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Abstract

The discovery of a neutral scalar boson compatible with the Standard Model Higgs boson in 2012
has opened the possibility of studying the Higgs potential. The current experimental uncertainties
do not preclude this particle from belonging to models beyond the Standard. The study of the Higgs
self-interactions is needed to clarify its nature.

The quartic Higgs self-coupling is out of reach from the experimental perspective. However, the
future upgrade of the LHC and other colliders will open the possibility of investigating the trilinear
Higgs self-coupling. A direct measurement of the trilinear Higgs coupling involves the Higgs-pair
production channels. The dominant channel is the QCD induced gluon fusion with top-quark loops. A
next-to-leading order calculation is mandatory to accomplish the demanded precision for a comparison
with the experimental data.

The Feynman diagrams contributing to the cross section virtual corrections contain four-point two-
loop Feynman integrals, which represent the nowadays bottleneck for many higher order corrections.
Since an analytical calculation is not a viable strategy yet, a numerical approach is needed. A
general numerical framework which includes both Standard Model and Two-Higgs-Doublets model is
presented in this thesis. The crucial part of the calculation is the isolation and cancellation of the
ultraviolet and infrared divergences coming from the (divergent) Feynman integrals. The ultraviolet
divergences will be isolated through the end-point subtraction, the infrared ones by a dedicated
subtraction term motivated by the heavy-quark limit calculation. The remaining part of the virtual
amplitude can be computed by considering the single-Higgs production amplitude and the Higgs decay
into a Z boson and a photon. The real corrections are calculated using public libraries for one-loop
integral calculations. The outcome of this study is the differential cross section depending on the
Higgs-pair invariant mass and its integral, namely the NLO Higgs-pair production via gluon fusion
total cross section.

The top-mass effects at next-to-leading order introduce a significant deviation of the differential
cross section from its heavy quark limit of more than 20% in the tail, which increases with the collider
energy as well. This deviation at the level of the differential cross section is reflected in a decreasing
of the total hadronic cross section by 15%. The uncertainties related with the choice of the top-mass
renormalization scale and scheme are proven to be sizable. Such uncertainties are of the same order
of the usual strong coupling renormalization and factorization scale ones, bringing a strong impact
on the estimation of the theoretical uncertainties.
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Resumen

La f́ısica de las part́ıculas elementales está bien descrita por el Modelo Estándar (SM, por sus siglas
en inglés.). La presencia de la interacción electrodébil proh́ıbe los términos cuadráticos con respecto a
los campos, i.e. términos de masa, en el Lagrangiano del SM. La presencia de tales términos de masa
requieren de la llamada ruptura espontánea de la simetŕıa, introduciendo un doblete electrodébil con
un valor esperado de vaćıo no nulo. Como recordatorio, la ruptura espontánea de la simetŕıa genera
un bosón escalar neutro, el renombrado bosón de Higgs [1–4]. Aunque fue predicho en los años 60 por
argumentos teóricos, en el 2012 los experimentos del Large Hadron Collider (LHC), ATLAS y CMS,
encontraron una señal perteneciente a la resonancia de una part́ıcula neutra de masa alrededor de
125 GeV [5, 6]; análisis posteriores han confirmado que su esṕın, propiedades de CP y acoplamiento
con las otras part́ıculas son compatibles con el bosón de Higgs del SM [7, 8]. Para asegurar que este
bosón neutro escalar es definitivamente la part́ıcula de Higgs del SM, sus auto-acoplamientos deben
medirse y compararse con las predicciones fenomenológicas del SM.

Restricciones provenientes de invariancia Lorentz e invariancia gauge, renormalizabilidad y argu-
mentos de unitariedad establecen que el sector escalar de un modelo de teoŕıa cuántica de campos
(QFT) debe tener como máximo auto-interacciones de tipo triple y cuádruple en su contenido de
part́ıculas escalares. Estos términos constituyen el potencial de Higgs, y su presencia permite la rup-
tura espontánea de la simetŕıa. Las presentes incertidumbres experimentales son insuficientes para
establecer ĺımites estrictos en los auto-acoplamientos del Higgs; la posibilidad de que el bosón de-
tectado pertenezca a un sector escalar extendido de un modelo más general no se puede descartar.
Muchos modelos más allá del Modelo Estándar (BSM, por sus siglas en inglés.) predicen sectores
escalares más complejos, con muchos bosones de Higgs, y nada evita que la señal del LHC se refiera a
la detección de un bosón de Higgs perteneciente a un modelo BSM [9–11]. El acoplamiento cuádruple
del Higgs todav́ıa está fuera de alcance a nivel experimental [12–16]; el auto-acoplamiento triple del
Higgs será accesible en el futuro próximo, gracias a la actualización de alta luminosidad del LHC y
otros futuros colisionadores [17–28]. Una manera de investigar el potencial de Higgs es considerando
los observables directos provenientes de canales de producción de pares de bosones de Higgs. Sin
embargo, la determinación experimental de tales procesos es complicada, debido a que los canales
de producción de pares de Higgs tienen una sección eficaz muy pequeña y un vasto fondo de QCD
[23, 28–31]. Este hecho señala la necesidad de predicciones teóricas precisas de la sección eficaz de
producción de pares de Higgs, para la cual se requieren términos de orden superior de la expansión
en teoŕıa de perturbaciones con respecto al acoplamiento fuerte.

El proceso dominante implicado en la producción de pares de Higgs es la fusión de gluones en
QCD [30]. Dado que ningún mecanismo produce una interacción directa gluón-Higgs, la amplitud
de Feynman de este proceso ya contiene contribuciones a un lazo (loop en Inglés) en el término de
orden cero (Leading Order, LO). Además, tiene una fuerte supresión del espacio fásico y electrodébil
en comparación con el canal de producción de un Higgs. Por lo tanto, para cumplir con la precisión
teórica exigida, la sección eficaz total para este proceso requiere un cálculo a primer orden en teoŕıa
de perturbaciones (Next-to-Leading Order, NLO), por lo que es necesario tener en cuenta diagramas
de Feynman de dos loops.

Dentro del SM, las contribuciones con loops del quark cima (top en Inglés) son responsables de
más del 99% de la sección eficaz total debido al acoplamiento de Yukawa, que es proporcional a la
masa del top. Otros modelos con un sector escalar extendido, como el Two-Higgs-Doublet Model
(2HDM), puede tener contribuciones no despreciables del quark belleza (bottom en Inglés), ya que
el espacio de parámetros de tales modelos permite un aumento del impacto de los acoplamientos de
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Yukawa [10, 23]. Este último escenario será considerado en proyectos futuros.
El cálculo de la sección eficaz total de producción de pares de Higgs v́ıa fusión de gluones más allá

del LO es muy desafiante: el cálculo a NLO en el SM implica integrales de Feynman de cuatro-puntos
con dos loops, que contribuyen a las correcciones virtuales, e integrales de Feynman de cinco-puntos a
un loop, que son la base de las correcciones reales. Además de las invariantes cinemáticas del proceso,
dos escalas de masa deben tenerse en cuenta, a saber, la masa del quark top y la masa del bosón de
Higgs. Mientras que para las contribuciones de un loop existen técnicas de cálculo consolidadas, con
un buen grado de automatización, para los diagramas de Feynman de dos loops, involucradas en este
proceso, aún no se ha establecido dicho estándar.

A lo largo de los últimos 25 años, se han realizado grandes esfuerzos para estudiar las correcciones
de orden superior a la sección eficaz diferencial de este proceso en regiones cinemáticas espećıficas
[24, 32–46]. Para enerǵıas bajas, el ĺımite de top pesado (heavy-top limit, HTL) ofrece una buena
aproximación y una importante simplificación de la amplitud en ordenes superiores, ya que cada orden
contiene un loop menos. Esta aproximación es conocida hasta tercer orden en teoŕıa de perturbaciones
(N3LO) y proporciona aproximadamente un aumento del 120% de la sección eficaz diferencial a LO. Se
han introducido refinamientos masivos hasta el segundo orden en teoŕıa de perturbaciones (Next-to-
Next-to Leading Order, NNLO) en las correcciones reales, lo que conduce a la llamada ”aproximación
de teoŕıa completa” (Full-theory approximation), como términos de orden superior en la expansión de
masa del quark top. Los efectos de masa del top tienen un impacto del −20% con respecto al HTL.
Otras regiones que han sido investigadas son los umbrales de producción tt̄, que contienen la mayor
parte de la sección eficaz, y el ĺımite de alta enerǵıa, para el cual resultados anaĺıticos recientes han
sido producidos. A NLO, todos los análisis coinciden en un efecto de masa del 20% con respecto al
HTL.

Una predicción completa de la sección eficaz de producción de pares de Higgs a NLO QCD v́ıa
fusión de gluones es necesaria para obtener los efectos debidos a la masa del top que ocurren a primer
orden en teoŕıa de perturbaciones. Se ha realizado un primer cálculo [47] aplicando identidades de
integración-por-partes [48, 49] a la amplitud, logrando su desarrollo en integrales magistrales (master
integrals). La integración de las integrales magistrales se ha realizado numéricamente, explotando la
descomposición sectorial [50] y la deformación de contorno para realizar la integración en la región
f́ısica. Para aplicar con éxito el método de reducción de la amplitud, las masas del top y del Higgs
teńıan que ser ajustadas respectivamente a mt = 173 GeV y mH = 125 GeV desde el inicio del cálculo.
Este cálculo representa la primera evaluación de la sección eficaz a NLO QCD que incluye todos los
efectos de la masa del top.

El objetivo de esta tesis es presentar un cálculo alternativo de la sección eficaz mediante la pro-
ducción de pares de Higgs v́ıa fusión de gluones a NLO en un marco adecuado tanto para el SM
y el 2HDM. En particular, el Caṕıtulo 1 está dedicado a definir el contexto teórico sobre los que
se construye esta tesis, presentando los modelos en consideración, los fundamentos de los resultados
fenomenológicos con respecto al bosón de Higgs, el marco general utilizado para calcular una sección
eficaz que involucra contribuciones de QCD, y su aplicación en el cálculo de la producción de pares de
Higgs v́ıa fusión de gluones. Se considerará un estado final con dos bosones de Higgs con diferentes
masas. La novedad que introduce la estrategia aqúı presentada es el tratamiento de las masas como
parámetros libres para la integración numérica. Esta caracteŕıstica permite el estudio de las incer-
tidumbres relacionadas con la elección del esquema de renormalización y escala de la masa del quark
top.

Metodologia

La teoŕıa de la perturbación en QCD representa el marco ideal para calcular la sección eficaz de
la producción de pares de Higgs a través de la fusión de gluones. En esta tesis, consideraremos la
producción de dos bosones de Higgs escalares neutros, pp→ H1H2.

La sección eficaz total se puede escribir como una serie perturbativa con respecto a la constante
de acoplamiento fuerte, proporcionando la siguiente expresión

σ(pp→ gg → H1H2) = σLO + ∆σNLO + · · ·+ ∆σNnLO +O
(
αn+3
s

)
. (1)



Resumen ix

Los teoremas de factorización de QCD [51] establecen la condición bajo la cual los hadrones de alta
enerǵıa pueden describirse como estados ligados de sus constituyentes, quark y gluones, que llevan
una fracción de su momento total. Por lo tanto, en las colisiones protón-protón, sus constituyentes
interactúan. Nos interesa el caso en el que un gluón de momento p1 = x1P1 interactúa con un gluón
que transporta momento p2 = x2P2, con Pi los momentos de los protones en colision. Esto representa
una interacción de corta distancia que puede estudiarse de manera pertubativa y es independiente
del hadrón externo; interacciones de corta distancia factorizan de la de larga distancia que están
codificadas en las funciones de distribución de partones (parton distribution functions, PDF) [52].
Estos objetos tienen un carácter no perturbativo y tienen en cuenta la estructura de los hadrones.
Las PDF se interpretan como la probabilidad de que un partón dentro de un protón lleve una cierta
fracción del impulso total.

Partiendo de la sección eficaz a LO, los teoremas de factorización establecen que

σLO =

∫ 1

0

dx1dx2fg(x1, µF )fg(x2, µF )σ̂LO(g(p1)g(p2)→ H1H2), (2)

donde fg(xi, µF ) son las PDF de los gluones, xi es la fracción del impulso del protón i, µF es la
escala de factorización y σ̂ es la sección eficaz partónica; µF es mucho mayor que la escala a la que
se aplican los teoremas de factorización.

Las PDF se determinan mediante ajustes experimentales de datos obtenidos de procesos de dis-
persión inelástica profunda. La parte perturbativa es la sección eficaz partónica σ̂. El enfoque
perturbativo de QCD lo relaciona con el cuadrado de la amplitud de dispersión integrada sobre el
espacio fásico en un orden fijo:

σ̂LO(g(p1)g(p2)→ H1H2) =

∫
dPS2|MLO|

2
, (3)

donde dPS2 es el elemento de espacio fásico yMLO es la amplitud de dispersión. La ĺınea por encima
de la amplitud al cuadrado representa el promedio de polarización. La amplitud de dispersión, es
decir, la suma de los diagramas de Feynman [53], se puede construir a partir del conocimiento del
Lagrangiano, que introduce una dependencia de la teoŕıa. Dado que tanto en 2HDM como en SM no
hay vértices de interacción entre Higgs y gluones, la amplitud de gg → H1H2 ya está inducida por
loop al LO. La parte dominante de la amplitud debido a las interacciónes Yukawa, proporcional a las
masas de los quarks, viene dada por el loop de top-quarks. Esto nos lleva a considerar solo los loops
de quark top.

Al NLO, se requiere el cálculo de amplitudes de dos loops; además, también deben tenerse en
cuenta los diagramas de un loop con un partón radiante en el estado final. Estos últimos pertenecen
a tres nuevos canales QCD con diferentes estados iniciales: los estados iniciales quark-antiquark qq̄,
quark-gluon qg y gluón-gluón gg. La sección eficaz partónica a NLO puede escribirse como

∆σ̂NLO = ∆σ̂virt + ∆σ̂qq̄ + ∆σ̂qg + ∆σ̂gg

∆σ̂virt =

∫
dPS2 2Re

[
M∗LOMvirt

]
,

∆σ̂ij =

∫
dPS3 |Mij |

2
,

(4)

dondeMvirt es la amplitud virtual que contiene los diagramas de dos loops,Mij son las contribuciones
del estado inicial ij, llamado correcciones reales, y dPS3 es el elemento de espacio fásico de tres
part́ıculas.

Amplitud

La sección eficaz al LO representa el primer paso de este cálculo. Aunque no es el tema principal de
esta tesis, es esencial considerar los elementos de la matriz al LO no solo para establecer el marco, sino
también porque la contribución de NLO se define como la interferencia entre los factores de forma de
un loop y dos loops; además, la amplitud al LO participará en la renormalización de la amplitud al
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NLO y en el esquema de sustracción de las divergencias IR. Es un cálculo muy antiguo [54], pero no
obstante es instructivo y se presentará extensamente en el Caṕıtulo 2, junto con su HTL.

Las contribuciones de la sección eficaz al NLO son de dos tipos: contribuciones virtuales y reales.
La amplitud virtual está formada por diagramas de Feynman de dos loops de tres categoŕıas: diagra-
mas caja, diagramas reducibles de una part́ıcula y diagramas triangulo. Los 47 diagramas de cajas
se agrupan en seis topoloǵıas: la topoloǵıa 1 consiste en correcciones de autoenerǵıa de top-quarks a
las cajas del LO; las topoloǵıas 2 y 3 son las correcciones de vértice a las cajas al LO, que contienen
correcciones abelianas y no abelianas; la topoloǵıa 4 y 5 son respectivamente los diagramas doble caja
planos y no planos; la topoloǵıa 6 contiene los diagramas caja de dos loops con un intercambio de
un gluón virtual en el estado inicial, tanto planos como no planos. Los diagramas reducibles de una
part́ıcula se pueden construir a partir de la producción de Higgs en QCD via fusión de gluones donde
un gluón externo no está en su capa másica (off-shell). La expresión anaĺıtica se puede encontrar en
el Caṕıtulo 2. Los diagramas triangulo son los que contienen el acoplamiento triple de Higgs: son
los diagramas que representan la señal de detección de un estado final de un par de Higgs producido
por un decaimiento de un boson de Higgs, mientras que las otras amplitudes virtuales representan
un fondo irreducible. Los 24 diagramas triángulo se pueden agrupar de la misma manera que se ha
mostrado para los diagramas caja: 6 correcciones de autoenerǵıas del propagador de top-quarks a los
diagramas triángulo al LO; 10 correcciones de vértice a los diagramas triángulo al LO, tanto abelianos
como no abelianos; 4 diagramas triángulo no planos y 4 contribuciones con un intercambio de un gluón
virtual en el estado inicial. Es importante notar que el número de diagramas de triángulos del 2HDM
se duplica con respecto al SM, ya que el Higgs off-shell puede ser ligero (H1) o pesado (H2).

Las contribuciones reales están formadas por 43 diagramas de un loop donde se emite un partón
adicional en el estado final. Hay tres canales que contribuyen a la sección eficaz real: qq̄ → H1H2g,
qg → H1H2q y gg → H1H2g. La mayoŕıa de los diagramas de amplitud real se pueden construir
a partir de la amplitud al LO donde un gluón externo se considera off-shell. Esta caracteŕıstica es
relevante en la integración sobre el espacio fásico, donde el subproceso 2 → 2 se puede integrar por
separado de todo el proceso expĺıcitamente. El último canal contiene contribuciones provenientes de
diagramas pentágono.

Singularidades

Al NLO, aparecen divergencias ultravioleta (UV) e infrarroja (IR). Se necesita un esquema de reg-
ularización para aislar las divergencias UV. En este cálculo se utilizará regularización dimensional
[55–57]. La idea es tratar la amplitud como una función anaĺıtica de la dimensión espacio-tiempo
d = 4− 2ε: ∫

M

d4k

(2π)4
→ (µ2)

4−d
2

∫
M

ddk

(2π)d
, (5)

donde µ es la escala de ’t Hooft y tiene la función de preservar la dimensionalidad de masa de la
amplitud. El procedimiento de regularización hace que las divergencias UV e IR sean polos en la
expansión anaĺıtica ε alrededor de ε = 0 (es decir, el ĺımite de 4 dimensiones). Al NLO, la estructura
anaĺıtica manifiesta polos de segundo orden.

El procedimiento de cancelar las divergencias UV se llama renormalización. Al interpretar los
campos, el acoplamiento y los parámetros del Lagrangiano como cantidades desnudas, desarrollan
divergencias en órdenes superiores. Para obtener predicciones f́ısicamente significativas, deben expre-
sarse en términos de cantidades f́ısicas (es decir, las renormalizadas). Sus términos de orden superior
que entran en la expansión perturbativa son los contra-términos. La elección de los contra-términos
fija el esquema y la escala de renormalización. La única restricción es que los contra-terminos tienen
que cancelar los polos UV provenientes de la amplitud a NLO. El esquema de renormalización influye
en la parte finita de la amplitud, lo que introduce una dependencia en el esquema de renormal-
ización orden por orden en la amplitud. Sin embargo, esta dependencia desaparece por completo si
se considera toda la serie de perturbaciones. Se pueden encontrar más detalles sobre el esquema de
renormalización espećıfico que hemos elegido en el Caṕıtulo 3.

Las divergencias IR se tratan de forma diferente. El teorema de Kinoshita-Lee-Nauenberg (KLN)
[58, 59] garantiza la ausencia de divergencias IR para un observable suficientemente inclusivo. La in-
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clusividad necesaria para la producción del par de Higgs indica que además de la amplitud virtual, que
tiene el mismo estado final, se deben considerar contribuciones adicionales: estas son las correcciones
reales. Dado que desarrollan divergencias suaves y colineales, se pueden combinar con la contribución
virtual para obtener un observable libre de divergencias IR.

Dado que el cálculo se realizará numéricamente, la cancelación de las divergencias IR es más
complicada, ya que se produce entre términos que se integran sobre diferentes estados finales: esto
podŕıa introducir grandes inestabilidades numéricas. Hay diferentes formas de superar este problema,
representadas por diferentes técnicas de sustracción [60–65]. Estas se basan en la introducción de una
sección eficaz diferencial auxiliar dσA con la misma estructura de polos IR del proceso en consideración.
Este término se sumará y quitará a nivel de la sección eficaz diferencial de la siguiente manera:

∆σ̂NLO =

∫
dPS2

[
|2M∗LOMvirt|+

∫
dPS1dσA

]
+

∫
dPS3

[
|Mqq̄|2 + |Mqg|2 + |Mgg|2 − dσA

]
. (6)

Cada integral separada ahora es finita y la integración numérica será estable. Para este proceso en
particular, el término auxiliar se ha construido a partir del conocimiento del comportamiento del HTL
del proceso. Se presentarán más detalles en el Caṕıtulo 3.

La última fuente de divergencias proviene de las singularidades colineales del estado inicial, para
las cuales el teorema de KLN no es válido, ya que no se suman los estados iniciales. Pueden ser
absorbidas por una renormalización de las PDF, lo que significa que el comportamiento de la emisión
colineal de un parton por el estado inicial está relacionado con las PDF de parton no perturbativas y
se ha eliminado de la dispersión dura.

Aplicando el método

Dado que no existe una estrategia sistemática para los diagramas de dos loops, se presentará un
método de cálculo para dicha amplitud. No se utilizará el método de reducción tensorial durante el
cálculo. Para cada uno de los 47 diagramas caja pertenecientes a la amplitud virtual se realizará una
proyección sobre los factores de forma y se aplicará una parametrización de Feynman basada en la
topoloǵıa, junto con un cambio dedicado de las variables de integración que hace posible la sustracción
de los puntos finales (end-point subtractions) de las divergencias UV.

Las divergencias infrarrojas (IR) se restan a nivel integrando explotando la universalidad de la
estructura IR en relación con la amplitud LO, y siguiendo el espritu del método de substracción de
Catani-Seymour [60, 61]. Las posibles inestabilidades numéricas debidas a la presencia del umbral de
producción tt̄ se evitan dando a la masa del top quark una pequeña parte imaginaria.

La suma de los contra-términos de renormalización a la amplitud virtual produce cantidades
libres de divergencias UV. El esquema MS con cinco sabores activos y el quark top en su capa másica
desacoplado del running se utilizará para renormalizar el acoplamiento fuerte. Finalmente, después de
la renormalización UV y la end-point subtraction de las divergencias IR, los factores de forma de los
diagramas caja estarán listos para integrarse sobre los parámetros de Feynman y el espacio fásico de
dos part́ıculas. El procedimiento de renormalización y la introducción de correcciones reales aseguran
la ausencia de divergencias UV y IR de la sección eficaz diferencial y total. Los diagramas reducibles
de una única part́ıcula (one-particle-reducible diagrams) se obtendrán combinando dos decaimientos
del Higgs en amplitudes a LO de gluones on- y off-shell, empleadas como vértices efectivos. Por
último, las contribuciones de los triángulos a NLO se construirán a partir de los factores de forma de
producción de un único bosón de Higgs.

Las correcciones reales se obtendrán mediante algoritmos estándar, involucrando la descomposición
tensorial de la amplitud real en la base tensorial de Passarino-Veltman, y tomando su promedio
cuadrático anaĺıtico. Cada paso anaĺıtico se implementa en un código de Mathematica que pro-
porciona la amplitud al cuadrado para cada canal de correcciones reales. A las divergencias IR se le
restará el mismo término utilizado para restar las singularidades IR de las contribuciones virtuales.
La integración sobre el espacio fásico de tres part́ıculas proporcionará la sección eficaz diferencial de
las correcciones reales.
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Integración numérica

La configuración numérica involucra el algoritmo Vegas para la integración de Monte Carlo [66],
implementado en un código Fortran construido con un enfoque de múltiples semillas: reduce
drásticamente el error de integración a través de la importancia de muestreo, optimizando el muestreo
en la región de integración que más aporta a la integral. Inestabilidades numéricas surgen para
enerǵıas que se encuentran por encima de los umbrales virtuales, que pueden ser los umbrales de
producción de tt̄ o gg. Además, se aplicará integración por partes para disminuir la importancia de
los denominadores, con el fin de mejorar la estabilidad numérica de la integración.

La parte imaginaria εt introducida en la masa del top-quark como m2
t → m2

t (1− iεt) juega el papel
de una anchura de desintegración finita del top-quark. De acuerdo con la literatura, consideramos el
quark top en la aproximación de una anchura de desintegración estrecha, lo que nos induce a tomar
el ĺımite εt → 0. Dado que usamos un enfoque numérico, el ”ĺımite” no es una opción viable; además,
la integración numérica para εt < 10−2 se vuelve muy inestable.

Se necesitará un método para restaurar el ĺımite de anchura de desintegración estrecha del top-
quark (εt → 0). Este se ha extráıdo de la combinación de evaluaciones lineales de la sección eficaz
diferencial para diferentes valores del regulador εt, lo que constituye el núcleo del método de extrapo-
lación de Richardson, cuyo error de extrapolación es inversamente proporcional al número de nodos,
es decir, diferentes valores de la (pequeña) amplitud εt. El resultado de este marco numérico es la
sección eficaz diferencial de producción de un par de Higgs en el ĺımite de anchura de desintegración
estrecha del top-quark. La integral de la sección eficaz se encontrará utilizando el método de Romberg,
que combina la regla trapezoidal y la extrapolación de Richardson para disminuir las incertidumbres
numéricas.

Resultados y Perspectivas

Los resultados de este procedimiento aplicado a la producción de pares de Higgs a NLO en el SM
v́ıa fusión de gluones [67–69] se discutirá en detalle en esta tesis, presentando las distribuciones de
la sección eficaz diferencial y total para diferentes enerǵıas de centro de masa. Se demostrará que
los efectos debidos a considerar una masa del quark top finitos en la sección eficaz total a NLO
son del order del 15% sobre el cálculo a NLO HTL. Se pueden ver efectos más notables a nivel de la
distribución diferencial, donde la masa del top finita introduce una desviación en su cola hasta del 40%.
Los resultados para los valores centrales en diferentes enerǵıas del centro de masas están en completo
acuerdo con la literatura, aśı como la reducción de las escalas de renormalización y factorización.
La sección eficaz total en función del acoplamiento tiple del bosón de Higgs muestra una desviación
significativa del HTL debido a efectos de masa del top, lo que lleva a un cambio notable de su mı́nimo.

El marco construido para este cálculo permite la elección de diferentes esquemas y escalas de
renormalización de la masa del top, adecuados para la primera estimación de las incertidumbres que
introducen. Se mostrará cómo la masa del top en el esquema de renormalización MS a diferentes
escalas resalta la importancia de estas incertidumbres: ascienden al −15% a nivel de sección eficaz
total y al −35% a nivel de sección eficaz diferencial. El comportamiento de la sección eficaz diferencial
a diferentes escalas de renormalización mostrará que una escala de renormalización dinámica es la
elección más natural para grandes masas invariantes de pares de Higgs. La cuasi-independencia
de las incertidumbres relativas de la masa del top del esquema de renormalización y de factorización
conduce a una suma lineal de las incertidumbres, ya que se definirán como la envoltura de las múltiples
elecciones. Se discutirán la combinación de las incertidumbres debido a la masa del top a NLO y las
incertidumbres de renormalización y factorización a NNLO, y con un argumento de factorización de
la sección eficaz se demostrarà que el tratamiento más conservador de las incertidumbres es su suma
lineal.

Los detalles de los resultados presentados en esta sección se discutirán ampliamente en el Caṕıtulo 5,
con especial atención a las incertidumbres de la masa del top, su impacto en la sección eficaz diferen-
cial a NLO y la sección eficaz integrada y cómo combinarlas junto a las predicciones más modernas.
El marco descrito en esta tesis ya se ha aplicado con éxito al 2HDM; algunos resultados con respecto a
la producción de pares de Higgs escalares neutros se muestran en el Caṕıtulo 4. Como se mencionará
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en el Caṕıtulo 6, otras aplicaciones futuras implican estados finales que contienen pseudo-escalares.
Además, la dependencia del ángulo β de los acoplamientos de Yukawa en el 2HDM puede conducir a
contribuciones no despreciables de los loops del quark bottom, para los cuales tratamientos adicionales
sobre los factores de forma se necesitan para aumentar la estabilidad numérica, como expandir la am-
plitud en términos de la masa del quark bottom y el metodo de integración por partes.
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Introduction

The physics of the elementary particles is well described by the Standard Model (SM). The presence
of the electroweak interaction prohibits quadratic terms with respect to the fields, i.e. mass terms,
into the SM Lagrangian. Introducing such mass terms requires the so-called spontaneous symmetry
breaking, which can be induced by a scalar field with non-vanishing vacuum expectation value. As a
reminder, the spontaneous symmetry breaking generates a neutral scalar boson, the Higgs boson [1–4].
Although it has been predicted in the ’60s by theoretical arguments, in 2012 the LHC experiments
ATLAS and CMS found a signal belonging to the resonance of a neutral particle of mass around
125 GeV [5, 6]; further analyses have confirmed that its spin, CP properties and coupling with the
other particles are compatible with a SM Higgs boson [7, 8]. In order to definitely attest that this
scalar neutral boson is the SM Higgs particle, its self-couplings have to be measured and compared
with the phenomenological predictions of the SM.

Constraints coming from the Lorentz and gauge invariance, UV completeness and unitarity argu-
ments set the scalar sector of a QFT model to have at most trilinear and quartic self-interactions with
its scalar particle content. These terms constitute the Higgs potential, and their presence allows the
spontaneous symmetry breaking. The present experimental uncertainties are insufficient to set strong
bounds on the Higgs self-couplings; the possibility of the detected boson to belong to an extended
scalar sector of a more general model rather than the SM can not be discarded. Many Beyond the
Standard Models (BSM) predict more complex scalar sectors with many Higgs bosons, and nothing
prevents the eventuality that the LHC signal was referred to the detection of one particular Higgs
boson of a BSM [9–11]. The quartic Higgs coupling is still out of reach at experimental level [12–16];
the trilinear Higgs self-coupling will be accessible in the next future, thanks to the high luminosity
upgrade of the LHC or other future colliders [17–28]. An investigation of the Higgs potential can be
done by considering direct observables coming from the Higgs-pair production channels. However, the
experimental determination of such processes is nonetheless complicated, because of the very small
cross section related with the Higgs-pair production channels and its vast QCD background [23, 28–
31]. This fact enlightens the importance of a precise theoretical prediction of the cross section of the
Higgs-pair production, for which higher order terms of the perturbative expansion with respect to the
strong coupling are demanded.

The dominant process involving a Higgs-pair production is the QCD induced gluon fusion [30].
Since no mechanism produces a direct gluon-Higgs interaction, the Feynman amplitude of this pro-
cess already contains one-loop contributions at its leading order (LO). In addition, it has a strong
electroweak and phase space suppression in comparison with the single-Higgs production channel.
Therefore, to fulfill the demanded theoretical precision, the total cross section for this process re-
quires a next-to-leading order (NLO) calculation, for which two-loop Feynman graphs have to be
taken into account.

Within the SM, the top-quark loops are responsible for more than 99% of the total cross section
caused by the presence of the Yukawa couplings, which is proportional to the top mass. Other
models with an extended scalar sector, like the Two-Higgs-Doublets Model (2HDM), might have non-
negligible contributions from the bottom quark, since the parameter space of such models permits
enhancements of the their Yukawa couplings [10, 23]. This latter case will be considered in future
projects.

The calculation of the Higgs-pair production via gluon fusion total cross section beyond the LO
is very challenging: at NLO in the SM it involves four-point two-loop Feynman integrals, entering
the virtual corrections, and five-point one-loop Feynman integrals, which are the building blocks of
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the real corrections. Besides the kinematic invariants of the process, two masses have to be taken
into account, namely the top-quark and the Higgs boson mass. While for the one-loop contributions,
there are well-grounded calculation techniques with a good degree of automation, for the two-loop
Feynman diagrams involved in this process such standard has not been established yet.

Along the past 25 years, great efforts have been made to study the higher order corrections to
the differential cross section of this process in specific kinematic regions [24, 32–46]. For low energies,
the heavy top limit offers a very good approximation and an important simplification of the higher
order amplitudes, since they will carry one less loop to each order. This approximation is known up
to the third perturbative order (N3LO) and provides a rough 120% increasing of the LO differential
cross section. Mass refinements have been introduced up to the second perturbative order (NNLO)
on the real corrections, leading to the so-called full-theory approximation, as higher order terms into
the top-quark mass expansion. The top-mass effects have an impact of the -20% with respect to the
sole heavy top limit. Other regions that have been investigated are the tt̄-production thresholds, that
contains the bulk of the total cross section, and the high-energy limit, for which recently analytical
results have been produced. At NLO, all the analysis agree on a 20% mass effect with respect to the
heavy top limit.

A complete NLO QCD Higgs-pair production via gluon fusion cross section is needed to obtain
the exact top-mass effects occurring at the first perturbative order. A first calculation [47] has been
carried out by applying integration-by-parts identities [48, 49] of the amplitude, achieving its master
integral decomposition. The integration of the master integrals has been done numerically, exploiting
the sector decomposition [50] and the contour deformation to perform the integration in the physical
region. In order to successfully apply the amplitude reduction method, the top and Higgs masses had
to be set respectively to mt = 173 GeV and mH = 125 GeV from the beginning of the calculation.
This calculation represents the first NLO cross section with full top-mass dependence.

The aim of this thesis is to present an alternative calculation of the NLO Higgs-pair production
via gluon fusion in a framework suitable for both the SM and the 2HDM. A final state with two
Higgs bosons with different masses will be considered. The novelty introduced by the strategy here
presented is the treatment of the masses as free parameters for the numerical integration. This feature
allows the study of the uncertainties related to the choice of the renormalization scheme and scale
of the top-quark mass. The procedure can be summarized as follows: every diagram will firstly be
projected into its form factors; on each integral contained in them, the Feynman parametrization will
be applied together with a dedicated change of the integration variables that makes the end-point
subtraction of the ultraviolet (UV) divergences possible; the infrared (IR) divergences are subtracted
at integrand level exploiting the universality of the IR structure in the ratio to the LO amplitude,
in the spirit of the Catani-Seymour subtraction method [60, 61]; the numerical instabilities due to
the tt̄-production threshold are avoided by giving to the top quark a small width; the finite part
of the form factors treated in this way can be safely integrated over the Feynman parameters and
the phase space. The renormalization procedure and the introduction of the real corrections ensure
the UV finiteness and the IR safety of the differential and total cross section. A method to restore
the narrow width of the top quark is needed. The Richardson extrapolation method offers a way to
combine results for different top-quark widths to extract the narrow width ”limit”. The outcome of
this framework is the Higgs-pair production differential cross section. The integrated cross section will
be found by using the Romberg’s method, which combines the trapezoidal rule and the Richardson
extrapolation in order to decrease its numerical uncertainties method.

Results for this procedure applied to the NLO SM Higgs-pair production via gluon-fusion [67–69]
will be discussed in detail in this thesis, presenting the differential cross section distributions and the
total cross section for different center-of-mass energies. There will be shown how the uncertainties
related to the renormalization and factorization scales together with the top-mass renormalization
scheme and scale uncertainties have a huge impact, leading to sizable relative errors. At last, it will
be discussed how a dynamical top-mass renormalization scale choice is needed to control the top-mass
effects at high energies. The possibility of choosing variable top-quark masses is nowadays possible
only with the method described in this thesis, and it will be discussed in details.

This thesis is structured as follows: Chapter 1 is devoted to define the theoretical background on
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which this work is built, presenting the models under consideration, the basics of the phenomenological
results regarding the Higgs boson, the general framework used for calculating a cross section involving
QCD contributions, and the state-of-the-art of the Higgs-pair production via gluon fusion; Chapter 2
and 3 will describe in detail the LO and NLO cross section calculation respectively in the common
framework suitable both for SM and 2HDM, with particular focus on the isolation of the UV and IR
divergences from the virtual correction, the renormalization of the UV divergences and the dedicated
subtraction terms for the IR divergences, and the calculation of the real contributions; Chapter 4 shows
the numerical setup employed to obtain the differential cross section distribution and the total cross
section, presenting the Monte Carlo integration algorithm to evaluate numerically the form factors,
the Richardson extrapolation method to extract the narrow width limit of the top-quark mass and
the integration of the differential distribution through the trapezoidal method combined with the
Richardson extrapolation; Chapter 5 will present the discussion of the results obtained by applying
the procedure shown in the previous Chapters, with particular focus on the top-mass uncertainties,
their impact on the NLO differential and integrated cross section and how to combine them together
with the state-of-the-art predictions; at last, Chapter 6 will recap all the core arguments discussed in
this thesis, present the conclusions and an outlook on the future perspective of this project.
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Chapter 1

Theoretical background

1.1 The Standard Model

The Standard Model (SM) represents the most successful model describing the particle interactions. It
has been built and tested along 60 years of data from collider experiments embedded into a quantum
field theory framework. The discovery of a scalar particle compatible with a Higgs boson [1–6]
represent the most recent success of the SM. It further provides a solid theoretical framework for a
plethora of phenomenological outcomes comparable with the experiment.

Theoretically speaking, it is a quantum field theory described by the Lorentz invariant Lagrangian
LSM symmetric with respect to the gauge group SU(3)C ⊗ SU(2)L ⊗ U(1)Y . The SU(3)C Lie
group is the representation of the strong interactions [70–77] between quarks mediated by the glu-
ons; the associated charge is called color charge. The SU(2)L ⊗ U(1)Y product represents the elec-
troweak interaction (EW) between leptons [78–80]; its associated conserved quantities are the weak
isospin I and the hypercharge Y . As will be described later on, the spontaneous symmetry breaking
SU(2)L ⊗ U(1)Y → U(1)EM will lead to the conservation of the electric charge Q = I3 +Y , known as
Gell-Mann-Nishijima formula [81, 82].

The Lagrangian LSM can be written as

LSM = LG + Lf , (1.1)

where

LG = −1

4

{C,L,Y }∑
b

Tr
[
Fµνb Fb,µν

]
, Lf =

∑
q

iψq /Dψq +
∑
l

iψl /Dψl,

[Dµ, Dν ] = −i
{C,L,Y }∑

b

gbT
a
b F

a,µν
b , Dµ = ∂µ − i

{C,L,Y }∑
b

gbT
a
b A

a
b,µ

ψq =

{
u c t
d s b

}
, ψl =

{
νe νµ ντ
e µ τ

}
.

(1.2)

The index b runs over the gauge group, a is the index of the adjoint representation, Aab,µ are the fields
that represent the boson which mediate the b interactions and gb are the coupling constants. For each
generator of the gauge group, a boson field has to be added.

The adjoint representation of the SM gauge group is characterized by

T aC =
λa

2
, [T aC , T

b
C ] = ifabcT cC , a = {1, . . . , 8}, Aa,µC = Ga,µ

T iL =
σi

2
, [T iL, T

j
L] = i

εijk

2
σk a = {1, 2, 3}, Ai,µL = W i,µ

TY = 1Y, AµY = Bµ

(1.3)

where σi are the Pauli matrices and λa are the Gell-Mann matrices. There are 8 gluons Ga,µ, and 4
electroweak bosons W i,µ and Bµ.

1
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Quarks Leptons

QL =

(
uL
dL

)
,

(
cL
sL

)
,

(
tL
bL

)
∈ 3⊗ 2⊗ 1

6
LL =

(
νe,L
eL

)
,

(
νµ,L
µL

)
,

(
ντ,L
τL

)
∈ 1⊗ 2⊗−1

2

uR, cR, tR ∈ 3⊗ 1⊗ 2

3
eR, νR, τR ∈ 1⊗ 1⊗−1

dR, sR, bR ∈ 3⊗ 1⊗−1

3

Table 1.1: Matter content of the SM with the relative representation in the SM gauge group. The
right-handed neutrinos are singlets w.r.t. the gauge transformation, hence they are not included
within the Standard Model. Each weak isospin doublet has quantum isospin numbers I = 1

2 and
I3 = ±1

2 .

The matter content is encoded into the spinors ψp (p = q, l). Each spinor has two chiral components
labeled left-handed and right-handed. Strong interactions are not sensitive to the chiral components,
while isospin interactions act only on the left-handed components: fermions are organized in left-
handed doublets and right-handed singlets under the EW gauge group. The fermions that form a
triplet under SU(3)C are the quarks.

The physical EW boson are obtained by combining the W i,µ and Bµ as follows:(
Aµ

Zµ

)
=

(
cos θW sin θW
− sin θW cos θW

)(
Bµ

W 3,µ

)
, W±,µ =

1√
2

(W 1,µ ∓ iW 2,µ). (1.4)

The field Aµ is the photon and the EW boson Zµ induces the neutral currents. The EW bosons W∓,µ

lead to charged currents. The fermions which interact only via EW interaction are the leptons. The
matter content that goes into the spinors ψp are depicted in Table 1.1.

Imposing the invariance under the SM gauge group requires all the fields in LSM to be massless,
since the EW gauge subgroup prohibits mass terms. Experimentally, it is known that the EW bosons
have a large mass and, of course, fermions are massive too. Therefore, a mechanism that introduces
a mass term into the SM Lagrangian is needed.

1.1.1 The Higgs mechanism

Scalars

Φ =

(
φ+

φ0

)
∈ 1⊗ 2⊗ 1

2 , 〈Φ〉 = 1√
2

(
0
v

)

Table 1.2: Scalar sector of the SM. This complex doublet has isospin I = 1
2 .

The mass terms allowed in a Lagrangian which satisfy the Lorentz invariance are quadratic in the
fields for which the mass is demanded. Unfortunately, the structure of a mass term violates the gauge
symmetry. The problem has been solved by the Higgs mechanism [1–4], based on the spontaneous
symmetry breaking.

The potential of a free complex scalar isospin doublet Φ which satisfies the renormalizability and
the unitarity is

VΦ = µ2Φ+Φ +
λ

2
|Φ+Φ|2, (1.5)

where µ2 < 0 and λ > 0. The field Φ has a non-vanishing vacuum expectation value (VEV):

〈Φ〉 =
1√
2

(
0
v

)
, v =

√
−2µ2

λ
≈ 246 GeV. (1.6)
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Notice that only a neutral scalar field can acquire a VEV because of the conservation of the electric
charge. This VEV spontaneously breaks the symmetry:

SU(2)L ⊗ U(1)Y → U(1)EM, (1.7)

that underlines the fact that electromagnetism is not broken.

Fixing the gauge of the field Φ to be the unitary gauge1:

Φ(x) =
1√
2

(
0

v +H(x)

)
, (1.8)

where H(x) is the physical Higgs field. The unitary gauge makes manifest the non-zero expectation
value of Φ.

Embedding the Lagrangian LΦ into the Standard Model implies the replacement of ∂µ → Dµ,
therefore:

LH = DµΦ+DµΦ− µ2Φ+Φ− λ

2
|Φ+Φ|2,

DµΦ+DµΦ ∼〈Φ〉
v2

8

[
g2
L(W 1,µ + iW 2,µ)(W 1

µ − iW 2
µ) + (gLW

3
µ − gYBµ)(gLW

3,µ − gYBµ)
]

= m2
WW

+,µW−µ +m2
ZZ

µZµ,

(1.9)

where gL =
√
g2
L + g2

Y cos θW , and

mW =
gLv

2
, mZ =

v

2

√
g2
L + g2

Y =
mW

cos θW
, mA = 0, mH =

√
−2µ2. (1.10)

The mass terms introduced by adding the scalar field Φ(x) does not break the EW gauge symmetry:
three of the four degrees of freedom of Φ(x) have been eaten by the weak bosons and thus they acquire
mass. Notice that the SM with spontaneous symmetry breaking is still gauge invariant, even though
it is not immediately manifest [55, 83].

The interaction of the particles with the ground state of the Higgs makes the particles acquire a
mass term. For the fermion, the Yukawa Lagrangian offers the simplest way to introduce such mass
term:

−LY = Y d
ij Qi,LΦdj,R + Y u

ijQi,LΦcuj,R + Y l
ijLi,LΦlj,R + h.c.

⇓
−LY ∼〈Φ〉 Y d

ij

v√
2
di,Ldj,R + Y u

ij

v√
2
ui,Luj,R + Y l

ij

v√
2
li,Llj,R + h.c. ,

(1.11)

where Φc is the charge conjugate of Φ, Qi,L and Li,L are the quark and lepton isospin doublet, the
Y k
ij are the Yukawa couplings and

mk
ij = Y k

ij

v√
2
, (1.12)

are the mass matrices. The diagonalization of these mass matrices induces the CKM matrix, for the
quark sector, [84, 85] and the PMNS [86, 87] matrix, for the lepton sector.

The Standard Model Lagrangian2 is the sum of the massless LG + Lf and the Higgs and Yukawa
Lagrangian

LSM = LG + Lf + LH + LY. (1.13)

The Feynman rules that this Lagrangian provides are depicted in Appendix I.

1It is based on the fact that a complex field φ(x) can be expressed into polar coordinates, obtaining two real fields r(x)
and Θ(x). A gauge transformation acts like a shift of Θ(x) → Θ′(x). Therefore, fixing the function Θ(x) is equivalent
to perform a gauge transformation. In general, gauge symmetry ensures that a doublet can be rotated with a SU(2)
transformation that sets the first component to 0 and the second to be real.

2The actual SM Langragian contains additional terms related to the gauge fixing and the ghost Lagrangian. We did
not discuss it in details since it is not the main focus of the discussion.
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1.2 Two-Higgs-Doublet Model

The study of the scalar sector of the SM can be made experimentally by measuring the parameter
ρ: for a model locally invariant under SU(2)L ⊗ U(1)Y with n multiplets with weak isospin I(i),
hypercharge Y(i) and VEV vi, the tree-level parameter ρ is

ρ =

∑n
i [I(i)(I(i) + 1)− Y 2

(i)]vi

2
∑n

i Y
2

(i)vi
. (1.14)

The experimental data [88] shows that ρ is compatible with 1, which is the case of the SM with
its single complex doublet. However, this constraint does not exclude other possibilities, i.e. higher
multiplets with zero VEVs or higher dimensional representations. The latter cases tend to introduce
over-complexities that are not the main focus of this thesis; we will consider the simplest extension
of the SM scalar sector that leads the introduction of additional singlets and doublets.

An extended SM scalar sector is motivated by its presence in many other models, like supersym-
metry [89] and the Peccei-Quinn model [90, 91], and it might explain the baryon asymmetry [92–94].
Further details can be found in the review of Ref. [10].

Scalars

Φ1 =

(
φ+

1

φ0
1

)
∈ 1⊗ 2⊗ 1

2 , 〈Φ1〉 = 1√
2

(
0
v1

)

Φ2 =

(
φ+

2

φ0
2

)
∈ 1⊗ 2⊗ 1

2 , 〈Φ2〉 = 1√
2

(
0
v2

)

Table 1.3: Scalar sector of the 2HDM. This complex doublet has isospin I = 1
2 .

The model we are going to introduce is the Two-Higgs-Doublet Model (2HDM) [95], which consists
in the extension of the scalar sector of the SM with one additional scalar doublet with a different
non-vanishing VEV. This model respects the experimental constraint ρ = 1 and represents one of the
most simple UV-complete model with an extended scalar sector.

The most general potential for the scalar content of the 2HDM that respects Lorentz invariance,
SM gauge symmetry, unitarity and renormalizability is

V2HDM = µ2
11Φ+

1 Φ1 − µ2
12[Φ+

1 Φ2 + Φ+
2 Φ1] + µ2

22Φ+
2 Φ2 +

λ1

2

(
Φ+

1 Φ1

)2
+
λ2

2

(
Φ+

2 Φ2

)2
+

+ λ3Φ+
1 Φ1Φ+

2 Φ2 + λ4Φ+
1 Φ2Φ+

2 Φ1 +
λ5

2

[(
Φ+

1 Φ2

)2
+
(
Φ+

2 Φ1

)2]
.

(1.15)

where the details of the two Higgs doublets are depicted in Table 1.3. Imposing hermeticity and
stability of the vacuums state, the following conditions can be imposed [96–99]:

λ1 > 0, λ2 > 0, λ3 > −
√
λ1λ2, λ3 + λ4 − |λ5| > −

√
λ1λ2

λ1, λ2, λ3 ∈ R,
(1.16)

and the non-zero VEVs of the scalar doublets

Φ1 =
1√
2

(
0
v1

)
, Φ2 =

1√
2

(
0
v2

)
, (1.17)

are constrained by v2
1 + v2

2 = v2. Additional constraints on the 2HDM parameters can be set, like the
unitarity constraints and experimental bounds [99–104].

Following the same steps presented for the SM case, it can be shown that after the spontaneous
symmetry breaking SU(2)L ⊗ U(1)Y → U(1)EM, 3 d.o.f. of the two doublets are eaten by the
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massive bosons. However, instead of a single Higgs boson, there are five scalar Higgs bosons after the
spontaneous symmetry breaking. Expressing the doublets in the unitary gauge:

Φj =

(
φ+
j

1√
2
(vj + ρj + iηj)

)
. (1.18)

The mass terms with this new set of variables are

V2HDM|mass = [µ2
12 − (λ4 + λ5)v1v2](φ−1 , φ

−
2 )Mφ

(
φ−1
φ−2

)
− (ρ1, ρ2)Mρ

(
ρ1

ρ2

)
+

[
µ2

12

v1v2
− 2λ5

]
(η1, η2)Mη

(
η1

η2

)

Mφ =

( v2
v1
−1

−1 v1
v2

)
, Mη =

(
v2

2 −v1v2

−v1v2 v2
1

)
, Mφ = v1v2Mη

Mρ =

(
µ2

12
v2
v1

+ λ1v
2
1 −µ2

12 + (λ3 + λ4 + λ5)v1v2

−µ2
12 + (λ3 + λ4 + λ5)v1v2 µ2

12
v1
v2

+ λ2v
2
2

)
.

(1.19)

The two mass matricesMφ andMη have a zero eigenvalue. The corresponding particle is the Goldstone
boson eaten by the charge EW bosons and the boson Z. Therefore, we are left with a charged boson
H+ (and its antiboson), a pseudoscalar A and two neutral scalar bosons H1 and H2.

The mass matrices can be diagonalized by means of two angles: α for the neutral scalar Higgs
bosons and β for the charged and pseudoscalar ones. The latter is related to the doublets VEVs by

tanβ =
v2

v1
. (1.20)

Assuming that there is no CP violation, both v1 and v2 can be assumed to be real [105]. Therefore,
the physical fields of the 2HDM scalar sector are

H± = φ±2 cosβ − φ±1 sinβ, m2
± =

(v2
1 + v2

2)

v1v2

[
µ2

12 − (λ4 + λ5)v1v2

]
,

A = η2 cosβ − η1 sinβ, m2
A =

(v2
1 + v2

2)

v1v2

[
µ2

12 − (λ3 + λ4 + λ5)v1v2

]
,

H1 = ρ2 cosα− ρ1 sinα, m2
H1

=
1

2

[
Tr [Mρ]−

√
Tr [Mρ]

2 − 4 detMρ

]
,

H2 = ρ2 cosα+ ρ1 sinα, m2
H2

=
1

2

[
Tr [Mρ] +

√
Tr [Mρ]

2 − 4 detMρ

]
.

(1.21)

The new Yukawa interactions have to be included into the 2HDM Lagrangian. The Yukawa terms
for the down-type quarks is

−LdY = Y 1
ij Qi,LΦ1dj,R + Y 2

ij Qi,LΦ2dj,R + h.c.

⇓

−LdY ∼〈Φ1〉,〈Φ2〉

(
Y 1
ij

v1√
2

+ Y 2
ij

v2√
2

)
di,Ldj,R + h.c.

(1.22)

The relevant Feynman rules used in thesis are depicted in Appendix I.
In general, the two Yukawa matrices cannot be diagonalized simultaneously: this fact leads to

tree-level flavour-changing neutral currents (FCNC), which have never been seen by the experi-
ments. These kind of currents can be avoided by imposing additional symmetries. Moreover, the
Paschos-Glashow-Weinberg (PGW) theorem [106, 107] grants that tree level FCNC cannot occur if
the fermions with same quantum numbers are coupled to the same Higgs doublet. To ensure the
absence of tree level FCNCs by means of the PGW theorem, there are many possibilities:
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Type I: All fermions coupled to Φ2 only;

Type II: Down-type quark and leptons coupled to Φ1, up-type quark coupled to Φ2;

Type X: Leptons coupled to Φ1, quarks coupled to Φ2;

Type Y: Down-type quark coupled to Φ1, up-type quark and leptons coupled to Φ2.

Another possibility is that the Yukawa couplings involving Φ1 and Φ2 are proportional in the flavour
space [108–110].

Type I can be induced by imposing a Z2 symmetry on Φ1, Type II by imposing an additional
Z2-symmetry on dj,R. Type I has been studied in the context of dark matter [111–117], in the
particular case of the inert Φ2 doublet with v2 = 0. In addition, the latter model with λ5 → 0 is
Peccei-Quinn symmetric. On the other hand, Type II is particularly relevant since it can be treated
as the effective field theory at low-energy for the Minimal Supersymmetric Standard Model with all
heavy supersymmetric partners integrated out [9, 118–121].

The 2HDM has a variety of interaction vertices and four additional particles, leading to a rich
phenomenology involving CP conserving and violating sources [10]. This model has been employed in
the study of various BSM investigations, like composite and little Higgs models [122–124], Naturalness
[125] and the origin of the neutrino masses [112].

The 125 GeV resonance discovered in 2012 compatible with a Higgs boson candidate has set
another strong constraint. The possibility that it was a signal of the pseudoscalar boson A has been
studied in Ref. [126], but it was discarded by the data analysis [7, 8], as well as the chance that the
detection was related with a neutral heavy scalar [127]. Therefore, the most reasonable scenario is
that the signal detected at the LHC comes from either a SM Higgs boson H or a neutral scalar light
Higgs H1.

1.3 Higgs boson detection

Figure 1.1: Higgs boson mass determination [128]. Combined analysis of ATLAS and CMS experi-
ments

In 2012, the LHC experiments ATLAS [5] and CMS [6] announced the discovery of a neutral scalar
boson compatible with the SM Higgs boson. The combined result of the experiments (Fig. 1.1) has
fix its mass to mH = 125.09± 0.24 GeV [128]. It was the last unknown parameter of the SM, and it
gives access to various phenomenological predictions.

The detection has been analyzed starting from two datasets recorded by ATLAS and CMS during
the LHC Run 1, looking at the decays H → ZZ/WW → 4l, H → γγ, H → bb̄ and H → τ+τ−. The
two independent analyses agreed with a significant excess of events above the background, signal of
the production of a neutral boson. Later on, the two datasets have been combined in a comprehensive
study specific on the channels H → ZZ → 4l and H → γγ, which gave the best mass resolution.
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Figure 1.2: Best fit for the Higgs production and decay [128].

Knowing the Higgs mass, its production and decay can be studied. A detailed analysis of the
following production processes have been done: gluon fusion, vector boson fusion and associated
production with a vector boson or a top-quark pair [128]. The decay rates, that this analysis has
considered, are: H → ZZ,WW, γγ, ττ, bb and µµ. The already mentioned dataset shows compatibility
with the production and decay of a SM Higgs (Fig. 1.2). Also, this analysis provided predictions on
its couplings to vector bosons and fermions.

At last, the CP properties of this particle have been inferred from the angular distribution of the
leptonic decays, showing complete agreement with the hypothesis Jp = 0+, once again compatible
with the SM Higgs [7, 8].

However, the evidence of the existence of this Higgs boson does not exclude a priori the possibility
of its belonging to an extended scalar sectors, since the 2HDM scalar sector has a particle compatible
with the detected one [11, 23].

1.4 Higgs boson pair production

As it has been shown before, the data analyses have checked most of the quantities related with the
Higgs boson, namely its mass, CP properties and coupling to other particles with great precision,
and shows compatibility with the SM prediction. However, the Higgs self-coupling is not accessible
with the present LHC dataset. The upcoming high luminosity upgrade of the LHC and other future
colliders will give us access to the study of the Higgs self-coupling [17–28].

The self-couplings of Higgs bosons are allowed by the constraints imposed on the SM and 2HDM
Lagrangians, and they come from the Higgs potential:

VΦ = −µ2H2 − µ2

v
H3 − µ2

4v2
H4

=
m2
H

2
H2 +

λ3H

3!
H3 +

λ4H

4!
H4

λ3H =
3m2

H

v
, λ4H =

3m2
H

v2
.

(1.23)

The parametrization of the 2HDM gives rise to more complex structures, but the trilinear-quartic
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Higgs couplings can be written as follows (Appendix I)

V2HDM =
∑
j

m2
Hj

2
H2
j +

∑
ijk

λijk
3!

HiHjHk +
∑
ijkl

λijkl
4!

HiHjHkHl

λijk =
3cijk
v

, λijkl =
3cijkl
v2

(1.24)

Exploring the Higgs self-coupling is crucial to fully reconstruct the shape of the Higgs potential with
a non-zero VEV.

This is a very challenging measurement, since the Higgs-pair production is a strongly suppressed
process. With respect to single-Higgs production, it has a first suppression due to the phase space,
that now has to take into account an additional final state heavy particle; moreover, it is a process
of higher EW order, which gives another suppression factor. In addition, there are several irreducible
background subprocesses which lead to the same final state but do not contain any Higgs self-coupling.

The quartic Higgs interaction is unreachable by the experiment due to the strong EW suppression
[12–16]; the trilinear Higgs coupling instead will be accessible with the upgrade of the LHC, allowing
the study of processes which involve the production of an off-shell Higgs boson that decays into two
Higgs bosons [129]. These interactions may occur in the Higgs-pair production processes, which is the
ingredient for a direct measurement of the trilinear Higgs coupling.

Figure 1.3: Left plot: Cross section of the Higgs-pair production channels [29]. Right plot: sensitivity
of the Higgs-pair production channels with respect to the trilinear Higgs coupling [23].

There are four channels contributing to the Higgs-pair production process: gluon fusion [54, 130–
132], vector-boson fusion [133–135], double Higgs-strahlung [131, 136] and associated production with
heavy quarks [23, 137]. The gluon fusion is the dominant process (Figure 1.3), with a cross section of
one order of magnitude higher with respect to the others. However, its cross section σ is still three
orders of magnitude lower than the single-Higgs production [29]. In addition, for the gluon fusion
channel, the relative uncertainties of its cross section are related to the relative uncertainties of the
trilinear coupling in the ratio with the SM [23] with the following approximate relation

∆σ

σ
∼ −∆λ3H

λ3H
. (1.25)

These facts can be inferred by the negative slope of the red curve of Figure 1.3 (right plot), and it
sets the importance of investigating the gluon fusion channel of the Higgs-pair production process
with high theoretical accuracy. This can only be achieved by introducing higher order corrections.
Since gluon fusion is a QCD induced process, it is known that higher orders3 in QCD may introduce
very large contributions to the total cross section: for single-Higgs production via gluon fusion, higher
order terms introduced corrections of more than 60% [138–142].

3In the next section we will define to which order are we referring here.
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Since the Higgs boson does not couple to the gluons directly, the gluon fusion channel is mediated
by quark loops already at leading order. The Yukawa couplings are proportional to the quark mass:
this means that the main contribution to the cross section comes from the heaviest quark, namely
the top quark; lighter quark corrections are below the 1%. It has been proven that the Higgs-pair
production via gluon fusion cross section behaves analogously to the single-Higgs production with
respect to the perturbative order: higher order corrections are very large [32, 140]. The main reason
for this is that additional QCD perturbative orders open more channels that sum to the latter ones.

The equivalent process in the 2HDM will be neutral scalar Higgs-pair production, where we allow
the final state to be HiHj . If i = j the process is very similar to the SM one, where the only difference
lies in the Yukawa couplings to the top quark and the Higgs masses. The difference starts to be
noticeable in the case where i 6= j, which involves two different Yukawa couplings and Higgs masses,
making the actual calculation more complex. Moreover, it is important to notice that the Yukawa
couplings, while in the SM are proportional only to the quark mass, in the 2HDM are proportional
to tanβ (or cotβ); this fact might strongly enhance such couplings and make the contributions of the
lighter quarks in the loop relevant [10].

1.4.1 Measurement

Figure 1.4: Branching ratios of the Higgs boson [30].

As shown in Fig 1.4, the Higgs mainly decays into a bottom quark pair [30]: hence it may be
natural to search for the bb̄bb̄ final state. However, this final state has a huge QCD background, that
makes the extraction of the signal incredibly hard. A more reliable analysis can be done by considering
more rare final state like bb̄γγ and bb̄ττ [28, 29].

The bb̄γγ final state constitutes a promising candidate due to its clean signal, leading to a
determination of the Higgs coupling with 40% uncertainty [23, 31]. The current bounds on the
trilinear Higgs coupling come from CMS analysis of the HH → bb̄γγ channel, which have set
−8λSM

3H < λ3H < 15λSM
3H . With the forthcoming high luminosity LHC, ATLAS can decrese the bound

to −0.8λSM
3H < λ3H < 7.7λSM

3H [129].

The process bb̄ττ has a more complex background that makes the study of this channel harder,
and is strongly dependent on the capability of reconstructing the τ pairs of the experiment. However,
it has been proven that, in optimistic scenarios, it represents a valid final state candidate [23].
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1.5 Cross section: an overview on the calculation

The perturbative QCD provides an ideal framework to calculate the cross section of the Higgs-pair
production via gluon fusion. In this work, we will consider the production of two neutral scalar Higgs
bosons, namely pp→ H1H2.

The total cross section can be written as a perturbative series with respect to the strong coupling
constant: this will provide the following expansion

σ(pp→ gg → H1H2) = σLO + ∆σNLO + · · ·+ ∆σNnLO +O
(
αn+3
s

)
. (1.26)

The QCD factorization theorems [51] set the condition under which high energy hadrons can be
described as bound states of its constituents, quark and gluons, carrying a fraction of its total mo-
mentum. Hence, in proton-proton collisions their constituents interact: we are interested in the case
where a gluon carrying momentum p1 = x1P1 interacts with a gluon carrying momentum p2 = x2P2,
with Pi the protons momenta. This represents a short distance interaction, that can be studied per-
tubatively and it is independent on the external hadron; short-distance interactions factorize from
the long-distance one, which are encoded into the parton distribution functions (PDFs) [52]. These
objects have a non-perturbative nature, and they take into account the structure of the hadrons.
PDFs are interpreted as the probability that a parton inside a proton carry a certain fraction of the
total momentum.

Starting from the Leading Order (LO) cross section, the factorization theorem states that

σLO(pp→ gg → H1H2) =

∫ 1

0
dx1dx2fg(x1, µF )fg(x2, µF )σ̂LO(g(p1)g(p2)→ H1H2), (1.27)

where fg(xi, µF ) are the PDFs for the gluons, xi is the fraction of the i proton momentum, µF is the
factorization scale and σ̂ is the partonic cross section; µF is much larger than the scale down to which
the factorization theorem holds. This expression can be written in a simpler way: at the LHC the
scattering is studied in the center-of-mass frame of the colliding protons

√
s; the production of the

two Higgs bosons starts above the production threshold ŝ = (mH1 + mH2)2; putting together these
considerations, the LO cross section becomes

σLO(pp→ gg → H1H2) =

∫ 1

τ0

dτ
dLgg
dτ

σ̂(ŝ)|ŝ=τs,

dLgg
dτ

=

∫ 1

τ

dx

x
fg(x, µF )fg

(τ
x
, µF

)
, τ =

ŝ

s
, τ0 =

(mH1 +mH2)2

s
,

(1.28)

where dLgg
dτ is the gluon luminosity.

The PDFs are determined by experimental fits of data obtained from deep inelastic scattering
processes. The perturbative part is the partonic cross section σ̂. The perturbative QCD approach
relates it with the square of the scattering amplitude integrated over the phase space at a fixed order:

σ̂LO(ŝ) =

∫
dPS2|MLO|2, (1.29)

where dPS2 is the phase space element and MLO is the scattering amplitude. The line above the
square amplitude stands for the polarization average. The scattering amplitude, namely the sum of
the Feynman diagrams [53], can be built from the knowledge of the Lagrangian, that introduce into
the game a dependence on the theory.

Since in both the 2HDM and SM there are no interaction vertices between Higgs and gluons, the
amplitude of gg → H1H2 is loop induced already at the LO. The bulk of the amplitude is carried
by the top-quark loop, due to the Yukawa interaction that enhances the heavy quark contributions.
This leads us to consider only the top loops. Notice that at LO4, there is an additional threshold:
ŝ = 4m2

t . This corresponds to the tt̄ production threshold.

4Of course, this threshold occurs at every perturbative order, but beyond LO, other thresholds arises. For the gluon
rescattering diagrams at NLO, an additional threshold starts at

√
ŝ = 0 GeV, which leads to infrared singularities. This

structure will be discussed in Chapter 3.
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At Next-to-Leading Order (NLO), the calculation of the two-loop amplitude is required; in addi-
tion, one-loop diagrams with one radiating parton have to be considered as well. The latter belong
to three new QCD channels with different initial states: the quark-antiquark qq̄, the quark-gluon qg
and the gluon-gluon gg initial states. The NLO partonic cross section can be written as

∆σ̂NLO = ∆σ̂virt + ∆σ̂qq̄ + ∆σ̂qg + ∆σ̂gg

∆σ̂virt =

∫
dPS2 2Re

[
M∗LOMvirt

]
,

∆σ̂ij =

∫
dPS3 |Mij |

2
,

(1.30)

whereMvirt is the virtual amplitude containing the two-loop diagrams, andMij are the contributions
of the ij initial state, called real corrections.

1.5.1 Divergences and their treatment

In general, higher order corrections to an observable introduce divergences. This is a general feature
of the perturbative expansion of a quantum field theory. The most recognizable source of divergences
are the loop corrections, which are related to the integration over the so-called loop momentum. An
example of divergent Feynman integral is the so-called massless tadpole:∫

M

d4k

(2π)4

1

(k2)2
, (1.31)

where kµ is the loop momentum. Integrating over the time component and setting two cut-offs λ and
Λ: ∫

M

d4k

(2π)4

1

(k2)2
∝
∫ Λ

λ

d|k|
|k| = log

Λ

λ
. (1.32)

This integral is singular in both limits Λ → ∞ and λ → 0. The first is called ultraviolet (UV)
divergence, arising at high values of the module of the loop momentum, and they come purely from
the loop integration. The latter is an infrared (IR) divergence, occurring in the small momentum
region, and can occur even at tree level with the phase space integration. A typical loop source
of infrared divergence comes from a massless propagator connecting two external propagators that
become soft. However, a physical observable must be UV and IR finite: the divergences have to be
isolated and canceled.

As we are interested in the NLO QCD corrections to Higgs-pair production, the treatment of the
UV and IR divergences has to be discussed. The LO of the process we are considering, even though
formed by one-loop diagrams, is screened from UV divergences because of the gauge invariance; in
addition, since no massless propagators occur in the loops, IR divergences do not show up.

At NLO, UV and IR divergences appear. A regularization scheme is needed in order to isolate
them. In this calculation, dimensional regularization is used [55–57]: the idea is to treat the amplitude
as analytic function of the space-time dimension d = 4− 2ε:∫

M

d4k

(2π)4
→ (µ2)

4−d
2

∫
M

ddk

(2π)d
(1.33)

where the ’t Hooft scale µ has the role of preserving the mass dimensionality of the amplitude. The
regularization procedure makes the UV and IR divergences be poles in the ε analytic expansion around
ε = 0 (namely the 4-dimensional limit). At NLO, the analytic structure manifests poles up to second
order.

The procedure of canceling the UV divergences is called renormalization. Interpreting the fields,
coupling and parameters of the Lagrangian to be bare quantities, they develop divergences at higher
orders. In order to obtain physically meaningful predictions, they have to be expressed in terms of the
physical quantities (i.e. the renormalized ones). Their higher order terms entering the perturbative
expansion are the counterterms. The choice of the counterterms fixes the renormalization scheme and
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scale. The only constraint is that the counterterms have to cancel the UV poles coming from the NLO
amplitude. The renormalization scheme influences the finite part of the amplitude, which introduces
a renormalization scheme dependence order-by-order in the amplitude. However, this dependence
completely disappears if the entire perturbation series is considered. More details on the specific
renormalization scheme we have chosen can be found in Chapter 3.

The IR divergences are treated in a different way. The Kinoshita-Lee-Nauenberg (KLN) theorem
[58, 59] ensures the IR safety of a sufficiently inclusive observable. The inclusiveness needed for
the Higgs-pair production indicates that in addiction to the virtual amplitude, which has the same
final state, additional contributions have to be considered: these are the real corrections. Since they
develop soft and collinear divergences, they can be combined to the virtual contribution to obtain an
IR safe observable.

Since the calculation will be performed numerically, the cancellation of the IR divergences is more
involved, because it takes place between terms that are integrated over different final states: this
would introduce strong numerical instabilities in the single integrations. There are different ways
to overcome this issue, represented by different subtraction techniques [60–65]. They rely on the
introduction of an auxiliary differential cross section dσA with the same IR pole structure of the
process. This term will be added and subtracted at the level of the differential cross section in the
following way:

∆σ̂NLO =

∫
dPS2

[
|2M∗LOMvirt|+

∫
dPS1dσA

]
+

∫
dPS3

[
|Mqq̄|2 + |Mqg|2 + |Mgg|2 − dσA

]
(1.34)

Each separeted integral is now finite and the numerical integration will be stable. For this particular
process, the auxiliary term has been build from the knowledge of the heavy-quark behaviour of the
process. Further details will be presented in Chapter 3.

The last source of divergences comes from the collinear initial-state singularities, for which the
KLN theorem does not hold, since one does not sum over the initial states. They can be absorbed by
a renormalization of the PDFs, meaning that the behaviour of the collinear emission of a parton by
the initial state is related to the non-perturbative parton PDFs and has been removed from the hard
scattering.

1.6 Present status

The Higgs-pair production within the SM has been investigated in several approximations, valid for
different phase space regions. There are three phase spaces regions of interest: the low energy region
(ŝ . 4m2

t ), the tt̄ threshold region (ŝ ≈ 4m2
t ) and the high energy region (ŝ � 4m2

t ). Moreover, two
independent NLO SM Higgs-pair production with full top-mass dependence calculations are available
in the literature.

1.6.1 Low energy region

In the low energy region, the heavy top-quark limit (HTL) is valid. Many works have investigated
this region up to N3LO. The first result is the Born-improved NLO calculation [32]: it consists in the
LO with full top-mass dependence calculation in addition with the HTL NLO contribution. In this
way, virtual and real corrections can be built from the effective Higgs-gluon interaction arising from
the integration of the top mass, leading to a one-loop virtual amplitude and tree level real corrections.
The differential K-factor, defined as

K =
dσNLO

dσLO
, (1.35)

found in this approximation ranges between 1.9 and 2.
A mass refinement of the Born-improved approximation leads to the full-theory approximation

[24, 33], obtained by considering the mass dependent NLO real contributions. They consist of the
inclusion of complete one-loop five-point matrix element contributions to the real corrections. The
introduction of these top-mass effects yields 10% reduction with respect to the previous approximation.

Going further in this direction, a NNLO Born-improved has been included in the previous cal-
culations [34, 35]. This includes the virtual two-loop effective amplitude and real contributions with
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five and six points one-loop and tree level matrix elements. The inclusion of the HTL NNLO effects
to the full-theory approximation leads to an increase of the K-factor by 20%. The scale uncertainties
reduce to ±13%. The calculation including Next-to-Leading-Log (NNLL) decrease even more the
scale uncertainties, achieving a ±11% [36, 37]. All the uncertainties have been found by varying the
factorization and renormalization scales a factor 2 up and down from

√
ŝ/2. Recently a complete

HTL N3LO calculation has been performed [38]. These refinements lead to an additional correction
of the 3% to the NNLO cross section, and to scale uncertainties of about 2%.

A first attempt to include finite top-mass effects as terms of an expansion on the 1/m2
t parameter

has been done at NLO and NNLO. The NLO calculation considers the expansion of the integrals,
making use of the optical theorem and performing the 1/m2

t expansion [39]. At NNLO level, genuine
top-mass expansion terms are included into the integrands, and the amplitude coefficients have been
evaluated analytically. The most recent works in this direction have included eight expansion terms
for the box and five for the triangle contributions, leading to a good convergence to higher Higgs-pair
invariant mass values [40, 41]. The top-mass effects amount to about 10% at NLO and to 5% at
NNLO. An N3LO mass refinement have been introduced by the one-particle-reducible contributions,
including diagrams involving two-loop effective vertices known from the previous expansion order.

1.6.2 Threshold region

Recently, in Refs. [42, 43], a method to incorporate the large non-analytic behaviour of the differential
cross section around the threshold region into the HTL expansion of the NLO differential cross section
has been proposed. This strategy relies on the Padé approximant ansatz, which reads

[n/m](ω) =
a0 + a1ω + · · ·+ anω

n

1 + b1ω + · · ·+ amωm
,

ŝ

4m2
t

=
4ω

(1 + ω)2
. (1.36)

where the coefficients can be determined from the non-analytical part of the cross section for ŝ ≈ 4m2
t .

This method can be adopted for the Higgs-pair production process within the 2HDM too, where the
two final state Higgs particles may have different masses.

This method, applied to the SM, yields reliable results for the NLO cross section up to
√
ŝ .

700 GeV and provides a useful strategy to determine the top-mass effects at NNLO, currently far
from a computationally viable full top-mass calculation.

1.6.3 High energy region

The high energy region can be explored by performing an expansion for m2
t � s, |t| and mH = 0.

This approach has been explored at NLO SM in Refs. [44–46], where other refinements have been
considered: eight additional terms of the top mass m2

t /ŝ expansion and two terms of the finite Higgs
mass expansion m2

H/m
2
t ≈ 0.13. The form factors obtained in such approximation are completely

analytical, based on the master integral decomposition and their analytical evaluation. It is an
extremely useful result that can be exploited in cross checks with full top-mass dependent form
factors. The radius of convergence of the expansion has been increased further by introducing Padé
approximants for the master integrals.

The differential distribution obtained with this approach has been cross-checked with the full NLO
calculation, resulting in full agreement down to 500 GeV.

1.6.4 pT expansion and full top-mass NLO contribution

A promising method has been investigated in Ref. [143] where an expansion in terms of small trans-
verse momentum p2

T ∼ 0 has been performed. It has a very wide range of validity, that covers the low
energy and threshold regions, arriving up to

√
ŝ . 750 GeV, giving an approximation at NLO SM

better than per-mille.

At last, a NLO SM Higgs-pair production calculation with full top-mass dependence has been
carried out in Refs. [47, 144]. The form factors have been decomposed in terms of the master integral
by means of the IBP reduction, and the differential cross section has been evaluated numerically,
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since not all the master integrals found were known analytically. The bottleneck of this calculation
was represented by the IBP reduction. A simplification introduced to facilitate the integral reduction
was fixing the numerical value for mH and mt. The masses have been set to mt = 173 GeV and
mH = 125 GeV. The complete result leads to a NLO differential K-factor of 20-30% smaller w.r.t.
the Born-improved method.

The other NLO SM Higgs-pair production via gluon fusion cross section calculation [67, 68] will
be exhaustively discussed in Chapter 5 of this thesis, since it represents the major outcome of this
work. As a remarkable difference from the first calculation, our work treats the top mass and the
Higgs masses as independent variables: this allowed us to estimate the uncertainties related with the
top-mass renormalization scale and scheme [69].

1.7 Topic of this thesis

We present our NLO QCD Higgs-pair production via gluon fusion calculation with full top-mass
dependence. Our procedure is meant to be as general as possible, including the possibility of applying
it to all possible 2HDM Higgs-pair final states.

The main difference between the two models, SM and 2HDM, applied to the process under ex-
amination is the presence of Higgs bosons of different mass. This introduces more complexity in the
calculation, since the two-loop Feynman integrals contributing to the form factors will depend on five
mass scales and (two kinematic invariants, two Higgs bosons and the top-quark mass). In addition,
they are two-loop integrals, for which no automated strategy has been developed so far.

However, building a general framework generalizing the SM calculation can be done revisiting the
Feynman rules of the 2HDM and rescaling them with respect to the SM couplings. For the neutral
scalar Higgs bosons, this rescaling turns into a simple factor, depending on the Higgs boson and the
model type, in particular of the angles α and β. It can be represented schematically as

−imt

v
→ −imt

v
Yj , (1.37)

where j refers to the light Higgs H1 or the heavy Higgs H2. For the pseudoscalar A, there is an
additional γ5, responsable of the eventual CP violation, which does not change the prescription we
use:

−imt

v
→ mt

v
γ5Yj . (1.38)

The introduction of pseudoscalars requires a prescription to treat the γ5, since we use dimensional
regularization and it is impossible to define a d−dimensional γ5 [145]. In particular, it is not possible
to have both

{γ5, γµ} = 0, µ = {1, · · · , d}, (1.39)

and

Tr
[
γ5γµγνγργσ

]
= 4!εµνρσ. (1.40)

A convenient choice for dealing with the AA final state is using the naive dimensional regularization:
no definition of γ5 will be set and the relation in Eq. (1.39) is used. The Dirac traces will be expressed
in terms of metric tensors pretending that they are four dimensions, and at the end the result are
interpreted in d dimensions. For mixed scalar-pseudoscalar cases, the presence of the ABJ anomaly
[146, 147] makes the previous choice inconstistent. A proper way to treat the γ5 has been proposed
by ’t Hooft and Veltmann [55], and systematized by Breitenlohner and Maison [148]. They define the
d−dimension γ5 from Eq. (1.40), leading to

γ5 =
1

4!
εµνρσγµγνγργσ, (1.41)

and Eq. (1.39) to be

{γ5, γµ} = 0, µ = {1, · · · , 4},
[γ5, γµ] = 0, else,

(1.42)
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such that the axial term does not vanish.
Even if different Higgs-pair final states will lead to an extremely varying phenomenology, at the

level of the calculation they can be treated within the same framework, as we will explain in detail in
Chapters 2 and 3. Moreover, since the charged scalar and the pseudoscalar Higgs bosons will introduce
unnecessary complication into the calculation, we will restrain ourself in presenting the neutral scalars
final state, meaning gg → H1H2 at partonic level.

Briefly, our strategy can be summarized as follows:

- Generate the LO and NLO amplitude;

- Perform the projection onto form factors and the numerator algebra;

- Isolate the UV/IR divergences by means of end-point subtractions;

- Take care of the IR divergences with a dedicated subtraction term;

- Renormalize the form factors to obtain a UV finite virtual amplitude;

- Integrate over the phase space;

- Evaluate the square amplitude of the real corrections and integrate them over the phase space;

- IR singularities from virtual corrections cancels against the real corrections ones;

- Initial state singularities are absorbed by the PDFs.

All the integrations involved in this calculation will be performed numerically, using a Monte Carlo in-
tegration. Its details will be discussed in Chapter 4. The phenomenological analyses will be presented
in Chapter 5.



16 Chapter 1



Chapter 2

Leading Order Cross Section

The LO cross section represents the first step of this calculation. Even though is not the main topic
of this thesis, it is essential to consider the LO matrix elements not only to settle the framework,
but as well because the NLO contribution is defined as the interference between the one-loop and
two-loop form factors; moreover, the LO amplitude will take part in the renormalization of the NLO
amplitude and in the subtraction scheme for the IR divergences. It is a very old calculation [54], but
it is nonetheless instructive to present the whole calculation together with its heavy quark limit.

In this Chapter, the complete LO Higgs-pair production cross section is presented. The analytical
expression of the heavy quark limit amplitude will be presented, as well as the gluon-Higgs effective
vertices [32]. At last, the LO form factors will be expressed in terms of scalar Feynman integrals
after having applied the Passarino-Veltmann reduction [149]. It is important to underline that such
integrals have to be known up to the order O(ε2), as it is required by the NLO UV, collinear and
infrared divergences. The LO form factors will be implemented in a Fortran code, ready to be used
in the context of the NLO calculation.

2.1 Preliminaries: Single-Higgs production with one off-shell gluon

The building block for our calculation is the single-Higgs production via gluon fusion amplitude:

MggHj = 1− loop

pµ

qν

Hj

= k

pµ

qν

+ k

pµ

qν

, (2.1)

Considering the top-quark contribution only, the amplitudeMggHj can be written in terms of a single
diagram:

MggHj = εµ(p)εν(q)(1)Mµν,ab
ggHj

(p, q), (2.2)

where Mµν,ab
ggHj

(p, q) is the amputated amplitude. Let us stress that the first argument of Mµν,ab
ggHj

(p, q)

is an on-shell momentum and the second is an off-shell one. The Feynman rules for this process are
presented in Appendix I. The Casimir operator is Tr[T aT b] = 1

2δ
ab. The SM rules can be recovered

by setting λ111 = mH and Y1 = 1, λijk = 0 and Yj = 0 for i, j, k ≥ 2. At the end of this calculation,
we will find an effective Feynman rule about the interaction between two gluons and a Higgs boson.
With these rules, the gluon fusion amplitudes becomes

Mµν,ab
ggHj

(p, q) = (−)(2)
i

(4π)2
(4πµ2)2−

d
2×∫

k

Tr

[
(−igsγµT a)

i(/k − /p+mt)

(k − p)2 −m2
t

(
−imt

v
Yj
) i(/k + /q +mt)

(k + q)2 −m2
t

(−igsγνT b)
i(/k +mt)

k2 −m2
t

]
,

(2.3)

17
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where1
∫
k =

∫
ddk

iπ
d
2

and the factor 2 comes from the exchange of the incoming gluons. Through simple

algebra passages, and by considering the amputated diagram, it follows

Mµν,ab
ggHj

(p, q) = −iYj
mt

v

g2
s

(4π)2
2Tr[T aT b](4πµ2)2− d

2

∫
k

Tr
[
γµ(/k − /p+mt)(/k + /q +mt)γ

ν(/k +mt)
]

[k2 −m2
t ][(k − p)2 −m2

t ][(k + q)2 −m2
t ]

= −iYj
(αsmt

πv

)
δab(4πµ2)2− d

2

∫
k

N µν

D0D1D2
,

N µν =
1

4
Tr[γµ(/k − /p+mt)(/k + /q +mt)γ

ν(/k +mt)].

(2.4)

For later purposes, we consider the gluon with momentum qµ to be off-shell, so that q2 6= 0, while
p2 = 0 and (p+ q)2 = ŝ. The Higgs boson is produced off-shell.

2.1.1 Projection onto the tensor basis: form factors

This rank-2 tensor can be written as

Tµν(p, q) = a00g
µν + appp

µpν + apqp
µqν + aqpq

µpν + aqqq
µqν , (2.5)

and imposing the transversality of the external gluons:{
pµT

µν(p, q) = 0

qνT
µν(p, q) = 0

such that εµh(p)pµ = 0, ενh(q)qν = 0 and p2 = 0, (2.6)

we find that

Tµν(p, q) = a00

(
gµν − qµpν

(p · q)

)
= a00T

µν
1 . (2.7)

Through Tµν1 , it is possible to define the projector

Pµν =
Tµν1

(d− 2)
, (2.8)

such that the amplitude becomes

Mµν,ab
ggHj

(p, q) = −i
(αsmt

πv

)
Yjδ

ab

(
4πµ2

m2
t

)ε
Γ(1 + ε)Tµν1 A

(0)
1 ,

A(0)
1 = CεPµν

∫
k

N µν

D0D1D2
,

(2.9)

where we introduce the form factor A(0)
1 , and the normalization Cε =

(m2
t )
ε

Γ(1+ε) .

Coming back to the expression of the amplitude, the numerator algebra yields:

PµνN µν =
mt

(d− 2)

(
−(d− 5)k2 + (d− 1)m2

t − (d− 2)(p · q)− 4(k · p)(k · q)
p · q

)
, (2.10)

hence the form factor becomes

A(0)
1 = Cε

mt

(d− 2)
×
[
− (d− 5)

∫
k

k2

D0D1D2

+ [(d− 1)m2
t − (d− 2)(p · q)]

∫
k

1

D0D1D2
− 4

(p · q)

∫
k

(k · p)(k · q)
D0D1D2

]
.

(2.11)

1Every loop contributes with the following factor: µ4−d ∫ ddk
(2π)d

= i

(4π)d/2
µ4−d ∫ ddk

iπd/2 = i
(4π)2

(4πµ2)2−d/2
∫

ddk

iπd/2 =
i

(4π)2
(4πµ2)2−d/2

∫
k
.
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Using the Passarino-Veltmann reduction (see Appendix D), and defining the scalar integrals

B0(0,m2
t ) =

∫
k

1

D0D1
, B0(q2,m2

t ) =

∫
k

1

D0D2
, B0(m2

Hj ,m
2
t ) =

∫
k

1

D1D2

C0(0, q2,m2
Hj ;m

2
t ) =

∫
k

1

D0D1D2

(2.12)

we can express all the integrals appearing in Eq. (2.11) as scalar integrals:∫
k

k2

D0D1D2
= m2

tC0(0, q2,m2
Hj ;m

2
t ) +B0(m2

Hj ,m
2
t ),∫

k

(k · p)(k · q)
D0D1D2

=
1

4

[
q2B0(q2;m2

t )− [q2 − (p · q)]B0(m2
Hj ;m

2
t )
]
,

(2.13)

and replacing these integrals in the amplitude

A(0)
1 = − Cεmt

(d− 2)
×
[

(d− 4)(p · q)− q2

(p · q) B0(m2
Hj
,m2

t )

+ [(d− 2)(p · q)− 4m2
t ]C0(0, q2,m2

Hj
;m2

t ) +
q2

(p · q)B0(q2;m2
t )

]
.

(2.14)

2.1.2 Analytic amplitude of gg∗ → H

Let us replace the analytical value of the scalar integrals (see Appendix D):

B0(m2
Hi
,m2

t ) =
Γ(1 + ε)

(m2
t )
ε

[
1

ε
+ 2− 2g(τj)

]
,

B0(q2,m2
t ) =

Γ(1 + ε)

(m2
t )
ε

[
1

ε
+ 2− 2g(λ)

]
,

C0(0, q2,m2
H ;m2

t ) =
Γ(1 + ε)

(m2
t )

1+ε

[
τλ

2

f(τ)− f(λ)

τ − λ

]
,

τ =
4m2

t

(p+ q)2
=

4m2
t

ŝ
, λ =

4m2
t

q2
, ε =

4− d
2

.

(2.15)

Hence, replacing these analytical values into the form factor A(0)
1 , we arrive at the expression

A(0)
1 = − mt

2(1− ε)

{
− 2ε(p · q) + q2

(p · q)

(
1

ε
+ 2− 2g(τ)

)
+

(
(1− ε)(p · q)

m2
t

− 2

)[
τλ
f(τ)− f(λ)

τ − λ

]
+

q2

(p · q)

(
1

ε
+ 2− 2g(λ)

)}
=

mt

(1− ε)

{
1− q2

(p · q) (g(τ)− g(λ))−
(

(p · q)
2m2

t

− 1

)
τλ

τ − λ (f(τ)− f(λ))

+ ε

[
(p · q)
2m2

t

τλ

τ − λ (f(τ)− f(λ))− 2(g(τ)− 1)

]}
.

(2.16)

Since the ε pole has been canceled through the calculation, this expression is finite. In the limit
ε→ 0, the form factor becomes:

A(0)
1 = mt

{
1− q2

(p · q) [g(τ)− g(λ)]−
[

(p · q)
2m2

t

− 1

]
τλ

τ − λ [f(τ)− f(λ)]

}
= 2mt

{
1

2
+

τ

τ − λ [g(τ)− g(λ)] +
1

2

[
1 +

τλ

τ − λ

]
[f(τ)− f(λ)]

}
.

(2.17)

Using the identity:

2mt = −(p · q)
mt

(
τλ

τ − λ

)
, (2.18)
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we can simplify the expression more, such that the form factor becomes

A(0)
1 = − (p · q)

mt

{
τλ

2(τ − λ)
+

τ2λ

(τ − λ)2
[g(τ)− g(λ)] +

τ2λ2

2(τ − λ)2
[f(τ)− f(λ)] +

τλ

2(τ − λ)
[f(τ)− f(λ)]

}
= − (p · q)

mt
I(τ, λ)

(2.19)

and the total amplitude becomes

Mµν,ab
ggHj

(p, q) = −i
(αsmt

πv

)
Yjδ

ab

(
4πµ2

m2
t

)ε
Γ(1 + ε)Tµν1 A

(0)
1 (p, q)

= i
(αs
πv

)
Yjδ

ab

(
4πµ2

m2
t

)ε
Γ(1 + ε)I(τ, λ) [(p · q)gµν − qµpν ] .

(2.20)

This form factor is independent on the neutral scalar Higgs boson taken into account: this fact will
be useful later when we will build the amplitude for the Higgs-pair production matrix elements.

The heavy top-quark limit and the gluon in the on-shell limit will define a gluon-Higgs effective
vertex. It can be done by taking the simultaneous limits λ→∞ and τ →∞. Since the off-shellness
of the incoming gluon and the leading dependence on the top mass are encoded into the I(τ, λ) factor,
it will be the only term affected by this limit:

Mµν,ab
ggHj

(p, q)
HTL−−−→ −i

( αs
3πv

)
Yjδ

ab

(
4πµ2

m2
t

)ε
Γ(1 + ε) [(p · q)gµν − qµpν ] . (2.21)

2.2 Leading Order amplitude for H1H2 production

The LO amplitude for the Higgs-pair production channels gets contributions from one-loop diagrams.
For the moment, we will only consider the case where the Higgs bosons in the final state are CP-even;

Figure 2.1: Sample of the Feynman diagrams contributing at LO.

the same calculation strategy can be exploited for the CP-odd Higgs final state.

The process under investigation is gg → H1H2. The LO amplitude MLO can be written as

MLO = εµ(p1)εν(p2)(Mµν,ab
∆ +Mµν,ab

� ), (2.22)

where we have separated the two gauge-invariant subsets of diagrams.

2.2.1 Triangle contribution

The triangle-like contribution Mµν
∆ can be built by composing the gg∗ → Hj matrix element with a

tree-level factor as follows:

Mµν,ab
∆ =

2∑
j

Mµν,ab
ggHj

(p1, p2)
∣∣∣
p22=0

(
i

(p1 + p2)2 −m2
Hj
− imHjΓ(m2

Hj
)

)(
−i3λj12

v

)
= F̃

(0)
∆ Tµν1 ,

(2.23)
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where in the last step, we have defined the triangle form factor F
(0)
∆ . Collecting all our expressions,

we obtain

F̃
(0)
∆ =

iαs
(4π)

m2
t

v2
δab
(

4πµ2

m2
t

)ε
Γ(1 + ε)Ã(0)

1 ,

Ã(0)
1 =

2∑
j

(
6Yjλj12

ŝ−m2
Hj
− imHjΓ(m2

Hj
)

)
ŝ

m2
t

I(τ,∞) .

(2.24)

The on-shell limit for the gg∗ → Hj amplitude leads to the following expression:

I(τ,∞) = lim
λ→∞

I(τ, λ) = −τ
2

[1− τf(τ) + f(τ)] . (2.25)

Since the form factor F̃
(0)
∆ has a factorizable dependence on the type of virtual Higgs boson which

propagates from the top-loop. This leads to an important factorization:

F̃
(0)
∆ = C∆F

(0)
∆ ,

C∆ =

2∑
j

6Yjλj12

ŝ−m2
Hj
− imHjΓ(m2

Hj
)
.

(2.26)

The form factor F
(0)
∆ is common to the one of the LO QCD single-Higgs production. This factor-

ization is extremely important: it will turn to be useful later since the same structure of F̃
(0)
∆ holds at

NLO. Single-Higgs production form factors are already known at NLO, and we can implement them
in our calculation as a simple factor.

Heavy top limit

The HTL triangle amplitude can be built as a tree-level amplitude where the vertex contribution is
replaced by the ggHj effective vertex, found in the previous section, leading to

= −i
( αs

3πv2

)
δab
(

4πµ2

m2
t

)ε
Γ(1 + ε)

C∆

2
[(p · q)gµν − qµpν ] . (2.27)

2.2.2 Box diagrams

There are three box diagrams contributing at LO (Fig. 2.2). The corresponding ones with reversed
fermion flow, due to Furry’s theorem, contribute with an additional factor 2.

(1) (2) (3)

Figure 2.2: LO box diagrams.

To approach this calculation, a theoretical common framework can be useful. In general, each of
these diagrams can be expressed as follows:

Mµν,ab
� = −(−igs)2

(
−imt

v

)2
Y1Y2(i)4Tr[T aT b]

i

(4π)2
(4πµ2)2− d

2

∫
k

Nµν(k,p)

D0D1D2D3

= − iαs
(4π)

m2
t

v2
Y1Y2Tr[T aT b](4πµ2)ε

∫
k

Nµν(k,p)

D0D1D2D3
,

(2.28)
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where p = {p1, p2, p3} and k the loop momenta. Here there is a general tensor Nµν depending on the
momenta which is unique for each box diagram. The Feynman parametrization procedure allows one
to write an integral of n denominators as a tadpole-like integral:

1

Da0
0 · · ·Dan

n
=

Γ(a1 + · · ·+ an)

Γ(a1) · · ·Γ(an)

∫ 1

0
dx0d

nx
xa0−1

0 · · ·xan−1
n δ(1−∑j xj)

[D0x0 + · · ·+Dnxn]
∑
j aj

=
Γ(a1 + · · ·+ an)

Γ(a1) · · ·Γ(an)

∫
C
dnx

(1−∑j xj)
a0−1 · · ·xan−1

n

[D0(1−∑j xj) + · · ·+Dnxn]
∑
j aj

,

C =

x = (x1, . . . , xn) ∈ [0, 1]n | x2 < 1− x1 ∧ x3 < 1− x1 − x2 ∧ · · · ∧ xn < 1−
n−1∑
j=1

xj

 .

(2.29)

Applying the Feynman parameterization to the box integral, the integrand takes the form:

Mµν,ab
� = − iαs

(4π)

m2
t

v2
Y1Y2Tr[T aT b](4πµ2)2− d

2×

× Γ(4)

∫
C
dx

∫
k

Nµν(k,p)

[D0(1− x1 − x2 − x3) +D1x1 +D2x2 +D3x3]4
,

(2.30)

where C = {x = (x1, x2, x3) ∈ [0, 1]× [0, 1]× [0, 1] | x2 < 1− x1 ∧ x3 < 1− x1 − x2}. All the internal
lines are massive, and the Feynman parametrization yields a ”tadpole-like” denominator

Mµν,ab
� = − iαs

(4π)

m2
t

v2
Y1Y2Tr[T aT b](4πµ2)2− d

2 Γ(4)

∫
C
dx

∫
k

Nµν(k,p)

[k2 + 2k · q −M2]4

qµ =
3∑
i=1

ai(x)pµi , M2 = m2
t −

3∑
i,j=1

bij(x)(pi · pj).
(2.31)

Then, by shifting k → k − q, it is possible to complete the square into the denominator:

Mµν,ab
� = − iαs

(4π)

m2
t

v2
Y1Y2Tr[T aT b](4πµ2)2− d

2 Γ(4)

∫
C
dx

∫
k

Nµν(k − q,p)

[k2 − q2 −M2]4
. (2.32)

With this shift, the integrand becomes even with respect to kµ; hence, odd powers of kµ vanish after
the integration.

The numerator Nµν is a tensor of rank up to 4 in the loop momentum. We can replace rank-2
and rank-4 tensors with the following tensor structures

kµkν → k2

d
gµν ,

kµkνkρkσ → (k2)2 g
µνgρσ + gµρgνσ + gµσgνρ

d(d+ 2)
,

(2.33)

since the tensors depending only on the loop momentum can not depend on any other dimensionful
quantities. Therefore, we can single out every (2α)−rank factor:

Mµν,ab
� = − iαs

(4π)

m2
t

v2
Y1Y2Tr[T aT b](4πµ2)2− d

2 Γ(4)

∫
C
dx

[
Aµν(p,x)

∫
k

1

[k2 − q2 −M2]4
+

Bµν(p,x)

∫
k

k2

[k2 − q2 −M2]4
+

Cµν(p,x)

∫
k

(k2)2

[k2 − q2 −M2]4

] (2.34)

The loop integrals can be now integrated. After a Wick rotation and the integration in d−dimensional
spherical coordinates, we obtain the following close form∫

k

(k2)α

[k2 − q2 −M2]n
= (−1)(n−α) Γ(n− α− d

2)Γ(α+ d
2)

Γ(n)Γ(d2)

1

[q2 +M2]n−α−
d
2

, (2.35)
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which brings the amplitude into the following form

Mµν,ab
� = − iαs

(4π)

m2
t

v2
Y1Y2Tr[T aT b](4πµ2)2− d

2

∫
C
dx

[
Γ

(
4− d

2

)
Aµν(p,x)

[q2 +M2]4−
d
2

−

−Γ

(
3− d

2

)
d

2

Bµν(p,x)

[q2 +M2]3−
d
2

+

+Γ

(
2− d

2

)
d

2

(
1 +

d

2

)
Cµν(p,x)

[q2 +M2]2−
d
2

]
.

(2.36)

Using ε = 4−d
2 and extracting the dependence on the Gamma function, we obtain:

Mµν,ab
� = − iαs

(4π)

m2
t

v2
Y1Y2Tr[T aT b]

(
4πµ2

m2
t

)ε
Γ (1 + ε)

∫
C
dx

[
(1 + ε)

(m2
t )

2

Aµν(p,x)[
q2+M2

m2
t

]2+ε−

−(2− ε)
m2
t

Bµν(p,x)[
q2+M2

m2
t

]1+ε+

+
(2− ε) (3− ε)

ε

Cµν(p,x)[
q2+M2

m2
t

]ε ]
(2.37)

The denominators are now dimensionless, and they can be expressed as

∆(p,x) =
q2 +M2

m2
t

=
m2
t +

∑3
ij aiaj(pi · pj)−

∑3
ij bij(pi · pj)

m2
t

= 1−
3∑

i,j=1

cij(x)
pi · pj
m2
t

. (2.38)

A change of variables g : C → [0, 1]3 transforms the integration variables into the unit 3-cube2

Mµν,ab
� = − iαs

(4π)

m2
t

v2
Y1Y2Tr[T aT b]

(
4πµ2

m2
t

)ε
Γ (1 + ε)

∫ 1

0

dx det [J(g)]

[
(1 + ε)

(m2
t )

2

Aµν(p,x)

∆2+ε
−

− (2− ε)
m2
t

Bµν(p,x)

∆1+ε
+

+
(2− ε) (3− ε)

ε

Cµν(p,x)

∆ε

]
,

(2.39)

where J(g) is the Jacobian of the change of variables g. The integral is regular below the threshold
s = 4m2

t . The singular behaviour for ε = 0 is proportional to the tensor Cµν(p,x), coming from the
rank-4 tensor integral:

Mµν,ab
� ∼ε−1 − iαs

(4π)

m2
t

v2
Y1Y2Tr[T aT b]

6

ε

∫ 1

0

dx det[J(g)]Cµν(p,x). (2.40)

Due to the renormalizability of the theory, this term has to vanish after the box sum. By only looking
at the tensor structure:

2Tr [γµ/k/k/kγν/k] + Tr [/kγµ/k/kγν/k] = 8k2(2kµkν − k2gµν) + 4(k2)2gµν

→ 4(k2)2gµν
4− d
d

= (k2)2Cµν(p,x)

=⇒ Cµν(p,x) ∝ ε,

(2.41)

where we neglected the presence of the denominator since they contribute like 1 +O(ε).

Hence, the single pole coefficient is zero, and the total amplitude is finite as expected.

2With a little abuse of notation, we use the same symbols x for the new variables: x→ X = g(x) ≡ x
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External momenta vs. internal momenta

Going towards the actual calculation, we start fixing our convention for the external legs (all incoming):

P µ
1

P ν
4 P3

P2

(2.42)

and a single way to identify the topology in terms of the ”internal” momenta:

Q1

Q2

Q3

Q4

∼ 1

D1D2D3D4
,


D1 = (k +Q1)2 −m2

t

D2 = (k +Q2)2 −m2
t

D3 = (k +Q3)2 −m2
t

D4 = (k +Q4)2 −m2
t

. (2.43)

Using momentum conservation, we can express the external momenta in terms of the internal

Pi = Pi(Q) = AijQj . (2.44)

This is what we call internal momenta convention.
The kinematics is defined as follows:

P 2
1 = P 2

4 = 0,

P 2
2 = m2

H1
,

P 2
3 = m2

H2
,

(P1 + P4)2 = (P2 + P3)2 = ŝ,

(P1 + P2)2 = (P3 + P4)2 = t̂,

(P1 + P3)2 = (P2 + P4)2 = û,

P4 = −P1 − P2 − P3,

(2.45)

and the tensors defined with the external momenta become

T1 = gµν − P ν1 P
µ
4

(P1 · P4)
,

T2 = gµν +
(P 2

2 )P ν1 P
µ
4 − 2(P1 · P4)P ν2 P

µ
4 − 2(P2 · P4)P ν1 P

µ
2 + 2(P1 · P4)P ν2 P

µ
2

(P1 · P4)p2
T

p2
T =

2(P2 · P4)(P1 · P2)

(P1 · P4)
− P 2

2 .

(2.46)

With this convention, we can express each of these diagrams in terms of the same integral, con-
taining the shortest possible internal momenta. On the other hand, the invariants expressed in terms
of the internal momenta can have an involved dependence on them, and some cancellation may not
occur.

The external momenta convention is the most common, meaning that we express the internal
momenta with respect to the external ones:

Qi = Qi(P ) = AijPj . (2.47)

While the two conventions will lead to the same result (of course), at higher number of loops,
the internal momenta convention might help the computation of the Feynman integrals with many
propagators, leading to more compact integrals expressions suitable for numerical calculations.
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2.2.3 Applying the procedure

Feynman parametrization

Consider the box diagram (1) in Figure (2.2), and let us adapt our conventions:
Q1 = p4

Q2 = p1

Q3 = p2

Q4 = p3

=⇒


P1 = p1 − p4

P2 = p2 − p1

P3 = p3 − p2

P4 = p4 − p1

(2.48)

as it can be seen in Figure (2.3). The box diagram (2) can be found by crossing t ↔ u (P2 ↔ P3)
from the box (1).

P1 = p1 − p4

P4 = p4 − p3

P2 = p2 − p1

P3 = p3 − p2

Q1 = p4

Q2 = p1

Q3 = p2

Q4 = p3

vs.

P4 = p2

P1 = p1

P3 = −p4

P2 = −p3Q2 = −p1

Q1 = 0

Q4 = p2

Q3 = p3 − p1

Figure 2.3: Internal vs. external momenta convention.

At one-loop, we can always shift the loop-momentum, such that we can absorb one of the internal
momenta. This is equivalent to set one internal momentum to zero. We choose p4 = 0, therefore

p2
1 = p2

3 = 0, p2
2 = t̂,

(p1 · p2) = −
t̂−m2

H1

2
, (p2 · p3) = −

t̂−m2
H2

2
, (p1 · p3) = − ŝ

2
.

(2.49)

Instead of using the standard Feynman parametrization of the whole denominator, we can notice
that if we parametrize only two propagators:

1

D0Dn
1

=

∫ 1

0
dx

xn−1

[D0x+D1(1− x)]n+1
, (2.50)

the integration boundary already is the interval [0, 1]. Exploiting this relation, we can recursively
apply this parametrization to avoid the explicit change of variables with maps the general boundaries
into the unit 3-cube. Applying this knowledge to the planar box diagram, we obtain the following
integral:

D′0 = D0, D′i+1 = Di+1(1− xi) +D′ixi

=⇒
∫
k

1

D0D1D2D3
= Γ(4)

∫ 1

0
dx(x2x

2
3)

∫
k

1

[D′3]4
.

(2.51)

The D′3 is quadratic in the loop momentum, and it can be expressed in terms of the general
variables defined in the previous section:

det[J(g)] = x2x
2
3, qµ1 = pµ1x1x2x3 + pµ2x3(1− x2) + pµ3 (1− x3)

M2
1 = m2

t − p2
2(1− x2)x3,

(2.52)

and

∆1 = 1− p2
2

m2
t

(1− x2)x3 +
q2

1

m2
t

. (2.53)

Of course, this procedure is equivalent to the standard parametrization where a particular change of
variable g : C → [0, 1]3 with Jacobian det[J(g1)] = x2x

2
3 is performed: applying the parametrization

to all four propagators, we arrive at the following structure

det[J(g1)] = x2x
2
3, qµ1 = pµ1x1x2x3 + pµ2x2(1− x1) + pµ3 (1− x2)

M2
1 = m2

t − p2
2(1− x1)x2,

(2.54)
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where we used the following transformation

g1 : C → [0, 1]3, g1(x) =

x2(1− x1)
(1− x2)
x1x2x3

 , det [J(g1)] = x2
2x1. (2.55)

Of course, it is exactly the previous transformation with the exchange of the variables names x1 → x2,
x2 → x3 and x3 → x1.

A simpler option will be using the external momenta conventions. This will bring the integrals in
a more compact form: 

P1 = p1

P2 = −p3

P3 = −p4

P4 = p2

=⇒


Q1 = 0

Q2 = −p1

Q3 = p3 − p1

Q4 = p2

,

p2
1 = p2

2 = 0, p2
3 = m2

H1
, p2

4 = m2
H2

p1 · p2 =
ŝ

2
, p1 · p3 = −

t̂−m2
H1

2
, p2 · p3 = −

û−m2
H1

2
.

(2.56)

The momentum conservation implies the following kinematic relation:

2p1 · p2 − 2p1 · p3 − 2p2 · p3 = m2
H2
−m2

H1
. (2.57)

The new momentum flow yields a different expression for the (corresponding) integrals. Of course,
the diagram is completely parametrization-independent, hence it will lead to the same final result.

We define the dimensionless variables:

ρs =
ŝ

m2
t

=
2(p1 · p2)

m2
t

, ρt =
t̂

m2
t

=
p2

3 − 2(p1 · p3)

m2
t

,

ρu =
û

m2
t

=
p2

3 − 2(p2 · p3)

m2
t

, ρ1 =
m2
H1

m2
t

=
p2

3

m2
t

, ρ2 =
m2
H2

m2
t

=
p2

4

m2
t

ρ̂t = −2(p1 · p3)

m2
t

, ρ̂u = −2(p2 · p3)

m2
t

.

(2.58)

The general variables defined in the previous section in the external momentum convention are:

g1 : C → [0, 1]3, g1(x) =

(1− x1)(1− x3)
x1x2

x1(1− x3)

 , det[J(g1)] = x1(1− x1),

qµ1 = −(1− x1)pµ1 + x1x2p
µ
2 + (1− x1)x3p

µ
3 ,

M2
1 = m2

t + (1− x1)x32(p1 · p3)− (1− x1)x3m
2
H1
,

∆1 = 1− (1− x1)x1x2ρs − (1− x1)x1x3ρ̂t − (1− x1)x1x2x3ρ̂u − [1− (1− x1)x3](1− x1)x3ρ1

(2.59)

Numerator algebra

The Dirac algebra is needed to extract the tensor structure from the diagram. The numerator of the
Feynman diagram is:

Nµν
1 = Tr

[
γν (/k +mt) γ

µ
(
/k − /p1

+mt

)(
/k + /p3

− /p1
+mt

)(
/k + /p2

+mt

)]
(2.60)

We are interested in the tensors Aµν(p,x), Bµν(p,x) and Cµν(p,x) defined in the previous section.
Hence, after the evaluation of the Dirac trace, the shift of the loop-momentum and the integration
over the odd powers of the integrating momentum, we obtain:
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Cµν1 = −4(d− 2)gµν

d

Bµν1 =
4gµν

d

[
6m2

t − 2d(p1 · q1) + d(p2 · q1) + d(p3 · q1) + (d− 2)(p1 · p3)− d(p2 · p3)−

− 2(d+ 1)q2
1 + 2(p2 · q1)− 2(p3 · q1) + 2(p1 · p2) + 2(p2 · p3)

]
−

− 8pµ2p
ν
1

d
+

(
4− 8

d

)
pµ2p

ν
3 +

(
8

d
− 4

)
pµ3p

ν
1 −

4(d+ 2)

d
pµ2 q

ν
1 +

16

d
pν1q

µ
1 +

+

(
4− 8

d

)
pν3q

µ
1 +

(
4− 8

d

)
pµ3 q

ν
1 +

8(d+ 4)

d
qµ1 q

ν
1

Aµν1 = 4gµν
[
m4
t + 2m2

t (p1 · q1)−m2
t (p2 · q1)−m2

t (p3 · q1) + (p1 · p2)
(
p3 · q1 − 2m2

t

)
−

− (p1 · p3)
(
m2
t + p2 · q1 − q2

1

)
+m2

t (p2 · p3)− (p2 · p3)(p1 · q1)+

+ 2(p1 · q1)(p2 · q1) + q2
1(−2(p1 · q1) + p2 · q1 + p3 · q1 − p2 · p3)− (q2

1)2

]
+

+ pµ2p
ν
1

(
8m2

t − 4(p3 · q1)
)
− 4pµ3 q

ν
1

(
m2
t − 2(p1 · q1) + p1 · p2 − q2

1

)
+

+ 4pµ2 q
ν
1

(
m2
t − 2(p1 · q1) + p1 · p3 − q2

1

)
+ 4pµ3p

ν
1

(
m2
t + p2 · q1 − q2

1

)
−

− 4pν3q
µ
1

(
m2
t + 2(p2 · q1) + p1 · p2 − q2

1

)
+ 4pµ2p

ν
3

(
−m2

t + p1 · q1 + q2
1

)
+

+ 8qµ1 q
ν
1

(
3m2

t + 2(p1 · q1)− 2(p3 · q1)− p1 · p3 + p2 · p3 + q2
1

)
+ 4(p2 · p3)pν1q

µ
1 .

(2.61)

Notice that these tensors do not depend on the four-vectors pµ1 and pν2 , since they are contracted
with the on-shell polarizations εµ(p1) and εν(p2), which are orthogonal with respect to their momenta:

ε(pj) · pj = 0. (2.62)

Moreover, after the calculation of the missing box diagram, the complete tensor coefficient Cµν(p,x)
will turn to be proportional to ε.

P4 = p2

P1 = p1

P3 = −p4

P2 = −p3

Q1 = −p3 Q3 = −p1

Q2 = 0

Q4 = p2 − p3

Figure 2.4: External momenta convention

Applying the same procedure for the box (3) (see Fig. (2.2)), the external momentum convention
(Fig. (2.4)) yields 

P1 = p1

P2 = −p3

P3 = −p4

P4 = p2

=⇒


Q1 = −p3

Q2 = 0

Q3 = −p1

Q4 = p2 − p3

. (2.63)

The change of variables required with this setting is

g2 : C → [0, 1]3, g2(x) =

(1− x1)(1− x3)
x1x2

x1(1− x3)

 , det[J(g2)] = x1(1− x1), (2.64)
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and completing the square, we obtain the shift qµ2 and the tadpole-mass term ∆2:

qµ2 = −x1x2p
µ
1 + x3(1− x1)pµ2 − pµ3 (1− x1)

M2
2 = m2

t + x3(1− x1)(2p2 · p3)− (1− x1)m2
H1

∆2 = 1− x1(1− x1)[x2ρ̂t + x3ρ̂u + x2x3ρs + ρH1 ].

(2.65)

Finally, the numerator algebra will provide the tensor coefficients needed by the master formula
Eq. (2.39).

Nµ
2 = Tr

[
γν(/k − /p3

+mt)(/k +mt)γ
µ(/k − /p1

+mt)(/k + /p2
− /p3

+mt)
]

(2.66)

Cµν2 = 4gµν

Bµν2 =
4gµν

d

[
− 2

[
(d− 4)m2 + p2 · q3 − 2(p3 · q3) + p2

3 − p2 · p3 − 2q2
3

]
+ (d+ 2)(p1 · q3)+

+ d
(
−p2 · q3 + 2

(
p3 · q3 + q2

3

)
+ p2

3 − (p2 · p3)
)
− d(p1 · p2) + 4(p1 · p3)

]
+

+

(
4− 8

d

)
pµ2p

ν
3 −

16

d
pµ3p

ν
1 +

(
16

d
− 8

)
pµ3p

ν
3 +

(
8

d
+ 4

)
pµ2 q

ν
3 −

4(d+ 2)

d
pν1q

µ
3 +

+
8(d+ 2)

d
pν3q

µ
3 −

8(d+ 2)

d
pµ3 q

ν
3 + 4pµ2p

ν
1

Aµν2 = 4gµν
[
m4
t +m2

t (p2 · q3)− 2m2
t (p3 · q3)− q2

3

(
2m2

t + p2 · q3 − 2(p3 · q3)− p2
3 + p2 · p3

)
−

− (p1 · p2)
(
m2
t + p3 · q3 + q2

3

)
+ (p1 · q3)

(
−m2

t + 2(p3 · q3) + p2
3 − p2 · p3 + q2

3

)
−

−m2
tp

2
3 +m2

t (p2 · p3) + (p1 · p3)(p2 · q3) + (q2
3)2

]
+

+ 8qµ3 q
ν
3

(
4m2

t − p2
3 + p1 · p3 + p2 · p3

)
+ 4pµ3 q

ν
3

(
2m2

t − 2(p1 · q3) + p1 · p2 − 2q2
3

)
−

− 4pµ2 q
ν
3

(
m2
t + p1 · p3 − q2

3

)
+ 8pµ3p

ν
3

(
m2
t − p1 · q3 − q2

3

)
+ 4pµ2p

ν
1

(
m2
t + p3 · q3 + q2

3

)
+

+ 4pν1q
µ
3

(
m2
t − 2(p3 · q3)− p2

3 + p2 · p3 − q2
3

)
+ 4pµ2p

ν
3

(
−m2

t + p1 · q3 + q2
3

)
+

+ pν3q
µ
3

[
8
(
3m2

t − p2 · q3 + 2(p3 · q3) + p1 · p3 + q2
3

)
− 4(p1 · p2)

]
− 4pµ3p

ν
1(p2 · q3).

(2.67)

Summing the diagrams

The box-like contribution to the leading order cross section is the sum of the box diagrams considered
in the previous subsection:

Mµν,ab
� = 2

 + +

 , (2.68)

which lead to the following d-dimensional tensor-structure:

Mµν,ab
� = −2

iαs
(4π)

m2
t

v2
Y1Y2Tr[T aT b]

(
4πµ2

m2
t

)ε
Γ (1 + ε)×

×
∫ 1

0

dx

{
det [J(g1)]

[
(1 + ε)

(m2
t )

2

Aµν1

∆2+ε
1

− (2− ε)
m2
t

Bµν1

∆1+ε
1

+
(2− ε) (3− ε)

ε

Cµν1

∆ε
1

]
+

det [J(g1)]

[
(1 + ε)

(m2
t )

2

Aµν1

∆2+ε
1

− (2− ε)
m2
t

Bµν1

∆1+ε
1

+
(2− ε) (3− ε)

ε

Cµν1

∆ε
1

]∣∣∣∣
t↔u

+

det [J(g2)]

[
(1 + ε)

(m2
t )

2

Aµν2

∆2+ε
2

− (2− ε)
m2
t

Bµν2

∆1+ε
2

+
(2− ε) (3− ε)

ε

Cµν2

∆ε
2

]}
.

(2.69)
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A first check on its finiteness is needed, such that the ε-expansion may lead to a meaningful
physical quantity. The ε divergent part is proportional to the tensor Cµν(p,x):

Mµν,ab
� |A,B=0 = −2

iαs
(4π)

m2
t

v2
Y1Y2Tr[T aT b]

(
4πµ2

m2
t

)ε
Γ (1 + ε)×∫ 1

0

dx det [J(g)]
(2− ε) (3− ε)

ε

{
Cµν1

∆ε
1

+
Cµν1

∆ε
1

∣∣∣∣
t↔u

+
Cµν2

∆ε
2

}
.

(2.70)

since g1 = g2 = g, as noticeable from the calculation of the single diagrams. The expansion of the
integrand up to its finite term yields:

Mµν,ab
� |A,B=0 ∝ gµν

∫ 1

0

dx det [J(g)]

(
6

ε
− 5 + ε

)
×

×
{
− 4(1− ε)

2− ε [2− ε log(∆1∆̃1) +O(ε2)] + 4[1− ε log(∆2) +O(ε2)]

}

= gµν
∫ 1

0

dx det [J(g)]

(
6

ε
− 5 + ε

)
×

×
{
− 2(1− ε)

(
1 +

ε

2

)
[2− ε log(∆1∆̃1)] + 4[1− ε log(∆2)] +O(ε2)

}

= gµν
∫ 1

0

dx det [J(g)]

(
6

ε
− 5 + ε

)
2ε

[
1 + log

(
∆1∆̃1

∆2
2

)]
+O(ε2)

= gµν
∫ 1

0

dx det [J(g)]

(
6

ε
− 5 + ε

)[
2ε

(
1 + log

(
∆1∆̃1

∆2
2

))
+O(ε2)

]

= 12gµν
∫ 1

0

dx det [J(g)]

[
1 + log

(
∆1∆̃1

∆2
2

)]
+O(ε),

(2.71)

which is finite in ε, as expected. Here, ∆̃1 = ∆1|t↔u and from now on, the tilde variables will denote
the switch t↔ u, which implies p3 → p1 + p2 − p3.

Hence, since the contributions proportional to Aµν(p,x) and Bµν(p,x) are already finite in ε, the
complete expansion will be finite, and it reads:

Mµν,ab
� = −2

iαs
(4π)

m2
t

v2
Y1Y2Tr[T aT b]

(
4πµ2

m2
t

)ε
Γ (1 + ε)×

×
∫ 1

0

dx det [J(g)]

{
12gµν

[
1 + log

(
∆1∆̃1

∆2

)]
+

1

(m2
t )

2

(
Aµν1

∆2
1

+
Ãµν1

∆̃2
1

+
Aµν2

∆2
2

)∣∣∣∣∣
ε=0

+

− 2

m2
t

(
Bµν1

∆1
+
B̃µν1

∆̃1

+
Bµν2

∆2

)∣∣∣∣∣
ε=0

}
+O(ε).

(2.72)

We first present the case where the top-quark mass is considered to be heavy (mt →∞), which can
be solved analytically in a very compact form. Later, we show how a numerical approach for the LO
amplitude can be exploited.

Heavy top limit

The heavy top limit mt →∞ provides us with a first analytical expression to handle. Before writing
explicitly the top-mass expansion of tadpole masses and tensors, we can express these expansions
symbolically:

1

∆i
∼mt→∞ 1 +

δi
m2
t

+O

(
1

m4
t

)
,

Aµνi ∼mt→∞ aµνi,(−2)m
4
t + aµνi,(−1)m

2
t +O(1),

Bµν
i ∼mt→∞ bµνi,(−1)m

2
t + bµνi,(0) +O

(
1

m2
t

)
.

(2.73)
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Therefore, the Eq. (2.72) reads:

Mµν,ab
� = −2

iαs
(4π)

m2
t

v2
Y1Y2Tr[T aT b]

(
4πµ2

m2
t

)ε
Γ (1 + ε)×

×
∫ 1

0

dx det [J(g)]

{
12gµν

[
1 +

2δ2 − δ1 − δ̃1
m2
t

+O

(
1

m4
t

)]
+

+
1

(m2
t )

2

([
aµν1,(−2) + ãµν1,(−2) + aµν2,(−2)

]
m4
t+

+

[
aµν1,(−1) + ãµν1,(−1) + aµν2,(−1)+

+ 2aµν1,(−2)δ1 + 2ãµν1,(−2)δ̃1 + 2aµν2,(−2)δ2

]
m2
t +O(1)

)
−

− 2

m2
t

([
bµν1,(−1) + b̃µν1,(−1) + bµν2,(−1)

]
m2
t+

+

[
bµν1,(0) + b̃µν1,(0) + bµν2,(0)+

+ b̃µν1,(−1)δ̃1 + bµν1,(−1)δ1 + bµν2,(−1)δ2

]
+O

(
1

m2
t

))}
+O(ε) =

= −2
iαs
(4π)

m2
t

v2
Y1Y2Tr[T aT b]

(
4πµ2

m2
t

)ε
Γ (1 + ε)×

×
∫ 1

0

dx det [J(g)]

{
12gµν +

[
aµν1,(−2) + ãµν1,(−2) + aµν2,(−2)

]
−

− 2
[
bµν1,(−1) + b̃µν1,(−1) + bµν1,(−1)

]
+

+
1

(m2
t )

(
12gµν(2δ2 − δ1 − δ̃1)+

+

[
aµν1,(−1) + ãµν1,(−1) + aµν2,(−1)+

+ 2aµν1,(−2)δ1 + 2ãµν1,(−2)δ̃1 + 2aµν2,(−2)δ2

]
− 2

[
bµν1,(0) + b̃µν1,(0) + bµν2,(0)+

+ b̃µν1,(−1)δ̃1 + bµν1,(−1)δ1 + bµν2,(−1)δ2
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+O

(
ε,

1

m2
t

)
.

(2.74)

Since the Yukawa vertices contributes with an m2
t , the integrand has to scale with 1

m2
t

to ensure the

finiteness of the heavy top-quark limit. The implication of this is that the sum of the leading term of
each expanded quantity has to vanish:

12gµν +
[
aµν1,(−2) + ãµν1,(−2) + aµν2,(−2)

]
− 2

[
bµν1,(−1) + b̃µν1,(−1) + bµν1,(−1)

]
= 0. (2.75)

From the explicit mass expansion, we obtain

aµν1,(−2) = ãµν1,(−2) = aµν2,(−2) = 4gµν

bµν1,(−1) = b̃µν1,(−1) = 6gµν , bµν2,(−1) = 0,
(2.76)
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which satisfies the Eq. (2.75). Hence:

Mµν,ab
� = −2

iαs
(4π)

Y1Y2

v2
Tr[T aT b]

(
4πµ2

m2
t

)ε
Γ (1 + ε)×

×
∫ 1

0

dx det [J(g)]

{
16gµν(2δ2 − δ1 − δ̃1)+

+

[
aµν1,(−1) + ãµν1,(−1) + aµν2,(−1)

]
− 2

[
bµν1,(0) + b̃µν1,(0) + bµν2,(0)

]}
+O

(
ε,

1

m2
t

)
.

(2.77)

The explicit expressions for the subleading terms needed are:

bµν1,(0) = 2gµν
[
− 4(p1 · q1) + 3(p2 · q1) + (p3 · q1) + (p1 · p2)−

+ (p1 · p3)− (p2 · p3)− 5q2
1

]
−

− 2pµ2p
ν
1 + 2pµ2p

ν
3 − 2pµ3p

ν
1 − 6pµ2 q

ν
1 +

+ 4pν1q
µ
1 + 2pν3q

µ
1 + 2pµ3 q

ν
1 + 16qµ1 q

ν
1 ,

bµν2,(0) = 2gµν
[
3(p1 · q3)− 3(p2 · q3) + 6

(
p3 · q3 + q2

3

)
+

+ p2
3 − 2(p1 · p2) + 2(p1 · p3)− p2 · p3

]
+

+ 4pµ2p
ν
1 + 2pµ2p

ν
3 − 4pµ3p

ν
1 − 4pµ3p

ν
3+

+ 6pµ2 q
ν
3 − 6pν1q

µ
3 + 12pν3q

µ
3 − 12pµ3 q

ν
3 ,

aµν1,(−1) = −4gµν
[
− 2(p1 · q1) + p2 · q1 + p3 · q1+

+ 2(p1 · p2) + p1 · p3 − p2 · p3

]
+

+ 8pµ2p
ν
1 − 4pµ2p

ν
3 + 4pµ3p

ν
1 + 4pµ2 q

ν
1−

− 4pν3q
µ
1 − 4pµ3 q

ν
1 + 24qµ1 q

ν
1 ,

aµν2,(−1) = −4gµν
[
(p1 · q3)− (p2 · q3) + 2

(
p3 · q3 + q2

3

)
+

+ p2
3 + p1 · p2 − p2 · p3

]
+

+ 4pµ2p
ν
1 − 4pµ2p

ν
3 + 8pµ3p

ν
3 − 4pµ2 q

ν
3 +

+ 4pν1q
µ
3 + 24pν3q

µ
3 + 8pµ3 q

ν
3 + 32qµ3 q

ν
3 .

(2.78)

The complete analytical expression for the heavy top-quark limit is obtained by integrating w.r.t.
the Feynman parameters (x1, x2, x3). After doing this, the final expression is very compact:

Mµν,ab
� = −2

iαs
(4π)

Y1Y2

v2
Tr[T aT b]

(
4πµ2

m2
t

)ε
Γ (1 + ε)

4

3

[
pµ2p

ν
1 − (p1 · p2)gµν

]
= i

αs
3πv2

Y1Y2δ
abCε

[
(p1 · p2)gµν − pµ2pν1

]
.

(2.79)

This last result can also be interpreted as a ggHiHj effective vertex for the low-energy lagrangian:

= i
αs

3πv2
Y1Y2δ

ab

(
4πµ2

m2
t

)ε
Γ (1 + ε)

[
(p1 · p2)gµν − pµ2pν1

]
. (2.80)

2.2.4 LO amplitude in the Heavy top limit

The sum of Eq. (2.27) and Eq. (2.80) leads to the HTL LO amplitude. It has a very simple expression:

MHTL
LO = −i αs

3πv2
δab
√
κ

(
4πµ2

m2
t

)ε
Γ (1 + ε)

[
(p1 · p2)gµν − pµ2pν1

]
,

√
κ =

∑
j

(
3Yjλj12

ŝ−m2
Hj

+ imHjΓ(m2
Hj

)

)
− Y1Y2,

(2.81)
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where the factor κ encodes the explicit dependence on the parameters of the model.

The averaged square amplitude will depends only on the Higgs-pair invariant mass
√
ŝ, and it

takes the following form:

1

256

∑
pol

|MLO|2 =
α2
s

(4π)2v4

κ

64

4

9
ŝ2. (2.82)

This result is in complete agreement with the literature [32, 54].

2.3 Projecting onto the Lorentz structure

The necessity of knowing ε-expansion terms up to the second order leads to consider a different
strategy for the finite top-mass calculation.

Following the same spirit of the calculation of the gg∗ → H amplitude, we can infer the Lorentz
structure behind the process and project the amplitude onto them. The form factors thus generated
can be expressed in terms of scalar integrals by means of the Passarino-Veltmann decomposition [149].

A process involving two gluons and two scalar particles can be decomposed following the tensor
structure

Tµν = a00g
µν +

3∑
i,j=1

aijp
µ
i p

ν
j . (2.83)

A relation between the coefficients aij can be found by imposing the transversality of the on-shell
gluons and the Ward identities (Appendix B):

p1,µε
µ(p1) = p2,νε

ν(p1) = 0,

p1,µT
µν = p2,νT

µν = 0.
(2.84)

These conditions will fix the tensor structure to be generated by two tensors Tµν1 and Tµν2 :

Tµν1 = gµν − pµ2p
ν
1

p1 · p2
,

Tµν2 = gµν +
p2

3p
µ
2p

ν
1 − 2(p2 · p3)pµ1p

ν
3 − 2(p1 · p3)pµ2p

ν
3 + 2(p1 · p2)pµ3p

ν
3

(p1 · p2)p2
T

p2
T =

2(p1 · p3)(p2 · p3)

(p1 · p2)
− p2

3,

(2.85)

which are orthogonal in d = 4. However, in d-dimensions the contraction over the tensor indices is

Tµνi Ti,µν = d− 2, T1,µνT
µν
2 = d− 4 (2.86)

The projectors Pµνi on a tensor Tµνi can be found by imposing the following conditions:

Pµνi Tj,µν = δij =⇒

P1 =
(d−2)Tµν1 −(d−4)Tµν2

4(d−3)

P2 =
(d−2)Tµν2 −(d−4)Tµν1

4(d−3)

(2.87)

The expression of the complete LO amplitude of Eq. (2.22) projected onto form factors is:

MLO = εµ(p1)εν(p2)(Mµν,ab
∆ +Mµν,ab

� )

= εµ(p1)εν(p2)
[(
F

(0)
∆ + F

(0)
1

)
Tµν1 + F

(0)
2 Tµν2

]
,

(2.88)

which can be expressed in terms of scalar integrals. The Passarino-Veltmann decomposition for the
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triangles will lead to:

F
(0)
∆ = −(−igs)2(i)4

(
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[
T aT b
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A(0)
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3Yjλj12

ŝ−m2
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Hj
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(2.89)

where the explicit expression for A(0)
∆ is

A(0)
∆ = 4Cε

[
(d− 4)

(d− 2)
B0(ŝ,m2

t )−
(

4m2
t

d− 2
− ŝ

2

)
C0(0, 0, ŝ,m2

t )

]
. (2.90)

where

Cε =
(m2

t )
ε

Γ(1 + ε)
. (2.91)

The Passarino-Veltmann decomposition of the box form factors leads to more complex expressions:

F
(0)
j = −(−igs)2(i)4

(
2Tr

[
T aT b

]) i

(4π)2

(
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j
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j ,

A(0)
j =
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l=1

Pµνj

∫
k

Njl,µν
Djl

, j ∈ (1, 2),

(2.92)

where the index j runs over the three independent box diagrams (Figure 2.2).
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A(0)
1 = −
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+ ŝ(d− 4)(t̂2 − 8m2
t t+m2

H1
m2
H2

)
]
+

+ C0

(
0,m2

H1
, û,m2

t

) (û−m2
H1

)
ŝ

[
(d− 2)(m2

H1
m2
H2
− t̂û)(m2

H1
+m2

H2
− 8m2

t )+

+ ŝ(d− 4)(û2 − 8m2
t û+m2

H1
m2
H2

)
]
+

+ C0

(
0, t̂,m2

H2
,m2

t

) (t̂−m2
H2

)
ŝ

[
(d− 2)(m2

H1
m2
H2
− t̂û)(m2

H1
+m2

H2
− 8m2

t )+

+ ŝ(d− 4)(t̂2 − 8m2
t t+m2

H1
m2
H2

)
]
+

+ C0

(
0, û,m2

H2
,m2

t

) (û−m2
H2

)
ŝ

[
(d− 2)(m2

H1
m2
H2
− t̂û)(m2

H1
+m2

H2
− 8m2

t )+

+ ŝ(d− 4)(û2 − 8m2
t û+m2

H1
m2
H2

)
]
+

− C0

(
ŝ,m2

H1
,m2

H2
,m2

t

)
(d− 4)

(
t̂+ û− 8m2

t

) (
(t̂+ û)2 − 4m2

H1
m2
H2

)
+

−D0

(
0, 0,m2

H1
,m2

H2
, ŝ, t̂,m2

t

)[
4m2

t [2(d− 3)ŝ+ t̂+ û− 8m2
t ](m

2
H1
m2
H2
− t̂û)+

+ (d− 4)ŝt2(t̂+ û− 8m2
t )
]
+

−D0

(
0, 0,m2

H1
,m2

H2
, ŝ, û,m2

t

)[
4m2

t [2(d− 3)ŝ+ t̂+ û− 8m2
t ](m

2
H1
m2
H2
− t̂û)+

+ (d− 4)ŝû2(t̂+ û− 8m2
t )
]
+

−D0

(
0,m2

H1
, 0,m2

H2
, t̂, û,m2

t

)[
4m2

t

(
2(d− 3)ŝ+ t̂+ û− 8m2

t

) (
m2
H1
m2
H2
− t̂û

)
−

− (d− 2)

(
m2
H1

+m2
H2
− 8m2

t

ŝ

)(
m2
H1
m2
H2
− t̂û

)2−
− (d− 4)

(
m2
H1
m2
H2
− t̂û

)2]]}
,

(2.93)
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A(0)
2 = − 1

2(d− 3)(m2
H1
m2
H2
− t̂û)

{
− C0

(
0, 0, ŝ,m2

t

)
ŝ
[
4(d− 3)(m2

H1
m2
H2
− t̂û) + (d− 2)(t̂+ û)(t̂+ û− 8m2

t )
]

+

− C0

(
0,m2

H1
, t̂,m2

t

) (t̂−m2
H1

)
ŝ

[
(d− 4)(m2

H1
m2
H2
− t̂û)(m2

H1
+m2

H2
− 8m2

t )+

+ ŝ(d− 2)(t̂2 − 8m2
t t̂+m2

H1
m2
H2

)
]
+

− C0

(
0,m2

H1
, û,m2

t

) (û−m2
H1

)
ŝ

[
(d− 4)(m2

H1
m2
H2
− t̂û)(m2

H1
+m2

H2
− 8m2

t )−

+ ŝ(d− 2)(û2 − 8m2
t û+m2

H1
m2
H2

)
]
+

− C0

(
0, t̂,m2

H2
,m2

t

) (t̂−m2
H2

)
ŝ

[
(d− 4)(m2

H1
m2
H2
− t̂û)(m2

H1
+m2

H2
− 8m2

t )+

+ ŝ(d− 2)(t̂2 − 8m2
t t̂+m2

H1
m2
H2

)
]
+

− C0

(
0, û,m2

H2
,m2

t

) (û−m2
H2

)
ŝ

[
(d− 4)(m2

H1
m2
H2
− t̂û)(m2

H1
+m2

H2
− 8m2

t )−

+ ŝ(d− 2)(û2 − 8m2
t û+m2

H1
m2
H2

)
]
+

+ C0

(
ŝ,m2

H1
,m2

H2
,m2

t

)
(4− d)

(
t̂+ û− 8m2

t

) [
(t̂+ û)2 − 4(m2

H1
m2
H2
− t̂û)

]
+

+D0

(
0, 0,m2

H1
,m2

H2
, ŝ, t̂,m2

t

)[
− 4m2

t (t̂+ û− 8m2
t )(m

2
H1
m2
H2
− t̂û)+

+ (d− 4)ŝt̂(m2
H1
m2
H2
− t̂û)+

+ (d− 2)ŝt̂(t̂2 − 8m2
t t̂+m2

H1
mH2

)
]

−D0

(
0, 0,m2

H1
,m2

H2
, ŝ, û,m2

t

)[
− 4m2

t (t̂+ û− 8m2
t )(m

2
H1
m2
H2
− t̂û)+

+ (d− 4)ŝû(m2
H1
m2
H2
− t̂û)+

+ (d− 2)ŝû(û2 − 8m2
t û+m2

H1
mH2)

]
−D0

(
0,m2

H1
, 0,m2

H2
, t̂, û,m2

t

)
(t̂+ û− 8m2

t )

[
(d− 4)

(m2
H1
m2
H2
− t̂û)

ŝ
+ 4m2

t

]}
.

(2.94)

These expressions are finite in the physical limit d → 4. Details on the notation of these integrals
can be found in Appendix E. It is important to keep the d dependence since the divergences at NLO
develop second order poles, for which terms of the LO form factors up to O(ε2) are needed.

2.4 Leading-Order Cross section

As anticipated in the previous chapter, the total LO cross section is obtained by integrating the
partonic cross section along with the gluon luminosity:

σLO(pp→ gg → H1H2) =

∫ 1

τ0

dτ
dLgg
dτ

σ̂LO(ŝ = τs), τ0 =
(mH1

+mH2
)2

s

dLgg
dτ

=

∫ 1

τ

dx

x
fg (x, µF ) fg

(τ
x
, µF

)
.

(2.95)

Notice that the Higgs-pair invariant mass Q2 = (mH1
+mH2

)2, for the LO amplitude is equal to the
partonic center-of-mass, namely Q2 = ŝ. Same identity occurs for the virtual correction at NLO; this
fact is not true for the real corrections, for which Q2 = ŝ+ t̂+ û (see Chapter 3).

The explicit partonic cross section can be found by squaring Eq. (2.88), summing over the polar-
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ization vectors and integrating over the phase space:

σ̂LO(ŝ) = CfluxCsym

∫
dPS2|MLO|2

= CfluxCsymCav

∫
dPS2

[∣∣∣F (0)
∆ + F

(0)
1

∣∣∣2 +
∣∣∣F (0)

2

∣∣∣2] , (2.96)

where Cav takes into account the polarization average. More details on the phase space integration
can be found in Appendix C. Here, Csym = 1, since no identical particles lie in the final state, and
Cflux = 1

2ŝ .

σ̂LO(ŝ) =
1

(2ŝ)(256)

∫
dPS2

[∣∣∣F (0)
∆ + F

(0)
1

∣∣∣2 +
∣∣∣F (0)

2

∣∣∣2]
=

α2
s

(4π)2

G2
Fm

4
t

512πŝ2

∫ t+

t−
dt̂

[∣∣∣C∆A(0)
∆ + Y1Y2A(0)

1

∣∣∣2 +
∣∣∣Y1Y2A(0)

2

∣∣∣2] . (2.97)

The partonic transferred momentum square t̂ is related to the scattering angle θ in the following
way:

t̂ = − ŝ
2

(1− Σ− β cos θ), β =
√

1− 2Σ + ∆2

Σ =
m2
H1

+m2
H2

ŝ
, ∆ =

m2
H2
−m2

H1

ŝ

t̂± = − ŝ
2

(1− Σ∓ β)

(2.98)

The LO cross section has been extensively studied in the past decades [54, 130, 131], providing
a total cross section of the order of σLO ≈ 10 fb at

√
s = 14 TeV. As we will see later, the NLO

contributions are significant: HTL NLO is known to increase the total cross section of around a factor
2. Finite top-mass effects will decrease those contributions, as discussed in this thesis in Chapter 5.
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NLO Cross Section

In this section, we describe in detail the complete calculation for the virtual cross section ∆σ̂virt and
real cross section ∆σ̂real for the NLO Higgs-pair production via gluon fusion process. All the diagrams
under investigation are represented in Appendix H.

The virtual amplitude is made of two-loop Feynman diagrams, and it gets contributions from three
classes of diagrams: box diagrams, one-particle-reducible diagrams and triangle diagrams. The 47
box diagrams are grouped into six topologies: topology 1 consists of top-quark self-energy corrections
to the LO boxes; topologies 2 and 3 are the vertex corrections to the LO boxes, containing abelian
and non-abelian corrections respectively; topology 4 and 5 are respectively the planar and non-planar
double-boxes; topology 6 contains the genuine IR divergent two-loop boxes, both planar and non-
planar. The one-particle reducible diagrams can be constructed from the QCD Higgs production
via gluon fusion process where an external gluon is off-shell. For this amplitude, the analytical
expression has been found in Chapter 2. The triangle diagrams are the ones that contain the trilinear
Higgs coupling: they represent the diagrams carrying the signal of the detection of a Higgs-pair
final state produced by a Higgs-decay, while the other virtual amplitudes represent an irreducible
background. The 24 triangle diagrams can be grouped in the same way shown for the boxes: 6
top-quark propagator self-energies corrections to the LO triangle diagrams; 10 vertex corrections to
the LO triangle diagrams, both abelian and non-abelian; 4 non-planar triangles and 4 genuine IR
contributions. It is important to notice that the number of triangle diagrams of the 2HDM is doubled
with respect to the SM, since the off-shell Higgs can be either light (H1) of heavy (H2).

The real contributions are made of 43 one-loop diagrams where an additional parton is emitted
in the final state. There are three channels that contribute to the real cross section: qq̄ → H1H2g,
qg → H1H2q and gg → H1H2g. Most of the diagrams of the real amplitude can be built from the LO
amplitude where one external gluon is put off-shell. This feature will be relevant in the integration
over the phase space, where such subprocess can be integrated separately from the whole process
explicitly. The latter channel contains contributions coming from pentagon diagrams.

The calculation of the box diagrams represents the most challenging part of this thesis, and a
dedicated strategy to approach this part of the virtual amplitude will be presented.

3.1 Virtual contributions

Following the same form factor decomposition exploited to calculate the LO diagrams, we can conve-
niently project the amplitude on the Lorentz structure.

MNLO = εµ(p1)εν(p2)(1)(1)(Mµν,ab
∆ +Mµν,ab

� )

= εµ(p1)εν(p2)
[(
F

(1)
∆ + F

(1)
1

)
Tµν1 + F

(1)
2 Tµν2

] (3.1)

We are interested in the form factors F
(1)
j and F

(1)
∆ , that represent the core of the square amplitude:

the interference of these form factor with the LO ones are the NLO virtual contributions needed for
the partonic cross section.

37
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We start considering the form factor F
(1)
∆ , which gets contribution from the 12 triangle diagrams.

They represent a gauge invariant subset of diagrams which contain the triple Higgs coupling, and the
QCD corrections are completely localized into the single off-shell Higgs production, whose contribu-
tion is already known in literature to be a global factor multiplying the LO form factor. This last

observation tremendously simplifies the estimation of this form factor: F
(1)
∆ is completely determined

by the LO form factor F
(0)
∆ and a scalar factor C(ŝ) that has been implemented in specific routines

like HIGLU [150]. Therefore, the triangle form factors can be expressed as:

F
(1)
∆ = F

(0)
∆

[
1 +

αs
(4π)

C(ŝ)

]
. (3.2)

The form factors F
(1)
1 and F

(1)
2 get contributions from the double Yukawa gauge subset of diagrams,

which constitute the background process for the trilinear Higgs coupling. They constitute an extremely
relevant part of the cross section since they are proportional to the top-mass. We can start the
calculation factorizing the common factor that occur in each contribution:

F
(1)
j = −(−igs)4

(
i

(4π)2

)2 (
−imt

v

)2
Y1Y2

(
4πµ2

m2
t

)4−d
Γ2(1 + ε)δabA(1)

j

= − α2
s

(4π)2

m2
t

v2
δabY1Y2

(
4πµ2

m2
t

)2ε
Γ(1− ε)Γ(1 + ε)

Γ(1− 2ε)
A(1)
j ,

A(1)
j = C2

ε

Ndiags∑
l=1

Kcol
l Pµνj

∫
k

Njl,µν
Djl

= C2
ε

Ndiags∑
l=1

Kcol
l Ã

(1)
jl , j ∈ (1, 2).

(3.3)

The minus is related to the presence of closed fermion loops in each diagram; the δab is a common
factor that comes from the color algebra, and the additional factor due to color algebra is encoded
into Kcol

j ; at last, the Yukawa couplings represent a global factor. We also used the substitution:

Γ2(1 + ε) =
Γ(1− ε)Γ(1 + ε)

Γ(1− 2ε)
+O(ε3). (3.4)

With this setup, we have completely factorized out the common factors in the form factors F
(1)
j ,

and the two-loop contributions are contained in Ã(1)
jl . For simplicity, when we refer to the form factors

of single diagrams, we will have in mind Ã(1)
jl , with diagram number l.

3.1.1 One-particle reducible diagrams

There are eight one-particle-reducible diagrams which contribute both to F
(1)
1 and F

(1)
2 . These dia-

grams can be absorbed into a single contribution and its crossing.
The one-particle-reducible diagram under investigation can be evaluated by exploiting the one-

loop gg∗ → Hj diagram. Since it is easier to express this contribution starting from the amplitude,
we will extract the form factors from the following form:

M1-PR =

1-loop

1-looppµ1

pν2

p3

p4

=Mµρ,ac
ggH1

(p1, p3 − p1)
−iδcdgρσ
(p3 − p1)2

Mνσ,bd
ggH2

(p2, p1 − p3). (3.5)
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Since we already know the analytical expression of the LO QCD single-Higgs production via gluon
fusion amplitude, we can use it to infer the form factor ofM1-PR. To simplify the expression, we can
make use of the kinematic variables and the momentum conservation:

M1-PR = − iα2
s

(4π)2

m2
t

v2
Y1Y2δ

ab 16I(τ1, λt)I(τ2, λt)

m2
t (p1 − p3)2

[(p1 · q31)gµσ − qµ31p
σ
1 ] [p2 · q31g

ν
σ − qν31p2,σ]

= − iα2
s

(4π)2

m2
t

v2
Y1Y2δ

ab 16I(τ1, λt)I(τ2, λt)

m2
t (p1 − p3)2

[(p1 · p3)gµσ − pµ3pσ1 ] [(p2 · p4)gνσ − pν4p2,σ]

= − iα2
s

(4π)2

m2
t

v2
Y1Y2δ

ab 16I(τ1, λt)I(τ2, λt)

m2
t (p1 − p3)2

Mµν , with

Mµν = [(p1 · p3)(p2 · p4)gµν − (p2 · p4)pµ3p
ν
1 − (p1 · p3)pν4p

µ
2 + (p1 · p2)pν4p

µ
3 ] ,

(3.6)

where we exploited momentum conservation p1 + p2 = p3 + p4 to obtain a more compact expression.
Note that I(τ2, λ) is the function that contains the loop-integrals, and it is already finite: the

projection ofM1-PR onto the Lorentz tensors can be performed in d = 4. The explicit expressions for
the tensors have been shown in Eq. (2.85). Then, we have

Pµνj =
1

2
Tµνj . (3.7)

The projection of Mµν onto the tensor Tµν1 yields

Pµν1 Mµν =
1

2
[(p1 · p3)(p2 · p4) + (p1 · p2)(p3 · p4)− (p1 · p4)(p2 · p3)]

= −1

2
(p1 − p3)2(p1 · p2),

(3.8)

and, recalling the structure of the amplitude given in Eq. (3.3), the first form factor for the one-
particle-reducible graphs is:

Ã(1)
1,1PR = −i [4I(τ1, λt)I(τ2, λt) + 4I(τ1, λu)I(τ2, λu)] ρs, (3.9)

where we have taken into account the t̂→ û crossed diagram as well.
The second projection of Mµν gives us:

Pµν2 Mµν =
1

2
[(p1 · p3)(p2 · p4)− (p1 · p2)(p3 · p4) + (p1 · p4)(p2 · p3)]

= −1

2
p2
T (p1 · p2)

(3.10)

and the second form factor is:

Ã(1)
2,1PR = −i

[
4I(τ1, λt)I(τ2, λt)

(
ρtρu − ρ1ρ2

ρt

)
+ 4I(τ1, λu)I(τ2, λu)

(
ρtρu − ρ1ρ2

ρu

)]
. (3.11)

These form factors represent the total contribution of the one-particle-reducible diagrams, which
is thus known analytically.

3.1.2 Two-loop box diagrams

The two-loop box diagrams represent the challenging part of this calculation. It involves two-loop
diagrams with five scale parameters. Since a reduction strategy is prohibitive for such process, we
will approach the calculation with the same spirit we have presented the LO amplitude. In order to
show the calculation algorithm we have used, we present its application on two specific boxes.

Consider the Box 15 (Fig. 3.1). We fix the external momentum convention and a specific change
of variables for the Feynman parameters suited on this particular diagram1. Of course, Box 15

1It is possible to extend this setup for the whole set of diagrams belonging to the same topology, by mixing the
internal and external momentum approaches. We can fix a routing for the whole topology and modify the external
momenta according to it.
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k1
k2

pµ1

pν2

p3

p4

Figure 3.1: External momentum convention for Box 15.

contributes both to F
(1)
1 and F

(1)
2 , but the approach is unified for both projections. The explicit

expression for the j-th form factor contribution of Box 15 is:

Ãj,15 = (i)6(−i)Ij,15

= iIj,15,

Ij,15 = Pµνj

∫
k1,k2

1

k2
2

Tr[∆t(k1)γµ∆t(k1 − p1)γσ∆t(k1 + k2 − p1)∆t(k1 + k2 − p1 + p3)×

× γσ∆t(k1 − p1 + p3)∆t(k1 + p2)γν ],

∆t(q) =
(/q +mt)

q2 −m2
t

(3.12)

From now on, we will call Ij,15 a form factor, since it differs from Â(1)
j,15 only by a constant term.

The Ij,15 has the usual structure of a Feynman integral, but this time we do not apply a reduction
algorithm, since the complexity of the process with the full top-mass dependence makes the reduction
a prohibitive task. At the state-of-the-art, the IBP reduction has been made possible by considering
the Standard Model Higgs-pair production with fixed ratio between top and Higgs mass. Our aim is
to keep the full-mt dependence along the whole calculation. Hence, we follow a numerical strategy,
applying the same procedure we have shown in Section (2.2.2).

After expanding the numerator of Eq. (3.12), it can be written as:

Ij,15 =

∫
k1,k2

Nj,15(k1, k2)

D1D2D3D4D5D6D7
(3.13)

where

D1 = k2
1 −m2

t ,

D2 = (k1 + k2 − p1 + p3)2 −m2
t ,

D3 = (k1 + k2 − p1)2 −m2
t ,

D4 = (k1 − p1 + p3)2 −m2
t ,

D5 = (k1 − p1)2 −m2
t ,

D6 = (k1 + p2)2 −m2
t ,

D7 = k2
2.

(3.14)

The Feynman parametrization of Iµνj,15 has to be applied on each subset of propagators depending
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on k1 and k2 subsequentially. The quantities involved in the Feynman parametrization are given by

Ij,15 = Γ(6)

∫
k2

1

D7

∫ 1

0

dx5 det[J(g15)]

∫
k1

Nj,15(k1 − q15,1, k2)

(k2
1 − q2

15,1 −M2
15,1)6

,

g15 : C → [0, 1]5, g15(x) =


x2(1− x1)

(1− x1)(1− x2)
x1(1− x3)x4

x1(1− x3)(1− x4)
x1x3x5

 , det[J(g15)] = x3
1(1− x1)x3(1− x3),

q15,1 = (1− x1)k2 − (1− x1x3)p1 + p2x1x3x5 + [(1− x1)x2 + x1(1− x3)x4]p3,

M2
15,1 = m2

t + 2(1− x1)(k2 · p1)− 2(1− x1)x2(k2 · p3)− k2
2(1− x1)+

− t̂[(1− x1)x2 + x1(1− x3)x4],

q2
15,1 +M2

15,1 = m2
t − k2

2(1− x1)x1 + 2x1(1− x1)k2 · {x3p1 − x3x5p2 + [x2 − (1− x3)x4]p3}−
− t̂x1x3[(1− x1)x2 + x1(1− x3)x4]− ûx1x3x5[(1− x1)x2 + x1(1− x3)x4]−
− sx1x3x5(1− x1x3)−m2

H1
[(1− x1)x2 + x1(1− x3)x4][1− (1− x1)x2 − x1(1− x3)x4].

(3.15)

The integration over k1 involves rank-6 tensors, and the following identities are needed for factor-
izing the tensor structures of solely loop momenta:

∫
k

kµkν(k2)α

k2 −M2
=
gµν

d

∫
k

(k2)α+1

k2 −M2
,∫

k

kµkνkρkσ(k2)α

k2 −M2
=
gµνgρσ + gµρgνσ + gµσgνρ

d(d+ 2)

∫
k

(k2)α+2

k2 −M2
.

(3.16)

The general rank-α tadpole integral has the analytical solution written in Eq. (2.35), and it allows to
express the integral in terms of a sum of its rank terms:

Ij,15 =

3∑
α=0

(−1)(6−α) Γ(6− α− d
2)Γ(α+ d

2)

Γ(d2)

∫ 1

0
dx5 det[J(g15)]

∫
k2

B̃
(α)
j,15(k2)(

q2
15,1 +M2

15,1

)6−α− d
2D7

(3.17)

The integral must be parametrized one additional time. Before applying the parametrization, the
denominators have to be slightly rearranged, such that they assume the desired form:

q2
15,1 +M2

15,1 = −x1(1− x1)D8. (3.18)

Hence, the integral we are considering is

∫
k2

B̃
(α)
j,15(k2)

D7D
6−α− d

2
8

=
Γ(7− α− d

2)

Γ(6− α− d
2)

∫ 1

0
dx6

∫
k2

x
5−α− d

2
6 B̃

(α)
j,15(k2)

(k2
2 − q2

15,2 −M2
15,2)7−α− d

2

, (3.19)
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where

g : C → [0, 1], g(x6) = 1, det[J(g)] = 1,

q15,2 = −x6{p1x3 + p2x3x5 − p3[x2 − (1− x3)x4]},
M2

15,2 =
x6

x1(1− x1)
{m2

t − t̂x1x3[(1− x1)x2 + x1(1− x3)x4]− ûx1x3x5[(1− x1)x2 + x1(1− x3)x4]−

− sx1x3x5(1− x1x3)−m2
H1

[(1− x1)x2 + x1(1− x3)x4][1− (1− x1)x2 − x1(1− x3)x4]}.

∆̃15 =
x6

x1(1− x1)

{
1 + ρsx1x3x5(1− x1x3 − (1− x1)x3x6)−

− x1x3ρ̂t[(1− x1)x2(1− x6) + (1− x3)x4(x1 + (1− x1)x6)]−
− x1x3x5ρ̂u[(1− x1)x2(1− x6) + (1− x3)x4(x1 + (1− x1)x6)]−
− ρ1{x2(1− x2)− x1(1− 2x2)[x2 − (1− x3)x5]− x1[x1 + (1− x1)x6][x2 − (1− x3)x5]2}

}
,

∆̃15 =
x6

x1(1− x1)
∆15.

(3.20)

Finally, after the integration over the loop momentum k2, the integral Ij,15 gets the following form:

Ij,15 =

3∑
α,β=0

(−1)(7−α−β) Γ(7− α− β − d)Γ(α+ d
2)Γ(β + d

2)

Γ(d2)Γ(d2)
×

×
∫ 1

0
dx6

[x1(1− x1)]1−β−
d
2 det[J(g15)]B

(α,β)
j,15 (x)

x
2−β− d

2
6 ∆7−α−β−d

15

=
3∑

α,β=0

(−1)(7−α−β) Γ(3− α− β + 2ε)Γ(α+ d
2)Γ(β + d

2)

Γ(d2)Γ(d2)
×

×
∫ 1

0
dx6

x3(1− x3)xβ−ε6 B
(α,β)
j,15 (x)

xβ−2−ε
1 (1− x1)β−ε∆3−α−β+2ε

15

.

(3.21)

The ∆15 is always positive for x ∈ [0, 1]6∧ρi < 4, hence below the top-mass threshold the tadpole-like
mass term is well-defined. Moreover, no further divergences do arise from the numerator.

There is still the possibility that Ij,15 develops a singular behaviour on the boundaries of the
integration region. Such terms are the source of the ultraviolet divergences. Since the aim is to arrive
at an expression which can be integrated numerically, a particular treatment is needed to single them
out.

3.1.3 Extracting the singularities

The singularities of the form factor under consideration come from an interplay between the integration
over the Feynman parameters and the β-rank integrals. The highest possible rank for Ij,15 is 6, from
which follows the constraint α+ β ≤ 3.

Divergences arising from the integral come from the following terms:

Ij,15|div ⊂
∫ 1

0
dx1

B
(α,β)
j,15 (x1)

xβ−2−ε
1 (1− x1)β−ε

for some β. (3.22)

The numerator B
(α,β)
j,15 (x1) has a polynomial dependence on x1 that may influence the divergency, so

it must be taken into account. Hence, Ij,15 diverges in x1 = 0 for β = 3 and in x1 = 1 for β ≥ 1.

An additional constraint on diverging β-rank tensors can be set by taking into account the nu-
merator. Purely k2 tensor integrals have at most β ≤ 1: higher β-rank tensor integrals comes from
the shift of the first loop momenta k1 → k1− q15,1. Each shift introduces a (1−x1) on the numerator,
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which cancels against the denominator (1 − x1)β−ε. This fact implies that the divergences have the
following form:

Ij,15|div ⊂
{∫ 1

0
dx1

f(x1)

x1−ε
1

,

∫ 1

0
dx1

f(x1)

(1− x1)1−ε

}
. (3.23)

and it also ensures that there can not be simultaneous divergences in both the integration boundaries.
The idea for extracting the singular behaviour of the integrals is the so-called end-point subtraction:

manipulating the numerator, it can be arranged such that it converges faster than the denominator
on the boundaries. The strategy is to add a clever zero in the numerator:∫ 1

0
dx1

f(x1)

x1−ε
1

=

∫ 1

0
dx1

f(0)

x1−ε
1

+

∫ 1

0
dx1

f(x1)− f(0)

x1−ε
1

=
f(0)

ε
+

∫ 1

0
dx1

f(x1)− f(0)

x1−ε
1∫ 1

0
dx1

f(x1)

(1− x1)1−ε =
f(1)

ε
+

∫ 1

0
dx1

f(x1)− f(1)

x1−ε
1

(3.24)

The convergence is facilitated by noticing that f(x1)− f(0) is the Taylor series of f(x1) starting from
the second term, proportional to x1.

An additional source of ultraviolet singularities comes from the Gamma function which multiplies
Eq. (3.21) when α+ β = 3:

Γ(2ε) =
1

2

Γ(1 + 2ε)

ε
. (3.25)

This is a completely independent behaviour, which can happen simultaneously to the poles coming
from the integrals Ij,15|div. Therefore, Ij,15 develops second order poles in ε, that have to cancel
against the real corrections. For later purposes, notice that

Γ(1 + 2ε) =
Γ(1 + ε)Γ(1− ε)

Γ(1− 2ε)
+O(ε2). (3.26)

Once that every ultraviolet divergence has been singled out, the form factor Ij,15 can be ε-expanded
and its coefficient will be suitable for a numerical integration.

For the kinematic regions above the top-pair production threshold (ρi > 4), threshold singularities
enter the game. These kinds of divergences can be prevented by introducing an imaginary mass
regulator to the top-mass, which acts as a parameter for the analytical continuation of the form
factor:

m2
t → m2

t (1− iεt). (3.27)

For small values of εt, the dependence of the form factor on εt is completely negligible, and it
ensures the finiteness of its real (and imaginary) part. But, as we can expect, the numerical stability
gets lower when εt decreases. To avoid integrations with high statistic, integration-by-parts represents
an useful tool to decrease the power of the denominator, at the price of increasing the number of
integrands. A single integral with α = β = 0 occurring in the form factor can be written as:

I
(n)
j,15 = −2

∫ 1

0
dx6

x2
1x3(1− x3)B

(0,0),(n)
j,15 (x)

∆3
15

. (3.28)

Focusing on a single parameter, ∆15 has at most a quadratic dependence on a Feynman parameter
and a linear dependence on x5 and x6. Integration by parts on such parameter yields:

I
(n)
j,15 ∝

∫ 1

0
dx5

f(x5)

(ax5 + b)3
=
f(0)

2ab2
− f(1)

2a(a+ b)2
+

1

2a

∫ 1

0
dx5

f ′(x5)

(ax5 + b)2
. (3.29)

Therefore, when a denominator of an integrand is linearly dependent on a Feynman parameter, it
is convenient to apply integration-by-parts such that the power of the denominator decreases. The
numerical stability will be significantly increased.



44 Chapter 3

pµ1

pν2

p3

p4

k2 + p1 k1 − p1

Figure 3.2: External momentum convention for Box 45.

3.1.4 Infrared divergences

Infrared divergences come from a particular set of diagrams, belonging to topology 6. They are
characterized by the rescattering of a virtual gluon emitted and reabsorbed by the initial state gluons
(Fig. 3.2). The explicit expression for the j-th form factor is

Ãj,45 = −
(
−3

2
δab
)

(i)4(−i)3
(
−imt

v

)2
Y1Y2Ij,45

= −i3
2

m2
t

v2
δabY1Y2Ij,45,

Ij,45 = Pµνj

∫
k1,k2

λµρη3 (p1,−k2 − p1, k2)λνησ3 (p2,−k2, k2 − p2)

k2
2(k2 + p1)2(k2 − p2)2

×

× Tr [γρ∆t(k1 − p1)∆t(k1 − p1 + p3)∆t(k1 + p2)γσ∆t(k1 + k2)] ,

λµ1µ2µ33 (p1, p2, p3) = gµ1µ2(p1 − p2)µ3 + gµ2µ3(p2 − p3)µ1 + gµ1µ3(p3 − p1)µ2

(3.30)

Expanding the form factor, it assumes the usual structure of a Feynman integral:

Ij,45 =

∫
k1,k2

Nj,45(k1, k2)

D1D2D3D4D5D6D7
(3.31)

where
D1 = (k1 − p1)2 −m2

t ,

D2 = (k1 − p2)2 −m2
t ,

D3 = (k1 − p1 + p3)2 −m2
t ,

D4 = (k1 + k2)2 −m2
t ,

D5 = k2
2,

D6 = (k2 + p1)2,

D7 = (k2 − p2)2.

(3.32)

Below, we summarize the quantities coming from the Feynman parametrization of Ij,45:

First integration

g45,1 : C → [0, 1]3, g45,1(x) =

 (1− x1)
x1(1− x2)
x1x2x3

 , det[J(g45,1)] = x2
1x2,

q45,1 = (1− x1)k2 − x1x2p1 + x1(1− x2)p2 + x1x2x3p3,

M2
45,1 = m2

t − (1− x1)k2
2 − x1x2x3t,

q2
45,1 +M2

45,1 = m2
t − x1(1− x1)k2

2 − 2x1(1− x1)k2 · {x2p1 − (1− x2)p2 − x2x3p3} − sx2
1x2(1− x2)−

− t̂x1x2x3(1− x1x2)− ûx2
1x2x3(1− x2)−m2

H1
x1x2x3(1− x1x2x3)

q2
45,1 +M2

45,1 = −x1(1− x1),

(3.33)

hence

Ij,45 =
3∑

α=0

(−1)
d
2

Γ(4− α− d
2)Γ(α+ d

2)

Γ(d2)

∫ 1

0
dx3

det[J(g45,1)]

[x1(1− x1)]4−α−
d
2

∫
k2

B̃
(α)
j,45(k2)

D5D
4−α− d

2
8 D6D7

. (3.34)
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Second integration

g45,2 : C → [0, 1]3, g45,1(x) =

 x4x5

1− x5

(1− x4)x5x6

 , det[J(g45,2)] = (1− x4)x2
5,

q45,2 = (1− x5 + x2x4x5)p1 − [x4x5(1− x2) + (1− x4)x5x6]p2 + x2x3x4x5p3,

M2
45,2 =

x4x5m
2
t

x1(1− x1)
− sx1x2x4x5(1− x2)

(1− x1)
− t̂ x2x3x4x5(1− x1x2)

(1− x1)
−

− ûx1x2x3x4x5(1− x2)

(1− x1)
−m2

H1

x2x3x4x5(1− x1x2x3)

(1− x1)
,

∆̃45 =
x5

x1(1− x1)

{
x4 − x1 [x1x2x4(1− x2) + (1− x1)(1− x5 + x2x4x5){x6(1− x4) + x4(1− x2)}] ρs−

− x1x2x3x4 [1− x1x2 − (1− x1)(1− x5 + x2x4x5)] ρ̂t−
− x1x2x3x4 [x1(1− x2) + (1− x1)x5{(1− x4)x6 + x4(1− x2)}] ρ̂u
− x1x2x3x4[1− x1x2x3 − (1− x1)x2x3x4x5]ρ1

}
,

∆̃45 =
x5

x1(1− x1)
∆45,

(3.35)

hence

Ij,45 =

2∑
α,β=0

(−1)7−α−β Γ(3− α− β + 2ε)Γ(α+ d
2)Γ(β + d

2)

Γ(d2)Γ(d2)
×

×
∫ 1

0
dx6

[
x3−β+ε

1 (1− x1)1−β+εx2(1− x4)x1−α+ε
4 xβ−ε5

] B
(α,β)
j,45 (x)

∆3−α−β+2ε
45

.

(3.36)

Even if it can develop UV divergences, their treatment is completely analogous to how it has been
presented before. Hence, in order to focus on the analysis of the IR divergences, we set α = 0, β = 0

and factorize the x4 from B
(0,0)
j,45 (x):

Ij,45 ∝
∫ 1

0
dx4

(1− x4)x1+η+ε
4 B

(0,0)
j,45 (x̂4, x4)

(ax2
4 + bx4 + c)3+2ε

. (3.37)

where the new index η has been introduced to take into account a potential x4 factor coming from
the numerator. Moreover, the quadratic dependence on x4 has been made explicit. Its roots for c 6= 0
fall outside the integration domain, so we focus on the case where x4 = 0 and c = 0. At last, x̂4 is
the set of Feynman parameters with x4 excluded.

The quadratic formula can be rewritten as

∆45 = ax2
4 + bx4 + c = c(1 + r−x4)(1 + r+x4)

r± =
b

2c

[
1±

√
1− 4ac

b2

]
,

(3.38)

where a, b, c are generic coefficients of a polynomial of the second degree in x4 In the limit of c→ 0:

r+(c) ∼0
b

c

(
1 +

ac

b2

)
∼0

b

c
=⇒ lim

c→0
r+ =∞,

r−(c) ∼0
b

c

(ac
b2

)
∼0

a

b
=⇒ lim

c→0
r− =

a

b
.

(3.39)

The behaviour of ∆45 in the limit of x4, c→ 0 is exactly what we can expect from the heavy-top limit of
this amplitude. The reason behind this lies in the universality of the infrared singular structure. From
the heavy-top limit of the form factor, it is known that only the coefficients b and c give contribution to
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the IR structure. Therefore, by subtracting the limit, we have found for ∆45 is equivalent to subtract
the heavy-top limit form factor from it.

The explicit subtraction yields:

Ij,45 ∝
∫ 1

0
dx4 (1− x4)x1+η+ε

4

[
B

(0,0)
j,45 (x̂4, x4)

(ax2
4 + bx4 + c)3+2ε

−
B

(0,0)
j,45 (x̂4, 0)[

c(1 + b
cx4)

]3+2ε

]
+

+
B

(0,0)
j,45 (x̂4, 0)

c3+2ε

∫ 1

0
dx4 x

1+η+ε
4 (1− x4)

(
1 +

b

c
x4

)−3−2ε

.

(3.40)

The latter integral can be integrated analytically, involving the integral representation of the hyper-
geometric function

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
dt tb−1(1− t)c−b−1(1− zt)−a. (3.41)

Therefore:∫ 1

0
dx4 x

1+η+ε
4 (1− x4)

(
1 +

b

c
x4

)−3−2ε

=
Γ(2 + η + ε)

Γ(3 + η + ε)
2F1

(
3 + 2ε, 2 + η + ε; 3 + η + ε;−b

c

)
.

(3.42)
By exploiting the properties of the hypergeometric functions, the divergence can be factorized from
2F1:

2F1(a, b; c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−a2F1

(
a, 1− c+ a; 1− b+ a; z−1

)
+

Γ(c)Γ(a− b)
Γ(a)Γ(c− b) (−z)−b2F1

(
b, 1− c+ b; 1− a+ b; z−1

)
⇓

Γ(2 + η + ε)

Γ(3 + η + ε)
2F1

(
3 + 2ε, 2 + η + ε; 3 + η + ε;−b

c

)
=

=
Γ(−1 + η − ε)

Γ(η − ε)
(c
b

)3+2ε

2F1

(
3 + 2ε, 1− η + ε; 2− η + ε;−c

b

)
+

Γ(2 + η + ε)Γ(1− η + ε)

Γ(3 + 2ε)

(c
b

)2+η+ε

2F1

(
2 + η + ε, 0; η − ε;−c

b

)
=

Γ(η − 1− ε)
Γ(η − ε)

(c
b

)3+2ε

2F1

(
3 + 2ε, 1− η + ε; 2− η + ε;−c

b

)
+

Γ(2 + η + ε)Γ(1− η + ε)

Γ(3 + 2ε)

(c
b

)2+η+ε

(3.43)

where 2F1(a, 0; c; z) = 1. The latter expression is suitable for an analysis of the pole structure.
Plugging Eq. (3.43) in Eq. (3.40):

Ij,45|poles ∝B(0,0)
j,45 (x̂4, 0)

{
Γ(η − 1− ε)

Γ(η − ε)
2F1

(
3 + 2ε, 1− η + ε; 2− η + ε;− c

b

)
b3+2ε

+

+
Γ(2 + η + ε)Γ(1− η + ε)

Γ(3 + 2ε)

(
1

b2+η+εc1−η+ε

)}
.

(3.44)

While the hypergeometric and Gamma functions in Eq. (3.44) are regular for every other η, the
singular behaviour of the form factor shows up for η = 0 and η = 1. The latter case is a pole
generated by a gamma function, for which no subtraction is needed. The η = 0 divergence originates
from the term c−1−ε, for which an end-point subtraction is needed. For this, we need the explicit
expression of c, which is

c = −ρsx1(1− x1)(1− x5)x6. (3.45)

The divergent part of α = β = 0 added of the form factor Ij,45 is:

Ij,45|poles ⊂ (−1)−εΓ(2 + ε)Γ(1 + ε)

∫ 1

0
dx̂4

(
x2

1x2x
−ε
5 ρ−1−ε

s

(1− x5)1+εx1+ε
6

)
B

(0,0)
j,45 (x̂4, 0)

b2+ε
, (3.46)
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which develops poles for x5 = 1 and x6 = 0. Since these two divergent behaviours can happen
simultaneously, a proper subtraction term is needed:∫ 1

0

dx5dx6
f(x5, x6)

(1− x5)1+εx1+ε
6

=

∫ 1

0

dx5dx6
f(x5, x6)− f(1, x6)− f(x5, 0) + f(1, 0)

(1− x5)1+εx1+ε
6

+
f(1, 0)

ε2
−

− 1

ε

[∫ 1

0

dx6
f(1, x6)− f(1, 0)

x1+ε
6

+

∫ 1

0

dx5
f(x5, 0)− f(1, 0)

(1− x5)1+ε

]
.

(3.47)

Therefore, Box 45 can have ε−2 and ε−1 poles. It can be shown that an additional pole can arise from
the remaining dependence on x1, x2 or x3, but it is properly canceled after summing all the diagrams
belonging to topology 6.

Finally, after the end-point subtraction of all the divergences arising from the loop integrals, the
finite part is numerically integrable. However, the presence of a threshold at

√
ŝ = 0 GeV makes the

integration-by-parts technique an essential requirement to achieve a stable numerical integration.

3.2 Renormalization

The NLO form factors have a divergent behaviour for the physical limit ε → 0. From the previous
section we know that both ultraviolet and infrared divergence appear in the amplitude, leading to a
definite pole structure that we have singled out explicitly.

Infrared divergences cancel against the real corrections. Ultraviolet divergences have to be renor-
malized by choosing a renormalization scale and scheme and adding the proper counterterms. Dif-
ferent choices of renormalization would not affect the physically relevant quantities if we were able
to perform the calculation at every order of the perturbative expansion. Since we truncate the series
at NLO, we end up with a renormalization-dependent result. The variation of the renormalization
scales and schemes is useful to estimate the theoretical uncertainties arising from the truncation of
the perturbative series expansion.

Every parameter involved in this calculation possesses a running with respect to the energy of
the process. These quantities are the strong coupling constant αs = αs(µR) and the top-quark mass
mt = mt(µR).

In the whole calculation, we have considered these parameters as bare quantities (αs,0 and mt,0),
which lead to the usual divergent behaviour of higher order contributions. A UV finite result can be
achieved by considering the renormalized quantities:

mt,0 = mt − δmt +O(δm2
t )

αs,0 = αs + δαs +O(δα2
s).

(3.48)

The counterterms δmt and δαs have a scheme and a scale dependence. All the renormalization schemes
are designed to cancel the UV poles coming from the NLO amplitude against the counterterms.
Different scheme choices will only lead to different finite parts.

We start by considering the on-shell (OS) renormalization scheme for δmt: the quark propagator
can be written as

iG2,0(/p) =
i

/p−mt,0 − Σ2(/p)
= iZ2G2,R(/p). (3.49)

The term Σ2(/p) contains all the one-loop contributions to the quark propagator. We also have
explicitly shown the relation between the bare and renormalized propagator.

Expanding the renormalization constant up to the first order:

iG2,R(/p) =
i

/p−mt,0 − Σ2(/p) + δ2/p− δ2mt,0

=
i

/p−mt + δmt − Σ2(/p) + δ2/p− δ2mt

=
i

/p−mt − ΣR(/p)
.

(3.50)
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The on-shell condition for the top mass is translated into the two following conditions:

ΣR(mt) = 0,
∂

∂/p
ΣR(/p)

∣∣∣∣
/p=mt

= 0 (3.51)

which fix the conditions on δmt and δ2. Since we are only interested in the mass counterterm, its
explicit expression in the OS scheme is

δmt

mt
=

αs
(4π)

Γ(1 + ε)

(
4πµ2

m2
t

)ε(
1

ε
+

4

3

)
, (3.52)

which has a non-vanishing finite part. Alternatively, the MS counterterm has the following explicit
expression

δmt

mt(µt)
=

αs
(4π)

Γ(1 + ε)

(
4πµ2

µ2
t

)ε
1

ε
. (3.53)

where µt denotes the scale of the running top-quark mass.

For the αs counterterm we will use the MS scheme. It is designed to cancel only the poles and
universal finite constants. The expression for the five active massless flavour QCD is (Nf = 5):

δαs
αs

=
αs

(4π)

(
4πµ2

µ2
R

)ε
Γ(1 + ε)

[
−11CA − 2Nf

3ε

]
. (3.54)

Since we have to add the divergences due to the top-quark involved in the calculation, the MS scheme
is modified by adding the missing pole:

δαs
αs

=
αs

(4π)

(
4πµ2

µ2
R

)ε
Γ(1 + ε)

[
−11CA − 2(Nf + 1)

3ε

]
. (3.55)

The MS scheme is mass-independent scheme. The remaining top-mass dependent term depends

logarithmically on µR, namely it is proportional to log
m2
t

µ2R
. The presence of such terms might break

the perturbative expansion, since these logarithms can be large depending on the energy region. The
way to avoid such terms is to decouple the top-quark from the running of αs. This procedure leads to
the following counterterm:

δαs
αs

=
αs

(4π)

(
4πµ2

µ2
R

)ε
Γ(1 + ε)

[
−
(

11CA − 2(Nf + 1)

3

)
1

ε
+

2

3
log

(
µ2
R

m2
t

)]
. (3.56)

where the finite term tames the logarithmic behaviour introduced by the MS scheme.
Since we have considered the input parameters of the calculation to be ”bare”, we have to express

the form factors in terms of the running parameters:

Fj(αs,0,mt,0) = F
(0)
j (αs + δαs,mt − δmt) + F

(1)
j (αs,mt)

' F (0)
j (αs,mt) + δαs

∂F
(0)
j

∂αs
(αs,mt)− δmt

∂F
(0)
j

∂mt
(αs,mt) + F

(1)
j (αs,mt)

= F
(0)
j (αs,mt) +

δαs
αs

F
(0)
j (αs,mt)− 2

δmt

mt
m2
t

∂F
(0)
j

∂m2
t

(αs,mt) + F
(1)
j (αs,mt)

= F
(0)
j (αs,mt) + F

(CT,1)
j (αs,mt) + F

(1)
j (αs,mt)

= F
(0)
j (αs,mt) + F

(1)

j (αs,mt)

(3.57)

where the linearity of F
(0)
j (αs) with respect to αs has been exploited. The terms proportional to δαs

and δmt contribute to the NLO form factors, and they correspond exactly to the UV counterterms
that cancel the UV divergences of the NLO form factor shown in the previous section.
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The δαs counterterm has been prepared to cancel the divergences that appear as external vacuum
polarization diagrams. This contribution can be found by considering the massive vacuum polarization
diagram (Appendix G) in the on-shell limit. It provides the following contribution

Πmt
(0)F

(0)
j (αs) = − αs

(4π)

(
4πµ2

m2
t

)ε
Γ(1 + ε)

2

3

1

ε
Fj , (3.58)

and calling δαs = Πmt(0) + δαs
αs

, the complete counterterm plus external self-energy contribution for
αs is

δαs
F

(0)
j (αs,mt) = − αs

(4π)

(
4πµ2

µ2
R

)ε
Γ(1 + ε)

(
11CA − 2Nf

3

)
1

ε
F

(0)
j (αs,mt)

⇓

δαs
F

(0)
j (αs,mt) =

iα2
s

(4π)2

m2
t

v2

(
4πµ2

m2
t

)2ε

Γ2(1 + ε)

(
11CA − 2Nf

3

)[
1

ε
− log

(
µ2
R

m2
t

)]
Aj .

(3.59)

Moving the discussion to the top-mass counterterm, we set

δmtF
(0)
j (αs,mt) = −2

δmt

mt
m2
t

∂F
(0)
j

∂m2
t

(αs,mt). (3.60)

Therefore:

δmtF
(0)
j (αs,mt) = 2

iα2
s

(4π)2

m2
t

v2
Y1Y2Γ2(1 + ε)

(
4πµ2

m2
t

)2ε(
1

ε
+

4

3

)[
(1− ε)Aj +

∂Aj
∂m2

t

]
, (3.61)

and
F

(CT,1)
j (αs,mt) = δαsF

(0)
j (αs,mt) + δmtF

(0)
j (αs,mt). (3.62)

Notice that the form factor of the MS counterterm is the same, but without the factor 4/3 coming
from the OS part.

Since we know the heavy-top limit behaviour of the form factors at NLO, we can exploit the
universality of the infrared structure to build a term containing the infrared singularities. The NLO
form factor in the heavy-top limit can be written as,

F
(1)
HTL,j(αs) =

αs
(4π)

Γ(1− ε)
Γ(1− 2ε)

(
4πµ2

−ŝ

)ε [
6

ε2
+

11CA − 2Nf
3ε

(
µ2

−ŝ

)−ε
− 11 + π2

]
F

(0)
j (αs), (3.63)

and summing it with the αs counterterm, we get

δIRFj(αs,mt) = − iα2
s

(4π)2

m2
t

v2
Y1Y2

Γ(1− ε)Γ(1 + ε)

Γ(1− 2ε)

(
4πµ2

−ŝ

)2ε

×

×
[

12

ε2
− 6

ε
log

(−ŝ
m2
t

)
+ 3 log2

(−ŝ
m2
t

)
− 22 + 2π2

]
A(0)
j ,

(3.64)

where we used the following replacement:

Γ2(1 + ε)→ Γ(1− ε)Γ(1 + ε)

Γ(1− 2ε)
. (3.65)

This term encodes the infrared behaviour that is common both for the HTL form factor and the full
mt dependent one.

This last term, once added to the virtual form factor F
(1)
j , will lead to a finite result which can be

integrated without numerical issues, like instability or diverging behaviour.

3.3 Virtual cross-section

The form factors of the partonic process gg → H1H2 at NLO QCD get contributions from the box
diagrams, one-particle-reducible diagrams and triangle diagrams. Each diagram has been processed
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by the calculation strategy presented in the previous section, and the form factors F
(1)
j are found by

summing the whole set of diagrams.

The UV finite virtual contributions to the cross section F
(1)
j is still IR divergent. However, the IR

divergent part of the form factor with the full mt dependence is the same as the HTL one. This fact
implies the following:

F
(1)
j

F
(0)
j

−
F

(1)
HTL,j

F
(0)
HTL,j

∼ O(ε0), (3.66)

which means that they have the same IR pole structure. Hence, we define

R
(1)
j =

F
(1)
j

F
(0)
j

−
F

(1)
HTL,j

F
(0)
HTL,j

∝
A(1)
j

A(0)
j

−
A(1)

HTL,j

A(0)
HTL,j

, (3.67)

such that the virtual cross section split into a finite part dσ̂fin
virt and divergent one dσ̂HTL:

σ̂virt = σ̂fin
virt + σ̂HTL. (3.68)

Therefore, the virtual cross section is:

σ̂virt = CsymCflux2Re

∫
dPS2Cav

[(
C∆F

(0)
∆ + F

(0)
1

)∗ (
C∆F

(1)
∆ + F

(1)
1

)
+ F

∗(0)
2 F

(1)
2

]
,

σ̂fin
virt =

α3
s

(4π)3

G2
Fm

4
t

32πŝ2

∫ t+

t−
dt̂

[ ∣∣∣C∆A(0)
∆

∣∣∣2R(1)
∆ + Y 2

1 Y
2
2

∣∣∣A(0)
1

∣∣∣2R(1)
1 + Y 2

1 Y
2
2

∣∣∣A(0)
2

∣∣∣2R(1)
2

+ Y1Y2C∆A∗(0)
∆ A(0)

1

(
R

(1)
∆ +R

(1)
1

)]
,

σ̂HTL =
α3
s

(4π)3

G2
Fm

4
t

32πŝ2

∫ t+

t−
dt̂

[ ∣∣∣C∆A(0)
∆

∣∣∣2 A(1)

HTL,∆

A(0)
HTL,∆

+ Y 2
1 Y

2
2

∣∣∣A(0)
1

∣∣∣2 A(1)

HTL,1

A(0)
HTL,1

+ Y 2
1 Y

2
2

∣∣∣A(0)
2

∣∣∣2 A(1)

HTL,2

A(0)
HTL,2

+ Y1Y2C∆A∗(0)
∆ A(0)

1

A(1)

HTL,∆

A(0)
HTL,∆

+
A(1)

HTL,1

A(0)
HTL,1

].

(3.69)

It is useful to define the ratio between the NLO mass effects and LO partonic cross section:

Cmass = 2Re

[
σ̂fin

virt

σ̂LO

]
, (3.70)

such that the virtual mass effects to the NLO cross section become:

∆σvirt =
αs
4π

∫ 1

τ0

dLgg
dτ

σ̂LO(τs)Cmass. (3.71)

Let us stress that σ̂HTL contains IR divergences, but they will cancel against the real corrections,
once that the phase space integration is performed.

3.4 Real corrections

p1

p2
p5

p3

p4

Figure 3.3: Kinematic conventions for the real amplitude
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The missing piece to complete the calculation is the real corrections to the cross section. They
consist of one-loop diagrams with an additional emission of a massless parton in the final state. The
integration over the phase space will lead to IR divergences which will cancel against σHTL coming
from the virtual correction.

There are three channels for the real corrections: qq̄ → H1H2g, qg → H1H2q and gg → H1H2g.
The number of generic diagrams amounts to 43, plus the reversion of the fermion flow. For the first
two channels, only triangle and box integrals are needed. For the last channel, there are pentagon
integrals involved.

Finding the Lorentz projector is not an easy task: for the gg → H1H2g there are 14 form factors,
and building 14 orthogonal tensors and projector can introduce overcomplexity into this calcula-
tion. The approach exploited is to immediately square the total amplitude, without performing any
projection onto their tensor structure.

Let us introduce the actual calculation by considering the following kinematics (Figure 3.3):

ŝ = 2p1 · p2, t̂ = −2p1 · p5, û = −2p2 · p5

ŝ+ t̂+ û = (p3 + p4)2 = Q2
(3.72)

3.4.1 Heavy-top limit

To illustrate how the procedure has been done, let us focus on the qq̄ → H1H2g process in the heavy-
top limit. This process can be built from the effective vertices we have calculated in the Chapter 2.

The triangle contributions are:

M∆ = v̄(p2)γσu(p1)ε∗µ(p5)(−igs)
igσρ

(p1 + p2)2

∑
j

Yj
i

(p1 + p2 − p5)2 −m2
Hj

(
−i3λj12

v

)
×

×
[
iαs
3πv

δab
(

4πµ2

m2
t

)ε
Γ(1 + ε)[p5 · (p1 + p2)gµρ − pρ5(p1 + p2)µ]

]

= v̄(p2)γρu(p1)ε∗µ(p5)
iαsgs
3πv2

δab
∑
j

3Yjλj12

Q2 −m2
Hj

(
4πµ2

m2
t

)ε
Γ(1 + ε)

[
1

2

(t̂+ û)

s
gµρ +

pρ5(p1 + p2)µ

ŝ

]
,

(3.73)

and the box one is

M� = v̄(p2)γσu(p1)ε∗µ(p5)(−igs)
igσρ

(p1 + p2)2
×

×
[
−i αs

3πv2
Y1Y2δ

ab

(
4πµ2

m2
t

)ε
Γ (1 + ε) [p5 · (p1 + p2)gµρ − pρ5(p1 + p2)µ]

]
= −v̄(p2)γρu(p1)ε∗µ(p5)

iαsgs
3πv2

δab
(

4πµ2

m2
t

)ε
Γ(1 + ε)

[
1

2

(t̂+ û)

ŝ
gµρ +

pρ5(p1 + p2)µ

ŝ

]
.

(3.74)

This contribution already shows a feature that occurs in all the channels: there is a common factor
dependent on the couplings that can be factorized. Hence, we define

√
κ =

∑
j

(
3Yjλj12

Q2 −m2
Hj

)
− Y1Y2. (3.75)

The sum of all the diagrams leads to the following amplitude:

Mqq̄ = v̄(p2)γρu(p1)ε∗µ(p5)
√
κ
iαsgs
3πv2

δab
(

4πµ2

m2
t

)ε
Γ(1 + ε)

[
1

2

(t̂+ û)

ŝ
gµρ +

pρ5(p1 + p2)µ

ŝ

]
, (3.76)

Let us evaluate the square amplitude explicitly. Since the polarization sum gives a factor2

εµ(p5)εν(p5)→ −gµν , and the spin sum gives us∑
spins

ū(p1)γσv(p2)v̄(p2)γρu(p1) = Tr
[
/p2
γρ/p1

γσ

]
(3.77)

2Since there is only one external on-shell gluon, the Ward identities grant that we can work in the pure Lorenz gauge.
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the square of the tensor structure yields:

−Tr
[
/p2
γρ/p1

γσ

] [1

2

(t̂+ û)

ŝ
gµρ +

pρ5(p1 + p2)µ

ŝ

] [
1

2

(t̂+ û)

ŝ
g σ
µ +

pσ5 (p1 + p2)µ
ŝ

]
=

−
[

1

4

(t̂+ û)2

ŝ2
Tr
[
/p2
γσ/p1

γσ

]
+ Tr

[
/p2/p5/p1/p5

]]
=

(d− 2)

2

(t̂+ û)2

ŝ
− 2t̂û =

=
t̂2 + û2

ŝ
− ε(t̂+ û)2

ŝ
.

(3.78)

Therefore, the averaged square amplitude is

∑
pol,spin

∣∣MHTL
qq̄

∣∣2 = κ
8α3

sG
2
F

81π

(
4πµ2

m2
t

)2ε

Γ2(1 + ε)

[
t̂2 + û2

ŝ
− ε(t̂+ û)2

ŝ

]
, (3.79)

For completeness, the HTL square amplitudes for the other channels are

∑
pol,spin

∣∣MHTL
qg

∣∣2 = κ
α3
sG

2
F

27π

(
4πµ2

m2
t

)2ε
Γ2(1 + ε)

(1− ε)

[
ŝ2 + û2

−t̂ + ε
(ŝ+ û)2

t̂

]
,

∑
pol,spin

∣∣MHTL
gg

∣∣2 = κ
α3
sG

2
F

12π

(
4πµ2

m2
t

)2ε
Γ2(1 + ε)

(1− ε)2

[
(1− ε) ŝ

4 + t̂4 + û4 +Q8

ŝt̂û
− 4εQ2

]
.

(3.80)

A little side note on the gluon-gluon channel. The sum over the polarization must be done on the
physical polarization states: the QED Ward identities do not hold for QCD contributions with triple
gluon interaction. Therefore, the sum has to be restricted on the physical polarization, namely

∑
pol

ε∗µ(p1)εµ(p1) = −gµν +
pµ1p

ν
r + pν1p

µ
r

p1 · pr
, (p2

r = 0) (3.81)

where pr is an auxiliary momentum such that p1 · pr 6= 0. If one would like to not introduce these
additional tensors, the external ghost contributions have to be considered. The square amplitude of
these contribution will cancel the unphysical degrees of freedom contributions from the gluon-gluon
amplitude. We have chosen to sum over the physical polarization by introducing the additional tensor
of Eq. (3.81). Further details for the polarization sum are presented in Appendix C.

3.4.2 Full mt dependence

The full top-mass dependence contribution requires the evaluation of one-loop Feynman integrals.
Since the Feynman integrals appearing into the real correction are at most of rank-5, we have applied
the Passarino-Veltmann reduction to the amplitude and, in a second step, we have prepared the square
amplitude to be integrated over the phase space.

We chose to not reduce the tensor integrals down to scalar ones. This strategy is aimed at
obtaining manageable expressions and localize the possible numerical instabilities due to small Gram
determinants. Such instabilities are more severe in the gluon-gluon channel because of the presence
of the pentagon integrals involving many Gram determinants. We have preferred to decompose the
integrals in the internal momentum basis (see Chapter 2) in order to keep the length of the expressions
under control. The coefficients of the Lorentz tensors are Feynman integrals of rank up to 4, and
they depend only on the scale parameters, i.e. the kinematic invariants and the masses. We will
not present the calculation in details, since it has been completely automated, and the procedure we
exploited is in the end completely analogous to the LO amplitude one. We present the strategy with
the qq̄ channel as an example:

Mqq̄,j =
ig3
s

(4π)2

m2
t

v2
δab
(

4πµ2

m2
t

)ε
Γ(1 + ε)v̄(p2)γνu(p1)ε∗µ(p5)KjAµνj , (3.82)
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p1

pν2

p3

p4

p5

p15

Figure 3.4: Infrared divergent diagram belonging to the qg channel.

where Kj encodes the normalization, remaining factors and the dependence on λj12, Y1 and Aµνj is the
j-th Feynman integral. Taking the gauge-invariant triangle subprocesses as an example, the internal
momenta basis for Aµνj reads

Aµνj =
∑
ik

C00ig
(µνq

ρ)
i qk,ρ +

∑
iklm

qµi q
ν
k(ql · qm)Cikl

+ C00g
µν +

∑
ik

qµi q
ν
kCik +

∑
ik

qµi q
ν
kCi

+ gµν
∑
i

B
(i)
00 +

∑
ik

qµi q
ν
kBij + gµνA00,

(3.83)

where qj are linear combinations of the external momenta. More details on the structure of the
coefficients of Eq. (3.83) can be found in Appendix D.

In the actual calculation, the Eq. (3.83) drastically simplifies thanks to the presence of massless
particles, Ward identities, same propagator mass in the loops, and in general with low number of
scales. The coefficients of the tensors are known by means of standard recursion relations. Once
that the projection of the amplitude on the internal momentum basis has been applied, we take
the modulus square of the result and the spin, polarization and color average. This constitutes the
building block for the real cross section.

The generation of the amplitude and the PV reduction has been performed within Mathematica.
We have used the libraries FeynArts [151] and FeynCalc [152] to perform the algebra and the square
amplitude function, that later on has been exported in Fortran subroutines. The evaluation of
the tensor integrals has been committed to the package LoopTools [151], which has a Mathematica

interface that has been extremely useful for internal crosschecks.

3.5 Real cross section

The square amplitude is now ready to be integrated over the 3-particle phase space. As for the virtual
correction, we split the real corrections in a finite term and an IR divergent part:

|Mij |2

|MLO|2
−
|MHTL

ij |2
|MHTL

LO |2
= (IR finite). (3.84)

which expresses the fact that the ratio between the matrix elements and the Born term of the square
amplitude and its heavy top-quark limit possess the same IR structure.

Defining the IR safe quantity

R(r) =
|Mij |2

|MLO|2
−
|MHTL

ij |2
|MHTL

LO |2
, (3.85)

it is possible to express the cross section as the sum of IR divergent and IR safe terms. Therefore,
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the partonic real cross section σ̂ij(ŝ) reads:

σ̂ij(Q
2) =

∫
dPS3

[
|MLO|2R(r) + |MLO|2

|MHTL
ij |2

|MHTL
LO |2

]

=

∫
dPS3

[
|MLO|2R(r)

]
+ σ̂HTL

ij

(3.86)

The σ̂HTL
ij will cancel against the σ̂HTL coming from the calculation of the virtual cross section.

A clarification on the meaning of the ratio R(r) is necessary. Since the two processes do not share
the same number of external legs (and so the kinematic invariants), the 3-particle phase space has to
be projected on the 2-particle one. The IR behaviour comes from the soft and collinear limits related
to the emission of the additional parton since each parton is massless. From this simple argument
follows that the pentagon topologies can not generate IR divergences: the massive loop prevents both
limits to occur.

Therefore, we can give an explicit example by looking at the diagram in Figure 3.4. The structure
of this diagram shows an explicit factorization into a quark-flow and a LO box diagram with an
off-shell gluon. The LO box represents the 2 → 2 subprocess onto which the 3-particle phase space
needs to be projected. The factorization reads

Mqg ⊃
fµ(p1; p5)

p2
15

Mµν
LO(p̃15, p̃2; p̃3, p̃4), (3.87)

where the tilded momenta have to be defined, according to the embedding we are aiming at. They
will be linear combinations of the external on-shell momenta with the coefficients depending on the
kinematics.

For the incoming particles, the transformed momenta are

p̃µ15 =
p1 · p2 − p1 · p5 − p2 · p5

p1 · p2
pµ1 =

Q2

ŝ
pµ1 ,

p̃ν2 = pν2 ,

(3.88)

and the outgoing ones are

p̃µ3,4 = pµ3,4 −
2p3,4 · (K + K̃)

(K + K̃)2
(K + K̃)µ +

2p3,4 ·K
K2

K̃µ,

Kµ = pµ1 + pµ2 − pµ5 , K̃µ = p̃µ12 + p̃µ2 .

(3.89)

Further details on the factorization of the 2 → 2 phase space out of the 2 → 3 can be found in Ref.
[60].

The phase space integral has been built such that the LO factor factorizes (Appendix C.2), and
the integration over the 2-particle phase space factor can be performed, obtaining the following result

σ̂ij(Q
2) =

∫
dPS3

[
|MLO|2R(r)

]
+ σ̂HTL

ij

=
αs

(4π)

∫ 1

τ0
τ

dz

z
σ̂LO(zŝ)Dij(z).

(3.90)

The coefficients Dij have the following structure:

Dqq̄(z) = dqq̄(z),

Dqg(z) = dqg(z)−
z

2ε

Γ(1− ε)
Γ(1− 2ε)

(
4πµ2

µ2
F

)ε
Pqg(z),

Dgg(z) = dgg(z)−
z

ε

Γ(1− ε)
Γ(1− 2ε)

(
4πµ2

µ2
F

)ε
Pgg(z) + 6[1− z4 + (1− z)4]

[
log(1− z)

1− z

]
+

.

(3.91)
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The coefficients dij(z) contain the top-mass dependence of the partonic cross section, and they have
an already-known heavy-top limit:

dqq̄(z)
mt→∞−−−−→ 32

27
(1− z)3,

dqg(z)
mt→∞−−−−→ 2

3
z2 − (1− z)2,

dgg(z)
mt→∞−−−−→ −11

2
(1− z)3.

(3.92)

The functions Pij(z) are the Altarelli-Parisi splitting functions:

Pqg =
4

3

1 + (1− z)2

z
,

Pgg = 6

{[
1

1− z

]
+

+
1

z
− 2 + z(1− z)

}
+ δ(1− z)33− 2Nf

6
,

(3.93)

and

[f(z)]+ = f(z)− δ(1− z)
∫ 1

0
dz′f(z′) (3.94)

is the plus prescription.
Notice that there are still some residual collinear initial-state singularities located in the coefficients

of the splitting functions. These divergences can be absorbed in a redefinition of the bare NLO gluon
densities located in the gluon luminosity.

We would require a term that cancels against the initial-state singularities, acting as:

σ̂R,ij(µF ) = σ̂ij −
αs

(4π)

∫
dz

[
− 1

2ε

Γ(1− ε)
Γ(1− 2ε)

(
4πµ2

R

µ2
F

)ε
Pij(z) +Kij,FS(z)

]
σ̂LO(zŝ), (3.95)

where Kij,FS(z) are arbitrary functions of z that fulfill the momentum sum rule. It is possible to show
that such term arises from the renormalization of the partonic distribution functions. Recalling that

σij =

∫ 1

0
dx1dx2 fg,0(x1)fg,0(x2)σ̂ij(x1x2zŝ), (3.96)

the bare gluon densities can be renormalized in the following way

fg,0(x) = fg(x, µF ) +
αs

(4π)

[
− 1

2ε

Γ(1− ε)
Γ(1− 2ε)

(
4πµ2

µ2
F

)ε
Pgg +Kgg,FS

]
⊗ fg(x, µF )

+
αs

(4π)

[
− 1

2ε

Γ(1− ε)
Γ(1− 2ε)

(
4πµ2

µ2
F

)ε
Pgq +Kgq,FS

]
⊗ fq(x, µF ),

(3.97)

where

f ⊗ g(x, µF ) =

∫ 1

x

dz

z
f(z, µF )g

(x
z
, µF

)
. (3.98)

The functions Kij,FS(z) can be fixed by choosing a factorization scheme. The simplest choice is the
MS scheme, which sets these functions to zero everywhere: Kij,FS = 0. Therefore,

fg,0(x) = fg(x, µF ) +
αs

(4π)

1

2ε

Γ(1− ε)
Γ(1− 2ε)

(
4πµ2

µ2
F

)ε
[Pgg ⊗ fg(x, µF ) + Pgq ⊗ fq(x, µF )] . (3.99)

In conclusion, the finite parts of the real contributions to the cross section are

∆σgg =
αs

(4π)

∫ 1

τ0

dτ
∑
q

dLgg
dτ

∫ 1

τ0
τ

dz

z
σ̂LO(zτs)Cqq̄(z),

∆σgq =
αs

(4π)

∫ 1

τ0

dτ
∑
q,q̄

dLgg
dτ

∫ 1

τ0
τ

dz

z
σ̂LO(zτs)Cgq(z),

∆σgg =
αs

(4π)

∫ 1

τ0

dτ
dLgg
dτ

∫ 1

τ0
τ

dz

z
σ̂LO(zτs)Cgg(z),

(3.100)
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where

Cqq̄(z) = dqq̄(z),

Cgq(z) = dgq(z)−
z

2
Pgq(z) log

(
µ2
F

τs(1− z)2

)
,

Cgg(z) = dgg(z)− zPgg(z) log

(
µ2
F

τs

)
+ 6[1 + z4 + (1− z)4]

[
log(1− z)

1− z

]
+

.

(3.101)
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Numerical integration

In this Chapter, the technicalities related to the numerical integration of the quantities found in Chap-
ter 3 are presented. The main ingredients are: the Vegas algorithm [66] for Monte Carlo integrations
and the Richardson extrapolation [153]. The Vegas algorithm is an adaptive method to drastically
decrease the numerical error on the integration, keeping the statistics under control, based on the
importance sampling. For each form factor, a relative statistical error of 10−5 has been required.

The Richardson extrapolation is a method to obtain the value of a function in a specific point by a
proper linear combination of its values on a set of points. It will be employed in the extraction of the
differential cross section with narrow width top quark from non-zero widths differential distributions,
intended as the ”limit” εt → 0 (defined in the previous Chapter). In this context, it can be seen as the
analytical continuation of the differential distribution in εt = 0. The convergence of the Richardson
extrapolation will be discussed in detail, and some explicit examples will be presented.

The Richardson extrapolation, together with the trapezoidal rule, will be also exploited to integrate
the differential distribution in order to obtain the total NLO cross section.

4.1 Integrating the Box form factors

The procedure described in Section (3.1) provides form factors depending on the Feynman parameters,
the Higgs-pair invariant mass ŝ and the transferred momentum square t̂, the top-quark mass mt and
the two Higgs masses mH1 and mH2 . The threshold singularities corresponding to the production of
two on-shell top quarks have been regularized by introducing the regulator εt.

In the context of this work, the virtual differential cross section is the sum of the interferences of
the LO and NLO form factors:

τ
dσ

ds
(τs) = σ̂fin

virt(ŝ) = σ̂∆∆ + σ̂1∆ +

diags∑
k

σ̂
(k)
∆1 +

diags∑
k

σ̂
(k)
11 +

diags∑
k

σ̂
(k)
22 , (4.1)

where σ̂
(k)
ij is the partial partonic cross section constituted by the interference of the (total) LO form

factor i with the NLO form factor j belonging to the diagram k. We recall that for the virtual
contributions, ŝ = Q2. Each term has the following structure

σ̂
(k)
ij (ŝ, εt) =

∫ t̂+

t̂−
dt̂

∫ 1

0
d6x I

(k)
ij (t̂,x), (4.2)

where x are the Feynman parameters and t± is defined in Appendix C. Each integral depends on at
most 6 parameters.

The integration leads to logarithmic divergences which only cancel in the total sum; this will lead
to strong numerical instabilities. It is possible to tame the behaviour of the integral on the boundaries.
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Notice first that
dt̂

ŝp2
T

=
dt̂

(t̂+ − t̂−)

[
1

(t̂− t̂−)
+

1

(û− t̂−)

]
⇓∫ t̂+

t̂−
dt̂I

(k)
ij (t̂,x) = ŝp2

T

∫ t̂+

t̂−

dt̂

(t̂− t̂−)

I
(k)
ij (t̂,x) + I

(k)
ij (û,x)

(t̂+ − t̂−)
,

(4.3)

where we exploited the relation between the kinematic variables ŝ + t̂ + û = m2
H1

+ m2
H2

(see Ap-
pendix F). To avoid numerical instabilities, the following change of variable will smooth the conver-
gence of the integral:

y = log
t̂− t̂−
m2
t

, dy =
dt̂

t̂− t̂− (4.4)

and the integral becomes∫ t̂+

t̂−
dt̂ I

(k)
ij (t̂,x) = ŝp2

T

∫ y+

y−

dy

(t̂+ − t̂−)

[
I

(k)
ij (t̂(y),x) + I

(k)
ij (û(y),x)

]
. (4.5)

We have to regulate the behaviour of the boundaries since the change of variables of Eq. (4.4) moves
the lower boundary to y− = −∞. Introducing a technical cut-off ε̄ it reads

t̂− → t̂− + (t̂+ − t̂−)ε̄, t̂+ → t̂+ − (t̂+ − t̂−)ε̄. (4.6)

After the change of variable t̂ = t̂(y), the integration boundaries becomes

y− = log
(t̂+ − t̂−)ε̄

m2
t

, y+ = log
(t̂+ − t̂−)(1− ε̄)

m2
t

. (4.7)

A last change of variable will turn the integration domain into the unit segment:

y = y− + (y+ − y−)x7, dy = log
1− ε̄
ε̄

dx7 (4.8)

so that it can be treated like an additional Feynman parameter. The integral becomes:

σ̂
(k)
ij (ŝ, εt) = sp2

T

(
log

1− ε̄
ε̄

)∫ 1

0
d6xdx7

[
I

(k)
ij (t̂(x7),x) + I

(k)
ij (û(x7),x)

]
, (4.9)

A regulator can be introduced for each Feynman parameter, in the same manner as depicted in
Eq. (4.6), and by introducing a cut-off regulator ε̄i for each parameter xi, the convergence is even
better. This brings the contribution to the total cross section to become

xi → ε̄i + (1− 2ε̄i)xi, dxi → (1− 2ε̄i)xi

⇓

σ̂
(k)
ij (ŝ, εt) = sp2

T

(
log

1− ε̄
ε̄

) 6∏
i

(1− 2εi)

∫ 1

0
dxdx7

[
I

(k)
ij (t̂(x7),x) + I

(k)
ij (û(x7),x)

]
.

(4.10)

The numerical integration of each σ̂
(k)
ij (ŝ) has been performed using a Monte Carlo integration

method based on the Vegas algorithm: it reduces the integration error through the importance
sampling, aimed at optimizing the sampling in the integration region that contributes the most to
the integral. Consider a function f(x) that has to be integrated between 0 and 1. The numerical
integration can be written as ∫ 1

0
f(x)dx ≈ 1

N

N∑
n

f(xn) = E (f) , (4.11)
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where xn comes from a uniform distribution. If xn comes from a distribution g(x) instead, it is
possible to show that∫ 1

0
f(x)dx ≈ 1

N

N∑
n

f(xn)

g(xn)
= Eg (f) , Varg(f) = E

(
f2

g2

)
− E2

(
f

g

)
, (4.12)

where g must respect the following requirement

E (f) = Eg (f) . (4.13)

It is easy to show that:

g(x) =
f(x)∫ 1

0 f(x)dx
=⇒ Varg(f) = 0. (4.14)

Since it is not possible to choose this distribution at numerical level, it will provide a simple way to
reduce drastically the error by concentrating the distribution around the bulk of f(x). Therefore, a
preliminary integration of f(x) with uniform distribution will provide an estimation of the distribution
g(x) that will be used to integrate f(x) with an increased precision. The process can be iterated as
far as the aimed precision has not been reached.

The Vegas algorithm has been implemented in the Fortran code XVegas, and it has been run
on the computer cluster, which granted us access to 4000 CPUs for a maximum runtime of individual
jobs of 96 hours.

The energy bins chosen for the integration run from 270 GeV and 2500 GeV, with a scan of 25 GeV
around the threshold region (Q = 245 GeV for mt = 172.5 GeV in the OS scheme), 50 in the region
500− 1500 GeV and two additional bins in the tails at 2000 GeV and 2500 GeV. For all integrations,
the Feynman parameter regulator has been set to ε̄ = ε̄i = 10−8. The top-mass regulators have been
set to the values εt = 0.1 · 2k with k = {1, · · · , 8}, with two additional values (k = −1,−2) for the
bins around the threshold. The reason for this will become clear later.

For each integral, a number of 10 preliminary samplings with lower statistics have been generated,
and this leads to an optimization of the integration method. The number of sampling points has

been adapted for each form factor to reach the ideal statistical error δσ
(k)
ij ∼ 10−5. Due to limitations

related with the size of the calculation, we choose to split the integration on multiple random number
seeds, and combining the single estimates for each seed afterwards. For the majority of the form
factors, for the regulators set to εt > 0.4 and ε̄ = ε̄i = 10−8, two runs with number of sampling
points N ∼ 108 can be combined to obtain the aimed precision. The lower εt and the higher invariant
Higgs-pair mass Q2, the lower is the convergence of the integration and the numerical stability: for
εt = 0.1 and Q > 1000 GeV and for the whole tail the differential cross section distribution, 50 runs

were needed to achieve δσ
(k)
ij ∼ 10−5 for topologies 1, 2, 3 and 4 and up to 1000 for topologies 5 and

6 (diagrams depicted in Appendix H).

All the runs have been performed a total of 4 times: one with the top-mass in the OS scheme,
setting its value to 172.5 GeV; the other 3 times considering the top-mass in the MS scheme. For
these last runs, we performed the calculation with mt(mt) = 163.0 GeV, mt(Q) and mt(Q/4). Since
these last three runs have a role into the estimation of the uncertainties related with the top mass
scheme, a simplified energy scan has been chosen, keeping the same energy range but, with half the
number of bins.

As it is clear from this picture, the integration of the virtual form factors represented the bottleneck
of this calculation, with a total running time of around 9 months in more than 2000 CPUs.

4.2 Richardson Extrapolation

The imaginary part εt introduced in the top mass as m2
t → m2

t (1− iεt) plays the role of a finite width
of the top quark. In accordance with the literature, we consider the top quark in the narrow width
approximation, which induces us to take the limit εt → 0. Since we build a numerical setup, the
”limit” is not a viable option, and the numerical integration for εt < 10−2 becomes highly unstable.
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The way to take this ”limit” in our numerical framework is provided by the Richardson extrapola-
tion method. Consider a function f(h) depending polynomially1 on h. We are interested in its value
for h = 0 knowing it for h = h0 and h = 2h0. Expanding f around h = 0:{

f(h0) = f(0) + h0f
′(0) +O(h2

0)

f(2h0) = f(0) + 2h0f
′(0) +O(h2

0)
. (4.15)

Combining the two expressions:

f(0) = 2f(h0)− f(2h0) +O(h2
0)

⇓
RiEx2,h0 [f(0)] = 2f(h0)− f(2h0)

(4.16)

where we have introduced the RiExn,h0 [f(0)] to be the Richardson extrapolation of f(0) with n nodes
and pivot node h0. One more example with three node yields

f(0) =
1

3
[8f(h0)− 6f(2h0) + f(4h0)] +O(h3

0)

⇓

RiEx3,h0 [f(0)] =
1

3
[8f(h0)− 6f(2h0) + f(4h0)]

(4.17)

The key feature of the Richardson extrapolation is that the error is inversely proportional to the
number of nodes. Beyond a certain number of nodes, the extrapolation reaches a plateau where the
approximation can not be improved further.

Coming back to the virtual differential cross section σ̂fin
virt(ŝ), the role of the variable h is played

by the top-mass regulator εt. The pivot value for εt has been set to different values depending on the
energy region: for Q between 300 GeV and 350 GeV, we set εt = 0.025; for Q between 375 GeV and
475 GeV, we set εt = 0.05; for all the other energies εt = 0.1. The reason for choosing different pivot
with respect to the energy region will become clear later.

For each of the energy bins, a 9-nodes Richardson extrapolation for each form factor contribution

σ̂
(k)
ij (ŝ, εt) has been performed:

RiEx9,2m·0.025[σ̂
(k)
ij (ŝ, 0)] =

m+8∑
n=m

cnσ̂
(k)
ij (ŝ, 2n · 0.025), m = {0, 1, 2}. (4.18)

Since the plateau region is reached already for 4 of 5 nodes for almost all form factors, increasing
the number of the nodes may lead to an underestimation of the error, which decreases with the number
of nodes. In order to obtain a conservative extrapolation, the error associated to each extrapolation
has been chosen to be the difference of the extrapolations with 4 and 5 nodes. To conclude, the
Richardson extrapolation leads to the following narrow width approximation of the differential cross
section

σ̂
(k)
ij (ŝ, 0) = RiEx9,2m·0.025[σ̂

(k)
ij (ŝ, 0)]± 2Θ(m)

∣∣∣RiEx5,2m·0.025[σ̂
(k)
ij (ŝ, 0)]− RiEx4,2m·0.025[σ̂

(k)
ij (ŝ, 0)]

∣∣∣ , (4.19)

where

Θ(m) =

{
1 for m = {0, 1}
0 otherwise

. (4.20)

It is designed to include a factor two when lower regulators are considered, in order to obtain a
conservative estimate of the error around the tt̄-production threshold. The Richardson extrapolation
error will be quadratically summed with the statistical error coming from the Monte Carlo integration.
These errors represent the complete statistical uncertainties introduced by the numerical setup at the
differential cross section level. An additional Richardson extrapolation will be applied to obtain the
integrated total cross section.
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Figure 4.1: Richardson extrapolation of the narrow width mt of the NLO 2HDM H1H2 production
differential cross section of the Box 47 (left panel) and the total contribution of the boxes (right). P5

is the contribution σ̂
(j)
∆1 + σ̂

(j)
11 + σ̂

(j)
22 . Upper panels: Richardson extrapolation of the narrow width

approximation of RiExn,h0 [σ̂
(47)
ij (ŝ, 0)] for different pivots and number of nodes; middle panels: relative

errors for each bin; lower panels: deviation (in per-cent) between RiEx9,0.1[σ̂
(47)
ij (ŝ, 0)] and all the other

extrapolations.

4.2.1 Convergence of the Richardson extrapolation: two examples

An analysis of the Richardson extrapolation for specific cases will clarify its convergence behaviour.
The notion of convergence will be identified with considering the following sequence and convergence
ratio:

(RiExn,h0)n≤9, δn =
|RiExn,h0 − RiExn−1,h0 |

RiExn−1,h0

. (4.21)

The sequence will be considered ”quickly” convergent if δn . 1% for n > 5 and δn . 0.1% for n > 8:
in other words, if the estimated error is below the percent level and the plateau of the extrapolation
is reached starting from the 7-nodes2.

It can be shown that an 8-nodes Richardson extrapolation with pivot value εt = 0.2 does not satisfy
the criteria expressed in Eq. (4.21) for many box diagrams and energy bins, i.e. its convergence is not
sufficiently good. This fact brought us to consider the 9-nodes one with pivot εt = 0.1. The RiEx8,0.2

is anyhow useful for two reasons: at first instance, its computational requirements are small compared
to the RiEx9,0.1, of about one order of magnitude less in runtime; in addition, RiEx8,0.2 can be used
as a test of compatibility with RiEx9,0.1 since the 8-nodes Richardson extrapolation is affected by a

1The polynomial requirement is demanded for having a good convergence of the method.
2These criteria are mostly empiric.
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larger statistical error, and the central value of the 9-nodes one will likely falls within its error band.

The box 47 (Appendix H) is an infrared divergent diagram that has been extensively run such
that the statistical error is negligible for this purpose (around the per-mille level). The convergence of
the Richardson extrapolation for the complete contribution of this box to the differential cross section
can be better understood in Figure 4.1. The upper panel shows the differential distributions with
different widths and the Richardson extrapolations of the narrow width approximation with different
nodes; in particular, it shows how good the convergence of the extrapolations becomes once more
nodes are considered. In the lower panel it is shown the convergence of the extrapolations around

RiEx9,0.1[σ̂
(47)
ij (ŝ, 0)], which has been taken as central value.

In more detail, the behavior of the Richardson extrapolation can be better understood by looking
at the single curves. The yellow curve represents the partonic cross section evaluated with regulator
εt = 1.6, the green represents the one with regulator εt = 0.8, the blue represents the one with
regulator εt = 0.4. It is visible how the different partonic cross sections tend to approach a ”limit”
distribution, until the red curve starts to be indistinguishable from the upper curves. The latter ones
are the partonic cross section with regulator εt = 0.1 and various Richardson extrapolations with
different nodes and pivot. The Richardson extrapolation that takes into account all the curves we
have described here is the RiEx5,0.1 (light green curve in the left plot in Figure 4.1). In this case, the
difference between the Richardson extrapolation and the pivot value εt = 0.1 (grey curve) is about the
per-cent level, and its robustness has been checked by varying the pivot and the number of nodes. The
lower panel in the left plot shows that, setting RiEx9,0.1 as expectation value, a 4-nodes extrapolation
already introduces deviations of around the per-mille level, and an 8-nodes Richardson extrapolated
falls within the statistical error of the estimated value (including its Richardson extrapolation error),
and it is completely indistinguishable from RiEx9,0.1. For the majority of the bins, the RiEx9,0.1 has a
sufficient fast convergence such that it can be considered the most robust estimate of the differential
cross section.

The right plot in Figure 4.1 shows a case where the pivot εt = 0.1 may be not enough for a
reliable extrapolation. The differential distributions for different regulators do not show a manifest
convergent behaviour on the RiEx9,0.1, since its deviation from the pivot value εt = 0.1 (grey curve
of the right plot) in the threshold region is more than 25% in the peak. In addition, RiEx8,0.2 and
RiEx9,0.1 are not compatible within a standard deviation, a hint that pivots closer to εt = 0 have to
be taken into account. Therefore, to test the reliability of the Richardson extrapolation, additional
regulators have been introduced: εt = 0.05 and εt = 0.025. The addition of these new regulators
is very expensive from the computational point of view since Monte Carlo integrations with many
sample points have to be considered3. However, the ε = 0.1 curve still offers a reliable Richardson
extrapolation for Q > 500 GeV and Q < 300 GeV. The black curve, namely the distribution with
εt = 0.05 (right plot of Figure 4.1) adds a 10% to the grey curve in the peak region, which attests the
beginning of a convergence to some curve. There can be shown that RiEx9,0.05 and RiEx9,0.025 reach
their plateau value and the deviation between them is lower than their respective errors. Therefore,
the RiEx9,0.025 has been chosen to be the expectation value for the bins Q = {300, 325, 350} GeV,
RiEx9,0.05 the one for Q = {375, · · · , 475} GeV, RiEx9,0.1 for all the other bins.

4.3 Total Cross Section

The total cross section is found by integrating the differential distribution built with the partonic cross

section σ̂
(k)
ij (ŝ, 0). The numerical framework that has been setup in the previous section is suitable

3For our setup, the number of sampling points were the same; to accomplish the aimed precision, the multi-seeds
structure of the code has been exploited. For problematic boxes, hundreds of seeds have been combined.
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for the trapezoidal rule:

∆σNLO = 2

∫ Q+

Q−

Q
d∆σNLO

dQ2
dQ = δQ

Q− d∆σNLO

dQ2
(Q2
−) + 2

n−1∑
j=1

(Q− + jδQ)
d∆σNLO

dQ2
((Q− + jδQ)2)+

Q+
d∆σNLO

dQ2
(Q2

+)

]
+O(δQ2)

= ∆σNLO(δQ) +O(δQ2),

(4.22)

where δQ is the step size of the energy bins. The trapezoidal rule introduces a dependence on δQ,
and an error proportional to δQ2. The analytical integration, in the spirit of the Riemann integral,
is reached in the limit when the width of the steps δQ goes to 0 and their number goes to infinity
simultaneously. Since the two quantities are related, the limit δQ → 0 is sufficient to describe the
continuum limit.

We can assume a polynomial dependence ansatz on δQ, such that the limit δQ → 0 can be
extrapolated by the Richardson extrapolation:

σNLO = RiExn,δQ[∆σNLO(0)] +O(δQn+2), (4.23)

Different pivot values have been selected depending on the region. Empirical arguments have shown
that for the threshold region, namely for 300 GeV < Q < 700 GeV, a 25 GeV energy scan must
be considered in order to achieve a Richardson extrapolation which converges sufficiently quick; for
the remaining energy bins, a 50 GeV scan has been chosen. This energy scan grants a Richardson
extrapolation of the NLO total cross section with an error below the per-mille level. The remaining
region 260 GeV < Q < 300 GeV can be integrated by using the Boole’s rule with 5-points, achieving
an error comparable with the other method.
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Chapter 5

Results and Discussion

The method presented in the previous Chapters has been applied and studied extensively in Refs.
[68, 69] for the SM case, where mH1 = mH2 = 125 GeV and Y1 = Y2 = 1. The 2HDM neutral scalar
Higgs-pair production will be treated in a future work. However, the arguments presented in this
Chapter can be generalized to the analysis of the 2HDM case.

In this last Chapter, the major outcomes of the works discussed in this thesis are presented.
The PDFs considered in the calculation are the PDF4LHC and MMHT2014 sets [154, 155]. The NLO
differential cross section in the HTL [32] will be compared with the full-mt dependent one, and cross-
checked with the first calculation [47, 144]. The mass effects become sizable for increasing values of
the Higgs-pair invariant mass.

Three main topics will be discussed in detail: the size of the uncertainties due to the top-mass
renormalization scale and scheme, the proper top-mass renormalization scale choice for the main
Higgs-pair invariant mass regions and how to combine the top-mass uncertainties with the state-of-
the-art calculation [156].

5.1 SM Differential and Total cross section

The addition of the virtual and real contributions constitutes the differential cross section, which
reads

Q2d∆σNLO

dQ2
=
αs(µR)

4π

[
dLgg
dτ

σ̂LOCmass(ŝ)

∣∣∣∣
τ= ŝ

s

+

∫
dz

z2

dLij
dτ

σ̂LOCij(ŝ, z)

∣∣∣∣
τ= ŝ

zs

]
. (5.1)

For the SM calculation, we have set mH1 = mH2 = mH = 125 GeV and mt = 172.5 GeV.

As discussed in the previous Chapter, we provided the result for Higgs-pair invariant mass from
250 GeV to 1500 GeV with steps of 5 GeV for 250-300 GeV, of 25 GeV from 300 GeV to 700 GeV,
and 50 GeV for the rest. To have control on the tail of the distribution, additional bins at 2000 GeV
and 2500 GeV have been included. The Richardson extrapolation has been performed with 9 nodes
with pivot node εt = 0.025 from 300 GeV to 375 GeV, since the presence of the OS top-mass threshold
had bad impact on the stability of the integration, making the convergence slow. For higher energies,
we choose the pivot at εt = 0.05 up to 475 GeV and pivot εt = 0.1 up to 1500 GeV with 9 nodes.
The multi-seeds approach has been extremely useful to obtain the total statistical and Richardson
extrapolation error at per-mille level.

The NLO partonic cross section has been implemented into the program Hpair [32], already
used to derive the NLO HTL cross section. The PDF4LHC and MMHT2014 PDFs are used to obtain
the numerical results [154, 155]. The distributions we provide are built for centre-of-mass energy of√
s =14, 27, 100 TeV. The renormalization and factorization scales have been set to µR = µF = Q

2 .
We present the comparison between the NLO distribution of the full top-mass dependence against
the LO and HTL calculations, which has been studied in previous works [32].

In Figure 5.1 the differential distribution of the invariant mass of the Higgs-pair system is shown.
The finite top-mass effects introduced by the virtual contributions (the green line) have a huge impact
on the differential distributions, leading to a -20% deviation with respect to the HTL starting from
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Figure 5.1: Differential cross section distribution for the NLO SM Higgs-pair production at 14 TeV.
Left panels: result with MMHT2014 and bin-by-bin K-factor; right panel: result with PDF4LHC PDF and
bin-by-bin ratio to the HTL. Black line: LO calculation; blue line: NLO HTL calculation; yellow line:
NLO HTL + reals with full mt dependence; NLO HTL + virtuals with full mt dependence; red line:
full NLO calculation, with renormalization and factorization uncertainties included as red band. Here
mHH =

√
ŝ is the Higgs-pair invariant mass.

Q = 1000 GeV. This deviation becomes even larger at centre-of-mass energies of
√
s = 100 TeV,

with a decreasing of -40% when the real corrections are taken into account (red line). This behaviour
does not show up for Higgs-pair invariant masses around the threshold region, since this is the region
of validity of the HTL approximation. The red band represents the scale and scheme uncertainties,
estimated as an envelope of the differential distributions evaluated at µR = µF = Q and µR = µF = Q

4 .
They amount to around 15% from the central value at low Higgs-pair invariant mass, and decrease
to around 10% in the tails. It can be shown that the bulk of the mass effect to the NLO K-factor is
carried by the continuum diagrams (the ones that do not contain the triple Higgs interaction), that
can be used to describe this process within a deviation of at most 5%.

√
s (TeV) σNLO (fb)

13 27.73+13.8%
−12.8%

14 32.81+13.5%
−12.5%

27 127.0+11.7%
−10.7%

100 1140+10.7%
−10.0%

√
s (TeV) σHTL (fb)

13 32.51+18%
−15%

14 38.65+18%
−15%

27 156.2+17%
−13%

100 1521+16%
−13%

Table 5.1: Total cross section for SM Higgs-pair production. On the left, the full top-mass dependence,
on the right, the HTL calculation. The numbers in the brackets are the numerical errors.

The total cross section has been calculated by means of a numerical integration. The Richardson
extrapolation of the trapezoidal method offered a reliable numerical integration: as already mentioned
in Chapter 4, the numerical integral of the differential distribution can be treated as a function of the
bin size, and its value at vanishing bin size can be extrapolated with the Richardson extrapolation.
This strategy has been adopted for Q > 300 GeV. For lower value the Boole’s rule with five nodes
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Figure 5.2: Same description of Figure 5.1, with
√
s = 27 TeV and

√
s = 100 TeV

.

has been considered.

The procedures yield the total cross section depicted in Table 5.1, together with renormalization
and factorization scale uncertainties. As we can infer from the comparison between the left and
right tables, the top-mass effects have decreased the total cross section with respect to the NLO
HTL approximation of around 15% [68]; the inclusion of the top-mass effects has reduced the scale
uncertainties too. These cross sections show complete agreement with the literature [144].

5.1.1 Dependence on the trilinear Higgs coupling

The NLO total cross section of the Higgs-boson pair production is the key to access the trilinear Higgs
coupling λ3H. We recall [23] that the total cross section has a proportionality relation to the trilinear
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Higgs coupling close to the SM value

∆σ

σ
∼ −∆λ3H

λSM
. (5.2)

Therefore, the sensitivity of the Higgs-pair production total cross section can be probed by varying the
trilinear Higgs coupling. The study of these variations can be also interpreted as due to BSM effects
to the trilinear Higgs coupling. They can be treated systematically by considering the SM Lagrangian
with dimension-6 operators in the scalar sector only [157]. A more general approach including all
dimension-6 operators has been studied up to the NNLO HTL [158–160].

Figure 5.3: Total Higgs-pair production as function of the trilinear Higgs coupling in units of SM
coupling. The centre-of-mass energy is fixed to

√
s = 14 TeV (left),

√
s = 27 TeV (right) and√

s = 100 TeV (down). The PDF4LHC15 PDFs have been used and the renormalization scale is fixed
to Q/2. The error bars are statistical uncertainties combined with the Richardson extrapolation error.

We have studied the behaviour of the NLO total cross section of the Higgs-pair production process
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with respect to λ3H in units of SM coupling λSM. It can be expressed as follows

σNLO = σ1 + σ2
λ3H

λSM
+ σ3

(
λ3H

λSM

)2

(5.3)

In Figure 5.3, the dependence of the integrated Higgs-pair production cross section with respect
to the Higgs self-coupling is presented. The parabolic behaviour of the curves in the upper panels
is distorted by the logarithmic scale of the y-axis. The minimum of the full NLO total cross section
is shifted from 2.4 to 2.3 SM units w.r.t. the HTL calculation [23, 32, 161]. The NLO mass effects
amount to 10-15% with respect to the HTL. The sign of the correction changes in correspondence to
the passage from constructive to destructive interference between the box and triangle diagrams in

the form factor F
(i)
1 . The meaning of constructive and destructive interference for F

(i)
1 is manifest in

the HTL [54, 130, 162], and it can be seen in Eq. (3.79) and (3.80).

Figure 5.4: K-factor comparison between the different full NLO cross sections and the HTL one as
function of the trilinear Higgs coupling in SM units. The error bars represent the statistical uncer-
tainties.

The Figure 5.4 gathers all the NLO K-factors for different collider energies. The dotted lines
correspond to the HTL K-factors, the solid ones to the full top-mass dependence NLO K-factors. The
top-mass effects increase with the collider energy in the constructive interference region (λ3H < 0),
ranging from 10% to 15%. As it is clear from the behaviour of the solid curves, the top-mass effects
introduce a strong dependence on the trilinear Higgs coupling, including a change of slope for λ3H > 1,
where the interference between box and triangles becomes destructive. At last, using Eq. (5.3), the
expressions for the curves represented in Figure 5.3 are

σNLO|14TeV =

(
72.27(7)− 50.70(6)

λ3H

λSM
+ 11.23(9)

(
λ3H

λSM

)2
)

fb,

σNLO|27TeV =

(
270.9(3)− 183.1(2)

λ3H

λSM
+ 39.5(4)

(
λ3H

λSM

)2
)

fb,

σNLO|100TeV =

(
2323(2)− 1496(2)

λ3H

λSM
+ 313(3)

(
λ3H

λSM

)2
)

fb,

(5.4)

where the PDF4LHC PDFs have been used and the central scales µR = µF = Q/2 have been chosen.



70 Chapter 5

5.2 Top-mass uncertainties

A consequence of the truncation of the perturbative QCD series is the introduction of theoretical
uncertainties due to the choice of the renormalization scheme and scale. The uncertainties due to
the renormalization µR and factorization µF scales have already been taken into account in previous
studies [67, 144] and they have been represented in the previous Section in Figure 5.1 and Figure 5.2 as
a red band around the central value (red curve). The top-quark mass is a renormalization scheme and
scale dependent variable as well. Different choices of the renormalization scheme and scale will lead
to a different running of the top mass and introduce an additional source of theoretical uncertainties.
Such uncertainties and the ones coming from the renormalization of the strong coupling and the PDFs
have to be combined.

In single-Higgs production, the finite top-mass effects were negligible due to the small Higgs mass.
This is also the reason why the HTL approximation works very well for that process. Since it has
been shown that the finite top-mass effects on the Higgs-pair production are sizable, a dedicated study
of the uncertainties due to the choice of different mass renormalization scheme and scales have been
performed.

We have evaluated the top-mass uncertainties by evaluating the whole differential cross section by
choosing four different top-mass scenarios: mt = 172.5 GeV in the on-shell renormalization scheme and
mt(mt) = 163.01516101 GeV, m(Q) and m(Q/4) in the MS renormalization scheme1. The running
of the MS top mass has been considered at N3LL:

mt(µt) = mt(mt)
c(αs(µt)/π)

c(αs(mt)/π)
,

c(x) =

(
7

2

) 4
7

[1 + 1.398x+ 1.793x2 − 0.6834x3],

(5.5)

and mt(mt) has been calculated using the relation between the top pole mass and MS top mass
at N3LO [163–167]. The integration of the partonic cross section has been repeated for every mass
configuration taking into account the running of Eq. (5.5) with the same setup used for the OS scheme
calculation shown in the previous section. Since the role of these runs is to estimate the top-mass
uncertainties, a rougher energy scan has been chosen: 25 GeV scan between Q = 300 GeV and
Q = 400 GeV and 100 GeV for Q > 400 GeV.

Figure 5.5 shows the distributions obtained for the four top-mass schemes chosen. ForQ > 400 GeV
the maximum value for each bin is the OS scheme and the minimum is the distribution for mt(Q).

Choosing the OS scheme as central value, we have estimated the mass uncertainties by taking
the envelope of the different mass distributions bin-by-bin. This procedure makes the top-mass
uncertainties strongly asymmetric at the differential cross section level (Table 5.2): for Q > 400 GeV
the upper uncertainty vanishes, since the OS distribution provides the maximum for each bin. As
it is clear from the Table 5.2, the mass uncertainties are very large: going from LO to NLO, they
decrease by about a factor two, being of order 30% at 600 GeV. This same behaviour has been seen
for off-shell single-Higgs production, where the top-mass effects are noticeable.

5.2.1 Preferred scale choice

An appropriate choice of the top-mass renormalization scheme is mandatory to avoid that large loga-
rithms involving the Higgs-pair invariant mass Q do not spoil the convergence of the QCD perturbative
expansion.

In Figure 5.6 the differential distributions for different choices of the top-mass scale and scheme are
presented, and important information can be inferred from them. The OS scheme and the MS scheme
with mt(mt) in the ratio with the NLO HTL are shown respectively in red and blue. These ratios are
decreasing with respect of the Higgs-pair invariant mass. The MS scheme with mt(Q) and mt(Q/4),

1Note that since different top-quark masses have to be used, this study can only be performed nowadays with the
method presented in this thesis so far.
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Figure 5.5: Differential cross section of NLO SM Higgs-pair production for different values of the top
mass at

√
s = 14 TeV,

√
s = 27 TeV and

√
s = 100 TeV. The PDF4LHC15 PDFs have been used.

respectively in green and blue, are rather constant for Higgs-pair invariant mass Q > 500 GeV. This
behaviour of the ratios reflects the two distinct effects of the scale choice:

1. decreasing top-mass effects for the choice of fixed value of the mass renormalization scale;

2. constant top-mass effects for dynamical scale choice.

These trends can be clearly understood from the theory, by looking at the low and high energy
limits of the process. For energies below the double Higgs production threshold, the HTL is a good
approximation of the process. We notice that the HTL can be described by the SM effective field
theory where the top quark has been integrated out [32, 35, 168, 169], which manifests as an effective
vertex between gluons and Higgs bosons:

Leff =
αs

12π
Tr [GµνGµν ]

(
C1

v
H − C2

2v2
H2

)
. (5.6)
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Q (GeV)
dσLO

dQ
(fb/GeV)

dσNLO

dQ
(fb/GeV)

300 0.01656+62%
−2.4% 0.02978(7)+6%

−34%

400 0.09391+0%
−20% 0.1609(4)+0%

−13%

600 0.02132+0%
−48% 0.03204(9)+0%

−30%

1200 0.0003223+0%
−56% 0.000435(4)+0%

−35%

⇓
σNLO = 32.81(7)+4%

−18%fb

√
s (TeV) σNLO (fb)

13 27.73+4%
−18%

14 32.81+4%
−18%

27 127.0+4%
−18%

100 1140+3%
−18%

Table 5.2: Left table: Differential cross section values for
√
s = 14 TeV at LO and NLO. The

NLO corrections make the mass uncertainties decrease by a factor 2. The total cross section is
shown below. Right table: total cross sections including top mass scheme and scale uncertainties for√
s = 13, 24, 27, 100 TeV.

Figure 5.6: Ratio of the NLO differential cross section to the HTL NLO one for the mass schemes
considered for

√
s = 13TeV.

The Wilson coefficients Ci of the HTL Lagrangian, independent of the scattering process, are deter-
mined by the matching to the SM Lagrangian. These coefficients at NLO are

C1 = 1 +
11

4

(αs
π

)
+

{
2777

288
+

19

16
log

(
µ2
R

m2
t

)
+Nf

[
1

2
log

(
µ2
R

m2
t

)
− 67

96

]}(αs
π

)2
+O(α3

s),

C2 = C1 +

(
35

24
+

2

3
Nf

)(αs
π

)2
+O(α3

s).

(5.7)

Therefore, the natural choice of the matching scale is the top pole mass µR = mt. This fact shows
why at low Higgs-pair invariant mass the OS scheme offers a good scheme choice.

The large Q behaviour of the form factors can be understood by considering their analytical high
energy expansion [45, 46]. Foremost, the triangle contributions are strongly suppressed, because of the
off-shell Higgs propagator, so the dominant contribution comes from the virtual boxes. The analytical
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expressions of the form factors in terms of the top pole mass are

F
(1)
i ∼ αs

π

{
2F

(0)
i log

(
m2
t

ŝ

)
+
m2
t

ŝ
Gi(ŝ, t̂)

}
, (5.8)

where Gi are complicated functions of the partonic kinematic invariants. Notice that the dependence

of F
(1)
i on the top mass is completely isolated. However, the logarithms involving the top mass

introduce large contributions proportional to the LO. A different behaviour shows up when the form
factors are expanded in term of the MS mass:

F
(1)
i ∼ αs

π

{
2F

(0)
i

[
log

(
µ2
t

ŝ

)
+

4

3

]
+
m2
t (µt)

ŝ
Gi(ŝ, t̂)

}
. (5.9)

Setting µt = κŝ the logarithm is under control and behaves good at high
√
ŝ. This provides the

explanation of why a dynamical scale choice of the MS mass renormalization scale provides a good
scale choice for the high energy regime. Notice that Figure 5.6 shows in particular that a proper
choice of the mass renormalization scale makes the NLO finite top-mass effects to be independent on
the Higgs-pair invariant mass, and their size settle to around 10-15% for µt =

√
ŝ/4.

5.2.2 Combining the uncertainties

Collecting all the results found in our analysis, the uncertainties of the NLO SM total cross section
are summarized in Table 5.3. It shows NLO cross sections at different centre-of-mass energies with
theoretical uncertainties. The left table displays the uncertainties related to the renormalization and
factorization scale choice; the central one shows the uncertainties related to the top-mass renormal-
ization scale and scheme choice; the right table shows the combination of the two uncertainties. Since
both sources of uncertainties have been estimated from the envelope, their interplay is an envelope
too, leading to the linear sum of the uncertainties. Additional corrections to the Higgs-pair produc-

√
s (TeV) σNLO (fb)

13 27.73+13.8%
−12.8%

14 32.81+13.5%
−12.5%

27 127.0+11.7%
−10.7%

100 1140+10.7%
−10.0%

Ren.+fac. uncertainties

⊕

√
s (TeV) σNLO (fb)

13 27.73+4%
−18%

14 32.81+4%
−18%

27 127.0+4%
−18%

100 1140+3%
−18%

top-mass uncertainties

=

√
s (TeV) σNLO (fb)

13 27.73+18%
−31%

14 32.81+18%
−31%

27 127.0+16%
−29%

100 1140+14%
−28%

Combined uncertainties

Table 5.3: Left table: NLO SM total cross sections with renormalization and factorization scheme
uncertainties. Central table: NLO SM total cross section with top-mass uncertainties. Right table:
NLO SM total cross section with combined uncertainties.

tion have been studied. The recommended prediction is the NNLO QCD corrections in the full-theory
approximation (FTapprox), i.e. LO and NLO with full top-mass dependence, HTL virtual and real-
virtual contributions and full top-mass dependence for the double real contributions [29, 156]. This
calculation estimates a renormalization and factorization scale uncertainties up to 5%.

To analyze how to combine the top-mass uncertainties with the state-of-the-art calculation, a
comment of the structure of the n-th order of the total cross section is useful:

dσn = dσn−1

(
K

(n)
SV +K(n)

rem

)
, (5.10)

where K
(n)
SV is the soft+virtual contribution in the HTL (independent on the top mass) and K

(n)
rem is

the top mass contribution to the differential cross section in the ratio with the previous perturbative
order [39, 69].
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√
s (TeV) σFTapprox

NNLO (fb)

13 31.05+2.2%
−5.0%

14 36.69+2.1%
−4.9%

27 139.9+1.3%
−3.9%

100 1224+0.9%
−3.2%

Ren.+fac. uncertainties

⊕

√
s (TeV) σNLO (fb)

13 27.73+4%
−18%

14 32.81+4%
−18%

27 127.0+4%
−18%

100 1140+3%
−18%

top-mass uncertainties

=

√
s (TeV) σFTapprox

NNLO (fb)

13 31.05+6%
−23%

14 36.69+6%
−23%

27 139.9+5%
−22%

100 1224+4%
−21%

Combined uncertainties

Table 5.4: Left table: Recommended NNLO FTapprox SM total cross sections with renormalization
and factorization scheme uncertainties. Central table: NLO SM total cross section with top-mass
uncertainties. Right table: NNLO FTapprox SM total cross section with combined uncertainties.

Both the soft+virtual and remainder terms are multiplied by the same factor and K
(n)
SV is dominant.

The K
(n)
rem provides a correction of 10-15% of the K

(n)
SV contribution. The latter term occurs both in

the HTL approximation and the FTapprox, which is why these approximations are reliable. These
statements have been tested at NLO and NNLO [156]. The explicit form of the NLO differential
cross section shown in Eq. (3.69) and (3.100) are provided such that the factorization of Eqs. (5.10) is
explicit. Since the SV part of the NNLO differential cross section, which is known in literature, scales
with the full NLO contribution, and the top-mass uncertainties are independent of the renormalization
and factorization scale choice, we are legitimate to consider the combined uncertainties to be the
envelope of the two relative ones, leading to a linear sum of the uncertainties. Therefore, the NNLO
QCD total cross section for Higgs-pair production are recommended to be considered affected by the
theoretical uncertainties in Table 5.4.
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Conclusions

In this thesis, a framework for the NLO QCD Higgs-pair production via gluon fusion cross section
with full top-mass dependence has been described. It is suitable for BSM extensions of the scalar
sector, such as the 2HDM. In particular, in Chapter 1 it has been explained how the different final
states can be implemented into the calculation and how to deal with the dimensional regularization
in the presence of pseudoscalar and charged Higgs bosons.

The building blocks of the NLO contributions are the amplitudes built with up to four-point
two-loop Feynman diagrams with five mass scales and five-point one-loop ones. The first are the
virtual contributions, the latter are the real ones. Since there is no systematic strategy for two-
loop diagrams, a specific calculation method for such amplitude is presented. No tensor reduction
methods has been performed during the calculation. For each of the 47 box diagrams belonging to
the virtual amplitude, the projection into their form factors has been performed, and a topology-wise
Feynman parametrization has been chosen, allowing the isolation of UV and IR divergences by means
of end-point subtractions. Particular care has been dedicated to the subtraction of the divergences
coming from the diagrams belonging to the topology 6: the universality of the IR divergences has
been exploited to build a subtraction term analogous to the heavy-top limit of the form factors. The
addition of the renormalization counterterms to the virtual amplitude yields UV finite quantities. The
MS scheme with five active flavours and the on-shell top quark decoupled from the running has been
used to renormalize the strong coupling. Finally, after the UV renormalization and the end-point
subtraction of the IR divergences, the box form factors are ready to be integrated over the Feynman
parameters and the two-particle phase space. The one-particle-reducible diagrams have been obtained
by combining two Higgs decay into on-shell and off-shell gluon LO amplitudes, employed as effective
vertices. At last, the NLO triangle contributions have been built from the single-Higgs production
form factors.

The numerical setup has involved the Vegas algorithm for Monte Carlo integration [66], imple-
mented into a Fortran code built with a multi-seed approach. Numerical instabilities arise for energies
lying above the virtual thresholds, which can be tt̄ or gg production thresholds. A small imaginary
parameter εt introduced as a finite top-quark width increases the stability of the Monte Carlo, and it
can be used for an analytical continuation of the cross section to extract the narrow top-quark width.
Moreover, integration-by-parts has been performed to decrease the power of the denominators, and
the numerical stability has been improved further. The narrow width of the top quark has been
extracted from combining linear evaluations of the differential cross section for different εt regulator
values. This is the core of the Richardson extrapolation method, whose extrapolation error is inversely
proportional to the number of nodes. Nine nodes for each energy bin have been combined to obtain
the final differential distribution for each interference terms, leading to a complete virtual differential
cross section contribution.

The real corrections have been obtained through standard algorithms, involving the decomposition
of the real amplitude into the Passarino-Veltmann tensor basis, and by taking its analytical square
average. Every analytical step has been implemented in a Mathematica code that provides the
square amplitude of every real correction channel. The IR divergences have been subtracted by the
same term used for subtracting the virtual IR singularities. The integration over the three-particle
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phase space has led to the real differential cross section.
The SM case has been studied in detail. The finite top-mass effects to the NLO total cross section

introduce a 15% correction to the NLO HTL calculation. More noticeable effects can be seen at
the level of the differential distribution, where the finite top mass introduces a deviation in its tail
down to −40%. The results for the central values at different centre-of-mass energies are in complete
agreement with the literature, as well as the reduction of the renormalization and factorization scale
uncertainties. The total cross section as a function of the trilinear Higgs coupling shows significant
deviation from the HTL due to top-mass effects, leading to a noticeable shift of its minimum.

The framework built for this calculation allows the choice of different top-mass renormalization
scheme and scales, suitable for the first estimation the uncertainties they introduce. The MS top mass
at different scale choices has underlined the importance of these uncertainties, that amounts to -15%
at the total cross section level and to -35% at the differential cross section level. The behaviour of
the differential cross section at different renormalization scales has been discussed, and it has been
shown how a dynamical renormalization scale is the most natural choice for large Higgs-pair invariant
mass. The quasi-independence of the relative top-mass uncertainties from the renormalization and
factorization scheme leads to a linear addition of the uncertainties since they have been defined as
envelopes of multiple distributions. The combination of the NLO top-mass uncertainties and the
NNLO renormalization and factorization uncertainties has been discussed, and from a factorization of
the cross section argument, the most conservative treatment of the uncertainties has been identified
as their linear sum.

The framework described in this thesis has already been applied successfully to the 2HDM; some
results regarding the neutral scalar Higgs-pair production has been shown in Chapter 4. Further
future applications will involve final states containing pseudoscalars. Moreover, the dependence on
the β angle of the Yukawa couplings in the 2HDM may lead to non-negligible contributions from
bottom quark loops, for which additional treatments on the form factors are needed to increase the
numerical stability, like bottom-quark mass expansions and integration by parts.
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HTL gluon-Higgs effective vertex

The low-energy Higgs effective Lagrangian contains the effective gluon-Higgs interaction vertices.
Such interactions can be obtained from the SM Lagrangian by taking the heavy-top limit of the QCD
induced Higgs production via gluon fusion. This amplitude has been calculated in Chapter 2 in the
case where an incoming gluon is off-shell. Starting from that expression, the analytical limit can be
calculated.

For both the HTL limit and the on-shell limit, the parameters λ and τ behave in the same way:

λ, τ

p22 → 0

m2
t →∞−−−−−→∞, (A.1)

therefore the functions f(λ) and g(λ) have the same behaviour in both limits. The functions f(λ)
and g(λ) are defined as follows:

f(λ) = −1

4
log2

(
−α+

α−

)
, g(λ) =

√
1− λ
2

log

(
−α+

α−

)
,

α± = 1±
√

1− λ,
(A.2)

The limit of α± for λ→∞ is

α± ∼λ→∞ 1± i
√
λ

(
1− 1

2λ

)
= 1∓ i

2
√
λ
± i
√
λ, (A.3)

and the inverse of α− has the following behaviour:

1

α−
∼λ→∞

1

1 + i
2
√
λ
− i
√
λ

=
i√
λ

1

1 + i√
λ
− 1

2λ

∼λ→∞
i√
λ

(
1− i√

λ
− 1

2λ

)
=

i√
λ

+
1

λ
− i

2λ
√
λ
.

(A.4)

Hence

−α+

α−
= −

(
1− i

2
√
λ

+ i
√
λ

)(
i√
λ

+
1

λ
− i

2λ
√
λ

)
= 1− 2i√

λ
− 2

λ
+

i

λ
√
λ
,

(A.5)

and from

log(1 + ax+ bx2 + cx3) ∼x→0 (ax+ bx2 + cx3)− 1

2
(ax+ bx2)2 +

1

3
(ax)3

∼ ax+

(
b− 1

2
a2

)
x2 +

(
c− ab+

1

3
a3

)
x3,

(A.6)
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the logarithm occurring into the definitions of f(λ) and g(λ) is

log

[
−α+

α−

]
∼λ→∞ log

[
1− 2i

1√
λ
− 2

(
1√
λ

)2

+ i

(
1√
λ

)3
]

∼λ→∞ −
2i√
λ

+ (−2 + 2)

(
1√
λ

)2

+

(
i− 4i+

8

3
i

)(
1√
λ

)3

∼λ→∞ −i
(

2
1√
λ

+
1

3

1

λ
√
λ

)
.

(A.7)

Therefore, f(λ) in the limit λ→∞ has the following series expansion:

f(λ) = −1

4
log2

[
−α+

α−

]
=

(
1√
λ

+
1

6

1

λ
√
λ

)2

+O

(
1

λ3

)
=

1

λ
+

1

3λ2
+O

(
1

λ3

) (A.8)

Going further with the expansion, the third expansion term is

f(λ) =
1

λ
+

1

3λ2
+

8

45λ3
+O

(
1

λ4

)
(A.9)

Moving the discussion to the function g(λ):

g(λ) =

√
1− λ
2

log

(
−α+

α−

)
=

√
1− 1

λ

(
1 +

1

6λ

)
+O

(
1

λ2

)
=

(
1− 1

2λ

)(
1 +

1

6λ

)
+O

(
1

λ3

)
= 1− 1

3λ
+O

(
1

λ2

) (A.10)

and, adding an additional order to g(λ):

g(λ) ∼λ→∞ 1− 1

3λ
− 2

15λ2
(A.11)

A.1 ggHj effective vertex

From the result of Chapter 2, the gluon-Higgs effective vertex is the on-shell and heavy-top limit of
the gg → Hj amplitude:

= lim
τ,λ→∞

Mµν,ab
∆ = i

(αs
πv

)
δab
(

4πµ2

m2
t

)ε
Γ(1 + ε) [(p · q)gµν − qµpν ] lim

τ,λ→∞
I(τ, λ),

(A.12)
where

I(τ, λ) =
τλ

2(τ − λ)
+

τ2λ

(τ − λ)2
[g(τ)− g(λ)] +

τ2λ2

2(τ − λ)2
[f(τ)−f(λ)] +

τλ

2(τ − λ)
[f(τ)−f(λ)]. (A.13)
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The on-shell limit λ→∞ yields:

τλ

2(τ − λ)
∼ −τ

2
− τ2

2λ

τ2λ

(τ − λ)2
[g(τ)− g(λ)] ∼ −τ

2

λ
+
τ2

λ
g(τ)

τ2λ2

2(τ − λ)2
[f(τ)− f(λ)] ∼ τ2

2
f(τ) +

τ2

λ

(2τf(τ)− 1)

2

τλ

2(τ − λ)
[f(τ)− f(λ)] ∼ −τ

2
f(τ)− τ

λ

(τf(τ)− 1)

2

⇓
I(τ,∞) = lim

λ→∞
I(τ, λ) = −τ

2
[1− τf(τ) + f(τ)] ,

(A.14)

and the HTL:

I(τ,∞) ∼ −τ
2

[
− 1

3τ
+

1

τ

]
⇓

lim
λ,τ→∞

I(τ, λ) = −1

3
.

(A.15)

Therefore, the gluon-Higgs effective vertex is

= −i
( αs

3πv

)
δab
(

4πµ2

m2
t

)ε
Γ(1 + ε) [(p · q)gµν − qµpν ] . (A.16)

Notice that the two limits do commute.
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General tensors for the gg → H1H2
process

The amplitude of gg → H1H2 is a rank-2 tensor depending on the external momenta p1, p2, p3:

Mµν = a00g
µν +

3∑
i,j=1

aijp
µ
i p

ν
j (B.1)

where a00 and aij are the coefficients of the tensor basis, which will depend on the process. First of
all, the incoming gluons are physical, i.e. transverse with respect to their momenta:

pσi εσ(pi) = 0. (B.2)

Consider the gluon with momentum p1 contracted with the first index µ, and the gluon with mo-
mentum p2 contracted with the second index ν of Mµν . With this consideration, since pµ1 εµ(p1) =
pν2εν(p2) = 0, the general tensor Mµν reads:

Mµν = a00g
µν + a21p

µ
2p

ν
1 + a31p

µ
3p

ν
1 + a23p

µ
2p

ν
3 + a33p

µ
3p

ν
3 (B.3)

If one performs the calculation in the axial gauge, in general, there will be complicated tensor
structures for propagators and polarization sum. However, it allows to use the QED-like Ward iden-
tities for on-shell gluons:

p1µMµν = 0, p2νMµν = 0. (B.4)

The Ward identities provide the following conditions
p1µp1νT

µν = 0

p1µp2νT
µν = 0

p2µp2νT
µν = 0

,


a23(p1 · p2) + a33(p1 · p3) = 0

a00(p1 · p2) + a21(p1 · p2)2 + a31(p1 · p3)(p1 · p2) + a23(p1 · p2)(p2 · p3) + a33(p1 · p3)(p2 · p3) = 0

a31(p1 · p2) + a33(p2 · p3) = 0

.

(B.5)

The first and the last equation give

a23 = −(p1 · p3)

(p1 · p2)
a33, a31 = −(p2 · p3)

(p1 · p2)
a33, (B.6)

and replacing these results in the second equation it follows that

a00 =
a33(p1 · p3)(p2 · p3)− a21(p1 · p2)2

(p1 · p2)
. (B.7)
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The amplitude becomes

Tµν = a12 [−(p1 · p2)gµν + pµ2p
ν
1 ]

+ a33

(
(p1 · p3)(p2 · p3)

(p1 · p2)
gµν − (p2 · p3)

(p1 · p2)
pµ1p

ν
3 −

(p1 · p3)

(p1 · p2)
pµ2p

ν
3 + pµ3p

ν
3

)
,

(B.8)

and factoring out the terms proportional to gµν , the tensor reads:

a12 → −
a21

(p1 · p2)
, a33 →

(p1 · p2)

(p1 · p3)(p2 · p3)
a33

Mµν = a12

(
gµν − pµ2p

ν
1

(p1 · p2)

)
+ a33

(
gµν − (p2 · p3)pµ1p

ν
3 + (p1 · p3)pµ2p

ν
3 − (p1 · p2)pµ3p

ν
3

(p1 · p3)(p2 · p3)

)
= a12T̃

µν
1 + a33T̃

µν
2

(B.9)

The tensors T̃µν1 and T̃µν2 are not orthogonal in four dimensions. Using T̃µν1 as reference, the Gram-
Schmidt orthogonalization yields:

Tµν1 = T̃µν1

Tµν2 = T̃µν2 −
(T̃µν2 T1µν)

(Tµν1 T1µν)
T1µν

(B.10)

that can be enforced by the shift

a12 = F1 −
(T̃µν2 T1µν)

(Tµν1 T1µν)
= F1 −

1

2

(p1 · p2)p2
3

(p1 · p3)(p2 · p3)
. (B.11)

Therefore, the amplitude is

Mµν = F1T
µν
1 + a33

(
2(p1 · p3)(p2 · p3)− (p1 · p2)p2

3

2(p1 · p3)(p2 · p3)
gµν

+
p2

3p
µ
2p

ν
1 − 2(p2 · p3)pµ1p

ν
3 − 2(p1 · p3)pµ2p

ν
3 + 2(p1 · p2)pµ3p

ν
3

2(p1 · p3)(p2 · p3)

) (B.12)

and defining the transverse momentum by

p2
T =

2(p1 · p3)(p2 · p3)

(p1 · p2)
− p2

3, (B.13)

it becomes

a33 =
2(p1 · p3)(p2 · p3)

(p1 · p2)p2
T

F2

Mµν = F1T
µν
1 + F2

(
gµν +

p2
3p
µ
2p

ν
1 − 2(p2 · p3)pµ1p

ν
3 − 2(p1 · p3)pµ2p

ν
3 + 2(p1 · p2)pµ3p

ν
3

(p1 · p2)p2
T

)
= F1T

µν
1 + F2T

µν
2

(B.14)

and

Tµν1 = gµν − pµ2p
ν
1

(p1 · p2)
,

Tµν2 = gµν +
p2

3p
µ
2p

ν
1 − 2(p2 · p3)pµ1p

ν
3 − 2(p1 · p3)pµ2p

ν
3 + 2(p1 · p2)pµ3p

ν
3

(p1 · p2)p2
T

.

(B.15)

It is easy to show that in d dimensions, the tensor basis satisfies Tµν1 T1µν = Tµν2 T2µν = d− 2 and
Tµν1 T2µν = d− 4. The projectors onto Tµν1 and Tµν2 can be defined by the following relations:

Pµνi Tjµν = δij , Pµνi = ai1T1µν + ai2T2µν , (B.16)
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and the solution of this system yields

Pµν1 =
(d− 2)Tµν1 + (d− 4)Tµν2

4(d− 3)
, Pµν2 =

(d− 4)Tµν1 + (d− 2)Tµν2

4(d− 3)
. (B.17)

The projection of the amplitude onto the tensor basis T1,2µν is done by contractingMµν with the
projectors of Eq. (B.17); they give the form factors F1 and F2 which depend only on the kinematical
variables and the space-time dimension d.
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Phase space integral

The total cross section for a 2→ n scattering process is the integral over the phase space of its square
amplitude. The number of dimensions of the phase space depends on the number of particles involved
in the process, and increases quickly with n. In this Appendix the phase space elements for the 2→ 2
and 2→ 3 particles will be presented. In particular, the treatment of the 2→ 3 phase space involves
a factorization, of crucial importance to define the infrared subtraction terms needed for isolating the
soft and collinear divergences.

C.1 2→ 2 process

C.1.1 Kinematics

Consider the process

g(p1) + g(p2)→ H1(p3) +H2(p4). (C.1)

The definitions of the four-momenta (omitting the transpose notation) are: p1 = (E1, E1â), p2 =
(E2, E2b̂) for the gluons and p3 = (ω3, p̄3 = |p̄3|ĉ) and p4 = (ω4, p̄4 = |p̄4|d̂) for the two Higgs bosons,
where we defined â, b̂, ĉ, d̂ to be unit length vectors. In the center-of-mass frame, we have

p1 + p2 = p3 + p4 = (
√
ŝ, 0̄)

=⇒
{

(E1 + E2, E1â+ E2b̂) = (
√
ŝ, 0̄)

(ω1 + ω2, |p̄3|ĉ+ |p̄4|d̂) = (
√
ŝ, 0̄)

.
(C.2)

From the 3-momentum components, we obtain:

E1â = −E2b̂ =⇒ E1 = E2 ∧ â = −b̂
|p̄3|ĉ = −|p̄4|d̂ =⇒ |p̄3| = |p̄4| ∧ ĉ = −d̂,

(C.3)

and from the conservation of the energy:

E1 + E2 = 2E1 =
√
ŝ =⇒ E1 =

√
ŝ

2
. (C.4)

Therefore, incoming and outgoing particles lie on two different straight lines respectively. We chose
the reference frame such that the incoming particles lie on the ẑ axis, and the outgoing ones lie
on a straight line generated by the unit vector v̂. Moreover, by momentum conservation, we set
|p̄3| = |p̄4| = pcm. The kinematics of the process become

p1 =

√
ŝ

2
(1, ẑ), p2 =

√
ŝ

2
(1,−ẑ)

p3 = (ω3, pcmv̂), p4 = (ω4,−pcmv̂)

ω3 + ω4 =
√
ŝ.

(C.5)
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The on-shell conditions state that ω2
i = p2

cm +m2
Hi

, so that

ω2
3 −m2

H1
= ω2

4 −m2
H2

ω2
3 −m2

H1
= (
√
ŝ− ω3)2 −m2

H2
, (

√
ŝ− ω2)2 −m2

H1
= ω2

4 −m2
H2

ω3 =
ŝ+m2

H1
−m2

H2

2
√
ŝ

, ω4 =
ŝ−m2

H1
+m2

H2

2
√
ŝ

,

(C.6)

and defining ∆ =
m2
H2
−m2

H1
ŝ , we get

ω3 =

√
ŝ

2
(1−∆), ω4 =

√
ŝ

2
(1 + ∆). (C.7)

The Higgs boson momentum pcm in the CM frame is

p2
cm =

ŝ

4
(1−∆)2 −m2

H1

=
ŝ

4

(
1 + ∆2 − 2

(
∆ +

2m2
H1

ŝ

))

=
ŝ

4

(
1 + ∆2 − 2Σ

)
=⇒ pcm =

√
ŝ

2

√
1 + ∆2 − 2Σ =

√
ŝ

2
β,

(C.8)

where we defined

Σ =
m2
H1

+m2
H2

ŝ
. (C.9)

With these constraints, the transferred momentum square t̂ is

t̂ = (p3 − p1)2 = −2(p1 · p3) + p2
3

= m2
H1

+ pcm

√
ŝ(ẑ · v̂)−

√
ŝω1

= m2
H1

+
ŝ

2
β cos θ − s

2
(1−∆)

= m2
H1
− ŝ

2
(1−∆− β cos θ)

= − ŝ
2

(1− Σ− β cos θ).

(C.10)

Using momentum conservation, the missing kinematical variable is û, which is

û = − ŝ
2

(1− Σ + β cos θ). (C.11)

The independent variables are ŝ and t̂. Since the total cross section at fixed ŝ is of interest, the phase
space element will be integrated over t̂.

C.1.2 d-dimensional Phase space integrals

The a+ b→ 1 + · · ·+ n differential cross section is

dσ ∝ (µ2)
4−d
2

∫
dd−1p1

(2π)d−1
· · · d

d−1pn
(2π)d−1

1

(2ω1)
· · · 1

(2ωn)
(2π)dδd(P − p1 − · · · − pn)|M|2, (C.12)

where the integration is performed over the d.o.f. for which the amplitude does not depend on and
t̂, |M|2 is the square amplitude averaged over the polarizations and P = pa + pb is the total incoming
momentum. Hence, we can define

dRn = (µ2)
4−d
2

∫
dd−1p1

(2π)d−1
· · · d

d−1pn
(2π)d−1

1

(2ω1)
· · · 1

(2ωn)
(2π)dδd(P − p1 − · · · − pn). (C.13)
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We are interested in dR2 i.e. the phase space element of the 2→ 2 scattering process:

dR2 = (µ2)
4−d
2

∫
dd−1p3

(2π)d−1

dd−1p4

(2π)d−1

1

(2ω3)

1

(2ω4)
(2π)dδd(P − p3 − p4), (C.14)

where P = p1 + p2 = (
√
ŝ, 0̄d−1) and p3, p4 are the two Higgs boson momenta. Using the identity∫

dd−1p4

(2π)d−1

1

2ω4
=

∫
ddp4

(2π)d−1
δ(p2

4 −m2
H2

)Θ(ω4), (C.15)

we obtain

dR2 = (µ2)
4−d
2

∫
dd−1p3

(2π)d−1

ddp4

(2π)d−1

1

2ω3
δ(p2

4 −m2
H2

)Θ(ω4)(2π)dδd(P − p3 − p4)

=
(µ2)

4−d
2

(2π)d−2

∫
dd−1p3

2ω3
δ((P − p3)2 −m2

H2
)Θ(
√
ŝ− ω3).

(C.16)

The delta function can be transformed as follows

(P − p3)2 −m2
H2

= s− 2
√
ŝω3 +m2

H1
−m2

H2
,

δ
(
(P − p3)2 −m2

H2

)
=

1

2
√
ŝ
δ

(
ω3 −

√
ŝ

2
(1−∆)

)
.

(C.17)

The integration of the momenta in d-dimensional spherical coordinates reads

dd−1p3 = pd−2
cm dpcmdΩ = pd−3

cm ω3dω3dΩd−2, (C.18)

the integral reads as

dR2 =
(µ2)

4−d
2

4(2π)d−2

∫
dω3dΩd−2√

ŝ
pd−3

cm δ

(
ω3 −

√
ŝ

2
(1−∆)

)
Θ(
√
ŝ− ω3)

= (µ2)
4−d
2

pd−3
cm

4(2π)d−2
√
ŝ

∫
dΩd−2Θ

(√
ŝ

2
(1 + ∆)

)

= (µ2)
4−d
2
ŝ
d−4
2 βd−3

22d−3πd−2

∫
dΩd−2.

(C.19)

The condition on the Heaviside function is always satisfied (∆ > 0).
The (d − 2)-dimensional sphere can be integrated over (d − 3) angles since they do not play any

role in the scattering, and can be integrated out directly. The integration yields:∫
dΩd−2 = dθ sind−3 θ

[∫ π

0
dφ2 sind−4 φ2

]
· · ·
[∫ π

0
dφd−3 sinφd−3

] [∫ 2π

0
dφd−2

]
= dθ sind−3 θ

∫
dΩd−3,

(C.20)

The angle element dθ has been factorized since the integrand will depend explicitly on it.
Using the following identity∫ π

2

0
dφj sinn φj cosm φj =

1

2

Γ(1
2(n+ 1))Γ(1

2(m+ 1))

Γ(1
2(n+m) + 1)

, (C.21)

for m = 0, the volume element becomes∫
dΩd−2 =

[
Γ(d−3

2 )Γ(1
2)

Γ(d−2
2 )

][
Γ(d−4

2 )Γ(1
2)

Γ(d−3
2 )

]
· · ·
[

Γ(1)Γ(1
2)

Γ(3
2)

][∫ 2π

0
dφd−2

]
sind−3 θdθ

=

[
Γd−4(1

2)

Γ(d−2
2 )

] [∫ 2π

0
dφd−2

]
sind−3 θdθ,

(C.22)
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which contains a remarkable value of the Gamma function, such as

Γ

(
1

2

)
= π

1
2 . (C.23)

Therefore, we get ∫
dΩd−2 =

2π1−ε

Γ(1− ε) sind−3 θdθ, (C.24)

where we have integrated over the φd−2 angle since the scattering occurs on the x̂z plane. We will see
that we are not legitimate to integrate over this variable for the calculation of dR3 since the 2 → 3
scattering does not happen on a single plane. An important result of this integration states that:

dΩn−1 =
2π

n
2

Γ
(
n
2

) =
2π

n−1
2

Γ
(
n−1

2

) sinn−2 θdθ (C.25)

We can first present the result of the integration over the whole phase space:∫
dR2 =

(
µ2

ŝ

)ε
β1−2ε

42−2επ1−ε
1

Γ(1− ε)

∫
sind−3 θdθ

=

(
µ2

ŝ

)ε
β1−2ε

42−2επ1−ε
1

Γ(1− ε)

[
Γ(1− ε)Γ(1

2)

Γ(1
2 + 1− ε)

]
.

(C.26)

A useful identity involving the Gamma function is:

Γ(2n) =
4n√
4π

Γ(n)Γ

(
1

2
+ n

)
, (C.27)

which brings the phase space integral to the following form∫
dR2 =

(
4πµ2

ŝ

)ε
β1−2ε

8π

Γ(1− ε)
Γ(2− 2ε)

. (C.28)

If we keep the dependence on the θ angle, the expression is more involved

dR2 =

(
4πµ2

ŝ

)ε
β1−2ε

16π

1

Γ(1− ε)

(
1− cos2 θ

4

)−ε
d cos θ, (C.29)

but the factor involving the cosine square can be simplified by using the explicit expression of cos θ
in Eq. (C.10) and the relations contained in Appendix F:

1− cos2 θ

4
= − 1

β2

[(
t̂−m2

H1

) (
t̂−m2

H2

)
+ ŝt̂

ŝ2

]
=

1

β2

p2
T

ŝ

⇓

dR2 =

(
4πµ2

p2
T

)ε
β

16π

1

Γ(1− ε)d cos θ.

(C.30)

The integral over the θ angle is related to the transferred momentum square t̂:

t̂ = − ŝ
2

(1− Σ− β cos θ) =⇒ dt̂ =
ŝβ

2
d cos θ, (C.31)

hence we get the following final expression:

dR2 =

(
4πµ2

p2
T

)ε
1

Γ(1− ε)
dt̂

8πŝ
. (C.32)

where p2
T depends on t̂.

In general, the d-dimensional dependence of dR2 can not be neglected, since it generates non-trivial
finite terms once that the (IR divergent) renormalized square matrix element is considered. However,
the matrix elements built in Chapter 3 are IR finite. Thus, the (finite) top-mass effects at LO and
(virtual contributions at) NLO can be integrated safely over the four-dimensional phase space:

dR2 =
dt̂

8πŝ
+O(ε). (C.33)
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C.1.3 Differential partonic cross section: setup

The differential cross section for the partonic scattering under investigation is

dσ̂ = CfluxCsym

∫
dPS2|MLO|2 (C.34)

where Cflux is the flux factor and Csym is the symmetry factor. The flux coefficient Cflux for the QCD
Higgs-pair production via gluon fusion process is

Cflux =
1

4
√

(p1 · p2)2 − p2
1p

2
2

=
1

4|p1 · p2|
=

1

2ŝ
(C.35)

and the differential cross section becomes

dσ̂ = Csym
dR2

2ŝ
|M|2

=
Csym

2ŝ

(
4πµ2

p2
T

)ε
1

Γ(1− ε)
dt̂

8πŝ
|M|2.

(C.36)

We now extract the factor coming from the averaged square amplitude: each gluon in the initial state
can have (d− 2) polarizations and (N2

c − 1) colors. Therefore

dσ̂ =

(
4πµ2

p2
T

)ε
1

Γ(1− ε)
1

(d− 2)2

Csym

(N2
c − 1)2

dt̂

16πŝ2

∑
a,b

∑
h1,h2

|M|2

=

(
4πµ2

p2
T

)ε
1

Γ(1− ε)
1

(1− ε)2

Csym

4(N2
c − 1)2

dt̂

16πŝ2

∑
a,b

∑
h1,h2

|M|2

=

(
4πµ2

p2
T

)ε
1

Γ(1− ε)
1

(1− ε)2

Csym

256

dt̂

16πŝ2

∑
a,b

∑
h1,h2

|M|2,

(C.37)

where Csym is the factor which takes into account the permutation of the external legs. We can
permute the initial state gluon but not the Higgs in the final state. Moreover, the final state Higgs
bosons are different: no identical final state factor is needed. This implies Csym = 2 and

dσ̂ =

(
4πµ2

p2
T

)ε
1

Γ(1− ε)
1

(1− ε)2

2

256

dt̂

16πŝ2

∑
a,b

∑
h1,h2

|M|2

=

(
4πµ2

p2
T

)ε
1

Γ(1− ε)
1

(1− ε)2

1

128

dt̂

16πŝ2

∑
a,b

∑
h1,h2

|M|2

=
dt̂

16πŝ2

1

128

∑
a,b

∑
h1,h2

|M|2 +O(ε).

(C.38)

C.1.4 Polarization sum

Assuming that a gluon is moving along the ẑ axis with momentum pµ1 = ω1(1, ẑ), its two physical
polarization vectors can be written as1

ε+µ (p1) =
1√
2

(0, 1, i, 0), ε−µ (p1) =
1√
2

(0, 1,−i, 0). (C.39)

The polarization vectors satisfy the following relations:

pµ1 ε
±
µ (p1) = 0, εh1µ (p1)ε∗h2µ(p1) = −δh1h2 . (C.40)

1The Lorenz gauge is implicitly assumed.
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These relations are valid in d dimension as well. The basis can be completed by adding the longitudinal
polarization and an additional light-like polarization vector:

εµL(p1) =
1√
2

(1, ẑ) =
pµ1√
2ω1

, ε̃µL(q) =
1√
2

(1,−ẑ) =
qµ√
2ωq

, qµ = ωq(1,−ẑ), (C.41)

where qµ is a reference momentum, whose 3-momentum is anti-parallel to the gluon 3-momentum.
The completeness relation of this basis reads

−ε+µ (p1)ε∗+ν (p1)− ε−µ (p1)ε∗−ν (p1) + εLµ(p1)ε̃∗Lν(q) + ε̃Lµ(q)ε∗Lν(p1) = gµν , (C.42)

and using the explicit expressions for the longitudinal four-vectors, the polarization sum takes the
following form: ∑

h=±
εhµ(p1)ε∗hν (p1) = −gµν +

p1µqν + qµp1ν

p1 · q
= −gµν +

p1{µqν}

p1 · q
, (C.43)

where the {· · · } is the symmetrization of the tensor with respect to the indices they wrap.

For QCD processes, if one wants to perform the QED-like polarization sum, namely∑
h=±

εhµ(p1)ε∗hν (p1) = −gµν (C.44)

the ghost contributions are needed, otherwise the general polarization sum of Eq. (C.43) is mandatory
in order to avoid the sum over the unphysical degrees of freedom. To make this point clear, the
amplitude of the process under consideration can be written as

M = εµ(p1)εν(p2)Mµν . (C.45)

The sum of over the physical polarization yields:∑
h1,h2=±

|M|2 =
∑

h1,h2=±
εh1µ (p1)ε∗h1ρ (p1)εh2ν (p2)ε∗h2σ (p2)MµνMρσ,

∑
h1,h2=±

|M|2 =
∑
h1=±

εh1µ (p1)ε∗h1ρ (p1)

[
−gνσ +

p2{νq
′
σ}

p2 · q′

]
MµνM∗ρσ

=

− ∑
h1=±

εh1µ (p1)ε∗h1ρ (p1)gνσ +
∑
h1=±

εh1µ (p1)ε∗h1ρ (p1)
p2{νq

′
σ}

p2 · q′

MµνM∗ρσ,

(C.46)

The polarization sum depicted in Eq. (C.46) is rather complex, but it can be simplified. It can be
shown that

p1µε
h
ν(p2)Mµν ∝ pν2εhν(p2), (C.47)

which implies that, for a longitudinal polarization:

p1µεLν(p2)Mµν ∝ pν2εLν(p2) = 0, p2
2 = 0, (C.48)

therefore

p1µp2νMµν = 0. (C.49)

In particular, it means that p2µε
h
ν(p2)Mµν = 0 if εhν(p2)pν2 = 0 for h = ± (meaning that such gluon is

transverse).
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Therefore, the second term in the parenthesis of Eq. (C.46) vanishes because of Eq. (C.47) for
physical gluons:

∑
h1,h2=±

|M|2 =

− ∑
h1=±

εh1µ (p1)ε∗h1ρ (p1)gνσ

M∗ρσMµν

=

[
gµρgνσ − gνσ

p1{µqρ}

p1 · q

]
M∗ρσMµν

=

gµρgνσ +

∑
h2=±

εh2ν (p2)ε∗h2σ (p2)

 p1{µqρ}

p1 · q
−
p1{µqρ}

p1 · q
p2{νq

′
σ}

p2 · q′

M∗ρσMµν

=

[
gµρgνσ −

p1{µqρ}

p1 · q
p2{νq

′
σ}

p2 · q′

]
M∗ρσMµν ,

(C.50)

where again the transversality of εν(p2) has been exploited. Finally, expanding the symmetrical
combination in the parenthesis, the square amplitude reads:

∑
h1,h2=±

|M|2 =

[
gµρgνσ −

p1ρqµp2νq
′
σ + p1µqρp2σq

′
ν

(p1 · q)(p2 · q′)

]
M∗ρσMµν . (C.51)

A convenient choice of the reference momenta will introduce a further simplification: setting q = p2

and q′ = p1, Eq. (C.46) becomes

∑
h1,h2=±

|M|2 =

[
gµρgνσ −

p2µp2νp1ρp1σ + p1µp1νp2ρp2σ

(p1 · p2)2

]
M∗ρσMµν . (C.52)

In general, the second term of Eq. (C.52) yields non-vanishing contribution of the polarization sum.
However, in Appendix B the axial gauge has been used to extract the form factors; the expression of
the amputated amplitude is

Mµν = δab (F1T
µν
1 + F2T

µν
2 ) . (C.53)

It is possible to show that

p1µp1νT
µν
j = p2µp2νT

µν
j = 0, (C.54)

as expected from the tensors written in the axial gauge. Therefore, the second term of Eq. (C.52) will
always lead to a vanishing contribution, and therefore it can be neglected:∑

h1,h2=±
|M|2 = gµρgνσM∗ρσMµν . (C.55)

It is important to underline that Eq. (C.55) is a direct consequence of considering the polarization
vectors in the axial gauge for the 2 → 2 process. For the 2 → 3 process no axial gauge form factors
will be provided, and the general polarization sum of Eq. (C.43) have to be used.

C.1.5 Differential partonic cross section: Virtual corrections

At LO, the square amplitude (in d = 4) is

|MLO|2 = gµρgνσM∗ρσLOM
µν
LO

= δabδba

[
F

(0)
1 Tµν1 + F

(0)
2 Tµν2

]∗ [
F

(0)
1 T1µν + F

(0)
2 T2µν

]
= 2δabδba

(
|F (0)

1 |2 + |F (0)
2 |2

)
.

(C.56)
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Putting all the ingredients together, the LO partonic cross sections reads

dσ̂LO =
dt̂

16πs2

1

128

∑
a,b

∑
h1,h2

|MLO|2

=
dt̂

16πŝ2

1

64

∑
a,b

δabδba

(|F (0)
1 |2 + |F (0)

2 |2
)

=
dt̂

16πŝ2

Tr
[
idN2

c−1

]
64

(∣∣∣F (0)
1

∣∣∣2 + |F (0)
2 |2

)
=

dt̂

128πŝ2

(
|F (0)

1 |2 + |F (0)
2 |2

)
,

(C.57)

where Nc = 3.
At NLO, the interference between the one-loop and two-loop virtual amplitude have to be consid-

ered: ∑
h1,h2=±

2ReM∗LOMNLO = 2gµρgνσReMµν
LOM

∗ρσ
NLO

= 2δabδbaRe
[
F

(0)
1 Tµν1 + F

(0)
2 Tµν2

]∗ [
F

(1)
1 T1µν + F

(1)
2 T2µν

]
= 4δabδbaRe

(
F
∗(0)
1 F

(1)
1 + F

∗(0)
2 F

(1)
2

) (C.58)

which leads to

d∆σ̂NLO =
dt̂

64πŝ2
Re
(
F
∗(0)
1 F

(1)
1 + F

∗(0)
2 F

(1)
2

)
. (C.59)

C.2 2→ 3 process

The 5-point kinematics are more involved than the 4-point one. Consider the 2→ 3 process

g(p1) + g(p2)→ H1(p3) +H1(p4) + g(p5), (C.60)

where an additional outgoing particle with four-momentum

p5 = (E5, p̄5), (C.61)

has been considered. After applying the conservation of the four-momenta, the kinematics of the
process can be written as

p1 + p2 = p3 + p4 + p5

⇓{
(E1 + E2, E1â+ E2b̂) = (

√
ŝ, 0)

(E3 + E4 + E5, E3ĉ+ E4d̂+ E5ê) = (
√
ŝ, 0)

⇓

E1â+ E2b̂ = 0 =⇒ E1â = −E2b̂ =⇒ E1 = E2 =

√
ŝ

2
,

E3 + E4 + E5 =
√
ŝ =⇒ x3 + x4 + x5 = 2, Ei = xi

√
ŝ

2
,

(C.62)

where xi is the fraction of centre-of-mass energy ŝ. The momentum p3 is parametrized such that it lies
on the ẑ axis. Before explaining the details of the phase space, we introduce the relevant kinematical
variables

2p1 · p2 = ŝ, −2p1 · p5 = t̂, −2p2 · p5 = û, (p3 + p4)2 = ŝ+ t̂+ û = Q2. (C.63)
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The incoming-particle four-momenta can be parametrized as follows

p1 =

√
ŝ

2
(1, sin θ15, 0, cos θ15), p2 =

√
ŝ

2
(1,− sin θ15, 0,− cos θ15), (C.64)

where the scattering occurs in the x̂z plane and the radiating parton p5 lies on the ẑ axis; θ15 is the
angle between p1 and p5 on the x̂z plane:

p5 =

√
ŝ

2
x5(1, 0, 0, 1). (C.65)

At last, we define the angle θ35 and ϕ35 that in spherical coordinates parametrize the direction of
p3; due to momentum conservation, these directions are sufficient to parametrize the scattering. Note
that the same setup can be applied by choosing any of the outgoing momentum, and we can define
the angles θij and ϕij for every couple of momenta.

Therefore, the kinematics of the process are:

p3 =

√
ŝ

2
x3(1, β3 cosϕ35 sin θ35, β3 sinϕ35 sin θ35, β3 cos θ35),

p4 =

√
ŝ

2
(x4,−x3β3 cosϕ35 sin θ35,−x3β3 sinϕ35 sin θ35,−x5 − x3β3 cos θ35),

µi =
mi√
ŝ
,

βi =

√
1− 4

µ2
i

x2
i

, cos θij =
2

xixjβiβj

(
1− xi − xj +

xixj
2

+ µi + µj − µk
)
.

(C.66)

These definitions set boundaries on the parameters we have chosen. The particle production
thresholds state that (pi + pj) ≥ (mi +mj)

2. For x5, we have{
p0

5 ≥ 0

(p3 + p4)2 = (p1 + p2 − p5)2 ≥ (mH1 +mH2)2

⇓
0 ≤ x5 ≤ 1− (µH1 + µH2)2.

(C.67)

The constraint on x3 comes from the image of cos θ35, meaning that it can be read from

−1 ≤ cos θ35 ≤ 1 =⇒ cos2 θ35 ≤ 1

⇓
x2

3(1− x5)− x3(2− x5)(1− x5 −∆) + (1− x5 −∆)2 + µ2
H1
x2

5 ≤ 0,

(C.68)

and solving for x3, we obtain the following condition:

x−3 ≤ x3 ≤ x+
3

x±3 =
(2− x5)(1− x5 −∆)± x5(1− x5)βx5

2(1− x5)

βx5 =

√√√√[1− (µH2 + µH1)2

(1− x5)

][
1− (µH2 − µH1)2

(1− x5)

]
.

(C.69)

C.2.1 d-dimensional Phase space integrals

Recalling the definition presented in Section C.1.2, the phase space element dR3 is

dR3 = (µ2)
4−d
2

∫
dd−1p3

(2π)d−1

dd−1p4

(2π)d−1

dd−1p5

(2π)d−1

1

(2ω3)

1

(2ω4)

1

(2ω5)
(2π)dδd(P − p3 − p4 − p5), (C.70)
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where P = p1 + p2 = (
√
ŝ, 0̄d−1) and p3, p4, p5 are the two Higgs boson momenta and the additional

parton. Similarly to the steps described for the 2-particle phase space, the integration over p4 yields

dR3 =
(µ2)4−d

(2π)2d−3

∫
dd−1p3

(2ω3)

dd−1p5

(2ω5)
ddp4δ(p

2
4 −m2

H2
)Θ(p0

4)δd(P − p3 − p4 − p5)

=
(µ2)4−d

4(2π)2d−3

∫
dd−1p3

ω3

dd−1p5

ω5
δ((P − p3 − p5)2 −m2

H2
).

(C.71)

The argument of the Dirac delta distribution is

(P − p3 − p5)2 −m2
H2

= ŝ− ŝ(x3 + x5) +
ŝ

2
x3x5(1− β3 cos θ35) +m2

H1
−m2

H2

= ŝ
[
1− x3 − x5 +

x3x5

2
(1− β3 cos θ35)−∆

]
,

(C.72)

and we define the angle for which this expression vanished as

cos θ0
35 =

2

β3x3x5

[
1−∆− x3 − x5 +

1

2
x3x5

]
. (C.73)

Moreover, the integration measure in spherical coordinates becomes

dd−1p3 =
ŝ
d−2
2 (x3β3)d−3

2d−2
ω3dx3dΩ

(3)
d−2, (C.74)

hence

dR3 =
(µ2)4−dŝd−2

4(2π)2d−34d−2

∫
dx3dx5dΩ

(3)
d−2dΩ

(5)
d−2(β3x3x5)d−3 2

sβ3x3x5
δ(cos θ35 − cos θ0

35). (C.75)

The angular elements are:

dΩ
(3)
d−2 =

∫
sind−3 θ35 sind−4 φ2 · · · sinφd−3dθ35dφ2 · · · dφd−2

=

[∫
sind−4 φ2 · · · sinφd−3dφ2 · · · dφd−2

]
(1− cos2 θ35)

d−4
2 d cos θ35

= Ωd−3(1− cos2 θ35)
d−4
2 d cos θ35,

dΩ
(5)
d−2 = Ωd−4(1− cos2 θ15)

d−4
2 sind−4 ϕ35 d cos θ15dϕ35.

(C.76)

The integral over the solid angle yields:

Ωn =
2π

n+1
2

Γ(n+1
2 )

, (C.77)

therefore

dR3 =
(µ2)4−dŝd−3

(2π)2d−34d−2

2π
d−2
2 π

d−3
2

Γ(d−2
2 )Γ(d−3

2 )
×

× dx3dx5d cos θ15dϕ35(1− cos2 θ0
35)

d−4
2 (1− cos2 θ15)

d−4
2 sind−4 ϕ35 (β3x3x5)d−4

=
ŝ

(4π)4

42επ
1
2

Γ(1− ε)Γ
(

1
2 − ε

) (4πµ2

ŝ

)2ε

×

× dx3dx5d cos θ15dϕ35(1− cos2 θ0
35)−ε(1− cos2 θ15)−ε sin−2ε ϕ35 (β3x3x5)−2ε.

(C.78)

At last, using the following identity:

Γ

(
1

2
− n

)
= 4n

√
π

Γ(1− 2n)

Γ(1− n)
, (C.79)
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the phase-space integral becomes

dR3 =
ŝ

(4π)4

(
4πµ2

ŝx3x5

)2ε(
β2

3

1− cos2 θ0
35

4

)−ε
(1− cos2 θ15)−ε sin−2ε ϕ35

Γ(1− 2ε)
dx3dx5d cos θ15dϕ35. (C.80)

The dR3 can be manipulated such that a R2 factors, and the general integration boundaries of
the fractions of the momenta x3 and x5 are set from 0 to 1. Notice that

1− cos θ0
35

2
=

1

2β3

[
β3 − 1 + 2

(1− x4) + ∆

x3x5

]
,

1 + cos θ0
35

2
=

1

2β3

[
β3 − 1 + 2

(1− x3)(1− x5)−∆

x3x5

]
,

x2
3x

2
5β

2
3

1− cos2 θ0
35

4
= (1− x4)(1− x3)(1− x5)− µ2

H1
x2

5 + ∆[2(1− x3 − x5) + x3x5 −∆].

(C.81)

Defining the variable z to be the fraction of the invariant Higgs-pair mass Q2 with respect to
√
ŝ

z =
Q2

ŝ
=

(p3 + p4)2

ŝ
= 1− x5 =⇒ x5 = 1− z, dx5 = −dz, (C.82)

the Eq. (C.81) simplifies:

x2
3x

2
5β

2
3

1− cos2 θ0
35

4
= (x3 − z)(1− x3)z − µ2

H1
(1− z)2 + ∆[2(z − x3) + x3(1− z)−∆]. (C.83)

Defining x3 = 1− y, the expression reads

x2
3x

2
5β

2
3

1− cos2 θ0
35

4
= (1− y − z)yz − µ2

H1
(1− z)2 + ∆[−2(1− y − z) + (1− y)(1− z)−∆]. (C.84)

Finally, letting y = (1− z)x, Eq. (C.81) reads

x2
3x

2
5β

2
3

1− cos2 θ0
35

4
= (1− z)2z(1− x)x− µ2

H1
(1− z)2 − (1− z)∆[1− (1 + z)x]−∆2,

= z(1− z)2

[
(1− x)x−

µ2
H1

z
− ∆[1− (1 + z)x]

z(1− z) − ∆2

z(1− z)2

] (C.85)

This change of variables leads to the following integration measure:∫ 1−(µH1
+µH2

)2

0
dx5

∫ x+3

x−3

dx3 =

∫ 1

(µH1
+µH2

)2
dz

∫ x+

x−

dx(1− z),

x± =
1

2

(
1 +

∆(1 + z)

z(1− z) ± βz
)
, βz =

√√√√[1− (µH2 + µH1)2

z

][
1− (µH2 − µH1)2

z

]
.

(C.86)

Notice that the parameter βz strongly resembles the β defined in the context of the 2→ 2 scattering:
recalling the definition of Σ and ∆, a simple manipulation of its expression yields

βz =

√
1− 2Σ

z
+

∆2

z2
, (C.87)

that shows an explicit dependence on the fraction of total energy of the Higgs-pair invariant mass.
Important quantities are related to a combination of the boundaries of x±:

x+ − x− = βz, x+x− =
µ2
H1

z
+

∆

(1− z)z +
∆2

(1− z)2z
, (C.88)

that can be plugged into Eq. (C.85) to obtain a very compact form.
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Introducing a variable r such that it runs through the limit of integration of x, the term involving
the cos2 θ0

35 becomes:

x = x− + (x+ − x−)r,

x2
3x

2
5β

2
3

1− cos2 θ0
35

4
= −(1− z)2z(x− x−)(x− x+)

= (1− z)2z(x+ − x−)2r(1− r)
= (1− z)2zβ2

zr(1− r).

(C.89)

Therefore, the 3-particle phase space element becomes:

dR3 =
ŝβ1−2ε
z

(4π)4

(
4πµ2

ŝ

)2ε [
r−ε(1− r)−ε sin−2ε ϕ35drdϕ35

] z−ε(1− z)1−2ε(1− cos2 θ15)−ε

Γ(1− 2ε)
dzd cos θ15. (C.90)

The term in the parenthesis can be integrated∫ π

0
sin−2ε ϕ35dϕ35 = 4επ

Γ(1− 2ε)

Γ2(1− ε) ,∫ 1

0
r−ε(1− r)−εdr =

Γ2(1− ε)
Γ(2− 2ε)

,

(C.91)

therefore

dR3 = 4επ
ŝβ1−2ε
z

(4π)4

(
4πµ2

ŝ

)2ε
z−ε(1− z)1−2ε(1− cos2 θ15)−ε

Γ(2− 2ε)
dzd cos θ15

=

[
β1−2ε
z

8π

(
4πµ2

ŝz

)ε
Γ(1− ε)
Γ(2− 2ε)

](
4πµ2

ŝz

)ε
ŝz

32π2

z−1+ε(1− z)1−2ε

Γ(1− ε)

(
1− cos2 θ15

4

)−ε
dzd cos θ15.

(C.92)

The variable z can be expressed again in terms of the invariant Higgs-pair momentum Q2 as follows

dR3 =

[
β1−2ε
z

8π

(
4πµ2

Q2

)ε
Γ(1− ε)
Γ(2− 2ε)

]
Q2

32π2

(
4πµ2

Q2

)ε
z−1+ε(1− z)1−2ε

Γ(1− ε)

(
1− cos2 θ15

4

)−ε
dzd cos θ15

= R2
Q2

32π2

(
4πµ2

Q2

)ε
z−1+ε(1− z)1−2ε

Γ(1− ε)

(
1− cos2 θ15

4

)−ε
dzd cos θ15

(C.93)

We remark that βz is essentially the same β defined for the 2-particle phase space since it has
been factorized from the 3-particle one and it contains information only on the 2 → 2 subprocess.
This factorization is crucial for a coherent definition of the infrared subtraction terms expressed in
Chapter 3.

C.2.2 Differential cross section: real corrections

As for the virtual corrections, the real contributions have the following differential partonic cross
section:

d∆σ̂ij =
dR3

2ŝ
|Mij |2

= R2
dzd cos θ15

64π2

(
4πµ2

Q2

)ε
zε(1− z)1−2ε

Γ(1− ε)

(
1− cos2 θ15

4

)−ε
|Mij |2

= R2
dzd cos θ15

64π2

(
4πµ2

Q2

)ε
zε(1− z)1−2ε

Γ(1− ε)

(
1− cos2 θ15

4

)−ε
CijcolC

ij
polC

ij
spin

∑
ext.

|Mij |2.

(C.94)

Each channel contributing to the real corrections has a different color, polarization and spin
average. Below, the definitions of the quantities occurring in Eq. (C.94) are presented.
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qq̄→ H1H2g

Cqq̄pol = 1, Cqq̄spin =
1

4
, Cqq̄col =

1

9
,

∑
ext.

|Mqq̄|2 =
∑
spin

∑
pol

∑
col

T aijT
a
jiv̄(p2)γµu(p1)ū(p1)γρv(p2)ε∗hσ (p5)εhν (p5)M∗ρσqq̄ Mµν

qq̄

=

∑
spin

v̄(p2)γµu(p1)ū(p1)γρv(p2)

(∑
h

ε∗hσ (p5)εhν (p5)

)∑
i,j,a

T aijT
a
ji

M∗ρσqq̄ Mµν
qq̄

= Tr
[
/p1
γρ/p2

γµ

]
(−gσν) Tr

[
δN2

c−1

]
M∗ρσqq̄ Mµν

qq̄

= −32 [p1ρp2µ − (p1 · p2)gρµ + p2ρp1µ] gσνM∗ρσqq̄ Mµν
qq̄ .

(C.95)

qg→ H1H2q

Cqgpol =
1

(d− 2)
, Cqgspin =

1

2
, Cqgcol =

1

24
,

∑
ext.

|Mqg|2 =
∑
spin

∑
pol

∑
col

T aijT
a
jiū(p5)γµu(p1)ū(p1)γρu(p5)εhσ(p2)ε∗hν (p2)M∗ρσqg Mµν

qg

=

∑
spin

ū(p5)γµu(p1)ū(p1)γρu(p5)

(∑
h

ε∗hσ (p2)εhν (p2)

)∑
i,j,a

T aijT
a
ji

M∗ρσqg Mµν
qg

= Tr
[
/p1
γρ/p5

γµ

]
(−gσν) Tr

[
δN2

c−1

]
M∗ρσqg Mµν

qg

= −32 [p1ρp5µ − (p1 · p5)gρµ + p5ρp1µ] gσνM∗ρσqg Mµν
qg .

(C.96)

gg→ H1H2g

Cggpol =
1

(d− 2)2
, Cggspin = 1, Cggcol =

1

64
,

∑
ext.

|Mgg|2 =
∑
pol

∑
col

fabcfabcε∗h1
ρ (p1)εh1

µ (p1)ε∗h2
σ (p2)εh2

ν (p2)εh5

β (p5)ε∗h5
α (p5)M∗ρσβgg Mµνα

gg

=

(∑
h1

ε∗h1
ρ (p1)εh1

µ (p1)

)(∑
h2

ε∗h2
σ (p2)εh2

ν (p2)

)(∑
h5

εh5

β (p5)ε∗h5
α (p5)

)∑
a,b,c

fabcfabc

M∗ρσβgg Mµνα
gg

= −Nc(N2
c − 1) [gµρgνσgαβ +Aµρ,νσ,αβ ]M∗ρσβgg Mµνα

gg

= −24 [gµρgνσgαβ +Aµρ,νσ,αβ ]M∗ρσβgg Mµνα
gg

,

Aµρ,νσ,αβ =

(
−gµρ +

p1{µq1ρ}

p1 · q1

)(
−gνσ +

p2{νq2σ}

p2 · q2

)(
−gαβ +

p5{αq5β}

p5 · q5

)
− gµρgνσgαβ .

(C.97)

The amplitudes contributing to the qq̄ and qg channels can be built from the LO diagrams by
putting an incoming gluon off-shell and attaching a fermion line to it (Appendix H). This fact allows
to factor out from the amplitudes the quantities that have to be added. Moreover, the presence of a
single on-shell gluon in the final state allows to use the QED-like Ward identities, and the axial term
of the polarization can be dropped.

The gg channel is a bit different, since it contains pentagon diagrams. They cannot be constructed
from the LO diagrams. These contributions do not even represent a gauge-invariant subset of the
amplitude. In addition, if one does not want to consider the ghost contributions, the polarization
sums have to be performed over the physical polarization states since in the usual Lorenz gauge no
Ward identity ensures the cancellation of the unphysical ones. In Eq. (C.97), the tensor A would
vanish in QED ones contracted with the full amplitude because of the on-shell Ward identities; in
QCD this argument is not anymore valid, and in general it will give a non-zero contribution.
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Appendix D

Passarino-Veltmann reduction

The Feynman integrals contributing at each order of a perturbative QFT expansion do not form an
linearly-independent set: it can be shown [149] that every one-loop tensor integral can be expressed
as a linear combination of scalar integrals. Such independent integrals are called master integrals.
The decomposition of a tensor integral in terms of its master integrals is called reduction. Several
algorithms allow the reduction to master integrals, both at integral and integrand level. In this
Appendix the Passarino-Veltmann reduction algorithm is presented with explicit examples.

Consider the following set of denominators:

D0 = k2 −m2
t , D1 = (k − p1)2 −m2

t , D2 = (k + p2)2 −m2
t ,

p2
1 = 0, p2

2 6= 0, (p1 + p2)2 = m2
Hj ,

DHj = (k + p1 + p2)2 −m2
t ,

(D.1)

and the general scalar integrals:

A0(m2
0) =

∫
k

1

[k2 −m2
0]
, (D.2)

B0(q2;m2
0,m

2
1) =

∫
k

1

[k2 −m2
0][(k + q)2 −m2

1]
, (D.3)

C0(q2
1, q

2
2, (q2 − q1)2;m2

0,m
2
1,m

2
2) =

∫
k

1

[k2 −m2
0][(k + q1)2 −m2

1][(k + q2)2 −m2
2]
. (D.4)

When all denominators have the same mass, instead of writing the full list, a redefinition of the
argument will be performed such that {m2

t , . . . ,m
2
t } = m2

t . The integrals built with Di, i = {0, 1, 2}
defined before are:

B0(p2
2;m2

t ) =

∫
k

1

D0D2
, B0(0;m2

t ) =

∫
k

1

D0D1
,

C0(0, p2
2,m

2
Hj ;m

2
t ) =

∫
k

1

D0D1D2
.

(D.5)

and through a shift k → k + p1, an additional integral can be defined∫
k

1

D1D2
=

∫
k

1

D0DHj

= B0(m2
Hj ;m

2
t ). (D.6)

In the following section, the reduction of the 2-point and 3-point integrals is presented.

D.1 Reduction to scalar integrals

D.1.1 2-point tensor integrals

We firstly have to express the scalar products containing at least one loop momenta in terms of
denominators, so that

k2 = D0 +m2
t , k · p1 = −1

2
(D1 −D0) , k · p2 =

1

2

(
D2 −D0 − p2

2

)
. (D.7)
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The strategy will be the same for each tensor integral:

• defining the tensor structure of the tensor integral;

• contracting both the tensor integral and the tensor structure for its tensor basis;

• inverting the system to find the tensor coefficients.

Coefficient Bi

The simplest example is the rank-1 B0(p2
2,m

2
t ) integral. It can be written in terms of its tensor

structure: ∫
k

kµ

D0D2
= B1p

µ
2 , (D.8)

where B1 is a coefficient depending on the kinematic invariants and masses. Contracting both side of
Eq. (D.8) with pµ2 , the equation reads

B1p
2
2 =

∫
k

k · p2

D0D2

=
1

2

(∫
k

1

D0
−
∫
k

1

D2
− p2

2

∫
k

1

D0D2

)
= −1

2
B0(p2

2,m
2
t )p

2
2,

(D.9)

where we have used the identities of Eq. (D.7) and the identity∫
k

1

D0
=

∫
k

1

D2
, (D.10)

follows from the shift k → k − p2. Inverting Eq. (D.9), the rank-1 B0(p2
2,m

2
t ) is given by∫

k

kµ

D0D2
= −1

2
B0(p2

2,m
2
t )p

µ
2 . (D.11)

Coefficient Bij

Similarly, the rank-2 B0(p2
2,m

2
t ) has the following tensor structure∫

k

kµkν

D0D2
= B00g

µν +B11p
µ
2p

ν
2 . (D.12)

Contracting both sides with its tensor basis, a system involving the coefficients B00 and B11 is defined:(
1 m2

t
1
2p

2
2

1
4(p2

2)2

)(
A0(m2

t )
B0(p2

2,m
2
t )

)
=

(
d p2

2

p2
2 (p2

2)2

)(
B00

B11

)
, (D.13)

whose solution is(
B00

B11

)
=

1

(d− 1)(p2
2)2

(
(p2

2)2 −p2
2

−p2
2 d

)(
1 m2

t
1
2p

2
2

1
4(p2

2)2

)(
A0(m2

t )
B0(p2

2,m
2
t )

)
=

1

(d− 1)(p2
2)2

1

4

(
2(p2

2)2A0(m2
t ) + (p2

2)2(4m2
t − p2

2)B0(p2
2;m2

t )
2p2

2(d− 2)A0(m2
t )− p2

2(4m2
t − dp2

2)B0(p2
2;m2

t )

)
,

(D.14)

and ∫
k

kµkν

D0D2
=

[
2(p2

2)2A0(m2
t ) + (p2

2)2(4m2
t − p2

2)B0(p2
2;m2

t )

4(d− 1)(p2
2)2

]
gµν

+

[
2p2

2(d− 2)A0(m2
t )− p2

2(4m2
t − dp2

2)B0(p2
2;m2

t )

4(d− 1)(p2
2)2

]
pµ2p

ν
2 .

(D.15)
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D.2 3-point tensor integrals

Coefficient Ci

The rank-1 C0 is ∫
k

kµ

D0D1D2
= C1p

µ
1 + C2p

µ
2 . (D.16)

where the tensor integral has already been set. Contracting both sides of Eq. (D.16) for the tensor
basis, the system for evaluating the coefficients C1 and C2 can be written as

I =

∫
k

1

D0D1D2

(
k · p1

k · p2

)
=

(
0 p1 · p2

p1 · p2 p2
2

)(
C1

C2

)
= GC, (D.17)

where G is the Gram matrix. Its determinant is

G = −(p1 · p2)2, (D.18)

and its inverse is

G−1 =
1

G

(
p2

2 −p1 · p2

−p1 · p2 0

)
. (D.19)

The left-hand side written in terms of scalar integrals is

I =
1

2

(
B0(q2

2 ;m2
t )−B0(m2

Hj
;m2

t )

B0(0;m2
t )−B0(m2

Hj
;m2

t )− p2
2C0(0, p2

2,m
2
Hj

;m2)

)
. (D.20)

Finally, inverting the Gram matrix, the coefficients of the tensor expansion are given by

C1 =
1

2G

[
p2

2(p1 · p2)C0(0, p2
2,m

2
Hj

;m2
t ) + ((p1 · p2)− p2

2)B0(m2
Hj

;m2
t )

+ q2
2B0(q2

2 ;m2
t )− (p1 · p2)B0(0;m2

t )
]
,

C2 =
(p1 · p2)

2G

[
B0(m2

Hj
;m2

t )−B0(q2
2 ;m2

t )
]
,

(D.21)

and the rank-1 integral becomes∫
k

kµ

D0D1D2
=

1

2G

[
p2

2(p1 · p2)C0(0, p2
2,m

2
Hj

;m2
t ) + ((p1 · p2)− p2

2)B0(m2
Hj

;m2
t )

+ q2
2B0(q2

2 ;m2
t )− (p1 · p2)B0(0;m2

t )
]
pµ1

+
(p1 · p2)

2G

[
B0(m2

Hj
;m2

t )−B0(q2
2 ;m2

t )
]
pµ2 .

(D.22)

Coefficient Cij

Similarly, the rank-2 integral can be decomposed as

∫
k

kµkν

D0D1D2
= C00g

µν +

2∑
i=1

Cijp
µ
i p

ν
j , (D.23)

where we already expressed it as a general tensor depending on p1 and p2.
Contracting the r.h.s. with respectively gµν , pµ1p

ν
1 , pµ1p

ν
2 , pµ2p

ν
1 and pµ2p

ν
2 we can generate a system:

GC =


d 0 (p1 · p2) (p1 · p2) p2

2

0 0 0 0 (p1 · p2)2

(p1 · p2) 0 0 (p1 · p2)2 (p1 · p2)p2
2

(p1 · p2) 0 (p1 · p2)2 0 (p1 · p2)p2
2

p2
2 (p1 · p2) (p1 · p2)p2

2 (p1 · p2)p2
2 (p2

2)2



C00

C11

C12

C21

C22

 . (D.24)
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The contraction of the l.h.s. is:

I =


B0(m2

Hj
;m2

t ) +m2
tC0(0, p2

2,m
2
Hj

;m2
t )

1
4B0(p2

2;m2
t )(p1 · p2)− 1

4B0(m2
Hj

;m2
t )(p1 · p2)

1
4B0(p2

2;m2
t )p

2
2 − 1

4B0(m2
Hj

;m2
t )(p

2
2 − p1 · p2)

1
4B0(p2

2;m2
t )p

2
2 − 1

4B0(m2
Hj

;m2
t )(p

2
2 − p1 · p2)

1
4B0(0;m2

t )(p1 · p2 − p2
2) + 1

4B0(m2
Hj

;m2
t )(2p

2
2 − p1 · p2) + 1

4 (p2
2)2C0(0, p2

2,m
2
Hj

;m2
t )

 . (D.25)

The determinant of the matrix G can be written in terms of the Gram determinant:

detG = (d− 2)[(p1 · p2)2]4 = (d− 2)G4. (D.26)

Finally, inverting M, we can get the expression of the coefficients C with C = G−1I. Due to gauge
invariance, we are only interested in A00 and A21, whose values are

C00 = −
(p1 · p2)(p22 + 2(p1 · p2))B0(m2

Hj
;m2

t )− (p1 · p2)p22B0(p22;m2
t ) + 4m2

t (p1 · p2)2C0(0, p22,m
2
Hj

;m2
t )

4(d− 2)G
,

C21 = −
(p1 · p2)((d− 4)(p1 · p2)− p22)B0(m2

Hj
;m2

t ) + (p1 · p2)p22B0(p22;m2
t )− 4m2

t (p1 · p2)2C0(0, p22,m
2
Hj

;m2
t )

4(d− 2)G
.

(D.27)

The procedure explained in this Appendix is the core of the Passarino-Veltmann reduction, which
can be extended to boxes D0 and pentagons E0. The complexity of the tensor coefficients rapidly
increases with the number of external legs and tensor-rank. The Gram determinants G strongly
depend on the kinematics, and they introduce strong numerical instabilities when the phase space
integral is performed: high-rank integrals increase its power of G in the denominator, and regions
where G becomes small can lead to strong cancellation and loss of numerical precision.

D.3 Recurrence relations

An alternative to the reduction down to scalar integrals is represented by the recurrence relations.
Once that the scalar integrals are defined, a rank-r integral can be expressed in terms of a tensor basis,
where its coefficients depend on the rank-(r−1) ones. This means that the coefficients of such tensors
can be obtained by iteration starting from the scalar integrals. In general, every rank contributes with
one power of inverse Gram determinant, which lead to the potential numerical problems expressed in
the previous Section.

Bij coefficients

Consider the tensor structure of the rank-2 2-point integrals∫
k

kµkν

D0D2
= B00g

µν +B11p
µ
2p

ν
2 . (D.28)

In complete analogy of what has been done in the previous section, contracting both sides with the
momentum pµ and the metric tensor gµν , two equations can be obtained

gµν

∫
k

kµkν

D0D2
= B00d+B11p

2
2,

pν2

∫
k

kµkν

D0D2
= B00p

µ
2 +B11p

2
2p
µ
2 .

(D.29)

Using the relations of Eq. (D.7), and expressing the rank-1 integrals with their tensor structure, the
l.h.s. becomes

gµν

∫
k

kµkν

D0D2
= A0(m2

t ) +m2
tB0(p2

2;m2
t ),

pν2

∫
k

kµkν

D0D2
=
pµ2
2

∫
k

1

D0
− p2

2

2

∫
k

kµ

D0D2

=
1

2
A0(m2

t )p
µ
2 −

p2
2

2
B1p

µ
2 .

(D.30)
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Therefore, the system of equations can be solved for the coefficients Bij(
B00

B11

)
=

1

2(d− 1)p2
2

(
2p2

2 −p2
2

−2 d

)(
A0(m2

t ) +m2
tB0(p2

2;m2
t )

A0(m2
t )− p2

2B1

)
, (D.31)

and using the fact that G = p2
2, the coefficients Bij are given by

B00 =
1

2(d− 1)

[
A0(m2

t ) + 2m2
tB0(p2

2;m2
t ) + p2

2B1(p2
2;m2

t )
]
,

B11 =
1

2(d− 1)G

[
(d− 2)A0(m2

t )− 2m2
tB0(p2

2;m2
t )− dp2

2B1(p2
2;m2

t )
]
.

(D.32)

Thus, the coefficients B00 and B11 of the rank-2 2-points integrals depend explicitly on B1, namely
the coefficient of the rank-1 2-points tensor integral, which in turn is related to the scalar integral B0

through the Eq. (D.9).

Cij coefficients

The rank-2 3-points integrals have the following tensor structure:∫
k

kµkν

D0D1D2
= C00g

µν +
2∑
i=1

Cijp
µ
i p

ν
j , (D.33)

Contracting both sides for the external momenta, a system of four equations can be built:

pν1

∫
k

kµkν

D0D1D2
= +

1

2

[
B1(m2

Hj ;m
2
t ) +B0(m2

Hj ;m
2
t )
]
pµ1

+
1

2

[
B1(m2

Hj ;m
2
t )−B1(p2;m2

t )
]
pµ2

= [C00 + C12(p1 · p2)]pµ1 + C22p
µ
2 ,

pν2

∫
k

kµkν

D0D1D2
=

1

2

[
B1(p2

2;m2
t )−B1(m2

Hj ;m
2
t )−B0(m2

Hj ;m
2
t )− p2

2C1

]
pµ1

+
1

2

[
B1(m2

Hj ;m
2
t ) + p2

2C2

]
pµ2

= [C11(p1 · p2) + C12p
2
2]pµ1 + [C00 + C21(p1 · p2) + C22p

2
2]pµ2 ,

(D.34)

which lead to the following system and its solution
B1(m2

Hj
;m2

t ) +B0(m2
Hj

;m2
t )− 2C00

B1(p22;m2
t )−B1(m2

Hj
;m2

t )−B0(m2
Hj

;m2
t )− p22C1

B1(m2
Hj

;m2
t )−B1(p22;m2

t )

B1(m2
Hj

;m2
t ) + p22C2 − 2C00

 = 2


0 (p1 · p2) 0 0

(p1 · p2) p22 0 0
0 0 0 (p1 · p2)
0 0 (p1 · p2) p22



C11

C21

C12

C22


⇓

C11

C21

C12

C22

 =
1

2G


p22 −(p1 · p2) 0 0

−(p1 · p2) 0 0 0
0 0 p22 −(p1 · p2)
0 0 −(p1 · p2) 0




B1(m2
Hj

;m2
t ) +B0(m2

Hj
;m2

t )− 2C00

B1(p22;m2
t )−B1(m2

Hj
;m2

t )−B0(m2
Hj

;m2
t )− p22C1

B1(m2
Hj

;m2
t )−B1(p22;m2

t )

B1(m2
Hj

;m2
t ) + p22C2 − 2C00


⇓

C11 =
(p22 + p1 · p2)B1(m2

Hj
;m2

t ) + (p22 + p1 · p2)B0(m2
Hj

;m2
t )− 2p22C00 − (p1 · p2)B1(p22;m2

t ) + p22(p1 · p2)C1

2G
,

C12 =
(p22 − p1 · p2)B1(m2

Hj
;m2

t )− p22B1(p22;m2
t )− (p1 · p2)p22C2 + (p1 · p2)2C00

2G
,

C21 =
B1(p22;m2

t )−B1(m2
Hj

;m2
t )−B0(m2

Hj
;m2

t )− p22C1

2
,

C22 =
B1(m2

Hj
;m2

t ) + p22C2 − 2C00

2
(D.35)
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where we defined the Gram determinant G = −(p1 ·p2)2. The remaining C00 coefficient can be found
by contracting the Eq. (D.33) with the metric tensor gµν and using the results found in Eq. (D.35).

As for the previous example, the Cij tensor coefficients are related to the Ci and Bi ones, which in
turn are related to the C0 and B0 scalar integrals. The generalization of this procedure for the rank-r
n-points tensor integrals is straightforward: 1. find the Lorentz basis on which the rank-r tensor
integral can be projected; 2. define the equality between the tensor integral and its decomposition of
such tensor basis; 3. contract both sides of the equation found in 2. for every external momentum;
4. express the rank-(r − 1) in terms of its tensor structure; 5. solve the system with respect to
the coefficients of the rank-r tensor structure. It can be shown that it is possible to build a master
equation which holds for any rank-r n-points tensor integral and relates its tensor coefficients to the
rank-(r − 1) n-points (or lower) ones (See e.g. Ref. [170, 171]).



Appendix E

Evaluating the basis of one-loop
integrals

One-loop amplitudes can be written as a combination of scalar integrals: the minimal requirement
for the evaluation of such amplitudes is to know how to calculate the integral basis. There exist
many methods [172–177] for expressing one-loop scalar integrals into series expansions in ε. In this
Appendix the calculation of the simpler scalar integrals will be presented by using the standard
technique involving Feynman parametrization and the tadpole integral.

The tadpole integral is defined by:

A0(m2
t ) =

∫
k

1

k2 −m2
t

. (E.1)

The integral over the loop momentum is∫
k

(k2)α

[k2 − q2 −M2]n
= (−1)(n−α) Γ(n− α− d

2)Γ(α+ d
2)

Γ(n)Γ(d2)

1

[q2 +M2]n−α−
d
2

, (E.2)

and it can be applied directly on Eq. (E.1). It reads

A0(m2
t ) = −Γ(1− d

2)

Γ(1)

1

(m2
t )

1− d
2

= −m2
t

Γ(1 + ε)

ε(ε− 1)
(m2

t )
−ε

= m2
t (m

2
t )
−εΓ(1 + ε)

(
1

ε
+ 1

)
+O(ε).

(E.3)

For more complex integrands, the Feynman parametrization allows the integrand to take the
tadpole-like form. However, additional integrations over the Feynman parameters have to be per-
formed, making the calculation of one-loop scalar integrals highly non-trivial. In the following Section,
the 2-points and 3-points scalar integrals will be calculated up to the order O(1).

E.1 2-points scalar integrals

B0(q2,m2
t )

The integral B0(q2,m2
t ) is

B0(q2,m2
t ) =

∫
k

1

[k2 −m2
t ][(k + q)2 −m2

t ]
. (E.4)

Writing B0(q2,m2
t ) in terms of Feynman parameters, it reads:

B0(q2,m2
t ) =

Γ(2)

Γ(1)Γ(1)

∫
k

∫ 1

0
dx1dx2

δ(1− x1 − x2)

[(k2 −m2
t )x1 + ((k + q)2 −m2

t )x2]2
, (E.5)
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Rearranging the terms in the denominator and integrate over x1 it becomes

B0(q2,m2
t ) =

∫
k

∫ 1

0
dx2

1

[k2 + (2k · q + q2)x2 −m2
t ]

2

=

∫
k

∫ 1

0
dx2

1

[k2 + q2x2(1− x2)−m2
t ]

2
,

(E.6)

where the shift k → k − qx1 has been applied. Using Eq. (E.2) the integral becomes

B0(q2,m2
t ) =

Γ(2− d
2)

Γ(2)

∫ 1

0

dx2

[m2
t − q2x2(1− x2)]2−

d
2

, (E.7)

and by setting d = 4− 2ε and renaming x2 = x it reads

B0(q2,m2
t ) = Γ(ε)

∫ 1

0

dx

[m2
t − q2x2(1− x)]ε

= (m2
t )
−εΓ(1 + ε)

ε

∫ 1

0

dx[
1− q2

m2
t
x(1− x)

]ε . (E.8)

Expanding the last expression up to the finite order and defining q2

m2
t

= ρ, B0(q2,m2
t ) reads

B0(q2,m2
t ) = Γ(1 + ε)(m2

t )
−ε
[

1

ε
−
∫ 1

0
dx log [1− ρx(1− x)]

]
. (E.9)

The integral in the parenthesis can be evaluated analytically:

τ =
4

ρ
, g(τ) =

√
1− τ
2

log

(
−1 +

√
1− τ

1−
√

1− τ

)
,

⇓∫ 1

0
dx log [1− ρx(1− x)] = 2[g(τ)− 1],

(E.10)

Therefore, the analytical expansion of the 2-point scalar integral is

B0(q2,m2
t ) = Γ(1 + ε)(m2

t )
−ε
[

1

ε
+ 2− 2g(τ)

]
. (E.11)

An important limit of this integral is obtained for q2 → 0:

B0(0,m2
t ) = (m2

t )
−εΓ(1 + ε)

ε
. (E.12)

The derivative of B0(p2;mt) is given by:

d

dq2
B0(q2,m2

t ) = −Γ(1 + ε)(m2
t )
−ε2g′(τ(q2)), (E.13)

g′(τ(q2)) =
τ2

8m2
t

(
g(τ)

1− τ +
1

τ

)
, (E.14)

and the on-shell limit of the derivative of B0(q2,m2
t ) is

d

dq2
B0(0,m2

t ) ∼ Γ(1 + ε)(m2
t )
−ε 1

6m2
t

. (E.15)
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B0(p2; 0)

A particular case arises when we set the internal masses to zero, i.e. m2
t → 0.

B0(q2, 0) =
Γ(2− d

2)

Γ(2)

∫ 1

0
dx

1

[−q2x(1− x)]2−
d
2

= (−q2)
d
2
−2Γ

(
2− d

2

)∫ 1

0
dxx

d
2
−2(1− x)

d
2
−2,

(E.16)

the last term can be written in terms of Gamma functions:∫ 1

0
tx−1(1− t)y−1dt =

Γ(x)Γ(y)

Γ(x+ y)
. (E.17)

Hence

B0(q2,m2
t ) = (−q2)

d
2
−2Γ

(
2− d

2

)
Γ(d2 − 1)Γ(d2 − 1)

Γ(d− 2)

= (−q2)−εΓ (ε)
Γ(1− ε)Γ(1− ε)

Γ(2(1− ε)) .

(E.18)

B0(p2;mt, 0)

Consider the integral

B0(p2;m2
t , 0) =

∫
k

1

[k2 −m2
t ](k + p)2

. (E.19)

Using the same steps as for the equal mass case, the 2-point integral reads

B0(p2;m2
t , 0) =

∫
k

∫ 1

0

dx

[k2 + 2k · px+ p2x−m2
t (1− x)]2

=

∫
k

∫ 1

0

dx

[k2 + p2x(1− x)−m2
t (1− x)]2

=
Γ(2− d

2)

Γ(2)

∫ 1

0

dx

[m2
t (1− x)− p2x(1− x)]2−

d
2

= (m2
t )

d
2
−2Γ

(
2− d

2

)∫ 1

0
(1− x)

d
2
−2

(
1− p2

m2
t

x

) d
2
−2

dx

= (m2
t )

d
2
−2Γ

(
2− d

2

)∫ 1

0
(1− x)

d
2
−2 (1− ρx)

d
2
−2 dx.

(E.20)

The hypergeometric function is defined as

B(b, c− b)2F1(a, b; c; z) =

∫ 1

0
xb−1(1− x)c−b−1(1− zx)−adx, (E.21)

where

B(x, y) =
Γ(x+ y)

Γ(x)Γ(y)
. (E.22)

With these definitions, Eq. (E.20) reads

B0(p2;m2
t , 0) = (m2

t )
d
2
−2Γ

(
2− d

2

)∫ 1

0
(1− x)

d
2
−1−1 (1− ρx)−(2− d

2
) dx

= (m2
t )

d
2
−2Γ

(
2− d

2

)
B

(
1,
d

2
− 1

)
2F1

(
2− d

2
, 1;

d

2
; ρ

)
= (m2

t )
d
2
−2Γ

(
2− d

2

)(
d

2
− 1

)
2F1

(
2− d

2
, 1;

d

2
; ρ

)
= (m2

t )
−εΓ(ε)(1− ε)2F1 (ε, 1; 2− ε; ρ) .

(E.23)
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Hypergeometric functions can be expanded as follows

2F1 (a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!

= 2F1 (b, a; c; z) ,

(x)n =

{
1 n = 0

x(x+ 1) · · · (x+ n− 1) n > 0
=

Γ(x+ n)

Γ(x)
,

(E.24)

hence, they can be written as

2F1

(
1, ε; 2− ε; p

2

m2
t

)
=

∞∑
n=0

(a)n(b)n
(c)n

ρn

n!

=

∞∑
n=0

(1)n(ε)n
(2− ε)n

ρn

n!

=
Γ(2− ε)
Γ(1)Γ(ε)

∞∑
n=0

Γ(1 + n)Γ(ε+ n)

Γ(2− ε+ n)

ρn

Γ(1 + n)

=
Γ(2− ε)

Γ(ε)

∞∑
n=0

Γ(ε+ n)

Γ(2− ε+ n)
ρn

=
Γ(2− ε)

Γ(ε)

[
Γ(ε)

Γ(2− ε) +
Γ(1 + ε)

Γ(3− ε)ρ+
Γ(2 + ε)

Γ(4− ε)ρ
2 + · · ·

]
= 1 +

Γ(2− ε)
Γ(ε)

Γ(1 + ε)

Γ(3− ε)ρ+
Γ(2− ε)

Γ(ε)

Γ(2 + ε)

Γ(4− ε)ρ
2 + · · ·

= 1 +
ε

(2− ε)ρ+
ε(1 + ε)

(2− ε)(3− ε)ρ
2 + · · · .

(E.25)

Looking closely at the definition of 2F1, the m-th term is

ε(ε+ 1)(ε+ 2) · · · (ε+ n− 1)

(2− ε)(3− ε) · · · (2− ε+ n− 1)
=
ε((n− 1)! +O(ε))

(n+ 1)! +O(ε)
. (E.26)

Thanks to this expression, and by using the derivative of a rational function, the m-th term becomes

d

dε

f(ε)

g(ε)
=
f ′(ε)g(ε)− f(ε)g′(ε)

g2(ε)

=⇒ [(n− 1)! +O(ε)][(n+ 1)! +O(ε)]−O(ε)

[(n+ 1)! +O(ε)]2
=

(n− 1)!

(n+ 1)!
+O(ε).

(E.27)

Thus, the expansion around ε = 0 reads

2F1

(
1, ε; 2− ε; p

2

m2
t

)
= 2F1 (1, 0; 2; ρ) + ε

d

dε
2F1 (1, ε; 2− ε; ρ)

∣∣∣∣
ε=0

+O(ε2)

= 1 + ε

[
ρ

2
+
ρ2

6
+ · · ·

]
+O(ε2)

= 1 + ε

∞∑
n=1

(n− 1)!

(n+ 1)!
ρn +O(ε2)

= 1 + ερ

∞∑
n=0

n!

(n+ 2)!
ρn +O(ε2)

= 1 + ερ
∞∑
n=0

Γ(1 + n)Γ(1 + n)

Γ(3 + n)

ρn

n!
+O(ε2)

= 1 + ερ
Γ(1)Γ(1)

Γ(3)
2F1 (1, 1; 3; ρ) +O(ε2)

= 1 + ε
ρ

2
2F1 (1, 1; 3; ρ) +O(ε2).

(E.28)
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The hypergeometric function in the last identity is

2F1 (1, 1; 3; ρ) = 2

∫ 1

0
dx

(1− x)

(1− ρx)

=
2

ρ

[
(1− ρ)

ρ

∫ 1

0

(−ρ)dt

(1− ρt) + 1

]
=

2

ρ

[
(1− ρ)

ρ
log(1− ρ) + 1

]
.

(E.29)

Hence

2F1

(
1, ε; 2− ε; p

2

m2
t

)
= 1 + ε

[
(1− ρ)

ρ
log(1− ρ) + 1

]
+O(ε2), (E.30)

and finally, the B0(p2;m2
t , 0) around ε = 0 is

B0(p2;m2
t , 0) = (m2

t )
−εΓ(1 + ε)

(
1

ε
− 1

)
2F1 (ε, 1; 2− ε; ρ)

= (m2
t )
−εΓ(1 + ε)

[
1

ε
+

(1− ρ)

ρ
log(1− ρ)

]
+O(ε).

(E.31)

E.2 3-point scalar integrals

C0(0, p2
2,m

2
Hj

;m2
t )

Consider the integral

C0(0, p2
2,m

2
Hj ;m

2
t ) =

∫
k

1

[k2 −m2
t ][(k − p1)2 −m2

t ][(k + p2)2 −m2
t ]
,

p2
1 = 0, p2

2 = m2
Hj .

(E.32)

Doing the same steps done for the 2-points integrals, C0(0, p2
2,m

2
Hj

;m2
t ) reads

C0(0, p22,m
2
Hj

;m2
t ) =

Γ(3)

Γ(1)Γ(1)Γ(1)

∫
k

∫ 1

0

dx1dx2dx3δ(1− x1 − x2 − x3)

[(k2 −m2
t )x3 + ((k − p1)2 −m2

t )x1 + ((k + p2)2 −m2
t )x2]3

= 2

∫ 1

0

dx2

∫ 1−x2

0

dx1

∫
k

1

[k2 − 2k · (p1x1 − p2x2) + p22x2 −m2
t ]

3

= 2

∫ 1

0

dx2

∫ 1−x2

0

dx1

∫
k

1

[k2 + 2(p1 · p2)x1x2 + p22x2(1− x2)−m2
t ]

3
.

(E.33)

Shifting the Feynman parameters as x1 → x1(1 − x2) and x2 → x2, and rewriting (p1 · p2) =
(p1 + p2)2 − p2

2 = m2
Hj
− p2

2, C0 reads

C0(0, p22,m
2
Hj

;m2
t ) = 2

∫ 1

0

dx1dx2

∫
k

1− x2
[k2 + 2(p1 · p2)x1x2(1− x2) + p22x2(1− x2)−m2

t ]
3

= 2

∫ 1

0

dx1dx2

∫
k

1− x2
[k2 +m2

Hj
x1x2(1− x2)− p22x1x2(1− x2) + p22x2(1− x2)−m2

t ]
3
.

(E.34)

After integrating the expression with respect to the loop momentum, and expressing it in terms of
ε, C0 becomes:

C0(0, p22,m
2
Hj

;m2
t ) = −Γ(1 + ε)

∫ 1

0

(1− x2)dx1dx2
[m2

t − p22x2(1− x2) + (m2
Hj
− p22)x2(1− x2)x1]1+ε

. (E.35)

This expression is already finite, so one can immediately set ε = 0 at integrand level. Furthermore,
defining ρH = m2

Hj
/m2

t and ρ2 = p2
2/m

2
t

C0(0, p22,m
2
Hj

;m2
t ) = −Γ(1 + ε)

m2
t

(m2
t )
−ε
∫ 1

0

(1− x2)dx1dx2
[1− ρ2x2(1− x2) + (ρH − ρ2)x2(1− x2)x1]

. (E.36)
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Integration over x1 yields this expression:∫ 1

0

(1− x2)dx1dx2

[1− ρ2x2(1− x2) + (ρH − ρ2)x2(1− x2)x1]
=

=
1

(ρH − ρ2)

∫ 1

0

dx2

x2

∫ 1

0
dx1

(ρH − ρ2)x2(1− x2)dx1

[1− ρ2x2(1− x2) + (ρH − ρ2)x2(1− x2)x1]
=

=
1

(ρH − ρ2)

∫ 1

0

dx2

x2
log [1− ρ2x2(1− x2) + (ρH − ρ2)x2(1− x2)x1]

∣∣∣x1=1

x1=0

=
1

(ρH − ρ2)

[∫ 1

0

dx

x
log [1− ρHx(1− x)]−

∫ 1

0

dx

x
log [1− ρ2x(1− x)]

]
.

(E.37)

Lastly, defining

τ =
4

ρH
, λ =

4

ρ2
, f(τ) = −1

4
log2

[
−1 +

√
1− τ

1−
√

1− τ

]
,∫ 1

0

dx

x
log [1− ρ2x(1− x)] = −2f(λ),∫ 1

0

dx

x
log [1− ρHx(1− x)] = −2f(τ),

(E.38)

the integral can be performed analytically∫ 1

0

(1− x2)dx1dx2

[1− ρ2x2(1− x2)− (ρH − ρ2)x2(1− x2)x1]
= − 2

(ρH − ρ2)
[f(τ)− f(λ)]. (E.39)

and, expressing ρ2 and ρH respectively in terms of λ and τ :∫ 1

0

(1− x2)dx1dx2

[1− ρ2x2(1− x2)− (ρH − ρ2)x2(1− x2)x1]
= −1

2

τλ

τ − λ [f(τ)− f(λ)]. (E.40)

Finally, C0(0, p2
2,m

2
Hj

;m2
t ) takes the following analytical expression

C0(0, p2
2,m

2
Hj ;m

2
t ) =

Γ(1 + ε)

m2
t

(m2
t )
−ε
[
τλ

2

f(τ)− f(λ)

τ − λ

]
. (E.41)

The one-loop integrals evaluated in this Appendix have direct application both at LO and at NLO,
where they are involved in the real corrections and the one-particle-reducible contributions. 4-points
and 5-points integrals are much more complex, and when it is needed, a numerical approach would
be more convenient.

E.2.1 Scaleless scalar integrals

Within the dimensional regularization, the scaleless Feynman integrals vanish [178]. Consider the
integral

Jα =

∫
k
(k2)α, [Jα] = [M ]d+2α. (E.42)

A first naive argument for it to vanish is the dimensionality. The integral Jα does not contain any
physical scale apart from the loop momentum k; the loop momentum is integrated out, so that its
dimensionality has to by absorbed be some other dimensionful quantity. Since such scale is absent, it
must vanish: Jα = 0, ∀α.

Another argument is related with a constructive definition of the Feynman integrals as a function
of the dimension d ∈ C and its analytical continuation. Consider the integral∫

k

(k2)α

(k2 −m2)
+
Jα
m2

=

∫
k

(k2)α+1

(k2 −m2)m2
. (E.43)
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The left and the right-hand side are exact identities. The analytical evaluation of the integrals
appearing in Eq. (E.43) is∫

k

(k2)α

(k2 −m2)
= (−1)1−αΓ(α+ d

2)Γ(1− α− d
2)

Γ(1)Γ(d2)
(m2)

1
2
−1−α

1

m2

∫
k

(k2)α+1

(k2 −m2)
= (−1)−α

Γ(1 + α+ d
2)Γ(−α− d

2)

Γ(1)Γ(d2)
(m2)

1
2
−1−α

= (−1)1−αΓ(α+ d
2)Γ(1− α− d

2)

Γ(1)Γ(d2)
(m2)

1
2
−1−α.

(E.44)

The two integrals have the same analytical expression: this fact brings Eq. (E.43) into the state that∫
k

(k2)α

(k2 −m2)
+
Jα
m2

=

∫
k

(k2)α

(k2 −m2)
=⇒ Jα = 0. (E.45)

Rigorously, this result is true for −2(α+1) < d ≤ −2α. The extension for every d ∈ C can be done by
means of the analytical continuation. More details on the constructive approach to the d−dimensional
integrations can be found in Ref. [178]. A direct consequence of Eq. (E.45) is that the general one-loop
massless tadpoles vanish

A0(0) =

∫
k

1

k2
= J−1 = 0. (E.46)

In dimensional regularization, the scaleless integrals vanish because of Eq. (E.45) and (E.46). The
n-point scaleless one-loop integrals is:

In1
(
0; 0
)

=

∫
k

1

D0 · · ·Dn
,

Di = (k + qi)
2, q0 = 0, (qi · qj) = 0 ∀ i, j ∈ {1, . . . , n}.

(E.47)

The Feynman parametrization of In1
(
0; 0
)

yields

In1
(
0; 0
)

=

∫
k

∫ 1

0

δ(1− x0 − · · · − xn)

(x0D0 + · · ·+Dnxn)n+1
dx0 · · · dxn

=

∫
k

∫ 1

0
dx1

∫ 1−x1

0
dx2 · · ·

∫ 1−x1−···−xn

0
dxn

dx1 · · · dxn
[k2 + 2k ·Q]n+1

=

∫
k

∫ 1

0
dx1 · · · dxn

(1− x1)n−1(1− x2)n−2 · · · (1− xn−1)

[k2 + 2k ·Q]n+1
,

(E.48)

such that Q =
∑n

i=1 pixi and Q2 = 0. Completing the square in the denominator and shifting
k → k −Q, the integration over the Feynman parameters yields:

In1
(
0; 0
)

=

∫
k

∫ 1

0
dx1 · · · dxn

(1− x1)n−1(1− x2)n−2 · · · (1− xn−1)

[(k +Q)2]n+1

=

∫
k

∫ 1

0
dx1 · · · dxn

xn−1
1 xn−2

2 · · ·xn−1

(k2)n+1

=
1

n!

∫
k

1

(k2)n+1
=
J−n−1

n!
.

(E.49)

This fact shows that each scaleless n-point one-loop scalar integral can be related to a massless tadpole
integral with the power of the denominator equal to the number of external legs. Eq. (E.49) can be
generalized by taking into account denominators with positive indices1. This generalization involves
the only replacement n→∑n

i=1 ai, where ai is the (positive) power of the denominator Di.

1For negative indices one can use either integral or integrand reduction methods in order to obtain a combination of
scalar integrals with positive powers of the denominators.
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The vanishing of the scaleless one-loop integrals can be shown at multi-loop level as well:

Inl
(
0; 0
)

=

∫
k1···kl

1∏l
i=1

∏nl
j=1Dij

,

Dij = (ki + qij)
2, qi0 = 0, (qij · qrs) = 0,

∀ i, r ∈ {1, . . . , l}, j ∈ {1, . . . , ni}, j ∈ {1, . . . , ni} s ∈ {1, . . . , nr}.

(E.50)

The Feynman parametrization yields

Inl
(
0; 0
)

=

∫
k1···kl

∫ 1

0

δ(1− x1 − · · · − xn)

(x1D11 + · · ·+Dlnlxn)n
dx1 · · · dxn

=

∫
k1···kl

∫ 1

0

δ(1− x1 − · · · − xn)

(kT ·Ak + 2qT · k)n
dx1 · · · dxn,

(E.51)

where n =
∑

i,j nij , kT = (k1, · · · , kl) is the vector containing all the loop momenta ki and q contains
a combination of the internal momenta q with coefficients depending on the parameters xi. The
matrix A (symmetric) admits a decomposition A = STS such that ST = S. Hence,

Inl
(
0; 0
)

=

∫
k1···kl

∫ 1

0

δ(1− x1 − · · · − xn)

[(Sk)T · Sk + 2qT · k]n
dx1 · · · dxn. (E.52)

Applying the rotation k → S−1k, the Jacobian is ddk1 · · · ddkl → det(S−1)ddk1 · · · ddkl,

Inl
(
0; 0
)

=

∫
k1···kl

∫ 1

0

1

detl(S)

δ(1− x1 − · · · − xn)

[k2 + 2qT · (S−1k)]n
dx1 · · · dxn

=

∫
k1···kl

∫ 1

0

1

det(S)

δ(1− x1 − · · · − xn)

[k2 + 2(S−1q)T · k]n
dx1 · · · dxn,

(E.53)

and the shift k → k − S−1q

Inl
(
0; 0
)

=

∫ 1

0

δ(1− x1 − · · · − xn)

detl(S)
dx1 · · · dxn

∫
k1···kl

1

[k2]n

= C

∫
k1···kl

1

[k2
1 + · · ·+ k2

l ]
n
,

(E.54)

where C is the factor containing the integral over the Feynman parameters. Notice that the loop
integral has the following structure

Inl
(
0; 0
)

=
C

(iπ
d
2 )l

∫
dk0,1 · · · dk0,ld

d−1k1 · · · dd−1kl

[(k0,1)2 + · · ·+ (k0,l)2 − |k1|2 − · · · − |kl|2]n
. (E.55)

The time and space components can be grouped as follows:

dk0,1 · · · dk0,l = dΩl−1|K0|l−1d|K0| = dlK0

dd−1k1 · · · dd−1kl = dk11 · · · dk1d−1dk21 · · · dkld−1 = dΩl(d−1)−1|K|l(d−1)−1d|K| = dl(d−1)K,
(E.56)

therefore

Inl
(
0; 0
)

=
C

(iπ
d
2 )l

∫
dlK0d

l(d−1)K

(K2
0 − |K|2)n

= C

∫
K

dldK

[K2]n
= CJ−n. (E.57)

The Eq. (E.57) hides a subtlety: its metric tensor is not anymore the standard Minkowski metric
with signature (1, d − 1), but (l, d − l). However, this very same calculation could have done in the
Euclidean space by means of the Wick rotation, leading to a non-ambiguous definition of the scalar
products. Moreover, it can be shown [178] that for dimensionally regularized integrals the following
relation holds: ∫

dd1k1

∫
dd2k2f(k2

1 + k2
2) =

∫
dd1+d2Kf(K2), K = (k1, k2), (E.58)
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from which Eq. (E.57) follows, after inverting the Wick rotation.
It is important to notice that there are scaleless integrals for which their vanishing value comes

from a non-trivial interplay between UV and IR divergences. This fact can be shown explicitly from
the massless bubble:

B0(0; 0, 0) =

∫
k

1

k2(k + p)2
, p2 = 0. (E.59)

The Feynman parametrization yields

B0(0; 0, 0) =

∫ 1

0

∫
k

dx

[k2 + 2x(k · p)]2 =

∫ 1

0

∫
k

dx

[k2]2
=

∫
k

1

[k2]2
= J−2. (E.60)

Instead of directly setting it to zero, the reason why it vanishes can be shown by analytically integrating
the loop momentum:

B0(0; 0, 0) =
1

iπ
d
2

∫
dk0d(d−1)k

[(k0)2 − |k|2]2

= −π
1− d

2

2

∫
d(d−1)k

[k
2
]
3
2

= −π
1− d

2

4

∫
dΩd−2

∫ ∞
0

dk
2

[k
2
]3−

d
2

.

(E.61)

Renaming k
2

= y, setting d = 4− 2ε and integrating over the solid angle dΩd−2:

B0(0; 0, 0) = −4−ε
Γ(1− ε)
Γ(2− 2ε)

∫ ∞
0

dy

y1+ε
. (E.62)

There is no way to make the integral of Eq. (E.62) converge by acting on the ε parameter. However,
an appropriate analytical continuation with respect to ε ensures its vanishing behaviour. It is possible
to recover this behaviour by splitting the integration regions at a scale Λ and imposing two different
conditions on ε: ∫ ∞

0

dy

y1+ε
=

∫ Λ

0

dy

y1+ε
+

∫ ∞
Λ

dy

y1+ε
. (E.63)

The first term diverges if ε > 0; the second one if ε < 0. Imposing εIR = ε < 0 for the first term and
εUV = ε > 0 for the second, the integral in the l.h.s. is not divergent anymore:∫ ∞

0

dy

y1+ε
= − 1

εIR

1

yεIR

∣∣∣∣0
Λ

− 1

εUV

1

yεUV

∣∣∣∣∞
Λ

= −Λ−εIR

εIR
+

Λ−εUV

εUV

=

(
− 1

εIR
+ log(Λ)

)
+

(
1

εUV
− log(Λ)

)
+O(εUV, εIR)

=

(
1

εUV
− 1

εIR

)
+O(εUV, εIR),

(E.64)

which turns to be independent on the choice of the scale Λ. Thus, the massless bubble becomes

B0(0; 0, 0) = 4−ε
Γ(1− ε)
Γ(2− 2ε)

(
1

εIR
− 1

εUV

)
. (E.65)

The vanishing behaviour of B0(0; 0, 0) is related to an exact cancellation between the UV and IR
poles. The UV pole extracted in this way is the one that is canceled by MS counterterms for massless
quark self-energies.
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Appendix F

Utilities

In this Appendix, some useful identities used to make the expressions compact are presented. In
the first Section, identities involving the kinematical variables and the transverse momentum are
presented. In the last Section, the transformations regarding the Feynman parameters are shown for
the one-loop case.

F.1 Useful kinematical identities

In the context of this thesis, the transverse momentum p2
T has been defined as follows:

p2
T =

(t̂−m2
H1

)(û−m2
H1

)− ŝm2
H1

ŝ
. (F.1)

Momentum conservation relates the ŝ, t̂ and û, and p2
T can take different expressions, for examples:

ŝp2
T = (t̂−m2

H1
)(û−m2

H1
)− ŝm2

H1

= −(t̂−m2
H1

)(t̂−m2
H2

)− ŝt̂
= t̂û−m2

H1
m2
H2
.

(F.2)

Moreover, looking back to Appendix C, the t̂ variable runs from t− to t+, defined as

t̂± = − ŝ
2

(1− Σ∓ β). (F.3)

Combinations of t̂ and t̂± can be defined:

t̂+t̂− = m2
H1
m2
H2
,

t̂+ − t̂− = ŝβ,

t̂+ + t̂− = −ŝ(1− Σ),

t̂− t̂+ = − ŝβ
2

(1 + cos θ) = −(t̂+ − t̂−)

2
(1 + cos θ),

t̂− t̂− =
ŝβ

2
(1− cos θ) =

(t̂+ − t̂−)

2
(1− cos θ),

(F.4)

so that
ŝp2
T = t̂û−m2

H1
m2
H2

=
ŝ2

4
(1− Σ− β cos θ)(1− Σ + β cos θ)− t̂+t̂−

=
ŝ2

4
[(1− Σ)2 − β2 cos2 θ]− t̂+t̂−

=
1

4

[
(t̂+ + t̂−)2 − (t̂+ − t̂−)2 cos2 θ

]
− t̂+t̂−

=
1

4
(t̂+ − t̂−)2(1− cos2 θ)

= −(t̂− t̂+)(t̂− t̂−).

(F.5)
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It is possible to define the dt̂ element as follows

dt̂

ŝp2
T

= − dt̂

(t̂− t̂−)(t̂− t̂+)
. (F.6)

The partial fractioning on the denominator yields

dt̂

ŝp2
T

= − dt̂

(t̂+ − t̂−)

[
1

(t̂− t̂+)
− 1

(t̂− t̂−)

]
. (F.7)

It is easy to show that the identity
(t̂− t̂+) = −(û− t̂−), (F.8)

is valid and, therefore
dt̂

ŝp2
T

=
dt̂

(t̂+ − t̂−)

[
1

(t̂− t̂−)
+

1

(û− t̂−)

]
. (F.9)

The partonic cross section can be written as the integral of a function depending on the kinematic
variables with respect to t̂∫ t̂+

t̂−

dt̂

ŝp2
T

f(t̂, û) =

∫ t̂+

t̂−

dt̂

(t̂+ − t̂−)

[
f(t̂, û)

(t̂− t̂−)
+

f(t̂, û)

(û− t̂−)

]
. (F.10)

The second term can be written with the same denominator of the first one by noting that∫ t̂+

t̂−

dt̂
f(t̂, û)

(û− t̂−)
=

∫ t̂+

t̂−

dt̂
f(û, t̂)

(t̂− t̂−)
, (F.11)

and so ∫ t̂+

t̂−

dt̂

ŝp2
T

f(t̂, û) =

∫ t̂+

t̂−

dt̂

(t̂− t̂−)

f(t̂, û) + f(û, t̂)

(t̂+ − t̂−)
. (F.12)

The integral of Eq. (F.12) shows manifestly the logarithmic instabilities that lie in the boundary of
the integration region. In Chapter 4 these instabilities have been tamed with a dedicated change of
variables.

F.2 Feynman Parameter Tricks

The numerical integration of the Feynman integrals requires fixed boundaries, which for the Feynman
parameters is a hypercube. In this Section the manipulations of the Feynman parameters which
have been performed to obtain the convenient integration volume will be presented. The strategies
presented in this Section have been employed for setting the integrands

F.2.1 Boundaries

Consider the integral measure occurring in a Feynman integral after its parameterization (for a 4-point
integral): ∫ 1

0
dx̂1dx̂2dx̂3dx̂4δ

(
1−

4∑
i=1

x̂i

)
, (F.13)

Extending a parameter domain to the real axis:∫ ∞
−∞

dx̂1dx̂2dx̂3dx̂4δ

(
1−

4∑
i=1

x̂i

)
4∏
i=1

θ(xi)θ(1− xi). (F.14)

Now the delta function can be legitimately integrated with respect to x4∫ ∞
−∞

dx̂1dx̂2dx̂3θ

(
3∑
i=1

x̂i

)
θ

(
1−

3∑
i=1

x̂i

)
3∏
i=1

θ(x̂i)θ(1− x̂i). (F.15)
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The first two Heaviside distributions yield the conditions

θ(x̂1 + x̂2 + x̂3)θ(1− x̂1 − x̂2 − x̂3) ≥ 0 ⇐⇒ −x̂1 − x̂2 ≤ x̂3 ≤ 1− x̂1 − x̂2. (F.16)

Because of the θ(x̂3)θ(1− x̂3) function, the lower limit for x̂3 has to be in between 0 and 1:

0 ≤ −x̂1 − x̂2 ≤ 1 ⇐⇒ x̂1 = 0 ∧ x̂2 = 0. (F.17)

Hence the lower limit for x3 has to be 0.
Same argument holds for the upper limit for x̂3, except that now it does not get a single value,

but a condition over x̂2:

0 ≤ 1− x̂1 − x̂2 ≤ 1 =⇒ x̂2 ≥ −x̂1 ∧ x̂2 ≤ 1− x̂1. (F.18)

As for the first condition, for x̂1 > 0, the lower limit on x̂2 is zero.
Putting all the conditions together, the integration region is

θ

(
3∑
i=1

x̂i

)
θ

(
1−

3∑
i=1

x̂i

)
3∏
i=1

θ(x̂i)θ(1− x̂i) ≥ 0

=⇒ 0 ≤ x̂1 ≤ 1 ∧ 0 ≤ x̂2 ≤ 1− x̂1 ∧ 0 ≤ x̂3 ≤ 1− x̂1 − x̂2,

(F.19)

therefore, ∫ 1

0
dx̂1dx̂2dx̂3dx̂4δ

(
1−

4∑
i=1

x̂i

)
=

∫ 1

0
dx̂1

∫ 1−x1

0
dx̂2

∫ 1−x1−x2

0
dx̂3. (F.20)

This argument can be extended for any number of Feynman parameters∫ 1

0
dn+1x̂δ

(
1−

n+1∑
i=1

x̂i

)
=

∫ 1

0
· · ·
∫ 1−x1−···−xn

0
dnx̂, dnx̂ =

n∏
j=1

dx̂j . (F.21)

Note that the order of the integrations it totally arbitrary:∫ 1

0
dx̂1dx̂2dx̂3δ

(
1−

3∑
i=1

x̂i

)
=

∫ 1

0
dx̂1

∫ 1−x1

0
dx̂2 =

∫ 1

0
dx̂2

∫ 1−x2

0
dx̂1. (F.22)

This fact leads to the first trick: whenever a pattern that resembles the r.h.s. of Eq. (F.21) shows up,
the integration order can be permuted to the most convenient one.

F.2.2 Transformations

To achieve the numerical integration, the variables have to be transformed such that the new inte-
gration volume is the n-dimensional unit cube C = [0, 1]n. The easiest way is to use the following
transformation {

x̂i =
[∏i−1

j=1(1− xj)
]
xi, i > 1

x̂i = xi, i = 1

dnx̂ =

(
n−1∏
i=1

(1− xi)n−i
)
dnx,

(F.23)

hence ∫ 1

0
dn+1x̂δ

(
1−

n+1∑
i=1

x̂i

)
=

∫ 1

0
dnx

(
n−1∏
i=1

(1− xi)n−i
)
. (F.24)

Focusing on the previous example, we can write:∫ 1

0
dx̂1dx̂2dx̂3dx̂4δ

(
1−

4∑
i=1

x̂i

)
=

∫ 1

0
dx1dx2dx3(1− x1)2(1− x2). (F.25)
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Note that the integration boundaries are invariant on the shift xi → 1− xi:∫ 1

0
dxf(x) =

∫ 1

0
dxf(1− x). (F.26)

Therefore, this shift can occasionally be convenient:

∫ 1

0
dx̂1dx̂2dx̂3dx̂4δ

(
1−

4∑
i=1

x̂i

)
=

∫ 1

0
dx1dx2dx3(1− x1)2(1− x2)

=

∫ 1

0
dx1dx2dx3(x2

1x2)

(F.27)

The Eq. (F.23) offers a general change of variable for mapping the domain of the Feynman parameters
in [0, 1]n. However, the complexity of the mapping increases with the number of Feynman parameters,
and issues related with the end-point subtractions can arise. At NLO, a dedicated change of variables
have been chosen for treating the two-loop integrals for the virtual contributions, which has been
presented in Chapter 3. Here below a sketch of the strategy employed in the construction of the
change of variables at NLO is presented with LO examples.

Example 1

Let I be a one-loop 4-point integral. Using Feynman parametrization it reads

I =

∫ 1

0
dx̂2

∫ 1−x̂2

0
dx̂1

∫ 1−x̂1−x̂2

0
dx̂3

f(x̂1, x̂2, x̂3)

[N̂2
1 (x̂1, x̂2, x̂3)]p

,

N̂2
1 (x̂1, x̂2, x̂3) = 1− x̂2(1− x̂1 − x̂2)ρs − x̂3(x̂1 + x̂2)(ρt − ρH1)− x̂2x̂3(ρu − ρH1)− x̂3(1− x̂3)ρH1 .

(F.28)
Applying the first transformation x1 = 1− x̂1 − x̂2, the expression reads

I =

∫ 1

0

dx̂2

∫ 1−x̂2

0

dx1

∫ x1

0

dx̂3
f(x1, x̂2, x̂3)

[N̂2
1 (x1, x̂2, x̂3)]p

N̂2
1 (x̂1, x̂2, x̂3) = 1− x̂2x1ρs − x̂3(1− x1)(ρt − ρH1)− x̂2x̂3(ρu − ρH1)− x̂3(1− x̂3)ρH1

(F.29)

Switching the boundaries for x̂2 and x1, I becomes

∫ 1

0
dx̂2

∫ 1−x̂2

0
dx1

∫ x1

0
dx̂3

f(x1, x̂2, x̂3)

[N̂2
1 (x1, x̂2, x̂3)]p

=

∫ 1

0
dx1

∫ 1−x1

0
dx̂2

∫ x1

0
dx̂3

f(x1, x̂2, x̂3)

[N̂2
1 (x1, x̂2, x̂3)]p

. (F.30)

Finally, setting the boundaries from 0 to 1 through the transformation x̂2 = (1−x1)x2 and x̂3 = x1x3,
the total transformation is 

x̂1 = (1− x1)(1− x2)

x̂2 = x2(1− x1)

x̂3 = x1x3

. (F.31)

Hence, the full integral reads

I =

∫ 1

0
dx1dx2dx3

f(x1, x̂2, x̂3)

[N̂2
1 (x1, x̂2, x̂3)]p

x1(1− x1). (F.32)

Notice that the Jacobian depends on a single variable.



Utilities 119

Example 2

The Feynman parametrization brings the integral for M2 in the following form:

I =

∫ 1

0
dx̂3

∫ 1−x̂3

0
dx̂2

∫ 1−x̂3−x̂2

0
dx̂1

f(x̂1, x̂2, x̂3)

[N̂2
2 (x̂1, x̂2, x̂3)]p

,

N̂2
1 (x̂1, x̂2, x̂3) = 1− x̂3(1− x̂2 − x̂3)ρû − x̂3(1− x̂1 − x̂2 − x̂3)ρs+

−(x̂2 + x̂3)(1− x̂1 − x̂2 − x̂3)ρt̂ − (x̂2 + x̂3)(1− x̂1 − x̂2 − x̂3)ρH1 .

(F.33)

The first replacement will be α = 1− x̂1 − x̂2 − x̂3 =⇒ x̂1 = 1− α− x̂2 − x̂3. Therefore

I =

∫ 1

0
dx̂3

∫ 1−x̂3

0
dx̂2

∫ 1−x̂3−x̂2

0
dα. (F.34)

Exchanging the integration order and performing the change of variables β = 1− x̂2 − x̂3, I becomes∫ 1

0
dx̂3

∫ 1−x̂3

0
dx̂2

∫ 1−x̂3−x̂2

0
dα =

∫ 1

0
dα

∫ 1−α

0
dx̂3

∫ 1−α−x̂3

0
dx̂2

=

∫ 1

0
dα

∫ 1−α

0
dx̂3

∫ 1−x̂3

α
dβ.

(F.35)

The domain for (α, β) is the upper triangle inscribed into the square [0, 1]2. Exchanging the integration
variables, the boundaries can be mapped into the unit cube by means of the following identities∫ 1

0
dα

∫ 1−α

0
dx̂3

∫ 1−x̂3

α
dβ =

∫ 1

0
dx̂3

∫ 1−x̂3

0
dα

∫ 1−x̂3

α
dβ

=

∫ 1

0
dx̂3

∫ 1−x̂3

0
dβ

∫ β

0
dα

=

∫ 1

0
dβ

∫ 1−β

0
dx̂3

∫ β

0
dα

=

∫
C
dxx1(1− x1).

(F.36)

Collecting all the change of variables, the mapping reads

x̂1 = 1− α− x̂2 − x̂3 =⇒ x̂1 = β − α = x1(1− x2)

x̂2 = 1− β − x̂3 =⇒ x̂2 = 1− β − (1− β)x3 = (1− x1)(1− x3)

x̂3 = (1− β)x3 =⇒ x̂3 = (1− x1)x3.

(F.37)
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Appendix G

Running of αs in QCD

In this Appendix, the evaluation of the counterterms for αs in the MS scheme for the Nf = 5 active
massless flavours with the top-quark mass decoupled from the running will be presented.

G.1 Gluon propagator

Mµν,ab
VP =

k
p

µ ν , Mµν,ab
TI =

k
p

µ ν

Mµν,ab
G =

k
p

µ ν

Figure G.1: Diagrams contributing to the gluon propagator.

The gluon propagator expressed in its form factor reads

iδab(p2gµν − pµpν)Π0(p2) =Mµν,ab
VP +Mµν,ab

TI +Mµν,ab
G (G.1)

and the counterterm behaves such that

Π0(p2)− δ3 = finite. (G.2)

G.1.1 Massless flavours

Mµν,ab
VP = − i

(4π)2
(4πµ2)2− d

2

∫
k

(−igsγµT a)
i/k

k2

(
−igsγνT b

) i(/k + /p)

(k + p)2

= −1

2

ig2
s

(4π)2
δab(4πµ2)2− d

2

∫
k

Tr[γµ/kγν(/k + /p)]

k2(k + p)2

= − ig2
s

2(4π)2
δab(4πµ2)2− d

2 4

[
2

∫
k

kµkν

k2(k + p)2
+

∫
k

kµpν + pµkν

k2(k + p)2
− gµν

∫
k

(k2 + k · p)
k2(k + p)2

]
= − ig2

s

(4π)2
δab
[
p2gµν − pµpν

](4πµ2

−p2

)ε
Γ(1 + ε)

2

3

1

ε

(G.3)

Summing over the massless flavours, we obtain

Mµν,ab
VP = − ig2

s

(4π)2
δab
[
p2gµν − pµpν

](4πµ2

−p2

)ε
Γ(1 + ε)

2Nf

3

1

ε
+ finite. (G.4)
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The triple gauge boson interaction diagram is given by

Mµν,ab
TI =

1

2

i

(4π)2
(4πµ2)2− d

2

∫
k

(
−gsfacd[gµα(k + 2p)β + gαβ(−2k − p)µ + gβµ(k − p)α]

)
×

×
(−igαρδce

k2

)(
−gsfebf [gρν(k + 2p)σ + gνσ(k − p)ρ + gσρ(−2k − p)ν ]

)(−igσβδdf
(k + p)2

)
=

1

2

ig2
s

(4π)2
facdf bcd(4πµ2)2− d

2

∫
k

N µν

D0D1
,

(G.5)

where

N µν = [gµρ(k + 2p)σ + gρσ(−2k − p)µ + gσµ(k − p)ρ][gρν(k + 2p)σ + gνσ(k − p)ρ + gσρ(−2k − p)ν ]

= 2(2d− 3)kµkν + (2d− 3)(kµpν + pµkν) + (d− 6)pµpν + gµν [2(k · p) + 2k2 + 5p2]
(G.6)

The PV reduction applied to the integral yields∫
k

N µν

D0D1
=

[(6d− 5)p2gµν − (7d− 6)pµpν ]

2(d− 1)
B0(p2; 0), (G.7)

so that

Mµν,ab
TI =

CA
2

ig2
s

(4π)2
δab(4πµ2)2− d

2
[(6d− 5)p2gµν − (7d− 6)pµpν ]

2(d− 1)
B0(p2; 0), (G.8)

which is not transverse.
The ghost contribution is needed to remove the contribution of the unphysical degrees of freedom:

Mµν,ab
G = − i

(4π)2
(4πµ2)2− d

2

∫
k

(−gsf cae(k + p)µ)

(
iδcd

(k + p)2

)
(−gsffbdkν)

(
iδef

k2

)
= − ig2

s

(4π)2
facef bce(4πµ2)2− d

2

[∫
k

kµkν

k2(k + p)2
+ pµ

∫
k

kν

k2(k + p)2

]
=
CA
2

ig2
s

(4π)2
δab(4πµ2)2− d

2

[
p2gµν + (d− 2)pµpν

2(d− 1)

]
B0(p2; 0)

(G.9)

The sum of the ghost contribution and the non-abelian bubble contribution recovers the transversality
of the propagator tensor:

Mµν,ab
TI +Mµν,ab

G =
ig2
s

(4π)2
δab
(
p2gµν − pµpν

)(4πµ2

−p2

)ε
Γ(1 + ε)

5CA
3

1

ε
+ finite. (G.10)

In massless QCD with Nf active flavours, the divergent part is

Πµν
0 =

g2
s

(4π)2

(
4πµ2

−p2

)ε
Γ(1 + ε)

(
5CA

3
− 2Nf

3

)
1

ε
+ finite, (G.11)

which is canceled by the following MS counterterm

δ′3 =
g2
s

(4π)2

(
4πµ2

µ2
R

)ε
Γ(1 + ε)

(
5CA

3
− 2Nf

3

)
1

ε
. (G.12)

G.1.2 Top-mass contribution

Mµν,ab
VP = − i

(4π)2
(4πµ2)2− d

2

∫
k

(−igsγµT a)
i(/k +mt)

[k2 −m2
t ]

(
−igsγνT b

) i(/k + /p+mt)

[(k + p)2 −m2
t ]

= − ig2
s

(4π)2
Tr[T aT b](4πµ2)2− d

2

∫
k

Tr[γµ(/k +mt)γ
ν(/k + /p+mt)]

[k2 −m2
t ][(k + p)2 −m2

t ]

= − ig2
s

2(4π)2
δab(4πµ2)2− d

2

∫
k

N µν

D0D1
.

(G.13)
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Expanding the trace, we obtain

N µν = Tr[γµ/kγν(/k + /p)] +m2
tTr[γµγν ]

= 4[2kµkν + kµpν + pµkν − gµνk · (k + p) +m2
t g
µν ],

(G.14)

and the PV reduction of this amplitude (see Appendix D) yields

Mµν,ab
VP = − 2ig2

s

(4π)2
δab(4πµ2)2− d

2

[
2

∫
k

kµkν

D0D1
+

∫
k

kµpν + pµkν

D0D1
+ gµν

∫
k

m2
t − k · (k + p)

D0D1

]
= − ig2

s

(4π)2
δab(4πµ2)2− d

2
[(d− 2)p2 + 4m2

t ]B0(p2;m2
t )− 2(d− 2)A0(m2

t )

(d− 1)

(
gµν − pµpν

p2

)
= − ig2

s

(4π)2
δab(4πµ2)ε

{
[2(1− ε)p2 + 4m2

t ]

(3− 2ε)
B0(p2;m2

t )−
4(1− ε)
(3− 2ε)

A0(m2
t )

}(
gµν − pµpν

p2

)
= − ig2

s

(4π)2
δab
[
p2gµν − pµpν

]
(4πµ2)ε

(
1

3− 2ε

){[
2(1− ε) +

4m2
t

p2

]
B0(p2;m2

t )−
4(1− ε)
p2

A0(m2
t )

}
(G.15)

Therefore, the form factor Πt(p
2) of Mµν,ab

VP with the top quark in the loop reads

Πt(p
2) = − g2

s

(4π)2
(4πµ2)ε

(
1

3− 2ε

){[
2(1− ε) +

4m2
t

p2

]
B0(p2;m2

t )−
4(1− ε)
p2

A0(m2
t )

}
. (G.16)

The on-shell limit of this form factor is useful to check the proper cancellation of the wave function
corrections due to the top-quark contributions. Expanding Eq. (G.16) around p2 = 0:

Πt(p
2) = − g2

s

(4π)2
(4πµ2)ε

(
1

3− 2ε

){
1

p2

[
4m2

tB0(0;m2
t )− 4(1− ε)A0(m2

t )
]

+

[
2(1− ε)B0(0;m2

t ) + 4m2
t

d

dp2
B0(0;m2

t )

]
+O(p2)

}
= − g2

s

(4π)2

(
4πµ2

m2
t

)ε
Γ(1 + ε)

3− 2ε

{[
2

ε
− 4

3

]
+O(p2)

}
,

(G.17)

and around ε = 0:

Πt(p
2) = − g2

s

(4π)2

(
4πµ2

m2
t

)ε
Γ(1 + ε)

2

3

1

ε
+O(p2, ε) (G.18)

Here, the derivative of the bubble integral presented in Appendix E has been used. Therefore, the
form factor for an on-shell gluon is

Πt(0) = − g2
s

(4π)2

(
4πµ2

m2
t

)ε
Γ(1 + ε)

2

3

1

ε
. (G.19)

The on-shell limit presented in Eq. (G.19) takes part in the wave function correction of the NLO:
their contribution, shown in Figure G.2, is the product of two form factors:

Πt(0)F
(0)
j = − g2

s

(4π)2

(
4πµ2

m2
t

)ε
Γ(1 + ε)

2

3

1

ε
F

(0)
j . (G.20)

The vacuum polarization diagrams are the only ones that receive contributions that depend on the
top mass: this fact can be exploited to build a counterterm that makes the top quark decouple from
the running of αs. The decoupling can be enforced by the condition

δ3 − δ′3 −Πt(0) = finite (G.21)

where δ3 is the total vacuum polarization counterterm and δ′3 is the massless vacuum polarization
counterterm. The explicit expression of δ3 in the MS scheme is

δ3 =
g2
s

(4π)2

(
4πµ2

µ2
R

)ε
Γ(1 + ε)

[(
5CA − 2(Nf + 1)

3

)
1

ε
− 2

3
log

(
µ2
R

m2
t

)]
. (G.22)

Later on, the decoupling of the top mass from the running of αs will be shown explicitly.
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Figure G.2: Wave-function corrections due to top-quark loops.

G.2 Quark Self-energy

kp

i j

Figure G.3: Diagram contributing to the massless quark self-energy.

The self-energy diagram and its counterterm can be expressed as

−i/pδijΣ(p2) =M(f)
0 ,

Σ(p2)− δ2 = finite.
(G.23)

and the amplitude can be written as:

M(f)
0 =

i

(4π)2
(4πµ2)2− d

2

∫
k

(−igsγµT a)
i/k

k2
(−igsγνT b)

−igµνδab
(k − p)2

= − ig2
s

(4π)2
T aT a(4πµ2)2− d

2

∫
k

γµ/kγµ
k2(k − p)2

=
ig2
s

(4π)2
CF δ

ij(4πµ2)2− d
2

∫
k

(d− 2)/k

k2(k − p)2

=
ig2
s

(4π)2
CF δ

ij(4πµ2)2− d
2

(d− 2)

2
/pB0(p2, 0),

(G.24)

where p2 is the off-shellness of the quark propagator. The pole structure is:

M(f)
0 =

ig2
s

(4π)2
CF δ

ij

(
4πµ2

−p2

)ε
Γ(1 + ε)/p

1

ε
+ finite

Σ0(p2) = − g2
s

(4π)2
CF

(
4πµ2

−p2

)ε
Γ(1 + ε)

1

ε
+ finite

(G.25)

and its MS counterterm is

δ2 = − g2
s

(4π)2
CF

(
4πµ2

µ2
R

)ε
Γ(1 + ε)

1

ε
(G.26)

G.3 Vertices

Mµ,a
1 = µ

p1

p2

p

k , Mµ,a
2 = µ

p1

p2

p

k

Figure G.4: Diagrams contributing to the vertex corrections
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Lastly, we need the vertex diagrams. This contribution has the following structure:

−igsT aγµΓvert(p1, p2) =Mµ,a
1 +Mµ,a

2

Γvert(p1, p2) + δ1 = finite
(G.27)

The amplitude for Mµ,a
1 is

Mµ,a
1 =

i

(4π)2
(4πµ2)2− d

2

∫
k

(−igsγσT c)
i(−/k − /p2

)

(k + p2)2
(−igsγµT a)

i(−/k + /p1
)

(k − p1)2
(−igsγρT b)

−igσρδbc
k2

= − ig3
s

(4π)2
T bT aT b(4πµ2)2− d

2

∫
k

γσ(/k + /p2
)γµ(/k − /p1

)γσ

k2(k − p1)2(k + p2)2

(G.28)

Since the scalar triangle C0 is finite, we can already drop the terms that generates such integrals.

Mµ,a
1 = − ig3

s

(4π)2
T bT aT b(4πµ2)2− d

2

∫
k

γσ/kγµ/kγσ − γσ/kγµ/p1
γσ + γσ/p2

γµ/kγσ

k2(k − p1)2(k + p2)2
+ finite (G.29)

Using the PV reduction, it is possible to show that the terms proportional to /k do not develop any
pole. It relies on the pole structure of B0, which is independent on the kinematics. Therefore, the
rank-1 tensor integrals produce finite terms.

Neglecting rank-1 terms, the amplitude reads:

Mµ,a
1 = − ig3

s

(4π)2
T bT aT b(4πµ2)2− d

2

∫
k

γσ/kγµ/kγσ
k2(k − p1)2(k + p2)2

+ finite

=
ig3
s

(4π)2
T bT aT b(4πµ2)2− d

2

∫
k

(d− 2)(2kµ/k − k2γµ)

k2(k − p1)2(k + p2)2
+ finite

(G.30)

Applying the PV reduction on this last term, we obtain the following pole term:

Mµ,a
1 = − ig3

s

(4π)2
T bT aT b

(
4πµ2

−p2

)ε
Γ(1 + ε)

γµ

ε
+ finite

= − ig3
s

(4π)2
(CF −

1

2
CA)T a

(
4πµ2

−p2

)ε
Γ(1 + ε)

γµ

ε
+ finite

(G.31)

The second diagram can be written as

Mµ,a
2 =

i

(4π)2
(4πµ2)2− d

2

∫
k

(−igsγβT c)
i/k

k2
(−igsγαT b)

−igασ
(k − p1)2

−igβρ
(k + p2)2

)×

(−gsf bac)[gσµ(−k + 2p1 + p2)ρ + gµρ(−k − p1 − 2p2)σ + gρσ(2k − p1 + p2)µ]

=
g3
s

(4π)2
f bacT cT b(4πµ2)ε

∫
k

γρ/kγσ

k2(k − p1)2(k + p2)2
×

[gσµ(−k + 2p1 + p2)ρ + gµρ(−k − p1 − 2p2)σ + gρσ(2k − p1 + p2)µ].

(G.32)

For reasons which are completely analogous to the previous diagram, terms which are proportional
to rank-0 and rank-1 integrals will generate finite terms. Therefore:

Mµ,a
2 =

g3
s

(4π)2
f bacT cT b(4πµ2)ε

∫
k

γρ/kγσ[2gρσkµ − gσµkρ − gµρkσ]

k2(k − p1)2(k + p2)2
+ finite

=
g3
s

(4π)2
f bacT cT b(4πµ2)ε

∫
k

[2γσ/kγσk
µ − γµ/k/k − /k/kγµ]

k2(k − p1)2(k + p2)2
+ finite

=
g3
s

(4π)2
fabcT cT b(4πµ2)ε2

∫
k

[(d− 2)/kkµ + k2γµ]

k2(k − p1)2(k + p2)2
+ finite,

(G.33)

and lastly, the PV reduction yields:

Mµ,a
2 =− ig3

s

(4π)2

3

2
CAT

a

(
4πµ2

−p2

)ε
Γ(1 + ε)

γµ

ε
+ finite, (G.34)

which leads to the following total contribution:

Γvert(p1, p2) =
g2
s

(4π)2
(CF + CA)

(
4πµ2

−p2

)ε
Γ(1 + ε)

1

ε
+ finite, (G.35)
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and to the following MS counterterm

δ1 = − g2
s

(4π)2
(CF + CA)

(
4πµ2

µ2
R

)ε
Γ(1 + ε)

1

ε
. (G.36)

G.4 MS scheme for αs with Nf = 5 massless flavours with the top
quark decoupled

From the fermion field and mass renormalization of the QCD Lagrangian it is possible to access the
renormalization of the strong coupling constant:

αs,0 =
Z2

1

Z2
2Z3

αs. (G.37)

Expanding the latter with respect to the number of loops, the bare coupling in terms of the renor-
malized one reads

αs,0 = αs (1 + 2δ1 − 2δ2 − δ3) +O(δ2
i )

= αs + δαs +O(α2
s).

(G.38)

Therefore, the one-loop counterterm for the strong coupling reads:

δαs
αs

= 2δ1 − 2δ2 − δ3 (G.39)

which gives the following explicit form:

δαs
αs

=
αs

(4π)

(
4πµ2

µ2
R

)ε
Γ(1 + ε)

[
−33− 2(Nf + 1)

3ε
+

2

3
log

(
µ2
R

m2
t

)]
. (G.40)

It is possible to see explicitly the decoupling of the top mass from the running of αs from the defi-
nition of the β-function [179–182]. Differentiating the Eq. (G.38) with respect to the renormalization
scale µ2

R:

µ2
R

dαs,0
dµ2

R

= 0 = µ2
R

dαs
dµ2

R

+ µ2
R

dδαs
dµ2

R

+O(α2
s) (G.41)

since the bare coupling is independent on the renormalization scale. The first term of the r.h.s. of
Eq. (G.41) is the definition of the one-loop beta function; the second term is its analytical expression,
which gives:

β = µ2
R

dαs
dµ2

R

, β =
αs

(4π)

(
4πµ2

µ2
R

)ε
Γ(1 + ε)

(
11− 2

3
Nf

)
. (G.42)

This beta function is manifestly independent of the top quark contribution, and it gets contributions
only from the massless flavours.
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Feynman Diagrams for gg → H1H2

In this Appendix, the complete set of Feynman diagrams involved in the gg → H1H2 NLO cross
section is presented.
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H.1 Real corrections
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Figure H.1: Diagrams contributing to σ̂gg.
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Figure H.2: Diagrams contributing to σ̂qg.
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Figure H.3: Diagrams contributing to σ̂qq̄.
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H.2 Virtual contributions

H.2.1 Vertex contributions
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Figure H.4: Triangle contributions.
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H.2.2 Box contributions
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Figure H.5: Topology 1.
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Figure H.6: Topology 2.
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Figure H.7: Topology 3.
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Figure H.8: Topology 4.
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Figure H.9: Topology 5.
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Figure H.10: Topology 6.
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Figure H.11: One-particle reducible diagrams.
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Feynman Rules

In this Appendix, the Feynman rules coming from the 2HDM and the QCD, relevant for this thesis,
are depicted.

I.1 2HDM scalar propagators and Yukawa couplings

Scalar propagators

h =
i

q2 −m2
h

, h ∈ {H1, H2, A,H
+, H−},

Yukawa couplings

qi

q̄j

h

h ∈ {H1, H2, A,H
+, H−}

qiqjH1 = −imq

v
δijY1,

qiqjH2 = −imq

v
δijY2,

qiqjA = −mq

v
γ5δijYA,

ūidjH
+ = − i

v
VijY

ij
+ ,

d̄iujH
− = − i

v
V ∗ijY

ij
−

type I type II type X type Y

Y1

up quarks
cosα

sinβ

cosα

sinβ

cosα

sinβ

cosα

sinβ

down quarks
cosα

sinβ
− sinα

cosβ

cosα

sinβ
− sinα

cosβ

Y2

up quarks
sinα

sinβ

sinα

sinβ

sinα

sinβ

sinα

sinβ

down quarks
sinα

sinβ

cosα

cosβ

sinα

sinβ

cosα

cosβ

YA
up quarks cotβ cotβ cotβ cotβ

down quarks − cotβ tanβ − cotβ tanβ

type I, type X type II, type Y

Y ij+

√
2
[
mdj cotβPR −mui cotβPL

]
−
√

2
[
mdj tanβPR +muiPL cotβ

]
Y ij−

√
2
[
mdi cotβPL −muj

cotβPR
]
−
√

2
[
mdi tanβPL +muj

cotβPR
]
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I.2 2HDM trilinear Higgs couplings

i

j

k

i, j, k ∈ {H1, H2, A,H
+, H−}

λijk = −i3cijk
v

c111 =
m2
H1

[2 cos(α+ β) + sin 2α sin(β − α)]− λ5v
2 cos(α+ β) cos2(β − α)

sin 2β
,

c112 =
cos(β − α)[2 sin 2α(2m2

H1
+m2

H2
)− λ5v

2(3 sin 2α− sin 2β)]

6 sin 2β
,

c122 = −
sin(β − α)[2 sin 2α(m2

H1
+ 2m2

H2
)− λ5v

2(3 sin 2α+ sin 2β)]

6 sin 2β
,

c222 = −
m2
H2

[cos(β − α) sin(2α)− 2 sin(α+ β)] + λ5v
2 sin(α+ β) sin2(β − α)

sin 2β
,

c1AA = sin(β − α)(2m2
A −m2

H1
) +

cos(α+ β)(2m2
H1
− λ5v

2)

3 sin 2β
,

c2AA = cos(β − α)(2m2
A −m2

H2
) +

sin(α+ β)(2m2
H2
− λ5v

2)

3 sin 2β
,

c1+− = sin(β − α)(2m2
+ −m2

H1
) +

cos(α+ β)(2m2
H1
− λ5v

2)

3 sin 2β
,

c2+− = cos(β − α)(2m2
+ −m2

H2
) +

sin(α+ β)(2m2
H2
− λ5v

2)

3 sin 2β
.
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I.3 SM QCD Feynman rules

q

p
=
i(/p+mq)

p2 −m2
q

a, µ = −igsγµT a

b, νa, µ =
−igµνδab

p2

µ
p

= εµ(p)

p
= 1
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