valencia and Moncada but
for Valencia-Sollana that covariance is much milder, even negative. Therefore,
the permuted QsR-model detects that, for some neighboring municipalities (but
only some), the risk of cirrhosis could be uncorrelated between them and flips
the M matrix for some of these municipalities in order to reproduce that per-
formance. This different contribution of each neighbor is a performance that
cannot be reproduced by symmetric (traditional) M -models.

We wish to conclude this section by discussing the computational performance
of the proposed models. The computing times for the models run in this sec-
tion were the following: M -model 10.7 minutes; full-QsR model 14.0 minutes;
(2→3)-QsR model 12.1 minutes; (1→3→ 2)-QsR model 12.3 minutes. It can
be appreciated that the QsR models increase computing times, as compared to
the M -model, in a reasonable amount of time. The highest increase in comput-
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Table 3: Cross-covariance matrices for Valencia-Sollana and Valencia-Moncada.
Sollana and Moncada are Valencia’s neighbors with the lowest and highest prob-
abilities, respectively, of having the same M matrix as Valencia. Causes of death
are shown in the following order: cirrhosis, lung and oral cancer.

Cross-Cov. Valencia-Sollana Cross-Cov. Valencia-Moncada
-0.050 0.112 0.106 0.229 0.122 0.163
0.089 0.154 0.162 0.122 0.156 0.171
0.103 0.167 0.244 0.163 0.171 0.261

ing time is achieved for the most complex option (full-QsR model) with a 31%
increase over the original M -model computing time. In addition, we have run
the same models as in the previous analysis but now for a multivariate analysis
of 5 diseases. We skip most of the details in this analysis, such as the diseases
studied, since this is carried out just for computational goals. The computing
times for this new study were the following: M -model 24.7 minutes; full-QsR
model 121.1 minutes; (2→3)-QsR model 37.6 minutes; (1→3→ 2)-QsR model
42.4 minutes. According to these results, the (2→3)-QsR and (1→3→ 2)-QsR
models have a moderately worse performance in comparison to the M -model,
as compared to the multivariate analysis of 3 diseases. Thus, for the original
analysis with 3 diseases these QsR models spent around 15% more time than
the corresponding M -model, while for the 5-disease analysis the additional com-
puting time requirements increase until by 82%. However, much more evident
differences are noticed for the full-QsR model in this new analysis, which is 31%
more expensive (in computing time terms) than the M -model for the 3-disease
analysis but 490% more expensive for the 5-disease analysis. Thus, the full-QsR
model scales poorly as a function of the number of diseases considered in the
multivariate study. This seems a consequence of the number of possible Mi

matrices for this model, which increases from 6(=3!) in the 3-disease analysis
to 120(=5!) in the 5-disease analysis. For the other 2 QsR-models considered,
with much better performance, this quantity remains constant for both studies
considered.

5 Conclusions

The main goal of this paper has been to establish some relationships between the
classes of (multivariate and univariate) conditional and coregionalized models.
This paper makes some contributions in that direction that may help to put
some order in those three classes and provide an overall insight into the different
main approaches followed to develop MGMRF proposals. These links have
both theoretical and practical consequences. On the one hand, for any model,
having an alternative formulation as a model of the rest of the classes may
provide additional insight regarding sensible modifications that could make that
proposal even more suitable for some particular datasets. Moreover, seeing that
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model as an element of the other classes will also make the theoretical results
of that second class available to the original model. On the other hand, the
links between these classes can also yield important advantages in practical
(computational) terms. In our experience, coregionalization models are a far
more advantageous alternative to conditional proposals in practical terms. For
instance, M -models have been used for fitting multivariate studies of tens of
diseases and their use avoids the need to deal with Kronecker products or some
other non-standard matrix algebra tools which may not be implemented in
regular Bayesian software packages. The results in this paper provide some clues
on how to formulate some conditional models as coregionalization models. As
mentioned, this reformulation may provide important computational benefits.

As pointed out in Section 3, the results in this paper show that some mod-
els already proposed in the literature may be overparameterized. As shown,
any multivariate conditional model can be expressed as an equivalent model
of that same class with diagonal precision matrices. In that case, apparently,
there is not any theoretical reason for considering general symmetric positive
definite matrices for Ωi, i = 1, ..., I, unless the set of autoregression matrices
{βii′ : i, i′ = 1, ..., I} is heavily constrained. Otherwise, both precision and
autoregression matrices may play the same role in the model, leading to both
terms being unidentifiable. This result suggests caution is in order when propos-
ing conditional models, that allow extreme flexibility, since that flexibility could
make some terms in the model unidentifiable. This cautiousness should be even
more extreme when proposing hybrid models merging all three approaches in-
troduced in this paper, such as for example non-pure coregionalization models.
In those cases, the joint use of several tools for inducing dependence could make
it even more likely that several components played similar (or plainly the same)
roles, making identifiability problems even more significant.

Proposing QsR-models is the second main contribution of this paper. Al-
though it was not the principal aim of this work, that proposal is also of sub-
stantial interest and opens coregionalization models to the modeling of MGMRF
with (order-free) asymmetric cross-covariances, in contrast to what was previ-
ously believed. In our opinion, this is a second important theoretical contribu-
tion of this paper. Nevertheless, besides the theoretical interest of QsR-models
in general, permuted QsR-models have shown themselves to be interesting sim-
plifications of the original QsR-models that, despite their theoretical interest,
are clearly over-parameterized and therefore of limited use in practical terms.
The permuted counterpart, in contrast, has proven to be a computationally af-
fordable option with particularly good results for its more parsimonious versions.
Nevertheless, more experience is needed with this model in order to propose and
explore permuted QsR-models that are flexible enough, and at the same time
avoid the potential overparameterization of the full QsR-model. These models
could provide classes of flexible and computationally affordable models of evi-
dent practical interest. The real potential of QsR-models has not been explored
in depth, as the main aim of this paper was to provide a thorough unifying view
of coregionalized and conditional MGMRFs. Nevertheless, our preliminary re-

19



sults with the QsR-models suggest that it is surely worth conducting a deeper
study of that approach in order to assess its real potential in practice. The
current results in that direction seem quite promising.
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Annex

Theorem 1 Let ζ be an MGMRF in CM defined as:

ζi·|vec(ζT−i·) ∼ NJ(
∑
i′∼i

βii′ζ
T
i′·,Σ

−1
i ), i = 1, ..., I,

then ζ also belongs to CU . In particular:

ζij |vec(ζ−(ij)) ∼ N

∑
i′∼i

β∗iji′jζi′j +
∑
j′ 6=j

β∗ijij′ζij′ +
∑
j′ 6=j

∑
i′∼i

β∗iji′j′ζi′j′ , σ
−2
ij


for β∗iji′j′ = (diag(Σ−1i )−1Σ−1i βii′)jj′ and σ−2ij = (Σ−1i )jj.

Proof :

Elemental properties of the multivariate Normal distribution (see for example
Appendix A of Gelman et al. (2014)) state that if θ ∼ NJ(µ,Σ) then θj |θ−j ∼
N(mj , σ

2
j ) for:

mj = µj −
∑
l 6=j

(Σ−1)jl
(Σ−1)jj

(θl − µl)

and σ−2j = (Σ−1)jj .

If we applied this result to ζi·|vec(ζT−i·) ∼ NJ(
∑

i′∼i βii′ζ
T
i′·,Σi), we would

obtain that ζij |ζ−(ij) = ζij |ζi(−j), vec(ζT−i·) ∼ N
(
mij , σ

2
ij

)
for σ−2ij = (Σ−1i )jj
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and:

mij =
∑
i′∼i

(βii′)j·ζ
T
i′· −

∑
l 6=j

(Σ−1i )jl

(Σ−1i )jj
(ζil −

∑
i′∼i

(βii′)l·ζ
T
i′·)

=
∑
i′∼i

(βii′)jjζi′j +
∑
j′ 6=j

(βii′)jj′ζi′j′

−∑
l 6=j

(Σ−1i )jl

(Σ−1i )jj
ζil +

+
∑
l 6=j

∑
i′∼i

 (Σ−1i )jl

(Σ−1i )jj
(βii′)ljζi′j +

∑
j′ 6=j

(Σ−1i )jl

(Σ−1i )jj
(βii′)lj′ζi′j′


=

∑
i′∼i

(βii′)jj +
∑
l 6=j

(Σ−1i )jl

(Σ−1i )jj
(βii′)lj

 ζi′j −
∑
j′ 6=j

(Σ−1i )jj′

(Σ−1i )jj
ζij′ +

+
∑
j′ 6=j

∑
i′∼i

(βii′)jj′ +
∑
l 6=j

(Σ−1i )jl

(Σ−1i )jj
(βii′)lj′

 ζi′j′ .

defining β∗iji′j′ as:

(βii′)jj′+
∑
l 6=j

(Σ−1i )jl

(Σ−1i )jj
(βii′)lj′ =

J∑
l=1

(Σ−1i )jl

(Σ−1i )jj
(βii′)lj′ = (diag(Σ−1i )−1Σ−1i βii′)jj′

and bearing in mind that βii = −IJ , the latter expression of mij can be ex-
pressed as: ∑

i′∼i
β∗iji′jζi′j +

∑
j′ 6=j

β∗ijij′ζij′ +
∑
j′ 6=j

∑
i′∼i

β∗iji′j′ζi′j′

as we wanted to prove.

Theorem 2 Given ζ an MGMRF in CU , ζ can also be formulated as a multi-
variate conditional model in CM . Specifically, if:

ζij |vec(ζ−(ij)) ∼ N

∑
i′∼i

βiji′jζi′j +
∑
j′ 6=j

βijij′ζij′ +
∑
j′ 6=j

∑
i′∼i

βiji′j′ζi′j′ , σ
−2
ij


then it can be also equivalently expressed as:

ζ−i·|vec(ζT−i·) ∼ NJ

(∑
i′∼i

β∗ii′ζ
T
i′·, diag(σ−2i· )

)
, i = 1, ..., I.

for β∗ii′ = (βiji′j′)
J
j,j′=1.

Proof :
Given the array β = (βiji′j′) and σ = (σij) in the univariate conditional model
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above, define Σi = diag(σ2
i·) and β∗ii′ = (βiji′j′)

J
j,j′=1. Let us consider the

following multivariate conditional model:

ζ−i·|vec(ζT−i·) ∼ NJ

(∑
i′∼i

β∗ii′ζ
T
i′·, diag(σ2

i·)

)
, i = 1, ..., I.

Result 1, when applied to this multivariate conditional model, yields the univari-
ate model given in the formulation of this result, which shows the equivalence
of both formulations.
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