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Facultat	de	Ciències	Biològiques 

Doctoral Programme in Biomedicine and Biotechnology  

Alba Martı ́nez Albiñana 
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Detection of infection by hematopoietic stem and progenitor cells (HSPCs) is essential 

to replace myeloid cells consumed during the immune response. HSPCs express some 

functional pattern recognition receptors involved in the recognition of Candida albicans. In 

this context, our group has previously demonstrated that C. albicans yeasts induce 

proliferation and differentiation of HSPCs via TLR2 and Dectin-1. In the present PhD thesis, 

we used in vitro and ex vivo models of HSPC differentiation to investigate the functional 

consequences for mature myeloid cells of exposure of HSPCs to PAMPs or C. albicans yeasts.   

In vitro experiments show that murine HSPCs continuously exposed to TLR2 or TLR4 

ligands, in homeostatic conditions, generate macrophages with a diminished ability to 

secrete TNF-α and IL-6 (tolerized phenotype), whereas Dectin-1 or C. albicans yeasts 

stimulation leads to the generation of macrophages that secrete higher amounts of these 

pro-inflammatory cytokines (trained phenotype). In these conditions, transient exposure of 

HSPCs to TLR agonists is sufficient to generate macrophages with a tolerized phenotype, 

which is partially reversed by subsequent exposure to C. albicans yeasts. However, only 

TLR2 signaling in HSPCs impacts the inflammatory function of macrophages they produce 

in inflammatory conditions, and subsequently exposure to C. albicans yeasts do not reverse 

but reinforce this altered phenotype. TLR2 and Dectin-1 signaling in HSPCs also have 

functional consequences for the antigen presenting cells (APCs) derived from them, which 

exhibit an altered expression of histocompatibility complex class II molecules (signal one) 

and costimulatory molecules (CD40, CD80 and CD86) (signal two), as well as an altered 

cytokine production (TNF-α, IL-6, IL-12 p40 and IL-2) (signal three). These changes in the 

three key signals that APCs deliver to naïve T cells provoke that APCs from 

TLR2/Dectin-1-programed HSPCs prime enhanced Th1 and Th17 responses in CD4⁺ T cell 

cocultures.  

C. albicans systemic infection and in vivo TLR2 agonist treatment also alter cytokine 

production and fungicidal activity of the ex vivo macrophages derived from murine HSPCs 

in homeostatic conditions. Unexpectedly, an extended TLR2 agonist treatment generates 

macrophages with a trained phenotype. This prolonged treatment also causes an expansion 

of HSPCs and myeloid cells in the spleen, and drastically reduces the fungal burden in the 

kidney and the spleen during systemic C. albicans infection. This protection is abrogated by 

immunodepletion of HSPCs. In addition, HSPCs produce in vitro cytokines and chemokines 

in response to a TLR2 ligand or C. albicans yeasts, and these secretomes can induce 

differentiation of HSPCs towards the myeloid lineage. 

Taken together, these data assign an active role to HSPCs in sensing pathogens during 

infection and in contributing to host protection by diverse mechanisms. 
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1 Immunity to Candida albicans invasive 
infections 

The genus Candida is a polyphyletic group that includes more than 300 disparately 

related species, which are found in a diverse range of environmental niches. Despite their 

distant evolutionary origin, various members of the genus have evolved mechanisms to 

successfully colonize the human body, effectively promoting their tolerance by the host 

immune system to avoid clearance; therefore, these species constitute part of the normal 

microbiota that resides throughout the mucosal surfaces of the gut and oral or vaginal 

cavities (Hube, 2009). As bacteria associated with our bodies, it has been also described that 

commensal fungal communities (the mycobiome) play a key role in maintaining immune 

homeostasis in healthy individuals (Underhill and Iliev, 2014). However, when normal host 

defenses are impaired, this delicate balance may turn into a fungal transition from 

commensalism to opportunism and Candida species can become a serious agent of infection 

in these conditions (Calderone, 2012; Wheeler et al., 2017).  

Manifestation and severity of candidiasis, a broad term that refers to infections caused 

by fungi of the Candida genus, range from superficial mucocutaneous infections to severe 

disseminated infections depending on the nature and extent of the impairment of host 

immune responses (Calderone, 2012; Perlroth et al., 2007). Superficial infections are 

common and tend to resolve naturally or with minimal intervention. Nevertheless, invasive 

diseases, which refer to bloodstream infections (candidaemia) or deep-seated infections, 

are hard to treat and mortality rates can be up to 40%. The lack of quick and accurate 

diagnostic procedures, together with the emergence of resistances to the limited antifungal 

agents available contribute to this high number of deaths (Pappas et al., 2018; Pfaller and 

Diekema, 2007; Yapar, 2014). There are well-described risk factors associated with invasive 

candidiasis, some of them intrinsic to the host or the disease state, whereas others are the 

result of medical treatment (Pappas et al., 2018). Thus, in adult patients, systemic 

candidiasis frequently arises from either colonization of foreign material, such as 

intravenous catheters, or from fungi translocation from the gut into the blood. The three 

major predisposing factors for Candida sepsis due to dissemination from the gut are:              

(i) previous intestinal colonization with Candida spp., (ii) host defects in phagocytic cell 

function or numbers, and (iii) disruption of intestinal barrier. This dissemination of Candida 

commonly occurs in cancer patients who receive chemotherapy, as the combination of 

chemotherapy-induced neutropenia, mucositis and treatment with antibiotic cocktails 
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results in a highly permissible environment through which Candida can disseminate to the 

bloodstream (Wheeler et al., 2017).  

From all the species included in the genus Candida, only about twenty can cause human 

disease. Of these, more than 90% of invasive infections are caused by the five most common 

pathogens, Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis, and 

Candida krusei. Based on the frequency of isolation and virulence, the most prominent 

species among these five is C. albicans, due to its morphological flexibility and ability to 

adhere to biological and inert surfaces. In the United States and northwestern Europe, the 

second most common species is C. glabrata, whereas in Latin America, Southern Europe, 

India and Pakistan, C. parapsilosis and/or C. tropicalis are much more frequently 

encountered. C. krusei is the least common of the five major Candida spp., and it is most often 

found among patients with underlying hematological malignancies. C. glabrata is also 

generally more common among individuals older than 60 and among recipients of solid 

organ transplant. In the last decades, the diagnosis of non-albicans candidaemia has 

increased and other Candida species have been described as emerging pathogens able to 

cause disease in humans (i.e. C. dubliniensis, C. guilliermondii, C. kefyr, C. famata, C. lusitaniae, 

C. auris, among others) (Guinea, 2014; Pappas et al., 2018; Perlroth et al., 2007).  

Host resistance to candidiasis involves the coordinated action of both innate and 

adaptive host immune responses, which are triggered following fungal recognition by 

immune and non-immune cells. Defense mechanisms are initially triggered by an 

inflammatory response mediated by the innate immune system. This response also induces 

and modulates the adaptive immune responses, which in turn regulates signals from the 

innate system. As the most common Candida spp. causing candidiasis, the major factors that 

characterize C. albicans as an opportunistic pathogen, as well the most relevant aspects of 

these defense responses to C. albicans are described next.  

1.1 C. albicans, an opportunistic pathogen 

1.1.1 Fungal cell wall  

The fungal cell wall is a complex dynamic structure that protects cells from osmotic 

pressure in hypotonic media and is responsible for its morphology. Moreover, as the 

outermost cellular structure, the C. albicans cell wall plays an essential role in the 

host-microorganism interactions and therefore in the pathogenicity of the fungus (Arana et 

al., 2009; Gozalbo et al., 2004; Poulain and Jouault, 2004; Ruiz-Herrera et al., 2006). This cell 
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wall is a multilayered structure mainly composed by polysaccharides, while proteins 

represent only 20 % of the cell wall dry weight and lipids 1-7 %. The inner layer is based on 

a core structure of β-D-glucose polysaccharide with 1-3 β-glycosidic bonds (β-(1,3)-glucan) 

covalently linked to a β-(1,4)-linked polymer of N-acetylglucosamine (chitin) towards the 

inside of the cell wall, and itself attached towards the outside to branched β-1,6-glucan 

(Figure 1). These polymers, by forming hydrogen bonds between adjacent polysaccharide 

chains, constitute a three-dimensional network of microfibrils that accounts for the cell wall 

rigidity. Besides being close to the cell membrane in an inner layer, those skeletal 

components can become exposed to the surface in budding yeast cells, as a scar is left on the 

mother cell after separation. Furthermore, differential surface exposure and structural 

differences of β-glucans have also been described between the two main growth forms of   

C. albicans, yeasts and hyphae (see 1.1.2), thus modulating their immunological properties 

(Gantner et al., 2005; Lowman et al., 2014). 

 

 

In addition to the glucan and chitin skeleton, the C. albicans cell wall contains an outer 

surface that mainly comprises glycosylated proteins. These cell wall proteins are covalently 

associated with mannan through N-glycosidic or O-glycosidic linkages (mannoproteins). 

Linked O-mannans are linear polysaccharides linked to serine/threonine residues that, in 

C. albicans, consist of one to five mannopyranose units almost exclusively α-(1,2)-linked. 

FIGURE 1 | The structure of the Candida albicans cell wall. The schematic diagram shows the major 
components of the cell wall and their distributions. Glucans and chitin (the microfibrillary polysaccharides) 
constitute the main structural components and they are distributed in internal layers, with chitin located near 
the plasma membrane. Proteins and mannoproteins (cell wall proteins, CWP) are predominant in the outer 
layer. Different covalent bonds, formed between some mannoproteins and polysaccharide chains and between 
different mannoproteins, contribute to the organization of the cell wall. The insets show the structure of the 
glucan and mannan components (Netea et al., 2008). 

https://en.wikipedia.org/wiki/Glycosidic_bonds
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Otherwise, N-mannan is a complex structure, linked to asparagine residues, comprising up 

to 150 mannose sugars arranged as an α-(1,6)-linked backbone with side chains of α-(1,2)-, 

α-(1,3)-mannose and phosphomannan. Mannoproteins could also be classified, depending 

on how they are attached to the glucan network, in two types: protein with internal repeats 

(Pir) proteins and glycosylphosphatidylinositol (GPI) proteins (Figure 1). Pir proteins are 

directly associated with β-1,3-glucan, while GPI proteins used a GPI anchor remnant to 

interact with β-1,6-glucan. GPI proteins in eukaryotes are usually anchored into the plasma 

membrane, although in C. albicans it has been shown that some of them are redirected to 

the cell wall network. In this case, the GPI anchor is cleaved and the protein with the 

remnant part of the anchor is then transported to the outer layer of the fungal cell wall 

(Richard and Plaine, 2007). Mannoproteins are dominant in the external surface, but they 

expand the entire cell wall structure, and some are secreted to the extracellular medium 

(Arana et al., 2009; Gozalbo et al., 2004; Ruiz-Herrera et al., 2006). 

Other C. albicans cell wall component that contribute actively to fungal-induced 

pathogenesis is phospolipomannan (PLM), a mannosylated sphingolipid with a glycan 

fraction composed of a long chain of β-1,2-linked mannoses. This hyper-mannosylation 

seems crucial to relocate PLM from the plasma membrane to the cell wall, and for its 

secretion to the environment (Fradin et al., 2015). 

1.1.2 Virulence factors 

C. albicans does not act as a passive element during infectious process but actively 

participates in the establishment and progress of the infection by expressing a set of 

putative virulence factors (Calderone, 2012). These virulence traits include morphological 

transition between yeast and hyphal forms, hydrolytic enzyme production, cell surface 

expression of invasins or adhesins, ability to develop structured microbial communities or 

biofilms, phenotypic switching, antigenic variability, and immunomodulation of host 

responses. Additionally, a rapid adaptation to fluctuations in environmental pH, metabolic 

flexibility, powerful nutrient acquisition systems and robust stress response machineries 

are fitness attributes that also support the ability of C. albicans to infect host niches. Some 

of them are essential to C. albicans pathogenicity and represent promising targets for 

vaccine and antifungal drug development (Höfs et al., 2016; Mayer et al., 2013; Poulain, 

2015).  

One of the most studied C. albicans virulence factors is polymorphism. C. albicans is a 

polymorphic fungus that usually growths as ovoid-shaped budding yeast, but under specific 
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environmental conditions, it can form germ tubes to develop hyphae. Further detected 

morphologies include elongated ellipsoid yeast cells with constrictions at the septa 

(pseudohypae), spore-like structures generated from hyphae under stress conditions 

(chlamydospores) or white and opaque cells formed during switching (see below) 

(Calderone, 2012; Sudbery et al., 2004). The transition between yeast and hyphal forms is 

termed dimorphism and it was traditionally considered as a virulence factor because:            

(i) commensal C. albicans only growths as yeast whereas both yeast and hyphal forms are 

detected in infected tissues (Calderone, 2012), and (ii) expression of fungal virulence 

factors (e.g. adherence or antigen expression) is related with morphology, as they are 

coregulated with the yeast-to-hypha transition, enabling the hyphae to be better equipped 

to develop the infectious process and to overcome the host immune responses (Lo et al., 

1997). Moreover, it has been shown that there are differences in cell wall organization and 

composition between budding yeasts and hyphae (such as chitin and β-glucan content, 

structure and exposure to cell surface, or mannan structure and mannoprotein expression) 

that may contribute to the increased ability of hyphae to infect host cells (Gozalbo et al., 

2004; Höfs et al., 2016; Ruiz-Herrera et al., 2006). In fact, monomorphic mutants unable to 

form hyphae exhibit impaired virulence in mice (Lo et al., 1997). However, it has been 

proposed that both growth forms are important for pathogenicity: the hyphal form would 

be more adapted to adhesion and invasion while the smallest yeast form could represent 

the form primarily involved in dissemination (Noble et al., 2010).  

Furthermore, C. albicans may perform phenotypic switching, a strain-dependent 

process which consist in the reversible generation of genetic variants easily distinguishable 

by the morphology of the colonies they form; switching is associated to genome 

rearrangements that result in the generation of genetic variants with an altered expression 

of numerous virulence and immunomodulatory factors, affecting both cell and colony 

morphologies. The best studied switching is the White/Opaque transition. Strains 

homozygous at the mating type locus (MTL a/a or MTL α/α), following mitotic 

recombination or duplication of the homologous chromosome, can switch from the normal 

yeast form (white cells/colonies) to an elongated cell form termed “opaque”; this opaque 

cells are less resistant than the white cells, but are the mating-competent form of C. albicans: 

they can mate with other opaque cells to produce recombinant progeny. White/Opaque 

switching may occur spontaneously at a relatively low frequency and may be involved in 

fungal survival during infection by generation of fungal cells better adapted for invasion 

and/or immune evasion (Soll, 2009). 
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C. albicans secrete a variety of enzymes, such as proteases, phospholipases and others, 

that can damage host cell structures and contribute to infection, reason why these enzymes 

are considered virulence factors. The best characterized are the secreted aspartyl 

proteinases (SAPs), proteolytic enzymes that can degrade proteins with immunological 

functions (such as complement or immunoglobulins) therefore favoring fungal evasion of 

host defenses, or mucin, whose degradation promotes an active fungal-driven penetration 

into gastrointestinal mucosa (Naglik et al., 2004). In addition, it has been also described that 

C. albicans hyphal form can also produce a cytolytic peptide toxin named candidalysin. 

When accumulated at sufficient concentrations, candidalysin interacts with the cell 

membrane to form pore-like structures that results in membrane damage (Moyes et al., 

2016; Naglik et al., 2019). However, candidalysin seems to play a dual role in C. albicans 

pathogenesis: on one hand it directly damages host cells, but on the other hand it is an 

immunomodulatory molecule that is sensed by the host to initiate a protective response 

(see section 1.2). Thus, the outcome of infection is dictated by this virulence 

immunomodularory balance, namely damage induction versus immune protection (Naglik 

et al., 2019).  

Effective C. albicans yeasts adherence and invasion of endothelial and epithelial cells 

enable their dissemination into the bloodstream (Sheppard and Filler, 2014). 

Host-pathogen interactions are mainly mediated by a set of specialized cell wall proteins 

and mannoproteins, termed adhesins, which also participate in adherence to other 

microorganisms, to C. albicans cells, or to abiotic surfaces (de Groot et al., 2013; Gozalbo et 

al., 2004). Once adhered, C. albicans can utilize two different mechanisms in order to invade 

host cells: induced endocytosis and active penetration (Naglik et al., 2014; Sheppard and 

Filler, 2014; Zakikhany et al., 2007). For inducing endocytosis, the fungus expresses specific 

proteins termed invasins that mediate binding to host ligands, thereby triggering the 

engulfment of the fungal cell (yeast or hyphae) into the host cell. This is a passive process, 

killed cells are even taken up, whereas active penetration is a fungal-driven process that 

requires viable C. albicans hyphae (Dalle et al., 2010). The capacity of C. albicans for effective 

adherence to inert materials also facilitates biofilm formation on implanted medical devices 

such as central venous catheters or prostheses, which represents a major source of 

long-term candidaemia (Desai et al., 2014).  
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1.2 Initial recognition of C. albicans: innate immune responses  

When systemic candidiasis arises from dissemination of fungal cells from the gut to the 

bloodstream, the first line of defense against fungal infections is the epithelium. It provides 

a physical barrier between the internal environment and the external environment that 

contains pathogens. Epithelial cells are able to restrict fungal invasion by a variety of 

defense mechanisms that appear to be activated depending on the degree of tissue damage 

and invasion by C. albicans. In the presence of yeast cells, epithelial cells produce 

antimicrobial peptides with potent antifungal activity, such as β-defensins, cathelicidin or 

alarmins. This response suggests that the uppermost epithelial layers are able to maintain 

the commensal status of C. albicans without further activation of immune responses (Lilly 

et al., 2010; Naglik et al., 2014; Yano et al., 2012).  

A mechanism to discriminate between the yeast (commensal) and hyphal (invasive) 

forms of C. albicans has been described in epithelial cells from mucosal surfaces (Moyes et 

al., 2010; Moyes et al., 2015; Naglik et al., 2014). These epithelial cells orchestrate an innate 

response to C. albicans, inducing a biphasic production of pro-inflammatory cytokines and 

chemokines (Moyes et al., 2010). The first phase is independent of hyphal formation and 

involves a low pro-inflammatory response that, added to the antifungal effect of resident 

macrophages, may be sufficient to stop tissue invasion and damage, thus maintaining 

commensalism and low fungal burdens. If this early and transient response fails to avoid 

fungal proliferation, a second phase is triggered. This second phase, which is dependent on 

fungal burden and hyphae formation, involves a higher production of pro-inflammatory 

cytokines and chemokines by epithelial cells, inducing neutrophil and monocyte 

recruitment, as well as the secretion of antimicrobial peptides. The production of 

candidalysin by the hyphal form also induces this second phase that favors fungal clearance 

or reduction of fungal burden below the threshold level of activation, and thus a return to 

the commensal state. Such biphasic response will allow epithelial tissues to remain 

quiescent under low fungal burdens while responding strongly to damage-inducing hyphae 

when burden increases (Moyes et al., 2015; Naglik et al., 2014).  

Finally, it is worth to note that normal microbiota of mucosal surfaces is also part of 

the first line of antimicrobial defense, as its members compete with pathogens for nutrients 

and space (Muraille, 2015). There is increasing evidence indicating that host microbiota also 

influences fungal colonization and antifungal immune responses (Oever and Netea., 2014; 

Romani et al., 2015). As an example, some bacterial species (Pseudomonas aeruginosa, 

Enterococcus faecalis) are able to inhibit hypha development of C. albicans, and others 
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(lactobacilli) inhibit fungal adhesion and growth, thus protecting gut mucosa from C. 

albicans proliferation. This complex relationship between microbiota and C. albicans is 

clearly deduced by the fact that treatment with antibacterial antibiotics with wide spectrum 

is a risk factor contributing to C. albicans colonization, and disturbances in normal 

microbiota can lead to mucosal infections in otherwise healthy hosts (Calderone, 2012; 

Kennedy and Volz, 1985; Oever and Netea, 2014).  

When C. albicans is able to deal with mucosal immunity and reach the bloodstream, the 

first line of defense against the pathogen is the innate immune system. Pathogen recognition 

by phagocytes is the initial step in activating a rapid immunological response to fight against 

the pathogen. Phagocytes can kill the pathogen and induce an inflammatory response that 

modulates the adaptive immune responses, thus coordinating both arms of the immune 

system. The cellular and molecular bases of protective innate responses against C. albicans, 

which are described below, have been elucidated by the discovery of human genetic 

disorders in immune factors associated with susceptibility to fungal infections and studies 

using mouse models of systemic candidiasis (Duggan et al., 2015; Lionakis, 2014). 

1.2.1 Innate immune responses 

 Serum factors  

Although humans with genetic deficiencies in components of the complement system 

do not show increased risk for systemic Candida infections, considerable evidence from 

both murine studies and in vitro assays with human cells indicate an important role of 

complement in antifungal immunity (Kozel, 1996; Mullick et al., 2004; Speth et al., 2008; 

Tsoni et al., 2009). C. albicans cell wall is a strong inducer of the three pathways of 

complement activation: (i) mannan on the cell surface is recognized by a mannan-binding 

protein which activates the lectin pathway, (ii) mannan on the cell surface is recognized by 

anti-mannan antibodies that activate the classical pathway, and (iii) the cell wall is targeted 

by C3b to initiate the alternative pathway. All three pathways converge on the rapid 

formation of C3 convertase, giving rise to the C3b cleavage product that opsonizes and 

promotes C. albicans phagocytosis by neutrophils and macrophages via complement 

receptor 3 (CR3) (Tsoni et al., 2009). Anti-mannan antibodies also act as opsonins 

promoting fungal cell detection by phagocytes through immunoglobulin-γ fragment 

crystallizable region receptors (FcγRs) (Kozel, 1996; Speth et al., 2008). Furthermore, the 

activation of complement system also generates anaphylatoxins (cleavage products C3a and 

C5a) that enhance pro-inflammatory cytokine production, inflammatory cell recruitment 
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and antimicrobial activity of phagocytes (Cheng et al., 2012). In fact, mice lacking the C5a 

precursor molecule C5 or the C3a/b precursor C3 are highly susceptible to invasive                   

C. albicans infection (Mullick et al., 2004; Tsoni et al., 2009). However, activated 

complement is unable to kill C. albicans hyphae during infection, probably due to the thick 

fungal cell wall that may block the formation of the membrane attack complex (C5-C9) and 

the direct lysis of C. albicans (Kozel, 1996; Speth et al., 2008). 

Mouse models of infection have shown that fungal cells in the bloodstream bind and 

activate platelets, which in turn produce immune mediators, such as the CXC chemokine 

ligand 4 (CXCL4 or PF4) and the CC chemokine ligand 5 (CCL5 or RANTES), which have 

antifungal activity; also platelet-enriched plasma causes inhibition of C. albicans growth. 

However, the possible role of platelets in antifungal host defense is far from being elucidated 

(Drago et al., 2013; Robert et al., 2000). 

 Myeloid phagocytes: neutrophils and monocytes/macrophages 

Host defense against systemic candidiasis depends mainly on the ingestion and killing 

of opsonized and non-opsonized fungal cells by myeloid phagocytes (neutrophils, 

monocytes and macrophages). In addition to the effector responses, secretory responses of 

phagocytes to C. albicans are also critical for the development of a protective host response. 

Phagocytes use a variety of surface receptors for recognizing opsonins or 

pathogen-associated molecular patterns (PAMPs) on the fungal surface (see section 1.2.2).  

Neutrophils 

During candidaemia, neutrophils have a crucial role in protection against the pathogen, 

as they constitute the most potent immune cell population in killing C. albicans and the only 

immune cells able to inhibit hyphae development from yeast cells. In fact, neutropenia is a 

major risk factor for disseminated candidiasis in humans, and mouse models of neutropenia 

have shown an increased susceptibility to disseminated candidiasis (Brown, 2011; Lionakis, 

2014; Miramón et al., 2013). In mice, these phagocytes are phenotypically identified by the 

presence of two surface markers: CD11b (a general myeloid lineage marker) and Ly6G (a 

specific neutrophil marker). 

C. albicans killing by phagocytes involves intra- and extracellular, as well as oxidative 

and non-oxidative mechanisms. Intracellular mechanisms require the internalization of 

fungal cells into the phagosome. In neutrophils, this nascent phagosome fuse with 

cytoplasmic granules that contain antimicrobial proteins (defensins, lactoferrin, elastase, 
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gelatinase, lysozyme or myeloperoxidase, amongst others) in order to kill and remove the 

engulfed pathogen (Brown, 2011; Miramón et al., 2013). Moreover, upon phagocytosis, a 

characteristic production of copious amounts of oxidants does occur. This oxidative burst 

involves formation, via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 

complex and myeloperoxidase, of reactive oxygen species (ROS: superoxide radical, 

hydrogen peroxide, hypochlorous acid) with a strong oxidative and damaging properties 

(Fang, 2004; Segal et al., 2012). These oxidative mechanisms are critical for killing fungal 

cells after phagocytosis (Aratani et al., 2002). Besides, following engulfment of the 

pathogen, phagocytes also express nitric oxide-generating enzymes, as inducible nitric 

oxide synthase (iNOS) involved in production of reactive nitrogen species (RNS: nitric oxide 

an peroxynitrite, which is decomposed in nitrogen dioxide and hydroxyl radical), which also 

contribute to the killing of C. albicans phagocytized cells. Although NO⁻ production has been 

studied most extensively in macrophages, iNOS is expressed in both polymorphonuclear 

and mononuclear phagocytes. However, the amount of ROS produced is greater in 

neutrophils than in macrophages, and macrophages generally produce considerably more 

RNS levels than neutrophils (Fang, 2004).  

Based on studies with neutrophils from patients with defined genetic defects, it has 

been shown that human neutrophils have two independent pathways for C. albicans killing: 

(i) a ROS-dependent mechanism, required for clearance of opsonized C. albicans cells, that 

depends on the FcγR pathway, and (ii) a ROS-independent pathway involved in the killing 

of non-opsonized fungal cells, that depends on CR3 and the signaling proteins 

phosphoinositide 3-kinase and caspase recruitment domain-containing protein 9 (CARD9) 

(Gazendam et al., 2014) (Figure 2, p. 21). 

For extracellular elimination of pathogens, neutrophils can release the content of 

cytoplasmic granules to the extracellular environment in a process called degranulation 

(Murphy and Weaver, 2017). Besides, the neutrophilic NADPH oxidase complex is also 

assembled on the cytoplasmic membrane to secret superoxide radical into the extracellular 

space (Segal et al., 2012). In addition to those mechanisms, neutrophils use a 

phagocytosis-independent mechanism to deal with the pathogen: the release of chromatin 

containing antimicrobial proteins, known as neutrophil extracellular traps (NETs) 

(Papayannopoulos and Zychlinsky, 2009). This DNA-containing fibril structures bind to and 

neutralize extracellular C. albicans hyphae, providing a mechanism to deal with this fungal 

morphotype that is too big to be efficiently phagocytosed (Urban et al., 2006).  

In mouse models of systemic candidiasis, a rapid clearance of the fungus from the 

bloodstream within the first hours of injection does occur, but fungus also quickly 

https://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotide_phosphate
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disseminate to peripheral organs, such as spleen, liver, or kidney. In the early stage of 

infection, the timing of neutrophil recruitment to the site of infection results crucial for an 

optimal host defense. Thus, the liver and spleen are able to recruit significant numbers of 

neutrophils within the first critical 24 h, period post-infection to successfully control fungal 

proliferation and prevent Candida filamentation. Instead, the lack of efficient signals for 

rapid neutrophil recruitment in the kidney is associated with the inability of the organ to 

control fungal overgrowth and pseudohyphal formation (Lionakis et al., 2011). Neutrophils 

migrate toward the site of infection by detecting gradients of chemotactic factors that guide 

direct cell movement toward infected tissues where those factors are present in higher 

concentrations. There are a multitude of chemokines that can direct neutrophil recruitment, 

including ligands of the two main chemokine receptors expressed on mice neutrophils, CC 

chemokine receptor type 1 (CCR1) and CXC chemokine receptor type 2 (CXCR2) (Murphy 

and Weaver, 2017). It has been shown that early during fungal infection, neutrophils are 

recruited via CXCR2 detecting chemokines such as CXC chemokine ligand type 1 (CXCL1) 

and CXC chemokine ligand type 2 (CXCL2) (Kanayama et al., 2015). However, CCR1 is 

necessary for neutrophil trafficking to the kidney at later times after infection, but this late 

neutrophil recruitment was shown to correlate with pathological consequences and 

contribute to mortality. Thus, it should be noted that despite their essential antifungal 

properties, excessive neutrophil recruitment and/or activation can also exert adverse 

effects linked to potent pro-inflammatory activity of neutrophils (Lionakis et al., 2012) 

(Figure 2, p. 21). 

Monocytes and macrophages 

Macrophages are sentinels found in virtually all tissues of adult mammals that maintain 

tissue homeostasis by eliminating/repairing damaged cells and tissues. Furthermore, they 

orchestrate innate immunity by phagocytosing microorganisms and coordinating 

inflammatory responses (Murphy and Weaver, 2017). Mouse macrophages are 

phenotypically identified by the presence of the myeloid surface marker CD11b and the 

specific macrophage marker F4/80. Classically, it was thought that macrophages were 

entirely generated by bone marrow (BM) hematopoiesis, giving rise to blood monocytes 

that become macrophages in tissues. However, new evidence showing that some 

macrophages have self-renewal capacity and can be derived from early hematopoiesis in 

the yolk sac points out some questions about definitions, functions and relationship 

between macrophages and monocytes. Monocyte contribution to resident macrophages is 

highly tissue-dependent and varies from no contribution for brain microglia to complete 
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monocyte origin for intestinal macrophages. Other locations as peritoneum, kidney or 

spleen contain macrophages derived from both sources (Italiani and Boraschi, 2014).  

Resident macrophages are able to internalize and kill C. albicans cells, as well as 

produce inflammatory mediators that recruit and activate other immune cells [monocytes, 

neutrophils or Natural killer (NK) cells] at the site of infection (Brown, 2011; Lionakis, 2014; 

Miramón et al., 2013). These observations, together with early in vivo studies in mice 

showing that clodronate-induced depletion of mononuclear phagocytes results in 

accelerated tissue fungal proliferation and increased mortality, remark the important role 

of these cells in antifungal host defense (Bistoni et al., 1986; Bistoni et al., 1988). Monocytes 

and macrophages appear to be relevant for anti-Candida defense in dissemination sites. It 

has been shown that early during infection, inflammatory Ly6Chigh monocytes are rapidly 

recruited to peripheral organs (Lionakis et al., 2011). This migration is dependent on CC 

chemokine receptor type 2 (CCR2) and results crucial for fungal clearance in the kidney and 

subsequent mice survival (Ngo et al., 2014). Interestingly, Domínguez-Andrés et al. (2017) 

proposed an NK-mediated mechanism based on cytokine production through which spleen 

inflammatory monocytes will boost the candidacidal potential of kidney neutrophils (see 

next section, 1.2.1.3). In addition, Lionakis et al. (2013) demonstrated that resident kidney 

monocytes and macrophages, characterized as CX3C chemokine receptor 1 (CX3CR1) 

positive cells, promote Candida control and host survival due in part to their location at the 

site of infection that facilitates a very early contact with fungal cells (Figure 2, p. 21). 

The killing mechanisms that macrophages use to eliminate fungal cells are very similar 

to those described for neutrophils. However, as macrophage do not present cytoplasmic 

granulocytes, phagosomes formed after microbial engulfment follow the endocytic 

maturation pathway to acquire lytic activity by phagolysosome formation. Moreover, they 

possess a characteristic acidic pH that promotes activity of hydrolytic enzymes such as 

cathepsin D (Vieira et al., 2002). Similarly to neutrophils, it has been shown that murine 

macrophages are also able to form extracellular traps in response to C. albicans, although 

their function could be retaining the invading microbes at the site of infection rather than 

significantly killing them (Liu et al., 2014).  

Besides the candidacidal activity, mononuclear phagocytes release several key 

mediators which orchestrate the inflammatory response to infection. Recognition of fungal 

cells by a variety of surface receptors, mainly Dectin-1 and TLR2, triggers a signaling 

cascade that induces the expression of inflammatory genes mediated by transcription 

factors such as nuclear factor kappa B (NF-κB) or AP-1 (extended explanation on section 

1.2.2). The most relevant cytokines produced by macrophages in response to C. albicans are 
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TNF-α, IL-6, IL-1β and IL-18 (Brown, 2011; Lionakis, 2014; Miramón et al., 2013). TNF-α is 

essential for controlling systemic Candida infections, as TNF-α knockout (KO) mice or wild 

type (WT) mice treated with specific neutralizing antibodies against TNF-α become more 

susceptible to infection (Marino et al., 1997; Steinshamn and Waage, 1992). This cytokine 

regulates phagocyte recruitment by inducing the expression of adhesion molecules in 

endothelial cells and activates oxidative burst to promote microbial killing (Murphy and 

Weaver, 2017). Furthermore, it has been shown that the use of TNF-α antagonists for the 

treatment of rheumatoid arthritis and other autoimmune diseases is associated with an 

increased incidence of candidiasis among patients (Filler et al., 2005). Similarly, it has been 

described that IL-6 and IL-1β KO mice are more susceptible to disseminated candidiasis, 

due to an impaired recruitment of neutrophils (van Enckevort et al., 1999; Vonk et al., 2006). 

On the other hand, prophylactic treatment of C. albicans-infected mice with recombinant 

murine IL-18 decreased mortality and outgrowth of yeasts in the kidneys by increasing the 

levels of type II interferon (IFN), (known as IFN-γ), therefore promoting an adaptive 

response against the pathogen (see section 1.3) (Stuyt et al., 2004; Stuyt et al., 2002). Early 

during infection, macrophages are also able to produce chemokines, such as CXCL1 and 

CXCL2, which induce neutrophil recruitment to the site of infection (Kanayama et al., 2015) 

(Figure 2, p. 21). The signaling pathways leading to production of cytokines and 

chemokines will be deeply explained in section 1.2.2.  

 NK cells  

Innate lymphoid cells are emerging as important effectors of innate immunity. As 

neutrophils or inflammatory monocytes, NK cells (considered a prototypical innate 

lymphoid cell population) are rapidly recruited at the site of infection. There, 

pro-inflammatory cytokines and chemokines generated in response to the pathogen bind to 

their receptors on NK cells, leading to their activation and to a rapid production of IFN-γ. 

NK cells can also secrete IFN-γ after directly recognizing pathogen components through 

TLRs, although whether NK cells are stimulated directly by C. albicans cells remains unclear. 

In this context, it has been described that inactivated C. albicans cells inhibit activation of 

murine purified NK cells in vitro, and therefore, this may be considered as a mechanism of 

fungal immune evasion or to avoid hyperinflammation in immunocompetent host 

(Murciano et al., 2006). In accordance with these results, depletion of NK cells in 

immunocompetent mice was found to be protective against C. albicans infection due to the 

attenuation of systemic inflammation. In contrast, the absence of NK cells in T/B 

cell-deficient mice led to an increased susceptibility to systemic candidiasis demonstrating 
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that NK cells are an essential and non-redundant component of anti-C. albicans host defense 

in immunosuppressed hosts (Quintin et al., 2014).  

In contrast to murine NK cells, human NK cells are activated following detection of 

yeasts, leading to degranulation, release of GM-CSF, TNF-α and IFN-γ, and fungal damage. 

This direct antifungal activity of NK cells has been mainly attributed to secreted perforin 

(Voigt et al., 2014). Moreover, using a mouse model of systemic candidiasis, it has been 

shown that GM-CSF production by activated NK cells in the spleen is also required to boost 

the C. albicans killing capacity of neutrophils and therefore to control the infection. 

Mechanistically, Dectin-1-mediated recognition of C. albicans by recruited inflammatory 

monocytes to the spleen induces the type I IFN-dependent production of IL-15, which plays 

a pivotal role in the activation and GM-CSF release by splenic NK cells (Domínguez-Andrés 

et al., 2017). IL-23 secreted by dendritic cells (DCs) is also essential to induce GM-CSF 

release by NK cells. In response to C. albicans, a signaling pathway mediated by the spleen 

tyrosine kinase (Syk) is activated in DCs to produce IL-23, which in turn acts on NK cells 

(Whitney et al., 2014). 

The scheme shown in Figure 2 summarizes the effector mechanisms of myeloid 

phagocytes neutrophils and macrophages) to control C. albicans invasion in infected tissue, 

which have been described in this section; the role of DCs and NK cells in promoting 

neutrophil activation is also depicted in Figure 2 

FIGURE 2 | Effector mechanisms of myeloid phagocytes to control C. albicans invasion in infected tissues. 
Adapted from Pappas et al., (2018). 
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1.2.2 PRRs involved in C. albicans detection 

Candida sensing is based on a complex set of interactions involving a variety of host 

receptors, mainly pattern recognition receptors (PRRs), which recognize fungal ligands 

considered microbe-specific molecular signatures (pathogen associated molecular patterns 

or PAMPs) (Miramón et al., 2013; Netea et al., 2008; Poulain and Jouault, 2004). Main                

C. albicans PAMPs are cell wall components. Due to the localization of mannoproteins in the 

outermost part of this cell structure, mannan detection would be expected to be one of the 

first steps in the recognition of fungal cells by the host. Nevertheless, the presence of 

β-glucans and chitin, in particular at the level of the bud scar, is also likely to influence               

C. albicans sensing (Gantner et al., 2005). β-glucans can directly stimulate leukocytes in 

vitro, a similar situation that may occur in vivo, as it has been described that β-glucans are 

released into the circulation during systemic fungal infections (Obayashi et al., 1995). 

Intracellular fungal components, such as nucleic acids (DNA, RNA) that are secreted 

following phagocytosis and killing of fungal cells, are also ligands for some intracellular 

PRRs. It should be noted that expression and cell surface exposition of some fungal PAMPs 

may differ between the yeast and hyphal forms of C. albicans, a phenomenon that 

determines significant differences in the immune responses triggered by both fungal 

morphotypes (Arana et al., 2009; Poulain, 2015; Poulain and Jouault, 2004). 

The most relevant families of PRRs involved in C. albicans sensing are Toll-like 

receptors (TLRs), C-type lectin receptors (CLRs), nucleotide binding oligomerization 

domain (NOD)-like receptors (NLRs) and retinoic acid inducible gene 1 (RIG-I)-like 

receptors (RLRs) (Netea et al., 2008). Following recognition of their respective ligands, 

these receptors activate different signal pathways leading to initiate the innate immune 

responses against the pathogen. These signaling pathways are well known for TLRs and 

CLRs, whereas are still poorly understood for NLRs and RLRs (Hardison and Brown, 2012; 

Kawasaki and Kawai, 2014; Kumar et al., 2011; Osorio and Reis e Sousa, 2011). 

 Toll-like receptors (TLRs) 

TLRs are type I membrane proteins characterized by an ectodomain containing 

leucine-rich repeats that is responsible for recognition of PAMPs, and a cytoplasmic domain, 

homologous to the cytoplasmic region of the IL-1 receptor (TIR-domain), which is required 

for downstream signaling. These receptors constitute a family of PRRs expressed by most 

immune cell types (innate cells such as neutrophils, monocytes, macrophages, DCs, as well 

as B-/T-lymphocytes and NK cells), and non-immune cells, such as epithelial and endothelial 
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cells. Based on their subcellular localization, TLRs can be classified into two groups: those 

located at the plasma membrane (TLR1, TLR2, TLR4, TLR5 and TLR6) or those located in 

endocytic compartments inside the cells (TLR3, TLR7, TLR8 and TLR9) (Kawasaki and 

Kawai, 2014; Kumar et al., 2011) (Figure 3, p.27).  

Among TLRs, the plasma membrane-bound TLR2 (which forms homodimers and 

heterodimers with TLR1 and TLR6) and TLR4 recognize mannan moieties associated to the 

fungal cell wall; β-1,2 mannosides present in PLM and mannoproteins constitute the major 

ligand for TLR2, whereas O-linked mannosyl residues, which are accessible on the yeast 

surface, are the ligand for TLR4. On the other hand, endosomal TLR9, TLR7 and TLR3 sense 

microbial nucleic acids (DNA and RNA) released following endocytosis and pathogen 

degradation. TLR9 recognizes DNA containing unmethylated CpG motifs (the high rate of 

methylation and low frequency of CpG motifs in mammalian DNA avoids its recognition by 

TLR9), whereas TLR7 and probably TLR3 recognize fungal RNA. Restriction of some TLRs 

to endosomal membrane is also critical for discriminating between self and non-self nucleic 

acids (Fradin et al., 2015; Kawasaki and Kawai, 2014; Yáñez et al., 2019).  

Upon ligand recognition, TLRs activate intracellular signaling pathways leading to the 

induction of inflammatory cytokine genes, as TNF-α, IL-1β, IL-6 and IL-12. Signal 

transduction starts with the recruitment of a set of intracellular TIR-domain-containing 

protein adaptors that interact with the cytoplasmic TIR domain of the TLRs. Myeloid 

differentiation factor 88 (MyD88) is the universal adaptor molecule, shared by all TLRs, 

except TLR3, that triggers inflammatory pathways through activation of the transcription 

factors NF-κB and AP-1, which in turn induce the expression of inflammatory cytokines. 

TRIF (TIR-domain-containing adapter-inducing IFN-β) is crucial for the induction of type I 

IFN genes and type I IFN-inducible genes by TLR3 and TLR4, through the activation of the 

transcription factor IFN-regulatory factor 3 (IRF3), whereas the transcription factor IRF7 

induces type I IFN genes and type I IFN-inducible genes through TLR7 and TLR9 signaling 

(Kawasaki and Kawai, 2014). TLR-mediated signaling is essential for host protection against 

candidiasis: MyD88 −/− mice are extremely susceptible to C. albicans infections; deficiencies 

in TLRs, mainly TLR2, and others in a minor extent (TLR4, TLR2 coreceptors, TLR3, TLR7 

and TLR9) also cause impaired immune responses to C. albicans infection, both in mouse 

and/or human, although the role of some receptors (as TLR9) may be redundant (Netea et 

al., 2008; Villamón et al., 2004a; Villamón, et al., 2004b; Yáñez et al., 2019). Recognition of 

fungal RNA by TLR7 has a non-redundant role in host defense against candidiasis, as it is 

partially required for IL-12 production by an IRF1-dependent pathway (Biondo et al., 2012). 
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 C-type lectin receptors (CLRs) 

CLRs are part of a heterogeneous superfamily of soluble and transmembrane proteins 

defined by a characteristic protein region with carbohydrate binding properties (C-type 

lectin domain). Thus, CLRs play critical roles in C. albicans sensing by innate immune cells, 

as they recognize specific carbohydrate domains of the fungal cell surface (Hardison and 

Brown, 2012; Netea, et al., 2015a; Poulain and Jouault, 2004) (Figure 3, p. 27). These 

receptors belong to the family of non-catalytic tyrosine-phosphorylated receptors that 

share a similar signaling pathway involving phosphorylation of tyrosine residues. CLRs 

have an activating motif known as immunoreceptor tyrosine-based activating motif (ITAM) 

in their intracellular tail, consisting of YXXL tandem repeats, or otherwise they can interact 

with ITAM-containing adaptor proteins. When phosphate groups are added to the 

tyrosine(Y) residue of the ITAM by membrane-anchored tyrosin kinases, mainly Syk, a 

signaling cascade is generated within the cell that leads to the production of 

pro-inflammatory cytokines and chemokines or mediates phagocytosis (Hardison and 

Brown, 2012; Kumar et al., 2011; Osorio and Reis e Sousa, 2011).  

Major ligands for CLRs are β-glucans and mannans. The receptors that participate in 

the recognition of β-glucans are mainly Dectin-1 and CR3. Both are also the major CLRs 

involved in phagocytosis of non-opsonized fungal cells. Dectin-1 is a transmembrane 

receptor expressed by myeloid phagocytes (macrophages, monocytes, DCs and 

neutrophils), whose extracellular portion specifically recognizes β-(1,3)-glucan (Brown and 

Gordon, 2001; Brown et al., 2002). The intracellular portion contains a hemi-ITAM involved 

in signaling that, in contrast to the ITAM motif, consists of a single tyrosine within an YXXL 

motif. On the other hand, CR3 belongs to the family of β2 (CD18) integrins and forms a 

heterodimeric complex containing one β2 chain (CD18) and one αM chain (CD11b). This 

receptor is unique among integrins as, in addition to the conventional binding domain for 

C3b, it also contains a polysaccharide binding lectin-like domain to which β-(1,3)-glucan can 

bind (Thornton et al., 1996). Their role in C. albicans detection has been mainly associated 

to human neutrophils (van Bruggen et al., 2009). 

Several membrane receptors have been described to directly recognize mannans 

(Hardison and Brown, 2012; Netea, et al., 2015a; Poulain and Jouault, 2004; Osorio and Reis 

e Sousa, 2011). Dectin-2, mainly expressed by macrophages, neutrophils and DCs, is the 

functional receptor for N-linked α-mannan residues on the yeast and hyphal cell wall, and 

forms heterodimers with Dectin-3, a CLR that recognizes α–mannans on the surface of            

C. albicans hyphae. Consequently, the simultaneous and differential recognition of mannans 

https://en.wikipedia.org/wiki/Non-catalytic_tyrosine-phosphorylated_receptors
https://en.wikipedia.org/wiki/Immunoreceptor_tyrosine-based_activation_motif
https://en.wikipedia.org/wiki/Phosphate
https://en.wikipedia.org/wiki/Tyrosine
https://en.wikipedia.org/wiki/Cell_signaling
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from yeasts and hyphae by Dectin-2 and Dectin-3, also with the different accessibility of 

β-glucans to Dectin-1 (previously explained in section 1.1), may account for differences in 

the immune responses triggered by yeast and hyphal forms of C. albicans. Highly branched 

N-linked mannosyl chains are also recognized by the mannose receptor (MR) expressed on 

macrophages; MR also participates in recognition of fungal chitin. DC-SIGN (dendritic 

cell-specific-ICAM-grabbing non-integrin) is a CLR present on myeloid cells, including DCs, 

which also recognizes N-linked mannan. Although in a minor extent than β-glucan 

receptors, DC-SIGN, MR and Dectin-2 are also involved in the phagocytosis of non-opsonized 

fungal cells. Mincle (macrophage inducible Ca2⁺-dependent lectin) is another member of the 

CLR family, expressed on monocytes/macrophages and neutrophils, which is involved in      

C. albicans recognition, although its ligand has been not well characterized yet. Galectin-3 is 

an S-type lectin receptor that recognizes β-mannan domains present in both PLM and 

mannoproteins. Mannan-binding lectin (MBL) is a soluble serum CLR that binds mannan 

moieties on fungal surfaces. MBL binding on fungal surface initiates the lectin pathway of 

complement activation, promoting phagocytosis of C. albicans by neutrophils. Furthermore, 

MBL may act as an opsonin directly recognized by complement receptor 1 (CR1) on the 

surface of neutrophils (Brouwer et al., 2008; Li et al., 2012). 

Dectin-1 induces intracellular signals leading to (i) secretion of inflammatory 

cytokines through NF-κB activation (through Syk1/CARD9- or Raf-1-mediated signaling 

pathways), (ii) Syk1-mediated activation of the NLRP3 inflammasome that generates 

bioactive IL-1β and IL-18 following caspase activation, and (iii) phagocytosis and 

production of ROS (Hardison and Brown, 2012). It has been shown that Dectin-1 signaling 

is only activated by particulate β-glucans, clustering the receptor in a synapse-like structure 

(phagocytic synapse) which represents a mechanism to distinguish direct microbial contact 

from detection of soluble ligands (Goodridge et al., 2011). In order to avoid the strong 

immune response induced by Dectin-1 signaling, C. albicans hyphae mask glucan exposure 

by mannan/mannoproteins (Gantner et al., 2005; Lowman et al., 2014). However, it has 

been demonstrated that NETs cause unmasking of the C. albicans hyphal β-glucans and 

trigger changes in the fungal cell wall architecture that promote immune recognition by 

Dectin–1 and probably by other host receptors. This remodeling of the cell wall architecture 

enhances host responses and points out the concept that pattern recognition during 

infection is a dynamic process that depends on the host-pathogen cross-talk (Hopke et al., 

2016). In vivo studies with Dectin-1 −/− mice showed contradictory results about their 

susceptibility to systemic candidiasis (probably due to strain-specific differences in glucan 

exposure), whereas human Dectin-1 deficient patients showed clinically mucocutaneous 

infections but not invasive fungal infections (Drummond and Brown, 2011; Ferwerda et al., 
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2009). In fact, human neutrophils are capable of phagocytizing and killing C. albicans 

through a Dectin-1-independent pathway (Gazendam et al., 2014). Interestingly, CARD9 

deficiency is associated with susceptibility to invasive candidiasis, both in mouse and 

humans, probably because CARD9 mediates signal transduction pathways downstream of 

CLRs other than Dectin-1 (Drewniak et al., 2013; Gross et al., 2006).  

Dectin-2 −/− mice were more susceptible to systemic candidiasis, and phagocytosis of 

Candida cells by macrophages lacking Dectin-2 was moderately decreased (Ifrim et al., 

2016). Mincle, which associates with FcγR and signals through Syk/CARD9, appears to have 

a protective role during candidiasis due to cytokine production, but is not involved in 

phagocytosis (Wells et al., 2008). MR mediates several antifungal activities such as 

phagocytosis of yeast by DCs, although its role in protection against candidiasis appears to 

be redundant (Hardison and Brown, 2012). Interestingly, chitin sensing by MR dampens 

inflammatory responses through the induction of anti-inflammatory IL-10 production, thus 

indicating that chitin recognition plays a critical role for immune homeostasis (Wagener et 

al., 2014). DC-SIGN recognition of C. albicans leads to in vitro release of cytokines and 

activation of the respiratory burst, probably in collaboration with Dectin-1, although its role 

in vivo during infection has not been reported (Takahara et al., 2011). 

 Cytosolic PRRs: NOD-like receptors (NLRs) and RIG-I-like receptors (RLRs) 

In addition to detect PAMPs on the cell surface or in the lumen of endosomes or 

lysosomes, there is a cytosolic detection system to sense infection, which includes NLRs and 

RLRs. NLRs detect fungal ligands released from phagolysosomes and/or damage associated 

molecular patterns (DAMPs), such as heat-shock proteins (Hsps), generated by host cellular 

damage during infection (Kumar et al., 2011). In particular, it has been described that NOD2 

is involved in the immune responses to chitin-derived components (Wagener et al., 2014). 

Besides, certain NLRs function as components of the inflammasome and some of them are 

known to be involved in the response to C. albicans (NLRP3, NLRC4, NLRP10) (Hise et al., 

2009; Joly and Sutterwala, 2010; Tomalka et al., 2011) (Figure 3, p.27). 

Inflammasomes are protein complexes composed of NLRs and non-NLR proteins. 

These protein complexes associate with an inactive form of caspase-1 (procaspase-1) and 

promote its proteolytic activation to yield caspase-1, which, in turn, promotes proteolysis 

of the zymogen form of the IL-1 family cytokines, as IL-18 and IL-1β. This production of 

mature IL-18 and IL-1β can be also mediated by a non-canonical activation process that is 

dependent on caspase 8 and caspase 11. Thus, the production of pro-inflammatory IL-1β 

differs from that of other pro-inflammatory cytokines as it involves two steps: (i) 
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transcriptional induction of pro-IL-1β, as an inactive precursor, downstream PRRs, and (ii) 

proteolytic cleavage by caspase-1 to release bioactive IL-1β (Kumar et al., 2011; Murphy 

and Weaver, 2017). Activation of NLRP3 by Candida hyphae or SAPs triggers the assembly 

of the inflammasome, with the subsequent caspase activation and pro-IL-1β cleavage. Thus, 

C. albicans transition from yeast to hyphae has been shown to be necessary for NLRP3 

inflammasome activation (Joly et al., 2009). When pro-IL-1β is released in the inflammatory 

environment where neutrophils are present, it can be also cleaved by neutrophil-derived 

serine proteases, such as proteinase 3. C. albicans itself can also contribute to produce 

bioactive IL-1β as fungal-derived proteases can generate host-derived active IL-1β in vitro, 

and probably during infection, leading to activation of the immune system. Therefore, at the 

site of infection, mature IL-1β can be also produced in an inflammasome-independent 

manner (Netea et al., 2015b). 

MDA5, a member of the RLRs important for viral recognition, has been also described 

to play a role in immune responses to C. albicans, although the fungal ligand responsible for 

MDA5 activation has been not yet characterized (Jaeger et al., 2015) (Figure 3, p.27). 

 Colaboration between different PRRs in C. albicans recognition 

C. albicans cells express various PAMPs and their expression may change among strains 

and morphotypes. Therefore, recognition of C. albicans by immune cells is a complex 

process that may involve the simultaneous or sequential activation of different PRRs. 

Consequently, collaboration among receptors in fungal recognition and crosstalk between 

intracellular signaling pathways may lead to the final tailored immune responses generated 

(Lionakis, 2014; Netea et al., 2006; Yáñez et al., 2019) (Figure 3). 

As an example, some lectin receptors such as Dectin-1, Galectin-3 and SIGNR1 (a 

murine C-type lectin homologue of the human DC-SIGN) have been identified as TLR2 

coreceptors to design a collaborative recognition or to modulate ligand specificity 

(Ferwerda et al., 2008; Gantner et al., 2003). Similarly, Dectin-1 and SIGNR1 may also 

collaborate with TLR4 in fungal recognition, and Dectin-1 synergizes with TLR2 and TLR4 

for cytokine production in human macrophages (Ferwerda et al., 2008). In some cases, a 

physical interaction between receptors has been demonstrated, such as Galectin-3 and 

TLR2 or Galectin-3 and Dectin-1, suggesting that Galectin-3 may mediate the cooperation 

between Dectin-1 and TLR2 (Esteban et al., 2011; Jouault et al., 2006). In addition, this 

complex network of C. albicans sensing receptors allows immune cells to respond to                

(i) whole fungal cells through interaction between surface PAMPs and PRRs, (ii) fungal 

ligands generated following phagocytosis and fungal destruction (such as fungal DNA and 



Introduction  

27 

RNA), through endosomal PRRs, and (iii) cytosolic-located fungal ligands released from 

phagolysosomes or DAMPs generated by cellular damage during infection, through NLRs. 

 

 

1.3 Adaptive immune responses to C. albicans  

In most cases, activation of innate responses by epithelial cells, phagocytes 

(macrophages and neutrophils) and NK cells is sufficient to restrict fungal tissue invasion 

from the colonized surface, therefore preventing disseminated infection. In other cases, 

innate immune mechanisms fail to control fungal infection and activation of adaptive 

immune responses are required to deal with the pathogen. The adaptive immune system is 

FIGURE 3 | C. albicans sensing by innate immune cells. C. albicans yeasts and/or hyphae are sensed by a 
variety of pattern recognition receptors (PRRs) that recognize fungal ligands considered microbe-specific 
molecular signatures (pathogen associated molecular patterns or PAMPs). Extracellular fungal ligands (basically 
cell wall components) are recognized by a diversity of plasma membrane receptors: Toll-like receptors (TLRs) 
(mainly TLR2 and TLR4); C-type lectin receptors [Dectin-1, Dectin-2 and Dectin-3, Mannose receptor and others: 
Mincle (macrophage inducible Ca2⁺-dependent lectin) and the murine C-type lectin homologue of the human 
SIGNR1 (dendritic cell-specific-ICAM-grabbing non-integrin)], Galectin-3 and complement receptor 3 (CR3). 
Intracellular fungal ligands (DNA, RNA), released upon phagocytosis and killing, involves recognition by TLRs 
located at the endosomal membrane. Other cytosolic receptors (NOD2, MDA5) also contribute to detection of 
fungal-derived ligands and serum Mannan-binding lectin (MBL) contributes to C. albicans detection by binding 
mannan moieties and promoting opsonization. Receptors for complement fragments and particularly FcγR are 
also involved in the recognition of C. albicans opsonized cells. The simultaneous recognition of various PAMPs 
triggers complex signal transduction pathways leading to activation of immune responses. Signaling though 
TLR/MyD88 and Dectin-1/Syk/CARD9 converge in the transcription factor NF-κB that activates expression of 
pro-inflammatory cytokines, whereas signaling through Dectins, CR3, Mannose receptor and FcγR induces 
phagocytosis of fungal cells. The inflammatory response is also generated by inflammasomes that induce 
caspase-1-mediated activation of pro-IL-1β, a key cytokine in immunity against C. albicans. CARD9, caspase 
recruitment domain-containing protein 9; IL-1β, interleukin-1β, MyD88, myeloid differentiation factor 88; 
NF-κB, nuclear factor kappa B; Syk, spleen tyrosine kinase; TRIF, TIR-domain-containing adapter-inducing IFN-β 
(Yáñez et al., 2019). 
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composed of B and T lymphocytes expressing highly specific antigenic receptors. Each 

lymphocyte carries cell-surface receptors of a single specificity, generated by the random 

somatic recombination of VDJ elements and the expression of RAG1 and RAG2 genes, a 

feature unique to these cells. This recombination process produces a vast diversity of 

lymphocytes, each bearing a distinct receptor, so that the total repertoire of receptors can 

recognize virtually any antigen. When a recirculating naïve lymphocyte encounters its 

specific foreign antigen in peripheral lymphoid tissues, it is induced to proliferate, and its 

progeny then differentiate into effector cells that can eliminate the infectious agent. A subset 

of these proliferating lymphocytes differentiates into memory cells, ready to respond 

rapidly to the same pathogen if it is encountered again (see section 3) (Murphy and Weaver, 

2017).  

T lymphocytes (T cells) constitute an integral component of the host adaptive 

immunity in response to C. albicans infections that provide both direct and indirect 

mechanisms to control fungal proliferation. Activation of both CD8⁺ (cytotoxic T 

lymphocytes, CTL) and CD4⁺ (T helper cells, Th) T cells is controlled by DC populations. 

Tissue resident DCs can detect and phagocytose C. albicans. Following exposure to 

pathogens and/or inflammatory mediators, DCs are transformed into mature DCs that 

migrate efficiently from peripheral tissues into draining lymph nodes. At this location, DCs 

activate antigen-specific naïve T cells, ultimately leading to both T cell expansion and 

differentiation of effector cells. Despite CTLs have a role in protection against candidiasis, 

the major mechanism of adaptive immunity to C. albicans is the development of Th cell 

responses (Lee and Iwasaki, 2007; Richardson and Moyes, 2015). The elevated prevalence 

of oropharyngeal candidiasis in AIDS/HIV⁺ patients where CD4⁺ T cells are depleted clearly 

shows the paramount importance of Th cell responses (Fidel, 2011). 

1.3.1 Dendritic cells 

Although other immune cells are capable of antigen presentation (including 

macrophages and B cells), DCs are the main antigen presenting cells that have the ability to 

translate the early danger signals received by the innate immune system after microbial 

invasion to the adaptive arm of the immune system (Lee and Iwasaki, 2007; Murphy and 

Weaver, 2017). In general terms, DCs can be identified by their expression of CD11c and 

histocompatibility complex (MHC) class II molecules (MHCII). DC activation is a complex 

process that can be even more intricate considering the various DC populations, which differ 

in localization, function and phenotype. The three main populations of DCs that have been 

described are: classical DCs (cDCs), plasmocytoid DCs (pDCs) and monocyte-derived DCs 

https://www.ncbi.nlm.nih.gov/books/n/imm/A2528/def-item/A3259/
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(moDCs) (Hochrein and O'Keeffe, 2008). Morphologically, cDCs exhibit typical plasmatic 

extensions called dendrites and their main function is to present antigens to T cells, whereas 

pDCs do not exhibit dendrites and their main purpose is to produce high levels of IFN-α in 

response to viral infections, before becoming mature DCs that activate specific T cells for 

viral antigens. Moreover, pDCs are constantly located in lymphoid organs while cDCs reside 

in peripheral tissues and transport antigens to lymphoid organs (Hochrein and O'Keeffe., 

2008; Lande and Gilliet., 2010). On the other hand, moDCs are produced from blood 

monocytes during inflammatory responses against pathogens to replace tissue resident DCs 

after the inflammation (Domínguez and Ardavín, 2010).  

DCs are able to phagocytose and kill fungal cells (although less efficiently than 

macrophages), but their major role is the activation of Th cell responses through the 

processing and presentation of fungal antigens to naive CD4⁺ T cells, which can develop to 

four different subsets [Th1, Th2, Th17 and T regulatory (Treg) cells] (Richardson and 

Moyes, 2015). In general terms, in order to effectively initiate an adaptive immune response, 

DCs must deliver three key signals to naïve T cells: (i) presentation of antigen via MHC 

molecules to the TCR, (ii) upregulation of costimulatory signals such as CD40, CD80 and 

CD86, and (iii) production of cytokines that regulate T cell polarization, such as IL-6 or 

IL-12. Development of each specific Th cell subset depends on the cytokines and the 

microenvironment present during CD4⁺ T cell priming by DCs at lymph nodes (Lee and 

Iwasaki, 2007). Cytokine milieu drives differentiation to one specific Th subset while 

inhibits development of the others, polarization that is critical for the outcome of the 

infection (Claudia et al., 2002).  

TLR/MyD88 mediated signaling (through TLR2, TLR4, and endosomal TLR9) is 

involved in mounting a Th1 response. Despite DCs from MyD88-deficient mice are able to 

phagocytose fungal cells similarly to WT DCs, MyD88 is essential for IL-12 production and 

the subsequent antifungal Th1 differentiation. However, individual TLRs may contribute 

differentially to these responses (Bellocchio et al., 2004; Yáñez et al., 2019). Furthermore, 

recognition of C. albicans by CLRs, such as Dectin-1, induces production of pro-inflammatory 

cytokines through Syk/CARD9-dependent and Syk-independent Raf-1 pathway that 

converge on NF-κB to drive Th1 and, particularly, Th17 polarization (Gringhuis et al., 2009; 

Richardson and Moyes, 2015; Robinson et al., 2009). Initial differentiation toward Th17 

phenotype is driven by IL-1β, whereas IL-23 signaling is involved in maturation and 

terminal differentiation of Th17 cells (Ferwerda et al., 2009). IL-23 and IL-6 are released by 

DCs following recognition of C. albicans mannan, and favor Th17 differentiation (Richardson 

and Moyes, 2015; Smeekens et al., 2010). IL-1β production involves the canonical NLRP3 
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inflammasome/caspase-1 and caspase 8, which are activated upon recognition of fungal 

β-glucan by Dectin-1 and CR3 on DCs, and drive protective Th1 and Th17 cellular responses 

to disseminated candidiasis (Ganesan et al., 2014; van de Veerdonk et al., 2011). Despite 

NLRP10 is not involved in innate pro-inflammatory cytokine production, NLRP10-deficient 

mice showed a profound defect in Candida-specific adaptive Th1 and Th17 responses, 

indicating a role for this inflammasome in the generation of adaptive immune responses to 

fungal infections (Eisenbarth et al., 2012; Joly et al., 2012).  

Overall, signals triggered upon recognition of different PAMPs are integrated to define 

particular Th responses (Figure 4). The engagement of distinct receptors leads to disparate 

downstream signaling events that ultimately determines cytokine production, 

costimulation and Th responses. Consequently, selective challenge of receptors can be 

exploited for driving DCs toward a biased protective Th differentiation priming, with 

important implications in the design of DC-based strategies for developing vaccines 

(Iannitti et al., 2012, Wang et al, 2015)  

Type I IFNs (IFN-α and IFN-β), which are known to inhibit viral replication and mediate 

protection against viral infection, also play a role in anti-Candida host defense. However, 

their impact on immune responses is controversial as some studies show that type I IFNs 

are detrimental for fungal clearance, while others reveal that IFN-β favors immune 

responses to eliminate fungal cells.  

Using mouse models, it has been shown that DCs are able to mount a type I IFN 

response against several Candida spp. This response requires phagosomal TLR7-mediated 

IFN-β signaling, but in C. glabrata infections promotes persistence of fungal cells in the host. 

Moreover, IFN-β production inhibits fungal clearance in mice infected with C. parapsilosis 

(Bourgeois et al., 2011; Patin et al., 2016). Similarly, mice lacking a functional type I IFN 

receptor showed a remarkable protection against invasive C. albicans infections and this 

detrimental role for type I IFNs is associated with a reduced recruitment and activation of 

inflammatory monocytes and neutrophils (Mayer et al., 2013; Stifter and Feng, 2015). On 

the contrary, type I IFNs have been also described to be beneficial for the immune responses 

to C. albicans. Production of IFN-β by DCs, which is largely dependent on Dectin-1 and 

Dectin-2 signaling (via Syk and IRF5), is crucial for immunity to C. albicans by promoting 

the mobilization of neutrophils to the kidney (Biondo et al., 2011; del Fresno et al., 2013). 

More recently, it has been shown that type I IFNs, secreted by β-glucan-stimulated DCs via 

Dectin-1, induce the proliferation and activation of CD8⁺ T cells. The type I IFNs act in an 

autocrine manner via their receptor (IFNAR) to promote the presentation of exogenous 

antigen on MHCI molecules, surface expression of the costimulatory molecules CD40 and 
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CD86, and the release of other cytokines, including IL-12 p70, IL-2, IL-6, and TNF-α 

(Hassanzadeh-Kiabi et al., 2017). Consequently, these results support a protective role of 

type I IFNs during candidiasis (Figure 4). 

 

 

Overall, the role of type I IFNs in response to Candida infections might differ among 

fungal species, and the specific roles of type I IFNs in C. albicans infections requires further 

research. During bacterial infections, low level of type I IFNs may be required at an early 

stage to initiate cell-mediated immune responses, whereas high concentrations have 

immunosuppressive effects, such as the reduction of responsiveness of macrophages to 

activation by IFN-γ (Stifter and Feng, 2015). It should be noted that type I IFN genes are also 

induced through signal transduction pathways initiated by some TLRs (TLR4 and TLR2 via 

IRF3, and TLR7 and TLR8 via IRF5), although their involvement in the development of 

adaptive responses to C. albicans infection remains to be determined. Furthermore, findings 

obtained by integrating transcriptional analysis and functional genomics indicate that type 

I IFNs pathway is a main signature of C. albicans-induced inflammation and plays a crucial 

FIGURE 4 | Dendritic cell activation of T helper responses. This figure summarizes the process by which 
dendritic cells induce T helper (Th) responses through the processing and presentation of fungal antigens to 
naïve CD4⁺ T cells, which can develop to four different subsets [Th1, Th2, Th17 or T regulatory (T reg) cells)] 
depending on the cytokines and the microenvironment. Th1 and Th17 responses are associated to immune 
protection, promoting cytotoxic activity of CD8⁺ T cells and neutrophil recruitment and activation, respectively. 
IFN, interferon; IFNAR, type I IFNs receptor; IRF5, interferon-regulatory factor 5; MHCII, histocompatibility 
complex class II; TCR, t cell receptor; TNF-α, tumour necrosis factor α. (Yáñez et al., 2019) 
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role in anti-Candida host defense in humans, probably by eliciting antifungal responses of 

macrophages and NK cells (Smeekens et al., 2013).  

Production of IFN-γ is crucial in determining the effectiveness of the immune 

responses against pathogens. Its importance is highlighted by the fact that mice and humans 

with defects in IFN-γ or IFN-γ receptor show profound deficiencies in their responses to 

certain pathogens, including bacteria, viruses and fungi, such as C. albicans (Gozalbo et al., 

2014). Although research had been mainly focused on the production of IFN-γ by T cells and 

NK cells, an early study reported the production of IFN-γ by BM-derived macrophages 

(Munder et al., 1998). Later studies described the molecular mechanism of IFN-γ production 

 by myeloid cells, providing evidence of the role of myeloid-derived IFN-γ in host defense 

against intracellular pathogens (Frucht et al., 2001).  

1.3.2 CD4⁺ T cells: Th and T reg responses 

Th1 responses have been considered protective against both mucosal and 

disseminated infection. Th1 cells produce several cytokines, but the most representative is 

IFN-γ. This cytokine has stimulatory effects on the phagocytosis and killing of C. albicans by 

neutrophils and macrophages. It also causes autocrine upregulation of IL-12 receptor, 

which in turn renders the Th cells more sensitive to IL-12, thus maintaining differentiation 

to the Th1 phenotype (Gozalbo et al., 2014; Richardson and Moyes, 2015).  

Th17 lymphocytes secrete numerous cytokines, including IL-17 and IL-22. IL-17 

induces neutrophil recruitment and activation, and IL-22 enhances epithelial barrier 

function by promoting the production of β-defensins by epithelial cells (De Luca et al., 2010; 

Huang et al., 2004). C. albicans-specific Th17 cells also produce IFN-γ, a cytokine that 

activates effector antifungal activities of phagocytes, as above mentioned (Zielinski et al., 

2012). Th17 response is critical for protection against C. albicans infection at most mucosal 

surfaces, and chronic mucocutaneous candidiasis often develops in patients with disorders 

in Th17-mediated antifungal responses, whereas these patients do not show increased 

susceptibility to invasive candidiasis (Ferwerda et al., 2009; Hernández-Santos and Gaffen, 

2012; Smeekens et al., 2013). Overall, it is accepted that while mucosal infections 

predominantly induce polarization of adaptive immunity to protective Th17 responses, 

systemic candidiasis are still considered to induce predominantly Th1 responses 

(Richardson and Moyes, 2015).  

Th2 responses are generated in an anti-inflammatory environment (e.g. production of 

IL-4 by DCs in response to C. albicans hyphae). Anti-inflammatory cytokines produced by 
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Th2 cells (IL-10, IL-4) inhibit Th1/Th17 development and deactivate phagocytic effector 

cells. Consequently, Th2 response has been considered as non-protective against infections. 

However, some Th2 cells are required for the maintenance of a balanced non-deleterious 

pro-inflammatory Th1/Th17 response, and to restore the non-inflammatory status 

following fungal clearance (Mencacci et al., 2001; Netea et al., 2015b). 

The observation that Th effectors can produce other cytokine patterns not fitting the 

pre-conceived definitions of Th1/Th2 or Th17 subsets has led to the description of 

additional Th cell lineages, such as Th9 and Th22. It is known that Th9 cell subset, which 

specifically produced IL-9, can mediate tumor immunity and participates in autoimmune 

and allergic inflammation, but the knowledge about its function in fungal infections is still 

emerging (Borghi et al, 2014). During a respiratory fungal infection in mice, Th9 cells have 

been associated with failure to clear fungal pathogens while promoting asthma. Moreover, 

in experimental leaky-gut mouse models, Candida-driven IL-9 production in the gut was 

reported to contribute to the loss of barrier integrity, fungal dissemination, and 

inflammation. In these mouse models, IL-9 deficiency also promoted gut dysbiosis, 

suggesting that the functions of IL-9 might also involve the regulation of the microbiota 

(Speakman et al., 2020). Th22 cells producing only IL-22 but neither IFN-γ nor IL-17 have 

been identified in humans (Borghi et al.,2014). 

Treg cells maintain peripheral tolerance and limit the effector responses to control 

excessive pro-inflammatory responses leading to immune-mediated tissue damage. 

However, the role of Treg cells during candidiasis has been not unequivocally established. 

The immunosuppressive effects of Treg cells can be blocked by TLR-activated DCs leading 

to a Th1 response (Lee and Iwasaki, 2007). Besides, Treg cells also express TLRs, and the 

presence of TLR ligands (e.g. during a C. albicans infection) cause temporarily expansion 

and abrogation of the suppressive phenotype of Treg cells, enabling the enhancement of 

immune responses (pro-inflammatory Th1 response). Later during infection, upon 

pathogen clearance, the expanded Treg cells regain their immunosuppressive activity to 

restore the immune balance (Sutmuller et al., 2006a; Sutmuller et al., 2006b). Th17 and Treg 

cells are reciprocally regulated during T cell differentiation and can act cooperatively 

against C. albicans, although the final response appears to be dependent on the infection 

site: Treg cells enhances Th17 protective responses to oropharyngeal candidiasis, while 

reduces resistance in systemic infections, supporting that Th responses to invasive and 

mucosal infections are different (Whibley and Gaffen, 2014; Whibley et al., 2014). 
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1.3.3 CD8⁺ T cells 

Murine models of infection indicate that CD8⁺ cells also have a role in protection 

against candidiasis, both mucosal and disseminated infections. The main antimicrobial 

effector mechanisms of CD8⁺ T cells are cytotoxicity (by production and release of cytotoxic 

granules containing perforins and granzymes) and cytokine production (TNF-α and IFN-γ). 

The role of cytotoxicity in host defense against fungal infections is not well delineated, 

whereas the activity of cytokines is better understood. The protective effect is most 

probably due to IFN-γ, whose production is induced by IL-12 (Gozalbo et al., 2014). As 

previously cited, activation of CTLs can be promoted by DCs through autocrine type I IFNs 

signaling upon recognition of fungal β-glucan by Dectin-1 (Hassanzadeh-Kiabi et al., 2017). 

1.3.4 Humoral responses: antibodies  

Soluble (humoral) proteins, mainly complement and antibodies, also contribute to 

defense against candidiasis as components of the innate and adaptive immune responses, 

respectively. While cellular adaptive responses play a major role in host defense against        

C. albicans infection, the contribution of adaptive humoral immune mechanisms, mediated 

by antibodies secreted by B lymphocytes, play a relatively minor role in immune protection 

against the fungus (Netea et al., 2015a; Richardson and Moyes, 2015).  

Although binding of antibodies to fungal surface antigens triggers activation of the 

classical complement pathway (see section 1.2.1.1), the role of anti-Candida antibodies in 

host defense against candidiasis is paradoxical. Cell wall associated components (glucans, 

mannans, and mannoproteins) are major Candida antigens, as well as secreted enzymes 

(such as SAPs) or cytosolic fungal proteins (such as Hsps and glycolytic enzymes). 

Anti-Candida specific antibodies against each antigen interfere with its function in fungal 

biology, and therefore affect the host-pathogen interactions by inhibiting/neutralizing a 

specific fungal virulence factor (Gozalbo et al., 2004; Martínez et al., 1998). In fact, it has 

been shown that passive immunization using different anti-Candida antibodies are able to 

confer protection in animal models of mucosal and/or disseminated infection and in 

patients with invasive candidiasis (Wang et al., 2015, Xin 2016). Thus, Mycograb®, a 

monoclonal antibody that binds to the immunodominant epitope of C. albicans Hsp90, 

enhances the percentage of patients with invasive candidiasis treated with amphotericin B 

that achieved complete mycological resolution (Wang et al., 2015).  

Despite these observations, B cell deficiency in mice does not confer increased 

susceptibility to C. albicans infection, and patients with agammaglobulinemia or 
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hypogammaglobulinemia do not show increased susceptibility to fungal infection, 

indicating that humoral response during infection has a very modest role in host protection. 

However, the use of some purified antigens [e.g. glucan or agglutinin-like sequence protein 

3 (Als3)] in vaccination strategies, in conjunction with suitable carrier proteins and 

adjuvants capable of eliciting the production of antigen-specific antibodies, confer limited 

protection against candidiasis. Therefore, and due to the prevalence of fungal infections and 

their increased resistance to antifungal therapies, eliciting protective antibodies through 

vaccination remains as a viable strategy for improving resistance to C. albicans infections 

(Iannitti et al., 2012, Moragues et al., 2014; Richardson and Moyes, 2015; Wang et al., 2015). 
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2 Demand-adapted hematopoiesis during 
infection  

Hematopoietic stem and progenitor cells (HSPCs) in the BM are responsible for the 

maintenance of both steady state and stress-adapted hematopoiesis (Chavakis et al., 2019; 

King and Goodell, 2011; Rieger and Schroeder, 2012; Zhao and Baltimore, 2015). 

Physiopathologic conditions that disturb the hematopoietic equilibrium, such as bleeding 

or severe systemic infection, induce demand-adapted hematopoietic responses that offset 

cell losses and increase cellular output to meet the specific needs during emergency 

situations (Boettcher and Manz, 2017; Kobayashi et al., 2016). Acute infection usually 

triggers the mobilization of myeloid cells, in particular neutrophils and monocytes, from the 

BM to infected tissues, and this is accompanied by the proliferation and differentiation of 

HSPCs to maintain the supply of myeloid cells killed by the invading microbes or consumed 

during the immune response. Emergency myelopoiesis may consist of granulopoiesis 

(particularly neutrophil production), monopoiesis (generation of monocytes and 

macrophages) or both, depending on the specific microbe as well as the route and the 

severity of infection (Boettcher and Manz, 2016; Boettcher and Manz, 2017; Kobayashi et 

al., 2016). By contrast, the adaptive immune system meets this demand by clonal expansion 

of mature T and B cells in secondary lymphoid organs. Therefore, in order to favor myeloid 

cell production, inflammatory cytokines secreted during infection-induced myelopoiesis 

reduce the expression of growth factors for lymphopoiesis. Besides, these cytokines also 

reduce the expression of retention factors for BM lymphocytes, inducing their mobilization 

to secondary lymphoid organs (King and Goodell, 2011; Zhao and Baltimore, 2015). 

The essential first step in the initiation of demand-adapted hematopoiesis is the 

detection of the pathogenic organism (e.g, bacteria, virus, parasite, or fungi). Consequently, 

the cell type that triggers the process needs to: (i) have a high probability of encountering 

the pathogen, (ii) be equipped with the molecular machinery for pathogen sensing, and (iii) 

be able to translate pathogen detection into emergency myelopoiesis (Boettcher and Manz., 

2016, Boettcher and Manz, 2017). Host mature cells in infected tissues, including both 

non-hematopoietic and hematopoietic cells, initially recognize pathogens by detection of 

PAMPs through PRRs, an event that elicits several molecular cascades for proper immune 

responses. Thus, these cells release pro-inflammatory cytokines, such as TNF-α, IL-1β, or 

IL-6, which reach the BM niche through peripheral circulation and then act stimulating 

myelopoiesis (Chiba et al., 2018; Kumar et al., 2011). However, new perspectives on 

demand-adapted hematopoiesis came when reports began to emerge demonstrating that 
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murine and human HSPCs express functional PRRs, including TLRs, and that 

TLR/PRR-mediated signals provoke cell cycle entry and myeloid differentiation (Nagai et 

al. 2006, Cannova et al., 2015; Yáñez et al., 2013a). Thus, depending on the developmental 

stage of the pathogen-sensing cell type, two major mechanisms for initiating 

demand-adapted myelopoiesis can be considered: indirect and direct mechanisms. 

According to a model of indirect initiation, mature cells present in the BM or the peripheral 

tissues would act as pathogen sensors stimulating myelopoiesis via secretion of soluble 

factors. By contrast, in a model of direct initiation, pathogen recognition by HSPCs would 

directly induce enhanced proliferation and myeloid-biased differentiation (Boettcher and 

Manz, 2016, Boettcher and Manz, 2017).  

In contrast to the clear role of TLR signaling in demand-adapted hematopoiesis (Yáñez 

et al., 2013a) (see section 2.2), the function of TLRs under normal homeostatic conditions is 

not yet entirely clear. It has been shown that commensal microbiota promotes steady-state 

myelopoiesis by specifically maintaining granulocyte-monocyte progenitor’s proportions 

and enhancing their differentiation into mature myeloid cells in the BM (Khosravi et al., 

2014). Other studies have demonstrated that TLR-mediated innate pro-inflammatory 

signaling plays important functions in generating embryonic hematopoietic stem cells 

(HSCs), but whether and how TLR signaling initiates these inflammatory environments 

remains to be determined (Cannova et al., 2015; Luis et al., 2016; Zhao and Baltimore, 

2015).  

Collectively, all these studies highlight the fundamental role that inflammatory signals 

play in the ontogeny and maintenance of HSPCs, at steady state or stress-adapted 

hematopoiesis. However, if this inflammation is chronically sustained may lead to HSPC loss 

and eventually BM failure, or even it may increase propensity to acquire clonal genetic 

lesions which may result in leukemia. Therefore, it is critical to understand how HSCs 

balance their response to inflammatory signals, harmonizing the need to effectively fight 

immune stresses and regenerate the hematopoietic system with regulating proliferative cell 

divisions that may ultimately select for transformative genetic mutations (Luis et al., 2016). 

2.1 Steady state hematopoiesis  

The mammalian blood system contains more than ten different mature cell types 

(lineages) with various functions. Aside from a few exceptions (e.g., memory T cells, some 

tissue macrophages), most of the mature cell types have a finite life span, and so they must 

be constantly replenished to ensure homeostatic peripheral blood cell counts. Blood is one 



Introduction  

39 

of the most fast-regenerative tissues, as millions of blood cells are replaced with new ones 

each second during life. Despite their functional differences, all blood cell types are 

generated from HSCs that reside mainly in the BM, the major site of adult hematopoiesis. 

HSCs, therefore, are defined by its capacity to continuingly giving rise to all the blood cell 

lineages due to their differentiation potential (Rieger and Schroeder, 2012; Seita and 

Weissman, 2010).  

In adult mammals, immune cell production is hierarchically organized with HSCs at the 

apex of numerous progenitor cell stages with increasingly restricted lineage potential 

(Cheng et al., 2020; Rieger and Schroeder, 2012; Seita and Weissman, 2010). The first in vivo 

evidence for the existence of HSCs was based on the rescue of lethally irradiated recipient 

mice by BM transplantation, followed by detection of hematopoietic colonies in the spleens 

of recipient mice (Till and McCulloch, 1961). Thus, the gold standard for identification of 

HSCs has traditionally been to conduct BM transplantation and demonstrate generation of 

all blood lineages in mice. Besides, these functional assays revealed that HSCs are 

heterogeneous concerning their repopulating capacity as they are composed by different 

subpopulations. As transplantation is impractical for experimental manipulation, surrogate 

methods have been developed to better study the relationship between HSCs and their 

progenies, as well as the stepwise differentiation process (Challen et al., 2009; Seita and 

Weissman, 2010). Weissman and colleagues first described HSC-enriched cells by using the 

combination of several surface markers (Spangrude et al., 1988). Since then, the 

identification of multiple surface markers has enabled the isolation of defined HSCs, as well 

as multi-/oligo-/unipotent progenitor populations, establishing the immunophenotype-

based tree-like hierarchy model of developing blood cells (Cheng et al., 2020; Rieger and 

Schroeder, 2012). 

Mouse HSPCs from the BM are defined by their lack of expression of markers of 

differentiated cells. A cocktail of antibodies specific for antigens termed “lineage markers” 

(Lin; typically CD5, CD45R (B220), CD11b, Gr-1 (Ly-6G/C), 7-4, and Ter-119) can be used to 

selectively eliminate mature hematopoietic cells from complex (BM, spleen) samples. The 

remaining Lin⁻ cells can then be enriched for specific stem or progenitor cell populations 

(Figure 5). Sorting Lin⁻ c-Kit⁺ Sca-1⁺ (LKS⁺) cells enriches for cells with 

hematopoietic-reconstituting activity. In the classical model, HSCs can be divided into two 

subpopulations according to their self-renewal capacity: long-term (LT)-HSCs and 

short-term (ST)-HSCs. LT-HSCs are a minor (about 10 % of LKS⁺ cells), quiescent population 

in BM and have full long-term reconstitution capacity following serial transplantation in 

mice (Morrison and Weissman, 1994). On the other hand, ST-HSCs only have a short-term 



Introduction 

40 

reconstitution ability. LT-HSCs differentiate into ST-HSCs, and subsequently, ST-HSCs 

differentiate into multipotent progenitors (MPPs), which have no detectable self-renewal 

ability, although they still retain the LKS⁺ phenotype. The LKS⁻ fraction contains oligopotent 

lineage committed progenitors. By immunophenotyping it was shown that MPPs give rise 

to progenitors committed either to the lymphoid or to the myeloid lineages, (CLPs and 

CMPs, respectively). A second split appears as CMPs can give rise to 

megakaryocyte-erythrocyte progenitors (MEPs) and granulocyte-monocyte progenitors 

(GMPs). DCs in this model can be derived either from CLPs or CMPs (Rieger and Schroeder, 

2012; Seita and Weissman, 2010, Yáñez et al. 2017).  

FIGURE 5 | The mouse hematopoietic tree. Hematopoiesis is initiated by long-term hematopoietic stem cells 
(LT-HSCs), which have the capacity for self-renewal and give rise to proliferating short-term HSCs (ST-HSCs). 
These cells produce multipotent progenitors, which have been classified in four subsets depending on their 
lineage-biased potential: MPP1 (multiple lineages), MPP2 (megakaryocyte lineage), MPP3 (myeloid lineage) and 
MPP4 (lymphoid lineage). MPPs give rise to progenitors committed to megakaryocyte-erythrocyte (MEP), myeloid 
(CMP) or lymphoid (CLP) lineages. CMP are also able to produce MEPs, as well as granulocyte-monocyte 
progenitors (GMPs) and monocyte-dendritic cell progenitors (MDPs). GMPs give rise to monocyte committed 
progenitors (MPs) and granulocytes committed progenitors (GPs), whereas MDPs give rise to common dendritic 
cell progenitors (CDP) and monocyte committed progenitors (cMoPs). Functionally distinct subsets of classical 
monocytes are produced by both MPs and cMoPs, and consequently, derived non-classical monocytes and 
macrophages may also exhibit functional differences; monocyte-derived DCs (moDCs) also arise exclusively from 
cMoPs. Mouse hematopoietic stem and progenitor cells are defined by their lack of expression of markers of 
differentiated cells (Lin⁻ cells). From Lin⁻ cells, c-Kit⁺ Sca-1⁺ (LKS⁺) fraction contains HSCs and MPPs, whereas c-
Kit⁺ Sca-1⁻ fraction (LKS⁻) includes oligopotent lineage-committed progenitors. Adapted from Yánez et al., (2013). 
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Although the classical model has been very useful for understanding how the 

multi-potent HSCs differentiate into these diverse functional types, it oversimplifies the 

complexity of HSPCs as the model is only based on the expression of a few surface markers 

and transplantation assays using bulk cells. With advances in single cell technology and 

genetic mouse models, this classical model has been challenged and new types of HSPCs 

have been identified according to their lineage biases (Giladi et al., 2018). These new 

strategies have uncovered the presence of more heterogeneity than formerly thought in the 

most primitive HSC population. It was observed that MPPs are a heterogeneous population 

that could be divided into four subpopulations with different lineage-biased potential: 

MPP1 have multiple lineage reconstitution ability, while MPP2 is a 

megakaryocyte/erytrocyte-biased MPP subset, MPP3 is a myeloid-biased subset, and MPP4 

is a lymphoid-biased subset (Cheng et al., 2020) (Figure 5).  

Heterogeneity and hierarchy within myeloid progenitors have also been checked to 

better understand the role of hematopoiesis in producing the huge variety of myeloid 

functional phenotypes described in the last decades. Myeloid cell differentiation is probably 

the most recently characterized process of blood cell lineage production, although some 

aspects concerning mature myeloid subsets heterogeneity are still unknown. Regarding the 

hierarchically organized production of myeloid cells from HSPCs, it has been observed that 

CMPs can give rise to GMPs and to monocyte and dendritic cell progenitors (MDPs) (Zhu et 

al., 2016). Thus, both GMPs and MDPs can produce monocytes, while GMPs are committed 

to produce neutrophils via granulocytes progenitors (GPs), wheres MDPs yield cDCs and 

pDCs via common DC progenitors (CDPs) (Yáñez et al., 2015). A hierarchical relationship 

(CMP–GMP–MDP) was presumed to underlie monocyte differentiation, although Yáñez et 

al. (2017) clearly demonstrate that mouse MDPs arise from CMPs independently of GMPs 

and that both produce monocytes via not identical monocyte–committed progenitors (cMoP 

and MP, derived from MDP and GMP, respectively) (Figure 5). Monocytes can be generally 

classified into two subsets: classical monocytes, also termed “inflammatory” monocytes 

(Ly6C⁺ in mice), and non-classical monocytes or “patrolling” monocytes (Ly6C⁻). It has been 

shown that, in the steady state, Ly6C⁺ monocytes are precursors of tissue-macrophages and 

Ly6C⁻ monocytes, a functional end stage considered as blood-resident macrophages. 

Moreover, inflammatory monocytes express high levels of CCR2 and low levels of CX3CR1, 

whereas patrolling monocytes show the reversed pattern (Italiani and Boraschi, 2014). 

Distinct subsets of classical monocytes are produced by both GMPs and MDPs, so 

non-classical monocytes and macrophages derived from them may also exhibit functional 

differences. One of these subsets of classical monocytes (neutrophil-like subset) is only 
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produced by GMPs, whereas moDCs arise exclusively from cMoP-derived monocytes (Yáñez 

et al., 2017) (Figure 5). 

The balance between HSCs self-renewal and differentiation must be tightly regulated 

to enable both the generation of differentiated cells and the accurate maintenance of the 

right HSC pool size. The homeostasis of hematopoietic system is a highly dynamic and 

tightly regulated orchestration of intrinsic programs and extrinsic signals from the 

microenvironment, often referred to as “niche”. The niche promotes a variety of juxtacrine 

(cell-cell or cell-matrix) and paracrine (via cytokines, chemokines, and growth factors) 

interactions involving HSCs that are required for their appropriate behavior. BM provides 

the environment for sustained HSC function and HSCs rapidly lose their self-renewal 

capacity once isolated from their in vivo niche in the trabecular bone area of BM, near to 

sinusoids and blood vessels (Rieger and Schroeder, 2012; Wei and Frenette, 2018). 

Interestingly, it has been proposed that various progenitors could have specific niches in 

the BM (Wei and Frenette, 2018). Many different cell types within the BM are now known 

to form part of the niche, including non-hematopoietic/stromal cells and hematopoietic 

cells. Mesenquimal stem cells (MSCs) and endothelial cells are in close proximity and release 

soluble factors, such as CXCL12 or Stem cell factor (SCF, c-Kit ligand), that act directly on 

HSCs and promote their survival. Besides, other cell types, such as cells of the neural system, 

including sympathetic nerves and Schwann cells, osteolineage cells (e.g. osteoblasts and 

osteocytes) and adipocytes may act indirectly through actions on proximal stroma (Wei and 

Frenette, 2018). In addition to the stromal niche components, HSCs’ own progeny has been 

shown to regulate HSC behavior. A network of innate immune cells (neutrophils and 

resident macrophages), BM-resident memory T cells and most recently, megakaryocytes, 

have been shown to have important regulatory functions on the hematopoietic niche 

(Casanova-Acebes et al., 2014; Wei and Frenette, 2018).  

HSC populations are heterogeneous in their reconstitution efficacy and their lineage 

patterns. Importantly, these patterns are conserved through serial transplantations, 

indicating the existence of stable inheritable stem cell intrinsic programs. Accumulated 

knowledge has demonstrated the importance of numerous intrinsic factors in regulating 

HSC self-renewal, although their exact interplay remains to be unrevealed (Li et al., 2019; 

Rieger and Schroeder, 2012). However, the molecular mechanisms that explain how HSPCs 

manage to establish lineage-committed stage are better defined. The differentiation from a 

multipotent progenitor towards a specific lineage involves a global change of gene 

expression. This lineage choice and commitment include both the expression of 

lineage-specific genes and the repression of those genes specific for other lineages. One 
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excellent example is the switch from high levels of the transcription factor GATA2, mainly 

expressed in early progenitors, to high levels of GATA1, which precedes erythropoiesis from 

HSCs. GATA2 induces GATA1 expression, which in turn activates its own expression and 

represses GATA2 (Rieger and Schroeder, 2012). However, gene regulation depends on the 

interplay of a variety of elements, including transcription factors, epigenetic modifiers, and 

post-transcriptional control mechanisms. In light to recent data obtained by 

high-throughput techniques at the single-cell level, detailed information has been achieved 

concerning intrinsic programs for HSPCs differentiation suggesting that these processes are 

more complex and less sequential than previously appreciated (Cheng et al., 2020; Giladi et 

al., 2018). 

2.1.1 Myeloid cell differentiation 

Similarly to the tightly regulated self-renewal and differentiation of HSCs, the 

differentiation of a multipotent progenitors to a specific lineage is also controlled by 

intrinsic and extrinsic mechanisms (Rieger and Schroeder, 2012). As previously mentioned, 

the intrinsic mechanisms lead to an induction and maintenance of lineage-affiliated genetic 

programs. The lineage-specific transcription factors that regulate the broad gene 

expression switch to myeloid lineages are mainly PU.1, IRF8 and C/EBP family of 

transcription factors (Giladi et al., 2018; Yáñez et al., 2015; Zhu et al., 2016). According to 

consensus myeloid differentiation models, PU.1 is the master regulator of all myeloid 

lineages. PU.1 is expressed at low levels in CMPs, and its expression increases in their 

subsequent more committed progenitors to give rise to monocytes or neutrophils. C/EBPα 

is also an important regulatory transcription factor that cooperates with PU.1 to promote 

myeloid identity. On the other hand, Irf8 is expressed in the GPs and MPs lineage-committed 

progenitors, but not in GMPs, and regulates their survival and differentiation to promote 

monocyte and suppress neutrophil production (Yáñez et al., 2015). Previously, it was 

demonstrated that IRF8 binds to and inhibits the transcriptional activity of C/EBPα, thereby 

preventing neutrophil differentiation (Kurotaki et al. 2014). More recently, using a novel 

approach based on high-throughput techniques at the single-cell level, Giladi et al. (2018) 

have revealed that C/EBPα regulates the entry into all myeloid fates, while IRF8 and PU.1 

participate in later differentiation towards monocyte or granulocyte fates, respectively. The 

study shows that IRF8 is essential for monocyte development, in accordance with previous 

studies, whereas PU.1 is not necessary for granulocyte differentiation but for further 

neutrophil maturation (Giladi et al., 2018).  
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As previously mentioned, the differentiation from progenitors to mature cells also 

depends on post-transcriptional control mechanisms and epigenetic regulation. The study 

of epigenetic events during hematopoiesis has revealed that both DNA and histone 

modifications are important in this process of cell production. Histone acetylation, one of 

the best-studied histone modifications, generally correlates with the level of gene 

expression, and is determined by the relative activity of histone acetyltransferases and 

histone deacetylases. Concerning myeloid differentiation, downstream of CMPs, histone 

deacetylase 1 (HDAC1) expression is downregulated by C/EBP transcription factors to 

induce the production of myeloid cells, in particular granulocytes. Distinct DNA methylation 

patterns have been also related to myeloid cell differentiation (Álvarez-Errico et al., 2015). 

On the other hand, some studies have reported a role for small non-coding RNAs or 

microRNAs (miRNAs), such as the miR-106a or miR-223, in regulating monocyte 

development and monocyte differentiation to macrophages (Zhu et al., 2016). Moreover, 

using a model of transdifferentiation from pre-B cells to macrophages, it has been shown 

that C/EBPα induce the expression of miR-34a and miR-223, which target and 

downregulate Lef1, a gene that encodes for a lymphoid transcription factor, whose ectopic 

expression delays transdifferentiation (Rodríguez-Ubreva et al., 2014).  

A vast body of literature demonstrates that myelopoiesis is also regulated by extrinsic 

signalling from members of the colony-stimulating factor (CSF) superfamily, which has 

essentially three canonical members namely macrophage (M)-CSF, granulocyte (G)-CSF, 

and GM-CSF (Hamilton and Achuthan, 2013). These myelopoietic growth factors provide 

proliferation and survival signals to HSPCs, as well as they are critically involved in the 

process of lineage specification as demonstrated by the ability of G-CSF and M-CSF to 

instruct bipotent GMPs to differentiate either into granulocytes or macrophages, 

respectively (Rieger et al., 2009).  

The importance of the CSF system for steady state myelopoiesis is most clearly 

revealed using mice deficient for the respective CSF genes. Among these, M-CSF receptor 

(M-CSF-R) and M-CSF KO mice have the most dramatic phenotype as they exhibit skeletal, 

sensory, and reproductive abnormalities caused by severe deficiencies in tissue 

macrophages and osteoclasts (Chiba et al., 2018). M-CSF is broadly expressed and regulates 

the generation of monocytes and macrophages from lineage-committed progenitors and 

even acts on HSCs through activation of PU.1 (Mossadegh-Keller et al., 2013). On the other 

hand, studies in G-CSF –/– mice showed a 70-90 % reduction in circulating neutrophils, 

indicating an essential role of G-CSF in homeostatic granulopoiesis. Unlike M-CSF, several 

publications suggest that G-CSF may be mainly acting on myeloid-restricted progenitors but 
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not on HSCs (Boettcher and Manz, 2017; Mossadegh-Keller et al., 2013). GM-CSF was 

originally discovered as a protein capable of generating both granulocyte and macrophage 

colonies from myeloid precursor cells in vitro. Nevertheless, analyses of GM-CSF −/− mice 

have failed to detect a major defective hematopoietic phenotype (except for the absence of 

alveolar macrophages and a reduction in a subset of DCs in non-lymphoid tissues), 

indicating that GM-CSF is largely redundant for steady-state myelopoiesis (Becher et al., 

2016). As well as G-CSF, GM-CSF do not induce increased PU.1 expression in HSCs 

(Mossadegh-Keller et al., 2013). 

2.2 Infection-induced hematopoiesis 

2.2.1 Indirect pathogen sensing and consequences in hematopoiesis 

According to a model of indirect initiation of demand-adapted hematopoiesis during 

infection, mature cells would act as pathogen sensors stimulating myelopoiesis via 

secretion of soluble factors such as CSFs or cytokines. Mononuclear phagocytes (monocytes 

and macrophages) act as the primary pathogen-sensing cell type during systemic infections 

and they can release a great variety of inflammatory cytokines. Therefore, these cells may 

be the cell type that indirectly stimulates HSPCs, although this notion has never been 

conclusively proven by in vivo experiments. However, Kwak et al. (2015) have revealed that 

BM mature myeloid Gr1⁺ cells (including granulocytes and monocytes as well as their 

late-stage precursor cells) play a critical role in mediating emergency granulopoiesis 

following heat-inactivated Escherichia coli injection in vivo. This mechanism implies the 

production of ROS that externally regulate the proliferation and differentiation of adjacent 

GMPs (Figure 6A). By contrast, BM chimeric mice with TLR4 –/– hematopoietic cells on a 

WT non-hematopoietic background were able to mount an emergency myelopoiesis 

(production of Gr1⁺ cells) in response to the TLR4 ligand Lipopolysaccharide (LPS) 

(Boettcher et al., 2012). In fact, the same study showed that TLR4-expressing 

non-hematopoietic cells are indispensable for the myelopoietic responses induced by LPS. 

From the various non-hematopoietic cells that have been shown to express TLRs, which 

made them also candidate as pathogen-sensing cell types during emergency myelopoiesis, 

Boettcher et al. (2014) demonstrated that emergency myelopoiesis in response to LPS is 

mediated by TLR4-MyD88 signaling in endothelial cells and subsequent G-CSF release 

(Figure 6B). 
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Plasma levels of the myelopoietic growth factors G-CSF and GM-CSF rise rapidly during 

infection, to replace myeloid cells consumed fighting against the pathogen. As in 

steady-state, CSFs role in emergency myelopoiesis was studied using respective KO mice. 

Concerning G-CSF –/– mice, there are conflicting results possibly due to the different 

experimental models used. In response to C. albicans, G-CSF –/– mice, as similarly infected 

WT mice, developed a profound and sustained neutrophilia, suggesting that G-CSF is 

dispensable for mounting an emergency granulopoietic response in this model (Basu et al., 

2000). By contrast, as mentioned above, emergency myelopoiesis induced by LPS was fully 

dependent on G-CSF, although in response to E. coli infection it was not totally dependent 

on G-CSF, since a granulopoietic response was still detectable (Boettcher et al., 2014). 

Interestingly, ROS-induced emergency granulopoiesis in response to E. coli infection was 

independent of G-CSF (Kwak et al., 2015), thus showing a cooperation between both 

G-CSF-dependent and -independent mechanisms following infection with E. coli. On the 

other hand, different infection models using GM-CSF −/− mice showed that GM-CSF seems to 

be involved in maintaining an appropriate emergency hematopoietic response once earlier 

response mechanisms are being overcome, such as during later stages of acute infection or 

during chronic infection (Becher et al., 2016).  

As CSFs, other cytokines released by pathogen-sensing cells can also induce emergency 

hematopoiesis (Chiba et al., 2018; King and Goodell, 2011). IL-1, a key pro-inflammatory 

signal that rapidly augments host innate immunity, has also a role in regulating emergency 

hematopoiesis, although its effect depends on the time of exposure. Upon infection or injury, 

IL-1 is produced at elevated levels in the BM microenvironment, in particular by endothelial 

D C B A 

FIGURE 6 | Pathways for indirect sensing of pathogen signals and translation into emergency 
myelopoiesis. Adapted from Boettcher et al., 2015. 
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cells that form an essential component of the HSC niche. There, IL-1 accelerates HSC 

proliferation and instructs HSCs towards myeloid differentiation by inducing PU.1 via 

NF-κB signaling downstream of the IL-1 receptor. While this response is advantageous in 

acute inflammation, it is ultimately detrimental in situations of chronic exposure because 

IL-1 promotes uncontrolled HSC division, loss of self-renewal capacity and eventual 

exhaustion of the HSC pool. However, these damaging consequences are fully reversible 

upon IL-1 withdrawal, indicating that IL-1 effects are essentially transient and require 

continuous exposure to negatively impact HSC function (Pietras et al., 2016) (Figura 6B).  

MSCs from BM niche are also able to support HSPC expansion through active 

production of cytokines. Schurch et al. (2014) found that CTLs induced myelopoiesis during 

viral infection by migrating to the BM niche and producing IFN-γ, which was then detected 

by MSCs. Consequently, MSCs secreted IL-6 that, in turn, increased MPP proliferation and 

myeloid differentiation predominantly along the monocytic lineage (Figure 6C). Following 

a similar mechanism, blood-stage malaria infection induces IFN-γ production by CD4⁺ T 

cells and NK cells, which may stimulate MSCs to produce the cytokine IL-27. It has been 

demonstrated that IL-27, which belongs to the IL-16/IL-12 family of cytokines, promotes 

the expansion of HSCs and their differentiation into myeloid progenitors in synergy with 

SCF. Thus, IL-27 acts on HSCs to promote emergency myelopoiesis resulting in enhanced 

production of neutrophils to remove malaria infected red blood cells (Furusawa et al., 2016) 

(Figure 6D). In both described mechanisms (during viral or malaria infection), IFN-γ has 

an indirect effect mediating secretion of other cytokines such as IL-27 or IL-6 by MSCs. In 

addition, several studies have demonstrated that IFN-γ is also able to directly act on HSPCs 

(de Bruin et al., 2014). However, its impact on HSC stemness is controversial as IFN-γ can 

have both stimulating or suppressing effects on HSC proliferation and reconstitution, and 

the outcome of this balance may be context-dependent (in vitro or in vivo stimulation, the 

use of different mouse infection models, etc.). Nevertheless, it is firmly accepted that IFN-γ 

production during infection is very important for tightly orchestrating myelopoiesis, 

promoting monopoiesis while inhibiting neutrophil development. It has been proposed that 

IFN-γ acts through upregulation of the Suppressor of cytokine signaling (SOCs) proteins, 

which impair the signaling of several cytokines and growth factors. IFN-γ induces 

expression of SOCS3 in GMPs and thereby inhibits G-CSF-induced activation of STAT3, an 

essential transcription factor for emergency granulopoiesis. On the other hand, IFN-γ also 

causes increased expression of the master regulator of all myeloid lineages, PU.1, and the 

monocyte-promoting transcription factor IRF8 in the same myeloid progenitors (de Bruin 

et al., 2012). 
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HSPCs also express both type I and type II IFN receptors, and therefore, in addition to 

IFN-γ, IFN-β and particularly IFN-α can influence the response of HSPCs to inflammation 

(Chavakis et al., 2019). It has been demonstrated that murine HSCs efficiently proliferate in 

response to in vivo treatment with the TLR3 ligand and type I IFN inducer 

polyinosinic:polycytidylic acid (polyI:C) or with IFN-α itself (Essers et al., 2009). However, 

as described for chronic exposure to IL-1, chronic administration of IFN-α also results in 

impaired HSC repopulation capacity (Essers et al., 2009). In addition, type I IFNs are able to 

induce apoptosis in HSCs, intensifying the suppressive effects of type I INFs on HSC function 

(Pietras et al., 2014). On the other hand, it has been shown that type I IFNs drives emergency 

myelopoiesis in mice with transgenic overexpression of TLR7 (Buechler et al., 2013).  

The scheme shown in Figure 6 summarizes the indirect mechanisms for translating 

signals from pathogen sensing into in emergency myelopoiesis (granulopoiesis, 

monopoiesis or both), described in this section.  

2.2.2 Direct pathogen sensing by HSPCs 

PRR expression by HSPCs and their role in emergency myelopoiesis were first reported 

in 2006. A pioneering work from Nagai et al. (2006) demonstrated that murine HSCs, as well 

as lineage-restricted progenitors, expressed TLR4 and/or TLR2 and that upon in vitro 

exposure to their respective ligands, WT but not MyD88 KO HSCs entered cell cycle and 

acquired myeloid lineage markers. Since then, a solid body of evidence has demonstrated 

that mice and human HSPCs express most TLRs and their stimulation induce proliferation 

and myeloid differentiation in vitro (Yáñez, et al., 2013a). Moreover, mouse HSPCs ex vivo 

pre-stimulated with LPS, and then transplantated under the renal capsule and subjected to 

in vivo LPS stimulation were able to locally generate clusters of myeloid cells in the kidney 

(Massberg et al., 2007). The expression of other PRRs by HSPCs has also been described. For 

example, NOD2 is expressed by human CD34⁺ cells (HSPCs) and stimulation of NOD2 with 

muramyl dipeptide is sufficient to trigger differentiation to myeloid cells (Sioud and 

Floisand, 2009). More recently, the endoplasmic adaptor protein STING, which recognizes 

cyclic bacteria– or virus–derived DNA, was added to the collection of PRRs expressed in 

HSPCs (Kobayashi et al., 2015; Kobayashi et al., 2016).  

Subsequent studies focused on determining whether HSPCs may be stimulated directly 

by pathogenic microbes. In this context, our group has studied the interaction between                    

C. albicans and murine HSPCs, describing that inactivated yeasts or hyphae induce LKS⁺ cells 

to proliferate and differentiate toward the myeloid lineage in a TLR2/MyD88-dependent 
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manner (Yáñez et al., 2010; Yáñez et al., 2009). Challenge of LT-HSCs with C. albicans yeasts 

also induces their proliferation, as well as the upregulation of myeloid progenitor markers 

through a TLR2/MyD88-dependent signaling pathway. TLR2/MyD88 signaling also 

promotes, upon challenge with yeasts, the differentiation of CMPs and GMPs into cells with 

a morphology of mature myeloid cells expressing CD11b, F4/80, and Gr-1. These 

myeloid-like cells display functional properties, as they are able to (i) phagocytose                      

C. albicans yeasts and (ii) release pro-inflammatory cytokines upon in vitro stimulation 

(Yáñez et al., 2010). 

It has been shown that in vitro stimulation of human and mouse HSPCs with TLR 

agonists induce the production of specific myeloid subsets depending on the agonist used 

(Bieber and Autenrieth, 2020; Yáñez, et al., 2013a). For example, human CD34⁺ cells develop 

into CD11c⁺ cells upon NOD2 stimulation (Sioud and Floisand, 2009), whereas stimulation 

of mouse CMPs with a TLR7/8 ligand leads to the generation of macrophages. The TLR7/8 

ligand promote the repression of genes that encode for transcription factors associated with 

granulocyte, erythroid and megakaryocyte differentiation, and upregulate the expression of 

the myeloid-specifying transcription factor PU.1 (Buechler et al., 2016). Our group has also 

demonstrated that TLR2, TLR4 and TLR9 stimulation of mouse Lin⁻ and LKS⁺ cells induce 

their differentiation towards macrophages (Megías et al., 2012). Indeed, Nagai et al. (2006) 

showed that LT-HSC and myeloid progenitors (GMP and CMP) stimulated with Pam3CSK4 

(synthetic version of the bacterial lipopeptide, detected by TLR1/TLR2 heterodimers) or 

LPS produced monocytes or macrophages, while lymphoid progenitors stimulated with the 

same TLR agonists produced DCs. 

The specific myeloid subsets that are produced following in vitro exposure of mouse 

HSPCs (Lin⁻ cells) to C. albicans have been also determined. Inactivated C. albicans yeasts 

induced their differentiation into moDCs, via TLR2/MyD88- and Dectin-1-dependent 

pathways (Figure 7A). Interestingly, the response to C. albicans yeasts was more similar to 

the response to curdlan (a pure Dectin-1 ligand) than to Pam2CSK4 (a pure TLR2/TLR6 

ligand), as Pam2CSK4 promoted differentiation to macrophages rather than moDCs (Yáñez 

et al., 2011), indicating that Dectin-1 plays a key role in the response of HSPCs to C. albicans. 

Dectin-1 is not expressed on HSCs, but Lin⁻ cells express detectable levels of Dectin-1 (Yáñez 

et al., 2011), indicating that it is turned on in differentiating progenitors prior to the 

acquisition of lineage markers. The moDCs generated in vitro, in response to inactivated 

yeasts, are functional as they have acquired the capability to secrete TNF-α and have 

fungicidal activity, and therefore could participate in innate immunity against C. albicans. 
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All these data strongly support the notion that TLR signaling programs early progenitors to 

generate functional mature cells to deal with the fungal pathogen.  

In vivo myeloid differentiation from HSPCs has been demonstrated using a wide variety 

of infection models or by stimulating with purified TLR ligands (Bieber and Autenrieth, 

2020; Buechler et al., 2016; Nagai et al., 2006; Yáñez, et al., 2013a; Yáñez et al., 2011). 

However, direct in vivo interaction of pathogens and/or their components with TLRs on 

HSPCs during infection is more difficult to demonstrate, as HSPCs can also respond to other 

stimuli, including inflammatory cytokines generated by mature cells following direct 

pathogen recognition. To solve this issue, our group used the experimental approach next 

explained to address whether TLR agonists can directly stimulate HSPCs in vivo. Purified 

Lin⁻ or LKS⁺ cells from the BM of C57BL/6-Ly5.1 mice (CD45.1⁺) were transplanted into 

TLR2 −/−, TLR4 −/−, or MyD88 −/− mice (CD45.2⁺), which were then injected with pure ligands 

for TLR2, TLR4, or TLR9 (Pam3CSK4, LPS, and CpG ODN), respectively. In this model, KO 

mouse cells are not capable of recognizing or responding to the injected TLR pure ligands; 

therefore, any responses observed in the transplanted cells must be due to direct 

recognition the TLR agonists by the donor HSPCs. Transplanted HSPCs were detected in the 

BM and the spleen of recipient mice and, in response to TLR ligand injection, these cells 

differentiated preferentially into macrophages, demonstrating unequivocally that HSPCs 

can recognize directly the TLR agonists in vivo, and that the engagement of these receptors 

induces macrophage differentiation (Megías et al., 2012). In this context, it has been also 

described that HSPCs injected directly into Staphylococcus aureus infected wounds of TLR2 

KO or WT mice were able to produce granulocytes equivalently, whereas TLR2 KO HSPCs 

differentiate less efficiently than WT HSPCs to towards neutrophils in a WT S. aureus 

infected wound environment (Granick et al., 2013) (Figure 7B). 

A similar in vivo transplantation approach with CD45.1/CD45.2 mice was used to study 

the effect of C. albicans infection on HSPCs. Transplanted Lin⁻ cells were detected in the 

spleen and BM of recipient mice, and they differentiated preferentially to macrophages in 

response to both viable and inactivated yeasts in a TLR2-dependent but TLR4-independent 

manner (Megías et al., 2013) (Figure 7A). These results indicate that TLR2-mediated 

recognition of C. albicans by HSPCs helps to replace and/or to increase cells that constitute 

the first line of defense against the fungus, and suggest that TLR2-mediated signaling leads 

to programming of early progenitors to rapidly replenish the innate immune system and 

generate the mature cells most urgently needed to deal with the pathogen. 

It is widely accepted that cytokines released by mature immune cells in infected tissues 

reach BM niche and induce myelopoiesis. However, new studies have suggested that HSPCs 
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could also alter their neighbors’ fate by secreting soluble factors in response to infectious 

stimuli. Zhao et al. (2014) performed a single-cell cytokine analysis to illustrate that 

ST-HSCs and MPPs, but not LT-HSCs, secrete a variety of cytokines after stimulation with 

LPS and Pam3CSK4 in a NF-κB-dependent manner. Surprisingly, HSPCs produced huge 

amounts of cytokines, greater than those produced by mature myeloid cells, and IL-6 was 

the most prominently detected. Moreover, they were able to demonstrate that effects on 

myelopoiesis in response to LPS were partially dependent on IL-6 production. Interestingly, 

based on their response to LPS, HSPCs could be divided in largely two distinct populations: 

(i) one subset of HSPCs responding to TLR stimulation by rapidly turning on NF-κB and 

producing copious amounts of cytokines and (ii) a neighboring HSPC subset with cytokine 

receptors that can undergo rapid proliferation and differentiation in response to cytokine 

stimulation (Zhao et al., 2014) (Figure 7C). 

Similarly, Buechler et al. (2016) demonstrated that CMPs directly sense a TLR7/8 

ligand and then activate intracellular signaling pathways leading to the production of IFN-β, 

which could act in an autocrine and/or paracrine manner to promote macrophage 

differentiation (Figure 7D). This TLR-induced differentiation depended on and was 

amplified by type I IFNs, but IFN–β itself did not drive mature cell development (Buechler 

et al., 2016). Therefore, these results are in concordance with the observation that type I 

IFNs modulate HSCs behavior in vivo (Essers et al., 2009), where DAMPs could be present 

and may also be recognized by TLRs, but not in vitro when used alone (Pietras et al., 2014). 

Moreover, Granick et al. (2013) reported that HSPCs produce prostaglandin E2 (PGE2) in                                   

S. aureus-infected wounds, leading to local granulocyte accumulation (Figure 7B). In this 

case, PGE2 itself did induce proliferation and granulocyte differentiation of HSPCs (Granick 

et al., 2013).  

Demand-adapted hematopoiesis in response to acute infection is beneficial as it meets 

the increased demand for innate immune cells consumed fighting against the pathogen. 

However, this adaptation of HSPCs towards myelopoiesis may also cause impairment of 

their function and exhaustion if HSPC activation is chronically sustained (Luis et al., 2016). 

Using similar approaches to those used by our group to address whether TLR agonists can 

induce HSPC differentiation in vivo, several studies have demonstrated that systemic LPS 

exposure enhances HSC proliferation in a direct TLR4-dependent manner (Herman et al., 

2016; Liu et al., 2015; Takizawa et al., 2017). Similar to chronic exposure to IL-1 or type I 

IFNs, chronic low-dose LPS treatment also results in a reduced HSC repopulation capacity 

(Esplin et al., 2011; Liu et al., 2015). Takizawa et al. (2017) demonstrated that this impaired 

repopulating capacity of HSCs is a direct effect mediated via TLR4-TRIF, but not MyD88 
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signaling. Thus, while direct TLR4 activation in HSCs might be beneficial for controlling 

systemic infection inducing emergency myelopoiesis, prolonged TLR4 signaling has 

detrimental effects and may contribute to inflammation-associated HSPC dysfunction 

(Takizawa et al., 2017).  

 

 

In the steady state, a small number of HSPCs is continuously mobilized to the 

periphery, enabling them to detect local infections and rapidly differentiate into immune 

cells at specific sites by extramedullary hematopoiesis (Massberg et al., 2007). Thus, the 

migratory pool of HSPCs might act as a source of highly versatile HSPCs that can respond to 

infection signals locally within tissues before these signals reach the BM. In fact, acute 

infections induce a dramatic increase in the number of HSPCs that egress from BM to 

peripheral organs, particularly to spleen. Thus, although the BM is the site for most 

hematopoietic activities in adult mice and humans, extramedullary hematopoiesis can occur 

FIGURE 7 | Direct PAMP or pathogen sensing by HSPCs and translation into emergency myelopoiesis.                      
(A) C. albicans interacts in vitro with different subsets of mouse hematopoietic stem and progenitor cells 
(HSPCs), inducing the differentiation of these cells towards the myeloid lineage in a TLR2-dependent manner. 
Fungal cells also induce TLR2 and Dectin-1 dependent production of moDCs by Lin⁻ cells in vitro and TLR2-
dependent macrophage production by transplanted HSPCs upon C. albicans infection in vivo. (B) Staphylococcus 
aureus interacts with HSPCs and induces TLR2-dependent granulopoiesis. In response to bacteria, HSPCs also 
produce prostaglandin E2 (PGE2) that mediates myeloid differentiation in an autocrine or paracrine manner. (C) 
TLR2 and TLR4 ligands (depicted as PAMP) activate HSPCs and promote their myeloid differentiation, a process 
partially mediated by IL-6 secreted by different subsets of HSPCs (except LT-HSCs). (D) A TLR7/TLR8 ligand 
(depicted as PAMP) activates CMPs and promote their myeloid differentiation in part by inducing them to 
secrete IFN-β. Adapted from Yáñez et al., 2013. 
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mostly in the spleen, when the individual is under severe stress, as during infection. 

Therefore, it is suggested that some common features shared between the BM and the 

spleen might constitute a critical HSC niche component, although the cellular and molecular 

nature of spleen HSC niche is elusive (Wei and Frenette, 2018)  

HSPCs are held within the BM by adhesive interactions and chemoattraction provided 

mainly by CXCL12/CXCR4 signaling, although SCF also contribute with its chemotactic 

activity. Molecules that modulate the extracellular matrix in the BM niche, such as 

metalloproteases, induce the release of HSPCs into circulation. Then, HSPCs migrate by 

detecting the CXCL12 gradient that guide directional cell movement toward BM, where this 

factor is present in higher concentrations (Ciriza et al., 2013). Early studies revealed that 

G-CSF, whose plasma levels rise rapidly during infection, has an ability to mobilize HSPCs 

from the BM into the blood (Hamilton and Achuthan, 2013). In fact, nowadays, in order to 

obtain hematopoietic progenitors for allogenic transplantation, healthy donors are treated 

with G-CSF and progenitors are purified from peripheral blood samples. Furthermore, it has 

been shown that this effect is mimicked and enhanced by yeast-derived β-glucan. Both 

G-CSF and/or yeast-derived β-glucan induce a proteolytic BM microenvironment that leads 

to the degradation of adhesive interactions between chemokines and their receptors, thus 

promoting HSPC mobilization (Cramer et al., 2008). 
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3 Innate immune memory 

The vertebrate immune system has conventionally been divided into innate and 

adaptive arms: the first one reacts rapidly and non-specifically to pathogens, whereas the 

latter one responds in a slower but specific manner. Other property that has been classically 

used to discriminate between innate and adaptive host defense mechanisms is the capacity 

to induce immunological memory, as for a long time it was assumed to be an exclusive 

hallmark of the adaptive immune response. Immunological adaptive memory has been 

defined as long-term acquired memory against specific antigens, leading to persistent 

antibody production and/or more efficient (that is, quicker and/or enhanced) activation of 

T cells and B cells upon a second encounter with the pathogen (Murphy and Weaver, 2017). 

Nevertheless, a growing body of evidence has challenged this dogma, indicating that innate 

immune cells can also exhibit adaptive characteristics.  

In plants and invertebrates, which do not have adaptive immunity, resistance to 

infection following previous exposure to the same or unrelated infectious stimulus has been 

reported (Netea et al., 2020; Netea et al., 2016). In higher vertebrates, early experimental 

studies using certain models of vaccination described that mice showed homologous or 

heterologous (non-specific) protection against pathogens due to an enhanced macrophage 

activation (Bistoni et al., 1986; van 't Wout et al., 1992). Also, at that time, the role of 

macrophages in induction of endotoxin tolerance was demonstrated. In this context, it was 

observed that a first exposure to LPS (also referred as endotoxin) protects mice against 

LPS-induced lethality by generating, conversely to the previous described effect, a lower 

inflammatory response that prevents tissue damage (Freudenberg and Galanos, 1988). 

Although these effects were not initially considered attributable to innate memory, this idea 

has become increasingly evident with time (Cassone, 2018; Seeley and Ghosh, 2017). From 

these observations until now, lots of studies have reinforced the initial notion that innate 

immunity can be modulated by former encounters with microbes or PAMPs in mice and 

humans, a property that has been generally termed innate immune memory (Figure 8). 

Innate immune memory becomes relevant particularly in the context of vaccination, as it 

mediates in part the heterologous beneficial effects that have been reported for certain live 

attenuated vaccines (Goodridge et al., 2016). Despite the differences between innate and 

adaptive immune memory, both fulfil the same major function that is the induction of a 

quicker and stronger response against pathogens that improves host survival upon a second 

infection. Recently, it has been proposed a unifying model of immune memory that reflects 
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an evolutionary continuum link between innate and adaptive immune memory (Netea et al., 

2019). 

 

The evident renewed interest in the field of innate immune memory in the last decade 

has prompted the scientific community to rethink the terminology used for describing the 

various innate memory phenomena (Boraschi and Italiani, 2018). Regarding the induced 

responses, in the case of decreased responses to a second challenge upon a first exposure 

to a TLR stimuli as LPS, the term “endotoxin tolerance” has been widely used (Biswas and 

López-Collazo, 2009; Cavaillon and Adib-Conquy, 2006; Medvedev et al., 2006). On the other 

hand, the term “trained immunity” has been initially proposed for the enhanced responses 

to a second challenge following exposure to certain microorganisms or PAMPs (Netea et al., 

2011). However, the term “training” is under debate as it could be expected to result in a 

different response from the initial one, either higher or lower (Boraschi and Italiani, 2018, 

Netea et al., 2020). Furthermore, it should be noted that the term “endotoxin tolerance” only 

refers to the final outcome of the response because this phenomenon is the result of a 

general reprogramming, with some effector mechanisms being decreased, while others 

increased or not changed (Foster et al., 2007). From this point of view, the concept of trained 

immunity may be used as a synonymous of innate immune memory and consequently, the 

FIGURE 8 | Trained immunity and tolerance: two opposite functional programmes of 
innate immune memory. Infections induce inflammation and the activation of innate immune 
effector mechanisms. Concomitant to a pro-inflammatory response, anti-inflammatory 
mechanisms are provoked to limit the inflammatory response and return to homeostasis. 
However, this encounter with microbes or PAMPs induces changes in innate immune cells that 
are maintained in time and modulate secondary responses to homologous or heterologous 
stimulation. Dectin-1 ligands generate trained immunity, a response that involves an enhance 
macrophage activation to subsequent stimuli, whereas TLR ligands generate tolerance, which 
is characterized by a lower inflammatory response that prevents tissue damage upon 
secondary stimulation (Adapted from Pappas et al., 2018).  
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last reviews in the field considered trained immunity as the general adaptation of innate 

immune cells rather than a particular functional programme acquisition (Netea et al., 2020). 

Despite this new definition of trained immunity, we herein will use the term innate immune 

memory to describe the functional reprogramming of innate immune cells that include 

both: an enhanced response (trained immunity) or a diminished response (tolerance) to 

subsequent stimulus in comparison to the primary cell response.  

3.1 Endotoxin tolerance  

While detection of pathogens and/or endotoxins by innate immune cells triggers a 

robust and essential inflammatory reaction, this process needs to be tightly regulated to 

protect the host from uncontrolled inflammation that leads to the manifestation of 

pathological states such as sepsis. Injection of high doses of LPS into animals induced the 

systemic production of inflammatory cytokines that led to tissue damage, dysregulation of 

body temperature and lethality, reason why injection of high doses of LPS has been used as 

an experimental model of septic shock. It was demonstrated that a pretreatment with low 

doses of LPS prevented animals from LPS-induced lethality, and that 

monocytes/macrophages were the principal cells responsible for the induction of endotoxin 

tolerance in vivo. Thus, LPS tolerance can be modeled in vitro using cultured monocytes or 

macrophages to study the molecular mechanisms underlying this decrease in the 

production of pro-inflammatory cytokines. LPS is recognized by TLR4 and after prolonged 

LPS stimulation, defects in TLR4 signaling have been observed at the level of the receptor, 

signaling molecules, and transcription factors, due to attenuated expression levels or 

protein function (Biswas and López-Collazo, 2009; Cavaillon and Adib-Conquy, 2006; Seeley 

and Ghosh, 2017).  

This unresponsiveness against subsequent challenges with the same stimulus can be 

also induced by other TLR agonists, such as TLR2 ligands, whose tolerance effect has been 

proved in vitro and in vivo (Medvedev et al., 2006). Moreover, early studies of tolerance 

noted that treatment with one form of bacterial pyrogen would often confer tolerance to 

other bacterial pyrogens, phenomenon that it was referred as heterotolerance or 

crosstolerance. For example, early in vitro or in vivo exposure to TLR2 ligands attenuated 

the production of inflammatory cytokines, such as TNF-α or IL-6, following reexposure to 

LPS (Sato et al., 2000; Wang et al., 2002). Ifrim et al. (2014) also showed that polyI:C (a TLR3 

ligand) and flagellin (a TLR5 ligand) induced crosstolerance to LPS in human peripheral 

blood mononuclear cells. 
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However, as mentioned before, endotoxin tolerance is far from being an overall 

unresponsiveness effect. Transcriptional characterization of tolerized macrophages upon 

LPS restimulation showed a profound altered response compared to unexposed cells, 

characterized not only by downregulation but also by upregulation of targeted genes. Most 

of the downregulated genes (“tolerizable” genes) encoded pro-inflammatory mediators, 

such as IL-6 or IL-1β, whereas upregulated genes (“non–tolerizable” genes) included genes 

involved in pathogen recognition and antimicrobial response such as lipocalin 2, a protein 

involved in innate immunity by binding to bacterial siderophores (Foster et al., 2007). The 

existence of “non-tolerizable” genes has also been related to cross-tolerance, as prior 

stimulation with TLR2 ligands can selectively potentiate subsequent IFN-β production in 

response to TLR4 ligands. This effect is mediated by the ubiquitin ligase TRAF3, which is 

uniquely positioned at a common node in the IFN-inducing pathways downstream of both 

TLRs (Perkins et al., 2013). This general reprogramming resulting in homotolerance or 

crosstolerance between stimuli suggests that reduced activity of signal transduction 

mediators is unlikely to be responsible for the core tolerance phenotype. In addition, as it 

will be better explained in section 3.3, several epigenetic mechanisms have been described 

to induce this functional reprogramming of myeloid cells.  

The ability of LPS tolerance to reduce inflammatory damage in in vivo models of septic 

shock is fairly well established, although the relevance of the “non-tolerizable” genes 

remains somewhat unclear. However, data from several in vivo tolerization assays show 

that tolerance induced by TLR4 or TLR2 agonists is also a form of innate immune memory 

that may benefit the host in resisting subsequent infections. Thus, mice pretreated with LPS 

are less susceptible to infection by Cryptococcus neoformans (Rayhane et al., 2000), as well 

as mice pretreated with TLR2 ligands are less susceptible to acute polymicrobial peritonitis, 

polymicrobial sepsis (by cecal ligation and puncture) or coinfection by S. aureus and 

Salmonella typhimurium (Feterowski et al., 2005; Wang et al., 2002). In vitro models have 

also demonstrated that endotoxin-tolerized monocytes exhibit an increased phagocytic 

ability coupled with a conserved capacity to kill internalized pathogens, albeit with an 

impaired antigen presentation capacity (del Fresno et al., 2009).  

Tolerance induced by exposure to TLR4 and TLR2 ligands also affects DCs, which show 

diminished expression of the pro-inflammatory cytokines IL-12, TNF-α and IL-6, but 

enhanced expression of the anti-inflammatory cytokine IL-10, transforming growth factor-β 

and the indoleamine 2,3-dioxygenase 1, one of the most effective mediator of DC 

anti-inflammatory activity (Albrecht et al., 2008; Fallarino et al., 2015).  
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3.2 Trained immunity 

Many studies in mice have documented that immunization with certain live 

microorganisms or microbial components that activate innate immune cells confers 

protection against subsequent lethal infection in a non-specific manner. This protective 

effect has been described for various PAMPs: (i) resistance to infection by S. aureus is 

induced by fungal β-glucans treatment, (ii) the peptidoglycan component muramyl 

dipeptide (NOD2 ligand) protects against Streptococcus pneumonia and Toxoplasma gondii, 

(iii) CpG treatment protects against E. coli meningitis, and (iv) flagellin protects against 

Streptococcus pneumoniae and rotavirus (Goodridge et al., 2016). Bacille Calmette-Guérin 

(BCG) vaccine (that is a Mycobacterium bovis live strain) was reported to protect mice 

against secondary infections with C. albicans or Schistosoma mansoni through T-cell 

independent mechanisms (Tribouley et al., 1978), involving activated tissue macrophages 

(van't Wout et al., 1992). Similarly, it has been shown that mice vaccinated with an 

attenuated strain of C. albicans (PCA2) were protected from systemic candidiasis caused by 

a virulent C. albicans strain, as well as from a lethal challenge with other Candida species, 

other fungal genera (Aspergillus and Cryptococcus), and even bacteria (S. aureus) (Bistoni et 

al., 1986). This protection, which could also be induced in athymic mice, was dependent on 

macrophages and pro-inflammatory cytokine production, both being prototypical innate 

immune components (Bistoni et al., 1986; Bistoni et al., 1988; Vecchiarelli et al., 1989). 

It is worth to note that PCA2-immunized mice remained chronically infected by the 

immunizing agent, as BCG causes a mild chronic infection for up to one month after 

vaccination. Research has long neglected the study of chronic infection by silent pathogens, 

such as herpesviruses or cytomegalovirus, but it has now become clear that persistence of a 

pathogen can affect the ability of the immune system to react to a new unrelated infection. 

This phenomenon has been termed the “Mackaness effect” in reference to the seminal work 

of Mackaness in 1964 demonstrating cross-protection among three intracellular bacteria: 

Listeria monocytogenes, Brucella abortus and Mycobacterium tuberculosis in mice (Muraille, 

2015). A later study showed that herpesvirus latent infection can confer beneficial T 

cell-independent protection against L. monocytogenes and Yersinia pestis, owing to 

sustained systemic macrophage activation (Barton et al., 2007). Indeed, these observations 

seem to be examples of trained immunity, although it has been recently highlighted the need 

to distinguish such examples of protection from immune memory (Netea et al., 2019). 

Importantly, during induction of immune memory, between the first infection and the 

reinfection, the immune status functionally returns to a low basal state. In contrast, the 

functional immune status in chronic infections does not return to the low basal state 



Introduction 

60 

existing before the insult. Therefore, this process has been called “immune differentiation” 

and it is defined as a form of adaptation through long-term changes in immune responses 

determined by a constant change in the environmental conditions or due to a chronic 

infection, leading to a new functional state (Netea et al., 2019).  

Quitin et al. (2012) got to reproduce the results from Bistoni et al. (1986) using other 

protective model of immunization based on preinjection of a low/non-lethal dose of the 

same virulent C. albicans strain used for the second lethal challenge, instead of using the 

non-virulent PCA2 strain. Also, by vaccinating T/B cell-defective Rag1-deficient and 

CCR2-deficient mice, they showed that vaccine-induced protection was T cell-independent 

but monocyte-dependent, as Rag1 KO mice but not CCR2 KO mice were as resistant as WT 

mice to a lethal systemic candidiasis (Quintin et al., 2012). As LPS tolerance, trained 

immunity can be modeled in vitro using cultured monocytes or macrophages to study the 

molecular mechanisms underlying this myeloid-induced protection. It has been shown that 

C. albicans and β-glucans primed in vitro the production of pro-inflammatory cytokines, 

such as TNF-α and IL-6, in response to several stimuli after a resting period of up to two 

weeks (Quintin et al., 2012). Moreover, in a human trial, vaccination with BCG resulted in 

enhanced IL-6, TNF-α and IL-1β production by monocytes for up to three months after 

vaccination when cells were stimulated in vitro with M. tuberculosis, S. aureus, or C. albicans 

(Kleinnijenhuis et al., 2012). This long-lasting effect has opened a debate about the possible 

difference between priming and innate immune memory. Netea et al. (2019) define priming 

as a term to describe increased responses to a secondary stimulus, although it is often an 

acute process that does not involve long-term memory effects (that would persist for 

months or years) (Netea et al., 2019). Nevertheless, the immunological phenotype of trained 

immunity in humans after BCG vaccination has been proven after three months and even 

one year (Kleinnijenhuis et al., 2014; Kleinnijenhuis et al., 2012). 

Similar to LPS tolerance and in contrast to adaptive immune responses, epigenetic 

reprogramming of transcriptional pathways, rather than gene recombination, mediates 

trained immunity (see section 3.3). Therefore, by exploring the epigenetic profiling and 

validating the most relevant information with transcriptional analysis, it has been proved 

that trained monocytes reinforce some innate immune signaling pathways. As expected, 

among them are those leading to pro-inflammatory cytokine production, by upregulating 

the expression of CLRs and TLRs, such as Dectin-1, TLR2 and TLR4, as well as downstream 

adaptors as MyD88 (Quintin et al., 2012; Saeed et al., 2014). In addition to immune signaling 

pathways, several studies have revealed extensive rewiring of metabolic pathways in 

myeloid cells upon activation (O'Neill and Pearce, 2016). The importance of cellular 



Introduction  

61 

metabolism for proper innate immune responses suggests that similar mechanisms may 

play a role in the long-term functional changes in monocytes and macrophages during 

innate immune memory. Epigenetic profiling of β-glucan-trained monocytes identified an 

increase of activation marks in the promoters of genes encoding enzymes involved in 

glycolysis (such as hexokinase or pyruvate kinase) and its master regulator mTOR 

(mammalian target of rapamycin), as well as glycolytic genes that are targets of the 

transcription factor HIF-1α (hypoxia inducible-1α). These observations were validated by 

biochemical studies in trained monocytes that revealed an elevated rate of aerobic 

glycolysis with a reduced basal respiration rate. The Dectin-1/AKT/mTOR/HIF-1α pathway 

was responsible for this metabolic shift, known as “Warburg effect” (Cheng et al., 2014). 

Regarding lipid metabolism, enhanced cholesterol biosynthesis is also an important 

hallmark of β-glucan-trained monocytes (Netea et al., 2020). 

The cellular bases for the protection induced by trained immunity during bacterial and 

fungal infections reside in the functional reprogramming of myeloid cells, mainly 

macrophages and monocytes. However, it has been shown that NK cells can also respond 

more vigorously after previous encounters with pathogens. Indeed, studies of 

Cytomegalovirus infection have reported that NK cell activation induces a protective 

response against reinfection by rapidly degranulating and releasing cytokines (Sun and 

Lanier, 2009). The heterologous protective effects of BCG vaccination have also been linked 

with activation of NK cells. In this context, BCG-vaccinated individuals showed an enhanced 

pro-inflammatory cytokine production by NK cells in response to mycobacteria or other 

unrelated pathogens. Moreover, experimental studies in mice have shown that NK cells 

participate in the non-specific protection conferred by BCG vaccination against C. albicans 

infection (Kleinnijenhuis et al., 2014). However, the specificity of the NK memory immune 

responses is a complex issue. It has been demonstrated in mice that NK cell memory induced 

by Cytomegalovirus or hapten sensitization was specific to the priming agent. This specific 

NK memory has also been evidenced in primates, which once vaccinated, exhibit NK cells 

able to efficiently lyse antigen-specific but not antigen-unspecific targets five years after 

vaccination (Goodridge et al., 2016; Netea et al., 2020; Netea et al., 2016). As these adaptive 

NK cell responses more closely resemble T cell than trained immune macrophage 

responses, they may represent an evolutionary bridge between T cell memory and trained 

myeloid cell responses (Netea et al., 2019). 

Recent work has shown that DCs can also exhibit immune memory responses. DCs 

isolated from mice exposed to C. neoformans displayed strong IFN-γ production and 

enhanced pro-inflammatory cytokine responses on subsequent challenge, which is 
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indicative of memory response. These effects were dependent on epigenetic changes and 

were impaired by the treatment of mice with histone methyltransferase inhibitors (Hole et 

al., 2019). On the other hand, the trained immunity concept has been recently proposed for 

non-immune cell types, such as stromal and epithelial cells. In tissues particularly exposed 

to the external environment containing pathogens, such as skin, lung and gut, epithelial and 

stromal cells can possess the capacity to modulate their responses to successive encounters 

with the pathogen (Cassone, 2018). 

A relevant issue to be considered regarding innate immune memory is the lifespan of 

innate immune cells, particularly monocytes and macrophages derived from them. As 

mentioned before, human trained monocytes can be observed in the circulation for at least 

three months after BCG vaccination (Kleinnijenhuis et al., 2014; Kleinnijenhuis et al., 2012). 

This observation suggests that reprogramming also takes place at the level of progenitor 

cells to account for the persistence of modified populations of the relatively short-lived 

monocytes/macrophages. Indeed, the effects of microbial exposure on innate immune 

memory can be transferred from HSPCs to their progeny. For instance, HSPCs that are 

exposed to TLR2 agonists generate macrophages that produce lower amounts of 

inflammatory cytokines and ROS (Yáñez, et al., 2013b).  

3.3 The molecular bases of innate immune memory: epigenetic 
reprogramming 

The central feature of innate immune memory is the ability of PAMP-exposed cells to 

mount a qualitatively and quantitatively different transcriptional response compared to 

unexposed cells when challenge with subsequent stimuli. The molecular bases of this 

altered responsiveness is only partially understood, but evidence supports the convergence 

of multiple regulatory mechanisms that lead to an epigenetic reprogramming of myeloid 

cells after being initially exposed to PAMPs, which may explain the long-lasting effects of 

pretreatments on gene expression. These regulatory mechanisms include changes in 

chromatin organization, DNA methylation and transcription of non-coding RNAs, such as 

miRNAs and/or long non-coding RNAs (lncRNAs) (Domínguez-Andrés et al., 2020; Netea et 

al., 2020; Netea et al., 2016; Seeley and Ghosh, 2017).  

Modulation of pro-inflammatory cytokine production is one of the most characteristic 

traits of innate immune memory. In myeloid cells, inflammatory gene transcription is 

strictly regulated to be highly induced, but only under certain specific conditions. Thus, 

upon a primary stimulation with PAMPs, many loci containing inflammatory genes in a 
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repressed configuration gain in accessibility by chromatin changes, resulting in the 

activation of gene expression (that is hundreds of times higher than baseline levels) in a 

short window of time. This activation of gene expression, driven by the recruitment of 

stimulation-responsive transcription factors, such as NF-κB or AP-1, is accompanied by 

chromatin organization changes that include covalent histone modifications and 

nucleosome remodeling. It has been demonstrated that, in trained monocytes, all of these 

changes are only partially removed after cessation of the stimulus, allowing the 

maintenance of an activated gene expression after subsequent challenges (Domínguez-

Andrés et al., 2020; Netea et al., 2020; Netea et al., 2016; Seeley and Ghosh, 2017)(Figure 

9).  

Histone acetylation is one of the best-studied histone modifications and it generally 

correlates with the levels of gene expression, whereas the effect of histone methylation 

depends on the exact residue targeted and the degree of methylations. Regarding the role 

of these mechanisms in mediating trained immunity, some studies have described a new 

class of enhancers that undergo H3K4 methylation and H3K27 acetylation during the first 

encounter with the stimulus. However, when the stimulus has ceased, only H3K4me1 

persists at these latent enhancers and constitutes the basis for a faster and enhanced 

response after second stimulation (Álvarez-Errico et al., 2015; Netea et al., 2016). In this 

context of reestimulation, stable enrichment in H3K4me3 at the promoters of 

pro-inflammatory genes has been also associated with monocyte training in different 

experimental models, such as by β-glucan stimulation or BCG vaccination (Kleinnijenhuis et 

al., 2012; Quintin et al., 2012). Moreover, the acquisition of H3K27ac is another key 

epigenetic mark that accompanies trained immunity, mainly observed in distal enhancers 

(Saeed et al., 2014) (Figure 9). 

The contribution of DNA methylation changes to trained immunity has been less 

explored, given the presumed stability of this type of modification. However, new studies 

have suggested that individuals able to undergo monocyte reprogramming after BCG 

vaccination displayed a wide loss of DNA methylation among promoters of genes belonging 

to immune pathways compared to individuals characterized as non-responders 

(Álvarez-Errico et al., 2015; Netea et al., 2020) (Figure 9). 
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On the other hand, endotoxin tolerance has been associated with the lack of the 

transcription-activating H3K4me3 mark. However, as already mentioned in section 3.1, the 

restimulation of tolerant macrophages with LPS produces two main types of 

gene-expression programmes: one set of “tolerizable genes” show diminished or abolished 

expression, whereas a second group on “non-tolerizable genes” increase their expression or 

remain unchanged. The transcription-activating H3K4me3 mark is imprinted on the 

promoters of both group of genes but is only maintained on the promoters of 

“non-tolerizable” genes. Therefore, the failure to maintain active histone marks may be 

behind the lack of responsiveness in this innate immune memory phenomenon (Foster et 

al., 2007; Seeley and Ghosh, 2017).  

Various epigenetic modifications are closely associated with metabolic processes, since 

histone-modifying enzymes require metabolites as substrates or cofactors. Thus, metabolic 

rewiring that accompanies trained immunity may influence the epigenomic reprogramming 

of myeloid cells after being initially exposed to PAMPs. Trained monocytes accumulate the 

Krebs-cycle metabolite fumarate, which influences epigenetic reprogramming by 

downregulating the activity of histone KDM5 demethylases (Netea et al., 2020). Links 

FIGURE 9 | Epigenetic reprogramming underlying the induction of trained immunity. Highly condensed 
chromatin blocks expression of pro-inflammatory genes in steady state (unstimulated cells); upon first 
stimulation with PAMPs, epigenetic changes (acetylation, methylation) causes opening of chromatin structure 
allowing upregulation of gene expression. Following this former stimulation, epigenetic signatures/marks are 
in part maintained in resting (trained, unchallenged) cells, which allow a stronger upregulation upon 
subsequent restimulation (trained challenged cells). See text for further details. (Netea et al., 2020).   
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between metabolic and epigenetic changes have also been demonstrated in LPS-induced 

tolerance, in which histone deacetylases coordinates a switch from glucose to fatty acid 

oxidation (Netea et al., 2016). 

Furthermore, the non-coding portion of the genome has been shown to play an integral 

role by regulating the transcription of inflammatory genes. This significant portion of the 

genome is transcribed into a highly diverse family of RNAs, including miRNAs and lncRNAs. 

miRNAs bind to the complementary sequences of target mRNAs and promote their 

degradation or more directly arrest translation, whereas lncRNAs act at various stages of 

the transcriptional program to either amplify or repress gene activity (Domínguez-Andrés 

et al., 2020; Seeley et al., 2017). Regarding the role of miRNA in innate immune memory, 

miR-146a was the first miRNA described to be upregulated in tolerized monocytes and able 

to partially induce LPS desensitization, effect that has been related to its ability to 

downregulate the NF-κB pathway (Cavaillon and Adib-Conquy, 2006). By contrast, miRNAs 

known as activators of the inflammatory response, such as miR-155, may also contribute to 

trained immunity, possibly due to the repression of phosphatases that negatively regulate 

transducers of several signaling pathways (Netea et al., 2020; Netea et al., 2016).  

The contribution of lncRNAs in the regulation of trained immunity has been explored 

using novel bioinformatic tools. These studies have revealed that chromatin is folded into 

DNA loops, which are spatially segregated into topologically associated domains, probably 

involved in gene regulation (Domínguez-Andrés et al., 2020). It was previously shown that 

based on their secondary structure, lncRNAs can interact with other proteins, allowing 

chromatin machinery to be delivered (or sequestered from) appropriate sites (Seeley and 

Ghosh, 2017). Chromosomal looping within topologically associating domains has been 

shown to bring distally located genes that encoded for lncRNAs adjacent to target genes, to 

regulate their transcriptional activation. For example, chromosomal looping is used by a 

specific lncRNA to direct an epigenetic remodeling complex across the CXCL chemokine 

promoters, that enables the H3K4me3 epigenetic priming of these promoters to upregulate 

their expression. Importantly, this mechanism also modulates other key genes of the trained 

innate immune response such as IL-6 and IL-1β (Domínguez-Andrés et al., 2020). 

Furthermore, differential recruitment of nucleosome remodeling components to gene 

promoters in naïve and tolerized cells has also been described to contribute to changes in 

LPS-induced gene expression (Seeley and Ghosh, 2017). 
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In accordance with the background information provided in the Introduction, the 

general objectives of this PhD thesis have been the following: 

 

1. Studying	the	effects	of	HSPC	exposure	to	PAMPs	on	the	antifungal	phenotype	of	

the	macrophages	they	generate.	

	

1.1. Analyzing the consequences of PRR signaling in HSPCs for the macrophages they 

produce in	vitro in M-CSF or GM-CSF cultures. 

1.2. Analyzing the consequences of systemic candidiasis and in	 vivo TLR2 agonist 

exposure for the macrophages they produce ex	vivo in M-CSF cultures. 

 

 

2. Studying	the	effects	of	HSPC	exposure	to	PAMPs	on	their	antifungal	response.	

	

2.1	 Analyzing the in	 vivo role of HSPCs against C.	 albicans infection in a model of 

extended TLR2 agonist treatment. 

2.2	Analyzing the effector mechanisms of HSPCs in response to PAMPs. 

	

	

3. Studying	the	effects	of	PRR	signaling	in	HSPCs	on	the	maturation	of	the	APCs	they	

generate,	as	well	as	on	their	ability	to	activate	and	polarize	CD4⁺	T	cell	responses.	
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1 Mice  

C57BL/6 mice were purchased from Envigo or The Jackson Laboratory, whereas 

OVA-specific-TCR-transgenic (OT-II) mice were purchased only from The Jackson 

Laboratory. TLR2 −/− mice (C57BL/6 background) were provided by Dr. Shizuo Akira (Osaka 

University, Osaka, Japan) and bred and maintained at the animal production service 

facilities (SCSIE, University of Valencia). 

Animals of both sexes between 8 and 24 weeks’ old were used. The studies were 

carried out in strict accordance with the “Real Decreto 1201/2005, BOE 252” for the Care 

and Use of Laboratory Animals of the “Ministerio de la Presidencia,” Spain. Moreover, the 

protocols were approved by the Committee on the Ethics of Animal Experiments of the 

University of Valencia, Generalitat Valenciana (Permit Numbers: 2014/072 type 2, 

2017/VSC/PEA/00004; 00024; 00084 and 2019/VSC/PEA/0126). The studies with OT-II 

mice were carried out at Cedars-Sinai Medical Center and protocols were approved by its 

Animal Care and Use Committee.  

 

2 Culture media  

2.1 Culture media for fungi  

 

YPD media 

Yeast extract 10 g 

Peptone 20 g 

Glucose 20 g 

Distilled water pH 6-7 1 liter 

 

Simplified synthetic Lee media 

(NH4)2SO4 5 g 

MgSO4. 7H2O 0.2 g 

HK2PO4 anhydrous 2.5 g 

NaCl 5 g 

Glucose 12.5 g 

Proline 0.5 g 

Biotin 0.5 g 

Distilled water pH 6,8-7 1 liter 

 

Sabouraud Dextrose Agar media 

Pancreatic digest of casein 5 g 

Peptid digest of animal tissue 5 g 

Dextrose 40 g 

Agar  15 g 

Distilled water pH 5.6 ± 0.2 1 liter 
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2.2 Culture media for murine cells  

 

 

 

 

RPMI complete media 

RPMI 1640 with GlutaMAX™ I (Gibco)  

Heat-inactivated fetal bovine serum (FBS) (Gibco) 5 % 

Penicillin-streptomycin stock solution (Gibco) 1 % 

  

RPMI complete media for macrophage differentiation 

RPMI 1640 with GlutaMAX™ I (Gibco)  

Heat-inactivated fetal bovine serum (FBS) (Gibco) 5 % 

Penicillin-streptomycin stock solution (Gibco) 1 % 

SCF (Preprotech) 20 ng/ml 

Or M-CSF (Miltenyi Biotec) 50 ng/ml 

Or GM-CSF (Preprotech) 50 ng/ml 

  

RPMI complete media for APC differentiation and culture 

RPMI 1640 with GlutaMAX™ I (Gibco)  

Heat-inactivated fetal bovine serum (FBS) (Gibco) 10 % 

Penicillin-streptomycin-glutamine stock solution (Gibco) 1 % 

GM-CSF (Preprotech) 20 ng/ml 

  

RPMI complete media for T cell culture  

RPMI 1640 with GlutaMAX™ I (Gibco)  

Heat-inactivated fetal bovine serum (FBS) (Gibco) 10 % 

Penicillin-streptomycin-glutamine stock solution (Gibco) 1 % 

Sodium Pyruvate (Gibco) 1mM 

2-Mercaptoethanol (Sigma-Aldrich) 50 µM 

  

Serum-free media for HSPC culture 

StemPro™-34 SFM (Gibco)  

L-glutamine (Gibco) 2 mM 

Penicillin-streptomycin stock solution (Gibco) 1 % 

SCF (Preprotech) 20 ng/ml 

Fms-like tyrosine kinase 3 (Flt3) ligand (Preprotech) 100 ng/ml 
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3 Microbial stimuli 

Fungal strains used in this thesis were: C. albicans ATCC 26555, a virulent strain 

commonly used in studies with this fungus; C. albicans PCA2, a low-virulence 

non-germinative strain, provided by Dr. Cassone (Istituto Superiore di Sanità, Roma, Italia); 

and Candida glabrata CECT1448, one of the most prominent non-albicans Candida specie. 

As in vitro stimuli, we used pure TLRs and Dectin-1 ligands, as well as inactivated 

yeasts prepared as described below. In particular, the PAMPs used were: the TLR2 ligand 

Pam3CSK4, (1 µg/ml or 100 ng/ml), the TLR4 ligand Ultrapure Escherichia coli LPS (100 

ng/ml) and the Dectin-1 agonist depleted zymosan (1-100 µg/ml), inactivated C. albicans 

ATCC 26555 yeasts (1:7.5 or 1:12, murine cell: yeast ratio) and inactivated C. albicans PCA2 

yeasts (1:12 murine cell: yeast ratio). Pure PRR agonists were purchased from Invivogen. 

The concentrations used on each assay will be indicated in their respective sections. The 

TLR2 ligand Pam3CSK4 was also used for in vivo stimulation of HSPCs (see section 6). 

Inactivated C. albicans PCA2 and C. albicans ATCC 26555 used as in vitro stimuli were 

prepared as follows. Firstly, cells were cultured in endotoxin-free YPD media, at 28 °C with 

shaking, up to the late exponential growth phase (OD λ600 0.6-1). Cellular growth was 

determined by measuring the optical density (OD) at a wavelength of 600 nm in a Heλios 

spectrophotometer (Thermo Fisher Scientific). Then, fungal cells were resuspended in 

endotoxin-free water, and maintained for 3 h at 28°C with shaking, and afterwards at 4 °C 

for 24 h (starved yeast cells). Those yeast cells were inoculated in symplified synthetic Lee 

media (in 5 times more volume than the one used in water incubation) and incubated for 3 

h at 28 °C. For inactivation, yeast cells were resuspended (20 × 106 cells/ml) in BD Cytofix™ 

Fixation Buffer (BD Bioscience) containing 4 % paraformaldehyde and incubated for 30 min 

at room temperature (RT). After treatment, fungal cells were extensively washed in 

phosphate-buffered saline (PBS) (Gibco) to eliminate the inactivating agent, cell 

concentration was determined by microscopically counting and cells were maintained 

at -80 °C as dry pellet. 

Viable fungal cells used for in vitro killing assays (C. albicans PCA2 and C. glabrata 

CECT1448) were obtained culturing cells in endotoxin-free YPD media, at 28 °C with 

shaking, up to the late exponential growth phase. Fungal cells were collected, washed with 

endotoxin-free water twice and brought to the desire cell density in RPMI complete media. 

For in vivo assays (C. albicans ATCC 26555), cells were cultured in endotoxin-free YPD 

media, at 28 °C with shaking, up to the late exponential growth phase. Then, fungal cells 
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were resuspended in endotoxin-free water, and maintained for 3 h at 28 °C with shaking, 

and afterwards at 4 °C for 48 h (starved yeast cells). Finally, those cells were resuspended 

in PBS to the desired concentration for their injection to mice.  

 

4 Isolation of HSPCs  

HSPCs were purified from mouse BM as Lin⁻ cells by immunomagnetic cell sorting with 

MicroBeads. Firstly, to obtain murine BM, C57BL/6 mice were euthanized by cervical 

dislocation and animal surface was sprayed with 70 % ethanol. Next, mice were placed on 

its back, an incision of the skin was made in the ankle of both lower extremities and the skin 

covering them was removed (Figure 1A). The muscles were cut off using scissors and the 

acetabulum was dislocated form the hip joint, while avoiding breaking the femur head 

(Figure 1B). The femur was separated from the tibia at the knee joint and the remaining 

muscles from the bones were removed using tissue paper (Figure 1C). Each bone was 

rinsed with 70 % ethanol and then placed in a clean 5 cm plate. The following steps were 

performed under sterile conditions, so bones were introduced in a tissue culture hood. After 

waiting a few minutes to ensure ethanol evaporation from the surface of the bones, inside a 

clean sterile 5 cm plate, the epiphyses of each bone were cut off. Using a 25-gauge needle 

and a 10 ml syringe filled with pre-cooled PBS, femurs and tibias were flushed onto a 50 ml 

tube (Figure 1D and 1E). Cell suspension was filtered using a 70 μm filter and then 

centrifuged at 450 g for 5 min.  

HSPCs were purified from BM cell suspension by magnetic cell separation using the 

“Lineage Cell Depletion Kit, mouse” and the QuadroMACSTM Separator (both from Miltenyi 

Biotec). Cells were magnetically labeled with an antibody cocktail against a panel of mature 

immune lineage antigens [CD5, CD45R (B220), CD11b, Gr-1 (Ly-6G/C), 7-4, and Ter-119] 

following a two-step procedure. BM cell suspension was first labeled with the cocktail of 

biotinylated antibodies followed by labeling with anti-biotin MicroBeads. Cell sorting was 

performed in a MACS column placed in a powerful permanent magnet that induces a 

high-gradient magnetic field; cells being labeled with MACS MicroBeads are retained in the 

column while unlabeled cells flow through it. Following this principle, effluent that contains 

the enriched Lin⁻ cell fraction was collected. Cell suspension was centrifuged at 450 g for 5 

min, cell pellet was resuspended in complete cell culture media (different depending on 

each assay) and cells were counted using the Countess ™ II FL Automated Cell Counter 
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(Thermo Fisher Scientific). The yield of Lin⁻ using this method was approximately 0.7-1.5 

million per 8-24 week-old C57BL/6 mouse.  

 

 

5 In vitro differentiation of HSPCs to 
macrophages or APCs 

Macrophages were obtained from HSPCs culturing them in a RPMI complete media 

containing the myelopoietic growth factors M-CSF or GM-CSF. Moreover, SCF was added to 

support the survival of HSPCs (cytokine concentrations detailed on section 2.2). 2 × 105 Lin⁻ 

cells (M-CSF cultures) or 1 × 105 (GM-CSF cultures) were plated in 4 ml of RPMI complete 

medium, in a 55 mm non-tissue culture-treated (non-TC) plate, and cultured at 37°C in a 5 

% CO2 atmosphere for seven days. At day seven, adherent cells were harvested discarding 

cell media and adding precooled MACS buffer [PBS + 5 % FBS + 2mM EDTA (Gibco)] for 

gently scraping them. Collected macrophages were counted and replated in 96-well plates 

with RPMI complete medium at different cell densities for cytokine, phagocytosis or killing 

FIGURE 1 | Mouse bone marrow (BM) isolation. Set of images showing the different stages of 
mouse BM isolation process. Blanching of bones, showed on image F, indicated that cells have been 
sufficiently scraped.  
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assays (detailed in each section). Cells were also labeled with antibodies to analyze the 

expression of some surface molecules (see flow cytometry section).  

For APC differentiation, 5 × 105 Lin⁻ cells were plated in 20 ml of RPMI complete media 

in the presence of GM-CSF (media composition detailed in section 2.2), in a 15 cm non-TC 

plate, and cultured at 37 °C in a 5 % CO2 atmosphere. The media was changed on day three 

as follows: the existing media containing non-adherent cells was reduced to 5 ml and 15 ml 

fresh RPMI complete media was added. APCs were collected on day six and for collection, 

media containing non-adherent cells were aspirated and discarded. Then PBS + 2 mM EDTA 

was added to the plate and cells were incubated for 20 min at 37 °C in a 5 % CO2 atmosphere. 

Adherent cells were then harvested washing the plate several times with the PBS + 2 mM 

EDTA added, promoting cells to detach from the surface. Collected APCs were counted and 

replated with RPMI complete media at different concentrations for cytokine production, 

APC and T cell coculture or flow cytometry assays (detailed in each section). Cells were 

rested for 4 h prior to stimulation. 

 

6 In vitro and in vivo HSPC stimulation 
protocol 

Stimulation of HSPCs during the in vitro macrophage differentiation process was 

performed following two strategies: continuous exposure or transient exposure to stimuli 

(Figure 2A). Continuous exposure was based on the presence of PRR agonists or inactivated 

C. albicans cells throughout the whole culture period necessary for myeloid differentiation. 

Lin⁻ cells differentiated in the presence of M-CSF or GM-CSF were continuously exposed to 

1 µg/ml Pam3CSK4, 100 ng/ml LPS, 1 µg/ml depleted zymosan or inactivated C. albicans 

ATCC 26555 yeasts (1:7.5 murine cell: yeast ratio). Otherwise, HSPCs were transiently 

exposed to 1 µg/ml Pam3CSK4 or 100 ng/ml LPS, both soluble ligands, by adding these 

agonists for the first 24 h of culture and then removing them by thoroughly washing the 

cells. Myeloid cells differentiated from HSPCs in the absence of microbial components were 

used as control cells.  

In APC differentiation from HSPCs, the effect of in vitro PRR exposure was evaluated 

following the transient strategy (Figure 2B). Lin⁻ cells were plate at 5 × 105 cells /1 ml in 

24-well non-TC plates in the presence or absence (control) of TLR2 or Dectin-1 agonists for 

24 h. Then, the PRR agonists were eliminated by washing twice the cells and “clean” cells 
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were plate in a 15 cm non-TC plate. The TLR2 ligand, as a soluble ligand, will be entirely 

removed after washing the cells, as mentioned before. Moreover, we checked that depleted 

zymosan particles (the Dectin-1 ligand used) were fifty percent eliminated in the first wash 

and completely eliminated at differentiation day three, after changing the cell culture media 

(Figure 2C). 

 

 

 

FIGURE 2 | Continuous or transient exposure of HSPCs to PAMPs during in vitro differentiation towards 
macrophages or Antigen Presenting cells (APCs). (A) Purified Lin⁻ cells (HSPCs) from BM of C57BL/6 mice 
were cultured with Macrophage-Colony Stimulating Factor (M-CSF) or Granulocyte and Macrophage-Colony 
Stimulating Factor (GM-CSF) or for seven days to induce macrophage production, in the presence or absence of 
different microbial stimuli for the entire seven days (continuous exposure) or the first 24 h only (transient 
exposure). The microbial stimuli used were 1 µg/ml Pam3CSK4, 100 ng/ml Lipopolysaccharide (LPS), 1 µg/ml 
depleted zymosan or inactivated C. albicans yeasts (1:7.5 murine cell:yeast ratio). At day seven, adherent cells 
were harvested and analyzed. Non-exposed cells were used as control cells. (B) Lin⁻ cells were exposed to 100 
ng/ml Pam3CSK4 or 10 µg/ml depleted zymosan for 24 h. Then, cells were washed twice to eliminate the stimuli 
and replated. At day three, media was changed, and at day six, adherent cells were harvested and replated. 
Mature APCs cells were stimulated for 24 h and then, they were analyzed. (C) Fluorescent zymosan particles 
were used for HSPC stimulation following the schematic protocol exposed in Figure 2B. At day zero, those 
particles represent 42 % of the total events detected using flow cytometry. At day 1, after washing cells twice, 
this percentage diminished to 27 % and at day three, after changing cell culture media, only 5 % of detected 
events were fluorescent zymosan particles. 

 

A 

B C 
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We also evaluated the effect of in vivo HSPC stimulation on the phenotype of the 

macrophages derived from them. For that purpose, mice were treated with Pam3CSK4 or 

challenged with C. albicans ATCC 26555. Mice exposure to Pam3CSK4 was performed 

following two strategies: short treatment or extended treatment with the TLR2 ligand. For 

the short treatment model, C57BL/6 mice were injected intravenously (i.v.) with one dose 

of Pam3CSK4 (100 μg) (Figure 3A). For the extended treatment, we used a model previously 

described by Hernan et al. (2016); C57BL/6 mice were given 100 μg of Pam3CSK4 by 

intraperitoneal injection (i.p.) at days zero, three and five (Figure 3B). In both cases, 

C57BL/6 mice injected with one or three doses of PBS were used as control mice. 24 h after 

the last dose of Pam3CSK4, mice were euthanized and HSPCs were purified to differentiate 

them into macrophages in the presence of M-CSF, as it has been explained in section 5. Then, 

the functional phenotype of mature macrophages was analyzed performing cytokine and 

killing assays (detailed in each section).  

 

 

7 C. albicans infection model 

We used an experimental infection model of systemic candidiasis based on i.p. injection 

of C. albicans ATCC 26555, as previously described by our group (Villamón et al., 2004b). To 

in vivo expose HSPCs to C. albicans, C57BL/6 mice were challenged with 45 × 106 starved 

yeasts in 200 μl of PBS (prepared as described in section 3). Moreover, susceptibility to 

infection was also analyzed in non-exposed and Pam3CSK4-exposed mice following an 

extended treatment. For these experiments, mice were injected with 30 × 106 starved 

yeasts. To assess the tissue outgrowth of the microorganism, the fungal burden in the kidney 

and the spleen at 24 h or 72 h post-infection was determined. The organs were weighed, 

FIGURE 3| In vivo Pam3CSK4 stimulation protocol. C57BL/6 mice were treated with Pam3CKS4 following the 
indicated schedule. 24 h after the last dose of Pam3CKS4, mice were euthanized to isolate HSPCs and differentiate 
them into macrophages in M-CSF cultures. Then, functional phenotype of mature myeloid cells was evaluated.  
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homogenized in 1 ml of PBS and dilutions of the homogenates were plated on Sabouraud 

dextrose agar. The colony forming units (CFUs) were counted after 24 h of incubation at     

37 °C and expressed as CFUs per gram of tissue.  

Moreover, HSPCs were purified from BM of infected and non-infected mice to 

differentiate them into macrophages in the presence of M-CSF, as it has been explained in 

section 5. In order to prevent potential fungal growth in cultures, differentiation was 

performed in the presence of 2.5 μg/ml amphotericin B. Then, the functional phenotype of 

mature macrophages was analyzed performing cytokine and killing assays (detailed in each 

section) (Figure 4). 

In order to deplete c-Kit progenitors in Pam3CSK4-exposed mice and evaluate the effect 

of this depletion on the susceptibility to C. albicans infection, 500 μg of the anti-c-Kit 

antibody ACK2 (eBioscence) or isotype control (rat IgG2b, clone eB149/10H5, from 

eBioscence) were given to mice i.p. two days before infection.  

 

 

8 Isolation of splenocytes and peritoneal 
macrophages 

Resident peritoneal macrophages were harvested from C57BL/6 mice under sterile 

conditions from mice euthanized by cervical dislocation. Once sprayed with 70 % ethanol, 

animals were placed in a dissection table on their backs and 10 ml RPMI complete media 

were injected into the peritoneal cavity. Next, the abdomen was massaged to distribute cell 

media equally around the cavity. Mice were placed on their backs and a longitudinal cut was 

made in the outer ventral skin of the mice. To obtain a sterile pocket, the skin was separated 

from the peritoneum to expose the inner skin lining the peritoneal cavity. Then, a small cut 

FIGURE 4 | C. albicans infection model. C57BL/6 mice were challenged with 45 × 106 C. albicans ATCC 
26555 i.p. Day one or day three post-infection, mice were euthanized in order to (i) isolate HSPCs and 
differentiate them into macrophages in M-CSF cultures and (ii) quantify fungal burden in kidney. To prevent 
potential fungal growth factor in M-CSF cultures, differentiation was performed in the presence of 2.5 μg/ml 
of amphotericin B. Then, the functional phenotype of mature macrophages was analyzed. Fungal burden 
quantification was performed by homogenizing the organs in 1 ml of PBS and plating dilutions of the 
homogenates on Sabouraud dextrose agar. The colony forming units (CFUs) were counted after 24 h of 
incubation at 37 °C.  
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was made in the peritoneum to recover the cell media injected with a plastic sterile Pasteur 

pipette. Cell suspension recovered was spun down at 450 g at 4 °C for 10 min, and obtained 

cells were counted and plated at a density of 1.5 × 105 cells in 200 μl of RPMI complete media 

per well, in 96-well flat-bottom TC plates. To avoid adhesion of peritoneal macrophages to 

plastic, the whole process was performed using cell media at 4 °C and maintaining cells on 

ice. Peritoneal macrophages were allowed to adhere for 5 h at 37 °C in a 5 % CO2 

atmosphere. Then, the non-adherent cells were removed by changing the media, and the 

adherent macrophages were cultured for 72 h prior to be challenged with the indicated 

stimuli for cytokine production measurement (see section 12). 

Splenic leukocytes (splenocytes) were obtained from control or Pam3CSK4-treated 

mice. Spleens were taken under sterile conditions from mice euthanized by cervical 

dislocation and placed in a 5 cm plate. 10 ml of MACS buffer were injected into the organs 

using a 25-gauge needle and cell suspension obtained was filtered using a 70 μm filter. Then, 

each spleen was cut in small pieces and that pieces were placed in the filter. Using the piston 

of a sterile syringe, pieces were mashed, and the filter was washed with MACS buffer. Cell 

suspension was centrifuged at 450 g for 5 min, and erythrocytes were lysed with BD FACSTM 

lysing solution (BD Bioscience). Splenocytes were washed, counted, and plated in 24-well 

plates at a density of 2.5 × 105 cells in 0.5 ml RPMI complete media for cytokine production 

and killing assays (detailed in each section). 

 

9 Obtainment of secretomes produces by 
HSPCs 

Lin⁻ cells were cultured at a density of 5 × 104 cells in 250 μl of a serum-free medium 

(media composition detailed in section 2.2) in 96-well TC plates, and challenged for 72 h 

with 1 μg/ml Pam3CSK4 or 2.5 × 105 inactivated C. albicans yeasts. Then, culture 

supernatants (secretomes) were collected and used for (i) measuring cytokine production 

and (ii) evaluating their effect on HSPC differentiation or cytokine production by peritoneal 

macrophages. As control secretomes, culture supernatants produced by HSPCs without 

stimuli were used. The effect of secretomes from HSPCs stimulated with Pam3CSK4 was 

determined on HSPCs or peritoneal macrophages from TLR2 −/− mice to avoid direct 

activation by Pam3CSK4.  
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10  CD4⁺ T cells purification and coculture 
with APCs 

8 × 104 DCs were plated in 48-well TC plates with RPMI complete medium. When 

cocultured with OT-II T cells, 2 to 4 h after plating, DCs were given OVA peptide 323-339 (7 

µg/ml). After 20 to 40 min OVA peptide was added to cultures, cells were stimulated with 

100 ng/ml Pam3CSK4 or 100 µg/ml depleted zymosan. On the other hand, when cocultured 

with WT T cells, 2 to 4 h after plating, DCs were stimulated with 9.6 × 105 inactivated                 

C. albicans PCA2 yeasts or 9.6 × 105 inactivated C. albicans ATCC 25666 yeasts. After 18 to 

24 h of stimulation with PAMPs or fungal cells, supernatants were aspirated off and wells 

were washed twice with PBS.  

For sorting CD4⁺ T cells, spleens were taken from OT-II or WT mice and splenocytes 

were obtained as described in section 8. Negative selection of CD4⁺ naïve T cells was 

performed using the “Negative selection CD4 kit” from Stem Cell Technologies (Seattle, WA, 

USA). Unwanted cells were targeted for removal with biotinylated antibodies directed 

against non-CD4⁺ T cells and streptavidin-coated magnetic particles (RapidSpheres™). 

Labeled cells were separated using an EasySep™ magnet without the use of columns and 

desired cells were poured off into a new tube.  

T cell proliferation was measured by assessing dilution of CFSE (Carboxyfluorescein 

succinimidyl ester), a fluorescent dye that is cell permeable and covalently couples to 

intracellular molecules, being retained within cells for extremely long periods. CFSE 

labeling is progressively halved with each cell division and can be used to measure up to 8 

cell divisions. CFSE (Invitrogen Molecular Probes) (10 nM) diluted in PBS was added to cells 

for 9 min at RT in the dark. Then, 5 ml pre-cooled T cell media (media composition detailed 

in section 2.2) were added in order to stop staining reaction, and cells were maintained on 

ice for 5 min. T cell media contained sodium pyruvate, added as a carbon source in addition 

to glucose, and 2-mercaptoethanol, a reducing agent used to stabilize culture media by 

avoiding the oxidation of certain unstable compounds. T cells were washed twice with T cell 

media and counted.  

CFSE-labeled CD4⁺ T cells were then added to washed APC cultures (see above) at a 

concentration of 4 × 105 per well in 400 µl T cell media. Thus, DCs and CD4⁺ T cells were 

cocultured at a 1:5 ratio. After 3 (OT-II T cells) or 4  (WT T cells) days of coculture with 

APCs, T cells were lifted by pipetting and resuspended in T cell media. Cells were then 

replated for cytokine production measurement and stained for surface molecule expression 
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analysis (see detailed protocol in sections 12 and 11, respectively). T cells replated for 

cytokine production measuring were restimulated with 50 ng/ml PMA (Phorbol 12-

Myristate 13-Acetate) (Sigma-Aldrich) and 500 ng/ml Ionomycin (Sigma-Aldrich) for 24 h. 

PMA is a small organic compound which diffuses through the cell membrane into the 

cytoplasm, omitting the “need” of surface receptor stimulation for activating T cells. 

Ionomycin, a calcium ionophore that synergizes with PMA, is used to trigger calcium release, 

which is needed for nuclear factor of activated T cells (NFAT) signaling that induces the 

synthesis of IL-2 by T cells. The cytokine IL-2 provides proliferation and survival signaling 

to T cells (Chatila et al., 1989). Cell-free supernatants were collected and production of 

IL-17A and IFN-γ was analyzed by enzyme-linked immunosorbent assay (ELISA), with 

ELISA kits purchased from Biolegend and eBioscience, respectively. 

 

11  Immunophenotyping analysis by flow 
cytometry 

For APC surface molecule expression analysis, APCs were plated at 2.5 × 105 cells /500 

µl RPMI complete media in 24-well non-TC plates. Two to 4 h after plating, cells were 

stimulated with 100 ng/ml Pam3CSK4, 100 µg/ml depleted zymosan, 3 × 106 inactivated         

C. albicans PCA2 yeasts or 3 × 106 inactivated C. albicans ATCC 26555 yeasts for 18 to 24 h. 

Then, supernatants were aspirated off and PBS + 2mM EDTA was added to the wells, left on 

cells at RT for 10 min. Adherent cells were then harvested washing each well several times 

with the PBS + 2 mM EDTA added, promoting cells to detach from the plastic surface. 

Adherent cells were centrifuged 450 g for 5 min, cell pellets were resuspended in 90 µl of 

MACS buffer and 10 µl of FcR blocking reagent (Miltenyi Biotec) was added to each sample 

for 10 min at 4 °C. This reagent is used to block receptors that recognize the fragment 

crystallizable region of antibodies (FcRs), thereby avoiding unspecific unions. Antibodies 

(Table 1) were added to cells at 1/100 dilution for 15 min at 4 °C in the dark. Cells were 

then washed with MACS buffer with 10 % FBS to eliminate extra antibody and spun down 

at 450 g for 3 min. Cell pellets were resuspended in PBS + 25 % BD Cytofix™ Fixation Buffer 

(BD Bioscience) and analyzed by flow cytometry. 

For surface molecule expression analysis of total BM cells, splenocytes, HSPCs or 

macrophages, ≤ 106 cells were labeled following the same steps described above (from 

incubation with FcR blocking reagent to sample fixation). To analyze total BM cells and 
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splenocytes, erythrocytes were previously lysed using BD FACS™ lysing solution (BD 

Bioscience). Antibodies used are indicated below (Table 1). 

For T cell surface molecule expression and proliferation assay, the staining buffer used 

was composed by PBS + 0.09 % Sodium Azide + 5 % FBS + FcR blocking reagent. T cells 

were centrifuged at 450 g for 3 min, cell pellets were resuspended in 50 µl of staining buffer 

and cells were incubate at 4 °C for 10 min. Then, antibodies (Table 1) were added to cells 

at a concentration of 1/200, preparing the antibody staining cocktail in 50 µl final volume 

of staining buffer, for 20 min at 4 °C in the dark. Cells were then washed with MACS buffer 

and spun down at 450 g for 3 min. Cell pellets were resuspended in PBS + 25% BD Cytofix™ 

Fixation Buffer (BD Bioscience) and counting beads (Thermo Fisher) were added to 

quantify T cell number.  

Flow cytometry analyses were performed on a LSR Fortessa analyzer (BD Biosciences) 

and the data were analyzed with FlowJo 10 software. 

 

 TABLE 1| List of murine antibodies used for flow cytometry experiments 

APC surface molecules  
Surface molecule Fluorochrome Clone Company Isotype control 
CD11b BV510 M1/70 BD Bioscience Rat IgG2b, κ 
CD11c BUV395 N418 BD Bioscience Armenian Hamster 

(AH) IgG2 
CD40 PE 3-/-23 Biolegend Rat IgG2a, κ 
CD80 PerCP-Cy5.5 16-10A1 Biolegend AH IgG 
CD86 FITC GL1 Biolegend Rat IgG2a, κ 
MHCII Pacific Blue M5/114.15.2 Biolegend Rat IgG2b, κ 
     

HSPC surface molecules  
Surface molecule Fluorochrome Clone Company Isotype control 
CD117 (c-Kit) APC 2B8 BD Pharmingen Rat IgG2b 
CD11b FITC M1/70 BD Pharmingen Rat IgG2b 
     
Macrophage surface molecules 
Surface molecule Fluorochrome Clone Company Isotype control 
CD11b PE-Cy7 M1/70 BD Pharmingen Rat IgG2b 
F4/80 PerCP-Cy5.5 BM8 eBioscience Rat IgG2a, κ 
Ly6C PE AL-21 BD Pharmingen Rat IgM, κ 
MHCII FITC M5/114.15.2 eBioscience Rat IgG2b 
TLR2 PE 6C2 eBioscience Rat IgG2b, κ 
TLR4/MD2 FITC MTS510 ENZO Rat IgG2a, κ 
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Splenocytes and bone marrow surface molecules 
Surface molecule Fluorochrome Clone Company Isotype control 
Biotin PE REA746 Miltenyi Biotec REA Control (S) 

antibodies 
CD117 (c-Kit) PE-Vio770  3C11 Miltenyi Biotec Rat IgG2bκ 
CD11b PE M1/70 eBioscience Rat IgG2b 
CD11c APC N418 Miltenyi Biotec Hamster IgG 
Lineage antigens 
(Cocktail) 

Biotin  Miltenyi Biotec  

Ly6C APC-Cy7 AL-21 BD Pharmingen Rat IgM, κ 
Ly6G BUV395 1A8 BD Bioscience Rat (LEW) IgG2a, κ 
MHCII PerCP-Cy5.5 M5/114.15.2 BD Pharmingen Rat IgG2b 

T cell surface molecules  
Surface molecule Fluorochrome Clone Company Isotype control 
CD4 BV510 RM4-5 BD Bioscience Rat IgG2a, κ 
CD44 APC IM7 Biolegend Rat IgG2b, κ 
CD69 PE H1.2F3 BD Bioscience AH IgG1, λ3 

 

12 Cytokine measurements 

In vitro differentiated macrophages were plated at a density of 5 × 104 cells in 200 µl 

RPMI complete media, while APCs were plated at 5 × 104 cells in 100 µl, both in 96-well TC 

plates. Both cell types, as well as peritoneal macrophages, splenocytes and HSPCs, were 

challenged with the indicated stimuli for 18 to 24 h and cell-free supernatants were then 

collected. Levels of the pro-inflammatory cytokine TNF-α were determined in culture 

supernatants from splenocytes and peritoneal macrophages, while levels of the 

pro-inflammatory cytokines IL-6 and/or TNF-α were measured in culture supernatants 

from in vitro differentiated macrophages and HSPCs. ELISA kits used for these assays were 

purchased from eBioscience. Culture supernatants from APCs were tested for TNF-α, IL-6, 

IL-12 p40 and IL-2 release using commercial ELISA kits purchased from Biolegend. At least 

triplicate samples were analyzed in each assay.  

In the secretomes produced by HSPCs, 40 cytokines were determined using a mouse 

cytokine array (RayBio Mouse inflammation antibody array C1) according to the 

manufacturer’s instructions (RayBiotech). 
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13  C. albicans phagocytosis assay  

Cells of C. albicans PCA2 were obtained as previously described (see section 3) and they 

were made fluorescent by FITC labeling. Briefly, yeasts were resuspended in PBS (Gibco) 

containing 0.1 mg FITC per ml, at a concentration of 5 × 106 yeasts/ml, and incubated at RT 

for 2 h. FITC was eliminated by extensive washing with PBS (Gibco) and homogeneous 

distribution of FITC labeling was confirmed by flow cytometry. Macrophages were plated at 

a density of 1 × 105 cells in 200 µl RPMI complete medium per well in a 96-well TC plate and 

challenged with FITC-labeled yeasts at a 1:5 ratio (murine cell: yeast). Yeasts were settled 

onto macrophages by centrifugation and incubated for 30 min. Cells were then labeled with 

PerCP-Cy5.5-anti-F4/80 antibody and analyzed by flow cytometry. To differentiate cell 

surface-adherent yeasts from the internalized ones, 0.2% trypan blue was added to quench 

extracellular fluorescence. Macrophages were gated based on their F4/80 expression and 

the extent of phagocytosis was assessed as the percentage of green (FITC) cells, as well as 

by the mean intensity of green fluorescence.  

 

14 C. albicans killing assay  

The assay was performed with M-CSF-derived macrophages, GM-CSF-derived 

macrophages or with splenocytes. Macrophages were plated in 96-well TC plates at a 

density of 2 × 105 cells in 150 μl of RPMI complete media. They were challenged with viable        

C. albicans PCA2 yeasts or C. glabrata yeasts (prepared as indicated in section 3) at a 1:3 

ratio (murine cell: yeast), settled onto macrophages by centrifugation, and incubated for 1 

h. Splenocytes were plated in 24-well TC plates at a density of 2.5 × 106 cells in 0.5 ml of 

RPMI complete media. They were challenged with 1 × 105 viable C. albicans PCA2 yeasts, 

settled onto the cells by centrifugation and incubated for 4 h. As a control, yeast cells were 

inoculated in culture medium without murine cells. At least triplicate samples were 

analyzed in each assay. After co-incubation, samples were diluted in water, plated on 

Sabouraud dextrose agar, and incubated overnight at 37 °C to determine CFUs. Colonies 

were counted, and killing percentages were determined as follows:  

 

% 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = � 1 −  
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎 𝑡𝑡1 𝑜𝑜𝑜𝑜 4ℎ
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎 𝑡𝑡1 𝑜𝑜𝑜𝑜 4ℎ

 �  ×  100 
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C. albicans PCA2 and C. glabrata, both non-germinative Candida species, were chosen 

for killing assays to facilitate determination of CFUs after the incubation period, as no germ 

tube (hyphae) aggregates are formed. At least triplicate samples were analyzed in each 

assay.  

 

15  Statistical analysis  

Statistical differences were determined using one-way ANOVA followed by Dunnett’s 

test for multiple comparisons and two tailed Student’s t-test for dual comparisons. Data are 

expressed as mean ± SD. Significance was accepted at * P < 0.05, ** P < 0.01, *** P < 0.001 

and **** P < 0.0001 levels
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Innate immune responses result crutial in the early defense against pathogens, but 

phagocytes are rapidly consumed dealing with the invading microorganisms. Thus, in order 

to offset this cell loss and ensure an effective immune response, hematopoiesis switches 

from balance production of all blood cell lineages to promote myelopoiesis. Moreover, 

HSPCs also respond to infection egressing to peripheral tissues, thus generating myeloid 

cells directly in the site of infection. PRRs are not only expressed in terminally differentiated 

innate immune cells but also in early hematopoietic progenitors, indicating that direct 

sensing of microbial components by HSPCs may play a role in this demand-adapted 

hematopoiesis during infection (Boettcher and Manz, 2016; Cannova et al., 2015; Yáñez et 

al., 2013a). 

In this context, our group has previously shown: (i) that inactivated C. albicans yeast 

cells induce in vitro proliferation and differentiation of mice HSPCs towards the myeloid 

lineage in a TLR2- and Dectin-1-dependent manner (Yáñez et al., 2010; Yáñez et al., 2011; 

Yáñez et al., 2009) and (ii) that signaling through TLR2 on HSPCs does occur in vivo and 

induces their differentiation towards macrophages in response to both pure ligands and        

C. albicans infection (Megías et al., 2013; Megías et al., 2012). Other authors have shown that 

production of both PGE2 and IL-6 by HSPCs is mediated by TLR2-signaling and that these 

molecules promote HSPCs proliferation and differentiation, in an autocrine/paracrine 

manner (Granick et al., 2013; Zhao et al., 2014).  

However, although “PRR-derived” cells exhibit myeloid cell characteristics, it is not 

clear whether they are functionally equivalent to myeloid cells derived from HSPCs in the 

absence of PRR stimulation. Our previous studies indicate that transient exposure of Lin⁻ 

cells to the TLR2 ligand Pam3CSK4 results in the generation of macrophages with a reduced 

ability to produce inflammatory cytokines (Yáñez et al., 2013b).  

Considering the previous exposed facts, the main aim of the present PhD project was 

to characterize the phenotype of mature myeloid cells generated by HSPCs in the presence 

or absence of several PAMPs (pure ligands or C. albicans yeasts) by using in vitro and ex vivo 

assays. We studied the possible changes in their antimicrobial activities or their ability to 

activate and polarize CD4⁺ T cell responses. The antimicrobial response of HSPCs after 

PAMPs exposure was also analyzed.  
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CHAPTER 1 

  

Functional phenotype of macrophages derived 

from in vitro or in vivo exposed HSPCs to PAMPs  
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1 Phenotype of macrophages derived from 
HSPCs exposed to TLR2, TLR4 and Dectin-1 
ligands in M-CSF cultures  

1.1 Macrophage yield and surface molecules expression  

We investigated the consequences of in vitro exposure of HSPCs to PAMPs during 

differentiation by comparing the phenotype of the macrophages they produce in 

homeostatic conditions. To study this, Lin⁻ cells were cultured with M-CSF in the presence 

or absence (control) of different PRR agonists: Pam3CSK4 (which only activates TLR2), LPS 

(which only activates TLR4), depleted zymosan (a Dectin-1-activating Saccharomyces 

cerevisiae cell wall preparation that has been treated with hot alkali to remove its 

TLR-stimulating properties), or C. albicans ATCC 26555 yeasts (which activate several PRRs, 

but principally TLR2 and Dectin-1). In these conditions, PRR agonists are present 

throughout differentiation (Figure 1A, continuous exposure) most closely reproducing the 

in vivo situation during an ongoing infection, when HSPCs in the BM or infected tissues may 

interact with the microorganisms or their products. We also investigated the consequences 

of exposure of HSPCs to soluble TLR2 or TLR4 agonists prior to differentiation. This 

transient exposure model (Figure 1A, transient exposure) enables us to define the 

phenotype of macrophages generated by previously exposed HSPCs, and thus determine 

whether TLR signaling in HSPCs influences the phenotype of macrophages produced after 

clearance of an infection. 

After HSPC differentiation, adherent cells were harvested, and macrophage yields were 

assessed by cell counting (Figure 1B). Pam3CSK4 treatment boosted the yield of 

M-CSF-derived adherent cells, following both continuous and transient exposure, whereas 

LPS only enhanced the yield following continuous exposure. The increased yield of M-CSF 

derived cells induced by Pam3CSK4 transient exposure is consistent with our previous 

report (Yáñez et al., 2013b). However, neither depleted zymosan nor C. albicans yeast 

treatment changed the number of adherent cells generated in M-CSF cultures (Figure 1B). 

These results indicate that soluble TLR2 and TLR4 agonists but not particulate Dectin-1 

agonists or inactived C. albicans yeasts induce the proliferation and/or improve the survival 

of HSPCs.  
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Next, we analyzed the phenotypic surface molecules of the HSPC-derived macrophages 

in M-CSF cultures by multicolor flow cytometry (Figure 2). Analysis of CD11b and F4/80 

expression allowed for the identification of mature macrophages (CD11b⁺ F4/80⁺), which, 

as expected, represented the majority of obtained cells with more than 75%. Among these 

cells, only 4.9 % expressed the inflammatory monocyte marker Ly6C, 10.8 % expressed 

MHCII and 4.7 % were double positive for both markers, results consistent with those 

observed in resting macrophages. However, when Lin⁻ progenitor cells were cultured with 

M-CSF in the presence of TLR ligands, these percentages changed. The CD11b⁺ F4/80⁺ 

macrophages generated in the presence of LPS and Pam3CSK4 exhibited a higher percentage 

FIGURE 1 | Continuous or transient exposure to different stimuli (PAMPs) during in vitro differentiation 
of HSPCs into macrophages. (A) Schematic protocol. Purified Lin⁻ cells from BM of C57BL/6 mice were 
cultured with 20 ng/ml Stem cell factor (SCF) and 50 ng/ml M-CSF for seven days to induce macrophage 
production, in the presence or absence of different microbial stimuli for the entire seven days (continuous 
exposure) or the first 24 h only (transient exposure). The microbial stimuli used were 1 µg/ml Pam3CSK4, 100 
ng/ml LPS, 1 µg/ml depleted zymosan or inactivated C. albicans yeasts (1:7.5 murine cell:yeast ratio). (B) At day 
seven, adherent cells were harvested and counted. The figure shows mean values of total cells with standard 
deviation (SD) from at least ten independent experiments. *** P < 0.001 with respect to cells derived from 
unstimulated HSPCs (M-CSF only) for each condition (continuous or transient). 

 

A 

B 
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of Ly6C⁺ MHCII⁻ cells (from 4.9% to 77% and 30%, respectively) and a lower percentage of 

MHCII⁺ cells (from 15.5 to 3.5%). Furthermore, LPS induced an increase of Ly6C expression 

in Ly6C⁺ MHCII⁻ cells, as the fluorescence mean intensity of the indicated surface marker 

was increased comparing to M-CSF-derived cells (4429 versus 1151). Neither depleted 

zymosan nor C. albicans yeast treatment altered the percentages of CD11b⁺ F4/80⁺ 

macrophages that express Ly6C or MHCII (Figure 2, continuous exposure). Interestingly, 

although LPS induced a greater phenotypic change than Pam3CSK4 upon continuous 

exposure, transient exposure to LPS did not change the percentage of cells that express Ly6C 

or MHCII, whereas transient exposure to Pam3CSK4 induced a similar increase in Ly6C⁺ 

MHCII⁻ macrophages than continuous exposure to this TLR2 ligand (Figure 2, transient 

exposure). 

 

FIGURE 2 | Flow cytometry analysis of adherent cells produced by HSPCs under the same conditions as 
in Figure 1A. Myeloid cells obtained from HSPCs following continuous or transient exposure to the different 
microbial stimuli were labeled with antibodies and analyzed by flow cytometry. Macrophages were gated as 
CD11b⁺ F4/80⁺ cells and were subsequently analyzed in a MHCII versus Ly6C plot. The indicated numbers refer 
to the percentages of cells analyzed in each contour-plot. Results shown are representative of three independent 
experiments.  
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Overall, these results demonstrate that transient exposure of HSPCs to a TLR2 agonist 

is sufficient to increase the yield of M-CSF-derived cells and also to increase the generation 

of Ly6C⁺ MHCII⁻ macrophages. A TLR4 agonist induced the same changes but only following 

continuous exposure, whereas neither the yield nor the surface molecules of M-CSF derived 

macrophages were changed by a Dectin-1 agonist or C. albicans yeasts. 

1.2 Cytokine production: TNF-α and IL-6 

To investigate whether the exposure of HSPCs to PAMPs influences the antifungal 

functions of HSPC-derived macrophages, we firstly tested their ability to secrete 

pro-inflammatory cytokines in response to TLR agonists. For this, adherent cells obtained 

from HSPCs in M-CSF cultures were counted, and equal numbers of macrophages were 

stimulated with TLR agonists for 24 h; then, supernatants were harvested and tested for 

TNF-α and IL-6 release. Results reveal that pro-inflammatory cytokine production in 

response to Pam3CSK4 or LPS was significantly diminished in macrophages generated from 

HSPCs exposed (transiently or continuously) to Pam3CSK4, compared to control 

macrophages (derived from unexposed HSPCs) (Figure 3). Similarly, macrophages 

generated from LPS-exposed HSPCs also produced lower pro-inflammatory cytokines than 

control macrophages. However, it should be noted that exposure to Pam3CSK4 had a greater 

impact on cytokine production than exposure to LPS, particularly following transient 

exposure. On the other hand, interestingly, TNF-α and IL-6 secretion in response to TLR 

agonists was increased in macrophages generated from HSPCs in the presence of C. albicans 

yeasts or depleted zymosan, compared to control macrophages.  

Taken together, these results indicate that exposure of HSPCs to PRR agonists may 

profoundly alter the ability of the macrophages derived from them to produce 

pro-inflammatory cytokines. Soluble TLR2 and TLR4 ligands cause a reduction in cytokine 

production while particulate Dectin-1 agonists and yeasts provoke an increased response. 
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FIGURE 3 | Cytokine production by adherent cells generated by HSPCs in the same conditions as 
in Figure 1A. Macrophages obtained from HSPCs following continuous or transient exposure to different 
microbial stimuli were challenged with 100 ng/ml Pam3CSK4 or 100 ng/ml LPS for 24 h. TNF-α and IL-6 
levels in cell-free culture supernatants were measured by ELISA. Results are expressed as means ± SD of 
pooled data from three independent experiments. * P < 0.05, ** P < 0.01, *** P < 0.001 and **** P < 0.0001 
with respect to cytokine production by cells derived from unstimulated HSPCs (M-CSF only) for each 
condition (continuous or transient). 
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Our group previously demonstrated that HSPCs transiently exposed to Pam3CSK4 

produce soluble factors that act in a paracrine manner to influence the function of 

macrophages produced by unexposed HSPCs in M-CSF cultures (Yáñez et al., 2013b). The 

identity of these factors is not known, but candidates include IL-6 and PGE2 that are both 

induced by TLRs in HSPCs and are able to induce myeloid differentiation in a paracrine 

manner (Granick et al., 2013; Zhao et al., 2014). These findings prompted us to study 

whether the reduced inflammatory responsiveness of macrophages produced by HSPCs 

exposed to Pam3CSK4 or LPS (transient exposure) may be at least in part due to produced 

IL-6 or PGE2. We therefore measured TNF-α production in response to Pam3CSK4 

stimulation by macrophages generated from HSPCs transiently exposed to Pam3CSK4, in the 

continuous presence or absence of indomethacin (to block PGE2 secretion) or an IL-6 

neutralizing antibody. The blockade of neither PGE2 nor IL-6 reversed the reduced 

inflammatory responsiveness of macrophages produced by Pam3CSK4-exposed HSPCs 

(Figure 4). 

 

 

In vitro models of LPS-tolerance have demonstrated that after prolonged LPS 

stimulation, macrophages show defects in TLR4 signaling at the level of the receptor, 

signaling molecules, and transcription factors, due to attenuated expression levels or 

protein activity (Biswas and López-Collazo, 2009; Cavaillon and Adib-Conquy, 2006; Seeley 

and Ghosh, 2017). Regarding these observations, we next determine whether the altered 

production of cytokines in response to Pam3CSK4 or LPS may be due to modulation of the 

FIGURE 4 | Cytokine production by adherent cells obtained from HSPCs transiently exposed 
to Pam3CSK4, in the presence or absence of an IL-6 neutralizing antibody or indomethacin, in 
M-CSF cultures. Purified Lin⁻ cells from BM of C57BL/6 mice were cultured with 20 ng/ml SCF and 
50 ng/ml M-CSF for seven days to induce macrophage production, in the presence or absence of 1 
µg/ml Pam3CSK4 for the first 24 h (transient exposure) and an IL-6 neutralizing antibody (1 µg/ml) 
or indomethacin (10 µM, added at day zero and at days one, three and five). At day seven, adherent 
cells were harvested, counted, replated and challenged with 100 ng/ml Pam3CSK4 for 24 h. TNF-α 
concentration, in cell-free culture supernatants, was measured by ELISA. Results are expressed as 
means ± SD of pooled data from two experiments. 
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expression of the receptors themselves (TLR2 and TLR4, respectively). HSPC-derived 

macrophages, gated as CD11b⁺ F4/80⁺ cells, were analysed for TLR2 and TLR4 expression 

by flow cytometry (Figure 5). 

 

 

As expected, M-CSF derived macrophages expressed both TLR2 and TLR4. 

Macrophages generated in the continuous presence of Pam3CSK4 exhibited lower TLR2 and 

TLR4 expression, whereas transient exposure to Pam3CSK4 induced a slight decrease in 

TLR2 and no changes in TLR4 expression. Interestingly, although LPS increased TLR2 and 

decreased TLR4 levels upon continuous exposure, transient exposure to LPS did not change 

TLR2 or TLR4 expression. On the other hand, continuous exposure to depleted zymosan 

FIGURE 5 | TLR2 and TLR4 expression on adherent cells produced by HSPCs under the same conditions 
as in Figure 1A. Myeloid cells produced by HSPCs following continuous or transient exposure to different 
microbial stimuli were labeled with antibodies and analyzed by flow cytometry. Macrophages were gated as 
CD11b⁺ F4/80⁺ cells and were analyzed for the Mean Fluorescent Intensity (MFI) of TLR2 and TLR4. Results 
shown are representative of two independent experiments. 
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induced an increase in both TLR2 and TLR4 expression, whereas the continuous presence 

of C. albicans yeasts only provoked increased TLR2 expression. These results demonstrate 

that exposure of progenitors to TLR and Dectin-1 agonists during differentiation modulates 

TLR2 and TLR4 expression, and therefore this may contribute to the altered cytokine 

production in response to Pam3CSK4 or LPS. However, the observed changes in TLR 

expression cannot fully explain the profoundly altered cytokine responses, particularly in 

transiently-exposed macrophages. For example, transient exposure to Pam3CSK4 did not 

change TLR4 expression, and yet these macrophages produced significantly lower amounts 

of cytokines in response to LPS. 

1.3 Fungicidal activity 

To further characterize the antifungal function of macrophages generated from 

PAMP-stimulated HSPCs in M-CSF cultures, we measured the ability of differentiated cells 

to internalize and kill yeast cells. Firstly, macrophages were challenged with inactivated 

FITC-labeled yeasts at a 1:5 ratio (murine cell: yeast) for 30 min. Phagocytosis of the yeast 

cells by macrophages (gated as F4/80 positive cells) was analysed by flow cytometry and 

expressed as the percentage of cells that contain at least one internalized yeast, as well as 

the mean channel fluorescence intensity that indicates the extent of phagocytosis per cell 

(Figure 6).  

C. albicans uptake by macrophages generated from HSPCs transiently exposed to TLR 

agonists was not altered compared to uptake by control macrophages (derived from 

unexposed HSPCs). However, the macrophages generated from HSPCs in the continuous 

presence of Pam3CSK4 showed a slight but significant decrease in the percentage of 

phagocytosis, while the macrophages generated from HSPCs in the continuous presence of 

LPS exhibited an increased mean fluorescence intensity. The presence of C. albicans yeasts 

or depleted zymosan during differentiation in M-CSF cultures changed neither the 

percentage nor the extent of phagocytosis of HSPC-derived macrophages. These results 

indicate that exposure of progenitors to TLR agonists during differentiation modestly 

modulates macrophage phagocytic capacity. 

 



Results 

103 

 

Finally, HSPC-derived macrophages were challenged with viable C. albicans PCA2 

yeasts, at a 1:3 ratio (murine cell: yeast) for 1 h, to determine their fungicidal activity 

(Figure 7). Control macrophages (derived from unexposed HSPCs) were able to kill a 

significant percentage of C. albicans yeasts: CFUs after coculture were reduced to 70% (a 

roughly 30% decrease). Continuous exposure of progenitors to Pam3CSK4 or C. albicans 

yeasts generated macrophages with higher fungicidal activity: CFUs were reduced to 41% 

and 48%, respectively. This represents a relative increase in the fungicidal activity of 

HSPC-derived macrophages induced by HSPC exposure to Pam3CSK4 or C. albicans cells of 

roughly 36% and 60%, respectively, as compared to control macrophages. Therefore, 

macrophages derived in the presence of a TLR2 agonist or C. albicans yeasts possess an 

increased fungicidal activity, which is not due to an increased capacity to internalize yeasts 

(Figure 6). In contrast, neither continuous exposure of HSPCs to LPS or depleted zymosan, 

nor transient exposure to Pam3CSK4 or LPS changed the fungicidal activity of HSPC-derived 

macrophages.  

FIGURE 6| Phagocytosis of C. albicans yeasts by adherent cells produced by HSPCs in the same conditions 
as in Figure 1A. Macrophages obtained from HSPCs following continuous or transient exposure to different 
stimuli were challenged with FITC-labeled yeast at a 1:5 ratio (murine cell:yeast) for 30 min. Afterward, cells 
were labeled with anti-F4/80 antibody and analyzed by flow cytometry. Macrophages were gated based on their 
F4/80 expression, and the extent of phagocytosis was assessed as means ± SD of pooled data from three 
experiments. * P < 0.05 and ** P < 0.01 with respect to the phagocytic capacity of cells produced by unstimulated 
HSPCs (M-CSF only) for each condition (continuous or transient). 
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To confirm the increased fungicidal activity of macrophages generated from HSPCs in 

the presence of C. albicans cells, we also tested their ability to kill yeasts of Candida glabrata 

CECT1448 strain (Figure 8). While C. albicans is the most frequently detected species in 

fungal invasive infection, non-albicans Candida have an increasing role particularly in 

high-risk populations, with C. glabrata being the most prominent of these species in United 

States and north western Europe (Pappas et al., 2018). 

 

FIGURE 7 | Fungicidal activity of adherent cells produced by HSPCs under the same conditions as in 
Figure 1A. Macrophages obtained from HSPCs following continuous or transient exposure to different stimuli 
were challenged with viable PCA2 yeasts at a 1:3 ratio (murine cell:yeast) for 1 h. C. albicans cells were also 
inoculated in culture medium without murine cells (control, black bar). After incubation, samples were diluted, 
plated on Sabouraud dextrose agar and incubated overnight at 37 °C; the colonies were counted and expressed 
as % CFUs as compared to CFUs in the control sample at time 1 h. Triplicate samples were analyzed in each 
assay. Data represents means ± SD of pooled data from three experiments. * P < 0.05 and ** P < 0.01 and *** P < 
0.001 with respect to control, ## P < 0.01 and ### P < 0.001 with respect to fungicidal capacity of cells produced 
by unstimulated HSPCs (M-CSF only) for each condition (continuous or transient). 

 

FIGURE 8 | Fungicidal activity against Candida glabrata of macrophages produced by HSPCs exposed to 
C. albicans yeasts in M-CSF cultures. Purified Lin⁻ cells from BM of C57BL/6 mice were cultured with 20 ng/ml 
SCF and 50 ng/ml M-CSF for seven days to induce macrophage production, in the presence or absence of 
inactivated C. albicans yeasts. At day seven, adherent cells were harvested, plated at equal numbers and 
challenged with viable C. glabrata yeasts at a 1:3 ratio (murine cell:yeast) for 1 h. C. glabrata cells were also 
inoculated in culture medium without murine cells (control, black bar). After incubation, samples were diluted, 
plated on Sabouraud dextrose agar and incubated overnight at 37 °C; the colonies were counted and expressed 
as % CFUs as compared to CFUs in the control sample at time 1 h. Triplicate samples were analyzed in each 
assay. Data represents means ± SD of pooled data from three experiments. *** P < 0.001 with respect to control, 
# P < 0.05 with respect to fungicidal capacity of cells produced by unstimulated HSPCs (M-CSF only). 
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Control macrophages (derived from unexposed HSPCs) were able to kill a significant 

percentage of C. glabrata yeasts: CFUs after coculture were reduced by 32%. Continuous 

exposure of the progenitors to C. albicans yeasts generated macrophages with a greater 

ability to kill C. glabrata yeasts: CFUs were reduced by 49% (i.e. 53% better at killing than 

control macrophages). Therefore, the fungicidal activity against C. glabrata was similar to 

that against C. albicans, confirming the higher fungicidal activity of M-CSF-derived 

macrophages generated from HSPCs in the presence of C. albicans cells. 

 

2 Phenotype of macrophages derived from 
HSPCs exposed to TLR2, TLR4 and Dectin-1 
ligands in GM-CSF cultures  

2.1 Surface molecules expression  

Levels of the myelopoietic growth factors G-CSF and GM-CSF rise rapidly during 

infection to replace myeloid cells consumed fighting against the pathogen (Boettcher and 

Manz, 2016). Therefore, we decided to use GM-CSF to induce in vitro macrophage 

differentiation from HSPCs and studied the functional consequences for generated 

macrophages of the presence of PRR agonists during differentiation. Lin⁻ cells were 

cultured with GM-CSF in the presence or absence (control) of different PRR agonists: 

Pam3CSK4, LPS, depleted zymosan or C. albicans ATCC 26555 yeasts. Stimulation of HSPCs 

was performed following both strategies used in the M-CSF differentiation model: 

continuous exposure, stimulating HSPCs with all mentioned PRR agonists for the seven days 

of differentiation, or transient exposure, stimulating cells with the soluble agonists only for 

the first 24 h (Figure 9A). 

Adherent cells were harvested after seven days of culture and the phenotypic surface 

molecules of the GM-CSF-derived adherent cells were analyzed by multicolor flow 

cytometry (Figure 9). It has been described that the output from culturing mouse BM cells 

with GM-CSF is heterogeneous and comprises different CD11b⁺ mature myeloid cells 

including granulocytes, macrophages and dendritic cells (Helft et al., 2015). In our culture 

conditions, the mature CD11b⁺ adherent population obtained (GM-CSF-derived 

macrophages) was heterogeneous in terms of expression of MHCII and Ly6C, as roughly 

30% cells were Ly6C⁺ MHCII⁻, 22% cells were Ly6C⁻ MHCII⁺ and 45% cells were Ly6C⁺ 

MHCII⁺. 
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FIGURE 9 | Flow cytometry analysis of adherent cells produced by HSPCs continuously or transiently 
exposed to PAMPs in GM-CSF cultures. (A) Schematic protocol. Purified Lin⁻ cells from BM of C57BL/6 mice 
were cultured with 20 ng/ml SCF and 50 ng/ml GM-CSF for seven days to induce macrophage production, in the 
presence or absence of different microbial stimuli for the entire seven days (continuous exposure) or the first 
24 h (transient exposure). The microbial stimuli used were 1 µg/ml Pam3CSK4, 100 ng/ml LPS, 1 µg/ml depleted 
zymosan or inactivated C. albicans yeasts (1:7.5 murine cell:yeast ratio). (B) At day seven, adherent cells were 
harvested, labeled with antibodies, and analyzed by flow cytometry. Macrophages were gated as CD11b⁺ cells 
and were subsequently analyzed in a MHCII versus Ly6C plot. The indicated numbers refer to the percentages 
of cells analyzed in each contour-plot. Results shown are representative of three independent experiments. 

 

 

 

A 
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However, the presence of TLR ligands during myeloid differentiation from Lin⁻ 

progenitors with GM-CSF changed the expression of Ly6C and MHCII in the macrophages 

they produced. The CD11b⁺ macrophages generated in the presence of LPS and Pam3CSK4 

exhibited a higher percentage of Ly6C⁺ cells (from 30% to 83% and 69%, respectively) and 

a lower percentage of MHCII⁺ cells (from 22% to 0.4% and 0.2%, respectively). The 

percentage of Ly6C⁺ MHCII⁺ cells also decreased (from 45% to 16% and 29%, respectively). 

Depleted zymosan and C. albicans yeast treatment changed the percentages of 

GM-CSF-derived macrophages that express Ly6C and/or MHCII in a similar way (Figure 9, 

continuous exposure), although in a lower extent than Pam3CSK4 and LPS. It was 

particularly noted when HSPCs were exposed to yeasts, as the percentage of MHCII⁺ cells 

remained at 7%. Interestingly, although LPS and Pam3CSK4 induced similar phenotypic 

changes upon continuous exposure, transient exposure to LPS did not change the 

percentage of single or double positive cells for Ly6C and/or MHCII, whereas transient 

exposure to Pam3CSK4 induced similar changes than continuous exposure (Figure 9, 

transient exposure). 

In summary, transient exposure of HSPCs to the TLR2 agonist Pam3CSK4 in GM-CSF 

cultures is sufficient to promote the generation of macrophages with an increased Ly6C 

expression and a decreased MHCII expression. The TLR4 agonist LPS also induce this 

phenotypic change but only following continuous exposure, similarly to both the Dectin-1 

agonist depleted zymosan and C. albicans yeasts.  

2.2 Cytokine production: TNF-α and IL-6 

Next, we wondered whether the exposure of HSPCs to PAMPs in GM-CSF cultures 

influences the ability of generated macrophages to secrete pro-inflammatory cytokines in 

response to TLR agonists (Figure 10). Results show that TNF-α and IL-6 production in 

response to Pam3CSK4 or LPS was significantly diminished in macrophages generated from 

HSPCs exposed (transiently or continuously) to Pam3CSK4 compared to control 

macrophages (derived from unexposed HSPCs). Interestingly, macrophages generated from 

LPS-exposed HSPCs, either following a transient or continuous exposure, produced similar 

pro-inflammatory cytokine levels to control macrophages. On the other hand, TNF-α and 

IL-6 secretion in response to Pam3CSK4 was slightly increased in macrophages generated 

from HSPCs in the presence of depleted zymosan, whereas C. albicans yeasts did not change 

the production of cytokines by macrophages in response to neither Pam3CSK4 nor LPS. 

These results demonstrate that exposure of HSPCs to a TLR2 agonist (continuous or 
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transient) during myeloid differentiation in the presence of GM-CSF causes a reduction in 

the ability of the macrophages derived from them to produce pro-inflammatory cytokines. 

However, neither differentiation in the presence of a soluble TLR4 ligand nor a particulate 

Dectin-1 agonist or inactivated yeasts provokes a consistent altered cytokine production by 

GM-CSF-derived macrophages.  

 

 
FIGURE 10 | Cytokine production by macrophages generated from HSPCs under the same 
conditions as in Figure 9A. Macrophages obtained as in Figure 9A were plated at equal numbers and 
challenged with 100 ng/ml Pam3CSK4 or 100 ng/ml LPS for 24 h. TNF-α and IL-6 levels in cell-free culture 
supernatants were measured by ELISA. Results are expressed as means ± SD of pooled data from three 
independent experiments. * P < 0.05, ** P < 0.01 and *** P < 0.001 with respect to cytokine production 
by cells derived from unstimulated HSPCs (GM-CSF only) for each condition (continuous or transient). 
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2.3 Fungicidal activity  

To further characterize the antifungal properties of GM-CSF-differentiated 

macrophages, we measured their ability to internalize and kill C. albicans yeasts using the 

same experimental assay performed with M-CSF-differentiated macrophages. Macrophages 

differentiated from HSPCs with GM-CSF were able to reduce C. albicans CFUs to roughly 30% 

after coculture (Figure 11), much more than M-CSF-differentiated macrophages (Figure 

7). As the presence of inactivated C. albicans yeasts during macrophage differentiation with 

M-CSF generate macrophages with an increase fungicidal activity (Figure 7), we tested 

whether this functional phenotypic changes also occured when macrophages were obtained 

in GM-CSF cultures. However, the presence of C. albicans yeasts during differentiation of 

macrophages from HSPCs in GM-CSF cultures did not modify the ability of generated 

macrophages to kill yeasts (Figure 11).  

 

 

 

FIGURE 11 | Fungicidal activity of adherent cells produced by HSPCs exposed to C. albicans yeasts in 
GM-CSF cultures. Macrophages obtained as in Figure 9A were plated at equal numbers and challenged with 
viable C. albicans yeasts at a 1:3 ratio (murine cell:yeast) for 1 h. C. albicans cells were also inoculated in culture 
medium without murine cells (control, black bar). After incubation, samples were diluted, plated on Sabouraud 
dextrose agar and incubated overnight at 37 °C; the colonies were counted and expressed as % CFUs as 
compared to CFUs in the control sample at time 1 h. Triplicate samples were analyzed in each assay. Data 
represents means ± SD of pooled data from three experiments. *** P < 0.001 with respect to control. 
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3 Macrophages phenotype after sequential 
signaling of different PAMPs during in vitro 
differentiation from HSPCs 

3.1 Macrophage functional phenotype in M-CSF cultures 

It has been shown that Dectin-1 ligand β-glucan reverses LPS tolerance in human 

macrophages, restoring their ability to produce pro-inflammatory cytokines (Novakovic et 

al., 2016). These results prompted us to investigate whether specific fungal ligands or              

C. albicans yeasts can reverse the functional consequences of TLR2 activation in HSPCs on 

the macrophages produced from them. For these experiments, Lin⁻ cells were cultured with 

M-CSF in the presence or absence of Pam3CSK4 on day 0, washed thoroughly to remove the 

Pam3CSK4 on day 1, and then cultured with M-CSF to induce macrophage differentiation for 

further six days in the presence or absence of depleted zymosan or C. albicans yeasts (Figure 

12A). Adherent harvested cells were then counted, equal numbers of macrophages were 

plated, and cells were challenged with Pam3CSK4 or LPS to assess their ability to produce 

pro-inflammatory cytokines. 

In accordance with our previous data, TNF-α and IL-6 levels in response to both TLR 

agonists decreased in M-CSF-derived macrophages generated from HSPCs transiently 

exposed to Pam3CSK4 in comparison to control macrophages (derived from unexposed 

HSPCs) (Figure 12B). Here, we showed that differentiation of Lin⁻ cells with M-CSF in the 

presence of fungal stimuli following a transient Pam3CSK4 challenge partially reversed the 

Pam3CSK4-induced macrophage phenotype; generated macrophages produced higher 

levels of pro-inflammatory cytokines than macrophages derived from Pam3CSK4-exposed 

HSPCs, but still significantly minor amounts than control macrophages (derived from 

unexposed HSPCs). Moreover, this partial reversion of the Pam3CSK4 effect was stronger in 

response to C. albicans than to depleted zymosan. In fact, the reduced production of IL-6 by 

macrophages derived from Pam3CSK4-exposed HSPCs was not affected by subsequent 

exposure to depleted zymosan during differentiation. 
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3.2 Macrophage functional phenotype in GM-CSF cultures 

As the presence of C. albicans yeasts during differentiation from HSPCs partially 

reverse the effect induced by the TLR2 ligand Pam3CSK4 in M-CSF-derived macrophages, we 

next investigate whether this enhanced inflammatory responsiveness may also occur in 

GM-CSF-derived macrophages. Lin⁻ cells were cultured with GM-CSF in the presence or 

FIGURE 12| Cytokine production by M-CSF-derived macrophages obtained from HSPCs under the 
conditions in the schematic protocol. (A) Purified Lin⁻ cells from BM of C57BL/6 mice were cultured on day 
0 with 20 ng/ml SCF and 50 ng/ml M-CSF in the presence or absence of 1 µg/ml Pam3CSK4. Cells were washed 
thoroughly on day 1 and then cultured with M-CSF for further 6 days in the presence or absence of 10 µg/ml 
depleted zymosan or inactivated C. albicans yeasts (1:7.5 murine cell: yeast ratio). (B) Adherent cells were 
harvested and challenged with 100 ng/ml Pam3CSK4 or 100 ng/ml LPS for 24 h. TNF-α and IL-6 levels in cell-free 
supernatants were measured by ELISA. Results are expressed as means ± SD of pooled data from two 
experiments. ns: non-significant, *** P < 0.001 with respect to cytokine production by control cells (macrophages 
derived from HSPCs differentiated with M-CSF only) and ### P < 0.001 with respect to cytokine production by 
cells derived from HSPCs transiently exposed to Pam3CSK4.  

 

 

 

A 
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absence of Pam3CSK4 for 24 h (transient exposure). Then, after removing Pam3CSK4 by 

washing, HSPCs were cultured with GM-CSF for further 6 days in the presence or absence 

of depleted zymosan or C. albicans yeasts. As expected, the production of TNF-α and IL-6 in 

response to both Pam3CSK4 and LPS was significantly diminished in macrophages generated 

from HSPCs transiently exposed to Pam3CSK4, compared to control macrophages (derived 

from unexposed HSPCs) (Figure 10). However, neither depleted zymosan nor C. albicans 

yeasts reversed the lower production of cytokines induced by Pam3CSK4 exposure of HSPCs. 

Rather, they even further decreased TNF-α and IL-6 production in response to Pam3CSK4, 

while they did not modify cytokine production in response to LPS. Therefore, C. albicans 

yeasts reinforce the phenotype induced by Pam3CSK4 exposure of HSPCs in GM-CSF-derived 

macrophages, while partially reversing it in M-CSF-derived macrophages. 

 

 
FIGURE 13 | Cytokine production by GM-CSF-derived macrophages obtained from HSPCs following 
the same PRR stimulating protocol as in Figure 12A. Purified Lin⁻ cells from BM of C57BL/6 mice were 
cultured on day 0 with 20 ng/ml SCF and 50 ng/ml GM-CSF for 24 h in the presence or absence of 1 µg/ml 
Pam3CSK4. Cells were washed thoroughly on day 1 and then cultured with GM-CSF for further 6 days in 
the presence or absence of 10 µg/ml depleted zymosan or inactivated C. albicans yeasts (1:7.5 murine cell: 
yeast ratio). Adherent cells were harvested and challenged with 100 ng/ml Pam3CSK4 or 100 ng/ml LPS 
for 24 h. TNF-α and IL-6 levels in cell-free supernatants were measured by ELISA. Results are expressed 
as means ± SD of pooled data from two experiments. ns: non-significant, ** P < 0.01 and *** P < 0.001 with 
respect to cytokine production by control cells (macrophages derived from HSPCs differentiated with 
GM-CSF only) and ## P < 0.01 and ### P < 0.001 with respect to cytokine production by cells derived 
from HSPCs transiently exposed to Pam3CSK4.  
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4 Phenotype of macrophages ex vivo derived 
from HSPCs in vivo exposed to systemic 
candidiasis or to a TLR2 ligand 

4.1 Systemic candidiasis  

As it has been reported in the previous sections of this thesis project, in vitro detection 

of TLR2 or Dectin-1 ligands (including inactivated yeasts of C. albicans) by HSPCs impacts 

the antimicrobial function of the macrophages they produce. The observed in vitro effect of           

C. albicans on HSPCs may be of biological relevance in vivo during infection. Therefore, we 

now sought to determine whether HSPCs may sense microorganisms in vivo using a mouse 

model of systemic candidiasis, and whether this may alter the function of the macrophages 

they produce ex vivo. C57BL/6 mice were infected via intraperitoneal injection of a virulent 

strain of C. albicans (45 × 106 yeasts per mouse). At days one or three post-infection, Lin⁻ 

cells were purified from mice BM and differentiated into macrophages in M-CSF cultures in 

the presence of 2.5 μg/ml amphotericin B to prevent potential fungal growth. To assess the 

tissue outgrowth of the microorganism in infected mice, the fungal burden was determined 

in the kidney, the target organ in this invasive model of candidiasis. The dose of yeasts 

injected resulted in a low and high number of CFUs at days one and three, respectively. The 

ex vivo differentiated macrophages were counted and plated at equal cell numbers for 

stimulation with TLR agonists to assess their ability to produce TNF-α (Figure 14). Cytokine 

production in response to Pam3CSK4 was significantly increased in macrophages generated 

from low-infected mice (day one post-infection) compared to macrophages generated from 

control uninfected mice (control macrophages), whereas macrophages generated from high 

infected animals (day three post-infection) produced lower cytokine levels than control 

macrophages. TNF-α production in response to LPS was significantly diminished in 

macrophages generated from both low- and high-infected mice compared to control 

macrophages.  

To further characterize the antifungal function of HSPC-derived macrophages 

generated from infected animals, we measured the macrophages ability to kill yeast cells in 

vitro using the same experimental assay performed with in vitro differentiated 

macrophages. In these conditions, control macrophages were able to kill a significant 

percentage of yeasts, similar to the percentage of yeasts killed by macrophages obtained 

from high-infected mice. However, macrophages differentiated from HSPCs purified from 
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low-infected animals possessed an increased fungicidal activity (roughly 80% as compared 

to 65% of killing by control macrophages, i.e., 23% greater than control macrophages 

(Figure 14).  

Therefore, early during the infection, with low fungal burden levels, HSPCs give rise to 

macrophages trained in response to Pam3CSK4 and with higher fungicidal activity. 

Interestingly, when the infection reaches high fungal burden levels, HSPC-derived 

macrophages become tolerized, as they have a diminished ability to produce TNF-α, 

whereas they keep up their fungicidal capacity. These data collectively indicates that HSPCs 

sense the infection in vivo and this profoundly alters the functional phenotype of the 

macrophages ex vivo derived from them. 

 

FIGURE 14 | Cytokine production and fungicidal activity of ex vivo HSPC-derived macrophages from             
C. albicans infected mice. C57BL/6 mice were injected intraperitoneally with 45 × 106 yeasts of C. albicans 
ATCC 26555. At day 1 or 3 post-infection, mice were sacrificed to assess the outgrowth of the yeasts in the 
kidney, and to isolate the BM. The fungal burden in the kidneys is expressed as CFUs per gram of tissue. Lin⁻ 
cells were purified from BM and cultured for seven days with medium containing 20 ng/ml SCF, 50 ng/ml M-CSF 
and 2.5 µg/ml amphotericin B. At day seven, adherent cells were harvested and for cytokine assays, they were 
challenged with Pam3CSK4 (100 ng/ml) or LPS (100 ng/ml) for 24 h. TNF-α levels in cell-free culture 
supernatants were measured by ELISA. For fungicidal activity determination, macrophages were challenged 
with viable PCA2 yeasts at a 1:3 ratio (murine cell:yeast) for 1 h. C. albicans cells were also inoculated in culture 
medium without murine cells (control). After incubation, samples were diluted, plated on Sabouraud dextrose 
agar and incubated overnight art 37 °C; CFUs were counted and killing percentages were determined as follows: 
% killing = [1 – (CFUs sample at t = 1 h)/(CFUs control at t = 1 h)] × 100. Triplicate samples were analyzed in 
each assay. Results are expressed as means ± SD of pooled data from two experiments. * P < 0.05, *** P < 0.001 
and **** P <0.0001 with respect to macrophages derived from control uninfected mice.  
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4.2 TLR2 agonist exposure: short treatment and extended 
treatment 

Next, we wondered whether in vivo exposure of HSPCs to Pam3CSK4 might alter the 

function of the macrophages they produce ex vivo. Firstly, we used a short treatment model 

by intravenously injecting mice with one dose of the ligand. One day later (24 h), Lin⁻ cells 

were purified from BM and cultured with M-CSF for 7 days, for macrophage differentiation, 

in the presence or absence of inactivated C. albicans yeasts. HSPC-derived macrophages 

from untreated mice were used as control macrophages. The harvested adherent cells were 

then plated for stimulation with TLR agonists to assess their ability to produce TNF-α. The 

production of TNF-α in response to Pam3CSK4 or LPS was significantly diminished in 

macrophages generated from HSPCs exposed to the TLR2 ligand in vivo, compared to 

control macrophages (Figure 15, plain white and colored bars). 

FIGURE 15 | Cytokine production and fungicidal activity of ex vivo HSPC-derived macrophages from mice 
treated with one dose of Pam3CSK4. C57BL/6 mice were injected intravenously with 100 μg of Pam3CSK4 and 
Lin− cells were recovered from BM on day 1 for ex vivo differentiation to macrophages. Lin⁻ cells were cultured 
during seven days with media containing 20 ng/ml SCF and 50 ng/ml M-CSF, in the presence or absence of 
inactivated yeasts of C. albicans (1:7.5 murine cell:yeast ratio). At day seven, adherent cells were harvested and 
for cytokine assays and fungicidal activity determination, they were challenged as indicated in Figure 14. 
Triplicate samples were analyzed in each assay. Results are expressed as means ± SD of pooled data from two 
experiments. * P<0.05, *** P < 0.001 and **** P <0.0001 with respect to macrophages derived from control 
untreated mice, # P < 0.05 and ### P < 0.001 with respect to cytokine production by macrophages derived from 
HSPCs differentiated with M-CSF only, in the absence of inactivated yeasts, and · P < 0.05 and ··· P < 0.001 with 
respect to macrophages derived from control untreated mice. 
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Consistent with our previous data reported in this thesis project, in vitro HSPC 

differentiation in the presence of C. albicans leads to the generation of macrophages that 

produce higher levels of TNF-α (Figure 15, grated white bars). Interestingly, differentiation 

of Lin⁻ cells in the presence of fungal stimuli partially reversed the effect of in vivo Pam3CSK4 

signaling in HSPCs (Figure 15, grated colored bars), as those macrophages produced higher 

cytokine levels than HSPC-derived macrophages from Pam3CSK4-treated mice (Figure 15, 

plain colored bars) but still significantly minor amounts than control macrophages (Figure 

15, plain white bars). In addition, macrophages were challenged with viable yeasts in order 

to determine their fungicidal activity. Results show that the tolerized macrophages 

generated from HSPCs exposed to the TLR2 ligand in vivo have a diminished ability to kill 

yeast cells in vitro, as compared to control macrophages (Figure 15). Therefore, a short in 

vivo exposure to a TLR2 agonist results in M-CSF-derived macrophages with a less ability to 

produce pro-inflammatory cytokines, which can still respond to in vitro training by C. 

albicans yeasts but have decreased their fungicidal activity. 

These findings prompted us to investigate whether this macrophage phenotype, 

induced by a short systemic Pam3CSK4 exposure, might also occur after an extended 

Pam3CSK4 treatment. For this purpose, we used a model previously described by Herman et 

al. (2016), for our ex vivo assays. C57BL/6 mice were given 100 µg of Pam3CSK4 by 

intraperitoneal injection at days 0, 3 and 5. One day (24 h) after the final dose (day 6), Lin⁻ 

cells were purified from the BM and differentiated into macrophages with M-CSF, in the 

presence or absence of inactivated C. albicans yeasts. In this scenario of extended treatment 

with the TLR2 ligand, TNF-α production was significantly higher in response to Pam3CSK4 

or LPS, compared to control macrophages (generated from HSPCs from control animals) 

(Figure 16, plain white and colored bars). These macrophages, generated from HSPCs 

exposed to the TLR2 ligand in vivo, showed no significant differences in their ability to kill 

yeast cells in vitro, as compared to control macrophages (Figure 16, plain white and colored 

bars). The presence of fungal cells during differentiation further increased the increased 

TNF-α response to Pam3CSK4, but not to LPS stimulation (Figure 16, grated colored bars). 

Therefore, after an extended in vivo TLR2 agonist exposure, HSPCs give rise to 

M-CSF-derived macrophages with an increased ability to produce pro-inflammatory 

cytokines, but a similar fungicidal activity than control macrophages. 

Our data indicate that HSPCs sense the TLR2 agonist in vivo, and that this profoundly 

alters the functional phenotype of the macrophages ex vivo derived from them. The ability 

of HSPC-derived macrophages to produce inflammatory cytokines is dependent on the 

extent of HSPC exposure to Pam3CSK4 challenge, as short exposure (one dose) generates 
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macrophages that produce lower amounts of cytokines, while an extended treatment (three 

doses) generates macrophages that produce higher amounts of cytokines than 

macrophages derived from unexposed HSPCs. Furthermore, the fungicidal activity is lower 

for short exposure or similar for extended treatment, compared to that of control 

macrophages. 

 

 

 

 

 

 
 
 

FIGURE 16 | Cytokine production and fungicidal activity of ex vivo HSPC-derived macrophages from mice 
treated with several doses of Pam3CSK4. C57BL/6 mice were given 100 μg of Pam3CSK4 by intraperitoneal 
injection at days zero, three, and five (three doses), and 24 h after the final dose, mice were sacrificed to isolate 
the BM. Lin⁻ cells purified from BM were cultured during seven days in medium containing 20 ng/ml SCF and 
50 ng/ml M-CSF in the presence or absence of inactivated yeasts of C. albicans (1:7.5 murine cell:yeast ratio). At 
day seven, adherent cells were harvested and for cytokine assays and fungicidal activity determination, they 
were challenged as indicated in figure 14. Triplicate samples were analyzed in each assay. Results are expressed 
as means ± SD of pooled data from two experiments. ** P < 0.01 and *** P < 0.001 with respect to macrophages 
derived from control untreated mice, ### P < 0.001 with respect to cytokine production by macrophages 
derived from HSPCs differentiated with M-CSF only, in the absence of inactivated yeasts. 
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5 Discussion  

The supply of myeloid phagocytes, both in the steady state as well as during a 

demand-adapted response to infection, is primarily obtained by myelopoiesis from HSPCs. 

Various mechanisms govern HSPC responses to infection, including cytokine signaling, 

niche function and direct sensing of PAMPs by HSPCs themselves (Boettcher and Manz, 

2016; Chavakis et al., 2019; Kobayashi et al., 2016; Zhao and Baltimore, 2015). Thus, 

additional perspectives on hematopoiesis during infection have come from the discovery 

that HSPCs express functional TLRs and that TLR signals provoke cell cycle entry and 

myeloid differentiation both in vitro and in vivo (Cannova et al., 2015; Yáñez et al., 2013a). 

Our previous studies show that PRR-mediated recognition of C. albicans by HSPCs may help 

replace and/or increase cells that constitute the first line of defense against the fungus 

(Megías et al., 2013; Yáñez et al., 2010; Yáñez et al., 2011; Yáñez et al., 2009). The fact that 

HSPCs sense pathogens indicates a new role for TLRs because they may be involved in 

instructing immune cell development following direct detection of microbes by HSPCs, 

leading to the generation of innate immune cells that fight against the pathogen. However, 

a study of the functional properties of the generated myeloid cells is essential to discern 

whether pathogens may modulate HSPC responses to evade the immune system or, 

alternatively, this mechanism may be protective, allowing a rapid generation of cells in a 

pathogen-specific manner, which are better prepared to deal with the infection. 

 
In this study, we first performed an in vitro model of HSPC differentiation by using 

M-CSF, a factor produced by the host in homeostatic conditions, to investigate the functional 

consequences for macrophages generated in the presence of different PRR agonists or             

C. albicans yeasts. The exposure of HSPCs to Pam3CSK4 (continuous or transient) or LPS 

(continuous) increased the yield of M-CSF-derived macrophages, while the exposure to 

depleted zymosan or C. albicans cells did not, indicating that TLR agonists, but not Dectin-1 

agonist or yeasts, induce proliferation and/or survival of the progenitors during 

differentiation. These results are in agreement with our previous report in which we show 

that Pam2CSK4 (a synthetic version of bacterial lipopepetide that is detected by TLR6/TLR2 

heterodimers, instead of detection by TLR1/TLR2 heterodimers as Pam3CSK4) induces the 

proliferation of LT-HSCs in vitro under defined conditions of culture (serum-free, stromal 

cell-free cultures) (Yáñez et al., 2010). In those conditions (specifically designed to prevent 

differentiation), C. albicans yeasts are also able to induce HSC proliferation in a 

TLR2/MyD88-dependent manner, although under our current experimental conditions 
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(M-CSF and serum), differentiation seems to be favored over proliferation of progenitors in 

response to C. albicans.  

The same stimuli that increased the yield of M-CSF-derived macrophages 

(continuous/transient Pam3CSK4 or continuous LPS) also modified the expression of the 

surface molecules Ly6C and MHCII. TLR signaling increased the percentage of cells that 

expressed the inflammatory monocyte marker Ly6C and are negative for MHCII, a 

phenotype corresponding to inflammatory macrophages that play a clear role in defense 

against pathogens. To investigate this further, we assessed whether PRR signaling 

modulates anti-fungal functions such as cytokine production, phagocytosis and killing of 

yeasts. In this context, our group have already shown that macrophages derived from HSPCs 

exposed to a TLR2 agonist produced lower levels of inflammatory cytokines (Yáñez et al., 

2013b). Here we found the same phenotype after LPS treatment (continuous or transient) 

whereas the opposite phenotype (increased TNF-α and IL-6 production) was observed 

following depleted zymosan or C. albicans yeast treatment. It should be noted that depleted 

zymosan and C. albicans yeasts are particulate ligands while Pam3CSK4 and LPS are soluble 

molecules, and these different physical properties may be sensed by the progenitors. 

Although the profoundly altered ability to produce cytokines may be partially due to the 

observed changes in TLR expression, other mechanisms regulating signal transduction from 

TLRs must also contribute to this phenotype.  

Endotoxin tolerance is a well-known process whereby innate immune cells 

(particularly monocytes and macrophages) that previously responded to LPS display a 

reduced ability to produce inflammatory cytokines upon subsequent stimulation (Biswas 

and López-Collazo, 2009; Cavaillon and Adib-Conquy, 2006). Our data indicate that this 

tolerance could be applied not only to mature myeloid cells but to HSPCs too, as transient 

exposure of Lin⁻ cells to LPS results in the generation of mature macrophages with a 

reduced ability to produce inflammatory cytokines. Therefore, detection of soluble LPS by 

HSPCs during systemic infections may lead to the generation of tolerized macrophages. 

Heterotolerance also occurs in HSPCs, as HSPCs exposed (transiently or continuously) to 

Pam3CSK4 or LPS generate macrophages with a diminished ability to produced 

pro-inflammatory cytokine in response to both TLR agonists.  

Regarding to the ability of killing yeasts, we found that macrophages derived in the 

presence of the TLR2 agonist or C. albicans cells possessed higher fungicidal activity than 

control M-CSF-derived macrophages. In fact, macrophages derived in the presence of 

Pam3CSK4 killed yeasts better, even though they showed a reduction in phagocytosis. In 

contrast, these macrophages exhibited a reduced ability to produce inflammatory cytokines 
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(tolerized phenotype). In this context, Pam3CSK4 tolerance in macrophages has also been 

associated with an enhanced antimicrobial activity against gram-positive and 

gram-negative bacteria, due to an accelerate phagosome maturation with upregulation of 

membrane-trafficking regulators and lysosomal enzymes (Liu et al., 2017). In this study, an 

enhanced bacteria phagocytosis by Pam3CSK4-tolerized macrophages was detected, unlike 

our results showed a reduction of C. albicans phagocytosis by HSPC-derived macrophages. 

These differences might be explained by the use of different microorganisms to study the 

antimicrobial ability of tolerized-macrophages, added to the fact that exposure to the TLR2 

agonist prior to or during myelopoiesis did not have precisely the same effects on 

macrophage function as exposure after differentiation (Yáñez et al., 2013b). It is interesting 

to note that TLR2 signaling reduced cytokine production and increased fungicidal activity, 

while the Dectin-1 agonist increased cytokine production but did not affect the fungicidal 

ability. However, C. albicans yeasts that signal via both receptors induced higher cytokine 

and higher fungicidal activity. These results indicate that combinatorial signaling by 

multiple receptors on HSPCs shapes their responses. Therefore, functional properties of 

macrophages produced during infection may depend on the specific molecular composition 

of the pathogen (the combination of PRRs triggered), added to other signals the HSPCs 

receive.  

Our results are in line with a report showing that candidiasis affords protection against 

reinfection by inducing a functional reprogramming of monocytes, leading to an increased 

cytokine production in response to the secondary challenge (Quintin et al., 2012). This 

phenomenon termed trained immunity, as well as endotoxin tolerance, proves that innate 

immune cells can display some memory characteristics and respond in a different way upon 

reexposure to the same or heterologous stimuli. The central feature of this innate immune 

memory is the ability of PAMP-exposed cells to mount a different transcriptional response 

compared to unexposed cells. Moreover, it has been demonstrated that epigenetic and 

transcriptional programs of monocyte differentiation to macrophages distinguish tolerant 

and trained macrophage phenotypes (Saeed et al., 2014). Although in our continuous 

exposure experiments it is possible that both progenitor cells and differentiated 

monocyte/macrophages respond to PRR ligands, results obtained upon transient exposure 

indicate that this concept of “trained immunity” may apply not only to differentiated cells 

but also to HSPCs. Therefore, PRRs may instruct immune cell development and function 

following direct detection of PAMPs by HSPCs. Furthermore, training at the level of HSPCs 

would provide a mechanism for sustained production of trained monocytes after clearance 

of the pathogen.  
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HSPCs have been reported to produce copious amounts of diverse cytokines through 

NF-κB signaling in response to TLR stimulation. Among cytokines produced by HSPCs, IL-6 

is a particularly important paracrine regulator of myeloid differentiation and HSPC 

proliferation, which induces rapid myeloid cell recovery during neutropenia (Zhao et al., 

2014). Other authors have shown that HSPCs secrete PGE2 upon TLR2-mediated 

recognition of S. aureus, molecule that promotes HSPC proliferation and differentiation to 

the myeloid lineage in an autocrine/paracrine manner (Granick et al., 2013). Consequently, 

we tested the possible role of IL-6 and PGE2 in conferring phenotypic properties during 

differentiation, but blockade of these mediators did not reverse the diminished cytokine 

production of the macrophages produced by TLR-stimulated HSPCs. Future studies are 

required to define the mechanisms underlying the effects of HSPC exposure to PAMPs on 

macrophage function. 

Thus far, our data show that detection of PAMPs by HSPCs impacts the antimicrobial 

function of the macrophages they produce in homeostatic conditions (M-CSF-derived 

macrophages). This is the first experimental evidence showing that HSPC activation in 

response to C. albicans leads to the generation of macrophages better prepared to deal with 

the infection: they produce higher levels of inflammatory cytokines (trained phenotype) 

and are better at killing C. albicans and C. glabrata yeasts than macrophages derived from 

unexposed HSPCs. 

Next, we decided to study the effect of PRR stimulation in HSPCs on the functional 

phenotype of myeloid cells in vitro derived from them by using factors produced by the host 

during infection/inflammatory conditions (GM-CSF-derived macrophages). The exposure 

of HSPCs to TLR2, TLR4, or Dectin-1 agonists, as well as C. albicans inactivated yeasts, during 

the whole differentiation process, increased the percentage of cells that exhibit a “more 

pro-inflammatory” phenotype (Ly6C⁺ MHCII⁻). Interestingly, transient exposure (before 

differentiation) to Pam3CSK4 induced the same phenotype clearly indicating that TLR2 

signaling on HSPCs impacts the phenotype of the macrophages they produce during 

infection/inflammation. 

To study the impact of PRR signaling in HSPCs on the functional phenotype of 

macrophages obtained in GM-CSF cultures, we focused on their ability to produce 

inflammatory cytokines. Here, we found that GM-CSF-derived macrophages generated from 

HSPCs exposed to a TLR2 agonist (transiently or continuously, during differentiation) 

produced lower levels of inflammatory cytokines upon being challenged with TLR ligands. 

However, cytokine production by GM-CSF-derived macrophages was not modified by 

challenging HSPCs with LPS, depleted zymosan, or C. albicans yeasts. These results contrast 
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with the previous results obtained with M-CSF cultures, as LPS exposure during HSPC 

differentiation generates M-CSF-derived macrophages with a tolerized phenotype and           

C. albicans activation leads to the generation of trained macrophages. Furthermore, the 

fungicidal ability of GM-CSF-derived macrophages was not affected by the presence of 

inactivated C. albicans yeasts during macrophage differentiation. These results suggest that 

in the presence of M-CSF (in homeostatic conditions or very early during infection), 

different PRR activation of HSPCs may differentially influence the function of the 

macrophages they produce, while in the presence of GM-CSF (inflammatory conditions 

during the infection), only TLR2 activation of HSPCs determines the tolerized phenotype. 

Endotoxin tolerance in macrophages is a mechanism that avoids sustained activation, 

which can lead to extensive tissue damage and manifestation of pathological states such as 

sepsis (Biswas and López-Collazo, 2009; Cavaillon and Adib-Conquy, 2006). In clinical 

studies, the magnitude and the persistent nature of this tolerized state is associated with 

increased mortality and nosocomial infections. In this context, it has been reported that 

Dectin-1 activation can reverse macrophage tolerance ex vivo, providing a potential 

therapeutic approach to reverse the tolerized phenotype in patients with sepsis (Novakovic 

et al., 2016). Therefore, we hypothesized that fungal ligands may be capable of reversing 

the tolerized phenotype of macrophages obtained from HSPCs transiently exposed to 

Pam3CSK4. However, our results show that fungal ligands reinforced the tolerized 

phenotype of GM-CSF-derived macrophages but partially reversed the tolerized phenotype 

of M-CSF-derived macrophages. Overall, these results indicate that activation of HSPCs with 

C. albicans cells may generate macrophages with a different phenotype, depending on the 

growth factor (M-CSF or GM-CSF) that induces their differentiation as well as on the 

previous stimuli that progenitors received. Although further studies will be required to 

define the mechanisms underlying the effects that exposing HSPCs to PAMPs has on 

macrophage function, epigenetic reprogramming probably underlies these effects as it has 

been described in several models for innate immunity memory (Netea et al., 2020; Saeed et 

al., 2014). 

Therefore, our results show that in vitro detection of PAMPs by HSPCs impacts the 

antimicrobial function of macrophages they produce either in homeostatic conditions 

(M-CSF-derived macrophages) or inflammatory conditions (GM-CSF-derived 

macrophages). However, tolerized or trained phenotype of HSPC-derived macrophages, 

regarding pro-inflammatory cytokine production, depends on the combinatorial signals 

that HSPCs receive (PRRs and CSFs), as well as on the timing of HSPC activation by the 

different stimuli.  
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Finally, we used an ex vivo model to further investigate whether HSPCs may sense           

C. albicans or their PAMPs during infection or in vivo exposure, respectively, and whether 

this signaling impacts the antimicrobial function of the macrophages they produce ex vivo. 

The direct interaction of C. albicans with HSPCs may involve yeast cells and/or fungal 

derived PAMPs in BM. In a previous report, we demonstrated the presence of viable yeasts 

in the BM of mice infected with the low virulent strain PCA2 (Yáñez et al., 2011), and it is 

well known that some fungal PAMPs, such as mannan and glucan, are present in the blood 

of patients with systemic candidiasis (López-Ribot et al., 2004; Obayashi et al., 1995).  

In these experiments, we have shown that early during candidiasis, ex vivo cultured 

HSPCs gave rise to macrophages with a trained phenotype in their cytokine response to a 

TLR2 ligand and with a higher fungicidal activity. However, when the infection progressed 

to high fungal burden levels, ex vivo HSPC-derived macrophages became tolerized in their 

cytokine response, while they kept up their fungicidal capacity. We can deduce from these 

observations that differences in the phenotype of generated macrophage depending on the 

stage of infection could be a beneficial effect for the host during the infection; in the first 

stages of the infection, inflammatory cytokines and phagocytes with high fungicidal capacity 

are needed, whereas when the fungal invasion progresses, a “cytokine storm” could be 

harmful, therefore the generated macrophages are tolerized then. The reasons why the 

generated macrophages exhibit these opposite responses (training or tolerance) during the 

infection are not obvious. However, they may be related to the increasing pathogen loads 

during the infection, to the progressive tissue damage and/or to the impairment of the 

immune cell function. Thus, immune cells shift from fighting against the pathogen (training 

phenotype) toward maintenance and repair activities, which probably induces a phenotype 

of immune tolerance to the pathogen.  

The fact that the pathogen dose plays a key role in determining hormetic responses has 

been recently proposed for mature innate immune cells (Bauer et al., 2018). Our results 

suggest that this hormetic response also occurs in HSPCs during infection. A tolerized 

response would only develop when the early trained response is not able to deal with 

infection and, therefore, pathogen burden increases. Although the in vitro generated 

phenotype in our ex vivo model may not exactly reproduce the in vivo situation, our results 

clearly indicate that HSPCs sense the infection in vivo, which profoundly alters the 

functional phenotype of macrophages derived from them ex vivo. Supporting this idea, it has 

been shown that intravenous vaccination with BCG educates HSCs to generate trained 

monocytes/macrophages that protect mice against tuberculosis (Kaufmann et al., 2018). 
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In the opposite direction to trained immunity, TLR2 agonist tolerance is a phenomenon 

that avoids sustained production of inflammatory mediators by innate immune cells 

(mainly monocytes and macrophages), which can be harmful to the host (Medvedev et al., 

2006). We have shown that a short systemic Pam3CSK4 exposure in vivo resulted in tolerized 

HSPC-derived macrophages, being this tolerized phenotype partially reversed by C. albicans 

yeasts presence during the in vitro HSPC differentiation. These results are consistent with 

the previous ones obtained using an in vitro HSPC stimulating protocol, in which 

macrophages produced by HSPCs in vitro exposed to Pam3CSK4 (prior to or during 

macrophage differentiation) manifested a tolerized phenotype that could be partially 

reverse by fungal ligands. However, an extended systemic Pam3CSK4 exposure in vivo 

generated HSPC-derived macrophages that produce higher amounts of cytokines (trained 

macrophages). Therefore, the ex vivo tolerized or trained phenotype depends both on the 

dose and the timing of the different signals (direct TLR2-mediated signaling and cytokines 

released by different cell types in response to Pam3CSK4) that HSPCs receive in vivo. It 

should be noted that a TLR2 agonist exposure and a systemic C. albicans infection are not 

comparable models. Therefore, the observed opposite responses of HSPCs to Pam3CSK4, 

switching from tolerance (one dose) to training (extended exposure), cannot be related to 

pathogen load, as the response to Pam3CSK4 involves only one PRR (TLR2) and occurs in the 

absence of deleterious effects associated to infection. In addition, the fungicidal activity of 

ex vivo generated macrophages was dependent on the dose and the timing of the signals that 

HSPCs receive in vivo. Even though, there is no clear relationship between tolerized or 

trained macrophages and their killing activity.  

In conclusion, our data demonstrate that the concept of innate immune memory, 

already described for monocytes and macrophages, also occurs in HSPCs, and suggest that 

the tailored manipulation of these responses may serve as an immunotherapeutic approach 

to boost innate immune responses to infection. Moreover, these memory-like innate 

immune responses probably occur during infections other than candidiasis, and 

development of training or tolerance may depend on the severity of the infection and its 

time-course (microbial burden and associated deleterious effects), as well as on the specific 

pathogens.  
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1 In vivo role of HSPCs against C. albicans 
infection in a model of extended TLR2 
agonist treatment 

1.1 HSPCs and myeloid cells in the spleen of TLR2 agonist treated 
mice  

Despite the fact that hematopoiesis in adult mice takes place mainly in the BM, it can 

also occur in the spleen. This extramedullary hematopoiesis happened in the steady state 

and it is enhanced under stress conditions such as inflammation or infection. As previously 

described by Herman et al. (2016), we observed that the spleens of mice treated with 

several doses of the TLR2 agonist Pam3CSK4 were enlarged and possessed higher numbers 

of leukocytes in comparison to the spleens of control mice (untreated with Pam3CSK4). The 

percentage and the total number of Lin⁻ c-Kit⁺ cells had also significantly increased in 

treated mice (Figure 17).  

FIGURE 17 | Effect of extended in vivo Pam3CSK4 treatment on the number of splenocytes and splenic HSPCs. 
C57BL/6 mice were given 100 µg of Pam3CSK4 by intraperitoneal injection at days 0, 3, and 5 (three doses), and 24 
h after the final dose, mice were sacrificed to obtain the spleen. (A) Appearance and size of spleens from control and 
treated mice are shown in the image. (B) After isolation of splenocytes and red blood cell lysis, cell number was 
obtained. (C) Cells were labeled with an anti-c-Kit antibody and a cocktail of antibodies against “lineage markers” 
and analyzed by flow cytometry. The lineage negative population was gated, shown in forward scatter (FSC) versus 
c-Kit⁺ contour plots, and subgated as c-Kit⁺ cells. The indicated numbers refer to the percentages of total splenocytes. 
(D) Frequency and absolute numbers of Lin⁻ c-Kit⁺ cells in the spleens are indicated. Representative plots and bar 
graphs of data expressed as means ± SDs from two experiments (2 mice per condition and experiment). ** P < 0.01 
with respect to cells from untreated mice. 
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We have previously shown that this Pam3CSK4 treatment altered the functional 

phenotype of BM HSPC-derived macrophages, results that prompted us to evaluate the 

functional phenotype of spleen HSPC-derived macrophages. Lin⁻ cells from spleens of 

Pam3CSK4-treated mice were cultured with M-CSF to induce differentiation to macrophages; 

once differentiated, macrophage cytokine production or fungicidal activity were assessed 

following the same experimental procedure performed with BM HSPC-derived 

macrophages (Figure 18). BM HSPC-derived macrophages from untreated mice were used 

as controls, since very few c-Kit⁺ cells were found in spleens from control mice. TNF-α 

production in response to Pam3CSK4 was significantly higher in macrophages generated 

from spleen HSPCs exposed to the TLR2 ligand in vivo, compared to control macrophages. 

However, these trained macrophages were almost unable to kill yeasts in vitro. 

 

 

Direct sensing of TLR2 ligands induce proliferation and myeloid differentiation of 

HSPCs in vivo (Megías et al., 2012). Therefore, due to the increase of HSPCs numbers in the 

spleen of Pam3CSK4-treated mice, we examined the number of mature myeloid cells in this 

organ after treatment. Both the percentage and the total number of CD11b⁺ cells were 

significantly increased in Pam3CSK4-treated mice compared to control mice, showing an 

expansion of mature myeloid cells in the spleen. This increase in CD11b⁺ cells stems from 

an increase in the absolute number of neutrophils, monocytes, cDCs and macrophages. 

Among all these cell types, the population that stood out the most was a population of 

FIGURE 18 | Cytokine production and fungicidal activity of macrophages ex vivo derived from spleen 
HSPCs purified from mice treated with several doses Pam3CSK4. C57BL/6 mice were given 100 µg of 
Pam3CSK4 by intraperitoneal injection at days zero, three, and five (three doses), and 24 h after the final 
dose, mice were sacrificed to obtain the spleen. Lin⁻ cells were recovered for ex vivo differentiation culturing 
them with 20 ng/ml SCF and 50 ng/ml M-CSF. At day seven, adherent cells were harvested. (A) Macrophages 
were challenged with 100 ng/ml Pam3CSK4 for 24 h and TNF-α levels in cell-free culture supernatants were 
measured by ELISA. (B) For fungicidal activity determination, macrophages were challenged with viable 
PCA2 yeasts at a 1:3 ratio (murine cell:yeast) for 1 h. C. albicans cells were also inoculated in culture medium 
without murine cells (control). After incubation, samples were diluted, plated on Sabouraud dextrose agar 
and incubated overnight at 37 °C; CFUs were counted and killing percentages were determined as follows: 
% killing = [1 – (CFUs sample at t = 1 h) / (CFUs control at t = 1 h)] × 100. Triplicate samples were analyzed 
in each assay. Results are expressed as means ± SD of pooled data from two experiments. ** P < 0.01 and *** 
P < 0.001 with respect to macrophages derived from untreated mice. 
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macrophages (CD11b⁺, MHCII⁺, Ly6C⁻ and CD11c⁻) that raised from 1.5% in control mice to 

13.6% in Pam3CSK4-treated mice (Figure 19).  

 

 

 

Next, we analyzed cytokine production and fungicidal activity of total splenocytes from 

control and Pam3CSK4-treated mice (Figure 20). In vitro production of TNF-α in response 

to Pam3CSK4 or LPS was significantly diminished in total splenocytes from 

FIGURE 19 | Flow cytometry analysis of myeloid splenic cells from mice following an extended Pam3CSK4 
treatment. C57BL/6 mice were given 100 µg of Pam3CSK4 by intraperitoneal injection at days 0, 3, and 5 (three 
doses), and 24 h after the final dose, mice were sacrificed to obtain the spleen. After isolation of splenocytes and 
red blood cell lysis, cell number was obtained. Cells were labeled with anti-CD11b, anti-CD11c, anti-Ly-6G, 
anti-Ly-6C and anti-MHCII antibodies and analyzed by flow cytometry. (A) Frequency and absolute numbers of 
myeloid cells per spleen were determined by flow cytometry. Results are expressed as means ± SD of pooled 
data from two experiments (two mice per condition and experiment). (B) The gating strategy for mature 
myeloid cells analysis from CD11b⁺ Ly6G⁻ splenic cells is shown using representative contour plots and the 
indicated numbers refer to the percentages of total splenocytes. Nφ (neutrophils), cDc (classical dendritic cells), 
Mph (macrophages), Mc (monocytes). * P < 0.05, ** P < 0.01 and *** P < 0.001 with respect to control cells 
(leukocytes from untreated mice). 
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Pam3CSK4-treated mice compared to control mice splenocytes, indicating that a TLR2 

agonist treatment induce tolerance in spleen mature myeloid cells. However, splenocytes 

from Pam3CSK4-treated mice showed higher fungicidal activity than splenocytes from 

control mice. This result correlates with the higher number of mature myeloid cells (mostly 

phagocytic cells) in the spleen of treated mice but may also indicate a higher fungicidal 

activity of these cells due to the TLR2 ligand treatment. Therefore, after an extended in vivo 

TLR2 agonist exposure, myeloid cells in the spleen expand, and they are tolerized to 

pro-inflammatory cytokine production but competent to kill C. albicans cells in vitro.  

 

 

1.2 Influence of the TLR2 agonist treatment on in vivo 
susceptibility of mice to invasive candidiasis 

Due to the remarkable effect of an extended TLR2 agonist treatment on the phenotype 

of macrophages produced ex vivo, we next addressed the possibility that this treatment 

could influence the in vivo susceptibility to invasive candidiasis. C57BL/6 mice were given 

100 µg of Pam3CSK4 by intraperitoneal injection at days 0, 3 and 5, and 24 h after the final 

dose, mice were infected via intraperitoneal injection (30 × 106 yeasts per mouse) of                 

C. albicans yeasts. Four days post-infection, kidney or spleen fungal burden were 

determined (Figure 21). CFUs in both organs significantly decrease in Pam3CSK4-treated 

FIGURE 20 | Cytokine production and fungicidal activity of splenocytes from mice treated with several 
doses of Pam3CSK4. C57BL/6 mice were given 100 µg of Pam3CSK4 by intraperitoneal injection at days 0, 3, 
and 5 (three doses), and 24 h after the final dose, mice were sacrificed to obtain the spleen. (A) For cytokine 
assay, splenocytes were challenged with 100 ng/ml Pam3CSK4 or 100 ng/ml LPS for 24 h. TNF-α levels in 
cell-free culture supernatants were measured by ELISA. (B) For fungicidal activity determination, splenocytes 
were challenged with 1·× 105 viable PCA2 yeasts for 4 h. C. albicans cells were also inoculated in culture medium 
without murine cells (control). After incubation, samples were diluted, plated on Sabouraud dextrose agar and 
incubated overnight at 37 °C; CFUs were counted and killing percentages were determined as follows: % killing 
= [1 – (CFUs sample at t = 4 h) / (CFUs control at t = 4 h)] × 100. Triplicate samples were analyzed in each assay. 
Results are expressed as means ± SD of pooled data from two experiments. ** P < 0.01, *** P < 0.001 and **** P 
< 0.0001 with respect to control cells (splenocytes from control mice).  
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mice in comparison to those in control mice. This result clearly indicates that an extended 

TLR2 agonist treatment protects mice from tissue invasion during systemic C. albicans 

infection. 

 

 

1.3 Effect of HSPC immunodepletion on in vivo susceptibility of 
TLR2 agonist treated mice to invasive candidiasis 

To determine whether HSPCs are required for TLR2 agonist mediated protection 

against tissue invasion, we immunodepleted c-Kit⁺ progenitors in Pam3CSK4-treated mice 

before C. albicans infection. For this purpose, we used the monoclonal antibody ACK2, as it 

has been previously reported that the complete inhibition of c-Kit signaling by in vivo ACK2 

administration leads to a rapid but transient depletion of BM HSCs (95% depletion at 48 h 

post-injection, with a maximum of depletion at day 9, and a recovery to normal levels at day 

23) (Czechowicz et al., 2007). Considering these data, in our model of Pam3CSK4 extended 

treatment, mice were given 500 μg of ACK2 or its isotype control, by intraperitoneal 

injection, at day 4 (48 h before infection). As shown in Figure 22A, the injection of ACK2 at 

day 4 resulted in a significant reduction of Lin⁻ c-Kit⁺ progenitors at day 6, both in BM 

(roughly 56% reduction) and in spleen (roughly 75% reduction), as compared to isotype 

control injected animals. Despite of HSPC depletion, similar number of mature myeloid cells 

were found in the spleen of immunodepleted mice compared to isotype control injected 

mice. 

FIGURE 21 | Susceptibility to systemic C. albicans infection of mice following an extended Pam3CSK4 
treatment. C57BL/6 mice were given 100 µg of Pam3CSK4 by intraperitoneal injection at days 0, 3, and 5 
(three doses), and 24 h after the final dose, mice were injected intraperitoneally with 30 × 106 yeasts of              
C. albicans ATCC 26555. Four days post-infection, mice were sacrificed to assess the outgrowth of the yeasts 
in the kidney and the spleen. The fungal burden is expressed as CFUs per gram of tissue. Results are expressed 
as means ± SD of pooled data from two experiments (n=2 mice each group per experiment). * P < 0.05 and 
*** P< 0.001 with respect to control mice (infected and not treated with Pam3CSK4). 
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We then assessed kidney or spleen fungal burden in Pam3CSK4/ACK2 or 

Pam3CSK4/isotype control-treated mice at day four post C. albicans infection (Figure 22B). 

FIGURE 22 | Immunodepletion of c-Kit⁺ progenitors in Pam3CSK4-treated mice: susceptibility to 
candidiasis and effect on cytokine production by splenocytes. C57BL/6 mice were given 100 µg of 
Pam3CSK4 by intraperitoneal injection at days 0, 3, and 5 (three doses), and 500 µg of the anti-c-Kit antibody 
ACK2 or isotype control at day 4. One day (24 h) after the final dose of Pam3CSK4, mice were injected 
intraperitoneally with 30 × 106 yeasts of C. albicans ATCC 26555 or were sacrificed to BM or spleen isolation. 
Four days post-infection, mice were sacrificed to assess the outgrowth of the yeasts in kidney and spleen. 
(A) Flow cytometry analysis of Lin⁻ c-Kit⁺ cells in BM and spleen. (B) Fungal burden in kidneys and spleens 
are expressed as CFUs per gram of tissue. Results are expressed as means ± SD of pooled data from two 
experiments (n=2 mice each group per experiment). * P < 0.05 and ** P < 0.01 with respect to control mice 
(treated with Pam3CSK4 and isotype control). (C) TNF-α production and fungicidal activity of splenocytes. 
For cytokine assays, splenocytes were challenged with 100 ng/ml LPS or inactivated yeasts and cell-free 
culture supernatants were measured by ELISA. For fungicidal activity determination, splenocytes were 
challenged with 100,000 viable PCA2 yeasts and incubated for 4 h. After incubation, samples were diluted, 
plated on Sabouraud dextrose agar and incubated overnight at 37 °C; CFUs were counted and killing 
percentages were determined as follows: % killing = [1 – (CFUs sample at t = 4 h) / (CFUs control at t = 4 h)] 
× 100. Triplicate samples were analyzed in each assay. Results are expressed as means ± SD of pooled data 
from two experiments. *** P < 0.001 and **** P < 0.0001 with respect to control cells (splenocytes from 
control mice), and ### P< 0.001 and with #### P< 0.0001 respect to cytokine production by splenocytes 
from mice treated with Pam3CSK4 and isotype control.  
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ACK2-treated mice showed a marked increase in CFUs in both organs, as compared to 

isotype control injected mice, clearly demonstrating that depletion of c-Kit⁺ progenitors in 

Pam3CSK4-treated mice abrogates protection against tissue invasion during invasive 

candidiasis. Therefore, we conclude that Pam3CSK4-induced protection against candidiasis 

is, at least, partially mediated by the expansion of hematopoietic progenitors. In vitro 

cytokine production and fungicidal activity of total splenocytes from control, 

Pam3CSK4/ACK2 or Pam3CSK4/isotype control-treated mice were also analyzed (Figure 

22C). As expected, mature myeloid cells in the spleen of Pam3CSK4/isotype control-treated 

mice were tolerized, as TNF-α production in response to LPS or inactivated yeasts was 

significantly diminished in total splenocytes in comparison to splenocytes from untreated 

mice. Interestingly, splenocytes from ACK2-treated animals produced significantly higher 

amounts of TNF-α than splenocytes from isotype control-treated mice, although still lower 

levels than splenocytes from untreated mice. The increased in fungicidal activity induced by 

the Pam3CSK4 treatment was similar in ACK2-treated mice and isotype control treated mice. 

In conclusion, depletion of c-Kit⁺ progenitors in Pam3CSK4-treated mice increases cytokine 

production by splenocytes without modifying their potentiated fungicidal activity. 

 

2 Effector mechanisms of HSPCs in response 
to PAMPs  

2.1 In vitro soluble factors production: HSPC secretomes 

Our findings indicate that HSPCs sense Pam3CSK4 and C. albicans yeasts in vivo, and 

subsequently may contribute to protect the host against candidiasis. These results 

prompted us to investigate potential mechanisms through which HSPCs could protect mice 

against infection. Since it has been described that HSPCs produce cytokines in response to 

LPS and Pam3CSK4 (Zhao et al., 2014), we profiled the pro-inflammatory molecules secreted 

by HSPCs in response to Pam3CSK4 and C. albicans yeasts. Lin⁻ cells were cultured in a 

serum-free medium, in the absence or presence of Pam3CSK4 or inactivated yeasts, and 3 

days later culture supernatants (secretomes) were collected and analyzed (Figure 23A). 

TNF-α and IL-6 levels were measured in secretomes using quantitative ELISAs (Figure 

23B). Cytokine levels in control secretomes, that is secretomes produced by HSPCs in the 

absence of PAMPs, were undetectable. Consistent with the previous report by Zhao et al. 

(2014), HSPCs produced IL-6 in response to Pam3CSK4. On the other hand, in response to 
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inactivated C. albicans yeasts, HSPCs produced high amounts of TNF-α. Next, 40 cytokines 

were determined in secretomes using a mouse cytokine detection array. Relative intensity 

values from stimulated HSPC secretomes in comparison to non-stimulated HSPC 

secretomes were analyzed and only those cytokines whose values were significantly 

different among secretomes are depicted in Figure 23C. We found that HSPCs produced 

higher levels of CCL2, CCL3, and CCL9 in response to Pam3CSK4 than unstimulated HSPCs, 

while only CCL3 and CCL9 were higher in the yeast secretome. Taken together, these data 

demonstrate that HSPCs are capable of producing pro-inflammatory cytokines and 

chemokines in response to different PRR ligands. 

 

 

 

FIGURE 23 | Cytokine production by HSPCs in response to Pam3CSK4 and C. albicans yeasts. (A) Schematic 
protocol to obtain secretomes. Purified Lin⁻ cells from BM of C57BL/6 mice were cultured in a serum-free 
medium containing 100 ng/ml Fms-like tyrosine kinase 3 ligand (FL) and 20 ng/ml SCF, in the presence or 
absence of 1 µg/ml Pam3CSK4 or inactivated C. albicans yeasts for 3 days. Then, secretomes (conditioned media) 
were collected. (B) TNF-α and IL-6 levels in secretomes were measured by ELISA. (C) CCL2, CCL3, and CCL9 
levels were determined using a mouse cytokine array. Data are expressed as means ± SD of pooled data from 
two experiments. ** P < 0.01, *** P < 0.001 and **** P < 0.0001with respect to control secretomes. 

 

B C 

A 



Results 

137 

2.2 Influence of HSPC secretome on in vitro differentiation of 
untreated HSPCs and cytokine production by resident 
macrophages 

The above data demonstrate that HSPCs produce several pro-inflammatory cytokines 

and chemokines in response to a TLR2 agonist and C. albicans yeasts. Hence, we wondered 

whether these secretomes may play some role in regulating the function of surrounding 

cells, such as HSPCs or resident macrophages. To study the effects of secretomes from 

Pam3CSK4-stimulated HSPCs, we used cells from TLR2 −/− mice to avoid stimulation by 

soluble Pam3CSK4 present in secretomes We examined the effect of secretomes on HSPC 

differentiation (Figure 24A). 

The effect of secretomes on HSPC differentiation was initially examined. Lin⁻ cells 

were cultured in this “conditioned media” for 3 days, and expression of CD11b (as a marker 

of myeloid differentiation) and c-Kit (as a marker of progenitor cell) was analyzed by flow 

cytometry. Lin⁻ cells were also cultured with LPS or inactivated C. albicans yeasts, as 

positive controls of differentiation (Figure 24B). Results showed that Lin⁻ cell 

differentiation pattern in the presence of control secretomes was similar to that in Lin⁻ cells 

cultured in fresh medium. However, the presence of Pam3CSK4 secretomes or yeast 

secretomes increased the percentage of CD11b⁺ cells and accordingly, decreased the 

percentage of c-Kit⁺ cells (roughly 70 % higher and 30 % less in both conditions than in 

control secretomes, respectively). Therefore, HSPC secretomes in response to C. albicans 

and Pam3CSK4 induce myeloid differentiation of HSPCs.  

Finally, we studied whether secretomes had an impact on cytokine production by 

tissue resident macrophages (Figures 24C). Resident peritoneal macrophages from 

TLR2−/− mice or C57BL/6 mice were used to test Pam3CSK4 secretomes or yeast secretomes, 

respectively. TNF-α production in response to LPS was significantly decreased in the 

presence of Pam3CSK4 secretomes in comparison to control secretomes, whereas yeast 

secretome did not alter cytokine levels produced by macrophages in response to Pam3CSK4 

or LPS. 

Taken together, these results demonstrate that detection of PAMPs by HSPCs defines 

the secretome they produce, and therefore its impact on HSPC differentiation and 

macrophage function. Thus, these observations support the idea that direct pathogen 

sensing by HSPCs plays an active role in regulating the immune responses against infection. 
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FIGURE 24 | HSPC secretomes in response to Pam3CSK4 or C. albicans induce myeloid differentiation and 
modulate cytokine production by peritoneal macrophages. (A) Schematic protocol to study the effect of 
secretomes (obtained as indicated in Figure 23A) on HSPC differentiation and TNF-α production by peritoneal 
macrophages. HSPCs or peritoneal macrophages from TLR2−/− mice were used to study the effect of the 
secretomes from HSPCs stimulated with Pam3CSK4. (B) Purified Lin⁻ cells from BM of C57BL/6 mice were 
cultured for 3 days, labeled with antibodies, and analyzed by flow cytometry. Cells were gated as c-Kit or CD11b 
positive cells. The indicated percentages refer to total analyzed cells. Results shown are from one representative 
of two independent experiments. (C) Resident peritoneal macrophages were challenged with 100 ng/ml 
Pam3CSK4 or 100 ng/ml LPS for 24 h. TNF-α levels in cell-free culture supernatants were measured by ELISA. 
Triplicate samples were analyzed in each assay. Results are expressed as means ± SD of pooled data from two 
experiments. ***P < 0.001 with respect to cytokine production by peritoneal macrophages in the presence of 
control secretome. Secret.: secretome. 
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3 Discussion  

Accumulated evidence has emerged supporting a role for HSPCs in fighting against 

infection, although mechanisms governing the response of HSPCs to infection are poorly 

understood (Boettcher and Manz, 2017; Chavakis et al., 2019; Yáñez et al., 2013a). Various 

mechanisms had been involved, including cytokine signaling, egressing to peripheral 

tissues, and PAMP’s sensing directly by HSPCs (Kobayashi et al., 2016). As Hernan et al. 

(2016) described, an extended exposure to the TLR2 agonist Pam3CSK4 leads to an 

expansion of spleen HSPCs, a cell-non-autonomous effect that is in part mediated by 

hematopoietic and non-hematopoietic cell production of G-CSF and TNF-α. However, even 

when Pam3CSK4-treated mice were injected with the specific neutralizing antibodies against 

G-CSF and TNF-α, they still exhibited higher amounts of HSPCs than non-treated mice. This 

residual HSPCs expansion may be due to cell-autonomous TLR2 signaling in HSCs and GMPs. 

In addition, HSCs in the spleen were significantly less quiescent upon Pam3CSK4 treatment, 

suggesting that both local proliferation and migration may underlie the increase in splenic 

HSPCs after an in vivo exposure to a TLR2 agonist (Hernan et al., 2016).  

Using the extended TLR2 agonist treatment model described by Hernan et al. (2016), 

we show that splenic HSPCs, similarly to BM HSPCs, generate in vitro macrophages with a 

higher ability to produce pro-inflammatory cytokines. Even though, it is difficult to predict 

the influence of extended Pam3CSK4 treatment on susceptibility to infection. We 

hypothesized that the substantial accumulation of HSPCs and mature myeloid cells in spleen 

could protect mice against candidiasis, and that HSPCs may contribute to this protection, 

probably by providing an additional site for the generation of effector cells during infection. 

Results clearly indicate that an extended TLR2 agonist treatment strongly protects mice 

from tissue invasion during systemic C. albicans infection, as the fungal burden in the kidney 

and in the spleen of treated mice was drastically reduced. This in vivo TLR2 agonist exposure 

induces an expansion of myeloid cells in the spleen, being macrophages the most amplified 

population; thus, it would be possible to suggest that myeloid cells could be responsible for 

protection. However, immunodepletion of c-Kit⁺ progenitors in Pam3CSK4-treated mice 

abrogates protection against tissue invasion during candidiasis, despite the similar amount 

of spleen myeloid cells than that in isotype control injected mice, at the moment of infection. 

In conclusion, the protective effect against candidiasis in TLR2 agonist-treated mice is at 

least partially dependent on HSPCs. In accordance with these observations, recently in vivo 

studies have demonstrated that BGC vaccination or pretreatment with LPS reprograms 
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HSPCs to have protective capacities against secondary infections, effect in part mediated by 

an enhanced myeloid cell production (Kaufmann et al., 2018; de Laval et al., 2020). 

These results are in line with Granick et al. (2013), which reported that proliferation 

of HSPCs in skin wounds in response to S. aureus is TLR2-mediated and contributes 

significantly to the production of neutrophils and resolution of local infection, supporting a 

role for TLR2 signaling in the regulation of extramedullary hematopoiesis. Other authors 

have also described that systemic infection of mice with E. coli induces a dramatic 

mobilization of functional HSPCs to spleen, and that mobilized HSPCs give rise to 

neutrophils and monocytes (Burberry et al., 2014). Interestingly, mobilized HSPCs 

contribute to limiting secondary infection, proposing that HSPC mobilization itself 

constitute a host mechanism against infection. These experiments were performed 

transplanting total splenocytes but not purified HSPCs from infected mice to recipients that 

were then challenged with E. coli. As they demonstrated that G-CSF was essential for HSPC 

accumulation in spleen, mice injected with a specific neutralizing antibody against G-CSF 

were used to obtain “control” splenocytes. Similarly, mice treated with a cyclic 

bacteria-derived DNA that is recognized by the receptor STING also exhibit a HSPC 

expansion in the spleen (Kobayashi et al., 2015).  

However, the possibility that protection against candidiasis in our model of 

Pam3CSK4-treated mice may be also mediated by mature myeloid cells cannot be completely 

excluded. Supporting this possibility, it has been shown that tolerance induced by one dose 

of a TLR2 ligand protects mice against acute polymicrobial peritonitis or coinfection by          

S. aureus and S. typhimurium, mainly by promoting an increase in circulating granulocytes 

and a recruitment of those cells into the peritoneal cavity (Feterowski et al., 2005; Wang et 

al., 2002). Moreover, either circulating neutrophils or peritoneal macrophages exhibited 

and enhanced recognition, ingestion, and intracellular killing of S. aureus and S. typhimurium 

in TLR2 agonist-tolerized mice (Wang et al., 2002).  

TLR2 and Dectin-1 are two of the most relevant PRRs involved in C. albicans detection 

(Miramón et al., 2013; Netea et al., 2008; Poulain and Jouault, 2004). As we have seen, an 

extended treatment with the TLR2 agonist Pam3CSK4 leads to an expansion of spleen HSPCs 

and protects mice against candidiasis, effect that is abrogated by immunodepletion of 

HSPCs, suggesting their protective role against infection in this model. Early studies also 

demonstrated that mice are less susceptible to systemic C. albicans infection following 

exposure to the Dectin-1 ligand β-glucan, process that it is mainly mediated by myeloid cells 

(Bistoni et al., 1986). This innate memory phenomena, referred as trained immunity, has 

been described to involve long-term effects that would persists for months or even one year 
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(Kleinnijenhuis et al., 2014; Kleinnijenhuis et al., 2012). Regarding the long-lasting effects 

of trained immunity, Mitroulis et al. (2018) have recently described a modulation of myeloid 

progenitors in the BM of β-glucan treated mice (Mitroulis et al., 2018). However, early 

studies showed that β-glucans exhibit potent stimulating effects on hematopoiesis by 

enhancing the production of hematopoietic factors and inducing a mobilization of HSPCs 

from the BM into the blood (Hofer and Pospisili, 2011). As it has been described that during 

systemic fungal infections β-glucans are released into peripheral blood (Obayashi et al., 

1995), HSPC mobilization induced by β-glucans may act also in the context of infection. It 

will be interesting to see whether extramedullary hematopoiesis, as in extended TLR2 

treatment, has a role in C. albicans- or β-glucan-induced trained immunity. 

Even though the HSPC effector mechanisms to protect against candidiasis in 

Pam3CSK4-treated mice are not well defined yet, our data point toward the involvement of 

diverse mechanisms. In agreement with Zhao et al. (2014), we confirm here that HSPCs can 

respond directly to TLR ligands by producing cytokines to coordinate immune responses. 

Moreover, we show for the first time that HSPCs also produce the CCL2, CCL3 and CCL9 

chemokines in response to different PRRs ligands. Chemokines involved in the early 

recruitment of innate immune cells to the sites of infection are crucial for local control of 

fungal infections (Pappas et al., 2018). Consequently, CCL2, CCL3, and CCL9 produced by 

HSPCs may activate and attract neutrophils, monocytes and DCs, therefore contributing to 

protection against infection. It has been described that HSPCs, mainly the myeloid 

committed progenitors CMPs and GMPs, express CCR2 that can guide these progenitors to 

sites of inflammation (Si et al., 2010); therefore, it could be speculated that HSPCs may 

induce their own recruitment. In vitro TLR ligation on common dendritic progenitors has 

also been reported to modulate their chemokine receptor expression, and consequently 

favors their migration from bloodstream to inflammatory/infection sites (Schmid et al., 

2011). In line with these results, Massberg et al. (2007) demonstrated that TLR stimulation 

blocks HSPC egress from inflamed tissues, which may favor extramedullary hematopoiesis 

(Massberg et al., 2007).  

Besides chemokine production, we show that secretomes produced by HSPCs in 

response to the TLR2 ligand Pam3CSK4 and C. albicans yeasts induce HSPCs myeloid 

differentiation. Zhao et al. (2014) described that among the cytokines produced by HSPCs 

in response to LPS and Pam3CSK4, IL-6 is a particularly important regulator of myeloid 

differentiation. Our results suggest that other molecules produced by HSPCs in response to 

C. albicans may induce myeloid differentiation, as IL-6 was barely found in the yeast 

secretome. Secretomes acting in a paracrine or autocrine manner on HSPCs may mediate a 
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rapid myeloid cell recovery during candidiasis. Finally, in addition to acting on HSPCs, 

secretomes may also modulate the function of other surrounding cells, such as 

macrophages. In this context, we found that the Pam3CSK4 secretome reduces TNF-α 

production by peritoneal macrophages. In agreement with this in vitro effect, the production 

of cytokines by splenocytes from Pam3CSK4/ACK2-treated mice (c-Kit⁺ depleted mice) is 

increased as compared to Pam3CSK4/isotype control-treated mice. Therefore, the 

Pam3CSK4-mobilized HSPCs may contribute to protection against infection, not only by 

myeloid cell replenishment but also by secreting molecules that recruit and activate 

leukocytes, and modulate the phenotype of mature myeloid cells. Future studies will be 

required to identify the molecules and the mechanisms responsible for the different 

secretome functions. 

In conclusion, our data show that extended systemic exposure to a TLR2 agonist leads 

to the expansion of splenic HSPCs, effect that is at least partially responsible for protection 

against tissue invasion during systemic C. albicans infection. HSPCs produce cytokines and 

chemokines in response to a TLR2 agonist or C. albicans yeasts, and these secreted 

molecules induce myeloid differentiation of HSPCs and modulate cytokine production by 

peritoneal macrophages. These results support the hypothesis that HSPCs can sense 

pathogens during infection and contribute to protect the host by several mechanisms. A 

better understanding of the signals that influence HSPCs during infection may lead to new 

therapeutic strategies for anti-infection intervention. 
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CHAPTER 3 

 

Phenotype of APCs derived from HSPCs exposed 

to TLR2 or Dectin-1 agonists and its impact on 

their modulation of CD4⁺ T cell responses 
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1 Surface molecule expression and cytokine 
production by APCs derived from HSPCs 
exposed to TLR2 or Dectin-1 agonists 

1.1 Surface molecule expression: MHCII, CD40, CD80, CD86 

To investigate the functional consequences of HSPC exposure to a TLR2 or Dectin-1 

agonist on the APCs they produce, we designed the following experimental approach. 

Briefly, Lin− cells were purified from mouse BM and cultured with GM-CSF to induce 

differentiation to APCs. Lin⁻ cells were treated with Pam3CSK4 or depleted zymosan or 

untreated (none) for the first 24 h of culture (day 0), and then washed thoroughly to remove 

any remaining microbial components prior to continued culture with GM-CSF to derive 

APCs (Figure 25A). We verified that β-glucan particles were mostly absent in the cultures 

at day 3 by using fluorescently labeled zymosan (see Materials and Methods, section 6). On 

day 6, adherent cells were recovered from the cultures, counted, plated overnight and 

stimulated (day 7) with Pam3CSK4, depleted zymosan, or unstimulated. We then assessed 

their expression of surface molecules involved in antigen presentation and T cell activation.  

Expression of MHCII (required for signal 1) and costimulatory molecules (CD40, CD80 

and CD86; signal 2) on CD11b⁺ CD11c⁺ cells was assessed by flow cytometry. In all 

conditions, CD11b⁺ CD11c⁺ cells represented about 80 % of total adherent cells analyzed 

(Figure 25B). As expected, day 7 stimulation of APCs with Pam3CSK4 or depleted zymosan 

upregulated the expression of most of these surface molecules in comparison to 

unstimulated APCs (Figure 25C). Therefore, CD11b⁺ CD11c⁺ cells highly upregulated MHCII 

and CD80 following day 7 stimulation with both PRRs, whereas Pam3CSK4 stimulation 

slightly induced CD86 and CD40 expression and depleted zymosan stimulation highly 

induced CD86 but not CD40 expression (Figure 25D). Interestingly, day 0 treatment of 

HSPCs with Pam3CSK4 increased the expression of MHCII, CD80 and CD86 on day 

7-stimulated APCs, while depleted zymosan treatment of HSPCs on day 0 induced more 

subtle changes in day 7-stimulated APCs (Figure 25C and 25D).  
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FIGURE 25 | Flow cytometry analysis of APCs generated from HSPCs transiently stimulated with 
Pam3CSK4 or depleted zymosan. (A) Schematic protocol. Purified Lin− cells from BM of C57BL/6 mice were 
treated with 100 ng/ml Pam3CSK4, 10 µg/ml depleted zymosan, or nothing (none) during the first 24 h of 
culture, washed thoroughly to remove any remaining stimuli and then continued in culture with GM-CSF for a 
further six days to derive APCs. At day six, adherent cells were recovered from the cultures, counted and plated 
at equal numbers for 24 h, and then stimulated with Pam3CSK4, depleted zymosan or nothing (unstimulated) for 
24 h to assess the expression of MHCII and costimulatory molecules (CD40, CD80 and CD86) on CD11b⁺ CD11c⁺ 
APCs by flow cytometry. (B) CD11b and CD11c expression by the adherent cells recovered from the cultures at 
day seven. (C) Colormap based on min-max values per row using the MFI values obtained with the specific 
antibodies and the isotype controls. (DO, day 0; N, none; P, Pam3CSK4; DZ, depleted zymosan). (D) Histograms 
and MFIs corresponded to data shown in colormap. Results shown are from one experiment that is 
representative of three-five independent experiments. 
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1.2 Cytokine production: TNF-α, IL-6, IL-12 p40, IL-2 

Next, production of pro-inflammatory cytokines (signal 3) was assessed in the culture 

supernatants of day 7 APCs (Figure 26). Day 0 treatment of HSPCs with Pam3CSK4 or 

depleted zymosan increased the production of TNF-α, IL-6 and IL-12 p40 by day 

7-stimulated APCs, with the exception of Pam3CSK4-stimulated APCs derived from day 0 

Pam3CSK4-exposed HSPCs, which produced significantly less IL-6. As previously described, 

IL-2 was only secreted in response to depleted zymosan (Hassanzadeh-Kiabi et al., 2017), 

and surprisingly only the treatment of HSPCs with Pam3CSK4 boosted its production. 

Overall, these data illustrate that HSPC treatment with Pam3CSK4 or depleted zymosan 

modifies the T cell-activating signals one, two and three of the APCs derived from them. 

 

FIGURE 26 | Cytokine production of APCs generated from HSPCs transiently stimulated with Pam3CSK4 
or depleted zymosan. APCs derived from HSPCs under the same conditions as in Figure 25A were plated at 
equal numbers for 24 h, and then stimulated with Pam3CSK4, depleted zymosan or nothing (unstimulated) for 
24 h to assess cytokine production (TNF-α, IL-6, IL-12 p40 and IL-2) in the supernatants by ELISA. Data 
represent means ± SD of triplicate cultures, * P < 0.05, ** P < 0.01, *** P < 0.001 with respect to day 0 none. 
Results shown are from one experiment that is representative of three independent experiments. 
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2 OVA-specific CD4⁺ T cell responses induced 
by APCs derived from HSPCs exposed to 
PAMPs 

2.1 CD4⁺ T cell proliferation  

We next examined whether the changes observed in the APC phenotype could impact 

the proliferation and activation of CD4⁺ T cells. To address this, day 7 APCs were loaded 

with an OVA peptide and cocultured with CFSE-labeled OVA-specific CD4⁺ T cells isolated 

from OT-II transgenic mice (Figure 27).  

 

FIGURE 27 | Ability of APCs derived from HSPCs transiently stimulated with Pam3CSK4 or depleted 
zymosan to induce CD4⁺ T cell proliferation in OVA-specific CD4⁺ T cell cocultures. APCs derived from 
HSPCs under the same conditions as in Figure 25A were plated at equal numbers for 4 h, and then stimulated 
with Pam3CSK4, depleted zymosan or nothing (unstimulated) for 24 h. APCs were also loaded with the OVA323-

339 peptide for 24 h and cocultured with CFSE-labeled CD4⁺ T cells isolated from OT-II mice at 1:5 ratio (APC:T 
cell). Following three days of coculture, T cells were harvested for flow cytometry analysis. (A) Proliferating 
CD4⁺ T cells. (B) Histograms and % of CD4⁺ T cells expressing CD44 or CD69 from cocultures. (C) Fold increase 
of total CD4⁺ T cell numbers, data represent means ± SD of three independent experiments, * P < 0.05, ** P < 
0.01 with respect to day 0 none. Results shown are from one experiment that is representative of three 
independent experiments. 
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T cells primed by day 0 control APCs stimulated with Pam3CSK4 (day 7) were more 

proliferative and expressed higher levels of the activation markers CD44 and CD69 than T 

cells primed by unstimulated APCs (Figure 27A and 27B). Conversely, day 7 stimulation of 

APCs with depleted zymosan decreased T cell proliferation and downregulated CD44 and 

CD69. Day 0 Pam3CSK4 or depleted zymosan treatment of HSPCs did not cause significant 

changes in T cell proliferation or activation marker expression (Figure 27A and 27B), 

although T cell numbers increased modestly in the cocultures with stimulated APCs derived 

from day 0 Pam3CSK4-treated HSPCs (Figure 27C).  

2.2 Cytokine production: IFN-γ and IL-17A 

To evaluate Th1 and Th17 responses, we measured IFN-γ and IL-17A production by 

the CD4⁺ T cells (Figure 28). Consistent with previous reports (LeibundGut-Landmann et 

al., 2007; Sieling et al., 2003), Pam3CSK4-stimulated APCs induced IFN-γ production by CD4⁺ 

T cells, whereas depleted zymosan-stimulated APCs induced IL-17A production by CD4⁺ T 

cells. APCs derived from HSPCs treated with both agonists more potently stimulated IFN-γ 

production by CD4⁺ T cells in all the conditions studied, whereas only APCs derived from 

depleted zymosan-treated HSPCs significantly increased IL-17A production by CD4⁺ T cells. 

These results indicate that HSPCs programed by microbial ligands can produce trained APCs 

capable of priming more strongly Th1 and Th17 responses in CD4⁺ T cell cocultures. 

 

FIGURE 28 | Ability of APCs derived from HSPCs transiently stimulated with Pam3CSK4 or depleted 
zymosan to enhanced Th1 and Th17 responses in OVA-specific CD4⁺ T cell cocultures. APCs derived from 
HSPCs under the same conditions as in Figure 25A were plated at equal numbers for 4 h and then stimulated 
with Pam3CSK4, depleted zymosan or nothing (unstimulated) for 24 h. APCs were also loaded with the OVA323-

339 peptide for 24 h and cocultured with CFSE-labeled CD4⁺ T cells isolated from OT-II mice at 1:5 ratio (APC:T 
cell). Following three days of coculture, T cells were harvested and cytokine production (IL-17A and IFN-γ) was 
assessed after 24 h of restimulation with PMA (Phorbol 12 -Myristate 13-Acetate) and ionomycin. Cytokine data 
was normalized by CD4⁺ T cell numbers (shown in Figure 27) and represent means ± SD of triplicate cultures, * 
P < 0.05, ** P < 0.01, *** P < 0.001 with respect to day 0 none. Results shown are from one experiment that is 
representative of three independent experiments. 
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3 Surface molecule expression and cytokine 
production by C. albicans stimulated APCs 
derived from PAMP-exposed HSPCs 

3.1 Surface molecule expression: MHCII, CD40, CD80, CD86 

In order to investigate the functional responses of APCs derived from 

Pam3CSK4/depleted zymosan-programed HSPCs to intact microorganisms (which signal 

through several PRRs simultaneously), we used inactivated yeasts from a non-virulent 

(PCA2) and a virulent (ATCC 26555) strain of C. albicans as day 7 APC stimuli (Figure 29). 

APC expression of MHCII (signal one), CD80 and CD86 (signal two) on CD11b⁺ CD11c⁺ cells 

increased upon stimulation with both strains of C. albicans, and interestingly, unlike 

stimulation with pure PRR ligands, CD40 was highly upregulated. Consistent with the 

previous results, day 0 treatment of HSPCs with Pam3CSK4 further increased the expression 

of these proteins. In contrast, depleted zymosan treatment of HSPCs at day 0 did not change 

the induction of these APC surface molecules by the non-virulent strain but decreased their 

induction by the virulent strain. 

 

 

FIGURE 29 | Flow cytometry analysis of APCs generated from HSPCs transiently stimulated with 
Pam3CSK4 or depleted zymosan, following stimulation with C. albicans. APCs derived from HSPCs 
under the same conditions as in Figure 25A were plated at equal numbers for 24 h, and then stimulated 
with inactivated yeasts of C. albicans from the non-virulent strain PCA2 or the virulent strain ATCC 
26555, or nothing (unstimulated) for 24 h to assess the expression of MHCII and costimulatory 
molecules on CD11b⁺ CD11c⁺ APCs by flow cytometry. (A) Colormap is based on min-max values per 
row using the MFI values obtained with the specific antibodies and the isotype controls. (DO, day 0; N, 
none; P, Pam3CSK4; DZ, depleted zymosan). (B) Histograms and MFIs (numbers) corresponding to data 
shown in colormaps. Results shown are from one experiment that is representative of three 
independent experiments. 
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3.2 Cytokine production: TNF-α, IL-6, IL-12 p40, IL-2 

Next, production of the pro-inflammatory cytokines (signal three) was assessed in the 

culture supernatants of day 7 APCs (Figure 30). Day 0 treatment of HSPCs with Pam3CSK4 

increased the production of IL-6 and IL-2 by APCs stimulated with both the non-virulent 

and virulent strains, and increased IL-12 p40 production by APCs stimulated with the 

virulent strain, but did not have any effect on TNF-α production by either strain. On the 

other hand, day 0 treatment of HSPCs with depleted zymosan potently augmented the 

production of IL-6 by APCs stimulated with both the non-virulent and virulent strains, and 

TNF-α and IL-12 p40 in response to the virulent strain, but did not impact IL-2 production. 

 

 

 

FIGURE 29 | Flow cytometry analysis of APCs generated from HSPCs transiently stimulated with 
Pam3CSK4 or depleted zymosan, following stimulation with C. albicans. Continuation.  
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4 C. albicans-specific CD4⁺ T cell responses 
induced by APCs derived from HSPCs 
exposed to PAMPs 

4.1 CD4⁺ T cell proliferation 

We next evaluated how C. albicans stimulation of APCs derived from programed HSPCs 

modifies the proliferation of CD4⁺ T cells isolated from naïve C57BL/6 mice. Under these 

conditions, C. albicans cells act as multi-antigen sources, as well as activators of APC PRRs 

(Figure 31).  

FIGURE 30 | Cytokine production of APCs generated from HSPCs transiently stimulated with Pam3CSK4 or 
depleted zymosan, following stimulation with C. albicans. APCs derived from HSPCs under the same 
conditions as in Figure 25A were plated at equal numbers for 24 h, and then stimulated with inactivated yeasts of 
C. albicans from the non-virulent strain PCA2 or the virulent strain ATCC 26555, or nothing (unstimulated) for 24 
h to assess cytokine production (TNF-α, IL-6, IL-12 p40 and IL-2) in the supernatants by ELISA. Data represent 
means ± SD of triplicate cultures, * P < 0.05, ** P < 0.01, *** P < 0.001 with respect to day 0 none. Results shown 
are from one experiment that is representative of three to independent experiments. 
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FIGURE 31 | Ability of APCs derived from HSPCs transiently stimulated with Pam3CSK4 or depleted 
zymosan to induce CD4⁺ T cell proliferation after C. albicans stimulation. APCs derived from HSPCs under 
the same conditions as in Figure 25A were plated at equal numbers for 4 h, and then stimulated with inactivated 
yeasts of C. albicans from the non-virulent strain PCA2 or the virulent strain ATCC 26555, or nothing 
(unstimulated) for 24 h. Then, APCs were cocultured with CFSE-labeled CD4⁺ T cells isolated from naïve 
C57BL/6 mice at 1:5 ratio (APC:T cell). Following four days of coculture, T cells were harvested for flow 
cytometry analysis. (A) Proliferating CD4⁺ T cells expressing CD44. (B) Proliferating CD4⁺ T cells expressing 
CD69. Results shown are from one experiment that is representative of three independent experiments. (C) Fold 
increase of total CD4⁺ T cell numbers. Data represent means ± SD of three independent experiments.  
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Day 7 stimulation of APCs with both strains of C. albicans increased total T cell numbers 

and the percentage of proliferating CD44⁺ and CD69⁺ CD4⁺ T cells in comparison to 

unstimulated APCs (Figure 31A and 31B). Day 0 treatment of HSPCs with Pam3CSK4 and 

depleted zymosan modestly enhanced T cell proliferation when APCs were stimulated with 

the non-virulent strain, although T cell numbers in the cultures did not change, and there 

was little or no effect on T cell proliferation when APCs were stimulated with the virulent 

strain (Figure 31C). 

4.2 Cytokine production: IFN-γ and IL-17A 

To evaluate Th1 and Th17 responses, we measured IFN-γ and IL-17A production by 

the CD4⁺ T cells after coculturing them with C. albicans-stimulated APCs (Figure 32). 

Interestingly, IFN-γ production by CD4⁺ T cells was induced by stimulating APCs with both 

strains of C. albicans, and treatment of HSPCs with Pam3CSK4 and depleted zymosan 

enhanced IFN-γ production when APCs were stimulated with the non-virulent strain, but 

not the virulent strain. Moreover, IL-17A production by CD4⁺ T cells, which was greater 

upon APC stimulation with the virulent strain than the non-virulent strain, was clearly 

enhanced by treating HSPCs with both Pam3CSK4 and depleted zymosan at day 0 (Figure 

32). Taken together, these data show that APCs derived from HSPCs programed by 

microbial ligands have an improved ability to induce Th1, Th17 or both responses, 

depending on the pathogen strain the APCs are responding to. 

 

FIGURE 32 | Ability of APCs derived from HSPCs transiently stimulated with Pam3CSK4 or depleted 
zymosan to enhanced Th1 and Th17 responses in CD4⁺ T cell cocultures after C. albicans stimulation. 
APCs derived from HSPCs under the same conditions as in Figure 25A were plated at equal numbers for 4 h, and 
then stimulated with inactivated yeasts of C. albicans from the non-virulent strain PCA2 or the virulent strain 
ATCC 26555, or nothing (unstimulated) for 24 h. Then, APCs were cocultured with CFSE-labeled CD4⁺ T cells 
isolated from naïve C57BL/6 mice at 1:5 ratio (APC:T cell). Following four days of coculture, T cells were 
harvested and cytokine production (IL-17A and IFN-γ) was assessed after 24 h of restimulation with PMA and 
ionomycin. Cytokine data was normalized by CD4⁺ T cell numbers (shown in Figure 31) and represent means ± 
SD of triplicate cultures, * P < 0.05, ** P < 0.01 with respect to day 0 none. Results shown are from one experiment 
that is representative of three independent experiments. 
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5 Discussion 

Innate immune memory has raised lots of interest in the scientific community since it 

was discovered, using certain models of vaccination, that mice showed protection against 

the same or unrelated pathogens due to an enhanced activation of innate immune cells 

(mainly monocytes and macrophages) (Bistoni et al., 1986; van 't Wout et al., 1992). 

Mechanistically, the protection conferred by myeloid training may be due to: (i) enhanced 

non-specific innate immune responses of monocytes or macrophages derived from them, 

e.g. increased cytokine production, which could boost the recruitment and activation of 

other immune cells, contributing to pathogen clearance (Netea et al., 2020); (ii) HSPC 

programing, which increases myelopoiesis and improves the functional phenotype of the 

macrophages produced (Kaufmann et al., 2018; Mitroulis et al., 2018), explaining the 

long-lasting effects of trained immunity; and (iii) modification of the T cell priming potential 

of APCs, which could enhance adaptive T cell responses, thus bridging innate training with 

an improved adaptive response. The latter idea has not been formally demonstrated, 

although some previous have supported it (Sánchez-Ramón et al., 2018). It has been 

described that BM-derived APCs from mice exposed to the filarial nematode glycoprotein 

ES-62 prime anti-inflammatory responses (Goodridge et al., 2004). Moreover, BM 

progenitors from mice exposed to UV radiation or the inflammatory mediator PGE2 produce 

DCs that are defective in their ability to prime T cells responses (Goodridge 2014). 

We therefore decided to study whether stimulation of HSPCs with Dectin-1 or TLR2 

ligands could alter the functional phenotype of the APCs derived from them and 

subsequently have an impact in T cell activation. We used GM-CSF to derive APCs from 

HSPCs as it is the most widely used growth factor to study the biology of these cells (Lutz et 

al., 2017). While M-CSF drives macrophage differentiation, GM-CSF induces the 

development of monocyte-derived cells with a much higher antigen presentation capacity. 

More importantly, GM-CSF has been used for the development of dendritic cell vaccines by 

culturing peripheral blood cells from patients in vitro for autologous transplantation, 

although there is still some debate about naming these APCs “dendritic cells” (Ginhoux et 

al., 2016; Lutz et al., 2017). GM-CSF cultures have been considered to be heterogeneous 

(Helft et al., 2015, Lutz et al., 2017; Na et al., 2016). However, by starting from HSPCs, 

instead of total BM, and in our culture conditions, about 80% of the cells are CD11b⁺ CD11c⁺, 

which depending of their activation state can show differences in the expression of some 

functional molecules.  
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Here we show that induction of MHCII (required for antigen presentation; signal one) 

and costimulatory molecules (CD40, CD80 and CD86; signal two) on APCs is mostly 

enhanced by stimulation of HSPCs with a TLR2 agonist, while stimulation with a Dectin-1 

ligand decreases or does not change them. We also observed changes in the levels and types 

of cytokines produced by APCs (signal 3), which are dependent on the combination of the 

stimuli used for HSPC programing and for APC stimulation. Interestingly, while HSPCs 

stimulated with a TLR2 agonist give rise to tolerized macrophages in M-CSF cultures (Yáñez 

et al., 2013b; Megías et al., 2016), here we show that GM-CSF-induced differentiation of 

HSPCs stimulated with a TLR2 agonist gives rise to trained APCs (enhanced response). 

Antigen uptake and presentation could also be influenced by HSPC programing. Although, 

previous studies showed minor changes in the phagocytic ability of macrophages derived 

from programed HSPCs (Yáñez, et al., 2013b; Megías et al., 2016), we cannot discard 

differences in C. albicans cells uptake by APCs. However, here we also employ OVA peptide 

as an antigen, which can be directly loaded into the MHCII molecules. In this case, T cell 

responses would not be affected by differences in antigen uptake and presentation by APCs.  

In order to prevent hyper-activation and regulate the duration of the immune 

response, mechanisms of feedback control are required. Suppressor of cytokine signaling 

(SOCS) proteins and the mammalian sterile 20-like kinase (MST1) have been identified as a 

negative feedback loop to cytokine signaling, thus regulating CD4⁺ T cell differentiation. In 

the context of candidiasis, it has been demonstrated that SOCS1 silencing can promote in 

vitro maturation of DCs after exposure to C. albicans, which produce higher levels of IL-12 

resulting in an enhanced CD4⁺ Th1 differentiation (Shi et al., 2015). This effect also occurs 

in vivo and increase mouse survival in a systemic candidiasis mouse model (Shi et al., 2018). 

On the other hand, SOCS3 and MST1 negatively regulates Th17 differentiation, as DCs 

deficient in these proteins promote IL-6 secretion (Li et al., 2017; Shi et al., 2019). Therefore, 

it will be interesting to see whether activation of PRRs in HSPCs lead to modulation of these 

negative regulators in APCs. 

Our results show that different Th1 and Th17 outcomes may be achieved by varying 

the set of PRR ligands used for HSPC programing and for APC stimulation, although future 

experiments will be needed to better define the factors contributing to Th1 and Th17 

polarization. As we have seen, PRR ligands induce the activation and maturation of APCs, 

which upregulate MHCII and costimulatory molecules, as well as produce cytokines that 

modulate Th polarization. Interestingly, depending on the strain of C. albicans we used to 

stimulate APCs, a different Th response was observed. Regardless of the stimulus used to 

treat HSPCs, IFN-γ production was only enhanced when APCs derived from programed 
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HSPCs were stimulated with a nonvirulent strain, while more potent IL-17 production was 

achieved after stimulating APCs derived from programed HSPCs with a virulent strain of      

C. albicans. In addition to studying the molecular mechanisms that alter the functional 

phenotype of APCs derived from PAMP-stimulated HSPCs, further studies will be necessary 

to know whether these APCs are also able to induce better T cell responses in vivo. It will 

also be interesting to evaluate whether HSPC programing could influence CD8⁺ T cell 

responses and whether innate immune memory impacts the generation of long-lasting 

memory T cells.  
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1. Continuous in vitro exposure of HSPCs to PAMPs determines the antifungal 

phenotype of macrophages differentiated with M-CSF: TLR2 or TLR4 agonist exposure 

generates macrophages with a diminished ability to secrete TNF-α and IL-6 (tolerized), 

whereas Dectin-1 or C. albicans yeasts stimulation leads to the generation of macrophages 

that produce higher amounts of these pro-inflammatory cytokines (trained). Moreover, 

TLR2 agonist exposure and C. albicans stimulation give rise to macrophages with an 

enhanced fungicidal activity.  

2. Transient in vitro exposure of HSPCs to a TLR2 or TLR4 agonist in M-CSF cultures is 

sufficient to generate tolerized macrophages. The tolerized phenotype induced by a TLR2 

agonist exposure can be partially reversed by subsequent stimulation to a Dectin-1 agonist 

or inactivated C. albicans yeasts.  

3. Transient and continuous in vitro exposure of HSPCs to a TLR2 agonist in GM-CSF 

cultures generate tolerized macrophages, a phenotype reinforced by subsequently 

exposure to a Dectin-1 agonist or C. albicans yeasts. 

4. C. albicans systemic infection associated with low fungal burden generates ex vivo 

HSPC-derived macrophages with a trained phenotype, whereas high fungal burden gives 

rise to tolerized macrophages. On the other hand, a short in vivo TLR2 agonist treatment 

leads to the generation of ex vivo HSPC-derived macrophages with a tolerized phenotype, 

while an extended TLR2 agonist treatment gives rise to trained macrophages.  

5. Extended in vivo TLR2 agonist treatment increases spleen HSPCs and myeloid cells, 

and protects mice from systemic C. albicans infection. Immunodepletion of HSPCs abrogates 

protection against the fungal infection. 

6. HSPCs produce cytokines and chemokines in vitro in response to a TLR2 ligand or    

C. albicans yeasts, and these “secretomes” can induce myeloid differentiation of HSPCs and 

a tolerized phenotype in peritoneal macrophages.  

7. In vitro exposure of HSPCs to a TLR2 or a Dectin-1 agonist determines the phenotype 

of the antigen presenting cells they produce, as they exhibit altered expression of MHCII, 

costimulatory molecules (CD40, CD80 and CD86) and altered cytokine production (TNF-α, 

IL-6, IL-12 p40 and IL-2) in response to PAMPs or C. albicans yeasts. 

8. Antigen presenting cells derived from TLR2/Dectin-1-programed HSPCs prime 

enhanced Th1 and Th17 responses in CD4⁺ T cell cocultures in response to PAMPs or                    

C. albicans yeasts.  
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Highlight prime time, Microbes and Infection 18 (2016) 523-526.  

 

 

 

Our paper Megías et al., (2016) was chosen month-highlight by Microbes and Infection and consequently, the 

above cited paper was published  
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INTRODUCCIÓN  

 

Las células mieloides (neutrófilos y macrófagos) forman parte de la primera línea de 

actuación del sistema inmunitario frente a los microorganismos patógenos, ya que son 

capaces de eliminarlos por fagocitosis y de secretar mediadores que reclutan y activan a 

otros leucocitos (Lionakis, 2014; Pappas et al., 2018). Durante una infección, los fagocitos 

se consumen rápidamente en la lucha frente al patógeno, por lo que su reaprovisionamiento 

resulta esencial para que la respuesta inmune sea efectiva. Esta pronta producción de 

células mieloides en situaciones de estrés se denomina mielopoiesis de emergencia, proceso 

mediante el cual la hematopoyesis favorece la producción de células mieloides frente a la 

generación de otras poblaciones celulares (Boettcher y Manz, 2017; Kobayashi et al., 2016). 

Los mecanismos que provocan este cambio en la hematopoyesis están siendo objeto de 

numerosos estudios, entre los cuales existen diversas publicaciones que demuestran la 

interacción directa de patógenos o patrones moleculares asociados a patógenos (PAMP) con 

las células madre y progenitores hematopoyéticos (HSPC) (Yáñez et al., 2013a; Zhao y 

Baltimore, 2015). 

En este contexto, nuestro grupo ha demostrado que el hongo Candida albicans induce 

la proliferación y diferenciación de HSPC de ratón hacia linaje mieloide tanto in vitro como 

in vivo. Esta interacción directa de las HSPC con los microorganismos requiere la 

señalización a través del receptor tipo Toll 2 (TLR2) y del receptor tipo lectina Dectina-1, 

ambos pertenecientes a la familia de receptores de reconocimiento de patrones (PRR) y 

genera fagocitos funcionales capaces de internalizar levaduras y secretar citocinas 

inflamatorias (Megías et al., 2013; Yáñez et al., 2010; Yáñez et al., 2011). Estos resultados 

sugieren que los patógenos pueden ser directamente reconocidos por las HSPC a través de 

los PRR, promoviendo así la capacidad de reaprovisionamiento del sistema inmunitario 

innato durante una infección.  

En una infección sistémica, el encuentro entre los microorganismos o moléculas 

derivadas de estos con las HSPC podría darse en la médula ósea, órgano hematopoyético 

principal. Además, las HSPC pueden movilizarse desde la médula ósea hacia los tejidos 

periféricos infectados o hacia órganos linfoides secundarios, como el bazo; así, los 

microorganismos podrían inducir la diferenciación de estas células madre migratorias por 

hematopoyesis extramedular, generándose las células maduras directamente en su lugar de 

actuación (Massberg et al., 2007). Asimismo, se ha descrito que la activación de TLR en las 

HSPC induce la secreción de citocinas y quimiocinas, reforzando de este modo la respuesta 
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inflamatoria llevada a cabo por las células maduras (Zhao et al., 2014, Granick et al.,2013; 

Buechler et al., 2016). 

El planteamiento de que los microorganismos puedan estimular directamente a las 

HSPC para generar rápidamente células mieloides y hacer frente a la infección resulta muy 

atractivo y permite especular sobre si este mecanismo podría generar células 

funcionalmente mejor preparadas para hacer frente a la infección. En este sentido, 

numerosos estudios demuestran que la respuesta de las células mieloides a 

microorganismos patógenos puede ser modulada por encuentros previos con los 

microorganismos o sus PAMP, propiedad que ha sido generalmente denominada “memoria 

de la inmunidad innata” (Netea et al., 2020; Netea et al., 2016). El primer contacto con el 

microorganismo o PAMP provoca una reprogramación funcional de las células mieloides, 

que puede dar lugar a una mayor respuesta (inmunidad entrenada) o una menor respuesta 

(tolerancia) frente al microorganismo en siguientes encuentros, en términos de producción 

de citocinas inflamatorias. Sin embargo, es importante destacar que durante el fenómeno 

de tolerancia también hay que genes cuya expresión aumenta, principalmente aquellos 

relacionados con el reconocimiento de los patógenos y la respuesta antimicrobiana (Foster 

et al., 2007). Así pues, de una forma u otra, ambos efectos tendrían como objetivo beneficiar 

la resistencia del hospedador frente al patógeno en posteriores infecciones. Por esta razón, 

la memoria de la inmunidad innata adquiere especial relevancia en el contexto de la 

vacunación, mediando en parte los efectos heterólogos (no debidos al antígeno utilizado 

como vacuna) que se han descrito en ciertas vacunas vivas atenuadas (Goodridge et al., 

2016). 

Sin embargo, la interacción directa de las HSPC con los microorganismos también 

podría ser aprovechada por algunos patógenos para desarrollar mecanismos de evasión 

inmune modulando la respuesta de las HSPC. Por lo tanto, resulta fundamental estudiar las 

propiedades funcionales de las células mieloides generadas a partir de las HSPC en 

respuesta a la señalización vía PRR, tales como la actividad antifúngica, la capacidad para 

activar otras células mediante secreción de citocinas o la capacidad de presentación 

antigénica. En este sentido, nuestro grupo ha demostrado que los macrófagos generados a 

partir de HSPC expuestas a Pam3CSK4 (ligando de TLR2) producen menos citocinas 

inflamatorias y menos radicales tóxicos del oxígeno, comparando con la producción por 

parte de macrófagos obtenidos a partir de HSPC no estimuladas (Yáñez, et al., 2013b). 
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OBJETIVOS 

 

En base a los antecedentes previamente comentados, los objetivos generales 

desarrollados en este proyecto de tesis han sido los siguientes:  

 

1. Estudiar los efectos de la exposición de HSPC a PAMP en el fenotipo antifúngico 

de los macrófagos generados tras su diferenciación.  

 

1.1. Analizar las consecuencias de la señalización vía PRR en HSPC in vitro para los 

macrófagos generados mediante cultivo con M-CSF (“Macrophage-Colony Stimulating 

Factor”) o GM-CSF (“Granulocyte and Macrophage-Colony Stimulating Factor”).  

1.2. Analizar las consecuencias de señalización vía PRR en HSPC in vivo, mediante un 

modelo de candidiasis sistémica o de tratamiento con Pam3CSK4 (ligando de TLR2), para 

los macrófagos generados ex vivo a partir de las HSPC purificadas. 

 

2. Estudiar los efectos de la exposición de HSPC a PAMP en la respuesta antifúngica 

de las propias HSPC. 

 

2.1 Analizar in vivo la función que ejercen las HSPC frente a la infección por C. albicans 

en un modelo de exposición a varias dosis de Pam3CSK4. 

2.2 Analizar los mecanismos efectores de las HSPC en respuesta a PAMP. 

 

3. Estudiar los efectos de la exposición de HSPC a PAMP en la maduración de las 

células presentadoras de antígenos (APC; “Antigen presenting cells”) generadas 

tras su diferenciación, así como en su capacidad para activar y polarizar linfocitos 

T CD4⁺.  
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RESULTADOS  

 

Capítulo 1. Fenotipo funcional de macrófagos diferenciados a partir de 

HSPC expuestas in vitro o in vivo a PAMP  

 

La exposición in vitro de las HSPC a PAMP altera el fenotipo antifúngico de los 

macrófagos que se generan en cultivos con M-CSF  

 

Las HSPC, purificadas como células “linaje negativo” (Lin⁻), se diferenciaron hacia 

macrófagos en presencia o ausencia (células control) de distintos agonistas de los PRR: 

Pam3CSK4 (agonista del TLR2), lipopolisacárido (LPS) (agonista del TLR4), zimosán 

deplecionado (ligando de Dectina-1) y células inactivadas de C. albicans (que señalizan 

principalmente vía TLR2 y Dectina-1). En concreto, se utilizaron levaduras inactivadas de la 

cepa ATCC 26555. La estimulación con los ligandos solubles Pam3CSK4 o LPS se mantuvo 

durante todo el periodo de diferenciación (exposición continua) o durante únicamente las 

primeras 24 h únicamente (exposición transitoria). En todos los casos, tras siete días de 

cultivo, se recogieron las células adherentes y se analizó (i) la expresión de los marcadores 

de superficie Ly-6C y de la molécula de histocompatibilidad de clase II (MHCII), (ii) la 

producción de citocinas inflamatorias en respuesta a Pam3CSK4 o LPS, y (iii) la capacidad 

fagocítica y microbicida de los macrófagos frente a levaduras de C. albicans.  

Cuando la diferenciación hacia macrófago se llevaba a cabo mediante cultivo con el 

factor de crecimiento M-CSF, tras estimular de forma continua las HSPC con Pam3CSK4 o 

LPS, la mayoría de los macrófagos (células CD11b⁺ F4/80⁺) adquiría un fenotipo 

inflamatorio (Ly6C⁺ MHCII⁻); en exposición transitoria únicamente se veía dicho efecto al 

estimular las HSPC con Pam3CSK4. La estimulación de las HSPC con zimosán deplecionado o 

C. albicans no inducía cambios en los marcadores de superficie analizados, pero aumentaba 

la producción de las citocinas inflamatorias TNF-α (Factor de necrosis tumoral α) e IL-6 

(Interleucina 6) por parte de los macrófagos obtenidos (fenotipo entrenado). Sin embargo, 

las HSPC estimuladas de forma continua o transitoria con Pam3CSK4 o LPS generaban 

macrófagos con menor capacidad para producir TNF-α e IL-6 (fenotipo tolerizado). Además, 

los macrófagos obtenidos a partir de HSPC estimuladas con Pam3CSK4 o C. albicans 

presentaban mayor actividad fungicida que los macrófagos producidos a partir de HSPC sin 
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estimular (macrófagos control), ya que eran capaces de eliminar una mayor cantidad de 

levaduras de C. albicans. Este aumento de la capacidad fungicida no está relacionado con 

una alteración de la capacidad fagocítica, ya que en ambos casos los macrófagos eran 

capaces de fagocitar un porcentaje de levaduras similar al fagocitado por macrófagos 

control. 

Por otra parte, si la diferenciación hacia macrófago se llevaba a cabo mediante cultivo 

con el factor de crecimiento GM-CSF, tras estimular las HSPC con cualquiera de los PAMP 

utilizados, la mayoría de los macrófagos adquiría un fenotipo inflamatorio (Ly6C⁺ MHCII⁻), 

mientras que en exposición transitoria únicamente se veía dicho efecto al estimular con 

Pam3CSK4. La producción de citocinas inflamatorias TNF-α e IL-6, tanto en exposición 

continua como transitoria, solo se vio alterada en los macrófagos obtenidos a partir de 

HSPCs en presencia de Pam3CSK4, observándose, al igual que en cultivos con M-CSF, un 

fenotipo tolerizado. En cuanto a la actividad fungicida, ninguno de los PAMPs utilizados para 

estimular las HSPC daba lugar a macrófagos con una mayor capacidad para eliminar 

levaduras de C. albicans.  

Para evaluar la capacidad de los ligandos fúngicos de revertir la tolerancia al Pam3CSK4 

en HSPC, las HSPC fueron expuestas a Pam3CSK4 durante 24 h y, tras eliminar el ligando 

mediante lavado, los progenitores se cultivaron con estímulos fúngicos (zimosán 

deplecionado o levaduras inactivadas de C. albicans) y M-CSF o GM-CSF durante siete días. 

Tras este periodo, se recogieron las células adherentes y se reestimularon con Pam3CSK4 o 

LPS. Los resultados obtenidos mostraron que, en cultivos con M-CSF, la presencia de 

levaduras de C. albicans o zimosán deplecionado durante la diferenciación hacia macrófago 

a partir de HSPC revertía parcialmente el fenotipo de tolerancia inducido por Pam3CSK4. Los 

macrófagos generados producían más TNF-α que los macrófagos expuestos únicamente a 

Pam3CSK4, aunque estos niveles continuaban siendo significativamente menores que los de 

macrófagos control. Por el contrario, respecto a la IL-6, la disminución de su producción por 

parte de macrófagos derivados de HSPC expuestas a Pam3CSK4 no se veía alterada por la 

presencia ni de levaduras ni de zimosán deplecionado durante la diferenciación. De la 

misma manera, el efecto de tolerancia inducido por Pam3CSK4 en HSPC en condiciones 

inflamatorias no se veía revertido por la presencia ni de levaduras ni de zimosán 

deplecionado durante la diferenciación hacia macrófago; incluso sorprendentemente, la 

producción de citocinas inflamatorias en respuesta al Pam3CSK4 era menor en comparación 

a la de células tolerizadas.  
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La infección sistémica por C. albicans y la exposición a Pam3CSK4 in vivo altera el 

fenotipo antifúngico de los macrófagos producidos ex vivo a partir de las HSPC  

 

Utilizando un modelo murino de candidiasis sistémica (mediante infección 

intraperitoneal con la cepa ATCC26555), observamos que en las primeras etapas de la 

infección (a bajos niveles de carga fúngica en órganos internos) las HSPC generaban 

macrófagos con un fenotipo entrenado: mayor producción de TNF-α en respuesta a 

Pam3CSK4 y aumento de la actividad fungicida, comparando con macrófagos control 

obtenidos a partir de HSPC de ratones no infectados. Sin embargo, cuando la infección 

avanzaba y se alcanzaban altos niveles de carga fúngica en los órganos internos, los 

macrófagos producidos presentaban un fenotipo tolerizado en cuanto a la producción de 

citocinas inflamatorias, mientras que su capacidad microbicida era similar a la de 

macrófagos control.  

Para determinar el efecto de la activación in vivo de HSPC por Pam3CSK4 se utilizaron 

dos pautas de tratamiento: una exposición corta al ligando (mediante una única dosis vía 

intravenosa) o una exposición continuada (mediante tres dosis vía intraperitoneal a días 

alternos). A continuación, se purificaron las HSPC de los ratones tratados y de ratones sin 

tratar (control) y se procedió a su diferenciación mediante cultivo con M-CSF. Con una única 

dosis de ligando, los macrófagos generados presentaban un fenotipo entrenado en 

respuesta a ligandos solubles de los TLR, al comparar con la respuesta de macrófagos 

control. Tras una exposición continua al agonista de TLR2, por el contrario, los macrófagos 

generados ex vivo presentaban un fenotipo entrenado en respuesta a ligandos solubles de 

los TLRs. Además, como previamente había descrito Herman y colaboradores (Hernan et al., 

2016), comprobamos que los ratones tratados con esta pauta de inyección de tres dosis de 

Pam3CSK4 sufrían esplenomegalia, observándose un aumento en la cantidad total de HSPCs 

(células Lin⁻ c-Kit⁺) en bazo. Purificamos las HSPC del bazo de ratones tratados y 

comprobamos que, al igual que a partir de HSPC de médula, los macrófagos generados 

presentaban un fenotipo entrenado en cuanto a la producción de citocinas. Sin embargo, 

estos macrófagos eran prácticamente incapaces de eliminar levaduras de C. albicans en 

comparación con los macrófagos control. En este caso, debido a la poca cantidad de células 

Lin⁻ en los bazos de los ratones sin tratar, se utilizaron como macrófagos control los 

producidos a partir de HSPC de médula. 
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Capítulo 2. Respuesta antifúngica de las HSPC expuestas a PAMP 

 

Una exposición continuada a Pam3CSK4 protege frente a la infección por                     

C. albicans, efecto mediado en parte por las HSPC 

 

Los bazos de los ratones tratados con varias dosis de Pam3CSK4, además de presentar 

un aumento en HSPC, también presentaban un aumento de las células mieloides maduras, 

ya que el número total de células que expresaban el marcador mieloide CD11b aumentaba 

con respecto a los bazos de ratones sin tratar. Se observaba un incremento de neutrófilos, 

células dendríticas clásicas, monocitos y macrófagos (CD11b⁺, MHCII⁻, Ly6C⁻ y CD11c⁻), 

siendo esta última población la que sufría una expansión más significativa. Dado el 

importante efecto del tratamiento continuado con Pam3CSK4, tanto en el fenotipo de los 

macrófagos producidos ex vivo a partir de HSPC, como en la cantidad de HSPC y células 

mieloides maduras presentes en el bazo, decidimos evaluar la influencia del tratamiento en 

la susceptibilidad a la infección sistémica por C. albicans. Los ratones tratados con varias 

dosis de Pam3CSK4 mostraron una carga fúngica en los órganos internos significativamente 

disminuida con respecto a ratones infectados sin tratar. Este resultado nos indica que un 

tratamiento extendido con Pam3CSK4 protege a los ratones frente a la infección por                    

C. albicans.  

Para comprobar el papel de las HSPC en la protección frente a la candidiasis sistémica 

que presentaban los ratones tratados con varias dosis de Pam3CSK4 decidimos ver el efecto 

que causaba la depleción de estas células. Para ello utilizamos el anticuerpo monoclonal 

ACK2, cuya administración in vivo provocaba una rápida depleción de las células madre 

hematopoyéticas (Czechowicz et al., 2007). La inmunodepleción de las HSPC causó la 

pérdida de protección frente a la candidiasis sistémica conferida por el tratamiento con 

varias dosis de Pam3CSK4, por lo que podríamos afirmar que la protección de ratones 

tratados con Pam3CSK4 frente a la candidiasis está mediada, al menos en parte, por HSPC. 
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El “secretoma” producido por HSPC en respuesta a PAMP altera la diferenciación 

de HSPC de forma paracrina y la producción de citocinas por parte de macrófagos 

maduros  

 

Células Lin⁻ fueron cultivadas en presencia de Pam3CSK4 o levaduras inactivadas de      

C. albicans durante tres días, en un medio sin suero para evitar su diferenciación inherente 

al ser cultivadas in vitro. Tras este periodo, se recogió el medio "condicionado" para evaluar 

sus efectos en HSPC y macrófagos peritoneales. El efecto del secretoma de células Lin⁻ 

activadas por Pam3CSK4 lo analizamos en macrófagos peritoneales y HSPC de ratones 

TLR2−/−, para evitar la estimulación directa por Pam3CSK4. Nuestros datos mostraron que 

tanto Pam3CSK4 como C. albicans promovían la secreción de factores solubles que inducían 

la diferenciación de HSPC hacia linaje mieloide, medida como porcentaje de células CD11b⁺. 

Además, el secretoma generado por las HSPC en respuesta a Pam3CSK4, pero no a C. albicans, 

tenía un efecto en la función de los macrófagos peritoneales disminuyendo su capacidad 

para producir TNF-α en respuesta a LPS. 

 

Capítulo 3. Fenotipo de las APCs obtenidas tras la diferenciación de HSPC 

expuestas a PAMP y su impacto en la respuesta de los linfocitos T CD4⁺  

 

La activación de HSPC con PAMP promueve un cambio fenotípico en las APC 

obtenidas tras su diferenciación 

 

Células Lin⁻ se cultivaron con GM-CSF y en presencia o ausencia (células control) de 

Pam3CSK4 o zimosán deplecionado durante 24 h. Tras este periodo, se llevó a cabo un 

cambio de medio con el objetivo de exponer las HSPC a los ligandos fúngicos únicamente de 

forma transitoria. A día tres se llevó a cabo un cambio de medio, de forma que el medio 

existente que contenía en suspensión las células no adherentes se redujo a una cuarta parte 

de su volumen y se añadieron las tres cuartas partes restantes de medio fresco. El sexto día 

de cultivo con GM-CSF se recogieron las células adherentes generadas, se procedió a su 

resiembra en placa y tras 24 h se estimularon con Pam3CSK4 o zimosán deplecionado 

durante 18–20 h. En este caso también se dispuso de células control sin estimular de cada 

una de nuestras condiciones de estudio (HSPC sin estimular, estimuladas con Pam3CSK4 o 
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estimuladas con zimosán deplecionado). Tras este período, se analizó la expresión de las 

moléculas de superficie y la producción de citocinas implicadas en la activación de linfocitos 

T CD4⁺.  

Mediante citometría de flujo analizamos la expresión de MHCII y de las moléculas 

coestimuladoras CD40, CD80 y CD86 en las células CD11b⁺ CD11c⁺, las cuales consideramos 

APC. Como era de esperar, la estimulación de las APCs con Pam3CSK4 o zimosán 

deplecionado aumentó la expresión de la mayoría de las moléculas de superficie analizadas 

en comparación con APC no estimuladas. Además, el tratamiento de las HSPC con Pam3CSK4 

aumentó la expresión de MHCII, CD80 y CD86 en las APC estimuladas. A continuación, la 

producción de citocinas fue determinada en los sobrenadantes de las APC estimuladas. El 

tratamiento de las HSPC con Pam3CSK4 o zymosán deplecionado aumentó la producción de 

TNF-α, IL-6, IL-12 p40 e IL-2 en todas las condiciones, a excepción de las APC estimuladas 

con Pam3CSK4 producidas a partir de HSPC activadas con Pam3CSK4, que produjeron una 

menor cantidad de IL-6.  

Para investigar las respuestas funcionales de las APC a microorganismos completos 

utilizamos levaduras inactivadas de una cepa no virulenta (PCA2) y una cepa virulenta 

(ATCC 26555) de C. albicans como estímulo. La expresión de MHCII, CD40, CD80 y CD86 en 

las células CD11b⁺ CD11c⁺ aumentó tras la estimulación con ambas cepas de C. albicans, y 

de acuerdo con nuestros resultados anteriores, la estimulación de HSPC con Pam3CSK4 

aumentó la expresión de estas proteínas en las APC obtenidas tras su diferenciación. Por el 

contrario, la estimulación de HSPC con zimosán deplecionado no alteró la expresión de estas 

moléculas de superficie en las APC en respuesta a PCA2, pero en respuesta a ATCC26555 

provocó una disminución de su expresión. La estimulación de HSPC con Pam3CSK4 también 

aumentó la producción de citocinas IL-6 e IL-2 por parte de las APC en respuesta tanto a la 

cepa virulenta como a la cepa no virulenta de C. albicans, pero no mostró ningún efecto en 

la producción de TNF-α. Por otra parte, la estimulación de HSPC con zimosán deplecionado 

aumentó la producción de IL-6 por parte de las APC estimuladas con ambas cepas, TNF-α e 

IL-12 p40 en respuesta a la cepa virulenta, pero no tuvo ningún efecto en la producción de 

IL-2.  
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Las APC obtenidas a partir de HSPC estimuladas con PAMP inducen una mayor 

polarización de linfocitos T CD4⁺ hacia Th17 y/o Th1 

 

A continuación, examinamos si los cambios observados en el fenotipo de las APC 

podían alterar la proliferación y activación de los linfocitos T CD4⁺. Para ello, se utilizaron 

dos aproximaciones dependiendo del estímulo que recibían las APC maduras: (i) si las APC 

eran estimuladas con Pam3CSK4 o zimosán deplecionado, se cocultivaban con linfocitos T 

CD4⁺ de ratones transgénicos que expresan un TCR de especificidad conocida frente a un 

péptido de ovoalbúmina (cepa OT-II). Previamente, las APC habían estado expuestas a dicho 

péptido en concreto del antígeno ovoalbúmina para que tuviera lugar la presentación 

antigénica a los linfocitos T. O bien, (ii) si las APC eran estimuladas con levaduras de                   

C. albicans, se cocultivaban con linfocitos T CD4⁺ de ratones “silvestres”. En estas 

condiciones, las células de C. albicans actuaban como una fuente de múltiples antígenos, así 

como estímulo de activación de las APC. Tras tres o cuatro días de cocultivo, cuantificamos 

la proliferación de los linfocitos T CD4⁺ mediante la determinación de la dilución del éster 

de succinimidil-carboxifluoresceína (CFSE, “Carboxyfluorescein succidimidyl ester”). 

Además, mediante ELISA cuantificamos la producción de IL-17A e IFN-γ por parte de los 

linfocitos T CD4⁺ en los sobrenadantes libres de células de los cocultivos. 

Si las APC se estimulaban con PAMP, el tratamiento previo de las HSPC con Pam3CSK4 

o zimosán deplecionado no inducía cambios en la proliferación o en el número de linfocitos 

T CD4⁺. Sin embargo, la producción de IFN-γ aumentó con la activación por ambos ligandos, 

mientras que solo la estimulación de HSPCs con zimosán deplecionado aumentaba la 

producción de IL-17A por parte de los linfocitos T CD4⁺. Por otra parte, si las APC se 

estimulaban con levaduras inactivadas de C. albicans, tampoco se observaban cambios 

importantes en la proliferación de los linfocitos T CD4⁺ tras la activación de HSPC con los 

citados ligandos microbianos, pero sí en la producción de citocinas. El tratamiento de HSPC 

con Pam3CSK4 o zimosán deplecionado aumentó la producción de IFN-γ cuando las APC eran 

estimuladas con una cepa virulenta o una cepa no virulenta de C. albicans, mientras que en 

la IL-17A únicamente se observó dicho aumento cuando las APC eran estimuladas con la 

cepa virulenta de C. albicans.  
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DISCUSIÓN 

 

La memoria de la inmunidad innata ha suscitado un gran interés en la comunidad 

científica desde que se descubrió que ciertos modelos de vacunación conferían una 

protección no específica de patógeno debido a un aumento en la activación de los 

macrófagos (Bistoni et al., 1986; van 't Wout et al., 1992). Además, en ese momento también 

se demostró el papel de los macrófagos en la inducción de la tolerancia a la endotoxina, 

proceso mediante el cual la exposición a LPS (también denominado endotoxina) u otros 

ligandos de los TLR protege frente a posteriores infecciones al disminuir la producción de 

citocinas inflamatorias y prevenir así el daño celular (Cavaillon y Adib-Conquy, 2006; 

Medvedev et al., 2006). Un importante aspecto a tener en cuenta, referente a este fenómeno 

de memoria, es la vida media de las células de la inmunidad innata, particularmente de los 

monocitos y macrófagos. En los humanos, los monocitos entrenados se pueden detectar en 

circulación hasta tres meses tras la vacunación con Bacillus Calmette-Guérin (BCG) 

(Kleinnijenhuis et al., 2014; Kleinnijenhuis et al., 2012). Esta observación sugiere que la 

reprogramación fenotípica observada también tiene lugar a nivel de los progenitores 

hematopoyéticos que generan las células mieloides, lo cual podría explicar la persistencia 

de la memoria de la inmunidad innata en el tiempo. De hecho, los efectos de la estimulación 

de HSPC con ligandos microbianos se pueden transferir a las células maduras generadas a 

partir de estos progenitores, como demuestra un artículo publicado por nuestro grupo en 

el que HSPC expuestas a Pam3CSK4 generan macrófagos que producen menor cantidad de 

citocinas inflamatorias (Yáñez et al., 2013b).  

En este contexto, el objetivo principal de esta tesis ha sido estudiar si la estimulación 

de HSPCs con otros ligandos de PRR o con el hongo C. albicans podía alterar el fenotipo 

funcional de las células mieloides derivadas de estos progenitores mediante diferenciación 

in vitro. Nuestros resultados demuestran que la estimulación in vitro mediante ligandos 

solubles de TLR2 y TLR4 da lugar a macrófagos con menos capacidad para producir 

citocinas inflamatorias (fenotipo tolerizado), mientras que los macrófagos que se generan a 

partir de HSPC estimuladas con levaduras inactivadas de C. albicans producen más cantidad 

de citocinas y tienen mayor actividad antifúngica (fenotipo entrenado). Así pues, estos 

resultados indican que el concepto de memoria de la inmunidad innata podría aplicarse 

también a las HSPC. Apoyando esta hipótesis, recientemente se ha demostrado que la 

vacunación intravenosa con BCG (que es una cepa de Mycobacterium bovis) en un modelo 

murino educa a células madre hematopoyéticas para generar macrófagos y monocitos 
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entrenados que protegen frente a la tuberculosis. Este efecto está mediado por cambios 

epigenéticos que reprograman a los macrófagos generados a partir de las HSPCs para que 

respondan de forma más eficiente a la infección por Mycobacterium tuberculosis (Kaufmann 

et al., 2018).  

Además, hemos comprobado que la capacidad de los macrófagos para producir 

citocinas depende en gran medida de cómo las HSPC a partir de las cuales se generan 

reciben e integran múltiples señales de su entorno (PAMP o factores de crecimiento como 

M-CSF o GM-CSF), así como del orden temporal en el que son activadas por los distintos 

estímulos durante el proceso de diferenciación. Utilizando un modelo de diferenciación ex 

vivo también hemos comprobado que una exposición breve al agonista de TLR2 in vivo 

provoca que los macrófagos generados ex vivo a partir de las HSPC estimuladas presenten 

también un fenotipo tolerizado. Así pues, en nuestro modelo ex vivo se reproducen los 

resultados obtenidos previamente con el modelo in vitro de activación de HSPC. Sin 

embargo, si sometemos a los ratones a una estimulación con varias dosis de Pam3CSK4, los 

macrófagos que se obtienen producen más cantidad de citocinas inflamatorias. Por tanto, 

podemos concluir que el fenotipo tolerizado o entrenado de los macrófagos generados ex 

vivo, en cuanto a la producción de citocinas, depende de la dosis y de la pauta de las señales 

que reciben las HSPC in vivo.  

La relación entre el fenotipo de los macrófagos generados ex vivo y el papel que puedan 

tener durante una infección no es obvia, por lo que predecir la influencia de la exposición a 

Pam3CSK4 en la susceptibilidad a la infección resulta complicado. Nosotros hipotetizamos 

que el aumento de HSPC y la importante acumulación de células mieloides maduras en el 

bazo de ratones tratados con varias dosis de Pam3CSK4 podrían contribuir a la protección 

frente a las candidiasis, en parte por la generación de nuevas células efectoras directamente 

en el sitio de infección. Los resultados obtenidos indican que, en nuestro modelo, el 

tratamiento con Pam3CSK4 protege a los ratones de la infección por C. albicans y dicho efecto 

protector se debe, al menos en parte, a las HSPC. En este contexto, Granick y colaboradores 

(2013) describen que la proliferación de HSPC en heridas cutáneas en respuesta a 

Staphylococcus aureus está mediada por TLR2 y contribuye a la producción de neutrófilos y 

a la eliminación de la infección local, dándole un papel a la señalización por TLR2 en la 

hematopoyesis extramedular. Otros autores han descrito también que una infección 

sistémica en ratón con Escherichia coli induce la movilización de HSPC al bazo, las cuales 

generan monocitos y neutrófilos que contribuyen a limitar una segunda infección (Burberry 

et al., 2014).  
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La inmunodepleción de las HSPC en los ratones tratados con Pam3CSK4 podría 

provocar alteraciones en la cantidad de células maduras, que explicarían en parte la 

eliminación de la protección en estos ratones. Sin embargo, hemos comprobado que en el 

momento de la infección (48 h tras la inyección del anticuerpo para deplecionar las HSPC) 

tanto los ratones deplecionados de células madre como sus respectivos controles 

presentaban la misma cantidad de células mieloides en el bazo. Aun así, no podemos 

descartar que las células mieloides maduras tengan un papel en la protección frente a la 

infección. Apoyando esta hipótesis, Wang y colaboradores (2002) han demostrado que la 

tolerancia inducida por una única dosis de un ligando de TLR2 en ratones reduce su 

susceptibilidad a la infección por S. aureus y Salmonella typhimurium. Además, sugieren que 

la protección en estos ratones viene mediada por un aumento del reconocimiento y la 

capacidad microbicida de neutrófilos y macrófagos.  

Numerosos estudios recientes apoyan la hipótesis de que las HSPC tienen un papel 

relevante en la lucha frente a la infección, aunque los mecanismos que subyacen al proceso 

de detección y respuesta frente a microorganismos patógenos no se conocen con exactitud 

(Boettcher y Manz, 2017; Zhao y Baltimore, 2015). Zhao y coaboradores (2014) describen 

que las HSPC son capaces de responder a la estimulación por los ligandos solubles de TLR2 

y TLR4 produciendo una amplia variedad de citocinas. En este sentido, nuestros resultados 

demuestran que las HSPC secretan mediadores en respuesta a Pam3CSK4 y a C. albicans, que 

son capaces de inducir la diferenciación de HSPC de forma paracrina y alteran la producción 

de citocinas por parte de macrófagos peritoneales residentes. Entre estos mediadores, 

destaca la presencia de quimiocinas que podrían facilitar el reclutamiento de las células de 

la inmunidad innata a los sitios de infección, proceso crucial para el control local de las 

infecciones fúngicas. 

Además de la reprogramación de monocitos/macrófagos y de los progenitores 

hematopoyéticos que los generan, la protección conferida por la memoria de la inmunidad 

innata también podría ser debida a una modificación en el potencial de las células mieloides 

para presentar antígenos y activar la respuesta de los linfocitos T CD4⁺. Algunos estudios 

previos avalan esta hipótesis, describiendo que las APC diferenciadas a HSPC de la médula 

ósea de ratones expuestos a una glicoproteína presente en nematodos producen una 

respuesta antiinflamatoria respecto a macrófagos control (Goodridge et al., 2004). Para 

contrastar esta hipótesis, tras su estimulación con Pam3CSK4 o zimosán deplecionado, las 

HSPCs fueron cultivadas en presencia de GM-CSF para obtener células con una elevada 

capacidad de presentación antigénica (generalmente denominadas células dendríticas). De 

la misma forma que en la diferenciación hacia macrófago, el fenotipo de las células 
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dendríticas generadas se ve alterado tras la estimulación de HSPC con PAMP. La 

estimulación de HSPC con Pam3CSK4 genera APC que aumentan las tres señales que estas 

células envían a los linfocitos T CD4⁺ para inducir su activación: la expresión de MHCII, la 

expresión de moléculas coestimuladoras (CD80, CD86, CD40) y la producción de citocinas. 

Además, estos cambios se traducen en un aumento en la polarización de los linfocitos T 

CD4⁺ hacia Th1 y Th17. Sin embargo, futuros experimentos serán necesarios para definir 

mejor (i) los factores que contribuyen a la polarización hacia Th1 y Th17, (ii) el efecto de 

este cambio fenotípico de las células dendríticas sobre su capacidad para activar en los 

linfocitos T CD8⁺, y (iii) el posible papel protector frente a la infección de las APC generadas 

a partir de HSPC estimuladas con PAMP. 
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