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ABSTRACT 
 

Breast cancer (BC) is the most common type of cancer in females worldwide. It is also 

the second leading cause of death in women. BC is covered with heterogeneity 

properties, that leads to poor prognosis and therapeutic resistance. It has always been 

essential to unveil the different molecular mechanisms involved in BC cancer 

progression, finding a suitable treatment for the patients. This thesis focuses on 

unwrapping the various molecular mechanisms involved in HER2+ BC subtypes, as this 

denotes an aggressive phenotype among other subtypes of BC. Downregulation of miR-

33b has been documented in many types of cancers and involves proliferation, 

migration, and epithelial-mesenchymal transition (EMT). Furthermore, enhancer zeste 

homolog 2-gene (EZH2) is a master regulator of controlling the stem cell differentiation 

and cell proliferation processes. The implication of miR-33b in the EMT pathway and 

analyze the role of EZH2 in this process and interaction between them is one of the 

main spotlights of the thesis. miR-33b is downregulated in HER2+ BC cells vs healthy 

controls, where EZH2 has an opposite expression in vitro and patients’ samples. The 

upregulation of miR-33b suppressed proliferation, induced apoptosis, reduced invasion, 

migration and regulated EMT by an increase of E-cadherin and a decrease of ß-catenin 

and vimentin. The silencing of EZH2 mimicked the impact of miR-33b overexpression. 

Furthermore, the inhibition of miR-33b induces cell proliferation, invasion, migration, 

EMT, and EZH2 expression in non-tumorigenic cells. Notably, the Kaplan–Meier 

analysis showed a significant association between high miR-33b expression and better 

overall survival. These results suggest miR-33b as a suppressive miRNA that could 

inhibit tumour metastasis and invasion in HER2+ BC partly by impeding EMT through 

the MYC–EZH2 loop's repression. On the other hand, treatment for the HER2+ BC 

subtype is minimal. Trastuzumab is a monoclonal antibody, regularly used for the 

treatment of this specific subtype of BC. Although trastuzumab is currently considered 

one of the most effective oncology treatments, a significant number of patients with 

HER2-overexpressing breast cancer do not benefit from it. The other part of the thesis 

focuses on finding a novel molecular mechanism of one transcription factor (TF), Sal-

like protein 4 (SALL4), a critical regulator of cancer aggressiveness and resistance 

treatment.  HER2+ BC cells with acquired resistance to trastuzumab express a higher 

level of SALL4 as compared to the wild type cells. Gain and loss function experiments 

showed that less SALL4 expression conducted the restoration of the trastuzumab 
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sensitivity significantly; however, the transient overexpression of SALL4 in parental 

cell lines induced high proliferation of the cells, resulting of the reduction of 

trastuzumab efficacy. Furthermore, SALL4 expression regulates the PI3K/AKT 

pathway, through controlling of PTEN expression. Moreover, AKT phosphorylation 

activated many downstream targets, such as BCL2, resulting in increased cell survival 

and proliferation. It has been observed that SALL4 expression regulates EMT pathway 

via controlling the MYC expression. SALL4 showed a physical interaction with 

RBBP4, a NuRD complex member, and regulates the downstream proteins such as 

PTEN and BCL2. This interaction also helps cells to be escaped from the trastuzumab 

treatment and therefore, targeting the SALL4–NuRD pathway in HER2+ BC, mostly in 

acquired resistance cell lines would be a promising therapeutic approach and better 

treatment for this specific type of cancer in future. SALL4 also predicted as a prognostic 

factor in all subtypes of BC through KM plotter. This study provides a viable molecular 

mechanism-drive therapeutic strategy for the significant subset of patients with HER2+ 

BC whose malignancies are driven by SALL4 expression. 
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1.1 INTRODUCTION 

1.1.1 Origin of Cancer and BC 

Cancer occurrence has been noted throughout history as far back as 3000 BChr (before 

Christ). It is not a modern malady. Fossilized bone and Egyptian mummies have shown 

the first evidence of tumour; even though the word cancer was not derived during those 

periods1. The origin of word cancer is designated by Greek physician Hippocrates (460-

370 BChr) who was considered the father of Medicine. He used the term karkinos and 

karcinoma to describe non-ulcer and ulcer forming tumours2. A crab chased those words 

because of its finger-like spreading anatomy, which can be related to the complex form 

of tumour3. Afterwards, the Roman physician Cornelius Celsus translated the Greek 

term Karkinos to the Latin word for crab, called Cancer4, during (25 BChr-Anno 

Domini (AD) 50). Eventually, the term cancer became well recognizable in the field of 

Medicine. Around 200AD one of the Greek physicians named Galen had applied this 

term to medicine field using a word called “Onkos” which later on was adopted as the 

root of word “Oncology” the most popular used phrase in the field of disease and 

Medicine in today´s world5.  

The International Agency for Research on Cancer (IARC) predicted in 2020,  that one 

in five men and one in six women worldwide have cancer throughout their lives and that 

one in eight males and one in eleven females die from the disease6. In developing 

countries, cancer is the second cause of death, and in developed countries, it is the first 

cause of death. The constant increase in cancer burden is due to smoking, pollution, 

sedentary lifestyle, and western food and population aging7. Lung and BC are the 

world's leading types in terms of the number of new cases; in 2018, approximately 2.1 

million diagnoses are estimated for each of these types, contributing about 11.6% of the 

total incidence burden of cancer. Out of the 26 different types of cancers, BC is one of 

the most commonly diagnosed cancers in women worldwide. There were 268,600 new 

cases in 2019, according to the World Cancer Research Fund International8. Current 

treatment therapy and different molecular approaches towards developing new 

strategies for treating this disease have become the most challenging subject.  

Breast carcinoma is the most advanced disease among women in world wide. It is not a 

single disease, which comprises only a single treatment. Instead, it is a heterogeneous 

disease that implies many biological entities with distinct pathological features and 
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diverse clinical implications. Figure 1 shows the evolution of BC elaborately from 3000 

Before Common Era (BCE) to 2016.  

In Medicine, BC is earliest diagnosed cancer, written in Edwin Smith Papyrus during 

3000 BCE1. Throughout the ages, nobody has been sure what causes BC. Research 

continues today. For quite a long time to follow, speculations by Hippocrates (460 BCE) 

and Galen (200 Common Era (CE)), crediting the reason for BC to an “excess of black 

bile” and treatment choices including the utilization of opium and castor oil, prevailed9. 

After discovering the lymphatic system by Olof Rudbeck of Sweden in 1652, René 

Descartes (1596–1650) proposed the lymphatic theory for BC's origin, which 

contradicted the prevailing humoral explanation (Galen Theory)10. 19th century marked 

the major advances in human pathology and safety during surgery and progress in 

oncology. In 1838, German pathologist Johannes Muller (1801–1858) suggested that 

cancer cells evolved  from the blastema between the normal tissues and not from the 

lymphatic system, and later Rudolph Virchow (1821–1902) demonstrated that tumours 

were composed of cells11. In 1909 Danish botanist Wilhelm Johannsen coined the word 

 

Figure 1: Timeline: The evolution of BC: 3000 BCE to 2016: The sceptical description of BC's 

evaluation process. 
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"gene", since then the scientists started to dig the molecular mechanisms that underlying 

in evolve of the BC, which still remains unclear. 

1.1.2 Histological classifications of BC subtypes: 

BC's distinctive histological characteristics fascinate pathologists, distinguishing 

particular morphological and cytological trends consistently correlated with clinical 

outcomes. However, BC can be broadly categorized into in situ carcinoma and invasive 

(infiltrating) carcinoma, as shown in Figure 2. In situ carcinoma is a group of abnormal 

cells found only in the originated place of the tumour. These abnormal cells can become 

cancerous and spread to normal tissue nearby. Further, it is sub-classified as either 

ductal or lobular depending upon their growth pattern. Ductal carcinoma in situ (DCIS) 

is significantly more normal than lobular carcinoma in situ (LCIS). DCIS has 

commonly been subclassified according to the tumour’s architectural characteristics, 

resulting in five well-recognized subtypes: Comedo, Cribiform, Micropapillary, 

Papillary and Solid 

On the other hand, invasive carcinomas are a heterogeneous group of tumours 

differentiated into histological subtypes. The major invasive tumour types include 

infiltrating ductal, invasive lobular, ductal/lobular, mucinous (colloid), tubular, 

medullary and papillary carcinomas. Among them, infiltrating ductal carcinoma (IDC) 

is, by far, the most common subtype accounting for 70–80% of all invasive lesions12. 

 

Figure 2: Histological classification of BC: The schematic representation of the various sections under 

the BC histological classification.  
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IDC is further sub-classified into three categories, comprising well-differentiated (grade 

1), moderately differentiated (grade 2) and poorly differentiated (grade 3). These 

classifications are based on the levels of nuclear pleomorphism, glandular/tubule 

formation and mitotic index13. This classification scheme has been a valuable tool for 

several decades; it relies solely on histology without utilizing newer molecular markers 

with a proven prognostic significance. 

1.1.3 Molecular classifications of BC subtypes 

Perou and Sorlie proposed “Molecular Classification” terminology in BC for the first 

time with a comprehensive study showing the differences in gene expression in 200014. 

The studies have identified several intrinsic molecular subtypes of BC and classified as: 

“Luminal subtype A and Luminal subtype B, HER2+, basal-like, normal breast-like and 

claudin-low15 (Figure 3). Different molecular subtypes of BC emphasized biological 

heterogeneity of the disease, which has been histopathologically defined by the 

pathologist for long time16. Notably, molecular classification had a significantly 

improved ability to predict relapse risk compared to a model utilizing only clinical 

variables (tumour size, node status and histologic grade)17. 

             

Figure 3:  Molecular classification of BC: These schematic classifications are purely based on the 

intrinsic molecular subtypes of breast cancer, identified by microarray analysis of tumour patients’ 

samples. 
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1.1.4 Risk factors of BC 

The “established” risk factors for BC are female sexual orientation, age, benign breast 

disease, hereditary factors, early age at menarche, late age at menopause, late age at to 

begin with a full-term pregnancy, post-menopausal corpulence, low physical activity, 

race/ethnicity and high-dose exposure to ionizing radiation early in life.  

The “speculated” risk factors for BC including never being pregnant, having only one 

pregnancy in a lifetime, not breastfeeding after pregnancy, utilize of postmenopausal 

hormone (estrogen/progesterone) substitution treatment, use of oral contraceptives, 

certain specific dietary practices (high intake of fat and low intakes of fibres, fruits, and 

vegetables, low intake of phytoestrogens), alcohol consumption, tobacco smoking, and 

abortion18. About 5-10% of BCs are hereditary. Germline mutations cause most 

inherited cases of BC in the BRCA1 and BRCA2 genes. These two genes are mostly 

involved in cell growth, cell division, and DNA damage repair. Mutations in the BRCA 

genes results in unrepaired DNA damage, which increases the chance to develop certain 

types of cancer. In general, people with BRCA 1 mutation have an increased risk of BC 

at an early age, promoting BC in both breasts, or developing more than one type of 

cancer in their lifetime19. Although men can and do develop BC, the disease is 100 

times more likely to occur in a woman than in a man as women have much more breast 

tissue than men do. 

1.1.5 Signs and symptoms of BC 

Early stages of BC are generally asymptomatic As the tumour stage advances at least 

one of these clinical signs and manifestations emerge:: new lump in the breast or 

underarm, thickening or swelling of part of the breast, irritation or dimpling of breast 

skin, redness or flaky skin in the nipple area or the breast, pulling in of the nipple or 

pain in the nipple area, nipple discharge other than breast milk; including blood, any 

change in the size or the shape of the breast or discomfort in any area of the breast20. 

1.1.6 Diagnosis of BC 

Diagnosis of BC is based on the clinical, radiological and pathological examinations. 

Clinical examination includes bi-manual palpation of the breasts and local-regional 

lymph node. Radiological examinations include bilateral mammography of the breasts 

and ultrasound of the breasts and local-regional lymph node. Pathological diagnosis is 
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based on a breast biopsy (core needle biopsy/ fine needle aspiration) obtained manually 

or by ultrasound guidance. The final pathological diagnosis gives information on the 

tumour type, the TNM staging, Nottingham classification, hormone receptor status, etc., 

all of which are vital for designing the treatment regimen. 

Few other tests performed post confirmation of BC include chest X-ray (to detect any 

metastasis to lungs), bone scan (to provide information on bone involvement), MRI (to 

detect any metastasis to the brain) and blood tests (to plan surgery and adjuvant 

therapy). Also, genetic analysis methods such as Prediction Analysis of Microarray 50 

(PAM 50 test) and MammaPrint test of the tumour give insight into the interplay of 

genes and enable dividing the tumours into good prognostic and deficient prognostic 

tumours for enabling individualized treatment. 

1.1.7 Treatment modalities for BC 

Treatment options for BC usually depend on the following key criteria‘s: tumour type, 

tumour size, resectable/unresectable tumour, hormone receptor status, 

symptomatic/asymptomatic metastasis, solitary/multiple metastases, pre/post-

menopausal status, hereditary cancer involving BRCA gene mutations and any other 

medical conditions21. 

However, treatment within BC subtypes greatly simplifies therapy indications, since the 

subtypes themselves incorporate the risk and predictive factors. A broad 

recommendation for systemic treatment of various subtypes is: FDA approved 

endocrine therapy alone or chemo-endocrine therapy or anti-HER2 therapy for patients 

clinicopathologically classified as “Luminal A” or “Luminal B” or “Triple-negative” 

respectively, and sole reliance on standard chemotherapy along with antibody therapy 

for most patients classified as “HER2+”22 thereby designating HER2+ cancer as an 

aggressive subtype with lack of targeted therapeutic options and inferior prognosis23. 

1.1.8 The invasion-metastasis cascade 

A multi-step process forms metastasis. Cancer cells have acquired the ability to 

disseminate from the primary tumour through breaking the basement membrane and 

invade the nearby stroma is termed localized invasion. The step when cancer cells enter 

the blood and lymphatic vessels are called intravasation. The migrating cells may die 
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from anoikis, a form of apoptosis triggered by detachment from the extracellular matrix 

(ECM). They can also survive for long periods and in some instances extravasate into 

the surrounding tissue, leading to the formation of micrometastasis. If the foreign tissue 

microenvironment is favourable, the cancer cells may begin to proliferate and form a 

secondary tumour; a process termed colonization (Figure 4). Carcinomas are benign as 

long as the tumour cells do not break through the basement membrane and they are in 

the form of in situ carcinoma and malignant when they have acquired the ability to 

metastasize which is the leading cause of death in cancer patients or resistance to 

drugs24. Understanding the biological mechanisms behind the formation of metastasis is 

of utmost importance to prevent and eradicate the metastatic disease. In this thesis, one 

of the most important mechanisms involved in the process of metastasis formation 

named “Epithelial to Mesenchymal transition- EMT” is discussed in detail. 

1.1.9 Role of EMT in BC 

Clinical-histologic studies of basal-like BCs show most aggressive and deadly 

phenotype characters, displaying a high metastatic ability associated with mesenchymal 

 

Figure 4: Schematic picture of cancer cell invasion and metastasis: 1. Normal epithelium. 2.    

Carcinoma in situ, 3. Invasive carcinoma. 4. Intravasation. 5. Extravasation. 6. Micrometastasis. 7. 

Colonization. 

 



30 | P a g e  
 

features25, which is one of the key processes of EMT pathway. It is a biological process. 

Polarised epithelial cells undergo multiple biochemical changes such as loss of cellular 

polarity, destabilization of cell-cell junctions, remodelling and replacement of 

cytoskeletal components, to acquire the mesenchymal cell phenotype. This phenotype 

of the cells enhanced migratory capacity, invasiveness, elevated resistance to apoptosis 

and greatly increased ECM components25. Epithelial cell plasticity can generate distinct 

cellular subpopulations that contribute to the intratumoral heterogeneity in BC. Early 

studies verified that the BC cell lines with the increased invasiveness in vitro and 

displaying metastatic potential in vivo exhibited the mesenchymal intermediate filament 

protein and marker vimentin and less expression epithelial marker named E-cadherin26. 

EMT processes can be induced by a plethora of signalling pathways such as 

transforming growth factor-β (TGF-β), Wnt, Notch, tumour necrosis factor-α (TNF-

α/NF-kB) and P13K/AKT pathways. All the mentioned pathways have a direct and 

indirect relation with ERBB family members27. EMT process is also influenced by the 

effects of tumour microenvironment such as hypoxia and differential expression of 

microRNAs (miRNAs)28. Several transcription factors, including the twist, EF1/ZEB1, 

SIP1/ZEB2, snail/slug family and E12/E47 function as master regulators of the EMT 

program. 

Apart from the signalling pathways and transcription factors, miRNAs are also a major 

player in regulating EMT program. When the EMT program is induced, the expressions 

of several miRNAs (miR-15b, miR-30a, miR-33b, miR-200 family and miR-205,) are 

drastically reduced29. MiR-200 family directly regulates ZEB1 and ZEB2 mRNA 

expression, thereby increasing the E-cadherin expression leading to epithelial 

phenotype29. On the other hand, the miR-10b expression is increased during the EMT 

process, induced by the twist and limiting the expression of HOXD10, which facilitates 

BC cells' metastasis. TGFβ upregulates other miRs such as miR-155, miR-29a, and 

miR-21 induced EMT. Also, their expression levels are higher in mesenchymal-like cell 

lines compared to epithelial-like cells29. Overall, the differentially regulated miRs might 

be critical for EMT and cancer metastasis. Finally, EMT can also be regulated at the 

genetic and epigenetic level. For example, a gene mutation and hypermethylation at the 

promoter region of E-cadherin can inactivate this gene.  

Induction of EMT is closely associated with “stemness” in the development process and 

carcinogenesis. During the gastrulation process, embryonic stem (ES) cells in the 



31 | P a g e  
 

blastocyst's inner mass have an epithelial phenotype that ingresses to form the primary 

mesoderm via induction of EMT process, illustrating the importance of EMT during the 

embryonic development30. EMT also regulates the stemness properties of the cells in 

different types of cancers. Expression of snail and twist in mammary epithelial cells 

induces EMT, leading to a CD24-/44+ phenotype associated with BC stem cells31. 

TGFβ signalling seems to be associated with EMT and cancer stem cells (CSC) 

formation in cancer. Mammary CSCs express high amounts of TGFβ1 and TβRII than 

the more differentiated epithelial counterparts, and inhibiting TGFβ signalling in CSCs 

can re-establish the epithelial phenotype. Apart from TGFβ signalling, Notch and Wnt 

signalling also contribute to CSCs generation in colon and pancreatic cancers, which is 

also known to induce EMT process32. Recently, a core EMT gene signature was 

identified, and it correlated with claudin-low and metaplastic BC subtypes33. This 

evidence suggests that induction of EMT and the gain of CSC-like properties are closely 

linked, which may be crucial for metastasis. Changing phenotype from epithelial to the 

mesenchymal state might be crucial for acquiring invasive abilities and survival benefits 

during systemic circulation for metastatic seeding (Figure 5). 

Furthermore, receptor tyrosine kinases (RTKs) are associated with the chemoresistance 

and correlated to CSC markers suggesting another crosslink in BC's heterogeneity. It is 

believed that CSCs are the subset of the cell population retain in the tumour that is 

resistant to drugs and possesses characteristic of stem cell. For instance, HER2, an RTK 

responsible for tumour progression, metastasis and chemoresistance, is related to CSC 

markers as ALDH1 and NOTCH134. In another study, it was found that HER2 

overexpressed in MDA-MB-231 BC cells, co-operated with TGF-β to induce an 

enhanced pro-invasion, angiogenesis, and EMT signature correlating HER2 over-

expression with EMT35. There are various signalling pathways other than stemness-

related developmentally conserved signalling pathways involved in the crosstalk 

between HER2 and CSCs, leading to HER2 therapy resistance. The PI3K/AKT 

signalling pathway plays an essential role in cancer progression, drug resistance and 

EMT activation. Therefore, targeting one population in the tumour won’t eradicate 

cancer; until the specific treatment, the regimen has not been developed to target the 

tumour's root. 
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1.1.10 Protein Kinases involved in BC 

Human protein kinases (PK) constitute a large family of enzymes, known as the human 

kinome, encoded by about 1.7% of all human genes36. The kinase helps regulate its 

target by covalently attaching a phosphate group known as phosphorylation of the 

protein, which leads to regulating particular biological reaction. The kinase superfamily 

has been classified into two main groups: Serine-Threonine kinases, which 

phosphorylate serine or threonine amino acids, and Tyrosine kinases (TKs), which 

phosphorylate tyrosine amino acids. A third group, consisting of dual-specificity protein 

kinases has also been proposed, as they can phosphorylate both tyrosine and 

serine/threonine residues37. According to the literature, tyrosine kinases are the first 

protein kinases to be identified. According to their location in the cell, tyrosine kinases 

are classified into: 

Transmembrane receptor kinases consist of a ligand-binding extracellular domain and a 

catalytic intracellular kinase domain. Non-receptor tyrosine kinases, lacking the 

transmembrane domains and located in the cytosol, nucleus, or the inner surface of 

plasma membrane38. 

       

Figure 5: Targeting the CSC/EMT signalling pathways in BC:  The schematic representation showed the 

involvement of different molecular pathways, which lead to activation of EMT and maintenance of stemness 

markers, that helps BC progression.  
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BC emerges as a consequence of dysregulation of different signalling pathways in 

mammary epithelial cells. Growth factors and chemokines activate various signalling 

cascades which crosstalk in tumour microenvironment leading to cancer progression. 

Hundreds of kinases play overlapping and intricate roles in cell transformation, tumour 

initiation, survival and proliferation. However, to understand and discuss their 

oncogenic undertakings; they can be vaguely categorized based on their cancer hallmark 

roles. Cytoplasmic tyrosine kinases are critical conveyers of extracellular signals, and 

mutations in these kinases have been reported to occur in various oncogenic conditions, 

mostly in HER2 positive BC.  

1.1.11 Receptor tyrosine kinase (RTKs) 

The discovery of the first receptor tyrosine kinase (RTK) was more than a quarter of a 

century ago. Many cell surface receptors have emerged as key regulators of critical 

cellular processes, such as proliferation, differentiation, cell survival, metabolism, cell 

migration and cell cycle control39. There are 58 known RTKs in humans and furthered 

divided into 20 subfamilies40. All RTKs share a similar protein structure comprised of 

an extracellular ligand-binding domain, a single transmembrane helix, and an 

intracellular region that contains a juxtamembrane regulatory region, a tyrosine kinase 

domain (TKD) and a carboxyl (C) terminal tail41. The role of the intracellular region is 

catalyzing the gamma phosphate groups of ATPs transferring to tyrosine residues. 

Phosphorylation activates the protein kinases (active form), then signal transduction 

started42. Deregulation of RTK signalling leads to many human diseases, especially 

cancer. The advancement of the genomic era and the implementation of next-generation 

sequencing (NGS) revealed several different types of alteration present in the genes 

encoding RTKs such as EGFR, HER2/ErbB2, MET, amongst many others43.  

1.1.12 RTKs families 

As mentioned before, in cellular processes, the RTKs families include several families 

of receptors (Figure 6). 

1. Epidermal growth factor receptor (EGFR): This receptor family plays an 

important role in regulating cell proliferation, survival, differentiation and 

migration44.  
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2. Insulin and Insulin-like receptor (IGFR): This receptor family has two 

members: Insulin-like growth factor 1 receptor (IGF-1R) and insulin-like growth 

factor 2 receptor (IGF-2R). IGF1R signal transduction causes the activation of 

several intracellular signalling pathways, including MAPK and PI3K 

pathways45. IGF2R can induce activation of small G protein and its downstream 

pathways46.  

3. Anaplastic lymphoma kinase (ALK): This is a transmembrane RTK, initially 

identified in the nucleophosmin (NPM)–ALK chimaera of anaplastic large cell 

lymphoma, and has emerged as a novel tumourigenic player in several human 

cancers47. 

4. Platelet-derived growth factor receptors (PDGFR): These receptors family 

belongs to class III receptor tyrosine kinases. These receptors' activation is 

associated with many human diseases such as cancer, fibrosis, neurological 

conditions, and atherosclerosis48. 

5. Vascular endothelial growth factor receptor (VEGFR): This family receptor 

is mitogenic can regulate angiogenesis. They play an important role in mitosis 

and chemotaxis in vascular endothelial cells49.  

6. Hepatocyte growth factor receptor (HGFR): This receptor is well known as 

tyrosine-protein kinase Met or c-Met, encoded by the MET gene. It is 

overexpressed in some cases of human leukaemia and lymphoma and implicated 

in cellular proliferation, cell survival, cell invasion, cell motility, cancer 

metastasis and angiogenesis50.  

7. Fibroblast growth factor receptor (FGFR): The FGFR family is characterized 

by four receptors, binding to 18 ligands called fibroblast growth factors (FGFs), 

employing heparin as a co-factor51. These receptors have pivotal roles in 

embryogenesis and metabolism and play a critical role in developing the skeletal 

system52. 

8. TAM family: TAM family which includes Tyro-3, Axl, and Mer; these three 

receptors which share the vitamin K-dependent ligands Gas6 and Protein S.  

They have a conserved sequence within the kinase domain and adhesion 

molecule like extracellular domains signalling pathways employed by the TAM 

family. It has been recently elucidated and shown to mediate diverse cellular 

functions, including macrophage clearance of apoptotic cells, platelet 

aggregation, and natural killer (NK) cell differentiation53. 
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1.1.13 ErbB/EGFR family 

ErbB/HER family is well known as Type 1 RTKs, comprises four proteins, which bind 

growth factors of the EGF and Neuregulin families. The four ErbB/HER proteins are 

crucial in normal cellular functions and key players in pathological processes, such as 

malignant transformation. All the four proteins share a similar structure consisting of 

three parts: an extracellular domain, transmembrane and an intracellular domain55. The 

extracellular domain consists of 621 amino acids, which can bind to the corresponding 

ligand; the transmembrane region contains 23 amino acid residues, which forms the 

alpha helix hydrophobic domain, this region anchors the receptor to the cell 

membrane56. The intracellular region carries 542 amino acid residues and contains three 

sub-regions: Juxtamembrane region (JM), catalytic tyrosine kinase domain (TK) and 

carboxyl-terminal region (CT). Multiple mechanisms underlay the driver or supportive 

functions of ErbB/HER proteins in tumours, and they include receptor overexpression, 

receptor’s point mutations, and internal deletions, as well as autocrine loops, meaning 

that a cell initiates its own proliferation through ligand secretion.  

 

      

Figure 6: Receptor Tyrosine Kinase Families54:  Schematic representation of receptor tyrosine kinase 

family involved in the regulation of biological properties. 
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1.1.14 Family members 

The epidermal growth factor RTK family consists of four members: EGFR (ErbB1, 

HER1), ErbB2 (HER2, neu in rodents), ErbB3 (HER3) and ErbB4 (HER4) as shown in 

(Figure 7). 

1. EGFR (ErbB1, HER1): The human EGFR gene is located in chromosome 7. 

The mRNA of EGFR consists of 28 exons and encodes 1186 amino acids57. The 

molecular weight of the EGFR protein is 170 kDa. It is mostly expressed in 

cellular differentiation, and its structural alteration leads to tumorigenic 

signalling pathways in different kinds of tumours. EGFR first need to 

homodimerize, which occurs when it binds with its ligand58. There are various 

kinds of ligands; those activate EGFR in cellular processes, which are EGF, 

TGFα, Neuregulin (NRG), heparin-binding epidermal growth factor (HB-EGF), 

Amphiregulin (AREG), Epiregulin (EREG), betacellulin (BTC)59, shown in 

(Figure 7). Alteration of EGFR pathways can be due to following reasons: 

a) EGFR can be activated independently of the presence of its ligand due to the 

mutation in EGFR VIII. This mutation was observed in glioblastoma and 

non-small cell lung cancer60. 

b) Overexpression of its ligand, for example, some tumour cells can 

overexpress Epidermal growth factor (EGF) or transform growth factor-

alpha (TGFα), which can modulate and activate the downstream of EGFR 

signalling pathway61.  

c) EGFR overexpression has been observed in the neck and head cancer, lung 

cancer, skin cancer and oesophageal cancer. This overexpression promotes 

tumour cells proliferation, angiogenesis, invasion and metastasis. They can 

also inhibit apoptosis which can lead to poor prognosis62.  

 

2. ErbB2 (HER2, neu): Neu/Her2, also known as ErbB2, was first discovered as a 

potent oncogenic mutant when isolated from neuro glioblastoma or 

Schwannomas carcinogen-treated rats. As it was initially found in the 

neurological tumour, it is named “neu”63. The human HER2 is located in 

chromosome 17, and its codes for a 185-kDa. ERBB2 is amplified and 

overexpressed in 15–30% of BCs. Downstream signalling pathways are 

activated upon ErbB2 receptor activation through either heterodimerization with 
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ligand-bound EGFR, ErbB3, or ErbB4 family receptors, or in the presence of 

overexpression of ErbB2 due to gene amplification, by ligand-independent 

homodimerization64. The homo/heterodimerization promotes the receptor 

activation that, in turn, leads to tyrosine phosphorylation of the C-terminal 

residues. Numerous phosphorylation sites exist within the cytoplasmic domain 

of ErbB2; these sites are essential for protein-protein interactions and induction 

of the signalling cascades downstream to ErbB2 receptor activation. To this 

regard, the activation of the phosphoinositide 3-kinase (PI3K) and 

Ras/RAF/MEK/ERK1/2 pathways are hallmarks of ErbB2 activation65. HER2 is 

low expressed in adult human epithelial cells, and under physiological 

conditions, HER2 promotes cell growth and differentiation66. The 

overexpression HER2 is related to different types of tumour metastasis and 

progression. It is widely known that overexpression of HER2 is closely related 

to the occurrence of HER2+ BC. Also, significantly overexpression of the HER2 

gene is associated with poor survival of breast and gastric cancer67.  

 

3. ErbB3 (HER3): HER3 is a unique member of the HER family as it has been 

considered an inactive receptor, although a recent study suggests that HER3 

contains weak kinase activity68.This gene is located in chromosome 12 and 

translated into 1342 amino acid residues. Its structure is very similar to HER2 

and EGFR. According to the sequence comparison, HER3 receptors have certain 

amino acid residues, including Cys-721, His-740, and Asn815, non-conservative 

substitutions. These changes significantly reduce the kinase activity of HER369. 

Thus, HER3 has to form dimers with other receptors and be phosphorylated by 

its interactive partners, with HER2 being the most important one70 to activates in 

downstream signalling. It has shown widely that the HER2/HER3 heterodimer is 

the most biologically active and potent to activate the PI3K/AKT signalling 

cascade71. This also has a ligand called Neuregulin, which enables the 

downstream pathway and helps tumour progression and metastasis in different 

cancer72.  

 

4. ErbB4 (HER4): The human HER4 gene is located in chromosome 2. The 

molecular weight of HER4 protein is 180 kDa73. This receptor can be regulated 

by different ligands such as Neuregulin, Beta-cellulin and Heparin-binding EGF. 
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HER4 needs to bind other ErbB family receptors to have kinase activity and 

exert their biological activity74. HER4 is mostly expressed in normal embryonic 

and adult tissues. It is also reported that HER4 is highly expressed in thyroid and 

ovarian cancer75. However, its expression has been correlated with favourable 

prognostic factors, which positively affects patients with BC73. These results 

indicate that HER4 has a different function in cancer cells from other ErbB 

family receptors.  

1.1.15 Significant Role of the HER2 signalling pathway in BC 

HER receptors are expressed in various epithelial, mesenchymal, and neuronal origin 

tissues. They are involved in controlling diverse biological processes such as 

proliferation, differentiation, migration and apoptosis. Ligand binding to HER receptors 

results in dimerization and activation of their intrinsic kinase activity followed by 

phosphorylation of specific tyrosine residues in the receptor cytoplasmic tails as 

described before. In turn, this phosphorylated tyrosine provides recognition sites for 

intracellular signalling intermediates, which link receptor tyrosine kinases to 

downstream transduction cascades76. BC is one of the most common malignancies in 

women. Overexpression of HER2 is associated with a poorer prognosis in 20-25% of 

invasive BC cases77. Its overexpression in cell lines leads to transformation in the 

 

Figure 7: Structure, ligands, and ErbB family members: Picturized representation of the different subfamily 

members of the ERBB family with their widely viewed structure. 
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absence of a ligand. None of the EGF family of ligands binds to HER2 directly. 

Therefore, in a technical sense, HER2 remains an orphan receptor. However, it appears 

due to HER2 being the preferred dimerization partner for all other HER receptors, 

which HER2 mainly functions as a shared co-receptor78 (Figure 8). The phosphorylated 

HER dimers activate downstream cell proliferation (mitogen-activated protein kinase, 

MAPK pathway), cell survival (phosphoinositide 3-kinase pathway), and signal 

transducer and activator transcription pathways. 

1.1.16 PI3K/AKT/mTOR (PAM) pathway in HER2+ BC 

The phosphoinositide 3 kinases (PI3K)/AKT/mammalian (or mechanistic) target of 

rapamycin (mTOR) pathway is a complicated intracellular pathway, which leads to cell 

growth and tumour proliferation and plays a significant role in BC. This pathway is well 

established to play an essential role for providing nutrients, hormones and growth factor 

to stimulate tumour cell growth and proliferation. According to the substrate and 

structure specificity, PI3Ks can be divided into PI3K I, PI3K II and PI3K III79. PI3K I 

was most clearly studied and closely related to tumour development, further subdivided 

into two subtypes: PI3K IA and PI3K IB80.  The PI3K IA has a central role in this 

pathway and which is a heterodimer composed and consists of two subunits, with the 

       

Figure 8: HER2 signalling pathway78: Diagrammatic representation showed the two important 

signalling cascades followed by ErbB family. 
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regulatory subunit (p85) regulating the activation of the catalytic subunit (p110) in 

response to the absence or presence of upstream stimulation by growth factor receptor 

tyrosine kinases (RTKs)81. 

In the absence of an active signalling pathway, the regulatory subunit p85 interacts with 

the catalytic subunit p110 inhibiting its catalytic activity of p11082 and bringing it close 

to the lipid substrates in the membrane. However, other mechanisms such as signalling 

through G-protein-coupled receptors (GPCRs) and the small GTPase Ras have also 

been suggested to initiate PI3K activation83. The PI3K phosphorylates the D3 position 

on phosphoinositides to yield biologically active phosphatidylinositol-3, 4, 5-

trisphosphate (PI (3, 4, 5) P3), which can then interact with lipid-binding domains in 

PI3K effector proteins, changing their localization and/or activity84. Conversely, PI3K is 

negatively regulated by the tumour suppressor, phosphatase and tensin homologue 

deleted on chromosome 10 (PTEN), through the dephosphorylation of PI (3, 4, 5) P3 

back to its inactive lipid state85. After active PI3K generates PI (3, 4, and 5) P3, the 

phosphatidylinositol recruits PDK-1 (3′phosphoinositide-dependent kinase 1) and the 

serine/threonine kinase AKT/PKB (protein kinase B) via binding of their plexin 

homology (PH) domains to the plasma membrane where they are subsequently 

phosphorylated and activated86. This event is often viewed as the central node of the 

pathway since the activity of AKT is responsible for pleiotropic effects on molecular 

functions within the cell, such as cell cycle progression, apoptosis, transcription, and 

translation. Three AKT isoforms exist (AKT-1, -2, -3), and each has very distinctive 

roles depending on the specific cell lineage. AKT activation, either by upstream signals 

or mutation, alters multiple downstream proteins, including the relief of mTOR 

repression by the tuberous sclerosis complex (TSC1/2) proteins. These two proteins 

(TSC1/2) form a heterodimeric complex that acts as a functional unit to suppress 

mTORC1 activity. TSC2 contains a GTPase-activating protein (GAP) domain that 

stimulates the intrinsic GTPase activity of the small G-protein Rheb, thereby enhancing 

the conversion of Rheb to its GDP-bound inactive state87. While the molecular 

mechanism is not fully understood, in its GTP-bound form, Rheb is a potent activator of 

mTORC1. Activation of mTOR results in phosphorylation and activation such as S6K1 

and RhoA, leading to enhancement of translation, cell growth and proliferation, and cell 

survival. Phosphorylation of 4E-BP1 by mTOR leads to inhibition of interaction 

between 4E-BP1 and elF4E, resulting in activation of translation and increase in cells 
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proliferation88 (Figure 9). It has recently been discovered that mTORC2 directly 

phosphorylates and activates AKT, indicating that mTOR has a complicated role both 

upstream and downstream of AKT89. 

1.1.17 MAPK/ERK Pathway 

The RAS-RAF-MEK-ERK pathway is far more complex than other pathways from 

RTKs family. The pathway’s general structure includes a small G protein (RAS) and 

three protein kinases (RAF, MEK, ERK). This pathway's starting point is the binding of 

the ligand to a transmembrane protein, a receptor tyrosine kinase (RTK). The resulting 

signalling cascade culminates with ERK (MAPK) translocation to the nucleus, where 

ERK activates transcription factors that result in gene expression. This pathway plays an 

important role in the initiation and developments of the HER2+ cancers90 (Figure 10).  

 

  

           

Figure 9: PI3K/AKT/mTOR (PAM) pathway: Elaborately viewed PI3K/AKT/mTOR pathway with 

their downstream targets, leading to cancer progression and aggressiveness. 
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1.1.18 Targeted therapies of HER2+ BC 

It has been described before that HER2 does not have specific ligands to bind with and 

activate the downstream pathway. As a result, it dimerizes with HER1, HER3, and 

HER4. When the HER2 gene is mutated, amplified or overexpressed, it allows 

multidisciplinary cellular processes such as cell growth, cell survival, cell 

differentiation.  These changes followed signal transduction cascade mediated by 

PI3K/AKT activation and the RAS/RAF/MEK/MAPK pathways, which leads to drug 

resistance and tumour progression. As HER2 is overexpressed in HER2 positive BC 

subtypes in about 25-30% cancer patients, it has become a biological marker for BC's 

effective treatment. HER2 targeted therapy for this specific type of BC has been widely 

used in the clinics and has a good outcome91.  

There are two different types of targeted therapies that vary in how they target the 

cancer cells: 

1) Monoclonal antibodies used for BC include trastuzumab, Pertuzumab, 

trastuzumab deruxtecan, TDM-1, and a new anti-HER2 humanized monoclonal 

antibody 19H6-Hu92. 

 

Figure 10: MAPK/ERK pathway: Schematic summary of the multiple MAPK pathways. 
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2) Small molecule inhibitors used for BC include Lapatinib, Palbociclib, Neratinib, 

Afatinib. 

1.1.19 Trastuzumab: mechanisms of antitumour effects 

Briefly, trastuzumab (Trade name: Herceptin) is a humanized monoclonal antibody 

directed against the extracellular domain of the HER2 receptor which prevents ligand-

independent HER2 signalling. The FDA initially approved it for metastatic BC in 

199893. As it was first ever targeted therapy approved, it dramatically changed the 

treatment of HER2+ BC patients. Trastuzumab (or Herceptin) was developed by 

Genentech Inc (San Francisco, CA, USA) as a recombinant humanized monoclonal 

antibody directed against the extracellular domain IV HER294. Clinical studies have 

shown that the combination of trastuzumab with standard chemotherapy produces far 

better response rates than chemotherapy alone95 (Figure 11). 

The anti-tumour mechanism of trastuzumab may be related to the following aspects: 

1) Trastuzumab can recognize the extracellular domain of HER2 and prevents the 

dimerization of HER2 and its activation96.  

2) Trastuzumab has been proposed to trigger HER2 internalization and degradation 

by promoting tyrosine kinase activity – ubiquitin ligase c-Cbl97. 

3) One of the effective trastuzumab mechanisms is to attract immune cells (NK 

cells) to tumour sites that overexpress HER2, by a mechanism called antibody-

dependent cellular cytotoxicity (ADCC)98. 

4) The most well-known effect of trastuzumab is the inhibition of the MAPK and 

PI3K/AKT pathway, which leads to an increase in cell cycle arrest, and the 

suppression of cell growth and proliferation. It is widely accepted that by 

interfering with the dimerization of HER2, trastuzumab inhibits HER2 

activation and suppresses AKT phosphorylation99. 

5) Trastuzumab can arrest the G1 phase of the cell cycle by restoring p27 and 

suppressing CDK2 activity and decrease cell proliferation in cancer100.  

6) Some researchers showed that trastuzumab binding to HER2 could block 

tyrosine kinase Src signalling and increase PTEN level and activity. This also 

results in the suppression of PI3K/AKT signalling and reduction in cell growth 

and survival101. 
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7) Molina et al. demonstrated that trastuzumab could block the shedding of the 

extracellular domain of HER2 by inhibiting metalloproteinase activity102. 

8) It has been observed that trastuzumab induces normalization and regression of 

the vasculature by reducing vascular endothelial growth factor (VEGF) 

production in cancer cells and modulate different regulators of the complex 

machinery of angiogenesis103. 

9) Trastuzumab can mediate HER2 endocytosis, after that degradation of HER2 

will occur in the lysosomes104.  

10)  It also can inhibit non-programmed DNA repair of tumour cells105.  

Additionally, trastuzumab works successfully in HER2+ BCs; its efficacy administered 

as a single agent is 12%-34%. Therefore, trastuzumab is currently used clinically in 

combination with other chemotherapies such as Taxanes106, Capecitabine107, 

Cisplatin108, Doxorubicine109. The combination of these drugs treatment can 

significantly reduce the recurrence rate and prolong the survival of patients. The 

combination uses of tailored, dose-dense adjuvant chemotherapy and trastuzumab 

(Herceptin) were found to decrease the relative risk of relapse by 32% for patients with 

HER2+ BC. 

Even though trastuzumab has many advantages, 70% of HER2+ patients will undergo 

resistance to this treatment after one year95. Besides, using trastuzumab for a long time 

may show some side effects such as cardiotoxicity110 and nephrotoxicity111.  

 

Figure 11: Binding of trastuzumab and Pertuzumab to HER278. Trastuzumab binds HER2 subdomain IV 

and inhibits activation of HER2, whereas Pertuzumab binds HER2 subdomain II and inhibits activation of 

HER2 by interacting with HER1/3/4 molecule.   
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1.1.20 Mechanism of resistance to trastuzumab  

Although trastuzumab is used for therapies against HER2 metastatic BC cases, 

employment of this drug on its own demonstrated to be successful only up to 35% of 

these cases. However, when combined with first-line chemotherapy, the success of 

therapy can range from 50%-84%. The disastrous results may be caused by the failure 

of trastuzumab to block the dimerization when high ligands are present. It is not clear 

what contributes to trastuzumab resistance; however, some additional mechanisms may 

influence the final therapy results. 

There are different mechanisms involved in trastuzumab resistance: 

1.1.20.1 Truncated HER2 (p95 HER2) 

Since trastuzumab links to the extracellular domain of the HER2 receptor, it was 

proposed the possible mechanism of resistance involving p95HER2. This molecule acts as 

a truncated form of the HER2 receptor, which does not carry the external domain; 

therefore, Trastuzumab does not attach to p95HER2 and does not promote its degradation. 

Moreover, proteolytic cleavage of the ectodomain results in a generation of a 

phosphorylated tyrosine kinase HER2 p95HER2102,112. This molecule's activation might 

trigger mitogenic signalling cascades in the downstream process, influencing the cancer 

cells for the more aggressive or invasive113. In HER2 overexpression BC cell lines 

p95HER2 is phosphorylated by heregulin (HRG) ligand, promoting HER3 

transphosphorylation that is not inhibited by trastuzumab, while with lapatinib treatment 

the transphosphorylation is repressed114. Some resistance mechanisms are associated 

with p95HER2 as the expansion of downstream pathways activated from other HER 

family members such as through IGFR and consequently PI3K activation115. The 

incidence of PI3K over activation can reach 70% of these breast carcinomas, reducing 

the efficacy of trastuzumab and lapatinib116. The heterodimer HER2/HER3 is a PI3K 

activator; however, the dimer resulting from p95HER2 is more operative than the full-

length p185HER2 and TGFα expression increases in HER2 overexpression BC due to 

presence of p95HER2 117. 

Mucin 4 Epitope masking has also been investigated as a mechanism of resistance to 

trastuzumab. It is large, highly O-glycosylated membrane-associated glycoprotein 

which may interfere with trastuzumab binding to the HER2 receptor through surface-

epitope masking and decreased the antibody binding capacity118  (Figure 12). 
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On the other hand, CD44 is a transmembrane receptor for hyaluronan. When CD44 

binds with hyaluronan, it activates CD44 and its mediated signal transduction pathways, 

including RAS and PI3K in ovary cancer cells. CD44 and hyaluronan may also hinder 

the access of trastuzumab to HER2 receptor by masking its cognate epitope, and lead to 

treatment resistance119. 

 

1.1.20.2 PI3K/AKT pathway & PTEN expression 

When HER2/HER3 heterodimerization happens for any other reason the membrane-

associated phosphatidylinositol 4, 5 – biphosphate (PtdIns(4,5)P2 or PIP2) is converted 

into Phosphatidylinositol 3,4,5 – triphosphate (PIP3) to achieve a phosphorylated 

AKT84. The PI3K/AKT pathway, highly activated in HER2 overexpressing cancer cells, 

stimulates inhibition of cell cycle arrest and/or an anti-apoptotic incident88. In contrast, 

PTEN is a crucial anti-tumour gene on chromosome 10 that is positively correlated with 

trastuzumab efficacy (Figure 13). As this protein is a phosphatase, it has an important 

role in converting the reactive PIP3 to PIP2, a natural antagonist of PI3K activation76. 

Furthermore, cancer cells expressing small amounts of PTEN exhibit the high activity 

of PI3K and therefore develop resistance to trastuzumab. The use of PI3K inhibitors is a 

possible strategy to achieve higher sensitivity to trastuzumab101. The molecular 

       
Figure 12: Obstacles for trastuzumab binding to HER2120. A constitutively active truncated form of 

HER2 receptor that has kinase activity but lacks the extracellular domain and the binding site of 

trastuzumab is originated from metalloprotease-dependent cleavage of the full-length HER2 receptor. 

Trastuzumab does not bind to p95HER2 and therefore, does not affect it. 
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mechanisms of trastuzumab identified comprise the inhibition of PI3Kand AKT 

pathway, 121. PTEN, either through mutations or haploinsufficiency, is not expressed in 

standard levels within half of BC cases122. PTEN influences PI3K to promote PI3 and 

AKT activity production, inducing apoptosis and cell cycle arrest85. 

On the other hand, the tyrosine kinase Src possesses an important role as a pro-

oncogenic factor. When associated with HER2, it turns on and inactivates the primary 

role of PTEN123. Therefore when trastuzumab interacts with HER2 in the same domain 

as Src, PTEN can perform its tumour suppressive functions, contributing to trastuzumab 

anti-cancer progression101. When trastuzumab blocks this oncogene's interaction with 

HER2, PTEN can contribute against the uncontrolled and high proliferated cancer cells. 

The lack of PTEN results in resistance to trastuzumab in HER2 overexpressing patients 

resulting in poor prognosis. Absence or low expression of PTEN is an excellent 

indicator of trastuzumab resistance101.  

1.1.20.3 EGFR involved in trastuzumab resistance 

EGFR might confer a trastuzumab resistance phenotype when it is expressed in high 

levels in HER2+ cell lines. Furthermore, this resistance is conducted by either the 

presence of EGFR/EGFR homodimers, EGFR/HER2 or EGFR/HER3 heterodimers, 

         
Figure 13: Schematic presentation PI3K/AKT pathways involved in trastuzumab resistance120.  

General mechanisms of resistance to trastuzumab: the presence of upregulation of HER2 downstream 

signalling pathways. PTEN is a tumour suppressor. Trastuzumab binding stabilizes and activates PTEN 

and consequently down-regulates the PI3K/Akt signalling pathway.   
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which both trigger several downstream pathways, including MAPK and AKT59. The 

levels of HER2/EGFR reduced the trastuzumab therapeutic effects, and it is in part 

responsible for the trastuzumab resistance acquired by tumour cells124. Moreover, 

expression of HER ligands like EGF, TGF, betacellulin, and heregulin have also been 

associated with trastuzumab resistance125,126. Long periods of exposure to trastuzumab 

encourage EGFR expression creating resistance to this monoclonal antibody; however, 

further anti-EGFR agents, such as lapatinib, gefitinib or cetuximab, also increase 

sensitivity127. 

Moreover, lapatinib demonstrated to be more effective in antagonizing AKT activation. 

Additionally, two studies have implied that lapatinib's presence enhances HER2 levels 

while trastuzumab has an opposite effect128. Therefore, trastuzumab resistance might be 

partly explained by EGFR/EGFR homodimerization, which is present at high levels 

when cell lines were submitted to trastuzumab consecutively. 

HER2/EGFR heterodimer levels are affected in different ways by the presence of 

lapatinib, increasing with low levels of lapatinib, however showing an opposite effect 

for high concentrations of this drug. 

1.1.20.4 IGF-1R involved in trastuzumab resistance 

The mechanisms by which IGF-IR promotes trastuzumab resistance remain mostly 

unknown. IGF-1R, which is not a part of the HER family, is a main PI3K upstream 

accelerator. However, this receptor might be associated with some of the HER family 

reactions. Cells that express both HER2 and IGF-1R level high they show good 

resistance against trastuzumab. IGF-I (ligand of IGF-1R) stimulation of cells with 

acquired trastuzumab resistance induced phosphorylation of IRS-1, HER2, AKT, and 

ERK1/2 with reduced expression of p27kip1129. Tyrosine kinase inhibition or antibody 

blockade of IGF-IR blocked phosphorylation of HER2, AKT, and ERK1/2. In 

MCF7/HER2 and SKBR3/IGF-IR stably transfected cells, IGF-I stimulation blocked 

trastuzumab-mediated inhibition of AKT and ERK1/2 phosphorylation130. On the other 

side, PI3K signalling, IGF-IR is likely to promote resistance via mTOR activation. 

Inhibition of mTOR has been effective in restoring sensitivity to trastuzumab in a 

variety of settings131. Downstream events resulting in altered expression and function of 

cell cycle regulators appear to mediate the ultimate increase in proliferation and cell 

survival propagated by increased IGF-IR signalling. Stable over-expression of IGF-IR 
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resulted in reduced cyclin-dependent kinase inhibitors p27kip1 and p21cip1 and 

increased cyclin E132. 

Similarly, trastuzumab-resistance cells have been reported to show reduced 

p27kip1133and increased cyclin E expression134. These results suggest that a potential 

mechanism by which IGF-IR promotes trastuzumab resistance is via increased 

ubiquitination and downregulation of p27kip1 protein, resulting in reduced growth 

arrest and increased proliferation. Reduced p27kip1 expression in resistance cells was 

associated with increased cdk2 activity and an increased fraction of cells in S phase 

(proliferation)133. Transfection of p27kip1 increased sensitivity to trastuzumab, 

suggesting that downregulation of this downstream protein is an important mechanism 

of resistance. 

1.1.20.5 HER3 involved in treatment resistance 

HER3 is a unique member of the HER family as it has been considered as an inactive 

receptor. Because of its weak kinase activity, HER3 is utterly dependent on any other 

family members of HER to activate and initiates its downstream pathway. So, for cancer 

therapies, HER3 is not a direct target to prevent its expression. There is some evidence 

that some HER2+ tumours associate HER3 as responsible for trastuzumab resistance. 

However, trastuzumab does not disturb HER2/HER3 downstream cascades in HER2 

amplified BCs135,136. Of the four HER receptors, HER3 is best suited to induce 

activation of the PI3K/AKT pathway, a well-known survival signalling pathway in 

normal development and tumourigenesis137and one of the critical mechanisms of 

trastuzumab resistance. 

HER2/HER3 heterodimerization activity may be inhibited to inactivate HER2 metabolic 

Role. However, this requires high concentrations of TKIs that would not be supportable 

in vivo138. HER3 plays a critical role in protecting HER2/HER3 dimerization function 

against TKIs action due to a high range of different mechanisms that can regulate HER3 

expression and signalling. More precisely, the increase in HER3 levels is stimulated by 

the dramatic decrease of AKT signalling138. HER3 signalling is stimulated by different 

mechanisms to increase its expression, translation expansion, which involves the 

proliferation of the raptor complex of mTOR139,140. Finally, HER2 interacted with both 

HER3 and IGF-1R to form a heterotrimeric complex in the trastuzumab-resistant BC 
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cells, creating the HER2/HER3/IGF-1R, not the heterodimer of HER2/HER3 or IGF-

1R/HER2, which played a causal role leading to trastuzumab resistance141. 

1.1.20.6 Alternative signalling pathway 

The c-Met receptor is frequently co-expressed in HER2 overexpression cell lines; the c-

Met receptor may contribute to trastuzumab resistance through sustained AKT 

activation. HER2-overexpressing BC cells respond to trastuzumab with a rapid 

upregulation of c-Met receptor expression, and c-Met activation protects cells against 

trastuzumab. Loss of c-Met function produced through RNA interference improves the 

response of these cell lines to trastuzumab103. 

For obtained resistance to trastuzumab was related to CXCR4 upregulation and nuclear 

redistribution. Restriction in CXCR4 expression switched acquired trastuzumab 

resistance in vitro. In vitro tests recommend both α6β1 and α6β4 integrins may be 

involved in de novo and/or acquired resistance to targeted therapy against HER2142 

(Figure 14). Overexpression of PDK1 was found in approximately 20% of BCs. A 

preclinical model reported that the combined use of PDK-inhibitors with trastuzumab 

reversed the trastuzumab-resistant phenotype of SKBR3 human BC cells143. 

 

          
Figure 14: Involvement of other pathways in trastuzumab resistance120. General mechanisms of 

resistance to trastuzumab: the presence of signalling through an alternate receptor and/or pathway. 

Signalling may continue regardless of trastuzumab binding toHER2 when other receptors remain active 

on the tumour cell. 
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The rate of inherent resistance to single-agent trastuzumab in HER2-overexpressing 

metastatic breast carcinomas is impressive above 70%. Systemic treatment for BC, 

including conventional cytotoxic therapy (paclitaxel, doxorubicin, cyclophosphamide, 

fluorouracil, cis-platinum), endocrine treatment (tamoxifen, fulvestrant, letrozole, 

anastrozole), and targeted agents such as trastuzumab, plays an essential role in 

reducing mortality rate and prolonging survival time in patients with BC. However, 

resistance to therapeutic agents remains a consistent obstacle in treatment success, while 

drug resistance's underlying mechanism remains enigmatic.  

A growing body of literature supports that EMT is closely linked to BC's progression, 

including enhanced migratory and invasive capacity, and elevated cancer cells' 

stemness. Now, emerging evidence suggests that EMT is also involved in treatment 

resistance in BC. Many signalling pathways which have significant regulating effects on 

EMT are intimately involved in drug resistance. Finding novel mechanisms of EMT 

regulation in HER2+ BC subtype would help design new treatments for future 

generations.  
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EZH2-MYC loop is a master regulator of EMT 

process in HER2+ BC and negatively regulated 

by miR-33b 
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2.1 INTRODUCTION 

HER2 is overexpressed in around 20–30% of BC tumours. It is associated with more 

aggressive disease, higher recurrence rate, and increased mortality63,144. Due to its high 

aggressiveness characteristics, high mortality rate, and unreasonable recurrence rate, 

this specific subtype of BC is a vulnerable subtype to study among researchers and 

scientists nowadays. HER2+ BC is a clinically and biologically heterogeneous disease. 

There are enormous genes, and miRs are involved in making this cancer subtype more 

aggressive and proliferative. Simultaneously, many genes and miRs acted as a tumour 

suppressive and became the patients' survivor. Therefore, it is essential to deeply 

explore the molecular mechanisms responsible for disease progression and therapy 

resistance to identify possible biomarkers guiding novel treatments. 

 

MiRNAs are a family of evolutionarily conserved small, endogenous, single-stranded 

and non-protein-coding RNAs spanning 19 to 25 nucleotides in length145. The first miR, 

lin-4, was discovered in 1993 as a small RNA transcribed from the lin-4 locus of 

Caenorhabditis elegans146. In 2000 the let-7 gene and let-7 RNA were detected in 

humans, Drosophila, and other bilateral animals147. While the number of human miR 

candidates continuously increases, only a few are entirely characterized and 

experimentally validated. In 2019, researchers showed that a total of 2300 real human 

mature miRs are present in the human genome and from which 1115 are currently 

annotated in miRBase V22148 (http://www.mirbase.org/).  MiRs function as the vital 

post-transcriptional regulators of gene expression in different tissues and developmental 

stages via precise interactions and complex regulatory networks149. MiRs play a crucial 

role in regulating numerous metabolic and cellular pathways, notably those controlling 

cell proliferation, differentiation and survival150,151. Dysregulation of miR expression 

profiles has been demonstrated in most tumours examined. However, the specific 

classification of miR as oncogenes or tumour suppressors can be difficult because of 

miRs' intricate expression patterns. MiRs expression patterns differ for particular 

tissues, and differentiation states 152,153. It is not always clear if altered miR patterns are 

the direct cause of cancer or an indirect effect of cellular phenotypes changes. 

Additionally, a single miR can regulate multiple targets and helps in cancer progression 

or cancer suppression154.  

 

http://www.mirbase.org/


55 | P a g e  
 

2.1.1 MicroRNAs in BC 

Different studies of the BC cell lines showed different miR expression, having distinct 

characteristics such as tumour suppressive or tumour initiative. Let-7b miR has been 

associated with high  DNA repair capacity (DRC) levels in women with BC155. Several 

studies have been conducted to identify the miRs those are differentially expressed and 

regulate BC initiation and progression in different BC subtypes. Oncogenic miRs such 

as miR-10b-5p, miR-21, miR-23/27/24 cluster, miR-155, miR-125b, miR-181a/b 

cluster, miR-221/222 cluster are frequently upregulated in BC, and they act by 

repressing the expression of tumour suppressor gene/s mainly involved in apoptosis, 

cell proliferation, cell migration and invasion and metastasis156,157. Besides, numerous 

other miRs appear to be involved in the suppression of metastasis and invasion of BC in 

vitro and in vivo; these include the miRs like miR-33b, let-7, miR-200 family, miR-26a, 

miR-30b158, miR-449 family159 miR-497160, miR-421161, miR-193a162, miR-211-5p163, 

miR-335, miR-133a164, and miR-124165, which are proposed to suppress the expression 

of EZH2, EMT markers, cell cycle markers along with SMAD7160, MTA1161, WT1162, 

SETBP1163, EphA4, LASP1164 and STAT3165, respectively. 

 

 

Figure 15: Regulatory mechanisms of oncogenic and tumour suppressor microRNAs in 

tumourigenic events. 
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This thesis has manifested a tumour suppressor miR named miR-33b belongs to a miR-

33 family in HER2+ BC and found its molecular mechanism for regulating EMT 

through MYC-EZH2 loop. 

2.1.2 MiR-33b in Cancer 

MiR-33 is a family of miR precursors processed by the Dicer enzyme to give mature 

miRNAs and present within the intronic sequences of the SREBP genes in organisms 

ranging from Drosophila to humans. MiR-33 is found in several animal species, 

including humans166. The miR-33 family, which consists of miR-33a and miR-33b, is 

one of the most well-characterized miRs in disease world167. The hSREBF1 gene on 

chromosome 17 harbours miR-33b in intron 17, whereas hSREBF2 on chromosome 22 

contains miR-33a in intron 16. Mature miR-33a and miR-33b only differ in 2 

nucleotides and are predicted to have largely overlapping target gene sets168. miR-33 

plays a role in lipid metabolism; it downregulates several ABC transporters, including 

ABCA1 and ABCG1, which regulate cholesterol and HDL generation. 

Further related roles of miR-33 have been proposed in fatty acid degradation and 

macrophage response to low-density lipoprotein. It has been suggested that miR-33a 

and miR-33b regulate genes involved in fatty acid metabolism and insulin signalling169. 

For the first time, miR-33b, deletion, amplification or a mutation at the precursor 

miRNA was detected in 10% of medulloblastomas when miRNA-expression profiling 

was screened in 48 medulloblastomas in 2011170. This study showed that MYC mRNA 

has a potential target sequence within the 3′-untranslated regions for miR-33b binding. 

Additionally, they also showed that a point mutation in the miR-33b gene. The mutation 

was located in the sequence encoding precursor miR, indicating that the mutation is 

somatic, associated with MYC's overexpression in medulloblastomas170. In 2014, 

researchers showed that MYC was negatively regulated by miR-33b at the post-

transcriptional level, via a specific target site within the 3′UTR. Overexpression of 

MYC impaired miR-33b-induced inhibition of proliferation and invasion in 

osteosarcoma cells. MYC's expression was frequently downregulated in osteosarcoma 

tumours and cell lines and was inversely correlated with miR-33b expression171. In 

2015, it was observed that miR-33b is downregulated in lungs metastases172. Following, 

miR-33b acts as a tumour suppressor in different types of cancer such as melanoma 

cancer, lung cancer, colorectal cancer, gastric cancer, oesophageal squamous cell 
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carcinoma, nasopharyngeal carcinoma, gall bladder cancer and triple-negative BC. 

However, the role and the action mechanism of the miR-33b in HER2+ BC are still 

unclear. This thesis elaborates the molecular mechanism of miR-33b in HER2+ BC and 

how it regulates EMT pathway through EZH2-MYC loop.  

2.1.3 The Role of EZH2 in BC Progression and Metastasis 

Overexpression of the EZH2 in a wide range of malignancies has been established in 

cancer research. EZH2 was first associated with aggressiveness and metastatic 

characteristics of prostate cancer by analysing gene expression in human tumour 

microarrays. Through similar microarray profiling and other studies, EZH2 expression 

strongly correlates with BC aggressiveness acting as an independent predictor of 

recurrence and survival. EZH2 was also found to increase histologically normal breast 

epithelium with a higher risk of developing cancer, indicating that EZH2 may prove a 

valuable marker for detecting preneoplastic lesions. Elevated EZH2 expression has 

since been described in other types of cancers: bladder 173, liver174, colon175, lung176, and 

many more. In all reported cancer studies, the common discovery is that EZH2 

expression is increased in cancer compared to normal tissues, being the highest in the 

most advanced stages of the disease, and correlates with poor prognosis in patients. 

Cao and colleagues have found in prostate cancer cells that EZH2 promotes EMT by 

repressing E-cadherin expression through interaction with Snail1. This influence on E-

cadherin has since been demonstrated in many other types of cancer cells177. Ren and 

colleagues have reported that EZH2 directly represses the metastasis suppressor RKIP 

in breast and prostate cancer cells leading to increased invasion through interaction with 

Snail1178. Likewise, in hepatocarcinoma cells, EZH2 has been found to epigenetically 

repress several miRs characterized as tumour suppressors for their anti-tumour or anti-

metastatic established roles179. Also, EZH2 has been implicated in promoting tumour 

angiogenesis, and ovarian cancer growth in vivo as VEGF-stimulated overexpression of 

EZH2 leads to the repression of VASH1, a negative regulator of angiogenesis180. Taken 

together, these studies confirm the essential roles EZH2 plays in tumour progression 

and suggest that blocking EZH2 expression or activity may have therapeutic 

implications. Although EZH2 primarily known as a gene silencer, this evidence has 

emerged indicating its activation in cancers. In genome-wide mapping ChIP 

experiments, 10-20% of polycomb-group (PcG) target genes were found actively 
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transcribed in embryonic stem cells, and RNA Polymerase II199 also 2 % of genes bound 

by PcG proteins. Indeed, EZH2 has been demonstrated to be required in the expression 

of several genes essential in cell cycle regulation providing a proliferative advantage. 

Another study utilizing glioma CSCs and ChIP experiments also revealed that MYC is a 

positively regulated direct target of EZH2 as MYC expression was actively repressed 

upon EZH2 downregulation181. 

 

Moreover, EZH2 has been indicated to activate the different mechanisms such as cell 

cycle progression, anti-tumour immunity, EMT, and other oncogenic pathways in a 

different type of cancer182 (Figure 16). This chapter explains how EZH2 plays an 

essential role in HER2+ BC progression through EMT and miR-33b act on this process 

negatively to repress EMT and cell proliferation. 

2.2 Materials and Methods  

2.2.1 Cell culture and reagents  

Human BC cell lines BT474, SKBR3, MDA-MB-468, MCF7 and MCF-12A, MCF-

10A non-tumourigenic human mammary epithelial cells were maintained in Dulbecco's 

modified Eagles medium (DMEM) (GIBCO) supplemented with 10% fetal bovine 

serum (FBS; Gibco), 10,000U/mL penicillin, 10,000 μg/ml streptomycin and 1% L-

glutamine (200mM) (100x). All cells were cultured at 37 °C in 5% CO2 atmosphere. 

 

 
                 

              Figure 16: Mechanisms of EZH2-mediated implications in cancer 
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Cell lines Properties Subtype 

 

                BT474 

Adherent epithelial-like cells, 

collected from invasive ductal 

carcinoma of the breast tumour 

tissue. 

 

        Luminal B/HER2+ 

                 

               SKBR3 

Adherent epithelial cells. It is 

derived from the metastatic 

site.  

 

                   HER2+ 

                

                MCF7 

Adherent epithelial cells. It is 

derived from the metastatic 

site. 

 

                 Luminal A 

 

               MCF-10A 

Adherent non-tumorigenic 

epithelial cell line. 

 

                   Normal 

 

 

              MCF-12A 

MCF-12A cell line is a non-

tumorigenic epithelial cell line 

established from tissue taken at 

reduction mammoplasty from a 

nulliparous patient with 

fibrocystic breast disease. 

 

        

                   Normal 

           MDA-MB-468 Adherent epithelial cells. It is 

derived from the metastatic site 

            Triple negative A 

 

2.2.2 Transfection 

Cell lines were transfected either with 100 nM hsa-miR-33b-5p mirVana mimic (assay 

ID MC12289, Ambion) or 100 nM inhibitor miRNAs (RNA oligonucleotides) (assay ID 

MH12289, Ambion) and 100 nM EZH2 siRNA (#s4916, #s4918, Thermofisher), as well 

as a negative control for the experiments. In-vitro transfections of the oligonucleotides 

were performed using Lipofectamine 2000 (Invitrogen; Thermo Fisher Scientific, Inc., 

Waltham, MA, USA) by the manufacturer's instructions. After six h of transfection, the 
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transfection media was replaced with complete medium. All the experiments were 

carried out at 48 h, and 72 h post-transfection.  

2.2.3 RNA extraction and quantitative real-time RT-qPCR  

To detect the expression of miRNA and mRNA, total RNA was extracted using 

TRIZOL reagent (Invitrogen, Carlsbad, CA) according to the manufacturer’s 

instructions. cDNA was synthesized from 1μg of total RNA using a High-Capacity 

cDNA Reverse Transcription kit (Applied Biosystems) and a TaqMan® miRNA 

Reverse Transcription kit (Applied Biosystems, United States). RT-qRT was performed 

with a TaqMan® Universal Master Mix (Applied Biosystems) and TaqMan® 20× assay 

(Applied Biosystems) following the manufacturer’s protocol on a quant-studio 3 and 5 

real-time RT-qPCR system (Applied Biosystem, United States). Expression data were 

uniformly normalized to internal control. For miRNA expression, the endogenous 

control was RNU43, and for the gene expression, the endogenous control was GAPDH, 

and relative gene and mi-RNA expression was quantified using the 2−ΔΔCt method. 

2.2.4 Cell invasion and migration assays  

For the migration assay, 5 × 104 cells (72 h post transfected) were seeded in 200 μl of 

the serum-free medium into the upper chamber of each insert (353097, Corning®) and 

700 μl of medium supplemented with 10% FBS was added into the lower chamber. For 

the cell invasion assay, the polyester membranes of the upper surface of the insert 

(353097, Sigma) were pre-coated with a matrix gel (Corning® Matrigel® Basement 

Membrane Matrix, Ref: 356234) then incubated at 37°C. After 24 h, cells that invaded 

and migrated through the membrane were fixed and permeabilized with 70% chilled 

ethanol for two min and 100% methanol for 15 min respectively at room temperature. 

The invaded and migrated cells were further stained with 0.4% crystal violet for 10 min 

at room temperature. Cells were then imaged and counted from photographs of 5 

randomly selected fields of the fixed cells.  

2.2.5 Wound-healing assay 

To check the motility capacities of the cells after miR-33b-5p transfection, the wound 

healing assay was performed.  After 72 h of transfection, the cells were seeded in six-

well plates to obtain 100% confluence in 24 hr. After 24 h wound was induced by 
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scratching the monolayer with a micropipette tip, and the dish was placed at 37 °C in a 

5% CO2 incubator chamber. Pictures were acquired at 0 h and after 24 h using a 

microscope. 

2.2.6 WST-1 cell proliferation  

After transfection, cell proliferation was assessed using the WST assay. 3×103 

transfected cells and negative control cells were seeded in 96 well plates from 1 day to 7 

days. In each mentioned day, cell proliferation was measured using WST-reagent 

(ab155902, Abcam). Seven per cent of the WST reagent was added to each well with 

phenol red-free media. The plate was incubated for 4 h at 37 °C. Following the 

absorbance was measured at 450 nm in a microplate reader with background correction 

at 650 nm. The significance of any differences was assessed using T-test.  

2.2.7 Cell cycle analysis 

To analyze cell cycle, 5×104 cells were seeded in six-well plates for each condition in 

triplicates. After 48 h of transfection, the cells were harvested by trypsin and washed 

with 1X PBS twice. The harvested cells were then fixed with chilled 70% ethanol and 

incubated at -20°C for 6-7 h. The cells were then centrifuged soon after washing with 

1X PBS twice. The pellets were resuspended with propidium iodide staining buffer 

(PI/RNase, IMMUNOSTEP) stored at 4°C for the overnight. Stained cells were 

acquired for cell cycle analysis by flow cytometry using a FACSVerse™ flow 

cytometer (BD Bioscience, USA) and raw data was analyzed by FlowJo software. 

2.2.8 Apoptosis analysis 

According to the manufacture recommendation, apoptotic cells were determined by 

double staining using FITC Annexin V Apoptosis Detection Kit with PI (ANXVKF-

100T, IMMUNOSTEP). In late apoptotic and necrotic cells, the plasma and nuclear 

membranes' integrity decreases, allowing PI to pass through the membranes, intercalate 

into nucleic acids, and display red fluorescence. During this process, the cell 

membrane's asymmetry distribution is disrupted, and phosphatidylserine becomes 

exposed on the plasma membrane's outside surface. Because the anticoagulant protein 

Annexin V binds with high affinity to phosphatidylserine, and detect apoptotic cells by 

flow cytometry. Briefly, 1×105 cells were seeded in a six-well plate. After 72 h post-
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transfection, the supernatant media was taken in one tube. The attached cells were 

harvested by trypsinizing and collected into the same tube. The cells were washed with 

1X PBS twice, and the pellet was resuspended with 1X Annexin binding buffer. Five μl 

of the Annexin V-FITC and five μl of PI were added to the resuspended cells and 

incubated for 15 min at room temperature in the dark. Further 400 μl of 1X binding 

buffer was added with DAPI (0.1mg/ml, 1-2 μl). The stained cells were acquired for cell 

cycle analysis by flow cytometry using a FACSVerse™ flow cytometer (BD 

Bioscience, USA) and raw data was analysed by FlowJo software.  

2.2.9 Western blot analysis 

At the indicated time (72 h), the whole lysate of transfected cells was extracted using 

Thermo Scientific™ RIPA Lysis buffer (Ref: 89900). The lysates were transferred to a 

clean microfuge tube, placed on ice for 30 min and centrifuged for 30 min at 13,000 

rpm. The supernatant was transferred to a fresh microfuge tube, and the protein 

concentration was determined using a BCA protein assay kit (PierceTM BCA Protein 

Assay Kit, Ref: 23227). Protein lysates were separated on 10% SDS PAGE and 

transferred to nitrocellulose membranes (Ref: 1620115, Bio-Rad). The membranes were 

blocked in 5% BSA for 1 h and then incubated with antibodies of E-cadherin (BD 

Biosciences, #610181), β-Catenin (BD Biosciences, #610153), Vimentin (BD 

Biosciences, # 550513), EZH2 (Cell signalling, # 1674905S) and GAPDH (Thermo 

Scientific™, #MA5-15738) overnight at 4°C. The following day, membranes were 

washed and subsequently incubated with the appropriate HRP conjugated secondary 

antibodies for 1 h at room temperature. Following this incubation, the membranes were 

washed and briefly incubated with a Pierce™ ECL western blotting substrate reagent 

(Thermo Scientific™, Ref: 32106). All images were analysed as TIFF files with ImageJ 

for windows to build the figures. Graphs of signal intensity were obtained through band 

densitometry using Image J program. 

2.2.10  Luciferase Assay methods 

Luciferase reporter plasmid (pEZX-EZH2-3`UTR) and luciferase control plasmid were 

purchased from Tebu-bio (Portugal). According to the manufacturer, transient co-

transfection of miR 33b mimics and luciferase plasmids was performed using 

Lipofectamine® 2000 (Invitrogen; Thermo Fisher Scientific, Inc.) ’s instructions in 
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HEK-293T cell line because of its transfection efficiency. Cells were seeded on 12 well 

plates (8×105) and were co-transfected with 1µg of Luciferase reporter plasmid with 

100 nM miR-33b mimic or miR negative control (NC), according to the manufacturer's 

instructions. After 48 h, the luciferase activity was measured using the Luc-Pair Duo-

Luciferase Assay Kits 2.0 (Tebu-Bio, Portugal) according to the manufacturer’s 

instructions. Firefly luciferase activity was normalized to the corresponding Renilla 

luciferase activity. 

2.2.11  Clinical samples and RNA isolations 

Human BC tissues formalin-fixed, paraffin-embedded samples from different subtypes 

of BC patients and breast samples from healthy donors were selected to analyse the 

expression of miR-33b and EZH2 gene. The total RNA was isolated from tissue blocks 

using the Recover All Total Nucleic Acid Kit (Ambion) for standard mRNA/miRNA 

analysis. One μg of total RNA was retro-transcribed with random primers (for gene 

expression) and specific primers (for miRNA expression) using Reverse Transcription 

Kit (Applied Biosystems), and 5 ng of cDNA was used for quantitative RT-qPCR for 

both gene and miRNA expression analysis. The quantitative RT-qPCR analysis was 

performed, as mentioned above. 

2.2.12 TCGA (The Cancer Genome Atlas) data analysis 

The expression data for miRNA-33b was obtained from Xena browser database, 

(https://xenabrowser.net/) for TCGA BC (BRCA), which contained cases of different 

BC subtypes solid tumours and normal. From there we were able to obtain 211 numbers 

of the specimen with clinical details including Luminal B (n= 49), Basal-like (n= 26), 

Luminal A (n= 92), HER2+ (n= 18) and healthy solid tissue (n= 26). For EZH2 

expression we use the same database, which contained 1248 cases of different BC 

subtypes solid tumours and normal, wherefrom we obtained only 522 numbers of the 

specimen with clinical details including Luminal B (n= 127), Basal-like (n= 98), 

Luminal A (n= 231), HER2+ (n= 58) and normal solid tissue (n=8). The statistical 

analysis was done using the Shapiro-Wilk normality test and based on normality test 

results; the parametric and nonparametric test was applied to obtain a p-value of the 

analysis. 
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2.2.13  In silico survival analysis 

Overall Survival associated with miRNA and gene expression was analysed using 

Kaplan-Meier plotter (KM plotter ©) tool (http://kmplot.com/analysis/). This tool works 

upon a database containing different BC Affymetrix microarray samples and associated 

survival information, with a median follow-up of 120 months. Based on the 

METABRIC dataset, by specifying the miRNA name and gene name on the search tool, 

and filtering down to “All BC subtypes and HER2+ subtype”, the survival rates 

according to miRNA gene expression were obtained. The hazard ratio (HR) with 95% 

confidence intervals and log-rank p-value was calculated and showed. The obtained 

results were used to identify the prognostic value of miR-33b and EZH2 expressions on 

HER2+ BC.  

2.2.14  Immunohistochemical (IHC) staining 

Either breast core biopsy or surgery samples of BC patients were obtained from 

Hospital Clinico, Valencia. Immunohistochemistry (IHC) staining of specimens was 

carried out on formalin-fixed paraffin-embedded tissues using the polyclonal rabbit 

HER2 antibody (A0485; DAKO) at a dilution of 1:400, and a peroxidase-conjugated 

detection system (DAKO). Development was performed with diaminobenzidine, using 

hematoxylin counterstaining. HER2 IHC staining was scored as (0), weak positive (1+), 

moderate positive (2+) and strong positive (3+) based on the percentage of cells stained 

as positive and staining intensity following the standard of DAKO Hercept Test TM. 

2.2.15  Immunocytochemistry (ICC) staining 

The cells were fixed for 10 min at room temperature in 100% acetone and 50% 

methanol in PBS for the immunofluorescent labelling. After permeabilization in a 0.5% 

Triton X-100 solution and washing in 1x TBS for 3 times, the cells were incubated in 

the DAKO REAL Peroxidase-Blocking Solution (S202386-2) for 5-10 mins, 

subsequently, take out the blocking solutions and wash 3 times with 1x TBS. After 

several washes, the cells were incubated with specifically required antibodies for 1 hr in 

RT. After primary antibody incubation, cells were washed with 1x TBS for 3 times. The 

cells were incubated with Envision Flex Substrate Buffer (DAKO) for 1-2 mins in RT 

followed with 3 time washing with 1x TBS.  Following DAKO EnVision FLEX 



65 | P a g e  
 

Hematoxylin buffer is used for counterstaining for 5 mins. The cells were hydrated and 

observed under the microscope.  

2.2.16  Statistical analysis 

The sample and control groups were compared using a two-tailed Student t-test. All 

data presented include the median and standard deviation (SD). P-values of less than 

0.05 were considered to be statistically significant. 

2.2.17  Ethics approval 

The study was conducted under-recognized ethical guidelines (Declaration of Helsinki), 

and it was approved by the INCLIVA institutional review board (protocol number: 

2018/077). All the participants in the study signed written informed consent. 

2.3 Results 

2.3.1 Characterization of HER2 in patients and cell lines 

We examined the HER2 expression levels in the BT474, SKBR3 and MCF10a by 

immunocytochemistry staining method. BT474 and SKBR3 have HER2 amplification, 

which is considered HER2+ cell lines compared to MCF10a; an immortalized 

mammary epithelial cell line (Figure 17 A-C). Next, we examined the tissue samples, 

and those are obtained from the hospital clinic de Valencia, which showed a different 

pattern of HER2 expression such as moderate expression (2+) and with strong positive 

(3+), (Figure 17 D-F). This observation of the different pattern of expression of HER2 

in cancer tissues showed a wide range of tumour differentiation from moderate to poor. 

Altogether, these data suggested that the cell lines and cancer tissue specimens are used 

for this study, are having high expression of HER2 and validated for this study and 

thesis.  
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2.3.2 EZH2 expressions in BC patients  

EZH2 is aberrantly overexpressed in various malignant tumours, such as prostate 

cancer, colorectal cancer and ovarian cancer. Less has been explored in BC.  So, EZH2 

expression was determined in HER2+ and TNBC BC patient’s primary tumour samples 

and breasts normal tissues collected from the Department of Oncology, Hospital Clinico 

de Valencia. In 26 HER2+ primary tumours, 24 TNBC primary tumour and 7 normal 

tissues were collected to obtain mRNA for EZH2 expression analysis. Initially, RT-

qPCR was performed to analyse the level of EZH2 expression in BC tissues vs healthy 

tissues. The EZH2 expression was significantly higher in HER2+, and triple-negative 

BC (TNBC) tissues samples vs healthy breast tissues, (Figure 18 A-B). These data 

collectively seemed to suggest that up-regulated EZH2 may be implicated with 

aggressiveness and progression of HER2+ and TNBC subtype of BCs.  

 

Figure 17: Immunocytochemical and immunohistochemical staining of HER2 in BC cell lines and 

primary tumours. (A-C) Expression levels of HER2 in BT474, SKBR3, and MCF10a are shown. BC 

tissues with HER2 IHC scores of 2+ (D), 3+ (E–F) were subjected to HER2 IHC assay.  
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2.3.3 EZH2 expression levels in BC tumour or normal-like tissues from 

TCGA dataset 

To further support our data on the expression of EZH2 in different subtypes of BC 

tumours, we investigated the expression of EZH2 in BC tissues from the TCGA 

database. The database contained 1248 cases of different BC subtypes. We obtained 522 

numbers of specimen details; others had missing EZH2 expression data, no follow-up 

data, or missing clinical information. Among them, there were Luminal B (n= 127), 

Basal-like (n= 98), Luminal A (n= 231), HER2+ (n= 58) and normal-like (n=8), (Figure 

19). These samples mentioned above from the TCGA database were classified into five 

main intrinsic molecular subtypes of BCs. Therefore, while checking the expression of 

EZH2 in those subtypes, we observed the high expression of EZH2 in the basal-like 

subtype, a more aggressive subtype of BC, following HER2 enriched and Luminal-B 

subtypes. EZH2 expression is similar in Luminal-A and normal like tissues as compared 

to other subtypes. Jointly, these results suggested that EZH2 expression positively 

corresponds to BC's high aggressiveness with poor prognosis contrasted to BC's good 

prognosis.  

 

Figure 18: Expression of the EZH2 in BC patients and normal tissues: The relative expression of 

EZH2 was determined by RT-qPCR in HER2+ cancer tissue and non-tumorigenic tissue (A). EZH2 gene 

expression was determined by RT-qPCR in TNBC tissue and non-tumorigenic tissue (B). Student's t-test 

was used to analyse the significant differences. *P ≤ 0.05, **P ≤ 0.01. 
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2.3.4 EZH2 is overexpressed in the different subtype of cancer cell lines 

To confirm EZH2 expression is high in BC, we analysed distinct subtype of cancer 

tissues and healthy breast tissues, as mentioned in result section 2.3.2. This result 

section analysed EZH2 expression in different BC cell lines and immortalized normal 

human mammary epithelial cell lines. EZH2 expression was determined in four human 

BC cell lines including MDA-MB-468, MCF-7, BT474 and SKBR3 (HER2+) and the 

non-tumourigenic epithelial cell lines MCF12a and MCF10a as controls. Quantitative 

RT-qPCR data revealed that the EZH2 expression was significantly lower in the 

MCF10a than HER2+ BC cell lines, (Figure 20A) and protein level (Figure 20B). 

Additionally, the analysis showed that EZH2 is highly expressed in a triple-negative 

cancer cell line (MDA-MB-468) compared to luminal A (MCF 7) due to its high 

aggressiveness character. MCF10a and MCF12a normal cell lines were taken as a 

negative control for EZH2 expression (Figure 20C). The observation showed that 

EZH2 expression in BC cell lines was higher than normal mammary epithelial cell 

lines, which indicates that EZH2 may perform an essential role in the development of 

BC. 

 

Figure 19: EZH2 expression is indicated in BC tumour or normal tissues from TCGA dataset: RT-

qPCR analysis indicated the EZH2 expression levels in five main intrinsic or molecular subtypes of BCs 

tissues TCGA dataset. 
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2.3.5 Knockdown of EZH2 gene using small RNA interference (siRNAs) 

molecules in two HER2+ BC cell lines 

The above results showed the high expression of EZH2 might be involved in the 

development and progression of human HER2+ BC patients and in vitro. To explore the 

molecular mechanisms, it is crucial to know the gene's implications on cell proliferation 

and other phenotypic properties of human HER2+ cell lines. For this purpose, one of the 

strategies employed in this study was the silencing of siRNAs' EZH2 expression. In a 

previous result section, we demonstrated that EZH2 expression is upregulated in 

HER2+ BC tissues and two HER2+ BC cell lines BT474 and SKBR3 (HER2+), so they 

were selected further in vitro experiments. After transfection, the efficiency of silencing 

was checked by RT-qPCR, (Figure 21 A, C) and in protein level, (Figure 21 B, D). 

The results observed in the figure were obtained with two specific commercial siRNAs, 

named siEZH2 (si1) and (si2). Unitedly, these results suggested that the commercial 

silencers have been effectively silenced the mRNA and proteins of EZH2 in HER2+ BC 

cell lines so that it is sufficient to check the functional effect on cells.  

 

Figure 20: Expression of the EZH2 in cancer cell lines: The relative expression of the EZH2 was 

determined in HER2+ cancer cell lines and non-tumourigenic epithelial cell line (A). EZH2 protein 

expression was determined by western blot in mentioned cell lines (B). (C) EZH2 expression was 

determined in other subtypes of BC cell lines and non-tumourigenic epithelial cell lines by RT-qPCR and 

normalized to GAPDH. Student's t-test was used to analyse the significant differences. **P ≤ 0.01, ***P 

≤ 0.001, **** P ≤ 0.0001. The quantification of the western bands is accomplished with ImageJ. 
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2.3.6 Knockdown of EZH2 gene inhibits cell proliferation in two HER2+ 

BC cell lines 

To evaluate the role of EZH2 in HER2+ BC cell lines on proliferation, BT474 and 

SKBR3 cells were transfected with two different siRNAs. RT-qPCR performed for 

confirmation of gene, and protein silencing in respective cell lines (shown above). WST 

assay showed that lower expression of EZH2 significantly decreased the cell 

proliferation in BT474 and SKBR3, and this inhibitory effect showed statistical 

significance until seven days, (Figure 22 A-D). These results indicated that EZH2 

might act as a crucial gene for promoting tumour growth in HER2+ BC through 

modulating cell proliferation. 

 

Figure 21: EZH2 expression after siRNAs transfection in HER2+ cell lines: RT-qPCR (A-C) and 

Western blot (B-D) results showing gene silencing efficiency siRNA sequences targeting EZH2 using two 

silencers. Student's t-test was used to analyse the significant differences. ***P ≤ 0.001, **** P ≤ 0.0001. 

The quantification of the western bands is accomplished with ImageJ. 
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2.3.7 Downregulation of the EZH2 inhibits invasion and migration in 

HER2+ BC cell lines 

As we observed the expression of EZH2 is higher in HER2+ BC cell lines and patients 

than in controls, it might be the critical regulator of cancer progression. We shouted to 

explore the cells' invasion and migration capacity while silencing EZH2 expression to 

validate this assumption. We could transfect two different siRNAs into SKBR3; 

however, BT474 cell line is not a convincing model to carry out these experiments for 

its unique morphology. 72h post-transfected SKBR3 cells were seeded on matrigel 

coated transwell insert and followed the subsequent steps described in the material 

methods section. The counting of the cells capable of crossing the transwell membrane 

 

Figure 22: Effects of EZH2 silencing on cell proliferation: In two EZH2 expressing HER2+ BC cell 

lines, BT474 and SKBR3 were seeded. The proliferation of BT474 (A-B) and SKBR3 (C-D) was measure 

by WST assay after transfection with scrambled siRNA (blue line), EZH2 silencer si1(red lines) or EZH2 

silencer si2 (green line). The graph shows the results of three independent experiments, run in triplicate. 

The experiments were carried out to 7 days.  Student’s t-test compared the results. **P ≤ 0.01, ***P ≤ 

0.001. 
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with the matrigel layer, (Figure 23A) indicates that EZH2 silenced cells do not possess 

the same invasive ability than those frequently expressing EZH2 with a clear significant 

difference (p-value <0.001). Migration capacities of the cells were also studied by 

transwell assay, whose results indicate a considerable reduction (p-value <0.001) in the 

migration capacity through the pores of the inserts of the cell line SKBR3 when the 

EZH2 gene is silenced, (Figure 23B). These results indicated that the effect of EZH2 

knockdown through siRNAs reduced the number of migrating and invading HER2+ BC 

cells compared to si-NC cells, describing EZH2 might be involved in the process of 

metastasis and EMT. 

 

2.3.8 EZH2 induces epithelial-mesenchymal transition in HER2+ BC 

The previous results suggested that EZH2 is involved in cancer cell migration and 

invasion. EMT is a complex process in which epithelial cells acquire the characteristics 

of invasive mesenchymal cells. EMT has been implicated in cancer progression and 

metastasis through invasion and migration properties. To evaluate the downregulation 

of EZH2 modifies EMT pathway in our model, we silenced the expression of EZH2 in 

BT474 and SKBR3 by two different siRNAs to analyse the gene set enrichment of 

 

Figure 23: Effects of EZH2 silencing on cell invasion and migration in SKBR3 HER2+ BC cell: 

Reducing the expression of EZH2 inhibits the invasive (A) and migration (B) ability of SKBR3 cell. 

Student's t-test was used to analyse the significant differences. **P ≤ 0.01, ***P ≤ 0.001. 
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EMT. RT-qPCR confirmed the downregulation of the EMT genes and the protein by 

western blot in both cell lines compared to the control, (Figure 24 A-D).  

 

The results showed that downregulation of the EZH2 expression induced a statistically 

significant increase of CDH1 and decreased β-catenin and vimentin in BT474 in both 

mRNA and protein level. There were no changes in β-catenin (CTNNB1) in mRNA 

level in SKBR3 with silencing of EZH2. However, there was a reduction in the 

expression of β-catenin and vimentin in protein level, but CDH1 expression could not 

be observed in this particular cell line due to its homozygous deletion of a large portion 

of the gene183. Taken together, these data suggest that EZH2 induces EMT to promote 

migration and invasion of HER2+ cancer epithelial cells. 

 

 

 

Figure 24: EZH2 promotes EMT in HER2+ BC cells: RT-qPCR and western blot results showing 

EMT marker levels after silencing EZH2 in BT474 (A-B) and SKBR3 (C-D). Student's t-test was used to 

analyse the significant differences. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. 
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2.3.9 Survival analyses for EZH2 expression in BC patients 

From all the results explained above, it has been demonstrated that EZH2 is required for 

cancer cell proliferation, migration, invasion, and EMT, all of which are associated with 

cancer initiation, progression, and metastasis. As all the steps are involved in poor 

survival, we explored the correlation between EZH2 expression and patient survival 

using the Kaplan-Meier Plotter database (KM plotter ©) tool 

(http://kmplot.com/analysis/). Patients with high EZH2 expression showed significantly 

more reduced relapse-free survival (RFS), overall survival (OS) and distant metastasis-

free survival (DMFS) in BC in general and also specifically in HER2+ BC subtypes, 

(Figure 25 A-F). These results suggested that EZH2 could act as an independent 

predictor of the development of metastases, relapse of the diseases and patient’s 

survival in BC and HER2+ subtypes.  

 

2.3.10 Expression of the miR-33b in BC patients  

MiR-33b was found to act as an anti-cancer miR inhibiting cell migration, proliferation 

and invasion in melanoma cancer, lung cancer, prostate cancer, osteosarcoma, gastric 

cancer and triple-negative BC. However, the role and the action mechanism of the miR-

 

Figure 25: Prognostic value of EZH2 expression in BC patients: In silico relapse-free survival (RFS), 

overall survival (OS) and distant metastasis-free survival (DMFS) of EZH2 in BC patients (A-C) and 

HER2+ subtypes patients (D-F) with Kaplan-Meier Plotter. 

http://kmplot.com/analysis/
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33b in HER2+ BC subtype are still unclear. So, miR-33b expression was determined in 

different BC patient’s samples and normal breast tissues collected from the Department 

of Oncology, Hospital Clinico de Valencia. RT-qPCR results revealed that miR-33b 

expression was significantly higher in healthy breast specimen vs HER2+. In TNBC BC 

tissues samples, the miR-33b expression is lower than healthy tissues but not significant 

due to a smaller number of patients, ( Figure 26 A-B). Sum up; we considered that 

miR-33b might play an essential role in breast carcinoma inhibition. Still, many 

molecular studies and clinical-pathological studies are needed to explore more about 

this miRNA.  

 

2.3.11 MiR-33b expression level in BC tumour or normal-like tissues from 

the TCGA database 

As we mentioned above, miR-33b is downregulated in BC HER2+ and TNBC subtypes; 

we intended to analyse its expression in different molecular subtypes specimens, 

collected from the TCGA database. The database has contained 1285 cases of different 

BC subtypes solid tumours and normal like cancer tissues.  We could obtain 211 

numbers of specimen details; others had missing miR-33b expression data, no follow-up 

data, or missing clinical information. Among them there were Luminal B (n= 49), 

Basal-like (n= 26), Luminal A (n= 92), HER2+ (n= 18) and normal like solid tissue (n= 

26). MiR33b expression was less in HER2+ following Luminal A, Luminal B and 

 

 Figure 26: Expression of the miR-33b in BC patients and normal tissues: The relative expression of 

miR-33b was determined by RT-qPCR in HER2+ cancer tissue and non-tumorigenic tissue (A). MiR-33b 

gene expression was determined by RT-qPCR in TNBC tissue and non-tumorigenic tissue (B). Student's t-

test was used to analyse the significant differences. *** P ≤ 0.001.  
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basal-like subtypes, (Figure 27). This figure also demonstrated that miR-33b expression 

is higher in normal-like cancer, which has a good prognosis than other BC subtypes. 

Altogether, the data suggested that low expression of miR-33b in BC leading cancer 

progression and poor prognosis.  

2.3.12 MiR-33b is downregulated in the different subtype of cancer cell 

lines 

To confirm miR-33b expression is high in immortalized normal mammary epithelial 

cell lines, we analysed distinct subtypes of BC tissues and healthy breast tissues as 

mentioned in the result section 2.3.10. This result section analysed the miR-33b 

expression in different subtypes of BC cell lines and immortalized normal epithelial cell 

lines. Mir-33b expression was determined in four human BC cell lines including MDA-

MB-468, MCF-7, BT474 and SKBR3 (HER2+) and the non-tumourigenic mammary 

epithelial cell lines MCF12a and MCF10a as controls. RT-qPCR data revealed that the 

miR-33b expression was significantly higher in the MCF10a than HER2+ BC cell lines 

(Figure 28A). Additionally, the analysis showed, miR-33b is slightly expressed in 

triple-negative cancer cell line and luminal A due to its high aggressiveness character. 

MCF10a and MCF12a normal cell lines were taken as a positive control for miR-33b 

expression (Figure 28B). The observation showed that miR-33b expression in BC cell 

 

Figure 27: miR-33b expression is indicated in BC tumour or normal tissues from TCGA dataset: 

RT-qPCR analysis indicated the miR-33b expression levels in five main intrinsic or molecular subtypes 

of BCs tissues from TCGA dataset. 
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lines was much lower than normal mammary epithelial cell lines. That indicates that 

miR-33b may perform an essential role in regulating BC and complement the results we 

observed in BC tissue. 

2.3.13 Ectopically over-expression of miR-33b in two HER2+ cell lines 

In previous results, we observed that miR-33b is downregulated in BC, more 

specifically in HER2+. As this thesis focuses on HER2+ subtypes, we selected the same 

two cell lines that have been chosen to study EZH2 expression in previous experiments 

(BT474 and SKBR3). To evaluate the potential roles of miR-33b in HER2+ BC cells, 

we transfected miR-33b mimics or the mimic control into BT474 and SKBR3 cell lines 

to overexpressing its expression ectopically. The RT-qPCR data confirmed that the 

BT474 and SKBR3 cells transfected with miR-33b mimics had significantly higher 

expression levels of miR-33b than those transduced with the mimic control, (Figure 29 

A-B). 

 

Figure 28: Expression of the miR-33b in HER2+ and other subtypes of BC cell lines: The relative 

expression of the miR-33b was determined in HER2+ cancer cell lines and non-tumourigenic epithelial 

cell line (A). miR-33b expression was determined in other subtypes such as luminal A and TNBC of BC 

cell lines and non-tumourigenic epithelial cell lines by RT-qPCR and normalized to RNU43(B). Student's 

t-test was used to analyse the significant differences. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, **** P ≤ 

0.0001. 
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2.3.14 Over-expression of miR-33b suppresses the proliferation of HER2+ 

BC cells in vitro 

To determine the potential effect of miR-33b on cell proliferation in HER2+ BC, cells 

were transfected with miR-33b mimic or mimic negative control (miR-NC). RT-qPCR 

checked the transfection in both cell lines (data are shown above). The WST cell 

proliferation assay was carried out to observe the proliferation effect, which showed that 

overexpression of miR-33b significantly decreased the cell proliferation compared to 

negative control in BT474 and SKBR3, (Figure 30 A-B), and the inhibitory effects 

showed statistical significance till seven days. Collectively, it showed that miR-33b has 

an anti-proliferative effect on HER2+ BC cell lines and might induce apoptosis and 

prohibit cancer cells growth. 

 

Figure 29: Ectopic expression of the miR-33b in HER2+ BC cell lines: Changes in the expression of 

miR-33b after transfection with miR-33b mimics or the mimic control. The relative expression levels of 

miR-33b were evaluated using RT-qPCR. The miR-33b mimics significantly up-regulated the expression 

levels of miR-33b in BT474 (A) and SKBR3 (B) cells. Student's t-test was used to analyse the significant 

differences. ***P ≤ 0.001. 
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2.3.15 MiR-33b induces apoptosis and arrest cells at subG0/G1 of HER2+ 

BC 

Cell proliferation and cell death are essential, yet opposing cellular processes. Crosstalk 

between these processes promotes a balance between proliferation and death, limiting 

cells' growth and survival with oncogenic mutations. A recent study has shown that 

miR-33b regulates cell cycle and apoptosis184. So, taking all together these data and 

anti-proliferative properties of miR-33b, we evaluated apoptosis by annexin-V of 

BT474 and SKBR3 cells transfected with miR-33b mimic. Overexpression of miR-33b 

in BT474 and SKBR3, (Figure 31A), cells inducing early and late apoptosis through 

analysis with flow cytometry. To verify these results, we further investigated cell cycle 

by PI/RNAse of miR-33b transfected cell lines, which showed, a considerably increased 

of cells in sub- G0/G1 phase after transfection with miR-33b, compared to the control 

and a reduction almost in half in the number of cells in G1 and S phases (Figure 31B). 

Collectively, it showed that miR-33b has an antiproliferative effect on HER2+ BC cell 

lines and induced apoptosis with arresting the cells at sub- G0/G1 phase. 

 

Figure 30: Over-expression of miR-33b suppresses the proliferation of HER+ BC cells: The WST 

assay determined cell proliferation after transfection with miR-33b mimics or the mimic control until 

seven days in BT474 (A) and SKBR3 (B). Student's t-test was used to analyse the significant differences. 

*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. 
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2.3.16 MiR-33b inhibits migration and invasion in HER2+ BC cells 

Tumour cell invasion and metastasis are tightly correlated with various processes, 

including EMT. Therefore, we studied its functional aspect, such as invasion and 

migration properties of the cells after transfection with miR-33b mimic. Additionally, 

migration and invasion assays were planned to explore the anti-metastatic effect of miR-

33b. The SKBR3 cells were transfected with miR-33b mimic for 72h and seeded on 

matrigel-based transwells to check the invasion capacity within 24h. RT-qPCR 

confirmed the expression of the mature miR-33b in this cell line (data are not shown). 

The results showed that overexpression of miR-33b induced a decrease in SKBR3 

invasion capability compared to controls (Figure 32A). The carried out the migration 

process of the HER2+ cancer cells. The results showed that the miR-33b overexpression 

reduced the migration properties of HER2+ cells significantly compared to the negative 

control (Figure 32B). Taken together, these results suggested that miR-33b inhibits cell 

invasion and migration and acts as a possible crucial regulator of the EMT process in 

HER2+ BC. 

 

Figure 31:miR-33b induces cell apoptosis and regulates cell cycle in HER2+ BC: The apoptotic cell 

population was determined at 72h in both cell lines by flow cytometry through Annexin-V/PI staining 

(A). To confirm the apoptotic population cell cycle was analysed through PI-RNAse assay at 48h and 

percentage of subG0/G1 stage cells were shown (B). Student's t-test was used to analyse the significant 

differences. **P ≤ 0.01. 
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2.3.17 Up-regulated miR-33b inhibits epithelial-mesenchymal transition 

in HER2+ BC 

The above result sections showed that EZH2 is a master regulator of proliferation, 

invasion, migration, and EMT in HER2+ BC. EZH2 promotes aggressive breast 

carcinomas with metastatic potential. So, targeting EZH2 through small molecules or 

miRNAs is essential to combat cancer progression. Moreover, recent substantial data 

suggested that miR-33a could negatively regulate EZH2 in cancer progression by direct 

interaction in TNBC185. Several studies have demonstrated that the EMT process is vital 

for acquired drug resistance and initial step for metastasis in cancer cells, as we 

observed above. Thus, the protein expression levels of EMT-associated markers in the 

HER2+ BC cell lines were investigated through up-regulation of miR-33b.  Thus, the 

HER2+ BC cells ectopically transfected with miR-33b and Overexpression of miR-33b 

in BT474 induced a statistically significant increase in the mRNA expression CDH1, 

and significant decreases of β-catenin, vimentin (Figure 33A). Consistent results were 

obtained with SKRB3 (Figure 33C). To confirm these data at the protein level, western 

 

Figure 32: miR-33b inhibits cell migration and invasion in HER2+ cells: SKBR3 cells were 

transfected with miR-33b mimic and cells penetrating the membrane were fixed and 0.4% crystal violet 

staining after 24 h to evaluate the invasion capacity (A). A wound-healing assay was performed on 

SKBR3 transfected with miR-33b to explore the migration properties of the cells. Black arrows indicate 

the wound edge. The relative scratch gap was calculated as the percentage (%) of the remaining scratch 

gap at the given time point and the original gap at 0h (B). Student's t-test was used to analyse the 

significant differences. **P ≤ 0.01. 
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blot was performed (Figure 33B, D). CDH1 was unable to detect in SKBR3 because of 

its homozygous deletion of a large portion of the gene183. These findings concluded that 

miR-33b could effectively suppress EMT in HER2+ BC and act as a crucial tumour 

suppressor.  

 

2.3.18 MiR-33b is downregulated in two control cell lines 

Because of the overexpression of miR-33b reduced cell proliferation, invasion, 

migration and EMT in HER2+ BC cell, we wondered, if inhibition of this miRNA in 

control cells would have the opposite effect. To evaluate the potential inhibitory effect 

of miR-33b, we used two immortalized mammary epithelial normal cell lines named as 

MCF10a and MCF12a. We transfected miR-33b inhibitor and the inhibitor control into 

those mentioned cell lines to produce BC cells with miR-33b less-expression. The RT-

qPCR data confirmed that the MCF10a and MCF12a cells transfected with miR-33b 

inhibitor had significantly lower expression levels of miR-33b than the negative control 

(Figure 34 A-B). 

 

Figure 33: miR-33b inhibits the EMT in HER2+ cells: Relative expression of the EMT genes, and 

protein expression, was checked after transfection with miR-NC and miR-33b HER2+ cells (A-D). 

Student's t-test was used to analyse the significant differences. **P ≤ 0.01, ***P ≤ 0.001. 
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2.3.19 Downregulation of miR-33b inhibits proliferation of control cell 

lines 

Proliferation is an integral part of cancer development and progression. The cancer cell 

embodies characteristics that permit survival beyond its average life span and to 

proliferate abnormally. As in similar case we observed in our HER2+ cancer cells, miR-

33b acted as anti-proliferative miRNA, so we believe that inhibitor of miR-33b in 

normal mammary epithelial cell line would have the opposite effect. To assess that 

results, we transfected miR-33b inhibitor in MCF10a and MCF12a. RT-qPCR checked 

the transfection in both cell lines (data not shown). The WST cell proliferation assay 

was carried out to observe the proliferation effect, which showed that the 

downregulation of miR-33b significantly increased cell proliferation compared to 

negative control in MCF10a and MCF12a results showed statistical significance five 

days (Figure 35 A-B). Collectively, it showed that miR-33b is required to control cell 

proliferation in cancer cells. 

 

Figure 34: Ectopic expression of the miR-33b in control cell lines: Changes in the expression of miR-

33b after transfection with miR-33b inhibitor or the inhibitor control. The relative expression levels of 

miR-33b were evaluated using RT-qPCR. The miR-33b inhibitor significantly down-regulated the 

expression levels of miR-33b in MCF10a (A) and MCF12a (B) cells. Student's t-test was used to analyse 

the significant differences. **P ≤ 0.01. 
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2.3.20 MiR-33b promotes migration and invasion of normal epithelial cell 

lines 

To reveal the functional role of inhibition of miR-33b on migration and invasion of 

normal epithelial cell lines, both MCF10a and MCF12a cell lines were transfected with 

the miR-33b inhibitor/NC. The results showed MCF10a and MCF12a were transfected 

with miR-33b inhibitors both expressed at a relatively low level of miR-33b compared 

with cell lines transfected corresponding to the negative control (data not shown). 

Transwell assays without Matrigel were used to examine the miR-33b function on the 

migratory cell potential. Transwell assays with matrigel were used to detect the miR-

33b effects on the invasive cell potential. Downregulation of miR-33b significantly 

increased the migration and invasion capacities in the MCF10a and MCF12a cells 

 

Figure 35: Repression of miR-33b promotes the proliferation of normal breast epithelial cells: Cell 

proliferation was determined by the WST assay after transfection with miR-33b inhibitors or the 

inhibitors control until five days. Student's t-test was used to analyse the significant differences. *P ≤ 

0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. 
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(Figure 36A-B). In summary, these findings indicated that miR-33b might act as an 

anti-oncomiR and demote cell migration and invasion during HER2+ carcinoma 

progression. 

 

2.3.21 MiR-33b could regulate EMT in normal epithelial cell lines 

EMT has been identified to contribute to the cell invasion of different cancers by 

transforming polarized and adherent epithelial cells into motile and invasive 

mesenchymal cells. To determine whether miR-33b could regulate the molecular 

changes of EMT in normal breast epithelial cells, the expression of mesenchymal 

 

Figure 36: miR-33b inhibitor promotes invasion and migration of normal epithelial in vitro: (A and 

B) Transwell assay showed that inhibiting miR-33b expression promotes invasion and migration of 

immortalized normal human epithelial breast cells after transfection of miR-33b inhibitor or miR-ctrl. 

Student's t-test was used to analyse the significant differences. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. 
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markers, including β-catenin and Vimentin and the epithelial marker, E-cadherin, was 

examined in the cells by using western blot and RT-qPCR. Thus, MCF10a and MCF12a 

cells were transfected with inhibitor NC and miR-33b inhibitor. The results showed that 

with the inhibition of miR-33b, there is significantly diminished expression of CDH1 

and an increase of β-catenin, vimentin and EZH2 in both mRNA and protein level 

(Figure 37 A-D). Thus, it supports that miR-33b can regulate EMT signalling in both 

control and cancer cell lines. 

 

2.3.22 The low miR-33b expression is associated with the patient’s overall 

survival 

When the general BC patients (n=1262) of the database were evaluated with KM plotter 

(described in 2.3.8 results section), low miR-33b expression appeared to predict less 

overall survival (61.91 months) that the patients were having high expression of miR-

33b (89 months, p=0.025, Figure 38A). Similarly, when only patients with HER2+ 

status (n=608) were analysed with the same database, it also showed the complementary 

 

Figure 37: Inhibiting miR-33b induces EMT: (A-D) mRNA and protein expression of the EMT markers 

using RT-qPCR and western blot in MCF10a and MCF12a.  Student's t-test was used to analyse the 

significant differences. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. 
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concordant results with general overall survival. Patients with low miR-33b expression 

were tended to have low overall survival (71.21 months), where high expression miR-

33b showing patients have good survival (113.3 months, p=0.039, Figure 38B). In BC 

patients and specifically in HER2+ patients, high expression levels of miRNA improved 

patients' survival, stating that miR-33b expression is essential to stabilize BC patients' 

survival. 

 

2.3.23 EZH2 is partially regulated through miR-33b 

From the previous results, we demonstrated that EZH2 and miR-33b having contrary 

results in HER2+. Silencing of EZH2 and overexpression of miR-33b inhibits EMT, 

proliferation, invasion and migration in HER2+ cells. Taking these results in 

consideration, we tried to explore whether in this process, miR-33b is inhibiting EZH2 

and as the consequences of reducing HER2+ cancer cells aggressiveness. We 

transfected mimic and inhibitors of miR-33b in respective cell lines which showed a 

reduction and overexpression of EZH2 at mRNA and protein level (Figure 39 A-D). 

Overall, these data suggested that miR-33b inhibits EZH2 expression due to suppressing 

HER2+ cancer cells' aggressiveness and proliferation. The physical interaction is 

analyzed in a later section.  

 

 

Figure 38: Overall survival in BC and HER2+positive cancer cases by the miR-33b expression:  In 

silico overall survival (OS) miR-33b in BC patients (A) and HER2+ subtypes patients (B) with Kaplan-

Meier Plotter analysis. 
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2.3.24 EZH2 is not a direct target of miR-33b  

The physical interaction of miR-33b and EZH2 has been checked in Targetscan, but no 

such evidence found in the database. We even checked the interaction in other databases 

such as miRDB - MicroRNA Target Prediction Database, miRNet, miRTarBase, and 

miRanda. We did not find a seed sequence interact with 3’ or 5’ UTR region of the 

EZH2. We used the Freiburg RNA tools to predict the interactions between miR-33b 

and EZH2 (http://rna.informatik.uni-freiburg.de), where we found the interaction but the 

yield of energy was very low (-0.3) (Figure 40 A). To confirm EZH2 is a direct target 

of miR-33b, luciferase activity was measured in-between EZH2 3’UTR containing 

reporter plasmid and control plasmid. This assay revealed no such difference between 

luciferase activity in 293-T cells transfected with plasmids containing the 3’UTR of 

EZH2 and cells transfected with the control plasmid (Figure 40 B). Collectively, we 

confirmed that there is no direct interaction between the 3’UTR region and miR-33b 

and EZH2 is not a direct target of miR-33b.  

 

Figure 39: Regulation of EZH2 by miR-33b: (A-B) RT-qPCR and western blot results showing EZH2 

expression level after transfection with a mimic in BT474 and SKBR3. (C-D) RT-qPCR and western blot 

results showing EZH2 expression level after transfection with an inhibitor in MCF10a and MCF12a. Student's 

t-test was used to analyse the significant differences. *P ≤ 0.05, **P ≤ 0.01. 

http://rna.informatik.uni-freiburg.de/
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2.3.25 MYC- is an intermediator of miR-33b and EZH2 

From all the results described above, it is confirmed that EZH2 acts as an oncogene in 

HER2+ BC subtypes, and it is negatively regulated by miR-33b. But as we mentioned 

above, there was no direct interaction between miR-33b and EZH2, so we seek to 

explore this interaction's laydown molecular mechanism. In 2004, researchers showed 

that MYC was negatively regulated by miR-33b at the posttranscriptional level, via a 

specific target site within the 3′UTR. Overexpression of MYC impaired miR-33b-

induced inhibition of proliferation and invasion in osteosarcoma cells171.  Additionally, 

MYC also regulated EZH2 by direct binding181 or by negatively regulates miR-26a186 a 

repressor of EZH2. Stand on this hypothesis; we checked the physical interaction of 

miR-33b and MYC in targetscan, where we found, the MYC has a seed sequence in its 

3'-UTR to bind with miR-33b (Figure 41A). Thus, we transfected miR-33b mimic and 

inhibitor in respective cell lines, with NC. The transfection efficiency was checked by 

RT-qPCR (data not shown). Thereupon, we saw a reduced MYC expression with 

transfection of mimics in BT474 and SKBR3 at mRNA and protein level (Figure 41 B-

C). At the same time, we also checked an increased MYC expression with inhibitors of 

miR-33b in MCF10a and MCF12a at mRNA and protein level (Figure 41 D-E). 

Overall, these data suggested that miR-33b inhibits MYC expression through its direct 

interaction; thus, the downstream gene of the MYC pathway, EZH2 is downregulating 

in an eventual process.   

 

Figure 40: No direct interaction of miR-33b and EZH2:  Schematic description of the hypothesized 

interaction between the EZH2 3´UTR binding site in the position from 206-216 with miRNA-33b (A). (B) 

Percentage of luciferase activity in between control UTR/miR-33b and EZH2 UTR/miRNA-33b mimic. As 

there were no such significant differences in the graph, t-test was not done.  
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Figure 41: miR-33b inhibits EZH2 through MYC inhibition: (A) The sequences of miR-33b binding 

sites within the human MYC 3′UTRs. (B-C) RT-qPCR and western blot results showing MYC expression 

level after transfection with a mimic in BT474 and SKBR3. (C-D) RT-qPCR and western blot results 

showing MYC expression level after transfection with an inhibitor in MCF10a and MCF12a. Student's t-

test was used to analyse the significant differences. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. 

 

 



91 | P a g e  
 

2.4 Discussion 

Many accumulated data have pointed out that several miRNAs drive tumorigenesis, 

drug resistance and suppress cancer progression by targeting different oncogenes187. 

Although multiple studies have been carried to study miRNAs' roles in BC, most of 

them have focused on BC in general and not on specific subtypes. HER2+ BC subtype 

is one of the worse prognosis cancer and is associated with inferior outcomes in 

survival188and is an entity with a substantial heterogeneity at multiple levels189. In recent 

studies, miRs are critical regulators to uncover the heterogeneity's molecular 

mechanisms in HER2+ BC. MiR-33 family is one of the highest conserved miR 

families, consisting of miR-33a and miR-33b169. They both act as a tumour suppressor 

in different cancers such as non-small cell lung cancer190, triple-negative BC191, 

oesophagal squamous cell carcinoma192, and colorectal cancer193 via targeting EMT and 

proliferation. For the first time in this study, we reported that miR-33b was 

downregulated in breast HER2+ tumour samples compared to normal breast tissues. The 

under-expression of miR-33b is related to poor prognosis in HER2+ patients. We also 

found that miR-33b expression was higher in normal breast epithelial cell line than in 

HER2+ BC cell lines. It has also been described that in triple-negative BC, miR-33b 

represses cancer progression and metastasis by targeting oncogenes like SALL4, 

TWIST1, and HMGA2194. These data indicate that miR-33b acts as an onco-suppressive 

miRNA in BC progression. To investigate the specific role of miR-33b in HER2+ BC 

progression, miR-33b was ectopically overexpressed in different HER2+ cell lines, 

showing that upregulation of this miR inhibits cancer cells invasion and migration. As it 

has been already reported that, this miR regulates EMT195, we here demonstrated that 

the overexpression of the miR-33b inhibits EMT process in HER2+ subtype of BC by 

regulating EZH2 expression. 

Furthermore, we reported that the overexpression of the miR-33b has an impact on cell 

proliferation and induces apoptosis in this BC subtype. Besides, this miRNA also arrests 

the cell cycle in the sub-G0/G1 phase as compared with other stages in concordance 

with previous results in lung cancer196. Recently, some authors suggested that miR-33a 

can regulate EZH2 by their direct interaction185. We checked in silico the physical 

interaction between miR-33b and EZH2 in Targetscan, miRDB - MicroRNA Target 

Prediction Database, miRNet, miRTarBase, miRanda databases and the Freiburg RNA 

tools. In the later, we found interaction with a yield of shallow energy. Based on this 



92 | P a g e  
 

information, we performed the luciferase assay. We found no such direct interaction 

between miR-33b and EZH2 (data are not shown), which clarified that although miR-

33a and miR-33b belong to the same family, they regulate the same gene differently. It 

has been previously demonstrated that MYC binds to EZH2 promoter and directly 

activates its transcription181. Besides, EZH2 expression is positively correlated with 

MYC expression in prostate cancer197. 

Moreover, it has been already described that MYC is a direct target of miR-33b171. 

Thus, in our present study, we showed that ectopically overexpression of miR-33b 

regulates MYC in our models (Figure 41 B, C). The sequences of miR-33b have 

binding sites within the human MYC 3’UTRs (Targetscan, Figure 41 A). Considering 

all these, we suggest EZH2 as a target of miR-33b via regulating MYC (Figure 42). 

EMT is a fundamental process during the development of tumorigenesis and metastasis. 

Enormous pieces of evidence indicate that EMT is responsible for cancer cells invasion 

and migration, and an initial step of metastasis. EZH2 is reported to be upregulated in 

aggressive BC 198and involved in epigenetic, post-translational modifications and EMT 

program by suppressing CDH1 expression177. In nasopharyngeal carcinoma, miR-142-

3p was downregulated by DNA methylation due to EZH2 recruited DNMT1 occupied 

the upstream region of the miR-142 and determined ZEB2 activation, which leads to 

EMT and metastasis199. Furthermore, EZH2 is a direct target of miR-26a in docetaxel 

resistance cells, which could significantly suppress the proliferation, facilitate the 

apoptosis, inhibit the metastasis ability and reverse EMT- MET in lung adenocarcinoma 

cells200. In oral tongue squamous cell carcinoma, miR-101 inhibits the expression of 

EZH2 via two transcription factors Snail and Slug201. In BC, miR-92b may negatively 

regulate the expression of EZH2, promote autophagy, and decrease tumour cell viability, 

migration, and invasion202. Additionally, miR-139-5p transcription is inhibited by EZH2 

through up-regulating H3K27me3, thereby downregulation of EZH2 and up-regulation 

of miR-139-5p impedes EMT in lymph node metastasis pancreatic cancer203. 

Accumulating all these results summarized, that expression of EZH2 is upregulated in a 

different type of cancer, and different miRNAs and drugs require for its inhibition to 

reduce cancer progression. 

Given that the behaviour of EZH2 is context-dependent, in this study, we investigated 

the role of EZH2, specifically in HER2+ BC. Our research determined that EZH2 is 
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highly expressed in HER2+ BC cell lines and solid tumours compared to normal 

epithelial cell line and healthy breast tissue showing an inverse correlation. To dig more 

of the molecular mechanisms of the EZH2, it has been silenced through two different 

silencers in BC cell lines, which resulted in inhibition of cell proliferation, migration, 

invasion and EMT in HER2+ BC cells. That confirms that EZH2 expression has a 

crucial role in HER2+ BC progression (Figure 42). Future in vivo experiments to 

evaluate the role of miR-33b in HER2+ BC metastasis is needed. 

In summary, EZH2 might be an essential factor of HER2+ BC progression and 

associated with a decrease in the patients' overall survival since EMT has been critically 

discussed as the critical process in tumour aggressiveness metastasis204. Our findings in 

the present study demonstrate for the first time that miR-33b acts as a suppressive 

miRNA in HER2+ BC that could inhibit tumour migration and invasion partly by 

impeding EMT through repression of MYC-EZH2 loop. This study suggests a novel 

miR-33b/C-MYC/EZH2 axis that modulates breast cells' growth and progression and 

could be clinically useful to design new drugs against HER2+ subtype cancer. 

 

 

 

 

 

 

Figure 42: Proposed model of miR-33b inhibited EMT via targeting EZH2-mediated MYC 

signalling pathway in HER2+ BC cells. 
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3.1 INTRODUCTION 

In the chapter1 and chapter 2 have adequately described the known mechanisms of 

resistance to trastuzumab in HER2+ BC. HER2 plays a critical role in tumorigenesis 

and is associated with poor prognosis of patients with HER2+ BC. HER2 expression is 

elevated within a defined group of cancer stem cells believed to be the real oncogenic 

population in the heterogeneous BC and confer resistance to therapies: hormonal and 

targeted therapies102. However, drug resistance often develops de novo, which hinders 

therapy. Thus, identifying novel therapeutic targets critical for HER2 driving tumour 

development and resistance to treatment is still needed. The most commonly recognized 

anti-cancer mechanism of trastuzumab is targeting the extracellular domain of the 

HER2 receptor and the inhibition of the downstream phosphoinositide 3-kinase 

(PI3K)/AKT pathway. Therefore, PIK3CA, a mutation of the PI3K gene, was 

considered an important reason for trastuzumab resistance115. Knowing about the AKT 

pathway regulations through different molecular mechanisms is essential to keep track 

of resistance mechanisms. This chapter is more focused on exploring the mechanisms of 

resistance towards trastuzumab via SALL4.  

3.1.1 The Embryonic Stem Cell (ESC) Factor SALL4 

The human homologue of Drosophila spalt (sal) homeotic gene, SALL4, encodes a 

C2H2 zinc finger transcription factor205. Drosophila spalt was first identified in a 

mutational study as a novel homeotic gene in 1988206. Spalt acts in both the posterior 

head and the anterior tail regions of Drosophila melanogaster embryo instead of the 

trunk region. Mutations of spalt lead to the transformation of the posterior head 

segments to the anterior thoracic region, and the transformation of the anterior tail 

region to the posterior abdominal segments of the embryo206. These data are among the 

first evidence that supports an essential role for the spalt family of genes during early 

development. 

In humans, there are four members in the SALL protein family: SALL1–4. Figure 43 

illustrates the conserved protein domains present in SALL1–4 proteins. Phylogenetic 

studies reveal that SALL4 was produced due to duplication of SALL2 gene derived from 

the divergence of ancestral spalt. SALL4 underwent further duplication to produce 

SALL1 and SALL3, which are the most closely related SALL members207. This chapter 

focuses on the study of SALL4 involved in resistance to trastuzumab in HER2+ BC. 
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Homo sapiens SALL4 shows 24% and 75% protein sequence identity with Drosophila 

spalt and Mus musculus SALL4, respectively. The zinc finger domains are conserved 

evolutionarily. Interestingly, the N-terminal first 12 amino acids of SALL4 that are 

important for interaction with epigenetic complexes are also conserved in mice and 

human208. 

 

SALL4 is implicated in various processes during embryonic development, including 

organogenesis, limb formation and neural development. Specifically, SALL4 co-

expressed with Oct4 from the one-cell zygotic stage onwards and can activate Oct4 

expression and be regulated by Oct4. SALL4 also interacts physically with Nanog. The 

function of SALL4 as a potent stem cell factor is further highlighted by its ability to 

enhance reprogramming of somatic cells to pluripotent cells. Being an important 

transcription factor implicated in early development, SALL4 is tightly regulated at 

different levels to ensure normal development. Any aberrations in SALL4 regulation or 

the presence of mutations in the SALL4 gene that affects its functions and regulations 

are expected to cause various human cancers and developmental disorders209. 

 

 

Figure 43: Schematic representation of the main conserved domains in vertebrate SALL proteins. 

There are four members in the vertebrate SALL family, SALL1–4. Two main conserved characteristics of 

SALL transcription factors are several zinc finger domains and a glutamine-rich region (PolyQ) in the 

proteins. Ovals represent zinc finger domains, and yellow pentagon represents glutamine (Q) rich region. 

Blue ovals represent C2HC zinc fingers, and pink ovals represent C2H2 zinc fingers and green ovals in 

SALL2 represent the C terminal zinc fingers that are not homologous to those in other SALL proteins207. 
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3.1.2 SALL4 in cancer 

The stem-like phenotype in cancer results from epigenetic and genetic alterations 

leading to the expression of genes involved in cell migration, invasion, angiogenesis, 

self-renewal, anti-apoptosis, and immune-escape, which also are fundamental for the 

embryo-fetal development. A stem-like phenotype's expression seems to play a central 

role in defining different cancers' malignant potential. Several stemness-related genes 

have been proposed as diagnostic markers for cancer during the last decades, sometimes 

with prognostic significance. In particular, SALL4 has recently emerged as a potential 

prognostic marker in many tumours. Analyses of SALL4 expression and its epigenetic 

status, as well as studies on cellular models, have shown its oncogenic role in several 

tumours, such as precursor B-cell lymphoblastic lymphoma, acute and chronic myeloid 

leukaemia, gastrointestinal, breast, and lung cancers210. SALL4 expression is generally 

assessed by immunohistochemistry (IHC) on the whole section or tissue microarray 

(TMA) or molecular testing, such as real-time PCR and methylation analysis promoter 

region210. SALL4 is involved in the cells' self-renewal and anti-apoptosis behaviour. It 

has a higher probability of helping the cells escape from drugs or assist cells for being 

resistant to drugs treatments. This chapter mainly trams the novel molecular mechanism 

of the resistance towards trastuzumab and regulated by SALL4 and how 

microenvironment is a torch holder of SALL4 in this process.  

3.1.3 SALL4 in BC 

In 2006, a research group of Harvard medical school for the first time found that 

SALL4 is constitutively expressed in human primary acute myeloid leukaemia (AML). 

They also demonstrated that constitutive expression of SALL4 in mice is sufficient to 

induce Myelodysplastic Syndromes (MDS) like symptoms and transformation to AML 

that is transplantable. They also provided SALL4 can bind β-catenin to activate the 

Wnt/β-catenin signalling pathway and showed similar expression patterns at different 

phases of chronic myeloid leukaemia (CML)211. Following that year, many research 

articles stated that SALL4 plays an essential role in various cancer progression and drug 

resistance.  Recently, emerging evidence has shown that after birth, SALL4 expression 

is downregulated and absent in adult tissues; however, it is re-expressed in a subset (30 

%) of various solid tumours, such as breast, cervical, ovarian, gastric, hepatocellular 

carcinoma, and germ cell tumours212. In a recent study, SALL4 expression was detected 
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in 86.1 % of BC cases213. Another study reported that high cytoplasmic expression of 

SALL4 was found in BC tissues associated with normal adjacent tissues. 

In contrast, Yue et al. 214 reported that high SALL4 levels were related to enhanced 

tumour invasion and lymph node stage in ER, PR, HER2, and TNBC. Itou et al. 

indicated that SALL4 represses E-cadherin gene (CDH1) expression and maintains cell 

dispersion in basal-like BC215. Besides, SALL4 presents a binding site for the TNF-α 

gene, which regulates cell death216. Another study reported that miR-33b played a role 

as an onco suppressive miRNA in BC progression by inhibiting BC cells' stemness and 

metastasis. According to these findings, miR-33b suppressed the stemness, migration, 

and invasion of BC cells by targeting HMGA2, SALL4, and Twist1217. 

In summary, SALL4 is generally upregulated in BC carcinogenesis. Therefore, SALL4 

has several important functions in the development or progression of BC. SALL4 

expression is related to cell proliferation, suppressing intercellular adhesion, and 

maintaining motility in BC cells. Moreover, SALL4 induces oncogenic transformation. 

When SALL4 expression is forced, the number of cells in the G1 phase is reduced. 

Research has also shown that SALL4 positively regulates the expression of CCND1 and 

CCND2, which encode the cell-cycle progression factors Cyclin D1 and D2, 

respectively. SALL4 knockdown reduces the proliferative ability of BC cells218. SALL4 

positively regulates the expressions of Bmi1, a member of the polycomb group of 

proteins initially identified in Drosophila melanogaster as a repressor of homeotic 

genes (in BC cells). In humans, the polycomb gene Bmi-1 plays an essential role in 

regulating adult, self-renewing hematopoietic stem cells (HSCs) and leukaemia stem 

cells219. It can be concluded that SALL4 is involved in the positive regulation of cell 

proliferation. Although there is not much in the literature on the role of SALL4 in BC, 

published studies suggest that it may be necessary, and this should guide future cancer 

treatment research (Figure 44). 
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3.1.4 SALL4 in drug resistance 

SALL4, being a stem cell marker, which makes the belief that it can be involved in drug 

resistance in cancer. In 2010, a research group of Johns Hopkins Medical Institutions 

found that NOTCH3 is overexpressed in ovarian cancer post-chemotherapy. It is an 

advantage for the cancer cells to survive under the selection pressure of chemotherapy. 

This study also showed that the Carboplatin resistance cell line has a high expression of 

NOTCH3 and other embryonic stem cell markers, including SALL4. That suggested 

SALL4 involvement in drug resistance221. It involved in the drug resistance was proved 

in 2011, in myeloid leukaemia patients. They reported that SALL4 expression is higher 

in drug resistance to Doxorubicin in primary acute myeloid patients than drug 

responding patients. They further demonstrated that SALL4 was able to bind to the 

promoter region of ABCA3 and activate its expression while regulating the expression 

of ABCG2 indirectly, which suggested a novel role for SALL4 in drug resistance in 

cancer222,223. Afterwards from 2014, some researchers group started taking SALL4 as an 

important target for chemoresistance in different cancers. In endometrial cancer, SALL4 

overexpressed in Carboplatin drug resistance and induced  EMT pathway by binds 

explicitly to the MYC promoter region and initiated its overexpression in this cancer 

type224,225. Fluorouracil and Oxaliplatin were two representative chemotherapy drugs 

used in colorectal treatment. However, certain patients showed high expression of  

 

Figure 44: Proposed model for SALL4 regulatory network in cancer220 
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SALL4 in severe resistance against these drugs with mechanisms undefined, through 

regulating P-gp and MRP1 expression226. 

SALL4 expression could be a resistance factor against anticancer drugs such as 

Cisplatin, Carboplatin, and Paclitaxel in lung cancer. It has been reported that STAT3 

pathway may be involved in drug resistance and may a positive-feedback loop exist 

between SALL4 and IL-6 via STAT3227. Another research group showed on the same 

cancer type is knockdown of SALL4 by siRNA in Cisplatin-resistant cells reduced the 

IC50 compared with the parental cells through AKT/mTOR signalling228. In 2016, for 

the very first time a group from Shanghai Jiao Tong University, School of Medicine, 

China demonstrated that SALL4 is overexpressed in BC cell line acquired resistance to 

doxorubicin hydrochloride. This study also suggested that knockdown of SALL4 

inhibits proliferation of MCF-7/ADR (Adriamycin) cells through arresting the cell cycle 

in the G1 phase and that down-regulation of SALL4 reverses the drug resistance of BC 

by reducing the expression of ABCG2 and MYC229. So, in this chapter, we have 

explored for the first time the involvement of the SALL4 in acquired resistance to 

trastuzumab in HER2+ BC cells. 

3.1.5 SALL4 in the microenvironment of HER2+ BC 

Tumour cells exist near non-malignant cells. Extensive and multi-layered crosstalk 

between tumour cells and stromal cells tailors the tumour microenvironment (TME) to 

support survival, growth, and metastasis. The TME consists of different cell populations 

such as proliferating tumour cells, the tumour stroma, blood vessels, infiltrating 

inflammatory cells, and various associated tissue cells230. The tumour stroma consisted 

of the basement membrane, fibroblasts, extracellular matrix, immune cells, and 

vasculature. Fibroblasts are one of the largest populations of non-malignant host cells 

that can be found within the TME of the breast, pancreatic, and prostate tumours 

(Figure 45). Previous studies have identified cancer-associated fibroblasts (CAFs) 

originating from various cells types, including fibroblasts, endothelial cells, and 

vascular mural cells. Multiple independent studies have recently also implicated bone 

marrow-derived cells, most likely mesenchymal stem cells, as a considerable source of 

CAFs231. CAFs have a significant impact on cancer cells' behaviour, including 

proliferation, invasion, metastasis and chemoresistance in many ways. However, the 

underlying mechanism had not been fully elucidated. 
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In recent years, it has been observed that SALL4 has a link with TME to facilitate 

tumour growth, progression and resistance to drugs. In 2018, for the first time, a 

research group from China stated that SALL4 and PDL1 are negatively correlated with 

miR-200c. Furthermore, they suggested that the hepatitis B virus (HBV) stimulates 

SALL4 production by activating STAT3. SALL4 directly suppresses miR-200c 

transcription by its transcriptional repressor function, subsequently leading to high PD-

L1 expression due to destroying the CD8+T cell functions and helping in hepatocellular 

cancer (HCC) progression232. Additionally, there is evidence that in HCC, SALL4 was 

critical for regulating miR-146a-5p in exosomes and M2-polarization. Mechanistically, 

SALL4 could bind to the promoter of miR-146a-5p, and directly controlled its 

expression in exosomes. Blocking the SALL4/miR-146a-5p interaction in HCC reduced 

the expression of inhibitory receptors on T cells, reversed T cell exhaustion, and 

delayed HCC progression220. Also, in the same cancer type, another mechanism is that 

the inflammatory micro-environment promotes the stemness properties and metastatic 

potential of tumour cells. The researchers discovered that miR-497 directly targets 

SALL4, negatively regulates its expression, and further inhibits the self-renewal and 

metastasis of HCC. More importantly, inflammatory factor TNF-a inhibits the 

expression of miR-497 via NF-kB-mediated negative transcriptional regulation and 

simultaneously upregulates the expression of SALL4 and promotes the self-renewal and 

metastasis phenotypes of HCC cells233. 

 

Figure 45: This timeline shows key developments and the changing focus of fibroblast research, 

particularly in association with cancers. 
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So, taking all together above references, in this chapter, we have explored how SALL4 

is also regulated by CAF isolated from human primary breast tumour and helps in 

acquired resistance. 

3.2  Materials and Methods 

Details of the material and methods have been described in Chapter 2, section 2.2. The 

remain methods have been elaborated below.  

3.2.1 SALL4 overexpression plasmid transfection of BT474 cells and 

SKBR3 cells 

BT474 and SKBR3 cells were grown to 70‑90% confluence, and SALL4 plasmid and 

empty vector pcDNA3.1 (Addgene) were transfected with one ug/ml in the DMEM 

medium. Cells in the plasmid control group were transfected with vector only. 

Lipofectamine® 2000 reagent was diluted at 1:0.5 ratio in Opti‑MEM medium (Gibco; 

Thermo Fisher Scientific, Inc.) and mixed well. The opti-MEM medium was used to 

dilute the DNA and to prepare a DNA master mix. Both mixture solutions were 

incubated for 5 mins in room temperature. Subsequently, Diluted DNA (1:1 ratio) was 

added to each tube of diluted Lipofectamine® 2000 reagent and incubated for 15 min at 

room temperature. Then, DNA‑liposome complexes were added to the cells. Cells were 

incubated at 37˚C for 72 h, followed by extraction of cellular proteins and mRNA. 

3.2.2 DRUGS assay 

The WST assay is a colorimetric assay for assessing cell viability. We used this assay to 

evaluate the cell proliferation of FFW (peptide) in BT474 WT, BT474R and SKBR3 

WT, SKBR3 R cells. We seeded cells in a 96-well plate at five × 103 cells/well and 

incubated these for 24 h in 37 °C with 5% CO2. We treated the cells with drugs in 

various concentrations and incubated the cells for a further 48, 72, 96, 120 and 168 h. 

For FFW, we used concentrations ranging from 1uM to 15 μM. After the designated 

duration of drug exposure, we aspirated the cell culture medium. We incubated the cells 

with 7%WST reagents diluted with phenol red-free DMEM for 3 h at 37 °C in 5% CO2. 

We calculated cell viability by measuring the absorbance at 450-650 nm using a 

microplate reader (Infinite® M1000 Pro, Tecan Group, Switzerland) and comparing 

them with the control cells (treated with drugs carrier DMSO). 
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3.2.3 The patient’s derived primary cell culture 

HER2+ BC patient’s samples were obtained from Hospital Clinico Universitario de 

Valencia, Valencia, Spain. Tissue samples were collected in a 50 ml falcon tube 

containing 15 ml media (DMEM-F12) with 1% antibiotics. Tissues were washed 

extensively with 1X PBS without centrifugation with 1% penicillin/streptomycin (Life 

Technologies, Carlsbad, CA, USA), for 3-4 times for every 10 mins. Tissue specimens 

were mechanically dissociated using a scalpel and transferred to an enzymatic solution 

of 3mg/ml collagenase 5ml (Thermofisher) and 5 U/mL Dispase (STEMCELL) 5ml, in 

a 37 °C water bath for at least 2-4 h, agitating every 10–20 mins. At the end of 

incubation, the same amount of DMEM-F12 supplemented with 10% FBS was added to 

stop the enzymatic reaction. The tumour cells were centrifuged at 1500 rpm for 5 mins 

to pellet down all the cells and tissue. Then the cells were cultured with DT-culture 

media (DMEM-F12 media, Gibco by life technologies) supplemented with 10% FBS, 

penicillin/streptomycin (1%), L- Glutamine (1%)) in t25 flask and incubated with 5% 

CO2 at 37 °C. Viable tumour cells attached to the flask within 12–24 h. At the first 

medium change, rather than discarding medium containing unattached cells that may 

grow and provide a backup culture, put this into a new flask as some of them contain 

organoids. Cultures at 75% to 100% confluence were selected for subculture by 

trypsinization with 0.05% trypsin-EDTA. The culture medium was changed twice a 

week, and cellular morphology evaluated microscopically every 24–48 h. When 

possible, early passage and late passage, primary cultures were frozen in 90% FBS and 

10% DMSO and stored in liquid nitrogen for further experiments. 

3.2.4 Characterization of Primary cell lines 

The monolayer primary cells are needed to characterize to obtain a different population 

of the cells. Cells growing in 6-well plates were trypsinized and collected in a tube. 

After counting the cells, 100,000 cells were put in another small Eppendorf, and 500 ul 

of PBS was added. Cells were then centrifuged at 1500 rpm for 5 mins. Pellet down 

cells were resuspended with Flow Cytometry Staining Buffer (00-4222-57, 

Thermofisher). Soon after, different antibody types were labelled with cells (CD36 for 

mesenchymal stem cells, CD326 for epithelial cells, CD140a for cancer-associated 

fibroblast, CD24 and CD44 for BC stem cells) and incubated for 30 mins in 4 °C in the 

dark.  Following that additionally, 500 ul of Flow Cytometry Staining Buffer was added 
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to the Eppendorf and acquired and the data were analysed by FACSVerse™ flow 

cytometer (BD Biosciences). Cells were initially gated based on forward versus side 

scatter to exclude small debris, and ten thousand events from this population were 

collected. Control cells were treated with appropriate isotype conjugated IgG (BD 

Biosciences). 

3.2.5 Collection of Conditioned Medium 

For the experiments with conditioned media, HER2+ breast primary cells were plated in 

6 well plates until sub confluence; fresh complete culture medium was added, and cells 

were incubated with 2 ml of medium for 72 h. The supernatant was recovered, filtered 

through a stericup (pore size 0.45 μm; Millipore; Billerica, MA, USA), and centrifuged 

(1,200 rpm for 5 minutes) to discard unattached cells and cell debris. The conditioned 

medium was aliquoted and stored at -80 °C for later experiments in future. 

3.2.6 Cell viability studies with condition medium 

To determine the concentration of condition medium for experiments, the HER2+ 

differentiated cells such as BT474, SKBR3 were seeded on 96 well plates (5000 cells 

per well). After 24 h of the different seeding concentration (5%-100%) of the cm diluted 

with 2%, FBS media were treated with the cells for different periods. 2% FBS with 

media was taken as a control for these experiments.  

3.3 Results 

3.3.1 Assessment of the efficacy of trastuzumab in HER2-positive BC cell 

lines 

The trastuzumab-conditioned BT-474R and SKBR3R cell lines were established by 

culturing the BT-474 and SKBR3 cell lines in the appropriate medium supplemented 

with 15 μg/ml of recombinant humanized monoclonal HER2 antibody, trastuzumab 

(Herceptin, Genentech, USA). Trastuzumab was dissolved in sterile water at a stock 

concentration of 20 mg/ml. Simultaneously, the parental lines were grown without 

treatment to maintain their sensitivity to the drug intact to be employed as procedural 

controls. Once the establishment of resistance was confirmed, the cells were kept at a 15 

µg/ml maintenance dose. These results are adopted from a group of Department of 

Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain, and they have given us the 

resistance cell lines for our experiments234. Two trastuzumab-resistant populations were 
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generated from each sensitive cell lines such as BT474-BT474R and SKBR3-SKBR3R. 

Sensitivity and resistance to trastuzumab were assessed in both cell lines by testing cell 

proliferation in the presence and absence of 15 µg/ml trastuzumab for seven days 

(Figure 46 A-B). Both the medium and the drug were replenished every three days. On 

the other hand, the cells' morphological characteristics remained identical between the 

parental and the equivalent resistant cell lines (Figure 46 C-D). 

 

3.3.2 SALL4 expression in sensitive vs resistance HER2+ BC cell lines 

The quantitative RT-qPCR data revealed that the SALL4 expression was significantly 

lower in the BT474-WT as compared to BT474-R at mRNA and the protein level 

(Figure 47 A-B). Additionally, the same patterns were observed in SKBR3-WT 

compared SKBR3-R protein level. Still, in mRNA level, the expression of SALL4 was 

not significantly different (Figure 47 C-D). The observation showed that SALL4 

expression in acquired resistance cell lines was much higher than the wild type, which 

 

Figure 46: The effect of trastuzumab in cell proliferation and morphology: (A, B) The effect of 

trastuzumab on the BT-474 and SKBR3 (parental and acquired resistance) cell lines for seven days 

exposure to trastuzumab 15 µg/ml. Every trastuzumab-treated condition was compared to its 

corresponding non-treated one (parental/wild type) phase-contrast images showing cultured monolayers 

of parental and trastuzumab-resistant cells for both BT474-BT474R and SKBR3-SKBR3R. 

Morphological characteristics did not differ between sensitive and resistant cells of the same line. 

Student's t-test was used to analyse the significant differences. ***P ≤ 0.001, **** P ≤ 0.0001. 
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concluded that SALL4 might involve in the molecular mechanism of acquired 

resistance in HER2+ BC cell lines.  

 

3.3.3 Expression of SALL4 in HER2+ BC patients and PDX samples 

SALL4 is aberrantly overexpressed in various malignant tumours, such as gastric 

cancer, lung cancer and AML. Less has been explored in BC and its relation to 

resistance.  So, SALL4 expression was determined in different BC patients comprised 

18 clinical primary tissue samples, of which 7 were responder, and 11 were non-

responded to treatment, i.e., trastuzumab. It showed that the appearance of SALL4 is 

higher in non-responding patients to trastuzumab /metastatic compared to the responder 

(Figure 48A). To support these results, we obtained PDX (Patients derived xenograft) 

samples from trastuzumab non-responder patients. A total of 6 PDX samples originated 

from one non-responder patient, denominated as PDX1, PDX2, PDX3, PDX4, PDX5, 

and PDX6 respectively. PDX1 is only one PDX sample, of which the original tumour 

was derived from a responding patient to trastuzumab. When we analysed the 

expression of SALL4 in different PDX tumour sample derived from one responding 

patient and one non-responding patient to trastuzumab, we found that SALL4 

 

Figure 47: Expression of SALL4 in sensitive and acquired resistance HER2+ breast cell lines: The 

relative expression of the SALL4 was determined in HER2+ cancer cell lines both in parental and 

acquired resistance cell lines of BT474 and SKBR3 (A, C). SALL4 protein expression was determined by 

western blot in mentioned cell lines (B, D). Student's t-test was used to analyse the significant differences. 

***P ≤ 0.001. 
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expression was higher in 5 of the PDX samples, especially (PDX2, PDX3, PDX5) as 

compared to responder PDX sample (PDX1) (Figure 48B). These data collectively 

seemed to suggest that up-regulated SALL4 may be implicated on aggressiveness and a 

key regulator of trastuzumab resistance in HER2+ subtype. 

 

3.3.4 SALL4 expression mRNA analysis in a public database (TCGA) 

As it observed that SALL4 expression is related to trastuzumab resistance, we aimed to 

know the expression of SALL4 in different molecular subtypes of BC in basal level. 

From the TCGA database, we obtained 523 numbers of specimen details; others had 

missing SALL4 expression data, no follow-up data, or missing clinical information. 

Among them, there were Luminal B (n= 127), Basal-like (n= 98), Luminal A (n= 231), 

HER2+ (n= 58) and normal-like tissue (n=9), which showed high expression of SALL4 

in HER2-enriched tissue samples following Luminal-A, Luminal B and basal-like 

subtypes (Figure 49). The low-level expression was observed in normal-like subtypes, 

which suggested that high SALL4 expression is required to drive HER2+ cancer 

progression and induce resistance to treatments. 

 

Figure 48: Expression of the SALL4 in BC patients and PDX samples: The relative expression of 

SALL4 was determined by RT-qPCR in HER2+ cancer tissue responding to trastuzumab, non-responding 

to trastuzumab (A).  Relative SALL4 expression was determined in different PDX samples compared to 

one responder control. Student's t-test was used to analyse the significant differences (B). *P ≤ 0.05. 
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3.3.5 Survival analyses for SALL4 expression in BC patients and HER2+ 

BC patients. 

The overexpression of SALL4 in BC tissue was highly correlated with poor prognosis 

and disease relapse. As we observed the SALL4 expression is higher in resistance in in-

vitro and in patient’s samples, we analysed the OS, RFS and DMFS in all type of cancer 

and specifically in HER2+ subtype of cancer. RFS showed different results, suggesting 

that high expression of SALL4 extends disease-free survivability in ALL subtypes 

while in HER2+, it has opposite results (As expected) (Figure 50 A, D).  When looking 

at the overall survival, we noted that in both ALL and HER2+, the more expression of 

SALL4 related to less survival significantly, which suggested that SALL4 might act as 

tumour oncogene, but its involvement in relapse-free survival is subtype-specific 

(Figure 50 B, E). DM-free survival (DMFS) was defined as the duration between 

primary local recurrence and distance metastasis. While analysing the DMFS in km 

plotter, we noticed that the SALL4 had followed the same like RFS (Figure 50 C, F). 

These results explained that SALL4 could act as an independent predictor of the 

development of metastases, relapse of the diseases and patient’s survival in breast 

HER2+ subtype.  

 

Figure 49: SALL4 expression is indicated in BC tumour or normal like tissues from TCGA dataset: 

RT-qPCR analysis indicated the SALL4 expression levels in five main intrinsic or molecular subtypes of 

BCs tissues from TCGA dataset. 
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3.3.6 Knockdown and overexpression of SALL4 in HER2+ WT/R cell 

lines using silencers and plasmid.  

Previous results showed that high expression of SALL4 is being involved in 

trastuzumab resistance and progression of human HER2+ BC. It is crucial to know the 

gene's implications in cell proliferation and other phenotypic properties in human 

HER2+ cell lines to explore the molecular mechanisms. For this purpose, one of the 

strategies employed in this study was the overexpressing SALL4 in sensitive cell lines 

by plasmid and silencing of the SALL4 in resistance cell lines by specific siRNA for the 

SALL4. After transfection with plasmid and silencer in respective cell lines with 

negative control for each condition, the efficiency of transfection was checked of 

mRNA by RT-qPCR from 48 h -96 h and in protein level at 72h (Figure 51 A-H). 

Unitedly, these results suggested that the commercially avail plasmid and silencer have 

been effectively overexpressed and silenced the mRNA and proteins of SALL4 in 

HER2+ BC cell lines so that it is sufficient to check the functional effect on cells. 

 

 

Figure 50: Prognostic value of SALL4 expression in BC patients: In silico relapse-free survival 

(RFS), overall survival (OS) and distant metastasis-free survival (DMFS) of SALL4 in BC patients (A-C) 

and HER2+ subtypes patients (D-F) with Kaplan-Meier Plotter. 
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3.3.7 Silencing SALL4 partially restores trastuzumab sensitivity in 

acquired resistance cell lines  

Drug resistance is a significant obstacle that affects the overall survival rate for 

advanced and recurrent HER2+ BC patients. We sought to analyze whether SALL4 in 

BC cells participated in mediating cellular resistance to trastuzumab. It was revealed by 

cell viability assay that an ectopically increase expression of SALL4 in BT474 and 

SKBR3 parental cells make cells less sensitive to trastuzumab than control (empty 

vector) at seven days (Figure 52 A-B) due to high proliferation of the cells, as a 

primary effect of overexpression of SALL4. Meanwhile, downregulation of SALL4 in 

BT474-R and SKBR3-R through two different silencers showed a significant decrease 

in proliferation and more responding to trastuzumab treatment than the negative control 

of the silencer (Figure 52 C-D). In summary, these findings indicate that SALL4 is 

 

 

 

 

 

Figure 51: SALL4 expression after plasmid and siRNA transfection in HER2+ cell lines: RT-qPCR 

(A, E) and Western blot (B, F) results showing the overexpression efficiency of a plasmid 

(pcDNA3.1+/SALL4) for SALL4 in both sensitive cell lines such as BT474WT and SKBR3 WT.  The 

relative expression of SALL4 using a specific silencer resulting in satisfied downregulation of the 

expression at mRNA (C, G) and protein (D, H) level in both acquired resistance cells lines such as BT-

474R and SKBR3 R.  
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involved partially in drug resistance in HER2+ BC cells and helps cells to escape from 

treatments. 

 

3.3.8 SALL4 follows the PI3K/AKT/PTEN pathway for partially restore 

the trastuzumab effect.  

One of the most potent signalling pathways promoted by HER2 overexpression is the 

phosphatidylinositol PI3K/AKT/PTEN signalling cascade, which affects cell cycle 

progression and can inhibit apoptosis. It has been reported that activated AKT can be an 

indicator of poor prognosis, possibly promoting cell survival. To regulate AKT activity, 

PI3K is opposed by PTEN, which converts PIP3 back to PIP2, thus preventing 

 

Figure 52: Assessment of trastuzumab efficacy through regulation of SALL4: The proliferation of 

BT474 and SKBR3 parental cells with overexpression of SALL4 and treatment with trastuzumab (A-B) 

was measure by WST assay. The proliferation with silencing of SALL4 by two different silencers in both 

acquired resistance cell lines; BT474-R and SKBR3-R was also determined with presence of trastuzumab 

by WST assay (C, D) The graph shows the results of three independent experiments, run in triplicate. The 

experiments were carried out to 7 days.  Student’s t-test compared the results. *P ≤ 0.05, **P ≤ 0.01, 

***P ≤ 0.001 and **** P ≤ 0.0001. 
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phosphorylation and activation of AKT. As a result, cellular proliferation is inhibited, 

and tumour formation is suppressed. On the other hand, Lu et al. showed that SALL4, 

as a transcription factor, repressed PTEN expression by binding to the promoter regions 

in intrahepatic cholangiocarcinoma235. So, taking together, we hypothesized that SALL4 

might play an essential role in regulating trastuzumab resistance through the 

PI3K/AKT/PTEN pathway. We overexpressed the SALL4 ectopically in parental cell 

lines of BT474 and SKBR3, which showed the results that, with the overexpression of 

SALL4 activates PI3K and AKT as an outcome of repression of PTEN expression 

(Figure 53 A-B). When AKT phosphorylates, it activates many downstream targets, 

such as BCL2, resulting in increased cell survival and proliferation.  In contrast, in 

acquired resistance cell lines BT474R and SKBR3R ectopically down-regulation of 

SALL4 represses PI3K and AKT's activation and overexpress PTEN along with 

downregulation of BCL2 (Figure 53 C-D). These results suggested that SALL4 

regulates HER2+ pathway through a complicated intracellular pathway 

PI3K/AKT/PTEN, which leads to cell growth, tumour proliferation, escape from 

trastuzumab and plays a significant role in BC progression and resistance.  

 

 

Figure 53: Western blotting of PTEN and PI3K/AKT pathway‑associated proteins: Expression levels 

were analysed by western blotting following 72 h of transfection of plasmid for overexpression of SALL4 

in parental cell lines and si-RNA for down-regulation of SALL4 in acquired resistance cell lines. 
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3.3.9 SALL4 promotes EMT: a crucial regulator of drug resistance  

EMT transcription factors might induce enhanced phenotypic plasticity that would 

allow HER2+ BC cells to "enter" into and "exit" dynamically from trastuzumab-

responsive stem cell-like states. Considering this hypothesis and being SALL4 as a 

transcription factor which plays an essential role in maintaining stem cell-like states, we 

hypothesised to investigate EMT markers in all cell lines with the gain-loss expression 

of SALL4. Further, we ectopically overexpressed and downregulated SALL4 in wild 

type and resistance cell lines. This results section has used two different siRNAs 

specifics to reducing SALL4 expression in transfected cell lines.  While SALL4 is 

overexpressed in wile type cell lines, the EMT markers such as E cadherin (CDH1) 

have significantly reduced its expression compared to empty vector. Whereas 

mesenchymal markers expression like β-catenin (CTNNB1), Vimentin (VIM) and 

Fibronectin (FN1) and also MYC an essential transcription factor for essential to 

regulate EMT and/or CSCs, have increasing acceptably (Figure 55 A, B, E, F). 

Meanwhile, we observed the adverse effect in resistance cell lines, when we silenced 

the SALL4 expression by two different silencers (Figure 55 C, D, G, H). In summary, 

our results uncover that overexpressing of SALL4 promotes EMT, which is required for 

the cells to make them follow the resistance pathway in the future. 
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Figure 54: SALL4 regulates EMT in HER2+ BC cells: RT-qPCR and western blot results showing 

EMT marker levels after overexpressing and silencing sall4 in parental cells (A, B, E, F) and acquired 

resistance cells (C, D, G, H). Student's t-test was used to analyse the significant differences. *P ≤ 0.05, 

**P ≤ 0.01, ***P ≤ 0.001 and **** P ≤ 0.0001.  
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3.3.10 NURD complex can play an essential role in resistance.  

In mammalian cells, there are two major histone deacetylation complexes, Mi-2/NuRD 

and Sin3. These two protein complexes share four common components, HDAC1, 

HDAC2, RbAp46 and RbAp48. Mi-2/NuRD complex additionally includes Mi-2, 

MTA-1, MTA-2, p66 and MBD3. Among these eight factors, HDAC1 and HDAC2 are 

histone deacetylases, RbAp46 and RbAp48 are histone binding proteins, and Mi-2 is a 

chromatin-remodelling ATPase. Therefore, histone deacetylation and chromatin-

remodelling ATPase activities are uniquely linked in this single protein complex Mi-

2/NuRD, whose function is to produce compactly packed, hypoacetylated nucleosomes 

that switch an active, hyperacetylate promoter to its inactivated state236. NuRD has also 

been implicated in regulating transcriptional events that are integral to oncogenesis and 

cancer progression. SALL4 has been reported to act as a repressor by interacting with 

the epigenetic HDAC / NuRD complex. It is suggested that the oncogenic role of 

SALL4 in cancer development may be due in part to its repressive role in the tumour 

suppressor PTEN. In hepatocarcinoma, SALL4 has been shown to physically interact 

with retinoblastoma 4-binding protein (RBBP4), part of the NuRD complex, and that a 

specifically designed peptide is capable of antagonizing the SALL4-NuRD 

interaction237. We emphasized that the NuRD complex might be involved in HER2+ BC 

progression and trastuzumab resistance based on the present hypothesis. All the NuRD 

complex members' protein expression shows different expression in sensitive vs 

resistance of BT474 and SKBR3 (Figure 55 A-B). The mediator, who plays an essential 

role between SALL4 and NuRD complex interaction and cancer progression in different 

types of cancer is RBBP4237. Therefore, when we tried to check the gene and protein 

expression of RBBP4 in both resistance and sensitive cell lines of HER2+ subtypes, we 

found that RBBP4 expression is higher in resistance as compared to sensitive in both 

levels (Figure 55 C-D). This result has also been confirmed by microarray (Dr Federico 

Rojo, laboratory, Molecular Pathology at the Jiménez Díaz Foundation, Madrid).  This 

also suggested that the RBBP4 expression is higher in resistance cell lines than the 

parental cell line (Figure 55E). All together above data suggested that interaction of 

SALL4 and RBBP4 (NuRD complex) is required for trastuzumab resistance cell lines, 

where they can inhibit the expression of PTEN and activates PTEN/PI3K/AKT pathway 

to assist cancer cells in surviving. 
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3.3.11 Analysis of RBBP4 mRNA expression in the TCGA database 

After analysing the RBBP4 expression in HER2+ cancer cell lines, we intended to know 

the expression of RBBP4 in different molecular subtypes of BC in basal level collected 

from the TCGA database. We could obtain 976 numbers of specimen details; others had 

missing RBBP4 expression data, no follow-up data, or missing clinical information. 

Among them, there were Luminal B (n= 194), Basal-like (n= 142), Luminal A (n= 434), 

HER2+ (n= 87) and normal-like tissue (n=119), which showed high expression of 

RBBP4 in almost all molecular subtype of BC except in normal-like subtype (Figure 

 

 

Figure 55: Expression of the NuRD complex in HER2+ cancer cell lines and BC patients: All the 

units of NuRD complex basal level expression were measured by western blot in BT474 WT and BT474 

R (A, B). Basal level expression at mRNA and protein level of RBBP4 were measured by qRT-PCR and 

western blot in both parental cell line and acquired resistance cell lines (C, D). Microarray data were 

analysed of both sensitive and resistant cell lines to evaluate the expression of RBBP4 (E). Student's t-test 

was used to analyse the significant differences. *P ≤ 0.05, **P ≤ 0.01. 
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56). The low-level expression in normal-like subtype suggested that high RBBP4 

expression is required to drive HER2+ cancer progression along with inducer of 

resistance to treatments and also helps SALL4 in the aggressiveness of the different BC 

subtypes.  

 

3.3.12 Positively regulation of the NuRD complex through SALL4 might 

play an essential role in HER2+ resistance cell lines.  

According to the previous results, we observed NuRD complex is overexpressing in 

resistance cell lines, and it interacted with SALL4. Therefore, we shouted to know 

NuRD complex expression while regulating SALL4 expression in wild type and 

resistance cell lines. While overexpressing SALL4 in parental cell lines and silencing 

SALL4 in resistance cell lines of BT474 and SKBR3, showed a modulation in NuRD 

complex proteins. It has been observed that expression of RBBP4, MTA1, MBD3 and 

HDAC1 has positively regulated by SALL4 gain-loss expression (Figure 57 A-D). It is 

already described before that, SALL4 acts as a repressor of PTEN by recruiting the 

NuRD complex.  So, we also found that while there are changes in NuRD complex, it is 

also affecting the PTEN expression, which is a direct target of the NuRD complex and 

might have a secondary effect on PTEN/PI3K/AKT pathway. The vice versa is 

happening in the silencing of SALL4 in resistance cell lines. This novel hypothesis links 

interaction between SALL4 and NuRD complex, which is required to suppress PTEN 

expression and activate AKT pathway, which is one of the critical pathways in HER2 

 

Figure 56:RBBP4 expression is indicated in BC tumour or normal tissues from TCGA dataset: RT-

qPCR analysis indicated the SALL4 expression levels in five main intrinsic or molecular subtypes of BCs 

tissues TCGA dataset. 
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signalling trastuzumab mechanism of action as mentioned above.  So, altogether this 

data showed a novel molecular mechanism of trastuzumab resistance in HER2+ subtype 

of cancer.  

3.3.13 The peptide FFW has an effect on cell proliferation on HER2+ BC 

both resistance and WT cell lines 

From the above results, we found that SALL4 acts as a repressor of PTEN by recruiting 

the nucleosome remodelling deacetylase (NuRD) complex in both WT and resistant cell 

lines. The retinoblastoma binding protein 4 (RBBP4) is a subunit of NuRD. It is a 

WD40 repeat-containing protein, which consists of a seven-bladed β‐propeller domain. 

In NuRD, RBBp4 acts as a chaperone in nucleosome assembly by bringing together 

histones H3 and H4 onto newly replicated DNA238. It has also been proved that SALL4-

NuRD complex interaction happened for RBBP4. Therefore, there is an urgent need to 

explore alternative approaches for the treatment of this deadly disease. SALL4, 

however, falls into the class of what is termed as “undruggable” targets, as a nuclear 

 

Figure 57: The modulation of the NuRD complex through SALL4: Overexpression and 

downregulation of the SALL4 in parental and acquired resistance cell lines showed the different 

expression pattern of NuRD complex core components through western blot (A, B, C, D). 
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factor lacking a typical, druggable pocket for inhibitor binding. In this report, we 

discovered that the SALL4– NuRD interaction offers an intriguing potential therapeutic 

target by a novel peptide called “FFW” (PEN-FFW: RQIKIWFQNRRMKWKK-

RRKFAKFQWI). Here we have shown that with the treatments of this FFW peptide, we 

were able to reduce the proliferation of HER2+ BC in both resistance and wile type of 

BT474 and SKBR3. 

We found that IC50 of the drugs are changing mostly in BT474S-R compared to 

SKBR3 S-R, where BT474 is a Luminal B/HER2+ subtype, and SKBR3 is pure HER2+ 

subtype. There is different IC50 in BT474 wt (13.4 um in 96 h) vs r (6 um in 96 h). It 

is demonstrated that in resistance, the interaction between SALL4-RBBP4 is stronger 

than the wild type in BT474. In SKBR3 wt vs r, there are mild changes in IC50 (Figure 

58 A-D). These results suggested that might this peptide increase the efficacy of the 

trastuzumab in acquired resistance cell lines. So synergetic study is required with 

trastuzumab in both parental and acquired resistance cell lines.  

 

Figure 58: IC50 Values for the treatment of FFW on HER2+ cells lines: WST assay was carried out 

on both parental cells and acquired resistance cells. Different FFW concentrations were treated on both 

kinds of cell lines for 72 h and 96 h. All values are averages of replicates expressed relative to cell 
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3.3.14 Mir-33b targets SALL4 based on cell type-specific. 

According to literature, miR-33b (results of its evaluation in HER2+ shown in chapter 

2) can target SALL4 and reduces its expression, which resulted in the reduction of 

stemness and invasion of cancer cells194. When we checked in our HER2+ BC model, 

we found that with the ectopic overexpression of miR-33b has reduced the mRNA 

SALL4 expression only in BT474 but not in SKBR3 (Figure 59 A-B). Nonetheless, we 

tried different bioinformatics tool to check the physical interaction of miR-33b and 

SALL4. Still, nowhere we did not find any convincing results but in the Freiburg RNA 

tools to predict the interactions between miR-33b and SALL4, which showed a weak 

physical interaction with less yield of energy -2.94329 kcal/mol (Figure 58C). 

Collectively, these results suggested miR-33b might target SALL4 but not in all types 

and subtypes of cancer. It acts on cell type-specific.  

viability values in untreated cells normalized to 100%. IC50 of the FFW was calculated through 

GraphPad prism. 

 

Figure 59: miR-33b and SALL4 interaction is cell type-specific: SALL4 expression was analysed at 

mRNA level by qRT-PCR in BT474 and SKBR3 parental cell lines post-transfection with miR-33b 

mimic (A-B). Schematic description of the hypothesized interaction between the SALL4 3´UTR binding 

site from 584-593 with miRNA-33b (C).  
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3.3.15 Patient-derived primary cell cultures establishment. 

The heterogeneity of BC disease is a disadvantage for in vitro studies. Established 

cancer cell lines have been widely used with all the difficulties that come with it. The 

development of primary cultures provides an exceptional opportunity to reproduce 

cancer conditions and evaluate the proposed and new therapeutic approaches. 

Too deep inside our study, more than 20 BC tissues were used to establish primary 

cultures. Three of them cancer tissue specimens were from the HER2+ subtypes 

patients. The protocol of preparation for patient-derived cells was optimized to obtain a 

high yield of viable primary cells. After enzymatically degradation of the tissue, we put 

then in complete DMEM-F12 medium, supplemented with 10% FBS, 1% P/S and 1% 

L-glutamine. Post 24 h of the seeding; we observed that the small tissue started 

attaching to the cells and some of the single cells and coming out from those tissues 

called the initiation process (Figure 60A).  

 

Then days after we noticed that those individual cells have a spindle-like structure, they 

started doubling and presenting morphological heterogeneity of cells, such as long, 

flattened mesenchymal-like cells epithelioid cells with the presence of the occasional 

multinucleated cell, which process is called purification (Figure 60B). After 10-15 

 

Figure 60: Establishment of Breast primary 2D cell line: Bright field microscopy shows the stages of 

(A) Initiation (B) purification and (C) wholly purified confluent cell line. Relative expression of alpha-

SMA was determined in different passages of the primary cells (D). Student's t-test was used to analyse the 

significant differences. **P ≤ 0.01. 
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days, we found a single layer of confluence primary cells with their appropriate 

morphology and reportedly no contamination, and this final process is called completely 

purified confluent cell line (Figure 60C). Subsequently, we analysed the alpha-SMA 

expression, a marker of activated cancer-associated fibroblasts (CAFs) in a different 

passage such as passage 2 and passage 10. We found that with the different passage and 

aggressiveness of the trypsinization, the cells are gradually becoming more CAFs than 

the early passage (Figure 60D).  

3.3.16 Molecular characterization of primary cells. 

Breast primary cells early passage is the mixture of a different cell population such as 

epithelial, adipose stem cell, BC stem cells and CAFs. We used different markers 

conjugated with varying fluorochromes in flow cytometry to demonstrate these 

populations in our established primary cell lines. The molecular markers, those have 

been used for identifying the population are for stem cell population cd 24- and cd 44+, 

for epithelial cells cd 326, for adipose-derived stem cell (ADSC) cd 36 and CAF cd 

140a. We found that even though the primary cells are in early passage, in the mixture 

of population, the CAF population is higher in percentage than other population of the 

different cells (Figure 61A). A significantly higher population of cd 140a and cd 44 

were determined (Figure 61B), known as a familiar marker of CAF population 

regulates various cellular functions including tumour heterogeneity, resistance to drugs, 

and aggressiveness of the tumour. Which is also considered the driver of current anti-

tumour therapies’ failure, involves both the transformed epithelial cells and the stromal 

cellular components.  
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3.3.17 The conditioned medium (CM) derived from the HER2+ primary 

BC cell lines induce cancer cell proliferation 

The primary breast cell lines' molecular characterisation showed the highest population 

of CAFs having active fibroblasts with positive α-SMA expression and cd140a 

expression, so we considered the primary cells as CAFs cell lines. The stromal cells 

separated from primary BC tissues were a heterogeneous mixture of various cells in the 

primary culture, with fibroblasts being the main component. After different passaging of 

the primary cells, uniform fibroblasts started to grow. The stromal fibroblasts showed 

positive staining for the mesenchymal marker vimentin in all types of BC subtypes 

compared to MCF10a, a non-tumourigenic epithelial cell line (Figure 62A).  

Figure 61: Characterization of the cell population using different markers by flow cytometer in 

breast primary cells. Passage number is 4 and subtype is HER2+. The percentage of the cell population 

was calculated based on positive staining of the specific markers.  

 

Figure 62: Effect of the CM on HER2+ cancer cells: Relative expression of vimentin, a marker of the 

CAF population was determined by qRT-PCR in different subtypes of primary BC cell lines (A). Bright-

field microscopy of BT474 and SKBR3 showed the morphological effect induced by CM (B). The 

proliferation of BT474 and SKBR3, co-cultured with conditioned media for 72 h (C, D). Student's t-test 

was used to analyse the significant differences. **P ≤ 0.01, **** P ≤ 0.0001. 
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Even we observed that HER2+ and TNBC subtypes have more expression of VIM as 

compared to control. To investigate the effects of CAFs on BC cells proliferation, we 

selected two HER2+ subtypes primary cell lines. We named DT-18 and DT-30 (DT-

dissecting tumour and number denoted the count of tumour tissue samples have been 

processed.), the CAF-CM was collected, and 50% of the CM used to culture with 

HER2+ BC cell lines BT474 and SKBR3. The cells cultured with CAF-CM showed 

more spindle-like shape and cell scattering in 72 h (Figure 62B) than controls, in 

addition to morphological changes, we checked the proliferation with 50% treatment of 

CM from both patients. It showed that at 72 h, the proliferation is significantly 

increased in both CM treated cells compared to control (control was taken 2% FBS with 

DMEM-F12 medium) (Figure 62 C-D). All the above results suggested that CAF-

secreted proteins could stimulate these different BC cell lines to change their 

morphologies and phenotypes to have more metastatic potential and aggressiveness 

characteristics. 

3.3.18 The condition media treated cells induce SALL4 expression 

After analysing the effect of CM on cell proliferation, we shouted to explore the 

expression of SALL4 in mRNA and protein level. As earlier, we explained the SALL4 

directly induces cell proliferation of HER2+ cancer. We treated BT474 and SKBR3 

with DT 18 and DT 30 CM for 72 h to access the mRNA and protein expression. In 

both cell lines after treating with cm, the SALL4 mRNA expression was a 3-fold 

increase in SKBR3 and a 2-fold increase in BT474, respectively (Figure 63 A-B). The 

protein expression of SALL4 was also higher in both CM treated cells in 72 h (Figure 

63, C-D). Together, these results suggested that the cytokines present in the conditioned 

medium instigating the expression of SALL4 higher and induced cell proliferation. So, 

it would be essential to characterise the CM for the reorganization of the cytokines, 

which involved high SALL4 expression, and would open a new link between SALL4 

and microenvironment.  
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3.4 Discussion 

HER2+ BC is an aggressive disease that is more likely to reoccur than luminal A and B. 

Still, while HER2+ BC recurrence affects some patients, recent advancements in 

targeted therapies and long-term treatment approaches have made relapse less likely 

than ever before. To continue with this approach, it is essential to explore the different 

molecular mechanism, that will guide to advance the targeted therapies and prevent the 

recurrence more effectively. Among them, transcription factors play a vital role in 

controlling various direct mechanisms including chromosomal translocations, gene 

amplification or deletion, point mutations and alteration of expression, and indirectly 

through non-coding DNA mutations that affect transcription factor binding. Multiple 

approaches to target transcription factor activity have been demonstrated, preclinically 

and, in some cases, clinically, including inhibition of transcription factor–cofactor 

protein-protein interactions, inhibition of transcription factor–DNA binding and 

modulation of levels of transcription factor activity by altering levels of ubiquitylation 

and subsequent proteasome degradation or by inhibition of regulators of transcription 

factor expression. Besides, several new approaches to targeting transcription factors, it 

is not adequate to omit the disease completely. These innovations in drug development 

hold great promise to yield agents with unique properties that are likely to impact future 

cancer treatment. 

 

Figure 63: CM induces SALL4 expression in HER2+ cell lines: SALL4 expression was determined in 

mRNA (A, B) and protein level (C, D) with the treatment of CM collected from DT18, DT 30 by qRT-

PCR and western blot. Student's t-test was used to analyse the significant differences. *P ≤ 0.05, **** P ≤ 

0.0001. 
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It is known that SALL4 plays a vital role in stem cell self‐renewal and pluripotency 

through different mechanisms, depletion of SALL4 results in early embryonic 

development defects239. Enhanced expression of SALL4 was first found to be associated 

with carcinogenesis in acute myeloid leukemia211. Subsequently, overexpression of 

SALL4 has been demonstrated to promote tumorigenesis, tumour growth, and tumour 

progression in various cancers. SALL4 is an important oncofoetal gene in a subset of 

different types of cancers with an aggressive phenotype. Blocking this gene's action 

with a short peptide could have therapeutic potential.  

In recent studies, SALL4 expression was determined in  86.1 % of BC cases213. This 

high level of expression has been detected even in the early stages of tumours, but no 

significant correlation was found between the clinicopathological features and SALL4 

expression levels240. Another study reported that high cytoplasmic expression of SALL4 

is directly correlated with worse OS, and determining the expression level has excellent 

predictive value. SALL4 cytoplasmic expression is higher in invasive ductal carcinoma, 

showing that this gene may be an independent prognostic marker214. It has also been 

demonstrated that SALL4 holds a binding site for the TNF-α gene, which regulates cell 

death. It also might be related to PMS2, a mismatch repair protein indicator of poor 

prognosis in BC241. Dimri et al. revealed the Bmi-1 gene's overexpression, an oncogene 

stimulated by SALL4 in human mammary epithelial cells. SALL4 might also induce 

telomerase activity during cell transformation242. As SALL4 acts as a transcription 

factor, it has various roles in various types of cancers. It acts as a master regulator of 

EMT in different cancer types by targeting CDH1 and overexpressing Beta-catenin, 

Vimentin, and MYC. Itou et al. indicated that SALL4 represses E-cadherin gene 

(CDH1) expression and maintains cell dispersion in basal-like BC215. In the present 

study, we suggested that increased expression of SALL4 promoted metastasis by the 

EMT process in both BT474 and SKBR3 wild type cell lines in both protein and gene 

level. 

In contrast, in resistance cell lines, the downregulation of SALL4 through two different 

silencers showed reduced expression of mesenchymal markers and high expression of 

E-cadherin in both gene and protein level. SALL4 plays important roles in multiple 

tumour-associated processes, including cell metastasis and drug resistance. Metastasis is 

not only the leading cause of cancer death but also the malignant properties of cancer. 

Cancer cells which undergo EMT process will acquire the invasiveness and metastasis 
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ability. The present research showed that SALL4 induced EMT-related proteins, 

including decreased cellular adhesion molecules E-cadherin and an increase in 

mesenchymal marker N-cadherin, Vimentin and Fibronectin. The expression of E-

cadherin and N-cadherin was closely associated with cancer cells invasive and 

metastatic capacity. The recent researches have shown that SALL4 was involved in the 

metastasis and progression in colorectal cancer243. In addition, SALL4 overexpression 

induced EMT in gastric cancer cells, with increased expression of Twist1, N-cadherin 

and decreased expression of E-cadherin244. This evidence suggested that SALL4 could 

induce EMT and promote invasion in a variety of tumours. More importantly, we 

demonstrated that overexpression and downregulation of SALL4 regulated EMT and 

control metastasis in HER2+ BC cells. 

In our research, we first time demonstrated that SALL4 has expression in HER2+ BC, 

but when it gets acquired resistance to trastuzumab, the expression of the SALL4 

becomes higher compared to the basal level. Which indicated that targeting SALL4 in 

trastuzumab resistance cancer, would assist a novel targeted therapy for HER2+ cancer. 

Gain and loss function of SALL4 in wild types and acquired resistance cell lines 

showed that, while SALL4 expression is reduced in acquired resistance cell lines, it 

restored the trastuzumab's sensitivity to reducing the proliferation of the cells. The 

contradictory happened with overexpression of SALL4 in wild type cell lines. The 

above results demonstrated that, because of SALL4 involvement directly in cell 

proliferation, as justifying Kobayashi et al. theory, Nanog and SALL4 are vital factors 

for maintaining undifferentiated state and cell proliferation respectively240. So, since 

high SALL4 expression, cell proliferation is higher, which hinders the trastuzumab 

effect (with optimal concentration) on wild type cell lines. It suggested that SALL4 is 

holding back trastuzumab effect partially on cells due to high proliferation rate.  

Further, to justify the mechanism of cell proliferation and less effective towards 

trastuzumab, we shouted to explore the PI3K/AKT/PTEN pathway, as it is one the most 

studied pathway precisely for HER2+ BC. This pathway responds to the availability of 

nutrients, hormones and growth factor stimulation and has been well established to play 

a very significant role in tumour cell growth and proliferation. Additionally, two of the 

significant mechanistic hypotheses behind trastuzumab resistance disease have been 

mutational activation of the PI3K/AKT pathway and changes in the HER2 molecule 

itself. In particular, mutational activation in PIK3CA, loss of PTEN, increased 
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expression of p95-HER2, and loss of expression of HER2 have been proposed to 

contribute to resistance to trastuzumab as mentioned in the introduction part. So, 

making this hypothesis as a link, and considering that SALL4 might have a particular 

role in this pathway, we started to look the complete pathway consisting of proteins 

which are upstream, downstream and regulator of this pathway through gain- and loss-

of-function of SALL4 in HER2+ BC. In 2017 a research group from China suggested 

that silencing SALL4 in glioma cells reduced cellular growth and proliferation 

dramatically and resulted in an increase in PTEN expression, which depressed the 

activation of PI3K/ AKT pathway and leads to inhibit cancer development245. We 

mimicked the same mechanism in our model, which showed that induced 

overexpression of SALL4 in BT474WT and SKBR3 WT conferred phosphorylation of 

AKT at serine 473 residue and downregulation of PTEN. The inverse happened in the 

silencing of SALL4 in both resistant cell lines. In addition to the PI3K/AKT pathway's 

downstream protein, we demonstrated that with overexpression of SALL4, MYC and 

BCL2 expression were positively regulated in both wild type cell lines, and vice versa 

occurred in resistance cell lines. MYC function activates transcriptional programs that 

favour cell growth and proliferation, and suppress programs that cause cell growth 

arrest. MYC must favour the induction of crucial programs involved in the 

bioenergetics of growing cells246. 

SALL4 positively regulates MYC because SALL4 has a binding region on MYC 

promoter region225 as described in the introduction part. Likewise, BCL2 is an anti-

apoptotic protein belong to the BCL2 family. BCL2, as a protooncogene, contributes to 

malignancy by protecting cells from apoptosis. In 2008, a research group from Harvard 

Medical School invented that SALL4 directly binds with BCL2 and positively regulates 

leukemic cell growth247. In the other hand, it has been shown that the PI3K/AKT 

pathway can mediate cell-survival signals through the BCL2 family. The 

serine/threonine kinase mTOR, the major sensor of cell growth along the PI3K/AKT 

pathway, can be activated by agents acting on microtubules. Damaged microtubules 

induce phosphorylation of the BCL2 protein and lower the threshold of programmed 

cell death, which leads the cell to survive and escape from drugs. Altogether, the link 

between proteins mentioned above delivered a novel pathway justifying that, SALL4 is 

involved in HER2+ cancer cell proliferation, and makes resistance cells more 

aggressive through this novel pathway.  
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The NuRD complex is one of four major types of ATP-dependent chromatin 

remodelling complexes. Like other chromatin remodelling complexes, the NuRD 

complex has important roles in transcription, chromatin assembly, cell cycle 

progression and genomic stability in different types of cancers. RBBP4 is an essential 

subunit of the NuRD complex, which plays a key role in maintaining key regulators' 

silencing during embryonic development. A deregulated SALL4–RBBP4/NuRD 

pathway results in tumour suppressors' silencing, such as PTEN in HCC cell237. 

According to this hypothesis, we intended to dig into the NuRD complex expression 

between sensitive and resistance cell lines in HER2+ BC. The microarray data 

suggested that RBBP4 expression is significantly higher in the resistance cell line of 

HER2+ acquired resistance cell lines than sensitive cell lines. The qPCR and western 

blot results confirmed the microarray data, which suggested that SALL4 and RBBP4 

interaction might happen in resistance cell lines instead of inhibiting the PTEN 

expression and activating BCL2 expression. This interaction might be essential for the 

resistance cell line to become a survivor from the drug treatment and worsens cancer 

prognosis. Therefore, targeting the SALL4–NuRD pathway in HER2+ BC, mostly in 

acquired resistance cell lines would be a promising therapeutic approach and a better 

treatment for this specific type of cancer in future. For the first time, Daniel et al. and 

his group designed a peptide named FFW with side chains of the SALL4 peptide 

intercalating into the grooves of RBBP4, providing an opportunity for an engineered 

peptide to inhibit the interaction competitively237. We likewise attempted a similar 

peptide in our cancer model, which demonstrated that the IC50 of this peptide in 

resistance cell lines is lesser than the sensitive cell lines. That explained the competency 

of the SALL4-RBBP4 interaction presence in resistance cell lines compared to sensitive 

cell lines. More future studies are needed for the complete endeavour of this mechanism 

in HER2+ acquired resistance cell lines. And a synergetic study with trastuzumab is 

needed to elucidate the peptide efficiency as a pharmacologic approach.  

Taken together, we demonstrated that SALL4 expression was upregulated in HER2+ 

trastuzumab acquired resistance BC cell lines and positively correlated with poor 

prognosis and aggressive properties. We identified that SALL4 induced EMT and 

increased drug resistance through the PI3K/AKT/PTEN pathway by targeting their 

downstream genes such as MYC and BCL2. We further showed that SALL4 regulates 

NuRD complex. Blocking its physical interaction with RBBP4 (a member of the NuRD 
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complex) by a peptide can give an essential pharmacological approach to treat 

trastuzumab acquired resistance BC patients. In conclusion, our study provided a 

potential molecular mechanism related to SALL4-induced EMT and trastuzumab 

resistance in HER2+ BC cells. SALL4 and NuRD complex may be novel therapeutic 

targets for this specific subtype of BC. 

 CAFs are prominent components of the microenvironment in most types of solid 

tumours and were shown to facilitate cancer progression by supporting tumour cell 

growth, extracellular matrix remodelling, promoting angiogenesis, and mediating 

tumour-promoting inflammation. In recent years, CAFs are emerging as central players 

in immune regulation that shapes the tumour microenvironment. CAFs contribute to 

immune escape of tumours via multiple mechanisms, including secretion of multiple 

cytokines and chemokines and reciprocal interactions that mediate the recruitment and 

functional differentiation of innate and adaptive immune cells. Moreover, CAFs directly 

abolish the function of cytotoxic lymphocytes, thus inhibiting the killing of tumour 

cells. In this study, we have used two different HER2+ cancer patients, from where we 

collected the tissue and extracted the primary cells. The primary cells were 

characterized by qPCR, which indicated that they expressed a large amount of vimentin 

and alpha SMA being mainly CAFs. Based on their level of expression, we considered 

these cell lines as CAF cell lines. The CM is collected from these cell lines and treated 

them in BT474 and SKBR3. With the treatment with CM, the cells' proliferation rate 

was higher than control, and SALL4 expression was re-expressed in CM treatment. 

Altogether, it suggested that secretion of multiple cytokines and chemokines in the CM, 

triggering SALL4 expression in less SALL4 expressed cell lines. That concluded that 

the tumour microenvironment could regulate SALL4, and this link can shed light on a 

new molecular mechanism, that can lead a novel path for cancer treatment.  
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4.1 MAIN CONCLUSIONS 
 

1) Enhancer of Zeste Homolog 2 (EZH2) acts as an oncogene in HER2+ breast 

tumour type. EZH2 downregulation decelerates BC progression and metastasis 

through regulating proliferation and EMT process along with that the high 

expression of EZH2 is related to worse over survival in BC patients. 

2) Mir-33b plays an essential role in inhibiting HER2+ cancer progression through 

regulating proliferation, apoptosis and EMT. 

3) MiR-33b directly targets MYC, it inhibits the downstream protein EZH2, acting 

as a tumour suppressor in HER2+ BC cells. Altogether, we suggest a novel miR-

33b/MYC/EZH2 axis implicated in HER2+ BC cell growth and progression. 

4) The oncofoetal transcription factor SALL4, the target of miR33b, was 

overexpressed in trastuzumab resistance HER2+ BC cell lines. Highlights the 

partial restoration of trastuzumab sensitivity in resistance cell lines via 

PI3K/PTEN/AKT pathway and regulating EMT through MYC oncogene. 

Interestingly, high SALL4 expression levels were significantly associated with 

lower survival in HER2+ BC patients. 

5) Considering another novel mechanism of trastuzumab resistance is recruiting the 

NuRD complex by SALL4. The interaction of SALL4 with RBBP4, a member 

of the NuRD complex, helps cells escape from the trastuzumab treatment by 

regulating the downstream proteins PTEN and BCL2. 

6) The activated cancer-associated fibroblasts from primary BC patients induce an 

increment of SALL4 expression in BC cells lines. This evidence the role of 



134 | P a g e  
 

microenvironment in response to trastuzumab treatment and highlights the need 

for more in-depth evaluation.  
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