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Abstract
The aim of this paper is to show how the number of conjugacy classes appearing in the
product of classes affect the structure of a finite group. The aim of this paper was to show
several results about solvability concerning the case in which the power of a conjugacy class
is a union of one or two conjugacy classes. Moreover, we show that the above conditions can
be determined through the character table of the group.
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1 Introduction

Let G be a finite group. The product of conjugacy classes is a G-invariant set, and conse-
quently, is a union of classes. There exist many results about the structure of a finite group
regarding the number of conjugacy classes in the product of its classes, some of which are
related to the normal structure and the non-simplicity of the group. In this paper, we study
three problems about the power of a conjugacy class, each of them corresponds to a section.
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In [2], Z. Arad and M. Herzog conjectured that in a non-abelian simple group the product
of two non-trivial conjugacy classes is not a conjugacy class. The conjecture has received
much attention and has been confirmed for several families of simple groups. We propose
the following.

Conjecture 1 In a non-abelian finite simple group, the product of n non-trivial conjugacy
classes with n ∈ N and n ≥ 2 is not a conjugacy class.

To tackle this conjecture, we prove a characterization of the property using irreducible
characters, see Theorem 7. This enables us to prove that Conjecture 1 holds for sporadic
simple groups.

In [9], R.M. Guralnick and G. Navarro confirmed the conjecture of Arad and Herzog for
the particular case of a square of a conjugacy class. We prove the following theorem which
confirms Conjecture 1 for the case when a product of a single non-trivial conjugacy class is
considered. We use the notation xG to denote the conjugacy class of an element x ∈ G.

Theorem A Let K = xG be a conjugacy class of a group G. There exists n ∈ N and n ≥ 2
satisfying that K n is a conjugacy class if and only if

χ(x)n = χ(1)n−1χ(xn)

for all χ ∈ Irr(G). In this case, 〈K 〉 is solvable.
To prove the solvability of 〈K 〉 in TheoremA,we utilize the Classification of Finite Simple

Groups (CFSG). However, we note that in many cases CFSG is not needed, in particular,
when the order of the elements in the conjugacy class is prime, or a power of 2, or if the
classes are real. These results are collected in Theorems 3 and 4 of Section 2.

In Sects. 3 and 4, we will focus on two cases when the power of a conjugacy class is a
union of exactly two conjugacy classes. In the first case, we suppose one of these conjugacy
classes is the trivial class, and we demonstrate the following theorem.

Theorem B Suppose that K is a conjugacy class of a group G such that K n = {1} ∪ D for
some n ∈ N with n � 2 and D is a non-trivial conjugacy class. Then K K−1 = {1} ∪ D and
〈K 〉 is solvable.

In [3], Theorem B is proved for the particular case n = 2 without using the CFSG and the
structure of 〈K 〉 and 〈D〉 is determined.

In the second case, we suppose the two conjugacy classes are inverse to each other. We
believe the following to hold.

Conjecture 2 Let G be a group and let K be a conjugacy class. If Kn = D ∪ D−1 for some
n ∈ N and n ≥ 2 and D a conjugacy class, then 〈K 〉 is solvable. In particular,G is not simple.

We provide the following evidence to support this conjecture.

Theorem C Let G be a group and let K be a conjugacy class. If K n = D ∪ D−1 for some
n ∈ N and n ≥ 2 and D a conjugacy class, then either |D| = |K |/2 or |K | = |D|. In the
first case, 〈K 〉 is solvable.
Theorem D Let G be a group and let K = xG be a conjugacy class of G. If K 2 = K ∪ K−1,
then 〈K 〉 is solvable. Moreover, x is a p-element for some prime p.

We will also obtain characterizations with irreducible characters of the properties stated
in Theorems B and C. These are collected in Theorems 12 and 13. All groups are supposed
to be finite.
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Powers of conjugacy classes in a finite group 411

2 Powers of classes which are classes

In this section, we prove that Conjecture 1 is true for the particular case of the nth power of a
conjugacy class, n ≥ 2. Furthermore, we obtain an equivalent property in terms of irreducible
characters and prove the solvability of the subgroup generated by such a conjugacy class by
means of the CFSG.

We use the following lemma to prove Theorem 1, which will be useful to obtain the
solvability part of Theorem A. We denote by C[G] the complex group algebra over the
complex field C. Let K be a conjugacy class of G and denote by ̂K the class sum of the
elements of K in C[G].
Lemma 1 (Lemma 2.1 of [9]) Let x ∈ G, where G is a finite group, and let K = xG. Then
the following are equivalent:

1. ̂Kx ∈ Z(C[G]).
2. ̂Kx−1 ∈ Z(C[G]).
3. For each character χ ∈ Irr(G), either χ(x) = 0 or |χ(x)| = χ(1).

In the next theorem, we find a normal subgroup of a group when there is a conjugacy class
such that some of its powers is again a conjugacy class, and an equivalent property in terms
of the irreducible characters of the group. This result extends the first half of Theorem A of
[9] in which the authors prove the case n = 2. The techniques of the proof are the same.

Theorem 1 Let G be a group and K = xG with x ∈ G, n ∈ N and n ≥ 2. The following
assertions are equivalent:

(a) Kn is a conjugacy class
(b) CG(x) = CG(xn) and N = x−1K = K−1K = [x,G] � G
(c) CG(x) = CG(xn) and χ(x) = 0 or |χ(x)| = χ(1) for all χ ∈ Irr(G).

Proof Let us prove that (a) implies (b). Since xn ∈ Kn and Kn is a conjugacy class, it
follows that (xn)G = Kn . Furthermore, for all 2 ≤ j ≤ n, we see that xK j−1 ⊆ K j and so
|K | ≤ |K j | ≤ |Kn |. On the other hand, sinceCG(x) ⊆ CG(xn), we have |Kn | ≤ |K |. Thus,
|K | = |K j | = |Kn | and CG(x) = CG(xn). In particular, xKn−1 = Kn and xK = K 2.
Let y ∈ K then yK = K 2 = xK and so x−1yK = K . As y = xg for some g ∈ G, it
follows that [x, g]K = K . So, for N = [x,G] = 〈[x, g] | g ∈ G〉, we have NK = K
and so Nx ⊆ K and |N | = |Nx | ≤ |K |. However, as K = x{[x, g] | g ∈ G} ⊆ xN , it
follows that |K | ≤ |xN | = |N |. Consequently, K = xN . Furthermore, K−1 = x−1[x,G]
and KK−1 = [x,G] as required.

Suppose (b) and let us see (c). Since Kx−1 = N , then ̂Kx−1 = ̂N . Also, ̂N ∈ Z(C[G])
since N 	 G. Therefore, assertion (c) holds by Lemma 2.1 (3).

Assuming (c) now, Lemma 1 guarantees that ̂Kx is central inC[G], and thus the set Kx is
closed under conjugation. Let us see that K 2 = xK . Clearly, Kx ⊆ K 2 and let xgxh ∈ K 2

for some g, h ∈ G. Thus, ((xg)h
−1
x)h ∈ (Kx)h = Kx . Therefore, K 2 = xK . We obtain by

induction that Kn = xn−1K . Since |Kn | = |K | = |xG | = |(xn)G |, then Kn = (xn)G and
(a) is proved. 
�
Remark 1 As a consequence of Theorem 1, we have that if [x,G] = {[x, g] | g ∈ G}, then
Kn is a conjugacy class when (n, o(x)) = 1.

It follows, from Theorem 1, that if G is a finite group with a non-central conjugacy class
K such that Kn is a conjugacy class for some n ≥ 2, then G is not simple. The following
corollaries will be useful to prove some results later.
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Corollary 1 Let G be a group and K = xG with x ∈ G such that K n is a conjugacy class
for some n ∈ N with n ≥ 2. Then |Kr | = |K | for all r ∈ N and Ko(x)+1 = K and
Ko(x)−1 = K−1. Moreover, Km is a conjugacy class for all m ∈ N such that (m, o(x)) = 1.

Proof Since Kn is a conjugacy class, we know by Theorem 1(b) that K = xN with N =
KK−1 = [x,G]�G. Thus, Kr = xr N and |Kr | = |N | = |K | for all r ∈ N. Furthermore, if
s = o(x), then K = xs K ⊆ Ks+1, so Ks+1 = K . Analogously, since x−1 = xs−1 ∈ Ks−1

and |K−1| = |K | = |Ks−1|, we conclude that Ks−1 = K−1. Finally, let m ∈ N such that
(m, o(x)) = 1, then CG(x) = CG(xm) and Km is a class by applying Theorem 1(b). 
�
Corollary 2 Let G be a group and K = xG with x ∈ G such that K n = K for some n ∈ N

with n ≥ 2, then:

(a) Kk(n−1)+r = Kr for every r , k ∈ N.
(b) Kn−1 = [x,G] � G.
(c) π(o(x)) ⊆ π(n − 1) where π(t) denotes the set of primes dividing the number t.

Proof (a) First, let us see that Kk(n−1)+1 = K for every k ∈ N. It follows by induction
on k. It is given if k = 1. Let us suppose that Kk(n−1)+1 = K for some k ∈ N.
Then K (k+1)(n−1)+1 = Kk(n−1)+n = Kk(n−1)Kn = Kk(n−1)K = Kk(n−1)+1 = K . In
general, for every k, r ∈ N, we have

Kk(n−1)+r = Kk(n−1)+1+r−1 = KKr−1 = Kr .

(b) Since xKn−1 ⊆ Kn = K , we have |xKn−1| ≤ |K |. We also know that |K | ≤ |xKn−1|,
so xKn−1 = K . On the other hand, by applying Theorem 1(b), we obtain K = x[x,G],
so Kn−1 = [x,G].

(c) By (a), we know that Kk(n−1)+1 = K for every k ∈ N. As a consequence, o(x) =
o(xk(n−1)+1) for every k ∈ N. Let p be a prime such that (p, n − 1) = 1. We can find k
with 1 ≤ k < p such that n − 1 ≡ k (mod p). Since Zp is a field, there exists t ∈ Z

+
such that tk ≡ −1 (mod p). In fact, t can be taken such that 1 ≤ t < p. Now

t(n − 1) ≡ tk ≡ −1 (mod p),

that is, t(n − 1) + 1 ≡ 0 (mod p). Since o(x) = o(xt(n−1)+1), we have (t(n − 1) +
1, o(x)) = 1, and this implies that p does not divide o(x).


�
Remark 2 With the notation of Corollary 2, observe that K 2 = K cannot happen. Otherwise,
by Theorem 1(b), we have K = xN , so x2N = xN , and hence x ∈ N , that is, K = N , a
contradiction.

Let us see an example in which K 3 = D with D = K .

Example 1 LetG = 〈a〉�〈b〉with 〈a〉 ∼= Z3 and 〈b〉 ∼= Z4. Let K = bG , then K 3 = D = K
and |K | = 3.

Corollary 3 Let G be a group and let π be a set of primes. Suppose that for each conjugacy
class K of π-elements of G there exists n ∈ N with n ≥ 2 such that K n is a conjugacy class.
Then G/Oπ ′(G) is nilpotent. In particular, if π = π(G), then G is nilpotent.

Proof Analogous to the proof of Corollary E of [3]. 
�
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Powers of conjugacy classes in a finite group 413

Remark 3 Following Remark 1 we have that if [x,G] = {[x, g] | g ∈ G} for each π-element
x ofG, byCorollary 3,G/Oπ ′(G) is nilpotent. In particular, ifπ = π(G), thenG is nilpotent.

The following result, which does not require the CFSG, will be useful for our purposes.

Theorem 2 (Theorem 3.2(c) of [9]) Let G be a finite group and let N be a normal subgroup
of G. Let x ∈ G be such that all elements of xN are conjugate in G. If x is a p-element for
a prime p, then N has a normal p-complement.

Now we see some particular cases in which the solvability of 〈K 〉 where K is a conjugacy
class such that Kn is a class for some n ∈ N and n ≥ 2 can be obtained without using the
CFSG. First, we add conditions about the order of the elements of K , and later we study the
particular case when Kn is a real class.

Theorem 3 Let K be a conjugacy class of an element x of a group G. Suppose that there
exists n ∈ N with n ≥ 2 satisfying that K n is a conjugacy class. Then:

1. If o(x) is a prime, then 〈K 〉 is solvable.
2. If x is a 2-element, then 〈K 〉 is solvable.
Proof By Theorem 1(b) we have K = xN with N = KK−1 = [x,G] � G. Let us prove
(1). Suppose x is of prime order p, we show that CN (x) is a p-group. Since N = x−1K ,
if we take some element x−1xg ∈ CN (x), then x ∈ CG(xg). Thus, o(x−1xg) divides the
least common multiple of o(x−1) and o(xg), so all non-trivial elements of CN (x) have order
p. In particular, CN (x) is a p-group, as wanted. Now, all elements of xN are G-conjugate,
so N has a normal p-complement by Theorem 2. We write N = P0L with P0 a p-group
and L � N a p′-group. Since CL (x) ⊆ CN (x) and CN (x) is a p-group, we conclude that
CL(x) = 1 and since o(x) = p, we deduce that L is nilpotent by Thompson’s Lemma (see
for instance Theorem 2.1 in Chapter 10 of [6]). As a result, N is solvable and 〈K 〉 = 〈x〉N
is solvable too.

Now, we prove (2). By Theorem 2, N has a normal 2-complement, and consequently, as
〈K 〉/N is a 2-group, then 〈K 〉 has a normal 2-complement as well. By Feit–Thompson’s
Theorem, we conclude that 〈K 〉 is solvable. 
�
Theorem 4 Let K be a conjugacy class of an element x of a group G. Suppose that there
exists n ∈ N with n ≥ 2 satisfying that K n = D where D is a real conjugacy class, then 〈K 〉
is solvable. Also, D3 = D and D is a class of a 2-element. In particular,

(a) If n = 2a for some a ∈ N, then |K | is odd and o(x) = 2a+1.
(b) If D = K, then x is a 2-element and Km = K for every odd number m. Also, K 2 =

[x,G] � G.

Proof We have

Kn = D = D−1 = (Kn)−1 = (K−1)n .

By Corollary 1, we get |K | = |Kn | = |D|, and we conclude that xn−1K = Kn . Hence,

K = (xn−1)−1Kn = (xn−1)−1(K−1)n = (x−1)n−1(K−1)n ⊆ (K−1)2n−1.

By applying Corollary 1 to K−1, we obtain K = (K−1)2n−1. Thus, K−1 = K 2n−1. We
have K ⊆ KKK−1 = K 2K 2n−1 and as |K | = |K 2n+1|, by Corollary 1, it follows that
K 2n+1 = K . Thus, bymultiplying both sides by Kn−1, we obtain K 3n = Kn , so D3 = D and
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414 A. Beltrán et al.

D is a conjugacy class of a 2-element by Corollary 2(c). By Theorem 3 (2), we have that 〈D〉
is solvable. Since K 2n+1 = K , we know by Corollary 2(b) that K 2n = D2 = N = [x,G],
so N is solvable. By Theorem 1(b), we have K = xN with N = [x,G] � G, so 〈K 〉 is
solvable.

Let us prove the particular case (a). Suppose that |K | = |D| is odd. Then D is a real
class of odd size and then o(xn) = 2. This means that o(x) = 2a+1 and the result is proved.
Assume that |K | = |D| is even and we are going to get a contradiction. By Theorem 1,
N = KK−1 = x−1K � G and we write

x−1K = {1} ∪ D1 ∪ · · · ∪ Dm

where each Di is the conjugacy class of an element x−1xg = 1 for some g ∈ G. Since
|x−1K | = |K | is even, there exists in x−1K , at least one conjugacy class of odd size.
Let � = {Di | |Di | odd} and we necessarily have that |�| is odd. Thus, there exists a real
conjugacy class Dk with k ∈ {1, . . . ,m} such that |Dk | is odd, that is, Dk is a non-trivial
conjugacy class of elements of order 2. We write Dk = tG . Since |Dk | is odd, then CG(t)
contains a Sylow 2-subgroup of G. Observe that xn is a 2-element by the previous part.
Consequently, x is a 2-element. By taking conjugates,we can suppose that 〈x〉 ⊆ P ⊆ CG(t s)
for some P ∈ Syl2(G) and some s ∈ G. We write t s = x−1xg for some g ∈ G. Observe
that xg = x because t = 1. We have x ∈ CG(x−1xg), so x and xg commute. Since
o(x−1xg) = 2, then (x2)g = x2, so g ∈ CG(x2). On the other hand, as |Kn | = |K |, we have
CG(xn) = CG(x), and since CG(x2) ⊆ CG(xn), this leads to t = 1, a contradiction.

Finally, (b) directly follows from the first part of this theorem. 
�
Remark 4 Observe that if a real conjugacy class K satisfies that there exists n ∈ N such that
Kn = D where D is a conjugacy class, then D is also a real class. However, if a class K
satisfies that there exists n ∈ N such that Kn = D and D is real, then K need not be real.
A trivial example of this situation occurs in Z4. We have studied this case in the previous
theorem.

We use the following result appearing in [9] to obtain the solvability of the subgroup
generated by a conjugacy class satisfying the conditions of Theorem 1, and consequently, to
prove the solvability part of Theorem A. The CFSG is required.

Theorem 5 (Theorem 3.2(a) of [9]) Let G be a finite group and let N be a normal subgroup
of G. Let x ∈ G be such that all elements of xN are conjugate in G. Then N is solvable.

In the next result the solvability in Theorem A is obtained by means of the CFSG. In fact,
Theorems 1 and 6 are extensions of some parts of Theorem A of [9], in which the authors
prove similar results for the square of a conjugacy class.

Theorem 6 Let K be a conjugacy class of a group G such that there exists n ∈ N satisfying
that K n is a conjugacy class. Then 〈K 〉 is solvable.
Proof ByTheorem 1(b), we have K = xN with N = [x,G]. Thus, N is solvable by applying
Theorem 5. As a consequence, 〈K 〉 = 〈x〉N is solvable. 
�

Next, we obtain a characterization in terms of characters of the fact that the product of
n conjugacy classes, for some n ∈ N, is again a conjugacy class. This extends the case in
which the product of two classes is a class (see for instance [12]) and this is useful to prove
Conjecture 1 for the sporadic simple groups for some values of n. In particular, we obtain
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Powers of conjugacy classes in a finite group 415

such a characterization for the case in which the power of a class is a class and so, the first
part of Theorem A. We refer the reader to Chapter 3 of [11] for a detailed presentation of
character and class sums properties.

Theorem 7 Let K1, . . . , Kn be conjugacy classes of a group G and write Ki = xi G with
xi ∈ G. Then K1 · · · Kn = D where D = dG if and only if

χ(x1) · · · χ(xn) = χ(1)n−1χ(d)

for all χ ∈ Irr(G). In particular, if K is a conjugacy class of G and x ∈ K, then Kn is a
conjugacy class for some n ∈ N if and only if

χ(x)n = χ(1)n−1χ(xn) (1)

for all χ ∈ Irr(G).

Proof Let χ ∈ Irr(G) and let R be an irreducible representation associated to χ . We know
that R can be linearly extended to C[G] and R(̂K ) ∈ Z(C[G]) commutes with R(g) for all
g ∈ G. We denote by ̂Ki the sum of all elements in Ki in the group algebra C[G]. We know
that

R(̂Ki ) = wχ(̂Ki )I

where

wχ(̂Ki ) = |Ki |χ(xi )

χ(1)

and I is the identity matrix.
Assume that K1 · · · Kn = D.Wewrite ̂K1 · · · ̂Kn = m̂Dwithm ∈ N. Thus, the hypothesis

implies that
R(̂K1 · · · ̂Kn) = R(̂K1) · · · R(̂Kn) = mR(̂D)

and
wχ(̂K1) · · · wχ(̂Kn) = mwχ(̂D).

Consequently,

|K1| · · · |Kn |χ(x1) · · · χ(xn)

χ(1)n
= m

|D|χ(d)

χ(1)

and since |K1| · · · |Kn | = m|D|, we have
χ(x1) · · · χ(xn) = χ(1)n−1χ(d)

for every χ ∈ Irr(G).
Let us prove the converse. Assume that the equation with characters holds. We know

that K1 · · · Kn = D1 ∪ · · · ∪ Dr with Di a conjugacy class for all 1 ≤ i ≤ r . We write
̂K1 · · · ̂Kn = m1̂D1 + · · · + mr ̂Dr , where mi is the multiplicity of ̂Di in the product. We
have |K1| · · · |Kn | = m1|D1| + · · · + mr |Dr |. As above,

R(̂K1 · · · ̂Kn) = R(̂K1) · · · R(̂Kn) = m1R(̂D1) + · · · + mr R(̂Dr ),

and by hypothesis we know

χ(x1) · · · χ(xn) = χ(1)n−1χ(d)
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416 A. Beltrán et al.

for all χ ∈ Irr(G). Thus,

|K1| · · · |Kn |χ(d) = m1|D1|χ(d1) + · · · + mr |Dr |χ(dr )

where Di = dGi and

|K1| · · · |Kn |χ(d)χ(d) = m1|D1|χ(d1)χ(d) + · · · + mr |Dr |χ(dr )χ(d).

From this equation, we obtain

|K1| · · · |Kn |
∑

χ∈Irr(G)

χ(d)χ(d) = |K1| · · · |Kn ||CG(d)|

= m1|D1|
∑

χ∈Irr(G)

χ(d1)χ(d) + · · · + mr |Dr |
∑

χ∈Irr(G)

χ(dr )χ(d).

Then Di = D for some i . Without loss of generality, suppose that D1 = D and we have
mi = 0 for all i = 1. This means that K1 · · · Kn = D. 
�
Remark 5 Recall that the extended covering number of a group is the smallest integer r such
that the product of r conjugacy classes is the whole group for all classes. In [13], it is shown
that the extended covering number of the sporadic simple groups is at most 7. By using the
character tables of the sporadic groups, we have checked that for each of them and for each
n-tuple of conjugacy classes for n = 3, 4, 5, 6 there is some irreducible character which does
not satisfy equation (1) of Theorem 7. The case n = 2 obviously corresponds to Arad and
Herzog’s conjecture, which is already known to be satisfied by the sporadic simple groups.
Therefore, Conjecture 1 holds for the sporadic simple groups.

Proof of Theorem A. It is a direct consequence of Theorems 6 and 7. 
�

3 Powers which are a union of the trivial class and another class

In this section, we study the case in which the power of a conjugacy class is a union of
two conjugacy classes one of them being the trivial class. We first prove a particular case
satisfying the conjecture of Arad and Herzog which will also be useful in further proofs.

Lemma 2 Let G be a group and K , L and D non-trivial conjugacy classes of G such that
K L = D with |D| = |K |. Then G possesses a solvable proper normal group which is
〈LL−1〉. In particular, 〈L〉 is solvable.
Proof Let x ∈ L . Then xK = D = xgK for all g ∈ G. Consequently, K = x−1xgK for all
g ∈ G. Let N = 〈x−1xg | g ∈ G〉 = 〈LL−1〉 is normal in G and then NK = K . Since K
is union of cosets of N , then |N | divides |K |. Then N is proper in G. In addition, since all
elements in xN are conjugate, N is solvable by Theorem 5. Furthermore, it is an elementary
fact that 〈L〉 = 〈x〉[x,G] = 〈x〉N , so 〈L〉/N is cyclic, and consequently, 〈L〉 is solvable. 
�

We also need the following two results due to Guralnick and Robinson, which appeal to
the CFSG, as well as Kazarin’s extension of Burnside’s Lemma.

Theorem 8 (Theorem A of [8]) Let G be a finite group and p a prime. Let x ∈ G be an
element of order p such that [x, g] is a p-element for every g ∈ G. Then x ∈ Op(G).
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Powers of conjugacy classes in a finite group 417

Theorem 9 (Theorem 4.1 of [8]) Let G be a finite group and p a prime. If x ∈ G has order
p and is not central modulo Op′(G), then x commutes with some conjugate xg = x.

Theorem 10 (Kazarin, Theorem 15.7 of [10]) Suppose 1 = g ∈ G and |gG | = pa, where p
is a prime. Then gG generates a solvable normal subgroup of G.

We are ready to prove Theorem B.

Proof of Theorem B. Wewrite Kn−1 = A1∪· · ·∪ Am where Ai are distinct conjugacy classes
for i = 1, . . . ,m. So Kn = K A1 ∪ · · · ∪ K Am = {1} ∪ D. Thus, 1 ∈ K Ai for some i and
we assume without loss of generality i = m. So we write Kn−1 = K−1 ∪ A1 ∪ · · · ∪ Am−1.
Then KK−1 ⊆ Kn = {1} ∪ D and we have either KK−1 = {1} or KK−1 = {1} ∪ D. In the
first case K = {x}, that is, x is central in G, so Kn = {xn} and this is not possible. Therefore,
KK−1 = {1} ∪ D.

To prove the solvability of 〈K 〉 we argue by minimal counterexample, so let G be a
minimal counterexample. Write K = xG with x ∈ G and we distinguish two possibilities:
xn = 1 and xn = 1. Assume first that xn = 1. If m = 1, where m is as in the above
paragraph, then Kn−1 = K−1. In addition, byCorollary 1, we know that Ko(x)−1 = K−1 and
Ko(x)+1 = K . So, since Kn−1 = K−1 = Ko(x)−1, we deduce that Kn+1 = Ko(x)+1 = K ,
and it necessarily follows that K D = K . By Lemma 2, 〈D〉 = 〈KK−1〉 is solvable, so the
case m = 1 is finished. Suppose now that m > 1, that is, there exists i ∈ {2, . . . ,m} such
that K Ai = D. Then |K | � |D|. On the other hand, since xn = 1, then D = (xn)G and
CG(x) ⊆ CG(xn) implies that |D| divides |K |. As a result |D| = |K |. We can apply Lemma
2 and we obtain that 〈Ai 〉 is solvable. Now, consider G = G/〈Ai 〉. From the hypothesis,
we have K

n = {1} ∪ D where K denotes the corresponding class in G. If K
n = {1}, then

K is central and if K
n = D, then 〈K 〉 is solvable by Theorem A. Otherwise, by minimal

counterexample, we get that 〈K 〉 is solvable, so 〈K 〉 is solvable too, a contradiction.
For the rest of the proof we assume that xn = 1. First, we prove that n can be assumed to

be prime. Suppose that the theorem holds for a prime, that is, K p = {1} ∪ D with p prime
implies that 〈K 〉 is solvable. Suppose that n is not prime and write n = pt for a prime p and
t > 1. Write

K t = C1 ∪ · · · ∪ Cs

where Ci are conjugacy classes of G for all 1 ≤ i ≤ s. Since

Kn = K pt = (C1 ∪ · · · ∪ Cs)
p = {1} ∪ D,

we have C p
i ⊆ {1} ∪ D for every i , and there are three possibilities: C p

i = {1}, C p
i = D or

C p
i = {1} ∪ D. If C p

i = {1}, then trivially 〈Ci 〉 ≤ Z(G), so 〈Ci 〉 is solvable. If C p
i = D,

then 〈Ci 〉 is solvable by Theorem A. Finally, if C p
i = {1} ∪ D, then 〈Ci 〉 is solvable by

our assumption. Now, we denote G = G/〈Ci 〉 for some non-trivial class Ci . Notice that
K

n = {1} ∪ D. Arguing similarly to above leads to the fact that 〈K 〉 is solvable. Thus, 〈K 〉
is solvable too, a contradiction.

Therefore, for the rest of the proof, we assume that K p = {1} ∪ D with p prime, and
hence we are assuming that o(x) = p. Let N be a minimal normal subgroup of G. Arguing
as in the above paragraph, that is, by transferring into the quotient G/N , using Theorem A
and minimality, it easily follows that N is the only minimal normal subgroup of G and that
it is a direct product of isomorphic simple groups. We will prove that N is solvable, and this
contradiction will complete the proof. Set D = tG with t ∈ G. If t is a p-element, since
KK−1 = {1} ∪ D, then x−1xg = [x, g] is a p-element for every g ∈ G. By Theorem 8,
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we have x ∈ Op(G) = 1. Consequently, 〈K 〉 ≤ Op(G), which implies that 〈K 〉 is solvable.
Thus, we can assume that o(t) = p. If x is non-central moduloOp′(G), then by Theorem 9,
x commutes with some conjugate xg = x , so in particular o(x−1xg) = p, a contradiction.
Therefore, x can be assumed to be central modulo Op′(G). Also, if Op′(G) = 1, then
x ∈ Z(G) and there is nothing to prove.We assume then thatOp′(G) = 1, and byminimality
N ≤ Op′(G). Moreover, if x centralizesOp′(G), then x ∈ CG(N ) = 1, which forces N to be
abelian, and the proof is finished. Therefore, we can assert that there exists a prime q dividing
|Op′(G) : COp′ (G)(x)| and hence, by coprime action, there exists Q ∈ Sylq(Op′(G)) such
that Qx = Q, so 1 = [x, Q] ⊆ Q. Let [x, g] be a non-trivial q-element of [x, Q]. Since
[x, g] = x−1xg ∈ K−1K = {1}∪D, then the elements of D are q-elements. In particular, the
prime q must be unique, that is, qa = |Op′(G) : COp′ (G)(x)| with a ≥ 1. Since |N : CN (x)|
divides |Op′(G) : COp′ (G)(x)|, we have |N : CN (x)| = qb for some b ≤ a. As a consequence

|N 〈x〉 : CN 〈x〉(x)| = qb, so we can apply Theorem 10 and 〈xN 〈x〉〉 is solvable. Now, it is
elementary that 〈xN 〈x〉〉 = 〈x〉[N 〈x〉, 〈x〉] = 〈x〉[N , x]. We conclude that 1 = [N , x] is a
normal solvable subgroup of N 〈x〉. This certainly leads to the solvability of N , and this is
the final contradiction. 
�

We have seen that Kn = {1} ∪ D implies that KK−1 = {1} ∪ D and this property was
characterized in Theorem B of [4] in terms of characters. Thus, the hypothesis of Theorem B
implies the following equality with characters.

Corollary 4 Let G be a group and x, d ∈ G \ {1}. Let K = xG, D = dG such that K n =
{1} ∪ D for some n ∈ N. Then for every χ ∈ Irr(G)

|K ||χ(x)|2 = χ(1)2 + (|K | − 1)χ(1)χ(d).

Proof By Theorem B, we know that KK−1 = {1} ∪ D and the result follows by Theorem B
of [4]. 
�
Example 2 Let us show two examples of the situation Kn = {1} ∪ D with n = 3. In the first,
xn = 1 and in the second xn = 1. Let G = A4 and K = (1 2 3)G , which satisfies |K | = 4
and o((1 2 3)) = 3. Furthermore, K 3 = {1} ∪ D where D = ((1 2)(3 4))G . On the other
hand, let G = (Z7 �Z9)�Z2 having a conjugacy class K of elements of order 21 satisfying
that K 3 = 1∪ D and |K | = 6 where D is a class of elements of order 7 and |D| = 6. In this
example, 〈K 〉 ∼= Z21.

Remark 6 We have seen that Kn = {1} ∪ D implies that KK−1 = {1} ∪ D. However, the
converse is not true. Let G = SL(2, 3) and let K be one of the two conjugacy classes of
elements of order 6 which satisfies |K | = 4. It follows that KK−1 = {1}∪ D where D is the
unique conjugacy class such that |D| = 6. However, there is no n ∈ N with Kn = {1} ∪ D.

In [2],Arad andHerzogpublished the following result about themultiplicity of a conjugacy
class in the product of conjugacy classes. We will use it for the particular case of the power
of a class in Theorems 12 and 13.

Theorem 11 (Lemma 10.1 of [2]) Let G be a group and let K1, . . . , Kr be the conjugacy
classes of the elements x1, . . . , xr , respectively, such that K1 · · · Kr = D1 ∪ · · · ∪ Dt where
D1, . . . , Dt are the conjugacy classes of the elements d1, . . . , dt , respectively. Then

r
∏

i=1

̂Ki =
t

∑

j=1

α j ̂Dj ,
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where

α j =
∏r

i=1 |Ki |
|G|

∑

χ∈Irr(G)

(∏r
i χ(xi )

)

χ(d j )

χ(1)r−1

for j = 1, . . . , t . In particular, if K = xG and Kr = D1 ∪ · · · ∪ Dt , then

̂Kr =
t

∑

j=1

α j ̂Dj ,

and

α j = |K |r
|G|

∑

χ∈Irr(G)

χ(x)rχ(d j )

χ(1)r−1 .

Theorem 12 Let G be a finite group and let K be a conjugacy class of an element x ∈ G.
Then Kn = {1} ∪ D where D = dG = {1} if and only if there exist positive integers m1 and
m2 such that

χ(x)n |K |n = χ(1)n−1(m1χ(1) + m2|D|χ(d))

for all χ ∈ Irr(G) and |K |n = m1 + m2|D| where

m1 = |K |n
|G|

∑

χ∈Irr(G)

χ(x)n

χ(1)n−2

and

m2 = |K |n
|G|

∑

χ∈Irr(G)

χ(x)nχ(d)

χ(1)n−1 .

Proof Assume that Kn = {1} ∪ D and we write ̂Kn = m1̂1 + m2̂D where m1 and m2 are
positive integers that can be determined by the character table by using Theorem 11. Then
|K |n = m1 + m2|D|. Let χ ∈ Irr(G) and let R and wχ be as in Theorem 7. We have

R(̂Kn) = R(̂K )n = m1R(̂1) + m2R(̂D)

and
wχ(̂K )n = m1wχ(̂1) + m2wχ(̂D).

Then

|K |n χ(x)n

χ(1)n
= m1 + m2

|D|χ(d)

χ(1)

and so

χ(x)n |K |n = χ(1)n−1(m1χ(1) + m2|D|χ(d))

for all χ ∈ Irr(G), as wanted.
Conversely, assume that there exist m1 and m2 satisfying the equalities with characters.

We write Kn = D1 ∪ · · · ∪ Dr with Di a conjugacy class for all 1 ≤ i ≤ r . We write
̂Kn = n1̂D1 + · · · + nr ̂Dr and notice that |K |n = n1|D1| + · · · + nr |Dr |. Let χ ∈ Irr(G)

and let R and wχ be as before. Then

R(̂Kn) = R(̂K )n = n1R(̂D1) + · · · + nr R(̂Dr ),
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and by hypothesis, we know

χ(x)n |K |n = χ(1)n−1(m1χ(1) + m2|D|χ(d))

for all χ ∈ Irr(G). Therefore,

m1χ(1) + m2|D|χ(d) = n1|D1|χ(d1) + · · · + nr |Dr |χ(dr ). (2)

By multiplying both sides by χ(d), we get

m1χ(1)χ(d) + |D|m2χ(d)χ(d) = n1|D1|χ(d1)χ(d) + · · · + nr |Dr |χ(dr )χ(d).

From this equation, we obtain

m1

∑

χ∈Irr(G)

χ(1)χ(d) + |D|m2

∑

χ∈Irr(G)

χ(d)χ(d) = |D|m2|CG(d)|

= n1|D1|
∑

χ∈Irr(G)

χ(d1)χ(d) + · · · + nr |Dr |
∑

χ∈Irr(G)

χ(dr )χ(d).

Then Di = D = dG for some i . Without loss of generality, we can assume that D1 = D.
Now, if we multiply both sides of Eq.(2) by χ(1) and argue similarly, we conclude that
D2 = {1} and ni = 0 for all i = 1, 2. This means that Kn = {1} ∪ D. 
�

4 Powers which are a union of a class and its inverse

In this section, we are going to study the case in which the power of a conjugacy class is a
union of two classes, one of them being the inverse of the other, and we prove Theorems C
and D. We use the CFSG in all results except in Theorem 13.

Remark 7 If K = xG with x ∈ G and Kn = D ∪ D−1 for some n ∈ N with D = D−1, then
K is non-real. Suppose that K is real and xn ∈ D. We have that x−1 = xg for some g ∈ G.
Then (xn)g = (xg)n = (x−1)n = x−n ∈ D ∩ D−1, a contradiction.

We give the proof of Theorem C, which demonstrates that Conjecture 2 is true when
|D| = |K |/2.
Proof of Theorem C. Notice that if D = D−1, we have the hypothesis of Theorem A and
the result immediately follows. So we assume that D is not a real class. Let K = xG . We
know that either D = (xn)G or D−1 = (xn)G . Without loss of generality, we may assume
that D = (xn)G . Since CG(x) ⊆ CG(xn) we have that |D| divides |K |. Furthermore, it
follows that |K | ≤ |Kn | = 2|D|, that is, |K |/2 ≤ |D|. Consequently, either |D| = |K |/2
or |K | = |D|. Suppose that |D| = |K |/2. Since |Kn | = 2|D| = |K |, we deduce that
|K i | = |K | for all i ≤ n. Thus, xK = K 2 and similarly, if y ∈ K , we get yK = K 2.
By arguing as in Theorem 1 it can be obtained that K = xN where N = [x,G] � G. By
Theorem 1, N is solvable, and consequently, 〈K 〉 = 〈x〉N is also solvable. 
�
Example 3 Weare going to see that both cases of TheoremC are possible. LetG = Z8�Z2 =
M16 = 〈a, x | a8 = x2 = 1, ax

−1 = a5〉 and K = aG . It follows that K 2 = D ∪ D−1,
|K | = 2 and |D| = 1. On the other hand, let G = Z2 × (Z7 � Z3) and K = xG where
o(x) = 14. We have K 2 = D ∪ D−1 and |K | = |D| = 3.
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In Theorem D, we prove Conjecture 2 in the particular case n = 2 and D = K . We
will work in the complex group algebra C[G], and we will use the following properties. Let
g1, . . . , gk be representatives of the conjugacy classes of afinite groupG. Let̂S = ∑k

i=1 ni
̂gGi

with ni ∈ N for 1 ≤ i ≤ k. We write (̂S, ̂gGi ) = ni following [1].

Lemma 3 If D1, D2 and D3 are conjugacy classes of a finite group G, then

1. (̂D1̂D2, ̂D3) = (
̂D−1

1
̂D−1

2 ,
̂D−1

3 )

2. (̂D1̂D2, ̂D3) = |D2||D3|−1(̂D1
̂D−1

3 ,
̂D−1

2 )

3. (̂D1̂D2, ̂D1) = |D2||D1|−1(̂D1
̂D−1

1 ,
̂D−1

2 ) = (̂D2
̂D−1

1 ,
̂D−1

1 ) = (
̂D−1

2
̂D1, ̂D1).

Proof See the proof of Theorem A of [1]. 
�
Proof of TheoremD. We argue by induction on |G|. We write ̂K 2 = α ̂K + β K̂−1 with

α, β ∈ Z
+ and α = (̂K 2, ̂K ) = (K̂−1 ̂K , ̂K ) = (̂K K̂−1, K̂−1) by Lemma 3(3). Thus,

̂K K̂−1 = |K |̂1 + α ̂K + α K̂−1 + ̂S

where (̂S, ̂L) = 0 if L ∈ {1, K , K−1}.
We distinguish between whether S = ∅ or not. Suppose first that S = ∅. Since K 3 =

KK 2 = K (K ∪ K−1) = {1} ∪ K ∪ K−1, we obtain by induction that Kn = {1} ∪ K ∪ K−1

for all n ≥ 3. Thus, 〈K 〉 = KK−1 = {1} ∪ K ∪ K−1. As all non-trivial elements in 〈K 〉
have the same order, it follows that 〈K 〉 is p-elementary abelian for some prime p, and we
have finished. Assume now that S = ∅. We have

̂K (̂K K̂−1) = ̂K (|K |̂1 + α ̂K + α K̂−1 + ̂S) = |K |̂K + α ̂K 2 + α ̂K K̂−1 + ̂K̂S

and on the other hand,

̂K 2 K̂−1 = (α ̂K + β K̂−1)K̂−1 = α ̂K K̂−1 + β K̂−1 K̂−1.

Taking into account both equalities and that K̂−1 K̂−1 = β ̂K + α K̂−1, we obtain

|K |̂K + α(α ̂K + β K̂−1) + ̂K̂S = β(β ̂K + α K̂−1).

If we rearrange, we obtain

̂K̂S = (β2 − |K | − α2)̂K .

In particular, we conclude that K S = K and by applying Lemma 2, it easily follows that 〈S〉
is solvable. Consider nowG = G/〈S〉. We observe from the hypothesis that K 2 = K ∪K−1,
so 〈K 〉 is solvable by induction. Consequently, 〈K 〉 is solvable.

Now let us see that x is a p-element. Since K S = K , we have that K−1K 〈S〉 = K−1K and
KK−1 is union of left cosets of the subgroup 〈S〉, so |〈S〉| divides |KK−1| = 1+2|K |+ |S|.
Hence, |〈S〉| divides 1+|S| because |〈S〉| divides |K |. It necessarily follows that 〈S〉 = {1}∪S.
On the other hand, since K 3 = KK 2 = K (K ∪ K−1) = {1} ∪ K ∪ K−1 ∪ S and K S = K ,
we easily obtain by induction on n that Kn = {1} ∪ K ∪ K−1 ∪ S for all n ≥ 3. Thus,
〈K 〉 = KK−1 = {1} ∪ K ∪ K−1 ∪ S. We write G = G/〈S〉, so 〈K 〉 is p-elementary abelian
for some prime p because 〈K 〉 is a minimal normal subgroup with all non-trivial elements
of the same order. We write x = xpxp′ where xp and xp′ are the p-part and the p′-part of x
respectively. Then xp′ and x−1

p′ are in 〈S〉. Consequently, xp = xx−1
p′ ∈ K 〈S〉 = K and so

K is a conjugacy class of a p-element as required. 
�
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Example 4 In Theorem D, the case in which 〈K 〉 is non-abelian can happen. We take for
instance the group G = ((Z2 × Z2 × Z2) � Z7) � Z3 = SmallGroup(168, 43) which has
a conjugacy class K of elements of order 7 and size 24 satisfying K 2 = K ∪ K−1. Also,
〈K 〉 = (Z2 × Z2 × Z2) � Z7.

The following property is useful to check Conjecture 2 from the character table, in par-
ticular, for the sporadic simple groups.

Theorem 13 Let G be a finite group and let K be a conjugacy class of an element x ∈ G.
Then Kn = D∪ D−1 where D is a conjugacy class if and only if there exist positive integers
m1 and m2 such that

χ(x)n |K |n = χ(1)n−1|D|(m1χ(xn) + m2χ(x−n))

for all χ ∈ Irr(G) and |K |n = (m1 + m2)|D| where

m1 = |K |n
|G|

∑

χ∈Irr(G)

χ(x)nχ(xn)

χn−1(1)
and m2 = |K |n

|G|
∑

χ∈Irr(G)

χ(x)nχ(xn)

χn−1(1)
.

In particular,

χ(x)n + χ(x−1)n = χ(1)n−1(χ(xn) + χ(x−n))

for all χ ∈ Irr(G).

Proof Assume that Kn = D ∪ D−1 and we write ̂Kn = m1̂D + m2 D̂−1 where m1 and
m2 are positive integers that can be determined by the character table by using Theorem 11.
Then |K |n = (m1 +m2)|D|. Let χ ∈ Irr(G) and let R and wχ be as in Theorem 7. We have

R(̂Kn) = R(̂K )n = m1R(̂D) + m2R(D̂−1)

and
wχ(̂K )n = m1wχ(̂D) + m2wχ(D̂−1).

If we suppose that xn ∈ D (analogously if xn ∈ D−1), then

|K |n χ(x)n

χ(1)n
= m1

|D|χ(xn)

χ(1)
+ m2

|D|χ(x−n)

χ(1)

and then

|K |nχ(x)n = χ(1)n−1|D|(m1χ(xn) + m2χ(x−n))

for all χ ∈ Irr(G), as wanted. By taking conjugates in the above equation, we obtain

|K |nχ(x−1)n = χ(1)n−1|D|(m2χ(xn) + m1χ(x−n))

for all χ ∈ Irr(G). The last part of the theorem follows by summing the previous equations.
Conversely, assume that there exist m1 and m2 satisfying the equalities with characters.

We write Kn = D1 ∪ · · · ∪ Dr with Di a conjugacy class for all 1 ≤ i ≤ r . We write
̂Kn = n1̂D1 + · · · + nr ̂Dr and notice that |K |n = n1|D1| + · · · + nr |Dr |. Let χ ∈ Irr(G)

and let R and wχ be as before. Then

R(̂Kn) = R(̂K )n = n1R(̂D1) + · · · + nr R(̂Dr )
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and by hypothesis we know

χ(x)n |K |n = χ(1)n−1|D|(m1χ(xn) + m2χ(x−n))

for all χ ∈ Irr(G). Therefore,

|D|m1χ(xn) + |D|m2χ(x−n) = n1|D1|χ(d1) + · · · + nr |Dr |χ(dr ). (3)

By multiplying both sides by χ(xn) we get

|D|m1χ(xn)χ(xn)+|D|m2χ(x−n)χ(xn) = n1|D1|χ(d1)χ(xn)+· · ·+nr |Dr |χ(dr )χ(xn)

From this equation, we obtain

|D|m1

∑

χ∈Irr(G)

χ(xn)χ(xn) + |D|m2

∑

χ∈Irr(G)

χ(x−n)χ(xn) = |K |n |CG(xn)|

= n1|D1|
∑

χ∈Irr(G)

χ(d1)χ(xn) + · · · + nr |Dr |
∑

χ∈Irr(G)

χ(dr )χ(xn).

Then Di = D = (xn)G for some i . Without loss of generality, we can assume that D1 = D.
Now, if we multiply both sides of Eq.(3) by χ(xn) and argue similarly we conclude that
D2 = D−1 and ni = 0 for all i = 1, 2. This means that Kn = D ∪ D−1. 
�
Remark 8 Let G be a group and let K be a conjugacy class of an element x ∈ G. If Kn =
D ∪ D−1 for some n ∈ N, n ≥ 2 and D a conjugacy class, then G is not a sporadic simple
group.

Proof Let x, xn ∈ G such that K = xG , D = (xn)G and Kn = D∪D−1 for some n ∈ N.We
show that for any sporadic simple group there is no conjugacy class satisfying the hypotheses
of the theorem. By Theorem 13, we know that the hypotheses imply

χ(x)n + χ(x−1)n = χ(1)n−1(χ(xn) + χ(x−n)) (4)

for all χ ∈ Irr(G). The aim is to find some irreducible character that does not satisfy Eq.(4).
Recall that the smallest integer m satisfying Cm = G for each non-trivial conjugacy class C
ofG is called the covering number ofG. The covering number of each sporadic simple group
is at most 6 ([2,13]). It can be checked by using the character tables (for example included in
GAP) that for any of these groups and any two non-trivial conjugacy classes of it and n < 6,
there exists an irreducible character which does not satisfy Eq. (4). 
�
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