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SUMMARY 

 

Introduction 

Neurological diseases can have a wide spectrum of phenotypes, causing disruptions 

in daily life activities and, often, a progressive disease ending in loss of life. Molecular 

mechanisms underlying many of these diseases can have common pathways and depending 

on the gene in question, its dysfunction may lead to a variety of conditions. 

Alzheimer's disease (AD) is the most common neurodegenerative dementia in the 

World with an estimate of 50 million people living with dementia worldwide. Symptoms 

of AD include difficulty remembering names or recent events, apathy, depression, 

disorientation, confusion, difficulty speaking, walking and swallowing. The canonical 

division of AD into early onset (EOAD) and late onset (LOAD) is set at 65 years of age. 

Both are characterised by intracellular hyperphosphorylated tau protein aggregates called 

neurofibrillary tangles (NFTs) and extracellular senile plaques composed primarily of 

clumps of amyloid-β (Aβ) peptide. The AD pathology starts at the entorhinal cortex, a 

region of the medial temporal lobe and causes neuron death leading to atrophy of brain 

tissue. AD is a multifactorial disease with a dichotomous pattern of inheritance with 

approximately 70 % of the causes being genetic and the rest environmental. Mutations in 

genes: APP, PSEN1 and PSEN2, are the most common causes of EOAD and allele ε4 of 

APOE is a well-established risk factor of LOAD. Three main pathways encapsulate most 

of the AD genetic risk factors: the immune response, lipid metabolism and endocytosis. 

Among the genes involved in immune response, CR1 has been associated with AD through 

genome-wide association studies (GWAS) and is an important part of the complement 

system, and significant for this work. A particular CR1 isoform, CR1*2, is expressed at 

lower levels than isoform CR1*1 and it is speculated it affects lower Aβ clearance and 

dysregulation of the complement system. 

Primary lateral sclerosis (PLS) is considered as part of the amyotrophic lateral 

sclerosis (ALS) pathological spectrum. ALS, although considered a rare disease, is the most 

common motor neuron disease (MND). PLS is characterised by spinobulbar spasticity 

caused by upper motor neurons (UMNs) degeneration, while ALS is characterized by 

degeneration of both UMNs and lower motor neurons (LMNs) at spinal and bulbar level, 

causing limb paralysis, dysarthria, dysphagia and fatal respiratory failure. Clinical features 

of PLS include spasticity, slight weakness in the lower limbs, adult-onset, progressive 



 
 

course, duration of longer than 4 years and pseudobulbar symptoms. Behavioural and 

cognitive deficits may occur with ALS, ranging from mild, moderate to frontotemporal 

dementia (FTD) which was also seen in patients with PLS. The genetic basis of PLS is not 

well understood although mutations in genes SPG7 and TBK1 were reported in patients 

affected by familial PLS. Mutations in SOD1 gene, encoding an antioxidant enzyme, and 

in the protein encoded by C9orf72 gene are the most common causes of ALS. ALS 

pathogenesis may be caused by glutamate excitotoxicity, mitochondrial dysfunction, 

impaired structure or transport in axons and oxidative stress. 

Paroxysmal kinesigenic dyskinesia (PKD), the most common paroxysmal 

movement disorder, is characterized by a range of involuntary movements triggered by 

sudden motion. With onset in childhood or adolescence its clinical features include 

recurrent attacks involving chorea, athetosis, dystonic postures or ballismus. Severity of 

these attacks typically decreases with age. Mutations in gene PRRT2 are thus far the only 

cause of this disorder. PRRT2 is known to interact with proteins SNAP-25, SYT1 and 

SYT2 in the presynaptic membrane of neurons, which are involved in signalling in nerve 

cells. The lack of PRRT2 often caused through nonsense-mediated mRNA decay (NMD) 

pathway, due to premature termination codons (PTCs) in the transcript, is said to be the 

common molecular mechanism involved in haploinsufficiency causing PKD. 

 

Objectives 

The main objective of this work is to comprehend the etiopathogenesis of three 

neurological diseases affecting three distinct Spanish families and to study the genetic and 

molecular mechanisms affecting these diseases. 

 

Materials and methods 

DNA samples were collected from members of three Spanish families: UGM037 

(11 individuals) affected by AD, UGM471 (7 individuals) affected by PLS and UGM478 

(7 individuals) affected by PKD. A control population of healthy individuals and 

individuals with AD was also available and all the samples were collected with approval 

of the corresponding institutional review boards of the corresponding hospitals with signed 

informed consent from patients. The bacterial strain used for all necessary manipulations 

was Escherichia coli DH5α and the human cell line was SH-SY5Y. 

Whole-exome sequencing (WES) was used as the tool to identify variants within 

the exome of the patients for further investigation. Through base-calling and image 



 
 

analysis, read alignment and SNP calling the data could be transformed into a workable 

database of variants. Filtering and prioritization followed by Sanger sequencing validation 

of the results was used to identify the most interesting variants, possibly involved in causing 

the disease. Public databases such as Collaborative Spanish Variant Server (CSVS) or 

Genome Aggregation Database (gnomAD) were used for variant assessment. The variant 

frequency was also verified through allele-specific PCR (ASPCR) performed on the control 

populations. 

After identifying the most interesting variants, plasmid manipulations were 

performed to obtain specific cDNAs, corresponding to sequences of the genes with these 

variants, in specific expression vectors. Site-directed mutagenesis was used for introduction 

of single nucleotide variants (SNV), FLAG epitope and enzyme restriction sites. 

Subcloning was used to transfer specific cDNAs to corresponding expression vectors. In 

silico analysis was performed using HOPE, I-Mutant 2.0 and ConSurf web services. That 

way the influence of a specific variant on protein function and stability, as well as whether 

a specific residue is conserved, could be established. 

In the case of genes involved in AD, genotyping of APOE and CR1 was important 

and performed using PCRs. In the case of APOE, the PCR was followed by enzyme 

restriction and analysis of band distribution on an agarose gel. In the case of CR1, the PCR 

was followed by Sanger sequencing or analysis of presence or absence of bands on an 

agarose gel. 

SH-SY5Y cells were maintained in a complete growth medium and Lipofectamine 

2000 Transfection Reagent was used for transfecting them with plasmids corresponding to 

specific experiments. One experiment was to compare the mRNA and protein levels of 

specific genes affected by the identified variants. In another, the same comparison was 

made after inhibition of the NMD pathway, using NMDI14. In order to measure mRNA 

levels, the mRNA was extracted from transfected SH-SY5Y cells after approximately 48h 

of incubation and by reverse transcription cDNAs were obtained. These were used in 

quantitative PCR (qPCR) with specifically designed primers to amplify the reverse 

transcribed transcript with appropriate controls. In order to measure protein levels, the 

proteins were extracted from transfected SH-SY5Y cells after approximately 48h of 

incubation and used for Western Blot (WB) analysis. Housekeeping gene actin was used 

as control. 

For functional analysis of ADPRH protein and its variants, the proteins were 

extracted from transfected SH-SY5Y cells and subjected to purification using GST-tagged 



 
 

protein affinity column. After sample dialysis and concentration the proteins could be used 

for an activity assay. This involved cholera toxin (CT) ADP-ribosylation of substrate and 

further ADP-ribose cleavage by ADPRH and its variants. The samples were then loaded 

onto an ultraperformance liquid chromatography (UPLC) column which allowed for 

separation, identification, and quantification of components based on data from a detector 

measuring absorbance at 260 nm. Also co-immunoprecipitation was used with protein 

extracts from SH-SY5Y cells co-transfected with ADPRH and ADPRHL1 in order to 

ascertain whether protein-protein interaction takes place. 

Statistical analysis was performed using the student's t test and one-way or two-way 

ANOVA to test differences between group means, with a post hoc Tukey multiple 

comparisons of means test. R software was used to perform the tests. 

 

Results and discussion 

The filtration, prioritization and Sanger sequencing validation identified variant 

rs764542666 in gene CR1 encoding a PTC c.C406T p.R136* (CR1R136*) as the likely cause 

of AD in family UGM037. The clinical data suggested a LOAD in the family, which would 

be more in line with risk factors rather than causative mutations. The family members did 

possess the APOE ε4 allele, however remarkably, genotyping revealed a healthy member 

of the family with a ε4/ε4 APOE genotype at age 88. The CR1R136* variant segregated with 

the disease in the pedigree, not affecting any of the non-AD members. As CR1*2 isoform 

of CR1, which is expressed at lower levels than CR1*1, was previously associated with 

higher risk of LOAD, a possible NMD of CR1R136* transcript could cause 

haploinsufficiency and a similar effect. Study of mRNA and protein levels revealed the 

CR1R136* to be expressed at lower levels than the wild-type (CR1WT). These levels would 

then significantly increase after treatment with NMD inhibitor, suggesting involvement of 

this pathway in CR1R136* transcript destruction. Genotyping of CR1*2 isoform and 

rs3818361 in CR1 in samples from UGM037 family, showed that none of them had CR1*2 

isoform and rs3818361 did not segregate with the disease, not being present in any of the 

samples from patients. Both of these were genotyped as they were previously described as 

associated with AD. CR1*2 isoform, as mentioned before, is expressed at lower levels than 

CR1*1 thus possibly affecting lower Aβ clearance and dysregulation of the complement 

system. The rs3818361 was genotyped to verify whether it may be the real culprit behind 

the disease, being in linkage disequilibrium with CR1R136*. Children of the patients and the 

one healthy family member, were not diagnosed with AD, however their DNA samples 



 
 

were collected at ages between 50 and 57. They may be at risk of developing the disease at 

a later age, especially as all except for one of them had one copy of the APOE ε4 allele. 

Also three out of seven of them had the CR1R136* variant. Although in vitro overexpression 

of a protein in a cellular model has its limitations, the molecular mechanism behind AD in 

family UGM037 seems to be haploinsufficiency caused by NMD pathway destruction of 

CR1R136* transcript. Further functional studies on the effects of CR1R136* would be 

recommended and a future follow up with the younger members of the family. To the best 

of my knowledge, CR1R136* (rs764542666) would be the first known AD causative 

mutation in gene CR1. 

Available clinical data supported the diagnosis of PLS in UGM471 family 

members. Through WES data filtration, prioritization and Sanger sequencing validation 

two variants were identified which could possibly cause the symptoms in the family. One 

was a novel variant c.G884C p.R295P in ADPRH (ADPRHR295P) and the other a previously 

described mutation c.T497C p.L166P in PSEN1 (rs63750265; PSEN1L166P). The latter was 

discovered within the UGM471 family genome recently, therefore they will be discussed 

chronologically, from discovery. 

ADPRH is a ubiquitous protein found in cytoplasm of both mice and humans. 

ADPRH hydrolyses the N-glycosidic bond between arginine and ADP-ribose, cleaving 

ADP-ribose from substrate in the ADP-ribosylation cycle. The reaction occurs to be 

specific to mono-ADP-ribosylated substrates, due to the protein’s structure. ADP-

ribosylation cycle is very important for cell regulation. The ADPRHR295P variant was 

predicted to be deleterious by SIFT and Polyphen. It was not found in any public database 

and Sanger sequencing confirmed its segregation with the disease in UGM471 family 

pedigree. However, two healthy individuals from this family also carried ADPRHR295P. 

ASPCR frequency assessment of ADPRHR295P in control population showed none of the 

196 non-PLS individuals were carriers. The arginine in position 295 in ADPRH was found 

to be a conserved residue and a change to a proline could affect the function or stability of 

the protein significantly. Reassessment of WES data showed a paralog of ADPRH, 

ADPRHL1 to be affected by an ADPRHL1L294R variant, also predicted to be deleterious. 

This variant segregated with the disease in the family, not being present in the healthy 

individuals. ADPRH together with ADPRHL1 are speculated to be involved in actin 

filaments assembly and modulation of actin polymerisation may be involved in disruption 

of the nucleocytoplasmic transport which is important in ALS pathogenesis. Thus the 

ADPRHR295P variant may have a low penetrance, causing the disease only in certain 



 
 

members of the family, or may be accompanied by ADPRHL1L294R variant, to affect the 

patients. Co-immunoprecipitation did not show an interaction between the two proteins, 

however they may work in unison without a direct interaction. Activity assay for 

ADPRHR295P, where cholera toxin (CT) was used to ADP-ribosylate a substrate and wild-

type ADPRH (ADPRHWT) and its variants (ADPRHR295P and ADPRHD55A/D56A) were used 

to cleave ADP-ribose, showed that ADPRHR295P had a similar activity efficiency as 

ADPRHWT. The ADPRHD55A/D56A variant where the essential active site residues were 

changed, did not show hydrolase activity. Although this assay showed no diminishing of 

the activity of variant ADPRHR295P, it did not take into account the possible destabilising 

effect of the variant. The RT-qPCR assay to measure mRNA levels of this variant showed 

that they did not vary from the wild-type, however, the protein levels measured with WB 

proved to be significantly lower than the ones for ADPRHWT or for other variants examined 

(ADPRHR295Q, ADPRHD55A/D56A). Only very rare truncating variant ADPRHR295* which 

has been previously described, proved to have very low mRNA levels and no protein could 

be detected. This suggest it may be affected by the NMD pathway. While it is difficult to 

say whether variant ADPRHR295P affects the disease in family UGM471 it is important to 

know its strong effect on the protein stability for the further study of little studied mono-

ADP-ribosylation. 

Mutation c.T497C p.L166P in PSEN1 (rs63750265) was recently discovered in 

family UGM471. Although mutations in PSEN1 are commonly causing EOAD, there have 

been reports associating PSEN1 with PLS and ALS. PSEN1A431E and PSEN1L381V are two 

examples of mutations associated with PLS and AD, causing an early onset at around 40 

years of age. Mutation PSEN1L166P is known to cause AD and spastic paraparesis at an early 

age, with the first case found being a 15 year old girl. Other mutations at position L166 in 

PSEN1 were also found to be associated with AD (PSEN1L166V, PSEN1L166R (rs63750265), 

PSEN1L166H (rs63750265), and PSEN1L166del (rs63751458)). Most of them were associated 

with cognitive impairment, although some were associated with motor symptoms. 

PSEN1L166P mutation causes partial loss of γ-secretase cleavage function and increases the 

Aβ42/Aβ40 ratio by reducing the Aβ40 levels. Also PSEN1 functions as endoplasmic 

reticulum (ER) Ca2+ leak channels, and the PSEN1L166P mutation disrupts that function. 

Recent discovery of the PSEN1L166P mutation in the UGM471 family did not allow for a 

more thorough investigation of its effects, but it was confirmed to segregate with the disease 

in the pedigree. The aggressive nature of this mutation, the early age of onset and the motor 

symptoms, strongly suggest it is PSEN1L166P which causes the disease in the family. While 



 
 

it is not associated with ALS nor PLS, the patients may have been also affected by other 

environmental or genetic factors to produce this phenotype. At the same time reports of 

PLS patients with mutations in PSEN1 exist. Either the effect of the PSEN1 mutations is 

heterogeneous enough to cause these different disorders, the disorders are much more 

related due to the molecular mechanisms that cause them, or the effect of PSEN1 mutation 

is affected by interaction with other proteins. Certainly, common neurodegeneration-linked 

genes should be looked at when identifying a possible cause of a disease, regardless of 

which disease they are associated with. Patients with PLS, ALS or spastic paraparesis 

should be investigated for PSEN1 mutations. 

In PKD, the filtration, prioritization and Sanger sequencing validation identified a 

novel variant c.C316T p.Q106* in PRRT2 (PRRT2Q106*) as the likely cause of the disease 

in family UGM478. Clinical data for the family support the diagnosis of PKD. The 

assessment of the WES results lead to a strong suspection of PRRT2Q106* as being the 

causative mutation of the disease. Mutations in PRRT2 are the only known cause of PKD 

thus far, and often they are truncating mutations leading to haploinsufficiency due to NMD 

pathway destruction of PTC carrying transcript. PRRT2Q106* was not found in any database 

therefore the only frequency data was obtained through our ASPCR assay for a control 

population of 192 samples. None of them carried this variant, yet it segregated with the 

disease in the pedigree, not being present in any of the non-PKD family members. In 

accordance with previous results, significantly lower mRNA levels for the variants with 

PTCs (PRRT2Q106*, PRRT2Q163*, PRRT2Q250*), in comparison with the wild-type 

(PRRT2WT), were found in a cellular model with PRRT2 and its variants overexpressed. 

PRRT2Q163* and PRRT2Q250* were chosen as controls as previously described variants in 

PRRT2. Inhibition of the NMD pathway by treatment of transfected SH-SY5Y cells with 

NMDI14, increased the mRNA levels for PRRT2Q106* and PRRT2Q163* and showed an 

increasing trend for PRRT2Q250*. This suggests that the NMD pathway may in fact be the 

culprit behind mRNA decay prompted by PTCs in the variants studied. Interestingly protein 

levels of the novel variant PRRT2Q106* were undetectable with WB before and after 

NMDI14 treatment, while the other variants studied (PRRT2Q163* and PRRT2Q250*) had 

significantly lower protein levels than PRRT2WT before treatment and increased levels 

after. This may be due to the proline-rich regions being important for protein stability, as 

PRRT2Q106* has a PTC before that region and PRRT2Q163* and PRRT2Q250* in the middle 

and after it. These results suggest the novel variant PRRT2Q106* is probably the cause of 

PKD in the UGM478 Spanish family. The molecular mechanisms responsible for the 



 
 

affliction may be the NMD pathway causing decay of the transcript leading to 

haploinsufficiency. Lack of PRRT2 in turn causes hyperexcitability through dysregulated 

neurotransmitter release and hyperactivity of Na+ channels. 

Common or related pathological molecular mechanisms may affect neurological 

disorders, traditionally considered as unrelated, in the intricate network of the nervous 

system. In this work I have outlined some of such putative mechanisms. Single nucleotide 

variants which may affect different phenotypes through partial loss-of-function due to 

protein destabilisation or haploinsufficiency due to NMD. 

The estimated possible number of human haploinsufficient genes is 12,443 out of 

approximately 22,000. While the total number of human genes is a matter of debate and 

further study, their estimation indicates that we can expect a great number of genes where 

protein level dose effect may be essential. Haploinsufficiency is important in neurological 

disorders. Recently C9orf72 was found to be haploinsufficient in ALS/FTD due to the 

GGGGCC repeat expansion. 

In this work, I am postulating that CR1 and PRRT2 are haploinsufficient in Spanish 

families with AD and PKD respectively. While it is established that most mutations in 

PRRT2 lead to loss-of-function and haploinsufficiency, to my knowledge there is no such 

reports on CR1. Haploinsufficiency, therefore, emerges as a common factor between these 

and other neurological diseases. Furthermore, the molecular mechanism behind the CR1 

and PRRT2-related haploinsufficiency seems to be the NMD elicited by SNVs encoding 

PTCs, demonstrating a common molecular mechanism in distinct neurological diseases. 

Loss-of-function is strictly related to haploinsufficiency which is a dominant 

phenotype in organisms heterozygous for such alleles. Although variant PSEN1L166P 

(rs63750265) was not found to cause haploinsufficiency, it affects a partial loss of γ-

secretase cleavage and ER Ca2+ leak channel function. The variant ADPRHR295P, identified 

in the same family, is shown to significantly destabilize the protein, drastically affecting its 

levels. This in turn may impede its function. Whether ADPRHR295P variant in hererozygosis 

is in fact deleterious remains to be seen, depending on its tolerance to decreased protein 

dose. However, loss-of-function, whether full or partial, encompasses the underlying 

molecular mechanisms of the SNVs described in this work, which contribute to 

independent neurological diseases. 

Discussing the molecular mechanisms in AD and PLS in the two Spanish families, 

and the involvement of CR1R136* (rs764542666) and PSEN1L166P (rs63750265) variants in 

disease pathogenesis, it is important not to omit other possibly contributing factors. While 



 
 

CR1R136* may be a causative mutation in the family, its members had a high incidence of 

APOE ε4. In families with APP mutations, the incidence of APOE ε4 was related to an 

earlier age of onset, while the incidence of APOE ε2, with a later age of onset, with regards 

to APOE ε3. Interestingly, PSEN1E318G variant is related to an increased risk of AD, 

dependent on APOE ε4. While otherwise PSEN1E318G was considered non-pathogenic, its 

interaction with APOE ε4 increased Aβ deposition, causing a faster cognitive decline and 

neurodegeneration. Thus, while carrying CR1R136* variant may be sufficient to develop AD, 

it is also probable that the members of the Spanish family studied, were affected solely by 

the APOE ε4 risk factor or a combination of the two. 

Similarly, other factors, whether environmental or genetic, may affect symptoms 

developed by the family with PLS. Although PSEN1L166P seems to be responsible for the 

phenotype experienced by the patients, their symptoms differ from the more canonical AD 

features related to this variant. This divergent disease expression may be due to PSEN1 

gene pleiotropy, however, it may also be due to other contributing factors. Environmental 

factors have been found to play an important role in ALS and they cannot be disregarded 

in a familial disease. Here, I propose a genetic factor which may contribute to the dissimilar 

symptoms experienced by the members of this family. Novel variant ADPRHR295P may 

have an effect on the disease development, destabilising actin filaments in the presence of 

ADPRHL1L294R variant, prompting a phenotype closer to PLS, together with the aggressive 

PSEN1L166P mutation. The complexity of neurological diseases comes, in part, from a 

cumulative nature of defects that cause them, and thus it is always essential to search for 

other factor which may add to the observed phenotype. Further studies into the effects 

ADPRH variants may have on neurological diseases are needed as it contributes to the still 

poorly understood, but very important mono-ADP-ribosylation. 

The general limitations of the in vitro overexpression of a protein in a cellular model 

apply in the entire study. Differences between the cellular model and the corresponding 

cells in the organism, problems with establishing appropriate microenvironment, such as 

interactions with other cells, or the fact that the protein is artificially overexpressed in 

naturally unavailable amounts. Further functional studies may be needed for all the 

described variants. 

To conclude, variant rs764542666 in gene CR1 encoding a PTC c.C406T p.R136* 

is the likely cause of AD in a Spanish family UGM037, based on WES and genetic 

expression study. NMD pathway provoked haploinsufficiency of CR1 is the probable 

molecular mechanism behind the disease. Variant rs764542666 is probably the first known 



 
 

AD causative mutation in CR1, encouraging research into the rare truncating variants in 

this gene. 

Mutant rs63750265 in gene PSEN1 encoding a missense mutation c.T497C 

p.L166P is the likely cause of PLS in a Spanish family UGM471, based on WES study, 

segregation analysis and previous knowledge, raising questions on pleiotropic effects of 

the mutation. The molecular mechanisms behind mutant rs63750265 causing the disease in 

family UGM471 are probably loss of γ-secretase cleavage function, increase of Aβ42/Aβ40 

ratio and impairment of ER Ca2+ leak channel function. Novel variant in gene ADPRH 

encoding a missense variant c.G884C p.R295P strongly destabilizes the protein while not 

affecting its function, shedding light on the study of mono-ADP-ribosylation. 

Novel variant in gene PRRT2 encoding a PTC c.C316T p.Q106* is the likely cause 

of PKD in a Spanish family UGM037, based on WES and genetic expression study. This 

work supports the hypothesis of NMD pathway provoking haploinsufficiency of PRRT2 as 

the molecular mechanism behind PKD.  



 
 

RESUMEN 

 

Introducción 

Las enfermedades neurológicas pueden tener un amplio espectro de fenotipos, 

causando interrupciones en las actividades de la vida diaria y, a menudo, una enfermedad 

progresiva que termina en la pérdida de la vida. Los mecanismos moleculares que subyacen 

a muchas de estas enfermedades pueden tener vías comunes y, dependiendo del gen en 

cuestión, su disfunción puede llevar a una variedad de condiciones. 

La enfermedad de Alzheimer (EA) es la demencia neurodegenerativa más 

común en el mundo, con una estimación de 50 millones de personas que viven con 

demencia en todo el mundo. Los síntomas de la EA incluyen dificultad para recordar 

nombres o eventos recientes, apatía, depresión , desorientación, confusión, dificultad 

de hablar, caminar y tragar. La división canónica de la EA en inicio temprano (EOAD por 

sus siglas en inglés) e inicio tardío (LOAD por sus siglas en inglés) se establece en los 65 

años de edad. Ambos se caracterizan por agregados de proteína 

tau hiperfosforilada intracelular llamados ovillos neurofibrilares (NFT por sus siglas en 

inglés) y placas seniles extracelulares compuestas principalmente por grupos de péptido 

amiloide-β (Aβ). La patología de EA comienza en la corteza entorrinal, una región del 

lóbulo temporal medial, y causa la muerte de las neuronas provocando la atrofia del tejido 

cerebral. La EA es una enfermedad multifactorial con un patrón de herencia dicotómico. 

Aproximadamente el 70 % de las causas son genéticas y el resto ambientales. Mutaciones 

en los genes: APP, PSEN1 y PSEN2, son las causas más comunes de EOAD y el alelo ε4 

de APOE es un factor de riesgo bien establecido de LOAD. Tres vías principales contienen 

la mayoría de los factores de riesgo genéticos de EA: la respuesta inmune, el metabolismo 

lipídico y la endocitosis. Entre los genes involucrados en la respuesta inmune, CR1 se ha 

asociado con la EA mediante estudios de asociación de todo el genoma (GWAS por sus 

siglas en inglés). CR1 forma un parte importante del sistema del complemento y es 

significativo para este trabajo. Una isoforma de CR1, CR1*2, se expresa en niveles más 

bajos que la isoforma CR1*1 y se especula que provoca un menor aclaramiento de Aβ  y 

una desregulación del sistema del complemento. 

La esclerosis lateral primaria (ELP) se considera una parte del espectro patológico 

de la esclerosis lateral amiotrófica (ELA). La ELA, aunque se considera una enfermedad 

rara, es la enfermedad de la neurona motora (ENM) más común. La ELP se caracteriza por 



 
 

la espasticidad espinobulbar causada por la degeneración de las neuronas 

motoras superiores (NMS), mientras que la ELA se caracteriza por la degeneración tanto 

de las NMS como de las neuronas motoras inferiores (NMI) a nivel espinal y bulbar, lo que 

causa parálisis de las extremidades, disartria, disfagia y muerte por insuficiencia 

respiratoria. Características clínicas de ELP incluyen la espasticidad, ligera debilidad en las 

extremidades inferiores, inicio en adultos, curso progresivo, duración de más de 4 años y 

los síntomas seudobulbares. Los déficits cognitivos y conductuales pueden ocurrir con 

ELA, que van desde la demencia leve, moderada a la demencia frontotemporal (DFT) que 

también se observó en pacientes con ELP. La base genética de la ELP no se conoce bien, 

aunque se conocen mutaciones en los genes SPG7 y TBK1 en pacientes afectados por ELP 

familiar. Las mutaciones en el gen SOD1, que codifica una enzima antioxidante, y en la 

proteína codificada por el gen C9orf72 son las causas más comunes de ELA. La patogenia 

de la ELA puede ser causada por excitotoxicidad del glutamato, disfunción mitocondrial, 

alteración de la estructura o transporte en los axones y estrés oxidativo. 

La discinesia paroxística cinesigética (PKD por sus siglas en inglés), el trastorno 

del movimiento paroxístico más común, se caracteriza por una variedad de movimientos 

involuntarios desencadenados por movimientos repentinos. Con inicio en la niñez o 

adolescencia, sus características clínicas incluyen ataques recurrentes que involucran 

corea, atetosis, posturas distónicas o balismo. La gravedad de estos ataques suele disminuir 

con la edad. Las mutaciones en el gen PRRT2 son, hasta ahora, la única causa conocida de 

este trastorno. Se sabe que PRRT2 interactúa con las proteínas SNAP-25, SYT1 y SYT2 

en la membrana presináptica de las neuronas, que participan en la señalización en las 

células nerviosas. La falta de PRRT2, a menudo causada por la vía de degradación del ARN 

mensajero mediada por mutaciones terminadoras (NMD por sus siglas en inglés), debido a 

codones de terminación prematura (PTC por sus siglas en inglés) en el transcripto, es el 

mecanismo molecular común involucrado en la haploinsuficiencia que causa PKD. 

  

Objetivos 

El objetivo principal de este trabajo es comprender la etiopatogenia de tres 

enfermedades neurológicas que afectan a tres familias españolas distintas y estudiar los 

mecanismos genéticos y moleculares que afectan a estas enfermedades. 

  

  



 
 

Materiales y métodos 

Se recogieron muestras de ADN de miembros de tres familias españolas: UGM037 

(11 individuos) afectados por EA, UGM471 (7 individuos) afectados por ELP y UGM478 

(7 individuos) afectados por PKD. También se dispone de una población de control de 

individuos sanos y otra de individuos afectados por EA disponible. Las muestras se 

recogieron con la aprobación de los Comités de Ética en la Investigación de los hospitales 

correspondientes con el consentimiento informado firmado por los pacientes. La cepa 

bacteriana utilizada para todas las manipulaciones necesarias fue Escherichia coli DH5α y 

la línea celular humana fue SH-SY5Y. 

La secuenciación del exoma completo (WES por sus siglas en inglés) se utilizó 

como herramienta para identificar variantes dentro del exoma de los pacientes. A través de 

“base-calling” y análisis de imágenes, alineación de lectura y “SNP calling”, los datos 

podrían transformarse en una base de datos viable de variantes. Se utilizó el filtrado y la 

priorización seguida de la validación de secuenciación de Sanger de los resultados para 

identificar las variantes más interesantes, posiblemente involucradas en la causa de las 

enfermedades. Para la evaluación de variantes se utilizaron bases de datos públicas 

como Collaborative Spanish Variant Server (CSVS) o Genome Aggregation 

Database (gnomAD). La frecuencia de la variante también se verificó mediante PCR 

específica de alelo (ASPCR por sus siglas en inglés) realizada en las poblaciones de control. 

Después de identificar las variantes más interesantes, se realizaron manipulaciones 

de plásmidos para obtener ADNc, correspondientes a secuencias de los genes con estas 

variantes, en vectores de expresión específicos. Se utilizó mutagénesis dirigida para la 

introducción de variantes de un solo nucleótido (SNV por sus siglas en inglés), el epítopo 

FLAG y sitios de restricción enzimática. La subclonación se utilizó para 

transferir ADNc específicos a los correspondientes vectores de expresión. El análisis in 

silico se realizó utilizando los servicios web HOPE, I-Mutant 2.0 y ConSurf. De esa forma 

se pudo establecer la influencia de una variante específica en la función y estabilidad de la 

proteína. También el grado de conservación de los residuos. 

En el caso de genes implicados en la EA, conocer los genotipos de APOE y CR1 es 

importante y se realizó mediante PCR. En el caso de APOE, la PCR fue seguida por 

restricción enzimática y análisis del patrón de bandas en un gel de agarosa. En el caso 

de CR1, la PCR fue seguida por secuenciación de Sanger o análisis de presencia o ausencia 

de bandas en un gel de agarosa. 



 
 

Las células SH-SY5Y se mantuvieron en un medio de crecimiento completo y se 

utilizó el reactivo de transfección Lipofectamine 2000 para transfectarlas con plásmidos 

correspondientes a experimentos específicos. Un experimento consistió en comparar los 

niveles de ARNm y proteínas de genes específicos afectados por las variantes 

identificadas. En otro, se realizó la misma comparación después de la inhibición de la vía 

NMD, usando NMDI14. Para medir los niveles de ARNm, se extrajo el ARNm de células 

SH-SY5Y transfectadas después de aproximadamente 48h de incubación y se obtuvo 

el ADNc mediante retrotranscripción. Estos se utilizaron en PCR cuantitativa (qPCR por 

sus siglas en inglés) con cebadores diseñados específicamente para amplificar el producto 

de la transcripción reversa con controles apropiados. Para medir los niveles de proteína, las 

proteínas se extrajeron de las células SH-SY5Y transfectadas después de aproximadamente 

48h de incubación y se usaron para el análisis por Western Blot (WB). El gen constitutivo 

de actina se utilizó como control. 

Para el análisis funcional de las distintas variantes de ADPRH, las proteínas se 

extrajeron de las células SH-SY5Y transfectadas y se sometieron a purificación 

utilizando una columna de afinidad de proteínas marcadas con GST. Después de la diálisis 

y concentración de la muestra, las proteínas podrían usarse para un ensayo de 

actividad. Esto implicó la ADP-ribosilación del sustrato por la toxina del cólera 

(CT)  seguida de la hidrólisis de este enlace por ADPRH y sus variantes. Las muestras se 

cargaron luego en una columna de cromatografía líquida de ultra rendimiento (UPLC por 

sus siglas en inglés) que permitió la separación, identificación y cuantificación de los 

componentes basándose en los datos de un detector que mide la absorbancia a 260 

nm. También se utilizó co-inmunoprecipitación con extractos de proteínas de células SH-

SY5Y cotransfectadas con ADPRH y ADPRHL1 para determinar si tiene lugar la 

interacción proteína-proteína. 

El análisis estadístico se realizó utilizando la prueba t de Student y ANOVA 

unidireccional o bidireccional para comparar las diferencias entre las medias de los grupos, 

con una prueba post hoc de Tukey de comparaciones múltiples de medias. Se utilizó el 

software R para realizar las pruebas. 

  

Resultados y discusión 

La filtración, priorización y validación mediante secuenciación Sanger identificó la 

variante rs764542666 en el gen CR1 que codifica un PTC c.C406T p.R136* (CR1R136*) 

como la causa probable de EA en la familia UGM037. Los datos clínicos sugirieron LOAD 



 
 

en la familia, que estaría más en consonancia con los factores de riesgo que con las 

mutaciones causales. Los miembros de la familia poseían el alelo APOE ε4, sin embargo, 

sorprendentemente, el análisis de la familia reveló que un miembro con 

un genotipo APOE ε4/ε4 y una edad de 88 años no presentaba alteración cognitiva alguna. 

La variante CR1R136* segrega con la enfermedad en el pedigrí, y no aparece en ninguno de 

los miembros sin EA. Estudios anteriores mostraron que la isoforma CR1*2 de CR1, 

asociada con un mayor riesgo de LOAD, se expresaba menos que CR1*1. Según esto, el 

tránscrito de CR1R136* podría causar un efecto similar al activar el NMD y causar sí 

haploinsuficiencia. El estudio de los niveles de ARNm y proteínas reveló que CR1R136* se 

expresa en niveles más bajos que el tipo silvestre. Estos niveles aumentaron 

significativamente después del tratamiento con inhibidor de NMD, lo que sugiere la 

participación de esta vía en la degradaciódel transcrito CR1R136*. El genotipado de la 

isoforma CR1*2 y rs3818361 en CR1 en muestras de la familia UGM037, mostró que 

ninguno de ellos tenía isoforma CR1*2 y rs3818361 no se segregó con la enfermedad, no 

estando presente en ninguna de las muestras de pacientes. Ambos fueron genotipados, ya 

que se describieron previamente como asociados con la EA. La isoforma CR1*2, como se 

mencionó anteriormente, se expresa a niveles más bajos que CR1*1, por lo que 

posiblemente afecte un aclaramiento de Aβ más bajo y una desregulación del sistema del 

complemento. El rs3818361 fue genotipado para verificar si puede ser el verdadero 

culpable de la enfermedad, estando en desequilibrio de ligamiento con CR1R136*. Los hijos 

de los pacientes y el miembro de la familia sano, no fueron diagnosticados con EA, sin 

embargo, sus muestras de ADN se recolectaron entre las edades de 50 y 57. Pueden estar 

en riesgo de desarrollar la enfermedad a una edad posterior, especialmente porque todos 

excepto uno de ellos tenía una copia del alelo APOE ε4. Además, tres de siete de ellos 

tenían la variante CR1R136*. Aunque la sobreexpresión in vitro de una proteína en un 

modelo celular tiene sus limitaciones, el mecanismo molecular detrás de la EA en la familia 

UGM037 parece ser la haploinsuficiencia causada por la destrucción 

del transcripto CR1R136* por la vía NMD. Son necesarios más estudios funcionales sobre 

los efectos de CR1R136* y un seguimiento futuro de los miembros más jóvenes de la 

familia. Según mi conocimiento, CR1R136* (rs764542666) sería la primera mutación 

causante de EA conocida en el gen CR1. 

Los datos clínicos disponibles respaldaron el diagnóstico de ELP en miembros de 

la familia UGM471. A través de la priorización y filtración de datos de WES y la validación 

por secuenciación de Sanger, se identificaron dos variantes que posiblemente podrían 



 
 

causar los síntomas en la familia. Uno era una nueva variante c.G884C p.R295P 

en ADPRH (ADPRHR295P) y el otro era una mutación c.T497C p.L166P previamente 

descrita en PSEN1 (rs63750265; PSEN1L166P). Este último fue descubierto recientemente 

dentro del genoma de la familia UGM471, por lo que se discutirán cronológicamente, a 

partir del descubrimiento. 

La ADPRH es una proteína ubicua que se encuentra en el citoplasma de ratones y 

humanos. ADPRH hidroliza el enlace N-glicosídico entre la arginina y la ADP-

ribosa, escindiendo la ADP-ribosa del sustrato en el ciclo de ADP-ribosilación. La 

reacción resulta ser específica para sustratos mono-ADP-ribosilados, debido a la estructura 

de la proteína. El ciclo de ribosilación de ADP es muy importante para la regulación 

celular. El variante ADPRHR295P se prevé que sea perjudicial por SIFT y Polyphen. No se 

encontró en ninguna base de datos pública y la secuenciación de Sanger confirmó su 

segregación con la enfermedad en el pedigrí de la familia UGM471. Sin embargo, dos 

individuos sanos de esta familia también portaban ADPRHR295P. La evaluación de la 

frecuencia de ADPRHR295P por ASPCR en la población de control, mostró que ninguno de 

los 196 individuos que no eran afectedos por ELP eran portadores. Se encontró que la 

arginina en la posición 295 en ADPRH era un residuo conservado y un cambio a una prolina 

podría afectar la función o estabilidad de la proteína de manera significativa. La 

reevaluación de los datos de WES mostró un parálogo de ADPRH, ADPRHL1 afectado 

por una variante ADPRHL1L294R, que también se predice que es perjudicial. Esta variante 

se segrega con la enfermedad en la familia, no estando presente en los individuos sanos. Se 

especula que ADPRH junto con ADPRHL1 están implicados en el ensamblaje de 

filamentos de actina y la modulación de la polimerización de actina puede estar implicada 

en la interrupción del transporte nucleocitoplasmático que es importante en la patogénesis 

de la ELA. Así, la variante ADPRHR295P puede tener una penetrancia baja, provocando la 

enfermedad solo en ciertos miembros de la familia, o puede ir acompañada de 

la variante ADPRHL1L294R, para afectar a los pacientes. La coinmunoprecipitación no 

mostró una interacción entre las dos proteínas, sin embargo, pueden funcionar al unísono 

sin una interacción directa. El ensayo de actividad para ADPRHR295P, donde se usó CT para 

ADP-ribosilar un sustrato y ADPRH de tipo silvestre (ADPRHWT) y sus variantes 

(ADPRHR295P y ADPRHD55A/D56A) se usaron para hidrolizar la ADP-ribosa, mostró que 

ADPRHR295P tenía una eficiencia de actividad similar a la del ADPRHWT. La variante 

ADPRHD55A/D56A, en la que se cambiaron los residuos esenciales del sitio activo, no mostró 

actividad hidrolasa. Aunque este ensayo no mostró disminución de la actividad de la 



 
 

variante ADPRHR295P, no tuvo en cuenta el posible efecto desestabilizador de la variante. El 

ensayo RT-qPCR para medir los niveles de ARNm de esta variante mostró que no variaban 

del tipo silvestre, sin embargo, los niveles de proteína medidos con WB demostraron ser 

significativamente más bajos que los del ADPRHWT o para otras variantes examinadas 

(ADPRHR295Q, ADPRHD55A/D56A). Solo la variante ADPRHR295* que se ha descrito 

previamente, demostró tener niveles de ARNm muy bajos y no pudo detectarse ninguna 

proteína. Esto sugiere que puede verse afectado por la vía NMD. Si bien es difícil decir si 

la variante de ADPRHR295P afecta la enfermedad en la familia UGM471, es importante 

conocer su fuerte efecto sobre la estabilidad de la proteína para el estudio adicional de la 

mono-ADP-ribosilación poco estudiada. 

La mutación c.T497 C p.L166P en PSEN1 (rs63750265) se descubrió 

recientemente en la familia UGM471. Aunque las mutaciones en PSEN1 comúnmente 

causan EOAD, ha habido informes que asocian PSEN1 con ELP y 

ELA. PSEN1A431E y PSEN1L381V son dos ejemplos de mutaciones asociadas con ELP y EA, 

que provocan un inicio temprano alrededor de los 40 años de edad. Se sabe que 

la mutación PSEN1L166P causa EA y paraparesia espástica a una edad temprana, siendo el 

primer caso encontrado en una niña de 15 años. También se encontró que otras mutaciones 

en la posición L166 en PSEN1 estaban asociadas con la EA 

(PSEN1L166V, PSEN1L166R (rs63750265), PSEN1L166H (rs63750265) 

y PSEN1L166del (rs63751458)). La mayoría de ellos se asociaron con deterioro cognitivo, 

aunque algunos se asociaron con síntomas motores. La mutación PSEN1L166P causa pérdida 

parcial de función de escisión de la γ-secretasa y aumenta la proporción 

Aβ42/Aβ40 mediante la reducción de los niveles de Aβ40. Además, PSEN1 funciona 

formando canales de fuga de Ca2+ del retículo endoplásmico (RE), y 

la mutación PSEN1L166P interrumpe esa función. El descubrimiento reciente de 

la mutación PSEN1L166P en la familia UGM471 no permitió una investigación más 

exhaustiva de sus efectos, pero se confirmó que se segrega con la enfermedad en el 

pedigrí. La naturaleza agresiva de esta mutación, la edad temprana de aparición y los 

síntomas motores, sugieren fuertemente que es PSEN1L166P el que causa la enfermedad en 

la familia. Si bien no está asociado con ELA ni ELP, los pacientes también pueden haber 

sido afectados por otros factores ambientales o genéticos para producir este fenotipo. Al 

mismo tiempo, existen informes de pacientes con ELP con mutaciones en PSEN1. O el 

efecto de las mutaciones de PSEN1 es lo suficientemente heterogéneo como para causar 

estos diferentes trastornos, los trastornos están mucho más relacionados debido a los 



 
 

mecanismos moleculares que los causan, o el efecto de la mutación de PSEN1 se ve 

afectado por la interacción con otras proteínas. Ciertamente, los genes comunes 

relacionados con la neurodegeneración deben considerarse al identificar una posible causa 

de una enfermedad, independientemente de la enfermedad con la que estén asociados. Los 

pacientes con ELP, ELA o paraparesia espástica deben ser investigados 

para detectar mutaciones en PSEN1. 

En PKD, la filtración, priorización y validación de secuenciación de Sanger 

identificaron una nueva variante c.C316T p.Q106* en PRRT2 (PRRT2Q106*) como la causa 

probable de la enfermedad en la familia UGM478. Los datos clínicos de la familia apoyan 

el diagnóstico de PKD. La evaluación de los resultados de WES conduce a una 

fuerte sospecha de PRRT2Q106* como mutación causante de la enfermedad. Las mutaciones 

en PRRT2 son la única causa conocida de PKD hasta el momento y, a menudo, son 

mutaciones truncadas que conducen a una haploinsuficiencia debido a la destrucción del 

transcripto portador de PTC por la vía NMD. PRRT2Q106* no se encontró en ninguna base 

de datos, por lo que los únicos datos de frecuencia se obtuvieron a través de nuestro ensayo 

ASPCR para una población de control de 192 muestras. Ninguno de ellos portaba esta 

variante, sin embargo, se segregó con la enfermedad en el pedigrí, no estando presente en 

ninguno de los miembros de la familia que no tenían PKD. De acuerdo con los resultados 

previos, se encontraron niveles de ARNm significativamente más bajos para las variantes 

con PTC (PRRT2Q106*, PRRT2Q163*, PRRT2Q250*), en comparación con el tipo silvestre 

(PRRT2WT), en un modelo celular con PRRT2 y sus variantes 

sobreexpresadas. PRRT2Q163* y PRRT2Q250* se eligieron como controles, siendo variantes 

descritas previamente en PRRT2. La inhibición de la ruta NMD, por el tratamiento de 

células SH-SY5Y transfectadas con NMDI14, aumentó los niveles de ARNm 

para PRRT2Q106* y PRRT2Q163* y mostró una tendencia creciente para PRRT2Q250*. Esto 

sugiere que la vía de la NMD puede ser la culpable de la desintegración del ARNm 

provocada por las PTC en las variantes estudiadas. Curiosamente, los niveles de proteína 

de la nueva variante PRRT2Q106* eran indetectables con WB antes y después del tratamiento 

con NMDI14, mientras que las otras variantes estudiadas (PRRT2Q163* y PRRT2Q250*) 

tenían niveles de proteína significativamente más bajos que el PRRT2WT antes del 

tratamiento y niveles aumentados después. Esto puede deberse a que las regiones ricas en 

prolina son importantes para la estabilidad de la proteína, ya que PRRT2Q106* tiene una PTC 

antes de esa región y PRRT2Q163* y PRRT2Q250* en el medio y después de ella. Estos 

resultados sugieren que la nueva variante PRRT2Q106* es probablemente la causa de PKD 



 
 

en la familia española UGM478. Los mecanismos moleculares responsables de la aflicción 

pueden ser la vía NMD que causa la degradación del transcripto que conduce a 

la haploinsuficiencia. La falta de PRRT2 a su vez provoca hiperexcitabilidad a través de la 

liberación desregulada de neurotransmisores y la hiperactividad de los canales de Na+. 

Mecanismos moleculares patológicos comunes, o relacionados, pueden afectar 

diversos trastornos neurológicos tradicionalmente considerados como no relacionados, en 

la intrincada red del sistema nervioso. En este trabajo he esbozado algunos de esos 

supuestos mecanismos. Variantes de un solo nucleótido que pueden afectar a diferentes 

fenotipos a través de la pérdida parcial de función debido a la desestabilización de proteínas 

o la haploinsuficiencia debida a NMD. 

El número estimado de genes haploinsuficientes humanos es 12,443 de 

aproximadamente 22,000. Si bien el número total de genes humanos es un tema de debate 

y estudio adicional, su estimación indica que podemos esperar un gran número de genes en 

los que el efecto de la dosis del nivel de proteína puede ser esencial. La 

haploinsuficiencia es importante en los trastornos neurológicos. Recientemente se 

descubrió que C9orf72 es haploinsuficiente en ELA/DFT debido a la expansión repetida 

de GGGGCC. 

En este trabajo, postulo que CR1 y PRRT2 son haploinsuficientes en familias 

españolas con EA y PKD respectivamente. Si bien está establecido que la mayoría de las 

mutaciones en PRRT2 conducen a la pérdida de función y a la haploinsuficiencia, según mi 

conocimiento, no existen tales informes sobre CR1. La haploinsuficiencia, por tanto, surge 

como un factor común entre estas y otras enfermedades neurológicas. Además, el 

mecanismo molecular detrás de la haploinsuficiencia relacionada 

con CR1 y PRRT2 parece ser la NMD provocada por SNV que codifican PTC, lo que 

demuestra un mecanismo molecular común en distintas enfermedades neurológicas. 

La pérdida de función está estrictamente relacionada con la haploinsuficiencia, que 

es un fenotipo dominante en organismos heterocigotos para tales alelos. Aunque no se 

encontró que la variante PSEN1L166P (rs63750265) causara haploinsuficiencia, afecta una 

pérdida parcial de la función de escisión de la γ-secretasa y la función del canal de 

fuga del Ca2+ del RE. Se muestra que la variante ADPRHR295P, identificada en la misma 

familia, desestabiliza significativamente la proteína, afectando drásticamente sus 

niveles. Esto, a su vez, puede obstaculizar su función. Queda por ver si 

la variante ADPRHR295P en hererocigosis es, de hecho, deletérea, dependiendo de su 

tolerancia a la dosis de proteína disminuida. Sin embargo, la pérdida de función, ya sea 



 
 

total o parcial, engloba los mecanismos moleculares subyacentes de los SNV descritos en 

este trabajo, que contribuyen a enfermedades neurológicas independientes. 

Al discutir los mecanismos moleculares en EA y ELP en las dos familias españolas, 

y la participación de las variantes CR1R136* ( rs764542666 ) y PSEN1L166P (rs63750265) en 

la patogénesis de las enfermedades, es importante no omitir otros factores posiblemente 

contribuyentes. Si bien CR1R136* puede ser una mutación causal en la familia, sus 

miembros tenían una alta incidencia de APOE ε4. En familias con mutaciones de APP, 

la incidencia de APOE ε4 se relacionó con una edad de inicio más temprana, mientras que 

la incidencia de APOE ε2, con una edad de inicio más tardía, con respecto 

a APOE ε3. Curiosamente, la variante PSEN1E318G está relacionada con un mayor riesgo 

de EA, que depende de APOE ε4. Si bien, por lo demás, PSEN1E318G se consideró no 

patógeno, su interacción con APOE ε4 aumentó la deposición de Aβ, provocando un 

deterioro cognitivo más rápido y una neurodegeneración. Así, si bien portar 

la variante CR1R136* puede ser suficiente para desarrollar EA, también es probable que los 

miembros de la familia española estudiados estuvieran afectados únicamente por el factor 

de riesgo APOE ε4 o una combinación de ambos. 

De manera similar, otros factores, ya sean ambientales o genéticos, pueden afectar 

los síntomas desarrollados por la familia con ELP. Aunque PSEN1L166P parece ser 

responsable del fenotipo experimentado por los pacientes, sus síntomas difieren de las 

características más canónicas de la EA relacionadas con esta variante. Esta expresión 

divergente de la enfermedad puede deberse a la pleiotropía del gen PSEN1, sin embargo, 

también puede deberse a otros factores contribuyentes. Se ha descubierto que los factores 

ambientales juegan un papel importante en la ELA y no se pueden ignorar en una 

enfermedad familiar. Aquí propongo un factor genético que puede contribuir a los distintos 

síntomas que experimentan los miembros de esta 

familia. La nueva variante ADPRHR295P puede tener un efecto sobre el desarrollo de la 

enfermedad, desestabilizando los filamentos de actina en presencia de 

la variante ADPRHL1L294R, provocando un fenotipo más cercano a ELP, junto con 

la mutación agresiva PSEN1L166P. La complejidad de las enfermedades neurológicas 

proviene, en parte, de la naturaleza acumulativa de los defectos que las provocan, por lo 

que siempre es fundamental buscar otro factor que pueda contribuir al fenotipo 

observado. Se necesitan más estudios sobre los efectos que las variantes de ADPRH pueden 

tener sobre las enfermedades neurológicas, ya que contribuye a la mono-ADP-

ribosilación  aún poco conocida, pero muy importante. 



 
 

Las limitaciones generales de la sobreexpresión in vitro de una proteína en un 

modelo celular se aplican a todo el estudio. Diferencias entre el modelo celular y las células 

correspondientes en el organismo, problemas para establecer un microambiente apropiado, 

como interacciones con otras células, o el hecho de que la proteína se sobreexpresa 

artificialmente en cantidades naturalmente no disponibles. Pueden ser necesarios más 

estudios funcionales para todas las variantes descritas. 

Para concluir, la variante rs764542666 en el gen CR1 que codifica un PTC c.C406T 

p.R136* es la causa probable de la EA en una familia española UGM037, basado en WES 

y estudio de la expresión genética. La haploinsuficiencia provocada por la vía NMD de 

CR1 es el probable mecanismo molecular detrás de la enfermedad. La 

variante rs764542666 es probablemente la primera mutación causante de EA conocida 

en CR1, lo que fomenta la investigación de las raras variantes truncadas en este gen. 

El mutante rs63750265 en el gen PSEN1 que codifica una mutación c.T497C 

p.L166P es la causa probable de ELP en una familia española UGM471, según el estudio 

WES, análisis de segregación y conocimientos previos, lo que plantea dudas sobre los 

efectos pleiotrópicos de la mutación. Los mecanismos moleculares detrás del mutante 

rs63750265 que causa la enfermedad en la familia UGM471 son probablemente la pérdida 

de la actividad de la γ-secretasa, el aumento de la relación Aβ42/Aβ40 y el deterioro de 

la función del canal de fuga de Ca+2 del RE. La nueva variante en el gen ADPRH 

que codifica una variante c.G884C p.R295P desestabiliza fuertemente la proteína sin 

afectar su función, arrojando luz sobre el estudio de la mono-ADP-ribosilación. 

La nueva variante en el gen PRRT2 que codifica un PTC c.C316T p.Q106* es la 

causa probable de PKD en una familia española UGM037, según el estudio de expresión 

genética y WES. Este trabajo apoya la hipótesis de que la vía de NMD provoca 

la haploinsuficiencia de PRRT2, como mecanismo molecular detrás de la PKD. 
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CR1 Complement receptor 1 
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MR-1 Myofibrillogenesis regulator 1 

MRI Magnetic resonance imaging 

mRNA Messenger RNA 

NC Nocturnal convulsions 

NEAAs Non-essential amino acids 

NEFH Heavy chain neurofilament 
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1. INTRODUCTION 

 

1.1. Molecular mechanisms of neurological diseases 

Neurological disorders, traditionally considered as unrelated, may share common 

or related pathological molecular mechanisms. The vast, intricate network of the nervous 

system processes, sends and receives a remarkable amount of information which depends 

on the workings of many of those mechanisms. Both specific to the nervous system and 

those common to every cell of the body. The complexity of neurological diseases comes, 

in part, from a cumulative nature of defects that cause them. This often manifests itself by 

late onset of the diseases, affecting the aging population. Nowadays life expectancy is 

higher than ever before in history, and keeps increasing. This, in turn, increases the 

socioeconomic burden of many neurological diseases. Many common molecular 

mechanisms affect different disorders through, for example, protein degradation, mRNA 

decay or gene regulation. Depending on the gene in question, its dysfunction may lead to a 

variety of conditions. Further, I will discuss molecular and genetic mechanisms particular 

to neurological diseases studied in this work. 

 

1.2. Alzheimer’s disease 

1.2.1. Background 

Alzheimer's disease (AD; OMIM #104300) is the most common neurodegenerative 

dementia in the elderly. According to the World Alzheimer’s Report 2018, 50 million 

people are living with dementia worldwide. The total estimated cost of dementia around 

the world amounts to US$1 trillion. This poses a significant burden due to an aging 

population. 

AD was famously first described by a German psychiatrist and neuropathologist 

Alois Alzheimer in 1906 (Alzheimer, 1907). 70 years later it was recognised as a frequent 

cause of dementia and considered as one of the most common causes of death in the United 

States (Katzman, 1976). AD affects between 5-10 % of the population over 65 years of age 

(Rice et al., 2001). Its prevalence increases from 1 % between 65 and 69 years of age up to 

40-50 % in those older than 95 years (Nussbaum and Ellis, 2003). Some early symptoms 

include difficulty remembering names or recent events, apathy and depression. Later 

symptoms include disorientation, confusion, difficulty speaking, walking and swallowing 

(Alzheimer’s Association, 2018). 
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Early onset AD (EOAD) was shown to be essentially identical to the most common 

form of senile dementia, the late onset AD (LOAD) (Terry and Davies, 1980). AD is 

considered early onset when it appears before the age of 65. The rate of EOAD in AD is 

generally considered to be between 1-2 %, however Zhu et al. (2015) showed it to be as 

high as 5.5 %, with the familial form accounting for 30 % of all EOAD cases. Both EOAD 

and LOAD are characterised by intracellular hyperphosphorylated tau protein aggregates 

called neurofibrillary tangles (NFTs) and extracellular senile plaques composed primarily 

of clumps of amyloid-β (Aβ) peptide (Grundke-Iqbal et al., 1986; Sennvik et al., 2000). 

Hardy and Higgins (1992) put forward the amyloid cascade hypothesis which claims that 

the deposition of Aβ is causing AD pathology and NFTs. Neurodegeneration, vascular 

damage and dementia are its result. Loss of neuropil, shrinkage of nerve fibre tracts, 

neurons or neuron death lead to atrophy of brain tissue starting at the entorhinal cortex, a 

region of the medial temporal lobe (Luxenberg et al., 1987; Jobst et al., 1992; Jobst et al., 

1994; Smith, 2002). It has since been speculated that this pathway may work in parallel 

with the aggregation of hyperphosphorylated tau protein, enhancing their toxic effects 

(Scheltens et al., 2016). Kametani and Hasegawa (2018) suggest tau itself is the main factor 

in AD development and progression and not Aβ. At the same time another hypothesis 

claims the best target for therapeutic intervention in AD is the synaptic dysfunction affected 

by Aβ rather than the plaques themselves (Marsh and Alifragis, 2018). 

AD is a multifactorial disease with a dichotomous pattern of inheritance. 

Approximately 70 % of the causes are genetic and the rest environmental (Dorszewska et 

al., 2016). While some EOAD genetic causes are described as autosomal dominant, LOAD 

has no consistent Mendelian inheritance pattern (Bertram and Tanzi, 2005; Tanzi and 

Bertram, 2005). Mutations in three genes: APP (amyloid precursor protein), PSEN1 

(presenilin 1) and PSEN2 (presenilin 2), are the most common causes of early onset familial 

AD (EO-fAD) and allele ε4 of apolipoprotein E (APOE) is a well-established risk factor of 

LOAD. 30 to 50 % of inheritability of AD can be accounted for by changes in these four 

genes (Tanzi, 2012). Many other candidate genes were proposed through multiple studies 

such as genome-wide association studies (GWAS). 

 

1.2.2. Epidemiology 

Prevalence and incidence data can inform decision making in public health planning 

or diagnostics, and help compare the burden of disease at different locations or time 

periods. Incidence rates can be more useful for etiologic studies comparing varying rates 
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between different groups. Epidemiological studies need to include large numbers of data in 

order to be reliable sources of information, representing the general population. 

Some AD risk factors include age (Guerreiro and Bras, 2015), female sex (Mielke 

et al., 2018) and allele ε4 of APOE (Roses, 2006; Sando et al., 2008). Among 

environmental risk factors are air pollution (Moulton and Yang, 2012; Peters et al., 2019), 

toxic metals (Huat et al., 2019), pesticides (Yan et al., 2016), chronic psychological stress 

(Justice, 2018), brain trauma (Ramos-Cejudo et al., 2018), hypothermia (Whittington et al., 

2010), starvation (Yanagisawa et al., 1999), low level of education (Sharp and Gatz, 2011), 

obesity (Pegueroles et al., 2018), diabetes mellitus (Zhang et al., 2017) and smoking 

(Durazzo et al., 2014). 

 

1.2.2.1. Prevalence 

Prevalence in epidemiology is the proportion in a given population or number of 

cases of a disease at a given point in time. 50 million people are estimated to currently live 

with dementia globally. In 2005, Ferri et al. reported a prevalence of dementia in North 

America equal to 6.4 % of the population at ≥ 60 years of age and 5.4 % in Western Europe 

for the same age group. That number was 4.6 % in Latin America and 4.0 % in China and 

developing Western Pacific. In 2001, 60.1 % of people with dementia lived in developing 

countries, and that number was predicted to rise to 71.2 % by the year 2040. A 100 % 

increase in prevalence rates was predicted to occur between 2001 and 2040 for developed 

countries, while a 300 % increase was predicted for China, India and developing Western 

Pacific. 

Exponential growth can be observed for prevalence rates for AD after the age of 65. 

Between ages 60 and 85, almost a 15-fold increase in the prevalence of dementia is reported 

(Figure 1.1; Evans et al., 1989). 
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Figure 1.1. Prevalence rates of Alzheimer’s disease for different age groups. 

(A) Prevalence rates for probable AD (data from Evans et al., 1989), (B) Proportion of AD 

dementia for different age groups in the United States, 2018 (percentages do not total 100 

due to rounding; data from Alzheimer’s Association, 2018). 

 

An important risk factor for AD, which can be observed by looking at prevalence 

data, is sex. In a meta-analysis of prevalence of AD in Europe, it was shown that the 

proportion was 3.31 % for men and 7.13 % for women (Niu et al., 2017). This may be 

partly due to the fact that the aged population is to a greater extent comprised of women 

than men. Yet, there have been reports suggesting a higher penetrance of certain mutations 

in women (Rao et al., 1996; Cellini et al., 2009). 

Aging population, growing life expectancy and drastic prevalence increase of 

dementia after the age of 65 indicate a growing problem and an important socioeconomic 

burden. 

 

1.2.2.2. Incidence 

Incidence is the number of new cases of a condition per unit of time and, 

occasionally, for fraction of the population. It is a better measure for use in etiologic studies 

since it is not affected by differences in patient survival and its rate can be compared 

between different subgroups with different exposures (Ward, 2013). Although accurate 

incidence rates are difficult to establish due to requirement of large cohorts, long follow-

up periods, determination of the age of onset and definition of a disease-free population, 

the studies show a consistent trend for AD patients. An incidence rate of 0.5 % per year for 

individuals aged 65-70 increases to 6-8 % for those older than 85 (Figure 1.2; Mayeux and 

Stern, 2012). 
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Figure 1.2. Annual incidence rate (per 100 person-years) of AD (data from Mayeux 

and Stern, 2012). 

A trend line was added to show exponential growth. 

 

High prevalence can be accounted for by extended duration of the disease and the 

rapid increase in incidence rate with age. The estimated annual incidence per 1000 person-

years was 8.8 for Western Europe, 10.5 for North America, 9.2 for Latin America and 8.0 

for China and developing Western Pacific (Ferri et al., 2005). The meta-analysis of articles 

evaluating the European population points to an even higher incidence of 11.08 cases per 

1000 person-years (8.97 for Southern European countries and 15.94 for Northern European 

countries). In this territory, women had a higher incidence of AD than men, 13.25 and 7.02 

cases per 1000 person-years, respectively (Niu et al., 2017). This is consistent with the 

prevalence data on difference between sexes. 

 

1.2.2.3. Alzheimer’s disease epidemiology in Spain 

Studies of prevalence and incidence of AD in Spain point to a prevalence rate 

between 4.5-10.6 % and incidence of 5.4-10.8 per 1000 person-years (Manubens et al., 

1995; López-Pousa et al., 2004; Bermejo-Pareja et al., 2008; Lobo et al., 2011; Tola-

Arribas et al., 2013). In a cross-sectional study by Tola-Arribas et al. (2013), which was 

comprised of screening and diagnostic confirmation phases and performed in a door-to-

door manner in Valladolid, Spain, the prevalence of AD was 2.2 % for men and 5.8 % for 

women. People from the study aged 65-69 had a 0.7 % prevalence of AD with that number 

raising to 9.9 % for those aged 80-84. 
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In a study by Lobo et al. (2011) individuals aged 55 and older, living in Zaragoza, 

Spain, were studied. Rapid increase of incidence was observed with age (Figure 1.3). 

 

 

Figure 1.3. Incidence rate (per 1000 person-years) of Alzheimer’s disease in a Spanish 

cohort from Zaragoza (data from Lobo et al., 2011). 

 

Again, incidence rates were significantly higher for women than men (Figure 1.4), 

with 6.8 cases per 1000 person-years for the former and 3.7 for the latter. 

 

 

Figure 1.4. Comparison of incidence rates (per 1000 person-years) of Alzheimer’s 

disease between sexes of a Spanish cohort from Zaragoza (data from Lobo et al., 2011). 

  

  

0

10

20

30

40

50

60

70

80

90

100

55-59 60-64 65-69 70-74 75-79 80-84 85-89 90+

In
ci

d
en

ce
 r

at
e

(c
as

es
 p

er
 1

0
0

0
 p

er
so

n
-y

ea
rs

)

Age group (years)

0

20

40

60

80

100

120

55-59 60-64 65-69 70-74 75-79 80-84 85-89 90+

In
ci

d
en

ce
 r

at
e

(c
as

es
 p

er
 1

0
0

0
 p

er
so

n
-y

ea
rs

)

Age group (years)

men women



27 
 

1.2.3. Clinical features and treatment 

The symptoms of AD can be divided into cognitive: memory loss, apraxia, etc. and 

non-cognitive: mood swings, delusions, etc. (Awada, 2015). National Institute on Aging 

and the Alzheimer’s Association proposed revised guidelines for AD diagnosis in 2011 

(Albert et al., 2011; Jack et al., 2011; McKhann et al., 2011). These revised guidelines 

include the previous 1984 criteria based on assessment of symptoms, cognitive test results, 

neurological evaluation and reports from the individual and the relatives but differ by 

incorporation of biomarker tests (cerebrospinal fluid (CSF) analysis, functional and 

structural imaging and amyloid positron emission tomography) and formalisation of 

different stages of the disease. 

Short term memory deficits, difficulty with language and finding words are primary 

clinical features (Becker et al., 1994). Among non-cognitive symptoms, mood dysfunction, 

depression, apathy, anxiety, insomnia, and agitation or psychosis are prevalent. AD 

dementia is the clinical manifestation of the pathophysiological process of AD. For a 

positive diagnosis of dementia, the person presenting the symptoms needs to show 

functional impairment and behavioural or cognitive impairment that is represented in at 

least two of the domains: memory, visuospatial abilities, language, personality, behaviour 

or executive function. For a diagnosis of probable AD dementia, the above dementia criteria 

have to be met, the onset of the disease needs to be insidious and progressive, cognitive 

impairment and amnestic or nonamnestic symptoms need to be reported (Ulep et al., 2017). 

EOAD occurs before the age of 65 years and is caused primarily by mutations in 

three genes: APP, PSEN1 and PSEN2. The main genetic risk factor of LOAD is allele ε4 

of APOE. While the neuropathology features of both sporadic and monogenic AD are 

similar, phenotype of monogenic cases of EOAD is broader with disturbances in behaviour, 

myoclonus, epilepsy and focal presentations. Survival in monogenic or sporadic AD is 6-9 

years from diagnosis, on average (Pilotto et al., 2013). 

The only classes of drugs approved by the US Food and Drug Administration (FDA) 

for treatment of AD symptoms are cholinesterase inhibitors (ChEI) and low-affinity N-

methyl-D-aspartate receptor (NMDA) antagonists. Loss of cholinergic neurons, and thus 

cholinergic neurotransmission, contributes to AD symptoms. Donepezil, rivastigmine and 

galantamine, all ChEI, enhance cholinergic neurotransmission. The NMDA receptor 

antagonist, memantine, reduces glutamatergic neuronal excitotoxicity (Ulep et al., 2017). 

Currently there is no treatment available that could cure or arrest the progression of the 

disease. 
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1.2.4. Alzheimer’s disease pathology 

AD neuropathological hallmarks are intracellular NFTs and extracellular amyloid 

(senile) plaques. Other core features involve synaptic deterioration and neuronal death 

(Ballard et al., 2011). The amyloid cascade hypothesis recons the deposition of Aβ peptide 

is the cause of AD pathology resulting in formation of NFTs, neurodegeneration, vascular 

damage and dementia (Hardy and Higgins, 1992). 

 

1.2.4.1. Amyloid plaques 

Amyloid plaques (Figure 1.5) are mainly composed of aggregates of Aβ peptide, a 

36-43 amino acid protein. Aβ is formed after proteolytic cleavage of APP, a transmembrane 

protein. The cleavage may occur through two different pathways. In the first pathway, α-

secretase cleaves APP at the extracellular N-terminal to form a soluble form of APP known 

as sAPPα. The remaining fragment of APP, still attached to the membrane, can further be 

cleaved by γ-secretase to form a soluble p3 fragment and a short polypeptide, APP-

intracellular domain (AICD), still embedded in the membrane. The second pathway 

involves cleavage of APP by β-secretase forming sAPPβ. Further cleavage of the remaining 

membrane-associated fragment by γ-secretase produces Aβ peptides (Figure 1.6; 

Chasseigneaux and Allinquant, 2012). The main products of this cleavage are Aβ40 and 

Aβ42 isoforms of the peptide. According to Palop and Mucke (2010) expression of Aβ42 

isoform is increased by mutations correlated with familial AD and the overexpression of 

Aβ decreases synaptic transmission. 
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Figure 1.5. Hallmark lesions of Alzheimer’s disease visualised by modified 

Bielschowsky Silver Stain (from Selkoe et al., 1991). 

In the center, denoted with an A, a large senile plaque with structurally abnormal neurites 

(open arrowheads). Open arrowheads point to structurally abnormal (dystrophic) neurites, 

the arrows point to cytologically normal neurons while dark neurofibrillary tangles are 

visible in the cytoplasm of pyramidal neurons. Bar = 50µm. See appendix I for license 

agreement. 

 

1.2.4.2. Neurofibrillary tangles 

NFTs are composed of aggregated tau protein. In normally functioning neurons, tau 

is a microtubule-associated protein found primarily in axons. It stabilises microtubules and 

helps with their assembly by interaction with tubulin (Binder et al., 1985; Medeiros et al., 

2011). Microtubules disassemble due to hyperphosphorylation of tau which causes its 

fibrillisation and the aggregation of fibrils to form NFTs (Figure 1.6; Alonso et al., 2018). 

This process takes place in AD affected individuals although it is not clear whether it is the 

cause of the disease or its manifestation. The helical filamentous NFTs are mainly 

deposited in the neurons of the medial temporal lobe, lateral parietotemporal region and 

frontal association cortices (Ulep et al., 2017). In contrast with the senile plaques, the 

location and density of NFTs has been proven to be correlated with progression of AD in 

patients (Ballard et al., 2011). Although the amyloid cascade hypothesis suggests it is the 

Aβ aggregates that influence formation of NFTs, it has since been speculated that these 

pathways may also work in parallel, enhancing their toxic effects (Scheltens et al., 2016). 
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Figure 1.6. Comparison of normal state and Alzheimer’s disease state, with amyloid 

β aggregates and neurofibrillary tangles formation as the main hallmarks of the 

disease (from Gireud et al., 2014). 

See appendix I for license agreement. 

 

1.2.4.3. Progression of Alzheimer’s disease pathology through the brain 

Scahill et al. (2002) mapped the evolution of regional atrophy in AD by use of 

volumetric magnetic resonance imaging (MRI). Hippocampal atrophy was observed even 

in presymptomatic subjects and mildly affected patients. The medial parietal lobe atrophy 

could be observed at all stages of the disease while the frontal lobe atrophy was observed 

in more advanced stages. An important observation was that regional atrophy occurs even 

before the clinical onset of symptoms and spreads from the medial temporal lobe to other 

parts of the brain in a specific manner. Of note is also that the preclinical stage of AD 

precedes the clinical symptoms potentially by many years, even decades (Dubois et al., 

2016). Entorhinal cortex of the parahippocampal gyrus, which was suggested as the first 

site of expression of AD pathology by Braak and Braak (1991), shows gravest atrophy. The 

sequence of pathology of AD spreading, together with the timeline proposed by Ohm et al. 

(1995) are summarized in figure 1.7. 
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Figure 1.7. Spread of neurofibrillary pathology in Alzheimer’s disease (modified from 

Smith, 2002).  

Density of tangles is proportional to depth of colour. See appendix I for license agreement. 

Copyright (2002) National Academy of Sciences, USA. 

 

The atrophy of an AD affected brain was shown to be significant when comparing 

the cornu Ammonis of a hippocampus of a non-affected elderly person and late stage AD 

patient. The former occupied 1.5 ml and contained about 9 million neurons and the latter 

about 0.5 ml in volume and some 1.44 million neurons (Bobinski et al., 1996). 
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1.2.5. Etiology 

1.2.5.1. Environmental factors 

Many environmental factors have been proposed as possible risk factors for LOAD 

to date. Some of them include air pollution (Moulton and Yang, 2012; Peters et al., 2019), 

toxic metals (Huat et al., 2019), pesticides (Yan et al., 2016), chronic psychological stress 

(Justice, 2018), brain trauma (Ramos-Cejudo et al., 2018), hypothermia (Whittington et al., 

2010), starvation (Yanagisawa et al., 1999), low level of education (Sharp and Gatz, 2011), 

obesity (Pegueroles et al., 2018), diabetes mellitus (Zhang et al., 2017)  and smoking 

(Durazzo et al., 2014). 

Environmental factors, which account for about 30 % of AD cases (Dorszewska et 

al., 2016), cause stress on systemic, inter and intracellular levels. These may cause neuron 

or synapse loss and cognitive impairment through many different pathways (Wainaina et 

al., 2014). 

 

1.2.5.2. Genetic basis of Alzheimer’s disease 

Genetic causes account for approximately 70 % of all AD cases. EO-fAD is 

primarily caused by mutations in APP, PSEN1 and PSEN2 genes. Little is known about the 

function of APP, yet it is speculated it is involved in neuron migration during early 

development in the brain.  Cleavage of APP by α-, β- and γ-secretases leads to formation 

of peptides with further functions. sAPP may be involved in neuron formation and growth 

as well as acting as an inhibitor for certain proteins, while Aβ plays a role in synaptic 

plasticity (Caillé et al., 2004; Parihar and Brewer, 2010). PSEN1 is the catalytic subunit of 

the γ-secretase complex and PSEN2 is its homolog. They are thus closely involved with 

APP cleavage and formation of Aβ (De Strooper, 2003). 

According to Cruts et al. (2012) the recorded number of mutations for the three 

genes involved in a fully penetrant, autosomal dominant mode of inheritance was: 32 

mutations (24 plus duplications) for APP, 185 for PSEN1 and 12 for PSEN2 with an 

additional not fully penetrant mutation (PSEN2N141I). Most of these mutations lead to an 

increase in the ratio of Aβ42 to Aβ40 and subsequently aggregation of amyloid fibrils (Jarrett 

et al., 1993; Tanzi and Bertram, 2005). Other candidate genes for EO-fAD involve MAPT 

encoding tau protein, PAX transcription activation domain interacting protein gene 

(PAXIP1) and PSENEN encoding Presenilin Enhancer Protein 2, another γ-secretase 

component (Tanzi, 2012). 
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A well-established genetic risk factor for LOAD is allele ε4 of APOE (Strittmatter 

et al., 1993). APOE protein forms lipoproteins which function as cholesterol and other fats 

transporters in the blood. Except cholesterol metabolism and lipid transport, APOE is also 

involved in inflammation control, synaptic function, neurogenesis and the generation and 

trafficking of Aβ and APP (Giri et al., 2016). Disruption of normal cholesterol levels may 

cause disorders affecting the cardiovascular system. There are three major APOE alleles: 

ε2, ε3, ε4, with the ε3 being the most common, the ε4 second and ε2 the least common 

(Table 1). 

 

Table 1.1. Frequency of APOE genotypes in a US population. 

 

Genotype Population (%) 

ε2/2 1 

ε2/3 12 

ε3/3 60 

ε3/4 21 

ε4/4 2 

Subjects with genotype ε2/ε4 are not included due to its low frequency. Table uses an 

estimate of 46 million people from US over 60 y/o from year 2000 (data from Raber et al., 

2004). 

 

The APOE alleles result from amino acid combinations at residues 112 and 158. 

Allele ε2 has the following combination: Cys112/Cys158, allele ε3: Cys112/Arg158 and allele 

ε4: Arg112/Arg158. While allele ε4 increases the AD risk 4-fold if inherited in one copy and 

more than 10-fold if in two, allele ε2 is considered to encode a neuroprotective variant of 

the protein (Tanzi, 2012). Increasing number of APOE ε4 alleles is associated with an 

earlier onset of the disease. AD patients who were APOE ε4 homozygotes had a lower 

volume of grey matter with age and higher hippocampal atrophy, as well as increased 

amyloid load and cerebral amyloid angiopathy (Giri et al., 2016). Higher number APOE ε4 

alleles is also associated with increased levels of phosphorylated tau protein (Han et al., 

2010) and higher Aβ accumulation (Lim and Mormino, 2017). On the other hand, carriers 

of APOE ε2 had a lower concentration of tau in the CSF and lesser rate of hippocampal 
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atrophy. It is speculated that APOE ε2 is more efficient at clearing Aβ than APOE ε4 due 

to its higher affinity for the peptide (Giri et al., 2016).  

Many other genes were identified as possible risk factors for AD through studies 

made by genetic linkage analysis, study of candidate genes, GWASs and next-generation 

sequencing (NGS) technologies. The identified genes can be grouped into clusters 

involving three major pathways: Inflammatory response, endocytosis and lipid metabolism 

(Table 2). 

 

Table 1.2. Selected genes and their variants associated with Alzheimer’s disease. 

Pathway Gene Chromosome SNP Function 

Axonal transport 

and cytoskeletal 

function 

NME8 7p14.1 rs2718058 

Ciliary function 

Neuronal cell 

proliferation 

Cholesterol 

metabolism and 

immune response 

CLU 8p21-p12 rs11136000 

Synapse turnover 

Complement 

regulation 

Chaperone protein 

Cytoskeletal 

function and 

axonal transport 

 

CASS4 20q13.31 

rs7274581 

rs6024870 

rs16979934 

Cell migration 

Cell adhesion 

CELF1 11p11 rs10838725 
mRNA editing 

Pre-mRNA splicing 

Endocytosis 

Lipid metabolism 
SORL1 11q23.2-q24.2 rs12285364 

Endocytosis 

Receptor for APOE 

Processing of APP 

Endocytosis 

Synapse function 

 

CD2AP 6p12 
rs9296559 

rs9349407 

Receptor-mediated 

endocytosis 

Cytokinesis 

Cytoskeletal dynamics 

PICALM 11q14 
rs3851179 

rs541458 

Clathrin-mediated 

endocytosis 

Epigenetic 

regulation 
ZCWPW1 7q22.1 rs1476679 

Epigenetic regulation 

Neural development 
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Table 1.2. Selected genes and their variants associated with Alzheimer’s disease 

(continued). 

Hippocampal 

synaptic function 
PTK2B 8p21.1 rs28834970 

Calcium homeostasis 

MAP kinase signaling 

Immune response 

 

CR1 1q32 
rs3818361 

rs6656401 

Amyloid β clearance 

Complement activation 

CD33 19q13.3 
rs3865444 

rs3826656 

Clathrin-mediated 

endocytosis 

Cell signaling 

MS4A 11q12.2 

rs610932 

rs670139 

rs4938933 

Signal transduction 

Immune function 

TREM2 6p21.1 rs75932628 Inflammatory response 

EPHA1 7q34 
rs11771145 

rs11767557 

Synaptic development 

Immune function 

Neural development 

HLA-

DRB5/HL

A-DRB1 

6p21.3 rs9271192 
Immune function 

Histocompatibility 

INPP5D 2q37.1 rs35349669 
Cytokine signaling 

Immune function 

Immune response 

Hippocampal 

synaptic function 

MEF2C 5q14.3 rs190982 
Myogenesis 

Synapse formation 

Immune response 

Lipid metabolism 
ABCA7 9p13.3 

rs3764650 

rs3752246 

Phagocytosis 

Lipid homeostasis 

Lipid metabolism 

 

APOE 19q13.2  

Lipid transport 

Synaptic vesicle 

endocytosis 

Cytoskeletal dynamics 

PLD3 19q13.2 rs145999145 
Signal transduction 

Epigenetic modification 
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Table 1.2. Selected genes and their variants associated with Alzheimer’s disease 

(continued). 

Signal 

transduction 
UNC5C 4q22.3 rs137875858 Neural development 

Synaptic vesicle 

endocytosis 

BIN1 2q14.3 rs744373 

rs7561528 

Synaptic vesicle 

endocytosis 

APP trafficking 

Cytoskeletal dynamics 

Synapse function 

endocytosis 

SLC24A

4/RIN3 

14q32.12 rs10498633 Cell signaling 

Neural development 

Tau pathology 

Angiogenesis 

FERMT2 14q22.1 rs17125944 Cell–cell adhesion 

Angiogenesis 

 DSG2 18q12.1 rs8093731 Cell–cell adhesion 

 AKAP9 7q21-q22 rs144662445 

rs149979685 

 

 ADAM10 15q22 rs2305421 Hippocampal neurogenesis 

Cell adhesion 

SNP (single nucleotide polymorphism; data from Giri et al., 2016). 

 

Together with APOE, genes CLU, ABCA7 and SORL1 have been indicated as AD 

risk factors involved in cholesterol metabolism. As shown by Solomon et al. (2009), high 

cholesterol levels in midlife increased the risk of AD and vascular dementia in older age. 

Among genes associated with an increased risk of AD and involved in an immune response 

are CR1, CD33, MS4A, EPHA1, TREM2, HLA-DRB5/HLA-DRB1, INPP5D and also CLU 

and ABCA7. The immune system provoking neuroinflammation, a hallmark of AD, is 

involved in LOAD pathogenesis as shown by several GWASs (Bertram et al., 2008; Harold 

et al., 2009). Endocytosis related genes identified by GWASs as probable risk factors for 

AD are, among others: BIN1, CD2AP, PICALM, EPHA1, PTK2B and SORL1. Not only are 

some of these directly involved in trafficking APP but endocytosis itself is important for 

response to neural damage and synaptic transmission (Giri et al., 2016). Other genes 

proposed as risk factors for AD, and not directly involved in the aforementioned pathways, 

are MEF2C which plays a role in myogenesis (Dodou et al., 2003); CASS4, NME8 and 

CELF1 which are involved in axonal transport and function of the cytoskeleton; FERMT2 
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implicated in angiogenesis and tau pathology (Ghani et al., 2018); ZCWPW1 an epigenetic 

regulator, SLC24H4-RIN3 taking part in cell signalling; and DSG2 with a role in cell to cell 

adhesion (Giri et al., 2016). Some rare variants associated with a risk of AD have been 

identified using whole-exome or whole-genome sequencing (WES and WGS respectively). 

These include TREM2, PLD3, UNC5C, AKAP9, and ADAM10. 

As previously mentioned the complexity of AD and its multifactorial nature makes 

it difficult to treat. There are many pathways to follow due to strong and diverse genetic 

component involvement in its etiology. Yet three main pathways seem to encapsulate most 

of the genetic risk factors: the immune response, lipid metabolism and endocytosis. Next, 

and due to its relevance for this thesis, I will give more details on the complement system. 

 

1.2.6. Complement system 

An important part of the immune response related to AD is found in the complement 

system. It consists of a number of plasma and cell membrane proteins that induce an 

inflammatory response. It is an effector of the humoral immunity implied in cytolysis. 

Functions of the complement include recognition and killing of pathogens. The 

complement is phylogenetically conserved among both invertebrates and mammals 

suggesting its high importance (van Beek et al., 2003). There are three different routes of 

activation of the complement system, the classical pathway, the alternative pathway and 

the mannose-binding lectin (MBL) pathway (Figure 1.8). 
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Figure 1.8. Pathways of the complement cascade. 

Detailed explanation of the figure in text. 

 

Activation of the classical pathway involves initiation, which is done by binding of 

antigen-antibody complex to C1q pattern recognition molecule of the C1 complex. C1 is 

composed of the C1q molecule and a heterotetramer C1r2s2 made up of two C1r and two 

C1s proteases. C1q binding of the activation molecule provokes a conformational change 

and autoactivation of C1r protease which in turn activates C1s. Activated C1s then cleaves 

C2 and C4 to C2a, C2b and C4a, C4b respectively. C4bC2b forms a complex called C3 

convertase that cleaves C3 to C3a and C3b. C3a proinflammatory anaphylatoxin recruits 

leukocytes by interacting with a G-protein–coupled receptor C3aR. C3b forms a complex 

with C4bC2b (C4bC2bC3b) called C5 convertase. C5 is cleaved by this convertase to C5a 

and C5b. Just like C3a, the C5a is a proinflammatory anaphylatoxin interacting with C5aR 

receptor and attracting leukocytes. C5b together with C6, C7, C8 and C9 form the 

membrane attack complex (MAC) which incorporates in the cell membranes of the 

opsonized by C3b target cells and provokes their lysis by pore formation (Noris and 

Remuzzi, 2013; Mortensen et al., 2017). 
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Although the alternative pathway is activated by spontaneous hydrolysis of C3, it is 

controlled by the inhibitor Factors H and I, since they do not inactivate surface bound C3b 

but do so with plasma C3b. Hydrolysed C3 (C3b) binds to the serine protease Bb, formed 

by cleavage of circulating Factor B into Ba and Bb by Factor D. C3bBb complex acts as a 

C3 convertase cleaving C3 into C3a and C3b. More C3bBb complexes are then formed 

thus initiating an amplification process as these act as C3 convertases in the alternative 

pathway. C3b deposits on the surface of the targeted cells opsonizing them. It can then bind 

properdin, which protects it from being inactivated by Factors H and I. These factors inhibit 

the alternative pathway inactivating C3b in solution. C3bBb complex can bind another C3b 

molecule forming a C5 convertase. This in turn takes part in MAC production and lysis 

pathway. The constant spontaneous activation of C3 allows for a fast reaction of the 

alternative pathway without the necessity of antibody involvement (Noris and Remuzzi, 

2013). 

Finally, the MBL pathway only differs from the classical pathway by the 

components involved in its initiation. Mannose-binding lectin binds mannose residues on 

pathogen surface and the associated serine proteases MASP1 and MASP2 are activated. C2 

and C4 are then cleaved by these proteases to form C2a, C2b and C4a, C4b respectively. 

The following steps of this pathway are identical to those of the classical one. Ficolins can 

also initiate this pathway. Ficolins bind carbohydrate moieties on pathogen surface and are 

also associated with MASPs (Endo et al., 2011; Noris and Remuzzi, 2013). 

 

1.2.6.1. Complement system in Alzheimer’s disease pathogenesis 

The endothelial cells of microvessels, pericytes and astrocytes forming the blood-

brain barrier (BBB) separate the brain parenchyma from proteins found in blood plasma 

making it an immune privileged site. As most of the complement proteins are produced in 

the liver it was first assumed only a break in the BBB could allow for these proteins to 

affect the brain. Later Levi-Strauss and Mallat (1987) discovered murine astrocytes are 

capable of producing components of the alternative pathway. Now we know microglia, 

neurons and oligodendrocytes can also produce complement proteins (Barnum, 1995; 

Gasque et al., 2000). While astrocytes and microglia express complement inhibitors, 

neurons seem susceptible to attack by this pathway (Singhrao et al., 2000). Complement 

mRNA has been shown to be upregulated in AD brain, with C1q mRNA being 11- to 80-

fold higher than in controls (Yasojima et al., 1999). Complement factors were also 

identified in amyloid plaques (Eikelenboom and Stam, 1982) and it is postulated that Aβ 
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binds C1q and activates the classical complement pathway in vivo. It was also shown that 

purified NFTs activate complement system in plasma, making aggregated tau a possible 

antibody-independent activator of this pathway (Shen et al., 2001). Complement 

components can be found in the amyloid plaques from the earliest stages of Aβ deposition 

and their activation corresponds with clinical expression of AD. They can be involved in 

AD neuropathology by improper activation or inhibition of the complement pathways. 

Neuroimmune regulatory proteins such as glycosylphosphatidylinositol (GPI) 

anchored molecules (CD24, CD90, CD55 and CD59), molecules of the immunoglobulin 

superfamily (CD22, Siglec-10, CD200, ICAM-5) and others (CD47, fractalkine, TAM 

receptor tyrosine kinase, C3a and Factor H) control negative immune responses (Shen et 

al., 2013). Although Singhrao et al. (2000) reported the susceptibility of neurons to the 

complement pathway, human serum, containing complement proteins, was not toxic 

against human neurons. Homologous restriction, the presence of species-selective 

complement inhibitors on cell surface, is the proposed cause of this lack of susceptibility. 

This was confirmed by removing CD55 and CD59 form the SH-SY5Y neuroblastoma cells 

by treatment with phosphatidylinositol-specific phospholipase C (PIPLC) and further 

incubation with human serum containing complement (Shen et al., 2013). 

 

1.2.6.2. Complement receptor 1 

A GWAS study involving almost 6 thousand AD patients and close to 8.5 thousand 

controls has identified complement receptor 1 (CR1; CD35) as a possible risk factor for 

LOAD (Lambert et al., 2009). CR1 is a receptor for C3b and C4b molecules. It is a type-I 

transmembrane glycoprotein that has multiple functions in immune and glial-mediated 

inflammation. It regulates complement activation by interacting with C3b/C4b and is 

involved in phagocytosis of opsonized complexes. In addition to the membrane bound 

form, CR1 can also be soluble (sCR1). The transmembrane form has been found to be 

expressed on plasma membrane of erythrocytes, macrophages, monocytes, eosinophils, B-

lymphocytes, subpopulation of CD4+ T cells, Langerhan cells, glomerular podocytes and 

dendritic cells. The soluble form was found in plasma and urine (Khera and Das, 2009). 

CR1 has a long extracellular chain composed of 30 short consensus repeats (SCRs), 

each approximately 60 amino acids long, followed by a transmembrane region and a short 

cytoplasmic tail. The SCRs are divided into four long homologous repeats (LHRs) each 

consisting of 7 SCRs. Two SCRs closest to the transmembrane region do not cluster into 

an LHR. Each LHR is a functional domain. LHR-A primarily binds C4b, LHR-B and LHR-
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C bind C3b/C4b, PfEMP1 (Plasmodium falciparum erythrocyte membrane protein 1 which 

is present on the membrane of erythrocytes infected by Plasmodium falciparum) and act as 

cofactors for Factor I. LHR-D binds MBL and C1q. The sCR1 has a similar structure, 

lacking the cytoplasmic tail as it is the product of cleavage of the transmembrane form of 

CR1. There are four isoforms of CR1 (CR1*1, CR1*2, CR1*3 and CR1*4), each with a 

different number of LHRs (Figure 1.9). Unequal crossing over of chromosomes causes 

insertions/deletions which are responsible for isoform formation (Holers et al., 1987). The 

most common isoform, CR1*1 has 4 LHRs, second most common, CR1*2 has 5 with the 

LHR-B repeated. Other isoforms are very rare with CR1*3 having only three LHRs, lacking 

LHR-B and CR1*4 having 2 additional LHR-B (Khera and Das, 2009). 

 

 

Figure 1.9. Schematic representation of CR1 isoform structures. 

SCR – short consensus repeat; LHR – long homologous repeat; TM – transmembrane 

domain; CYT – cytoplasmic tail. Figure modified with permission from Kisserli et al., 2017 

licensed under CC BY-NC-ND 3.0. 

 

CR1 functions as a regulator of the complement system by enhancing the decay of 

C3 and C5 convertases (Iida and Nussenzweig, 1981) and by being a cofactor to Factor I 

in the inactivation of C3b and C4b (Khera and Das, 2009). CR1 also plays a role in immune 

complexes clearance. Once such complex is opsonized by C3b or C4b, the erythrocyte-

bound CR1 can attach to these molecules and carry them to the liver and spleen where they 

are transferred to macrophages and eventually metabolized. Immune complexes opsonized 

by C3b can also be detected by monocytic CR1. Together with Fc-gamma receptors, CR1 
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is responsible for uptake of these particles, which are later broken down in lysosomes. CR1 

on B-lymphocytes is involved in the cells’ proliferation. It is clear that CR1 is an important 

receptor for the immune response and the complement system regulation (Khera and Das, 

2009). 

The isoform found to be associated with AD risk is CR1*2. It has been shown that 

individuals with CR1*1/CR1*2 genotype were 1.8 times more likely to be at risk of 

developing AD than those with CR1*1/CR1*1 genotype. The longer isoform (CR1*2) was 

found to be expressed at lower protein levels than CR1*1. These findings suggest that 

CR1*2 may be connected to increased complement activation and lower Aβ clearance. In 

neurons, the pattern of expression of the CR1*1 isoform in CR1*1/CR1*1 homozygotes is 

filiform while it shows vesicular-like profiles for CR1*1/CR1*2 heterozygotes. Also, in 

neurons, CR1 is found in endoplasmic reticulum intermediate compartments in 

CR1*1/CR1*1 genotype whereas it is found in lysosomes for CR1*1/CR1*2 genotype. The 

processing of the two isoforms may thus be distinct (Hazrati et al., 2012; Mahmoudi et al., 

2015). 

Bin et al. (2019) found the expression of CR1 to be significantly elevated in the 

entorhinal cortex and hippocampus of AD affected brains in comparison to controls. Both 

these regions are important in development of the disease. 

Nine CR1 single nucleotide polymorphisms (SNPs) are associated with AD risk 

(rs1408077, rs3818361, rs4844610, rs6656401, rs6691117, rs6701710, rs6701713, 

rs11803956 and rs116806486). CR1 is involved in clearance of Aβ, regulation of the 

complement cascade and its mRNA levels correlate with NFTs density and phosphorylated 

tau abundance (Zhu et al., 2015). Alteration of Aβ clearance may affect amyloid plaques 

formation, the neuroinflammation caused by complement cascade plays an important role 

in neurodegeneration and CR1 mRNA level correlation with NFTs density may indicate a 

relation between CR1 and tauopathy. It is proposed that through these mechanisms CR1 

and its SNPs are involved in AD risk. 
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1.3. Amyotrophic lateral sclerosis and primary lateral sclerosis 

1.3.1. Amyotrophic lateral sclerosis background 

Amyotrophic lateral sclerosis (ALS; OMIM #105400) is the most common motor 

neuron disease (MND) with a prevalence estimated at 222,801 cases worldwide (Arthur et 

al., 2016). Although ALS is a rare disorder it carries a high socioeconomic burden. It is 

fatal, with an average survival time of 3 years and only about 5 % of patients living 20 

years or longer. Since a clear cause of the disease is unknown, no effective cure has been 

developed. 

First described by a French neurologist, Jean-Martin Charcot, in 1869 (Charcot and 

Joffroy, 1869; Goetz, 2000) it has become well known due to famous sufferers of the 

disease such as Lou Gehrig or Stephen Hawking. Characterized by degeneration of upper 

and lower motor neurons (UMNs and LMNs respectively) at spinal and bulbar level, it 

causes limb paralysis, dysarthria, dysphagia and respiratory failure. ALS is most commonly 

sporadic (90-95 %), although there is a familial ALS (fALS) form with primarily autosomal 

dominant inheritance. Typically, the onset of first symptoms is at the age of 50 to 65 years. 

Muscle weakness or twitching can be some of the early symptoms of the disease. There 

exist different phenotypical expressions of ALS with distinct onset patterns for UMNs and 

LMNs involvement: limb-onset ALS, bulbar onset ALS, and primary lateral sclerosis 

(PLS) and progressive muscular atrophy (PMA), both often considered as points in a 

continuum of ALS (Zarei et al., 2015). 

Behavioural and cognitive deficits may occur with ALS, ranging from mild, 

moderate to frontotemporal dementia (FTD; Strong et al., 2003). The frontal lobe 

degeneration associated with ALS which causes dementia, suggests a continuum of ALS 

with cognitive or behavioural impairment and FTD. Some of the symptoms associated with 

FTD are changes in social behaviour and personality as well as impairments in language 

and executive function (Zago et al., 2011). 

Mutations in superoxide dismutase 1 (SOD1) gene, encoding an antioxidant 

enzyme, and in the protein encoded by the chromosome 9 open reading frame 72 (C9orf72) 

gene are the most common causes of ALS. Aggregation of misfolded SOD1 in motor 

neurons is one of the proposed mechanisms behind ALS. There are a few hypotheses as to 

the molecular mechanism action of mutants that promote the progression of the disease. 

Thus, it is proposed that ALS pathogenesis may be caused by glutamate excitotoxicity 
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(Shaw and Ince, 1997), mitochondrial dysfunction (Smith et al., 2017), impaired structure 

or transport in axons (De Vos et al., 2007) and oxidative stress (Barber and Shaw, 2010). 

ALS is a multifactorial disease with both environmental and genetic risk factors. 

While smoking is the only firmly established environmental factor, there are upwards of 25 

genes associated with the disease (Oskarsson et al., 2015; Nguyen et al., 2018). Mutations 

in C9orf72 gene account for 30 to 40 % of fALS in USA and Europe. SOD1 mutations 

contribute up to 20 % of fALS worldwide. Other genes commonly associated with the risk 

of ALS are TARDBP encoding TAR DNA binding protein 43 (TDP-43), FUS encoding 

fused in sarcoma (FUS) protein binding DNA/RNA which regulates gene expression, ANG 

encoding for a mediator of blood vessel formation or OPTN encoding optineurin with a 

role in Golgi complex maintenance (Zarei et al., 2015). More genes are said to be ALS risk 

factors, and since there is no full consensus on the cause of the disease, more important 

factors may still be undiscovered. 

 

1.3.2. Primary lateral sclerosis background 

Primary lateral sclerosis (PLS; OMIM %611637) is considered a part of the ALS 

pathological spectrum. Spiller (1905a; 1905b) was the first to describe PLS. Since then an 

ongoing debate was had as to the nosology of the disorder and currently PLS is described 

as a part of the ALS spectrum disease, characterised by spinobulbar spasticity caused by 

UMN degeneration. PLS is an idiopathic disorder with an adult-onset and accounts for 1-3 

% of MNDs. Unlike ALS, PLS does not significantly affect LMNs and has a longer survival 

time (Finegan et al., 2019). In a study by de Vries et al. (2017) 3.3 % of 181 patients with 

PLS where shown to also have FTD. 

Pringle et al. (1992) established the clinical features and diagnostic criteria of PLS, 

based on 8 patients. The clinical features include spasticity, slight weakness in the lower 

limbs, adult-onset, progressive course, duration of longer than 4 years and pseudobulbar 

symptoms (Pringle et al., 1992; Kuipers-Upmeijer et al., 2001). The four-year minimum 

was established by Gordon et al. (2006) in order to differentiate between PLS and other 

MNDs, however Bruyn et al. (1995) described cases where patients developed ALS, after 

initial PLS diagnosis, up to 27 years later. Pathological features include degeneration of 

pyramidal cells of Betz in the primary motor cortex, which is clearer in PLS than ALS 

cases. Pyramidal cells of the precentral gyrus are reduced in size in both disorders (Hudson 

et al., 1993). 
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The genetic basis of PLS is not well understood. Reports of members of one family 

having ALS and others PLS exist, but no common genetic risk factor was found (Praline et 

al., 2010). Mutations in gene C9orf72 were found in 1 out of 110 PLS patients and 84 out 

of 1422 ALS patients in a study by van Rheenen et al. (2012). Mutations in genes SPG7 

and TBK1 were reported in patients affected by familial PLS (Yang et al., 2016; Gomez-

Tortosa et al., 2017). Research on genetic risk factors for PLS needs to be done as it is a 

serious heterogeneous disease. Many of its features are shared with ALS and therefore 

further I will discuss ALS, pointing out data specific for PLS. 

 

1.3.3. Epidemiology 

The epidemiological data allow, among others, for better distribution of the budget 

for disease treatment, better understanding of the disease evolution or environmental 

factors involved in its pathogenesis. The mean age of onset of ALS is between 50 and 65 

years and there seems to be an increased risk of ALS in the male to female ratio of 

approximately 1.5:1 (Zarei et al., 2015). PLS similarly has a median onset age of 50.5 years 

(Pringle et al., 1992). This information, as well as knowing other possible risk factors such 

as environmental (smoking, physical activity, exposure to toxic metals, radiation or diet) 

or genetic, is important in introducing the best strategies to treat the illness with all means 

available. 

 

1.3.3.1. Prevalence 

Arthur et al. (2016) estimated the prevalence of ALS at 222,801 cases worldwide 

in 2015. As mentioned before, men are more at risk of developing ALS than women. Also 

there exist geographical loci where ALS is even 50 to 100 times more prevalent. These 

include parts of Japan, Guam, Kii Peninsula of Japan, and South West New Guinea. 

Environmental factors are meant to be the cause of such geographical concentration of ALS 

cases (Zarei et al., 2015). 

Crude prevalence results for Europe range from 1.1/100,000 in Serbia (Alcaz et al., 

1996) to 8.2/100,000 individuals in the Faroe Islands (Joensen, 2012). The median 

prevalence was 5.4/100,000 individuals (Chiò et al., 2013). Estimated prevalence from 

prospective studies was higher (median of 7.89/100,000 individuals) than from 

retrospective studies (median of 4.04/100,000 individuals). Prospective studies tend to be 

less biased than retrospective ones, taking into account outcomes during the study period. 
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In retrospective studies the outcome is related to the exposures to potential risks looking 

backwards. 

The aging population is supposed to contribute to a 69 % increase of ALS 

prevalence worldwide by the year 2040 according to Arthur et al. (2016). These data from 

2015 which estimated the prevalence of ALS to be equal to 222,801, predict 376,674 cases 

of ALS worldwide by 2040. This increase is predominantly the contribution of developing 

nations where there is a predicted increase of older individuals from 9 % to 16 % between 

2015 and 2040. Yet it may be an underestimate since improving healthcare and treatments 

may prolong life expectancy of patients and therefore further increase the prevalence. 

Prevalence of PLS is much less investigated than that of ALS, however it is 

estimated at 10 to 20 cases per million (Brugman and Wokke, 2004). Taking under 

consideration that PLS is much rarer than ALS this estimate appears high, and is likely due 

to a higher survival time for PLS diagnosed patients. 

 

1.3.3.2. Incidence 

Incidence of ALS was estimated at 2.7/100,000 person-years (Chiò et al., 2013). 

Just as with prevalence, the lowest incidence was seen in Serbia (0.5/100,000 person-years) 

and the highest in Faroe Islands (3.6/100,000 person-years) in Europe. 2.08 was the median 

incidence rate (/100,000 person-years) for all of Europe, while for USA the number was 

1.8. Incidence rate (/100,000 person-years) for men was higher with 3.0 in comparison to 

women with 2.4 (Figure 1.10; Logroscino et al., 2009). The disease occurrence after the 

age 80 years undergoes rapid decrease. This may be due to a reduced number of susceptible 

individuals after that age, yet it may also be due to diagnostic difficulties. Short life 

expectancy might hamper the possibility of positive diagnosis. 
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Figure 1.10. Incidence of amyotrophic lateral sclerosis per 100,000 person-years. 

Age groups of 18 year olds and older with distinction between men, women and total 

incidence (data from Logroscino et al., 2009). 

 

Logroscino et al. (2009) propose that the limb-onset ALS may contribute to higher 

incidence of ALS in men. This is due to the observation that limb-onset ALS was twice as 

common among men. Also limb-onset ALS was much more common than bulbar onset 

ALS in men, while the difference between the two patterns was much lower in women. 

They speculate that gender related environmental risks may play a role in this distinction 

as trauma and strenuous physical activity, proposed as ALS risk factors, are more common 

in men due to occupational hazards and sports activities. 

Arthur et al. (2016) predict an increase in ALS incidence around the world of more 

than 31 % by year 2040. With the greatest increase in Libya (117 %) and Iran (112 %). 

Incidence in the USA is meant to increase by 34 % and by 20 % in Europe. 

The incidence of PLS is very rare and estimated at 1 per 10 million per year 

(Brugman and Wokke, 2004). Rarity of the disease together with diagnostic difficulties 

makes this estimate uncertain. 

 

1.3.3.3. Amyotrophic lateral sclerosis epidemiology in Spain 

Prevalence of ALS in Spain is similar to the one reported for rest of Europe 

(5.4/100,000). The same can be said for incidence with 1.4/100,000 person-years (Pradas 
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et al., 2013; Camacho et al., 2018). Incidence rate reaches a peak in 75 to 79 years old 

patients. As in other studies, men had a higher disease occurrence at 1.6 in comparison to 

women at 1.2 (/100,000 person-years). The median onset age was 64.3 years and 38 % of 

cases had bulbar or generalized onset. Median life expectancy was just above 2.5 years 

since onset. The data presented were retrieved from a prospective study conducted in 

Catalonia, Spain (Pradas et al., 2013). As with other studies performed in the Mediterranean 

area, the prevalence and incidence rates are at the lower rage of the European results. With 

an estimated 3,000 people living with ALS in Spain it is still a rare disease but the 

socioeconomic burden is significant. 

The epidemiological data on PLS in Spain are too scarce to provide an incidence or 

prevalence estimate. 

 

1.3.4. Clinical features and treatment 

ALS is characterized by progressive degeneration of UMNs in the cerebral cortex 

and LMNs in the medulla and anterior horn of the spinal cord. Muscle weakness that 

follows, usually leads to a respiratory failure and death within 2-3 years from onset (Coupé 

and Gordon, 2013). The median survival time is 6 months for 25 % of patients and 12 

months for another 25 %. Only about 5 % of patients live 20 years or longer. Predicting the 

survival time for patients is therefore difficult. Longer survival is associated with limb-

onset, young age, stable weight, longer time between onset and diagnosis, higher breathing 

capacity and motor function (Gordon et al., 2012). 

Mean ± standard deviation (SD) disease duration for PLS was 11.2 ± 6.1 years since 

onset (Tartaglia et al., 2007). This included patients who died and who lived until the end 

of the study. Mortality rate was 33 % for PLS patients and 89 % for ALS patients in the 

same study. 

ALS, as the most common MND, encompasses PLS and PMA which make up 1-3 

% and 10 % of MNDs respectively (Gordon, 2013). Limb-onset ALS presents both UMN 

and LMN signs in the limbs. Bulbar onset ALS starts with such symptoms as slurred speech 

and dysphagia with weakening of limbs later in the disease. PLS shows UMN involvement, 

while PMA has only LMN involvement (Zarei et al., 2015). Limb-onset ALS is responsible 

for 70 % of cases among patients and bulbar onset ALS for 25 %. 

LMN degeneration causes cramps, wasting of the muscle, fasciculation and 

weakness while UMN degeneration causes hyperreflexia, twitching, spasticity, modest 

weakness and emotional lability. The most common limb-onset ALS starts with unilateral 
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and focal symptoms. Some of the early manifestations are: difficulty walking, loss of 

dexterity, problems with lifting hands above the head, foot drop, and atrophy of hands, 

forearms, shoulder, proximal thigh or distal foot muscles. Motor neuron degeneration may 

eventually lead to a complete loss of limb function with the patients not being able to walk 

or move their arms, leaving them fully dependent on caregivers. Bulbar onset ALS starts 

with dysarthria and dysphagia which can later develop to anarthia. Tongue fasciculation 

and atrophy are characteristic of bulbar onset ALS. Orthopnoea and exertional dyspnea are 

early symptoms of respiratory difficulty. Approximately 15 % of ALS patients develop 

FTD and close to 50 % have cognitive impairment. They also suffer from emotional 

symptoms such as depression or anxiety. Pain is associated with almost 70 % of patients 

and often caused by bedsores and the inability to move, as well as musculoskeletal 

conditions such as muscle cramping and spasticity (Coupé and Gordon, 2013; Zarei et al., 

2015). 

A study comparing ALS and PLS (Tartaglia et al., 2007) showed a statistically 

significant difference in the age of onset with 59.1 ± 13.1 and 54.6 ± 10.9 years, 

respectively (mean age ± SD; p = 0.009). 47 % of PLS patients exhibited stiffness versus 4 

% of ALS patients, at first presentation at the clinic. Dysphagia was a symptom among 8 

% of ALS patients and none of the PLS patients. Other symptoms more common in ALS 

patients were weakness, cramps, fasciculations and limb wasting. At follow-up a significant 

difference was seen in limb wasting with only 2 % of PLS patients and 100 % of ALS 

patients affected. Bulbar symptoms and dementia were more common symptoms among 

ALS patients and cortical signs among PLS patients. 

Diagnosis of ALS is done using the El Escorial criteria established by the World 

Federation of Neurology in 1994 and revised in 2015 (Ludolph et al., 2015). 

Electromyogram is a very helpful tool in ALS diagnosis confirming widespread LMN 

degeneration (Zarei et al., 2015). 

Thus far no cure for ALS exists. Riluzole approved by the U.S. FDA in 1995 and 

by the European Medicines Agency (EMA) in 1996 was the first systemic therapy drug for 

ALS. Riluzole is a non-competitive NMDA receptor antagonist and inactivates voltage-

gated sodium channels. It is supposed to reduce glutamate excitotoxicity. Edaravone, 

approved by the FDA in 2017, is an antioxidant, reducing reactive oxygen species (ROS) 

and thus oxidative stress. Other compounds have been tested for ALS treatment and they 

fall into the following pathophysiological categories: antiapoptotic, anti-inflammatory, 

antiglutamatergic, antioxidant or anti-aggregation (Zarei et al., 2015). 
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PLS patients are not included in riluzole nor edaravone trials as according to the El 

Escorial criteria only “definite” or “probable” ALS patients can partake (Finegan et al., 

2019). This creates a difficult situation for people affected by this disease and revision of 

those requirements might be necessary as PLS and ALS may have common pathogenesis. 

 

1.3.5. Amyotrophic lateral sclerosis pathology 

Pathogenesis in ALS seems to be multifactorial with many mechanisms, rather than 

a single one, contributing to neurodegeneration (Figure 1.11). The mechanisms related to 

ALS pathogenesis are RNA processing, mitochondrial dysfunction, glutamate 

excitotoxicity, oxidative stress, protein aggregation, neurofilaments (NFs) accumulation 

and neuroinflammation. The exact way by which ALS neurodegeneration occurs is not 

clear, however the above-mentioned mechanisms may interact with each other causing the 

disease. 

Pathogenesis in PLS is much less understood. However, the mechanisms involved 

in neurodegeneration in PLS may be similar to those in ALS. 

 

 

Figure 1.11. Amyotrophic lateral sclerosis pathogenesis mechanisms. 

  



51 
 

 

Figure 1.11. Amyotrophic lateral sclerosis pathogenesis mechanisms (continued). 

Glutamate excitotoxicity caused by impairment of astrocyte uptake of neurotransmitter 

causes Ca2+ influx into motor neurons. Mitochondrial dysfunction impedes calcium 

removal and thus oxidative stress may be caused through calcium-dependent enzymatic 

pathways. Misfolding of mutant SOD1, C9orf72, TDP-43 and FUS causes them to 

aggregate which exacerbates oxidative stress, mitochondrial dysfunction, NFs 

accumulation and thus axonal transport. Glial cells contribute to motor neuron death 

through release of pro-inflammatory cytokines and neurotoxins. Figure from Bonafede and 

Mariotti, 2017 licensed under CC BY 3.0. 

 

1.3.5.1. RNA processing 

Among genes associated with ALS, some code for RNA-binding proteins (FUS, 

TARDBP). Pathology of TDP-43 encoded by TARDBP is common in ALS patients. Both 

FUS and TDP-43 are involved in pre-mRNA splicing, RNA transport and RNA translation. 

Among other genes associated with ALS and involved in RNA processing pathway are 

ANG, ELP3, SETX, SMN and C9orf72. They are involved in RNA transcription regulation, 

transcription, splicing, post-transcriptional processing/editing, transport, translation 

regulation and degradation. When C9orf72 has an inappropriate number of hexanucleotide 

GGGGCC repeats, its pre-mRNA may attach to RNA-binding proteins in the nucleus, thus, 

making them unavailable for processing of other mRNAs (van Blitterswijk and Landers, 

2010; Morgan and Orrell, 2016). 

Substrates of TBK1, whose mutants are associated with PLS, have many substrates 

of their own, among which also proteins involved in RNA processing (Gomez-Tortosa et 

al., 2017). 

 

1.3.5.2. Mitochondrial dysfunction 

Damage and dysfunction of mitochondria are common in many neurodegenerative 

diseases. Mitochondria are important in energy metabolism, apoptosis, lipid biosynthesis 

and calcium homeostasis. They also produce ROS at high levels which may contribute to 

oxidative stress. SOD1 is present in mitochondria at lower levels than SOD2, yet misfolded 

SOD1 may affect the function of these organelles. Another gene associated with ALS and 

encoding for a mitochondrial protein is CHCHD10. It is located in the intermembrane space 

and cristae junctions. Differential motor neuron vulnerability, hyperexcitability or 
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fasciculations are among ALS characteristics that may be explained by mitochondrial 

dysfunction. 

ALS pathogenesis has been hypothesized to be directly linked with disruption of 

mitochondrial bioenergetics, structure and dynamics. Calcium buffering is also an 

important feature disrupted in ALS. The presence of mutant SOD1 in ALS patients has 

been shown to be associated with loss of Ca2+ binding proteins in motor neurons. This 

reduces Ca2+ uptake and increases sensitivity to excitotoxicity (Morgan and Orrell, 2016; 

Bonafede and Mariotti, 2017; Smith et al., 2017). 

In adult-onset PLS the mitochondrial function was affected under reduced glucose 

conditions by mutant SPG7 associated with the disorder (Yang et al., 2016). 

 

1.3.5.3. Glutamate excitotoxicity 

Glutamate is one of the main neurotransmitters in the central nervous system (CNS). 

Synthesized at the presynaptic neuron it is an excitatory activator of postsynaptic receptors. 

It acts on NMDA and α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) 

receptors activating them, which in turn leads to postsynaptic membrane depolarization and 

activation of voltage-dependent calcium channels and influx of Ca2+. Glutamate removal 

from the synaptic cleft is done by excitatory amino acid transporters (EAATs), glial and 

neuronal proteins. If the activation of postsynaptic receptors is too long or excessive, it may 

lead to a state of excitotoxicity and death of neurons. Superfluous intracellular calcium may 

have detrimental effects on mitochondria and formation of ROS, which may lead to 

mitochondrial dysfunction and oxidative stress and eventually cell death. 

Glutamate excitotoxicity was one of the first processes implicated in ALS. Patients 

with this disease were shown to have a reduced level of EAAT2, one of the most important 

cell transporter protein involved in keeping the glutamate level below excitotoxic. 

Excessive influx of Ca2+, excitation of motor neurons and initiation of destructive 

biochemical processes in them, are all pathophysiological mechanisms in both fALS and 

sporadic ALS (sALS) (Morgan and Orrell, 2016; Bonafede and Mariotti, 2017). 

 

1.3.5.4. Oxidative stress 

Aerobic metabolism produces ROS, which are effectively removed in natural 

processes in the cell. When the cell is not capable of removing these free radicals to ensure 

homeostasis, ROS accumulate and cause damage to proteins, lipids, DNA and RNA. SOD1 

is an enzyme whose function is to break down superoxide radicals after binding copper and 
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zinc molecules. Thus mutations in SOD1, associated with ALS, can reduce its activity 

promoting cytotoxic damage caused by charged oxygen molecules. It has been proposed 

that mutations in SOD1 may, not only cause a loss-of-function of the enzyme, but to invert 

its activity producing superoxide radicals and causing oxidative stress. ALS patients were 

shown to have higher levels of ROS and damage due to oxidative stress in CSF, urine and 

serum (Barber and Shaw, 2010; Bonafede and Mariotti, 2017). 

 

1.3.5.5. Protein aggregation 

Aggregated mutant SOD1 was found in tissues of patients with sALS and fALS. 

Protein aggregates are a very common characteristic of many neurodegenerative diseases. 

Such inclusions are typically formed by oligomerization of misfolded protein and are 

supposed to cause toxicity leading to cell death. TDP-43 and FUS were also found to form 

aggregates in patients with ALS. Mutations in 3′-untranslated region (UTR) of TARDBP 

seem to cause an aberrant localization and overexpression of TDP-43, which accumulates 

in the cytoplasm, while being a nuclear protein. Aggregates of TDP-43 have been seen in 

approximately 80 % of the disease cases. Other components have also been observed in 

protein inclusions in tissues of ALS patients. Chaperones, NFs, ubiquitin, ubiquitinated 

proteins and mitochondrial proteins are some of them. This aggregation of proteins may 

further damage proteasome machinery, increasing accumulation of proteins by impairing 

their degradation. This leads to motor neuron death and degeneration (Bonafede and 

Mariotti, 2017). 

Patients affected by PLS with mutation in TBK1 have not been studied with regards 

to the mechanisms of pathogenesis (Gomez-Tortosa et al., 2017) but are possibly affected 

by TDP-43 neuropathology as previously described for TBK1 loss-of-function mutation 

(Van Mossevelde et al., 2015). 

 

1.3.5.6. Neurofilaments accumulation 

NFs are intermediate filaments particularly abundant in axons. During development 

they are important for radial growth of axons. They also play a role in axon calibre 

maintenance and transmission of electrical signals in axons. Accumulation of NFs within 

cell bodies and proximal axons is one of the hallmarks of ALS. In the CNS, NFs are made 

up of heteropolymers of heavy, medium and light subunits (NF-H, NF-M, NF-L 

respectively) and α-internexin. In the peripheral nervous system (PNS) α-internexin is 

replaced by peripherin (Yuan et al., 2012). Phosphorylation of NF-H and NF-M in the axon 
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is inversely correlated to NF transport. Abnormal phosphorylation of these filaments may 

be due to mutations in genes encoding NFs which are associated with ALS. These 

mutations may therefore affect the axonal transport and aggregation of NFs, also impeding 

transport of mitochondria along the axon (Bonafede and Mariotti, 2017). It has been shown 

that overexpression of NF-L causes accumulation of NFs in the cell body and proximal 

axon and degeneration of motor neurons in the ventral horn of the spinal cord (Xu et al., 

1993). At the same time overexpression of NF-L and NF-H seems to slow down the 

progression of the disease. Both these studies were done using a SOD1G93A transgenic 

mouse model of ALS. It is still unclear how exactly NF accumulation affects ALS 

(Bonafede and Mariotti, 2017). 

 

1.3.5.7. Neuroinflammation 

Activated microglia, which are the resident macrophages of the CNS, or 

astrogliosis, characterize the neuroinflammatory response in many neurodegenerative 

diseases. Glial cells are especially important in ALS, as disruption of their communication 

with motor neurons may cause neuronal death. It has been reported that mutant SOD1 motor 

neurons surrounded by wild-type glial cells do not develop a pathological phenotype, while 

wild-type motor neurons surrounded by mutant SOD1 expressing glia do show signs of 

pathology (Clement et al., 2003). 

Microglia have an anti-inflammatory and neuroprotective phenotype at the initial 

stages of ALS. Later on, when motor neurons and astrocytes release misfolded proteins, 

microglia are activated and they become proinflammatory and neurotoxic. Microglia can 

be activated to M1 or alternatively activated to M2. The M1 cause motor neuron death 

through proinflammatory cytokines, ROS, and neurotoxins, while M2 produce anti-

inflammatory cytokines and neurotrophic factors that protect motor neurons. This is 

especially important as microglia expressing mutant SOD1 become M1 activated. 

Microglia show M2 phenotype in the initial stage of ALS and M1 phenotype as the disease 

progresses (Bonafede and Mariotti, 2017). 

The most abundant cells of the CNS, astrocytes, are very important in supporting 

neurons. They maintain homeostasis, recycle neurotransmitters and provide nutrients for 

other cells. Reactive astrogliosis is a term used for morphological and functional changes 

in astrocytes in response to neurological diseases and has been associated with 

neurodegenerative diseases and ALS progression (Pekny and Pekna, 2014). Astrocytes 

remove glutamate from the synaptic cleft via EAAT2 glutamate receptors, preventing 
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excitotoxicity. Patients with ALS have been observed to have a downregulated EAAT2 in 

astrocytes (Howland et al., 2002). Zhao et al. (2013) have studied astrocytes from post-

mortem tissues of ALS patients showing that 22 genes expressing proinflammatory 

cytokines, complement pathway proteins and chemokines were upregulated. These could 

be involved in degeneration of affected neurons. 

 

1.3.6. Etiology 

1.3.6.1. Environmental factors 

Some of the environmental risk factors for ALS include smoking, military service, 

exposure to lead, pesticides, physical activity, head trauma, electromagnetic radiation, low 

body mass index, statin treatment or consumption of β-N-methylamino-l-alanine (BMAA) 

(Oskarsson et al., 2015). BMAA, produced by cyanobacteria in the roots of cycad Cycas 

micronesica, is ingested by people in the areas where they consume cycad seeds. Inability 

to prevent BMAA accumulation is supposed to increase the risk of ALS. 

Men are 1.5-fold more likely to develop ALS which is reflected in the 

epidemiological data. This may be due to many different factors, but a genetic one seems 

less likely than an environmental. Smoking is an environmental factor which is connected 

to ALS, especially in smokers who started at a young age. It is not clear how smoking 

affects the disease but oxidative stress, toxic substances and inflammation may be the 

culprits. Also athletes have been observed to have a higher risk of developing ALS, 

suggesting that physical activity or injury might have a role to play. Exposure to agricultural 

chemicals such as pesticides or fertilizers and to heavy metals like lead has also been 

associated with ALS (Oskarsson et al., 2015; Zarei et al., 2015). 

Men are more likely to develop PLS, however no environmental factors are known. 

This is due to lack of accumulated knowledge on the topic and rarity of the disorder. 

 

1.3.6.2. Genetic basis of amyotrophic lateral sclerosis and primary lateral 

sclerosis 

Classical and high-throughput DNA sequencing techniques allowed for 

identification of many genes associated and causative of ALS. Genetic risk factors have 

been identified for both fALS and sALS. The most common genes associated with the 

disease are: C9orf72, SOD1, TARDBP and FUS. They contribute to approximately 69 % 

of all fALS cases and 9 % of sALS cases (Figure 1.12; Morgan and Orell, 2016). 
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Genes associated with PLS are SPG7, TBK1 and PSEN1 (Yang et al., 2016; Gomez-

Tortosa et al., 2017; Jazi et al., 2019). A locus for PLS was also identified at Chromosome 

4ptel-4p16.1 (Valdmanis et al., 2008). Mutations in two more genes (ALS2 and ERLIN2) 

cause juvenile PLS. Brugman et al. (2007) suggest that adult-onset PLS is not associated 

with ALS2 gene mutations. 

 

 

Figure 1.12. Approximate contribution of mutations in sALS and fALS. The sALS 

representing approximately 90 % and the fALS 10 % of all ALS patients (data from 

Morgan and Orell, 2016). 

 

C9orf72 gene 

Although the function of the protein encoded by C9orf72 is not known, it is thought 

to be involved in RNA processing. It is the gene most frequently linked to both fALS and 

sALS, as well as FTD in Europe. Approximately 40 % of fALS cases can be associated 

with this gene, however it accounts for less than 10 % of fALS in Asia. The pathological 

trait has an age-dependent penetrance. Before the age of 35 years it is estimated to be 0 %, 

increasing to 50 % at 60 years and close to a 100 % at 80 years. C9orf72 has 12 exons and 

3 transcripts. A varying number of the hexanucleotide repeat GGGGCC in the promoter 

region of one of the transcripts, which corresponds to the first intron of the other two, is 

linked to pathology in ALS (Corcia et al., 2017). The number of repeats is polymorphic 

and it is not clear what size should be considered pathogenic and which normal. The repeat 

size in unaffected individuals seems to vary between 2 and 24. ALS patients have been 

reported to possess hundreds, even thousands, of such repeats. Although smaller sizes have 

sporadic ALS familial ALS
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also been reported, with 50 being the smallest repeat number co-segregating with the 

disease (Gijselinck et al., 2016). 

In a review, Nguyen et al. (2018) point to three main pathological mechanisms of 

C9orf72. The first one being loss-of-function and haploinsufficiency, where the repeat 

expansion would suppress gene expression. The second is RNA toxicity. This hypothesis 

suggests the RNA transcripts of the expansion would sequester RNA-binding proteins and 

hinder RNA processing. The third is proteotoxicity from aggregates of dipeptide repeat 

(DPR). Toxic poly-GA, poly-GP, poly-GR, poly-PR and poly-PA peptides are formed by 

repeat-associated non-AUG (RAN) translation of the hexanucleotide repeat GGGGCC or 

GGCCCC RNA. Toxic DPR inclusions have been recorded in the hippocampus, 

frontotemporal cortex and cerebellum, causing neurodegeneration. 

C9orf72 hexanucleotide repeats were found only in approximately 1 % of PLS 

patients versus 6 % of ALS patients in a study by van Rheenen et al. (2012), which does 

not exclude the involvement of the RNA processing pathway as a possible pathogenesis 

mechanism in PLS. 

 

SOD1 gene 

SOD1 encodes a homodimeric metalloenzyme involved in changing O2
− into O2 and 

H2O2, in the Fenton reaction. To date over 150 mutations in this gene have been described 

and it is the second most common ALS causative gene after C9orf72. Approximately 20 % 

of fALS and 1-4 % of sALS are caused by mutations in SOD1. Most of these mutations are 

of missense type and follow an autosomal dominant form of inheritance. 

The mechanism by which SOD1 mutations cause ALS is not fully understood. 

Different mutations may show variation in phenotype caused, age of onset, severity, 

progression and duration of the disease. Autosomal dominant mutation SOD1D90A was 

observed to be recessive in a Scandinavian population. A shorter survival time has been 

reported for patients carrying the SOD1A4V mutation. It was also reported to have a 91 % 

penetrance (Pasinelli and Brown, 2006). 

Oxidative phosphorylation by-products, superoxide radicals which may transform 

into more toxic ROS are broken down by SOD1. Mutations in SOD1 may contribute to 

forming protein aggregates by misfolding, oxidative stress, mitochondrial dysfunction, 

inflammation, glutamate excitotoxicity and axonal transport abnormalities (Chen et al., 

2013). It has been proposed that SOD1 mutations may be involved in ALS pathology 
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through gain rather than loss-of-function (Morgan and Orrell, 2016). To date the most 

commonly used mouse model of ALS is SOD1G93A mutant. 

 

TARDBP gene 

TDP-43 encoded by TARDBP gene is a ribonucleoprotein involved in DNA/RNA 

machinery. Sreedharan et al. (2008) reported an involvement of TARDBP mutations in 

fALS. Since then TARDBP has become one of the most important ALS genes accounting 

for approximately 5 % of fALS and < 1 % of sALS cases (Corcia et al., 2017). A great 

majority of mutations in this gene are located in the glycine-rich C-terminal region in the 

sixth exon. This region plays a role in interactions between proteins. ALS patients with 

mutations in TARDBP seem to present an autosomal dominant inheritance with 

predominant limb-onset in Caucasian and bulbar onset in Asian ALS populations. 

Ubiquitinated TDP-43 is part of the cytoplasmic inclusions not only in ALS but also FTD, 

Huntington disease (HD), Parkinson’s disease (PD) and AD (Da Cruz and Cleveland, 

2011). TDP-43 ubiquitin-positive inclusions are not reported in ALS patients with SOD1 

mutations. It is not clear whether it is due to gain or loss-of-function that TDP-43 is related 

to ALS pathogenesis. Since the protein is involved in transcription, splicing, mRNA 

transport and other nucleus processes both gain of toxic and loss-of-function can cause 

significant alterations in RNA metabolism (Chen et al., 2013). 

 

FUS gene 

Searching for a locus with a high logarithm of odds (LOD) within genes with similar 

domains as in TARDBP, the FUS gene was identified as a risk factor for ALS (Vance et al., 

2009). Autosomal dominant and recessive inheritance was reported for FUS mutations. Just 

as with TARDBP, FUS also accounts for approximately 5 % of fALS and < 1 % of sALS 

cases and is involved in DNA/RNA machinery. Mutations in FUS related to ALS seem to 

be located exclusively in exon 13. They cause aberrant distribution of this nuclear protein 

in cytoplasm (Corcia et al., 2017). Age of onset is typically young although it can vary 

between 26 and 80 years with the youngest patient recorded at 11 years. FUS related ALS 

is predominantly affecting LMNs and does not involve the bulbar region nor cognitive 

impairment (Chen et al., 2013). FUS is involved in gene expression and mRNA splicing 

among other nuclear processes, thus its mechanisms of pathogenesis are similar to those of 

TARDBP (Morgan and Orrell, 2016). 
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Primary lateral sclerosis genes 

Compound heterozygous mutations in SPG7 were found to be associated with PLS 

in a family affected by the disorder. The mutations were SPG7L695P and SPG7I743T, which 

cosegregated with the disease in the family in an autosomal recessive fashion (Yang et al., 

2016). The affected members had both of these mutations while the unaffected parents and 

siblings carried only one. Using the SeaHorse metabolic analyzer Yang et al. (2016) 

showed an alteration in mitochondrial function under reduced glucose conditions affected 

by SPG7 mutations. 

A Spanish family with PLS/dementia phenotype was identified as having TBK1 

gene mutation (TBK1R573G) segregating with the disease (Gomez-Tortosa et al., 2017). No 

neuropathological studies were performed to assess the impact of the mutation. Yet it is 

located at the dimerization domain which may cause protein instability or prevent TBK1 

substrate binding. Also TDP-43 neuropathology has been previously associated with a 

mutation in TBK1 (Van Mossevelde et al., 2015). 

Jazi et al. (2019) have identified mutations PSEN1A431E and PSEN1L381V as 

associated with PLS. The former identified in two Mexican-American brothers and the 

latter in a Vietnamese man. The two brothers developed spastic quadriparesis after previous 

FTD diagnosis and the Vietnamese man developed progressive spastic quadriparesis after 

cognitive problems since childhood. All developed bulbar dysfunction symptoms. The 

early upper extremity involvement and bulbar dysfunction allowed for possible exclusion 

of hereditary spastic paraparesis (HSP) as the disease affecting the patients. 

 

Other genes 

Rarer genes related to ALS include OPTN, ANG, vehicle-associated membrane 

protein B (VAPB), valosin-containing protein (VCP), alsin (ALS2), spatacsin (SPG11), 

heavy chain neurofilament (NEFH) or X chromosome linked ubiquilin-2 (UBQLN2) 

(Morgan and Orrell, 2016). There is a great number of genes reported as causative or risk 

factors of fALS and many of them are rare cases (Table 1.3). This shows the heterogeneous 

pathology of ALS and the possibility of discovering new genes involved in the disease.  
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Table 1.3. Genes associated with fALS and their inheritance and clinical features. 

fALS Locus Gene Inheritance Clinical features 

ALS1 21q22.1 SOD1 AD, AR fALS 

ALS2 2q33 Unknown AR Juvenile ALS 

ALS3 18q21 Unknown AD fALS 

ALS4 9q34 SETX AD Juvenile ALS 

ALS5 15q15-21.1 SPG11 AR Juvenile ALS 

ALS6 16q12 FUS AD–AR fALS 

ALS7 20p13 Unknown AD fALS 

ALS8 20q13.33 VAPB AD fALS 

ALS9 14q11 ANG AD fALS 

ALS10 1p36.22 TARDBP AD fALS 

ALS11 6q21 FIG4 AD fALS 

ALS12 10p15 OPTN AD, AR fALS 

ALS13  ATXN2 AD fALS 

ALS 14 9p13 VCP AD fALS 

ALS15 Xp11 UBQLN2 X-linked fALS 

ALS16 9p13.3 SIGMAR1 AR fALS 

ALS 17 3p11 CHMP2B AD fALS 

ALS18 17p13 PFN1 AD fALS 

ALS 19 2q34 ERBB4 AD fALS 

ALS 20 12q13 HNRNPA1 AD fALS 

ALS 21 5q31 MATR3 AD fALS 

ALS 22 2q35 TUBA4A AD fALS 

ALS 12q24 ADO AD fALS 

ALS 9q34 GLE1 AR fALS 

ALS 20q13 SS18L1 
 

fALS 

FTD–ALS1 9p21 C9ORF72 AD ALS, FTLD, ALS–FTD 

FTD–ALS2 22q11 CHCHD10 AD ALS, FTLD, ALS–FTD 

FTD–ALS3 5q35.3 SQSMT1 AD ALS, FTLD, ALS–FTD 

FTD–ALS4 12q14.2 TBK1 AD ALS, FTLD, ALS–FTD 

(data from Corcia et al., 2017). 
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1.3.7. ADP-ribosylhydrolases and ADP-ribosyltransferases 

ADP-ribosylhydrolases (ARHs) and ADP-ribosyltransferases (ARTs) function 

opposite each other in ADP-ribosylation cycle although some ADP-ribosylation events are 

considered irreversible under the current state of knowledge (Rack et al., 2020). ADP-

ribosylation is a posttranslational modification (PTM) of proteins with great importance for 

cell regulation. ARTs are involved in transfer of single or multiple ADP-ribose units from 

β-nicotinamide adenine dinucleotide (β-NAD+) to a substrate. The transfer of ADP-ribose 

onto a protein can be divided into mono-(ADP-ribosyl)ation (MARylation) and poly-

(ADP-ribosyl)ation (PARylation). Different ARTs may be responsible for MARylation and 

PARylation and different hydrolases cleave mono-ADP-ribose and poly-ADP-ribose. 

Some members of ARHs have been described as associated with neurodegeneration 

(Sharifi et al., 2013; Danhauser et al., 2018; Mashimo et al., 2019). McGurk et al. (2018) 

identified a possible misregulation of PARylation in ALS spinal cord motor neurons 

associated with nuclear PAR polymerases 1 and 2 (PARP1 and PARP2). 

The ADP-ribosylation is an intricate PTM induced by a varied array of ARTs and 

with different chemical linkages (Table 1.4). The O-glycosidic linkages, N-glycosidic 

linkages and S-glycosidic linkage are known to be a part of this PTM. There are more than 

20 different transferases and at least 8 hydrolases described for ADP-ribosylation PTM. 

The ADP-ribosylhydrolase family of hydrolases includes three members described 

in humans (ADPRH, ADPRHL1 and ADPRS (previously ADPRHL2)) and one first found 

in Rhodospirillum rubrum (DraG), a diazotrophic, photosynthetic α-proteobacterium 

(Ludden and Burris, 1976; Moss et al., 1985). Summarising the current knowledge on 

ADPRH, ADPRHL1 and ADPRS is important due to their significance for this thesis. The 

amino acid similarity between ADPRH and ADPRHL1 is 68 % and between ADPRH and 

ADPRS, 41 %. ADPRS hydrolyses O-glycosidic bond in PARylated substrates (Mashimo 

et al., 2014). ADPRHL1 does not seem to have an enzymatic activity and it is mostly 

restricted to expression in the heart of vertebrates (Smith et al., 2016). Mutations in ADPRS 

are known to be associated with neurodegeneration (Danhauser et al., 2018; Mashimo et 

al., 2019), while ADPRH is involved in tumorigenesis and bacterial response to toxins 

(Mashimo et al., 2014). 
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Table 1.4. Summary of ADP-ribosylation intricate array of chemical linkages, 

transferases, hydrolases and their substrates. 

 
Modification 

targets 

Examples of 

known substrates 
Transferases Hydrolases 

O-

glycosidic 

linkages 

Glutamic/aspartic 

acid 

β-TrCP, GSK3b, 

LXRα/β, NXF1, 

PARP1, PARP2, 

PARP3, PARP5a, 

PARP5b, PARP10, 

PARP11, PARP13, 

PARP16, PCNA 

PARP1, PARP2, 

PARP3, PARP5a, 

PARP5b, PARP7, 

PARP10, 

PARP11, 

PARP14, 

PARP16 

MacroD1, 

MacroD2, 

TARG1 

Aspartic acid GcvH-L, PARP6, 

PARP12 

SirTM, PARP6, 

PARP12 

MacroD1, 

MacroD2, 

TARG1 

C terminus Ubiquitin PARP9 Unknown 

Acylated lysine OAADPr Sirtuins MacroD1, 

MacroD2, 

TARG1, 

ADPRS 

Serine and 

tyrosine 

PARP1, histone H1, 

H2B, H3, HPF1 

PARP1/2:HPF1 

complex 

ADPRS 

ADP-ribose 2′-OH and 2′′-OH PARP1, PARP2, 

PARP5a, 

PARP5b 

PARG, 

ADPRS 

3′/5′-

phosphoRNA, 

3′/5′-

phosphoDNA, 2′-

phosphoRNA 

tRNA KptA/TRPT1, 

PARP1, PARP3, 

PARP10, 

PARP11, 

PARP15 

MacroD1, 

MacroD2, 

TARG1, 

ADPRS, 

PARG, 

NUDT16 
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Table 1.4. Summary of ADP-ribosylation intricate array of chemical linkages, 

transferases, hydrolases and their substrates (continued). 

N-

glycosidic 

linkages 

Arginine integrin α7, 

hemopexin, 

GRP78/BiP, GSα 

hARTC1, 

hARTC5, cholera 

toxin 

ADPRH 

Lysine PARP16 PARP16 Unknown 

Diphtamide EF2 exotoxin A Irreversible 

Guanine dsDNA Pierisin, CARP-1, 

ScARP 

Irreversible 

S-

glycosidic 

linkage 

Cysteine PARP8, PARP16 PARP8, PARP16 Unknown 

(data from Rack et al., 2020) 

 

ADPRH is a ubiquitous protein found in cytoplasm of both mice and humans (Moss 

et al., 1992). ADPRH hydrolyses the N-glycosidic bond between arginine and ADP-ribose 

cleaving ADP-ribose from substrate (Oka et al., 2006; Ono et al., 2006). The reaction 

occurs to be specific to mono-ADP-ribosylated substrates, due to the protein’s structure 

(Rack et al., 2018). Kato et al. (2011) observed a shorter G1 phase and increased cell 

growth in mouse embryonic fibroblasts with depleted ADPRH. Therefore, ADPRH has 

been implicated in cell proliferation, tumorigenesis, intracellular signal transduction and 

cell cycle regulation. Mutations in ADPRH such as p.D56N are implicated in altering the 

active site of the protein and thus its catalytic activity, consequently being implicated in 

cancer progression (Kato et al., 2015; Rack et al., 2018). 

Interestingly ADPRH has been reported to hydrolyse free arginine-ADP-ribose, 

which can be ADP-ribosylated by cholera toxin secreted by Vibrio cholerae. In turn, this 

free arginine-ADP-ribose seems to be an inhibitor of ADPRS (Drown et al., 2018; Rack et 

al., 2018). As mentioned previously, ADPRS is involved in neurodegenerative diseases and 

cleaves O-glycosidic serine bonds of ADP-ribosylated substrates. Just as ADPRH it is 

ubiquitous, and present in cytosol, mitochondria and nucleus (Rack et al., 2020). ADPRS 

is also implicated in regulation of parthanos, a form of programmed cell death (Mashimo 

et al., 2013; Dawson et al., 2017). Also the loss-of-function mutations in ADPRS which 

are associated with a neurodegenerative disorder have suggested its possible role in 
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neuroprotection from endogenous ROS (Danhauser et al., 2018; Ghosh et al., 2018). The 

presence of ADPRS in the mitochondria has not been studied very well, but Niere et al. 

(2012) suggest it is responsible for degradation of mitochondrial matrix-associated PAR. 

Also Dölle et al. (2013) indicate that degradation of O-Acetyl-ADP-ribose (OAADPr) by 

ADPRS may be important in NAD recycling in mitochondria. 

ADPRHL1, which has more similarity with ADPRH than ADPRS, is reported to 

lack catalytic activity of ADP-ribose cleavage, being restricted to the heart and affecting 

heart chamber outgrowth and muscle actin filament assembly (Smith et al., 2016). 

Although, thus far, no protein expression of ADPRHL1 has been reported outside of the 

heart, RNA expression was found in several other tissues. Amongst them the brain, and 

especially the cerebral cortex (Uhlén et al., 2015). The catalytic activity of ADPRHL1 is 

reported to be lost (Oka et al., 2006) due to the lack of key amino acids of the active site, 

otherwise present in ADPRH (D56, Y263, S264, S269, S270, D302, D304; Smith et al., 

2016). Therefore, ADPRHL1 has been described as a pseudoenzyme, a protein which has 

lost its essential catalytic activity. 

Smith et al. (2020) suggest actin may be a shared target for ADPRH and ADPRHL1 

in Xenopus species. ADPRH may be important in cleaving ADP-ribose from actin at 

residue R177. Nine toxins are known with the transferase activity of ADP-ribosylation of 

actin monomers at that residue. This in turn provokes a collapse of actin filaments. ADPRH 

and ADPRHL1 may work in unison to allow for correct actin filament assembly. 

 

1.4. Paroxysmal kinesigenic dyskinesia 

1.4.1. Background 

Paroxysmal kinesigenic dyskinesia (PKD; OMIM #128200) is the most common 

paroxysmal movement disorder characterized by a range of involuntary movements 

triggered by sudden motion. PKD is considered a rare disorder, which disproportionately 

affects men (Chen et al., 2011). 

This rare autosomal dominant neurologic condition was first described as early as 

1892 by Shuzo Kure in a Japanese medical journal (Kure, 1892). The typical onset of the 

disorder is during childhood or adolescence. Recurrent attacks involving chorea, athetosis, 

dystonic postures or less commonly ballismus are symptoms of the disorder which is often 

misdiagnosed clinically as epilepsy. PKD is also clinically similar to two allelic disorders: 

benign familial infantile epilepsy (BFIE) and infantile convulsions and paroxysmal 
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choreoathetosis (ICCA). The attacks may occur as seldom as once per month to as often as 

a hundred times per day, lasting up to 5 minutes each. Their severity typically decreases 

with age (Chen et al., 2011). No loss of consciousness has been reported during the attacks. 

PKD primary dysfunction is most probably caused by a global dysfunction of the motor 

neuron network (Méneret et al., 2013). 

Thus far the only known cause of this condition are mutations in the proline-rich 

transmembrane protein 2 (PRRT2) gene, which has an autosomal dominant pattern of 

inheritance. Although the exact function of PRRT2 has not been identified, it is known to 

interact with synaptosomal nerve-associated protein 25 (SNAP-25), synaptotagmin-1 

(SYT1) and synaptotagmin-2 (SYT2) in the presynaptic membrane of neurons, which are 

involved in signalling in nerve cells (Valente et al., 2016). Mutations in PRRT2 may 

decrease the amount of PRRT2 available at the membrane and therefore alter the activity 

of neurons, which in turn may cause the symptoms observed in PKD patients. 

At least 17 known mutations in PRRT2 are associated with forms of paroxysmal 

dyskinesia. A hotspot for mutations is at c.649 on exon 2 of this 4 exon gene. Three 

truncating mutations at c.649 account for 85 % of all PRRT2-related PKD cases. The most 

common among the three (82 %) is a frameshift mutation c.649dupC/p.R217Pfs*8 

(Méneret et al., 2013). PRRT2 loss-of-function and haploinsufficiency are suggested as 

possible causes for pathogenesis due to the truncating nature of the nonsense and frameshift 

mutations associated with the disease. It is important to better understand the molecular 

mechanisms leading to PRRT2-related PKD for better diagnosis and treatment. 

 

1.4.2. Epidemiology 

PKD is a rare disease with an estimated prevalence of 1:150,000 (Chen et al., 2011).  

There is no unique definition of a rare disease. The Congress of the United States of 

America defined such a disease as one affecting fewer than 200,000 people in the Orphan 

Drug Act of 1983. In the European Union such a disease is defined as one affecting 1/2,000 

people. PKD, with its prevalence, fulfils the requirements of both classifications. Not many 

studies have been performed in the area of PKD epidemiology. Palau-Bargues et al. (2010) 

described nine cases in three Spanish families, however neither prevalence nor incidence 

of PKD in Spain is known. Out of the nine patients, 7 were male. This aligns with the sex 

ratio of 3-4:1 described in other studies (Singer et al., 2010; Roze et al., 2015). 
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1.4.3. Paroxysmal dyskinesias 

Kinesigenic form of paroxysmal dyskinesia is the most common among the 

paroxysmal movement disorders. At first, paroxysmal dyskinesias (PxDs) were classified 

according to the duration of the attack. Later Demirkiran and Jankovic (1995) created a 

classification of PxDs based on differences between triggers. They recognized four types: 

non‐kinesigenic (PNKD), exercise‐induced (PED), hypnogenic (PHD) and PKD. The 

differences between the PxDs are summarized in table 1.5. PHD is characterized by attacks 

occurring during slow wave (Non-REM) sleep without having a distinct trigger. In most 

cases PHD has been subsequently classified as a form of autosomal dominant nocturnal 

frontal lobe epilepsy (ADNFLE; Erro and Bhatia, 2018). 

While mutations in PRRT2 are the only known cause of PKD, there are many other 

genes associated with other PxDs. Among them MR-1, KNCMA1 and ATP1A3 causing 

PNKD, SLC2A1, ECHS1 and GCH1 causing PED and PDHA1, PDHX and DLAT which 

encode for subunits of the pyruvate dehydrogenase complex (PDC) whose deficiency 

causes PxD meeting the criteria for both PED and PNKD (Erro and Bhatia, 2018). 

In contrast with other authors, Erro and Bhatia (2018) suggest a diagnosis of PxDs 

based on presence of positive signs rather than exclusion. As these positive signs they 

propose phenomenological variability within-subject with increases in frequency and 

severity of attacks upon examination, variability of attack duration, presence of several 

triggers which are non-specific, responsiveness alteration during attacks, neurological and 

somatic symptoms which cannot be explained medically and irregular response to 

medications. 
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Table 1.5. Classification and information summary of paroxysmal dyskinesias 

according to Demirkiran and Jankovic (1995). 

(data from Schelosky, 2010). 

 

1.4.4. Clinical features and treatment 

The term paroxysmal refers to the sudden recurring attacks. Kinesigenic indicates 

the trigger as being sudden, voluntary movement, acceleration or startle. Dyskinesia refers 

to involuntary writhing movements which may have a fixed pattern. The paroxysms are 

therefore characterized by dystonia, chorea (fast dance-like movements) or less commonly 

 

Paroxysmal 

kinesigenic 

dyskinesia 

(PKD) 

Paroxysmal 

non‐kinesigenic 

dyskinesia 

(PNKD) 

Paroxysmal 

exercise‐

induced 

dyskinesia 

(PED) 

Paroxysmal 

hypnogenic 

dyskinesia 

(PHD) 

Trigger 
sudden 

movement 

alcohol, coffee, 

tea, spontaneous 

prolonged 

physical exercise 

no triggers 

(Non-REM sleep 

stage II) 

Duration 
seconds to few 

minutes 

a few minutes to 

4 hours 
5 to 30 minutes 30 to 45 seconds 

Typical 

movement 

pattern 

dystonic, 

choreatic and 

ballistic 

dystonic dystonic 

dystonic, 

choreatic and 

ballistic 

Attack 

frequency 

up to 100 per 

day 

2 per day to 3 

per year 

2 per month to 1 

per day 

5 per year to 20 

per night 

Age of 

onset 

7 to 14 years of 

age 
earlier than PKD 

9 to 15 years of 

age 

3 to 47 years of 

age (mean 21.8) 

Sex ratio male>>female male>female male>female male=female 

Tratment 
anti-epileptic 

drugs 

avoidance of 

triggers and 

benzodiazepine 

avoidance of 

triggers and 

ketogenic diet 

anti-epileptic 

drugs 
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ballismus (flailing movements of the limbs) or a combination of these. The disorder is often 

misdiagnosed as epilepsy. These, most commonly dystonic attacks occur in extremities and 

can be preceded by an aura, a crawling or tingling feeling such as limb paresthasia at the 

site of the paroxysm. The episode lasts up to 5 minutes but most typically only a few 

seconds, during which the affected person has no alterations of consciousness. If the face 

or jaw is affected by the episode, speech may be impeded. Any body part can be involved 

in a unilateral or bilateral attack. Except for the recurring episodes no other symptoms were 

observed, with electroencephalogram (EEG) and brain imaging studies showing normal 

results (McGuire et al., 2018). 

Typically, the onset of the disorder occurs at 7 to 14 years of age. The symptoms 

tend to decrease in severity or even resolve completely in adulthood. Although men are 

affected by the sporadic form of PKD more often than women, there is no such disparity in 

familial PKD, where the infantile convulsions are more common (McGuire et al., 2018). 

The symptoms' improvement shows favourable response to anti-epileptic drugs 

such as carbamazepine, whose lower doses are sufficient, rather than higher doses used for 

epilepsy treatment. Other anti-epileptic drugs used for PKD treatment are phenytoin, 

valproate, oxcarbazepine, lamotrigine, levetiracetam, or topiramate. Whether avoiding 

triggers such as stress, sleep deprivation or anxiety has any beneficial effect remains 

uncertain. In patients with BFIE, anti-epileptic drugs and benzodiazepines (psychoactive 

drugs) may be used for treatment. The adjustment of drug doses is done on individual basis 

depending on clinical monitoring performed every one or two years (Ebrahimi-Fakhari et 

al., 2018). 

 

1.4.5. PRRT2 and paroxysmal kinesigenic dyskinesia 

PRRT2 was implicated as the gene causing PKD, ICCA and BFIE by genetic 

linkage studies (Chen et al., 2011; Schubert et al., 2012; Méneret et al., 2013). Thus far, 

mutations in PRRT2 are the only known cause of PKD. The function of PRRT2 and its role 

in the pathogenesis of PKD are not fully understood. The PRRT2 gene has four exons, three 

of which (2-4) encode a 340 amino acid protein (Figure 1.13). The PRRT2 protein has an 

N-terminal domain of 268 amino acid residues with a proline-rich region. Next, a 

transmembrane helix M1 with a hinge formed by two proline residues occupies amino acids 

269-289. This causes M1 not to cross the membrane but fold in half inside the plasma 

membrane. An intracellular loop occupies residues 290-317. A putative transmembrane 
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helix M2 (318-338) crosses the membrane leaving an extracellular C-terminal dipeptide 

occupying residues 339-340 (Rossi et al., 2018; Valtorta et al., 2016). Three isoforms of 

PRRT2 exist. Isoform 1 being the most common with 340 amino acids. Isoform 2 has 394 

residues with an extended C-terminal and isoform 3 has 299 amino acids with the 294-340 

replaced by VSPMGP. PRRT2 sequence is highly conserved among mammals (approx. 80 

%), and has approximately 30 % similarity with lower vertebrates such as zebrafish (Danio 

rerio; Valtorta et al., 2016). 

 

 

 

 

 

Figure 1.13. (A) Structure of PRRT2 gene and protein. (B) Membrane topology of 

PRRT2 protein (modified with permission from Valtorta et al., 2016). 

PRD – proline-rich domain, M1a and M1b – transmembrane hinged helix, CYT – 

intracellular loop, M2 – transmembrane helix. See appendix I for license agreement. 
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Chen et al. (2011) identified the CNS as the primary site of Prrt2 mRNA expression 

in mice whose protein is highly homologous to the human PRRT2. It localizes at the 

synaptic membrane putatively interacting with SNAP-25, SYT1, SYT2 and the GluA1 

subunit of the AMPA-type glutamate receptor complex (Stelzl et al., 2005; Lee et al., 2012; 

Schwenk et al., 2014; Li et al., 2015; Valente et al., 2016). 

Due to its interaction with the presynaptic proteins involved in neurotransmitter 

release, PRRT2 is proposed to be involved in synaptic regulation. Valente et al. (2016) and 

Tan et al. (2017) suggest a greater involvement of PRRT2 in the presynaptic function. This 

is considered as one of the pathways by which PRRT2 may be involved in causing PKD, 

as summarized in table 1.6. It co-distributes with SNAP-25 on the presynaptic membrane 

and has increased expression during synaptogenesis. In primary neurons, synaptic 

connections’ density is decreased and the ultrastructure of the nerve terminal is changed 

with PRRT2 silencing. Also synchronous and spontaneous release of neurotransmitter is 

impaired without PRRT2. However, Tan et al. (2017) do not confirm the SYT1 and SYT2 

interaction with PRRT2, as proposed by Valente et al. (2016). Most of the PRRT2 

mutations causing PKD are truncating. It was considered that the protein lacking the 

transmembrane domains is unable to anchor at the presynaptic membrane and gains a 

detrimental function. Liu et al. (2016) showed cytoplasmic location of six different 

truncating mutant PRRT2. Yet, a complete loss of PRRT2 was observed in brains of mice 

with a Prrt2 mutation (Tan et al., 2017) and it was suggested that the nonsense-mediated 

mRNA decay (NMD) pathway was responsible for the protein’s absence (Wu et al., 2014).  

Primary excitatory neurons with PRRT2 knockout have slower exocytosis kinetics, 

higher neural facilitation and weaker spontaneous and evoked firing. The inhibitory 

neurons have a stronger basal synaptic transmission and faster depression. Thus, 

hyperexcitability is proposed as the possible cause of PRRT2-associated paroxysmal 

phenotypes (Valente et al., 2018). 

PRRT2 interacts with voltage-gated Na+ (Nav) channels. Sodium ion current of 

Nav1.2 and Nav1.6 channels is decreased by PRRT2 expression. Haploinsufficiency caused 

by truncating mutations in PRRT2 was therefore indicated in hyperactivity of Nav channels 

(Fruscione et al., 2018). Neuronal hyperexcitability which may cause paroxysmal attacks 

may also be the result of PRRT2 affecting glutamate release through its interactions with 

SNAP-25 and GluA1 (Li et al., 2015). 

PRRT2 was also shown to be a negative regulator of synaptic vesicle priming. It 

blocks vesicle associated v-SNARE assembly with t-SNARE by interaction with SNAP-
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25, part of the t-SNARE complex. This impedes opening of the fusion pore and 

neurotransmitter release. Mutations in PRRT2 associated with PKD have been shown to 

interrupt this SNARE regulation (Coleman et al., 2018). 

 

Table 1.6. PRRT2 mechanisms of involvement in PKD pathogenesis. 

PRRT2 interaction PRRT2 function PRRT2 haploinsufficiency effect 

SNAP-25 and GluA1 

Regulation of 

synchronous and 

spontaneous release 

of neurotransmitter 
Hyperexcitability – dysregulated 

neurotransmitter release 
Negative regulator of 

synaptic vesicle 

priming 

Nav1.2 and Nav1.6 

channels 

Decreasing sodium 

ion current 

Hyperactivity of Na+ channels 

 

1.4.5.1. PRRT2 gene 

Mutations in PRRT2 account for ~ 90 % of familial and ~ 30 % of sporadic cases 

of PKD, depending on the study (Liu et al., 2012). Chen et al. (2011) first identified PRRT2 

as the causative gene for PKD, describing three mutations: c.514_517delTCTG 

(p.S172Rfs*3), c.649dupC (p.R217Pfs*8) and c.972delA (p.V325Sfs*12). Since then there 

have been over 30 nonsense/frameshift and over 20 missense mutations described (Figure 

1.14). Mutation c.649dupC (p.R217Pfs*8) is the most common among them, segregating 

with approximately 80 % of PRRT2-associated familial PKD cases. Novel PRRT2 mutants 

affecting PKD patients are still being discovered, often through WES. Spanning a variety 

of mutations from truncating at the N-terminal c.46G>T (p.E16*; Kita et al., 2017) to 

missense at the C-terminal c. 959C>T (p.A320V; Lu et al., 2018). Prabhakara and 

Anbazhagan (2014) have also identified a mutation c.244C>T in 5′-UTR in exon 2 of 

PRRT2 in a PKD patient. Idiopathic PKD is more common in men than women. On the 

other hand, PRRT2 mutations were identified in patients independently of ethnicity (Liu et 

al., 2011; Hedera et al., 2012; Lee et al., 2012; Méneret et al., 2012; Ono et al., 2012). 

 

 



72 
 

 

Figure 1.14. Map of nonsense/frameshift and missense mutations in proline-rich 

transmembrane protein 2 (PRRT2) with regards to their protein domain location 

(modified with permission from Valtorta et al., 2016). 

See appendix I for license agreement. 

 

Mislocalization to the cytoplasm and NMD of truncating mutations of PRRT2 are 

meant to be the two processes leading to hyperexcitability in PKD (Wu et al., 2014). 

Missense mutations in PRRT2 cluster at the C-terminus unlike the truncating mutations 

which spread throughout the entire sequence. Interestingly the C-terminal region is the most 

conserved part of the molecule with up to 90 % similarity among mammals and 60 % in 

zebrafish (Valtorta et al., 2016). Many PRRT2 missense mutations often lead to defects in 

localization to the plasma membrane which may contribute to pathogenesis by the protein’s 

loss-of-function (Tsai et al., 2019). 

Mutations in PRRT2 may also be associated with other phenotypes than PKD. 

Among them BFIE, ICCA, epilepsy, febrile seizures, infantile non-convulsive seizures 

(INCS) and nocturnal convulsions (NC; Liu et al., 2011; Liu et al., 2012; Ono et al., 2012). 

 

 

1.4.6. Other genetic risk factors for paroxysmal kinesigenic dyskinesia 

Since over 50 % of patients with primary PKD do not have a mutation in PRRT2, a 

novel locus for the disease was mapped to chromosome 3q28-29 (Liu et al., 2016). This 
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was done using genome-wide short tandem repeats (STR) and SNP based linkage analysis. 

Alternatively, patients affected by PKD, not harbouring a PRRT2 mutation were screened 

for myofibrillogenesis regulator 1 (MR-1), solute carrier family 2 member 1 (SLC2A1) and 

chloride voltage-gated channel 1 (CLCN1) genes which cause PNKD, PED and myotonia 

congenita (MC), respectively (Wang et al., 2016). Sixteen out of 28 patients were found to 

possess variants in these genes. 

 

1.4.7. Nonsense-mediated mRNA decay (NMD) pathway 

As mentioned before, Wu et al. (2014) have suggested the NMD pathways is 

involved in decay of the PRRT2 mRNA with a PTC. Since over thirty nonsense and 

frameshift mutations in PRRT2 have been described as the cause of PKD, with mutation 

c.649dupC (p.R217Pfs*8) as the most common and many other frameshift mutations 

ending in a PTC, NMD and haploinsufficiency could be essential molecular mechanisms 

through which PKD is caused. 

NMD is a quality control system associated with PTC in open reading frames 

(ORFs), which eliminates aberrant transcripts. The canonical principle of the NMD 

pathway is the detection of PTC in transcript, tagging and destruction of the aberrant 

mRNA. NMD is involved in decay of approximately 10 % of unmutated mRNAs in 

mammalian cells (Kurosaki et al., 2019), as it also functions as a quantity control system 

for transcripts. While there are many mechanisms by which transcripts can evade the NMD 

pathway, reviewed by Dyle et al. (2019), and many different substrates for NMD were 

described in mammalian cells (Schweingruber et al., 2013; Kishor et al., 2019), here I will 

concentrate on the canonical mechanism of this very conserved (Culbertson et al., 1999) 

pathway, due to its importance for the study. 

PTCs can arise from nonsense or frameshift mutations, as well as DNA 

rearrangement or erroneous RNA splicing. An unmutated transcript in mammalian cells is 

left with many RNA binding proteins (RBPs) attached, after splicing. Among them exon-

exon junction complexes (EJCs). EJCs are protein complexes deposited upstream of the 

exon-exon junction, 20-24 nucleotides away (Hug et al., 2016). The translation machinery 

dislodges RBPs from mRNA and in the case of EJCs the ribosome-associated protein PYM 

executes this task. As the ribosome continues translation, on its way towards the stop codon, 

the EJCs are displaced and the protein is forming. However, when a PTC is present, the 

translation ends prematurely and downstream EJCs remain attached to the transcript. These 

complexes initiate the NMD pathway and the destruction of the transcript. Thus, nonsense 
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mutations can lead to loss-of-function and cause diseases through haploinsufficiency. 

Through many studies it was also established that the PTC should preferably occur > 50-

55 nucleotides upstream of an exon-exon junction to trigger NMD response (Dyle et al., 

2019). 

RNA helicase UPF1 (up-frameshift 1) is an essential part of the NMD machinery 

which relies on phosphorylation and dephosphorylation events for progression of the 

transcript destruction. A SMG1c complex (protein kinase SMG1, PI3K-like kinase, SMG8 

and SMG9) phosphorylates UPF1. At first, SMG1 associates with UPF1 which in turn 

interacts with eukaryotic release factors eRF1 and eRF3. Together they form the 

surveillance complex (SURF). SMG8 and SMG9 regulate SMG1 activity. The SURF 

complex interacts with UPF2, UPF3b and the downstream EJC in case of a PTC present to 

form a decay-inducing complex (DECID). This triggers UPF1 phosphorylation and eRF1 

and eRF3 dissociate. Through association with UPF2, UPF1 is activated and the complex 

translocates along the mRNA, downstream of the EJC. It dislodges proteins from mRNA 

along the way. UPF1 then associates with SMG5, SMG6 and SMG7 and mRNA 

degradation factors. Endonuclease SMG6 cleaves the transcript and the degradation is 

initiated (Hug et al., 2016). 
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2. OBJECTIVES 

 

Alzheimer’s disease, primary lateral sclerosis and paroxysmal kinesigenic 

dyskinesia are three distinct neurological diseases which can be caused by single nucleotide 

variants in known or unknown disease-causing genes. While the clinical effects of these 

variants will be dependent on the affected gene, the molecular mechanisms involved in 

pathogenesis may share common characteristics amongst all three diseases. 

The general objective of this thesis is to comprehend the etiopathogenesis of 

three neurological diseases affecting three distinct Spanish families in order to identify 

the affected molecular pathways in addition to identifying possible therapeutic targets. 

The following partial objectives are pursued in order to achieve the general 

objective: 

1. Determine variants possibly responsible for AD, PLS and PKD in the described 

families. 

2. Characterize the role these variants may play in:  

a. mRNA expression levels, 

b. protein expression, 

c. protein stability. 

3. Identify possible functional impact of the variants. 
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3. MATERIALS AND METHODS 

 

3.1. Nomenclature 

All gene names used have been approved by the HUGO Gene Nomenclature 

Committee (HGNC; Braschi et al., 2019; www.genenames.org). The GenBank sequence 

database (Clark et al., 2016; www.ncbi.nlm.nih.gov/genbank/) was used for variant 

positions described in the text. The form of describing variants with gene name and the 

specific amino acid change in superscript is adopted for clarity, due to a notable number of 

variants discussed. 

 

3.2. Subjects 

The DNA samples used in this study were collected from patients belonging to three 

Spanish families with neurological diseases. Family denoted UGM037 with patients 

affected by fAD, family UGM471 with patients affected by fPLS and family UGM478 with 

patients affected by fPKD. 

All samples were collected with approval of the corresponding institutional review 

boards of the corresponding hospitals with signed informed consent from patients. 

 

3.2.1. Family UGM037 

DNA samples of eleven individuals were available for this family. Relationships 

between the individuals are summarized in figure 3.1. Three of the members were 

diagnosed with fAD: 04-046, 04-048 and 04-049 (assigned these numbers for privacy 

purposes). Among the analytics used for diagnosis, a computed tomography scan was 

performed. No additional amyloid positron-emission tomography (PET) nor a study of CSF 

biomarkers was done. 
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Figure 3.1. Family tree of UGM037 family with the three affected members denoted 

by coloured in shapes. 

Individuals whose DNA samples were available are denoted with an assigned number. 

 

3.2.2. Family UGM471 

DNA samples of seven individuals were available for this family. Relationships 

between the individuals are summarized in figure 3.2. Three members of the family were 

diagnosed with fPLS, mother (0002) and two of her sons (1001, 1002). No previous family 

history of the disease was reported. 
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Figure 3.2. Family tree of UGM471 family with the three affected members denoted 

by coloured in shapes. 

Individuals whose DNA samples were available are denoted with an asterisk. 

 

3.2.3. Family UGM478 

DNA samples of seven individuals were available for this family. Relationships 

between the individuals are summarized in figure 3.3. This Spanish family was previously 

described by Palau-Bargues et al. in 2010. Five members of the family were diagnosed 

with fPKD: 1003, 1005 and their respective children 2004, 2005 and 2007. Patient with the 

assigned number 2005 was examined using neuroimaging and electroencephalography 

(EEG). The rest of the patients were diagnosed using clinical history and neurological 

examination. 
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Figure 3.3. Family tree of UGM478 family with the five affected members denoted by 

coloured in shapes. 

Individuals whose DNA samples were available are denoted with an asterisk. 

 

3.2.4. Control population 

A control population of healthy individuals was used for variant frequency 

verification. The control population consisted of 388 samples from healthy people of ages 

between 18 and 61. 197 of the samples came from men and 191 from women. All of them 

were of Spanish origin. 

Samples from AD patients were also available. 124 patients, among which 97 had 

probable LOAD, 8 had probable EOAD and 19 had EOAD. 42 among them were men and 

82 were women. Just as with the control population, they were of Spanish origin. 

 

3.3. Materials 

3.3.1. Bacterial strain 

The Escherichia coli DH5α strain was used in this work for all manipulations 

involving the need of electrocompetent bacterial cells. These manipulations are detailed in 

further sections of this chapter. This E. coli strain was developed with specific mutations 

which allow for its high efficiency transformation. The specific genotype of E. coli DH5α 

is dlacZ Δ M15 Δ (lacZYA-argF) U169 recA1 endA1 hsdR17(rK-mK+) supE44 thi-1 

gyrA96 relA1. 
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3.3.2. Cell line 

SH-SY5Y (ATCC® CRL-2266™; Figure 3.4) cells were used in all experiments 

involving the need of a human cell line. SH-SY5Y is a cell line subcloned from SK-N-SH 

(ATCC® HTB-11™) parental line derived from a metastatic bone tumour biopsy. 

Deposited to ATCC® by June L. Biedler in 1970, these neuroblastoma cells have an 

epithelial morphology. SH-SY5Y are often used as in vitro models of neuronal function as 

they can be driven toward adrenergic, cholinergic or dopaminergic phenotypes (Kovalevich 

and Langford, 2013). As detailed by Biedler et al. (1978), the cells have a mixed phenotype 

of adherent and floating in suspension. 

 

 

Figure 3.4. SH-SY5Y (ATCC® CRL-2266™) neuroblastoma cells. 

 

3.3.3. Buffers and media solutions 

The recipes for buffers and media used in this work are listed below. 

 

3.3.3.1. Buffers and media used for cultivation of bacteria and genetic 

engineering 

1. Lysogeny broth (LB) medium 

 1 % (w/v) tryptone (Condalab, Spain) 

 0.5 % (w/v) yeast extract (Scharlab, Spain) 

 1 % (w/v) NaCl (Scharlab, Spain) 
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Dissolve in double-distilled water (ddH2O). Adjust pH to 7.0 using NaOH and 

autoclave. Store at 4 ºC. Add corresponding antibiotic (ampicillin (1:1000 of 100 

mg/ml; AM04680005, Scharlab, Spain), kanamycin (1:1000 of 50 mg/ml; ab60018, 

Abcam, UK) or chloramphenicol (1:1000 of 33 mg/ml; C0378, Sigma-Aldrich, 

Merck, Germany)) before use. 

 

2. LB agar plates 

1.5% (w/v) agar bacteriological grade (Condalab, Spain) was added to the 

previously prepared LB medium and autoclaved. The corresponding antibiotic 

(ampicillin (1:1000 of 100 mg/ml; AM04680005, Scharlab, Spain), kanamycin 

(1:1000 of 50 mg/ml; ab60018, Abcam, UK) or chloramphenicol (1:1000 of 33 

mg/ml; C0378, Sigma-Aldrich, Merck, Germany)) was added to medium after 

cooling at room temperature to < 50 ºC. The medium was poured into Petri dishes 

(100 x 15 mm; Sarstedt, Germany) and left overnight to solidify. 

 

3. Super optimal broth (SOB) 

 2 % (w/v) tryptone (Condalab, Spain) 

 0.5 % (w/v) yeast extract (Scharlab, Spain) 

 10 mM NaCl (Scharlab, Spain) 

 2.5 mM KCl (Scharlab, Spain) 

Dissolve in ddH2O. Adjust pH to 7.5 using NaOH and autoclave. Store at 4 ºC. 

 

4. SOB with catabolite repression (SOC) 

After autoclaving SOB, add the following: 

 10 mM MgCl2 (Scharlab, Spain) 

 10 mM MgSO4 (Calbiochem, Merck, Germany) 

 20 mM glucose (Scharlab, Spain) 

All of the above need to be filtered with a 0.45 µm (Lab Logistics Group GmbH, 

Germany) filter before use. Store at 4 ºC. 

 

5. Resuspension solution for miniprep plasmid isolation 

 25 mM Tris-HCl pH 8.0 (PanReac AppliChem, USA) 

 50 mM glucose (Scharlab, Spain) 
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 10 mM Ethylenediaminetetraacetic acid (EDTA; OmniPur® EDTA - CAS 

60-00-4 – Calbiochem, Merck, Germany) 

Dissolve in ddH2O. Store at 4 ºC. 

 

6. Denaturing solution for miniprep plasmid isolation 

 0.2 N NaOH (Sigma-Aldrich, Merck, Germany) 

 1.0 % sodium dodecyl sulfate (SDS) (Scharlab, Spain) 

Dissolve in ddH2O. Store at room temperature. 

 

7. Renaturing solution for miniprep plasmid isolation 

 3 M potassium acetate (Sigma-Aldrich, Merck, Germany) 

 2 M glacial acetic acid (Scharlab, Spain) 

Dissolve in ddH2O. Store at 4 ºC. 

 

3.3.3.2. Buffers and media used for protein biochemistry 

1. Phosphate buffered saline (PBS) 1X 

 137 mM NaCl (Scharlab, Spain) 

 2.7 mM KCl (Scharlab, Spain) 

 10 mM Na2HPO4 (Scharlab, Spain) 

 1.8 mM KH2PO4 (Scharlab, Spain) 

Dissolve in ddH2O. Adjust pH to 7.4 with 1M HCl (Scharlab, Spain) and autoclave. 

Store at 4 ºC. 

 

2. Radioimmunoprecipitation assay (RIPA) buffer 

 50 mM Tris-HCl pH 8.0 (PanReac AppliChem, USA) 

 150 mM NaCl (Scharlab, Spain) 

 0.1 % (w/v) SDS (Scharlab, Spain) 

 0.5 % (w/v) deoxycholic acid (Sigma-Aldrich, Merck, Germany) 

 1 % (w/v) Triton X-100 (PanReac AppliChem, USA) 

 1X Protease Inhibitor Cocktail (cOmplete™, EDTA-free, Roche, 

Switzerland) 

Dissolve in ddH2O. Store at 4 ºC before addition of the protease inhibitor. Add 

protease inhibitor upon use. 
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3. Laemmli 5X buffer 

 250 mM Tris-HCl pH 6.8 (PanReac AppliChem, USA) 

 40 % (v/v) glycerol (Scharlab, Spain) 

 4 % (w/v) SDS (Scharlab, Spain) 

 0.005 % (w/v) bromophenol blue (Thermo Fisher Scientific, USA) 

 10 % (v/v) β-mercaptoethanol (Sigma-Aldrich, Merck, Germany) 

Dissolve in ddH2O. Store at -20 ºC. Dilute to 1X with protein sample before use. 

 

4. Running buffer 10X for Western Blot 

 250 mM Tris base (PanReac AppliChem, USA) 

 1920 mM glycine (PanReac AppliChem, USA) 

 1 % (w/v) SDS (Scharlab, Spain) 

Dissolve in ddH2O. Store at room temperature. Dilute to 1X before use. 

 

5. Transfer buffer 10X for Western Blot 

 25 mM Tris base (PanReac AppliChem, USA) 

 200 mM glycine (PanReac AppliChem, USA) 

Dissolve in ddH2O. Store at room temperature. Dilute to 1X before use, adding 

ddH2O and methanol (Acros Organics, Thermo Fisher Scientific, USA) at 20 % 

(v/v). 

 

6. TBS Tween 1X 

 20 mM Tris base (PanReac AppliChem, USA) 

 150 mM NaCl (Scharlab, Spain) 

 0.1 % (v/v) Tween 20 (PanReac AppliChem, USA) 

Dissolve in ddH2O. Store at room temperature. 

 

7. Blocking buffer 

 TBS Tween 1X 

 10 % (w/v) skim powder milk without calcium 
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8. Mild stripping buffer 

 200 mM glycine (PanReac AppliChem, USA) 

 0.1 % (w/v) SDS (Scharlab, Spain) 

 1 % (v/v) Tween 20 (PanReac AppliChem, USA) 

Dissolve in ddH2O. Adjust pH to 2.2 with 1M HCl. Store at room temperature. 

 

9. PreScission cleavage buffer (PCB) 

 50 mM Tris base (PanReac AppliChem, USA) 

 150 mM NaCl (Scharlab, Spain) 

 1 mM EDTA (OmniPur® EDTA - CAS 60-00-4 – Calbiochem, Merck, 

Germany) 

 1 mM Dithiothreitol (DTT; DI1360 Scharlab, Spain) 

Dissolve in ddH2O. Adjust pH to 7.5 with 1M HCl. Store at 4 ºC. 

 

3.3.3.3. Buffers and media used with SH-SY5Y neuroblastoma cells 

1. Complete growth medium 

 88 % MEM Complete Medium with 2 mM L-glutamine (Thermo Fisher 

Scientific, USA) 

 10 % heat inactivated and filtered fetal bovine serum (FBS; Invitrogen, 

Thermo Fisher Scientific, USA) 

 1 % non-essential amino acids (NEAAs; Invitrogen, Thermo Fisher 

Scientific, USA) 

 100 U/ml penicillin-streptomycin antibiotics (cat. number 15140122 

Thermo Fisher Scientific, USA) 

 

2. Cryopreservation medium 

Supplement the complete growth medium with 5 % (v/v) Dimethyl sulfoxide 

(DMSO; cat. number D8418, Sigma-Aldrich, Merck, Germany). 
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3.3.4. Expression vectors 

Table 3.1. Expression vectors used in this study. 

Empty vectors Producer 

FLAG-HA-pcDNA3.1 Addgene, USA 

pCMV-Tag2A Donation from Jeronimo Bravo 

laboratory 

pFlag – KanR; C-terminal FLAG epitope Produced in laboratory 

pGEX-6P-1 Addgene, USA 

Expression constructs Producer 

ADPRH (BC063883.1) in pGEM-T Sino Biological, China 

ADPRHL1 (NM_138430.5) in pcDNA3.1+/C-

(K)DYK 

GenScript, USA 

CR1 (NM_000651.4) in pcDNA3.1+/C-

(K)DYK 

GenScript, USA 

PRRT2 (NM_145239.2) in pcDNA3.1+/C-

(K)DYK 

GenScript, USA 

pGroEL/GroES Donation from Anthony Gatenby 

laboratory 

Expression vector maps can be found in appendix II. 

 

All the vectors were verified through sequencing and diagnostic digestion with 

restriction enzymes and subsequent agarose gel electrophoresis. They were stored in form 

of glycerol stocks of transformed E. coli DH5α. The bacteria (40 μl) were transformed with 

vectors (50 ng) by electroporation at 1700 V, using the Electroporator 2510 (Eppendorf, 

Germany). They were incubated at 37 ºC in SOC for 45 minutes in a shaking incubator for 

the cells to generate antibiotic resistance and then plated onto a Petri dish with solid LB 

with the corresponding antibiotic. The plates were incubated overnight at 37 ºC and then 

single colonies were used for inoculation of liquid LB medium containing the 

corresponding antibiotic. After incubation at 37 ºC overnight, 500 μl of the culture were 

mixed with 500 μl of 50 % glycerol in a cyrovial (Corning, USA). The cells were stored at 

-80 ºC. Their recovery was done through a miniprep or midiprep plasmid preparation 

protocol. For miniprep either a QIAprep Spin Miniprep Kit (QIAGEN, Netherlands; 
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appendix III) was used or a protocol established in the laboratory. For midiprep 

ZymoPURE II Plasmid Midiprep (Zymo Research, USA; appendix III) kit was used. 

For the miniprep protocol established in the laboratory based on Maniatis et al. 

(1982), a sterile autoclaved toothpick was used to scrape the frozen glycerol stock, and the 

bacteria were streaked onto an LB agar plate containing the corresponding antibiotic. The 

Petri dish was incubated overnight at 37 ºC. A single colony was selected and 3 ml of LB 

medium containing the corresponding antibiotic were inoculated using a sterile toothpick. 

The bacterial culture was grown overnight at 37 ºC in a shaking incubator. It was then 

centrifuged at 14,000 x g for 4 minutes to pellet the bacteria. The supernatant was discarded 

and the cells were resuspended in 250 μl of the resuspension solution. Next 250 μl of 

denaturing solution were added for cell lysis. Finally 250 μl of renaturing solution were 

added to neutralize the pH for DNA renaturation and SDS precipitation with proteins, lipids 

and genomic DNA. The precipitate was pelleted by centrifugation at 14,000 x g for 10 

minutes. The supernatant (approximately 750 μl), with smaller plasmid DNA free in the 

solution, was transferred into a fresh 1.5 ml tube with 750 μl of chilled isopropanol (Acros 

Organics, Thermo Fisher Scientific, USA). The DNA was precipitated by centrifugation at 

14,000 x g for 15 minutes at 4 ºC. The supernatant was removed and 70 % ethanol (Acros 

Organics, Thermo Fisher Scientific, USA) wash was done for excess salt removal. 500 μl 

of 70 % ethanol were added and the tube was centrifuged at 14,000 x g for 5 minutes at 4 

ºC. After complete removal of ethanol, allowing for the pellet to dry, it was resuspended in 

50 μl of Milli-Q® ultrapure water (Merck, Germany). The concentration of plasmid DNA 

was measured by Nanodrop 2000 (Thermo Fisher Scientific, USA). Plasmids were stored 

at -20 ºC. 
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3.3.5. Antibodies 

Table 3.2. Primary and secondary antibodies used in this study. 

Antibody 
Working 

concentration 
Provider (cat. number) 

Primary 

Anti-Actin antibody produced in 

rabbit 

1:1000 Sigma-Aldrich, Merck, 

Germany (ABT1485) 

Anti-ADPRH antibody 

produced in rabbit (321-335) 

1:1000 Sigma-Aldrich, Merck, 

Germany (A7483) 

ANTI-FLAG® antibody 

produced in rabbit 

1:1000 
Merck, Germany (F7425) 

Monoclonal ANTI-FLAG® M1 

antibody produced in mouse 

1:1000 Sigma-Aldrich, Merck, 

Germany (F3040) 

Secondary 

Anti-mouse IgG-HRP antibody 

produced in goat 

1:5000 Invitrogen, Thermo Fisher 

Scientific, USA (A16084) 

Anti-rabbit IgG-HRP antibody 

produced in goat 

1:5000 Santa Cruz Biotechnology, 

USA (sc2030) 

Anti-rabbit IgG-HRP antibody 

produced in mouse 

1:5000 Santa Cruz Biotechnology, 

USA (sc2357) 

 

3.4. Methods 

3.4.1. Whole-exome sequencing 

WES is a NGS technique for sequencing the exome of a DNA sample. While 

GWAS is a good technique for identifying genetic risk factor regions, it is less likely to 

successfully recognise rare frequency variants responsible for affecting or causing a disease 

in a particular family. WES is commonly used for identifying rare variants in 

neurodegenerative diseases (Cukier et al., 2017; Raghavan et al., 2018). 

In this study, samples UGM037-04-046 and UGM037-04-048 from the members of 

the AD affected family and UGM478-1003, UGM478-2004 and UGM478-2005 from the 

members of the PKD affected family were sequenced using the HiSeq 4000© sequencer 

(Macrogen, Rep. of Korea). Samples UGM471-0002, UGM471-1001 and UGM471-1002 
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from the members of the PLS affected family were sequenced using the HiSeq 2000© 

sequencer (Sistemas Genomicos, Spain). In both cases WES was performed. 

Sample preparation and quality control took place in both systems. Library 

construction was performed through random fragmentation of DNA and subsequent 5' and 

3' adapter ligation. This may be performed in a single tagmentation step. The adapter ligated 

random fragments were then PCR amplified and gel purified. The library was then loaded 

onto a flow cell where surface-bound oligonucleotides complementary to the adapters 

would capture the DNA fragments. The fragments were then amplified by bridge 

amplification into clonal clusters, thus completing cluster generation. Sequencing can then 

take place using the reversible terminator-based method developed by Illumina sequencing 

by synthesis (SBS) which allows for detection of single bases as they incorporate into 

template strands. Raw data obtained from WES were then analysed through three major 

steps: base-calling and image analysis, read alignment and SNP calling. 

 

3.4.1.1. Base-calling and image analysis 

Samples sequenced using the HiSeq 4000© sequencer had images generated by HCS 

(HiSeq Control Software v3.3). These were then used for system control and base-calling 

by RTA (Real Time Analysis v2.5.2) software. Illumina package bcl2fastq (v2.16.0.10) 

was used for conversion of base calls binary into FASTQ files. Phred quality score can be 

found in the FASTQ files. It assigns the accuracy of each nucleotide a numerical value 

calculated with -10log10P, where P is the probability of an erroneous base call. 

 

3.4.1.2. Read alignment 

All reads were aligned against the human reference genome version GRCh37/hg19 

retrieved from the UCSC (University of California Santa Cruz) Genomics Institute; 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/chromFa.tar.gz. Read alignment 

was performed using BWA (Burrows-Wheeler Alignment; http://bio-

bwa.sourceforge.net/). The output file was in sai format which was converted to SAM 

(Sequence Alignment/Map) and further to BAM (Binary Alignment/Map) format using 

Picard (http://picard.sourceforge.net/index.shtml). Further PCR duplicates were marked, 

local realignment around indels was performed and quality score recalibration was done. 
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3.4.1.3. SNP calling 

SNP calling was done using the Genome Analysis Toolkit Unified Genotyper 

program (GATK; https://gatk.broadinstitute.org/hc/en-us). SNP filtering is performed to 

filter out the calls of low quality. Next, annotation using annovar 

(http://www.openbioinformatics.org/annovar) and SnpEff 

(http://snpeff.sourceforge.net/SnpEff.html) software was performed to give a final analysis 

of the possible effect or function of the variants recovered in the process. The annotation 

databases were: dbSNP version 142 (http://www.ncbi.nlm.nih.gov/SNP/), 1000Genome 

version Phase3 (Auton et al., 2015), ClinVar version 05/2015 

(https://www.ncbi.nlm.nih.gov/clinvar/) and ESP version ESP6500SI_V2 

(https://evs.gs.washington.edu/EVS/). 

 

3.4.1.4. Results filtering and identification of interesting variants 

From data obtained, the most interesting variants for further investigation were 

selected through a filtration process. Variants in genes associated with the respective 

diseases and other neurological disorders were inspected first. Next, variants in other genes 

were chosen for investigation depending on their role, function, tissue of expression and 

pathways they are involved in. 

These were the primary filters for variant selection: 

 Variant present at least in all affected individuals of the family 

 Zygosity in accordance with Mendelian inheritance 

 Exclusion of synonymous, and previously described as benign, variants 

 Sorting Intolerant From Tolerant (SIFT) score prediction considered 

deleterious (Kumar et al., 2009) 

 Polymorphism Phenotyping (Polyphen) score prediction considered 

damaging (Adzhubei et al., 2010) 

 Putative impact prediction considered MODERATE or HIGH by SnpEff 

The selected variants were verified using Sanger sequencing. All of the primers 

used in this work are assigned a number corresponding to a sequence in tables in appendix 

IV. The variants were assessed using the: “Standards and guidelines for the interpretation 

of sequence variants: a joint consensus recommendation of the American College of 

Medical Genetics and Genomics and the Association for Molecular Pathology” by Richards 

et al. (2015). Also by the gene constraint observed/expected score developed by Genome 
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Aggregation Database (gnomAD; Karczewski et al., 2020; 

https://gnomad.broadinstitute.org/) which shows how tolerant a gene is to synonymous, 

missense or loss-of-function variants. Lower values of the observed/expected score suggest 

a higher intolerance for a class of variation. A 90 % confidence interval (CI) of under 35 is 

suggested to be used as a threshold. 

 

3.4.1.5. Public databases 

The following public databases were consulted for verification of the variant 

frequency: Collaborative Spanish Variant Server (CSVS), Trans-Omics for Precision 

Medicine (TOPMed), Exome Aggregation Consortium (ExAC), gnomAD, NHLBI GO 

Exome Sequencing Project (GO-ESP) and 1000 Genomes Project (1000G). 

 

3.4.2. Sanger sequencing confirmation of WES results 

As suggested by Mu et al. (2016), confirmation of NGS variants by Sanger 

sequencing is necessary for maintaining high sensitivity. For that reason, all the variants 

selected for further investigation from the WES results were verified by Sanger sequencing. 

The PCR conditions used for obtaining amplicons to be used for Sanger sequencing 

were as follows: 

 

dNTPs 2.5 mM 0.30 μl 

Forward primer (10 μM) 0.15 μl 

Reverse primer (10 μM) 0.15 μl 

*Standard Reaction Buffer with MgCl2 10X 1.00 μl 

*Biotools DNA Polymerase (1 U/μl) 0.30 μl 

DNA (50 ng/μl) 0.30 μl 

H2O 7.80 μl 

Primers can be found in appendix IV, table A1. 

*Producer: Biotools, Spain 
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The programs used were based on the following PCR steps: 

 

Step Number of cycles Temperature Time 

Initial denaturation 1 95 ºC 10 min 

Denaturation 

Annealing 

Extension 

35 – 40* 

95 ºC 

55 – 65 ºC* 

72 ºC 

30 sec 

30 sec 

45 sec 

Final extension 1 72 ºC 10 min 

Cooling 1 4 ºC ∞ 

*Depending on the primers used, the number of cycles and the annealing temperature 

varied for optimal reaction specificity and sensitivity. 

 

After the PCR, 5 μl of the products were incubated with 2 μl of ExoSAP-IT™ PCR 

Product Cleanup Reagent (cat. number 78200.200.UL, Thermo Fisher Scientific, USA) at 

37 ºC for 15 minutes and at 80 ºC for another 15 minutes. Sanger sequencing was performed 

by the DNA analysis service at the Institute of Biomedicine of Valencia (Servei d'anàlisi 

d'ADN del IBV) using one of the pair of primers used for amplicon formation at a 

concentration of 3.2 μM. 

 

3.4.3. Allele specific PCR 

Allele-specific PCR (ASPCR) was used to study variant frequency in control 

population for each single nucleotide variant (SNV) selected for further study. ASPCR 

allows for detection of point mutations in DNA by synthesis of an oligonucleotide primer 

with 3’ mismatch with the DNA template (Ugozzoli and Wallace, 1991). Using forward 

and reverse oligonucleotide primers homologous to the DNA template and others where 

one primer has a 3’ mismatch with the DNA template, both in separate reactions, will give 

different results under optimized conditions. Primers used for ASPCR are listed in table A2 

in appendix IV. 
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The PCR conditions used for ASPCR were as follows: 

dNTPs 2.5 mM 0.30 μl 

Forward primer (10 μM) 0.15 μl 

Reverse primer (10 μM) 0.15 μl 

*Standard Reaction Buffer with MgCl2 10X 1.00 μl 

*Biotools DNA Polymerase (1 U/μl) 0.30 μl 

DNA (50 ng/μl) 0.30 μl 

H2O 7.80 μl 

Primers can be found in appendix IV, table A2. 

*Producer: Biotools, Spain 

 

The programs used were based on the following PCR steps: 

 

Step Number of cycles Temperature Time 

Initial denaturation 1 95 ºC 10 min 

Denaturation 

Annealing 

Extension 

35 – 40* 

95 ºC 

55 – 65 ºC* 

72 ºC 

30 sec 

30 sec 

45 sec 

Final extension 1 72 ºC 10 min 

Cooling 1 4 ºC ∞ 

*Depending on the primers used, the number of cycles and the annealing temperature 

varied for optimal reaction specificity and sensitivity. 

 

The conditions were always optimized to clearly see the bands for well amplified 

products. This would allow for distinguishing between bands for primers homologous with 

the DNA template, and for primers where one had a 3’ mismatch with the DNA template. 

 

3.4.4. Plasmid manipulations 

3.4.4.1. Site-directed mutagenesis 

Site-directed mutagenesis was used to introduce specific single nucleotide variants 

into cDNAs of CR1 and ADPRH. For CR1 a FLAG epitope followed by a stop codon was 

introduced at the appropriate site. For ADPRH four distinct variants were introduced. 
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A PCR was performed to amplify the plasmid with a relevant change, introduced 

by appropriate design of the primers. The PCR conditions used for site-directed 

mutagenesis using the CR1 (NM_000651.4) in pcDNA3.1+/C-(K)DYK plasmid were as 

follows: 

 

dNTPs 2.5 mM 3.0 μl 

Forward primer 304f (10 μM) 1.5 μl 

Reverse primer 304r (10 μM) 1.5 μl 

*Cloned Pfu DNA polymerase reaction buffer 10X 5.0 μl 

*Pfu turbo Polymerase (2.5  U/μl) 1.0 μl 

DMSO 2.5 μl 

DNA (50 ng/μl) 1.5 μl 

H2O 34.0 μl 

Primers can be found in appendix IV, table A3. 

*Producer: Agilent, USA 

 

The programs used were based on the following PCR steps: 

 

Step Number of cycles Temperature Time 

Initial denaturation 1 92 ºC 2 min 

Denaturation 

Annealing 

Extension 

3 

92 ºC 

50 ºC 

68 ºC 

30 sec 

30 sec 

15 min 

Denaturation 

Annealing/Extension 
35 

92 ºC 

68 ºC 

30 sec 

15 min 

Final extension 1 72 ºC 10 min 

Cooling 1 4 ºC ∞ 

 

The PCR conditions used for site-directed mutagenesis using the ADPRH 

(BC063883.1) in pGEM-T plasmid were as follows: 
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dNTPs 2.5 mM 2 μl 

Forward primer 300f – 303f (10 μM) 1 μl 

Reverse primer 300r – 303r (10 μM) 1 μl 

*Cloned Pfu DNA polymerase reaction buffer 10X 5 μl 

*Pfu turbo Polymerase (2.5  U/μl) 1 μl 

DNA (50 ng/μl) 1 μl 

H2O 39 μl 

Primers can be found in appendix IV, table A3. 

*Producer: Agilent, USA 

 

The programs used were based on the following PCR steps: 

 

Step Number of cycles Temperature Time 

Initial denaturation 1 95 ºC 2 min 

Denaturation 

Annealing 

Extension 

35 

95 ºC 

52 ºC 

72 ºC 

30 sec 

30 sec 

6 min 

Final extension 1 72 ºC 10 min 

Cooling 1 4 ºC ∞ 

 

After the corresponding PCR was finished, the products were treated with 1 μl of 

DpnI FastDigest (Thermo Fisher Scientific, USA) endonuclease in 6 μl of FastDigest buffer 

10X, filled until 60 μl with Milli-Q® ultrapure water. Incubation took place for 30 minutes 

at 37 ºC. DpnI recognises the sequence 5’-Gm6ATC-3’, cutting after the adenine base only 

when the recognition site is methylated. This allows for degradation of the template, leaving 

the newly formed plasmid intact. Further sample purification was performed using the High 

Pure PCR Cleanup Micro Kit (Roche, Switzerland; appendix III). The product was ready 

for E. coli DH5α transformation by electroporation as described in the “Expression vectors” 

section (3.3.4.). Single colonies were grown on a Petri dish with LB and the corresponding 

antibiotic. The plasmids were extracted by miniprep procedure and the success of 

mutagenesis was verified by Sanger sequencing (as described in section 3.4.2.). 
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3.4.4.2. Subcloning 

In order to avoid artefacts introduced by PCR employed in the mutagenesis, the 

mutated and verified insert was subcloned into a fresh vector. In this way, I ensure that no 

mutation affecting, for example, antibiotic resistance or promoter, is transferred to 

subsequent experiments. CR1 (NM_000651.4) in pcDNA3.1+/C-(K)DYK and its variant 

introduced through site-directed mutagenesis, both with a sequence for the FLAG epitope, 

were subcloned into a pcDNA3.1+/C-(K)DYK vector. ADPRH (BC063883.1) in pGEM-T 

and its variants introduced through site-directed mutagenesis were subcloned into a pFlag 

vector with kanamycin resistance cassette and a C-terminal FLAG epitope sequence; and 

also into pGEX-6P-1 vector. PRRT2 (NM_145239.2) in pcDNA3.1+/C-(K)DYK was 

subcloned into pCMV-Tag2A vector with an N-terminal FLAG epitope sequence together 

with three of its truncated variants. All the above mentioned vectors can be found in table 

3.1. The following subcloning conditions and programs were used: 

 

The PCR conditions used for subcloning CR1 (NM_000651.4) in pcDNA3.1+/C-

(K)DYK and its variant into pcDNA3.1+/C-(K)DYK vector were as follows: 

 

dNTPs 2.5 mM 2 μl 

Forward primer 400f, 401f (10 μM) 1 μl 

Reverse primer 400r, 401r (10 μM) 1 μl 

*Cloned Pfu DNA polymerase reaction buffer 10X 5 μl 

*Pfu turbo Polymerase (2.5  U/μl) 1 μl 

DNA (50 ng/μl) 1 μl 

H2O 39 μl 

Primers can be found in appendix IV, table A4. 

*Producer: Agilent, USA 

 

The programs used were based on the following PCR steps: 

  



97 
 

 

Step Number of cycles Temperature Time 

Initial denaturation 1 95 ºC 2 min 

Denaturation 

Annealing 

Extension 

35 

95 ºC 

60 ºC 

68 ºC 

30 sec 

30 sec 

7 min 30 sec 

Final extension 1 72 ºC 10 min 

Cooling 1 4 ºC ∞ 

 

The PCR conditions used for subcloning ADPRH (BC063883.1) in pGEM-T and 

its variants into pFlag and pGEX-6P-1 vectors were as follows: 

 

dNTPs 2.5 mM 2 μl 

Forward primer 402f, 403f (10 μM) 1 μl 

Reverse primer 402r, 403r (10 μM) 1 μl 

*Cloned Pfu DNA polymerase reaction buffer 10X 5 μl 

*Pfu turbo Polymerase (2.5  U/μl) 1 μl 

DNA (50 ng/μl) 1 μl 

H2O 39 μl 

Primers can be found in appendix IV, table A4. 

*Producer: Agilent, USA 

 

The programs used were based on the following PCR steps: 

 

Step Number of cycles Temperature Time 

Initial denaturation 1 95 ºC 2 min 

Denaturation 

Annealing 

Extension 

35 

95 ºC 

60 ºC 

72 ºC 

30 sec 

30 sec 

1 min 

Final extension 1 72 ºC 10 min 

Cooling 1 4 ºC ∞ 
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The PCR conditions used for subcloning PRRT2 (NM_145239.2) in pcDNA3.1+/C-

(K)DYK and its variants into pCMV-Tag2A vector were as follows: 

 

dNTPs 2.5 mM 2 μl 

Forward primer 404f – 407f (10 μM) 1 μl 

Reverse primer 404r – 407r (10 μM) 1 μl 

*Cloned Pfu DNA polymerase reaction buffer 10X 5 μl 

*Pfu turbo Polymerase (2.5  U/μl) 1 μl 

DNA (50 ng/μl) 1 μl 

H2O 39 μl 

Primers can be found in appendix IV, table A4. 

*Producer: Agilent, USA 

 

The programs used were based on the following PCR steps: 

 

Step Number of cycles Temperature Time 

Initial denaturation 1 95 ºC 2 min 

Denaturation 

Annealing 

Extension 

35 

95 ºC 

60 ºC 

68 ºC 

30 sec 

30 sec 

1 min 

Final extension 1 72 ºC 10 min 

Cooling 1 4 ºC ∞ 

 

After the corresponding PCR was finished, the products and the respective vector 

plasmid were treated with the corresponding FastDigest restriction enzymes (Thermo 

Fisher Scientific, USA; Table A4, appendix IV) in FastDigest buffer 10X for 30 minutes at 

37 ºC. The restriction enzyme treated amplicons and vectors were loaded onto a 0.8 % 

agarose gel with peqGREEN dye (0,004 %; Peqlab, VWR, Germany) for staining of 

dsDNA, ssDNA and RNA. The molecular weight ladder used in all agarose gels in this 

study was 1 Kb Plus DNA Ladder (cat. number 11573127, Invitrogen, Thermo Fisher 

Scientific, USA).The bands were then excised from the gel and purified using the MinElute 

Gel Extraction Kit (QIAGEN, Netherlands; appendix III). Dephosphorylation of the vector 

and ligation was performed with the Rapid DNA Dephos & Ligation Kit (Roche, 
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Switzerland; appendix III). After purification of the sample with the High Pure PCR 

Cleanup Micro Kit (Roche, Switzerland; appendix III) it was ready for E. coli DH5α 

transformation by electroporation as described in the “Expression vectors” section (3.3.4.). 

Single colonies were grown on a Petri dish with LB and the corresponding antibiotic. The 

plasmids were extracted by miniprep procedure and the success of subcloning was verified 

by Sanger sequencing (as described in section 3.4.2.). 

 

3.4.4.3. Plasmid constructs 

The site-directed mutagenesis and subcloning allowed for construction of plasmids 

necessary for this study (Table 3.3). 

 

Table 3.3. Plasmid constructs created through site-directed mutagenesis and 

subcloning. 

Expression constructs 
Plasmid construct produced in the 

laboratory 

ADPRH (BC063883.1) in pGEM-T 

ADPRH (BC063883.1) in pFlag 

ADPRH_p.R295P in pFlag 

ADPRH_p.R295Q in pFlag 

ADPRH_p.R295* in pFlag 

ADPRH_p.D55A_D56A in pFlag 

ADPRH (BC063883.1) in pGEX-6P-1 

ADPRH_p.R295P in pGEX-6P-1 

ADPRH_p.D55A_D56A in pGEX-6P-1 

CR1 (NM_000651.4) in pcDNA3.1+/C-(K)DYK CR1_p.R136* in pcDNA3.1+/C-(K)DYK 

PRRT2 (NM_145239.2) in pcDNA3.1+/C-

(K)DYK 

PRRT2 (NM_145239.2) in pCMV-Tag2A 

PRRT2_p.Q106* in pCMV-Tag2A 

PRRT2_p.Q163* in pCMV-Tag2A 

PRRT2_p.Q250* in pCMV-Tag2A 

 

3.4.5. In silico analysis 

Structural effects of variants were analysed using HOPE web service developed at 

the Centre for Molecular and Biomolecular Informatics CMBI at Radboud University in 

Nijmegen (Venselaar et al., 2010; https://www3.cmbi.umcn.nl/hope/). RCSB Protein Data 
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Bank (PDB; Berman et al., 2000; https://www.rcsb.org/) was used for recovery of the 

protein structures deposited by other authors. Prediction of protein stability upon amino 

acid changes was done using the I-Mutant 2.0 web server (Capriotti et al., 2005; 

http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi). Evolutionary 

conservation of amino acid positions was estimated using ConSurf server (Ashkenazy et 

al., 2016; https://consurf.tau.ac.il/), a bioinformatics web tool. A multiple sequence 

alignment with hierarchical clustering was done using MultAlin (Corpet, 1988; 

http://multalin.toulouse.inra.fr/multalin/). 

 

3.4.6. Genotyping 

3.4.6.1. Genotyping apolipoprotein E gene polymorphism 

Allele ε4 of APOE is the main genetic risk factor for AD. Genotyping APOE 

polymorphism is therefore important in assessing the cause of AD in patients. The 

genotyping was done using a PCR followed by a double enzymatic digestion, agarose gel 

electrophoresis and results interpretation. The PCR was performed under the following 

conditions: 

 

dNTPs 2.5 mM 1.1 μl 

Forward primer 600f (10 μM) 0.55 μl 

Reverse primer 600r (10 μM) 0.55 μl 

DMSO 2.5 μl 

*Standard Reaction Buffer with MgCl2 10X 5 μl 

*Biotools DNA Polymerase (1 U/μl) 0.8 μl 

DNA (50 ng/μl) 3 μl 

H2O 36.5 μl 

Primers can be found in appendix IV, table A6. 

*Producer: Biotools, Spain 

 

The PCR program selected was the following: 
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Step Number of cycles Temperature Time 

Initial denaturation 1 95 ºC 10 min 

Denaturation 

Annealing 

Extension 

5 

95 ºC 

60 ºC 

72 ºC 

30 sec 

30 sec 

45 sec 

Denaturation 

Annealing 

Extension 

20 

95 ºC 

60 ºC with ∆T = -0.5 ºC/cycle 

72 ºC 

30 sec 

30 sec 

45 sec 

Denaturation 

Annealing 

Extension 

10 

95 ºC 

50 ºC 

72 ºC 

30 sec 

30 sec 

45 sec 

Final extension 1 72 ºC 5 min 

Cooling 1 4 ºC ∞ 

 

5 μl of the PCR products were loaded onto a 1.5 % agarose gel with 2 μl of loading 

buffer, 3 μl of molecular weight ladder and run at 120 V for approximately 40 minutes. If 

the PCR was successful and the bands were visible on the gel, the enzymatic digestion of 

the samples took place. The following mixture was prepared: 

 

PCR product 13.1 μl 

*AflIII restriction enzyme 0.2 μl 

*HaeII restriction enzyme 0.2 μl 

*Buffer 10X 1.5 μl 

*Producer: New England Biolabs, USA 

 

The mix of the restriction enzymes with the PCR products was then incubated 

overnight at 37 ºC. The digestion products (15 μl) were loaded onto a 2.5 % agarose gel 

with 3 μl of loading buffer, 4 μl of molecular weight ladder and run at 120 V for 

approximately 40 minutes. The results interpretation was done according to the following 

table 3.4. 
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Table 3.4. Interpretation of the APOE gene polymorphism genotyping. 

Genotype Band size (bp) 

ε2/ε2 205 

ε2/ε3 205 + 141 

ε2/ε4 205 + 169 

ε3/ε3 141 

ε3/ε4 141 + 169 

ε4/ε4 169 

 

3.4.6.2. Genotyping CR1 gene polymorphism 

Members of the family affected by AD had their DNA samples genotyped for the 

rs3818361 SNP and the long isoform of CR1 (CR1*2), which contribute to AD 

susceptibility (Mahmoudi et al., 2015; Li et al., 2015). The genotyping of rs3818361 was 

done using a PCR followed by Sanger sequencing. The PCR for rs3818361 genotyping was 

performed under the following conditions: 

 

dNTPs 2.5 mM 0.30 μl 

Forward primer 601f (10 μM) 0.15 μl 

Reverse primer 601r (10 μM) 0.15 μl 

*Standard Reaction Buffer with MgCl2 10X 1.00 μl 

*Biotools DNA Polymerase (1 U/μl) 0.30 μl 

DNA (50 ng/μl) 0.30 μl 

H2O 7.80 μl 

Primers can be found in appendix IV, table A6. 

*Producer: Biotools, Spain 

 

The PCR program selected was the following: 
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Step Number of cycles Temperature Time 

Initial denaturation 1 95 ºC 10 min 

Denaturation 

Annealing 

Extension 

5 

95 ºC 

60 ºC 

72 ºC 

30 sec 

30 sec 

45 sec 

Denaturation 

Annealing 

Extension 

20 

95 ºC 

60 ºC with ∆T = -0.5 ºC/cycle 

72 ºC 

30 sec 

30 sec 

45 sec 

Denaturation 

Annealing 

Extension 

10 

95 ºC 

50 ºC 

72 ºC 

30 sec 

30 sec 

45 sec 

Final extension 1 72 ºC 10 min 

Cooling 1 4   ∞ 

 

The genotyping of CR1*2 long isoform was done using a PCR followed by loading 

of the products onto a 1.5 % agarose gel with 2 μl of loading buffer, 3 μl of molecular 

weight ladder and run at 120 V for approximately 40 minutes. The design of the primers 

allowed for the amplicons to form only if the genomic DNA had the long isoform of CR1 

(Kucukkilic et al., 2018). The PCR for CR1*2 long isoform genotyping was performed 

under the following conditions: 

 

dNTPs 2.5 mM 0.30 μl 

Forward primer 602f (10 μM) 0.15 μl 

Reverse primer 602r (10 μM) 0.15 μl 

*Standard Reaction Buffer with MgCl2 10X 1.00 μl 

*Biotools DNA Polymerase (1 U/μl) 0.30 μl 

DNA (50 ng/μl) 0.30 μl 

H2O 7.80 μl 

Primers can be found in appendix IV, table A6. 

*Producer: Biotools, Spain 
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The PCR program selected was the following: 

 

Step Number of cycles Temperature Time 

Initial denaturation 1 95 ºC 2 min 

Denaturation 

Annealing 

Extension 

20 

95 ºC 

70 ºC with ∆T = -0.5 ºC/cycle 

70 ºC 

30 sec 

30 sec 

30 sec 

Denaturation 

Annealing 

Extension 

15 

95 ºC 

60 ºC 

70 ºC 

30 sec 

30 sec 

30 sec 

Final extension 1 70 ºC 5 min 

Cooling 1 4 ºC ∞ 

 

3.4.7. SH-SY5Y cell culture maintenance and transfection 

3.4.7.1. Maintenance 

SH-SY5Y cells were stored in cryovials (Corning, USA) in liquid nitrogen. 

Approximately 2.8 x 106 per cryovial. They were submerged in 1 ml of the cryopreservation 

medium (section 3.3.3.3.). After thawing, the cells were suspended in 9 ml of the complete 

growth medium (section 3.3.3.3.). Next steps were: 

 centrifugation at 125 x g for 3 minutes, 

 aspiration of the medium to remove any DMSO present in the 

cryopreservation medium, 

 resuspension in the complete growth medium and plating. 

First the cells were grown in a 25 cm2 cell culture flask, and later transferred onto 

35 mm culture dishes (Table 3.5). The medium was exchanged approximately every 48 

hours. The flask or plates with the cells in medium were kept at 37 ºC in 5 % CO2. For 

passage steps, at 50 – 60 % confluence: 

 the medium was aspirated, 

 trypsin-EDTA (0.05 % with phenol red, cat. number 25300054, Thermo 

Fisher Scientific, USA) was added for 1 minute at room temperature, 

 trypsin-EDTA was then aspirated and the cells were incubated at 37 ºC in 5 

% CO2 for 5 minutes, 
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 the cells were then suspended in the complete growth medium, 

 centrifugation at 125 x g for 3 minutes took place, 

 aspiration of the medium to remove any trypsin-EDTA residue, 

 resuspension in complete growth medium and plating. 

For all experimental assays, the number of cells used was estimated at 1.2 x 106; 

grown on the 35 mm culture dish. 

 

Table 3.5. Flasks and dish used for SH-SY5Y cell culture. 

Material Surface area (cm2) 
Number of cells 

at confluence 
Provider 

35 mm culture dish 8.8 1.2 x 106 SPL Life Sciences, Rep. of 

Korea 

T-25 flask 25 2.8 x 106 Thermo Fisher Scientific, 

USA 

T-175 flask 175 23.3 x 106 Thermo Fisher Scientific, 

USA 

 

3.4.7.2. Transfection 

At confluence of 70 – 90 % the SH-SY5Y cells were transfected using the 

Lipofectamine 2000 Transfection Reagent (Thermo Fisher Scientific, USA). Lipofection 

protocol, previously optimised at the laboratory, was as follows: 

1. Dilute 10 μl of lipofactamine in 240 μl of Opti-MEM medium (cat. number 

31985062, Thermo Fisher Scientific, USA) per 35 mm plate. 

2. Dilute 2500 ng of plasmid DNA with Opti-MEM medium to a final volume of 

250 μl. 

3. Mix 250 μl of diluted lipofectamine and 250 μl of diluted plasmid DNA and 

incubate at room temperature for 15 minutes. 

4. Add 500 μl of lipofectamine-plasmid DNA complex per plate. 

5. Incubate the cells at 37 ºC in 5 % CO2 for 5-6 hours. 

6. Add complete growth medium to the cells and incubate at 37 ºC in 5 % CO2 for 

48 hours, then analyse the cells. 
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3.4.8. Nonsense-mediated mRNA decay (NMD) pathway inhibition analysis 

NMD inhibition was performed using NMDI14 (cat. number SML1538, Sigma-

Aldrich, Merck, Germany), an inhibitor of the NMD pathway which disrupts interactions 

between SMG7 and UPF1. These proteins are essential components of the mRNA decay 

complex which targets transcripts with PTCs for elimination (Martin et al., 2014). 

For the purpose of NMD inhibition, two groups of cells were prepared. First group 

consisted of 35 mm culture dishes of SH-SY5Y cells transfected with corresponding 

plasmids. The second group was identical to the first except after incubation of the cells 

with the lipofectamine-plasmid DNA complex, NMDI14 at 50 μM was added. Since 

NMDI14 was dissolved in 0.2 mg/ml DMSO, the same amount of DMSO dissolved in 

water was added to the first group of dishes. Except for plasmids containing the constructs 

studied, an empty vector plasmid and a mock, without plasmid, were used as controls in 

both groups. 

The groups treated with NMDI14 for NMD pathway inhibition are summarised in 

table 3.6. Each group was duplicated and one duplicate was treated with NMDI14. 

 

Table 3.6. Groups of SH-SY5Y cells transfected with corresponding plasmids used in 

NMD pathway inhibition analysis. 

Group used for Alzheimer’s disease related study (SH-SY5Y cells transfected with these 

plasmids) 

Plasmid Purpose 

CR1 (NM_000651.4) in pcDNA3.1+/C-

(K)DYK 

Wild-type protein expression 

CR1_p.R136* in pcDNA3.1+/C-(K)DYK Truncated protein expression (CR1R136*) 

FLAG-HA-pcDNA3.1 Negative control 

No plasmid used Mock control 

Group used for paroxysmal kinesigenic dyskinesia disease related study (SH-SY5Y cells 

transfected with these plasmids) 

Plasmid Purpose 

PRRT2 (NM_145239.2) in pCMV-Tag2A Wild-type protein expression 

PRRT2_p.Q106* in pCMV-Tag2A Truncated protein expression (PRRT2Q106*) 

PRRT2_p.Q163* in pCMV-Tag2A Truncated protein expression (PRRT2Q163*) 
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Table 3.6. Groups of SH-SY5Y cells transfected with corresponding plasmids used in 

NMD pathway inhibition analysis (continued). 

PRRT2_p.Q250* in pCMV-Tag2A Truncated protein expression (PRRT2Q250*) 

pCMV-Tag2A Negative control 

No plasmid used Mock control 

 

3.4.9. mRNA levels analysis 

3.4.9.1. Cellular RNA extraction and quantification 

Extraction of cellular RNA was performed 48 hours after transfection. The QIAmp 

RNA Blood Mini Kit (QIAGEN, Netherlands; appendix III) was used, following the 

producer’s protocol for extraction of RNA from monolayer cell culture. The extracted RNA 

was stored at -80 ºC after quantification using a Nanodrop 2000 (Thermo Fisher Scientific, 

USA). 

 

3.4.9.2. DNase I treatment and reverse transcription 

Treatment of the extracted cellular RNA with DNase I (cat. number 04716728001, 

Roche, Switzerland) was required for degradation of any residual DNA. RNaseOUT™ 

Recombinant Ribonuclease Inhibitor (Invitrogen, Thermo Fisher Scientific, USA) was 

used to prevent RNA degradation throughout the process. Total RNAs extracted were 

diluted in nuclease-free water to equalize their concentrations for reverse transcription. The 

following reaction mixture was prepared for DNase I treatment: 

 

RNaseOUT™ 0.25 μl 

DNase I (10 U/μl) 1.10 μl 

Buffer 10X 0.90 μl 

RNA (1 μg) + nuclease-free water 6.75 μl 

 

The reaction took place at 37 ºC for 30 minutes and the DNase I inactivation at 72 

ºC for 10 minutes. Random hexamers at 6 μM were added to the 9 μl mixture for a total 

volume of 10.5 μl. Annealing took place at 65 ºC for 10 minutes. Expand Reverse 

Transcriptase (Roche, Switzerland; appendix III) kit was used for reverse transcription. The 

following mixture was prepared: 
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RNaseOUT™ 0.5 μl 

dNTPs 10 mM 2.0 μl 

DTT 100 mM 2.0 μl 

Buffer 5X 4.0 μl 

Reverse transcriptase (50 U/ μl) 1.0 μl 

 

The mixture was added to the previous 10.5 μl and incubated at 30 ºC for 10 minutes 

and then at 42 ºC for 1 hour. The synthesised cDNAs were quantified using Nanodrop 2000 

and stored at -20 ºC. 

 

3.4.9.3. Quantitative PCR (qPCR) 

For the second step of the reverse transcription-qPCR (RT-qPCR) we used a Fast 

7500 Real Time PCR System (Applied Biosystems, Thermo Fisher Scientific, USA). 

Oligonucleotide primers used for qPCR are listed in table A5 appendix IV. Reverse 

transcribed cDNAs, from 1 μg of RNA each, were used as the template. Each reaction 

consisted of: 

 

*SYBR™ Green PCR Master Mix 7.5 μl 

Forward primer 500f – 503f (10 μM) 1.0 μl 

Reverse primer 500r – 503r (10 μM) 1.0 μl 

cDNA 1.0 μl 

H2O 4.5 μl 

Primers can be found in appendix IV, table A5. 

*Producer: Thermo Fisher Scientific, USA 

 

Each sample tested had three technical and two biological replicates. The data 

obtained was analysed using the LinRegPCR Software developed by Dr Jan Ruijter 

(Ramakers et al., 2003). All samples were normalised using qPCR results for neomycin 

sequence amplification, which was encoded in the vectors used. I use the LinRegPCR 

Software instead of the delta-delta Ct method (also 2–∆∆Ct method), commonly used for 

calculating the relative fold gene expression from samples obtained from qPCR, because it 

takes into account the efficiency of the reaction. Taking the exponential base of 2 for the 

2–∆∆Ct method assumes a 100 % efficiency which has been proven to not be accurate (Tuomi 
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et al., 2010). Also the method applied in the LinRegPCR Software calculates efficiency 

value per gene rather than per reaction which has been shown to give more reliable results 

(Ruijter et al., 2013). 

 

3.4.10. Protein expression analysis 

3.4.10.1. Protein extraction and quantification 

Extraction of proteins from plasmid and mock transfected SH-SY5Y cells was 

performed 48 hours after transfection. Every experiment had three biological replicates. 

After aspiration of the medium, the cells were washed in cold PBS 1X. After aspiration of 

PBS 1X, 250 μl of RIPA was added to each 35 mm culture dish with a cell culture 

monolayer. After an incubation of 5 minutes on ice, the cells were scraped and collected 

into 1.5 ml microcentrifuge tubes. To increase the efficiency of extraction, sonication was 

performed using the Bioruptor (Diagenode, Belgium) with 10 cycles of 30 seconds pulse 

and 30 seconds pause in-between. After sonication the samples were centrifuged at 14,000 

x g for 15 minutes at 4 ºC. Both the supernatant (used for further study) and the pellet were 

stored at -20 ºC. 

Quantification of the protein samples was performed using either the Qubit 

fluorometer (Invitrogen, Thermo Fisher Scientific, USA). 

 

3.4.10.2. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-

PAGE) 

In order to separate the proteins according to their molecular mass the SDS-PAGE 

procedure was employed. Polyacrylamide gels of 10-14 % were prepared. The protein 

samples were diluted in H2O according to their concentrations, to load the same amount of 

each sample onto the gel. Laemmli 5X buffer was added to the samples (to final 

concentration of 1X) and incubation of 10 minutes at 100 ºC for protein denaturation 

followed. The samples were loaded onto the gel with the Precision Plus Protein™ Dual 

Color Standards (Biorad, USA) or Spectra™ Multicolor Broad Range Protein Ladder 

(Thermo Fisher Scientific, USA). The vertical gel was run in running buffer for 

approximately 2 hours at 100 V. 

 

3.4.10.3. Western Blot (WB) 

After separation of the proteins according to their molecular mass with SDS-PAGE 

they were transferred onto a nitrocellulose membrane (Hybond® ECL™, Merck, Germany) 
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using the WB technique. Transfer took place in transfer buffer at 1X dissolved in ddH2O 

with methanol at 20 % (v/v). The voltage applied was 100 V for 2 hours on ice. Ponceau S 

(Sigma-Aldrich, Merck, Germany) staining was performed to confirm a successful transfer. 

Membrane blocking to prevent nonspecific binding of the antibodies was done in blocking 

buffer for 30 minutes on a shaker at room temperature. Immunodetection of proteins was 

done using primary antibodies (Table 3.2) at 1:1000 dilution in blocking buffer, overnight 

at 4 ºC followed by 3 consecutive washes in TBS Tween 1X, each lasting 10 minutes. 

Incubation with secondary antibody (Table 3.2) at 1:5000 dilution in blocking buffer 

followed, for 1 hour on a shaker at room temperature. Another 3 washes in TBS Tween 1X, 

each lasting 10 minutes were done and the membrane was ready for protein detection. The 

enchanced chemiluminescence (ECL) Prime Western Blotting Detection Reagent (cat. 

number GERPN2232, GE Healthcare Life Sciences, USA) was used as a substrate for 

detection of proteins on the membrane. ImageQuant LAS 3000 (Fujifilm, Japan) system 

was used for capturing and digitalising images of bands on the membrane. ImageJ 1.x 

developed by Wayne Rasband in 1997 was used for band intensity quantification 

(Schneider et al., 2012). All samples were normalised using WB results for housekeeping 

gene encoding actin. 

 

3.4.10.4. Western blot membrane stripping 

The process of stripping the nitrocellulose membrane is based on removal of the 

primary and secondary antibodies attached to it for further immunodetection of other 

proteins on the same blot. Two consecutive incubations in mild stripping buffer for 10 

minutes on a shaker were performed after which the membrane was washed 3 times at room 

temperature with constant shaking in TBS Tween 1X, each wash lasting 10 minutes. 

Membrane blocking, followed by further incubations with primary and secondary 

antibodies and protein detection, as described above, was performed using different 

antibodies to detect other protein on the same membrane. 

 

3.4.11. Extraction and purification of protein for activity assay 

3.4.11.1. Extraction of glutathione S-transferase (GST)-tagged protein 

Expression vector pGEX-6P-1 contains a sequence for a GST affinity tag and allows 

for production of a recombinant protein with the tag fused at its N-terminus (Appendix II). 

GST is a 211 amino acid (26 kDa) protein which allows for purification of proteins to which 

it is attached. 
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The wild-type and its variants were subcloned from plasmid ADPRH (BC063883.1) 

in pGEM-T into pGEX-6P-1 expression vector (Tables 3.1 and 3.3). In order to help 

counter protein misfolding and promote bacterial survival I used a plasmid expressing 

chaperonin GroEL/GroES (Goltermann et al., 2016). These constructs were used for E. coli 

DH5α co-transformation. After selection of the cells containing both plasmids by growth 

on a medium containing ampicillin (1:1000 of 100 mg/ml; AM04680005, Scharlab, Spain) 

and chloramphenicol (1:1000 of 33 mg/ml; C0378, Sigma-Aldrich, Merck, Germany), 

glycerol stocks were prepared, as described in section 3.3.4. 

For extraction of GST-tagged protein the transformed E. coli DH5α were grown in 

3 ml of LB with ampicillin (1:1000 of 100 mg/ml; AM04680005, Scharlab, Spain) and 

chloramphenicol (1:1000 of 33 mg/ml; C0378, Sigma-Aldrich, Merck, Germany) overnight 

at 37 ºC in a shaking incubator. The next day, 500 μl of the cell culture were used for 

inoculation of 100 ml of LB with the corresponding antibiotics. The cells were grown 

overnight at 37 ºC in a shaking incubator. The next day, 100 ml of the cell culture were 

used for inoculation of 500 ml of LB with the corresponding antibiotics. The cells were 

grown at 37 ºC in a shaking incubator until optical density (OD) measured at 600 nm was 

between 0.6 and 0.8. Next, isopropyl β-D-1-thiogalactopyranoside (IPTG; cat. number 

GEN-S-02122, Generon, UK) was added to a final concentration of 0.8 mM for protein 

expression induction. The cell culture was left to grow at 37 ºC in a shaking incubator for 

4 hours. After incubation the cells were transferred onto ice and distributed into 50 ml 

falcons. Centrifugation at 2,600 x g for 10 minutes at 4 ºC followed. After discarding the 

supernatant, the pellet was resuspended in 2 ml PBS 1X with a Protease Inhibitor Cocktail 

(cOmplete™, EDTA-free, Roche, Switzerland) 1X. The cells were collected in one 5 ml 

microcentrifuge tube and sonicated using Bioruptor (Diagenode, Belgium) on ice with 20 

pulses of 20 seconds and 45 seconds pause in-between. After sonication the samples were 

centrifuged at 14,000 x g for 30 minutes at 4 ºC. Both the supernatant and the pellet were 

stored at -20 ºC until used. 

 

3.4.11.2. Purification of GST-tagged protein 

GSTrap FF 5 ml column (GE Healthcare Life Sciences, USA) for purification of 

GST-tagged proteins is a prepacked Glutathione Sepharose Fast Flow column. Protein 

antigenicity and function are preserved during the purification and the GST tag can be 

cleaved using PreScission protease (donation from Jeronimo Bravo laboratory). The 
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purification procedure using the GSTrap FF 5 ml column was done according to the 

providers’ protocol, as follows: 

 

1. Equilibration of column with 25 ml of PBS 1X. 

2. Application of the supernatant from the extraction of GST-tagged protein using 

a syringe by pumping it onto the column. 

3. Washing with 50 ml of PBS 1X. 

4. Washing with 50 ml of PCB at pH 7.5. 

5. Loading of the PreScission protease mixture (400 μl (800 units) of PreScission 

protease with 4.6 ml of PCB at 4 ºC) onto the column. 

6. Incubation of the column at 4 ºC for 4 hours. 

7. Elution of the protein of interest with 15 ml of PCB leaving GST and 

PreScission protease bound to the column. 

 

3.4.11.3. Sample dialysis 

In order to substitute the PCB buffer with PBS 1X, the 15 ml of protein of interest 

from GSTrap FF 5 ml column purification was used in dialysis. Slide-A-Lyzer™ Dialysis 

Cassette (Thermo Fisher Scientific, USA) was used and the 15 ml of protein of interest 

were loaded onto the cassette with a syringe. The loaded dialysis cassette was dipped in 

PBS 1X for 2 hours at 4 ºC on a magnetic stirrer. The PBS 1X was exchanged and the same 

incubation took place for another 2 hours. After that, the last PBS 1X exchange took place 

and the final incubation took place under the same conditions, this time overnight. The 

sample was recovered from the dialysis cassette the next day. 

 

3.4.11.4. Protein concentration 

Higher concentration of the protein of interest after dialysis was achieved using the 

Amicon® Ultra-15 Centrifugal Filter Units (Merck, Germany). The sample was loaded onto 

the filter and centrifuged at 4,000 x g for 20 minutes. Typically, 200 μl of concentrated 

protein sample were recovered. The sample was stored at -20 ºC until used. 

 

3.4.12. Activity assay for ADPRH with cholera toxin 

In order to assess the activity of ADPRH and variants of the protein, an assay was 

developed using Cholera Toxin B subunit (CT; Merck, Germany) as a catalyst of the ADP-

ribosylation reaction. The assay was modified from a previously established method for 
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ADP-ribosyltransferase activity of CT (Suryadi and Shine, 2011). Agmatine sulfate salt 

(Sigma-Aldrich, Merck, Germany) was the ADP-ribose acceptor and β-nicotinamide 

adenine dinucleotide (β-NAD+) sodium salt (Merck, Germany) was used as the ADP-ribose 

donor in this arginine-specific reaction. The reaction of ADP-ribosylation took place in 

sodium phosphate with DTT as a reducing agent. The conditions of the reaction were as 

follows: 

 

Agmatine sulfate salt 30 mM 

β-NAD+ 7 mM 

DTT 20 mM 

pH 7.0 sodium phosphate 30 mM 

CT 15 μg/ml 

 

The mixture was incubated at 37 ºC for 90 minutes. Next, CT was removed from 

the mix using the Microcon-30 kDa Centrifugal Filter Unit with Ultracel-30 membrane 

(Merck, Germany). After ADP-ribosylation, ADP-ribose cleavage was initiated by addition 

of the ADPRH protein or its variants. These were obtained by transformation of E. coli 

DH5α with ADPRH (BC063883.1), ADPRH p.R295P and ADPRH p.D55A/D56 all in 

pGEX-6P-1 vector with tac promotor for bacterial expression and purification as explained 

in section 3.4.11. 10 mM MgCl2 and 15 μg/ml of wild-type ADPRH protein or its variants 

were added to the mixture without CT and incubated for 90 minutes at 37 ºC. The products 

of this reaction were loaded onto the ultraperformance liquid chromatography (UPLC) 

column. 5 μl of each sample were injected into a UPLC-quadrupole time-of-flight mass 

spectrometry (UPLC-qTOF/MS) system equipped with an electrospray ionization (ESI) 

interphase (LC, Acquity UPLC system, Waters, USA; MS, MICROMASS Q-Tof micro, 

Waters, USA) and a photodiode array detector.  LC was carried out by reverse-phase 

ultraperformance liquid chromatography on a Waters BEH C18 UPLC column (1.7 

micrometers) with dimensions: 2.1 x 150 mm. During sample running, the mobile phase 

consisted 0.1 % formic acid in water (phase A), and 0.1 % formic acid in acetonitrile (phase 

B). The solvent gradient program was 100 – 97.5 % solvent A over 8 min. 

Passing the mixture through the column allows for separation, identification, and 

quantification of components based on data from a detector measuring absorbance at 260 

nm. The UPLC procedure was performed by Ana Espinosa and Teresa Caballero Vizcaíno 
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from the Metabolomics Service at the Institute for Plant Molecular and Cell Biology 

(IBMCP-CSIC). 

After establishment of a nicotinamide (Sigma-Aldrich, Merck, Germany) and β-

NAD+ (Sigma-Aldrich, Merck, Germany) standard curves, the following reaction products 

were tested by loading onto UPLC: 

1. Control reaction with all the substrates but without CT, ADPRHWT nor its variants. 

2. Reaction of the substrates with CT but without ADPRHWT nor its variants. 

3. Reaction of the substrates with CT followed by a reaction with ADPRHWT. 

4. Reaction of the substrates with CT followed by a reaction with ADPRHR295P. 

5. Reaction of the substrates with CT followed by a reaction with ADPRHD55A/D56A. 

 

3.4.13. Co-immunoprecipitation (co-IP) 

Protein-protein interactions can be identified by co-IP. Indirect capture of proteins 

bound to the target protein is possible through target protein specific antibodies. In this 

study the first step to verify an interaction between ADPRH and ADPRHL1 was to co-

transfect SH-SY5Y cells with both ADPRH (BC063883.1) in pFlag and ADPRHL1 

(NM_138430.5) in pcDNA3.1+/C-(K)DYK. Separate transfections of each construct and a 

mock transfection were performed for control. All transfections were performed as 

described in section 3.4.7.2. After standard incubation of 48 hours the proteins were 

extracted as described in section 3.4.10.1. Co-IP protocol followed, using Protein G Mag 

Sepharose Xtra (GE Healtcare Life Sciences, USA). A 100 μl of magnetic beads slurry was 

pipetted into a 1.5 ml tube and placed in a magnetic rack. The medium was discarded and 

the beads were resuspended in 500 μl PBS 1X. The slurry was placed in the magnetic rack 

once again, the PBS 1X was discarded and then 4 μl of antibody in 296 μl PBS 1X was 

added. The antibodies used were: Anti-ADPRH antibody produced in rabbit and 

Monoclonal ANTI-FLAG® M1 antibody produced in mouse. The tubes were left overnight 

at 4 ºC on a shaker. The next day the antibody in PBS 1X was removed on the magnetic 

rack and 300 μl of the protein extract was added. The tubes were left overnight at 4 ºC on 

a shaker. The following day the protein extract was removed and three washes using PBS 

1X were performed consisting of resuspending the beads in PBS and its removal with the 

tubes on the magnetic rack. Elution was performed using 100 μl of glycine 100 mM 

(PanReac AppliChem, USA) adjusted to pH 2.8 using HCl (Scharlab, Spain). Elution took 

10 minutes. 
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The resulting protein solution was quantified and used for WB as described in 

sections: 3.4.10.2. and 3.4.10.3. To confirm the target protein has been obtained in the 

eluate the membranes were then stripped and another WB was performed using appropriate 

antibodies (section 3.4.10.4.). 

 

3.4.14. Statistical analysis 

Statistical analysis was performed using the student's t test and one-way or two-way 

ANOVA to test differences between group means, with a post hoc Tukey multiple 

comparisons of means test. Two-way ANOVA was used when data consisted of two 

independent variables. In all tests the level of significance was set at p < 0.05. All data are 

presented as mean ± standard error of the mean (SEM). All statistical analyses were 

performed using the 3.6.1 version of R software developed by John Chambers and 

colleagues at Bell Laboratories (R Core Team, 2019). 
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4. RESULTS 

 

4.1. Study of etiopathogenesis of AD in family UGM037 

4.1.1. Clinical data 

Three members of family UGM037 were diagnosed with AD by computed 

tomography scan. Typical clinical features of AD were observed in the patients. Initial 

symptoms were memory loss and a progressive cognitive decline. The clinical data on the 

three affected individuals and their sibling are summarised in table 4.1. 

 

Table 4.1. Data including diagnosis, age of onset and age of death for family UGM037 

affected members and their sibling.  

Sample ID Sex Diagnosis Age of onset Age and cause of death 

04-046 Female AD 69 y.o. 88 y.o., AD related 

04-047 Male non-AD  88 y.o., Cancer, no 

dementia detected 

04-048 Male AD 72 y.o. 85 y.o., AD related 

04-049 Female AD 68 y.o. 89 y.o., AD related 

 

The patients all had onset of AD at an age above 68 years. The children of patients 

and the unaffected member of the family, whose DNA samples have been collected at ages 

between 50 and 57 (Figure 3.1), did not show any symptoms. 

 

4.1.2. WES data 

4.1.2.1. Base-calling and image analysis raw data 

Basic raw data obtained through base-calling and image analysis produced by WES 

for samples 04-046 and 04-048 are summarised in table 4.2. 

 

Table 4.2. WES raw data: reads, base content and phred quality scores for samples 

04-046 and 04-048. 

Sample ID Total read bases (bp) Total reads GC (%) Q20 (%) Q30 (%) 

04-046 8,610,828,932 85,255,732 49.7 98.8 96.5 

04-048  9,659,430,728 95,637,928 49.5 98.8 96.5 
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Table 4.2. WES raw data: reads, base content and phred quality scores for samples 

04-046 and 04-048 (continued). 

Total read bases – Total number of bases sequenced; Total reads – Total number of reads. 

In illumina paired-end sequencing, read1 and read2 are added; GC (%) – GC content; Q20 

(%) – Ratio of reads that have phred quality score of over 20; Q30 (%) – Ratio of reads that 

have phred quality score of over 30. 

 

4.1.2.2. Read alignment results 

The average read length for both samples was 101 bp. The post-alignment statistics 

are given in table 4.3. 

 

Table 4.3. WES post-alignment statistics for samples 04-046 and 04-048. 

Sample ID 04-046 04-048 

Initial Mappable Reads 85,163,923 95,499,933 

% Initial Mappable Reads 99.8 99.8 

Non-Redundant Reads 75,137,432 83,306,002 

% Non-Redundant Reads 88.2 87.2 

On-Target Reads 62,211,853 68,805,631 

% On-Target Reads 82.7 82.5 

On-Target Yield (bp) 5,450,617,779 6,012,147,064 

Mean Depth of Target Regions (X) 108.1 119.3 

Initial Mappable Reads – Number of mapped reads to human genome; % Initial Mappable 

Reads – 100 * (Initial mappable reads) / (Total reads); Non-Redundant Reads – Number of 

de-duplicate reads from Picard tools; % Non-Redundant Reads – 100 * (Non-redundant 

reads) / (Initial mappable reads); On-Target Reads – Number of reads mapped to target 

regions; % On-Target Reads – 100 * (On-target reads) / (Non-redundant reads); On-Target 

Yield (bp) – The sum of the bases in the final alignment to the target regions; Mean Depth 

of Target Regions (X) – (On-target yield) / (Target regions) 

 

4.1.2.3. SNP calling results 

SNP calling allowed for identification of variants in DNA sample sequences. The 

SNP calling results for samples 04-046 and 04-048 are summarised in table 4.4. 
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Table 4.4. WES SNP calling summary for samples 04-046 and 04-048. 

Sample ID 04-046 04-048 

Number of SNPs 78,134 79,669 

Synonymous Variants 11,396 11,404 

Missense Variants 10,336 10,363 

Stop Gained 103 93 

Stop Lost 38 41 

Number of INDELs 9,120 9,583 

Frameshift Variants 279 279 

Inframe Insertions 158 150 

Inframe Deletions 175 177 

% Found in dbSNP142 97.5 97.3 

Het/Hom Ratio 1.5 1.5 

Ts/Tv Ratio 2.3 2.3 

% Found in dbSNP142 – percentage of Number of SNPs found in dbSNP142; Het/Hom 

Ratio – Ratio of number of heterozygous variants to number of homozygous variants; Ts/Tv 

Ratio – Ratio of transition rate of SNVs that pass the quality filters divided by transversion 

rate of SNVs that pass the quality filters. Transitions are interchanges of purines (A, G) or 

of pyrimidines (C, T). Transversions are interchanges between purine and pyrimidine 

bases. 

 

4.1.3. WES results filtration and identification of interesting variants 

The results obtained from WES analysis needed to be filtered and the most 

interesting variants assessed. Firstly, genes known to be associated with AD were looked 

at, to see whether a known or a new variant in those genes could cause or affect the disease. 

The summary of findings can be found in table 4.5. 

  



120 
 

 

Table 4.5. WES results filtered for AD associated genes for samples 04-046 and 04-

048. 

Gene Number of 

intron 

variants 

Number of 

synonymous 

variants 

Number of 

missense 

variants 

Other 

variants 

ABCA7 13 6 3 0 

ADAM10 5 0 0 0 

AKAP9 14 6 3 inframe 

insertion 

APOE 1 0 1 0 

APP 9 0 0 0 

BIN1 1 0 0 0 

CASS4 2 5 1 3’-UTR variant 

CD2AP 3 1 0 5’-UTR variant 

CELF1 1 0 0 0 

CLU 3 1 0 0 

CR1 2 1 3 stop gain 

variant 

DSG2 3 3 0 0 

EPHA1  2 2 0 

FERMT2 2 1 0 3’-UTR variant 

INPP5D 17 2 1 5’-UTR variant 

NME8 7 3 1 0 

PICALM 6 2 0 0 

PLD3 2 0 0 3’-UTR variant 

PSEN1 1 0 0 0 

PSEN2 8 3 0 0 

PTK2B 22 4 0 0 

SORL1 13 5 2 0 

UNC5C 5 4 1 0 

ZCWPW1 2 0 0 0 
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Of the variants in table 4.5, only one had a putative impact predicted as HIGH by 

SnpEff software. It was the variant rs764542666 in gene CR1. This variant encodes a PTC 

c.C406T p.R136*. Other variants in table 4.5 were filtered out from further analysis either 

by prediction of their impact, their frequency in population or a review of current 

knowledge on their effect. 

In parallel, all variants, whether related to AD or not, went through a restrictive 

filtering process to assess the possible cause of AD in family UGM037. Filtering was done 

as described in the methods section. An important step was the filtering by role, function, 

tissue of expression and pathways the variants are involved in. The other variants found 

through filtering are summarised in table 4.6. 

This separate filtering, which considered involvement in AD related pathways to 

eliminate variants at the last stage, once again suggests the rs764542666 in gene CR1 may 

be important in causing the disease. Out of the seven variants in table 4.6, only rs764542666 

exists in the dbSNP142 and other databases used. All other are novel variants, which is 

partly why they were included in this list. 

The novel variants in genes ANKRD36, GXYLT1 and CERS5 encoded PTCs. 

ANKRD36 is associated with giant axonal neuropathy (Johnson-Kerner et al., 2015), which 

is a disease affecting the central and peripheral nervous systems, most typically in children 

below five years of age. GXYLT1 is associated with skin diseases and CERS5 with 

endocrine diseases (Stelzer et al., 2016; www.genecards.org). After further literature 

review, these three variants could also be discarded. 

KRT9 is considered a biomarker for AD (Richens et al., 2016). While it is suggested 

KRT9 expression is dysregulated as a consequence of AD pathology, the relation has not 

been fully studied thus making this an interesting variant to study. A known variant at the 

same amino acid encoding the following change p.D238Y is predicted to be deleterious by 

SIFT and probably damaging by Polyphen (Karczewski et al., 2020; 

https://gnomad.broadinstitute.org/). 

ADAM family of proteins have been associated with AD (Moss et al., 2001), 

however, ADAM33 has been linked with asthma and not AD, thusfar (Van Eerdewegh et 

al., 2002). Polymorphisms in PRND have a more direct correlation with AD (Schröder et 

al., 2001; Flirski et al., 2012). 
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Table 4.6. WES results filtered for possibly damaging variants for samples 04-046 and 04-048. 

Chr Pos Ref Alt Zigosity Gene 
Amino acid 

variant 

SIFT prediction 

(score) 

Polyphen 

prediction (score) 

Putative Impact 

(SnpEff) 

chr1 207,684,918 C T HET CR1 p.R136* - - HIGH 

chr2 97,851,077 C G HET ANKRD36 p.S655* - - HIGH 

chr12 42,538,352 C A HET GXYLT1 p.G33* - - HIGH 

chr12 50,528,463 C A HET CERS5 p.E299* - - HIGH 

chr17 39,726,402 T G HET KRT9 p.D238A 
D 

(0.001) 

D 

(1.0) 
MODERATE 

chr20 3,654,252 C G HET ADAM33 p.C320S 
D 

(0.003) 

D 

(1.0) 
MODERATE 

chr20 4,705,588 G A HET PRND p.V131M 
D 

(0.002) 

D 

(0.986) 
MODERATE 

Chr – chromosome; Pos – position; Ref – reference allele; Alt – alternate allele; HET – heterozygous; D – deleterious (SIFT)/damaging 

(Polyphen). SIFT and Polyphen both do not perform predictions for nonsense variants. 
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The standards and guidelines for the interpretation of sequence variants (Richards 

et al., 2015) and the gene constraint observed/expected score (Karczewski et al., 2020; 

https://gnomad.broadinstitute.org/) were used to assess these variants. Low values of the 

observed/expected score are indicative of strong intolerance. A summary can be seen in 

table 4.7. 

 

Table 4.7. Interpretation of the selected variants according to Richards et al. (2015) 

and observed/expected score. 

Gene 
Amino acid 

variant 
Effect 

Sequence 

variant 

classification 

observed/expected 

score (90 % CI) 

CR1 p.R136* stop gained 
Likely 

pathogenic 

0.78 (0.64 - 0.96) 

KRT9 p.D238A 
missense 

variant 

Uncertain 

significance 

0.97 (0.89 - 1.06) 

ADAM33 p.C320S 
missense 

variant 

Uncertain 

significance 

0.91 (0.84 - 0.99) 

PRND p.V131M 
missense 

variant 

Uncertain 

significance 

1.03 (0.88 - 1.21) 

 

4.1.4. Sanger sequencing verification of selected variants 

The variants selected from WES results needed to be confirmed by Sanger 

sequencing to eliminate a possibility of a false positive result. As only samples 04-046 and 

04-048 were used in WES, samples 04-047 and 04-049 were added to the Sanger 

sequencing confirmation. Since 04-049 was known to come from an AD patient and 04-

047 from a non-AD member of the family, this would also be a way to see whether a variant 

segregates with the disease (Table 4.8). 
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Table 4.8. Verification of selected variants through Sanger sequencing in family 

UGM037. 

Gene 
Amino acid 

variant 
Ref Alt 

Sample ID and diagnosis 

04-046 

AD 

04-047 

non-AD 

04-048 

AD 

04-049 

AD 

CR1 p.R136* C T C/T C/C C/T C/T 

KRT9 p.D238A T G T/G T/T T/G T/G 

ADAM33 p.C320S C G C/G C/G C/G C/G 

PRND p.V131M G A G/A G/A G/A G/G 

Ref – reference allele; Alt – alternate allele 

 

Sanger sequencing confirms the WES results, and shows segregation of variants in 

genes CR1 and KRT9 with the disease. Further Sanger sequencing of samples 19-059 – 19-

065, taken from children of the subjects was done to establish the frequency of the variant 

rs764542666 within the family. Even though these family members did not show AD 

symptoms, they are at a risk of developing the disease at an older age. Figure 4.1 shows the 

UGM037 family tree with the genotype of each member, whose DNA sample was 

available, for rs764542666 variant. 

 

 

Figure 4.1. UGM037 family tree with the three AD affected members denoted by 

coloured in shapes. Genotypes for rs764542666 variant are included. 
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4.1.5. Frequency of the rs764542666 variant in control population 

Frequency of a variant in a general population is an important factor in determining 

its pathogenicity. According to gnomAD (Karczewski et al., 2020; 

https://gnomad.broadinstitute.org/) the frequency of rs764542666 is 0.00002008 (Table 

4.9). 

 

Table 4.9. General population frequency for rs764542666 with data on specific 

populations. 

(data from Karczewski et al., 2020; https://gnomad.broadinstitute.org/) 

 

In addition to obtaining the frequency of the variant from public databases of genetic 

variations, ASPCR was used to scan a control population available in the laboratory for 

rs764542666. Additionally, a population of AD patients was scanned for this variant. The 

data is summarised in table 4.10. Members of the family who may be presymptomatic are 

not included. 

  

Population Allele count Allele number 
Number of 

homozygotes 

Allele 

frequency 

Latino 3 34464 0 8.705*10-5 

European (non-Finnish) 2 112894 0 1.772*10-5 

African 0 15482 0 0.000 

Ashkenazi Jewish 0 10060 0 0.000 

East Asian 0 17974 0 0.000 

European (Finnish) 0 21520 0 0.000 

Other 0 6046 0 0.000 

South Asian 0 30600 0 0.000 

Female 3 113946 0 2.633*10-5 

Male 2 135094 0 1.480*10-5 

Total 5 249040 0 2.008*10-5 
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Table 4.10. Number of cases of rs764542666 variant in different groups. 

Group 
CR1 p.R136* C>T 

CC CT TT 

Spanish control population 192 0 0 

Alzheimer’s disease patients 124 0 0 

Unaffected family members 1 0 0 

Affected family members 0 3 0 

 

4.1.6. Genotyping APOE and CR1 polymorphisms 

The ε4 allele of APOE is a well-established risk factor for AD. Genotyping this gene 

in UGM037 family was important to establish whether it possibly contributed to the 

familial disease. The number of ε4 alleles present are directly related to earlier onset and 

higher severity of the disease (Giri et al., 2016). CR1 is also a known genetic risk factor for 

AD. To explore the possibility of the rs764542666 variant being in linkage disequilibrium 

with a known risk allele, we genotyped the rs3818361 SNP and the long isoform of CR1 

(CR1*2) polymorphisms, which were both described as contributing to AD susceptibility 

(Mahmoudi et al., 2015; Li et al., 2016). In rs3818361, an adenine instead of a guanine is 

considered a risk factor, while the CR1*2 isoform has been associated through GWAS with 

AD. The genotyping was done to reveal whether the genotypes relate to diagnosis. The 

results are presented in figure 4.2. 
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Figure 4.2. UGM037 family tree with the three AD affected members denoted by 

coloured in shapes. Genotypes for rs764542666 and rs3818361 variants as well as 

APOE and CR1*2 isoform are included. 

“–“ – Lack of isoform CR1*2. 

 

4.1.7. Role of variant rs764542666 (p.R136*) in CR1 mRNA expression 

To date, there has been no mention of a mutation in CR1 causing familial AD. 

Variants in CR1 have only been associated with a higher risk of developing the disease. In 

particular, no known variant encoding a PTC in CR1 has been found to cause AD. Wild-

type CR1 mRNA was used for comparison. Transfection efficieny was controlled by 

amplification of kanamycin from the plasmid resistance cassette. 

The variant CR1R136* introduced a stop codon early on in the 2039 amino acid 

protein. Analysis of mRNA levels using the plasmids carrying the CR1WT gene and the 

CR1R136* variant was done using RT-qPCR method and SH-SY5Y cells. The results show 

a significant 5.4-fold decrease (p = 0.0004) in CR1R136* variant’s mRNA levels in 

comparison with the wild-type (Figure 4.3). 
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Figure 4.3. RT-qPCR results for mRNA levels of CR1WT and CR1R136* variant, 

overexpressed in SH-SY5Y cells. 

***p < 0.001 student's t test comparing CR1WT and its variant. Data obtained from three 

technical and two biological replicates. 

 

The mean amplification efficiency was normalised to a hundred percent for the 

CR1WT (Mean ± SEM: 1.000 ± 0.174). The result for CR1R136* variant was 5.4 times lower 

(0.184 ± 0.033). NMD pathway was inhibited by NMDI14 in an experimental group to 

verify whether this would impact the mRNA levels of CR1R136*. After NMDI14 treatment 

the mean mRNA levels of CR1R136* increased 3.4 fold with respect to untreated CR1R136* 

(Figure 4.4).  

 

 

Figure 4.4. RT-qPCR results for mRNA levels of CR1WT and CR1R136* variant 

overexpressed in SH-SY5Y cells with and without NMD pathway inhibition. 

**p < 0.01 two-way ANOVA comparing CR1WT and its variant, with post hoc Tukey 

multiple comparisons of means test. Data obtained from three technical and two biological 

replicates. 
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The mRNA levels of CR1R136* variant increased from 0.184 ± 0.033 to 0.633 ± 

0.107 (Mean ± SEM). The statistically significant difference between CR1WT and CR1R136* 

in the non-NMDI14 treated group disappear in the NMDI14 treated group where the mRNA 

levels of both are similar (p = 0.775). 

Comparison of the increase of mRNA levels between the variant and the wild-type 

after NMDI14 treatment showed a significant 3.4-fold increase for CR1R136* (p = 0.01; 

Figure 4.5). The CR1WT mRNA levels decreased by approximately 0.8 fold. 

 

  

Figure 4.5. Ratio of mRNA levels change after treatment with NMDI14 for CR1WT 

and CR1R136* variant overexpressed in SH-SY5Y cells. 

*p < 0.05 student's t test comparing CR1WT and its variant. Data obtained from three 

technical and two biological replicates. 

 

4.1.8. Role of variant rs764542666 (p.R136*) in CR1 protein expression 

Analysis of protein overexpression using the plasmids carrying the CR1WT gene and 

the CR1R136* variant was analysed by WB in SH-SY5Y cells. The results show a significant 

(p = 0.0097) decrease in CR1R136* variant protein levels in comparison with the wild-type 

(Figure 4.6). 
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Figure 4.6. WB results for protein levels of CR1WT and CR1R136* variant, 

overexpressed in SH-SY5Y cells. 

**p < 0.01 student's t test comparing CR1WT and its variant. Data obtained from three 

technical and biological replicates. 

 

The band intensity was normalised for the CR1WT (Mean ± SEM: 1.000 ± 0.159). 

The result for CR1R136* variant was 4.4 times lower (0.226 ± 0.050). To study whether 

NMD pathway inhibition would increase the protein levels of CR1R136*, NMDI14 was used. 

A significant increase in CR1R136* protein levels from 0.226 ± 0.050 to 0.778 ± 0.118 was 

observed (p < 0.05; Figure 4.7). 

 

 

Figure 4.7. WB results for protein levels of CR1WT and CR1R136* variant 

overexpressed in SH-SY5Y cells with and without NMD pathway inhibition. 

*p < 0.05, **p < 0.01 two-way ANOVA comparing CR1WT and its variant, with post hoc 

Tukey multiple comparisons of means test. Data obtained from three technical and 

biological replicates. 
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The increase in CR1WT protein levels from 1 ± 0.159 to 1.216 ± 0.122 after NMDI14 

treatment was not significant. In summary, CR1R136* protein levels were lower than those 

of CR1WT (treated or untreated with NMDI14) and increased significantly after inhibition 

of the NMD pathway. 

Comparison of CR1WT and CR1R136* increase of protein levels after NMD pathway 

inhibition, proved to be significant (p = 0.013). The protein levels for CR1R136* increased 

3.6 fold and only 1.3 fold for CR1WT (Figure 4.8). 

 

 

Figure 4.8. Ratio of protein levels increase after treatment with NMDI14 for CR1WT 

and CR1R136* variant overexpressed in SH-SY5Y cells. 

*p < 0.05 student's t test comparing CR1WT and its variant. Data obtained from three 

technical and biological replicates. 
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Patients 1001 and 1002, the sons, were also diagnosed with PLS. The first, was 

diagnosed in 2005 at 24 years of age while the second was diagnosed in 2013 at 28 years 

of age. Initial symptom of a feeling of stiffness in left leg was observed in the younger 

patient 1002. The clinical data on the three affected individuals are summarised in table 

4.11. 

 

Table 4.11. Data including diagnosis and age of onset for family UGM471 affected 

members. 

Sample ID Sex Diagnosis Age of onset 

0002 Female PLS 30 y.o. 

1001 Male PLS 24 y.o. 

1002 Male PLS 28 y.o. 

 

4.2.2. WES data 

The DNA samples of the three patients were sequenced using HiSeq 2000© 

sequencer (Sistemas Genomicos, Valencia, Spain) unlike the other samples in this work 

which were sequenced using HiSeq 4000© sequencer (Macrogen, Seoul, Rep. of Korea). 

Any discrepancies between the results are due to this difference and differences in the way 

the companies provide result reports. 

 

4.2.2.1. Base-calling and image analysis raw data 

Basic raw data obtained through base-calling and image analysis produced by WES 

for samples 0002, 1001 and 1002 are summarised in table 4.12. 

 

Table 4.12. WES raw data for samples 0002, 1001 and 1002. 

Sample ID Total reads % mapped  % HQ mapped  % HQ mapped no PCR dups 

0002  47,552,618  99.13 97.68 94.78 

1001  56,331,030  98.75 97.89 92.96 

1002  51,859,032  99.1 97.64 93.87 

Total reads – total number of generated reads; % mapped – percentage of mapped reads; % 

HQ mapped – % reads after low quality removal; % HQ mapped no PCR dups – percentage 

of reads that remain after removing read PCR duplicates. 
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4.2.3. WES results filtration and identification of interesting variants 

Again the results obtained from WES analysis needed to be filtered and the most 

interesting variants assessed. Firstly, genes known to be associated with PLS and ALS were 

looked at, to see whether a known or a new variant in those genes could cause or affect the 

disease. The summary of findings can be found in table 4.13. 

 

Table 4.13. WES results filtered for PLS associated genes for samples 0002, 1001 and 

1002. 

 

Gene 

Number of 

intron 

variants 

Number of 

synonymous 

variants 

Number of 

missense 

variants 

Other variants 

ALS2 4 1 1 0 

ATXN2 - 2 1 0 

C9orf72 1 0 0 3’-UTR variant 

CHCHD10 1 2 0 0 

CHMP2B 0 1 0 0 

ERBB4 3 1 1 0 

FIG4 
4 1 1 3’-UTR variant 

splicing variant 

FUS 1 1 0 5’-UTR variant 

GLE1 2 0 1 3’-UTR variant 

NEFH 1 3 0 nonframeshift 

insertion 

OPTN 6 0 1 splicing variant 

SETX 6 2 6 3’-UTR variant 

SIGMAR1 0 0 1 3’-UTR variant 

SPG7 5 0 0 0 

SPG11 2 0 1 0 

SS18L1 1 1 0 0 

TBK1 3 0 0 0 

VCP 3 0 0 splicing variant 
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No common variants were found in genes SOD1 nor TARDBP in all of the affected 

individuals. The variants in table 4.13 had high frequencies in the general population and 

SIFT and Polyphen predictions pointed to their benign or tolerant impact. 

Other variants, not associated with ALS or PLS were filtered by a restrictive process 

to assess the possible cause of the disease in family UGM471. Filtering was done as 

described in the methods section. An important step was the filtering by role, function, 

tissue of expression and pathways the variants are involved in. The other variants found 

through filtering are summarised in table 4.14. 

 

Table 4.14. WES results filtered for possibly damaging variants for samples 0002, 

1001 and 1002. 

Chr Pos Ref Alt Zigosity Effect Gene 

Amino 

acid 

variant 

SIFT 

prediction 

(score) 

Polyphen 

prediction 

(score) 

chr1 154,842,244 A T HET 
missense 

variant 
KCNN3 p.L66H 

D 

(0.01) 

D 

(1.0) 

chr3 119,306,535 G C HET 
missense 

variant 
ADPRH p.R295P 

D 

(0.01) 

D 

(0.999) 

chr7 70,229,818 C A HET 
missense 

variant 
AUTS2 p.P432H 

T 

(0.17) 

D 

(1.0) 

chr9 139,413,097 T G HET 
missense 

variant 
NOTCH1 p.T349P 

D 

(0.01) 

D 

(0.999) 

chr9 140,777,306 C G HET 
missense 

variant 
CACNA1B p.N167K 

D 

(0.02) 

D 

(1.0) 

chr10 75,006,782 T G HET 
missense 

variant 
DNAJC9 p.T56P 

D 

(0.0) 

D 

(1.0) 

Chr – chromosome; Pos – position; Ref – reference allele; Alt – alternate allele; HET – 

heterozygous; D – deleterious (SIFT)/damaging (Polyphen); T – tolerated 

 

KCNN3 is Potassium Calcium-Activated Channel Subfamily N Member 3 which is 

a gene with homeostatic role. While no direct association with ALS or PLS has been 

described, riluzole, the first systemic therapy drug for ALS, was found to activate KCNN3 

channels (Grunnet et al., 2001). As stated in the introduction, ADPRH has been implicated 
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in cell proliferation, tumorigenesis, intracellular signal transduction and cell cycle 

regulation (Kato et al., 2011). AUTS2 is associated with certain neurodevelopmental and 

neurological disorders (provided by RefSeq, O'Leary et al., 2016). NOTCH1 is part of the 

NOTCH family of proteins involved in intracellular signalling which has been found to 

regulate neuronal survival (Gómez-Pinedo et al., 2019). CACNA1B is involved in control 

of neurotransmitter release. DNAJC9 is part of the DNAJ family of molecular chaperones. 

Members of this family have been implicated in neurodegenerative diseases (Stelzer et al., 

2016; www.genecards.org). 

No nonsense variants of interest were identified within the WES results. The 

standards and guidelines for the interpretation of sequence variants (Richards et al., 2015) 

were difficult to apply here as none of these genes are associated with ALS or PLS and 

ADPRHR295P and DNAJC9T56P are two previously unknown variants. They could all be 

classified as uncertain significance. The gene constraint observed/expected score 

(Karczewski et al., 2020; https://gnomad.broadinstitute.org/) was used to assess these 

variants, where low values are indicative of strong intolerance.  The data is summarised in 

table 4.15. 

 

Table 4.15. Interpretation of the selected variants according to the observed/expected 

score. 

Gene Amino acid variant Effect 
observed/expected 

score (90 % CI) 

ADPRH p.R295P missense variant 0.96 (0.85 - 1.08) 

AUTS2 p.P432H missense variant 0.78 (0.73 - 0.83) 

CACNA1B p.N167K missense variant 0.65 (0.61 - 0.69) 

DNAJC9 p.T56P missense variant 0.97 (0.84 - 1.12) 

KCNN3 p.L66H missense variant 0.55 (0.50 - 0.62) 

NOTCH1 p.T349P missense variant 0.76 (0.73 - 0.80) 

 

4.2.4. Sanger sequencing verification of selected variants and result 

assessment 

False positive WES results could be eliminated using Sanger sequencing. Also, the 

DNA samples of non-PLS members of family UGM471 were tested for further exclusion 

of variants which did not segregate with the disease (Table 4.16). 
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Table 4.16. Verification of selected variants through Sanger sequencing in family 

UGM471. 

Gene 

Amino 

acid 

variant 

Ref Alt 

Sample ID and diagnosis 

9996 

non-

PLS 

0001 

non-

PLS 

0002 

PLS 

0003 

non-

PLS 

1001 

PLS 

1002 

PLS 

1003 

non-

PLS 

ADPRH p.R295P G C G/G G/G G/C G/C G/C G/C G/C 

AUTS2 p.P432H C A C/C C/C C/A C/C C/A C/A C/C 

CACNA1B p.N167K C G – – C/C – C/C C/C – 

DNAJC9 p.T56P T G T/T T/T T/T T/T T/T T/T T/T 

KCNN3 p.L66H A T A/T A/A A/T A/T A/T A/T A/T 

NOTCH1 p.T349P T G – – T/T – T/T T/T – 

Ref – reference allele; Alt – alternate allele; “–“ – not sequenced 

 

Sanger sequencing confirmed WES results for genes KCNN3, ADPRH and AUTS2. 

However, the results for DNAJC9, CACNA1B and NOTCH1 were false positive. Variants 

in genes KCNN3, ADPRH and AUTS2 are all present in the patients, however, only 

AUTS2P432H was not detected in non-PLS members of the family. The variant AUTS2P432H 

can be found in the dbSNP142 database with the accession number rs767529359. The 

ClinVar (Landrum et al., 2018; https://www.ncbi.nlm.nih.gov/clinvar/) interpretations of 

pathogenicity for this variant are conflicting with the latest assessment suggesting it is 

benign (accession RCV000626221.2). Also, as mentioned, mutations in AUTS2 are related 

to neurodevelopmental and neurological disorders, such as autism spectrum disorders or 

mental retardation and not to neurodegenerative diseases. 

Variant KCNN3L66H is also present in the dbSNP142 database, with the accession 

number rs776143138. While it is not reported in ClinVar, it has an estimated frequency of 

0.02432 (837/34422) according to gnomAD (Karczewski et al., 2020; 

https://gnomad.broadinstitute.org/). It also appears to be present in most of the family 

members whose DNA samples were available. 

Variant ADPRHR295P has not been previously described and is not present in any 

variant database. However, variants in ADPRH at the same nucleotide or amino acid 

position have been described. They are summarised in table 4.17. 
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Table 4.17. Summary of known variants in ADPRH at amino acid position 295. 

Amino acid 

variant 

Nucleotide 

change 

Reference SNP 

accession number 

Population frequency 

(allele count/allele number) 

p.R295Q c.G884A rs150984649 9.194*10-5 (26/282,798) 

p.R295L c.G884T rs150984649 3.185*10-5 (1/31,398) 

p.R295* c.C883T rs190409478 5.269*10-4 (149/282,764) 

p.R295P c.G884C - - 

 

Figure 4.9 shows the UGM471 family tree with the genotype of each member whose 

DNA sample was available for ADPRHR295P variant. 

 

 

 

Figure 4.9. UGM471 family tree with the three PLS affected members denoted by 

coloured in shapes. Genotypes for ADPRHR295P variant are included. 

Individuals whose DNA samples were available are denoted with an asterisk. 

 

4.2.5. Frequency of the ADPRHR295P variant in control population 

As the variant ADPRHR295P has not been previously described, it cannot be found 

in variant databases. The only population frequency assessment was done by ASPCR, using 
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the samples of the control population available in the laboratory. The data is summarised 

in table 4.18. 

 

Table 4.18. Number of cases of ADPRHR295P variant in different groups. 

Group 

ADPRH p.R295P G>C 

GG GC CC 

Spanish population control 196 0 0 

Unaffected family members 2 2 0 

Affected family members 0 3 0 

 

A very low frequency of variants in position 295 of ADPRH was observed (Table 

4.17). The frequency of the novel variant ADPRHR295P could only be studied in a small 

control population of 196 samples. Yet, it was not found in any of the control samples. 

 

4.2.6. ADPRHR295P variant’s in silico analysis 

4.2.6.1. ConSurf estimation of evolutionary conservation 

Estimation of evolutionary conservation using the ConSurf web server allowed to 

determine the arginine at position 295 as conserved. Multiple sequence alignment of 150 

sequences from different species was performed. 148 of those could be aligned at the R295 

position. The only other amino acids known to be present in this position in other species 

were: histidine, tryptophan, and glutamine. On a scale of 1 (variable) to 9 (conserved) given 

by ConSurf, the R295 amino acid had an estimated evolutionary conservation score of 8. 

A multiple sequence alignment with hierarchical clustering was done using MultAlin 

(Figure 4.10). 
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Figure 4.10. Multiple sequence alignment of a segment of the ADPRH protein from 

seven different species created using MultAlin (Corpet, 1988; 

http://multalin.toulouse.inra.fr/multalin/). 

The R295 residue is marked with an arrow. Consensus>50 – threshold between low and 

high similarity. If residues in a column are identical they have a black background and a 

capital letter in the consensus row. If they are not, they have a white background and a 

minuscule letter in the consensus row. 

 

4.2.6.2. HOPE protein structure analysis of ADPRHR295P variant 

A general protein structure analysis of the novel variant in ADPRH was performed 

using HOPE web service. Proline is a smaller residue than arginine. It also has a neutral 

charge and is more hydrophobic than the positively charged arginine. HOPE web service, 

using the PDB deposited structure of the protein ADPRH (Figure 4.11; PDB ID: 6IUX; Liu 

and Yu, 2019), evaluated the contacts of the residue R295. This arginine creates salt bridges 

with aspartic acid at position 280 and glutamic acid at position 291. A change to proline is 

predicted to disturb these interactions due to a change in charge. 

 



140 
 

 

Figure 4.11. Crystal structure of ADPRH protein created using Mol* (Sehnal et al., 

2017) as deposited in the RCSB Protein Data Bank (Berman et al., 2000; rcsb.org) by 

Liu and Yu (PDB ID: 6IUX; 2019). 

Arginine at position 295 is marked with an arrow and coloured violet. ADP-ribose is 

visible, marked in red and green. 

 

As seen in figure 4.11, arginine in position 295 is located in an α-helix. In this case, 

a change to proline is predicted to disturb the α-helix. This can be better seen in a close up 

of the residue with side chains shown (Figure 4.12). Although R295 is not considered a key 

amino acid of the active site (Smith et al., 2016), it is located in a domain important for 

protein activity. The structure analysis predicts this may influence the function and activity 

of the protein. 
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Figure 4.12. Close-up of the residue 295 in ADPRH protein. 

The protein is coloured grey, the side chains of both the arginine and the proline residue 

are shown and coloured green and red respectively. Two different angles are provided: (A) 

and (B). The images are created by HOPE web service (Venselaar et al., 2010; 

https://www3.cmbi.umcn.nl/hope/), based on a crystal structure of ADPRH protein as 

deposited in the RCSB Protein Data Bank (Berman et al., 2000; rcsb.org) by Liu and Yu 

(PDB ID: 6IUX; 2019). 

 

4.2.6.3. Prediction of protein stability by I-Mutant 2.0 web server 

I-Mutant 2.0 web server allowed to predict protein stability upon amino acid 

change. With a reliability index (RI) of 7/10 the stability of ADPRH protein was predicted 

to decrease upon arginine replacement with proline at position 295. Any amino acid change 

at that position was predicted to destabilise the protein (Table 4.19), yet the free energy 

change value (DDG) was the second lowest for arginine to proline change. Only arginine 

to lysine change was predicted to be more destabilising. 

  

A B 
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Table 4.19. I-Mutant 2.0 protein stability predictions for SNVs at position R295 in 

ADPRH. 

Position 
Amino acid 

variant 
Stability RI 

DDG 

(kcal/mol) 

295 R>V Decreased 6 -1.38 

295 R>L   Decreased 7 -0.94 

295 R>I Decreased 3 -0.87 

295 R>M Decreased 5 -1.16 

295 R>F Decreased 7 -1.04 

295 R>W Decreased 7 -1.01 

295 R>Y Decreased 5 -0.68 

295 R>G Decreased 7 -1.06 

295 R>A Decreased 8 -1.07 

295 R>P Decreased 7 -2.27 

295 R>S Decreased 8 -2.00 

295 R>T Decreased 7 -1.29 

295 R>C Decreased 5 -1.14 

295 R>H Decreased 7 -1.10 

295 R>K Decreased 8 -2.57 

295 R>Q Decreased 8 -1.12 

295 R>E Decreased 8 -0.86 

295 R>N Decreased 6 -1.52 

295 R>D Decreased 8 -1.43 

Known existing variants and the novel variant are highlighted in bold text. RI – reliability 

index (0<RI<10); DDG – free energy change value in kcal/mol. 

 

4.2.7. Reassessment of WES results 

In light of the discovery of a novel variant ADPRHR295P, its strong destabilizing 

effect on the protein and presence in two of the unaffected members of the family, a 

reassessment of the WES results was done. Other variants were evaluated, taking under 

consideration their interactions with ADPRH or functions in related pathways. The variants 

found are summarised in table 4.20. 



143 
 

 

Table 4.20. WES results filtered for possibly damaging variants in genes associated 

with ADPRH pathways for samples 0002, 1001 and 1002. 

Chr Pos Ref Alt Zigosity Effect Gene 

Amino 

acid 

variant 

SIFT 

prediction 

(score) 

Polyphen 

prediction 

(score) 

chr13 114,078,558 A C HET 
missense 

variant 
ADPRHL1 p.L294R 

D 

(0.01) 

D 

(1.0) 

chr12 102,559,642 G C HET 
missense 

variant 
PARPBP p.G268R 

D 

(0.01) 

D 

(1.0) 

chr10 69,644,558 T C HET 
missense 

variant 
SIRT1 p.S27P 

T 

(1.0) 

B 

(0.0) 

Chr – chromosome; Pos – position; Ref – reference allele; Alt – alternate allele; HET – 

heterozygous; D – deleterious (SIFT)/damaging (Polyphen); T – tolerated; B – benign 

 

The variant ADPRHL1L294R can be found in the dbSNP142 and has the accession 

number rs41306688. ADPRHL1 is a paralog of ADPRH and rs41306688 has a population 

frequency of 0.02257 (6351/281400) according to gnomAD (Karczewski et al., 2020; 

https://gnomad.broadinstitute.org/). PARPBP encodes the PARP1 Binding Protein. PARP1 

is an ADP-ribosyltransferase involved in PARylation. The variant PARPBPG268R has not 

been previously described. SIRT1 is a part of the sirtuins family. It is an NAD-dependent 

protein deacetylase with possible MARylation activity. 

 

4.2.7.1. Sanger sequencing verification of variants selected in WES results 

reassessment 

Verification of the WES results by Sanger sequencing is important to eliminate false 

positive results. Also the manner in which the variants segregate in the family is relevant 

for classifying their importance for the disease development. The results are summarised 

in table 4.21. 
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Table 4.21. Verification of selected variants through Sanger sequencing in family 

UGM471. 

Gene 

Amino 

acid 

variant 

Ref Alt 

Sample ID and diagnosis 

9996 

non-

PLS 

0001 

non-

PLS 

0002 

PLS 

0003 

non-

PLS 

1001 

PLS 

1002 

PLS 

1003 

non-

PLS 

ADPRHL1 p.L294R A C A/A A/A A/C A/A A/C A/C A/A 

PARPBP p.G268R G C G/C G/G G/G G/C G/C G/C G/C 

SIRT1 p.S27P T C - - T/T - T/T T/T - 

Ref – reference allele; Alt – alternate allele 

  

ADPRHL1L294R (rs41306688) segregates with the disease in the family. 

PARPBPG268R not only does not segregate with the disease but also shows a false positive 

result for sample 0002. The variant SIRT1S27P was verified only in the patients’ samples, 

as it showed all false positive results from the WES. 

 

4.2.8. Role of variant ADPRHR295P in protein activity 

An assay for ADPRH activity was devised based on a previously established assay 

for ADP-ribosyltransferase activity of CT with agmatine as its substrate (Suryadi and 

Shine, 2011). ADP-ribosylation of agmatine was performed using CT and hydrolysis using 

ADPRH. The ADPRH activity was measured in terms of the amount of remaining ADP-

ribosylated agmatine after the assay, by use of UPLC. Since ADP-ribosylation of agmatine 

may occur spontaneously, a control was used where neither CT nor ADPRH were added. 

To control ADP-ribosylation by CT, a sample was prepared where CT but not ADPRH was 

added. 

The experiment was performed by cleavage of ADP-ribose from agmatine using 

ADPRHWT, ADPRHR295P and ADPRHD55A/D56A variant lacking cleavage activity. 

ADPRHD55A/D56A is a variant created in the laboratory as residues D55 and D56 have been 

described as key residues of the active site of the protein (Smith et al., 2016). Since the 

reaction mechanism of ADPRH relies on magnesium cations coordinated by aspartic acid 

residues (D55, D56, D302, D304; Mueller-Dieckmann et al., 2006; Berthold et al., 2009), 

introducing changes p.D55A/D56A should alter the active site and the protein activity 
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significantly. The activity of ADPRH was, therefore, compared to that of the novel variant 

and the variant with active site of the protein affected. 

First the reaction products needed to be identified by separation using the UPLC 

data from a detector measuring absorbance at 260 nm. The details of the reaction protocol 

can be found in the methods section. In order to identify the peak for ADP-ribosyl-agmatine 

on the chromatogram, several control runs were made (Table 4.22). 

 

Table 4.22. Control runs of the ADPRH activity assay. 

Run 

Reaction reactants and reagents 

Agmatine β-NAD+ DTT 
sodium 

phosphate 
CT 

1. - + - - - 

2. + - - - - 

3. + + + + - 

4. - + + + + 

5. + + + + + 

“+” – added to the reaction and run on UPLC; “-“ – not added to the reaction and run on 

UPLC 

 

These runs allowed for identification of the peak for ADP-ribosyl-agmatine close 

to retention time (RT) 1.45 minutes (Figure 4.13). 
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Figure 4.13. UPLC chromatograms representing three separations to identify ADP-

ribosyl-agmatine. 

(A) Run 3 of table 4.22. All reactants, no CT. (B) Run 4. All reactants except agmatine, 

with CT. (C) Run 5. All the reactants, with CT. ADP-ribosyl-agmatine appeared at retention 

time (RT) 1.45 minutes in the run 5. Data obtained from three technical and biological 

replicates. 

 

Experimental runs were performed from products of reactions with ADPRH and its 

variants. Appropriate controls were used (Table 4.23). 

 

Table 4.23. Experimental runs of the ADPRH activity assay. 

Run 

Reaction reactants and reagents 

Agmatine β-NAD+ DTT 
sodium 

phosphate 
CT ADPRHWT ADPRHR295P ADPRHD55A/D56A 

1. + + + + + + - - 

2. + + + + + - + - 

3. + + + + + - - + 

4. + + + + + - - - 

5. + + + + - - - - 

+ – added to the reaction and run on UPLC; - – not added to the reaction and run on UPLC 

A 

C 

B 

ADP-ribosyl-agmatine 

nicotinamide 

nicotinamide 

nicotinamide 

ADP-ribosyl-agmatine 

ADP-ribosyl-agmatine 
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In order to measure the relative activity of ADPRH and its variants, the area under 

ADP-ribosyl-agmatine peaks was measured for all reactions (Figure 4.14). 

 

Figure 4.14. Selected UPLC chromatograms representing five separations to measure 

the relative activity of ADPRH and its variants ADPRHR295P and ADPRHD55A/D56A. 

  

ADP-ribosyl-agmatine 

ADP-ribosyl-agmatine 

ADP-ribosyl-agmatine 

ADP-ribosyl-agmatine 

ADP-ribosyl-agmatine 

nicotinamide 

nicotinamide 

nicotinamide 

nicotinamide 

nicotinamide 

A 

B 

C 

D 

E 
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Figure 4.14. Selected UPLC chromatograms representing five separations to measure 

the relative activity of ADPRH and its variants ADPRHR295P and ADPRHD55A/D56A 

(continued). 

(A) Run 1. Reaction with ADPRHWT, (B) run 2. Reaction with ADPRHR295P, (C) run 3. 

Reaction with ADPRHD55A/D56A, (D) run 4. Control reaction without ADPRH variants, (E) 

run 5. Control reaction with all reactants without CT or ADPRH. Data obtained from three 

technical and biological replicates. 

 

Both ADPRHWT and ADPRHR295P were able to hydrolyse the CT-ADP-rybosylated 

agmatine, bringing its levels back to those of spontaneous ADP-ribosylation (Absorbance-

minute units, mean ± SEM: 86.2 ± 2.2 for ADPRHWT, 80.4 ± 2.5 for ADPRHR295P, 79.1 ± 

12.0 for spontaneous ADP-ribosylation). They both cleaved ADP-ribose with similar 

efficiency (Figure 4.15). The double variant ADPRHD55A/D56A did not cleave ADP-ribose 

efficiently (185.7 ± 3.9 for ADPRHD55A/D56A). ADP-ribosyl-agmatine levels were as high 

for reaction with ADPRHD55A/D56A as after the reaction with CT (206.4 ± 5.0 for CT). 

ADPRHD55A/D56A did not show enzymatic activity and differed significantly from 

ADPRHWT (p < 0.001) and ADPRHR295P (p < 0.001). 

 

 

Figure 4.15. ADPRH activity assay with agmatine and CT using UPLC. 

Agmatine ctrl – control reaction with all reactants without CT or ADPRH; agmatine + CT 

– control reaction without ADPRH variants; ADPRH: wild-type – reaction with wild-type 

ADPRH, p.R295P – reaction with ADPRHR295P, p.D55A/D56A – reaction with 

ADPRHD55A/D56A. ***p < 0.001, one-way ANOVA comparing controls, ADPRHWT, 

ADPRHR295P and ADPRHD55A/D56A, with post hoc Tukey multiple comparisons of means 

test. Data obtained from three technical and biological replicates. 
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4.2.9. Role of variant ADPRHR295P in mRNA expression 

Involvement of variant ADPRHR295P in mRNA expression was studied by the use 

of RT-qPCR. Previously described variants: rs150984649 (ADPRHR295Q) and rs190409478 

(ADPRHR295*), at the same position as the novel ADPRHR295P, were used as controls. The 

variant ADPRHR295Q had a change of glutamine for arginine which was predicted to be 

more stable than that introduced by ADPRHR295P (Table 4.19). ADPRHR295* encoded for a 

truncated protein with a premature stop codon. The double variant ADPRHD55A/D56A and 

ADPRHWT were also used to determine ADPRHR295P effect on mRNA levels. Transfection 

efficieny was controlled by amplification of kanamycin from the plasmid resistance 

cassette. 

Although mRNA levels of ADPRHR295P, ADPRHR295Q and ADPRHD55A/D56A were 

slightly lower than those of ADPRHWT (Normalised mean amplification efficiency ± SEM: 

1.000 ± 0.115 for ADPRHWT; 0.713 ± 0.057 for ADPRHR295P; 0.574 ± 0.091 for 

ADPRHR295Q; 0.814 ± 0.154 for ADPRHD55A/D56A), the difference was not significant 

(Figure 4.16). Only the mRNA levels of ADPRHR295* truncating variant were significantly 

lower (p < 0.001 for ADPRHWT and ADPRHD55A/D56A; p = 0.002 for ADPRHR295P; p = 

0.036 for ADPRHR295Q) at mean amplification efficiency of 0.108 ± 0.013 SEM. 

 

 

Figure 4.16. RT-qPCR results for mRNA levels of ADPRHWT, ADPRHR295P, 

ADPRHR295Q, ADPRHR295* and ADPRHD55A/D56A overexpressed in SH-SY5Y cells. 

*p < 0.05, **p < 0.01, ***p < 0.001 one-way ANOVA comparing ADPRHWT and its 

variants, with post hoc Tukey multiple comparisons of means test. Data obtained from three 

technical and two biological replicates. 
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Regardless of missense variant studied, the mRNA levels did not change in respect 

to the ADPRHWT, unlike the nonsense variant whose mRNA levels were lower. 

 

4.2.10. Role of variant ADPRHR295P in protein expression 

Analysis of protein overexpression using the plasmids carrying the ADPRHWT gene 

and the ADPRHR295P, ADPRHR295Q, ADPRHR295* and ADPRHD55A/D56A variants was done 

using WB and SH-SY5Y cells. The protein levels of ADPRHR295P (Normalised mean band 

intensity ± SEM: 0.082 ± 0.011) were significantly lower than those of ADPRHWT (1.000 

± 0.114; p = 0.005), ADPRHR295Q (0.768 ± 0.242; p = 0.034) and ADPRHD55A/D56A (1.132 

± 0.149; p = 0.002; Figure 4.17). 

 

 

Figure 4.17. Western blot results for ADPRHWT and ADPRHR295P, ADPRHR295Q, 

ADPRHR295* and ADPRHD55A/D56A variants overexpression in SH-SY5Y cells. 

*p < 0.05, **p < 0.01, one-way ANOVA comparing ADPRHWT and its variants, with post 

hoc Tukey multiple comparisons of means test. Data obtained from three technical and 

biological replicates. 

 

There were no differences in protein levels between the ADPRHWT and 

ADPRHR295Q and ADPRHD55A/D56A variants. The variant expressing the truncated protein 

ADPRHR295* was not present in the sample, showing no band on the membrane. 
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4.2.11. Protein-protein interaction between ADPRH and ADPRHL1 

Co-IP was performed with the wild-type forms of ADPRH and ADPRHL1. Data 

was obtained from two technical and biological replicates. While the proteins precipitated 

correctly, they did not co-precipitate. The co-IP gave a negative result and no proof of 

interaction between wild-type forms of ADPRH and ADPRHL1. 

 

4.2.12. PSEN1L166P (rs63750265) mutant and AD 

In 2019, Jazi et al. have associated mutations PSEN1A431E and PSEN1L381V with 

PLS. In 2020 Vazquez-Costa (forthcoming) has identified a mutation PSEN1L166P with the 

accession number rs63750265 in the PLS patients from family UGM471. PSEN1L166P is a 

rare mutation associated with a very early onset of AD symptoms and spastic paraparesis 

(Moehlmann et al., 2002; Lyoo et al., 2016). The WES result for PSEN1L166P is summarised 

in table 4.24. 

 

Table 4.24. WES results for PSEN1L166P (rs63750265) mutation for samples 0002, 1001 

and 1002. 

Chr Pos Ref Alt Zigosity Effect Gene 

Amino 

acid 

variant 

SIFT 

prediction 

(score) 

Polyphen 

prediction 

(score) 

chr14 73,653,577 T C HET 
missense 

mutation 
PSEN1 p.L166P 

D 

(0.01) 

D 

(0.981) 

Chr – chromosome; Pos – position; Ref – reference allele; Alt – alternate allele; HET – 

heterozygous; D – deleterious (SIFT)/damaging (Polyphen) 

 

Several other mutations are recorded at position L166 of PSEN1 which accompany 

a clinical phenotype of AD. There is PSEN1L166del (rs63751458; Knight et al., 2007), 

PSEN1L166H (rs63750265; Pantieri et al., 2005), PSEN1L166R (rs63750265; Ezquerra et al., 

2000) and PSEN1L166V (Sassi et al., 2014). 
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4.2.12.1. Sanger sequencing verification of mutation PSEN1L166P 

(rs63750265) 

Sanger sequencing was performed with samples from all available UGM471 family 

members to confirm lack of false positive WES results and possible segregation of the 

variant with the disease (Table 4.25). 

 

Table 4.25. Verification of mutation PSEN1L166P (rs63750265) through Sanger 

sequencing in family UGM471. 

Gene 

Amino 

acid 

variant 

Ref Alt 

Sample ID and diagnosis 

9996 

non-

PLS 

0001 

non-

PLS 

0002 

PLS 

0003 

non-

PLS 

1001 

PLS 

1002 

PLS 

1003 

non-

PLS 

PSEN1 p.L166P T C T/T T/T T/C T/T T/C T/C T/T 

Ref – reference allele; Alt – alternate allele 

 

The mutation segregated with the disease as summarised in figure 4.18. 

 

 

Figure 4.18. UGM471 family tree with the three PLS affected members denoted by 

coloured in shapes. Genotypes for PSEN1R295P (rs63750265) mutant and ADPRHR295P 

variant are included. 

Individuals whose DNA samples were available are denoted with an asterisk. 
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4.3. Study of etiopathogenesis of PKD in family UGM478 

4.3.1. Clinical data 

Five patients from family UGM478 were diagnosed with PKD. The proband was 

examined with neuroimaging and EEG and others were diagnosed through clinical history 

and neurological examination. The results of the patients’ clinical data are summarised in 

table 4.26. 

 

Table 4.26. Family UGM478 patient data. 

Patient Sex 

Age of 

onset 

(years) 

Attack 

duration 

(seconds) 

Attack 

frequency 
Aura Triggers Treatment 

Disease 

evolution 

1003 F 14 < 10 < 1/month No 

Sudden 

movement, 

stress 

None 

Remission at 

23 years of 

age 

1005 M 10 < 10 10-20/day No 

Sudden 

movement, 

stress 

Yes, 

unknown 

Remission at 

25 years of 

age 

2004 M 12 < 10 < 1/week Yes 
Sudden 

movement 
None 

Remission at 

15 years of 

age 

2005 M 14 < 10 > 20/day Yes 

Sudden 

movement, 

stress, 

fatigue, 

shock 

CBZ 

Withdrawing 

CBZ and 

without 

attacks 

2007 M 8 < 10 1-10/day Yes 
Sudden 

movement 
CBZ 

Without 

attacks with 

CBZ 

treatment 

M – male; F – female; CBZ – Carbamazepine. 
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4.3.2. WES data 

4.3.2.1. Base-calling and image analysis raw data 

Basic raw data obtained through base-calling and image analysis produced by WES 

for samples 1005, 2005 and 2007 are summarised in table 4.27. 

 

Table 4.27. WES raw data: reads, base content and phred quality scores for samples 

1005, 2005 and 2007. 

Sample ID Total read bases (bp) Total reads GC (%) Q20 (%) Q30 (%) 

1005 9,094,496,318  90,044,518 49.5 98.8 96.6 

2005  9,321,758,236 92,294,636 49.5 98.7 96.3 

2007 8,105,274,644 80,250,244 49.6 98.7 96.3 

Total read bases – Total number of bases sequenced; Total reads – Total number of reads. 

In Illumina paired-end sequencing, read1 and read2 are added; GC (%) – GC content; Q20 

(%) – Ratio of reads that have phred quality score of over 20; Q30 (%) – Ratio of reads that 

have phred quality score of over 30. 

 

4.3.2.2. Read alignment results 

The average read length for all samples was 101 bp. The post-alignment statistics 

are given in table 4.28. 

 

Table 4.28. WES post-alignment statistics for samples 1005, 2005 and 2007. 

Sample ID 1005 2005 2007 

Initial Mappable Reads 90,013,269 92,258,890 80,218,518 

% Initial Mappable Reads 99.9 99.9 99.9 

Non-Redundant Reads 78,707,862 81,119,190 71,692,113 

% Non-Redundant Reads 87.4 87.9 89.3 

On-Target Reads 65,943,619 67,267,032 59,662,592 

% On-Target Reads 83.7 82.9 83.2 

On-Target Yield (bp) 5,782,503,371 5,892,020,939 5,223,500,863 

Mean Depth of Target Regions (X) 114.7 116.9 103.6 
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Table 4.28. WES post-alignment statistics for samples 1005, 2005 and 2007 

(continued). 

Initial Mappable Reads – Number of mapped reads to human genome; % Initial Mappable  

Reads – 100 * (Initial mappable reads) / (Total reads); Non-Redundant Reads – Number  

of de-duplicate reads from Picard tools; % Non-Redundant Reads – 100 * (Non-redundant 

reads) / (Initial mappable reads); On-Target Reads – Number of reads mapped to target 

regions; % On-Target Reads – 100 * (On-target reads) / (Non-redundant reads); On-Target 

Yield (bp) – The sum of the bases in the final alignment to the target regions; Mean Depth 

of Target Regions (X) – (On-target yield) / (Target regions) 

 

4.3.2.3. SNP calling results 

SNP calling allowed for identification of variants in DNA sample sequences. The 

SNP calling results for samples 1005, 2005 and 2007 are summarised in table 4.29. 

 

Table 4.29. WES SNP calling summary for samples 1005, 2005 and 2007. 

Sample ID 1005 2005 2007 

Number of SNPs 78,467 80,074 78,579 

Synonymous Variants 11,467 11,613 11,472 

Missense Variants 10,431 10,513 10,526 

Stop Gained 90 83 79 

Stop Lost 35 35 39 

Number of INDELs 9,151 9,498 9,132 

Frameshift Variants 260 267 282 

Inframe Insertions 144 158 154 

Inframe Deletions 186 191 190 

% Found in 

dbSNP142 

97.5 97.4 97.5 

Het/Hom Ratio 1.4 1.5 1.5 

Ts/Tv Ratio 2.3 2.3 2.3 
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Table 4.29. WES SNP calling summary for samples 1005, 2005 and 2007 (continued). 

% Found in dbSNP142 – percentage of Number of SNPs found in dbSNP142; Het/Hom 

Ratio – Ratio of number of heterozygous variants to number of homozygous variants; Ts/Tv 

Ratio – Ratio of transition rate of SNVs that pass the quality filters divided by transversion 

rate of SNVs that pass the quality filters. Transitions are interchanges of purines (A,G) or 

of pyrimidines (C, T). Transversions are interchanges between purine and pyrimidine 

bases. 

 

4.3.3. WES results filtration and identification of interesting variants 

The results obtained from WES analysis were filtered and the most interesting 

variants assessed. Firstly, genes known to be associated with PKD were looked at, to see 

whether a known or a new variant in those genes could cause or affect the disease (Table 

4.30). 

 

Table 4.30. WES results filtered for PKD and PxD associated genes for samples 1005, 

2005 and 2007. 

Gene 

Number of 

intron 

variants 

Number of 

synonymous 

variants 

Number of 

missense 

variants 

Other variants 

PRRT2 0 1 0 2 upstream gene variants 

3’-UTR variant 

stop gain variant 

MR-1 1 0 0 3’-UTR variant 

ATP1A3 0 1 0 3’-UTR variant 

SLC2A1 2 0 0 0 

ECHS1 2 1 2 0 

PDHX 5 2 1 2 5’-UTR variants 

DLAT 2 0 0 0 

 

Of the variants in table 4.30 only one had a putative impact predicted as HIGH by 

SnpEff software. It was the novel variant PRRT2Q106*. It was not previously described in 

any variant database. It encodes a PTC c.C316T p.Q106*. Other variants in table 4.30 were 



157 
 

filtered out from further analysis either by prediction of their impact, their frequency in 

population or a review of current knowledge on their effect. 

All variants, whether related to PKD or not, went through a restrictive filtering 

process to assess the possible cause of PKD in family UGM478. Filtering was done as 

described in the methods section. An important step was the filtering by role, function, 

tissue of expression and pathways the variants are involved in (Table 4.31). 

No interesting nonsense variant was found other than PRRT2Q106*. ARHGEF10L 

encodes a protein involved in signal transduction, DLGAP2 encodes a protein which may 

be important for synapse organization and signalling in neurons, ZPR1 encodes a protein 

involved in neuronal differentiation, axonal growth and spinal muscular atrophy, RYR1 is 

involved in mediating Ca2+ release in neurons, which may stimulate prolonged signalling 

in the brain, MED25 mutations are associated with Charcot-Marie-Tooth disease also 

known as the hereditary motor and sensory neuropathy (Stelzer et al., 2016; 

www.genecards.org), Sorbs2 knock-out mice had impaired dendritic development (Zhang 

et al., 2016), SIN3A encodes a protein involved in neurodevelopmental disorders 

(Witteveen et al., 2016). Excluding DLGAP2R37W (rs988565981), all of the variants from 

table 4.31 are novel. 

The standards and guidelines for the interpretation of sequence variants (Richards 

et al., 2015) and the gene constraint observed/expected score (Karczewski et al., 2020; 

https://gnomad.broadinstitute.org/) were used to assess these variants (Table 4.32). Low 

values of the observed/expected score are indicative of strong intolerance.  
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Table 4.31. WES results filtered for possibly damaging variants for samples 1005, 2005 and 2007. 

Chr Pos Ref Alt Zigosity Gene 
Amino acid 

variant 

SIFT prediction 

(score) 

Polyphen 

prediction (score) 

Putative Impact 

(SnpEff) 

chr1 17,965,061 T C HET ARHGEF10L p.L683P D (0.0) D (1.0) MODERATE 

chr4 186,545,342 C T HET SORBS2 p.C510Y D (0.015) D (0.998) MODERATE 

chr8 1,496,968 C T HET DLGAP2 p.R37W D (0.0) D (1.0) MODERATE 

chr11 116,656,234 A G HET ZPR1 p.L234P D (0.001) D (0.992) MODERATE 

chr15 75,682,153 T A HET SIN3A p.D954V D (0.003) D (0.961) MODERATE 

chr16 29,824,691 C T HET PRRT2 p.Q106* - - HIGH 

chr19 38,959,720 G A HET RYR1 p.E1166K D (0.001) D (0.998) MODERATE 

chr19 50,338,794 G C HET MED25 p.G560R D (0.001) D (1.0) MODERATE 

Chr – chromosome; Pos – position; Ref – reference allele; Alt – alternate allele; HET – heterozygous; HOM – homozygous; D – deleterious 

(SIFT)/damaging (Polyphen). SIFT and Polyphen both do not perform predictions for nonsense variants. 
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Table 4.32. Interpretation of the selected variants according to Richards et al. (2015) 

and observed/expected score. 

Gene 
Amino acid 

variant 
Effect 

Sequence variant 

classification 

observed/expected 

score (90 % CI) 

ARHGEF10L p.L683P 

missense 

variant 

Uncertain 

significance 

0.85 (0.8 – 0.91) 

DLGAP2 p.R37W 

missense 

variant 

Uncertain 

significance 

1.11 (1.04 – 1.18) 

MED25 p.G560R 

missense 

variant 

Uncertain 

significance 

0.83 (0.77 – 0.91) 

PRRT2 p.Q106* stop gain Pathogenic 0.18 (0.07 – 0.56) 

RYR1 p.E1166K 

missense 

variant 

Uncertain 

significance 

0.9 (0.87 – 0.93) 

SIN3A p.D954V 

missense 

variant 

Uncertain 

significance 

0.54 (0.49 – 0.59) 

SORBS2 p.C510Y 

missense 

variant 

Uncertain 

significance 

0.99 (0.93 – 1.05) 

ZPR1 p.L234P 

missense 

variant 

Uncertain 

significance 

0.87 (0.78 – 0.97) 

 

4.3.4. Sanger sequencing verification of selected variants 

The variants selected from WES results needed to be confirmed by Sanger 

sequencing to eliminate a possibility of a false positive result and to see whether they 

segregate with the disease. As only samples 1005, 2005 and 2007 were used in WES, 

samples of other family members, including other patients were added to the Sanger 

sequencing confirmation when necessary (Table 4.33). 
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Table 4.33. Verification of selected variants through Sanger sequencing in family 

UGM478. 

Gene 

Amino 

acid 

variant 

Ref Alt 

Sample ID and diagnosis 

1003 

PKD 

1005 

PKD 

1006 

non-

PKD 

2004 

PKD 

2005 

PKD 

2006 

non-

PKD 

2007 

PKD 

ARHGEF10L p.L683P T C - T/C - - T/T - T/C 

DLGAP2 p.R37W C T - C/T - - C/C - C/T 

MED25 p.G560R G C - G/C - - G/G - G/C 

PRRT2 p.Q106* C T C/T C/T C/C C/T C/T C/C C/T 

RYR1 p.E1166K G A - G/A - - G/A - G/G 

SIN3A p.D954V T A - T/A - - T/T - T/A 

SORBS2 p.C510Y C T - C/T - - C/C - C/T 

ZPR1 p.L234P A G - A/G - - A/A - A/G 

Ref – reference allele; Alt – alternate allele; “-“ – not sequenced 

 

Sanger sequencing confirms the WES results for PRRT2Q106* novel variant, and 

shows its segregation with the disease. No other variant from table 4.33 segregates with the 

disease in family UGM478. Figure 4.19 shows the UGM478 family tree with the genotype 

of each member whose DNA sample was available for PRRT2Q106* variant. 

 

Figure 4.19. UGM478 family tree with the five PKD affected members denoted by 

coloured in shapes. Genotypes for PRRT2Q106* variant are included. 

Individuals whose DNA samples were available are denoted with an asterisk. 
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4.3.5. Frequency of the PRRT2Q106* variant in control population 

As the variant PRRT2Q106* is novel, it cannot be found in variant databases. The 

only population frequency assessment was done by ASPCR, using the samples of the 

control population available in the laboratory. The data is summarised in table 4.34. 

 

Table 4.34. Number of cases of PRRT2Q106* variant in different groups. 

Group 

PRRT2 p.Q106X C>T 

CC CT TT 

Spanish population control 192 0 0 

Unaffected family members 2 0 0 

Affected family members 0 5 0 

 

Due to the lack of information on population frequency of variant PRRT2Q106* the 

frequency could only be studied in a small control population of 192 samples. The variant 

was not found in any of the control samples. It was found in heterozygosis in all 5 PKD 

patients from family UGM478 and was absent in the healthy members of the family. 

 

4.3.6. Role of variant PRRT2Q106* in mRNA expression 

Truncating mutations in PRRT2 are a common cause of PKD (Valtorta et al., 2016). 

Wu et al. (2014) suggest the PTC in PRRT2 trigger the NMD pathway. Previously 

described truncating variants PRRT2Q163* (Wang et al., 2011) and PRRT2Q250* (Ono et al., 

2012) were used here as controls together with the PRRT2WT. PRRT2Q106*, PRRT2Q163* 

and PRRT2Q250* encode a PTC replacing a glutamine at different domains of the protein. 

The novel variant PRRT2Q106* introduces a stop codon before the proline-rich domain of 

PRRT2, the variant PRRT2Q163* in the middle of it, and variant PRRT2Q250* after (Figure 

4.20). None of these variants encoded for transmembrane domains of the protein. 

Transfection efficieny was controlled by amplification of kanamycin from the plasmid 

resistance cassette. 
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Figure 4.20. Structure of PRRT2 protein with map of nonsense variants PRRT2Q106*, 

PRRT2Q163* and PRRT2Q250* with regards to their protein domain location (modified 

with permission from Valtorta et al., 2016). 

The novel variant PRRT2Q106* is marked with an arrow. See appendix I for license 

agreement. 

 

Levels of mRNA were lower for all tested variants (PRRT2Q106*, PRRT2Q163* and 

PRRT2Q250*; p < 0.001) in comparison with the PRRT2WT (Figure 4.21). 

 

 

Figure 4.21. RT-qPCR results for mRNA levels of PRRT2WT and PRRT2Q106*, 

PRRT2Q163* and PRRT2Q250* variants overexpressed in SH-SY5Y cells. 

***p < 0.001 one-way ANOVA comparing PRRT2WT and its variants, with post hoc Tukey 

multiple comparisons of means test. Data obtained from three technical and two biological 

replicates. 

0

0.2

0.4

0.6

0.8

1

1.2

wild-type p.Q106* p.Q163* p.Q250*

N
o

rm
al

is
ed

 m
ea

n
 a

m
p

lif
ic

at
io

n
 e

ff
ic

ie
n

cy
 (
±

SE
M

)

*** *** 

*** 



163 
 

 

The results were normalised to represent the PRRT2WT mRNA levels as 100 %. The 

normalised mean amplification efficiency ± SEM was: 1.000 ± 0,070 for PRRT2WT; 0.133 

± 0.021 for PRRT2Q106*; 0.152 ± 0.014 for PRRT2Q163*; 0.307 ± 0.116 for PRRT2250*. No 

significant difference was found between variants. 

NMD was inhibited in the NMDI14 treated group to test the theory that PRRT2 

mRNA with PTC is decayed through this pathway (Wu et al., 2014). mRNA levels 

increased for all variants (Figure 4.22). From 0.133 ± 0.021 to 0.588 ± 0.040 for 

PRRT2Q106* (p < 0.001), from 0.152 ± 0.014 to 0.487 ± 0.085 for PRRT2Q163* (p = 0.011) 

and from 0.307 ± 0.116 to 0.590 ± 0.045 for PRRT2250* (not statistically significant at p = 

0.05). 

 

 

Figure 4.22. RT-qPCR results for mRNA levels of PRRT2WT and PRRT2Q106*, 

PRRT2Q163* and PRRT2Q250* variants overexpressed in SH-SY5Y cells with and 

without NMD pathway inhibition. 

*p < 0.05, ***p < 0.001 two-way ANOVA comparing PRRT2WT and its variants, with post 

hoc Tukey multiple comparisons of means test. Data obtained from three technical and two 

biological replicates. 
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Comparison of the increase of mRNA levels between different variants and the 

wild-type after NMDI14 treatment showed a significant increase for PRRT2Q106* (p = 

0.004; Figure 4.23). The increase of mRNA levels for PRRT2Q106* was approximately 5.5 

fold, 3.4 fold for PRRT2Q163* and 2.9 fold for PRRT2Q250*, while the PRRT2WT mRNA 

levels stayed almost unchanged. 

 

  

Figure 4.23. Ratio of mRNA levels change after treatment with NMDI14 for 

PRRT2WT and PRRT2Q106*, PRRT2Q163* and PRRT2Q250* variants overexpressed in 

SH-SY5Y cells. 

**p < 0.01 one-way ANOVA comparing PRRT2WT and its variants, with post hoc Tukey 

multiple comparisons of means test. Data obtained from three technical and two biological 

replicates. 

 

The mean mRNA level ratio increase ± SEM was 0.859 ± 0.063 for PRRT2WT, 

5.501 ± 1.381 for PRRT2Q106*, 3.407 ± 0.737 for PRRT2Q163* and 2.925 ± 0.587 for 

PRRT2Q250*. 

 

4.3.7. Role of variant PRRT2Q106* in protein expression 

Analysis of protein overexpression using the plasmids carrying the PRRT2WT gene 

and the PRRT2Q106*, PRRT2Q163* and PRRT2Q250* variants was performed using WB 

method and SH-SY5Y cells. No expression of PRRT2Q106* was observed. Variants 

PRRT2Q163* and PRRT2Q250* both expressed significantly lower levels of protein than 

PRRT2WT (PRRT2Q106*, p < 0.001; PRRT2Q163*, p < 0.001; PRRT2Q250*, p = 0.001; Figure 

4.24). The normalised mean band intensity ± SEM was 1.000 ± 0.064 for PRRT2WT, 0.0 ± 

0.0 for PRRT2Q106*, 0.121 ± 0.060 for PRRT2Q163* and 0.311 ± 0.114 for PRRT2Q250*. 
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Figure 4.24. Western blot results for PRRT2WT and PRRT2Q106*, PRRT2Q163* and 

PRRT2Q250* variants overexpression in SH-SY5Y cells. 

***p < 0.001, one-way ANOVA comparing PRRT2WT and its variants, with post hoc 

Tukey multiple comparisons of means test. Data obtained from three technical and 

biological replicates. 

 

NMD pathway was inhibited by NMDI14 in the experimental group to test whether 

that would increase the truncated protein expression. No expression of PRRT2Q106* was 

observed after NMD pathway inhibition, however, protein levels of the variants 

PRRT2Q163* and PRRT2Q250* increased significantly (from 0.121 ± 0.060 to 0.591 ± 0.120, 

p = 0.016 and from 0.311 ± 0.114 to 1.127 ± 0.014, p < 0.001 respectively). The protein 

levels of PRRT2WT increased insignificantly (from 1.000 ± 0.064 to 1.371 ± 0.040; Figure 

4.25). 
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Figure 4.25. Western blot results for PRRT2WT and PRRT2Q106*, PRRT2Q163* and 

PRRT2Q250* variants overexpression in SH-SY5Y cells. 

*p < 0.05, ***p < 0.001, two-way ANOVA comparing PRRT2WT and its variants, with 

post hoc Tukey multiple comparisons of means test. Data obtained from three technical and 

biological replicates. 

 

Comparison of the increase of protein levels between different variants and the 

wild-type after NMDI14 treatment showed no significant increase difference between the 

samples, although the increase of PRRT2Q163* protein levels was approximately 5.8 fold 

and 4.2 fold for PRRT2Q250*, while the PRRT2WT protein levels stayed almost unchanged 

(Figure 4.26). The standard deviation was 0.180 for the PRRT2WT, but as high as 2.676 and 

2.260 for PRRT2Q163* and PRRT2Q250* respectively. 

 

 

Figure 4.26. Ratio of protein levels increase after treatment with NMDI14 for 

PRRT2WT and PRRT2Q163* and PRRT2Q250* variants overexpressed in SH-SY5Y cells. 
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5. DISCUSSION 

 

5.1. Overview 

The study of molecular mechanisms responsible for neurological diseases is 

important for development of possible treatments. Comprehending the complex nature of 

these diseases could allow us to focus research efforts on specific aspects of their molecular 

biology and find pathways for viable targeted treatment. AD, the most common 

neurodegenerative dementia, has been recognized as one of the most common causes of 

death in the United States by the late 70s (Katzman, 1976) and persists in the top ten causes 

to this day (Heron, 2019). PLS, although not as grave as ALS, forms a part of its 

pathological spectrum and significantly impairs the lives of affected patients. ALS is the 

most common progressive MND caused by neurodegeneration. PKD is a rare neurological 

disorder causing involuntary movements which negatively impacts the lives of affected 

patients. Although these diseases show such diverse symptoms, at the molecular level the 

mechanisms that cause them may sometimes be due to a SNP which affects 

haploinsufficiency, stability or function of the encoded protein. 

Further, I will discuss the variants found which could possibly affect the diseases in 

three Spanish families affected by AD, PLS and PKD respectively. Considering the impact 

these variants may have on the protein they encode and what molecular mechanisms may 

be involved in causing these diseases. This should shed light on better comprehending the 

etiopathogenesis of these three neurological diseases. 

 

5.2. Etiopathogenesis of AD in family UGM037 

As three of the four siblings in family UGM037 were diagnosed with AD at ages 

68, 69 and 72, it can be classified as late onset familial AD (Bird, 2018) which is typically 

associated with various susceptibility genes (Van Cauwenberghe et al., 2015). The annual 

incidence rate (per 100 person-years) for AD is approximately 0.5 % for people aged 65 to 

69 years and about 1 % for those aged 70 to 74 years (Mayeux and Stern, 2012). Therefore, 

although the patients are above the arbitrary line of 65 years, classifying them as having 

LOAD, they are at the lower range of that age classification. Among the siblings, one of 

the two men and both the women were diagnosed with AD, which is in accordance with 

data for differences between sexes (Lobo et al., 2011). Although sex may be an AD risk 
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factor related to the fact that women, on average, live longer than men, here all the siblings 

lived to a similar age (between 85 and 89 years). 

The next generation, children of the above mentioned siblings, were not diagnosed 

with AD, their DNA samples were collected at ages between 50 and 57. They may be at 

risk of developing the disease at a later age. Here, I will discuss how the AD susceptibility 

genes and the variant described in this work may contribute to the development of the 

disease in family UGM037. 

 

5.2.1. Identification of a variant possibly responsible for AD in a Spanish 

family 

WES was used to identify the variants possibly responsible for causing AD in 

UGM037 family. The exome contains approximately 85 % of known variants related to 

diseases, comprising only about 1 % of the genome (van Dijk et al., 2014). This approach 

is a cost-effective method for identification of disease-related variants (Lacey et al., 2014). 

Variants within 24 AD susceptibility genes were identified through WES data 

analysis (Table 4.5), yet most of them were intronic and synonymous variants. Among 

them, only rs764542666 in gene CR1 encoding a PTC (c.C406T, p.R136*) could be 

considered a damaging variant with a HIGH putative impact according to SnpEff. Analysis 

of all the variants available from WES data also pointed to the heterozygous rs764542666 

SNV as damaging and most likely involved in causing the disease in the family. An 

introduction of a PTC early on (position 136) in a 2039 amino acid sequence suggests a 

significant impact on the function of the protein or its amount, affecting haploinsufficiency. 

Activation of the complement system is known to correspond with clinical expression of 

AD and the components of the system are found in amyloid plaques (Shen et al., 2001). 

The complement receptor 1 was found to be involved in Aβ clearance (Zhu et al., 2015) 

and a possible risk factor for AD through GWAS (Lambert et al., 2009). Mahmoudi et al. 

(2015) suggested that it may be the lower levels of expression of the CR1*2 isoform which 

are responsible for higher AD risk, as this isoform was associated with AD susceptibility. 

This would align with the haploinsuffieciency due to rs764542666 variant in CR1 

hypothesis. 

Likely pathogenicity variant classification, according to Richards et al. (2015), and 

relatively lowest observed/expected score, according to Karczewski et al. (2020; 

https://gnomad.broadinstitute.org/), of the CR1R136* variant strongly suggest its possible 

involvement in the disease and thus selecting it for further study. The segregation of the 



169 
 

variant with the disease and its rare occurrence in the general population, as well as in the 

samples from AD patients, is also hinting at its involvement in the disease development in 

family UGM037. 

The role of variant CR1R136* in pathophysiology of AD in family UGM037 is still 

undetermined. Lacking functional information, this variant could be in linkage 

disequilibrium with another variant that could be the real culprit.  

As Lambert et al. (2009) showed, the SNV rs3818361 increases the risk for LOAD. 

The same effect could be observed for the CR1*2 isoform (Mahmoudi et al., 2015). 

However, neither could be related to the disease in the family. Either they are absent, 

CR1*2, or do not segregate with the disease in the pedigree, rs3818361. Conversely a high 

incidence of APOE ε4 was found in the family with all the affected individuals having at 

least one copy of ε4 allele. A higher dose of APOE ε4 is related to decreasing the age of 

onset and is a major risk factor in families with LOAD (Corder et al., 1993). The same 

study suggests that having a homozygous APOE ε4/ε4 genotype is “virtually sufficient to 

cause AD by age 80”. This statement was refuted by Henderson et al. (1995), showing the 

existence of cognitively normal ε4/ε4 carriers at an older age. However, APOE ε4/ε4 

genotype remains a strong risk factor for developing the disease. In family UGM037 two 

out of three affected individuals were homozygous for this allele with the third affected 

individual being heterozygous. Although none of the patients’ onsets can be qualified as 

early (< 65 years), the ones homozygous for APOE ε4 are reported to have been diagnosed 

at an earlier age (68, 69 years old) than the heterozygous one (72 years old). According to 

Mayeux and Stern (2012) the annual incidence rate (per 100 person-years) of AD increases 

from 0.30 % at ages 65-69 to 0.85 % at ages 70-74. The mean age of onset for individuals 

with APOE ε4/ε4 is 68 ± 8.2 years, for individuals with APOE ε3/ε4 76 ± 8.2 years and for 

individuals with APOE ε3/ε3 84 ± 8.2 years (Hane et al., 2018). Therefore, the difference 

between the ages of onset of the patients is probably insignificant. Unexpectedly, the 

unaffected individual who did not carry the CR1R136* variant, had no signs of cognitive 

decline and carried the ε4/ε4 genotype at the APOE locus, passing at 88 years of age. This 

supports Henderson et al. (1995) claim, refuting the assertion by Corder et al. (1993), that 

homozygous APOE ε4/ε4 genotype is enough to cause AD by 80 years of age. Lack of 

CR1R136* variant in this individual may imply it is this SNV that causes the disease in this 

family and the APOE ε4 dose only increases the chances of developing AD and contributes 

to earlier onset. 
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While autosomal dominant mutations in genes APP, PSEN1 and PSEN2 mostly 

contribute to EO-fAD (Cruts et al., 2012), the SNV CR1R136* seems to affect the patients 

causing LO-fAD. I propose the heterozygous PTC nature of this SNV causes 

haploinsufficiency and a similar effect as the lower levels of expression of CR1*2 isoform 

which is said to be connected to increased complement activation and lower Aβ clearance 

(Hazrati et al., 2012; Mahmoudi et al., 2015). 

Among the younger family members, whose DNA samples were collected at ages 

50 to 57 years, three of seven had the CR1R136* variant. Among the three, none of them had 

the rs3818361 variant nor the CR1*2 isoform. Two of them had APOE ε3/ε4 genotype and 

one had APOE ε3/ε3 genotype. Reiteration of these results is important as these members 

of the family could face a risk of developing AD at an older age. The presence of one copy 

of the APOE ε4 allele increases the risk of AD 4-fold (Tanzi, 2012), which applies to six 

of the four younger family members, and two also carry the rs3818361 variant. As the 

contribution of variant CR1R136* in pathophysiology of AD in family UGM037 is still not 

clear, it can only be speculated whether it will negatively affect the younger family 

members. However, in line with the clinical and WES data for the older family members, 

the patients with CR1R136* variant and APOE ε3/ε4 genotype should be at the highest risk 

of developing the disease. If the variant in CR1 is itself causative of the disease and the 

APOE ε4 dose lowers the onset age, the individual with APOE ε3/ε3 genotype could also 

develop AD, but possibly at an older age. Although these are only speculations, they may 

be beneficial to both the individuals and clinicians as early detection and treatment can 

enhance quality of life (Small, 2000). 

The role variant CR1R136* plays in mRNA and protein expression is important to 

understand the possible molecular mechanisms by which it may be involved in causing AD. 

In an in vitro cellular model, the mRNA and protein levels of CR1R136* variant were 

significantly lower than those of CR1WT. NMD pathway is often responsible for destruction 

of mRNA with a PTC. The early position of the PTC in CR1 suggests the involvement of 

the NMD pathway in destruction of the transcript (Coban-Akdemir et al., 2018). The data 

from experimental NMD inhibition support the hypothesis that it is through this pathway 

that CR1R136* transcript is decayed, not allowing for significant production of CR1 protein. 

This corroborates the theory of loss-of-function of CR1 and further haploinsufficiency 

possibly being involved in AD. Therefore, I suggest the transcript is decayed in NMD 

pathway and not enough fully functional protein can be expressed to control the 

complement system and help with Aβ clearance. The Aβ increase provokes activation of 
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the complement system which has been reported by Singharo et al. (2000) to be harmful to 

neurons. The CR1*2 isoform is expressed at lower protein levels than CR1*1, and it is 

assumed that it may be the lower levels of the protein that affect the risk of AD (Hazarti et 

al., 2012; Mahmoudi et al., 2015). The hypothesis of haploinsufficiency would thus be in 

line with the previous assumptions. 

The in vitro overexpression of a protein in a cellular model has its limitations. 

Among the general are differences between the cellular model and the corresponding cells 

in the organism, problems with establishing appropriate microenvironment, such as 

interactions with other cells, or the fact that the protein is artificially overexpressed. Due to 

the lack of data on interaction of CR1 with its ligands C3b nor C4b, the scope of loss-of-

function cannot be fully established. Further research is needed to confirm no gain-of-

function is caused by the variant in CR1. Immunocytochemistry study could provide 

information on whether the truncated protein is expressed and accumulated in the cells. 

Also, fibroblasts collected from patients and converted into neuronal cells or cellular model 

altered through gene editing could be used to more closely represent the natural metabolism 

of the cell. Further functional studies on the effects of CR1R136* variant should be done, as 

its segregation with the disease in the pedigree may be coincidental and the main culprit 

for development of AD in family UGM037 may be age and incidence of APOE ε4. The 

variant CR1R136* is very rare and not well studied with regards to its effect on AD, therefore, 

it would be interesting to further investigate this potentially causative mutation and its role 

in developing the disease. 

 

5.3. Etiopathogenesis of PLS in family UGM471 

The three members of family UGM471 were diagnosed with PLS at ages of 24, 28 

and 30 years. This rare disease, with incidence of 1 in 10 million per year (Brugman and 

Wokke, 2004), while having an earlier average age of onset than ALS, has a mean onset 

age of 54.6 ± 10.9 years (Tartaglia et al., 2007). The onset of the symptoms in the affected 

family members is therefore early, and apparently can be classified as limb-onset. Limb-

onset is more common than bulbar among PLS than ALS patients, and in general it is 

responsible for 70 % of cases among ALS patients (Zarei et al., 2015). Therefore, the 

feeling of stiffness spreading from one leg to the second and later upper extremities in the 

patients is in line with the limb-onset and the typical progression of the disease. 
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5.3.1. Identification of a variant possibly responsible for PLS in a Spanish 

family 

Two variants were identified which could possibly be the cause of the symptoms in 

the family. One was a novel variant c.G884C p.R295P in ADPRH and the other a previously 

described mutation c.T497C p.L166P in PSEN1 (rs63750265). The latter was discovered 

within the UGM471 family genome recently Vazquez-Costa (forthcoming), therefore they 

will be discussed chronologically, from discovery. 

 

5.3.1.1. Variant ADPRHR295P in Spanish family affected by primary lateral 

sclerosis 

Variants within 18 ALS and PLS susceptibility genes were identified through WES 

data analysis (Table 4.13), yet most of them were intron and synonymous variants. No 

variants within these genes were considered possibly deleterious and most were previously 

described and assigned an accession number in the dbSNP, having high frequency within 

the general population according to gnomAD (Karczewski et al., 2020; 

https://gnomad.broadinstitute.org/). Interestingly no common variants were found in genes 

SOD1 nor TARDBP in all of the affected individuals. The more specifically related to PLS 

rather than ALS genes, SPG7 and TBK1 (Yang et al., 2016; Gomez-Tortosa et al., 2017) 

did not yield interesting results either. About 76 % of familial cases of ALS can be 

attributed to a known ALS-related gene (Morgan and Orell, 2016), whereas there is no such 

data on PLS. However, the WES results did not show a clear candidate variant possibly 

responsible for affecting the disease in the family. 

A general assessment of the WES data was done to identify possible variants which 

could be involved in the disease and variant c.G884C p.R295P in ADPRH was revealed as 

the most interesting through filtering, prioritization and segregation. Its 

deleterious/damaging impact according to SIFT and Polyphen predictions and its 

involvement in many essential cellular pathways are implications for a further 

investigation. The heterogeneous pathology of ALS and thus PLS, which involves many 

mechanisms in the cell, suggests there may be more undiscovered risk factors and 

mutations that could affect the disease. The ADP-ribosylation cycle involving ADPRH has 

important functions in cellular regulation. It is involved in proliferation, differentiation, 

DNA repair, and other essential cellular processes (Palazzo et al., 2019). ADPRH is 

involved in tumorigenesis and bacterial response to toxins (Mashimo et al., 2014), 

however, mutations in ADPRS, which shares 41 % similarity with ADPRH, are known to 
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be associated with neurodegeneration (Danhauser et al., 2018; Mashimo et al., 2019). It is 

important to point out ADPRH is involved in arginine-specific MARylation while ADPRS 

in serine-specific PARylation (Rack et al., 2018; Rack et al., 2020). 

Sanger sequencing validation of the WES results confirmed the segregation of 

variant ADPRHR295P with the disease in the pedigree (Figure 4.9). In addition, the same 

variant was present in two unaffected members of this family. This particular variant was 

not previously described although other amino acid changes at the same position are present 

in the dbSNP (c.G884A p.R295Q (rs150984649; 26/282,798 allele count/number), 

c.G884T p.R295L (rs150984649; 1/31,398) and c.C883T p.R295X (rs190409478; 

149/282,764)). All of them were found to be rare, at frequencies < 0.0006. Although the 

frequency of ADPRHR295P variant could only be studied in a limited control population of 

196 samples, it was not present in any of them. This, together with rare frequency of 

variants at position R295 and ADPRHR295P being a novel variant suggests it is also a rare 

SNV. 

The observed/expected score for gene constraint reported by gnomAD (Karczewski 

et al., 2020; https://gnomad.broadinstitute.org/) for missense variants in ADPRH suggest it 

is relatively tolerant for such changes. However, effects of proline mutations can be quite 

severe for protein stability. Proline does not possess an important amide hydrogen and can 

cause structural rigidity of the protein structure due to the φ dihedral angle being 

constrained to values around −65°. This, depending on the location of proline change, can 

significantly destabilize or cause aggregation of a protein (Bajaj et al., 2007). Here, the 

proline replaces a conserved arginine in an α-helix, which is predicted to disturb its 

structure and influence the function and activity of the protein. Arginine at position 295 

creates salt bridges with aspartic acid at position 280 and glutamic acid at position 291, 

which are predicted to be interrupted due to a change in charge when replaced with a 

proline. Stability analysis also predicts this change to be very destabilizing, with more than 

twice as much free energy change than for other described missense variants in the same 

position. 

A variant in a paralog of ADPRH, c.A881C p.L294R ADPRHL1 (rs41306688) was 

identified to segregate with the disease in the family, not being present in any of the healthy 

individuals, not even the ones with ADPRHR295P variant. In Xenopus, ADPRH and 

ADPRHL1 may share actin as their target, working in unison to allow for correct actin 

filament assembly (Smith et al., 2020). Giampetruzzi et al. (2019) suggest modulation of 

actin polymerisation may be involved in disruption of the nucleocytoplasmic transport 
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which is important in ALS pathogenesis. It affects nuclear import, mRNA post-

transcriptional regulation and the stability and function of the nuclear pore. The variant 

ADPRHL1L294R is predicted to be damaging/deleterious according to Polyphen and SIFT, 

although it is not as rare as the novel variant in ADPRH with a frequency of around 0.02, 

according to gnomAD (5619/250,028). Although ADPRHL1 is mainly restricted to the 

heart (Smith et al., 2016), its RNA expression is ubiquitous (Stelzer et al., 2016; 

www.genecards.org). Its catalytic activity as an ADP-ribose hydrolase is said to be lost 

(Oka et al., 2006). However, as mentioned before, the newest data suggest it may have a 

role in actin filament assembly in Xenopus (Smith et al., 2020). No interaction between 

ADPRH and ADPRHL1 could be confirmed through co-IP, however, this approach has 

many limitations, as low-affinity protein interactions may not be detected, the antibody 

chosen may affect the outcome of the assay and the experimental conditions do not 

represent the intricate inner workings of the cell. Also, ADPRH and ADPRHL1 may work 

together without directly interacting with one another. 

The study of ADPRHR295P activity, revealed it to be just as efficient as ADPRHWT 

at cleaving ADP-ribose from agmatine. The reaction of ADP-ribosylation of agmatine 

using NAD+ as an ADP-ribose donor, promoted by CT, causes a significant increase in 

ADP-ribosyl-agmatine in comparison with spontaneous ADP-ribosylation of agmatine. 

Using UPLC for separation and identification of components the retention time for ADP-

ribosyl-agmatine was assigned at 1.40 minutes. This allowed for correct interpretation and 

quantification of the ADPRH activity assay results. The ADPRH activity efficiency was 

reduced in the double variant ADPRHD55A/D56A where two point mutations, changed two of 

the essential aspartic acid residues to alanines. This result refutes the in silico prediction of 

disruption of proper activity of the protein. However, this may be due to the conditions of 

the reaction used. The protein was overexpressed in E. coli DH5α bacterial strain for 

extraction and purification and not in eukaryotic cells. Protein expression was induced by 

IPTG and chaperonin GroEL/GroES was co-expressed to counter protein misfolding and 

promote bacterial survival. The reaction itself was performed in vitro and not in vivo, which 

may have influenced the accuracy of the result. Therefore, this assay does not take into 

account the prediction of a destabilizing effect of the variant on the protein. If it is in fact 

as strong as predicted, a hypothesis of haploinsufficiency could be put forward. 

While mRNA expression of ADPRHR295P proved to be as high as that of ADPRHWT 

and variants ADPRHR295Q and ADPRHD55A/D56A, the protein levels of the novel SNV were 

significantly lower, suggesting an important destabilizing effect. As expected, the stability 
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of mRNA in the missense variants was not affected. However, the protein stability seems 

to altered greatly by ADPRHR295P. Interestingly, other missense variants, whether at the 

same (ADPRHR295Q) or at a different positions (ADPRHD55A/D56A), did not cause a 

significant loss of protein. The in silico analysis of the novel variant ADPRHR295P suggests 

the arginine at this position is well conserved and a change to a proline could affect the 

protein stability which seems to be consistent with our results. The protein levels of variant 

ADPRHR295Q at the same position are not significantly different from ADPRHWT although 

they show consistently lower band signal on a WB. At the same time the double variant 

ADPRHD55A/D56A seems to have very similar protein levels as ADPRHWT. This may suggest 

a change at position 295 is important for protein stability. The ADPRHR295* SNV showed 

lower mRNA levels and no protein could be detected with WB. This may suggest that the 

NMD pathway was involved in decay of ADPRHR295* mRNA, since it encodes a truncated 

protein with a PTC. The truncating variant caused a complete lack of ADPRH which may 

be attributed to its low mRNA levels, as well as further misfolding or instability of the 

protein if it was to be translated. 

Although this work could confirm a strong destabilizing effect of the novel variant 

in ADPRH, it is difficult to quantify how much of the protein is lost due to that effect. 

Further study would need to be performed to determine whether it could contribute to 

haploinsufficiency, preferably using fibroblasts collected from patients and converted into 

neuronal cells or a cellular model altered through gene editing. Also further studies on the 

relation between ADPRH, ADPRHL1, their variants and actin could answer whether they 

could have an impact on causing PLS. The fact that healthy members of the family were 

carriers of ADPRHR295P could be a case of lower penetrance of this variant or the need for 

both variants in ADPRH and ADPRHL1 in order for the pathological phenotype to manifest. 

Although it is difficult to say if the novel variant ADPRHR295P affects the disease in the 

Spanish family, little is known about MARylation, its effects on diseases and molecular 

mechanisms it is involved in, therefore it may be important to gather this information for 

improvement of fundamental research. 

 

5.3.1.2. Variant PSEN1L166P in Spanish family affected by primary lateral 

sclerosis 

Recently Jazi et al. (2019) have associated mutations PSEN1A431E (rs63750083) and 

PSEN1L381V (rs63750687) with PLS and Vazquez-Costa (forthcoming) has identified a 
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mutation c.T497C p.L166P in PSEN1 with the accession number rs63750265 in the PLS 

patients from family UGM471. 

Although mutations in PSEN1 are commonly causing EOAD (Tanzi, 2012) there 

have been reports associating PSEN1 with ALS (Panas et al., 2000; Couthouis et al., 2014). 

PSEN1A431E is an AD causing mutation associated with a founder effect in the Mexican 

state of Jalisco (Yescas et al., 2006). The two patients reported by Jazi et al. (2019) with 

this mutation and diagnosed with PLS were from a neighbouring state of Michoacán. They 

developed FTD, spastic quadriparesis, bulbar dysfunction and spastic anarthria at 40 – 44 

years of age. The age of onset for the individuals affected by this mutation was between 33 

and 44 years. Although cognitive problems were the usual symptoms, there were also motor 

symptoms recorded, such as myoclonus, spastic paraplegia and pyramidal rigidity (Yescas 

et al., 2006). One family recorded with PSEN1A431E and AD, had mostly motor symptoms 

with atypical cognitive changes (Santos-Mandujano et al., 2019). PSEN1L381V is another 

mutation related to AD which Jazi et al. (2019) recorded in a PLS patient. Once again it is 

related with an early onset at ages 29 - 32, and motor symptoms, spastic paraparesis 

(Mehrabian et al., 2004; Ikeuchi et al., 2008; Dintchov Traykov et al., 2009). Couthouis et 

al. (2014) have associated variant PSEN1W203C (rs1384308168) with ALS through a 

targeted sequencing screen, however, not much is known about the biological influence 

this variant could exert. 

The mutant PSEN1L166P (rs63750265), found in the Spanish family UGM471, was 

confirmed to segregate with the disease in the pedigree, not being present in any of the 

healthy individuals. Other mutations at the same position were described and associated 

with AD. PSEN1L166V was discovered in a British person with typical AD symptoms onset 

at age 42 and death 8 years later (Sassi et al., 2014). PSEN1L166R (rs63750265) was 

described in a family of Spanish origin (Ezquerra et al., 2000). The age of onset was 32 - 

44 years and some of the symptoms included cognitive decline, grasping reflex, 

bradykinesia, aphasia and akinetic movements. PSEN1L166H (rs63750265) was described in 

an Italian woman with age of onset at 30 years (Pantieri et al., 2005). Her symptoms 

included cognitive decline, myoclonus and postural tremor. PSEN1L166del (rs63751458) was 

described in a woman with age of onset at 38 years (Knight et al., 2007). Her symptoms 

were mostly related to cognitive impairment. Mutant PSEN1L166P (rs63750265) is a rare 

mutation associated with spastic paraparesis and AD with a very early age of onset. It was 

first described in a 15 year old woman with generalised seizures. As the disease progressed 

she showed symptoms of depression, memory loss, ataxia and spastic paraparesis with 
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moderate dementia by the age 28 and death at 35. The post-mortem examination showed 

she had Aβ plaques in her cerebral cortex (Moehlmann et al., 2002). Another carrier of 

PSEN1L166P mutation was a person who, at age 23, showed symptoms of memory 

impairment, spastic paraparesis and dysarthria. Here, the post-mortem examination showed 

Aβ and tau pathology (Lyoo et al., 2016). 

The PSEN1L166P mutation causes partial loss of γ-secretase cleavage function and 

increases the Aβ42/Aβ40 ratio by reducing the Aβ40 levels (Koch et al., 2012). This is a result 

of decreasing the cleavage of Aβ43 to Aβ40. While Aβ42 levels are not affected, the 

disruption of the γ-secretase cleavage in the line Aβ49-Aβ40, which digests Aβ49 into shorter 

peptides, induces higher levels of longer Aβ peptides and reduction of the shorter ones. This 

in turn increases the Aβ42/Aβ40 ratio (Li et al., 2016). An in vitro experiment by Chávez-

Gutiérrez et al. (2012) estimated that PSEN1L166P mutation decreased the cleavage 

efficiency of γ-secretase by 75 %. This may be due to increased dissociation of γ-secretase, 

with the mutation PSEN1L166P present, from Aβ peptides not allowing for cleavage 

(Szaruga et al., 2017). PSEN1L166P was found to disrupt the proteins conformation 

(Berezovska et al., 2005). It is also associated with an increase in APP β-C-terminal 

fragments (β-CTFs) which are a biomarker for AD in the CSF (García-Ayllón et al., 2017; 

Kwart et al., 2019). Interestingly, PSEN1L166P was also shown to have a negative effect on 

PSEN1WT. An in vitro study showed PSEN1WT Aβ production was suppressed in the 

presence of PSEN1L166P possibly due to hetero-oligomerization (Zhou et al., 2017). In 

addition, presenilins form endoplasmic reticulum (ER) Ca2+ leak channels, accounting for 

approximately 80 % of passive Ca2+ leak. This function was proven to be impaired in 

several fAD-linked mutations, with PSEN1L166P among them (Tu et al., 2006; Nelson et 

al., 2007). 

Recent discovery of the PSEN1L166P mutation in the UGM471 family did not allow 

for a more thorough investigation of its effects, but it was confirmed to segregate with the 

disease in the pedigree. The aggressive nature of this mutation, the early age of onset and 

the motor symptoms, strongly suggest it is PSEN1L166P which causes the disease in the 

family. While it is not associated with ALS nor PLS, the patients may have been also 

affected by other environmental or genetic factors to produce this phenotype. At the same 

time Jazi et al. (2019) report PLS patients with mutations in PSEN1. Either the effect of the 

PSEN1 mutations is heterogeneous enough to cause these different disorders, the disorders 

are much more related due to the molecular mechanisms that cause them, or the effect of 

PSEN1 mutation is affected by interaction with other proteins. In a familial setting, 
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environmental or other genetic factors may also contribute to PSEN1L166P causing a PLS 

phenotype. The destabilising effect of ADPRHR295P together with the predicted damaging 

effect of ADPRHL1L294R may be the genetic contributor to this phenotypic variability. 

Further investigation into molecular mechanisms could shed light onto this subject. 

Certainly, common neurodegeneration-linked genes should be looked at when identifying 

a possible cause of a disease, regardless of which disease they are associated with. Patients 

with PLS, ALS or spastic paraparesis should be investigated for PSEN1 mutations. 

 

5.4. Etiopathogenesis of PKD in family UGM478 

Patients diagnosed with PKD in family UGM478 had the age of onset between 8 

and 14 years which is in line with data reported by Schelosky (2010). Four out of five were 

male and they are either in remission or without attack altogether at an older age, with or 

without the carbamazepine treatment. The sex ratio aligns with the 3-4:1 described in other 

studies (Palau-Bargues et al., 2010; Singer et al., 2010; Roze et al., 2015), although 

McGuire et al. (2018) suggest no such disparity exists in the familial form of the disease. 

They also communicate the typical trend of the symptoms decreasing in severity or even 

resolving completely in adulthood, which is in line with what can be observed in patients 

from the UGM478 family. Sudden movement was identified as the most common trigger 

among these patients which indicates the patients having the kinesigenic type of PxD 

(Demirkiran and Jankovic, 1995). 

 

5.4.1. Identification of a variant possibly responsible for PKD in a Spanish 

family 

Variants within 7 genes associated with PxDs were identified through WES data 

analysis (Table 4.30) and another 8 variants from all the WES data. Most of them were 

intronic and synonymous variants. Among the genes associated with PxDs, PRRT2 which 

is the only gene whose mutations are a known cause for PKD (Chen et al., 2011), was 

identified with 5 different variants. One was a synonymous variant, two were upstream 

gene variants, one was a 3’-UTR variant and one was a stop gain variant. All except for the 

stop gain variant were previously reported in dbSNP. Truncating mutations in PRRT2 are 

a common cause of PKD (Méneret et al., 2013; Valtorta et al., 2016) and the same novel 

stop gain variant c.C316T p.Q106* in PRRT2 was identified by filtering and prioritization 

of the entire WES data. This novel variant was considered damaging with a HIGH putative 
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impact according to SnpEff. PRRT2Q106* segregated with the disease in the pedigree and 

could be classified as pathogenic according to Richards et al. (2015). The 

observed/expected score for gene constraint reported by gnomAD (Karczewski et al., 2020; 

https://gnomad.broadinstitute.org/) for nonsense variants in PRRT2 suggest it is intolerant 

for such changes, which is in accordance with the truncating mutations in this gene being 

a common cause of PKD (Méneret et al., 2013; Valtorta et al., 2016). PRRT2Q106* is a novel 

variant and could not be found in any database. The ASPCR frequency estimation showed 

it was absent in our small control population and while it segregated with the disease in the 

pedigree, it was not present in any of the healthy family members. The penetrance of 

PRRT2 mutations in PKD is estimated at 61 – 65 % (Marini et al., 2012; Van Vliet et al., 

2012), however, taking into account the infantile convulsions phenotype, the penetrance is 

close to 100 % (Van Vliet et al., 2012). PKD, BIFE and ICCA are not only caused by the 

same mutations in PRRT2 but can concurrently exist in different members of the same 

family (Yang et al., 2013). These are all strong indicators that PRRT2Q106* is a novel 

mutation causing PKD in Spanish family UGM478. 

It is suggested that the mechanism by which the PTCs affect PKD is by PRRT2 

haploinsufficiency due to NMD (Gardiner et al., 2012; Wu et al., 2014). In accordance with 

their results, significantly lower mRNA levels for the variants with PTCs (PRRTQ106*, 

PRRT2Q163*, PRRT2Q250*), in comparison with PRRT2WT, were found in a cellular model 

with PRRT2 and its variants overexpressed (Figure 4.21). This confirmed the previous 

results for variant PRRT2Q163*, studied by Wu et al. (2014). Results for PRRTQ106* and 

PRRT2Q250* are also in line with that study. Inhibition of the NMD pathway by treatment 

of transfected SH-SY5Y cells with NMDI14, increased the mRNA levels for PRRT2Q106* 

and PRRT2Q163* and showed an increasing trend for PRRT2Q250*. This suggests that the 

NMD pathway may in fact be the culprit behind mRNA decay prompted by PTCs in the 

variants studied. Interestingly protein levels of the novel variant PRRT2Q106* were 

undetectable with WB before and after NMDI14 treatment, while the other variants studied 

(PRRT2Q163* and PRRT2Q250*) had significantly lower protein levels than PRRT2WT before 

the treatment and increased levels after. As outlined by Williamson (1994), the proline-rich 

regions are often important for protein stability. I propose the reason behind the lack of 

protein encoded by the PRRT2Q106* was due to a combined effect of NMD pathway 

destruction of mRNA and destabilization of the protein truncated ahead of the stabilizing 

proline-rich region. These results suggest the novel variant PRRT2Q106* is probably the 

cause of PKD in the UGM478 Spanish family. The molecular mechanisms responsible for 
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the affliction may be the NMD pathway causing decay of the transcript leading to 

haploinsufficiency. Lack of PRRT2 in turn causes hyperexcitability through dysregulated 

neurotransmitter release and hyperactivity of Na+ channels. 

The general limitations of the in vitro overexpression of a protein in a cellular model 

apply here. Differences between the cellular model and the corresponding cells in the 

organism, problems with establishing appropriate microenvironment, such as interactions 

with other cells, or the fact that the protein is artificially overexpressed in naturally 

unavailable amounts. Due to the lack of data on interaction between PRRT2 with SNAP-

25, GluA1 or Nav1.2 and Nav1.6 channels, scope of loss-of-function cannot be fully 

established. Similarly as with the recommendations for the truncating variant in CR1 in AD 

family (section 5.2) further research is needed to confirm no gain-of-function is caused by 

the variant in PRRT2. Immunocytochemistry study could provide information on whether 

the truncated protein is expressed and accumulated in the cells. Fibroblasts collected from 

patients and converted into neuronal cells or cellular model altered through gene editing 

could be used to more closely represent the natural metabolism of the cell. Also, functional 

studies on the effects of PRRT2Q106* variant could be done. Mutations in PRRT2 are well 

established causes of PKD, and these results support the claim that it is the NMD pathway 

leading to haploinsuffieciency that causes the disease in family UGM478. Further 

investigation would be recommended to comprehend the full scope of PRRT2 function and 

therefore the molecular mechanisms which are involved in causing the disease when 

haploinsuffieciency is in action. 

 

5.5. Final remarks 

Common or related pathological molecular mechanisms may affect neurological 

disorders, traditionally considered as unrelated, in the intricate network of the nervous 

system. In this work I have outlined some of such putative mechanisms. Single nucleotide 

variants which may affect different phenotypes through partial loss-of-function due to 

protein destabilisation or haploinsufficiency due to NMD. 

Dang et al. (2008) have identified 299 human haploinsufficient genes by database-

mining and text-searching in PubMed and OMIM over 10 years ago. They found 6 % of 

them to be associated with neurological disorders. Only two years later Huang et al. (2010) 

have estimated the possible number of human haploinsufficient genes to be 12,443 out of 

approximately 22,000. While the total number of human genes is a matter of debate and 
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further study (Salzberg, 2018), their estimation indicates that we can expect a great number 

of genes where protein level dose effect may be essential. Many studies have shown how 

important haploinsufficiency is in neurological disorders (Kobayashi et al., 2003; 

Freischmidt et al., 2015; Cheng et al., 2019). Recently C9orf72 was found to be 

haploinsufficient in ALS/FTD due to the GGGGCC repeat expansion (Shi et al., 2018). 

In this work, I am postulating that CR1 and PRRT2 are haploinsufficient in Spanish 

families with AD and PKD respectively. While it is established that most mutations in 

PRRT2 lead to loss-of-function and haploinsufficiency (Fruscione et al., 2018), to my 

knowledge there is no such reports on CR1. Haploinsufficiency, therefore, emerges as a 

common factor between these and other neurological diseases. Furthermore, the molecular 

mechanism behind the CR1 and PRRT2-related haploinsufficiency seems to be the NMD 

elicited by SNVs encoding PTCs. Single base-pair substitutions account for approximately 

67 % of human disease-associated mutations (Antonarakis and Cooper, 2013). Nonsense 

mutations make up ~ 20 % of those substitutions, and ~ 11 % of all human disease-causing 

mutations (Mort et al., 2008). NMD is predicted to be elicited by 49 % of nonsense SNPs 

while the other 51 % would lead to expression of a truncated protein (Yamaguchi-Kabata 

et al. 2008). The novel variant in PRRT2 and variant rs764542666 in CR1 appear to 

contribute to the former percentage, demonstrating a common molecular mechanism in 

distinct neurological diseases. 

Loss-of-function is strictly related to haploinsufficiency which is a dominant 

phenotype in organisms heterozygous for such alleles (Deutschbauer et al., 2005). 

Although variant PSEN1L166P (rs63750265) was not found to cause haploinsufficiency, it 

affects a partial loss of γ-secretase cleavage (Koch et al., 2012) and ER Ca2+ leak channel 

function (Nelson et al., 2007). The variant ADPRHR295P, identified in the same family, is 

shown to significantly destabilize the protein, drastically affecting its levels. This in turn 

may impede its function. Wang and Moult (2001) show that 80 % of disease-associated 

missense mutations affect protein stability. Whether ADPRHR295P variant in hererozygosis 

is in fact deleterious remains to be seen, depending on its tolerance to decreased protein 

dose. However, loss-of-function, whether full or partial, encompasses the underlying 

molecular mechanisms of the SNVs described in this work, which contribute to 

independent neurological diseases. 

Discussing the molecular mechanisms in AD and PLS in the two Spanish families, 

and the involvement of CR1R136* (rs764542666) and PSEN1L166P (rs63750265) variants in 

disease pathogenesis, it is important not to omit other possibly contributing factors. While 
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CR1R136* may be a causative mutation in the family, its members had a high incidence of 

APOE ε4. As mentioned, a higher dose of APOE ε4 is related to decreasing the age of onset 

and is a major risk factor in families with LOAD (Corder et al., 1993). Hardy (1994) found 

that in families with APP mutations, the incidence of APOE ε4 was related to an earlier age 

of onset, while the incidence of APOE ε2, with a later age of onset, with regards to APOE 

ε3. Interestingly, Benitez et al. (2013) showed PSEN1E318G variant to be related to an 

increased risk of AD, dependent on APOE ε4. While otherwise PSEN1E318G was considered 

non-pathogenic, its interaction with APOE ε4 increased Aβ deposition, causing a faster 

cognitive decline and neurodegeneration. Thus, while carrying CR1R136* variant may be 

sufficient to develop AD, it is also probable that the members of the Spanish family studied, 

were affected solely by the APOE ε4 risk factor or a combination of the two. 

Similarly, other factors, whether environmental or genetic, may affect symptoms 

developed by the family with PLS. Although PSEN1L166P seems to be responsible for the 

phenotype experienced by the patients, their symptoms differ from the more canonical AD 

features related to this variant (Moehlmann et al., 2002; Lyoo et al., 2016). This divergent 

disease expression may be due to PSEN1 gene pleiotropy (Ibanez et al., 2018), however, it 

may also be due to other contributing factors. Environmental factors have been found to 

play an important role in ALS (Oskarsson et al., 2015) and they cannot be disregarded in a 

familial disease. Here, I propose a genetic factor which may contribute to the dissimilar 

symptoms experienced by the members of this family. Novel variant ADPRHR295P may 

have an effect on the disease development, destabilising actin filaments in the presence of 

ADPRHL1L294R variant, prompting a phenotype closer to PLS, together with the aggressive 

PSEN1L166P mutation. The complexity of neurological diseases comes, in part, from a 

cumulative nature of defects that cause them, and thus it is always essential to search for 

other factor which may add to the observed phenotype. Further studies into the effects 

ADPRH variants may have on neurological diseases are needed as it contributes to the still 

poorly understood, but very important MARylation. 
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6. CONCLUSIONS 

 

1. Variant rs764542666 encoding a PTC (c.C406T, p.R136*) is likely the first 

known Alzheimer’s disease causative mutation in CR1, based on WES and genetic 

expression study. NMD pathway provoked haploinsufficiency is its probable 

molecular mechanism, causing lower rate of Aβ clearance and higher complement 

system activation. It may be sufficient to cause LOAD or contributes to its 

development in APOE ε4 allele presence, encouraging research into the rare 

truncating variants in this gene. 

2. Mutant rs63750265 in PSEN1 encoding a missense mutation (c.T497C, 

p.L166P) is the likely cause of primary lateral sclerosis, based on WES study, 

segregation analysis and previous knowledge, raising questions of pleiotropic effects 

of the mutation in a gene typically causing AD. Loss of γ-secretase cleavage function, 

increase of Aβ42/Aβ40 ratio and impairment of ER Ca2+ leak channel function are the 

probable molecular mechanisms behind the mutation. Strongly destabilising variant 

in ADPRH (c.G884C, p.R295P) may be a factor contributing to the observed 

phenotypical variability. 

3. Novel variant in gene PRRT2 encoding a PTC (c.C316T, p.Q106*) is the 

likely cause of paroxysmal kinesigenic dyskinesia, based on WES and genetic 

expression study. This work supports the hypothesis of NMD pathway provoking 

haploinsufficiency of PRRT2 as the molecular mechanism behind PKD, leading to 

hyperexcitability and hyperactivity of Na+ channels. 

4. Single nucleotide variants in different genes may lead to partial or full loss-

of-function due to effects on protein conformation, stability or by NMD causing 

haploinsufficiency. Together with other contributing factor, these are common 

molecular mechanisms which are crucial in study of complex neurological diseases. 
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2. License agreement for figure 1.7. 
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Appendix II Expression vectors 

 

1. Expression vectors used in this study. 

 

Figure A1. Vector map for expression vector FLAG-HA-pcDNA3.1 (Addgene, USA). 
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Figure A2. Vector map for expression vector pCMV-Tag2A (Donation from 

Jeronimo Bravo laboratory).  

 

 

Figure A3. Vector map for expression vector pFlag – KanR; C-terminal FLAG 

epitope (Produced in laboratory). 
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Figure A4. Vector map for expression vector pGEX-6P-1 (Addgene, USA).  

 

 

Figure A5. Vector map for expression vector pGEM-T (Sino Biological, China).  
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Figure A6. Vector map for expression vector pcDNA3.1+/C-(K)DYK (GenScript, 

USA). 
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Appendix III Commercial kits 

 

Table A7. URLs to information on commercial kits used in this work. 

Kit name Producer URL 

QIAprep Spin 

Miniprep Kit 

QIAGEN, 

Netherlands 

https://www.qiagen.com/us/products/top-

sellers/qiaprep-spin-miniprep-

kit/#orderinginformation 

ZymoPURE II 

Plasmid Midiprep 

Zymo 

Research, USA 

https://www.zymoresearch.com/collections/z

ymopure-plasmid-kits/products/zymopure-ii-

plasmid-midiprep-kit 

High Pure PCR 

Cleanup Micro Kit 

Roche, 

Switzerland 

https://www.sigmaaldrich.com/catalog/produ

ct/roche/hppcrcuro?lang=es&region=ES 

MinElute Gel 

Extraction Kit 

QIAGEN, 

Netherlands 

https://www.qiagen.com/dk/products/discove

ry-and-translational-research/dna-rna-

purification/dna-purification/dna-clean-

up/minelute-gel-extraction-

kit/#orderinginformation 

Rapid DNA Dephos 

& Ligation Kit 

Roche, 

Switzerland 

https://www.sigmaaldrich.com/catalog/produ

ct/roche/rdligro?lang=es&region=ES 

QIAmp RNA Blood 

Mini Kit 

QIAGEN, 

Netherlands 

https://www.qiagen.com/us/products/discove

ry-and-translational-research/dna-rna-

purification/rna-purification/total-

rna/qiaamp-rna-blood-mini-

kit/#orderinginformation 

Expand Reverse 

Transcriptase 

Roche, 

Switzerland 

https://www.sigmaaldrich.com/catalog/produ

ct/roche/ertro?lang=es&region=ES 
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Appendix IV Oligonucleotide primers 

 

Table A1. Primers used for PCR for Sanger sequencing. 

Primer 

number 
Gene Forward primer (5’-3’) Reverse primer (5’-3’) 

100f/r ADAM33 
TGTGGCCGATCTCAT

GGG 

ACGTGGGTGCCTCT

GACC 

101f/r ADPRH 
GTCATTACTCTCGAC

CCTCCCAGG 

CTGAGCTTAAGGTG

CCCAAGGG 

102f/r ADPRHL1 
TGCTTCAGAAGAAGG

GTGCT 

ACGGCTCTCTTGTC

AGACCT 

103f/r ARHGEF10L 
TCAGTTTCTCTTCCTC

TGGGG 

CTCCTCTCACTTGTC

GGGTT 

104f/r AUTS2 
AGGGGAAGGAGGTA

GGATTCT 

TGATGTCAGTGGTG

GTGGAG 

105f/r CACNA1B 
GGTCAGACCCTCACG

ATAGC 

AAATACAGCACTGG

CACCC 

106f/r CR1 
CCTTTGATGAGTGTA

AAAAGTCC 

AATGTGTCGGTAAA

AGAAATAGGA 

107f/r DLGAP2 
GCAGCACTTCAATGA

GGAGC 

CGGCATCATCACGC

ACTC 

108f/r DNAJC9 
AAAGATCAGAAGGC

GCCAAG 

CTGCTGGACCTTTG

CGAG 

109f/r KCNN3 
GAAAGCGGTGGGAG

AGGAG 

CTCTGGGGATGAGC

AGCAG 

110f/r KRT9 
GCTCCATCTCAAACC

TGCAG 

TGATATCATGGCTG

TGTCCTTT 

111f/r MED25 
CTCCTTACTAGTTCCC

CTCAGG 

CTCACGCCCCTTCT

GCAG 

112f/r NOTCH1 
GATGCATGCGTCGTT

GAG 

TACCGAGGATGTGG

ACGAGT 
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Table A1. Primers used for PCR for Sanger sequencing (continued). 

113f/r PARPBP 
TCATAGGTGGCCACG

TCTTT 

GTTTCTTCGCCTCAC

CGTTT 

114f/r PRND 
GCTGCTCTGAGGCTA

ATGTG 

TGAGCCAGATCAAA

GCCAGA 

115f/r PRRT2 
GGCCACAGACCTCAG

CTTAA 

GGTAGGGAGCTCTG

GTTGAA 

116f/r PSEN1 
ATTAGCCTAGCGTGG

TGG 

GGCTTAGAATTAAC

TGTAGTCTTAAGT 

117f/r RYR1 
CCCCACACCATGTCT

TCTCT 

AAGAAAGGGCATGT

GAAGGG 

118f/r SIN3A 
TGGTGAACATCTCTC

TCAGTGA 

TGATTGTAGTCACC

TGTCGGA 

119f/r SIRT1 
AGAGGAGGCGAGGG

AGGA 

CCCATTGTCTCCTTC

CCCAG 

120f/r SORBS2 
CTTGTACATCTTCAG

GAACCCC 

ATCAAATCCCGGAG

CTGTGA 

121f/r ZPR1 
AGATAGGGCACACA

GAGCAG 

TGCAGTGACTCTCT

CTTCTCC 

f/r – forward and reverse. 

 

Table A2. Primers used for allele-specific PCR (ASPCR). 

Primer 

number 
Gene 

Forward primer (5’-

3’) 

Reverse primer 

(5’-3’) 

Alternative primer 

with 3’ mismatch 

(5’-3’) 

200f/r ADPRH 
CCTCGAAGGAGC

TTGCCCATCG 

TGAGCTTAAG

GTGCCCAAGG 

CCTCGAAGGAG

CTTGCCCATCC 

201f/r CR1 
CAGCTTCCCTGCA

CTCAAGA 

GACGAGGAAC

CAATGAGTCG 

GACGAGGAACC

AATGAGTCA 

202f/r PRRT2 
GCCCCGAAGACC

CATGCC 

CTGTGTGCCCT

TCTCATTCG 

GCCCCGAAGAC

CCATGCT 

Mismatch site indicated in bold with grey background; f/r – forward and reverse.

Table A3. Primers used for site-directed mutagenesis. 
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Primer 

number 
Plasmid 

Forward primer 

(5’-3’) 

Reverse primer 

(5’-3’) 
Description 

300f/r ADPRH 

(BC063883.1) in 

pGEM-T 

TGGAGAGTTA

GTGCCGCCAC

AGTGATGCACT

TGGCC 

GGCCAAGTGC

ATCACTGTGGC

GGCACTAACT

CTCCA 

Creation of sequence 

encoding 

ADPRHD55A/D56A 

variant. 

301f/r ADPRH 

(BC063883.1) in 

pGEM-T 

GGAGCTTGCCC

ACTGAGCCTTT

TTCCATGG 

CCATGGAAAA

AGGCTCAGTG

GGCAAGCTCC 

Creation of sequence 

encoding ADPRHR295* 

variant. 

302f/r ADPRH 

(BC063883.1) in 

pGEM-T 

GGAGCTTGCCC

ACCCAGCCTTT

TTCCATGG 

CCATGGAAAA

AGGCTGGGTG

GGCAAGCTCC 

Creation of sequence 

encoding ADPRHR295P 

variant. 

303f/r ADPRH 

(BC063883.1) in 

pGEM-T 

GGAGCTTGCCC

ACCAAGCCTTT

TTCCATGG 

CCATGGAAAA

AGGCTTGGTG

GGCAAGCTCC 

Creation of sequence 

encoding ADPRHR295Q 

variant. 

304f/r CR1 

(NM_000651.4) 

in 

pcDNA3.1+/C-

(K)DYK 

TGTACTAAAG

GATACGATTAC

AAGGATGACG

ACGATAAGTG

ACTCATTGGTT

CCTCG 

CGAGGAACCA

ATGAGTCACTT

ATCGTCGTCAT

CCTTGTAATCG

TATCCTTTAGT

ACA 

Creation of sequence 

encoding CR1R136* 

variant followed by flag 

epitope. 

Base change indicated in bold with grey background; f/r – forward and reverse. 
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Table A4. Primers used for subcloning. 

Primer 

number 

Forward 

primer (5’-3’) 

Reverse 

primer (5’-3’) 
Description 

400f/r 

CACAG/AGC

TCATGGGCG

CCAGCAGCC

CTA 

CACAGGTA

C/CGTCAGG

GCGTCGTGG

GTTCTG 

Subcloning CR1 (NM_000651.4) from 

pcDNA3.1+/C-(K)DYK to 

pcDNA3.1+/C-(K)DYK (SacI and KpnI 

restriction enzymes cut sites denoted 

by “/”) 

401f/r 

CACAG/AGC

TCATGGGCG

CCAGCAGCC

CTA 

CACAGGTA

C/CGTGTAG

CCCTTGGTG

CAGCTGTA 

Subcloning CR1R136* variant from 

pcDNA3.1+/C-(K)DYK to 

pcDNA3.1+/C-(K)DYK (SacI and KpnI 

restriction enzymes cut sites denoted 

by “/”) 

402f/r 

ACTAC/TCG

AGATGGAG

AAGTATGTG

GCTG 

ATATTA/AG

CTTAAGGG

AAATTACAG

TGTC 

Subcloning ADPRH (BC063883.1) 

from pGEM-T to pFlag (XhoI and 

HindIII restriction enzymes cut sites 

denoted by “/”) 

403f/r 

ACTAG/GAT

CCATGGAG

AAGTATGTG

GCTG 

ATATC/TCG

AGCTAAAG

GGAAATTAC

AGTG 

Subcloning ADPRH (BC063883.1) 

from pGEM-T to pGEX-6P-1 (BamHI 

and XhoI restriction enzymes cut sites 

denoted by “/”) 

404f/r 

CACAG/GAT

CCGATGGC

AGCCAGCA

GCTCT 

CACAG/TCG

ACTGCTACT

TATACACGC

CTAAGTT 

Subcloning PRRT2 (NM_145239.2)  

from pcDNA3.1+/C-(K)DYK to 

pCMV-Tag2A (BamHI and SalI 

restriction enzymes cut sites denoted 

by “/”) 

405f/r 

CACAG/GAT

CCGATGGC

AGCCAGCA

GCTCT 

CACAG/TCG

ACTGCTAGC

ATGGGTCTT

CGGGGCT 

Subcloning PRRT2Q106* variant from 

pcDNA3.1+/C-(K)DYK to pCMV-

Tag2A (BamHI and SalI restriction 

enzymes cut sites denoted by “/”) 
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Table A4. Primers used for subcloning (continued). 

406f/r 

CACAG/GAT

CCGATGGC

AGCCAGCA

GCTCT 

CACAG/TCG

ACTGCTAGG

TAGGGAGCT

CTGGTTG 

Subcloning PRRT2.Q163* variant from 

pcDNA3.1+/C-(K)DYK to pCMV-

Tag2A (BamHI and SalI restriction 

enzymes cut sites denoted by “/”) 

407f/r 

CACAG/GAT

CCGATGGC

AGCCAGCA

GCTCT 

CACAG/TCG

ACTGCTAGG

AGCTGGGGT

GGCGGCT 

Subcloning PRRT2Q250* variant from 

pcDNA3.1+/C-(K)DYK to pCMV-

Tag2A (BamHI and SalI restriction 

enzymes cut sites denoted by “/”) 

All restriction enzymes in table A4 are FastDigest produced by Thermo Fisher Scientific, 

USA; introduced restriction site indicated in bold with grey background; f/r – forward and 

reverse. 

 

Table A5. Primers used for quantitative PCR. 

Primer 

number 
Target Forward primer (5’-3’) Reverse primer (5’-3’) 

500f/r ADPRH 
CCTTCCCTGAGTCTTTCG

GT 

GCAGCAAGAACAGCATCG

TA 

501f/r CR1 
GCCAGGCCTACCAACCT

AAC 

GCCATTCACAGGATCTGG

AG 

502f/r Neomycin 
CGCGGCTATCGTGGCTG

GC 

CGCTTGGTGGTCGAATGG

GCAGG 

503f/r PRRT2 
GGCCATTCTGAAGCTGA

AACT 

CGGGGTCTCTGTGGTTTCT 

f/r – forward and reverse. 
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Table A6. Primers used for polymorphism genotyping. 

Primer 

number 
Gene 

Polymorphism 

examined 
Forward primer (5’-3’) Reverse primer (5’-3’) 

600f/r APOE Allele 
GGCACGGCTGTCCA

AGGA 

CGGGCCCCGGCCTGG

TACAC 

601f/r CR1 rs3818361 
TTCTGCTTGGTTTCC

TTAGCTT 

CTGCCCAGGTGAAAA

GTTGT 

602f/r CR1 CR1*2 isoform 
AATGTGTTTTGATTT

CCCAAGATCAG 

CTCAACCTCCCAAAG

GTGCTA 

f/r – forward and reverse. 


