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Abstract 

Oral cancer, predominantly oral squamous cell carcinoma (OSCC), is the most common 

malignant neoplasia in the oral cavity characterized by poor prognosis and a low survival 

rate when diagnosed with advanced disease. It can be treated effectively if detected at the 

initial stages with a better prognosis. Therefore, early diagnosis has become an ultimate 

goal in the management of oral cancer after prevention, considered to have a positive 

impact on the survival and quality of life of these patients. The shortage of symptoms at 

the disease onset often remains unnoticed, ultimately leading to discovery at advanced 

phases, so improvement of the diagnostic manner is required. Reliable biomarkers for 

OSCC are yet unavailable in the routine clinical setting, emphasizing the emerging need for 

a practical and simple tool to be used for definitive diagnosis, as well as for screening 

programs. OSCC tumors appear through a series of molecular mutations leading to 

uncontrolled cellular growth from hyperplasia areas to dysplastic lesions, to carcinoma in 

situ, and are finally followed by invasive carcinoma. Besides, the development of many 

OSCC cases has been correlated to the cancerous transformation of oral potentially 

malignant disorders (OPMDs) such as oral leukoplakia. The latter exhibits heterogeneous 

subtypes with varying modification potentials, among which proliferative verrucous 

leukoplakia (PVL) stands out with a high risk of malignant conversion. Diagnosis of OSCC 

requires sensitive and specific indicative tools that can support untraceable and difficult to 

access sites of the oral mucosa for which the most recommended discovery medium are 

biological fluids, such as saliva. Sputum-derived biomarkers offer easy sampling with 

reduced risk for the patients, cost, and diagnosis time, encompassing a variety of 

detectable and measurable parameters that can discriminate health from disease. In an 

attempt to identify novel salivary biomarkers of OSCC, we herein combined multi-omics 

analytical strategies to profile different types of molecules with potential diagnostic utility.  

As inflammation has previously been linked to oral pathologies, research so far indicates 

the possibility of using salivary pro and anti-inflammatory proteins for the screening of oral 

disorders. Altered cytokine responsiveness has been tightly associated with the 

development of OSCC, as well as detected in patients with OPMDs. To reveal changes 

related to oral carcinogenesis, a multiplex immune bead-based assay was used to survey 
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the levels of 8 different cytokines in the saliva of patients with PVL, at early and advanced 

OSCC stages and their healthy counterparts. Results indicated altered cytokine expressions 

associated with the pathology groups, the predictive models for sensitivity and specificity 

of which showed high ROC AUC values.  It is now well established that defective 

glycosylation accompanies many chronic and infectious conditions and is a common 

feature of tumor cells that may affect N-glycans on glycoproteins. To compile a list of 

candidate biomarkers, another type of molecule has been studied. Saliva-derived N-

glycans of healthy volunteers, PVL, and OSCC patients were analysed by the means of liquid 

chromatography (LC) coupled to mass spectrometry (MS). Comparative N-glycome 

profiling revealed several differentially expressed fucosylated bi- and tri-antennary glycans 

among the studied groups, providing a reasonable platform to further investigate the utility 

of salivary glycosylation for diagnosis of OSCC. Lastly, to get an insight into the complex 

molecular alterations associated with cancer, LC-MS generated proteomic profiles 

revealed more than 600 quantified proteins in the saliva of healthy and pre/cancerous 

lesions. The comparative analysis resulted in a list of differentially expressed proteins, 

characterized in OSCC, indicating significantly altered mechanisms implicating the immune 

system, inhibition of enzymatic activities, and cell adhesion. Among the identified 

candidate markers, some had previously been described in saliva. In addition, several 

newly OSCC-associated proteins have been annotated.  In summary, in this discovery phase 

of biomarker identification, we provide a molecular panel of potential indicators of 

malignant transformation and/or early OSCC diagnosis. Further validation is needed to 

verify its clinical utility.
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1. Cancer Concept 

The generic term cancer unites a large group of diseases that can affect any part of the 

body and differ in their histogenesis, morphogenesis, clinical evolution, and prognosis. 

Other names used are malignant tumors and neoplasms. A defining feature of cancer is the 

rapid creation of abnormal cells that grow uncontrolled and disorderly beyond their usual 

boundaries. In consequence, it can acquire the ability to spread from the tissue of origin, 

through the circulatory and lymphatic systems, to adjoining tissues or organs giving rise to 

the process referred to as metastasizing. Metastases are a major cause of death from 

cancer. 

2. Head and Neck Cancer  

Head and Neck Cancer (HNC) is a term encompassing a group of biologically similar 

malignancies that arise in the upper aerodigestive tract. This anatomical region includes 

the paranasal sinuses, nasal cavity, oral cavity, pharynx, larynx, and salivary glands. 

According to the location, about 40% of the cancers occur in the oral cavity, 15%  in the 

pharynx, 25% in the larynx, and the remaining tumors appear in other sites (salivary glands 

and thyroid) (1). More than 90 % of HNC are Squamous Cell Carcinomas (SCC) with 

heterogeneous histological patterns, emerging from the epithelium of these regions and 

can grow into deeper tissue layers. Non-squamous cell types are uncommon. Minor 

salivary gland carcinomas represent less than 5% of oral cavity cancers. They frequently 

arise on the hard palate (60%), lips (25%), and buccal mucosa (15%)(2). Mucoepidermoid 

carcinoma is the most typical representative salivary gland tumor, followed by low-grade 

adenocarcinoma, and adenoid cystic carcinoma. Other malignant formations can originate 

from connective tissue (sarcomas), lymphoid tissue (lymphomas), melanocytes 

(melanoma), or metastasis from distant tumors (3,4). HNC constitutes a major public health 

concern around the world and is a notable cause of morbidity and mortality. They are 

associated with high soreness due to interference with vital life functions such as 

breathing, swallowing, hearing, speech, vision, taste, and smell. 
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3. Oral Squamous Cell Carcinoma 

Oral cancer is the most prevalent subtype of HNC that involves the lip and the intraoral 

mucosa. The oral cavity is divided into several anatomical sites: lip, tongue, the floor of the 

mouth, buccal mucosa, upper and lower gingiva, retromolar trigone, and palate (Figure 1). 

In the oropharynx area, we find the tonsils, the initial part of the pharynx, and the base of 

the tongue. Despite their proximity, the distinct anatomical characteristics of these sites 

have to be taken into account when planning oncologic intervention and/or therapy. 

 

Figure 1. Oral cavity anatomical sites. Source: Terese Winslow LLC, 

Medical and Scientific Illustration (https://www.teresewinslow.com/) 

 

Most of the oral epithelial neoplasia are from the squamous cell type (Figure 2) with the 

more representative type being the conventional Oral Squamous Cell Carcinoma (OSCC). 

Histologic classification is based on the subjective assessment of keratinization degree, 

cellular and nuclear pleomorphism, and mitotic activity, established by Pindborg and 

colleagues (5). According to it, well and moderately differentiated SCC tumors can be 

grouped as low grade and poorly differentiated as high grade. Verrucous Carcinoma (VC) 

is a non-erosive and non- metastasizing well-differentiated subtype with a good prognosis 

and indolent clinical course although the probability to progress to SCC. Basaloid SCC 

(BSCC) is a rare and aggressive high-grade kind occurring mainly in the larynx, 

hypo/oropharynx, epiglottis, and the base of the tongue. Despite the smaller number of 

https://www.teresewinslow.com/
https://www.teresewinslow.com/
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reported cases in the oral cavity, other variants comprising Spindle cell, Papillary, 

Adenosquamous, Acantholytic, Cuniculatum, and Lymphoepithelial subtypes belong to the 

categorization of SCC according to WHO and the International Agency for Research on 

Cancer (IARC) (6). 

  

 

 

Figure 2. Morphologic features of SCC histologic subtypes according to WHO. Adapted after 
Pereira et al., 2007 

3.1 Clinical presentation 

A real danger of oral neoplasia is the asymptomatic onset when tumors can develop 

unseen. As the disease progresses, symptoms may vary from mild discomfort to severe 

pain, encompassing burning sensation, swelling, bleeding, ear pain, teeth mobility, 

dysphagia, complications using a prosthesis, and cervical lymphadenopathy (3). OSCC 

tumors can arise in apparently normal mucosa or be preceded by clinically visible 

premalignant lesions, most commonly found on the tongue and the floor of the mouth. 
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Other affected sites are the buccal mucosa, retromolar area, gingiva, soft and hard palate, 

and lip (7). Usually, the clinical presentation in the early stages is in the form of an 

erytholeukoplastic lesion comprising red and white areas with a slight roughness and 

relatively small size (Fig.3A). Typical for the advanced stages are lesion’s increased size and 

profundity including ulceration, hardness, nodularity, and fixation to underlying tissues. In 

some cases may be presented as a lump with warty surfaces and poorly demarked borders 

(Fig.3B) (7).   

            

Figure 3. Early (A) and advanced (B) stage OSCC of the tongue. 

3.2 Epidemiology 

In the head and neck area, SCC is the most typical epithelial neoplasia that accounts for 

more than 90% of oral cancers and 2%-4% of all malignancies. In some regions of the Asian 

subcontinent the prevalence is higher, reaching 10% of all cancers in Pakistan, and around 

45% in India (8). The oral cavity is the sixth most common anatomical location for cancer 

with over 350 000 new cases annually although the occurrence is highly variable, 

depending on the geographic location (9,10). The incidence of cancers of the lip and oral 

cavity are highly frequent in the Pacific Islands (Papua New Guinea), as well as Southern 

Asia followed by Australia/New Zealand and Europe (Fig.4).  It is also the leading cause of 

cancer death among men in India and Sri Lanka (10). OSCC is usually a disease of elderly 

people among which males are affected twice as commonly as females, often diagnosed 

over the age of 50 years. Nevertheless, the incidence among young adults between 18 and 

44 years is approximately 0.4 to 3.6% with a rising tendency (9,10). Over the past 

decades, the survival outcomes have not improved significantly and the prognosis remains 

relatively unfavorable, with 5-year overall and disease-free survival estimated to be 56% 

and 78%, respectively (6,7).  
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Figure 4. Bar chart representing Region-Specific, Age-Standardized (world) 
incidence rates calculated for males and females for cancers of the lip and oral 
cavity. Source: GLOBOCAN 2020. 

3.3 Etiology and Risk Factors 

Oral cancer develops through a multistage process whose mechanism of action remains 

not well understood, but the initial presence of a precursor cell subsequently evolving into 

cancer has been established. SCC tumors appear through a series of molecular mutations 

leading to the uncontrolled transformation of normal cells from hyperplastic areas to 

dysplastic lesions, to carcinoma in situ, and are finally followed by invasive carcinoma (11). 

These variations are taught to rise from the interaction between persons’ genetic factors 

and environmental agents such as ultraviolet and ionizing radiation (physical 

carcinogenesis),  asbestos, components of tobacco smoke, aflatoxin- a food contaminant 

and arsenic -a drinking water contaminant (chemical carcinogenesis) and infections from 

certain viruses, bacteria, or parasites (biological carcinogenesis). The microbiome denotes 

the collective genome of complex communities of bacteria, archaea, viruses, fungi, and 

protists, each with key roles to play in stabilizing microbial diversity (12,13). Exposure to 

tobacco, alcohol, and HPV infection has been shown to affect the oral microbiome resulting 
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in a shift towards heterogeneous bacteria (15-17). Moreover,  the production of 

acetaldehyde by some bacterial species can induce mutagenesis and hyperproliferation of 

the epithelium (16). Within the diverse environment of the human mouth, distinct 

microbial populations can be found in both healthy and malignant sites, the clinical 

relevance of which lies in the statistical association between dysbiosis (often a result of 

poor oral health) and the prevalence of many cancer types (17). Alterations in the oral 

microbiome have been suggested to promote oncogenesis in the 7-15 % of oral cancer 

cases (18). The most common risk factor related to OSCC in the western world is considered 

to be the use of tobacco and alcohol, especially when acting synergistically (3). Together, 

they are associated with about 75% of all mouth and oesophageal cancers. Tobacco 

smokers carry a six-fold risk of oral cancer development compared to non-smokers. While 

it remains unclear whether alcohol intake alone is a causing agent of oral malignancies, 

collectively with tobacco are thought to be the greater reason for increasing incidence (19). 

Tobacco/areca nut/betel quid chewing habits spread between ethnic groups from the 

Taiwanese and Indian populations, as well as narcotics and cannabis consumption, are 

reckoned to be associated with the OSCC etiology (1,8). The role of some viral infections as 

potential disease causes is under investigation. In 2012, IARC disclosed that there was 

sufficient evidence to pertain Human Papilloma Virus (HPV) to oral carcinogenesis. In 

addition, HPV positive oral neoplasia differs in clinical response and overall survival rates 

from HPV negative tumors and cancers. According to the type and oncogenic potential, 

viruses have been classified as of low or high danger. In the mouth, 24 and 12 strains have 

been detected and linked to benign and malignant lesions, respectively. The majority of 

head and neck SCC infections are related to high-risk types 16, 18, 31, and 33 with HPV 16 

being the prevalent one and HPV 33 accounting for about 10% in oropharyngeal (OPSCC) 

and OSCC cases. While the role of HPV in oropharynx and tonsil tumors is well defined and 

with higher frequency than in other head and neck parts, its infection of oral mucosal cells 

and predisposition to malignant transformation tends to be further studied (9,10]. Epstein–

Barr Virus (EBV) is known as one of the most common human herpesvirus types also the 

cause of infective mononucleosis. Whereas its involvement in B cells malignant conversion 

is thoroughly described the contribution to OSCC pathogenesis remains uncertain, 

although it has been reported that LMP-1, the main oncoprotein of the EBV latent phase 

was expressed in 85% of OSCC cells (22). The action of Hepatitis C Virus (HVC), Torque Teno 
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viruses (TTVs), oral bacterial and fungal infections as co-carcinogens as well as genetic 

predisposition have also been discussed as increasing the risk factors for oral cancer 

development (23).  

3.4 Oral Potentially Malignant Disorders 

Most OSCCs are preceded by clinically visible but otherwise often asymptomatic lesions of 

the oral mucosa. According to the World Health Organization (WHO), lesions and 

conditions, that carry a risk for cancer are summarized as precancerous and considered as 

Oral Potentially Malignant Disorders (OPMD). A precancerous lesion refers to a benign, 

morphologically altered tissue having a potential for malignant transformation (11). After 

a workshop coordinated by the WHO Collaborating Centre for Oral Cancer in 2005, the 

consensus views of the working group were presented in a report reflecting a better 

understanding of multi-step carcinogenesis in the oral mucosa. It was recommended to 

relate “potentially malignant disorders” to pre-cancer as it conveys that not all disorders 

described under this term may transform into cancer rather that there is a family of 

morphological alterations amongst which some may have a high capacity for malignant 

conversion. OPMDs are taught to be indicators of risk of likely future neoplasia not only 

site-specific but elsewhere in (clinically normal-appearing) oral mucosa (24). Leukoplakia 

and Erythroplakia are the most common premalignant disorders, followed by Lichen 

Planus, Oral Submucous Fibrosis, Actinic cheilitis, Smokeless Tobacco Keratosis and palatal 

lesions in reverse smokers (25). The clinical term Leukoplakia should be utilized to 

recognize predominantly white plaques of questionable risk having excluded (other) 

known diseases that carry no increased danger for cancer (24). The lesions have a variable 

behavioral pattern and no specific histology. It may or may not show atrophy, hyperplasia, 

and/or epithelial dysplasia. Traditionally, leukoplakia is present in homogeneous and non-

homogeneous variants additionally comprising subtypes, firstly, classified by Axel et al. and 

Pindborg et al. (5) and later adapted and refined by other working groups in international 

seminars. To date, the concept for Homogeneous Leukoplakia (HL) comprises a uniformly 

white, flat plaque/s (Fig.5A). Non-homogeneous are nodular (polypoid rounded red or 

white outgrowths), verrucous/proliferative verrucous leukoplakia (PVL) (wrinkled, rigid, 

white surface appearance) (Fig.5B), speckled - erythroplakia (red patches) (Fig.5C), and 

erythroleukoplakia (mixed red -and -white lesions) (Fig.5D). To distinguish between the 
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variations, clinicians are based on the surface colour and morphological characteristics, 

being also representative for the possible outcome. Lesions may transform from one type 

to another and may further progress to carcinoma in situ and invasive OSCC. Such changes 

have been described in follow-up studies by various authors (26–29) It is well appreciated 

that the risk of malignant conversion is greater within the non-homogeneous lesions rather 

than the homogeneous ones (24). In western countries, Oral Leukoplakia (OL) is described 

as the most common premalignant disorder with malignant transformation rates from 1-

17% (30). With a greater tendency for cancerous conversion is considered to be its non-

homogenous subtype PVL, reaching up to 70% (29,31). The etiopathogenesis and 

transformation mechanisms of OL remain unknown, though factors including tobacco and 

alcohol use, chronic inflammation, HPV, and EBV infection have been suggested as 

influential (32). 

 

Figure 5. Homogeneous Leukoplakia (HL) (A) and Proliferative Verrucous Leukoplakia (PVL) (B) of 

the buccal mucosa. Erythroplakia (C) and Erythroleukoplakia (D) of the lateral border of the 

tongue. *Photographs obtained by the Service of Stomatology and Maxillofacial Surgery at the University 

General Hospital of Valencia. 

Lichen planus (LP) is another pre-malignant mucocutaneous condition that can arise within 

the oral cavity. It is a chronic dermatologic disease without any specific etiology including 

drugs, C hepatitis, and nervousness. Its pathogenesis is a cell-mediated immune reaction 

to basal keratinocytes, more typical in middle-aged adults (33). The reticular form is 
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prevailing over the erosive, affecting the buccal mucosa bilaterally with interlacing white 

lines. Clinical manifestation of the erosive version is seen as an atrophic, erythematous 

lesion with central ulceration and a fine peripheral white area. Histopathologic features 

include different degrees of ortho- and parakeratosis besides the thickness of the spinous 

layer (34). Relatively low potential to SCC progression has been estimated (4%) (35). Typical 

for the Oral Submucous fibrosis (OSMF) lesions is a mucosal rigidity with different 

intensities caused by fibroblastic hyperplasia and modification of superficial connective 

tissue. Often involves young adults affecting the buccal mucosa, the retromolar area, and 

soft palate. Its histologic pattern reveals the fibroblastic transformation of the juxta 

epithelial connective tissue layer with a variable number of chronic inflammatory cells. 

Unlike other precancerous lesions, OSMF does not show regression, epithelial dysplasia 

has been noted in 10% to 15% of the biopsies with rates of malignant transformation to 

SCC between 2% and 8 % (34),(36). Actinic cheilitis (AC) is a chronic inflammation of the lip 

induced by compromised immunity and excessive exposure to solar or artificial UV 

radiation. Microscopically, the lesions present atrophic stratified squamous epithelium 

with remarkable keratin production and varying degree of dysplasia (34). AC is considered 

a premalignant disorder with a carcinogenic potential of about 3% (37). Smokeless tobacco 

keratosis (STK) is a condition that develops on the oral mucosa in response to direct contact 

with a sniff or chewing tobacco. Generally, it appears as a white-grey or white patch and 

becomes permanent unless the use of tobacco is avoided.  Dysplasia, if exists, is mild in 

these lesions and is associated with a slightly increased risk of oral cancer (34). 

3.5 Diagnosis and Staging 

OSCC develops through a multistage process whose mechanism of action remains not well 

understood, but the initial presence of a precursor oral mucosal lesion subsequently 

evolving into a tumor outgrowth has been established. Many oral carcinomas are preceded 

by OPMD of which the non-homogeneous leukoplakia types are perhaps the most notable 

(24). There is no standard practice for patients presenting with clinically evident lesions to 

evaluate the risk of cancer.  A common starting point is a conventional examination by a 

frontline clinician such as a general dentist. It is recommended a thorough visual check-up 

of the oral mucosa, mainly of the sites that are especially predisposed (Fig. 6) together with 
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palpation of the lymphoid tissue of the neck (cervical lymph nodes) for the presence of 

nodular formations (38). 

 

Figure 6. The 8-step oral cancer screening. Source: Cancer Society NZ 

Upon discovering a suspicious lesion, persisting for more than 3 weeks, the clinician will 

make a subjective judgment based on the clinical presentation, experience, and resources 

available to decide the next step. Clear anticipation of malignancy is usual in advanced 

stages when fungating, ulcerative mass is obvious, frequently accompanied by pain, 

swelling, and radiographic destruction of bone.  As early the disease spectrum is, as less 

evident the clinical features become and hence the precision of whether a lesion is, or has 

the potential to become malignant. Thus, the subjective assessment and the limitation of 

the clinical characteristics alone can easily result in the wrong diagnosis at the initial stages. 

To date, the gold standard for diagnosis remains the histopathologic assessment of an 

incisional tissue biopsy taken from a suspected area. An accurate histopathologic diagnosis 

depends on doing an appropriate biopsy and providing adequate clinical information 

(history of dysplasia or SCC, the patient’s risk factors, lesion location, appearance, size, and 

duration), and on the correct interpretation of the biopsy results. Microscopically, active 

oral epithelial changes such as dysplasia, hyperplasia, hyperkeratosis, and acanthosis differ 



 

25 
 

from the normal pattern (Fig. 7). Oral Epithelial Dysplasia (OED) is a histopathologic term 

used to describe tissue changes observed in a chronic, progressive and premalignant 

disorder of the oral mucosa (39). Moreover, dysplastic alterations are consistently seen in 

the mucosa adjacent to the tumor in patients with invasive OSCC (Fig.7f). OED is considered 

the main histologic marker of possible evolution to malignancy and is thought to be 

predictive of an increased rate of SCC development (40). When transformations are limited 

to the basal or parabasal keratinocytes, the severity of dysplasia is described as mild 

(Fig.7c). The atypia affecting basal to the middle of the granular layer is referred to as 

moderate dysplasia (Fig.7d). Changes extending to the upper and middle layer of the 

epithelium are reported with the terms severe dysplasia and carcinoma in situ (atypia is 

complete from the base to the surface of the mucosa). In CIS the basal layer is intact, the 

dysplasia has not yet invaded into the subepithelium (Fig.7e) (34). It is generally 

characterized by the presence of a front formation (clear to obscure) against surrounding 

normal or dysplastic epithelial and dense lymphocytic infiltrations below the epithelial 

layer (41). 

 

Figure 7. Normal epithelium (a) and histologic changes are believed to be associated with oral 

cancer progression from hyperplasia (b) to mild (c), high grade of dysplasia (d), to carcinoma in situ 

(e), and finally to invasive SCC (f). Modified after Cankaya H., 2015  

Dysplastic changes are categorized into cellular and tissue types. Individual cell properties 

like shape, nucleus and nucleoli size, density, mitotic activity are important for the 

determination of specific alterations. Basal cell hyperplasia, hyperkeratosis, acanthosis, 

and atrophy are benign tissue appearances of major importance to diagnose and grade 

OED. Squamous cell hyperplasia results in thickened keratin layer (parakeratin and/or 

orthokeratin) of the oral mucosal epithelium (hyperkeratosis) and/or without thickened 

spinouts layer (acanthosis). The most common cause of hyperkeratosis is chronic irritation 

of regular friction on the soft tissues of the mouth. The presence of epithelial dysplasia in 

https://www.sciencedirect.com/topics/medicine-and-dentistry/lymphocytic-infiltration
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oral lesions is predictive by a variable rate (6.6 to 36.4%) of transformation to invasive SCC 

(39),(42). However, the actual diagnosis of oral borderline malignancies ranging from 

epithelial dysplasia to early SCC stages has been considered too challenging. Investigators 

generally accept the fact that most oral cancer cases display considerable change before 

reaching such a state (34). Thus, dysplastic lesions with microscopic characteristic features 

could be predictive for possible malignant transformation. Among patients with a 

histopathological diagnosis of dysplasia, about 1/10 of the total may be in danger (43). For 

its evaluation, an objective assessment of the presence and severity of OED is needed and 

so a prediction for risk of cancer is markedly different for low-grade (mild or moderate) 

and high-grade dysplasia (severe dysplasia or CIS). Most low-grade cases do not progress 

to cancer; high-grade dysplasia, however, often progresses if left untreated (44). Early 

diagnosis and risk assessment of dysplastic alterations of OPMD requires a team effort 

from both clinicians and pathologists and is important for prevention and therapeutic 

procedures. Even though the histologic microscopic view of a biopsy is mostly reliable, 

some other techniques have been proposed as diagnostic tools for OED including brush 

biopsy, liquid-based cytology, toluidine blue, vizilite technique, and oral autofluorescence 

(34),(45).  Nevertheless, the low specificity and sensitivity and the number of false-positive 

results of these approaches embarrass the definitive diagnosis. So that, they are 

considered as screening practices rather than diagnostic methods. Also, an 

immunohistologic technique utilizing mononuclear antibodies against specific markers of 

dysplastic cells can yield more accurate results in the determination of dysplasia type 

(34).Accurate staging is essential in the optimal selection of treatment modalities, extent, 

and prognostic outcomes. Staging of OSCC is performed using the (tumor-lymph node-

metastasis) TNM classification system (46). The clinical staging (cTNM) of the oral cavity 

tumors is assigned for all cancer patients identified before the treatment and consists of 

primary characteristics, the neck, and assessment for distant metastases. The basic 

elements in the staging of the primary site are the tumor size and invasion of deep 

structures.  cTNM is composed of diagnostic workup information based on clinical history 

and symptoms, physical examination, imaging and biopsy of the primary site, and other 

relevant examinations (46). Radiographic imaging is crucial for the assessment of regional 

lymph nodes as well as of the relation of the tumefaction to adjacent bone (3). Computer 

tomography (CT) scan is used for evaluation of bone and neck nodes, Magnetic resonance 
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imaging (MRI) provides complementary information about soft tissue extent and 

perineural invasion (3).  A Positron emission tomography (PET) scan is useful for the 

estimation of distant metastases and for radiation therapy planning (3). Pathologic 

stage (pTNM) is given if the patient undergoes surgical resection and it is composed by 

information form the cTNM combined with operative findings and pathology review of the 

resected specimens (tumour histopathology and/or regional lymph nodes). Together with 

the tumour features such as degree of differentiation, infiltration and probability for 

recurrence form the definitive diagnosis allowing the selection of an appropriate 

therapeutic approach, postoperative practices and prognosis (8,47).  Collectively, oral 

lesions with epithelial or mesenchymal origin may emerge in different sites of the mouth. 

Upon discovering of such a condition, the healthcare specialist has to make a subjective 

judgement based on the clinical presentation, their acumen and experience to decide on 

an adequate management. Predicting if and which epithelial precursor lesions will become 

dysplastic or even malignant and which will have an indolent clinical course is difficult. It is 

the clinician’s responsibility to identify the correct timing and site of biopsy in such a “case-

findings”. Some factors associated with professional delay include small tumour size, 

treatment given prior to definitive diagnosis, increase in number of referrals prior to 

definitive diagnosis and referrals by general practitioners to specialist without clear 

description or suspicion of malignancy (48). More often, late diagnosis of oral 

pre/malignancies are due to patient delays. They do not realize the seriousness of the initial 

symptoms, which can go unnoticed due to the smaller area of the incipient stage and lack 

of discomfort/pain. Besides, certain sites in the oral cavity may not be visually accessible 

and wounds may be unseen. Clinicians should remain alert for lesions of suspicious etiology 

since early detection of malignancy and intervention can go a long way in the management 

of this physically and psychologically scarring condition (49). 

3.6 Treatment and Prognosis 

 Therapeutic approaches of OPMDs 

Primary prevention is ideally the best method in the management of pre-malignancy. It is 

prudent to risk-stratify a patient and provide appropriate counseling and screening for 

higher-risk individuals considering their oral health status and personal habits. Secondary 

prevention is accomplished by early OPMD identification followed by conservative or non-



28 
 

conservative management. Factors influencing the choice for therapy include patient risk 

factors for malignancy (age, sex, and habits) and lesion risk factors (classification, size, 

morphology, malignant transformation rate, and location). Conservative treatment of 

clinicopathologic diagnosed OPMDs consists of observation alone. Periodic screening can 

be appointed, based on the patient’s risk stratification of developing OSCC and 

dental/medical compliance. Standardized follow-up protocols of patients who have 

existing OPMDs or previously excised lesions are yet missing. Determining whether a lesion 

will follow a stable and harmless development or will progress to invasive carcinoma is 

challenging with the routine histopathological diagnosis and has limited prognostic 

value.The time to malignant transformation is unpredictable and varies from months to 

years. New lesions can appear adjacent to existing or previously excised ones or in a 

different location. Patients with a history of premalignant/dysplastic lesions should be 

followed up over a long-term period. Eliminating high-risk and promoting protective 

behaviors (such as smoking and alcohol cessation and a healthy diet) is essential. It is 

extremely important, patients with OED be followed by a specialist, trained to assess and 

manage such lesions. Surveillance varies by clinician experience, patient and lesion risk 

factors, and clinical characteristics. In theory, medical intervention is available, given that 

there is a lack of approved therapies by any Food and Drug Agency (FDA) (43). 

Chemoprevention is the uptake of natural or synthetically manufactured compounds 

designed to stop malefic progression, acting directly on early neoplastic cells. Medication 

treatment modalities differ by the mechanism of action of the agent employed. Vitamin A, 

retinoids (beta carotene), and carotenoids might influence epithelial turnover. Steroids 

such as triamcinolone and clobetasol propionate are attributed due to their 

immunosuppressive actions. Epidermal Growth Factor (EGFR) inhibitors/antagonists 

prevent the activation of pathways contributing to the acquisition of malignant cellular 

phenotype. Anti-inflammatory drugs block cyclo-oxygenase activity and topical and 

intralesional agents such as bleomycin (a glycopeptide antibiotic) cause induction of DNA 

strand breaks (50–52).  Retinoid therapies are mostly researched, despite they are limited 

only to the treatment of leukoplakia (53). Studies found that systemic retinoic acid and 

lycopene may be advantageous in terms of improvement in histological features (54). 

However, due to the toxicity rate of around 10%, relapse rate after stopping treatment of 

about 54% and the lack of long-term follow-up of patients, the effect of these 
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chemoprevention compounds has yet to be validated (52,53). Surgical removal is the 

invasive management of premalignant lesions. It can be performed with different 

techniques (scalpel, laser surgery, and vaporization, photodynamic therapy, cryosurgery) 

and may or may not be warranted. The rationale of excision is that removing clinically 

altered tissue the resection margins of which are wide and free of epithelial abnormalities 

could prevent the onset of oral cancer (55). Laser surgery is beneficial in terms of whole 

lesion removal, minimal damage to enclosing tissues, reduction of postoperative pain and 

edema, and minimal oral dysfunction (56). The use of CO2 and Nd: YAG lasers has become 

a routine treatment of oral leukoplakia, mainly in two modalities: evaporation and excision. 

Evaporation is applicable at different stages, especially in patients with wide or multiple 

lesions, and causes limited postoperative discomfort. A drawback of the method is the 

unfeasibility of analysing the whole lesion histologically, in contrast to excision. The last, in 

turn, could lead to functional problems with large size lesions.  A study from 2015 by Del 

Corso et al (55) concluded that surgical removal of OPMDs such as OL is recommended, 

particularly if clinical and histological features suggest any potential risk of evolution to 

OSCC. Yet, the better choice for managing non-homogeneous OL with any grade of 

dysplasia appears to be via CO2 laser excision, in terms of recurrence. Nd: YAG laser 

evaporation is suggested for the removal of non-dysplastic, homogeneous lesions, and in 

wide anatomical sites where excision could cause patients disturbance (55). The 

implementation of cryosurgery was shown favorable over other procedures causing 

minimal/no pain, less swelling, no bleeding, simplicity, versatility, and low cost (57). 

Regardless of the operative modality, a possibility for future relapse and malignant 

development must not be excluded. Where resolution of a lesion is observed, recurrence 

and adverse effects are common. Medical science explores innovative approaches using 

stem cell treatment and tissue-engineered oral mucosa. In a relevant study, keratinocytes 

and fibroblasts isolated from dysplastic oral lesions were combined to provide a renewable 

source of epithelia. Convincing results pointed out that the mucosa has gained the ability 

to reproduce normal keratins with maturity and function (58). Comprehending the 

principles of tissue growth and application to produce a functional replacement for clinical 

utility is defined as tissue engineering (59). A common approach is the use of grafts and 

cultured epithelial cells via partial- or full-thickness tissue-engineered oral mucosa. The last 

represents a better simulation of the in vivo conditions, taking into account the native 
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anatomical structure of oral mucosa (60). Transplanted cells should adapt to the new 

environment and establish a correct function, though there is a risk of rejection of the 

engineered implant (61). Careful, lifelong follow-up examinations are an essential 

requirement for untreated lesions and after surgery. Considering the diverse endeavors of 

healing approaches, yet no one shows a benefit when compared to placebo. There is a lack 

of randomized controlled studies and the reviewed data are from series of retrospective 

studies and case reports only. All oral dysplasia must be followed up at least annually, even 

if the lesion has been completely resected (i.e., no clinically visible lesion remains), and 

regardless of whether the patient has eliminated habituated condition (tobacco, alcohol 

consumption, etc.). Increasing evidence shows that even when excision is clinically and 

histologically confirmed, molecular clones of altered cells may remain and later initiate 

further dysplasia or SCC. Despite the proposed preventive strategies for the management 

of OPMDs, to date, there is no reported proof of a reliably effective cure and better survival 

in case of malignant transformation (62).  

 Therapeutic approaches of OSCC 

Early diagnosis remains essential for effective treatment and favorable outcomes. 

Unfortunately, most OSCCs are diagnosed at advanced disease stages that require 

multimodal treatment including surgery, radiotherapy, and/or chemotherapy, and often 

involve interdisciplinary consultations with maxillofacial and reconstructive surgeons, 

dental professionals, otolaryngologists, histopathologist, behavioral therapists for lifestyle 

alterations, and others (4). Treatment modalities are still with high economic costs and 

vastly damaging alternatives. Surgical intervention is the therapeutic mainstay for 

respectable tumors, allowing accurate disease staging and providing information about the 

status of margins, tumor spread, and histopathologic features. In the early stages, it usually 

results in permanent care and can be used to select subsequent management based upon 

the assessment of risk versus benefit. If present, OSCC metastasis occurs in cervical lymph 

nodes in about 80% of the patients. Cervical lymphadenectomy (radical neck dissection) is 

appropriately carried out (4). Adjuvant postoperative treatment is assigned when there is 

a high risk of locoregional recurrence. This includes patients with locally advanced primary 

tumors (stage III and IV), positive surgical margins, bulky nodal disease, neck metastases, 

lymphovascular invasion, perineural invasion, and extracapsular spread (3). The application 
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of external beam radiation therapy is a traditional modality (63). Parceling radiation dose 

over time is performed via two approaches: hyper-fractionation and accelerated 

fractionation. In hyper-fractionation, small-dose fractions are delivered two to three times 

per day to take advantage of the more limited damage to normal tissue associated with 

smaller fractions. The accelerated fractionation aims to deliver treatment at a rate of 

weekly dose accumulation 20 to 50 % faster than that of standard fractionation. This 

acceleration substantially shortens the overall duration of treatment to reduce the 

potential for tumor re-population that may occur between fractions (64). The National 

Comprehensive Cancer Network recommends a definitive radiotherapy dose of at least 66 

Gy (1 gray [Gy] is the absorption of 1J of energy per kilogram of tissue) to the primary 

cancer of the oral cavity, and also to the neck in the case of clinically evident cervical 

disease (33). Chemotherapy administration implicates cytotoxic agents like methotrexate, 

cisplatin, carboplatin, fluorouracil, paclitaxel, and docetaxel. Neoadjuvant or Induction 

Chemotherapy is applied before definitive therapy, whether that definitive therapy is 

surgery or drug treatment. Using chemo and radiotherapy simultaneously or in alternation 

is known as concurrent or Integrated Chemoradiation. It has been demonstrated that local 

and regional control and free survival of oral and oesophageal SCC patients with 

extracapsular spread and /or affected surgical margins improve significantly when 

irradiation is combined with cisplatin treatment (versus radiotherapy alone) (65–67). 

Regional or Intra-arterial Chemotherapy is a promising approach that delivers high drug 

levels to the tumor with less systemic toxicity. Robbins and colleagues (68) developed 

protocols for the administration of intra-arterial cisplatin in combination with radiation. 

Complete response in 75%, a partial response in 23%, and no progression in 2% of patients 

were reported. However, prior to the selection of concurrent chemoradiation, the risk of 

treatment-related complications should be assessed based on patients' characteristics like 

physiological age, comorbid conditions, etc. Increased incidence of hematologic, mucous-

membrane, and gastrointestinal adverse effects related to chemotherapy should be taken 

into account, as well. Concomitant chemo-radiotherapy is best applied at centers where 

appropriate expertise and infrastructure are available (65). Invasive surgery is a 

considerably morbid procedure that can have debilitating consequences affecting patients’ 

physiological functions like chewing, swallowing, speech impairment, or facial 

aesthetics. Adverse side effects can also occur as a result of radiotherapy since there is a 
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liability to xerostomia, mucositis, and osteonecrosis (8). Restoration of integrity 

and function after ablative surgery is the final goal of treatment, achieved by choosing an 

appropriate reconstruction procedure. Defects after resection of early-stage tumors can 

usually be reconstructed with primary closure or the use of skin graft while recovery after 

the removal of advanced neoplasia requires the participation of an expert reconstructive 

surgeon (4). Recently, targeted molecular therapy has been applied to oral cancer patients 

(69). Treatment modality with monoclonal antibodies (targeted immunotherapy) has 

limited or non-existing side effects on normal cells, unlike chemo and radiotherapy. Studies 

including immunotherapeutic approaches and inhibitors of  EGFR, VEGFR, IGF-1R, 

PI3K/AKT/mTOR, and MET have been conducted and expected in a near future to direct 

the management of oral cancer patients towards more personalized treatment (70). 

Strategies have focused mainly on four molecules associated with OSCC proliferation and 

differentiation: EFGR, cyclooxygenase-2 (COX-2), peroxisome proliferator-activated 

receptor γ (PPAR γ), and progesterone receptor (69). The admission of Cetuximab (Erbitux) 

in the clinical practice was a great advance in the field of targeted drugs. This chimeric 

monoclonal antibody targeting EGFR with high specificity and affinity has been the only 

FDA-approved drug ratified for both HPV- positive and negative subtypes. However, not all 

patients treated with Cetuximab respond well to therapy due to primary or acquired 

resistance, limiting significantly its efficacy. Several new immunotherapeutic agents have 

been introduced into clinical trials to target EGFR or its signaling partners (Panitumumab, 

Zalutumumab, Nimotuzumub, Afatinib, Erlotinib, Sym004). So far, they have yielded only 

modest improvements in progression-free survival and none have been affirmed for 

treatment in OSCC (9). Other recently approved molecular targeted intermediaries are 

immune checkpoint inhibitors being the co-signaling of the programmed cell death protein 

1 (PD-1) and its ligand (PD-L1).  Immunotherapy with other Pembrolizumab and Nivolumab, 

either as monotherapy or in combination with chemotherapy offers a new standard of care 

for patients with recurrent or metastatic PD-L1 positive tumors. The primary analysis 

showed safety and stabilized patient-reported quality of life. Besides, long-term follow-up 

treatment with Nivolumab demonstrated significantly improved overall survival (71),(72).  

 Prognosis 
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The prognosis of OSCCdepends on several well-known critical factors associated with 

survival like disease phase at initial diagnosis, neck metastasis, invasiveness of cancer cells, 

and tumor thickness, etc. The clinical stage at presentation and the appearance of 

metastatic lymph nodes are important predictors of survival (Fig.8). It is generally accepted 

that prognosis is favorable in the early stages (I and II), especially when SCC are well-

differentiated and not metastasized.  A good outcome, with cure rates of 78% (stage I) and 

68% (stage II) is expected for these cases (73). Unfortunately, a significant number of 

patients present with advanced disease stages (III or IV) at the time of the diagnosis when 

survival at 5 years is less than 50% and a cure of about 30% (3,73). Powerful histopathologic 

predictors of outcome include depth of invasion of the primary tumor, positive margins of 

surgical resection, perineural invasion, and major extracapsular nodal extension (3). 

Untreated individuals with metastatic disease show survival of about 4 months (74). 

Despite advances in treatment modalities and targeted therapy, the overall outlook for 

OSCC patients remains poor, due to invasion, metastasis, and high risk of local-regional 

recurrence. Approximately one-third of the subjects treated for oral cancer relapse and 

development of subsequent new primary tumors is the most common pattern of failure. 

OSCC presents with a recurrence rate of about 32% and 40-50% are with advanced disease 

relapse (75). This discrepancy can be explained both by the lack of effective 

chemoprevention and radiotherapy resistance (3). The possibility of second SCC primary 

ranges from 4–7%  yearly (76). Close follow-up comprising thorough clinical examinations 

with high suspicion together with control of lifestyle-related risk factors remain the most 

important tactics for prevention and survival. 
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Figure 8. OSCC clinical stage at presentation as a prognostic factor. 

Source: Montero et al. 2015; Courtesy of Memorial Sloan-Kettering 

database, New York, NY. 

4. Molecular pathogenesis of OSCC 

Oral cancer is a heterogeneous disease that develops through a complex, stepwise process 

involving genetic changes, growth regulation, apoptosis, immortalization, angiogenesis, 

invasion, and metastasis. This process is accompanied by multiple molecular events 

resulting from the combined influence of an individual’s genetic predisposition and 

exposure to environmental carcinogens. Squamous tumourigenesis is thought to result 

from the successive accumulation of molecular genetic alterations in the squamous 

epithelium lining of the upper aerodigestive tract. Accumulation of such alterations in 

epithelial cells precedes phenotypic changes, in many cases, associated with pre-invasive 

dysplastic lesions. The progression of the late stage of severe dysplasia to invasive 

carcinoma is comprised of both cellular and structural modification as a result of 

dysregulation of key pathways triggered by the interaction of epithelium and the host 

stromal elements (77).  

4.1 Genetic alterations during OSCC development 

A genetic progression model has been developed by Califano, Sidransky, and colleagues 

based on their studies of gene alterations in squamous cell carcinomas of the head and 

neck (SCCHN)(78,79). They found that the most common genetic aberration is the loss of 
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chromosomal region 9p21, which occurs in 70–80% of dysplastic lesions of the oral mucosa, 

suggesting that this loss is an early event in oral carcinogenesis. Another typical early 

genetic change is the loss of the chromosome 3p region (80,81). Loss of heterozygosity 

(LOH) of chromosome region 17p and mutation of the p53 gene occur in the later stage of 

progression from dysplasia to invasive squamous carcinoma. Alterations of p53, including 

mutation or deletion, are associated with increased genomic instability in oral dysplasia 

and may accelerate the rate of genetic alterations in oral carcinogenesis (81). Amplification 

of 11q13 and overexpression of cyclin D1 have been described in 40% of cases of oral 

squamous dysplasia (82). In general, loss of chromosomal material at 9p, 3p, and 17p is 

observed in relatively high proportions of dysplastic lesions, indicating that those events 

are early markers of oral carcinogenesis, whereas losses at 13q and 8p are observed more 

frequently in carcinomas than in dysplasia and are associated with later stages of 

carcinogenesis (79). 

4.2 Field cancerization 

In 1953 Slaughter coined the concept of "field cancerization", based on extensive histologic 

examination of dysplastic epithelium adjacent to invasive oral cancers (83). According to 

this theory, since the oral epithelium may be exposed to various carcinogenic insults, the 

entire area is therefore at increased risk for malignant transformation from the 

accumulation of genetic mutations of onco- and tumor suppressor genes. It has been 

developed from the finding of dysplastic epithelium adjacent to invasive oral cancers, 

which accounts for the high incidence of second primary tumors in OSCC treated patients. 

Many of these second primary tumors are associated with a lower rate of survival than the 

original tumor. Califano et al. (79) have also described the genetic progression model of 

field cancerization in head and neck cancer. In it, the transformation of normal mucosa is 

initiated by hits to the 9p chromosomal region. The resulting benign hyperplasia, further 

transforms into dysplasia due to following mutations in the 3p and 17p locations, while 

ultimate modifications in 17p are suggested to give rise to the first patch of mutated 

neoplastic cells. The patch further expands and converts to cancer along with mutations in 

11q,13q, and 14q chromosomes (79). An important clinical implication of the genetic 

progression model is that fields often remain after surgery of the primary tumor and may 

lead to new cancers, as second primary or local recurrences (89). With increasing evidence 
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indicating cancer stem cells (CSCs) being a subgroup of cells in charge of tumor initiation 

and recurrence, it has been questioned whether the genetic changes characteristic to field 

cancerization are initiated within the resident stem cells of the mucosa. The origin of these 

cells is explained by various processes. One describes that tissue-specific stem cell 

undergoes several genetic and epigenetic alterations to give rise to a CSC (84). Another 

proposal is that CSCs originate from stem cells that acquire a premalignant phenotype 

during the developmental stage itself (84),(85). A third model, states that the CSCs 

originate from mature tumor cells that experience de-differentiation into a stem cell 

through alterations in signaling pathways and regulatory mechanisms (86). Besides, 

another probable origin of CSCs is the de-differentiation of mature oral epithelial cells 

(84,85). In oral mucosa where differentiated epithelial cells are high renewable (14 days) 

(87), it is presumable that normal stem cells (NSCs) as long-term residents of the epithelium 

have a higher possibility to accumulate genetic hits, requisite for malignant transformation. 

To reconcile these findings, Simple et al. have proposed a model of field cancerization 

orchestrated by the CSCs (88). As per it, independently of the cancerization process, the 

multistep molecular progression model of field cancerization may be CSC-driven (Fig. 9). 

Furthermore, second or multiple cancers distant from the dysplastic fields can be clonally 

related and derived from the expansion of a common pre-neoplastic progenitor. According 

to this proposal, a stem cell located in the basal epithelial layer acquires a genetic change 

- TP53 gene mutation (17p) and subsequently gives rise to daughter cells (a clonal unit) 

whereby all share the DNA alteration leading to the transformation of the normal stem 

cells (NSCs) into a patch of transit-amplifying cells (TACs) (Fig.9i). This transformation is 

accompanied by additional genetic mutations in chromosomes 3p and 9p. The patch forms 

an expanding field to the surrounding oral mucosa. The resultant mucosal field pushes the 

normal epithelium aside and may expand to a size of several centimeters (Fig.9ii). In some 

instances, the cells in this stage present dysplasia and may appear as leukoplakia or 

erythroplakia but often remain clinically undetectable. A subsequent 13q gene mutation 

where the location of the Rb gene is believed to release the CSCs from their lethargic stage 

hereby leading to proliferation, self-renewal, and primary tumor formation. Chromosome 

11q13 gene amplification has been implicated in the progression of the field to cancer 

(Fig.9iii) which happens either by the mono- or by polyclonal nature of cancerization. In the 

monoclonal mode, the CSCs of the field can migrate laterally (intra-epithelial) to spread or 
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get implanted at a new site (inoculation through saliva) and form a genetically similar 

tumor at a later stage. Conversely, in the polyclonal field cancerization, NSCs at distinct 

sites in the mucosa, undergo a successive transformation into CSCs through independent, 

carcinogen-mediated molecular changes. This CSCs proliferate leading to the development 

of clones at different locations. Further genetic hits give rise to a subsequent aberration in 

the sub-clones within the field where the clone that ultimately gets the final mutation at 

13q develops into carcinoma. The likelihood of the latest transforming event happening in 

a patient depends on the extent of exposure to carcinogens and the number of stem cells 

transformed afterward ( 9,90).  
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Figure 9. Proposed cancer stem cell-driven field cancerization model for cancer in the head and 

neck mucosa. As per it, the process of field cancerization is initiated by carcinogen assault leading 

to a TP53 mutation in a stem cell residing in the normal epithelium. The proliferation of this yet 

cancer-like stem cell results in a patch formation (i) accompanied by 3p and 9p chromosomal 

aberrations. The next step is the conversion from a patch to a field (ii), an epithelial lesion consisting 

of cells with cancer-related genetic alterations, which grows at the expense of normal tissue. After 

a subsequent genetic hit to the 13q chromosomal region, one of the cells in the field will form the 

primary tumor. Other genetic changes take place for the progression from field to carcinoma (iii) 

which occurs either by the monoclonal or polyclonal mode of cancerization. Adapted after 

Braakhuis et al. (91) and Simple et al. (88). 

Further research focused on the transcriptional changes that occur in the progression from 

normal-appearing mucosa to dysplastic tissue and invasive SCC (90). Microarray analysis of 

RNA isolated from a continuum of such specimens revealed genes with differential 

expression patterns. This transcriptional model demonstrates that the majority of 

alterations occurs before cancer development and that the difference between 

premalignant and malignant state is relatively little, as a comparison between a normal and 

premalignant state when a greater proportion of changes occurs. This data is consistent 

with previous genetic progression models derived from DNA-based mutations (79). 

Identified genes that were significantly upregulated in the progression process include 

integrin α 6 and GAPDH. Like other cancers, OSCC is also believed to arise through a 

complex process involving activation of oncogenes as well as the inactivation of tumor 

suppressor genes (77).  

4.3 Proto-oncogenes and oncogenes 

Proto-oncogenes are normal genes coding for proteins that help to regulate cell growth 

and differentiation. Proto-oncogenes are often involved in signal transduction and 

execution of mitogenic signals, usually through their protein products. Upon acquiring an 

abnormal activation of only one of the two gene copies, a proto-oncogene becomes a 

tumor-inducing agent, an oncogene that can promote uncontrolled cell growth, and 

proliferation, leading to tumorigenesis. Some of the common mechanisms of oncogene 

activation include mutation, chromosomal translocation, gene amplification, and retroviral 

insertion. Oncogenes can be classified into five groups based on the functional and 

biochemical properties of the protein products of their normal counterparts (proto-
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oncogenes). These groups are: (1) growth factors or growth factor receptors (hst-1, int-2, 

EGFR/erbB, c-erbB-2/Her-2, sis), (2) intracellular signal transducers (ras, raf, stat-3), (3) 

transcription factors (myc, fos, jun, c-myc), (4) cell-cycle regulators (cyclin D1), and (5) 

those involved in the inhibition of apoptosis (bcl-2, bax,mdm2) (78). Oncogenes drive 

abnormal cell proliferation as a consequence of genetic alterations that either increase 

gene expression or lead to uncontrolled activity of the oncogene- encoded proteins. 

4.4 Acquisition of self-sufficient growth-stimulatory signaling 

Normal cells require exogenous growth signals to stimulate proliferation. Growth stimuli 

include soluble and membrane-bound growth factors, interactions with the extracellular 

matrix, and cytokines (92). Typically, these growth signals are transduced from cell-surface 

receptors that subsequently activate multiple intracellular signaling pathways, resulting in 

cell proliferation. During oral carcinogenesis, growth signaling can become dysregulated 

through an elevated level of growth factor receptors and/or their ligands, to promote 

autocrine stimulation without exogenous factors (78). Several intracellular growth signal-

transducing proteins that are downstream mediators of growth factor signaling are 

frequently altered in cancer. These are described in Table 1 in the context of OSCC 

development and progression. 

Table 1. Summary of oncogene-encoded regulators and their involvement in the molecular 

pathogenesis OSCC. 

Oncogene-encoded 
regulators 

Description Signaling Association  with OSCC 

Epidermal Growth 
Factor Receptor 
(EGFR) 
 

EGFR (HER1 or 
ErbB1) is a 
transmembrane 
receptor, a 
member of 
HER/ERbB family of 
receptor tyrosine 
kinases (RTKs) 
which also includes 
ErbB2, ErbB3, and 
ErbB4. High-affinity 
EGFR ligands are 
EGF, TGFα, HBEGF, 
and BTC, whereas 
AREG, EREG, and 
EPGN constitute 
low-affinity ligands 
(93). The most 
common alteration 

EGFR forms a dimer with 
another EGFR molecule and these 
receptors 
autophosphorylate, leading to a 
cascade of intracellular signaling 
events, including activation of 
Ras/Raf/MAPK, PI3K/Akt/mTOR, 
Jak/STAT, and PKC pathways. 
These pathways mediate multiple 
functions, including cell 
proliferation and survival, 
invasion, metastasis, and 
angiogenesis (94,95). 

EGFR overexpression 
is reported in 80-90% 
of HNSCC with a 
mutation of EGFRvIII 
detected in about 
42%  of the reported 
cases (96). Higher 
EGFR expression was 
estimated in 70% of 
OSCC patients (97), 
increasing 
progressively 
from oral 
premalignant lesions 
to invasive OSCC 
(98,99). Besides, it 
has been 
demonstrated that 
EGFR amplification 
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of EGFR is a 
truncation 
mutation, EGFR 
variant III 
(EGFRvIII) (77). 

was associated with 
the advanced OSCC 
clinical stages, 
negatively impacting 
the disease 
progression (100). 

C-MET and 
Hepatocyte Growth 
Factor/Scatter 
Factor(HGF/SF) 

C-MET encodes c-
Met factor which is 
a receptor 
tyrosine. Its only 
known ligand is 
(HGF/SF). c-Met is 
normally expressed 
by cells of 
epithelial origin, 
while expression of 
HGF/SF is 
restricted to cells 
of mesenchymal 
origin (77). 
  

Stimulation of c-MET via its ligand 
in the MET pathway leads to 
numerous biochemical and 
biological effects, including 
increased cell migration, 
angiogenesis, proliferation, 
invasion, and metastasis (101). 

c-Met mutations in 
HNSCC are rarely 
reported (2-13%), 
while the gain in C-
MET gene copy 
number and HGF 
overexpression are 
common and often 
correlated with 
worse prognosis and 
lower overall survival 
(102). 
(103). HGF 
overexpression due 
to C-MET activation 
has been detected in 
primary  OSCC 
tumors, supporting 
that the MET 
oncogene is involved 
in OSCC progression 
towards an invasive-
metastatic behavior 
(104). 

 

RAS oncogene RAS is a proto-
oncogene found to 
be involved in cell 
growth regulation 
and the 
transduction of 
mitogenic cell 
signaling from the 
cell surface to the 
nucleus. The three 
RAS genes (H-Ras, 
K-Ras, and N-Ras ) 
are the most 
common 
oncogenes in 
human cancer 
(105). 

All RAS encoded proteins belong 
to a large family of small GTPases 
(G-proteins), involved in cellular 
signal transduction. Two of the 
main cellular pathways in which 
RAS protein operates are the 
MAPK and PI3K pathways. MAPK 
comprises four sub-pathways of 
which the Erk1/2 pathway has 
received the most attention in oral 
cancer (106). 

In oral cancer, a high 
incidence of H-Ras 
mutation has been 
found, mainly in 
Asian populations, 
where it has been 
correlated with betel 
nut chewing (107). 
Nevertheless, H-Ras 
mutations are found 
in about 5% of the 
OSCC cases in the 
West (108), and 
other RAS genes are 
infrequently mutated 
in OSCC (109). 
Aberration in the 
MAPK pathway 
represents only 4% 
of cases (110). 

Cyclin D1 Cyclin D1 (CCD1) is 
a proto-oncogene 
encoding a positive 
regulator of G1 

The binding of CCD1 to CDK4 or 
CDK6 leads to the phosphorylation 
of pRb subsequently triggering the 
release of transcription factors to 

Overexpression of 
the cyclin D1 gene 
has been reported in 
25-70% of oral 
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phase progression 
through the cell 
cycle that regulates 
the initiation of 
DNA synthesis. It’s 
also intricately 
involved in the 
regulation of 
apoptosis (111). 

allow transcription of genes 
required for the progression 
through the G1 phase of the cell 
cycle in the absence of 
extracellular mitogen stimulation. 
Consistent with this function, 
cyclin D1 overexpression results in 
a more rapid transition from G1 to 
phase S. (112). The last is a 
common event in cancer but does 
not occur only as a consequence 
of gene amplification. Rather,  
augmented levels of cyclin D1 
often result from its defective 
regulation at the post-translational 
level (113). 

cancers (114) and 
some premalignant 
lesions (82). CCD1 
positive expression 
has also been 
reported in high-
grade OSCC which 
appears to have a 
predictive value for 
the prognosis of the 
patients with lower 
TNM stage oral 
carcinoma (115). 
Moreover, in OSCC, 
increased production 
has been related to 
more aggressive 
tumor behavior and 
worse prognosis than 
tumors that do not 
overexpress CCD1 
(116). 

Signal Transducer 
and Activator of 
Transcription 
(STAT) Proteins 

Members of the 
STAT family are 
latent cytoplasmic 
transcription 
factors activated 
by extracellular 
signaling proteins, 
such as growth 
factors, cytokines, 
hormones, and 
peptides. 
Activated STAT 
proteins deliver the 
signals by 
translocating into 
the nucleus and 
regulating 
transcription of 
target genes 
involved in normal 
cell functions, such 
as growth, 
apoptosis, and 
differentiation 
(117). 
 

STAT 3 signaling is considered 
immunosuppressive and may 
protect cancer cells from 
recognition and lysis by cytotoxic T 
lymphocytes (118). 
Constitutive activation of STAT3 
can up-regulate transcription of 
target genes, including cell-cycle 
regulators, anti-apoptotic genes, 
and pro-angiogenic factors, 
resulting in uncontrolled cellular 
proliferation, anti-apoptotic 
response, and angiogenesis, all 
hallmarks of cancer (119). 

Both tumor and 
normal epithelia of 
SCCHN patients have 
shown higher levels 
of STAT3 expression 
and phosphorylated 
forms compared to 
epithelium-derived 
from cancer-free 
individuals, 
implicating STAT3 
activation as an early 
step in oral 
carcinogenesis (120). 
Furthermore, highly 
expressed STAT3 was 
found in poorly 
differentiated OSCC 
tumors and has been  
correlated with 
lymph node 
metastasis and poor 
prognosis (121). 
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Nuclear Factor-
kappa B (NF-κB) 

NF-κB is a protein 
complex that 
controls DNA 
transcription, 
cytokine 
production, and 
cell survival. It acts 
as a ubiquitous 
nuclear 
transcription factor 
involved in cellular 
responses to 
stimuli such as 
stress, cytokines, 
free radicals, heavy 
metals, ultraviolet 
irradiation, and 
bacterial or viral 
antigens. It plays a 
key role in 
regulating 
inflammatory and 
immune responses 
(77). 

In its inactive state, NF- κB is 
present in the cytoplasm in a 
complex with an inhibitory subunit 
IκBα which in a response to a 
stimulus is degraded, resulting in 
NF- κB being released. This 
activated NF- κB then translocates 
to the nucleus and regulates target 
genes, including 
immunoregulatory and 
inflammatory genes, anti-
apoptotic genes, and genes that 
positively regulate cell 
proliferation. Specifically, NF-κΒ 
administers the expression of 
proteins with leading roles in cell 
proliferation, survival, immune 
response, and inflammation (122). 

Data analysis 
suggests that NF-κB 
signaling plays an 
important role in oral 
carcinogenesis. Up-
regulated NF-κB 
expression has been 
reported in OSCC, 
with the level 
increasing gradually 
from normal mucosa 
to premalignant 
lesions and invasive 
cancer, proposing 
that NF-κΒ is 
activated in the early 
stages of oral cancer 
development 
(122,123). 
 

Activating Protein-
1 (AP-1) 

The AP-1 family of 
transcription 
factors consists of 
multiple Jun and 
Fos members (77). 

The AP-1 complex causes multiple 
growth signals to converge at the 
transcriptional level and is involved 
in the regulation of cellular 
proliferation, differentiation, 
apoptosis, oncogene-induced 
transformation, 
and cancer cell invasion (124). 

Constitutive 
activation of AP-1 
binding proteins, 
including the Jun 
family and Fra-1, can 
be detected in oral 
dysplastic and OSCC 
cell lines. It has been 
associated with 
malignant 
transformation in 
squamous epithelial 
cells (125). 
Moreover, activation 
of AP-1 by 
transfection of c-Jun 
showed to induce 
malignant conversion 
to SCC in murine 
models (126).  
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4.5 Tumour suppressor genes and abnormalities in growth-inhibitory signals 

Tumor suppressor genes are normal genes that slow down cell division transducing 

negative growth-regulatory signals, repair DNA mistakes, or lead to programmed cell death 

(apoptosis). Unlike oncogenes, they cause cancer when inactivated by several mechanisms, 

including point mutations and/or deletion, in both alleles of the gene. Although the 

majority of the tumor suppressor gene mutations are acquired, inherited abnormalities 

have been found in some family cancer syndromes, including OSCC (Table 2). Classical 

examples are the Rb-1 gene associated with the development of retinoblastoma and the 

p53 gene, connected with a wide range of neoplasms, including breast cancer and 

leukemia. Others are correlated with Wilms' tumor gene (WT1), neurofibromatosis, and 

infrequent forms of colorectal cancer. Once these genes are inactivated, the cell escapes 

regulated cell-cycle control, predisposing it to uncontrolled growth and division and thus 

contributing to malignant phenotype (127). The proteins encoded by tumor suppressor 

genes normally act to inhibit cell proliferation and tumor development. In many tumors, 

these genes are absent or inactivated, thereby removing negative regulators of cell 

proliferation and contributing to tumor cell proliferation. Eventually, for cancer 

development are needed both, the acquisition of self-sufficient growth signals through 

oncogene activation and the loss of growth-inhibitory signals. Growth inhibitory signals are 

tightly regulated by interactions of the cyclin-dependent kinases (CDK), cyclin, and the 

product of the retinoblastoma (Rb) gene. Besides, the proteins encoded by the tumor 

suppressor genes p16, p21, and p53 also act as inhibitors of cell-cycle progression. 

Table 2. Commonly deregulated tumor suppressor gene products related to the molecular 

pathogenesis of OSCC. 

Tumor suppressor  gene 

products 
Description Signaling Association with OSCC 

Retinoblastoma 

gene (RB) 

The retinoblastoma 

tumor suppressor (RB) 

regulates cell cycle 

progression at the 

restriction point 

between the early and 

late G1 phase (77). 

The substantial role of the Rb 

pathway is evidenced by the 

finding of inactivation of 

CDKN2A in HNSCC. It has 

been previously shown that 

mutation-caused activation 

of CDKN2A is significantly 

more seldom than deletion 

or epigenetic switch off, 

which account for 

Mutations in the RB 

pathway are 

happening in the OSCC 

onset. Loss of Rb 

protein expression has 

been reported in 66% 

(128) and 74 % (129) 

of OSCC cases, also in 

64% of premalignant 

lesions (128). 
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inactivation of the gene in up 

to 75% of HNSCCs (105). 

TP53 TP53 is a tumor- 

suppressor gene 

encoding a 

transcription factor 

involved in the 

maintenance of 

genomic stability, cell 

cycle, DNA repair, 

apoptosis, and 

senescence (130). p53 

is a major cellular 

stress sensor for DNA 

damage or oncogene 

activation (131). It is 

the most commonly 

mutated gene, altered 

in about 50% of all 

cancers, including 25-

69% of oral cancers 

(132). 

Mutation in TP53 occurs 

early in carcinogenesis and is 

often associated with HPV 

infection, due to 

dysregulation of p53 by the 

HPV E6 oncoprotein (133). 

Overall, the data suggest 

that the p53 pathway is 

downregulated in about 80% 

of HNSCCs (105). 

 

TP53 mutation and 

overexpression have 

been correlated with 

poor survival in OSCC 

(97), (134). Positive 

expression of p53 

protein has been seen 

in oral dysplastic 

lesions (134). 

Amplification of 

another p53 family 

member, TP63, is 

observed in about 80% 

of HNSCC (111). 

p21WAF1 p21WAF1 is an 

influential cell-cycle 

protein inhibitor 

whose expression is 

activated by wild-type 

p53 (105). 

p21 interacts with 

cyclin/CDK, leading to the 

cell-cycle arrest. Thus, p21 

plays a major role in 

mediating the growth-

suppressing, as well as the 

apoptosis promoting, 

functions of p53 (135). 

It was demonstrated 

that p21 expression is 

increased in 

premalignant and 

malignant oral lesions 

through p53-

dependent 

and -independent 

pathways, suggesting 

that alterations in p21 

may be early events in 

oral carcinogenesis 

(136). p21 gene 

mutations have not 

been described in oral 

cancers (105). 

p16INK4a p16 is a protein that 

delays cell division by 

slowing the 

progression of the cell 

cycle from the G1 

phase to the S phase, 

thereby acting as a 

tumor suppressor. It is 

encoded by the,  

CDKN2A gene (128). 

 

Genetic inactivation of the 

p16 gene (CDKN2A) by 

deletion, methylation, and 

point mutation has been 

found in approximately 50% 

of all human cancers, 

including oral malignancies 

(137).  

Altered or loss of p16 

expression has been 

found in 83% of oral 

premalignant and 60% 

of malignant lesions 

(128)(140-141). Also, 

studies indicate a 

correlation between 

p16 and the poor 

prognosis of OSCC 

patients (140). 
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NOTCH  NOTCH 1, 2,3, and 4 

comprise the NOTCH 

family of 

transmembrane 

proteins (141). 

The notch pathway 

promotes proliferative 

signaling during 

neurogenesis and is crucial in 

cell-cell communication, 

which involves gene 

regulation mechanisms that 

control multiple cell 

differentiation processes 

during embryonic and adult 

life (141). 

NOTCH 1-3 was found 

to be present in 17% of 

HPV positive and 26% 

of HPV-negative 

HNSCC. Loss of NOTCH 

signaling was found to 

promote 

tumourigenesis in 

HNSCC the mechanism 

of which remains 

unclear (142). 

Nevertheless, genomic 

analysis data support a 

tumor-suppressive role 

of NOTCH1 in 

epithelial SCC 

tumorigenesis (143). 

 

4.6 Invasion and metastases  

Local invasion and a tendency for dissemination to cervical lymph nodes are characteristic 

of OSCC. In the cancerous state cells gain a migratory ability, invade surrounding tissues, 

and metastasize is an intricate process. In it, cancer cells undergo a morphological change 

and change from a polarized, epithelial phenotype to a fibroblast-like mesenchymal 

phenotype, a process known as Epithelial-Mesenchymal Transition (EMT) (144). As a result 

migration, invasion, and metastatic progression are favored. A key target in EMT are the 

cadherins. A superfamily of calcium-dependent transmembrane proteins that mediate cell-

cell adhesions between normal mucosal cells maintains epithelial integrity. A distinctive 

characteristic of EMT is the cadherin switch, describing the process of decreased E-

cadherin and increased N-cadherin expression. This switch is probably contributing to 

increased motility but not for morphological aberrations occurring in EMT (145). However, 

studies regarding the cadherin switch in oral cancer are controversial. Ukpo et al. 

concluded that neither E- nor N-cadherin expression may serve as a predictor for nodal or 

distant metastasis in oropharyngeal SCC (146). Lim et al. also reported no correlation of E-

cadherin with cervical lymph node metastasis in stages I and II in tongue SCC (147).  In 

contrast, other studies have shown that diminished or complete loss of E-cadherin 

expression is associated with oral cancer progression, clinicopathological parameters and 

low p53 levels (148), lymph node metastasis, and poor prognosis (149). The role of E-
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cadherins in malignant transformation of oral leukoplakia has also been investigated (150). 

Given the characteristic role of cadherins in establishing and maintaining epithelial 

stability, their use as prognostic and predictive markers is being investigated. Integrins are 

cation-dependent transmembrane glycoproteins acting mediating cell-cell and cell-matrix 

interactions. They are involved in the maintenance of tissue integrity and regulation of cell 

proliferation, growth, differentiation, and migration (151). In constant, loss or reduced 

expression of integrins β1 and α6 β4 has been observed in OSCC, correlated to loss of basal 

membrane proteins and vaster in poorly differentiated lesions (152). Besides, integrin α6 

β4 expression has been associated with early recurrence and metastasis based on an 

immunohistochemical evaluation. Up-regulated integrin αvβ6  has been found in oral 

leukoplakia (153), and later correlated with malignant progression (154).  It has been 

reported that human SCC cell line growth strictly requires αvβ6 protein and its up-

regulation contributes to cell migration suggesting its possible critical role in regulating oral 

cancer growth and invasion (155). Collective data suggest that integrins may play varied 

and complex roles in the progression of OSCC tumors and that these roles may depend on 

their subunit composition. Finally, the process of oral cancer invasion and dissemination 

requires proteolysis of the basement membrane by enzymes, including the matrix 

metalloproteinases (MMPs). MMPs are a 24-member family of zinc metalloenzymes 

involved in extracellular matrix remodeling. They are subdivided into different groups due 

to structural features and substrate affinity and include collagenases, gelatinases, 

stromelysins, membrane-type MMPs, and new MMPs. In a normal physiological state, 

MMPs migrate through tissue barriers to take part in developmental and healing processes 

while cancer cells use similar mechanisms to degrade the extracellular matrix favouring 

migration and metastasis. Elevated MMP production has been detected in OSCC and many 

other malignancies and correlated with aggressive tumor behavior and poor patient 

prognosis. Gelatinases (MMP-2 and 9), stromelysins (MMP-3, -10,-11), collagenases (MMP-

1 and -13), and membrane-type MMPs (MT1-MMPs) are taught to be implicated in the 

invasion of oral cancer (156). Basement membrane disruption by MMP-2 and MMP-9 is 

believed to be the initiation of neoplasm invasion. Further, studies have disclosed that 

metastatic oral tumors have higher MMP-2 expression than non-metastatic ones, 

suggesting the predictive capacity of these metalloproteinases in tumor spread (157,158). 

Stromelysins are likely to maintained OSCC progression as MMP-3 was reported 
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significantly pronounced in the invasive front while overexpression of MMP-10 and -11 has 

been linked to local invasiveness (156). Collectively results point that MMPs appear to be 

robust and reliable indicators with an important role in the progression of OSCC. 

4.7 The role of inflammation  

Inflammation is a beneficial response activated to repair tissue injury and eliminate 

pathogens to recover the homeostatic state. However, if dysregulated can become 

prolonged (chronic) involving a progressive change of the cell types present at the affected 

site. The immune response comprises a series of events triggered after recognition of 

pathogens or tissue damage, involving cells and soluble mediators, such as cytokines of the 

innate and adaptive immune system. Cytokines are key players in modulation in both 

innate and adaptive immune responses. They present a vast group of small molecular 

weight proteins (5-20 kD) acting on the cells that secrete them (autocrine signaling), on 

nearby cells (paracrine signaling), or in some instances on distant cells (endocrine 

signaling). Being produced by diverse cells, including macrophages, B- and T lymphocytes, 

fibroblasts, mast, endothelial, and various stromal cells, they are usually secreted 

transiently and locally in response to a variety of stimuli (159). Cytokines comprise 

interleukins (ILs), chemokines, interferons (IFNs), and tumor necrosis factors (TNFs).  

 The human genome encodes more than 50 interleukins and related proteins, the 

majority of which are secreted by helper CD4 T lymphocytes, as well as by monocytes, 

macrophages, and endothelial cells. Interleukins promote the development and 

differentiation of T and B lymphocytes, and hematopoietic cells. Common 

representatives are IL1-17, IL-21, IL-22, IL-24, IL-25, IL-26, IL-27, IL-35, etc. Lymphocyte-

produced interleukins that mediate immune responses were classified as lymphokines. 

 Chemokines are signaling proteins with a major function to induce chemotaxis to guide 

cell migration (chemotactic cytokines). Chemokines have conserved cysteine residues 

allowing them to be grouped as C-C chemokines (like monocyte chemoattractant 

protein (MCP-1), C-X-C chemokines (like growth-related oncogene (GRO/KC), C 

chemokines (lymphotactin), and CXXXC chemokines (fractalkine).  Functionally are 

divided into homeostatic chemokines, produced constitutively and responsible for 

basal leukocyte migration (such as CCL14, CCL19, CCL20, CCL21, CCL25, CCL27, CXCL12, 

https://en.wikipedia.org/wiki/T_lymphocytes
https://en.wikipedia.org/wiki/Leukocyte
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and CXCL13) and inflammatory ones, formed under pathological conditions and actively 

take part in the inflammatory response (like CXCL-8, CCL2, CCL3, CCL4, CCL5, CCL11, and 

CXCL10) (160).  

 The interferons are released in response to the presence of several viruses. Interferons 

are named after their ability to "interfere" with viral replication by helping the cells to 

eradicate pathogens. IFNs also activate immune cells, such as natural killer cells and 

macrophages; they increase host defense by up-regulating antigen presentation via 

increasing the expression of major histocompatibility complex (MHC) antigens.  

 TNF superfamily unites 19 members of type II transmembrane proteins. They are 

expressed predominantly by immune cells and mediate cell functions including immune 

response and inflammation, proliferation, differentiation, apoptosis, and 

embryogenesis. Widely known representatives are tumor necrosis factors alpha (TNF-

α), Lymphotoxin-alpha (LT-α or TNF-β), etc. 

Inflammation is characterized by the interplay between pro-and anti-inflammatory 

cytokines. Pro-inflammatory cytokines are produced predominantly by activated 

macrophages and are involved in the up-regulation of inflammatory reactions. Such agents 

are IL-1α, IL-1β, IL-6, IL-8, and TNF-α and. The anti-inflammatory cytokines are 

immunoregulatory molecules that control the pro-inflammatory cytokine response. 

Representatives include interleukin 1 receptor antagonist (IL-1RA), IL-2 IL-4, IL-10, IL-11, IL-

13, interferon-gamma (IFN-γ), and transforming growth factor-beta (TGF-β) (159). The oral 

cavity is one of the most ecologically elaborate microenvironments in the human body 

wherein interactions between the host and microbes determine health and disease.  

Common diseases affecting oral tissues such as gingivitis, periodontitis, and OLP have 

confirmed the pivotal role of inflammation in the pathogenic process (161). A series of 

investigations have revealed a close relationship between chronic inflammation and 

oncogenesis, suggesting immune activation and chronic inflammation as their possible 

causes. The inflammatory response shares various molecular targets and signaling 

pathways with the process of malignant transformation, such as apoptosis, increased 

proliferation rate, and angiogenesis. Unresolved inflammation increases the risk for cancer 

by supplying bioactive molecules like cytokines, growth factors, cell survival signals to avoid 

apoptosis, proangiogenic factors, and extracellular matrix-modifying enzymes such as 

metalloproteinases. Inflammatory cells are essential components of the tumor 
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microenvironment and can promote cancer cell proliferation and survival, as well as 

invasion and metastasis (162).  Depending on the tumor microenvironment, cytokines can 

modulate an antitumoural response, but during chronic inflammation, they can also induce 

cell transformation and malignancy, depending on the balance of pro-and anti-

inflammatory factors, their relative concentrations, cytokine receptor expression content, 

and the activation state of surrounding cells (163). The role of inflammation in 

carcinogenesis was firstly described by Rudolf Virchow, as early as 1863. Since then, 

multiple studies have provided abundant evidence supporting that chronic inflammation 

is a pathological response that can be detrimental to the host affecting cell homeostasis 

and metabolic processes, inducing even genomic changes, and which can promote 

carcinogenesis (164). The arise of at least 20% of all cancers has been associated with 

infection and chronic inflammation and even those cancers that do not develop as a 

consequence of chronic inflammation, exhibit extensive inflammatory infiltrates with 

abundant cytokine expression in the tumor microenvironment. The cytokine and 

chemokine expression profile of the tumor microenvironment may be more relevant than 

its specific immune cell content. Some of these proteins were found to serve as growth and 

survival factors that act on premalignant cells, stimulate angiogenesis, tumour progression 

and metastasis, and also sustain tumour-promoting inflammation, regardless of their 

source (165) (Fig.10).  

Figure 10. A major tumor-promoting mechanism is 

the production of cytokines by tumor-infiltrating 

immune cells such as T-lymphocytes (T-cells), 

Macrophages (MF), and Dendritic cells (DC) which 

leads to the activation of transcription factors such 

as NF-κB or STAT3 acting on premalignant cells to 

stimulate survival, proliferation, growth, 

angiogenesis, and invasion and metastasis. Source: 

Grivennikov et al., 2010 (165). 
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Through activation of downstream effectors, such as NF-κB, AP-1, and STAT transcription 

factors, as well as caspases, cytokines regulate the immune and inflammatory milieu to 

either favor anti-tumor immunity (IL-12, TRAIL, IFNγ) or increase tumor progression (IL-6, 

IL-17, IL-23) and also have direct effects on cancer cell growth and survival (TRAIL, FasL, 

TNF-α, EGFR ligands, TGF-β, IL-6) (166). Aberrant activation of NF-κB and/or STAT3 is found 

in over 50% of all cancers (167). The clinical significance of cytokines has grown since 

powerful evidence has revealed the critical involvement of NF-κB mechanism of action in 

carcinogenesis, apoptosis protection, and chemoresistance in neoplasia including breast, 

ovarian, gastric, pancreatic, and HNC (168,169). NF-κB is a key player in the inflammatory 

response and its signaling pathway is largely based on its role in the expression of pro-

inflammatory agents including cytokines such as IL-1, IL-6, TNF-α, chemokines, and 

adhesion molecules (168). Their role in the pathogenesis of oral cancer and associated 

lesions has been long-investigated. NF-κB-dependent overproduction of certain cytokines 

is observed in patients with OPMD compared to individuals with pre-malignant or without 

oral lesions (170). Various case-control studies revealed considerably altered TNF-α, IL-1β, 

IL-6, and IL-8 levels detected in serum, saliva, and tissue specimens of patients with oral 

homogeneous and non-homogeneous leukoplakia, as well as in oral lichen planus (171–

173). In vitro and in vivo studies have also demonstrated elevated expression of the same 

repertoire of cytokines detected in OSCC cell lines, tissues, serum, and saliva samples, 

demonstrating the involvement of the NF‐κB pathway in the pathogenesis of oral cancer 

(174). Other inflammatory factors including IL-1α, IL-2, IL-10, IFN-γ have also shown 

differential expression in saliva and serum OSCC samples (169,170).  The local and systemic 

nature of these responses suggests that altered pro-inflammatory cytokine responsiveness 

is tightly associated with pre-cancer and cancer and could contribute to the biological 

mechanism of oral carcinogenesis. Furthermore, various cytokines have been proposed as 

potential markers for malignant conversion risk assessment of OPMDs, early oral 

tumorigenesis, progression, treatment outcomes and targets for therapy 

(170,173,175,176). 
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5. Biomarkers 

A common objective of clinicians and researchers is to noninvasively and accurately assess 

and monitor the physiological status of healthy and diseased people. Early disease 

detection can significantly influence patients' comfort, prognosis, therapeutic options, 

survival rates, and recurrence. Diagnosis and surveillance often require painful, invasive 

procedures such as biopsies and repeated blood draw. To overcome these measures, the 

development of a non-invasive or minimally invasive methodology would facilitate 

population screening for risk of disease development, initial diagnosis, and staging, as well 

as to monitor its progression and predict possible outcomes. The implication of biomarkers 

as quantifiable characteristics in large trials of major pathologies such as cancer and heart 

diseases is known since the 1980s (177). To date, the Food and Drug Administration (FDA) 

continues to promote their use in basic and clinical research, as well as to identify new 

potential targets as surrogates in future trials. According to the National Institute of Health 

(NIH), a biomarker is an objectively measured and evaluated indicator of normal biologic 

and pathogenic processes or pharmacologic responses to therapeutic treatment that exists 

in a variety of forms including antibodies, microbes, DNA, RNA, lipids, metabolites, and 

proteins.  Alterations in their concentration, structure, function, or action can be related 

to the initiation, progression, or even regression of a particular disorder (178). A cancer 

biomarker refers to a substance or process that is indicative for the presence of malignant 

formation in the body. A valid biomarker for malignant tumors requires to be specific for 

the tumor type, detectable in a high level in the patient and undetectable or present in low 

level in not affected people and easily quantifiable in a clinical sample. In terms of clinical 

utility, regarding their function, cancer biomarkers can be classified as diagnostic, 

prognostic, predictive, and therapeutic. A diagnostic biomarker should be directly 

correlated with the presence of the disease and the most specific and sensitive at its early 

stage. A predictive biomarker is useful to indicate the treatment response and thus 

defining subpopulations of patients that are likely going to benefit from a specific therapy. 

A clinical or biological parameter that gives information about the possible course of the 

disease and the patient survival is defined as prognostic biomarkers. A therapeutic one is 

generally a substance that could be used as a target for therapy (179). The clinical 

implementation of any single or a panel of biomarkers for health risk assessment or 
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prognosis requires an extensively controlled multiphase process preceded by discovery 

and validation phases. Potential candidates are subjected to comprehensive evaluation, 

including preclinical and academic verification, before FDA assessment and approval. 

Currently, there are only 24 biomarkers approved by the American FDA applied in clinical 

practice and associated with some cancer types.  They comprise glycosylated proteins and 

genetic hotspots (DNA fragments likely to mutate). Some of them are human epidermal 

growth factor receptor 2 (HER2/neu) and Cancer antigen 15-3 and 27-29 (CA15-3 or MUC1) 

(CA 27-29) for breast cancer, prostate-specific antigen (PSA or Pro2PSA) for prostate 

cancer, cancer antigen 125 (CA125 or Muc16) and human epididymis protein 4 (HE4) for 

ovarian cancer, α-Fetoprotein (AFP) for hepatic cancer, Thyroglobulin (Tg) for thyroid 

cancer, etc. The restricted number of approved biomarkers is ascribed to the highly 

heterogenic nature of the cancer cells, even of the same origin (180,181). 

5.1 Biomarker discovery in OSCC 

Despite improvements in therapeutic strategies, OSCC survival rates have not ameliorated 

over the past years mostly because of late diagnosis and frequent recurrences. The 

challenge of this decade, therefore, is to reduce both mortality and morbidity of this 

disease through the identification of potential biomarkers for early detection, monitoring 

of disease progression, and recognition of therapeutic targets. A special emphasis is given 

to the early diagnosis, being the ultimate goal of oral cancer prevention and considered to 

have a positive impact on the successful treatment, prognosis, and quality of life of these 

patients. Moreover, the early indication of oral mucosal lesions that can precede cancer 

such as oral leukoplakia/ erythroplakia is critical for prognosis and survival rates. Existing 

studies suggest that it is unlikely a single biomarker to provide the specificity and sensitivity 

necessary for the identification of a certain tumor type. In this regard, the focus of the 

latest research is the combination of a number of individual analytes in a broad panel 

thought to have more reasonable diagnostic accuracy. However, to assemble and validate 

a panel of biomarkers is a huge challenge requiring integration and complex analysis from 

multiple experimental sources using interdisciplinary tools, the so-called  ‘’-omics’’ 

technologies (182). They refer to an advanced and powerful group of high-throughput 

research tools, such as genomics, transcriptomics, proteomics, metabolomics, glycomics, 

lipidomics (Fig.11). These tools are based on the comprehensive analysis of genetic 
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information, including information from DNA, RNA, proteins, and metabolites from tissue 

samples, cell lines, and body fluids (183,184). Emerging OSCC data hold great promise to 

overcome the goal for the discovery of highly specific diagnostic, predictive and prognostic 

molecular biomarkers.  

 

Figure 11. A scheme of ‘’-omics’’ technologies, their corresponding targets for analysis, and 
assessment methods. DNA (genomics) is first transcribed to mRNA (transcriptomics) and translated 
into protein (proteomics) which can catalyze reactions that act on and give rise to metabolites 
(metabolomics), glycoproteins and carbohydrates (glycomics), and various lipids (lipidomics) 
Sources Wu R.Q. et al. (184). 

To generate an –omic expression profile, specimen collection is required. Tumour tissue 

and body fluid such as saliva or blood (serum and plasma) can potentially carry whole cells 

also protein, DNA, and RNA species allowing detection of cancer-related cellular changes. 

Formalin-fixed paraffin-embedded tissue (FFPET) samples, fresh frozen tissues as well as in 

vitro models of tumor-derived cell lines have been utilized in OSCC studies. Physiological 

variations among human tissues and sample unavailability can present important 

limitations in the comparative analysis of normal and cancerous mucosa. Compared to the 

challenging diagnostic utility of tissue biopsy, body fluids have gained much more attention 

for biomarker identification. Body fluids-derived biomarkers showed notable advantages 
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over the conventional histopathological method, offering non-invasive testing with 

reduced risk for the patients, cost, and diagnosis time (185).  Blood serum and plasma are 

applied in almost all types of cancer research due to the content of multiple measurable 

molecular elements in the form of circulating cells, proteins, peptides, metabolites, and 

cell-free DNA and RNA. Besides, biomarkers in saliva and/or plasma can reveal carcinogenic 

processes and can be used to monitor its progression/remission (186). In the past decades, 

the diagnostic properties of saliva have been repeatedly proven to contribute to the 

evolvement of the complex science of salivomics. As a subset of the larger field of 

molecular diagnostics, yet has been recognized as a central player in a variety of biomedical 

basic and clinical areas (187). Besides, it is pre-programmed to have a certain composition 

in response to events in an oral cavity, therefore the first biomarker for breast cancer is 

HER2/neu, found in saliva (188).  Saliva contains water (95%), proteins, minerals, nucleic 

acids, and electrolytes at detectable and quantifiable levels that can help to discriminate 

health from disease (186). Its utilization for disease screening and diagnosis is 

advantageous over other body fluids because of the easy accessibility, inexpensiveness, 

not invasive collecting procedure, and multiple sampling for monitoring the disease 

development. The direct contact of saliva with oral lesions has turned into a highly 

desirable choice for studying oral disorders, and particularly OSCC (189–191). A novel focus 

of research is the implication of salivary diagnostics for the early detection of oral cancers.  

5.2 Salivary biomarkers for Oral Cancer detection  

Proteins are key compounds in biosynthesis, cell, tissue, and organ signaling and provide 

cell and tissue structural stability in living organisms. They appeared to be attractive targets 

for biomarker discovery particularly those which are regulatory molecules in relevant cell 

signaling pathways. Protein molecular biomarkers are particularly popular due to the 

availability of a large range of analytical instrumentation, which can identify and quantify 

proteins in complex biological samples (192).  Head and neck cancer salivary proteome is 

differs quantitatively from the one of normal, healthy saliva (193). Hence, the identification 

of proteins is either fractionated by gel electrophoresis or digestion by enzymatic 

procedures to produce peptide mixtures involving high-throughput technologies enabling 

the assessment of cellular whole protein complements in tissues or secreted proteins in 

biological fluids (194). So far, about 3000 proteins have been identified in saliva by using 
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various analytical platforms, advances in mass spectrometry, and a combination of data 

from multiple groups (195). OSCC associated studies have demonstrated aberrant 

expression of proteins related to cell metabolism and structure, adhesion and motility, 

signal transduction, inflammation, including oncoproteins (196). To meet the clinical 

requirement for high accuracy in the detection of OSCC, a strong board of specific and 

sensitive candidates is required. Some potential biomarkers identified from the saliva of 

OSCC patients are listed in Figure 12. Katakura et al. (197), in 2007, examined 20 healthy 

patients and 19 patients with oral cancer and estimated salivary levels of cytokines (IL-6, 

IL-8, IL-β1), which showed increased concentration in cancer as compared to the control 

cases, suggested saliva as an important screening tool. CD44 is elevated in the majority of 

head and neck squamous cell carcinoma (HNSCC) and distinguishes cancer from benign 

diseases with high specificity (198). In the saliva of OSCC patients, three known markers 

were found to be four-fold increased, such as cytokeratin 19 fragment (Cyfra21–1), cancer 

antigen 125 (CA-125), and tissue polypeptide antigen (TPS) (199). Fibrin, transferrin, Ig-

heavy chain constant region gamma, cofilin-1  (200), salivary endothelial levels (201), pro-

inflammatory cytokine IL-6, TNF-α, and antibodies responsive to gene aberrations, such as 

anti-p53 antibodies, were also identified (202). The latest techniques have been followed 

by Gallo et al. (203) for the identification of OSCC proteomic signatures. The group 

suggested a predictive model and analysed it through mass spectrometry of saliva from 45 

OSCC patients and 30 control subjects to investigate the diagnostic and prognostic 

potential of the salivary proteome. Different neural networks for prognostic and diagnostic 

accuracy were used which indicated that selecting a particular predictive model remains 

under investigation. The systemic analysis of salivary proteomic biomarkers is rapidly 

advancing, offering an attractive screening tool to turn salivary diagnostics into clinical and 

commercial reality to combat oral cancer. 
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Figure 12. Potential salivary biomarkers for detection of OSCC. Adapted from Jia-Yo Wu et al. (191) 

Changes in protein posttranslational modifications (PTMs) have an important role in 

studying disease etiology and progression. It has been shown that defective glycosylation 

accompanies many chronic and infectious conditions and is a common feature of tumor 

cells that may affect N- and O-glycans on glycoproteins, glycolipids, or glycosaminoglycans 

(204). Among the most common N-linked glycans expressed in mammalian glycoproteins 

are oligomannose (high-mannose), hybrid and complex bi-, tri-, and tetrantennary types 

(Fig.13). Glycan biosynthesis is a complex and tightly regulated process involving a network 

of hundreds of genes.  Unlike DNA and proteins, the biosynthetic pathway is not template-

driven, resulting in complicated and variable glycosylation profiles even for single 

glycoproteins. Their heterogeneity, in terms of stereochemistry, makes structural analysis 

a difficult task, with relatively recent technologies enabling the expansion of glycan 

investigation (205). 



 

57 
 

 

Figure 13. Commonly expressed N-linked glycans on human glycoproteins. N-

acetylglucosamine and N-acetylgalactosamine (HexNac), glucose, galactose 

and mannose (Hex), Fucose (dHex), and Sialic Acid (NeuAc). N-glycans can form 

high-mannose, hybrid or complex types of structures. Complex types may 

present bi, tri-, and tetra- antennary configurations. Source: Essentials in 

Glycobiology, 3rd edition, 2017 (206). 

In the past decade research in the glycomics field gave insight into the biological 

importance of the serum N-glycome in human health and disease. Special emphasis was 

placed on exploring the connection between altered N-glycosylation of glycoproteins and 

different diseases, particularly in the study of cancer (207). The main methods of 

glycosylation analysis involve the separation of released glycans by HILIC (hydrophilic-

interaction chromatography), UHPLC, CE (capillary electrophoresis), lectin affinity, and MS. 

Typically HPLC based glycan analysis involves the removal of glycans from glycoproteins by 

enzymatic digestion. Glycans coupled to a protein through the nitrogen atom (N-linked) of 

asparagine (Asn) side chains can be released by amidase action by PNGaseF (peptide N-

glycosidase F). O-glycans are conjugated to serine (Ser) or threonine (Thr) without a clear 

consensus motif and often are cleaved by a chemical reaction due to the absence of a 

universal enzyme. The utilization of the UHPLC coupled MS platform for analysis is robust, 

reproducible, has a high dynamic range, and is quantitative, which are fundamental 

requirements in the discovery and validation of clinical markers. Potential biomarkers 

derived from serum glycoproteins for liver, pancreatic, prostate, ovarian, breast, lung, and 

stomach cancers have been proposed (207). Furthermore, a recent study has investigated 
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serum N-glycomes and anti-carbohydrate antibodies from normal populations and OSCC 

patients and suggests aberrant glycan structures and anti-carbohydrate antibody profiling 

in OSCC patients as diagnostic biomarkers (208). In addition, it was stated that 

acetylgalactosaminyltransferase 2 (GALNT2), found overexpressed in 73% of the examined 

OSCC tissue specimens is enhancing cancer migration and invasion by regulating EGFR 

glycosylation and activity (209).  It is known that saliva comprises high levels of 

glycoproteins including mucins, salivary agglutinin, secretory immunoglobulins (IgA), 

lactoferrin, amylase, and proline-rich glycoproteins. A few investigations of the intricate 

and highly abundant glycan population in human saliva has been described reporting 

different number of identified sugars. Depending on the sample size and saliva type, 

published studies disclose from 60 N-glycans in parotid saliva to 78 and 265 in whole non-

stimulated saliva. Studies of oral cancer associated with aberrant protein N-glycosylation 

are deficient. However, a preliminary study showed that individuals with OC display a 

differential N-glycosylation pattern compared to controls, based on salivary N-glycome 

analysis (210). Glycomics methods are less developed than proteomics partly because of 

the inherent challenges associated with their analysis. Despite the advances in glycan 

analysis, glycan salivary testing is still at the initial stage. Identifying which N-glycans 

contribute most to the carcinogenic process, may lead to their use in the diagnosis, 

prognosis, and even treatment strategies of malignant diseases, including OSCC. 
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Early diagnosis has become an ultimate goal in the management of oral cancer after 

prevention. The discovery of non-invasive biomarkers, such as those from saliva could 

facilitate early disease detection or provide important information for risk stratification, 

prediction, and prognosis. To deliver new diagnostic tools, an investigation has been 

undertaken to determine novel biomarkers at a molecular level using comparative protein 

and glycan expression levels between cancer, pre-cancer, and normal tissue conditions. 

Applying salivary testing, the current basic research aims to identify biomolecule/s that can 

serve as a specific and reliable screening tool for the diagnosis of patients with OSCC and 

associated lesions. 

The general objective is to analyse salivary inflammatory cytokines, as well as salivary 

proteome and glycan profiles to identify potential biomarkers for early OSCC diagnosis. 

Specific objectives:  

1. To evaluate salivary levels of a panel of inflammatory cytokines, including IL-1α, IL-6, IL-

8, TNF-α, IP-10, MCP-1, PF-4, and HCC-1 in the following groups of subjects: 

 patients with homogeneous leukoplakia (HL)  

 patients with proliferative verrucous leukoplakia (PVL)  

 patients diagnosed at early (I&II) and advanced (III &IV) OSCC stages 

 individuals without oral lesions (controls) 

1a. To estimate whether there are quantitative differences in the levels of the target 

cytokines between the groups. Especially, if there are notable differences between the 

OPMD and OSCC groups. 

1b. To determine whether altered cytokine expression in any of the four pathology groups 

(HL, PVL, early, and advanced OSCC) shows a greater association with some of the groups. 

1c. To assess, whether significantly aberrant cytokine expressions correlate with any of the 

patients' clinical parameters (age, sex, smoking habits, lesion location, clinical type, 

histologic features). 

1d. To evaluate if any of the target inflammatory cytokines can be considered as a potential 

diagnostic biomarker for the studied pathologies. 
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2. To   characterise salivary N-glycome profiles of: 

 controls 

 patients with PVL 

 patients at early stages (I&II) of OSCC 

 patients at advanced stages (II&III) of OSCC 

2a. To compare whether there are quantitative differences between the N-glycan profiles 

of the selected groups. 

3. To construct a whole saliva protein library in order to determine proteome profiles of  

 controls 

 patients with PVL 

 patients at early stages (I&II) of OSCC 

 patients at advanced stages (II&III) of OSCC 

3a. To assess whether there are quantitative differences between the proteome profiles 

of the studied groups and to outline potential biomarkers for early diagnosis of OSCC and 

associated lesions. 
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 MATERIALS AND METHODS 
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This investigation is part of a larger study funded under the TRACT project by Marie 

Skłodowska-Curie Actions (MSCA) - H2020 Framework Programme to identify salivary 

biomarkers of inflammation, whole saliva proteome, and N-glycome profiles in an 

established and well-characterized cohort of volunteers. The study has been completed 

within three phases. The initial phase included participants' sample collection during 

clinical sessions and adaptation of laboratory protocols for saliva processing and further 

molecular analysis. Experimental work and acquired data analysis were carried out during 

the second stage. Study outcomes and conclusions were drafted as anticipated 

publications in the final, third phase. 

1. Participants 

The study was authorized by the medical ethics Review Board of the General University 

Hospital of Valencia (HGUV) with approval № H1480794580696 in compliance with the 

Helsinki Declaration. Patients and control individuals were selected at the Service of 

Stomatology and Maxillofacial Surgery (HGUV) and the Dental clinic of the University of 

Valencia, in the period between 2017 and 2019. Following the established case-control 

inclusion criteria, a total of 157 subjects were enrolled in the study, providing a signed 

informed consent and voluntarily donating biological samples for scientific purposes. Saliva 

specimens were distributed into three groups:  

 Group 1 consisted of 66 samples of patients with oral lesions referred to as OPMDs 

among which 33 were diagnosed with homogeneous leukoplakia (HL) and 33 with 

proliferative verrucous leukoplakia (PVL). 

 Group 2 was composed of 66 samples of OSCC patients among which 33 were 

diagnosed at early (I and II) and 33 at advanced (III and IV) clinical stages. 

 Group 3 comprised 25 oral fluid specimens of healthy individuals without visible oral 

lesions, assigned as Controls.  
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Inclusion criteria of Group 1 

 Patient with clinically diagnosed Leukoplakia (both HL and PVL) in accordance to the 

Van der Waal criteria (211) and based on the clinical histopathological report from 

lesion/s incisional biopsy.  

 Patients who have not been associated with pharmacological and/or surgical 

treatment.  

 Without any salivary gland disorders. 

 Patients aged more than ˃ 45 years. 

Inclusion criteria of Group 2 

 Patients with clinically diagnosed SCC in the oral cavity based on histopathological 

analysis from an incisional biopsy. All tumors were graded, according to the TNM 

(Tumour Node Metastasis) classification system (46) 

 Patients who have not previously undergone surgical intervention and/or therapy 

treatment (radio and/or chemotherapy).  

 Without salivary gland disorders. 

 Patients aged more than ˃ 45 years. 

Inclusion criteria of Group 3 

  Individuals, age- and sex-matched to groups 1 and 2. 

  Without present oral and/or salivary gland disorders.  

 Without any acute  

1.1 Samples 

All the participants were advised to refrain from eating, drinking, smoking, and oral hygiene 

procedures for at least 1-hour before sampling. Samples were obtained after clinically 

confirmed diagnosis and before any further treatment. The subjects were asked to 

expectorate saliva in 15 ml sterile tubes equipped with a small funnel for convenience 

within 5 min. On average between 1-3 ml of unstimulated whole saliva was collected from 

each person (212). Some patients were sampled twice to obtain a higher saliva yield. 

Samples with visible traces from blood were discarded from the study. 
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1.2 Saliva processing and storage 

Collected saliva samples were immediately centrifuged in at 3000 rpm at 4°C for 15 min, to 

obtain a clear supernatant, devoid of any food particles and debris (212). Clarified saliva 

supernatant was collected and aliquoted into 0.5 ml tubes for immunoassay. For proteomic 

and glycomic studies the total content (supernatant & pellet) was saved unseparated.  All 

the samples were placed at -20°C for 2 -4 h prior to the long-term preservation in -80 °C 

freezers until further processing.  

1.3 Multiplex salivary cytokine analysis 

1.3.1  Luminex xMAP technology 

Saliva contains proteins with a very large dynamic range (213). It is therefore challenging 

to detect low abundance proteins such as cytokines and chemokines in the presence of 

high abundance proteins (e.g. amylases, proline-rich proteins, statherin, histatin, mucin, 

and cystatins, etc.) (195). For quantitative protein detection, conventional enzyme-linked 

immunosorbent assay (ELISA) has been a gold standard method since first introduced in 

the early 1970s. Utilizing two distinct epitope binding antibodies “sandwiched” between 

the antigen, ELISAs achieve protein quantitation with specificity and sensitivity. Building 

upon the ‘sandwich’ ELISA concept, multiplex antibody-based strategies have been 

developed as alternatives to ELISA. The most common and well-established format for such 

assays utilizes antibody-conjugated microspheres (beads) from Luminex Corporation. 

Luminex 200 TM platform (Fig.14) for biomarker screening and protein analysis consists of 

magnetic bead-based immunoassays, a detection instrument, and software.  

 Bead-based immunoassay 

MILLIPLEX® multiplex assays include analyte-specific capture antibodies conjugated 

to xMAP® beads. MILLIPLEX® assays are analytically validated for sensitivity, 

specificity, reproducibility, and wide dynamic range.  

 Luminex® Analyzer 

Luminex 200 TM is a flexible analyzer based on the principles of flow cytometry, 

which integrates xMAP detection components, such as lasers, optics, advanced 

fluidics, and a high-speed digital signal processor. 

 Software 
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XPONENT® software package designed for protocol-based data acquisition with 

robust data regression analysis. 

 

 

Figure 14. Luminex ® 200 SystemTM   (Luminex Corporation, Austin, TX). The total 

system includes the Luminex 200 analyzer and plate handling platform (A), the 

Luminex SD™ sheath fluid delivery system(B), and a PC with specific software (C). 

Luminex multianalyte profiling (xMAP) technology has emerged as a useful platform for 

simultaneous detection and quantification of multiple targets in a single, low volume 

sample, allowing real-time tracking of antibody-antigen interactions within an increased 

detection range (214). MilliporeTM multiplex immunoassays utilize Luminex xMAP 

technology to combine the efficiency of multiplexing with the accuracy, sensitivity, 

reproducibility, and simplicity of ELISA (Fig.15). 
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Figure 15. A general overview of the Luminex xMAP detection scheme. The assays are 

based upon the use of magnetic beads that have been internally dyed with red and 

infrared fluorophores of differing intensities. Each bead is given a unique number 

allowing differentiation. Individual bead sets are coated with a capture antibody 

qualified for one specific analyte of interest. The captured molecule from a sample is 

detected using an analyte-specific biotinylated antibody that binds to the appropriate 

epitope of the immobilized complex, plus streptavidin-conjugated R-phycoerythrin 

(SA-RPE). The use of different coloured beads enables simultaneous detection of 

multiple proteins in the same sample. Upon completion of the sandwich immunoassay, 

a dual detection flow cytometry allows precision fluidics (sheath fluid) to align the 

beads - bound complexes in a single file through a flow cell where two lasers excite the 

beads individually. The red laser (635 nm) excites the dyes in each bead, identifying its 

spectral address. The green laser (525 nm) excites the reporter molecule associated 

with the bead, allowing quantitation of the captured analyte. Adapted after Thermo 

Fisher Scientific Inc. (https://www.thermofisher.com/blog/behindthebench/luminex-

bead-based-immunoassays-drive-immunoassays-towards-higher-content-biomarker-

discovery). 

1.3.2 Salivary cytokine analysis 

Multiplexed immunoassays were carried out at the Molecular Oncology laboratory 

(University General Hospital of Valencia) utilizing the Luminex 200 TM platform. Salivary 

cytokine levels were detected and quantified in 33 control, 33 homogeneous leukoplakia, 

33 Proliferative verrucous leukoplakia, 33 early (I &II), and 33 advanced (III&IV) oral 

squamous cell carcinoma saliva samples. According to the target proteins, three Millipore’s 

Milliplex Human Cytokine Assay kits were used including “6-plex” Panel of pro-and anti-

inflammatory IL-1α, IL-6, IL-8, IP-10, MCP-1, and TNF-α (Cat.# HCYTOMAG-60K), HCC-1 

(Cat.# HCTP3MAG-63K), and PF-4 (Cat.# HCVD3MAG-67K), as per manufacturer’s protocols 

(6). Reagents provided in these kits included magnetic beads, monoclonal antibodies, 

standards, quality controls, assay diluents, secondary antibodies, biotin diluents, 

streptavidin conjugated to the fluorescent protein, R-phycoerythrin (streptavidin-RPE), 

washing buffer concentrates as well as the 96-well filter plates. Saliva samples were 

thawed directly on the day of analysis.  Contents were mixed gently with a Pasteur pipette, 

centrifuged at 1500 rpm at 4°C for 15 min, and diluted in a 1:2 ratio to reduce viscosity. 

Working solutions were prepared daily. Protein standards and quality controls were 

prepared, within one hour prior to the beginning of the assays, by reconstituting in assay 

diluent and performing serial dilutions according to manufacturer specifications. Data from 

the reactions were acquired using Luminex 200 TM plate reader, while a digital processor 

https://www.thermofisher.com/blog/behindthebench/luminex-bead-based-immunoassays-drive-immunoassays-towards-higher-content-biomarker-discovery
https://www.thermofisher.com/blog/behindthebench/luminex-bead-based-immunoassays-drive-immunoassays-towards-higher-content-biomarker-discovery
https://www.thermofisher.com/blog/behindthebench/luminex-bead-based-immunoassays-drive-immunoassays-towards-higher-content-biomarker-discovery
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managed data output and the XPONENTTM software returned data as Median Fluorescence 

Intensity (MFI) and concentration (pg/mL). 

1.3.3  Statistical analysis 

To evaluate differences in inflammatory proteins levels between control individuals, HL, 

PVL, early and advanced OSCC patients (objective 1a), the comparative analysis had been 

performed as follows: 

 Determination of Level of Quantification (LOQ), relevant for concentration data.  

 Multidimensional analysis to determine outliers (principal components to analyse 

variability between samples). 

 Determination of coefficient of variation between the studied groups. 

 Intra- and inter- groups Chi-square test for each analyte. 

 Mann-Whitney and Kruskal-Wallis followed by Dunn’s multiple comparisons non-

parametric tests for each analyte. 

 Differential LOQ enrichment analysis of the pathologies groups compared to the 

control one based on point dispersion with false-positive Benjamini-Hochberg 

correction (FDR). 

To determine if altered cytokine expression showed a greater association with any of the 

pathology groups (objective 1b), the subsequent analysis were carried out: 

 Comparative analysis based on the mean values of significant analytes for each 

group: Boxplots, Heatmaps, Venn Diagrams, Histograms. 

 Vulcan plot (Plots XY) of base 2 logarithmically transformed (Log2) LOQ versus FD 

of each cytokine in pair-wise group comparisons. 

 Regression and/or correlation analysis between groups and significant analytes. 

 Cluster analysis of the cytokine average concentration in the five groups. 

To determine whether there is an association between altered cytokine levels and patients 

clinical parameters including lesion’s location, clinical type, histological features, etc. 

(objective 1c) the following analysis have been conducted: 
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 Data indexing of significantly altered cytokines and their clinical metadata in a 

Bayesian network probabilistic model over a set of variables (LOQ values, clinical 

parameters, and pathologies). 

 The conditional probability of the relationship of each cytokine to belong to one of 

the four pathological groups, based on the LOQ value range and the probability of 

different clinical observations. 

To achieve objective 1d: 

 The Bayesian network model has been applied to predict the critical LOQ of each 

cytokine so that one or more analytes are determinants as a marker or risk markers 

related to one of the four pathology groups, given the presence or not of other 

specific clinical phenotypes.  
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1.4  Glycomic analysis 

The main methods of glycosylation analysis involve N-glycan release from proteins, UHPLC 

(ultra-high-performance liquid chromatography) separation, and MS (mass spectrometry) 

detection and quantification (Fig.16) Typically UHPLC based analysis initiates with the 

cleavage of oligosaccharides from glycoproteins by enzymatic digestion by PNGaseF 

(peptide N-glycosidase F amidase), labeling with a fluorescent tag (2-aminobenzamine) and 

subsequent separation using chromatographic methods. For the determination of 

structural information, MS has demonstrated to be a powerful tool where neutral glycan 

fragmentation yields singly and doubly charged ions analyzed in a negative mode for 

providing a stronger signal. Acidic glycan gives ions in a higher charge state due to anionic 

groups. 

 

Figure 16. Technology platform for multidimensional glycan analysis and high throughput profiling.  

Enzymatically released salivary N-glycans were labeled with 2AB and profiled using HILIC separation 
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by UHPLC. MS analysis provides spectral peak data with theoretical glycan mass values, as well as 

relative quantitation of the identified fragments. Further structural annotation of glycan MS data 

is computer-assisted by the GlycoWorkbench software, an online tool for glycoform analysis. It 

performs a database search of defined theoretical masses, calculates expected glycan 

fragmentation and relative m/z values with the most probable identity of all compositions tested 

and emits a putative monosaccharide composition. Adapted after Adamczyk et al. (207) 

1.4.1 Saliva pre-analytical processing 

 For N-glycan profiling, 20 out of the 165 saliva samples were selected and equally 

distributed into four homogeneous groups: 5 Controls, 5 PVL, 5 early (I and II), and 5 

advanced (III and IV) OSCC stages, respectively. After one freeze-thaw cycle and 

centrifugation within the described above conditions, saliva was subjected to protein 

quantification. The total protein concentration of individual samples was determined by 

the Bradford assay (215) using the Bio-Rad QS Protein Assay (Bio-Rad, Hercules, CA, USA) 

and evaluated by Perkin Elmer spectrophotometer. 250 µg of protein from each of the five 

samples belonging to the same group were pooled together. Approximately 1 mL mixture 

of clarified saliva was precipitated with an equal amount of ice-cold 30% TCA 

(trichloroacetic acid) (Sigma Aldrich) for 10 min and centrifuged for 5 min at 13,200 rpm at 

4°C. Supernatants were discarded and TCA residuals were removed. Pellets were re-

suspended in ice-cold acetone (200 µl) and centrifuged for 1 min at 13,200 rpm at 4°C. 

Acetone was discarded and the pellets were air-dried. 

1.4.2 N-glycan release and fluorescent labeling 

For technical repetition, three independent aliquots corresponding to 1, 250 mg of protein 

pellet from each group pooled mix were homogenized in 200 mM sodium bicarbonate 

buffer pH 7 using Sonoplus sonicator in 10 s impulses at 20 Hz for a total of 30 s. Mixtures 

were transferred to 10 kDa molecular weight cut-off (MWCO) filter units for concentration 

and purification. After a centrifugation cycle, NaHCO3 was discarded and protein sample 

volume was reduced to 100 µL. To enable protein relaxation and accessibility of potential 

shielded glycosylation sites 8M urea in 100 mM Tris, pH 8,5 was applied. Further, protein 

reduction and alkylation were achieved with 10 mM DTT (dithiothreitol) and 55 mM IAA 

(iodoacetamide), respectively, and finally buffer-exchanged to 50mm ABC (ammonium 

bicarbonate). For N-glycan release, the resulted pellets from each aliquot were subjected 

to enzymatic digestion (deglycosylation) with 3U glycerol-free PNGase F (Flavobacterium 
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meningosepticum, New England Biolabs) overnight (18 h) at 37°C with agitation (216). 

Released glycans were eluted from a spin filter, while retained material was washed twice 

with water; eluates were pooled and reduced to dryness via vacuum centrifugation. Dry 

samples were re-suspended in 50 µL of 1% formic acid for the conversion of glycosylamines 

to reducing sugars. Fluorescent labeling of released glycans was carried out by reductive 

amination with 2-AB (aminobenzamide) in the presence of sodium cyanoborohydride in 

30:70 Acetic acid/ DMSO (dimethyl sulfoxide) solution for 2h at 65°C. Removal of the excess 

2-AB label was performed as reported previously. Collected fractions were reduced to 

dryness via vacuum centrifugation and stored at -30 °C for further analysis (216). 

1.4.3  LC-FLR-MS analysis 

Online coupled fluorescence (FLR)-Mass spectrometry detection was carried out using 

Vanquish™ Horizon UHPLC (Thermo Scientific, Germering, Germany) and a Q Exactive™ 

Plus Hybrid Orbitrap MS instrument with BioPharma Option equipped with an Ion Max 

source with a HESI-II probe (Thermo Scientific, Bremen, Germany). All data were acquired 

using Thermo Scientific™ Xcalibur™ software 4.0. UHPLC was equipped with a Waters BEH 

Glycan amide column (150×1.0 mm ID, 1.7 μm). 2-AB derivatized N-glycans were 

reconstituted in 80% acetonitrile and injection volume was 10 μl. Injections for each 

sample were performed in triplicate. Flow rate, 0.15 ml/min and column temperature were 

maintained at 60 °C; Eluent A is ammonium formate in water (pH 4.4), B is acetonitrile 

delivering the following binary gradient: 72% B was held for one minute, followed by a 

linear gradient to 57% B over 30 min. The column washing step was carried out at 30% B 

for 4 minutes and initial conditions were restored and the column re-equilibrated for 4 

minutes. The MS method consisted of a full scan in negative polarity mode at 70,000 

resolution setting (at 200 m/z) with the mass range set between 380 and 2,400 m/z and 

AGC (acquisition gain control) target set at 3 x 106 and in-source CID set at 20 eV. Maximum 

injection time was set at 50 ms using 1 Microscan. Tune settings were as follows: spray 

voltage was 3.5 kV, sheath gas and auxiliary gas flows were set at 40 and 10 arbitrary units, 

respectively, the capillary temperature was 320 °C and probe heater temperature was 400 

°C while S-lens RF voltage was 50 V. 
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1.4.4  Statistical analysis 

Data acquisition, processing, and reporting collection were provided using Xcalibur ™ 

(Thermo Fisher Scientific, MA, USA). Progenesis QT (Waters TM) - a next-generation LC-MS 

multivariate data analysis software enabled glycans abundance normalization and relative 

quantification across groups. Putative N-glycans monosaccharide compositions were 

manually determined using GlycoWorkbench 3.0 tool based on given m/z values and 

considering mass accuracies below 20 ppm. The annotated fingerprints (experimental 

masses obtained from the MS fragmentation spectra) were searched against the database, 

deriving N-glycan structures (217). Interpretation of the relationship between the 

experimental groups was estimated by Principal Component Analysis (PCA), allowing the 

visualization of multivariate information. Statistical analysis and graph design were 

conducted with GraphPad Prism (GraphPad Software, Inc., San Diego, CA). Differences 

between groups were calculated using the Kruskal-Wallis test, followed by a Dunn's 

Multiple Comparison Test to correct for multiple comparisons. Normalized relative 

abundance profiles are presented as means of three technical replicates per group. P ≤ 

0.05 were accepted as significant.   
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1.5 Proteomic analysis 

1.5.1  Sample preparation for OSCC spectral library 

To accomplish Objective 3, a salivary protein spectral library was created through the 

identification of proteins present in a pool of saliva from OSCC patients. 10 out of the 165 

individuals who have been sampled twice were selected, including 3 early and 7 advanced 

OSCC cases. After one freeze-thaw cycle, sample contents were mixed gently with a 

Pasteur pipette and centrifuged at 1500 rpm at 4°C for 15 min to achieve a homogeneous 

suspension. To increase the sensitivity of the protein content assay, samples were diluted 

in a 1:20 ratio with MQ H2O. 

 Bradford assay 

Total protein concentrations of each one of the 10 samples were determined using the 

Bradford assay (215).  It is a colorimetric method based on an absorbance shift of the 

Coomassie Brilliant Blue G-250 (Bio-Rad, US) protein dye, which forms a strong, 

noncovalent complex with the protein's carboxyl group by van der Waals force and amino 

group through electrostatic interactions. The binding of the protein stabilizes the blue form 

of the Coomassie dye and thus the amount of the complex present in the solution is a 

measure for the protein concentration, estimated by an absorbance reading. Perkin-Elmer 

VICTOR X3 TM spectrophotometer with an absorbance ratio 450/590 nm was implicated to 

evaluate the samples, standardized against 2mg/ml bovine gamma globulin (BGG), placed 

in a 96 well Greiner clear plate (218). 5 µg of protein from each sample were put together 

to form a total 50 µg protein pool. Before electrophoresis, the neat protein pool was 

treated with 5x Laemmli buffer containing β-mercaptoethanol (1:1) and kept in a heating 

block at 95°C for 5 min to reduce the intra and inter-molecular disulfide bonds. The whole 

amount was run into SDS PAGE. 

 SDS PAGE 

Polyacrylamide Gel Electrophoresis (PAGE) is a commonly employed technique for 

separating macromolecules, such as proteins. Electrophoresis is in general the process of 

applying an electric field to move charged molecules through a solution. In this approach, 

the mobility of a charged molecule is directly proportional to its net charge and the 

resistance of the solution through which it is moving. Sodium dodecyl sulfate (SDS) is an 
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amphipathic detergent. It has an anionic headgroup and a lipophilic tail. It binds non-

covalently to proteins, with a stoichiometry of around one SDS molecule per two amino 

acids. SDS causes proteins to denature and disassociate from each other (excluding 

covalent cross-linking). Then proteins become negatively charged macromolecules with 

comparable hydrodynamic qualities, the mobility of which depends only on their molecular 

mass. In the presence of SDS, the intrinsic charge of a protein is masked. During SDS PAGE, 

as the current continues to flow, the proteins migrate into the resolving gel toward the 

anode (Fig 17A). Polyacrylamide gel with 1.5 mm thickness has been created in two layers, 

12% "resolving" (“running”) gel on the bottom, and a narrow 4% "stacking" gel on top and 

kept between short and spacer glass plates forming the "gel cassette". Once polymerized, 

the gel cassette was mounted to an electrode assembly and placed into an electrophoresis 

tank (Fig.17B). Sample mix was loaded along with a marker for molecular weight 

determination (10-175kDa Pink Prestained Protein Marker; Tris-Glycine 15%, 

NipponGeneticsTM ). The gel was run at 20mA constant voltage for 1h, removed from the 

cassette, and stained with Coomassie blue dye for 20 min. Excess dye removal was 

achieved by gel incubation in decolourant solution for approximately 2h. 
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Figure 17. An illustration of an apparatus used for SDS PAGE. (A) When a sample is added into the 
stacking gel well, as the current flows, proteins separate during migration toward the positive 
electrode in a size-dependent manner. The smallest ones move faster through the running gel. (B) 
The gel cassette is mounted to an electrode chamber and placed into a tank, filled with 
electrophoresis buffer. The tank is closed with a lid, aligning appropriately the electrodes, and 
connected to a power supply. (C) Coomasie blue dye enabled protein visualization as separated 
bands along with the gel.  

The gel stripe containing the colored protein bands was cut into five pieces as following: 

fragment I: 1-14kDa, fragment II: 14-30kD, fragment III: 30-50kDa, fragment IV: 50-95 kDa, 

and fragment V: 95-175 kDa proteins (Fig.17C). Samples were digested with sequencing 

grade trypsin (Promega) as described elsewhere (219). The digestion mixture was dried in 

a vacuum centrifuge, resuspended in 20 µL of 2% ACN, 0.1% TFA. 

1.5.2 Sample preparation for protein relative quantitation  

Protein differential expression was estimated in saliva samples obtained from 40 

individuals, equally distributed into four groups according to the previously described 

inclusion criteria, as follows: 10 Controls, 10 PVL, 10 early (e), and 10 advanced (adv) OSCC 

stages. After one freeze-thaw cycle, sample contents were processed as per chapter 1.5.1 

20 µg of total protein per sample were loaded in SDS PAGE and run without resolving within 

the conditions described above. Samples contained in a single gel band were digested with 

sequencing grade trypsin (Promega) as described elsewhere (219). The digestion mixture 

was dried in a vacuum centrifuge, resuspended in 20 µL of 2% ACN, 0.1% TFA. A pool of 
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samples from each of the four groups was evaluated as a quality control test, before the 

quantitation of the individual samples. 

1.5.3  LC-MS/MS technology 

Proteomics aims to completely identify and quantify the entire protein samples of interest. 

LC-MS is an analytical chemistry technique that combines the physical separation 

capabilities of liquid chromatography with the mass analysis capabilities of mass 

spectrometry (Fig.18). While LC separates mixtures with multiple components, MS 

provides structural identity and quantitative data of the individual components with high 

molecular specificity and detection sensitivity. MS measures the intact molecule, while 

tandem MS (MS/MS or MS2) refers to the analysis of the fragments (productions) that 

compose this molecule. This analysis requires the machine to isolate the entire particle and 

to break it, using electrical current and gas to produce specific signature ions from the 

parent molecule. These ions can then be used to identify and quantify a molecule. Data-

dependent acquisition (DDA) is the mode of data collection where many peptides within a 

certain mass range are fragmented in tandem mass spectrometry. In DDA mode, the mass 

spectrometer selects the most intense peptide ions in the first stage of tandem mass 

spectrometry, and then they are fragmented and analysed in the second stage of tandem 

MS. 

 

Figure 18. Functional diagram of a coupled LC-MS system. Adapted after Nagaraj et 

al.,2009 (183). 

https://en.wikipedia.org/wiki/Mass_spectrometry
https://en.wikipedia.org/wiki/Mass_spectrometry
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1.5.4  Construction of salivary protein spectral library 

LC-MS were performed where 5 µl of gel sliced sample pool was loaded onto a trap column 

(NanoLC Column, 3µ C18-CL, 350 mx 0.5mm; Eksigen) and desalted with 0.1% TFA at 3 

µl/min during 5 min. The peptides were then loaded onto an analytical column (LC Column, 

3 µ C18-CL, 75 umx12cm, Nikkyo) equilibrated in 5% acetonitrile 0.1% FA (formic acid). 

Elution was carried out with a linear gradient of 5a40% B in A for 120 min. (A: 0.1% FA; B: 

ACN, 0.1% FA) at a flow rate of 300nl/min. Peptides were analysed in a mass spectrometer 

nanoESI qQTOF (5600 TripleTOF, SCIEX). The sample was ionized applying 2.8 kV to the 

spray emitter. Analysis was carried out in a DDA mode. Survey MS1 scans were acquired 

from 350–1250 m/z for 250 ms. The quadrupole resolution was set to ‘UNIT’ for MS/MS 

experiments, which were acquired 100–1500 m/z for 50 ms in ‘high sensitivity mode. 

Following switch criteria were used: charge: 2+ to 5+; minimum intensity; 70 counts per 

second (cps). Up to 50 ions were selected for fragmentation after each survey scan. 

Dynamic exclusion was set to 15 s. The system sensitivity was controlled with 2 fmol of 6 

proteins (LC Packings). ProteinPilotTM (v 5.0) search engine AB-SCIEX) was used for protein 

identification analysis. 

1.5.5 SWATH - MS quantification 

 In the data-independent acquisition (DIA) mode, for each cycle, the instrument focuses on 

a narrow mass window of precursors and acquires MS/MS data from all precursors 

detected within that window (Fig.19). This mass window is then stepped across the entire 

mass range, systematically collecting MS/MS data from every mass and all detected 

precursors. The most common method to generate DIA data is called Sequential Windowed 

Acquisition of All Theoretical Fragment Ions (SWATH) in which the mass spectrometer 

divides the mass range into small mass windows. The SWATH-MS data consists of highly 

multiplexed fragment ion maps that are recorded over the user-defined mass precursor 

mass range and chromatographic separation. 
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Figure 19. Triple quadrupole mass spectrometer. The ionized mixture of peptides enters the first 

quadrupole/mass analyser (Q1) in which the voltage settings are set to allow ions of a specific m/z 

value to pass through, selecting the ions of interest (MS1). The precursor ions then collide with 

argon gas in Q2 for fragmentation by Collision Induced Dissociation (CID). The third quad (Q3) scans 

repeatedly over the mass range to detect the fragment ions (MS2). Under defined kinetic energy, 

the flight time of the particle before it reaches the detector (at a set distance) directly relates to its 

mass-to-charge ratio (m/z). The separated ions are detected and this signal is sent to a data system 

where m/z ratios are stored together with their relative abundance for presentation in the format 

of an m/z spectrum. Modified after Ö Christophe D. Masselon, CEA Grenoble. 

 

 For quality control test, 5 µL of sample pool per group was loaded onto a trap column 

(NanoLC Column, 3µ C18-CL, 350 m x 0.5 mm; Eksigen) and desalted with 0.1% TFA at 

3 µl/min during  5 min. The peptides were then loaded onto an analytical column (LC 

Column, 3 µ C18-CL, 75 umx12cm, Nikkyo) equilibrated in 5% acetonitrile 0.1% FA 

(formic acid). Elution was carried out with a linear gradient of 5-40% B in A for 120 min. 

(A: 0.1% FA; B: ACN, 0.1% FA) at a flow rate of 300nl/min. Peptides were analysed in a 

mass spectrometer nano Electrospray ionization (ESI) quadrupole time of flight (qQTOF) 

(5600 TripleTOF, SCIEX). The sample was ionized applying 2.8 kV to the spray emitter. 

DIA mode has been activated for analysis. Survey MS1 scans were acquired from 350–

1250 m/z for 250 ms. The quadrupole resolution was set to ‘UNIT’ for MS/MS 

experiments, which were acquired 100–1500 m/z for 50 ms in ‘high sensitivity mode. 

Following switch criteria were used: charge: 2+ to 5+; minimum intensity; 70 counts per 

second (cps). Up to 50 ions were selected for fragmentation after each survey scan. 

Dynamic exclusion was set to 15 s. The system sensitivity was controlled with 2 fmol of 

6 proteins (LC Packings). 
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  For individual sample protein quantification, 5 µL of each sample was loaded onto a 

trap column (LC Column, 12 nm, 3 µ Triart-C18, 0.5 x5.0 mm; YMC) and desalted with 

0.1% TFA at 10 µL/min during  5 min. The peptides were then loaded onto an analytical 

column (LC Column, Luna Omega 3 µm Polar C18, 150 x 0.3 mm, Capillary Phenomenex) 

equilibrated in 3% acetonitrile 0.1% FA (formic acid). Elution was carried out with a 

linear gradient of 3a353-35% B in A for 45 min (60 min total). (A: 0.1% FA; B: ACN, 0.1% 

FA) at a flow rate of 300nl/min. Peptides were analysed in a mass spectrometer microESI 

qQTOF (6600plus TripleTOF, ABSCIEX). The sample was ionized in a Source Type: 

Optiflow 1-50uL Micro applying 4.5 kV to the spray emitter. The analysis was performed 

in a DIA mode. Survey MS1 scans were acquired from 400–1250 m/z for 250 ms. 100 

variable windows from 400 to 1250 m/z were acquired throughout the experiment. The 

total cycle time was 2.79 secs. The quadrupole resolution was set to ‘UNIT’ for MS2 

experiments, which were acquired 100–1500 m/z for 25 ms in high sensitivity mode. 

The samples were acquired in a random order to avoid bias in the analysis. 

1.5.6 Data analysis 

ProteinPilot default parameters were used to generate a peak list directly from 5600 

TripleTof wiff files. The Paragon algorithm (220) of ProteinPilot was used to search the 

Swissprot database (version 03-2018) with the following parameters: trypsin specificity, 

cys-alkylation, taxonomy restricted to humans, and the search effort set to through. The 

protein grouping was done by the Pro group algorithm. A protein group in a Pro Group 

Report is a set of proteins that share some physical evidence. Unlike sequence alignment 

analyses where full-length theoretical sequences are compared, the formation of protein 

groups in Pro Group is guided entirely by observed peptides only. Since the observed 

peptides are determined from experimentally acquired spectra, the grouping can be 

considered to be guided by the usage of spectra. Then, unobserved regions of protein 

sequence play no role in explaining the data. The wiff files obtained from the SWATH 

quantitation were analysed by Peak View 2.1 with the protein spectral library according to 

the scheme in Fig.20 
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Figure 20.  Peak View 2.1 analysis of SWATH generated data 

The retention times were aligned among the different samples using main protein peptides. 

After retention time calibration, peptide selection was performed according to the 

processing settings shown in Fig. 21. 

 

Figure 21. Processing setting of Peak View 

2.1 for peptide selection 

The cycle time used in the MS-MS/MS acquisition allows quantitating each peptide area 

with more than 7 points (Fig22). 
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Figure 22. The area data obtained with Peak View is analyzed with Marker View (Sciex).  

First, the protein areas calculated are normalized by the total sum of the areas of all the 

quantified proteins. Next, statistical tests of reduction of the dimensionality, principal 

component analysis (PCA), and discriminant analysis (DA) (both with Pareto scaling) were 

carried out. Due to the different variability of the groups, Welch T-tests were done for 

comparison. PCA aims to summarize the overall variability among individuals, which 

includes both the divergence between groups (i.e., structured genetic variability) and the 

variation occurring within groups ('random' genetic variability). To assess the relationships 

between different clusters, an adequate method should focus on between-group 

variability, while neglecting within-group variation. This is precisely the rationale of using 

Discriminant Analysis (DA) (221). The method, therefore, achieves the best discrimination 

of individuals into pre-defined groups. 

1.5.7 Biostatistics  

 Penalized linear regression methods 

A common challenge in biostatistical studies is to analyse in an efficient manner database 

in which the number of the variables of interest (predictors) is much greater than the 

number of the observations available. To overcome the limitation of traditional variable 

selection methods when the number of predictors is large, the methods for penalized 

regression and reduction of dimension (classification) have been developed. Cluster 

analysis was carried out with R 4.0.2  using glmnet package for LASSO (Least Absolute 

Shrinkage and Selection Operator) and Elastic Net Regularized Generalized Linear Models 

(222,223). The student’s t-test was used to determine the statistical significance of 

differentially expressed proteins based on the average base 2 logarithmically transformed 
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(log2Med) relative abundance in pair-wise group comparisons. FRD adjusted P-value < 0.05 

was accepted as statistically significant. Receiver operating characteristic (ROC) analyses 

were performed to evaluate the diagnostic value of discovered candidate biomarkers for 

OSCC, using MS Excel 2016. The area under the curve (AUC) of each ROC curve was 

obtained by numerical integration where significance was considered for a value great than 

0.5 

 Dimension reduction methodology 

Dimension reduction is the process of decreasing the number of random variables under 

consideration by obtaining a set of principal variables. Every dimension reduction method 

works in two steps: 1) obtaining the transformation of the predictor variables, and 2) 

estimation of the new regression model using these new predictors. The choice of these 

new predictors is usually main components or partial least squares (PLS). PLS combined 

with Discriminant Analysis (DA) is a method used when the response variable is qualitative. 

The normalized relative abundance values of all quantified proteins in control and 

pathology cases were transformed to Z scores and analysed via PLS-DA using the mixOmics 

package of R (223). Logarithmically transformed quantitative SWATH data was utilized to 

determine which proteins are the ones that best differentiate between early and advanced 

OSCC, PLV, and controls groups. The relationship between samples and proteins is 

represented graphically, using heat maps as an efficient method of visualizing intricate data 

sets organized as matrices (224). In a biological context, such a matrix is created by 

arranging the data in a way that each column contains the information from a single sample 

and each row corresponds to a single feature (protein). Heat maps permit to find 

quantitative patterns across proteins and biological samples simultaneously. Both samples 

and proteins are represented in order according to the result of the hierarchical 

classification.  

 Functional analysis 

The STRING online software version 11.0 (225,226) was used to search for interaction 

relationships of the proteins differentially expressed in the OSCC compared to PVL and 

control groups, applying default settings and medium stringency.  Biological process 

classifications were performed with the tools of the String database and enriched gene 

ontology (GO) terms provided by the software were also examined.  
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1. Analysis of salivary cytokines 

This analysis includes estimation and comparison of salivary levels of eight cytokines (IL-

1α, IL-6, IL-8, IP-10, MCP-1, TNF-α, HCC-1, and PF-4) among patients with premalignant 

lesions (HL and PVL), early and advanced OSCC stages, and age-matched healthy controls. 

1.1 Participants’ characteristics 

Summary of demographic and clinical characteristics of control individuals, leukoplakia, 

and OSCC patients are shown in Table 3, 4, and 5, respectively. The median age of the 

controls was 62 years (range: 50-82), of the HL patients was 68 years (range: 45-92), of the 

PVL was 67 years (range: 47-89), of the patients at early OSCC was 73 years (range: 39-95) 

and of those at advanced OSCC was 65 years (range: 39-95). There were no statistical 

differences among groups regarding age and sex. In the pathology cases, individuals’ 

clinical characteristics such as oral lesion location, type, and histologic features were also 

registered.  

Table 3. Characteristic features of the 

subjects comprising the control group. 

  Control 

  n=25 

Age (median ± SD) 62 ±8.3 

Sex   

Male 9 (36 %) 

Female 16 (64%) 

Tobacco smoking 
status   

Non-smokers 11 (44%) 

Ex-smokers 10 (40%) 

Current smokers 4 (16%) 

 

All the patients comprising the homogeneous leukoplakia (HL) group exhibited a single 

lesion in the oral cavity presented as plain, white patches. Most of the patients included in 

the proliferative verrucous leukoplakia (PVL) cohort displayed multifocal rugged lesions, 

clinically presented as verrucous, mixed or erosive- ulcerative type (Table 4). 
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Table 4.  Demographic and clinicopathological characteristics 

of homogeneous leukoplakia (HL) and proliferative 

verrucous leukoplakia (PVL) patients groups.  

 

  HL PVL 

  (n=33) (n=33) 

Age (median ± SD) 68 ± 12.1 67 ± 12.3 

Sex     

Male 10 (30.3%) 13 (39.4%) 

Female 23 (69.7%) 20 (60.6%)  

Tobacco smoking status     

Non smokers 15 (45.5%) 24 (72.7%) 

Current smokers 18 (54.5%) 9 (27.3%) 

Associated location n n 

Tongue 9 4 

Floor of the mouth 2 2 

Palate 3 1 

Buccal mucosa 6 2 

Gingiva 4 6 

Multifocal 9 20 

Lesion clinical form n n 

Homogeneous white 
plaque 

33 (100%) - 

Verrucous - 14 (42.4%) 

Erosive-ulcerative - 5 (15.2%) 

Mixed * - 14 (42.4%) 

Histologic features n n 

Epithelial dysplasia  18 (54.5%) 14 (42.2%) 

No epithelial dysplasia 15 (45.5%)  16 (48.5%) 

                                      *Homogeneous and verrucous regions 

 

For the OSCC patients, information regarding tumor size, stage, and differentiation, as well 

as the presence of cervical adenopathy were recorded (Table 5). 
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Table 5.Demographic and clinic-pathological characteristics of 

patients at early and advanced OSCC stages. 

  Early OSCC 
Advanced 

OSCC 

  (n=33) (n=33) 

Age (median±SD) 73 ± 10.9 65 ± 15.6 

Sex     

Male  13 (39.4%) 20 (60.6%) 

Female 20 (60.6%) 13 (39.4%)  

Tobacco smoking status     

Non smokers 23 (69.7%) 14 (42.4%) 

Current smokers 10 (30.3%) 19 (57.6%) 

Associated location n n 

Tongue 17 7 

Floor of the mouth - 6 

Palate 4 6 

Buccal mucosa 3 5 

Gingiva 8 8 

Lip 1 1 

Lesion clinical form     

Erythroplastic 6 (18.7%) 1 (3%) 

Ulcerative 14 (43.7%) 25 (75.7%) 

Exophytic 7 (21.8%) 1 (3%) 

Mixed * 5 (15.6%) 6 (18.2%) 

Lesion size n n 

0-2 cm 12 6 

2-4 cm 12 17 

> 4 cm - 6 

Stage (TNM system)     

Tis; I; II 33 - 

III; IV - 33 

Tumor differentiation     

well 26 (78.8%) 19 (57.6%) 

not well ** 7 (21.2%) 14 (42.4%) 

Cervical adenopathy     

yes 6 (18.2%) 26 (78.8%) 

no 27 (81.8%) 7 (21.2%) 

                                    *Ulcerative and exophytic; Tis – carcinoma in situ; 

                                    ** include moderately and poorly differentiated tumors 
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1.2 Variability analysis 

Variability, also called dispersion refers to how spread out a set of data is. Variability 

analysis were used to estimate how much cytokine expression levels differ from each other 

and allow further statistics to compare the investigated groups. Dispersion measures 

generated by R statistical programming of IL-1α, IL-6, IL-8, IP-10, MCP-1, TNF-α, HCC-1, and 

PF-4 expression in control and pathology groups are shown in a summary, including first 

and third quartiles, mean, median, minimum and maximum values, variance, standard 

deviation, as well as coefficient of variation in Table 6 (Supplementary Tables). Variation 

values (CV) of ≤ 1 suggest low variance data, pointing that cytokines present sufficient 

relative dispersion between themselves and between the groups, indicating heterogonous 

data within the groups.  

1.3 Principal component analysis  

The variability observed between samples and groups is largely determined by the nature 

of each group (principal component 1 - PC1) that represented 38.5% versus the intra-

specific variability of each person (PC2) exhibited 16.9% (Fig.23). A clear variability increase 

is observed between the five groups, with the control group being the most homogeneous, 

which is expanding in HL and PVL samples, augments in the early OSCC, and even more so 

in the advanced OSCC group. This observation indicates that the pathologies present a clear 

dispersion with respect to the normal (control) pattern and between them as its severity 

increases. Some outliers are spotted, especially in the advanced OSCC group. However, 

including all the samples' values allows maintaining variability as a factor to be considered 

in the further analysis.  

 

 

Figure 23. Principle component plot 

based on IL-1α, IL-6, IL-8, IP-10, MCP-1, 

TNF-α, HCC-1 y PF-4 levels of detection 

(LOD) estimated with LuminexTM 

xMAP in Control (n=25), HL (n=33), PVL 

(n=33), early OSCC (n=33) and 

advanced OSCC (n=33). 
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1.4 Cluster analysis  

A cluster analysis was carried out and a heat map was generated to graphically visualize 

the changes in cytokine values within the control, HL, PVL, early and advanced OSCC 

samples. In the heat map, each column contains the data from a single sample and each 

row corresponds to a single feature (cytokine). A heat map reorders the rows and columns 

so that rows with similar profiles are closer to one another, causing these profiles to be 

more visible. Each entry in the data matrix is displayed as a colour, marking it possible to 

view the patterns graphically. To represent visually, how the quantified analytes are related 

to the groups, a heat map has been created where concentration values of the studied 

cytokines are clustered in rows and the sample groups in columns (Fig.24). The scale 

indicates cytokine concentration in ranges from low (red) to high (blue) values. Based on 

cluster analysis, the values can discriminate the control from the pathologies group. The 

columns were clustered using the complete linkage with the Euclidean distance measure 

method by R software for statistical computing. IL-6, TNF-α, and HCC-1 present low 

expression profiles (red range) that contrast with PF-4 presenting a medium degree of 

expression (white), while IL-1α, IL-8, IP-10, and MCP-1 demonstrate higher value 

profile(blue range). Some intragroup variability is observed in each cohort, however, 

differences are notable between control and pathology groups, especially in the OSCC, for 

all analytes. 
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Figure 24.  Cluster analysis and heat map 

of eight cytokines detected in saliva 

from patients with HL, PVL, early (e) 

and advanced (adv) OSCC stages, and 

age-matched controls. The colour key 

at the top of the heat map shows the 

Level of Detection (LOD) ranging from 

low (red) to high (blue) values 
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1.5 Comparison of cytokine expression 

Salivary concentrations of IL-1α, IL-6, IL-8, IP-10, MCP-1, TNF-α, HCC-1, and PF-4 in patients 

with HL, PVL, at early and advanced OSCC stages and age-matched controls were estimated 

using the multiplexed bead-based assay. A summary of the mean levels (pg/mL) and SEM 

of each cytokine per group is presented in Table 7. The mean salivary concentrations of IL-

6, IL-8, TNFα, HCC-1, and PF-4 were found to follow similar expression patterns of gradual 

increase from controls to leukoplakia (HL and/or PVL), to early and finally to advanced 

OSCC stages (Fig.25 B, C, F, G, and H, respectively). Transient alterations were observed in 

IL-1α, IP-10 (CXCL10), and MCP-1 (CCL2) concentrations (Fig.25 A, D, and E, respectively) 

within the groups. 

Table 7. Salivary cytokines levels in pg/mL in controls, HL, PVL, early (e), and advanced (adv) OSCC 

patients; results are presented as the arithmetic mean and standard error of the mean (SEM) 

                 

  
Control     
(n=25) 

SEM HL (n=33) SEM 
PVL  

(n=33) 
SEM 

e OSCC 
(n=33) 

SEM 
adv 

OSCC  
(n=33) 

SEM 

IL-1α 1227,24  122,90 1768,11 376,97 1886,48 294,87 1556,19 248,31 1313,79 189,58 

IL-6 7,95 0,95 22,61 4,78 18,90 3,75 99,82 26,09 262,08 65,83 

L-8 526,17 59,03 1382,92 279,60 1140,87 240,48 2567,01 549,72 4124,81 787,23 

IP-10 884,97 93,39 1649,98 386,48 1157,80 251,30 1963,89 365,41 1556,53 332,42 

MCP-1 1066,61 126,54 2535,35 372,84 3600,83 481,32 2560,73 370,26 2099,76 429,95 

TNF-α 7,62 0,84 19,65 2,82 23,08 4,26 59,82 11,56 122,52 20,68 

HCC-1  75,36 6,10 174,55 27,66 189,28 35,77 298,53 49,55 551,32 119,67 

PF-4  253,74 23,98 293,92 60,53 454,78 146,61 642,00 104,85 1021,85 220,02 

 HL- homogeneous leukoplakia; PVL- proliferative verrucous leukoplakia; e – early; adv- advanced OSCC;  
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Figure 25. Salivary levels in pg/mL of (A) IL-1α, (B) IL-6, (C) IL-8, (D) IP-10, (E) MCP-1, (F) TNF-α, (G) 

HCC-1, and (H) PF-4. The blue lines indicate cytokine modulation trend from control to HL, to PVL, 

to early, and finally to advanced OSCC, where each dot represents the mean ±SEM of n=25 for 

control and n=33 for pathology groups and n is an average of two technical replicates. 

Independent, nonparametric Mann-Whitney and Kruskal-Wallis tests followed by Dunn’s 

multiple comparisons were utilized, when appropriate, to assess differences in 

logarithmically transformed (log2) cytokine mean levels between the groups. P-value ≤ 

0.05 was considered for statistically significant and indicated with **** for p ≤ 0.0001; *** 

for p ≤ 0.001; ** for p ≤ 0.01 and * for p ≤ 0.05. Dot plots represent salivary levels of each 

analyte in log2 concentration (pg/mL) in all the comparisons. Prediction model for 

sensitivity and specificity performance of altered cytokines is depicted with ROC curves. 

Significance was considered for the area under the curve (AUC) value great than 0.5  
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1.5.1  Control vs Leukoplakia 

The mean salivary concentrations of IL-6, IL-8, MCP-1, TNF-α, and HCC-1 marked 

significantly higher expressions in HL patients than in their control counterparts and AUC 

values of 0.72, 0.68, 0.74, 0.72, and 0.72, respectively (Fig.26 A, B, C, D, and E, respectively). 

No significant differences were found in IL-1α, IP-10, and PF-4 levels between the 

compared groups (Fig.26 F, G, and H, respectively). 
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Figure 24. Comparison of cytokine levels in saliva of control volunteers and HL patients. Dot plot 

(left) of cytokine log2 levels (pg/mL) and ROC curves (right) of (A) IL-6, (B) IL-8, (C) MCP-1, (D) TNF-

α and (E) HCC-1 (p = 0.01, 0.05, 0.01, 0.01 and 0.01, respectively). Dot plots of (F) IL-α, (G) IP-10 and 

(H) PF-4. Values represent mean ±SEM of n=25 (control group) and n=33 (HL group) where, n is an 

average of two technical replicates. 

Similarly, in a collation of estimated cytokine expression between volunteers with PVL and 

healthy controls, salivary levels of IL-6, IL-8, MCP-1, TNF-α, and HCC-1 were seen 

significantly increased in favor of the patients with premalignant lesions (Fig.27 A, B, C, D, 

and E, respectively). The prediction model for sensitivity and specificity performance 
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revealed AUC values greater than 0.7.  IL-1α, IP-10, and PF-4 showed no considerable 

changes among the compared cohorts (Fig.27 F, G, and H, respectively) 
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Figure 25. Comparison of cytokine concentrations in the saliva of and control volunteers and PVL 

patients. Dot plot (left) of cytokine log2 levels (pg/mL) and ROC curves (right) of (A) IL-6, (B) IL-8, 

(C) MCP-1, (D) TNF-α and (E) HCC-1 (p =0.01, 0.01, 0.001, 0.001 and 0.001, respectively). Dot plots 

of (F) IL-α, (G) IP-10, and (H) PF-4. Values represent mean ±SEM of n=25 (control group) and n=33 

(PVL group), where n is an average of two technical replicates. 

No significant differences were estimated in levels of the target cytokines among patients 

with HL and PVL. Dot plot graphs, representing the expression profiles of the 8 cytokines 

in the two clinical types of oral leukoplakia are shown in Figure 28 (Supplementary figures). 
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1.5.2  Control vs OSCC  

A comparison of target cytokine concentrations revealed significant overexpression of IL-

6, IL-8, MCP-1, TNF-α, HCC-1, and PF-4 and AUC values greater than 0.7 in patients at early 

OSCC compared to matched controls (Fig.29 A, B, C, D, E, and F, respectively). The above-

mentioned cytokines, excluding MCP-1, exhibited a considerable increase also in advanced 

disease stages (Fig.30, Supplementary figures). IL-1α and IP-10 did not show notable 

alterations, independently of the OSCC clinical stage (Fig.29 G and H and Fig.30, 

Supplementary figures). 
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Figure 29. Salivary cytokine expressions in patients at early OSCC stages and controls. Dot plot (left) 

of cytokine log2 levels (pg/mL) and ROC curves (right) of (A) IL-6, (B) IL-8, (C) MCP-1, (D) TNF-α and 

(E) HCC-1 and (G) PF-4 (p ≤ 0.0001, 0.0001, 0.01, 0.0001, 0.0001 and 0.05, respectively). Dot plots 

of (G) IL-α and (H) IP-10. Values represent mean ±SEM of n=25 (control group) and n=33 (early OSCC 

group), where n is an average of two technical replicates. 

1.5.3 Early OSCC vs advanced OSCC 

Estimated levels of the 8 cytokines in the saliva of early OSCC were set against advanced 

OSCC. Comparisons of the analysed proteins between the aforementioned groups are 

presented in Figure 31. Considerably higher IL-6 and TNF-α with AUCs of 0.69 and 0.68, 

respectively were estimated in advance compared to early OSCC stages. IL-1α, IL-8, IP-10, 

MCP-1, HCC-1, and PF-4 concentrations did not differ significantly amongst patients at 

different OSCC clinical stages. 
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Figure 31. Comparison of salivary cytokine concentrations in patients at early and advanced OSCC 

stages. Dot plot (left) and ROC curve (right) showing significantly increased log2 levels (pg/mL) of 

(A) IL-6 and, (B) TNF-α (p = 0.01 and 0.01, respectively). Dot plots of (C) IL-1α, (D) IL-8, (E) IP-10, (F) 

MCP-1, (G) HCC-1 and (H) PF-4. Values represent mean ±SEM of n=33 (early OSCC) and n=33 

(advanced OSCC), where n is an average of two technical replicates 

1.5.4 Leukoplakia vs OSCC 

Salivary profiles of the eight cytokines were compared between subjects with HL and PVL 

and at early and advanced OSCC stages. Results showed notably altered IL-6, IL-8, TNF-α, 

HCC-1, and PF-4 levels in pair-wise and multiple comparisons. Significantly increased 

concentrations of the aforementioned inflammatory agents were estimated in early 

(Fig.32, Supplementary figures) and advanced OSCC, compared to leukoplakia forms 

(Fig.33, Supplementary figures) collated to oral leukoplakia patients (HL&PVL). ROC 

analysis demonstrated significant AUC values greater than 0.7 for IL-6, TNF-α, and PF-4 at 

early cancer stages, while in progressed disease higher than 0.8 for IL-6 and TNF-α, and ≥ 

0.7 for IL-8 and HCC-1. IL-α, IP-10, and MCP-1 exhibited similar expression patterns in 

patients with premalignant and cancerous lesions (Fig. 32 and 33, Appendix 1). Multiple 

comparisons of cytokine levels among the pathology cohorts are presented with dot plot 

graphs in Figure 34. It can be seen that IL-6 marked considerable differences within the 

four groups with p = 0.0001. Dun’s test based on pair-pair comparisons confirmed 

significance in HL vs early OSCC (p = 0.05), HL vs advanced OSCC (p = 0.0001), PVL vs early 

OSCC (p = 0.01), and PVL vs advanced OSCC (p = 0.0001) (Fig.34B). For IL-8, important 

changes were detected with p <0.0003 and by post hoc test of HL vs advanced OSCC (p = 

0.01) and PVL vs advanced OSCC (p = 0.001) (Fig.34C). Salivary TNF-α was found notably 

amended between the four groups with p <0.0001, while pair-pair comparisons revealed 

distinction of HL vs early OSCC (p = 0.05), HL vs advanced OSCC (p = 0.0001), PVL vs early 

OSCC (p = 0.01) and PVL vs advanced OSCC (p= 0.0001) (Fig.34F). HCC-1 and PF-4 exhibited 
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differential expression within the collated groups with p = 0.0002 and p = 0.0001, 

respectively. HCC-1 exhibited an increase in advanced OSCC against HL and PVL with p = 

0.01 (Fig. 34G). PF-4 showed significant elevation in the OSCC groups collated to the ones 

of premalignant disorders, namely HL vs early OSCC (p = 0.01), HL vs advanced OSCC (p = 

0.01), PVL vs early OSCC (p = 0.01) and PVL vs advanced OSCC (p = 0.05) (Fig34H). No 

appreciable alteration was assessed in the concentrations of IL-1α (Fig34A), IP-10 (Fig34D), 

and MCP-1 (Fig34E) across the pathologies.  
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Figure 34. Dot plots showing log2 transformed salivary levels (pg/mL) of (A) IL-1α, (B) IL-6, (C) IL-8, 

(D) IP-10, (E) MCP-1, (F) TNF-α, (G) HCC-1 and (H) PF-4 in patients with HL, PVL, early and advanced 

OSCC stages. Values represent mean ±SEM of n=33 per each group, where n is an average of two 

technical replicates. Kruskal-Wallis multiple comparisons followed by Dunn’s post hoc test were 

used to estimate statistical significance, considered for a p-value less than 0.05 and indicated with 

**** for p ≤ 0.0001; *** for p ≤ 0.001; ** for p ≤ 0.01 and * for p ≤  0.05; ns - no significance. 

1.5.5  Correlations among salivary cytokine levels  

Pearson's pairwise correlation test was carried out to find potential correlation among the 

cytokines within the control and pathology groups. Positive correlation between some 

analytes was observed in all the groups. In the control cohort (Table 8A, Supplementary 

tables), IL-1α was positively correlated with IL-8 and TNF-α, with statistically significant 

correlation (p =0.03 and 0.02, respectively). IL-6 showed association with IL-8, MCP-1, TNF-
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α, and HCC-1 (p = 0.002; 0.01; < 0.001 and 0.03, respectively). IL-8 with HCC-1 and TNF-α ( 

p = 0.01; < 0.001, respectively). A relationship was also found between TNF-α and HCC-1 (p 

= 0.02), as well among HCC-1 and PF-4 (p < 0.001). In the HL group (Table 8B, 

Supplementary tables), IL-6 exhibited notable relations with IL-8, TNF-α, HCC-1, and PF-4 

(p = 0.007; < 0.001; < 0.001 and 0.03, respectively). IL-8 was correlated with IP-10, MCP-1, 

TNF-α, HCC-1 and PF-4 (p = 0.009; 0.007; < 0.001; 0.01 and 0.03, respectively). IP-10 was 

associated with PF-4 and HCC-1 (p = 0.006; < 0.001, respectively). Considerable relation 

was found between MCP-1 and TNF-α (p = 0.003), TNF-α and HCC-1 (p < 0.001), and HCC-

1 and PF-4 (p = 0.003). Within the cohort of PVL patients (Table 8C, Supplementary tables), 

correlation was observed between IL-1α and IL-6, IL-8, MCP-1 and HCC-1 with significance 

of p = 0.002; < 0.001; 0.03; 0.003, respectively. IL-6 demonstrated considerable relation 

with IL-8, MCP-1, HCC-1 and PF-4 (p = 0.004; 0.02; 0.005; 0.01, respectively), while IL-8 with 

IP-10, MCP1-1 and HCC-1 (p =0.004; 0.003; < 0.001, respectively). IP-10 was positively 

correlated with MCP-1 and HCC-1 (p = 0.02; 0.03, respectively), MCP-1 with HCC-1 and PF-

4 (p < 0.001, for both) and TNF-α with HCC-1 and PF-4 (p = 0.008 and 0.02, respectively). 

Across the early OSCC sample set (Table 8D, Supplementary tables), significantly related 

were IL-1α with MCP-1 (p= 0.004), and TNF-α (p = 0.002), also IL-6 with IL-8 and TNF-α (p = 

0.005 and 0.008, respectively). A connection between elevated levels of IL-8 with MCP-1, 

TNF-α, HCC-1 and PF-4 was established with TNF-α at p = 0.002; < 0.001; 0.002 and 0.05, 

respectively), between MCP-1 and TNF-α (p = 0.02) and among TNF-α and HCC-1 (p < 

0.001). Within the advanced OSCC group (Table 8E, Supplementary tables), remarkable 

correlation was seen in IL-6 with IP-10 and TNF-α (p = 0.007 and < 0.001, respectively), in 

IL-8 with MCP-1, HCC-1 and PF-4 (p < 0.001, for all), in MCP-1 with PF-4 and HCC-1 (p = 

0.003 and < 0.001), and lastly among HCC-1 and PF-4 (p = 0.03).  

1.5.6  Multinomial regression analysis 

To assess the potential association of altered cytokine expression with the categories 

(control, HL, PVL early, and advanced OSCC), multinomial logistic regression analysis was 

performed. The groups were used as a response variable, considering the control as the 

reference category, while the mean values of the eight cytokines were used as dependent 

covariates. A significance table for regression has been generated, including all the analytes 

(Table 9A). As it can be seen, the Sig column indicates the association of each cytokine, 
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being statistically significant for one or more pathologies IL-1-α, IL-6, MCP-1, TNF-α, and 

PF-4. Regression model parameters were recalculated only with the analytes, significantly 

associated with the response variable (Table 9B). After recalculation of the p-values, the 

results support the statistical significance of the initially associated cytokines. 

Table 9A. Maximum likelihood estimation (MLE) of the influence of each of 

the eight covariates (cytokines) on a variable categorical response of 

multiple categories (control, HL, PVL early, and advanced OSCC groups). 

Effect 

Model selection 

criteria 
Maximum likelihood 

-2 log-likelihood 

of the reduced 

model 

Chi-squared groups Sig. 

Intersection 303.476 5.201 4 .267 

IL-1α* 325.974 27.699 4 .000 

IL-6* 310.432 12.157 4 .016 

IL-8 300.682 2.406 4 .661 

IP-10 308.376 10.100 4 .059 

MCP-1* 320.364 22.089 4 .000 

TNF-α* 324.551 26.275 4 .000 

HCC-1 302.794 4.519 4 .340 

PF4* 310.172 11.896 4 .018 

 

The chi-squared statistic is the difference in the -2 log-likelihoods between the 

final model and the reduced model (The -2 log and the chi-square indicate the 

goodness of the model by including each of the analytes). The reduced model is 

formed by omitting an effect from the final model. The null hypothesis is that all 

the parameters of this effect are 0. (significance * is set to p <0.05). 

 

Table 9B. Recalculated MLE with the statistically significant cytokines (IL-

1-α, IL-6, MCP-1, TNF-α, and PF-4). 

Effect 

Model selection 

criteria 
Maximum likelihood 

-2 log-likelihood of 

the reduced model 
Chi-squared  groups Sig. 

Intersection 318.749 4.827 4 .306 

IL1-α 338.918 24.997 4 .000 

IL-6 330.529 16.607 4 .002 

MCP-1 344.466 30.544 4 .000 

TNF-α 347.971 34.049 4 .000 

PF-4 327.255 13.334 4 .010 
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Regression analysis, shown in Table 10, reveals a potential correlation of IL-1α, IL-6, MCP-

1, TNF-α, and PF-4 with a concrete pathological group. Statistically, a significant association 

was noted between HL and PVL groups and IL-1α, TNF-α, and MCP-1, as well as between 

PF-4 and PVL groups.  Regarding the OSCC groups, an association is observed between both 

early and advanced stages with IL-1α and TNF-α, while IL-6 is likely related to advanced 

OSCC patients. 

Table 10. Summary of multinomial logistic regression analysis showing the significance 

of IL-1α, IL-6, MCP-1, TNF-α, HCC-1, and PF-4 in association with the pathology groups 

(HL, PVL, early and advanced OSCC). 

class B St E Sig. Exp(B) 

Confidence interval at 95% 

for Exp(B) 

Inferior 
limit 

Superior  
limit 

Advanced OSCC 

Intersection 4.611 4.623 .319    

IL-1α -1.504 .397 .000 .222 .102 .484 

IL-6 1.208 .455 .008 3.347 1.373 8.159 

MCP-1 -.670 .456 .142 .512 .209 1.252 

TNF-α 2.522 .572 .000 12.459 4.064 38.196 

PF-4 .182 .386 .638 1.200 .562 2.559 

Early OSCC 

Intersection 1.720 4.211 .683    

IL-1α -1.346 .348 .000 .260 .132 .515 

IL6 .845 .434 .051 2.327 .995 5.444 

MCP1 .117 .384 .761 1.124 .529 2.387 

TNF-α 2.004 .529 .000 7.420 2.630 20.930 

PF-4 -.019 .353 .957 .981 .491 1.961 

HL 

Intersection .413 3.876 .915    

IL-1α -.708 .305 .020 .493 .271 .896 

IL-6 .486 .415 .242 1.625 .721 3.666 

MCP-1 .654 .325 .044 1.923 1.017 3.635 

TNF-α .958 .472 .042 2.606 1.033 6.575 

PF-4 -.568 .303 .060 .567 .313 1.025 

PVL 

Intersection -3.022 3.998 .450    

IL-1α -.694 .316 .028 .499 .269 .928 

IL-6 .159 .428 .710 1.172 .507 2.712 

MCP-1 1.048 .337 .002 2.851 1.473 5.522 

TNF-α 1.093 .479 .023 2.983 1.167 7.626 

PF-4 -.617 .308 .045 .540 .295 .987 
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Multinomial regression analysis informs about the implication (measured by the coefficients B) of 

each of the analysed variables (cytokines) in the category of interest (studied group). The 

reference category is the control group; B = estimation of the regression coefficients, St E = 

Standard error, Sig = statistical significance at 95% confidence;p <0.05. In orange are marked 

significant cytokines according to the multiple regression analysis (MRA). In red are those, 

significant in both the MRA test and in the comparisons between the pathology groups against 

the control, shown in chapter 1.5. 
 

1.5.7  Association of cytokine levels with patients’ clinical variables 

For these analyses, a Bayesian model has been applied using directed acyclic graphing 

(DAG) and conditional probability methodology. DAGs have been constructed to establish 

existing associations between altered expression of the studied cytokines in the pathology 

groups (HL, PVL, early and advanced OSCC) and patient’s clinical variables. 

1.5.8  Correlation between altered cytokine expression and clinical variables of 

patients with HL and PVL 

To estimate the potential correlation between altered cytokine levels and clinical 

parameters of patients with HL and PVL, the following variables have been taken into 

consideration: 

 sex (two conditions: males and females) 

 smoking habits (three conditions: ex, current, and non-smokers) 

 oral location (6 conditions: lip, buccal mucosa, gingiva, tongue, the floor of the 

mouth, palate) 

 lesion clinical type (three conditions: homogeneous white plaques, verrucous 

lesions, and mixed type) 

 histologic features (two conditions: the presence of epithelial dysplasia (ED) and 

no ED 

 salivary levels of IL-1α, IL-6, IL-8, IP-10, MCP-1, TNF-α, HCC-1, and PF-4. 

 

The positive correlation found between cytokine concentration and clinical variables of HL 

and PVL patients is visualized in Figure 35. A relationship was observed between histologic 

features of premalignant lesions and HCC-1, which could be used to indicate the presence 
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of epithelial dysplasia (ED). IL-6 was correlated with HCC-1, thus it might be considered as 

an associated marker. However, probability values of HCC-1 and IL-6 to determine 

dysplasia remain close (Table 9A and B, Supplementary tables). TNF-α, PF-4, IL-6, IP-10, and 

IL-8 showed association with lesions clinical type, though an inter-cytokine correlation was 

also observed, suggesting a mutual influence on the expression levels. Information 

regarding the concentration ranges that maximizes the probability to associate the 

analytes with mixed, verrucous, and homogenous lesions is shown in Table 9 C, D, and E, 

respectively (Supplementary Tables). No correlation was found between sex, smoking 

habits, lesion oral location, and cytokine concentrations. 

 

Figure 35. DAG graph representing the correlation of altered cytokine expression with lesion clinical 

type and histologic features of patients diagnosed with HL and PVL. Clinical parameters for which 

correlation was not estimated are omitted from the graph.  

1.5.9  Correlation between altered cytokine expression and clinical variables of 

OSCC patients  

For correlation analysis of altered cytokine levels and clinical parameters of patients 

diagnosed at early and advanced OSCC stages, the following variables have been taken into 

account: 

 sex (two conditions: males and females) 
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 smoking habits (three conditions: ex, current, and non-smokers) 

 oral location (6 conditions: lip, buccal mucosa, gingiva, tongue, the floor of the 

mouth, palate) 

 lesion clinical type (three conditions: ulcerative, exophytic, and mixed) 

 lesion size (3 conditions: 0-2 cm;2-4 cm; >4 cm) 

 cervical adenopathy (2 conditions: yes and no) 

 histologic features (two conditions: well and not well-differentiated tumors)  

 expression levels of IL-1α, IL-6, IL-8, IP-10, MCP-1, TNF-α, HCC-1, and PF-4. 

Visual representation of correlations found between modulated salivary cytokine levels 

and OSCC patient’s clinical variables is shown in Figure 36. A direct relation was found 

between OSCC and TNF-α. Further, a direct association of OSCC histologic features was 

observed with HCC-1, MCP-1, and PF-4 and indirect with TNF-α which could be used to 

distinguish well from not well-differentiated tumors with relatively high probability (0.6 - 

0.8) considering the value ranges of the analytes (Table 10A and B, Supplementary tables). 

The presence of cervical adenopathy was positively correlated to IL-6 levels, which itself 

appeared associated with IP- 10. According to the concentration ranges of IL-6 and IP-10, 

the probability to signify the existence of cervical adenopathy in OSCC was shown to reach 

up to 0.8 (Table 10 C and D, Supplementary tables. No relation was found among sex, 

smoking habits, tumour oral location, clinical type, and size, and altered cytokine 

expression. 
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Figure 36. DAG graph representing the positive association between altered cytokine expression, 

histologic features, and the presence of cervical adenopathy in patients at early and advanced 

OSCC. Clinical parameters for which correlation was not estimated are omitted from the graph. 

1.6 Diagnostic potential of salivary cytokines  

To study the diagnostic potential of the eight cytokines, DAG methodology was utilized, 

integrating the following variables: 

 patient cohorts (with five states: Control, HL, PVL, early OSCC, and advanced OSCC) 

 expression levels of IL-1α, IL-6, IL-8, IP-10, MCP-1, TNF-α, HCC-1 and PF-4 

A Bayesian network using DAG methodology and conditional probability was implicated to 

establish an association between the pathology groups and the studied cytokines (Fig.37). 

The analysis showed a direct association of MCP-1, HCC-1, TNF-α, IL-6, IL-8, PF-4, and IP-10 

with the groups. Also, it can be seen that proteins are influenced by each other, such as 

TNF-α which appears affected by IL-6 but itself impacts HCC-1 and IL-8 levels. Thus, IL-6 is 

not influenced by the other analytes is suggested as a potential independent diagnostic 

marker with the probability of association with OSCC reaches up to 70% (Table 11E, 

Supplementary Tables). TNF-α, IL-8, PF-4, HCC-1, and IP-10 could be considered as 

associated biomarkers due to the established correlation with IL-6. Nevertheless, protein 
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concentration ranges remain very close, and the probability to differentiate between 

control, HL, PVL, and early OSCC less than 0.5 (Table 11 A, B, C, and D; Supplementary 

tables).  

 

Figure 37. DAG graph 

showing the correlation 

between altered cytokine 

levels and control, HL, PVL 

early, and advanced OSCC 

groups. 

 

 

 

 

 

 

 

 

 

2. Salivary N-glycome profiling 

This investigation was performed to describe and compare N-glycome profiles of patients 

with premalignant lesions (PVL), early and advanced OSCC stages, and age-matched 

controls.  

2.1 Participants’ features 

For N-glycan profiling, saliva samples were collected from twenty representatives among 

the recruited project participants and equally distributed into four groups according to the 

established case-control inclusion criteria (Table 12). Group 1 consisted of five PVL patients 

(mean age 67 years), Group 2 (mean age 74) and 3 (mean age 60) comprised 5 cases each, 
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including patients at early (I and II) and advanced (III and IV) OSCC stages, respectively. The 

Control - group 4 (mean age 55) included five healthy subjects, without visible oral lesions. 

Table 12. Participant information summary 

      Early Advanced 

  Controls PVL OSCC OSCC 

  (n=5) (n=5) (n=5) (n=5) 

Age 
(median ± SD) 

55 ± 9.8 67 ± 10.6 74 ± 4.5 60 ± 8.8 

Sex         

Male  1 2 1 3 

Female 4 3 4 2 

 

2.2 Identification and initial description of salivary N-glycans  

To clarify the glycan profiles of individuals with and without oral lesions, total N-glycans 

released from pooled salivary proteins were identified. Primary HILIC-MS sample analysis 

of controls, patients with PVL, early and advanced OSCC stages disclosed complex profiles 

with multiple peaks annotation, even after HILIC separation. MS data acquisition was 

crucial in performing an exhaustive characterization, revealing 90 compositions, firstly 

identified in the total salivary pool of the controls and subsequently in the other three 

groups. Next-generation LC-MS data assessment software (Progenesis QI) enabled 

statistical analysis of the identified compounds. The selection criteria were based on 1) 

ANOVA p-value of the mean intensity from nine technical replicates ≤0.05 and 2) N-glycan 

detection in the retention time frame period between 3.5-28 min. Summary including 

proposed N-glycan monosaccharide compositions, their experimental m/z values observed 

on the MS, theoretical masses, mass accuracy (ppm), and ion charge is shown in Table 13 

(Supplementary Tables). All compounds share a common core sugar sequence Manα1–

6(Manα1–3) Manβ1–4GlcNAcβ1–4GlcNAcβ1 (206) and due to their labeling with the 

fluorophore 2-AB, a terminal suffix -core 2AB was added for shortness. Full MS analysis of 

released N-glycans does not allow to perform an accurate determination of 

monosaccharides linkage positions; as a consequence, several chromatographic peaks with 

identical MS signals may correspond to isobaric N-glycans, described with identical 

monosaccharide composition. 
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2.3  N-glycan profiles of Controls, PVL, early and advanced OSCC stages 

PCA was conducted to estimate the capacity of salivary N-glycan profiles to discern 

between groups. Relative abundance profiles expressed statistical plots of glycan amount, 

grouped according to Progenesis QI criteria, defined above. The studied groups were 

distinguished by their first and second principal component scores (PC1 representing the 

direction of maximum variation and PC2- the highest variation through the data, 

respectively). The principal component biplot demonstrated segregation of control, PVL, 

early and advanced OSCC cases (Fig.38). PCA replicate clustering suggests group-specific N-

glycosylation patterns which differ between control and pathology cases, possibly related 

to disease-dependent N-glycomic aberrations. 

 

Figure 38.  The principal component plot of whole saliva N-glycans distribution using integrated 

HILIC-MS chromatograms of five pooled samples per group: Control - ❶, PVL - ❷, early OSCC -

❸ and advanced OSCC stages- ❹. Three independent sample fractions were evaluated within 

three technical replicates per group. 

Representative UPLC-HILIC-FLC chromatograms of saliva-derived N- glycans from control, 

patients with PVL, and early and advanced OSCC groups displayed complex N-glycomic 

profiles with multiple peaks (Fig.39). Quantitation of annotated peaks is related to the 

intensity of the MS signal of each glycan eluted at a certain retention time and was utilized 

to estimate relative abundance differences. To evaluate potential differences of saliva 

obtained N-glycans between healthy subjects, patients with PVL, and different OSCC 

stages, relative abundance was compared between the groups.  
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Figure 39. A representative UPLC-HILIC- fluorescent chromatograms of N-glycans derived from 

pooled salivary proteins of control, patients with PVL, early and advanced OSCC stages. Pictograms 

are representing the eight N-glycans exhibiting significantly different relative abundance in OSCC 

saliva, initially identified in the control pool of samples. Symbols: , N-acetylglucosamine; , 

mannose; , galactose; , fucose; , N-acetylneuraminic acid (sialic acid).  

 

After further statistical analysis of the annotated compounds, eight N-glycans exhibited 

significantly different relative abundance in OSSC compared to PVL and controls (Fig.39). 

Three out of eight demonstrated decreased relative abundance in OSCC patient saliva 

compared with PVL and Control. These glycans included core and antennary fucosylated 

tri-antennary glycan (m/z=1045.89, Fig 40A), core fucosylated tri-antennary glycan 

(m/z=1134.91, Fig 40B) and core and antennary fucosylated di-sialylated bi-antennary 

glycan (m/z=1389.50, Fig 40C).  
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Figure 40. Scatter diagrams of the three N-glycans showed decreased relative abundance in early 

(e) and advanced (adv) OSCC compared to PVL and controls. The dot plot of the relative abundance 

of (A) core and antennary fucosylated tri-antennary glycan (m/z=1045.89), (B) core fucosylated tri-

antennary glycan (m/z=1134.91), and (C) core and antennary fucosylated di-sialylated bi-antennary 

glycan (m/z=1389.50) in saliva. Abundance expression is presented as fold-change relative to 

Control (Control = 1). Difference between early and advanced OSCC versus PVL and Control groups, 

analysed by nonparametric Kruskal Wallis test where * P ˂ 0.05 OSCCversus Control and # P ˂ 0.05 

versus PVL. Data are shown as the mean of three technical replicates per group, each one consisted 

of 5 pooled samples (n=5). 

Among the eight N-glycans found to have considerably altered expression between control 

and pathology cases, five exhibited increased relative abundance in early as well as in 

advanced OSCC saliva. The dot plots representing their relative abundance were shown in 

Figure 41. The five N-glycans included core and antenna fucosylated/bi-fucosylated N-

linked glycan (m/z=842.81, Fig. 41A), core and antenna fucosylated/bi-fucosylated bi-

antennary glycan (m/z=944.35, Fig.41B), mono sialylated core fucosylated glycan 

(m/z=915.33, Fig.41C), bi-antennary N-linked glycan (m/z=717.27, Fig.41D) and N-linked 

glycan (m/z=696.75, Fig.41E). 
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Figure 41. Scatter diagrams of N-glycans showed increased relative abundance in the groups of 

patients with PVL, early (e), and advanced (adv) OSCC stages compared with Controls. The dot plot 

of the relative abundance of (A) core and antenna fucosylated glycan (observed at m/z=842.81), 

(B) core and antenna fucosylated bi-antennary glycan (observed at m/z=944.35), (C) mono 

sialylated core fucosylated glycan (observed at m/z=915.3), (D) bi-antennary glycan (observed at 

m/z=717.27) and (E) N-linked glycan (observed at m/z=696.75). Abundance expression is presented 

as fold-change relative to Control (Control = 1). Data are shown as the mean of three technical 

replicates per group, each one consisted of 5 pooled samples (n=5). * P ˂ 0.05 vs Control and # P ˂ 

0.05 vs. PVL. 

 

3. Salivary proteome profiling 

LC-Mass spectrometry (MS/MS) analysis was carried out for qualitative and quantitative 

salivary protein profiling of patients with potentially malignant disorder (PVL), at early and 

advanced OSCC stages, and healthy subjects. 

3.1  Participants demographic and clinical traits  

For the construction of the salivary proteome spectral library, saliva samples from ten 

patients at different OSCC stages were collected and subjected to LC-MS/MS analysis. A 

summary of their demographical and clinical traits is shown in Table 14A. The mean age of 

the OSCC patients was 63 years (range 41-95), including patients at early and advanced 

clinical stages. For salivary proteome profiling, forty whole saliva samples were selected 

and assigned into four groups (Table 14B). The median age of the PVL group was 65 years 

(range: 47-87). The median age of the early OSCC was 67 years (range: 53-85) and of the 

advanced OSCC group was 74.5 years (range: 58-95) comprised of ten cases each, including 

patients at I and II, and III and IV clinical stages, respectively. The Control - group also 
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consisted of ten volunteers, without visible oral lesions the mean age of whose was 58.5 

years (range: 48-82). 

Table 14. Characteristics of study participants in (A) OSCC salivary protein spectral library and (B) 

SWATH analysis and comparison of proteome profiles between patients with PVL, early, advanced 

OSCC stages, and healthy counterparts (controls), where n=10 per each group. 

 

A 
 

OSCC   B 
 

Control 
 

PVL 
early 
OSCC 

advanced 
OSCC 

Age 
(median±SD) 

 
63 ± 16.5  

Age  
(meadian±SD) 58.5 ± 10.8 65 ± 10.1 67 ± 11.55 74.5 ± 11.54  

Sex     Sex         

Male  4  Male 5 5 4 6 

Female  6  Female 5 5 6 4 

OSCC stages         
(I and II )  3       

(III and IV)  7       

3.2  Shotgun proteomics analysis of saliva samples 

The direct analysis of complex protein mixtures to generate a global profile of the protein 

complement within the mixture is referred to as shotgun proteomics. The shotgun 

approach was based on nano-LC separation followed by data-dependent acquisition (DDA) 

using nano ESI-Q-TOF MS. The obtained MS/MS spectra were automatically processed and 

submitted for search in the human protein sequence database for protein identification. 

Although there may be oral bacterial proteins present in the human whole saliva, due to 

the focus of the study to recognize only human proteins, identification searches were 

limited to the human species database. A peak list was generated directly from the wiff 

files (MS data format) (Fig.42). The Paragon algorithm (220) of ProteinPilot version 5.0 was 

used to search the Swissprot database (version 03-2018) with the following parameters: 

trypsin specificity, cys-alkylation, taxonomy restricted to human, and the search effort set 

to through. The protein grouping was done by the Pro group algorithm: a protein group in 

a Pro Group Report is a set of proteins that share some physical evidence. Unlike sequence 

alignment analyses where full-length theoretical sequences are compared, the formation 

of protein groups in the Pro Group was guided entirely by observed peptides only. Since 

the observed peptides are determined from experimentally acquired spectra, the grouping 

can be considered as guided by the usage of spectra.  

 



122 
 

 

Figure 42. Total Ion chromatogram (TIC) of ionized proteins in pooled OSCC saliva samples. 

Typically, in proteomics, a measure for characterizing the performance of a method is the 

computation of false discovery rate (FDR). It is the metric for the confidence assessment of 

a large-scale proteomics dataset. ProtScore is another measure of confidence for a 

detected protein, calculated from the peptide confidence for peptides from spectra that 

are not already completely “used” by higher-scoring winning proteins. For building the 

OSCC spectral library were considered proteins that showed Protscore units >1.3 

corresponding to ≥ 95% of identification confidence and with 1% Global FDR Fit. After 

removing the redundant assignments, in total 1053 proteins have been identified (Table 

15) in the total salivary pool of OSCC whole saliva. 
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Table 15. Number of proteins identified at critical false discovery rate types in OSCC saliva 

 

FDR- false discovery rate; Local FDR –measures the FDR of an individual ID; Global FDR measures the FDR 

of a collection of IDs 

Out of the 1053 proteins identified, 691 proteins (76%) were matched with two or more 

peptides. However, the other 234 (24%) were identified based on single hits. If a single 

peptide satisfied the criteria of Swissprot search, then it was assumed that its original 

protein existed in the fraction. 

3.3 Salivary proteome profiles of controls, patients with PVL, and OSCC stages  

To discover alterations of proteome profiles, SWATH analysis was used for quantification 

of proteins in 40 saliva samples: 10 PVL, 10 early and 10 advanced OSCC patients and 10 

control subjects without oral lesions. These patients and healthy individuals were matched 

in terms of sex, ethnicity, and age to minimize potential variation from these factors during 

the discovery phase. Protein samples were initially loaded into SDS/PAGE and subsequent 

in-solution tryptic digestion with LC-MS/MS of the resulting peptides allowed the 

identification of proteins in each collected fraction. The retention times were aligned 

among the different samples using main protein peptides. The chromatogram of the 

fragment ions stored in the spectral library was extracted and their peak areas were 

determined. SWATH generated information regarding the relative abundance of 691 

proteins, overlapping between disease and control. Annotation including UniProt protein 

ID, name and logarithmically transformed mean of 10 individual samples (log2Med) per 

each group (control, PVL, early and advanced OSCC) and main subcellular location are 

shown in Table 16 (Supplementary Tables). Figure 43 represents quantitative data 

distribution, showing similar dispersion across the individual samples in each group. Out of 

the 691 proteins (FDR <1%), 340 (49.2%) were quantified with three or more peptides, 

while 351 (50.8 %) were quantified based on one or two peptide matches.  

Critical FDR Local FDR Global FDR Global FDR from Fit

1.0% 817 891 1053

5.0% 931 1284 1259

10.0% 1065 1408 1379

       * It is recommended you use numbers in bold and avoid using numbers in italics.

Proteins Identified at Critical False Discovery Rates

Number of Proteins Detected
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Figure 43. Box plot showing the distribution of normalized quantitative protein data across 

individual saliva samples of PVL, early and advanced OSCC (eOSCC and adOSCC, respectively), and 

control (ctrl) cohorts; n=10 per each group. 

To evaluate the capability of salivary proteome profiles for disease grouping, statistical 

tests of reduction of the dimensionality such as principal component analysis (PCA) and 

discriminant analysis DA (both with Pareto scaling) were carried out. Integration data for 

40 samples were aligned and subjected to multivariate PCA analysis, summarizing the 

overall variability among individuals. The groups investigated, control, PVL, early and 

advanced OSCC, are distinguished by their first and second principal component scores 

(PC1 and PC2, respectively). The PC plot showed partial segregation of control and 

pathologies profiles (Fig.44).  
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Figure 44. PCA plot of whole saliva proteomes profiles of 10 individuals per Control, PVL, early and 

advanced OSCC group, based on first and second PC scores. 

 

DA relies on data transformation using PCA as a prior step, which ensures that variables (in 

this case, the studied groups) submitted to DA are uncorrelated and that their number is 

less than that of analysed individuals. This multivariate method was used to identify 

clusters of related samples, overlooking within the defined groups. Observed clustering of 

control, PVL, early and advanced OSCC proteome profiles indicates differentiation and 

variability between the investigated groups (Fig.45). 
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Figure 45. Discriminant analysis of whole saliva proteome profiles belonging to 10 PVL, 10 early, 10 

advanced OSCC patients, and 10 healthy controls based on the first and second discriminant scores. 

 

3.4 Differentially expressed proteins  

To determine what proteins have the potential to differentiate PVL, early, advanced OSCC, 

and control groups, quantitative data were logarithmically transformed and z-scores were 

calculated. The heat map in Fig.46 displays columns clustering individual samples and rows 

quantified proteins, both represented in an order according to a hierarchical classification 

with standardized values, to avoid scaling issues. Differences are observed at protein level, 

but they cannot be associated with the investigated groups. Differential proteins among 

the four groups are listed in Table 17 (Supplementary tables) 
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Figure 46. Cluster analysis and heat map of quantified proteins in 10 saliva samples from patients 

with PVL, different OSCC clinical stages, and control subjects.  Proteins are clustered in rows and 

samples in columns. The colour key at the top of the heat map shows group clumps as PVL- purple; 

early (e) OSCC – blue; advanced (a) OSCC- green and control (ctrl) - red. The scale at the right top 

shows log2 normalized protein abundance and ranges from low (green) to high (red) levels, 

according to the Z-score value. The heat map scale of Z scores ranges from -4.5 (green) to 4.5 (red) 

with a midpoint of 0.0 (black). 

Partial least squares discriminant analysis (PLS-DA) enables the selection of the most 

predictive and discriminative features in the data that allow categorization of samples 

using a linear classification model. A PLS-DA classification plot was generated, using 

quantitative data of the annotated proteins per each of the studied groups. In Fig.47 it can 

be observed segregation of control from pathology cases, however PVL, early and 

advanced OSCC samples did not show clear distribution according to the group of 

belonging.  
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Figure 47. PLS-DA classification plot of whole saliva proteins from controls (green), PVL (blue), early 

OSCC (black), and advanced OSCC (red) patients based on quantitative SWATH data. 

When compared the four groups together, the database contained many more rows than 

columns in the heat map and PLS-DA did not result in differentiation of PVL and OSCC 

groups. To reduce the number of the predictive variables (proteins), binomial logistic 

regression analysis was performed. The examination of the following group pairs included 

the application of Lasso and Elastic net penalization models, eliminating the non-important 

proteins according to regression parameters and thus acting as variable selection methods. 

A cluster analysis based on the Elastic Net (EN) criteria revealed a higher number of 

proteins than Lasso that could be used to discriminate the studied groups. A heat map was 

generated for each two by two group comparisons visualizing the resulted proteins 

expression trends in logarithmically transformed values and samples clustering based on 

the diagnosis. 
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3.4.1 Control vs PVL 

Appling the EN penalization at the database of control and PVL samples resulted in thirteen 

differential proteins presented on a heat map in Fig.48A. It can be appreciated that the 

samples are clustered according to their group of belonging.  At protein level, two clusters 

were formed, showing clear differentiation between the two groups. Discriminative 

analysis classified the samples according to the pertained group, although a certain level 

of variability is seen within the control group (Fig.48B).  

 

Figure 48. A Heat map and cluster analysis of EN-selected proteins that differ between control (red) 

and PVL (blue) groups. The heat map scale of Z scores ranges from -2.5 (green) to 2 (red) with a 

midpoint of 0.0 (black). B Classification of control (black) and PVL (red) samples according to PLS-

DA.  

The summary of the differentially expressed proteins between control and PVL patients is 

shown in Table 18. Most of them were intracellular proteins, identified with more than two 

peptide sequences. Intracellular proteins, GLUL, FSCN1, CASP14, and EIF3F were found 

significantly upregulated (Table 18, dark grey), while nine proteins were downregulated, 

(Table 18, light grey) in PVL than in control subjects. Sensitivity and specificity analysis 

described how well the differentially expressed proteins discriminate between controls 

and PVL patients. Predictive models of these proteins are represented as ROC area under 

the curves (AUC) (Fig.49, Supplementary figures).  Upregulated GLUL, FSCN1, CASP14, 

EIF3F, as well as downregulated PGLS, SPARKCL1, VCL, HSPA9, TUFM, SCMH1, FKBP1A, 

DLST, and PFN1 revealed high AUC values (AUC 0.78-0.99)(Table 18). 



130 
 

1Table 18. List of differential proteins between control and PVL groups. The UniProt protein ID and 

name, are presented. The representative identification with the number (#) of peptides with which 

a protein was determined, relative abundance (log2Med), FDR adjusted t-test p-value, and ROC 

AUC value are given in each case. 

Protein 
ID 

 
Protein name 

 
# peptides  

Ctrl 
log2Med 

 PVL 
log2Med 

 
P-value 

 
FDR 

  AUC 
 value 

P15104 Glutamine synthetase (GLUL) 6 1,09872 2,03313  0,000  0,017 0.96  

Q16658 Fascin (FSCN1) 2 -1,34620 -0,54709  0,000  0,003 0.94  

P31944 Caspase-14 (CASP14) 2 -2,91580 -1,43862  0,019  0,158 0.79  

O00303 Eukaryotic translation 
 initiation factor 3 (EIF3F) 

1 -4,54957 -3,32403  0,004  0,074 0.89  

O95336 6-phosphogluconolactonase 
(PGLS)   

3 -0,48959 -1,49832  0,001  0,052 0.92  

Q14515 SPARC-like protein 1 
(SPARKCL1) 

3 0,82698 -0,83802  0,000  0,015 0.95  

P18206 Vinculin (VCL) 2 -1,22474 -2,50558  0,000  0,034 0.78  

P38646 Stress-70 protein (HSPA9) 2 0,34551 -1,02219  0,000  0,006 0.96  

P49411 Elongation factor Tu, 
mitochondrial (TUFM) 

1 -1,78584 -3,58591  0,001  0,048 0.91  

Q96GD3 Polycomb protein (SCMH1)  1 1,52100 -0,27064  0,000  0,004 0.99  

P62942 Peptidyl-prolyl cis-trans 
isomerase (FKBP1A) 

1 -0,76465 -2,42972  0,000   0,026 0.90  

P36957 Dihydrolipoyllysine-residue 
succinyltransferase (DLST) 

1 2,37812 0,30745  0,000  0,006 0.99  

P07737 Profilin-1 (PFN1) 7 3,19348 2,40510  0,004  0,073 0.88  

Log2Med – the average normalized relative abundance of control (Ctrl) and PVL samples (n=10, per group); FDR -false 
discovery rate; AUC- area under the curve 

 Functional analysis  

The nature of differentially expressed proteins between the studied was further 

characterized by generating protein-protein interaction maps, followed by GO enrichment 

analysis provided by String bioinformatics resources. The network contained 13 proteins 

(nodes) and 5 possible functional relations analysed at medium stringency (Fig.50). No 

biological function was enriched in this loosely connected network. An association to a 

cellular component (myelin sheath) was suggested between fascin (FSCN1), stress-70 

protein (HSPA9), elongation factor Tu (TUFM), dihydro-lipoyl lysine-residue 

succinyltransferase (DLST), and glutamine synthetase (GLUL).  
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Figure 50. STRING protein-protein interaction network functional enrichment analysis of 

differentially expressed proteins identified in PVL patients, displayed by String version 11.0 

using default settings and medium stringency. Number of nodes/proteins: 13; number of 

edges: 5; The light blue lines represent database evidence; the purple lines represent 

experimental evidence, the yellow lines represent text mining evidence, and the black lines 

represent co-expression evidence 

3.4.2 Control vs early OSCC 

A heat map visualizing differentially expressed proteins between controls and patients at 

early OSCC is displayed in Fig.51A. It can be seen that samples are clustering per their 

groups of belonging, except for one control which was classified as early OSCC. EN 

penalization regression analysis sorted 31 proteins, forming two clumps that distinguish 

controls from patients at early OSCC. Samples distribution according to the pertaining 

group is observed as well on a PLS-DA plot (Fig.51B). Information including name, protein 

ID, and quantitative data of the proteins differentially expressed in early oral cancer stages 

is summarised in Table 19. 
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Figure 51. A Heat map and cluster analysis of EN-selected proteins discriminating the control (red) 

and early OSCC (blue) groups. The heat map scale of Z scores ranges from -3 (green) to 2.5 (red) 

with a midpoint of 0.0 (black). B Classification of control (black) and early OSCC (red) samples based 

on PLS-DA. 

From the total of 31 proteins, 18 revealed significantly higher abundance (Table 18, 

highlighted in dark grey), while 13 proteins were found downregulated (Table 18, 

highlighted in light grey) among which, 8 were considerably lower in disease compared to 

healthy controls. ROC analysis were carried out for proteins, differentially expressed in 

early OSCC stages with p values less than 0.05. The optimal predictive models of 18 

upregulated (Fig.52A, Supplementary figures) and 8 downregulated (Fig.52B, 

Supplementary figures) proteins to discern between health and disease are presented by 

ROC curves. The candidate markers denoted high AUC values ranging from 0. 79 to 0.91 

(Table 19). 

Table 19. List of differential proteins between control and early OSCC groups. The UniProt protein 

ID and name are presented. The representative identification with the number (#) of peptides with 

which a protein was determined, quantification data (log2Med), FDR adjusted t-test p-value, and 

ROC AUC value are given in each case. 

 
Protein 

ID 

 
 
Protein name 

 
# 

peptides  

 
Ctrl  

log2Med 

 
 e OSCC 

log2Med 

 
 

P-value  

 
 

FDR 

 
AUC 

value 

P00738 Haptoglobin (HP) 25 3,60423 4,87209 0,019 0,740 0.79 

P02647 Apolipoprotein A-I (APOA1) 23 3,20770 5,12679 0,003 0,304 0.89 

P02790 Hemopexin (HPX) 23 2,91270 4,08118 0,012 0,472 0.83 

P31151 Protein S100-A7 (S100A7) 6 0,20957 2,04262 0,001 0,257 0.91 

P15104 Glutamine synthetase (GLUL) 6 1,09872 2,05611 0,000 0,017 0.95 

P05155 Plasma protease C1 inhibitor  
(SERPING1) 

5 0,74750 1,91991 0,005 0,523 0.83 
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P01019 Angiotensinogen (AGT) (Serpin 
A8)  

4 -1,47282 -0,54400 0,012 0,715 0.87 
 

P02763 Alpha-1-acid glycoprotein 1 
(ORM1) 

3 1,83116 3,00827 0,005 0,542 0.83 

P02766 Transthyretin (TTR) 9 1,63343 2,66232 0,004 0,601 0.84 

P04004 Vitronectin (VTN) 3 -0,54775 0,76418 0,019 0,556 0.81 

P02760 Protein (AMBP) 3 -0,94109 0,15483 0,002 0,891 0.88 

Q9NZT1 Calmodulin-like protein 5 
(CALML5) 

1 -2,15815 -0,86554 0,003 0,279 0.87 

Q9H0U4 Ras-related protein Rab-1B 
(RAB1B) 

2 -3,59031 -2,96119 0,003 0,330 0.86 

P31944 Caspase-14 (CASP14) 2 -2,91580 -1,22511 0,008 0,331 0.85 

P19652 Alpha-1-acid glycoprotein 2 
(ORM2) 

2 -0,25768 0,94662 0,003 0,291 0.87 

P00747 Plasminogen (PLG) 2 -2,19744 -0,65306 0,014 0,367 0.85 

P17900 Ganglioside GM2 activator 
(GM2A) 

2 -0,99859 -0,23336 0,004 0,282 0.88 

P23381 Tryptophan--tRNA ligase (WARS) 1 -3,64075 -2,47218 0,020 0,392 0.77 

O75608 Acyl-protein thioesterase 1 
(LYPLA1) 

1 -2,88597 -2,23653  0,064 0,504 - 

P08670 Vimentin (VIM) 7 1,82216 0,70968 0,028 0,105 0.86 

P07737 Profilin-1 (PFN1) 7 3,19348 2,55143 0,004 0,073 0.88 

Q9UM07 Protein-arginine deiminase type-
4 (PADI4) 

3 0,28529 -0,85725 0,025 0,145 0.80 

P04040 Catalase (CAT) 10 2,13757 1,40698 0,022 0,332 0.78 

Q14134 Tripartite motif-containing 
protein 29 (TRIM29) 

4 1,22068 -0,00939 0,018 0,768 0.78 

Q05315 Galectin-10 (CLC) 3 0,040364 -0,844096 0,068 0,431 - 

P01036 Cystatin-S (CST4) 2 3,67884 0,48451 0,002 0,477 0.89 

P26583 High mobility group protein B2 
(HMGB2) 

2 0,08814 -1,49674 0,011 0,359 0.70 

P62942 Peptidyl-prolyl cis-trans 
isomerase (FKBP1A) 

1 -0,76465 -2,19694 0,008 0,334 0.84 

P62277 40S ribosomal protein S13 
(RPS13) 

2 -0,89755 -1,59949 0,069 0,499 - 

Q96BQ1 Protein (FAM3D)  2 -0,45627 -0,98242 0,069 0,503 - 

O15145 Actin-related protein 3 (ARPC3) 1 -1,89475 -3,14059 0,259 0,760 - 

Log2Med – average normalized relative abundance of control (Ctrl) and early (e) OSCC samples (n=10 per 
group); FDR- false discovery rate; AUC- area under the curve 

 Functional analysis 

For a more detailed functional analysis of the differentially expressed proteins, gene 

ontology (GO) analysis was performed; the biological process and molecular function 

according to GO (http://www.geneontology.org/) were examined. The altered 31 proteins 

showed a highly interconnected protein-protein interaction network with 58 interactions 

analysed at medium stringency (Fig.53A). As summarized in Fig.53B, the mapped genes 

were associated with 124 biological processes and 11 molecular functions. The highest rank 

biologic processes were vesicle-mediated transport and secretion (exocytosis) (FDR < 

0.005) and immune response. The highest association with the molecular function was 

http://www.geneontology.org/
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inhibition of enzymatic activities, and receptor-associated protein activity (signaling) (FDR 

< 0.05). 
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                         B 

GO term ID Pathway description Observed  
gene count 

 
FDR 

I.Biological process      
 

  

GOTERM_BP first 9 out of 124 chart records   

GO:0016192 vesicle-mediated transport 16 1.56e-06 

GO:0045055 regulated exocytosis 11 4.25e-06 

GO:0032940 secretion by cell 12 6.74e-06 

GO:0006955 immune response 14 1.06e-05 

GO:0002376 immune system process 16 2.63e-05 

GO:0006810 transport 20 4.81e-05 

GO:0002443 leukocyte mediated immunity 9 7.19e-05 

GO:0002252 immune effector process 10 0.00010 

GO:0002682 regulation of immune system 
process 

12 0.00010 

II. Molecular function   
 

  

GOTERM_MF first 6 out of 11 chart records   

GO:0004857 enzyme inhibitor activity 6 0.0077 

GO:0004866 endopeptidase inhibitor 
activity 

4 0.0077 

GO:0005102 signaling receptor binding 10 0.0077 

GO:0005515 protein binding 21 0.0077 

GO:0030234 enzyme regulator activity 8 0.0077 

GO:0042802 identical protein binding 11 0.0077 

 

Figure 53. The protein-protein interaction network and functional 

classification (A) of up and down-regulated proteins in early OSCC. 

Number of nodes: 31; number of edges: 58; each node represents a 

protein and the edges represent the interconnectivity. The enrichment 

table of GO terms (B) calculated by String of differentially expressed 

proteins is shown indicating the number of proteins belonging to each 

term and the false discovery rate (FDR). 

3.4.3 Control vs advanced OSCC 

Binominal logistic regression analysis revealed 29 proteins with the potential to differ 

patients at advanced OSCC stages from their healthy counterparts. On the heat map shown 

in Fig.54A can be seen that the samples were well grouped as per control and advanced 

OSCC and a series of differential proteins with discriminating profiles between the 

investigated groups. Case-control sample arrangement was further noted on a PLS-DA 

classification plot (Fig.54B). 
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Figure 54. A Heat map and cluster analysis showing EN-selected proteins distinctive for control and 

advanced OSCC groups. Clusters of control (red) and advanced OSCC (blue) samples are shown at 

the top of the heat map. The heat map scale of Z scores ranges from -2.5 (green) to 2 (red) with a 

midpoint of 0.0 (black). B PLS-DA classification plot of proteins from control (black) and advanced 

OSCC (red) samples. 

A summary of the 29 proteins with altered abundance in patients at advanced OSCC group 

is displayed in Table 20. The comparative analysis determined 10 representatives with 

increased abundance (Table 20, dark grey), whereas, 16 out of the 29 proteins with 

reduced expression (Table 20, light grey) were considerably low in disease.  ROC analysis 

were used to determine the discriminatory efficacy of statistically significant, differentially 

expressed proteins between control and advanced OSCC individuals. The diagnostic 

performance of 10 up- (Fig.55A, Supplementary figures) and 16 downregulated (Fig.55B, 

Supplementary figures) markers in advanced OSCC is represented by AUC values reaching 

up to 1.00 (Table 19). 

Table 20. List of differential proteins between control and advanced OSCC groups. The UniProt 

protein ID and name are presented. The representative identification with the number (#) of 

peptides with which a protein was determined, relative abundance (log2Med), FDR adjusted t-test 

p-value, and ROC AUC value are given in each case. Log2Med – the average normalized relative 

abundance of controls (Ctrl) and advanced (adv OSCC) samples (n=10 per group); FDR- false 

discovery rate; AUC- area under the curve. 

Protein 
ID 

 
Protein name 

# 
peptides  

Ctrl 
log2Med 

adv OSCC 
log2Med 

 
P-value 

 
FDR 

AUC 
value 

P01009 Alpha-1-antitrypsin  (SERPINA1)  27 4,86531 6,90271 0,002 0,071 0.88 

P02790 Hemopexin (HPX) 14 2,91270 5,10540 0,002 0,074 0.91 

P01011 Alpha-1-antichymotrypsin (GIG25) 9 1,74022 3,11680 0,002 0,071 0.87 
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P01859 Immunoglobulin heavy constant gamma 2 
(IGHG2) 

6 4,72908 6,58322 0,002 0,072 0.88 

P31151 Protein S100-A7 (S100A7) 6 0,20957 2,00364 0,001 0,081 0.87 

Q9Y6N5 Sulfide:quinone oxidoreductase (SQRDL) 3 -1,18584 -0,08147 0,001 0,083 0.97 

P02763 Alpha-1-acid glycoprotein 1 (ORM1) 3 1,83116 4,10635 0,000 0,052 0.96 

P05155 Plasma protease C1 inhibitor 
(SERPING1) 

5 0,74750 2,82388 0,002 0,075 0.89 

P19971 Thymidine phosphorylase  (TYMP)  4 -0,83235 0,46389 0,000 0,008 0.96 

P19827 Inter-alpha-trypsin inhibitor heavy chain H1 
(ITIH1) 

2 -2,30813 -0,23171 0,001 0,076 0.91 

P61626 Lysozyme C (LYZ) 8 6,63884 5,46381 0,005 0,098 0.84 

P26038 Moesin (MSN) 9 1,16920 0,88757 0,186 0,486 - 

Q96DA0 Zymogen granule protein 16 homolog B 
(ZG16B) 

10 9,86591 8,51886 0,002 0,072 0.90 

P08670 Vimentin (VIM) 7 1,82216 1,09198 0,012 0,132 0.83 

P07737 Profilin-1 (PFN1) 7 3,19348 2,57842 0,011 0,134 0.86 

Q8TAX7 Mucin-7 (MUC7) 2 0,98353 -0,33505 0,012 0,133 0.82 

P18206 Vinculin (VCL) 2 -1,22474 -2,26852 0,005 0,095 0.79 

P18124 60S ribosomal protein L7 (RPL7) 2 0,89230 0,03433 0,000 0,025 0.97 

P05089 Arginase-1 (ARG1) 2 -1,89678 -2,47578 0,111 0,384 - 

P49411 Elongation factor Tu (TUFM) 1 -1,78584 -3,46530 0,000 0,046 0.90 

P26583 High mobility group protein B2 (HMGB2) 2 0,08814 -1,52601 0,001 0,076 0.82 

P51571 Translocon-associated protein subunit delta 
(SSR4) 

1 -3,88640 -5,05475 0,051 0,262 - 

P12830 Cadherin-1  (CDH1) 2 -0,33364 -0,80704 0,021 0,168 0.70 

Q14515 SPARC-like protein 1 (SPARCL1) 3 0,82698 -0,33638 0,007 0,111 0.81 

O15511 Actin-related protein 2/3 complex subunit 5 
(ARPC5) 

1 0,85735 0,17522 0,000 0,007 0.96 

P38646 Stress-70 protein (HSPA9) 2 0,34551 -2,22214 0,000 0,000 1.00 

Q96GD3 Polycomb protein (SCMH1)  1 1,52100 -2,84126 0,000 0,000 1.00 

P36957 Dihydrolipoyllysine-residue 
succinyltransferase (DLST) 

1 2,37812 -0,94362 0,000 0,000 1.00 

Q99943 Protein G15 (AGPAT1) 1 3,03251 0,75315 0,001 0,071 0.87 

Log2Med – average normalized abundance of controls (Ctrl) and advanced (adv OSCC) samples (n=10 per 
group); FDR- false discovery rate. 

 

 Functional analysis 

The String network analysis of 29 proteins with altered abundance demonstrated 32 

possible interactions (Fig.356A). A cluster of proteins involved in the regulation of 

exocytosis including SERPING1, SERPINA1, GIG25, ORM1, ARG, LYY, S100A7, and VCL was 

observed. The highest rank biologic processes and association with molecular functions 

(both, FDR < 0.05) are reported in Fig. 34B. The enriched functions indicate active 

regulatory mechanisms implicating the immune system, inhibition of endopeptidase 

enzymatic activity as well structural constituents of the actin cytoskeleton (Fig.56B).  
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                  B 

GO term ID  
Pathway description 

Observed 
 gene count 

 
FDR 

I. Biological process  (1/ 29 genes not included)     

GOTERM_BP first 7 out of 22 chart records     

GO:0002376 immune system process 14 0.00021 

GO:0002443 leukocyte mediated immunity 9 0.00021 

GO:0006955 immune response 12 0.00021 

GO:0043312 neutrophil degranulation 8 0.00021 

GO:0045055 regulated exocytosis 9 0.00021 

GO:0045321 leukocyte activation 9 0.00021 

GO:0002682 regulation of immune system process 10 0.00075 

II. Molecular function     

COTERM_MF 5 charts total   

GO:0004867 serine-type endopeptidase inhibitor 
activity 

4 0.0017 

GO:0050786 RAGE receptor binding 2 0.0080 

GO:0005200 structural constituent of cytoskeleton 3 0.0111 

GO:0003779 actin binding 4 0.0449 

GO:0005198 structural molecule activity 5 0.0449 
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Figure 56. A Functional interaction network of 28 identified proteins with 

differential abundance in advanced OSCC showing 32 interconnections 

(edges) and B the enrichment table of GO terms indicating the number of the 

proteins belonging to each term and the FDR calculated by String annotation 

tool. 

3.4.4 PVL vs early OSCC 

EN penalized binary regression analysis of control and PVL database resulted in a group of 

twelve differential proteins shown via a heat map on Fig.57A. It can be perceived that the 

samples were assembled in compliance with the related pathology groups.  At protein 

level, differential expression was observed in two clusters. Discriminative analysis classified 

the samples as PVL and early OSCC group (Fig.57B), though, the last disclosed relatively 

high variability between the individual samples.  

 

Figure 57. A Heat map and cluster analysis showing EN-selected proteins distinctive for PVL and 

early OSCC groups. Clusters of PVL (red) and early OSCC (blue) samples are shown at the top of the 

heat map. The heat map scale of Z scores ranges from -3.5 (green) to 2.5 (red) with a midpoint of 

0.0 (black). B Classification plot of PVL (red) and early OSCC (black) samples according to PLS-DA. 

Among the differential proteins, 9 exhibited elevated (Table 21, dark grey) and 3 declined 

expression (Table 21, light grey) in early OSCC than in patients with PVL. Ras-related protein 

Rab-1B (RAB1B), vinculin (VCL), prostaglandin reductase 1 (PTGR1), immunoglobulin heavy 

constant gamma (IGHG), stress-70 protein (HSPA9), and Dihydrolipoamide S-

succinyltransferase (DLST) were observed significantly upregulated, whereas keratin, type 

II (KRT84), and plakophilin-1 (PKL1) showed considerable downregulation. Sensitivity and 

specificity estimation demonstrated the capacity of 6 proteins with significantly higher 
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(Fig.58A, Supplementary figures) and 2 with significantly lower (Fig58B, Supplementary 

figures) expressions to discriminate between patients with PVL and early stages OSCC 

lesions. ROC curve analysis revealed valuable candidates demonstrating AUC values 

greater than 0.7. 

Table 21. List of differential proteins between PVL and early OSCC groups. The UniProt protein ID 

and name are presented. The representative identification with the number (#) of peptides with 

which a protein was determined, quantification data (log2Med), FDR adjusted t-test p-value, and 

ROC AUC value are given in each case. 

Protein 
ID 

Protein name # 
peptides 

PVL 
log2Med 

e OSCC 
log2Med 

p-value FDR AUC 
value 

P06870 Kallikrein-1 (KLK1) 9 2,40589 3,02643 0,215 0,809 - 

Q9H0U4 Ras-related protein Rab-1B (RAB1B) 2 -3,51928 -2,96119 0,002 0,343 0.89 

P18206 Vinculin (VCL) 2 -2,50558 -1,48434 0,002 0,299 0.88 

Q14914 Prostaglandin reductase 1 (PTGR1) 2 -1,38119 -0,42372 0,047 0,667 0.75 

P01860 Immunoglobulin heavy constant  
gamma 3 (IGHG3) 

4 0,40378 1,73537 0,008 0,512 0.87 

P68036 Ubiquitin-conjugating enzyme E2 
(UBE2L3) 

1 -4,40966 -3,50060 0,072 0,700 - 

P38646 Stress-70 protein (HSPA9) 2 -1,02219 0,78660 0,000 0,014 1.00 

P30040 Endoplasmic reticulum resident  
protein 29 (ERP29) 

1 -2,40397 -1,81484 0,054 0,668 - 

P36957 Dihydrolipoamide S-succinyltransferase 
(DLST) 

1 0,30745 2,47004 0,000 0,029 0.99 

Q9NSB2 Keratin, type II cuticular Hb4 (KRT84) 12 2,47599 0,77594 0,018 0,634 0.72 

Q13835 Plakophilin-1 (PKP1) 6 2,58738 1,69214 0,001 0,254 0.80 

P51159 Ras-related protein Rab-27A (RAB27A) 2 0,98253 0,47872 0,279 0,793 - 

Log2Med – average normalized relative abundance of PVL and early (e) OSCC samples (n=10 per group); FDR- 
false discovery rate; AUC- area under the curve  

  Functional analysis 

The network of PVL differentially expressed proteins contained 11 components (nodes) 

with only 3 possible relations indicating that there were no significant interactions (Fig.59). 

No enrichment of biological function was indicated, either. However, a functional 

connection was suggested between HSPA9 - mitochondrial chaperone protein playing an 

important role in the mitochondrial iron-sulfur cluster (ISC) biogenesis; VCL - actin filament 

(F-actin)-a binding protein involved in cell-matrix adhesion and cell-cell adhesion; RAB27A 

- plays a role in cytotoxic granule exocytosis in lymphocytes, and RAB1B - a small protein 

with GTPase activity, key regulators of intracellular membrane trafficking. 
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Figure 59. Functional interaction network 

of differentially expressed proteins in PVL 

generated by String 11.0 using default 

settings and medium stringency. Number of 

nodes: 11; number of edges: 3; 

 

 

 

3.4.5 PVL vs advanced OSCC 

EN regularization of protein expression data obtained from advanced OSCC and PVL 

samples was represented with a heat map on Fig.60A, revealing ten proteins sorted in two 

clusters with differential expression patterns within the two groups. PLS-DA affirmed 

sample grouping after the pathology group of belonging (Fig.60B). 

 

Figure 60. A Heat map and cluster analysis of EN-selected proteins distinctive for the PVL (blue) and 

advanced OSCC (red) groups are shown at the top of the heat map. The heat map scale of Z scores 

ranges from -2.5 (green) to 2.5 (red) with a midpoint of 0.0 (black). B PLS-DA classification of PVL 

(red) and early OSCC (black) samples. 

Amongst the outlined proteins, 2 were notably increased in advanced OSCC (Table 22, dark 

grey). Significantly reduced abundance was estimated in 3 out of the 7 downregulated 

proteins (Table22, light grey). Gene ontology analysis did not reveal any functional relation 
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among the 10 mapped genes. ROC curves represent predictive models of 2 significantly 

increased (Fig.61A, Supplementary figures) and 3 decreased (Fig.61B, Supplementary 

figures) proteins in advanced OSCC compared to PVL patients. The markers exhibited 

discriminatory capacity reported by AUC values ranging from 0.83 to 0.99 (Table 22). 

Table 22. List of differential proteins between PVL and advanced OSCC groups. The UniProt protein 

ID and name are presented. The representative identification with the number (#) of peptides with 

which a protein was determined, relative abundance (log2Med), FDR adjusted t-test p-value, and 

ROC AUC value are given in each case. 

Protein 
ID 

 
Protein name 

# 
peptides  

 PVL 
log2Med 

adv OSCC 
log2Med 

 
P-value 

 
FDR 

AUC 
value 

P02750 Leucine-rich alpha-2-glycoprotein 
(LRG1) 

2 -1,28119 1,13842 0,000 0,016 0.94 

P19827 Inter-alpha-trypsin inhibitor heavy 
chain H1 (ITIH1) 

2 -2,20847 -0,23171 0,003 0,088 0.83 

Q9NSB2 Keratin, type II cuticular (KRT84) 12 2,47599 0,85392 0,171 0,425 - 

Q9H0U4 Ras-related protein Rab-1B (RAB1B) 2 -3,51928 -3,84041 0,261 0,501 - 

P81605 Dermcidin (DCD) 1 -2,93484 -3,64133 0,183 0,433 - 

Q9NZT1 Calmodulin-like protein 5 (CALML5) 6 -0,37651 -3,16167 0,240 0,480 - 

O95867 Lymphocyte antigen 6 complex 
(LY6G6C) 

2 1,01975 -0,93070 0,000 0,007 0.87 

P38646 Stress-70 protein (HSPA9) 2 -1,02219 -2,22214 0,000 0,023 0.93 

P84243 Histone H3.3 (H3F3B) 1 -3,89741 -4,77885 0,097 0,314 - 

Q96GD3 Polycomb protein (SCMH1) 1 -0,27064 -2,84126 0,000 0,005 0.99 

Log2Med – average normalized relative abundance for PVL and advanced (adv) OSCC samples (n=10 per 
group); FDR- false discovery rate; AUC- area under the curve 

3.4.6 PVL vs OSCC 

A comparison of patients OSCC (at initial and advanced stages) versus PVL ones, EN penalty 

regression resulted in a series of differential proteins, the expression trends of which were 

depicted with a matrix, displayed in Fig.62A. It was observed that samples are gathered as 

per the pertained group, yet, three of them seemed more similar to PVL than OSCC, 

according to the protein presentation levels. The resulted proteins can differ between the 

two pathology groups. Furthermore, different protein patterns were noted within the 

OSCC cohort, between the early and advanced stage samples. PLS-DA demonstrated 

sample classification according to the pathology of belonging, however, both groups are 

not exclusive (Fig.62B). 
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Figure 62. A Heat map depicting differential proteins after EN penalty that differ between OSCC 

(red) and PVL (blue) samples, clustered on the top of the heat map. The heat map scale of Z scores 

ranges from -2.5 (green) to 2.5 (red) with a midpoint of 0.0 (black). B Classification of OSCC (n=20) 

(black) and PVL (n=10) (red) samples according to PLS-DA.  

Statistical analysis revealed 18 proteins with increased (Table 23, dark grey) and 13 with 

decreased (Table 23, light grey) abundance in OSCC than in PVL cases. Among the 

significantly overexpressed compounds were fibrinogen alpha chain (FGA), kallikrein-1 

(KLK1), immunoglobulin heavy constant gamma 3 (IGHG3), leucine-rich alpha-2-

glycoprotein LRG1), etc. Notably lower expression was estimated in desmoplakin (DSP), 

plakophilin-1 (PKP1), desmocollin-2 (DSC2) cornifelin (CNFN), and others. Prediction model 

for sensitivity and specificity performance of proteins with a significantly different 

expression between PVL and OSCC are represented with ROC curves.  13 OSCC upregulated 

proteins (Fig.63A, Supplementary figures) displayed AUCs in the range from 0.75 to 0.83 

and 6 OSCC downregulated proteins (Fig.63B, Supplementary figures) from 0.61 to 0.85 

suggesting a relatively high capacity of the studied marked to discern between PVL and 

OSCC patients. Four upregulated proteins including PGLS, IGHG3, LRG1, and AMBP noted 

0.75, 0.86, 0.86, and 0.82 AUCs, respectively, and 4 downregulated proteins including 

KRT84, KLK, CALML5, and LY6G6C marked 0.71, 0.61, 0.62, and 0.79, respectively (Table 

23). However, some proteins exhibited higher predictive performance within the 

aforementioned group comparisons, therefore, ROC graphs are omitted to avoid 

redundancy. 
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Table 23. List of differential proteins between PVL and OSCC groups. The UniProt protein ID and 

name are presented. The representative identification with the number (#) of peptides with which 

a protein was determined, quantification data (log2Med), FDR adjusted t-test p-value, and ROC 

AUC value are given in each case. 

Protein 
ID 

 
Protein name 

# 
peptides  

PVL 
log2Med 

OSCC 
log2Med 

 
P-value 

 
FDR 

AUC 
value 

P11021 Endoplasmic reticulum chaperone 
BiP (HSPA5) 

13 1,88614 2,32352 0,003 0,097 0.79 

P02671 Fibrinogen alpha chain (FGA) 7 0,79543 2,40911 0,001 0,035 0.83 

P06870 Kallikrein-1 (KLK1) 9 2,40589 3,27298 0,041 0,232 0.75 

Q14914 Prostaglandin reductase 1 (PTGR1) 2 -1,38119 -0,51768 0,016 0,199 0.77 

P04179 Superoxide dismutase (SOD2) 3 -0,47552 0,02754 0,062 0,283 - 

P78371 T-complex protein 1 subunit beta 
(CCT2)  

2 -3,98182 -3,28098 0,013 0,206 0.78 

O95336 6-phosphogluconolactonase (PGLS) 3 -1,49832 -0,84911 0,028 0,222 0.75 

P01860 Immunoglobulin heavy constant 
gamma 3 (IGHG3) 

4 0,40378 2,12993 0,001 0,036 0.87 

P38606 V-type proton ATPase catalytic 
subunit A (ATP6V1A) 

1 -3,36350 -2,43967 0,021 0,202 0.78 

P02750 Leucine-rich alpha-2-glycoprotein 
(LRG1) 

2 -1,28119 0,44406 0,000 0,021 0.94 

P99999 Cytochrome c (CYCS) 1 -4,15015 -3,50759 0,089 0,341 - 

P01042 Kininogen-1 (KNG1) 3 -2,60074 -1,16315 0,002 0,070 0.79 

P02760 Protein (AMBP)  3 -0,80313 0,43453 0,004 0,109 0.82 

Q99497 Protein/nucleic acid deglycase DJ-
1(PARK7) 

1 -2,84376 -1,70670 0,015 0,208 0.82 

P01615 Immunoglobulin kappa variable  
2D-28 (IGKV2D) 

2 0,35255 1,14823 0,033 0,220 0.78 

P07477 Trypsin-1 (PRSS1) 1 1,68938 4,25564 0,074 0,324 - 

P43304 Glycerol-3-phosphate 
dehydrogenase (GPD2) 

1 -3,70382 -2,99409 0,042 0,232 0.77 

Q6FI13 Histone H2A type 2-A (HIST2H2AA) 1 -4,40336 -3,03841 0,015 0,209 0.80 

P15924 Desmoplakin (DSP) 29 4,54379 3,52273 0,000 0,019 0.85 

Q9NSB2 Keratin, type II cuticular (KRT84) 12 2,47599 0,81493 0,017 0,195 0.72 

O76013 Keratin, type I cuticular (KRT36) 5 1,04905 -0,28483 0,054 0,255 - 

Q13835 Plakophilin-1 (PKP1) 6 2,58738 1,42242 0,000 0,002 0.83 

Q02487 Desmocollin-2 (DSC2) 5 1,69905 1,14683 0,000 0,029 0.74 

Q9UBD6 Ammonium transporter Rh type C 
(RHCG) 

4 1,82689 0,81554 0,000 0,003 0.85 

P00441 Superoxide dismutase (SOD1) 1 -3,30847 -3,65845 0,412 0,695 - 

Q9UKR0 Kallikrein-12  (KLK12) 2 -0,42817 -1,27642 0,043 0,232 0.61 

P05787 Keratin, type II cytoskeletal 8 (KRT8) 1 -3,17979 -3,46608 0,483 0,738 - 

P12830 Cadherin-1 (CDH1) 2 -0,64351 -0,90080 0,173 0,450 - 

Q9NZT1 Calmodulin-like protein 5 (CALML5) 1 -0,37651 -2,01361 0,007 0,143 0.74 

Q9BYD5 Cornifelin (CNFN) 2 0,21766 -0,59762 0,000 0,018 0.82 

O95867 Lymphocyte antigen 6 complex  
locus protein G6c (LY6G6C) 

2 1,01975 -0,38584 0,000 0,021 0.87 

Log2Med – average normalized abundance of PVL and OSCC samples (n= 10 and 20, respectively); FDR- 
false discovery rate; AUC – area under the curve 
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 Functional analysis 

Proteins with altered expression in patients with OSCC at different clinical stages compared 

to the ones with premalignant (PVL) lesions were subjected to gene ontology screening. 

String functional protein association network identified 29 proteins and 35 possible 

interconnections (Fig.64A). GO enrichment analysis of the mapped genes revealed 

associations with 85 biological processes and 11 molecular functions, the highest ranks of 

which (FDR < 0.05) are summarized in Fig.64B. Enrichment for biological process revealed 

epidermis development through epithelial cell differentiations including members of the 

keratin family (KRT 84, KRT 36, and KRT 8), desmosome components (DSP and DSC2), and 

components of cell junctions and stratified squamous epithelia (PKP1 and CNFN).  Other 

enriched processes involve programmed cell death represented by proteins CYCS, SOD2, 

HSPA5, KLK12, KRT 84, KRT 36, KRT 8, DSP, DSC2, and PKP1 and regulation of exocytosis 

implicating DSP, PKP1, CCT2, SOD1, LRG1, KNG1, FGA and CALML5. Molecular function 

enrichment disclosed structural constituent of skin epidermis (KRT 84, KRT 36, and PKP1), 

antioxidant and oxidoreductase activity (SOD1, SOD2, PARK, CYCS, and GDP2).  
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               B 

Pathway term ID  
Pathway description 

Observed  
gene count 

 
FDR 

I.Biological process 
  

GOTERM_BP first 8 out of 85 chart records   

GO:0008544 epidermis development 10 3.21e-07 

GO:0009913 epidermal cell differentiation 9 3.21e-07 

GO:0070268 cornification 7 3.21e-07 

GO:0031424 keratinization 8 4.53e-07 

GO:0030855 epithelial cell differentiation 10 4.78e-06 

GO:0012501 programmed cell death 10 0.00028 

GO:0045055 regulated exocytosis 8 0.00075 

GO:0032940 secretion by cell 9 0.00078 

II. Molecular function 
  

GOTERM_MF 5 out of 11 chart records   

GO:0030280 structural constituent of epidermis 3 0.00035 

GO:0004784 superoxide dismutase activity 2 0.0040 

GO:0097110 scaffold protein binding 3 0.0040 

GO:0016209 antioxidant activity 3 0.0061 

GO:0016491 oxidoreductase activity 6 0.0092 

 

Figure 64. Protein-protein interaction network and functional classification (A) of up 

and down-regulated proteins in OSCC. Number of identified nodes: 29 out of 31; 

number of edges: 35; The enrichment table of GO terms (B) is shown indicating the 

number of proteins belonging to each term and the false discovery rate (FDR) 

recognized by the STRING annotation tool.  

3.4.7 Early vs advanced OSCC 

A heat map illustrating selected proteins after EN-penalized regression with the potential 

to discriminate patients at early from advanced OSCC stages is shown in Fig.65A.  According 

to the varying protein levels, samples were clustered correspondingly to the initial and 

advanced OSCC stages, appreciated also in the PLS-DA classification model (Fig.65B). 
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Figure 65. A Heat map of differentially expressed proteins after EN penalty in a comparison 

between early OSCC (red) and advanced OSCC (blue) samples, clustered on the top of the heat map. 

The heat map scale of Z scores ranges from -2 (green) to 2 (red) with a midpoint of 0.0 (black). B 

Classification of early OSCC (black) and advanced OSCC (red) samples based on protein expression 

PLS-DA.  

The summary of differentially expressed protein IDs, names, subcellular location, and 

quantitative data is represented in Table 24. It can be appreciated that all, except Rab GDP 

dissociation inhibitor beta (GDI2), exhibited significantly increased abundance within the 

early OSCC compared to advance OSCC stages with P values less than 0.05. ROC analysis 

were carried out to determine the discriminatory efficacy of statistically significant, 

differentially expressed proteins between early and advanced OSCC groups. The diagnostic 

performance of 11 early OSCC upregulated markers disclosed AUC values higher than 0.7 

(Fig.66, Supplementary figures).  

Table 24. List of differential proteins between early and advanced OSCC groups. The UniProt 

protein ID and name are presented. The representative identification with the number (#) of 

peptides with which a protein was determined, relative abundance, FDR adjusted t-test p-value, 

and ROC AUC value are given in each case. 

Protein 
ID 

 
Protein name 

# 
peptides  

 e OSCC 
log2Med 

adv OSCC  
log2Med 

 
P-value 

 
FDR 

AUC 
 value 

P50395 Rab GDP dissociation inhibitor 
beta (GDI2) 

6 1,45987 1,24021 0,114 0,874 - 

P07339 Cathepsin D (CTSD) 3 2,27887 1,40969 0,002 0,201 0.77 

Q9H0U4 Ras-related protein Rab-1B 
(RAB1B) 

2 -2,96119 -3,84041 0,007 0,402 0.87 

P81605 Dermcidin (DCD) 1 -1,42425 -3,64133 0,002 0,190 0.82 

P31944 Caspase-14 (CASP14) 2 -1,22511 -2,76569 0,001 0,117 0.81 

P51571 Translocon-associated protein 
subunit delta (SSR4) 

1 -3,32742 -5,05475 0,000 0,053 0.93 
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Q5D862 Filaggrin-2 (FLG2) 1 0,23293 -2,88369 0,000 0,032 0.84 

P17900 Ganglioside GM2 activator 
(GM2A) 

2 -0,23326 -1,27512 0,007 0,420 0.78 

P38646 Stress-70 protein (HSPA9) 2 0,78660 -2,22214 0,000 0,000 0.90 

P84243 Histone H3.3 (H3F3B) 1 -3,45806 -4,77885 0,011 0,437 0.71 

Q96GD3 Polycomb protein (SCMH1 ) 1 1,09038 -2,84126 0,000 0,000 0.90 

P36957 Dihydrolipoyllysine-residue 
succinyltransferase  (DLST) 

1 2,47004 -0,94362 0,000 0,000 0.90 

EPR- endoplasmic reticulum; Log2Med – average normalized relative abundance for early (e) and advanced 

(adv) OSCC samples (n=10, per group); FDR- false discovery rate; AUC- area under the curve 

 Functional analysis 

The String protein-protein interaction map revealed poorly connected networks containing 

12 proteins and only 5 putative interconnections (Fig.67). No biological processes and/or 

molecular functions were found enriched by the GO annotation tool. Possible relation was 

depicted between  SSR4 -a calcium-binding protein taking part in the regulation of the 

retention of endoplasmic reticulum (ER) resident proteins, CTSD – an acid protease active 

in intracellular protein breakdown, FLG2 – a member of the S100 protein family, and 

CASP14 a  non-apoptotic caspase involved in epidermal differentiation (regulates 

maturation of the epidermis, proteolytically processing filaggrin – FLG2). 

Figure 67. Functional interaction network of 

12 highly expressed proteins in early OSCC 

showing 5 interconnections provided by String 

bioinformatical recourse. 
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 DISCUSSION 
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Oral cavity disorders are among the most appealing ones for saliva diagnostics researchers 

due to their direct contact with oral tissues, and an array of detectable molecules reflecting 

an individual’s physiological state. Sometimes, saliva may be preferred to blood and other 

body fluids, offering a less invasive, easily accessible method that can be performed in any 

setting. If becoming a routine, salivary testing for OSCC would comprise a suitable tool for 

population screening, assessing the treatments’ outcome, monitoring of patients at high 

risk of recurrences, and ultimately leading to better survival (189,227). Biomarkers in saliva 

can reveal a carcinogenic process as well can be used to monitor its progression/remission 

(186). A novel focus of research is the identification of salivary biomarkers for the early 

detection of OSCC. Many investigators have dealt with the saliva composition of OSCC 

patients and have tried to find out differences when compared to normal controls. 

Additionally, relationships of high-risk factors such as preceding oral premalignant 

disorders and HPV infections with the process of oral carcinogenesis have also been widely 

studied (11,14,20). Sputum-derived proteins, mRNA, enzymes, and metabolites have been 

found at sufficiently discriminative levels between OSCC and control samples to be 

considered as potential biomarkers (191,228). Nevertheless, the search for specific and 

sensitive molecular factors with diagnostic means is ongoing, involving large-scale studies 

optimizing for many confounding factors introduced by the complexity of the oral 

environment. The current research combined state-of-the-art multidisciplinary techniques 

for biomarker screening of inflammatory elements, proteome, and N-glycome profiles in 

the saliva of patients with premalignant lesions (homogeneous and proliferative verrucous 

leukoplakia), at early and advanced OSCC stages, and healthy controls. The suggested 

candidates, outlined in this discovery phase, merit further investigation as potential 

diagnostic tools for OSCC and associated lesions. 

1. Salivary inflammatory factors as diagnostic tools for OSCC 

Since inflammation has been linked to the pathogenesis of various diseases of the oral 

mucosa research to date indicates the possibility of using salivary pro and anti-

inflammatory factors as screening tools for those patients. It is now well recognized that 

altered cytokine responsiveness is tightly associated with the development of oral cancer 

as well as detected in patients with premalignant lesions such as oral leukoplakia 

(171,176,229). The commercially available multiplex-bead-based assay demonstrated to 
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be useful for the simultaneous evaluation of salivary concentrations of several biomarkers 

as part of broad profiling of immune responses. In this study, we measured salivary 

concentration of 8 analytes including IL-1α, Il-6, IL-8, TNF-α, IP-10, MCP-1, HCC-1, and PF4 

to estimate variations in their biological activity among patients with homogeneous and 

proliferative verrucous leukoplakia, early and advanced OSCC stages, and normal control 

individuals. The analysed cases and controls were matched by age and sex. To reduce the 

risk of interfering variables affecting salivary concentrations of assessed cytokines, we 

implemented strict exclusion criteria. The analysis of the standards showed technical 

stability in the detection of the cytokines, with all of the % CV values falling below 20%. 

According to the obtained quantitative data, cytokine expressions showed low variability 

values (Table 7, Supplementary tables) between the cytokines as well as between the 

studied groups. This aspect of variability is very important for inferential statistics where 

relatively small samples are used to answer questions about populations. PCA outliers were 

spotted, especially in the advanced OSCC group. However, they were considered in the 

further analysis, given that PCA seems to reflect an increase in the variability of the 

cytokine values and at the same time of these values of greater variance. The results of our 

study support previous researches indicating that inflammatory elements including IL-6, IL-

8, TNF-α, MCP-1, HCC-1, and PF4 may play an important role in the early detection of OSCC 

(169,170,230,231). Alterations in host immunity, inflammation, angiogenesis, and 

metabolism have been noted as the prominent pathological features in patients with oral 

cancer. NF-kappa-dependent cytokines are molecular messengers highly involved in all 

these processes (169,230,232) the altered biological activity of which have been reported 

not only in patients with OSCC but also with premalignant lesions, such as oral leukoplakia 

(OL) (170,232). Comparative analysis of patients with homogeneous (HL) (Fig.26) and 

proliferative verrucous leukoplakia (PVL) (Fig.27) and matched controls showed 

significantly elevated salivary IL-6, IL-8, TNF-α, MCP-1, and HCC-1 in the current 

investigation. Increased salivary levels of the first three mediators have previously been 

reported in HL and other pre-neoplastic lesions by various authors (170,172,173,233,234), 

while a single study has demonstrated higher IL-6 in PVL saliva collated to controls (235). 

In our experiments, IL-1α  levels did not differ among the two clinical forms of leukoplakia 

and controls, in contrast to Rhodus et al. (170) reported its elevated expression of this 

cytokine in dysplastic oral premalignant lesions. To the best of our knowledge, we are the 
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first to estimate salivary MCP-1, IP-10, HCC-1, and PF-4 in HL, together with IL-1α, IL-8, and 

TNF-α in PVL. Although IP-10 and PF-4 levels were also observed increased in both 

leukoplakia forms, statistical significance was not confirmed. However, 

immunohistochemical studies of paraffin-embedded tissue sections from oral lesions 

presenting epithelial dysplasia showed intense PF-4 (CXCL14) staining (236). Our study also 

found a positive correlation of altered HCC-1 and IL-6 concentrations with lesions' 

histologic features (Fig.35), suggesting them as putative markers for epithelial dysplasia.  

Similarly,  Sharma et al. (237) described that within the leukoplakia group IL-6 level was 

seen to increase with the severity of dysplasia grade. Histological grading of OL has been 

proposed to influence salivary cytokine expression in a growth manner, correlating with 

the level of epithelial dysplasia (172). Collectively, these results indicate that 

proinflammatory cytokines, especially IL-6, IL-8, TNF-α, MCP-1, and HCC-1 could be 

importantly involved in the pathogenesis of OL and its manifestation forms. Inflammatory 

responses, as well as alterations in immune system of OSCC patients, play a pivotal role in 

disease progression (175). The relation between OSCC and chronic inflammation has been 

proved by the imbalance in local and systemic immunomodulatory cytokine levels 

(238,239), leading to tumor growth and proliferation. In the present research 8 salivary 

cytokines were estimated in patients with OSCC, at early (I&II) and advanced (II&IV) clinical 

stages. Six biomarkers with significantly higher expression in early OSCC than in controls 

were found: IL-6, IL-8, TNF-α, MCP-1, HCC-1, and PF-4 (Fig.29). Among them, IL-6 and TNF-

α marked a considerable growth towards the OSCC evolution (Fig.31) indicating the 

potential involvement of these mediators in disease progression and severity. Cytokines 

are implicated in different disease states and are dependent upon a variety of pathways. 

Their functions are multifaceted including inflammation (e.g. IL-1α, IL-6), and inflammation 

combined with an immune response (e.g., IL-10, TNF-α) (168). IL-6 has been shown to 

activate STAT3 oncogene which in its turn activates VEGF and tumor angiogenesis (240). 

Rising IL-6 levels were observed from well to moderate and to poorly differentiated OSCC 

tumors in serum and saliva suggesting that this cytokine can be associated with the severity 

and aggressiveness of the disease (234). IL-8 (CXCL8) is one of the dominant transcriptional 

targets of the inflammatory signaling mediated by NF-κB, which is commonly activated in 

cancer cells. It is a proinflammatory chemokine that acts on leukocytes and endothelial 

cells, via their receptors, to promote immune infiltration and angiogenesis, which in turn 
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establishes a venue for cancer cell local invasion, migration, and metastasis (241). TNF-α, 

a widely expressed cytokine during oral cancer transformation and progression has been 

reported to be involved in various OSCC pathogenic pathways (242). Our results appeared 

to be consistent with previous findings in which increased levels of NF-κB associated IL-6, 

IL-8, and TNF-α in oral cancer saliva have been reported, suggesting that OSCC progression 

is likely enhanced by continued expression of proinflammatory, pro-angiogenic cytokines 

(175,230,243,244). Nevertheless, there are a few researches describing salivary cytokine 

levels at different OSCC clinical stages. Lee et al. (245) found significantly upregulated 

salivary IL-6, IL-8 and TNF-α levels in early OSCC stages (I/II) than in control subjects, but 

no distinctive activity between early and advanced (III/IV) stages. Similarly, Dineshkumar 

et al. (234) stated no significant difference in salivary IL-6 based on OSCC clinical staging. 

Krishnan et al. (242) revealed important TNF-α overexpression in sputum of OSCC patients 

at stage IV compared to all other stages. OSCC driven modulation of IL-1α remains 

controversial. According to our results, no differential IL-1α levels were seen between 

controls, early and advanced OSCC stages, in agreement with the observations of  Lee et 

al. (245) and Babiuch et al.  (232). In contrast, other authors described elevated IL-1α in 

OSCC saliva (170,175,244). The transcription of angiogenic and tumourigenic chemokine 

genes is modulated, in part, by the NF-κB family of transcription factors (246). Chemokines 

are secreted in response to signals such as proinflammatory members of the IL-1 family, 

tumor necrosis factors, and interferon-c (IFN-c) and thus playing an important role in 

selectively recruiting monocytes, neutrophils, and lymphocytes (231). The complex 

interaction among these immune modulators in OSCC have been presented by Pearson’s 

correlation analysis displaying significant positive interconnections among the explored 

salivary cytokines (Table 8D and E, Appendix). Overall, altered chemokine function in 

cancer promotes cell survival, enhances proliferation, neovascularization, motility and 

metastasis in multiple tumour types (247).  Several studies have implicated a number of 

chemokines and their receptors in squamous cell cancers of the head and neck arguing that 

tumor-related changes in chemokine composition are detectable in oral fluid (248,249). 

Indeed, our results showed considerable overexpression of inflammatory MCP-1 along 

with homeostatic HCC-1 and PF-4 in the saliva of patients at early OSCC stages compared 

to normal controls. Monocyte chemoattractant protein 1 (MCP-1) or CCL2, regulates 

monocyte migration by promoting their circulation to the site of inflammation (250). 
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Besides, it is frequently expressed as tumor cell-associated chemokine. Increased MCP-1 in 

OSCC and metastatic lymph nodes have been detected by Ferreira and co-workers (251) 

while its expression in HNSCC was associated with tumor invasion in oesophageal SCC 

(252).  HCC-1 or hemofiltrate C-C motif chemokine 14 (CCL14)  is a homeostatic chemokine 

found to promote angiogenesis and tumor progression (253).  Its involvement in oral 

carcinogenesis has been reported by  Feng et al. (254)  exhibiting differentially expressed 

long non-coding RNA (lncRNA) HCC-1 transcripts detected in oral mucosal samples from 

OSCC patients. Platelet factor 4 (PF-4) or CXCL14, also known as BRAK is a highly conserved 

homeostatic chemokine. Responsible for immune cell recruitment and maturation, as well 

as influencing epithelial cell motility, PF-4 contributes to the establishment of immune 

surveillance within normal epithelial layers. Previously, ELISA estimated salivary IL-8,IP-10 

and HCC-1 were found notably elevated while MCP-1 marked insignificant growth in 

patients with oral and laryngeal squamous carcinoma before therapy compared to subjects 

with periodontitis (249). The authors presumed that the impact of periodontal infections 

on the salivary chemokine composition is probably limited due to similar IL-8 

concentrations of pre-and post-treatment periodontitis and healthy subjects. However, 

ELISA quantification resulted in very low detection levels and more refined methods could 

likely indicate not only intact chemokines, but also those modified post-translationally. 

Despite the complex functional characteristics, PF-4 is thought to be a key regulatory factor 

in cancer. Dysregulated PF-4 was found in several carcinoma types including head and neck 

neoplasia. Its disruption was shown to limit critical antitumour immune regulation and to 

correlate to poor patient prognosis (255). Importantly increased salivary PF-4 

concentration in OSCC was firstly described in the current study. In contrast, PF-4 

expression has been shown remarkably decreased in OSCC cells and its induced up-

regulation resulted in suppressed activity toward tumour progression of oral cancer in vivo 

(256,257). Frederick et al. (258) disclosed In situ hybridization analysis where BRAK (PF-4) 

mRNA expression was detected in normal and dysplastic tongue but absent in buccal and 

metastatic OSCC of the tongue. Analogous, Nakayama and colleagues (259) described 

significantly decreased PF-4 mRNA levels in primary and metastatic OSCC compared with 

tumour free tissue based on QRT-PCR analysis. Furthermore, both groups found numerous 

inflammatory and stromal cells, showing PF-4 expression predominantly in the cytoplasm 

in adjacent non-tumour tissues but significantly down regulated in OSCC tissues. The 
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present outcomes revealed higher IP-10 concentration within the OSCC than in the control 

group, yet, not statistically validated, which is in a line with a recent publication wherein 

no alterations of IP-10 in saliva of patients at early OSCC stages have been estimated (245). 

IP-10 (CXCL10) is an angiostatic chemokine that mediates biological activity through 

binding G protein coupled receptors and glycosoaminoglycans (249). Although the versatile 

properties of IP-10, it appears to be secreted mainly by tumour cells and therefore might 

be a powerful biomarker in cancer progression. Significantly elevated IP-10 levels were 

detected in serum samples from HNSCC patients  (260)  as well as in tissue and peripheral 

blood of individuals with nasopharyngeal carcinoma (261). Besides, IP-10 has been 

suggested as a  potential marker for response to radiotherapy and overall survival in 

patients with tongue SCC (262). A common way of evaluating diagnostic accuracy of 

individual biomarkers is by using Receiver Operating Characteristics (ROC) analysis, which 

plots the true positive rate versus the false positive rate of a particular disease (263). The 

discriminatory efficacy of the studied markers to discern early OSCC form individuals 

without oral lesions (controls) was displayed with ROC curves (Fig.29). IL-6, IL-8, TNF-α and 

HCC-1 had AUC values higher than 0.8, the former three being consistent with the results 

of Lee at al. (245). Superior sensitivity of IL-6 and IL-8 in detecting OSCC has also been 

evaluated in two large scale studies (230) and (234), respectively. MCP-1 and PF-4 had AUC 

higher than 0.7, while IL-1α and IP-10 did not show sufficient sensitivity of specificity for 

early OSCC diagnosis (AUC = 0.5 and 0.6, respectively). This discovery suggests that a 

combination of biomarkers might increase their clinical utility. According to the obtained 

correlation analysis, no association have been identified between altered cytokine 

responsiveness and OSCC patient’s clinicopathological variables such as sex, smoking 

habits, tumour oral location, clinical type and size.  It does not mean that a potential 

relationship does not exist, but that the sample cohorts were not large enough to confirm 

statistical significance. However, altered TNF-α expression has significantly been correlated 

to OSCC (Table 8) and (Fig.37), being the marker with the highest ROC AUC values of 0.94 

and 0.95 in early and advanced disease stages compared to controls (Fig.29D) and (Fig.30D, 

Supplementary figures), respectively. TNF-α and its soluble receptors are strongly 

suggested to be beneficial in detection, staging and/or predicting prognosis of oral cancers 

(242). A significant increase of salivary TNF-α in advanced OSCC denotes its involvement in 

accelerating the disease progressions. Our observations are corroborating the ones from 
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Jablonska et al. (264) wherein a relation between clinical staging and increased serum TNF-

α levels in OSCC has been discovered. The positive correlation between IL-6 and the 

presence of cervical adenopathy in oral cancer patients found in this study substantiate 

earlier disclosures. Riedel et al. (265) and Tartour et al. (266) revealed statistically 

significant association between positive lymph nodes in HNSCC and elevated serum IL-6 

level. It is now well established that OSCC may occur through evolution of oral potentially 

malignant lesions (267). There are numerous investigations that have assessed and 

compared cytokine expressions in body fluids, tissue specimens and cell culture models of 

OSCC and OPMDs. However, a few of them have considered more than one cytokine when 

comparing different premalignant lesions. One of the objectives in this study was to 

estimate differences between the target cytokine expressions in HL, PVL and OSCC 

patients. Statistical tests resulted in distinctively increased salivary IL-6, IL-8, TNF-α, HCC-

1, and PF-4 in OSCC, independent on the clinical stage, compared to individuals with HL 

and PVL (Fig.32 and 33, Supplementary figures).  All of the analytes listed above, except PF-

4, were notably higher in HL and PVL than in subjects without oral lesions (controls). 

Whereas the premalignant microenvironment elicits proinflammatory cytokine 

production, the tumour microenvironment seems significantly more immune stimulatory. 

It could be assumed that malignant transformation of HL and PVL may be influenced by the 

continuous exposure to the overexpression of these proinflammatory, proangiogenic 

cytokines. The fact that the same molecules were remarkably elevated both in OSCC and 

OL may have a diagnostic significance for cancerous conversion of potentially malignant 

lesions. A few studies have addressed the diagnostic potential of routine cytokine 

measurements in screening of OSCC.  Rhodus et al. (170) reported significantly higher 

levels of IL-1α, IL-6, IL-8, and TNF-α in OSCC saliva as compared to oral premalignant lesions 

with moderate and severe dysplasia. In accordance are the revelations of  other authors, 

stating markedly elevated IL-6 (234), IL-8 (268,269) and TNF- α (242) in saliva of subjects 

with OSCC in comparison with OL and normal controls. Pronounced increase of salivary 

HCC-1 and PF-4 in early OSCC stages, compared to HL and PVL was primary characterized 

in this study, bringing new insights into the search of potential biomarkers for early OSCC 

diagnosis. Further, direct association has been found between IL-6, IL-8, TNF-α, MCP-1, 

HCC-1, PF-4 and IP-10 levels, OSCC and OL (Fig.37). However, cytokine activity showed to 

be influenced between each other, highlighting their intricate interactions. IL-6 being not 
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affected by any of the investigated modulators might have an independent role in the 

regulation of the inflammatory response in OSCC and associated lesions. It has been 

demonstrated that inflammatory factors including cytokines and chemokines are 

abundantly expressed in the course of periodontitis (270,271). With regards to cancer risk, 

chemotactic cytokines and chemokines are of particular interest as they are involved in 

periodontal pathogenesis but also expressed in healthy sites (272). To avoid any potential 

interference, our cohorts of volunteer donors had been pre-screened to eliminate those 

with acute or chronic inflammation in the oral cavity upon direct clinical visual exploration. 

Nevertheless, considering that local inflammatory conditions may result in cytokine 

overexpression, investigators have found the imput of OSCC to the elevation of these 

molecules to outweigh any potential background conferred by the host’s inflammatory 

condition (271). 

2.  Salivary N-glycans as biomarkers for OSCC 

Approaches for glycan analysis have evolved with the development of high-throughput 

platform technologies allowing the evaluation of large sample cohorts in an efficient 

manner. Among these methodologies, LC combined with MS is a flexible and powerful tool 

for glycomics study. It enables the detection of structures with increased dynamic range, 

pushing lower the detection limit of analysis in complex samples like plasma, serum, urine, 

and even cerebrospinal fluid (24,191). Besides, MS can determine the molecular mass of 

analytes and clarify N-glycans structure and composition. Novel research revealed the 

biological significance of the serum N-glycome in human health and disease, focusing on 

the exploration of the connection between altered N-linked glycosylation and various 

pathologies, placing a special emphasis on cancer. The possibility to differ protein 

glycosylation patterns between cancer and control patients highlights glycobiology as a 

potential area for biomarker discovery. The use of serum glycans as detecting and 

monitoring agents have been reported in different neoplasia including colon, prostate, 

pancreatic and ovarian cancers (273). Recent studies have demonstrated the potential of 

salivary glycopatterns to serve as diagnostic tools for gastric and breast cancers (274,275). 

Oral cancer-associated aberrant glycosylation has been proposed by Lin et al. who found 

that acetylgalactosaminyltransferase 2 (GALNT2) was overexpressed in 73% of the 

examined OSCC tissue specimens (209). Moreover, OSCC driven molecular mechanisms 
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were suggested to be due to dysregulated cellular networks among DPAGT1 (N-

glycosylation-regulating gene), E-cadherin adhesion, and canonical Wnt signaling in a 

cultured cell line (276). The current study describes a non-invasive approach for testing 

saliva as an alternative to blood serum source of putative glycan biomarkers for early OSCC 

diagnosis. Furthermore, this is the first report on salivary N-glycan profiles identified in 

patients with the oral potentially malignant disorder (PVL) and different OSCC stages 

compared to healthy controls to determine oral cancer-associated N-glycosylation 

changes. The substantial division of the N-glycan profiles of individuals with and without 

oral lesions seen on the PCA biplot suggests variability of salivary glycosylation patterns, 

possibly related to disease-dependent N-glycomic aberrations. Besides, we suggest that 

differences are rather quantitative than qualitative which is in accordance with other 

studies. For initial glycan identification, UPLC was coupled with MS for confident 

assignment of monosaccharide composition. The chromatographic separation facilitates 

the reduction of sample complexity and enhances dynamic range. HILIC empowered high-

resolution separation of isobaric structures, together with MS analysis, resulted in multiple 

components, confidentially identified with mass accuracies lower than 20 ppm. The 

intricate and highly abundant glycan population in saliva has been formerly described 

reporting different numbers of identified oligosaccharides. Depending on the sample size 

and saliva type, published studies reported 60 N-glycans in parotid saliva (277), 78 (278), 

and 265 (279) in the whole saliva. In this study, we listed 90 compounds detected in the 

whole saliva of individuals without oral lesions (controls). The majority of them are neutral 

compounds, with high-mannose and complex bi-, tri-, and tetra-antennary structures, 

emphasizing the heterogeneous and complex glycan population in sputum. We also 

observed that some compositions were present in multiple peaks implying structural 

isomerism. From the putative monosaccharide, compositions of the described N-glycans 

could be seen that the majority are core/antenna fucosylated, bi, and tri- antennary 

structures. Fucosylated epitopes such as Lewis (Lex, Ley, and SLex) and H-type antigens 

were present as well, confirming the findings of Everest-Dass et al. (278) and Guile et al 

(277). Overexpression of these fucose-containing moieties frequently occurs on the cancer 

cell surface and has been associated with tumor progression and metastasis (280). Ley 

carbohydrate up-regulation has been demonstrated in OSCC cell lines and correlated to 

the poor prognosis of oral cancer patients (281). Aberrant fucosylation is related to 
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disruption of cell-cell interactions and changes of growth factor receptor functions, 

eventually redounding to metastasis (282). Elevated fucose and fucosylated serum protein 

levels of patients with OSCC tumors have previously been demonstrated (283,284). In the 

present study, six out of the eight glycans showed considerably different expression in 

OSCC were fucosylated. Three of them observed at m/z=1045.89, m/z=1134.91, and 

m/z=1389.50 (Fig.40A, B, and C, respectively) marked significantly decreased relative 

abundance compared to PVL patients and controls. The decreased relative intensity of 

fucosylated bi-antennary N-glycans can also be observed in oesophageal adenocarcinoma 

serum samples (285). The reduced expression might be related to the carcinogenic process, 

being notable at early and advanced OSCC stages. The other three fucosylated N-glycans 

noticed at m/z = 842.81, m/z = 915.3, and m/z = 717.27 (Fig 41A, B, and C, respectively) 

exhibited significantly elevated relative abundance in OSCC versus patients with 

premalignant lesions (PVL). Increased levels of these glycans at different OSCC stages 

suggest for N-glycosylation changes, which has occurred due to the evolution of an existing 

oral dysplastic lesion into tumour formation. Highly expressed fucosylated N-glycans 

detected in saliva from OSCC patients in the current research is in accordance to previous 

reports where elevated fucose and fucosylated proteins were detected in OSCC serum and 

cell line models (283,286). Furthermore, Shah et al suggested L-fucose as a candidate OSCC 

serum biomarker due to its notable, gradual increase from control, to premalignant 

disorders to oral cancer samples (284).  Mono and di-sialyated structures were 

characterised in the total N-glycan pool investigated. In carcinogenesis, altered expression 

of sialic acid (SA) is suggested to be involved in malignant transformation and progression 

(287). Study from 2017 reported significantly higher expression of SA on outer cell 

membranes, serum and saliva obtained from patients with premalignant lesions and OSCC 

when compared to healthy subjects (288). Mono-sialylated core fucosylated glycan 

observed at m/z= 915.33 (Fig. 41C) was notably higher in OSCC compared to the PVL group, 

evoking speculation for cancer-related glycosylation change, preceded from OPMD. The 

distinctive expression of salivary N-glycans between patients with oral cancer and 

associated lesions highlights their potential as non-invasive biomarkers that can provide 

insights into disease state and progression. However, the isomeric and branched nature of 

oligosaccharides and the complicated linkage are the rationale for the defiant assessment 

of exact structures. To overcome this challenge, multidimensional, high throughput 
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analytical approaches have proved to be efficient for robust, reproducible, and large-scale 

sample analysis, fundamentally required in the biomarkers discovery pathway. 

3.  Salivary proteome profiling of OSCC and associated lesions 

The cellular and molecular heterogeneity of OSCC and the large number of molecular 

changes involved in oral carcinogenesis emphasize the importance of studying proteins 

responsible for them by global scale proteomics. To compile a list of candidate biomarkers 

for OSCC detection we carried out a comprehensive two-step approach using saliva as a 

diagnostic biological fluid. In the first non-targeted label-free LC-MS step, a spectral library 

was built, comprised of all the proteins identified in the OSCC salivary pool. Secondly, 

quantitative profiling of proteins expressed in healthy control, PVL, early and advanced 

OSCC individuals was generated by data-independent LC-MS/MS (SWATH) analysis (289). 

To generate a list of putative biomarker panel(s), we used logistic regression (LR), 

discriminant analysis, analysis to process the results obtained from the 691 quantified 

proteins in the four sample cohorts. These statistics represent a measure of the utility of 

the appointed proteins to differentiate the healthy and diseased states. Penalized 

multinomial LR selected 49 proteins with altered expressions, (Table 17, Supplementary 

tables) partially classifying the samples according to their group of belonging. The majority 

of these differential proteins were further elected by binomial LR (two-by-two 

comparisons) which demonstrated the ability to clearly order the samples so thus to 

discriminate between the investigated groups. Statistical significance of changed protein 

abundance is shown by Student’s t-test FDR adjusted p-values from pair-wised analysis of 

controls versus patients at early and advanced OSCC stages (Table 19 and 20, respectively). 

The comprehensive catalog of the human salivary proteome exceeds more than a 

thousand annotated proteins, reflecting the diversity of molecules available for biomarker 

screening (290). To obtain more insights into the modulations related to OSCC, an 

extensive literature search was carried out to see which proteins have been associated 

with oncogenesis. Most of the markers exhibited differential expressions in the current 

study were already related to cancer, including OSCC, and 23 proteins were identified to 

be present in saliva in this pathological condition. Proteins exhibited significantly altered 
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abundance in OSCC in our results, coinciding with the findings of other authors are shown 

in Table 25.  

Table 25. List of proteins differentially expressed in OSCC compared to controls, detected in the 

current and other oral cancer-associated studies. 

Protein name Expression   Sample Comment Reference 

C3,  SERPINA1, 
TYMP 

up-regulated saliva correlate with the risk of developing 
OSCC  

(194);(291) 

C3,  SERPINA1,  
HPX  

up-regulated saliva suggested as potential OSCC 
biomakrers 

(188);(292); 
(293) 

TTR, ORM1, 
ORM2, CST4 

down-regulated saliva suggested as potential OSCC 
biomarkers 

(188) 

APOA1, ITIH1, 
protein AMBP, 
VTN, RPL7 

up-regulated saliva overexpressed in OSCC  (294);(295) 

PLG, AGT 
(SERPINA8) 

up-regulated saliva,  
tissue 

found to be a predictive marker for 
early OSCC; associated with 
malignant epithelial neoplasia 
including OSCC 

(295);(296); 
(297) 

SEPRING1, HP, 
ORM1  

up-regulated saliva, 
plasma 

 identified as saliva and plasma 
markers of OSCC  

(295);(298) 

RAB1B, 
SERPINB4  

up-regulated saliva, 
tissue 

SerpinaB4 identified in OSCC saliva; 
both found overexpressed in 
gingival SCC tumors 

(299) 

S100-A7  up-regulated saliva, 
tissue 

increased in T1 and T2 OSCC; 
successfully discriminating HNSCC 
from normal  tissues; up-regulated 
in early, non-metastatic  versus 
advanced, metastatic OSCC 

(300);(301); 
(302) 

CALML5 disregulated tissue CALM5 suggested as a candidate 
cancer driver gene in OSCC 

(303) 

CASP14, FLG  down-regulated tissue partial loss in invasive   oral 
carcinomas  

(304) 

PADI4 up-regulated cells suggested to stimulate esophageal 
SCC tumor growth in vivo  

(305) 

WARS up-regulated tissue overexpressed in OSCC tissues  
suggested to enhances oral cancer 
cell invasiveness  

(306) 

SERPINA3 up-regulated tissue found upregulation in lymph node 
positive OSCC patients  

(307) 

HMGB2 up-regulated cells overexpressed in a panel of HNSCC 
cell lines  based on mass 
spectrometry analysis 

(308) 

LYZ up-regulated saliva identified in saliva OSCC samples by 
shotgun proteomics 

(295) 

CDH1,VIM, 
PFN1 

down-regulated tissue, 
 cells 

CDH dysfunction promotes tumour 
progression;correlation between 
decreased CDH1 and VIM expression 
and aggressive HNSC; decreased 
PFN1 in advanced OSCC  

(309);(310); 
(311) 

(312)(313) 

CAT up-regulated saliva Increased CAT levels in OSCC patients 
compared to healthy controls 

(314) 

FKBP1A (Pin1) up-regulated cells Pin1  overexpression is associated 
with lymph node metastasis through 
cyclinD regulation in OSCC. 

(315) 

SQRDL indifferent/upregulated tissue  examined by western blotting in 
OSCC and compared to benign tissue 

(316) 

TUFM down-regulated saliva detected by quantitative proteomics (294) 
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ZG16B / PAUF down-regulated tissue, 
cells 

PAUF expression was correlated with 
nodal metastasis  and poor prognosis 
in OSCC 

(317) 

MUC7 down-regulated tissue a gradual decrease in acidic mucin 
intensity in OED and overall weak 
intensity in OSCC. 

(318) 

ARPC5 up-regulated tissue, 
cells 

Highly expressed in HNSCC tissues; 
Silencing of ARPC5 inhibited cell 
migration and invasion in HNSCC cell 
lines. 

(319) 

HSPA9 (HPS70) up-regulated tissue overexpressed during tumourigenesis 
of the squamous epithelium of the 
oral cavity   

(320) 

CTSD up-regulated tissue CTSD expression correlated with 
OSCC invasion and progression 

(321) 

H3.3 differential saliva H3F3A transcripts elevated in OSCC 
patients; downregulated in OSCC 
compared to controls 

(322);(294) 
 

 

Complement C3 (C3); Alpha-1-antitrypsin (SERPINA1); Thymidine phosphorylase  (TYMP); Cystatin-S (CST4); 

Hemopexin (HPX); Transthyretin (TTR); Alpha-acid glycoprotein 1 (ORM1); Alpha-1-acid glycoprotein 2 

(ORM2); Apolipoprotein A-I (APOA1); Inter-alpha-trypsin inhibitor heavy chain H1 (ITIH1); Protein 

(AMBP);Vitronectin (VTN); 60S ribosomal protein L7 (RPL7); Plasminogen (PLG); Angiotensinogen 

(AGT/Serpin A8); Plasma protease C1 inhibitor (SERPING1); Haptoglobin (HP); Ras-related protein (RAB1B); 

Leupin (SERPINB4); Protein S100-A7 (S100A7); Calmodulin-like protein 5 (CALML5); Caspase-14 (CASP14); 

Filaggrin-2 (FLG2); Protein-arginine deiminase type-4 (PADI4); Tryptophanyl-tRNA synthetase (WARS); Alpha-

1-antichymotrypsin (GIG25/ SERPINA3); High mobility group protein B2 (HMGB2); Lysozyme C (LYZ); 

Cadherin-1 (CDH1); Vimentin (VIM); Vinculin (VCN); Profilin-1 (PFN1); Catalase (CAT); Peptidyl-prolyl cis-trans 

isomerase (FKBP1A); Sulfide:quinone oxidoreductase (SQRDL); Elongation factor Tu (TUFM); Zymogen 

granule protein 16 homolog B (ZG16B); Mucin-7 (MUC7); Actin-related protein 2/3 complex subunit 5 

(ARPC5); Stress-70 protein (HSPA9); Cathepsin D (CTSD); Dermcidin (DCD); Histone H3.3 (H3F3B).  

Our revelations are compatible with other proteomic studies where differentially 

expressed proteins have been proposed as candidate OSCC biomarkers. For instance, C3, 

SERPINA1, TYMP, HEM, APOA1, ITIH1, protein AMBP, VTN, SERPING1, SERPINB4, HP, 

ORM1,  and S100-A7 were found at significantly increased abundance in OSCC compared 

to control saliva (188,194,294,295,298,300,323). In addition, RAB1B, WARS, SERPINA3, and 

SQRDL were shown up-regulated in OSCC tissues and/or cell culture and associated with 

positive lymph nodes, and cancer invasiveness (299,306,307,316). We showed that 

caspase 14 (CASP14) and filaggrin (FLG) exhibited higher abundance at early compared to 

advanced cancer stages. Scharenberg et.al (95) reported co-localization of the two proteins 

in formalin-fixed OSCC tissues where CASP14/FLG expression is transmitted from the 

primary tumor to its metastasis and partial loss of both proteins was seen in invasive oral 
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tumors. Similar to our findings, angiotensinogen (SERPINA8) and plasminogen (PLG) 

upregulated expression in OSCC saliva was found by Csősz and co-workers (295). 

Bioinformatics analysis has shown that the plasminogen activator system could serve as a 

predictive marker for early OSCC (86), while angiotensin-converting enzymes were 

associated with malignant epithelial neoplasia such as OSCC (87). CALML5, encoding a skin-

specific calcium-binding protein was found recurrently mutated in OSCC  and suggested as 

a novel candidate cancer driver gene in oral carcinogenesis (303). High CTSD expression 

was closely correlated with oral carcinoma invasion and progression (112). However, some 

proteins were shown to have contradictive our findings expressions. Independent studies 

demonstrated RPL7 (294) and LYZ (295) upregulation, while TUFM and ORM2 

downregulation was estimated in OSCC collated to saliva obtained from healthy volunteers 

(188). Besides, CST4, PADI4, HMGB2, FKBP1A (Pin1), ARPC5, HSPA9 exhibited decreased 

expression in OSCC in our analysis, while other authors found them overexpressed in OSCC 

tissue and/or cultured HNSCC cell lines (305,308,315,319,320). Such a discrepancy may be 

explained with inter-person and/or sample type variabilities. Meanwhile, some 

underexpressed salivary proteins have shown similar expression profiles in other OSCC 

specimens and/or cancer types. For instance, CDH1, VCL, VIM, and PFN1 were found at a 

significantly lowered relative abundance in OSCC compared to non-cancerous tissue 

samples. Loss of cell-cell adhesion is important for the development of cancer invasion and 

metastasis (324). CDH1 or epithelial cadherin (E-cadherin) is involved in mechanisms 

regulating cell-cell adhesions, mobility, and proliferation of epithelial cells. It has long been 

recognized as a suppressor of invasion and metastasis in many contexts, so thus its 

depletions is suggested to be an important determinant of tumour progression (309). 

Furthermore, a hallmark of epithelial-mesenchymal transition (EMT) is the loss of E-

cadherin which may play an important role in OSCC carcinogenesis or progression. 

Downregulation of E-cadherin expression has previously been demonstrated in HNSC cell 

lines (310)  and oral cancer tumor tissue (311). Vinculin (VCL) is a key adhesion-related 

protein that affects tumorigenesis, metastasis, and invasion. It has been shown that cells 

with low VCL expression have increased metastatic potential and are closely related to the 

degree of tumor progression in non-small cell lung cancer (313). Other studies have 

observed similar phenomena in the breast (325) and colon (326) cancers, suggesting VCL 
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as a prognostic marker and a potential target for treatment. Vimentin (VIM) is a type III 

intermediate filament protein involved in cell attachment, migration, and signaling. The 

expression of mesenchymal markers such as VIM is observed after EMT, an important 

initial behavioral change related to the adhesion and migration properties of abnormal 

cells that are required for local tumor invasion. Immunophenotypic analysis of primary 

tumor tissues demonstrated a significant correlation between decreased E-cadherin and 

VIM expression and aggressive cancer features in HNSCC patients (310). VIM 

overexpression examined by immunohistochemistry was closely associated with local 

recurrence and short disease-free survival in OSCC, while tumours lacking or expressing a 

low level of VIM were correlated with a better prognosis (311). Profilin1 (PFN1), an 

indispensable and ubiquitously expressed actin-binding protein, has roles in normal cell 

motility, proliferation and differentiation. In support of our results, Adami et al. (312)  

showed lowered PFN1 expression in late stage OSCC tumour tissues. In addition, Peng and 

co-workers have reported association of PFN1 reduction with advanced laryngeal SCC 

tumours and a trend for enhanced lymph node invasion. No previous data were found on 

GLUL, GM2A, TRIM29, IGHG2, Polycomb protein SCMH1 and SPARCL1 association with 

OSCC, however, their modulated expression have been related to other cancer types (132–

136). Apart from potential clinical applications, these differential proteins may contribute 

to better understand the molecular mechanism of the disease. While the salivary 

proteome of the head-and-neck cancer has been widely explored, a few studies have 

described salivary proteome profiles of patients with OPMD and compared them to those 

with oral cancer (294,327). The investigated OPMD cohorts comprised of patients 

presenting a variety of oral lesions such as erythroleukoplakia, oral submucous fibrosis 

(OSF), homogeneous, speckle and verrucous leukoplakia, verrucous hyperplasia, lichenoid 

lesions, etc. whereas our research have particularly focused on PVL due to its high risk of 

malignant transformation (29–31). To reveal the representative feature of OSCC salivary 

proteome, we attempted to distinguish OSCC from PVL by using the abundance of the 

salivary proteins. Our LR selected a series of differential proteins that could discriminate 

between the two pathologic states, the statistical significance of which was further pair-

wisely assessed (Table 26). A literature review disclosed that many of them have previously 

been described in studies regarding OSCC and associated lesions. 
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Table 26.  List of proteins differentially expressed in OSCC compared to PVL detected in the current, 

and other oral cancer-associated studies. 

Protein name Sample Expression Comment Reference 

APOA1, HP, 
HSPA5 

saliva up-regulated offers a clinically effective 
tool for detecting OSCC and 
monitoring OPMDs 

(294);(327) 

RAB1B, FGA, C3, 
HPX, SERPING1, 
TYMP, PLG 

saliva, blood up-regulated Biomarker candidates of OSCC (295);(298); 
(299) 

KLK1 tissue up-regulated abundantly expressed in human 
OSCC and may be implicated in 
malignant progression 

(328) 

SOD2 tissue up-regulated in premalignant and OSCC lesions 
early event in oral carcinogenesis  

(329) 

LRG1 saliva up-regulated candidate biomarkers of OSCC  (194) 

KNG1 saliva up -reglated higher in OSCC than in OPMD;  
candidate biomarkers of OSCC  

(294);(306); 
(327) 

HIST2H2AA saliva up-regulated higher in OSCC than in OPMD (294) 

DSP,PKP1, 
DSC2 

tissue down-regulated decrease immunoreactivity  in 
dysplastic and OSCC tissue 
samples 

(330);(307) 

RHCG tissue, 
cell lines 

down-regulated RHCG acts as a tumor suppressor 
gene that plays a crucial role in 
inhibiting tumorigenicity and 
metastasis in HNSCC 

(331) 

KRT type II saliva, 
tissue 

differential  
 

early feature in the pathogenesis 
of invasive OSCC; downregulated 
expression in OED and OSCC 

(332);(291); 
(333) 

CNFN saliva, 
tissue 

down-regulated found in healthy controls; 
significantly downregulation in 
HNSCC tumor tissue  

(188) 

Apolipoprotein A (APOA); Haptoglobin (HP); SPARC protein; Endoplasmic reticulum chaperone BiP (HSPA5); 

Ras-related protein (RAB1B); Fibrinogen alpha chain (FGA); Complement C3 (C3); Hemopexin (HPX); Plasma 

protease C1 inhibitor (SERPING1); Thymidine phosphorylase  (TYMP); Plasmiogen (PLG); Kallikrein-1 

(KLK1);Superoxide dismutase (SOD2); Leucine-rich alpha-2-glycoprotein (LRG1); Kininogen-1 (KNG1); Histone 

H2A type 2-A (HIST2H2AA); Desmoplakin (DSP); Plakophilin-1 (PKP1); Desmocollin-2 (DSC2); Ammonium 

transporter Rh type C (RHCG); Keratin, type  II; Cornifelin  (CNFN); oral epithelial dysplasia (OED); oral 

potentially malignant disorder (OPMD) 

HSPA5, KNG1, and HIST2H2AA are part of a protein panel that appeared to be suitable for 

detecting OSCC and monitoring high-risk OPMD cases in Taiwan’s Oral Cancer Screening 

Program (327). RAB1B, C3, HPX, APOA1, HP, LRG1, SERPING1, TYMP, and PLG have been 

proposed as potential OSCC biomarkers, identified in human saliva (194,295,299,327). 

SOD2 up-regulation in premalignant and OSCC oral tissues has been suggested as an early 

event in oral carcinogenesis (329), and according to  Pettus et al. (328),  the abundant 

expression of various kallikreins in human OSCC may be implicated in malignant 
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progression. Some downregulated proteins found in saliva such as DSP, PKP1, DSC2, RHCG, 

KRT type II, and CNFN exhibited similar manifestations in histologic studies. For instance, 

decreased immunoreactivity of the desmosomal components DSP, PKP1, and DSC2 has 

been detected in dysplastic and OSCC tissue samples compared to the normal epithelium 

(330). Desmosomes are the most prominent cell-cell junctional complex in stratified 

squamous epithelial tissues. According to the authors, the loss of desmosomal adhesion is 

implied to be an early occurrence in the progression to SCC, connected with increased 

migratory capacity of tumor cells.  Examination of these cell adhesion molecules may 

provide a good marker of increased risk for progression to OSCC. Keratins have important 

molecular functions as structural constituents of the cytoskeleton as well as implications 

on cell shape and cell size. Keratin type II  overexpression in OSCC saliva has been reported 

by Krapfenbauer et al. (291). The regular keratin patterns in normal epithelia and their 

aberrant expression in premalignant lesions and carcinomas present possibilities for 

improving the early diagnosis of oral epithelial neoplasms (334). In this work we 

demonstrated the use of human saliva collected from healthy volunteers, OPMD, and OSCC 

patients, to measure candidate biomarkers using SWATH assay in a discovery-based 

proteomic study. Among the identified proteins, the statistical models indicated a panel of 

putative biomarkers that were differentially abundant between the studied cohorts. To 

highlight the molecular mechanisms potentially involved in the alteration of OSCC 

microenvironments, the differentially expressed proteins were applied for group-wise 

exploration with the String functional annotation tool. Furthermore, the enrichment 

analysis showed that the highest rank of biological processes involving the differentially 

expressed proteins in the OSCC groups was related to active regulatory mechanisms 

implicating immune and inflammatory responses (APOA1, HP, TTR, ORM1, ORM2, CAT, 

etc.) (Fig. 29 and Fig.32). The highlighted processes are consistent with the previous notion 

that the immune, defense, and inflammatory responses are dysregulated in the OSCC 

(165,335).  In addition, the highest association with the molecular function was inhibition 

of enzymatic activity and receptor-associated protein activity (signaling) where the Serpins 

family of protease inhibitors, CTSD, protein AMBP and CST4 are strongly involved. Many 

proteases play important roles in the invasion and metastasis of cancers because of their 

ability to degrade the extracellular matrix barrier surrounding tumors. The salivary 
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protease spectrum was found to be associated with oral diseases (336). For example, the 

saliva of patients with OSCC contained increased numbers of proteases than those of other 

oral diseases and health (336).Thus, analysis of the salivary protease spectrum may be 

useful as biomarkers in the screening, early diagnosis, and monitoring of cancer occurrence 

and evolution. Besides, our study revealed deregulated activity of proteins functioning as 

structural constituents of the cytoskeleton and cell-adhesion molecules in oral 

paraneoplastic and malignant lesions such as Keratins from type II, CNFN, CDH1, DSP, DSC2, 

PKP1 (Fig.56 and Fig.64). Aberrant expression of cytoskeletal components is associated 

with impaired epithelial differentiation and organization during tumourigenesis indicating 

that early atypical changes of OSCC may begin on the squamous cell skeleton (129).  In 

addition, it has been established that the initial step in the metastatic cascade is the 

detachment of tumour cells from the primary tumour via dysregulation of normal cell–cell 

and cell–matrix interactions where cell adhesion molecules mediate these interactions 

(330). The applied proteomics strategy allowed the identification of numerous proteins at 

differential levels, demonstrating to be feasible approach of revealing putative OSCC 

associated biomarkers. Further validation of the selected markers is required prior to their 

translation into clinical application. They need to be extensively certified considering that 

sampling efficiency for LC-MS/MS might vary from one experiment to another and some 

of the targets were identified based on single-peptide assignment. Refine selection of the 

best representatives to be verified should reasonably performed. Literature-sourced OSCC 

biomarkers with previous evidence of presence in saliva, molecules identified with higher 

number of peptides, classifier discovery for the most cooperative proteins and 

commercially available antibodies or ELISA assays (as an alternative methodology) might 

be taken into consideration for the selection process. In summary, this study presented a 

quantitative proteomic approach for discovery of OSCC candidate biomarkers in saliva of 

individuals from the Spanish population. We demonstrated a number of statistically 

significant proteins with the ability to distinguish OSCC patients from healthy controls and 

PVL based on their relative abundance profiles among which C3, APOA1, HP, HPX, 

SERPINA1, TYMP, TTR, ORM1, ORM2, CST4, ITIH1, S100A7, SERPINB4, SERPING1, protein 

AMBP, PFN1, LRG1, PLG, HSPA5, KNG1 could be associated with the risk of developing 

OSCC.  
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 CONCLUSIONS 
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1) IL-6, IL-8, TNF-α, HCC-1, and PF-4 showed significantly higher levels in OSCC than in OL 

and control saliva, being discriminately increased from early disease stages. These 

biomarkers may serve useful for definitive diagnosis, as well as for screening of patients 

at risk to develop oral cancer. 

 

2) Correlation between HCC-1 and IL-6 levels and histologic features of OL lesions hints at 

the potential of these markers to indicate epithelial dysplasia. The considerable growth 

of TNF-α and IL-6 concentrations towards OSCC evolution, and IL-6 being distinctive in 

the presence of cervical adenopathy suggests their potential involvement in disease 

progression and severity. 

 

3) IL-6 is suggested as an independent candidate biomarker with a capacity to discriminate 

between OSCC, OL, and control individuals. 

 

4) Combined analytical strategies allowed the annotation of 90 putative salivary N-glycan 

structures. Differentially expressed fucosylated bi- and tri-antennary glycans between 

healthy, premalignant, and OSCC profiles suggest active N-glycosylation changes in the 

process of oral carcinogenesis and provide a reasonable platform for further 

investigation of their diagnostic potential. 

 

5) Comparative proteome profiling revealed a list of differentially expressed proteins, 

characterized in OSCC, highlighting the importance of networks involving the immune 

system (Apolipoprotein A-I, Haptoglobin, Alpha-acid glycoprotein 1, Catalase, etc.), 

inhibition of enzymatic activities (Serpins family of protease inhibitors, Cathepsin D, 

protein AMBP and Cystatin-S) and cell adhesion (Cadherin-1, Vimentin, Vinculin, and 

Profilin-1) in this disease. Some newly found in saliva proteins (Calmodulin-like protein 

5, Caspase-14, Filaggrin, High mobility group protein B2, Mucin 7, Tryptophanyl-tRNA 

synthetase, etc.) require further validation.  
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ABC - Ammonium Bicarbonate 

AC - Actinic Cheilitis 

AFP - α-Fetoprotein 

AREG - Amphiregulin  

BCA - Bicinchoninic acid assay 

Bcl-2 - B-Cell Lymphoma-2  

BSCC - Basaloid SCC  

BTC - Betacellulin  

CA125 - Cancer Antigen 125  

CA15-3 - Cancer Antigen 15-3  

CCD1 - Cyclin D1 

CDK- Cyclin-Dependent kinase 

CDKN2a -  Cyclin-Dependent Kinase inhibitor 2a 

CIS - Carcinoma In Situ 

c-MET -  Mesenchymal Epithelial Transition factor 

CSC - Cancer Stem Cell  

CT - Computer Tomography  

DC - Dendritic cells  

DNA - Deoxyribonucleic Acid 

DTT-  Dithiothreitol  

EBV - Epstein-Barr Virus 

EGF - Epidermal Growth Factor  

EGFR - Epidermal Growth Factor Receptor 
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ELISA - Enzyme-Linked Immunosorbent Assay  

EMT - Epithelial-Mesenchymal Transition  

EPGN - Epigen  

EREG - Epiregulin  

FDA - Food and Drug Agency 

FFPET - Formalin-fixed paraffin-embedded tissue  

FGF1/2 - Fibroblast Growth Factor 1/2 gamma 

GLANT2 - acetylgalactosaminyltransferase 2  

HBEGF - Heparin-Binding EGF-like growth factor 

HCC-1  -Hemofiltrate CC chemokine 1 

HDL - High-Density Lipoprotein  

HE4 - Human Epididymis protein 4 

HER2 - Human Epidermal growth factor Receptor 2  

HGF - Hepatocyte Growth Factor 

HL - Homogeneous Leukoplakia 

HNC - Head and Neck Cancer 

HPV - Human Papilloma Virus 

hTERC - human Telomerase RNA gene  

IAA - Iodoacetamide  

IAP - Inhibitor of Apoptosis  

IARC - International Agency for Research on Cancer 

IFNs - Interferons 

IFN-γ - Interferon IHC - Immunohistochemistry  
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IgA – Immunoglobulin A 

ILs - Interleukins  

IP - interferon gamma-induced protein 

Jak - Janus kinase  

kD - kilodalton 

LC - Liquid Chromatography  

LP- Lichen Planus 

LT-α - Lymphotoxin-alpha 

MAPK  - Mitogen-activated Protein Kinase  

MCP- Monocyte chemoattractant protein 

MF - Macrophages  

MHC - Major Histocompatibility Complex  

MRI - Magnetic Resonance Imaging 

MS - Mass Spectrometry 

mTOR -  mammalian Target of Rapamycin 

MVD - Microvessel Density  

MVs - Microvesicles 

MWCO - Molecular Weight Cut-Off  

NF- κB - Nuclear Factor kappa-light-chain-enhancer of activated B cells 

NSCs - Normal Stem Cells  

OL - Oral Leukoplakia 

OLP - Oral Lichen Planus 

OPMDs - Oral Potentially Malignant Disorders 
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OPSCC - Oropharyngeal Squamous Cell Carcinoma 

OSCC - Oral Squamous Cell Carcinoma 

OSMF - Oral Submucous Fibrosis  

PAGE Polyacrylamide Gel Electrophoresis  

PD-1 - Programmed cell death protein 1 

PD-L1 - Programmed cell death protein 1 ligand  

PET - Positron Emission Tomography 

PF-4 - Platelet factor 4 

PI3K - PhosphatIdylinositol-3- kinase   

PKC - Protein Kinase C  

PNGaseF - Peptide N-glycosidase  

pRb - Retinoblastoma protein  

PSA - Porstate-Specific Antigen  

PTMs - Posttranslational modifications 

PVL - Proliferative Verrucous Leukoplakia 

RNA - Ribonucleic Acid  

SCC - Squamous Cell Carcinoma 

SF - Scatter Factor  

SOX2 - Sex determining region Y-box 2 

STAT - Signal Transducer and Activator of Transcription  

STK - Smokeless Tobacco Keratosis  

TACs - Transit Amplifying Cells  

TAMs - Tumour-Associated Macrophages  



204 
 

TC - Total Cholesterol 

 Tg - Thyroglobulin  

TGFα- Transforming growth Factor-alpha 

TGF-β - Transforming Growth Factor beta  

TNF-α - tumor necrosis factors alpha  

TNM - Tumour- Lymph Node-Metastasis 

UHPLC - Ultra-High-Performance Liquid Chromatography  

VC - Verrucous Carcinoma 

VLDL - Very low-density lipoprotein 

WHO - World Health Organization 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

205 
 

 

 

 

 

  



206 
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Figure 28. Dot plots showing log2 concentration (pg/mL) of salivary (A) IL-1α, (B) IL-6, (C) IL-8, (D) IP-

10, (E) MCP-1, (F)TNF-α, (G) HCC-1 and (H) PF-4 s in HL and PVL patients. Values represent mean ±SEM 

of n=33 (HL) and n=33 (PVL), where n is an average of two technical replicates. 
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Figure 30. Cytokines expressions in patients at advanced OSCC stages and control individuals. Dot plot 

(left) of salivary cytokine log2 levels (pg/mL) and ROC curves (right) of (A) IL-6, (B) IL-8, (C) TNF-α, (D) 

HCC-1 and (E) PF-4 (p = 0.0001, 0.0001, 0.0001, 0.0001 and 0.001, respectively). Dot plots of (F) IL-α, 

(G) IP-10 and (H) MCP-1. Values represent mean ±SEM of n=25 (control) and n=33 (advanced OSCC), 

where n is an average of two technical replicates. 
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Figure 32.  Comparison of salivary inflammatory factors in patients with oral potentially malignant 

lesions (HL&PVL) and early OSCC stages. Dot plot (left) and ROC curve (right) showing protein log2 

levels (pg/mL) of (A) IL-6, (B) IL-8, (C) TNF-α, (D) HCC-1 and (E) PF-4 (p = 0.0001, 0.05, 0.0001, 0.01 and 

0.0001, respectively). Dot plots of (F) IL-1α, (G) IP-10 and (H) MCP-1. Values represent mean ±SEM of 

n=66 (HL&PVL) and n=33 (early OSCC), where n is an average of two technical replicates. 
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Figure 33. Inflammatory factors expression in the saliva of patients with oral potentially malignant 

lesions (HL&PVL) and at advanced OSCC stages. Dot plot (left) and ROC curve (right) showing cytokine 

log2 levels (pg/mL) of (A) IL-6, (B) IL-8, (C) TNF-α, (D) HCC-1 and (E) PF-4 (p = 0.0001, 0.0001, 0.0001, 

0.0001 and 0.001, respectively). Dot plots of (F) IL-1α, (G) IP-10, and (H) MCP-1. Values represent mean 

±SEM of n=66 (HL&PVL) and n=33 (advanced OSCC), where n is an average of two technical replicates. 
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Figure 49. Receiver operating characteristic (ROC) curves and corresponding area under the curve 

(AUC) statistics for considerably (A) upregulated and (B) downregulated salivary proteins in PVL 

compared to the control group. The true positive rate (sensitivity) is plotted as a function of the false 

positive rate (1-specificity). The area under the ROC curve is the measure of how well the model 

distinguishes between control and PVL. 
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Figure 52. Receiver ROC curves and corresponding AUC statistics for salivary proteins with notably (A) 

upregulated and (B) down-regulated expression in early OSCC compared to control subjects.  
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Figure 55. ROC analysis of proteins with significantly (A) increased and (B) decreased relative 

abundance in the saliva of patients at advanced OSCC stages compared to control individuals.  
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Figure 58. ROC analysis of proteins with significantly (A) higher and (B) lower expression in the saliva 

of patients at early OSCC stages collated to PVL. AUC values indicate the capacity of each marker to 

discriminate between patients with PVL and early OSCC lesions.  

 

 

Figure 61. ROC curves and corresponding AUC statistics for salivary proteins with notably (A) elevated 

and (B) reduced relative abundance in advanced OSCC compared to PVL patients.  
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Figure 63. ROC curves and corresponding area under the curve (AUC) values for importantly (A) 

upregulated and (B) downregulated salivary proteins of OSCC collated to PVL patients. The area under 

the ROC curve is the measure of predictive models to discern between PVL and OSCC patients. 
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Figure 66. ROC analysis and corresponding AUC statistics for upregulated proteins in early compared 

to advanced OSCC saliva. The area under the ROC curve is the measure of predictive models to discern 

between early and advanced disease stages. 
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Table 6. Variability measures of cytokine expression values in control, HL, PVL, early and advanced 

OSCC groups. 

 

1st Qu and 3rd Q - first and third quartile, respectively; SD- standard deviation; CV-coefficient of variation 

 

Control 1st Qu 3rd Qu Median Mean Min Max Variance SD CV

IL-1α 807,30 1611,50 1268,40 1227,20 217,40 2264,80 377611,20 614,50 0,501

IL-6 5,38 9,35 7,40 7,95 1,13 21,37 22,63 4,76 0,599

IL-8 318,70 716,60 420,90 526,20 151,50 1262,70 87123,69 295,17 0,561

IP-10 592,60 1137,60 756,00 885,00 320,40 1927,20 218035,00 466,94 0,528

MCP-1 503,20 1586,70 977,10 1066,60 326,90 2343,20 400328,90 632,72 0,593

TNF-α 4,26 10,81 7,12 7,62 1,59 17,00 17,64 4,20 0,551

HCC-1 58,76 82,71 70,48 75,36 21,90 149,35 930,69 30,51 0,405

PF-4 175,00 296,00 231,00 253,80 89,00 544,00 14373,44 119,89 0,472

HL 1st Qu 3rd Qu Median Mean Min Max Variance SD CV

IL-1α 558,00 1701,50 1042,50 1760,10 114,60 8986,00 4838564,00 2199,67 1,250

IL-6 6,72 20,93 11,69 22,45 2,71 121,22 778,54 27,90 1,243

IL-8 367,46 1541,77 947,25 1405,26 48,52 7778,78 2645994,00 1626,65 1,158

IP-10 178,55 2531,63 759,91 1695,40 27,45 9340,92 5017955,00 2240,08 1,321

MCP-1 1047,90 3779,00 1694,30 2588,40 303,60 8145,40 4639360,00 2153,92 0,832

TNF-α 7,12 27,08 14,38 19,88 1,27 58,09 268,31 16,38 0,824

HCC-1 69,24 221,96 99,45 175,46 23,26 755,45 26041,28 161,37 0,920

PF-4 116,80 325,50 188,00 300,90 24,00 1684,00 123166,20 350,95 1,166

PVL 1st Qu 3rd Qu Median Mean Min Max Variance SD CV

IL-1α 640,42 2450,29 1479,68 1886,48 18,52 7527,01 2869304,00 1693,90 0,898

IL-6 7,32 18,62 12,77 18,90 3,03 91,99 464,23 21,55 1,140

IL-8 479,80 1280,80 741,90 1140,90 102,30 7954,20 1908385,00 1381,44 1,211

IP-10 247,33 1834,62 541,03 1157,80 40,47 5577,07 2084033,00 1443,62 1,247

MCP-1 1489,90 5608,30 2904,70 3600,80 418,90 9218,80 7645029,00 2764,96 0,768

TNF-α 9,00 29,57 14,49 23,08 2,03 118,69 599,03 24,48 1,061

HCC-1 74,07 182,12 126,15 189,28 26,96 1042,43 42213,02 205,46 1,085

PF-4 97,00 372,00 175,00 454,80 10,00 3793,00 709393,50 842,26 1,852

early OSCC 1st Qu 3rd Qu Median Mean Min Max Variance SD CV

IL-1α 574,95 2469,64 1053,16 1556,19 46,94 6082,49 2034714,00 1426,43 0,917

IL-6 14,57 117,87 52,56 99,82 3,00 747,10 22457,29 149,86 1,501

IL-8 761,80 2495,50 1413,70 2567,00 114,50 11491,60 9972508,00 3157,93 1,230

IP-10 592,50 2169,70 1132,60 1963,90 131,50 7156,00 4406245,00 2099,11 1,069

MCP-1 1036,60 4304,20 1582,20 2560,70 380,20 7603,40 4524078,00 2126,99 0,831

TNF-α 25,09 65,43 37,35 59,82 4,88 310,11 4412,39 66,43 1,110

HCC-1 131,89 374,11 210,96 298,53 27,33 1511,40 81008,72 284,62 0,953

PF-4 326,00 727,00 513,00 642,10 33,00 3069,00 362741,50 602,28 0,938

advanced OSCC 1st Qu 3rd Qu Median Mean Min Max Variance SD CV

IL-1α 436,30 1744,80 884,10 1313,80 159,00 3961,10 1186101,00 1089,08 0,829

IL-6 60,80 358,73 119,46 262,08 7,15 1711,81 143005,70 378,16 1,443

IL-8 1218,41 5544,88 2617,79 4124,81 61,09 16314,10 20451026,00 4522,28 1,096

IP-10 456,70 1880,30 631,30 1556,50 65,60 7673,40 3646675,00 1909,63 1,227

MCP-1 732,90 1905,40 1184,00 2099,80 119,10 9900,70 6100394,00 2469,90 1,176

TNF-α 34,46 160,48 91,88 122,52 6,03 504,32 14113,07 118,80 0,970

HCC-1 177,00 600,50 270,00 551,30 32,00 3404,60 457948,20 676,72 1,227

PF-4 190,50 1713,50 306,20 1021,90 115,00 4658,00 1566097,00 1251,44 1,225
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Table 8.  Pearson's pairwise correlation among salivary cytokines in (A) Control, (B) HL, (C) PVL, (D) 

early OSCC, and (E) advanced OSCC group. Correlation is significant when p ≤ 0.05 (*), p ≤ 0.01 (**) 

and, p ≤ 0.001 (***). 
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Table 9. Conditional concentration ranges (pg/mL) of salivary cytokines that maximize the probability 

of association with the clinical variables (A) histologic feature – epithelial dysplasia, (B) histologic 

feature - no epithelial dysplasia, (C) clinical type- mixed, (D) clinical type – verrucous and (E) clinical 

type homogeneous white lesion of patients diagnosed with HL and PVL. Mean- average value (n=33 

HL; n=33 PVL); L- lower and U- upper value; P- probability of diagnosis. Cytokines, positively correlated 

with patients' clinical variables are marked in red. 
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Table 10. Conditional concentration ranges (pg/mL) of salivary cytokines that maximize the probability 

of association with the clinical variables (A) histologic feature – well-differentiated tumor (WD), (B) 

histologic feature – not well-differentiated tumor, (C) absence of cervical adenopathy, and (D) the 

presence of cervical adenopathy of patients diagnosed at early and advanced OSCC stages. Mean- 

average value; L- lower and U- upper value; P- the probability of association. Analytes, positively 

correlated with patients' clinical variables are marked in red. 
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Table 11. Conditional probability ranges of salivary cytokines to distinguish between (A) Control, (B) 

HL, (C) PVL, (D) early, and (D) advanced OSCC stages. Mean- average value; L- lower and U- upper 

value; P- the probability of association. Cytokines, positively correlated with patients' clinical variables 

are marked in red. 
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Table 13. Annotation of the total N-glycans identified in the salivary pool of healthy individuals on 

HILIC-UPLC–MS identification. dHex –desoxyhexose (fucose), Hex- hexose 

(galactose/glucose/mannose), HexNAc- N-acetylgalactosamine/N-acetylglucosamine, NeuAc – sialic 

acid, Pen-Xylose. N-glycans found to have significantly different relative abundance in OSCC compared 

to PVL and Controls groups are highlighted. 

t(R) 

min 

Experimental 

mass (m/z) 

Theoretical 

Monoisotopic 

mass (m/z) 

Mass 

accuracy 

(ppm) 

Ion Monosacharide composition 

3.86 1175.4491 1175.4472 1.65 [M-H]1- dHex-core2AB 

4.99 688.7597 688.7596 0.10 [M2-H]2- dHexHexNAc-core2AB 

5.20 717.2722 717.2704 2.60 [M2-H]2- HexNAc2-core2AB 

5.58 668.2479 668.2464 2.31 [M2-H]2- dHexHex-core2AB 
 

1337.5014 1337.5 1.05 [M-H]1- dHexHex-core2AB 

5.90 696.7568 696.7571 0.41 [M2-H]2- HexHexNAc-core2AB 

6.19 818.8082 818.81 2.25 [M2-H]2- HexNAc3-core2AB 

6.27 790.2980 790.2993 1.66 [M2-H]2- dHexHexNAc2-core2AB 

6.88 676.2428 676.2438 1.49 [M2-H]2- Hex2-core2AB 

7.24 769.7853 769.786 0.96 [M2-H]2- dHexHexHexNAc-core2AB 

7.24 891.8372 891.839 2.02 [M2-H]2- dHexHexNAc3-core2AB 

8.14 899.8359 899.8365 0.62 [M2-H]2- HexHexNAc3-core2AB 

8.25 842.8142 842.8150 0.94 [M2-H]2- dHex2HexNAcHex-core2AB 

8.68 871.3248 871.3257 1.06 [M2-H]2- dHexHexNAc2Hex-core2AB 

9.24 972.8630 972.8654 2.47 [M2-H]2- dHexHexNAc3Hex-core2AB 

9.37 757.2692 757.2702 1.35 [M2-H]2- Hex3-core2AB 

9.46 850.8111 850.8125 1.58 [M2-H]2- dHexHexNAcHex2-core2AB 

9.53 879.3229 879.3232 0.32 [M2-H]2- Hex2HexNAc2-core2AB 

10.01 915.3345 915.3337 0.82 [M2-H]2- dHexNeuAcHexNAcHex-core2AB 

10.27 915.8436 915.8439 0.38 [M2-H]2- dHex3HexNAcHex-core2AB 

10.61 944.3545 944.3547 0.19 [M2-H]2- dHex2HexNAc2Hex-core2AB 

10.93 952.3506 952.3521 1.61 [M2-H]2- dHex1HexNAc2Hex2-core2AB 

11.34 915.3335 915.3335 0.27 [M2-H]2- dHexNeuAcHexNAcHex-core2AB 

11.59 923.8405 923.8414 0.99 [M2-H]2- dHex2HexNAcHex2-core2AB 

11.62 1053.8900 1053.8918 1.73 [M2-H]2- dHexHexNAc3Hex2-core2AB 

11.72 1045.8924 1045.8944 1.88 [M2-H]2- dHex2HexNAc3Hex-core2AB 
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11.97 1025.3796 1025.3811 1.45 [M2-H]2- dHex2HexNAc2Hex2-core2AB 

12.05 1017.3822 1017.3836 1.41 [M2-H]2- dHex3HexNAc2Hex2-core2AB 

12.17 988.3617 988.3627 1.01 [M2-H]2- dHex2NeuAcHexNAcHex-core2AB 

12.19 931.8380 931.8389 0.93 [M2-H]2- dHexHexNAcHex3-core2AB 

12.46 996.3601 996.3602 0.06 [M2-H]2- dHexNeuAcHexNAcHex2-core2AB 

12.72 1045.3854 1045.3842 1.18 [M2-H]2- NeuAcHexNAc3Hex-core2AB 

12.76 1016.8737 1016.8734 0.26 [M2-H]2- dHexNeuAcHexNAc2Hex-core2AB 

12.96 996.8683 996.8683 2.06 [M2-H]2- dHex3HexNAcHex2-core2AB 

13.14 1025.3787 1025.3811 2.33 [M2-H]2- dHex2HexNAc2Hex2-core2AB 

13.92 1024.8705 1024.8709 0.38 [M2-H]2- NeuAcHexNAc2Hex2-core2AB 

13.81 1097.8998 1097.8998 0.04 [M2-H]2- dHexNeuAcHexNAc2Hex2-

core2AB 

14.37 1004.8657 1004.8678 2.1 [M2-H]2- dHex2HexNAcHex3-core2AB 

14.70 1134.9176 1134.9182 0.56 [M2-H]2- dHexHexNAc3Hex3-core2AB 

14.46 1098.4093 1098.4100 0.7 [M2-H]2- dHex3HexNAc2Hex2-core2AB 

15.81 1170.9277 1170.9288 0.94 [M2-H]2- dHex2NeuAcHexNAc2Hex2-

core2AB 

15.66 1077.8960 1077.8968 0.71 [M2-H]2- dHex3HexNAcHex3-core2AB 

15.51 1171.4375 1171.439 1.28 [M2-H]2- dHex4HexNAc2Hex2-core2AB 

15.70 1207.9463 1207.9472 0.74 [M2-H]2- dHex2HexNAc3Hex3-core2AB 

16.07 1199.4423 1199.4395 2.3 [M2-H]2- dHexNeuAcHexNAc3Hex2-

core2AB 

16.46 1077.3869 1077.3866 0.3 [M2-H]2- dHexNeuAcHexNAcHex2-core2AB 

16.65 1208.4482 1208.4574 7.6 [M2-H]2- dHexHexNAc2MeHex4Pen-

core2AB 

16.72 1171.4375 1171.439 1.28 [M2-H]2- dHex4HexNAc2Hex2-core2AB 

17.03 1207.9463 1207.9472 0.74 [M2-H]2- dHex2HexNAc3Hex3-core2AB 

17.03 1150.4171 1150.4155 1.37 [M2-H]2- dHex2NeuAcHexNAcHex3-

core2AB 

17.01 1272.9785 1272.9787 0.14 [M2-H]2- dHex4HexNAc3Hex2-core2AB 

17.30 1000.3504 1000.3495 0.94 [M2-H]2- Hex6-core2AB 

17.38 1170.9277 1170.9288 0.94 [M2-H]2- dHex2NeuAcHexNAc2Hex2-

core2AB 
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17.30 1280.4664 1280.4659 0.35 [M2-H]2- dHexNeuAcHexNAc3Hex3-

core2AB 

17.90 1280.974 1280.9761 1.67 [M2-H]2- dHex3HexNAc3Hex3-core2AB 

18.57 1243.9556 1243.9578 1.73 [M2-H]2- dHex3NeuAcHexNAc2Hex2-

core2AB 

18.72 1345.4998 1345.4974 1.75 [M2-H]2- dHex3NeuAcHexNAc3Hex2-

core2AB 

18.76 1353.4962 1353.4949 0.07 [M2-H]2- dHex2NeuAcHexNAc3Hex3-

core2AB 

19.04 1243.4486 1243.4476 0.84 [M2-H]2- dHexNeuAc2HexNAc2Hex2-

core2AB 

19.11 1316.9874 1316.9867 0.52 [M2-H]2- dHex4NeuAcHexNAc2Hex2-

core2AB 

19.70 1354.0061 1354.0051 0.73 [M2-H]2- dHex4HexNAc3Hex3-core2AB 

19.72 1344.9885 1344.9872 0.94 [M2-H]2- dHexNeuAc2HexNAc3Hex2-

core2AB 

19.74 1426.5237 1426.5239 0.1 [M2-H]2- dHex3NeuAcHexNAc3Hex3-

core2AB 

19.95 1316.4779 1316.4765 1.05 [M2-H]2- dHex2NeuAc2HexNAc2Hex2-

core2AB 

19.97 1345.4998 1345.4974 1.75 [M2-H]2- dHex3NeuAcHexNAc3Hex2-

core2AB 

20.10 1353.4960 1353.4949 0.81 [M2-H]2- dHex2NeuAcHexNAc3Hex3-

core2AB 

20.49 1389.5063 1389.5055 0.6 [M2-H]2- dHex3NeuAc2HexNAc2Hex2-

core2AB 

20.63 1354.0039 1354.0051 0.88 [M2-H]2- dHex4HexNAc3Hex3-core2AB 

20.63 1426.5252 1426.5239 0.94 [M2-H]2- dHex3NeuAcHexNAc3Hex3-

core2AB 

20.91 1426.5237 1426.5239 0.1 [M2-H]2- dHex3NeuAcHexNAc3Hex3-

core2AB 

21.24 1499.0454 1499.0426 1.83 [M2-H]2- dHex2NeuAc2HexNAc3Hex3-

core2AB 

21.99 1500.0641 1500.0504 9.11 [M2-H]2- dHexHexNAc5Hex5-core2AB 
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22.10 1426.5237 1426.5239 0.1 [M2-H]2- dHex3NeuAcHexNAc3Hex3-

core2AB 

22.16 1499.5560 1499.5528 2.06 [M2-H]2- dHex3NeuAcHexNAc2Hex2-

core2AB 

22.41 1427.0353 1427.0341 0.87 [M2-H]2- HexNAc5Hex5-core2AB 

22.82 1528.0257 1528.0635 4.7 [M2-H]2- dHex3NeuAcHexNAc4Hex3-

core2AB 

23.39 1572.5830 1572.5692 0.6 [M2-H]2- dHex2NeuAc3HexNAc3Hex2-

core2AB 

23.83 1573.0929 1573.0794 8.59 [M2-H]2- dHex2HexNAc5Hex5-core2AB 
 

1048.3952 1048.3939 0.84 [M2-H]2- dHexNeuAcHexNAc3-core2AB 
 

1573.0920 1573.0794 1.1 [M2-H]2- dHex2HexNAc5Hex5-core2AB 

23.85 1596.0695 1596.0639 1.5 [M2-H]2- dHexNeuAc2HexNAc2Hex3-

core2AB 

23.87 1601.0591 1601.0869 1.2 [M2-H]2- dHexNeuAc3HexNAc4Hex2-

core2AB 

24.17 1572.0744 1572.0716 1.8 [M2-H]2- dHex4NeuAc2HexNAc3Hex2-

core2AB 

24.45 1645.1060 1645.1005 3.33 [M2-H]2- dHex4NeuAc2HexNAc3Hex3-

core2AB 
 

1645.6101 1645.5981 7.27 [M2-H]2- dHexNeuAcHexNAc5Hex5-

core2AB 

26.26 1145.0822 1145.0839 1.47 [M3-H]3- dHex5NeuAc2HexNAc3Hex3 

26.33 1144.7455 1144.7438 1.52 [M3-H]3- dHex3NeuAc3HexNAc3Hex3 

26.40 1193.4317 1193.4297 1.65 [M3-H]3- dHex4NeuAc3HexNAc3Hex3-

core2AB 

27.84 1218.4469 1218.4488 1.54 [M3-H]3- dHex3NeuAcHeNAc4Hex4 
 

1218.4469 1218.4404 5.33 [M3-H]3- dHexNeuNAcHexNAc6Hex6 
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Table 16. List of proteins quantified by SWATH analysis of saliva from healthy controls and patients with 

PVL, early and advanced OSCC stages. The UniProt protein ID, the protein name, and subcellular location 

are presented. The representative identification with the number (#) of peptides with which a protein 

was determined and quantification data (log2Med)) are given in each case. EPR denotes endoplasmic 

reticulum, MIM- mitochondrial inner membrane, MOM- mitochondrial outer membrane. 

 
 

Index 

 
 

Protein  
ID 

 
 
Protein name 

 
 

Ctrl 
 

 
 

PVL 

 
 

eOSCC 
 

 
 

advOSCC 

 
# 

peptides 

 
Main 

subcellular 
location 

1 P61604 10 kDa heat shock protein  -0,139 -0,202 -0,186 -0,758 2 Mitochondria 

2 P31946 14-3-3 protein beta/alpha  0,114 -0,261 0,178 0,071 2  Cytoplasm  

3 P62258 14-3-3 protein epsilon  1,449 1,522 1,405 1,579 5  Nucleus  

4 P61981 14-3-3 protein gamma  -0,239 -0,198 -0,397 0,101 4  Cytoplasm  

5 P31947 14-3-3 protein sigma  3,893 4,303 4,284 4,253 12  Cytoplasm 

6 P27348 14-3-3 protein theta  -0,907 -0,443 -0,703 -0,592 3  Cytoplasm 

7 P63104 14-3-3 protein zeta/delta  4,632 4,677 4,532 4,668 10  Cytoplasm  

8 Q99943 1-acyl-sn-glycerol-3-phosphate 
acyltransferase alpha  

3,033 1,998 2,656 0,753 1  EPR 
membrane  

9 Q99460 26S proteasome non-ATPase 
regulatory subunit 1  

-3,307 -2,457 -2,899 -3,092 1 - 

10 O43242 26S proteasome non-ATPase 
regulatory subunit 3  

-4,128 -4,682 -4,310 -4,528 1 - 

11 Q15008 26S proteasome non-ATPase 
regulatory subunit 6  

-2,840 -1,872 -2,488 -2,661 1 - 

12 P51665 26S proteasome non-ATPase 
regulatory subunit 7  

-3,304 -3,174 -3,240 -3,053 1 - 

13 Q99714 3-hydroxyacyl-CoA 
dehydrogenase type-2  

-0,120 -0,260 -0,104 -0,407 2  
Mitochondria 

14 Q6NVY1 3-hydroxyisobutyryl-CoA 
hydrolase 

-3,720 -3,175 -3,332 -3,467 1  
Mitochondria 

15 P46783 40S ribosomal protein S10  0,081 0,111 -0,138 -0,406 3  Cytoplasm  

16 P25398 40S ribosomal protein S12  -2,261 -2,463 -1,965 -2,216 1  Cytoplasm 

17 P62277 40S ribosomal protein S13  -0,898 -1,348 -1,599 -1,935 2 - 

18 P62263 40S ribosomal protein S14  -2,109 -2,208 -2,337 -2,743 1 - 

19 P62244 40S ribosomal protein S15a  0,668 0,844 0,606 0,151 3 - 

20 P62249 40S ribosomal protein S16  1,113 1,344 1,043 0,921 5 - 

21 P08708 40S ribosomal protein S17  -2,180 -1,844 -2,006 -2,355 2 - 

22 P62269 40S ribosomal protein S18  1,299 1,391 1,247 0,749 5  Cytoplasm 

23 P15880 40S ribosomal protein S2  0,948 0,977 0,714 0,953 5 - 

24 P60866 40S ribosomal protein S20  0,610 0,741 0,625 0,288 2  Cytoplasm  

25 P62266 40S ribosomal protein S23  -0,382 -0,253 -0,652 -0,756 2  Cytoplasm 

26 P62851 40S ribosomal protein S25  0,739 0,841 0,600 0,238 2 - 

27 P62854 40S ribosomal protein S26  -1,926 -1,930 -1,977 -2,282 2  Cytoplasm 

28 P62857 40S ribosomal protein S28  3,068 0,291 -0,902 -1,023 1  Cytoplasm 

29 P62273 40S ribosomal protein S29  -1,487 -1,830 -1,918 -2,524 1  Cytoplasm 

30 P23396 40S ribosomal protein S3  1,537 1,853 1,398 1,557 5  Cytoplasm  

31 P61247 40S ribosomal protein S3a  0,805 1,020 0,914 1,018 4  Cytoplasm  

32 P62701 40S ribosomal protein S4 0,987 1,513 1,187 1,063 6  Cytoplasm  

33 P46782 40S ribosomal protein S5  -0,823 -0,413 -0,516 -0,129 2 - 

34 P62753 40S ribosomal protein S6  -0,450 -0,083 -0,184 -0,332 2 - 

35 P62081 40S ribosomal protein S7  -0,002 0,205 0,016 -0,301 2  Cytoplasm 
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36 P62241 40S ribosomal protein S8  -0,060 0,551 0,159 0,349 4  Cytoplasm  

37 P46781 40S ribosomal protein S9  0,033 0,411 0,378 0,238 2  Cytoplasm  

38 P08865 40S ribosomal protein SA  0,854 1,006 0,546 0,607 4  Cell 
membrane 

39 P49189 4-
trimethylaminobutyraldehyde 
dehydrogenase  

-0,029 -0,407 -0,222 -0,136 3  Cytoplasm 

40 P10809 60 kDa heat shock protein, 
mitochondrial  

-2,011 -2,120 -1,969 -1,783 3  
Mitochondria 

41 P05388 60S acidic ribosomal protein 
P0  

0,997 1,039 0,987 0,899 5  Nucleus  

42 P05387 60S acidic ribosomal protein 
P2  

-0,688 -0,503 -0,859 -0,968 2 - 

43 P62913 60S ribosomal protein L11  -0,197 0,042 -0,253 -0,463 1  Nucleus 

44 P30050 60S ribosomal protein L12  0,146 0,094 0,174 -0,170 2 - 

45 P26373 60S ribosomal protein L13  -0,098 -0,095 -0,566 -0,678 3 - 

46 P40429 60S ribosomal protein L13a  -1,701 -1,343 -1,436 -1,286 1  Cytoplasm  

47 P50914 60S ribosomal protein L14  -0,235 0,028 -0,065 0,047 2 - 

48 P61313 60S ribosomal protein L15  -2,346 -1,778 -2,052 -2,922 1  Membrane  

49 P18621 60S ribosomal protein L17  -2,438 -2,797 -2,750 -3,031 1 - 

50 Q07020 60S ribosomal protein L18  0,621 0,561 0,630 0,388 3  Cytoplasm 

51 Q02543 60S ribosomal protein L18a  -0,917 -0,504 -0,719 -1,294 2 - 

52 P46778 60S ribosomal protein L21  -2,985 -2,504 -3,752 -2,553 1  Cytoplasm 

53 P35268 60S ribosomal protein L22  0,409 0,286 0,399 -0,058 2 - 

54 P62829 60S ribosomal protein L23  0,860 0,802 0,794 0,609 3 - 

55 P61254 60S ribosomal protein L26  -1,435 -0,662 -0,937 -1,270 2 - 

56 P61353 60S ribosomal protein L27  0,302 0,207 0,016 -0,103 1  Cytoplasm 

57 P46776 60S ribosomal protein L27a  -0,052 0,041 -0,607 -0,539 1 - 

58 P46779 60S ribosomal protein L28  -0,251 0,029 -0,280 -0,632 2 - 

59 P39023 60S ribosomal protein L3  -2,555 -2,842 -2,889 -3,409 1  Nucleus 

60 P62888 60S ribosomal protein L30  0,569 0,699 0,386 0,442 3 - 

61 P49207 60S ribosomal protein L34  0,094 0,147 0,194 -0,073 2  Cytoplasm 

62 Q969Q0 60S ribosomal protein L36a  -2,128 -2,077 -2,351 -2,701 1  Cytoplasm  

63 P36578 60S ribosomal protein L4  0,337 0,701 0,119 0,478 3 - 

64 P46777 60S ribosomal protein L5  -1,527 -0,940 -1,373 -1,496 1  Cytoplasm  

65 Q02878 60S ribosomal protein L6  -0,849 -1,260 -0,889 -2,008 1  Cytoplasm 

66 P18124 60S ribosomal protein L7  0,892 0,669 0,882 0,034 2 - 

67 P62424 60S ribosomal protein L7a  0,019 -0,431 -0,272 0,126 3 - 

68 P52209 6-phosphogluconate 
dehydrogenase 

4,441 4,493 4,215 4,212 18  Cytoplasm  

69 O95336 6-phosphogluconolactonase  -0,490 -1,498 -0,775 -0,923 3  Cytoplasm  

70 Q13510 Acid ceramidase  -1,853 -2,639 -2,085 -2,144 1  Lysosome  

71 P68032 Actin, alpha cardiac muscle 1  4,151 3,573 3,826 3,920 4  Cytoplasm 

72 P61160 Actin-related protein 2  0,009 0,182 -0,003 -0,532 2  Cytoplasm 

73 Q92747 Actin-related protein 2/3 
complex subunit 1A  

-2,783 -2,917 -2,612 -2,980 1  Cytoplasm 

74 O15143 Actin-related protein 2/3 
complex subunit 1B  

0,651 0,706 0,251 0,155 2  Cytoplasm 

75 O15144 Actin-related protein 2/3 
complex subunit 2  

0,132 0,366 0,262 0,021 3  Cytoplasm 

76 O15145 Actin-related protein 2/3 
complex subunit 3  

-1,895 -1,599 -3,141 -1,327 1  Cytoplasm 
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77 P59998 Actin-related protein 2/3 
complex subunit 4  

2,891 2,911 2,688 2,725 6  Cytoplasm 

78 O15511 Actin-related protein 2/3 
complex subunit 5  

0,857 0,623 0,356 0,175 1  Cytoplasm 

79 P61158 Actin-related protein 3  -0,045 0,082 -0,062 0,010 4  Cytoplasm 

80 P07108 Acyl-CoA-binding protein  -2,703 -2,055 -2,166 -2,448 2  EPR  

81 O75608 Acyl-protein thioesterase 1  -2,886 -2,423 -2,237 -2,742 1  Cytoplasm  

82 P23526 Adenosylhomocysteinase  -1,156 -1,389 -1,473 -1,364 2  Cytoplasm  

83 Q01518 Adenylyl cyclase-associated 
protein 1  

1,871 1,790 1,907 2,126 13  Cell 
membrane  

84 Q9HDC9 Adipocyte plasma membrane-
associated protein  

-1,779 -0,965 -1,281 -1,815 1  Membrane  

85 P05141 ADP/ATP translocase 2  1,065 1,396 0,922 1,165 2  MIM 

86 P12236 ADP/ATP translocase 3  -1,880 -1,265 -1,916 -1,439 1  MIM 

87 P61204 ADP-ribosylation factor 3 -1,423 -0,901 -0,882 -1,694 1  Golgi 
apparatus  

88 P62330 ADP-ribosylation factor 6 0,244 0,995 0,865 0,507 3  Cytoplasm 

89 Q9NVJ2 ADP-ribosylation factor-like 
protein 8B  

-3,018 -2,482 -2,372 -3,259 1 Membrane  

90 P30838 Aldehyde dehydrogenase 2,520 3,145 2,586 2,587 8  Cytoplasm  

91 P05091 Aldehyde dehydrogenase -2,340 -2,084 -2,865 -2,609 1  
Mitochondria 

92 P51648 Aldehyde dehydrogenase 
family 3 member A2  

-1,707 -0,978 -1,511 -1,937 1 Microsome 
membrane  

93 P14550 Aldo-keto reductase family 1 
member A1  

-0,167 -0,329 -0,347 0,014 3  Cytoplasm 

94 O60218 Aldo-keto reductase family 1 
member B10  

0,810 1,599 1,290 1,555 7  Lysosome  

95 Q04828 Aldo-keto reductase family 1 
member C1  

-0,762 0,419 -0,557 -0,073 1  Cytoplasm 

96 P40394 All-trans-retinol 
dehydrogenase [NAD 

2,005 2,323 1,873 1,701 9  Cytoplasm 

97 P02763 Alpha-1-acid glycoprotein 1  1,831 2,414 3,008 4,106 3  Secreted 

98 P19652 Alpha-1-acid glycoprotein 2  -0,258 0,121 0,947 1,289 2  Secreted 

99 P01011 Alpha-1-antichymotrypsin  1,740 1,908 2,214 3,117 9  Secreted 

100 P01009 Alpha-1-antitrypsin  4,865 5,399 5,809 6,903 27  Secreted 

101 P04217 Alpha-1B-glycoprotein  1,052 1,122 1,845 2,637 7  Secreted 

102 P08697 Alpha-2-antiplasmin  -3,477 -3,849 -3,292 -2,839 1  Secreted 

103 P02765 Alpha-2-HS-glycoprotein  0,474 0,993 1,639 2,101 3  Secreted 

104 P01023 Alpha-2-macroglobulin  4,077 4,419 5,188 6,078 42  Secreted  

105 A8K2U0 Alpha-2-macroglobulin-like 
protein 1  

5,161 5,073 4,778 5,083 30  Secreted  

106 P12814 Alpha-actinin-1  -0,107 -0,122 -0,336 -0,135 5  Cytoplasm 

107 Q08043 Alpha-actinin-3  -2,419 -2,839 -2,988 -3,257 2 Cytoplasm 

108 O43707 Alpha-actinin-4  2,274 2,253 2,213 2,285 14  Nucleus  

109 P04745 Alpha-amylase 1  9,523 8,984 8,813 9,360 19  Secreted 

110 P61163 Alpha-centractin  -2,657 -2,625 -2,374 -2,751 2  Cytoplasm 

111 P02511 Alpha-crystallin B chain  0,974 0,906 0,699 0,536 6  Cytoplasm  

112 P06733 Alpha-enolase  4,535 4,392 4,508 4,579 27  Cytoplasm  

113 P54920 Alpha-soluble NSF attachment 
protein  

-2,175 -1,231 -2,503 -1,798 2  Cell 
membrane  

114 Q13155 Aminoacyl tRNA synthase 
protein 2  

-4,160 -3,452 -3,472 -2,996 1  Cytoplasm 

115 Q9UBD6 Ammonium transporter Rh 
type C  

1,409 1,827 0,790 0,841 4 Cell 
membrane  

116 P01019 Angiotensinogen  -1,473 -1,190 -0,544 0,195 4  Secreted 
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117 P04083 Annexin A1  7,863 8,321 7,768 7,462 28  Nucleus  

118 P50995 Annexin A11  0,219 0,762 0,247 -0,210 4  Cytoplasm  

119 P07355 Annexin A2  2,979 3,369 2,944 2,797 6  Secreted 

120 P12429 Annexin A3  4,741 4,755 4,302 4,316 16 Cytoplasm 

121 P09525 Annexin A4  0,593 1,138 0,891 0,580 5 Cell surface 

122 P08758 Annexin A5  1,899 2,077 1,935 1,880 6 Cytoplasm 

123 P08133 Annexin A6  2,235 2,376 2,016 1,971 9  Cytoplasm  

124 P20073 Annexin A7  -2,439 -2,286 -2,152 -2,778 1 Cytoplasm 

125 Q5VT79 Annexin A8-like protein 1 2,022 2,433 2,117 2,017 7 - 

126 P03973 Antileukoproteinase  0,475 0,607 1,038 0,488 4  Secreted  

127 P01008 Antithrombin-III  0,863 1,204 1,424 2,292 6  Secreted 

128 P02647 Apolipoprotein A-I  3,208 3,908 5,127 5,472 23  Secreted 

129 P02652 Apolipoprotein A-II  -2,835 -2,939 -1,572 -1,937 1  Secreted  

130 P06727 Apolipoprotein A-IV  -1,710 -2,472 -1,502 -1,363 2  Secreted 

131 P04114 Apolipoprotein B-100  1,680 1,728 1,957 2,658 12  Cytoplasm  

132 P05090 Apolipoprotein D  -1,578 -0,754 -0,700 -0,466 3  Secreted 

133 Q9ULZ3 Apoptosis-associated speck-
like protein  

-3,518 -3,858 -3,910 -3,614 1  Cytoplasm 

134 P18054 Arachidonate 12-lipoxygenase, 
12S-type  

-3,083 -2,321 -2,983 -2,993 2  Cytoplasm 

135 P09917 Arachidonate 5-lipoxygenase  -3,396 -2,922 -3,039 -2,647 1 Nucleus 
membrane 

136 P20292 Arachidonate 5-lipoxygenase-
activating protein  

0,605 0,690 -0,626 -0,544 1 Cytoplasm  

137 P05089 Arginase-1  -1,897 -1,972 -2,303 -2,476 2  
Mitochondria 

138 P00505 Aspartate aminotransferase -4,517 -4,787 -5,508 -4,780 1  Cytoplasm  

139 P17174 Aspartate aminotransferas,  -0,916 -0,959 -0,600 -0,427 3  Cytoplasm  

140 P24539 ATP synthase F -4,774 -5,257 -4,973 -4,528 1  
Mitochondria 

141 P25705 ATP synthase subunit alpha 3,488 3,272 3,609 3,314 12  MIM  

142 P06576 ATP synthase subunit beta 2,673 2,968 2,751 2,708 12  
Mitochondria 

143 O75964 ATP synthase subunit g, 
mitochondrial  

-0,408 -0,345 -0,147 -0,769 3  MIM  

144 P36542 ATP synthase subunit gamma -2,380 -1,852 -1,591 -1,694 2 Mitochondria 

145 P48047 ATP synthase subunit O -0,423 -0,857 -0,484 -0,446 2 Mitochondria 

146 P17858 ATP-dependent 6-
phosphofructokinase  

-4,313 -4,651 -4,339 -4,356 1 Cell 
membrane  

147 O00571 ATP-dependent RNA helicase  -1,962 -1,402 -2,081 -1,917 3  Cytoplasm  

148 P20160 Azurocidin  5,354 5,491 4,805 5,156 11  Secreted  

149 P17213 Bactericidal permeability-
increasing protein  

0,449 0,408 0,452 0,414 4  Secreted  

150 P04280 Basic salivary proline-rich 
protein 1  

-9,246 -10,681 -8,802 -9,144 1  Secreted  

151 P02812 Basic salivary proline-rich 
protein 2  

-4,800 -7,951 -7,139 -5,815 1  Secreted 

152 Q04118 Basic salivary proline-rich 
protein 3  

-1,161 -4,562 -3,513 -3,056 2  Secreted 

153 P10163 Basic salivary proline-rich 
protein 4  

-1,583 -2,436 -2,271 -1,946 3  EPR 
membrane  

154 P51572 B-cell receptor-associated 
protein 31  

-0,987 -0,958 -0,877 -0,765 4  Secreted 

155 P02749 Beta-2-glycoprotein 1  0,505 0,325 1,151 2,174 6  Secreted  

156 P61769 Beta-2-microglobulin 1,466 1,615 1,785 1,609 5  Cytoplasm 
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157 P53004 Biliverdin reductase A  -2,202 -1,377 -1,421 -2,155 2  Secreted  

158 Q9NP55 BPI fold-containing family A 
member 1  

2,607 3,679 3,335 2,508 8  Secreted  

159 Q96DR5 BPI fold-containing family A 
member 2  

6,460 5,640 6,031 5,331 21  Secreted  

160 Q8TDL5 BPI fold-containing family B 
member 1  

4,896 5,052 4,703 4,625 24  Secreted  

161 Q8N4F0 BPI fold-containing family B 
member 2  

4,650 4,393 4,445 4,973 11  Cytoplasm  

162 Q5TH69 Brefeldin A-inhibited guanine 
nucleotide-exchange protein 3  

1,023 0,575 0,490 -0,178 1  Secreted 

163 P04003 C4b-binding protein alpha 
chain  

-2,122 -1,934 -1,664 -0,772 3  Cell junction 

164 P12830 Cadherin-1  -0,334 -0,644 -0,995 -0,807 2  EPR 
membrane  

165 Q9UM00 Calcium load-activated calcium 
channel  

-2,749 -2,926 -2,836 -3,399 1  Cell 
membrane  

166 Q14CN2 Calcium-activated chloride 
channel regulator 4  

0,696 0,725 0,802 0,927 6  Cytoplasm  

167 Q9Y2V2 Calcium-regulated heat-stable 
protein 1  

-3,059 -3,130 -2,306 -3,308 1  Cytoplasm 

168 P0DP25 Calmodulin-3 -2,374 -1,632 -1,632 -2,855 1 
 

169 P27482 Calmodulin-like protein 3  0,673 1,562 1,215 0,750 3 
 

170 Q9NZT1 Calmodulin-like protein 5  -2,158 -0,377 -0,866 -3,162 1  EPR 
membrane  

171 P27824 Calnexin  0,361 0,500 0,591 0,135 4  Cytoplasm  

172 P04632 Calpain small subunit 1  1,057 1,545 1,415 1,060 4  Cytoplasm  

173 P07384 Calpain-1 catalytic subunit  2,541 2,877 2,468 2,640 11  Cytoplasm; 
Cell 
membrane 

174 P17655 Calpain-2 catalytic subunit  -0,648 -0,312 -0,414 -0,624 3  EPR lumen  

175 P27797 Calreticulin  1,824 2,093 2,006 1,948 11  Cytoplasm 

176 P00915 Carbonic anhydrase 1  -0,164 -0,117 -0,375 1,578 5  Secreted 

177 P23280 Carbonic anhydrase 6  6,560 5,485 5,657 5,815 18  Cell 
membrane 

178 P40199 Carcinoembryonic antigen-
related cell adhesion molecule 
6  

-0,508 -0,295 -0,561 -0,363 2  Cell 
membrane  

179 P31997 Carcinoembryonic antigen-
related cell adhesion molecule 
8  

-3,968 -4,191 -5,370 -3,884 1  Cytoplasm  

180 P31944 Caspase-14  -2,916 -1,439 -1,225 -2,766 2  Peroxisome 

181 P04040 Catalase  2,138 1,487 1,407 1,798 10  Secreted 

182 P49913 Cathelicidin antimicrobial 
peptide  

3,276 3,170 2,744 2,890 5  Lysosome  

183 P07858 Cathepsin B  0,553 -0,352 0,116 0,189 2   Secreted 

184 P07339 Cathepsin D  1,841 1,515 2,279 1,410 3  Cell surface  

185 P08311 Cathepsin G  6,028 6,138 5,407 5,491 13  Secreted 

186 Q9NRJ3 C-C motif chemokine 28  -0,740 -1,559 -1,274 -1,664 1  Cell 
membrane 

187 P13987 CD59 glycoprotein  -1,469 -1,406 -1,338 -1,583 2  Cell 
membrane  

188 P21926 CD9 antigen  -0,282 -0,261 -0,868 -0,900 2  Cell 
membrane  

189 P60953 Cell division control protein 42 
homolog  

1,257 0,990 0,796 1,151 5  Cytoplasm 

190 P29373 Cellular retinoic acid-binding 
protein 2  

0,012 0,193 -0,066 0,227 3  Secreted 

191 P00450 Ceruloplasmin  1,795 2,058 2,567 3,111 13  Secreted  
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192 Q15782 Chitinase-3-like protein 2  -1,683 -1,519 -2,157 -0,729 2  Nucleus  

193 O00299 Chloride intracellular channel 
protein 1  

1,711 1,958 1,820 1,894 8  Cell 
membrane 

194 O95833 Chloride intracellular channel 
protein 3 

-0,545 -0,530 -0,473 -0,538 3  
Mitochondria  

195 O75390 Citrate synthase 1,449 1,236 1,420 1,481 5  
Mitochondria 

196 Q00610 Clathrin heavy chain 1  0,545 1,325 0,621 0,768 7   

197 P10909 Clusterin  1,670 1,190 1,761 2,297 5  Cytoplasm  

198 Q14019 Coactosin-like protein -0,399 -1,201 -0,961 -0,613 2  Cytoplasm  

199 Q9Y678 Coatomer subunit gamma-1  -3,691 -2,978 -3,586 -3,265 1  EPR lumen  

200 O00748 Cocaine esterase  -2,580 -2,920 -2,640 -2,677 1  Nucleus 
matrix  

201 P23528 Cofilin-1  1,988 1,648 1,871 1,843 6  Secreted 

202 P02747 Complement C1q 
subcomponent subunit C 

-3,678 -2,894 -2,522 -1,987 1  Secreted  

203 Q9BXJ4 Complement C1q tumour 
necrosis factor-related protein 
3  

-0,066 -0,809 -0,904 -0,744 3  Secreted 

204 P01024 Complement C3  4,757 5,217 5,779 6,463 67  Secreted 

205 P0C0L4 Complement C4-A  2,527 2,496 3,250 3,847 23  Secreted 

206 P01031 Complement C5  -3,257 -3,877 -2,817 -1,830 1  Secreted 

207 P00751 Complement factor B  0,808 1,256 1,738 2,599 11  Secreted 

208 P08603 Complement factor H  0,668 0,360 0,836 1,352 7  Secreted 

209 P05156 Complement factor I  -3,370 -3,252 -3,014 -2,457 2  Nucleus  

210 O75131 Copine-3  0,160 0,506 -0,047 0,124 3  Nucleus  

211 O75367 Core histone macro-H2A.1  0,521 0,635 0,355 0,343 2  Cytoplasm 

212 Q9BYD5 Cornifelin -0,399 0,218 -0,536 -0,660 2  Cytoplasm  

213 Q9UBG3 Cornulin  4,408 4,438 4,172 4,178 23  Cytoplasm 

214 P31146 Coronin-1A  2,814 1,895 1,860 2,085 9  Cytoplasm 

215 P06732 Creatine kinase M-type  -4,112 -4,508 -4,366 -4,487 1  MIM 

216 P12532 Creatine kinase U-type -0,349 -0,903 -0,969 -1,193 2  
Mitochondria 

217 P01040 Cystatin-A  2,094 2,795 2,179 1,187 7  Cytoplasm  

218 P04080 Cystatin-B  4,799 5,116 4,731 4,414 11  Cytoplasm  

219 P01034 Cystatin-C  3,147 1,569 1,930 2,007 9  Secreted  

220 P28325 Cystatin-D  4,669 4,489 4,422 4,326 14  Secreted  

221 P01036 Cystatin-S  3,679 1,155 0,485 1,460 2  Secreted  

222 P09228 Cystatin-SA  4,382 3,735 3,447 3,445 8  Secreted  

223 P01037 Cystatin-SN  7,015 5,803 5,836 5,540 7  Secreted  

224 P54108 Cysteine-rich secretory protein 
3  

4,332 3,472 3,700 3,696 9  Secreted 

225 P04839 Cytochrome b-245 heavy chain  0,909 1,021 0,515 0,129 4  Cell 
membrane 

226 P31930 Cytochrome b-c1 complex 
subunit 1 

-1,705 -1,662 -1,555 -1,844 2  MIM  

227 P22695 Cytochrome b-c1 complex 
subunit 2 

-4,117 -4,225 -3,540 -4,388 1  MIM  

228 P99999 Cytochrome c -4,375 -4,150 -3,451 -3,565 1  
Mitochondria 

229 P00403 Cytochrome c oxidase subunit 
2  

-0,106 0,442 0,307 -0,407 1  MIM  

230 P13073 Cytochrome c oxidase subunit 
4 isoform 1 

-1,016 -0,822 -1,206 -1,232 1  MIM  
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231 Q7L576 Cytoplasmic FMR1-interacting 
protein 1  

-3,111 -3,037 -2,819 -2,650 1  Cytoplasm  

232 Q07065 Cytoskeleton-associated 
protein 4  

-1,490 -1,629 -1,401 -1,434 3  EPR 
membrane 

233 P49902 Cytosolic purine 5'-
nucleotidase  

-3,298 -3,437 -3,824 -3,482 1  Cytoplasm 

234 Q96LJ7 Dehydrogenase/reductase SDR 
family member 1  

-1,860 -1,217 -2,000 -2,038 1 
 

235 Q9UGM3 Deleted in malignant brain 
tumours 1 protein  

5,273 5,654 5,121 4,959 19  Secreted  

236 Q14739 Delta -2,337 -2,616 -2,430 -3,140 1  Nucleus  

237 P81605 Dermcidin  -3,029 -2,935 -1,424 -3,641 1  Secreted 

238 Q02487 Desmocollin-2  1,419 1,699 1,250 1,044 5  Cell 
membrane  

239 Q02413 Desmoglein-1  -1,221 -1,375 -1,047 -1,439 2  Cell 
membrane  

240 P32926 Desmoglein-3  1,779 1,507 1,334 1,446 11  Cell 
membrane  

241 P15924 Desmoplakin  3,312 4,544 3,705 3,340 29  Cell junction 

242 P60981 Destrin  -1,620 -1,297 -1,678 -1,587 1 
 

243 P36957 Dihydrolipoyllysine-residue 
succinyltransferase  

2,378 0,307 2,470 -0,944 1  
Mitochondria 

244 P53634 Dipeptidyl peptidase 1  -2,178 -1,909 -2,019 -2,907 1  Lysosome 

245 P25685 DnaJ homolog subfamily B 
member 1  

-2,459 -2,416 -1,872 -2,069 1  Cytoplasm  

246 P04843 Dolichyl-
diphosphooligosaccharide 
subunit 1  

-2,154 -1,761 -1,857 -2,442 2  EPR  

247 P04844 Dolichyl-
diphosphooligosaccharide 
subunit 2  

-1,527 -1,412 -1,411 -2,039 2  EPR  

248 O95147 Dual specificity protein 
phosphatase 14  

-4,980 -5,281 -4,787 -5,043 1 
 

249 P63167 Dynein light chain 1  0,875 1,152 1,058 0,885 3  Cytoplasm 

250 P24534 Elongation factor 1-beta  -3,346 -3,647 -2,863 -3,300 1 
 

251 P29692 Elongation factor 1-delta  -1,925 -1,335 -1,527 -0,678 2 
 

252 P26641 Elongation factor 1-gamma  0,805 1,048 0,850 0,749 4 
 

253 P13639 Elongation factor 2  2,888 3,325 3,001 3,142 14  Cytoplasm  

254 P49411 Elongation factor Tu -1,786 -3,586 -2,064 -3,465 1  
Mitochondria 

255 P11021 Endoplasmic reticulum 
chaperone BiP  

2,160 1,886 2,239 2,409 14  EPR lumen  

256 P30040 Endoplasmic reticulum 
resident protein 29  

-2,530 -2,404 -1,815 -2,748 1  EPR lumen 

257 P14625 Endoplasmin  -0,208 -0,076 0,018 0,320 3  EPR lumen  

258 Q92817 Envoplakin  -0,914 -1,066 -1,117 -0,676 3  Cell junction 

259 P12724 Eosinophil cationic protein  2,428 2,131 2,261 2,172 5  Secreted 

260 P11678 Eosinophil peroxidase  -3,355 -3,768 -3,166 -2,745 2  Cytoplasm 

261 Q8N3Y7 Epidermal retinol 
dehydrogenase 2  

-0,103 0,481 -0,213 0,038 2  EPR 
membrane  

262 P07099 Epoxide hydrolase 1  -0,768 -0,104 -0,338 -0,494 3  Microsome 
membrane  

263 Q96HE7 ERO1-like protein alpha  3,040 3,265 3,136 3,240 14  EPR 
membrane  

264 P27105 Erythrocyte band 7 integral 
membrane protein  

0,652 0,516 0,212 0,584 3  Cell 
membrane  

265 P60842 Eukaryotic initiation factor 4A-I  1,396 1,765 1,759 1,657 5 
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266 P62495 Eukaryotic peptide chain 
release factor subunit 1  

-2,959 -2,926 -2,940 -2,950 1  Cytoplasm  

267 O00303 Eukaryotic translation 
initiation factor 3 subunit F  

-4,550 -3,324 -4,027 -3,867 1  Cytoplasm  

268 P06730 Eukaryotic translation 
initiation factor 4E  

-4,812 -4,635 -4,324 -4,745 1  Cytoplasm 

269 P63241 Eukaryotic translation 
initiation factor 5A-1  

0,570 0,738 0,773 0,506 3  Cytoplasm 

270 Q16610 Extracellular matrix protein 1  1,097 1,408 1,145 1,094 7  Secreted 

271 P15311 Ezrin  0,989 1,274 0,884 1,282 5  Apical cell 
membrane  

272 P52907 F-actin-capping protein 
subunit alpha-1  

-0,049 0,218 -0,125 -0,116 2  Cytoplasm 

273 P47756 F-actin-capping protein 
subunit beta  

0,728 0,887 0,787 0,185 3  Cytoplasm 

274 Q16658 Fascin  -1,346 -0,547 -0,855 -0,299 2  Cytoplasm 

275 Q01469 Fatty acid-binding protein 5  3,207 4,273 3,925 3,542 11  Cytoplasm  

276 Q6ZVX7 F-box only protein 50  0,959 1,099 1,075 1,028 5  Cytoplasm  

277 P02671 Fibrinogen alpha chain 0,774 0,795 1,965 2,854 7  Secreted  

278 P02675 Fibrinogen beta chain  3,037 3,288 3,995 4,671 20  Secreted  

279 P02679 Fibrinogen gamma chain 3,202 3,671 4,295 4,947 16  Secreted  

280 P02751 Fibronectin  -1,019 -1,114 -0,414 0,142 4  Secreted 

281 P20930 Filaggrin -0,943 0,016 -1,014 -0,738 9 Cytoplasmic 
granule  

282 Q5D862 Filaggrin-2  -1,787 -1,036 0,233 -2,884 1  Cytoplasm  

283 P21333 Filamin-A  -0,093 -0,014 -0,260 0,114 4  Cytoplasm 

284 P30043 Flavin reductase  -3,603 -3,462 -3,738 -3,277 1  Cytoplasm  

285 P04075 Fructose-bisphosphate 
aldolase A  

3,326 3,323 3,372 3,534 10  Cytoplasm 

286 P09972 Fructose-bisphosphate 
aldolase C  

-1,543 -1,746 -1,637 -0,790 1 
 

287 P21217 Galactoside 3 -2,539 -2,534 -2,738 -2,467 1  Golgi 
apparatus 

288 Q05315 Galectin-10  0,040 -0,419 -0,844 -0,203 3  Cytoplasm 

289 Q08380 Galectin-3-binding protein  3,402 2,984 2,995 3,411 8  Secreted  

290 P47929 Galectin-7  4,047 4,481 4,162 4,054 8  Cytoplasm  

291 Q92820 Gamma-glutamyl hydrolase  -1,602 -1,402 -1,166 -1,250 2  Secreted 

292 P17900 Ganglioside GM2 activator  -0,998 -0,731 -0,233 -1,275 2  Lysosome 

293 P06396 Gelsolin  3,978 3,757 3,701 4,073 19   

294 P11413 Glucose-6-phosphate 1-
dehydrogenase  

2,178 2,524 2,210 2,174 8  Cytoplasm 

295 P06744 Glucose-6-phosphate 
isomerase  

3,001 2,934 2,913 2,916 10  Cytoplasm  

296 P00367 Glutamate dehydrogenase 1, -2,634 -1,453 -1,781 -1,563 1  
Mitochondria 

297 P15104 Glutamine synthetase  1,099 2,033 2,056 1,765 6  Cytoplasm 

298 P22352 Glutathione peroxidase 3  -2,065 -2,118 -1,867 -2,006 1  Secreted 

299 P78417 Glutathione S-transferase 
omega-1  

0,301 -0,153 -0,216 0,010 1  Cytoplasm 

300 P09211 Glutathione S-transferase P  4,012 4,177 4,047 4,075 9  Cytoplasm  

301 P04406 Glyceraldehyde-3-phosphate 
dehydrogenase  

4,705 4,407 4,669 4,402 18  Cytoplasm 

302 P43304 Glycerol-3-phosphate 
dehydrogenase 

-3,529 -3,704 -3,068 -2,920 1  
Mitochondria 

303 P13807 Glycogen synthase -3,150 -2,115 -2,400 -2,907 1 Cytoplasm 
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304 P11216 Glycogen phosphorylase, brain 
form  

-1,347 -0,781 -1,188 -2,038 1 Cytoplasm 

305 P06737 Glycogen phosphorylase, liver 
form  

0,033 -0,285 -0,595 -0,360 3 
 

306 Q9NZD2 Glycolipid transfer protein  -0,616 -0,149 -0,202 -0,314 3  Cytoplasm  

307 P28676 Grancalcin 2,966 3,101 2,581 2,693 5  Cytoplasm  

308 P01111 GTPase NRas  -1,398 -1,014 -1,754 -1,867 1  Cell 
membrane  

309 P62826 GTP-binding nuclear protein 
Ran  

-0,567 -0,448 -0,553 -0,301 2  Nucleus  

310 Q9Y6B6 GTP-binding protein SAR1b  -1,311 -1,645 -1,395 -1,694 1  EPR 
membrane  

311 P62879 Guanine nucleotide-binding 
protein G 

-0,347 -0,142 -0,411 -0,863 2  Cytoplasm  

312 P04899 Guanine nucleotide-binding 
protein G 

-1,559 -1,460 -1,203 -2,005 2  Cytoplasm 

313 Q6ZN66 Guanylate-binding protein 6  1,649 2,328 1,677 1,497 10 
 

314 P00738 Haptoglobin  3,604 3,932 4,872 6,222 25  Secreted 

315 P0DMV9 Heat shock 70 kDa protein 1B  3,450 3,641 3,477 3,631 12  Cytoplasm  

316 P11142 Heat shock cognate 71 kDa 
protein  

3,009 2,921 3,080 3,200 12  Cytoplasm 

317 P04792 Heat shock protein beta-1  5,214 5,235 5,152 5,055 17  Cytoplasm  

318 P07900 Heat shock protein HSP 90-
alpha  

1,829 2,102 1,964 2,121 6  Nucleus  

319 P08238 Heat shock protein HSP 90-
beta  

1,850 2,146 1,980 2,078 6  Cytoplasm  

320 Q9Y5Z4 Heme-binding protein 2  -2,242 -2,661 -2,772 -2,559 1  Cytoplasm  

321 P69905 Hemoglobin subunit alpha  2,523 2,287 2,677 5,367 10 Extracellular 
exosome 

322 P68871 Hemoglobin subunit beta  3,433 3,610 3,837 6,542 11 Extracellular 
exosome 

323 P02042 Hemoglobin subunit delta  -0,364 -0,736 -0,688 1,078 4 Extracellular 
exosome 

324 P02790 Hemopexin  2,913 3,464 4,081 5,105 14  Secreted 

325 P09651 Heterogeneous nuclear 
ribonucleoprotein A1  

-1,810 -1,570 -1,272 -1,663 2  Nucleus  

326 P31943 Heterogeneous nuclear 
ribonucleoprotein H  

-1,764 -1,896 -1,588 -1,306 2  Nucleus 

327 P61978 Heterogeneous nuclear 
ribonucleoprotein K  

-0,007 0,308 0,151 -0,037 3  Cytoplasm  

328 O60506 Heterogeneous nuclear 
ribonucleoprotein Q  

-2,292 -1,529 -2,087 -2,701 1  Cytoplasm  

329 P07910 Heterogeneous nuclear 
ribonucleoproteins C1/C2  

-2,006 -2,539 -1,807 -2,721 1  Nucleus 

330 P19367 Hexokinase-1  -0,974 -0,945 -0,992 -1,231 2 MOM  

331 P52790 Hexokinase-3  -1,122 -1,608 -1,320 -1,945 2 
 

332 P09429 High mobility group protein B1  -3,186 -3,061 -3,215 -3,097 1  Nucleus  

333 P26583 High mobility group protein B2  0,088 -1,346 -1,497 -1,526 2  Nucleus  

334 P15515 Histatin-1  -5,692 -5,442 -5,438 -4,585 2  Secreted 

335 P04196 Histidine-rich glycoprotein  -0,295 -0,232 0,469 1,030 5  Secreted  

336 P07305 Histone H1.0  -0,227 -0,773 -0,865 -1,440 3  Nucleus  

337 P10412 Histone H1.4  1,337 0,293 -0,166 -0,435 3  Nucleus 

338 P16401 Histone H1.5  1,755 0,936 0,671 -0,051 2  Nucleus 

339 Q6FI13 Histone H2A type 2-A  -3,332 -4,403 -2,877 -3,200 1  Nucleus 

340 Q8IUE6 Histone H2A type 2-B 0,215 -0,958 -0,750 -0,272 2  Nucleus 

341 Q7L7L0 Histone H2A type 3 -1,029 -1,934 -1,749 -1,940 1  Nucleus 
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342 P06899 Histone H2B type 1-J  1,131 1,249 0,763 0,706 1  Nucleus 

343 Q99877 Histone H2B type 1-N  3,878 3,933 3,454 3,354 2  Nucleus 

344 P84243 Histone H3.3 -4,442 -3,897 -3,458 -4,779 1  Nucleus 

345 P62805 Histone H4 8,382 8,489 7,991 7,753 11  Nucleus 

346 P17693 HLA class I histocompatibility 
antigen  

-2,268 -1,721 -1,619 -1,742 1 
 

347 Q86YZ3 Hornerin -3,564 -3,392 -3,271 -3,352 3  Cytoplasm 

348 P00492 Hypoxanthine-guanine 
phosphoribosyltransferase  

-3,464 -2,772 -3,580 -3,463 1  Cytoplasm 

349 Q9Y6R7 IgGFc-binding protein  3,555 2,396 2,467 2,996 21  Secreted  

350 P0DOX2 Immunoglobulin alpha-2 heavy 
chain  

5,512 4,726 4,714 5,452 11  Secreted  

351 P0DOX5 Immunoglobulin gamma-1 
heavy chain  

3,634 3,643 4,880 4,881 8  Secreted  

352 P01876 Immunoglobulin heavy 
constant alpha 1  

8,623 7,966 8,435 8,480 16  Secreted  

353 P01859 Immunoglobulin heavy 
constant gamma 2  

4,729 5,220 5,759 6,583 6  Secreted  

354 P01860 Immunoglobulin heavy 
constant gamma 3  

0,418 0,404 1,735 2,525 4  Secreted  

355 P01861 Immunoglobulin heavy 
constant gamma 4  

-1,680 -2,553 -1,704 -0,811 1  Secreted  

356 P01871 Immunoglobulin heavy 
constant mu  

-2,670 -3,059 -2,971 -3,278 1  Secreted 

357 A0A0C4DH31 Immunoglobulin heavy 
variable 1-18 

2,150 2,107 2,370 2,393 1  Secreted  

358 P01743 Immunoglobulin heavy 
variable 1-46  

0,536 0,328 0,618 0,699 1  Secreted  

359 A0A0B4J1V0 Immunoglobulin heavy 
variable 3-15 

-0,163 0,248 -0,241 0,424 1  Secreted  

360 P0DP03 Immunoglobulin heavy 
variable 3-30-5 

0,813 0,320 0,576 0,895 1  Secreted  

361 A0A0A0MS15 Immunoglobulin heavy 
variable 3-49 

1,068 1,001 0,734 1,273 1  Secreted  

362 P01780 Immunoglobulin heavy 
variable 3-7  

1,206 1,142 1,448 1,680 1  Secreted  

363 A0A0B4J1Y9 Immunoglobulin heavy 
variable 3-72 

0,827 0,726 0,970 1,228 1  Secreted  

364 A0A0B4J1X5 Immunoglobulin heavy 
variable 3-74 

3,068 2,736 2,966 3,361 1  Secreted  

365 P06331 Immunoglobulin heavy 
variable 4-34  

2,883 2,817 3,015 2,990 2  Secreted  

366 A0A0C4DH38 Immunoglobulin heavy 
variable 5-51 

-2,799 -2,900 -2,727 -2,528 1  Secreted  

367 P01591 Immunoglobulin J chain  5,981 5,513 5,813 5,642 7  Secreted  

368 P0DOX7 Immunoglobulin kappa light 
chain  

-0,952 -0,810 -0,812 -0,804 2  Secreted  

369 P01594 Immunoglobulin kappa 
variable 1-33  

-1,582 -1,783 -2,363 -1,265 1  Secreted  

370 A0A0C4DH69 Immunoglobulin kappa 
variable 1-9 

-2,134 -1,671 -1,471 -0,779 1  Secreted  

371 A0A0C4DH68 Immunoglobulin kappa 
variable 2-24 

-0,202 -0,257 -0,381 0,399 1  Secreted  

372 P06310 Immunoglobulin kappa 
variable 2-30  

-0,327 -1,188 -1,183 0,167 2  Secreted  

373 P01615 Immunoglobulin kappa 
variable 2D-28  

1,296 0,353 0,892 1,404 2  Secreted  

374 P04433 Immunoglobulin kappa 
variable 3-11  

2,989 2,372 2,787 3,327 2  Secreted  

375 P01624 Immunoglobulin kappa 
variable 3-15  

4,063 3,725 3,958 4,277 1  Secreted  
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376 P01619 Immunoglobulin kappa 
variable 3-20  

1,696 1,342 1,683 2,033 1  Secreted  

377 P06312 Immunoglobulin kappa 
variable 4-1  

3,030 3,078 3,101 3,478 3  Secreted  

378 A0M8Q6 Immunoglobulin lambda 
constant 7  

-3,530 -6,338 -4,295 -5,865 1  Secreted  

379 P01700 Immunoglobulin lambda 
variable 1-47  

2,012 1,826 2,435 2,174 2  Secreted  

380 P80748 Immunoglobulin lambda 
variable 3-21  

0,238 -0,329 0,438 0,298 2  Secreted  

381 P01717 Immunoglobulin lambda 
variable 3-25  

0,616 0,124 0,545 0,941 2  Secreted  

382 P0DOX8 Immunoglobulin lambda-1 
light chain  

-0,142 -0,493 -0,152 -0,545 1  Secreted  

383 P15814 Immunoglobulin lambda-like 
polypeptide 1  

-2,681 -2,945 -3,334 -2,337 1  Secreted  

384 P0DOX6 Immunoglobulin mu heavy 
chain  

-1,756 -3,282 -1,930 -1,188 1  Secreted  

385 Q15181 Inorganic pyrophosphatase  -3,920 -4,049 -4,430 -3,916 1  Cytoplasm  

386 P11215 Integrin alpha-M  3,103 2,818 2,521 2,590 15  Cell 
membrane  

387 P05107 Integrin beta-2  2,213 2,042 1,719 1,969 7  Cell 
membrane  

388 P19827 Inter-alpha-trypsin inhibitor 
heavy chain H1  

-2,308 -2,208 -1,430 -0,232 2  Secreted 

389 P19823 Inter-alpha-trypsin inhibitor 
heavy chain H2  

-1,167 -1,314 -0,872 -0,431 4  Secreted 

390 Q14624 Inter-alpha-trypsin inhibitor 
heavy chain H4  

0,233 0,452 1,001 1,955 7  Secreted 

391 P18510 Interleukin-1 receptor 
antagonist protein  

2,806 2,796 2,602 2,155 6 
 

392 Q14116 Interleukin-18  -0,397 -0,630 -0,642 -0,640 2  Secreted  

393 Q9UHA7 Interleukin-36 alpha  0,585 0,922 0,441 0,508 3  Secreted  

394 Q9UBH0 Interleukin-36 receptor 
antagonist protein  

-2,914 -2,641 -2,561 -2,624 1  Secreted 

395 P07476 Involucrin -3,912 -3,584 -3,958 -3,797 2  Cytoplasm 

396 P48735 Isocitrate dehydrogenase  -2,672 -1,717 -2,238 -1,833 1  
Mitochondria 

397 O75874 Isocitrate dehydrogenase 
[NADP] cytoplasmic  

-2,022 -1,952 -2,053 -2,734 1  Cytoplasm 

398 P14923 Junction plakoglobin  3,959 4,858 4,098 4,235 25  Cell junction 

399 P06870 Kallikrein-1  3,637 2,406 3,026 3,520 9 
 

400 O43240 Kallikrein-10  -0,290 0,488 0,593 -0,007 2  Secreted  

401 Q9UBX7 Kallikrein-11  0,259 -0,330 -0,116 0,261 1   

402 Q9UKR0 Kallikrein-12  -1,955 -0,428 -1,523 -1,030 1  Secreted 

403 Q9UKR3 Kallikrein-13  1,443 1,855 1,742 1,339 5  Secreted  

404 Q9P0G3 Kallikrein-14  -3,336 -2,792 -3,420 -3,157 1  Secreted 

405 P49862 Kallikrein-7  -1,820 -1,590 -0,833 -1,630 1  Secreted  

406 O76013 Keratin, type I cuticular Ha6  -0,700 1,049 -0,240 -0,330 5 
 

407 P13645 Keratin, type I cytoskeletal 10  5,032 5,862 5,539 5,150 24 
 

408 P13646 Keratin, type I cytoskeletal 13  7,772 7,529 7,236 7,075 36  Secreted 

409 P02533 Keratin, type I cytoskeletal 14  4,381 5,327 5,124 5,358 16 Secreted 

410 P19012 Keratin, type I cytoskeletal 15  -0,791 -0,819 -0,555 -0,687 4  Cytoplasm 

411 P08779 Keratin, type I cytoskeletal 16  5,425 6,705 6,466 6,485 19 
 

412 Q04695 Keratin, type I cytoskeletal 17  2,610 4,371 3,803 4,159 16 
 

413 P08727 Keratin, type I cytoskeletal 19  1,824 1,784 1,547 1,615 10  Cytoplasm  
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414 P35527 Keratin, type I cytoskeletal 9  2,761 2,380 2,217 2,901 11 
 

415 Q9NSB2 Keratin, type II cuticular Hb4  0,616 2,476 0,776 0,854 12 
 

416 P04264 Keratin, type II cytoskeletal 1  5,315 5,915 5,584 5,389 16 
 

417 P35908 Keratin, type II cytoskeletal 2 
epidermal  

3,287 3,355 3,214 3,012 12 
 

418 Q01546 Keratin, type II cytoskeletal 2 
oral  

0,983 2,925 1,817 2,291 9 
 

419 P12035 Keratin, type II cytoskeletal 3  7,952 7,421 6,937 7,014 12 
 

420 P19013 Keratin, type II cytoskeletal 4  9,944 9,415 9,050 9,164 67 
 

421 P13647 Keratin, type II cytoskeletal 5  5,945 6,319 6,119 6,092 23  Cytoplasm  

422 P02538 Keratin, type II cytoskeletal 6A  6,016 6,911 6,346 6,299 7  Cell 
membrane  

423 P04259 Keratin, type II cytoskeletal 6B  1,564 2,113 2,023 1,947 2 
 

424 P48668 Keratin, type II cytoskeletal 6C  -2,943 -2,332 -2,231 -2,224 1 Cytoplasm 

425 Q8N1N4 Keratin, type II cytoskeletal 78  5,633 5,669 5,229 5,336 31 
 

426 P05787 Keratin, type II cytoskeletal 8  -3,170 -3,180 -3,177 -3,755 1 
 

427 Q6KB66 Keratin, type II cytoskeletal 80  -0,918 -0,645 -0,856 -1,363 4 
 

428 P01042 Kininogen-1  -2,381 -2,601 -1,712 -0,614 3  Secreted 

429 P22079 Lactoperoxidase  6,211 5,543 5,602 5,863 26  Secreted  

430 P02788 Lactotransferrin  8,588 8,850 8,468 8,862 69  Secreted 

431 P02750 Leucine-rich alpha-2-
glycoprotein  

-0,231 -1,281 -0,250 1,138 2  Secreted 

432 P30740 Leukocyte elastase inhibitor  5,157 5,192 5,083 5,074 18  Secreted  

433 P09960 Leukotriene A-4 hydrolase  1,272 1,071 0,975 1,231 8  Cytoplasm 

434 P31025 Lipocalin-1  4,772 4,780 4,331 3,686 12 
 

435 P23141 Liver carboxylesterase 1  -2,697 -2,158 -2,952 -2,756 2  EPR lumen  

436 P00338 L-lactate dehydrogenase A 
chain  

4,305 4,488 4,427 4,466 10  Cytoplasm 

437 P07195 L-lactate dehydrogenase B 
chain  

-0,245 -0,262 -0,303 -0,225 4  Cytoplasm 

438 O95274 Ly6/PLAUR domain-containing 
protein 3  

0,750 0,581 0,422 0,739 5  Cell 
membrane 

439 O95867 Lymphocyte antigen 6 complex 
locus protein G6c 

0,129 1,020 0,159 -0,931 2  Cell 
membrane  

440 Q14210 Lymphocyte antigen 6D  -1,480 -1,660 -1,453 -2,236 1  Cell 
membrane 

441 Q7L5L3 Lysophospholipase D GDPD3  -1,808 -2,032 -1,652 -2,189 2  Membrane  

442 P11279 Lysosome-associated 
membrane glycoprotein 1  

-0,800 -0,473 -0,497 -0,362 2  Cell 
membrane  

443 P61626 Lysozyme C  6,639 6,355 6,762 5,464 8  Secreted 

444 P40121 Macrophage-capping protein  0,476 0,397 0,348 0,089 4  Nucleus  

445 Q14764 Major vault protein  -2,060 -2,085 -1,965 -1,910 1  Cytoplasm  

446 P40925 Malate dehydrogenase, 
cytoplasmic  

0,662 0,929 0,718 0,891 4  
Mitochondria 

447 P40926 Malate dehydrogenase, 
mitochondrial  

2,446 2,425 2,515 2,704 8  Cytoplasm 

448 P08493 Matrix Gla protein  -5,935 -6,910 -6,806 -7,859 1  Secreted 

449 P14780 Matrix metalloproteinase-9  3,384 3,068 2,704 3,241 10  Secreted 

450 P01033 Metalloproteinase inhibitor 1  2,964 3,005 3,154 3,265 5  Secreted  

451 O14880 Microsomal glutathione S-
transferase 3  

-1,730 -1,524 -2,143 -2,585 1  EPR 
membrane  

452 P26038 Moesin  1,169 0,742 0,851 0,888 9  Cell 
membrane  

453 P08571 Monocyte differentiation 
antigen CD14  

-0,910 -1,168 -0,885 -0,841 3  Cell 
membrane  



248 
 

454 Q99685 Monoglyceride lipase  -1,395 -1,421 -1,647 -2,045 2  Cytoplasm 

455 Q5SSG8 Mucin-21  -2,587 -2,726 -2,697 -2,128 1  Cell 
membrane  

456 P98088 Mucin-5AC  -0,413 0,103 0,467 0,931 12  Secreted  

457 Q9HC84 Mucin-5B  5,354 6,022 5,221 5,510 38  Secreted 

458 Q8TAX7 Mucin-7  0,984 0,261 0,644 -0,335 2  Secreted  

459 P24158 Myeloblastin  6,296 6,378 5,575 5,624 9  Cytoplasm  

460 P41218 Myeloid cell nuclear 
differentiation antigen 

2,092 2,148 1,406 1,387 5  Cytoplasm 

461 P05164 Myeloperoxidase  6,465 6,257 5,918 6,012 22  Lysosome 

462 P60660 Myosin light polypeptide 6  1,657 2,011 1,847 1,712 5 
 

463 P19105 Myosin regulatory light chain 
12A  

0,141 0,321 0,103 0,054 2 
 

464 P12882 Myosin-1  -1,275 -1,584 -1,070 -1,281 5  Cytoplasm 

465 P13533 Myosin-6  -2,405 -2,814 -3,255 -3,310 1  Cytoplasm 

466 P35579 Myosin-9  3,426 3,674 3,149 3,037 19  Cytoplasm 

467 Q9UJ70 N-acetyl-D-glucosamine kinase  1,322 1,390 1,337 1,079 8 
 

468 P00387 NADH-cytochrome b5 
reductase 3  

-1,557 -1,319 -1,686 -1,681 2  EPR 

469 E9PAV3 Nascent polypeptide-
associated complex subunit 
alpha 

-2,052 -1,280 -1,248 -1,855 2  Cytoplasm  

470 Q14697 Neutral alpha-glucosidase AB  -1,418 -1,608 -1,965 -1,120 2  EPR  

471 P22894 Neutrophil collagenase  0,826 0,572 0,682 1,088 5   Secreted 

472 P59665 Neutrophil defensin 1  4,067 4,656 4,919 4,808 2  Secreted 

473 P08246 Neutrophil elastase  6,585 6,731 5,987 6,197 13  Cytoplasmic 
vesicle 

474 P80188 Neutrophil gelatinase-
associated lipocalin  

5,245 5,528 5,254 5,380 12  Secreted  

475 P43490 Nicotinamide 
phosphoribosyltransferase  

1,346 1,500 1,434 1,726 3  Nucleus  

476 P29475 Nitric oxide synthase, brain  -3,608 -1,246 -2,341 -3,042 1  Cell 
membrane 

477 P22307 Non-specific lipid-transfer 
protein  

-2,714 -2,651 -2,589 -2,114 1  Cytoplasm  

478 Q9C002 Normal mucosa of esophagus-
specific gene 1 protein  

-3,625 -2,729 -3,095 -3,109 1  Nucleus  

479 P61916 NPC intracellular cholesterol 
transporter 2  

-2,167 -2,247 -2,716 -2,261 1  Secreted  

480 P80303 Nucleobindin-2  1,313 0,195 0,490 0,539 3  Golgi 
apparatus  

481 P22392 Nucleoside diphosphate kinase 
B  

2,194 2,373 2,200 2,078 5  Cytoplasm  

482 Q6UX06 Olfactomedin-4  0,538 0,723 0,781 0,941 5  Secreted 

483 Q92882 Osteoclast-stimulating factor 1 -3,245 -3,811 -3,443 -4,020 1  Cytoplasm  

484 Q96FX8 p53 apoptosis effector related 
to PMP-22  

-1,555 -1,111 -1,344 -1,717 1  Cell junction 

485 O00151 PDZ and LIM domain protein 1  -2,877 -3,411 -3,669 -3,518 1  Cell 
membrane  

486 O75594 Peptidoglycan recognition 
protein 1  

1,106 1,100 0,686 0,955 3  Cytoplasm  

487 P62937 Peptidyl-prolyl cis-trans 
isomerase A  

2,912 3,105 3,055 2,861 8  Secreted  

488 P23284 Peptidyl-prolyl cis-trans 
isomerase B  

3,547 3,754 3,586 3,382 6  Cytoplasm  

489 P62942 Peptidyl-prolyl cis-trans 
isomerase FKBP1A  

-0,765 -2,430 -2,197 -1,457 1  EPR lumen  

490 O60664 Perilipin-3  -1,689 -1,306 -1,114 -1,136 3  Cytoplasm 
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491 O60437 Periplakin  1,922 2,208 1,753 1,962 13  Cytoplasm  

492 Q06830 Peroxiredoxin-1  1,975 2,330 2,061 2,040 5  Cell junction 

493 P32119 Peroxiredoxin-2  2,294 2,654 2,375 2,991 7  Cytoplasm  

494 Q13162 Peroxiredoxin-4  -3,802 -3,987 -3,407 -3,751 1  Cytoplasm  

495 P30044 Peroxiredoxin-5  1,631 1,473 1,379 1,236 5 Mitochondria 

496 P30041 Peroxiredoxin-6  3,137 3,417 3,016 2,985 11 Mitochondria 

497 P51659 Peroxisomal multifunctional 
enzyme type 2  

-1,621 -0,656 -0,988 -1,448 3  Cytoplasm  

498 Q00325 Phosphate carrier protein, 
mitochondrial  

0,308 0,696 0,282 0,419 2  Peroxisome 

499 P30086 Phosphatidylethanolamine-
binding protein 1  

-0,232 -0,328 -0,077 -0,444 4  MIM 

500 Q96G03 Phosphoglucomutase-2  -1,839 -1,601 -2,120 -2,209 2  Cytoplasm  

501 P00558 Phosphoglycerate kinase 1  2,402 2,262 2,401 2,354 8  Cytoplasm  

502 P18669 Phosphoglycerate mutase 1  1,396 1,319 1,284 1,458 5  Cytoplasm 

503 P14555 Phospholipase A2 -1,133 -2,989 -2,551 -2,076 1 
 

504 Q6P4A8 Phospholipase B-like 1  -0,098 0,356 -0,157 0,053 2  Cell 
membrane  

505 P55058 Phospholipid transfer protein  -0,063 -0,773 -0,620 -0,679 2  Lysosome  

506 Q13835 Plakophilin-1  1,478 2,587 1,692 1,153 6  Secreted 

507 Q9Y446 Plakophilin-3 -0,964 -0,941 -1,177 -0,859 3 
 

508 P05155 Plasma protease C1 inhibitor  0,748 1,274 1,920 2,824 5 Cell junction 

509 P00747 Plasminogen  -2,197 -1,434 -0,653 -0,457 2  Secreted 

510 P05120 Plasminogen activator inhibitor 
2  

-2,099 -2,043 -2,426 -1,411 1  Secreted  

511 P13796 Plastin-2  3,872 3,492 3,233 3,515 16  Cytoplasm 

512 P13797 Plastin-3  0,291 0,825 0,759 0,647 5  Cytoplasm 

513 Q15365 Poly (rC)-binding protein 1 -2,588 -2,994 -2,020 -2,212 1  Cytoplasm 

514 P21128 Poly (U)-specific 
endoribonuclease 

-1,352 -1,480 -1,693 -1,446 1  Secreted  

515 Q96GD3 Polycomb protein SCMH1  1,521 -0,271 1,090 -2,841 1  Cytoplasm 

516 P01833 Polymeric immunoglobulin 
receptor  

8,322 7,743 7,839 7,905 38  Nucleus  

517 P26599 Polypyrimidine tract-binding 
protein 1  

-2,269 -2,040 -2,476 -2,162 2  Cell 
membrane 

518 P0CG39 POTE ankyrin domain family 
member J 

-1,640 -2,809 -2,125 -2,048 1  Nucleus 

519 P02545 Prelamin-A/C [Cleaved into: 
Lamin-A/C  

2,617 2,727 2,642 2,567 17  Cytoplasm 

520 P07737 Profilin-1  3,193 2,405 2,551 2,578 7 
 

521 Q8WUM4 Programmed cell death 6-
interacting protein  

0,545 0,799 0,444 0,527 5  Nucleus  

522 O75340 Programmed cell death 
protein 6  

-0,749 -0,531 -0,856 -0,930 2  Cytoplasm 

523 P35232 Prohibitin -2,521 -2,238 -1,854 -2,260 1  Cytoplasm 

524 Q99623 Prohibitin-2  -0,072 0,161 0,070 0,074 4  EPR 
membrane  

525 P12273 Prolactin-inducible protein  8,295 7,718 7,726 7,393 7  MIM  

526 Q6MZM9 Proline-rich protein 27 -0,282 -2,646 -1,409 -1,327 1  MIM  

527 Q14914 Prostaglandin reductase 1  -0,804 -1,381 -0,424 -0,612 2  Secreted 

528 Q16651 Prostasin  0,532 -0,107 -0,011 -0,014 2  Secreted  

529 Q06323 Proteasome activator complex 
subunit 1  

-1,986 -1,541 -1,607 -1,609 1  Cytoplasm 

530 Q9UL46 Proteasome activator complex 
subunit 2  

-1,165 -0,772 -0,643 -0,567 2 
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531 P25787 Proteasome subunit alpha 
type-2  

-2,363 -2,445 -2,058 -3,795 1 
 

532 P25788 Proteasome subunit alpha 
type-3  

-4,660 -4,221 -4,119 -4,533 1 
 

533 P25789 Proteasome subunit alpha 
type-4  

-2,310 -1,327 -1,763 -1,523 1  Cytoplasm  

534 P28066 Proteasome subunit alpha 
type-5  

-1,571 -2,099 -1,596 -1,214 2  Cytoplasm  

535 P60900 Proteasome subunit alpha 
type-6  

-0,133 -0,300 -0,032 -0,230 3  Cytoplasm  

536 O14818 Proteasome subunit alpha 
type-7  

-3,214 -3,046 -3,414 -3,748 1  Cytoplasm  

537 P49721 Proteasome subunit beta type-
2  

-0,659 -0,570 -0,447 -0,854 2  Cytoplasm  

538 P49720 Proteasome subunit beta type-
3  

-3,622 -3,326 -3,889 -3,109 1  Cytoplasm  

539 P28074 Proteasome subunit beta type-
5  

-3,360 -3,494 -3,512 -3,396 1  Cytoplasm  

540 P28072 Proteasome subunit beta type-
6  

-1,239 -0,959 -0,780 -1,038 1  Cytoplasm  

541 P28065 Proteasome subunit beta type-
9  

-3,408 -2,504 -2,913 -2,902 1  Cytoplasm  

542 P02760 Protein AMBP  -0,941 -0,803 0,155 0,714 3  Cytoplasm  

543 P07237 Protein disulfide-isomerase  4,197 4,144 4,236 4,295 25  Cytoplasm  

544 P30101 Protein disulfide-isomerase A3  1,339 1,026 1,313 1,542 9  Secreted 

545 Q15084 Protein disulfide-isomerase A6  -0,937 -1,095 -0,965 -0,974 2  EPR  

546 Q96BQ1 Protein FAM3D -0,456 -0,821 -0,982 -0,289 2  EPR  

547 Q9NUQ9 Protein FAM49B  -2,541 -2,145 -2,260 -2,645 1  EPR lumen  

548 Q6P5S2 Protein LEG1 homolog 4,753 3,409 3,892 3,532 10  Secreted  

549 Q08AI8 Protein mab-21-like 4 -1,381 -0,656 -1,043 -1,408 2  Secreted  

550 Q96TA1 Protein Niban 2  -2,753 -1,556 -2,047 -2,875 1 
 

551 Q8WVV4 Protein POF1B  -3,677 -1,480 -2,534 -2,667 1  Cytoplasm 

552 P60903 Protein S100-A10  0,416 0,960 0,559 0,484 3  Cell junction 

553 P31949 Protein S100-A11  2,833 3,305 2,884 2,907 5 
 

554 P80511 Protein S100-A12  2,402 2,583 2,011 2,183 6  Cytoplasm  

555 Q9HCY8 Protein S100-A14  3,027 3,489 3,114 2,674 8  Secreted  

556 Q96FQ6 Protein S100-A16  1,334 1,618 1,198 1,061 5  Cytoplasm  

557 P29034 Protein S100-A2  1,631 2,555 2,170 2,280 4  Nucleus 

558 P06703 Protein S100-A6  -4,800 -3,906 -4,970 -5,113 1 
 

559 P31151 Protein S100-A7  0,210 1,338 2,043 2,004 6  Cytoplasm; 
Cell 
membrane 

560 P05109 Protein S100-A8  8,653 9,390 8,806 8,768 19  Cytoplasm  

561 P06702 Protein S100-A9  3,631 4,127 3,834 3,646 7 Secreted 

562 P25815 Protein S100-P  1,465 1,841 1,375 1,362 3 Secreted 

563 Q99497 Protein/nucleic acid deglycase 
DJ-1  

-1,996 -2,844 -1,860 -1,553 1  Nucleus 

564 Q9UM07 Protein-arginine deiminase 
type-4  

0,285 -0,626 -0,857 -0,335 3  Cytoplasm 

565 Q08188 Protein-glutamine gamma-
glutamyltransferase E  

5,161 5,965 5,681 5,295 33  Cytoplasm  

566 P22735 Protein-glutamine gamma-
glutamyltransferase K  

3,111 3,586 3,299 2,964 20  Membrane  

567 Q04941 Proteolipid protein 2  -2,806 -1,657 -2,220 -2,061 1  Membrane 

568 P00491 Purine nucleoside 
phosphorylase  

-0,619 -0,280 -0,277 -0,342 3  Cytoplasm 
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569 P55786 Puromycin-sensitive 
aminopeptidase  

1,040 1,012 0,684 0,970 5  Cytoplasm 

570 A6NMY6 Putative annexin A2-like 
protein  

-3,058 -3,480 -2,837 -3,169 1  Secreted 

571 Q5VTE0 Putative elongation factor 1-
alpha-like 3  

4,278 4,715 4,461 4,509 14  Cytoplasm  

572 O00764 Pyridoxal kinase  -3,867 -4,120 -4,050 -4,376 1  Cytoplasm 

573 P14618 Pyruvate kinase PKM  2,982 2,925 3,095 2,882 16  Cytoplasm  

574 P50395 Rab GDP dissociation inhibitor 
beta  

1,148 1,247 1,460 1,240 6  Cytoplasm  

575 P46940 Ras GTPase-activating-like 
protein IQGAP1  

1,520 1,540 1,372 1,150 9  Cell 
membrane  

576 P63000 Ras-related C3 botulinum toxin 
substrate 1  

-1,410 -1,514 -1,673 -1,418 1  Cell 
membrane  

577 P15153 Ras-related C3 botulinum toxin 
substrate 2  

-0,935 -1,923 -1,863 -1,488 1  Cytoplasm 

578 P61026 Ras-related protein Rab-10 1,825 2,054 1,873 1,897 5  Cytoplasmic 
vesicle  

579 Q15907 Ras-related protein Rab-11B  2,077 2,375 2,126 2,035 6  Cytoplasmic 
vesicle  

580 P61106 Ras-related protein Rab-14 -2,296 -2,215 -1,878 -2,169 2  Cytoplasmic 
vesicle  

581 Q9NP72 Ras-related protein Rab-18 -2,874 -3,560 -2,830 -2,624 1  Cell 
membrane  

582 Q9H0U4 Ras-related protein Rab-1B -3,590 -3,519 -2,961 -3,840 2  Cytoplasm  

583 P57735 Ras-related protein Rab-25  -2,339 -2,600 -1,793 -2,692 1  Cell 
membrane  

584 P51159 Ras-related protein Rab-27A  1,042 0,983 0,479 0,780 2  Membrane  

585 P61019 Ras-related protein Rab-2A -0,592 -1,031 -0,573 -0,994 3  EPR-Golgi 
membrane 

586 P51149 Ras-related protein Rab-7a 1,364 1,569 1,202 0,972 2  Cytoplasmic 
vesicle 

587 P62834 Ras-related protein Rap-1A  1,306 1,319 1,118 1,053 3  Cell 
membrane  

588 P63244 Receptor of activated protein 
C kinase 1  

0,220 0,809 0,476 0,383 4  Cell 
membrane  

589 Q9HD89 Resistin  0,038 0,412 -0,305 0,040 2  Secreted  

590 O95197 Reticulon-3  -0,846 -0,714 -0,921 -1,191 1  EPR 
membrane  

591 P00352 Retinal dehydrogenase 1  -3,903 -3,523 -3,135 -3,905 1  Cytoplasm 

592 P02753 Retinol-binding protein 4  -2,438 -2,172 -1,660 -1,228 2  Secreted  

593 Q53RT3 Retroviral-like aspartic 
protease 1  

-2,234 -1,100 -1,404 -2,318 1  Membrane  

594 P52566 Rho GDP-dissociation inhibitor 
2  

2,321 2,073 1,798 2,141 4  Cytoplasm 

595 Q07960 Rho GTPase-activating protein 
1  

-1,183 -0,920 -1,158 -1,922 2  Cytoplasm 

596 P34096 Ribonuclease 4  -0,668 -1,076 -1,157 -0,653 2  Secreted 

597 P13489 Ribonuclease inhibitor  0,479 0,781 0,881 0,676 6  Cytoplasm 

598 P02810 Salivary acidic proline-rich 
phosphoprotein 1/2  

-0,520 -1,703 -1,317 -0,586 5  Secreted 

599 P16615 Sarcoplasmic/endoplasmic 
reticulum calcium ATPase 2  

-4,051 -3,544 -3,439 -3,660 1  EPR 
membrane  

600 O95171 Sciellin -1,947 -3,035 -3,166 -2,467 1  Cytoplasm 

601 O95969 Secretoglobin family 1D 
member 2  

-3,872 -4,316 -4,235 -3,699 1  Secreted  

602 Q96QR1 Secretoglobin family 3A 
member 1  

-3,878 -3,329 -3,849 -2,890 1  Secreted  

603 P30153 Serine/threonine-protein 
phosphatase 2A  

-3,633 -3,274 -3,293 -3,741 2  Cytoplasm  
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604 P67775 Serine/threonine-protein 
phosphatase 2A  

-1,676 -1,894 -1,412 -1,649 2  Cytoplasm  

605 P62140 Serine/threonine-protein 
phosphatase PP1-beta  

-2,525 -2,378 -2,283 -2,363 2  Cytoplasm  

606 P02787 Serotransferrin  5,547 5,748 6,400 7,045 62  Secreted 

607 Q9UIV8 Serpin B13  3,178 3,742 3,427 3,355 11  Cytoplasm 

608 P29508 Serpin B3  1,841 2,515 2,411 2,329 10  Cytoplasm  

609 P48594 Serpin B4  -0,125 0,330 0,587 0,672 4  Cytoplasm  

610 P36952 Serpin B5  2,547 3,120 2,743 2,727 6  Secreted 

611 P35237 Serpin B6  0,190 0,592 0,141 0,079 2  Cytoplasm  

612 P02768 Serum albumin 9,197 9,809 10,510 11,074 84  Secreted 

613 P0DJI8 Serum amyloid A-1 protein  -1,878 -1,603 -1,060 -1,222 2  Secreted  

614 P02743 Serum amyloid P-component  -1,180 -0,644 -0,509 0,384 4  Secreted 

615 O75368 SH3 domain-binding glutamic 
acid-rich-like protein 

-0,723 -1,283 -1,091 -1,521 2 
 

616 Q9UJC5 SH3 domain-binding glutamic 
acid-rich-like protein 2  

-2,077 -2,187 -2,753 -2,831 1  Nucleus  

617 Q9H299 SH3 domain-binding glutamic 
acid-rich-like protein 3  

-0,887 -0,997 -0,924 -0,835 2  Cytoplasm 

618 Q04837 Single-stranded DNA-binding 
protein 

-4,795 -5,138 -4,954 -4,529 1 Mitochondria  

619 P62314 Small nuclear 
ribonucleoprotein Sm D1  

-1,148 -1,193 -1,567 -1,536 1  Cytoplasm 

620 P22531 Small proline-rich protein 2E  -0,928 -0,217 -0,050 0,037 2  Cytoplasm 

621 Q9UBC9 Small proline-rich protein 3  4,867 4,796 4,584 4,691 12  Cytoplasm 

622 Q14515 SPARC-like protein 1  0,827 -0,838 -0,016 -0,336 3  Secreted 

623 Q13838 Spliceosome RNA helicase 
DDX39B  

-0,314 -0,435 -0,462 -0,431 2  Nucleus 

624 Q7KZF4 Staphylococcal nuclease 
domain-containing protein 1  

-2,515 -2,270 -1,847 -1,507 1  Cytoplasm  

625 P38646 Stress-70 protein 0,346 -1,022 0,787 -2,222 2  Mitochondria 

626 O00391 Sulfhydryl oxidase 1  -0,171 -0,218 -0,305 -0,271 4 
 

627 Q9Y6N5 Sulfide:quinoneoxidoreductase  -1,186 -0,290 -0,454 -0,081 3  Mitochondria 

628 O00204 Sulfotransferase 2B1  0,189 0,851 0,137 0,321 4  Cytoplasm 

629 P00441 Superoxide dismutase [Cu-Zn]  -3,986 -3,308 -4,062 -3,255 1  Cytoplasm  

630 P04179 Superoxide dismutase [Mn] -0,475 -0,476 -0,080 0,135 3  Mitochondria 

631 Q6UWP8 Suprabasin -3,647 -3,480 -3,870 -4,258 2  Secreted  

632 Q99536 Synaptic vesicle membrane 
protein VAT-1 homolog  

-4,085 -4,218 -3,638 -4,110 1  Cytoplasm 

633 Q16563 Synaptophysin-like protein 1  0,177 0,514 -0,090 -0,089 1  Cytoplasmic 
vesicle  

634 P78371 T-complex protein 1 subunit 
beta  

-3,455 -3,982 -3,212 -3,350 2  Cytoplasm  

635 P50991 T-complex protein 1 subunit 
delta  

-0,623 -0,472 -0,231 -0,814 3  Cytoplasm  

636 P48643 T-complex protein 1 subunit 
epsilon  

-2,421 -2,601 -2,602 -3,070 2  Cytoplasm  

637 Q99832 T-complex protein 1 subunit 
eta  

-1,834 -1,067 -0,757 -1,259 1  Cytoplasm  

638 P49368 T-complex protein 1 subunit 
gamma  

-1,660 -1,716 -2,244 -1,666 1  Cytoplasm  

639 P10599 Thioredoxin  2,674 2,800 2,498 2,228 7  Nucleus  

640 Q9BRA2 Thioredoxin domain-
containing protein 17  

-1,307 -0,747 -1,240 -0,813 1  Cytoplasm  

641 P26639 Threonine--tRNA ligase 1, 
cytoplasmic  

-0,927 -1,408 -1,271 -1,120 2  Cytoplasm  
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642 P19971 Thymidine phosphorylase  -0,832 -0,332 0,050 0,464 4 
 

643 P37837 Transaldolase  3,638 3,659 3,542 3,553 9  Cytoplasm  

644 P20061 Transcobalamin-1  3,862 3,190 3,454 3,444 11  Secreted 

645 P61586 Transforming protein RhoA  0,708 0,772 0,719 0,479 3  Cell 
membrane 

646 P37802 Transgelin-2  0,099 0,519 0,312 0,332 5 
 

647 P55072 Transitional endoplasmic 
reticulum ATPase  

1,034 1,247 1,201 1,289 6  Cytoplasm 

648 P29401 Transketolase  4,268 4,181 4,043 4,126 15 
 

649 P13693 Translationally-controlled 
tumour protein  

0,357 0,687 0,559 0,255 3  Cytoplasm  

650 P51571 Translocon-associated protein 
subunit delta  

-3,886 -4,132 -3,327 -5,055 1  EPR 
membrane 

651 P49755 Transmembrane emp24 
domain-containing protein 10  

-2,156 -1,602 -2,086 -1,987 1  Golgi 
apparatus 

652 Q86T26 Transmembrane protease 
serine 11B  

0,156 -0,204 -0,396 -0,310 3  Cell 
membrane  

653 O60235 Transmembrane protease 
serine 11D  

1,518 1,346 1,237 1,071 3  Cell 
membrane 

654 Q9UL52 Transmembrane protease 
serine 11E  

-0,044 -0,256 -0,497 -0,591 5  Cell 
membrane  

655 P02766 Transthyretin  1,633 2,153 2,662 2,962 9  Secreted 

656 P40939 Trifunctional enzyme subunit 
alpha 

-2,021 -2,096 -2,078 -2,255 2  Mitochondria 

657 P55084 Trifunctional enzyme subunit 
beta  

-0,212 -1,280 -0,700 -1,546 1  Mitochondria 

658 P60174 Triosephosphate isomerase  3,905 3,769 3,986 4,183 14  Cytoplasm  

659 Q14134 Tripartite motif-containing 
protein 29  

1,221 0,831 -0,009 0,836 4  Cytoplasm  

660 O14773 Tripeptidyl-peptidase 1  -1,597 -2,274 -1,908 -1,395 1  Lysosome  

661 P06753 Tropomyosin alpha-3 chain  0,081 -0,245 0,243 0,006 3  Cytoplasm 

662 P07477 Trypsin-1  2,798 1,689 4,393 4,118 1  Secreted 

663 P23381 Tryptophan--tRNA ligase, 
cytoplasmic  

-3,641 -2,725 -2,472 -2,854 1  Cytoplasm 

664 Q71U36 Tubulin alpha-1A chain  -1,229 -0,627 -1,062 -0,743 2  Cytoplasm 

665 P68366 Tubulin alpha-4A chain  1,222 1,590 1,275 1,413 4  Cytoplasm 

666 P07437 Tubulin beta chain  -1,641 -1,909 -1,669 -1,301 1  Cytoplasm 

667 Q13885 Tubulin beta-2A chain  -1,600 -0,798 -1,699 -1,316 1  Cytoplasm 

668 P68371 Tubulin beta-4B chain  -0,380 -0,333 -0,558 -0,339 2  Cytoplasm 

669 Q9BW30 Tubulin polymerization-
promoting protein family 
member 3  

-3,411 -2,824 -3,087 -2,349 1  Cytoplasm  

670 P09758 Tumour-associated calcium 
signal transducer 2  

-1,482 -0,669 -1,091 -1,141 2  Membrane 

671 P41240 Tyrosine-protein kinase CSK  -4,845 -3,993 -3,994 -4,088 1  Cytoplasm  

672 P62979 Ubiquitin-40S ribosomal 
protein S27a  

3,094 3,621 3,308 2,955 4 Ubiquitin 

673 P61077 Ubiquitin-conjugating enzyme 
E2 D3  

1,059 -0,405 -1,571 0,045 1  Cell 
membrane  

674 P68036 Ubiquitin-conjugating enzyme 
E2 L3  

-3,679 -4,410 -3,501 -3,662 1  Nucleus  

675 Q13404 Ubiquitin-conjugating enzyme 
E2 variant 1  

-0,797 -0,117 -0,279 -0,892 1  Nucleus  

676 P30085 UMP-CMP kinase  -2,280 -2,340 -2,412 -2,663 1  Nucleus  

677 Q16851 UTP--glucose-1-phosphate 
uridylyltransferase  

-2,762 -2,717 -2,537 -3,082 2  Cytoplasm  

678 Q96QK1 Vacuolar protein sorting-
associated protein 35  

-1,629 -1,249 -1,403 -0,695 2  Cytoplasm  
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679 P49748 Very long-chain specific acyl-
CoA dehydrogenase 

-1,062 -0,996 -1,178 -1,142 3  MIM 

680 Q53GQ0 Very-long-chain 3-oxoacyl-CoA 
reductase  

-3,482 -2,638 -3,482 -3,268 1  EPR 
membrane  

681 P08670 Vimentin 1,822 0,790 0,710 1,092 7  Cytoplasm  

682 P18206 Vinculin  -1,225 -2,506 -1,484 -2,269 2  Cell 
membrane  

683 P02774 Vitamin D-binding protein  2,087 2,493 2,929 3,644 16  Secreted  

684 P04004 Vitronectin  -0,548 0,032 0,764 1,093 3  Secreted 

685 P21796 Voltage-dependent anion-
selective channel protein 1  

1,010 0,963 0,959 0,785 5 MOM  

686 P45880 Voltage-dependent anion-
selective channel protein 2  

1,149 1,244 0,959 1,037 2 MOM  

687 P38606 V-type proton ATPase catalytic 
subunit A  

-2,686 -3,363 -2,518 -2,361 1  Cytoplasm  

688 O75083 WD repeat-containing protein  1,558 1,762 1,604 1,703 5  Cytoplasm 

689 O15231 Zinc finger protein 185  -3,519 -2,985 -3,008 -3,381 1  Cytoplasm 

690 P25311 Zinc-alpha-2-glycoprotein  6,145 5,227 5,797 6,096 20  Secreted 

691 Q96DA0 Zymogen granule protein 16 
homolog B 

9,866 9,504 9,270 8,519 10  Secreted  

 

Table 17. List of differential proteins between control, PVL, early, and advanced OSCC groups. The 

UniProt protein ID and name are presented. The representative identification with the number (#) of 

peptides with which a protein was determined, the average log2 transformed quantification data 

(n=10) and Student’s t-test p-value from the pair-wised analysis are given in each case. 

   Log2Med p-value 

Protein 
ID 

 
Protein name 

# 
peptides 

 
Ctrl  

 
PVL 

 
eOSCC  

 
advOSCC  

Ctrl 
PVL 

Ctrl 
eOSCC 

Ctrl 
advOSCC 

PVL 
OSCC 

P01024 Complement C3  67 4,757 5,217 5,779 6,463 0,233 0,018 0,005 0,048 

P02647 Apolipoprotein A-I  23 3,208 3,908 5,127 5,472 0,073 0,003 0,016 0,008 

P00738 Haptoglobin 25 3,604 3,932 4,872 6,222 0,441 0,019 0,003 0,003 

P02790 Hemopexin  14 2,913 3,464 4,081 5,105 0,174 0,013 0,003 0,027 

P08670 Vimentin  7 1,822 0,790 0,710 1,092 0,009 0,029 0,012 0,779 

P01859 Immunoglobulin heavy 
constant gamma 2 

6 4,729 5,220 5,759 6,583 0,220 0,042 0,003 0,059 

P31151 Protein S100-A7  6 0,210 1,338 2,043 2,004 0,055 0,001 0,001 0,184 

P07737 Profilin 1  7 3,193 2,405 2,551 2,578 0,004 0,004 0,012 0,519 

P01034 Cystatin C 9 3,147 1,569 1,930 2,007 0,001 0,028 0,032 0,331 

P04040 Catalase  10 2,138 1,487 1,407 1,798 0,085 0,023 0,301 0,751 

P01036 Cystatin S  2 3,679 1,155 0,485 1,460 0,005 0,002 0,074 0,836 

P98088 Mucin -5AC  12 -0,413 0,103 0,467 0,931 0,172 0,023 0,049 0,183 

P15104 Glutamine synthetase  6 1,099 2,033 2,056 1,765 0,000 0,000 0,015 0,578 

Q8WVV4 Protein POF1B 1 -3,677 -1,480 -2,534 -2,667 0,001 0,077 0,157 0,078 

P12532 Creatine kinase U-type  2 -0,349 -0,903 -0,969 -1,193 0,307 0,226 0,093 0,750 

Q9Y6N5  Sulfide:quinone 
oxidoreductase  

3 -1,186 -0,290 -0,454 -0,081 0,006 0,020 0,002 0,873 

P02765  Alpha-2-HS-glycoprotein  3 0,474 0,993 1,639 2,101 0,006 0,020 0,002 0,873 

P16615 Sarcoplasmic reticulum 
calcium ATPase 2  

1 -4,051 -3,544 -3,439 -3,660 0,307 0,256 0,344 0,988 

P18206 Vinculin  2 -1,225 -2,506 -1,484 -2,269 0,001 0,415 0,006 0,032 

P48594 SERPIN B4  4 -0,125 0,330 0,587 0,672 0,051 0,003 0,016 0,189 

P04004 Vitronectin 3 -0,548 0,032 0,764 1,093 0,250 0,020 0,035 0,127 
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Q04118 Parotid salivary 
glycoprotein G1 

2 -1,161 -4,562 -3,513 -3,056 0,002 0,095 0,129 0,171 

Q6MZM9 Proline-rich protein 27 1 -0,282 -2,646 -1,409 -1,327 0,018 0,203 0,276 0,077 

P00367 Glutamate 
dehydrogenase 1 

1 -2,634 -1,453 -1,781 -1,563 0,017 0,086 0,019 0,471 

P05155 Plasma protease C1 
inhibitor 

5 0,748 1,274 1,920 2,824 0,204 0,005 0,003 0,025 

P19971 Thymidine phosphorylase 4 -0,832 -0,332 0,050 0,464 0,033 0,010 0,000 0,023 

Q9UM07 Protein-arginine 
deiminase type-4 

3 0,285 -0,626 -0,857 -0,335 0,015 0,025 0,135 0,942 

O95336 6-
phosphogluconolactonase 

3 -0,490 -1,498 -0,775 -0,923 0,002 0,149 0,044 0,028 

P14555 Phospholipase A2 1 -1,133 -2,989 -2,551 -2,076 0,031 0,066 0,204 0,375 

P31944 Caspase-14 2 -2,916 -1,439 -1,225 -2,766 0,020 0,009 0,775 0,205 

P05090 Apolipoprotein D 3 -1,578 -0,754 -0,700 -0,466 0,109 0,057 0,040 0,704 

P49411 Elongation factor Tu 1 -1,786 -3,586 -2,064 -3,465 0,001 0,590 0,001 0,103 

P26583 High mobility group 
protein B2 

2 0,088 -1,346 -1,497 -1,526 0,006 0,011 0,002 0,742 

P19652 Alpha-1-acid glycoprotein 
2  

2 -0,258 0,121 0,947 1,289 0,409 0,003 0,005 0,038 

P12830 Cadherin-1 2 -0,334 -0,644 -0,995 -0,807 0,088 0,026 0,021 0,173 

P23381 Tryptophan--tRNA ligase 1 -3,641 -2,725 -2,472 -2,854 0,058 0,020 0,146 0,890 

Q14515 SPARC-like protein 1 3 0,827 -0,838 -0,016 -0,336 0,000 0,065 0,008 0,046 

A0A0C4DH31 Immunoglobulin heavy 
variable 1-18 

1 2,150 2,107 2,370 2,393 0,908 0,531 0,584 0,322 

P61254 60S ribosomal protein L26 2 -1,435 -0,662 -0,937 -1,270 0,090 0,274 0,760 0,092 

O15511 Actin-related protein 2/3 
complex subunit 5 

1 0,857 0,623 0,356 0,175 0,202 0,004 0,000 0,048 

P00747 Plasminogen 2 -2,197 -1,434 -0,653 -0,457 0,121 0,014 0,016 0,041 

P36542 ATP synthase subunit 
gamma 

2 -2,380 -1,852 -1,591 -1,694 0,375 0,189 0,162 0,645 

P41240 Tyrosine-protein kinase  1 -4,845 -3,993 -3,994 -4,088 0,072 0,054 0,076 0,882 

Q8IUE6 Histone H2A type 2-B 2 0,215 -0,958 -0,750 -0,272 0,064 0,178 0,268 0,437 

O00303 Eukaryotic translation 
initiation factor 3 subunit  

1 -4,550 -3,324 -4,027 -3,867 0,004 0,213 0,114 0,019 

Q96GD3 Polycomb protein SCMH1 1 -0,765 -2,430 -2,197 -1,457 0,000 0,289 0,000 0,279 

P62942 Peptidyl-prolyl cis-trans 
isomerase  

1 -0,765 -2,430 -2,197 -1,457 0,000 0,008 0,073 0,166 

P36957 Dihydrolipoyllysine-
residue 
succinyltransferase 

1 2,378 0,307 2,470 -0,944 0,000 0,814 0,000 0,370 

P62857 40S ribosomal protein 
S28 

1 3,068 0,291 -0,902 -1,023 0,065 0,037 0,005 0,426 
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RESUMEN  

La incidencia de cáncer de cabeza y cuello (CCC) es superior a medio millón de casos al año 

en todo el mundo y representa aproximadamente el 3% de los tumoures malignos de adultos. 

El cáncer oral, sobre todo, el carcinoma oral de células escamosas (COCE), es la neoplasia 

maligna más común en la cavidad oral que cuando se diagnostica en estadios avanzados se 

caracteriza por un mal pronóstico y una baja tasa de supervivencia. A pesar de los avances 

terapéuticos y tecnológicos, el pronóstico para COCE no ha mejorado en las últimas décadas 

debido a que todavía muchos de ellos son diagnosticados en momentos tardíos, cuando los 

pacientes buscan atención al experimentar síntomas en su última etapa, etapa en la cual la 

enfermedad está avanzada y la tasa de supervivencia disminuye a niveles tan bajos como del 

15-50%. Si por el contrario un carcinoma oral de células escamosas es diagnosticado de forma 

precoz o temprana, la supervivencia media a los 5 años llega a ser hasta del 85%. Tras la 

prevención primaria, el diagnóstico precoz se ha convertido en el principal objetivo en el 

manejo del cáncer oral. Por lo tanto, la detección temprana es esencial para mejorar las tasas 

de supervivencia y el pronóstico de estos pacientes. Sin embargo, las fases iniciales del cáncer 

oral son a menudo asintomáticas, siendo desde hace muchos años la biopsia la principal 

técnica para su diagnóstico. Actualmente, no existen biomarcadores para COCE con la 

sensibilidad y especificidad suficiente que nos permitan su uso clínico rutinario, lo que 

enfatiza la necesidad de alguna herramienta práctica y simple tanto para fines diagnósticos 

como de establecer programas de detección precoz o screening. Los tumoures malignos de 

la cavidad oral y faringe aparecen a través de una serie de mutaciones moleculares que 

resulten a un crecimiento celular descontrolado, pasando por distintas fases: desde 

momentos en los que se observan hiperplasias, lesiones displásicas, carcinoma in situ y, 

finalmente, pudiendo llegar a un auténtico carcinoma invasor. Existe un conjunto de 

alteraciones genéticas, epigenéticas y metabólicas que se han correlacionado con la 

transformación maligna en aquellos procesos potencialmente malignos en la cavidad oral. A 

las últimas pertenecen las lesiones y afecciones de la mucosa oral, con predisposición a la 

transformación maligna, según la Organización Mundial de la Salud (WHO). El desarrollo de 

muchos casos de COCE se ha correlacionado con la transformación maligna de lesiones orales 

potencialmente malignas, como la leucoplasia oral. Esta última presenta subtipos clínicos 

heterogéneos con diferentes potenciales de degeneración maligna. La leucoplasia verrugosa 

proliferativa (LVP) es con mucho la forma de leucoplasia con mayor riesgo de transformación 
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maligna. Los analitos salivales ya han demostrado su utilidad para la detección de trastornos 

locales, sistémicos e incluso en los procesos infecciosos. Los biomarcadores derivados de la 

saliva ofrecen un muestreo fácil con un mínimo riesgo para los pacientes, así como un 

reducido coste y tiempo de diagnóstico muy corto. Abarcan una variedad de parámetros 

detectables y medibles que permiten diferenciar la salud de la enfermedad. En términos de 

biomarcadores de respuesta inflamatoria, hay un aumento en la expresión de ciertas 

citoquinas. Se secretgan a partir de las células epiteliales e inmunes, lo que promueve la 

concentración de macrófagos y neutrófilos y produce inflamación. Como la inflamación se ha 

relacionado anteriormente con patologías orales, la tendencia actual en investigación indica 

la posibilidad de utilizar proteínas salivales pro y antiinflamatorias salivales para la detección 

de esas patologías, incluso en el caso del cáncer. Investigaciones recientes han demostrado 

el papel de ciertas citoquinas y su disregulación en el COCE, así como igualmente en lesiones 

orales potencialmente malignas (niveles salivales de factor de necrosis tumoural-α (TNF-α) y 

algunas interleucinas (IL), como la IL-1α, IL-6 e IL-8).  Diversos estudios han presentado 

evidencias de que los niveles de citoquinas proinflamatorias salivales difieren 

significativamente entre individuos sanos, pacientes diagnosticados con COCE y aquellos con 

lesiones orales potencialmente malignas. La naturaleza local y sistémica de las respuestas 

inflamatorias alteradas sugiere que la expresión aberrante de citoquinas está relacionada con 

el precáncer y el cáncer y podría contribuir a la patogénesis de la neoplasia maligna en la 

cavidad oral. Los cambios en las modificaciones postraduccionales de proteínas (MPP) tienen 

un papel importante en el estudio de la etiología y la progresión de la enfermedad. La 

posibilidad de diferenciar los patrones de glicosilación de proteínas entre pacientes con 

cáncer y personas sanas demuestra como la glicobiología es un área potencial para el 

descubrimiento de biomarcadores. Se ha demostrado que la glicosilación aberrante 

acompaña a muchas afecciones crónicas e infecciosas y es una característica común de las 

células tumourales que puede afectar a los N- y O-glicanos en glicoproteínas, glicolípidos o 

glicosaminoglicanos. El perfil glicómico se ha utilizado recientemente para revelar cambios en 

los glicanos como resultado de la progresión de diferentes enfermedades malignas, 

incluyendo cáncer de mama, ovario, próstata y hepatocelular. Se ha descrito glicosilación 

anómala en el suero y tejidos malignos de pacientes con COCE, asociada con la invasión 

celular y la diseminación de la enfermedad. Sin embargo, faltan estudios sobre el potencial 

de los glicoconjugados salivales como biomarcadores del cáncer oral. Las alteraciones en la 
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glicosilación de proteínas pueden ser específicas de una patología, por lo que el estudio de 

los glicanos podría contribuir a una mejor comprensión de la carcinogénesis oral y 

proporcionar posibles herramientas para su diagnóstico. Se ha descrito y analizado, 

recientemente, el proteoma salival en los pacientes con cáncer de cabeza y cuello. Los 

estudios asociados a COCE han demostrado una expresión alterada de proteínas relacionadas 

con el metabolismo y la estructura celular, la adhesión y la motilidad, la transducción de 

señales, así como la inflamación, incluidas las oncoproteínas. La heterogeneidad celular y 

molecular de COCE y la gran cantidad de cambios moleculares involucrados en la 

carcinogénesis oral enfatizan la importancia de estudiar las proteínas responsables de ellas 

mediante proteómica de escala global. 

Objetivos 

El objetivo general de este estudio fue analizar un panel de citoquinas inflamatorias salivales, 

así como los perfiles proteicos y de glicanos salivales con el fin de identificar cuáles de ellas 

se detectarían de forma alteradamente significativos en las primeras etapas de cáncer oral y 

pudieran ser potenciales biomarcadores para el diagnóstico precoz de COCE.  

Objetivos específicos: 

1. Analizar si existen diferencias significativas en las citoquinas salivales (TNF-a, IL-1a, IL-6, IL-

8, HCC-1, MCP-1 e PF-4), así como en los perfiles proteicos y glicanos salivales entre un grupo 

de pacientes con carcinoma oral de células escamosas (grupo 1), otro segundo con trastornos 

potencialmente malignos (grupo 2) y un grupo control (grupo 3). 

2. Dentro del grupo con trastornos potencialmente malignos (grupo 2) se analizaron las 

diferencias en las citoquinas anteriores, así como en los perfiles proteicos y glicanos salivales 

entre los pacientes que presentaban dos formas clínicas de leucoplasia oral que eran la 

leucoplasia homógena (LH) y la leucoplasia verrugosa proliferativa (LVP). 

3. Dentro del grupo con carcinoma oral de células escamosas se analizaron las diferencias en 

las citoquinas anteriores, así como en los perfiles proteicos y glicanos salivales entre los 

pacientes en etapas tempranas (estadios I y II) y aquellos con estadios avanzados (estadios III 

y IV) de COCE. 

4. Finalmente, se estudiaron si habían diferencias significativas en los niveles de las citoquinas 

salivales, así como en los perfiles proteicos y glicanos salivales entre los diversos grupos de 

este proyecto de investigación.  
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Metodología 

El estudio de las citoquinas inflamatorias consistió en un grupo 1 compuesto por 66 pacientes 

con carcinoma oral de células escamosa diagnosticados mediante biopsia, visitados en el 

Servicio de Estomatología de la Universidad de Valencia, en Medicina Bucal de la Clínica 

Odontológica de la Universidad de Valencia o en el Servicio de Otorrinolaringología del 

Hospital General Universitario de Valencia. Todos los pacientes fueron informados 

adecuadamente del contenido del estudio y firmaron el correspondiente consentimiento 

informado, según fue aprobado por el Comité de Ética del Hospital General Universitario de 

Valencia. Se determinó el estadio del COCE, considerando estadios iniciales el I y II. Los 

estadios tardíos fueron el III y IV. Todos los tumoures se clasificaron según el sistema de 

clasificación TNM (Tumour Node Metástasis). El grupo 2 estuvo constituido por 66 pacientes 

con leucoplasia oral, clínicamente diagnosticada (tanto las leucoplasias homogéneas como las 

leucoplasias verrugosas proliferativas) de acuerdo con los criterios de Van der Waal y basado 

en el informe histopatológico clínico de la biopsia de la lesión. A su vez tuvimos un grupo 

control (grupo 3) de 25 personas sanas, con edades y sexo similares a los de los grupos 1 y 2 

y sin presentar trastornos patológicos en la mucosa oral ni en las glándulas salivales.  

Las muestras de saliva se obtuvieron tras su diagnóstico y antes del tratamiento. Los 

especímenes salivales se recogieron mediante la técnica de expectoración siendo la saliva 

total sin estimulación, siguiendo el protocolo de Navazesh (1993). A los pacientes se les dieron 

las siguientes recomendaciones: los participantes no debían cepillarse los dientes dentro de 

los 45 minutos antes de la recogida de muestras, las muestras de saliva visiblemente 

contaminadas con sangre fueron descartados. Las muestras se centrifugaron a 3000 x g 

durante 15 minutos at 4°C para eliminar los gránulos. Luego se  congelaron y almaceron a -80 

° C hasta su estudio molecular. En el caso de los grupos 2 y 3 las muestras salivales se 

obtuvieron con el mismo procedimiento descrito para el grupo 1. Se utilizaron estrategias 

ómicas combinadas para perfilar diferentes tipos de moléculas con potencial utilidad 

diagnóstica en la saliva de pacientes con LVP, estadios tempranos y avanzados de COCE así 

como en personas sanas. Para la detección y cuantificación de citoquinas salivales, se utilizó 

un inmunoensayo multiplexado para examinar los niveles de ocho proteínas inflamatorias 

diferentes. El formato más común y fue establecido para el ensayo multiplex basado en 

anticuerpos utilizando microesferas conjugadas con anticuerpos de corporación Luminex. La 

plataforma Luminex 200TM para la detección de biomarcadores y análisis de proteínas consta 
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de inmunoensayos basados en microesferas magnéticas, instrumentos de detección y 

software. Los datos se analizaron mediante el software gestor de Bio-Plex. Las 

concentraciones de las ocho citoquinas se evaluaron por interpolación de la curva estándar 

usando una dilución de cinco veces por etapas de estándares de proteína. Las curvas de 

calibración se generaron para cada una con el software de gestión de Bio-Plex y las 

concentraciones se calcularon a partir de la curva estándar. Para evaluar las diferencias en los 

niveles de proteínas inflamatorias entre los individuos de los grupos de control, LH, LVP, 

pacientes con COCE inicial y avanzado, se realizó un análisis comparativo incluyendo la 

determinación del nivel de cuantificación, análisis de componentes principales para analizar 

la variabilidad y la prueba de chi-cuadrado intra e intergrupales para cada analito. Para valorar 

las diferencias en las medias de los niveles salivales de las citoquinas entre los grupos se 

aplicaron las pruebas no paramétricas de Mann-Whitney and Kruskal-Wallis. Se realizó un 

análisis de regresión y correlación entre los grupos y las citoquinas significativamente 

alterados para determinar si la expresión de las citoquinas mostraba una mayor relación con 

alguno de los grupos patológicos. Para evaluar el potencial diagnóstico de los biomarcadores 

candidatos descubiertos se construyeron curvas de característica operativa del receptor 

(ROC).  

Para estudiar los perfiles de glicanos, se recogieron muestras de saliva de 20 individuos de la 

misma edad, igualmente distribuidos en cuatro grupos como se detalla a continuación: el 

grupo 1 consistió en 5 pacientes con LVP. El grupo 2 y 3 consistió de 5 casos cada uno, 

incluyendo pacientes en estadios iniciales y avanzados de COCE. El grupo 4- que fueron los 

controles, incluyo 5 personas sanas, sin visibles lesiones orales. Los N-glicanos liberados de 

las proteínas salivales se sometieron a una estimación analítica con cromatografía líquida de 

ultra alta resolución (UHPLC) acoplada a espectrometría de masas (MS). Todos los datos se 

adquirieron con el software Thermo Scientific Xcalibur 4.0. UHPLC se equipó con una columna 

de amida de glicano Waters BEH. Las adquisiciones de datos se proporcionaron utilizando 

Xcalibur (Thermo Fisher Scientific, MA, USA) software. El software de análisis de datos 

multivariados Progenesis QT (Waters TM) permitió la normalización de la abundancia de los 

glicanos y la cuantificación relativa entre los grupos estudiados. Las composiciones putativas 

de monosacáridos se determinaron manualmente utilizando la herramienta GlycoWorkbench 

3.0. La interpretación de la relación entre los grupos experimentales se estimó mediante 

análisis de componentes principales (PCA), permitiendo visualizar datos multivariados. El 
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análisis estadístico y el diseño de gráficos se realizó con GraphPad Prism (GraphPad Software, 

Inc., San Diego, CA). Las diferencias entre grupos se calcularon mediante la prueba de Kruskal-

Wallis. 

El objetivo del estudio proteómico era identificar y cuantificar todas las proteínas que se 

pudieran detectar en las muestras analizadas en los diferentes grupos. La biblioteca espectral 

de proteínas salivales se creó mediante la identificación de proteínas presentes en una mezcla 

de muestras salivales de pacientes con COCE. Se seleccionaron 10 personas, incluyendo 3 

casos de COCE inicial y 7 casos de COCE avanzados. La expresión diferencial de proteínas se 

estimó en las muestras individuales de la saliva obtenida en los 40 casos, distribuidas en 

cuatro grupos, de la siguiente manera: 10 controles, 10 LVP, 10 casos de COCE en estadios 

iniciales y 10 casos de COCE en estadios avanzados. LC-MS es una técnica de química analítica 

que combina las capacidades de separación física de la cromatografía líquida con las 

capacidades de análisis de masas mediante la espectrometría de masas. Mientras que LC 

separa muestras con múltiples componentes, MS proporciona identidad estructural y datos 

cuantitativos de los componentes individuales con alta especificidad molecular y sensibilidad 

de detección.  Sequential Windowed Acquisition of All Theoretical Fragment Ions (SWATH)- 

MS es el método que se utilizó para la cuantificación de las proteínas presentes en las 

muestras salivales. Este enfoque analítico de alto rendimiento ha demostrado ser eficiente 

para los análisis de muestras complejas de una manera robusta y reproducible. Se utilizó el 

software ProteinPilot para generar una lista de picos basada en la medición de SWATH-MS. 

Los archivos obtenidos de la cuantificación SWATH fueron analizados por Peak View 2.1 con 

una biblioteca espectral de proteínas, construida previamente. La búsqueda de proteínas se 

realizó en la base de datos Swissprot. El análisis bioestadístico se llevó a cabo por métodos de 

regresión lineal y reducción de dimensiones (clasificación) a través del programa R 4.0.2, 

usando el paquete glmnet para LASSO (Least Absolute Shrinkage and Selection Operator) y 

Elastic Net Regularized Generalized Linear Models. Se utilizó la prueba t- test de student para 

determinar la significación estadística de las proteínas expresadas diferencialmente en base 

a la abundancia relativa dentro de las comparaciones de los grupos pareados estudiados. Las 

curvas ROC evaluaron el valor diagnóstico de los biomarcadores candidatos descritos. La 

versión 11 del online software STRING permitió buscar relaciones de interacción de las 

proteínas expresadas diferencialmente en el COCE comparados con los grupos de LVP y 
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controles. Las clasificaciones de los procesos biológicos hallados se realizaron con las 

herramientas de la base de datos STRING y, también se examinaron los términos de ontología 

genética enriquecida, proporcionados por el mismo software. 

Resultados 

Las medias de las concentraciones de cinco citoquinas, concretamente la IL-6, IL-8, MCP-1, 

TNF-α y HCC-1, fueron significativamente más altas en las leucoplasias (LH y LVP) que en el 

grupo de control. Además, los niveles de IL-6, IL-8, TNF-α, HCC-1 y PF-4 fueron 

considerablemente diferentes entre los pacientes con COCE en los dos estadios clínicos 

analizados comparados con los hallazgos en las personas sanas. Se observó una elevación 

notable de MCP-1 solo en las etapas iniciales de COCE, mientras que se hallaron niveles 

significativamente más altos de IL-6 y TNF-α en las etapas avanzadas en comparación con las 

iniciales de COCE. Se encontró que las medias de las concentraciones salivales de IL-6, IL-8, 

TNFα, HCC-1 y PF-4 seguían patrones de expresión similares con un aumento gradual desde 

los controles hasta los casos con leucoplasia (HL y/o PVL), y por supuesto mayor en los 

cánceres, desde los estadios iniciales a las etapas avanzadas de COCE. Las múltiples 

comparaciones mostraron que los niveles de IL-6, IL-8, TNF-α, HCC-1 y PF-4 estaban 

notablemente alterados en los grupos de pacientes con cáncer oral, mientras no se halló una 

alteración importante en las concentraciones de IL-1α, IP-10 y MCP-1 entre las diferentes 

patologías. Tampoco se observó una alteración significativa en los niveles estimados de 

citoquinas entre los grupos con lesiones de LH y PVL. Dado que los niveles de las seis 

citoquinas diferían notablemente entre los pacientes con COCE, tanto en los estadios iniciales 

y los controles, se analizaron las curvas ROC de estos biomarcadores. Los valores de AUC para 

IL-6, IL-8, TNF-α y HCC-1 salivales fueron superiores a 0.8 y para MCP-1 y PF-4 fueron 

superiores a 0.7. En una comparación de los niveles salivales de las citoquinas halladas entre 

los pacientes en etapas iniciales y avanzadas de COCE, la IL-6 y TNF-α mostraron 

concentraciones más altas, con valores de AUC de 0.69 y 0.68, respectivamente. Además, el 

análisis ROC reveló valores de AUC superiores a 0.7 para IL-6, TNF-α y PF-4 en las etapas 

iniciales del cáncer oral en comparación con los pacientes diagnosticados con leucoplasias. Se 

encontró una relación directa entre el grupo de COCE avanzado, con la TNF-α e IL-6, con una 

probabilidad de diagnosticar la enfermedad avanzada de hasta 70%. La presencia de 

metástasis en los ganglios linfáticos del cuello se asoció directamente con IL-6, que también 
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se correlacionó con los niveles de IP-10 y TNF-α. Según los rangos de concentración de IL-6, 

su probabilidad diagnóstica alcanza cifras de hasta 0.8 de 1.0. No se estableció correlación 

entre el sexo de los pacientes, el hábito de fumar, la ubicación de la lesión / tumour, la forma 

clínica y la expresión alterada de citoquinas. 

La identificación y la descripción inicial de los N-glicanos liberados de las glicoproteínas 

salivales resultaron en una lista compuesta de 90 composiciones de monosacáridos. El perfil 

salival abundante de N-glucómico reveló la prevalencia de oligosacáridos neutros compuestos 

por estructuras complejas, híbridas y con un alto contenido de manosa. Los perfiles glicanos 

de abundancia relativa y representados por el gráfico del componente principales 

demostraron la segregación de los casos control con las patologías (LVP, estadios iniciales y 

avanzados de COCE). El análisis estadístico de los compuestos anotados reveló ocho N-

glicanos que exhibían una abundancia relativamente significativa entre los grupos de COCE, 

LVP y controles. Tres de ellos demostraron una relativa disminución en la saliva de los 

pacientes con COCE en comparación con LVP y controles. Cinco casos representativos 

exhibieron una mayor abundancia relativa tanto en la saliva de los pacientes en los estadios 

iniciales, como en los estadios avanzados de COCE comparados con LVP y/o individuos sin 

lesiones orales (controles). Entre las estructuras de monosacáridos expresadas 

diferencialmente se observaron  bi- y tri-antenarios N-glicanos con diversos grados de 

fucosilación y sialilación. 

Un total de 1053 proteínas identificaron en las muestras salivales de COCE habiéndose 

incluido en la biblioteca de proteínas espectrales. De estas 1053 proteínas, 691 se 

identificaron con dos o más péptidos y una valor de confianza del 95% según la secuencia de 

lo péptidos detectados. Las alteraciones de los perfiles proteicos se estimaron mediante un 

análisis SWATH utilizado para la cuantificación de la abundancia relativa de proteínas 

individuales en las muestras de saliva de pacientes con COCE, LVP y personas sanas. El análisis 

de componentes principales y discriminante evaluó la capacidad de los perfiles proteicos para 

agruparse según el grupo de pertenencia. Este método analítico multivariante mostró la 

aglomeración de  

especímenes relacionados, dentro de los grupos definidos.  El agrupamiento observado de las 

muestras de controles, LVP, estadios iniciales y avanzados de COCE indica una diferenciación 

y variabilidad entre los perfiles proteicos de los grupos investigados. Los datos que 



 

273 
 

representan la abundancia relativa de las proteínas se han obtenido por una transformación 

logarítmica y la interpretación de las muestras se ha hecho mediante Heatmaps. Tanto las 

muestras como las proteínas se representaron ordenados según el resultado de la 

clasificación jerárquica. Se realizó un análisis de regresión logística binomial para reducir el 

número de variables predictivas (proteínas) para delinear aquellas con un mayor potencial 

para discriminar entre los grupos. Para reducir el número de proteínas (variables predictivas) 

eliminando del modelo aquellas que no eran importantes, la penalización Lasso actúo como 

un método de selección de variables a través de la regresión logística.  Este modelo se aplicó 

para el examen de grupos de dos por dos. El análisis destacó 49 proteínas con expresiones 

alteradas, clasificando las muestras según su grupo de pertenencia.  La mayoría de estas 

proteínas diferenciales demostraron la capacidad de ordenar claramente las muestras así 

como el hecho de que fueran capaces de tener un valor discriminativo entre los grupos 

investigados. La significación estadística de la abundancia relativa de proteínas alteradas se 

validó por la prueba t-test de student con los valores p ajustados por FDR a partir de controles 

frente a pacientes con COCE en etapas iniciales y avanzadas. Para obtener más información 

sobre las modulaciones relacionadas con cáncer oral, se llevó a cabo una búsqueda exhaustiva 

de la literatura para comprobar cuál de las proteínas identificadas con expresión alterada se 

habían asociado con la oncogénesis. El resumen indicó que la mayoría de los marcadores que 

exhibieron expresiones diferenciales en el estudio actual ya estaban relacionados con el 

cáncer, incluido el COCE. También, se identificaron 23 proteínas presentes en la saliva de 

estos cánceres. Unas proteínas, que exhibieron una abundancia relativamente y 

significativamente alterada en el COCE según nuestros resultados y coincidiendo con los 

hallazgos de otros autores. Incluyen complement C3, alpha-1-antitrypsin (SERPINA1), 

cystatin-S (CST4), hemopexin (HPX), apolipoprotein AI (APOA1), plasminogen (PLG), protein 

S100-A7 (S100A7), profilin-1 (PFN1), etc. Nuestro estudio ha sido uno de los pocos que ha 

descrito perfiles salivales proteicos de pacientes con lesiones potencialmente malignas, como 

la leucoplasia oral y los ha comparado con aquellos pacientes con cáncer. Nuestra 

investigación se ha centrado especialmente en la LVP debido a su alto riesgo de 

transformación maligna. Los resultados destacaron varias proteínas expresadas 

diferencialmente que podrían discriminar entre las patologías de LVP y COCE. Algunos de ellos 

han sido descritos previamente en estudios relacionados con cáncer oral y lesiones asociadas. 

Endoplasmic reticulum chaperone BiP (HSPA5) y histone H2A type 2-A (HIST2H2AA) forman 
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parte de un panel de proteínas que se señaló su capacidad de ser capaces de detectar COCE 

y monitorizar lesiones con predisposición a la transformación maligna en el programa 

taiwanés de detección de cáncer en la cavidad oral.  Los modelos predictivos para la 

sensibilidad y la sensibilidad de los biomarcadores identificados como candidatos se 

estimaron mediante curvas ROC y demostraron valores de AUC mayores de 0.7. Para resaltar 

los mecanismos moleculares potencialmente implicados en la alteración del microambiente 

de COCE, las proteínas expresadas diferencialmente se sometieron a exploración con la 

herramienta de anotación funcional STRING. El análisis de enriquecimiento mostró que el 

rango más alto de los procesos biológicos que involucran proteínas con expresión alterada en 

los grupos de COCE estaban relacionados con mecanismos reguladores activos que implican 

las respuestas inmunes e inflamatorias (APOA1, haptoglobin (HP), transthyretin (TTR), alpha-

acid glycoprotein 1 (ORM1), catalasa (CAT), etc.). Además, la asociación más alta que 

encontramos en relación con la función molecular fue la inhibición de la actividad enzimática 

y la actividad de la proteína asociada al receptor (señalización) en las que los inhibidores de 

proteasa moleculares de la familia de proteínas serpins, cathepsin D (CTSD), proteína AMBP 

y CST4 se hallaron altamente relacionados.   

Conclusiónes 

1) Los hallazgos de elementos inflamatorios que incluyen IL-6, IL-8, TNF-α, MCP-1, HCC-

1 y PF4 tanto en individuos sanos como en los pacientes con COCE pueden desempeñar un 

papel importante en la detección precoz del carcinoma oral de células escamosas. Se 

encontraron concentraciones salivales más altas de IL-6, IL-8, TNF-α, HCC-1 y PF4 en COCE 

que lo observado en las lesiones de HL y PVL. 

2) La correlación de HCC-1 e IL-6 con las características histológicas de las lesiones de 

leucoplasia oral indica la posibilidad de que sirvan como marcadores de displasia epitelial. El 

TNF-α y la IL-6 pueden indicar la progresión del COCE. En el caso de la IL-6 esta puede ser de 

ayuda en la detección de adenopatías cervicales. 

3) La IL-6 se sugiere como un potente biomarcador diagnóstico del COCE. 

4) Las estrategias analíticas combinadas revelaron la composición de N-glicanos en la 

saliva de individuos sanos. El perfil comparativo de N-glicanos reveló varias estructuras bi- y 

tri-antenarios fucosilados, expresados diferencialmente entre los diversos grupos estudiados, 
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proporcionando una plataforma razonable para investigar más a fondo la utilidad de la 

glicosilación salival para el diagnóstico de COCE. 

5) Los perfiles proteómicos generados por LC-MS incluyeron más de 600 proteínas 

cuantificadas en la saliva de personas sanas y con lesiones pre/cancerosas. El análisis 

comparativo dio como resultado una lista de proteínas expresadas diferencialmente, 

caracterizadas en COCE, que indicaban mecanismos significativamente alterados como el 

sistema inmunológico, la inhibición de actividades enzimáticas y la adhesión celular. Entre los 

marcadores candidatos identificados, algunos se habían descrito previamente en la saliva. 

Además, se han descrito varias proteínas nuevas asociadas al COCE. 

 


