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ABSTRACT

The purpose of this article is to answer the question of how symmetry
helps us to investigate and understand the properties of nanoscopic
magnetic clusters with complex structures. The systems of choice will
be the three types of polyoxometalates (POMs): (1) POMs containing
localised spins; (2) reduced mixed-valence (MV) POMs; (3) partially
delocalised POMs in which localised and delocalised subunits coexist
and interact. The theoretical tools based on various kinds of symme-
try are the following: (1) irreducible tensor operator (ITO) approach
based on the so-called “spin-symmetry” and MAGPACK program;
(2) group-theoretical assignment of the exchange multiplets based
on spin- and point symmetries; (3) group-theoretical classification
of the delocalised electronic and electron-vibrational states of MV
POMs; (4) general approach (based on spin symmetry) to evaluate the
energy levels of large MV clusters and the corresponding MVPACK
program; (5) computational approach (employing point symmetry)
to solve multidimensional non-adiabatic vibronic problems in the
nanoscopic systems realized as VIBPACK software. We made it our
goal to avoid a conventional deductive style of presentation. On the
contrary, we first consider specially selected complex POMs and then
show by what methods and in what way the theoretical problems
arising in the description of the properties of these molecules can be
properly solved.
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Abbreviations recurrently used in the text

POM polyoxometalates

MV mixed-valence

JT effect Jahn-Teller effect

ITO irreducible tensor operator

Irrep irreducible representation

HDVV Hamiltonian Heisenberg-Dirac-Van Vleck Hamiltonian

AS exchange antisymmetric exchange

MAGPACK program to solve eigen-problem for spin-localised systems
MVPACK program to solve eigen-problem for mixed-valence systems
VIBPACK program to solve the vibronic eigen-problem

1. Introduction

Contemporary molecular magnetism represents an interdisciplinary field of science that
incorporates basic concepts of physics, chemistry and material sciences [1-10]. Mag-
netic clusters occupy a central place in this field owing to the possibility of serving as
model systems to understand in detail the electronic processes controlling their properties,
namely the magnetic exchange, the magnetic anisotropy and the electron delocalisation.
This knowledge has been crucial to develop an extensive family of magnetic molecules,
known as single-molecule magnets, exhibiting slow magnetic relaxation of the magneti-
sation at low temperatures, together with marked quantum effects. A versatile series of
compounds in which these magnetic clusters can be isolated are the so-called polyoxomet-
alates (POMs). These coordination compounds provide an ideal platform to study these
electronic processes at the molecular level. Thus, thanks to the rigidity imposed by the
molecular metal oxide frameworks acting as ligands, these magnetic POMs often exhibit
high symmetries. In addition, these compounds can accept a defined number of delocalised
electrons in their structures (mixed-valence POMs), having at the same time the ability to
accommodate at specific positions paramagnetic metal ions. The exploitation of these mag-
netic and electronic functionalities has been the subject of extensive research in the last 20
years, [11], which complements other more traditional applications of these anionic metal
oxides such as catalysis or medicine [12].

Recently, the interest for these clusters has evolved from their use as model systems in
molecular magnetism, to the use of these clusters in molecular spintronics and quantum
computing [13]. In molecular spintronics the mixed-valence (MV) POMs are especially
promising when along with localised spins they host also itinerant electrons. Such a kind
of reduced magnetic POMs are advantageous owing to the possibility to accept various
numbers of delocalised electrons and able to mediate spin coupling between the localised
spins. Since the itinerant electrons are quite sensitive to the external stimuli due to their
mobility, one can hope to efficiently control the spin states of these systems by applying,
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for example, an external electric field [14-17]. In quantum computing, magnetic POMs
have also shown to provide unique examples of highly coherent spin qubits and the possi-
bility to create molecular spin quantum gates that are able to perform quantum algorithms
[13,18-29].

Studies of magnetic clusters started from small relatively simple, mainly symmetric, sys-
tems such as dimeric, trimeric and tetrameric clusters for which the energy levels within
the model of isotropic magnetic exchange can be found in an analytical way using well
known spin coupling expressions or Kambe’s method. Further development of molecu-
lar magnetism led to evolution towards analysis of more complex nanoscopic systems and
more complex anisotropic forms of the exchange interactions in accordance with the needs
of numerous applications such as molecular biology, nanomagnetism and spintronics. The
understanding of the magnetic and spectroscopic properties of these nanoscopic molecu-
lar systems have required special theoretical concepts well adapted to accurate description
of their electronic, magnetic and vibronic structures. In this respect the symmetry of these
objects plays crucial role for the following reasons: (1) as distinguished from the numerical
methods, the symmetry based consideration does not use approximations and particular
approximate models and in this sense the results derived in this way can be regarded as
‘exact’ ones; (2) application of the symmetry arguments allows us to simplify the numeri-
cal evaluation to the maximum possible extent. This is especially important for modelling
the properties of nanoscopic POMs (and for the large molecular systems, in general), which
are often inaccessible even using contemporary computational resources; (3) in many cases,
especially when the molecular symmetry is high enough, the use of symmetry arguments
facilitate qualitative understanding of the physical phenomena without appeal to a particu-
lar physical model. It is worth noting in this context that symmetry underlays the key laws
of the nature, such as conservation laws; (4) finally, the symmetry laws impose restrictions
on possible results obtained in different approximate models (which sometimes is hardly
to rigorously justify) and this seems to be especially useful in the rigorous analysis of such
complex systems.

The main aim of this article is to present the theoretical tools of Molecular Mag-
netism based on the symmetry concepts. We made it our goal to avoid a conven-
tional deductive style of presentation within which the computational methods are
described and then accompanied by examples of applications. On the contrary, we first
consider specially selected POM molecules with a complex structure, and then show
by what methods and in what way the theoretical problems arising in the descrip-
tion of the properties of these molecules can be properly solved. In this regard, the
three basic types of the magnetic POMs will be discussed: (1) POMs containing
localised spins carried by the metal ions with unfilled shells (cluster anion present in
Ke [VII\SIASGO42(H20)] - 8H,0 conventionally referred to as Vis, the hexa-nuclear spin
rings in the two polyoxotungstates, (n-BuNH3)12[(CuCl)s-(AsW90O33)2]-6H,0 and (n-
BuNH3)1; [(MnCl)g(SbW90O33)2] -6H,O, {MosyMg} cluster); (2) MV reduced POMs
containing metal ions in different oxidation degrees whose electrons are delocalised among
a definite number of magnetic metal sites (polyoxovanadates [Vig O43]"~ (n = 4 +18),
reduced Keggin and Wells-Dawson anions) and, finally (3) partially delocalised POMs in
which localised and delocalised magnetic subunits coexist and interact (polyoxovanadate
[KVYYVY (03As0H)3027(As04)1°", cluster anion [V’ V) AsgO40(H,0)]4).
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In connection with the proper description of the properties of mentioned classes of
POMs the following main theoretical models based on various kinds of symmetry tools
will be discussed: (1) approach based on the ITO of the full rotation group that is based on
the so-called ‘spin-symmetry’ [30-40]. This ITO approach accompanied by the powerful
MAGPACK program [41] as applied to the molecular magnetism allows the evaluation of
spin levels, thermodynamic and spectroscopic properties of mesoscopic metal clusters in
the framework of the isotropic and anisotropic spin-Hamiltonians; moreover, any interac-
tions expressed through the angular momenta operators of arbitrary nature can be incor-
porated into the computational scheme; (2) group-theoretical assignment of the exchange
multiplets based on spin- and point symmetries that allows to analyse the anisotropic forms
of the exchange interaction and magnetic anisotropy in general terms, to derive selection
rules for magnetic resonance transitions, to reduce the eigen-problem and to reveal the
active vibrational Jahn-Teller modes in case of degenerate electronic terms [34,38,39]; (3)
group-theoretical classification of the delocalised electronic and electron-vibrational states
of MV POMs that essentially reduces the time of calculations and provides access to the
selection rules for different kinds of transitions [34]; (4) general (based on spin symme-
try) approach to evaluate the energy levels of large MV magnetic POMs in combination
with the corresponding MVPACK program [42]; (5) computational approach (based on
point symmetry) to solve multidimensional non-adiabatic (dynamic) vibronic problems in
the nanoscopic systems realised as the VIBPACK software [43]. The proposed approach is
based on the full exploration of the point symmetry of the electronic and vibrational states
and can enormously extend computational resources in the dynamical problem of mixed-
valency in reduced magnetic POMs. The programs MAGPACK, MVPACK and VIBPACK
constitute the full set of the tools which cover the theoretical background of Molecular
Magnetism (for systems with a relatively weak spin—orbit coupling) in the framework of
parametric (semiempiric) approach.

2. Magnetic polyoxometalates with localised spins
2.1. Cluster anion [V1Y Ass04,(H>0)1%~

2.1.1. Structural peculiarities of V5 cluster anion

This cluster anion, conventionally referred to as Vs, is present in K¢ [VII\SIASGO42 (H,0)] x
8H,0 and involves fifteen V!V ions carrying localised spins S; = 1/2. These V!V ions form
a large central triangle which is sandwiched by two distorted hexagons [9b,44] so that the
overall symmetry is D3 (Figure 1). The layered structure of the molecule is given in Figure
1a, while the skeleton formed by the vanadium ions is presented in Figure 1b. In the fol-
lowing discussion we will also appeal to the classical spin frustrated arrangement depicted
in Figure 1c.

This system was discovered almost three decades ago [9b,44] but still continues to attract
attention as a molecular magnet with unique structure and properties, and also as an excep-
tional object for the study of the antisymmetric (AS) exchange interaction [45]. Analysis of
the magnetic and spectroscopic properties of this fascinating system constitutes a distinct
trend in the study of complex nanoscopic polyoxometalates. Studies of the adiabatic mag-
netisation and quantum dynamics of the V5 cluster with § = ¥ ground state showed that
this system exhibits a hysteresis magnetisation loop of pure molecular origin and thus can



Figure 1. Structure of the polyoxovanadate K6[V11‘5’ Asg04;(H,0)]-8H,0. Scheme of the V15 metal net-
work (green balls) (a); scheme of the vanadium network with the indication of three different vanadium
(V1, V2 and V3) positions and frustrated spins (51, S2, S3) of the central triangle (b); dominant exchange
pathways, pictorial representation of classical spin arrangement illustrating strongly coupled spins in
the external hexagons in the ground state and frustration effect in the central triangle expressed as
non-colinear spin arrangement (c). Colour online.

be referred to as a mesoscopic system [45]. On the other hand, frozen solutions of this clus-
ter exhibited at low temperature Rabi oscillations, which were indicative of large quantum
coherence times T5. Thus, it constituted the first example of molecular magnet behaving
as a spin qubit (in view of long coherence time) [46] due to which the V5 cluster proved
to be a prerequisite for the use of molecular magnets in quantum computing.

2.1.2. Spin-symmetry: irreducible tensor operators approach

In the transition metal clusters with localised spins and orbitally non-degenerate ground
terms of the constituent ions, the leading contribution to the exchange interaction is usually
represented by the isotropic Heisenberg-Dirac-Van-Vleck (HDVV) spin-Hamiltonian:

Hp = -2 Z]ijsi‘sj (1)

i<j

In Equation (1) §; are the vector spin operators of the full electronic shells of the con-
stituent ions, the values Jj; are the exchange parameters, and the summation is extended
over all pairwise interactions. The HDVV Hamiltonian operates in the space of spin-
functions associated with the spins S, S, ... Sy (N is the full number of the mag-
netic ions) so that the dimension of the Hilbert space is determined by the product
(281 4+1) x 2524+ 1) ... x (25N + 1). In some cases of the systems with symmetric geom-
etry and restricted nuclearity, such as dimers, symmetric trimers (see Equations (4) and
(5)), tetramers one can find an analytical solution of the exchange problem that means
to express the energy levels as functions of the total spin of the system and intermediate
spins in an appropriate spin coupling scheme (see more details in Ref. [38]). More sophis-
ticated approaches are developed in the two articles [37b,c] in which the exact solution for
the energy pattern of the finite spin-chains has been found. But, in general, the problem
requires numerical diagonalization of the HDVV Hamiltonian in the basis correspond-
ing to full Hilbert space. For the polyatomic systems the full Hilbert space is rather large,
especially in the case of large constituent spins. The solution of a rather complicated eigen-
problem and rationalisation of the results can be obtained by the use of various symmetry
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tools. In these cases, the problem can be essentially simplified by the use of the so-called
‘spin-symmetry’ which can be employed through the ITO approach. Actually, the ITOs
belong to the spherical group of symmetry (or more general unitary groups that is beyond
of the topic of present article).

The ITO approach allows to evaluate the matrix elements of the exchange Hamiltonian
of the most general form which includes both isotropic and anisotropic parts. All relevant
interactions, such as single-ion anisotropy, Zeeman and Stark interactions can be included
in the general scheme of calculation. Application of the ITO approach is especially efficient
when the isotropic part is the leading contribution to the exchange coupling. The approach
is formulated for the system with an arbitrary number of magnetic sites, N, having local
spins S1, Sz, ..., Sy. It is assumed that the spin 2 is coupled to spin 1 to give spin i,
that can be expressed as 81 + S» = Si2. Then the next spin 3 is added so that we obtain
S12 + 83 = S123. It is convenient to employ this successive spin vector coupling scheme

$1+8=5.5+85=38...Sv-1+Sv=S (2)

where § = 812,83 = S123, etc. are the intermediate spins in the adopted spin coupling
scheme and S is the total spin of the system. The choice of the numbers of spins in this
scheme is arbitrary and is not interrelated with special positions of the spin carriers in the
magnetic molecule. Therefore, spin functions of the system can be labelled as

15152(52)S3(S3) . . . SN—1(SN—1)SNSM = |(S)SM, (3)

where (S) symbolises the set of the intermediate spin quantum numbers as indicated in
Equation (3). The direct way to find the energy levels of the system described by the HDVV
Hamiltonian, Equation (1), is to build the many-particle spin-functions (or alternatively,
to work in terms of Slater determinants) and to evaluate the matrix of the Hamiltonian.
However, this way is usually almost impracticable even for relatively small systems, such
as trimeric and tetrameric exchange clusters, especially when the local spins exceed 1/2. It
is important to emphasise the crucial advantage of the ITO approach as a computational
tool. The ITO approach does allow to avoid evaluation of the many-particle spin functions
(or alternatively, appropriate combinations of Slater determinants) and to directly find the
matrix elements of all kinds of isotropic and anisotropic exchange interactions using only
the symbolic representation in which spin coupling scheme is specified, like in Equation
(3). These matrix elements of the full exchange Hamiltonian link the states with different
quantum numbers introduced in the definition of the spin-functions, Equation (3). Actu-
ally, symbolic representation means that the mentioned matrix elements are expressed in
terms of all intermediate and total spins of the involved states, while the exchange parame-
ters remain as parameters to be determined additionally. Therefore, the procedure does not
suppose neither evaluation of the many-spin functions nor any operations with the Slater
determinants.

We omit here the mathematical details of calculations and final expressions referring
to the applications of ITO in molecular magnetism which are reviewed in full details in
Refs. [2,3,34,35,36,37,38,39]. From the practical point of view, it is convenient to use the
MAGPACK software package [41] fully based on the use of ITO technique. This software
allows to solve the eigen-problem for large spin clusters taking into account all isotropic
and anisotropic interactions and to derive their thermodynamic and spectroscopic (mainly,
inelastic neutron scattering) properties.
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A specially important case is represented by the isotropic HDVV exchange for which
the full Hilbert space can be reduced to get block-structure of the full Hamiltonian matrix
according to total spin values S. The HDVV Hamiltonian commutes with the operator §2,
so that total spin S of the system is always a good quantum number (but not the interme-
diate spins!). It is important to note that only the spin functions with the same values of S
(and its projections Mg) are mixed, as prescribed by the general rule of symmetry (since
they belong to the same irreducible representations D of the rotation group). Using this
rule, one can state that the solution of the HDVV eigen-problem can be reduced to the eval-
uation of the matrix elements connecting the states having equal total spins S. It is to be
noted that the MAGPACK software is the most advantageous tool for treating the bilinear
isotropic HDV'V exchange. The presence of the anisotropic terms reduces the symmetry of
the Hamiltonian and therefore the states with different S prove to be mixed. This leads to
the increase of the sizes of the matrices to be diagonalised. Thus, in the most unfavourable
case of the fully anisotropic Hamiltonian (when the spin-symmetry is lost) the advantages
of the ITO approach are reduced so that the basis consisting of simple direct products of
spin-functions can be used and, moreover, can provide computational advantages.

In recent years, the computational tools for the needs of contemporary chemistry have
been replenished with powerful new computer programs with a wide range of applications,
including accurate analysis of magnetic resonance parameters. In this respect one should
mention PHI, a computer program designed for the calculation of the magnetic properties
of paramagnetic coordination complexes [47a]. Then, MAGELLAN is a computer program
[47b] designed for the determination of the orientation of the magnetic anisotropy of the
my = £15/, state of Dy!!! via electrostatic optimisation of the aspherical electron density
distribution.

Concluding this section it is worth to specially mention that not only magnetic interac-
tions expressed through spin-operators associated with electronic spins (such as isotropic
exchange, Equation (1)) can be incorporated in the computational approaches based on
ITO. In fact, the angular momenta operators of any nature, such orbital angular momentum
(vector L with components Ly, Ly, L; ), total angular momentum (J), nuclear spin oper-
ator (I) can be expressed in terms ITO. Therefore, the corresponding interactions, such
as spin-orbital coupling, isotropic and anisotropic Zeeman and hyperfine electron-nuclear
interactions can be treated using ITO technique. In particular, the hyperfine interactions
with nuclear spins (at least with those located at the metal ions), which can lead to very
important effects and largely determine spin dynamical phenomena, can be incorporated
into the same formalism.

2.1.3. Spin-symmetry: isotropic exchange in V15 cluster and energy pattern

Let us illustrate application of the ITO approach by considering the V5 cluster. For fif-
teen spins ¥ the total spin of the system varies from S = 1/2 to S = 15/2, wherein each
total spin state arises from different combinations of intermediate spins and therefore is
repeated many times. The dimension of the matrix of the exchange Hamiltonian involves
215 = 32768 states and thus, it is rather large. The use of spin-symmetry essentially reduces
the dimensions of energy matrix as shown in Table 1 indicating sizes of the blocks cor-
responding to each total spin value S, i.e. the numbers of the levels with certain values
of S. The largest size (2002) has the submatrix for the total spin S = 3/2 levels (indi-
cated in bold in Table 1). The set of the isotropic exchange parameters J*, J1,J, », J”
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Table 1. Dimensions of the submatrices for the V15 system in the model of the isotropic exchange.

Total spin S 172 3/2 5/2 7/2 9/2 11/2 13/2 15/2
Block size 1430 2002 1638 910 350 90 14 1
Notes: The block of the highest dimension is highlighted by bold.

(Figure 1c) have been found from the temperature dependence of the magnetic suscep-
tibility J* = — 170cm™!, J; = J' = —28cm™ !, , = J” = —56cm™! [45]. The energy
pattern of V5 numerically evaluated with the help of MAGPACK and the parameters so
far mentioned is shown in Figure 2. The composition of the levels is rather complicated
due to very high density of spin levels arising from the numerous exchange pathways and
large spin space. Nevertheless, some important peculiarities can be deduced at a glance.
Thus, the energy pattern shows that the ground state is the antiferromagnetic state having
the total spin S = 1/2 and the first excited state with S = 3/2 proves to be very close to
the ground state. The energy gap separating the two levels from the S = 3/2 is approxi-
mately 2.5cm™! and so these two low-lying levels are well isolated from the higher states
that lie more than 500 cm ™! above. These highly excited states are related mostly to the
excitations in strongly paired spins in the external hexagons. It is to be underlined that
the ground state comprises two S = 1/2 doublets resulting in a four-fold degenerate level)
and therefore, the system exhibits additional degeneracy. This accidental degeneracy is in
some sense a surprising observation as it is not related to a requirement of the point group
symmetry D3 of the molecule.

This result shows that the low-lying levels can be viewed as the energy pattern of an
isolated spin-1/2 triangle (Figure 1a) in which the effective coupling between the V ions,
transmitted via the spin-paired hexagons as shown in Figure 1b, is relatively small. To clar-
ify this point let us consider the exchange interaction in a symmetric trinuclear system
which can be described by the following HDVV Hamiltonian:

Hy = —2Jo(8182 + 82 83 + 83 81), (4)

where S;, $; and S3 denote the spin operators on the sites 1, 2 and 3. The following spin
coupling scheme for three spins, $15,(512)83S = (812)S is assumed with Sj, being the
intermediate spin (S12 = 81 + S2). The energy levels £¢(S) are expressed as

3
£0(S) = —Jo [5(5 1) =Y Si(Si+ 1)] . (5)

i=1

It is seen that they do depend upon the total spin S but they are independent of ;5. This
leads to the ‘accidental’ four-fold degeneracy of the two S = 1/2 doublets in the energy pat-
tern of a triangular unit of V5. This degeneracy, which can be referred to as ‘accidental’ (at
this stage of consideration) within the HDVV model, has important consequences which
will be discussed later on. The model of an effective spin triangle for the low-lying spin
excitations was proposed in Ref. [9b] and substantiated within the perturbation theory. As
we will see below this degeneracy is a consequence of the point symmetry, which will be
specially discussed below with regards to the magnetic anisotropy of Vs.
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Figure 2. Energy pattern of the V!> system evaluated in the HDVV model. The energies are arranged
in columns according to the total spin of the system. The two low-lying levels comprising two S = 1/2
doublets (ground) and a spin quadruplet S = 3/2 (excited) are circled.

2.1.4. Point symmetry: group-theoretical assignation of the low-lying levels of V15

A concept of the group-theoretical classification (assignment) of the exchange multiplets
appeared as a tool to elucidate the nature of so-called ‘accidental’ degeneracies of the spin
states in symmetric exchange clusters [34,38,39]. Let us consider a trigonal trimer with
one unpaired electron per site (d! — d' — d') in more detail, keeping in mind the low-
lying spin excitations in V5. As we could see, the degeneracy of the two spin doublet states
exceeds that allowed by the trigonal point symmetry and, therefore, the theoretical model
requires additional careful examination. Let us note an obvious fact that HDVV Hamil-
tonian operates in the spin-space and, therefore, the energy levels are labelled by the spin
quantum numbers only, while each eigenstate of the many-electron first principle Hamil-
tonian (terms in spectroscopic notations) must be labelled by the total spin as well as by
an irreducible representation (irrep) of the point group. Therefore, the question appears
of how the spin states in HDVV model are interrelated to the exact terms of the system.
The answer is provided by the group-theoretical classification procedure [34,38,39], which
makes possible to establish one-to-one correspondence between the states D® (irreps of
the rotation group, or, simply, the set of states with a given S) obtained in the HDVV model
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and the SI" - terms of the system, where I" is the irreducible representation of the point
group.

The symbolic expression of the coupling scheme for three spins §; = 1/2 in terms of the
irreps of the rotation group, D, is as following:

D2 g D12 ¢ p/2) — p/2) 4 PG/, ©6)

Here the symbol ® means the direct product of the basis functions (that means the set of
functions belonging to the product of all §; and S; states) and 2D}/2) means the presence
of the two S = 1/2 states. The two S = 1/2 levels (2D(1/?)) arises from the two intermediate
spins S12 = 0 and S;2 = 1 giving rise to the two S = 1/2 total spin states according to the
rule of spin coupling. For illustration of the approach let us consider a Slater determinant
[@m, (Sa) by, (Sp)cm, (Sc)| for a tri-centre system, where a;,, (Sy) is a spin-orbital of the ion
a with spin S, and spin projection m,. The determinant state ’al/z (%) b12 (%) €12 (%)|
with maximal total spin projection M = m, + my, + m. = 3/2 definitely belongs to the
maximal total spin S = 3/2. Operations of the trigonal point group induce permutations

of the localised orbitals, for example
1 1 1
e (5)n (5) 02 ()

(el
ai/n <§) b12 (%) €12 (%)‘ . (7)

One can thus conclude that the character of the rotation @3 is y M=3/2) (63) = 41.
Applying the remaining symmetry operations to the sets of Slater determinants containing
different possible spin-orbitals one can find the characters of the reducible representations
spanned by these determinants. Finally, one can find the following one-to-one correspon-
dence between the HDVV multiplets nD ( is the number of the levels with the same
spin S) and the exact terms ST" of the triangular system that can be symbolically expressed
as

Cs

2D 2 g, DO 44, (8)

A detailed description of the general procedure of the group-theoretical classification
based on the analysis of permutation (or unitary) symmetry groups is given in Refs. [38,39].
It is important to emphasise that this procedure does not deal with the Slater determi-
nants and therefore allows to avoid a fairly lengthy calculations of complex combinations
of determinants. The general approach allows to solve the problem for the systems of any
symmetry with the arbitrary spins of the magnetic ions. The full description of the gen-
eral approach requires to introduce concepts of more common unitary symmetry groups
and more sophisticated group-theoretical approaches which are beyond the scope of this
article.

The ITO approach so far described employs only the spin symmetry which means that
the matrices of the HDVV Hamiltonian are reduced to reach block-structure according to
the total spin quantum number. An essential progress in computational molecular mag-
netism is marked by the development of a new efficient approach which combines spin
symmetry and point symmetry [48a,b]. Within this approach one can reduce the matri-
ces of the full exchange Hamiltonian into blocks of smaller dimensions not only according
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to spin quantum number but additionally according to the irreducible representations of
the point group of the system. This reduction of the dimension of the Hilbert space is
especially important for the treatment of large nanoscopic spin-systems for which the tra-
ditional computational resources are insufficient. The mathematical details and physical
applications of this approach can be found in Refs. [48a,b].

The problem of interrelation between the symmetry and energy spectrum of high-
nuclearity spin clusters has been considered in Ref. [48c]. A general and very efficient
procedure developed in this work allows us to reduce the computational efforts for the cal-
culation of the energy levels of high-nuclearity spin clusters. Using the proposed method
one can perform of block factorising the Hamiltonian matrix using the invariance of the
spin Hamiltonian with regard to interchanges of spin sites in any arbitrary spin Hamilto-
nian. In order to demonstrate the flexibility in handling different spin Hamiltonian terms
and symmetry groups, its application to several types of clusters was discussed. The full
description, elaborated examples and mathematical details can be found in Ref. [48c].

2.1.5. Anisotropic exchange interactions in Vi5: a general outlook from the symmetry,
pseudo-angular momentum representation

The symbolical Equation (8) allows to draw the following conclusions about the exchange
interactions in the vanadium triangle which are based only on the symmetry of the
system:

(i) The ‘accidental’ degeneracy of the two doublets (S1)S = (0)1/2, (1)1/2 is actually
interrelated with the orbital degeneracy of the exact electronic states in the triangle
of vanadium ions. The ground term is the orbital doublet, 2E, while the excited level
is the orbital singlet *A,. The orbital degeneracy is inherently related to the spin-
frustration in the ground state, which is schematically shown in Figure 1c. This means
that the three antiferromagnetic connections in a symmetric spin triangle cannot be
arranged in the classical spin picture, or alternatively, that in an antiferromagnetic
triangle not all pairs of interacting spins assume their minimal pair energy in the
total ground state. An interesting issue of spin-frustration has been discussed in Ref.
[49]. From the quantum-mechanical point of view this situation is interrelated with
the orbital degeneracy. It is to be noted that the antiferromagnetic spin connections
in hexagonal moieties are saturated and not subjected to spin frustration.

(ii) As it follows from the conventional selection rules, 2E term in trigonal point groups
is split by the spin-orbital interaction that acts as a first order perturbation. To reveal
the symmetry of the fine structure levels one can decompose the direct product
of the irreps corresponding to the two s = 1/2 spin-functions (that is D(!/?)) and
orbital components E. This can be done with the use of the tables in Ref. [50] which
contains exhaustive and instructive information about the properties of the thirty-
two point groups. Two resulting Kramers doublets can be specified as a pair of the
double-valued irreps A; + A, = 24 and E of the point group [50]. In the frame-
work of spin-Hamiltonian approach spin-orbital interaction can be described by the
antisymmetric (AS) exchange:

Hys =Y DylS; x Sk, )
ik
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Figure 3. Energy levels of a symmetricd! — d' — d' spin triangle and the Zeeman splitting in the mag-
netic field H||C3 axis with the indication of the quantum numbers in the pseudo-angular momentum
representation.

(iii)

where Dj; = —Dj; are the antisymmetric vector parameters. AS exchange, which acts
as a first order perturbation in orbital multiplets, was shown to result in a strong mag-
netic anisotropy and special shape of the steps in magnetisation versus field in Vs
observed experimentally (see [45] and references therein). In this sense the group-
theoretical assignment allows to discuss the magnetic anisotropy in general terms
based solely on the symmetry arguments without any appeal to the quantum chemical
calculations.

The orbital singlet A, (excited S = 3/2 level) is split by the second order spin-orbital
interaction. In the framework of the spin-Hamiltonian approach this splitting can be
described by the conventional zero-field Hamiltonian

A

Hzps = Do[S* — (1/3)S(S + D], (10)

in which Dy is the zero-field splitting parameter. Figure 3 illustrates the energy pattern
of V5 cluster (obtained within three-spin model). It exhibits two spin levels with § =
1/2 and S = 3/2 split by AS exchange in the first and second orders of perturbation
theory, correspondingly.

Assignment of HDVV multiplets nD® to the exact terms ST allows the usage of the
so-called pseudo-angular momentum representation. In this way, one can discuss the
magnetic anisotropy and to derive the selection rules in magnetic resonance transi-
tions. This was considered in detail in Ref. [45] while discussing the experimental data
on EPR in V5 cluster. Thus, for the S = 1/2 basis [(0) 1/2,£1/2),|(1) 1/2,£1/2) of
the vanadium triangle in V5 the irrep E can be associated with the two projections
M) = +1 and M} = —1 of the fictitious orbital angular momentum L = 1, and the
basis functions ugpy, (S, Ms) = up, (S, Ms) can be found as the circular superposi-
tions of spin-function with two intermediate spins (S, = 0 and S;; = 1) and total



spin S = 1/2 [38,39]:

us1(1/2,£1/2) = F1/4/2(1(0)1/2,1/2 + i|(1)1/2, £1/2),
us1(1/2,F1/2) = F1/3/2(1(0)1/2, F1/2 £ i|(1)1/2, F1/2). (11)

Then, one can introduce the functions Us(Mj) belonging to the projections M; =
Mi + Ms of the full pseudo-angular momentum which correspond to the Russel-Saunders
coupling scheme. The level with § = 3/2 is an orbital singlet corresponding thus to M} = 0;
the components are labelled as 1 (3/2,Ms) = Up(Mj) with Mg = £1/2 and Mg = £3/2,
so that the projections M; are M; = =£1/2 and %3/2. The assignment of the levels based
on this concept is presented in Figure 3 that shows also the Zeeman splitting in parallel
field H||C5 and the allowed EPR transitions obeying the selection rules in pseudo-angular
momentum scheme.

v)

(vi)

The pseudo-angular momentum scheme allows to establish the exact rules for
the crossing/anticrossing of the Zeeman levels in parallel field. In fact, the levels
with different M; arising from HDVV multiplets S = 3/2 and S = 1/2 undergo to
exact crossing, while the levels with the same M; exhibit anti-crossing. Later on
we will demonstrate that this conclusion emanating exclusively from the symme-
try of the system is helpful in the modelling of static and dynamic magnetisation
behaviour;

Finally, the knowledge of the irreps of the point group to which the exchange multi-
plets belong allows one to establish the selection rules for the vibronic JT coupling.
In fact, the vibrational mode of the symmetry T', is active if the symmetric part
[[" x ']¥™ of the direct product I' x I" contains irrep I'y, [34,51]. This is a common
rule which is valid for all molecular systems, but this rule becomes actually applicable
to spin clusters due to the group-theoretical assignment of the spin-multiplets. Note
that the Tables [50] contains direct and symmetric products all irreps for the point
groups and thus provide the practical receipt for the use group-theoretical assign-
ment. In the case under consideration one can find the symmetric part [E x E]9™ =
A1 + E, so that the double degenerate mode I', = E is active in the JT effect, while
the totally symmetric vibration A is irrelevant to the JT effect. This means that in
the ground doublet 2E the trimeric system of Cs, symmetry (as well in all trigo-
nal spin systems) can be subjected to the JT distortion or, in other words, to the
JT instability. In the distorted configurations which are the isosceles triangles, the
degeneracy is removed so that the spin frustration is eliminated. The JT coupling
is shown to be competitive to the AS exchange so that the increase of the vibronic
JT coupling decreases the magnetic anisotropy of the system. On the other hand,
AS exchange tends to suppress the JT effect so that a strong (as compared to the
JT coupling) AS exchange restores a symmetric configuration of spin sites. This is
demonstrated in Ref. [45f] by the theoretical modelling of the field dependence of
magnetisation that clearly shows the crucial role of the JT coupling in spin-frustrated
systems.
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2.1.6. Magnetic anisotropy of V¢5: antisymmetric exchange and stepwise
magnetisation

Let us consider the action of the AS exchange as a source of the magnetic anisotropy in
more detail. The AS exchange is responsible for the zero-field splitting of the two spin
doublets which can be estimated as follows:

A =e(Mj = £3/2) — e(Mj = £1/2) = /3D, — D? /8]. (12)

It is important to underline the different physical roles of the two contributions to the
AS exchange, namely, normal and in-plane components. The splitting of the ground level
appears as a first order effect with respect to the normal (along Cs-axis) component of AS
exchange (collective parameter D) and contains also a negative second order correction
arising from the mixing of (812)1/2 and (1)3/2 levels through the in-plane components
(D) of the AS exchange. For the sake of simplicity, the Zeeman interaction is assumed
to be isotropic, Hz = upgHS, where g is g-factor and up is Borh magneton. The in-plane
components part of AS exchange contributes mainly to the anti-crossing of the magnetic
sublevels of $ = 1/2 and S = 3/2 multiplets at high magnetic field giving rise to a specific
angular dependence of the levels in this range of the field (Figure 4, inset 3).

Inspecting angular dependencies of the Zeeman levels at low field, one can see that the
system is strongly anisotropic with the C; axis being the easy axis of magnetisation. Figure
5a demonstrates that in the absence of the AS exchange the magnetisation vs field shows
two sharp steps. The first step arises from magnetisation at low field, while the second
step appears due to the field induced transition from Mg = —1/2 to Mg = —3/2. Figure
5 demonstrates also how the lowfield behaviour influences the shape of the first step in
the magnetisation vs field dependence, while the second step is affected by the behaviour
of the levels in the anti-crossing region. It is to be emphasised that the shapes of the two
steps are interrelated with different components of the AS exchange. Thus, the dominat-
ing contribution to the shape of the first step is produced by the normal D,, component,
while the shape of the second step is determined by the in-plane component D} . A unique
possibility to experimentally discriminate the two parameters D, and D , which manifest
themselves in different regions of the field, allows to estimate the parameters D, and D
with a high precision [45¢,d]. One can conclude that the model of triangle for V5, which is
based on the symmetry arguments and includes AS exchange, perfectly agrees with exper-
imental data on magnetisation in the full range of actual temperatures and magnetic field
as shown in Figure 5b.

2.2. Two hexanuclear polyoxotungstates: (n-BuNH3)12[(CuCl)s(AsW9033),]-6H,0
(Cug) and (n-BuNH3)12 [(MnCl)6(SbWoO33)2]-6H20 (Mne)

2.2.1. Structural features of spin rings [(CuCl)g-(AsWo0s33)2]'%>~ and
[(MnCl)(SbW9033)2]'%~

The problem of Heisenberg’s rings is of common interest for physics (ladder structures in
the high Tc cuprates) [52,53] and molecular magnetism [54-57] for this reason has been
extensively discussed (see Refs. [37b,c] and references thein). An essential progress has
been achieved in the solution of the eigen-problem for a such kind of systems. Thus, using
a method which combines reduction due to translational symmetry (represented by rota-
tions in finite chains) and elimination of degenerate states from smaller subspaces, the
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64 x 64 Hamiltonian matrix of a Heisenberg ring of N = 6 spin-1/2 atoms can be reduced
to submatrices that are no larger than 3 x 3 [37b,c]. A special description of the problem
of spin-rings is out of the scope of this article in which we will consider only two examples
of POM in order to illustrate the symmetry based computational tools.

In this section, we consider the hexa-nuclear spin rings Cug and Mng encountered in the
two polyoxotungstate salts, (n-BuNH3)12[(CuCl)s(AsW¢0O33),2]-6H,0 and (n-BuNHj3);2
[(MnCl)6(SbW9Os33)2] -6H20 [58a] in order to illustrate exploration of spin-symmetry
and ITO approach for the analysis of the isotropic and anisotropic exchange interactions
in spin rings. Consideration of spin multiplets and related magnetic properties of these
chain-like molecular magnets based on Cu** and Mn?* provides a good basis for the illus-
tration of the approach and for identifying common properties of magnetic chains from the
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Figure 5. lllustration for the influence of the two components of the AS exchange on the shape of step-
wise function of magnetisation vs field in V5 (a) and fit of the theoretical model to the experimental
data (b).

symmetry point of view. X-ray single-crystal analysis, magnetic characterisation and dis-
cussion of the properties of these compounds are given in Refs. [58b,c] The complexes have
Dsq-symmetry, and six 5-fold coordinated metal ions which have approximately hexago-
nal arrangement of the types of on Cué+ and Mné+ (abbreviated hereafter Cug and Mng)
as demonstrated in Figure 6. It is important to note, that the metal ion in these compounds
are subjected to the action of a low symmetry crystal field which fully removes the orbital
degeneracy of the electronic shells.

2.2.2. Analysis of the exchange interactions in polyoxometalates Cug and Mng,
magnetic anisotropy

The analysis of the isotropic and anisotropic exchange interactions can be performed
according to the methodology discussed is the previous Section. First, the isotropic part
of the exchange Hamiltonian is assumed to play the leading role. Since the degeneracy
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Figure 6. Structure of Cug clusters according to [58]: general view (a); Cug ring (b). The structure for the
Mng compound is closely related.

of the electronic terms of the metal ions is lifted by the low symmetry crystal field, the
exchange interaction can be described by the isotropic HDVV model. The HDVV Hamil-
tonian including only the dominating nearest neighbour interactions can be represented
as

H = —2Jy(81S5; + $283 + 8384 + 8485 + S58¢ + S651). (13)

In Equation (13) the parameter Jy describes exchange interactions between the spins of
the neighbouring metal sites, S; = 1/2 for Cu? T ions and S; = 5/2 for Mn?*. The mag-
netic behaviour of these magnetic clusters undoubtedly shows that the exchange coupling
is ferromagnetic [58]. Then, following the procedure described in Section 2.1.4 one can
find the allowed spin states resulting from spin coupling. For example, for Cug the set of
spin states is the following:

DW/2 & p1/2) & p(1/2) & p(1/2) & p(1/2 & p1/2) = 5p© 4 9pM 4 5p@ 4 pB),
(14)
For this cluster the problem is rather simple due to small dimension of the Hilbert space
(2% = 64), but it is illustrative in the sense that the use of spin-symmetry allows to reach the
block-structure the HDVV Hamiltonian. In fact, as follows from Equation (14) the maxi-
mal size of the block is 9, which occurs for the total spin § = 1. The case of Mng chain is
more complicated due to larger Hilbert space which comprises 6° = 46,656 states for six
spins S; = 5/2. A precise solution of the HDVV problem, Equation (13), can be found for
both systems with the use of software in Ref. [41]. The evaluated energy patterns for Cug
and Mng are shown in Figures 7 and 8 respectively. In both cases the ground state is fer-
romagnetic with Smax = 6 and Smax = 15, for Cug and Mng, respectively. It is remarkable
that the pattern of the spin levels of Mng clearly exhibits the so-called rotational structure
(marked by the dashed line in Figure 8). The concept of rotational structure of the levels in
the spectra of closed spin chains has been intensively discussed and explained in physical
terms in [59].
Using the group-theoretical classification, one can establish the correlation between
the spin multiplets #(S)D' and the terms SI" of Cg, point group. Omitting the details
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of the procedure so far discussed (see Section 2.1) one can symbolically express the
n(S)D « ST correspondence for the Cug ring as

D® — 7B,,

5D® — 5A; + °E; + °E,,

9DW — 34, + 23B, + 3E, + 23E;,
5DO — 214, + 1B, + IE;

(15)

Assignation of the spin states to the exact terms (i.e. total spin and irrep) of the sys-
tem contains full information for the analysis of the energy pattern, magnetic anisotropy
and other properties interrelated with symmetry. One can see that the energy pattern
(Figure 7a) comprises orbitally degenerate states (irreps E; and E; in Cgy) and orbital
singlets A;, Ay, B;, B;. For example, nine levels with § = 1 involve three orbital singlets
3 A,, 23B, and the orbital doublet 3E,. The set of the terms involves orbital doublets (irreps
E; and E,), for example, first and second S = 1 levels for both Cug and Mng. These degen-
eracies can be referred to as ‘exact’ degeneracies because they arise from the hexagonal
point symmetry of the system and, thus, cannot be removed by the remaining isotropic
interactions (such as HDVV interactions between remote spins or biquadratic exchange).
The matrix of the HDVV Hamiltonian for Cus, has block-structure in the symmetry
adopted basis. This matrix contains only two 2 x 2 sub- matrices corresponding to 2°B,
and 2'A; terms, so that the full eigen-problem for the six-membered s-1/2 ring admits
simple analytical solution. Moreover, since in the S = 2 manifold there no repeating irreps,
the HDVV matrix becomes immediately diagonal in ST" representation with the SI"-blocks
being one-dimensional. One can see that full exploration of symmetry in this case has
advantage compared to the approach proposed in Refs. [37b,c].

The dimensions of ST" blocks for the Mng ring are much higher so that the analytical
expressions for the energy levels are unavailable, while the numerical solution in this case
is found through the use of MAGPACK software. For this system the levels are ordered
according to the total spin values (Figure 8).

As already mentioned, the group-theoretical assignment allows to elucidate the neces-
sary conditions for the existence and character of the magnetic anisotropy. For the excited
states exhibiting orbital degeneracy this can be illustrated by considering the simplest case
provided by the Cug hexagon for which the § = 2 manifold involves two orbital doublets,
SE; and °E;. When the orbital degeneracy is present, the spin-orbital interaction acts as
a first order perturbation which splits the °E; and °E, terms. This can be proved using
the receipt elaborated in Section 2.1.5 for a triangular system having the orbital doublet
2E in the ground state. Note that within these terms the spin-orbital coupling is reduced
to the axial form ALzSz. Alternatively, the only z-component (normal to the plane) of
the AS exchange is active and splits the °E; and °E; spin multiplets. As an example, the
fine structure of the °E level (G is an effective parameter of the AS exchange) is given in
Figure 7b along with the Zeeman sublevels in parallel field and labels of pseudo-angular
momentum quantum numbers. Since the system exhibits linear dependence of the levels
in parallel field (H||Cs) it possesses internal magnetic moment linked to this axis. On the
contrary, in perpendicular field (H_LCg) the field dependence of the energy levels proves
to be quadratic at low field that means that the field induces the magnetic moment. At the
strong magnetic field the levels become linear in field with respect to the new (in plane)
axis of magnetisation as shown in Figure 7c. More detailed study demonstrates very strong
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Figure 9. The structure of {Mos;Mg} cluster in ball-and-stick representation. the triangular Mg spin
prism is highlighted (Mo: green, O: red, N: light blue, heterometal cations: dark blue). (b): the princi-
pal symmetry axes of the metal skeleton (Mo positions of {Mo+7} groups: green, Mo positions of {Mo"}
groups: blue bar, heterometal ions: blue).

magnetic anisotropy interrelated with the AS exchange. It is worth to underline that the
conclusion so far made is based solely on the symmetry arguments emanating from the
group-theoretical classification of the exchange multiplets. The discussion of the experi-
mental data demonstrates a significant role of the zero-field splitting in the ground orbitally
non-degenerate states for both compounds (the details are given in Ref. [58b]).

2.3. The clusters {Mos;Mg} (M = VIV or M = Fe'" ): antisymmetric exchange in a
biprismatic Vg cluster

2.3.1. Structure and magnetic sites in {Mos7 Mg}

In this section, we use again the group-theoretical approach in order to demonstrate the
effects of the AS exchange in a more complex POM such as {Mos;Mg}, whose ball-and-
stick representation is given in Figure 9. The metal skeleton (highlighted in Figure 9) of
{Mos; Mg} involves six M = VIV or M = Fe!ll ions as described in Ref. [60]. The prismatic
magnetic metal network Mg is formed by the two triangles lying in the parallel planes with a
common C3 symmetry axis (D3}, symmetry) as shown in Figure 9a. Each antiferromagnetic
triangle occupies Csy site-symmetry position and possesses ground 2E term that is spin
frustrated and therefore we are dealing with an interesting and unusual case of two coupled
spin frustrated moieties with a common Cj axis.

2.3.2. Exchange interactions in {Mos7Mg} and magnetic anisotropy
The Hamiltonian of the system involving the isotropic HDVV coupling and AS exchange
acting within triangular moieties can be represented as

H=-2]y(8518 + 8,83+ 8381 + 8455 + S5 S5 + S¢ S4)
—2J(8184+ 8,85 + 83 86) — 2]/(81 Se + 8384+ 8385 + 828 + 8185 + S, 84)

+ > DulSix S+ Y DiklSix Sl (16)
,k=1,2,3 i,k=4,5,6
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where the intra-triangle (with the coupling parameter J) and two types of inter-triangle
isotropic exchange interactions (with the coupling parameters J and J') and are taken into
account and Dj; are the pairwise AS vector parameters defined as in Section 2.1. The
scheme of the isotropic exchange interactions is shown in Figure 10a.

A remarkable feature of the exchange network in V is that the inter-triangle isotropic
coupling does not reduce the trigonal symmetry of the system and, therefore, does not
directly affect spin-frustration in triangular subunits which retain the C3 axes. We thus
arrive at the problem of AS exchange in the two coupled triangular unit [60]. Since the
coupling does not reduce the trigonal symmetry, one can expect that the AS exchange is
not suppressed neither in each triangular unit neither in the entire molecule.

To model this V¢ cluster we first derive the spin coupling scheme for six S; = 1/2 spins,
which determines the allowed spin state of the system, Equation (14). Then, we apply the
procedure of the group-theoretical assignation of spin states as described in Section 2.1.4
(here we omit the detail of calculations). As a result, one can obtain the following correla-
tion between the HDV'V spin multiplets and the irreps (and exact terms of the system) of
the D3y, point group:

D(3) N 7A//2,

SD(Z) — 514/1 4 Sg! + SE//,

9D(1) — 3A/2 + 23A//2 + 3 + 23E”,
SD(O) N 21A/1 + IA//1 + lE/

(17)

As an immediate consequence, one can see that the HDVV Hamiltonian has block-
structure in the symmetry adapted basis, with the maximal size of the submatrices being
equal to 2 (two pairs 2*A’ and 2! A]), Notice that the simplification can be achieved even if
along the isotropic coupling, the AS exchange is included in the model. Figure 10b shows
the low-lying part of the energy pattern related to the coupled triangles in their ground
states 2E. The intra- and inter-triangle isotropic interactions are antiferromagnetic and
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the AS exchange acts within each triangle. One can see that the energy pattern exhibits
orbital doublets which are split (providing S # 0) by AS exchange acting as a first order
perturbation, while in the orbital singlets with S # 0 the AS exchange appears as a sec-
ond order perturbation giving rise to a conventional zero-field splitting. According to the
general statements (Section 2.1) each orbital doublet in a trigonal system is labelled by
the projections My = %1 of the pseudo-angular momentum, while for the orbital singlets
M, = 0. AS exchange links the states of the system accordingly to the conventional rule of
the addition of the angular momenta projections My = My, + Ms.

It is advantageous that the pseudo-angular momentum labels (Figure 10b) indicate also
the selection rules for the EPR transitions and give a qualitative insight on the magnetic
anisotropy. In fact, the ground state proves to be an orbital singlet !A} and so at low
temperatures the system is expected to exhibit temperature independent Van Vleck para-
magnetism. The orbital doublet ! E’ that is diamagnetic state from the point of view of the
HDVYV model is expected to exhibit a Zeeman splitting of pure orbital nature. This kind of
orbital paramagnetism is fully anisotropic in the sense that the magnetisation is maximal
for the field directed along the C3 axis and vanishes when the field is parallel to the planes of
triangles. The zero-field splitting for orbital doublet >E” gives rise to three doublets labelled
by the quantum numbers M; = 0(Ms = £1, M = F1), Mj = £1(Ms = 0, M = £1)
and Mj = +2(Ms = £1, M = %1), which suggests a strong magnetic anisotropy. Finally,
the selection rules for the EPR transitions (which cannot in principle be adequately derived
from the HDVV model) are M; — M) = 0, £1. One can thus conclude that by using
only the symmetry arguments (group-theoretical classification in conjunction with the
pseudoangular momentum concept), it is possible to explain qualitatively and, in part,
quantitatively the observed magnetic anisotropy and EPR spectra of complex systems
exhibiting isotropic and anisotropic exchange interactions.

3. Mixed-valence magnetic polyoxometalates
3.1. Reduced mixed valence polyoxovanadates [V1g O4g]"~ (n = 4+18)

3.1.1. General approach to the electronic problem of mixed valency and double
exchange: exploration of spin symmetry

The consideration in previous Chapters has been essentially based on the assumption
(which has not been explicitly mentioned ) that spins are linked to the definite sites in the
molecule. Here we proceed to the consideration of the so-called MV compounds which
contain one or several electrons that can be delocalised over the network of paramagnetic
or diamagnetic metal ions (spin cores or spinless cores) [61]. In this kind of compounds
a specific magnetic coupling (referred to as double exchange) between the magnetic ions
appears giving rise to a rich variety of physical properties. Double exchange interaction
involves the coupling of two localised magnetic moments, having spin cores So, through
an itinerant extra electron that can travel forth and back between the two magnetic cen-
tres. The ferromagnetic spin alignment is achieved due to the energy gain through the
polarisation mechanism as illustrated by the classical spin picture (Figure 11a). In fact, an
electron initially coupled to the ion A by the ferromagnetic Hund type exchange, tends to
align the spin So of the site B in the same direction. The ground state of a dimer is reached
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Figure 11. Double exchange, spin polarisation effect, red arrows denote the itinerant spin (a); effect of
the double exchange in magnetic dimers: schemes of the energy levels for the series of MV dimers with
different spin cores Sp (b).

when the three spins (two spins So and the spin of the extra electron) are parallel gain-
ing exchange energy of the system (Figure 11a). The mechanism of the double exchange
was suggested to explain the ferromagnetism observed in MV manganites with perovskite
structure (La,Caj_,)(Mn"™Mn!V_,)Os. In Ref. [61] it was suggested a solution of the
double exchange for a MV dimer for which the following spin dependence of the energy
levels was deduced (Figure 11):

S+ 1)
Ei(S)_:t—250+1 , (18)

where ¢ is the electron transfer integral, and S is the total spin of the system. One can see
that the energy levels linearly depend upon the total spin of the dimer and the ground
state is ferromagnetic irrespectively of the sign of the transfer parameter. This dependence
is drastically different from the quadratic spin dependence (of the type of S(S+1) in sim-
ple systems) arising from the HDVV exchange in spin-localised systems. Spin-delocalised
MYV dimers can be exemplified by the complex [L,Fe; (i — OH);] (ClOy4) - 2CH30H -
2H,0 (Refs. [62,63]) based on Fell (SFe(II) = 2) and Felll (SFe(HI) = 5/2), which exhibit
a ferromagnetic ground state and a strong intervalence absorption band. It is important
to underline that the basic expression deduced for a MV dimer, Equation (18), is not
applicable to more complex systems. Generalisation of the theory demonstrated much
more complex and qualitatively different, which is especially important, energy pattern in
trimers and high nuclearity MV systems [64,65]. In particular, the basic statement about
the ferromagnetic spin alignment in the ground state can be invalid. In this respect, it is to
be mentioned that the peculiarities of the so-called frustrated MV systems with triangu-
lar electronic topologies, like symmetric trimeric clusters and cubane-type complexes (see
review articles [40]) are especially interesting. It is to be noted that the universal analyti-
cal expressions for the energy levels for complex MV systems containing more than two
magnetic centres and several mobile electrons are unavailable, while evaluation these levels
even in particular cases represents rather complicated task.
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A general approach to the problem of double exchange in high nuclearity clusters
containing an arbitrary number of localised spins (N) and arbitrary number of itinerant
electrons (P) moving among spin sites has been worked out in Ref. [42]. The Hamiltonian
of the system within the Hubbard-like model can be written as follows:

H=Y ty(c cio +he)+ Y Jusisk + Y Ugning (19)
ik ik ik

In Equation (19) the following notations for the parameters of the key interactions are
used: tj are the transfer parameters corresponding to the electronic jumps between sites i
and j, CZ_G (¢;,,) are the creation (annihilation operators) of an electron with the spin pro-
jection o at the site k, Ujx is the Coulomb repulsion of the electrons instantly localised at
the sites i and k, the populations #; and ny (0 or 1) indicate that only populated sites are
involved in the Coulomb repulsion of the electrons. The isotropic exchange interaction
between the localised and delocalised spins is also included in the model (second term of
the Hamiltonian).

In principle the Hamiltonian, Equation (19) can be treated numerically, but the dimen-
sions of the matrices to be diagonalised increase dramatically with the increase of the
number of the ions, spins of sites and the number of the mobile electrons, which restricts
the size of the system that can be really treated. Application of spin symmetry can essen-
tially enlarge the ability of the approach to treat the high nuclearity systems encountered
in POM chemistry.

In order to apply spin symmetry arguments to a MV system let us imagine that the
itinerant electrons are instantly localised at a set of definite sites. Let us further suppose
that the spins of the instantly localised system are coupled in a successive way to give the
total spin S of the cluster. Let us use the chain-like coupling scheme in which the spins are
successively coupled (such as in Equation (2)). This coupling scheme can be expressed as

S) =155, S5,...Sn_1}

with the possible sets of the intermediate spins (S5 = S12, S3 = S123, etc.). Note that the
intermediate spins depend on the instant distribution of the itinerant electrons as shown
in Figure 12. The itinerant spins can be distributed over the magnetic sites of the system, so
that the total number of electronic distributions is equal to N!/P!(N — P)!. The mathemat-
ical procedure developed in Refs. [42a,b] (we omit here the mathematical details) allows
to evaluate the matrix element of the Hubbard type Hamiltonian corresponding to the
electronic jumps i — k:

(s8> B i,K) (si = s0 + 2,5k = s0) ()SMs

- 20
> (550 B 1K) (55 = 5005 = 50 + ) (B)SM 20

The jumps between the sites i and k occur with the constant populations of the remain-
ing sites as pictorially shown in Figure 12 illustrating two involved distributions linked
via one-electron jump. The non-vanishing matrix elements are expressed in terms of the
well-known and tabulated (or, alternatively, programmable) 6j-symbols of the spherical
symmetry group; parametrically, the matrix elements depend on the transfer integrals t;.
For the sake of simplicity we leave outside of this presentation the explicit expressions
(which are rather complicated) for the matrix elements (they are given in Refs. [42a,b]).
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Figure 12. Illustration for a transfer process between sites i and k in a complex MV system containing
localised and delocalised spins.

This theoretical approach constitutes the background of the computing package
MVPACK [42c] aimed at the calculation of the energy levels and thermodynamic prop-
erties of the high nuclearity MV systems combining in their structures localised and delo-
calised subunits and arbitrary numbers of metal sites and itinerant electrons. MVPACK
permits to treat either double exchange systems (i.e. MV systems in which extra electrons
travel over the network of spin cores), as well as MV systems comprising spinless cores.
In this respect it is worth noting that the majority of reduced POMs just belong to the
class of MV systems in which the itinerant electrons are delocalised over spinless cores.
The specific spin-dependent mechanism of the electron transfer in these systems arises
from the correlated motion of the electrons over spinless ions which is different from dou-
ble exchange (see discussion in Section 3.2). This program is a further development and
generalisation of the package MAGPACK, which is applicable to large exchange coupled
clusters comprising only localised spins.

3.1.2. Magnetic properties of [V130481"~ cluster

As an extremely complex example of a high nuclearity MV POMs we briefly consider the
[Vig O48]"~ family. A detailed description of its structure, together with the exchange net-
work, is given in Figure 13. These POM compounds can serve as redox sponges, in the sense
that the electron population inside the cluster can be chemically controlled. Depending
on the number of electrons, the family of compounds includes the spin-localised cluster
[V13042]'2~ formed by 18 oxovanadium (IV) sites (i.e. 18 unpaired electrons localised
over the 18 metal sites), MV compounds oxidised by two electrons, [V1304,]'%~ (i.e. 16
unpaired electrons delocalised over the 18 metal sites) and MV compounds oxidised by
eight electrons, [V1g042]* (ie. 10 unpaired electrons delocalised over 18 metal sites, see
full description in Ref. [66]).

This family of polyoxovanadates exhibit an unexpected magnetic behaviour illustrated
by Figure 14 [67]. Thus, while the effective distances between unpaired electrons are longer
in compounds with smaller number of unpaired electrons, thus, favouring weaker antifer-
romagnetic exchange interactions, one observes that it is precisely the cluster [V1504,]*~
the one that exhibits the strongest antiferromagnetic exchange interactions (Figure 14).
This shows that the magnetic properties of this series of POMs cannot be properly inter-
preted in the framework of model dealing with the magnetic exchange between localised
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Figure 13. Structure of [V1g O4g]": general view (a) and skeleton of the vanadium sites with the

indication of the exchange network (b).
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Figure 14. (a) Temperature dependence of x T for the spin-localised Vig" and MV V;0"VVsY clusters
(from Ref. [67]); (b) Theoretical magnetic behaviour of a MV spin-delocalised antiferromagnetic cluster

in which the electron population has been reduced (from Ref. [66]).

spins. The general approach described in Section 3.1.1 (realised as MVPACK software) was

employed to explain such unexpected result.

Thus, as can be seen in Figure 14b the magnetic behaviour exhibited by the MV
[V18042]* cluster can be modelled taking into account the spin delocalisation over the
cluster structure, as this leads to a significant stabilisation of the antiferromagnetic ground
spin state with respect to the other excited spin states (for the modelling see details in Ref.
[66]). It is worth to notice that this is the most complex problem addressed so far in MV
magnetic POMs and moreover in the entire area of MV molecular clusters.
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Figure 15. Two structures of the two-electron reduced polyoxometalates with delocalised electronic
pairs: Keggin structure of a [XM1,040]" ~ anion (a); metal network of the Keggin anion (b); Wells-Dawson
structure [X;M150621"~ (), where M = Mo, W. In the Keggin anion the two types of electron transfer
processes between neighbouring WOg octahedra (through edges, P, and corners, t) are shown.

3.2. Mixed-valence polyoxometalates featuring delocalisation of an electronic
pair: Keggin and Wells-Dawson anions reduced by two electrons

3.2.1. Structures of the Keggin and Wells—-Dawson anions

Keggin and Well-Dawson anions are archetypical structures in POM chemistry (Figure
15a,b,c). The Keggin structure consists of four edge-sharing triads of MOg units (M = W,
Mo) arranged around the heteroatom X (X = B, Si, P, Co, Cu, etc.) by sharing corners.
As one can see from Figure 15a the twelve MOg units are arranged in such a way that
the system possesses an overall tetrahedral symmetry Tq4. Figure 15b shows the idealised
scheme of the metal sites in the Keggin system that consists of the four metal triangles
(a1 a2 a3 , by by b3, etc) perpendicular to the C; axes of the tetrahedron. The Wells-Dawson
structure consists of 18 MOG6 units arranged in two central hexagonal belts with alternating
corner and edge connectivity and two triangular caps of MOG6 units shearing edges. The
four rings (belts and caps) are linked by corners and they give rise to a structure with D3y,
symmetry.

Heteropolyanions with these two structures can be reversibly reduced by adding one or
more electrons, which are delocalised over the metal network. In this respect, the doubly-
reduced systems are of special interest due to its unusual magnetic properties, which show
a total spin pairing of the 2 electrons even at room temperatures. Actually, the two electrons
travelling over the metal sites in Keggin (and Wells—Dawson) anion are far enough from
each other due to Coulomb repulsion. Under this condition the exchange interaction is
expected to be negligibly small and therefore cannot give rise to the observed strong antifer-
romagnetic coupling. As a matter of fact, in Refs. [68a,c] it was suggested that the electron
delocalisation results in a very efficient stabilisation of the antiferromagnetic spin state of
the electronic pair in these anions. The difference between these two types of anions is that
in the Keggin anions the two extra electrons are delocalised over all metal sites, while for the
Wells-Dawson anion such electron delocalisation is restricted to the two internal hexago-
nal belts [69]. This physical conclusion is rather general and valid also for other 2e-reduced
POMs. Here we will focus on the 2e-reduced Keggin anion to show how specific analytical
symmetry-based methods can be useful to account for these unexpected properties.
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Figure 16. Electronic pairsin Keggin structure: network of the octahedral sites (red balls) with indication
of the localizations of the five types of electronic pairs and distances between occupied sites connected
by black lines (a); Coulomb energies of the five types of electronic pairs in Keggin structure. The numbers
of the equivalent positions for each type of the pair is given in parentheses (b); symmetry labels, spin-
singlets-red, spin-triplets-blue (c). Colour online.

3.2.2. Site symmetry approach: delocalised electronic pair in the 2e-reduced Keggin
anion

Delocalisation of the electronic pair in MV POMs represents a concerted motion of the two
electrons over the network of the spinless cores affected by Coulomb repulsion of the elec-
trons. The central part of the adequate consideration of this motion is the site-symmetry
approach specially developed as applied to the present problem. Usually the Coulomb
repulsion is the leading interaction which can be approximately taken into account within
the point charge model, neglecting covalent effects. Although this model is rather sim-
plified and overestimates the Coulomb repulsion it gives a good qualitative (and to some
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extent quantitative) picture of the energy levels interrelated with the structure of the metal
network [68]. In the Keggin structure the states of the electronic pair can be classified from
I to V according to the five independent distances between the occupied sites as shown in
Figure 16a. The distances in these five types of the electronic pairs vary from 7.00 A for the
pair I to 3.29 A for the pair V (Figure 16a,b). Each type of the pair has a definite Coulomb
repulsion (evaluated within the point charge model) indicated in Figure 16b. Due to over-
all tetrahedral symmetry, T4, of the molecule each type of the pair has several positions in
the metal network as shown in Figure 16. Thus, the pair I (lowest in energy) has 6 posi-
tions (Figure 16b) in which the electronic pair can occur in spin-singlet and spin-triplet
states. This picture of localised states of the Keggin anion should now be complemented
by the inclusion of the M-M electron transfer processes occurring through the oxo groups.
This result in the separation of spin-singlet and spin-triplet terms and mixes states belong-
ing to different pairs with the same symmetry labels. The symmetry labels for these states
can be found through the application of the site-symmetry approach adapted to the elec-
tronic pair developed in Ref. [68a]. Usually the site-symmetry approach was used for the
classification and construction of hybrid orbitals in molecules. A relevant definition of the
site-symmetry of an electronic pair allows to perform the group-theoretical classification
of the delocalised states of the electronic pair in a complex molecular network.

We define the site-symmetry of a pair in Tq molecule as a site-symmetry of the side
in the tetrahedron in the Keggin unit. Site-symmetry of each site is thus C,y and one can
assign six local coordinates to six faces of the cube defining thus the instant positions of
the pair that can be specified by the number of the face. The wave-functions of the pair I
belong to the irreps of Cyy, and can be expressed in terms of Slater determinants (for ab;
position) and to the total spins S, = 1and S, = 0 as

L
V2

It can be easily seen that these functions belong to the irreps B; and A; of Cyy and
consequently give terms *B; and !A . Each of four pairs IT does not belong to the Cyy
site group, but the part of the full Hamiltonian involving two triangles that are associated
with the ab side is invariant under the transformation of C,y. This allows to construct the
basis functions of C,, from four localised functions of the pair II. This procedure can be
extended (see details in Ref. [68]) and all irreps Iy for the localised electronic pairs can be
obtained. For example, for the pairs I, IT associated with the ab side, one finds: >By, A for
pair I, and 'A1,°A,,%B1,%B), 1A, 1A,,!B; for pair II. Applying symmetry operations of
the full symmetry T4 group to each basis function belonging to a certain term STy of the
site group C,y, one can generate the reducible six-dimensional reducible representations
[’y of T4. By decomposing Iy into irreps, one can classify the delocalised states of the pairs
according to the irreps I' of the symmetry point group of the system. The results for the
pairs I-V are shown in Figure 16¢. For example, one can see that the six-dimensional orbital
space for the pair I (six positions) gives rise to three spin-singlets 'A; (orbital singlet),
LE (orbital doublet), 1T2 (orbital triplet) and two spin-triplets 3T1> 3 T,.

Then, the delocalisation of the electronic pair splits the Coulomb multiplets according
to the irreps of the full symmetry group and total spin of the systems. One can see that the
full 66 x 66-matrix can be reduced into submatrices (blocks) of smaller sizes accordingly
to the numbers of repeated irreps. For the spin triplet and spin-singlet terms we get the

p1([a2b2;Sp = 1L,M = 1) = |azb|, 1([a2b2]; Sp = 0) = —=(lazba| + azba]).  (21)
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Figure 17. Energy pattern of the pair I as function of transfer parameters t and P. t is electron transfer
(hopping) parameter between corner-sharing MO6 octahedra, t’ is electron transfer parameter between
edge-sharing octahedra and P is a two-electron transfer parameter one between corner-sharing and
other between edge-sharing. In this figure the ratio t'/t is fix to 1.

following sets of irreps:
DS=D(66) =341 + 33A, + 4°E+10°T, + 8°T>,
D&=9(66) = 5'A1 +2'A, + 7'E+ 7'T) + 8! . (22)

Therefore, the maximal dimension of the energy matrix for spin-triplet terms is 10 x 10
while for spin-singlet this dimension is 8 x 8. The computational problem can be further
simplified if one assumes that the Coulomb gaps are much larger than the effective transfer
parameter and therefore the transfer processes act within the low lying Coulomb manifold
YALYENT,, 3T, T, (pair I).

Within this approximation one can get a simple visual picture in which the levels of
the system linearly depend on the characteristic ratio of parameters P and ¢ (Figure 17).
One can see that the ground state of the system is either spin singlet 'A;, or a mixture of
spin triplet and spin-singlet levels ! E, °T, (Figure 17). The former case explains the experi-
mentally obseved spin pairing, which was also confirmed by the ab initio evaluation of the
transfer parameters [70].

3.2.3. Vibronic problem in 2e-reduced Keggin anion: formulation

The electronic levels evaluated in previous sections are related to the molecule with the
fixed positions of the ions. This ensures a symmetric geometry of the system which, under
this condition, has minimal total energy. At the same time in MV compounds the deforma-
tion of the structure produced by the extra electron is, in general, not small and cannot be
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neglected giving rise to the vibronic effects. It should be emphasised that the due account
for the vibronic effects is not only a question of the quantitative accuracy, but rather a pre-
requisite for the qualitative description of the physical phenomenon of the self-trapping of
the extra electron and the degree of localisation. The extent of this effect is described by
the well-known Robin and Day classification of MV compounds according to the degree
of localisation based on the consideration of the vibronic coupling. According with this
classification, the MV Keggin anion belongs to Class II [71] (see also review article [43a]),
thus exhibiting an intermediate vibronic coupling. The vibronic interaction in MV com-
pounds can be described in the framework of generally accepted PKS vibronic model [71c].
Although this model is rather simplified, it successfully describes the key features of MV
systems, such as the occurrence of a potential barrier between localised configurations.
In particular, this model underlies the Robin and Day classification of MV compounds
accordingly to degree of localisation.

The Hamiltonian of the JT (or in general, pseudo JT) system can be represented as

ha),- V) 82
H=He+27< i_a_Qz)“‘ZUiOiQiEHe‘l‘Hosc“‘Hev- (23)
i i i

The electronic subsystem is described by the Hamiltonian H,, whose eigenvalues (elec-
tronic levels) for the Keggin anion have been considered in Section 3.2.2. The second term
(Hosc) in Equation (23) is the harmonic oscillator Hamiltonian in which Q; are the dimen-
sionless vibrational coordinates, w; are the vibrational frequencies. Within the PKS model
the vibronic coupling parameters v; and frequencies w; for all redox sites are assumed to
be equal and hereunder will be denoted as v and w. In the basic case of a MV dimer (for
example, family of Creutz-Taube bi-ruthenium complexes [72]) the two molecular states of
the opposite parity (bonding and antibonding) are mixed through the only antisymmetric
vibration composed of the local ‘breathing’ vibrations. Finally, the last term in Equation
(23) describes the vibronic coupling and summation is extended over PKS vibrations. In
this term O; are the matrices of the vibronic coupling (see Ref. [43a]).

Very often the description of the properties of MV complexes is based on the adia-
batic approximation, in particular, the Robin and Day classification employs the adiabatic
picture. This approximation assumes that the electronic motion is much faster than the
nuclear one. Consequently, within the adiabatic approximation one can neglect the kinetic
energy of the ions (second term in the Hamiltonian Hy,.) and, therefore, the energy lev-
els of the system can be associated with the full potential energy which includes also the
electronic energy as function of the vibrational coordinates (adiabatic potential). Although
the adiabatic approximation is very spectacular and gives a good qualitative description, it
has a rather limited frame of the applicability. This was realised in the basic works dealing
with the vibronic coupling in MV compounds where the dynamic nature of the vibronic
problem has been underlined [71], especially for the evaluation of the shape-functions of
the intervalence optical absorption bands. Actually, in the anti-crossing region of the adi-
abatic potentials the system performs fast Landau-Zener transitions so that the nuclear
motion cannot be separated from the electronic one and can not be admitted as slow. In
this view it is worth to mention that the theory of MV systems and metal complexes, which

can be referred to as ‘chemical theory beyond the Born-Oppenheimer paradigm’, has been
developed (see book [73]).
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3.2.4. Symmetry assisted approach to the multidimensional non-adiabatic
Jahn-Teller problem

To get the dynamic (quantum-mechanical) solution of the vibronic problem of mixed-
valency, one should find the eigenvalues and eigen-vectors of the Hamiltonian, Equation
(23); this includes, along with the potential energy, the kinetic energy of nuclear motion.
The basis functions which can be used to construct the matrix Hamiltonian and to solve
the dynamic problem are represented by the products of the electronic wave-functions
(eigenvectors of the Hamiltonian H,) and harmonic oscillator functions (eigenvectors of
the Hamiltonian H,). Since the harmonic oscillator has the infinite number of the lev-
els, the basis for solving the quantum-mechanical problem is also infinite. In the case of
degenerate vibrations, which is peculiar for the JT and pseudo JT situations, the levels are
multiple degenerate and this brings additional serious difficulties. Of course, the infinite
matrices must be truncated but the convergence of the procedure is slow, so that one needs
amore efficient symmetry adapted approach to the dynamic vibronic problem. Let us illus-
trate such recently developed approach by considering as an example the MV 2e-reduced
Keggin anion.

The full electronic basis of the Keggin anion can be truncated while solving the vibronic
problem. It is worthwhile to include in the electronic basis only the six low-lying electronic
states corresponding to the pair I (Figures 15 and 16), that is, the states !A,, 'E,! T, for
S=0and 3T}, T, for S = 1. Such truncation of the electronic basis is acceptable under
the condition that the effective energy of the vibronic coupling is smaller than the mean
gap between the levels of the pairs I and II. This condition seems to be quite realistic for the
2e-reduced Keggin anion. Then one should introduce the symmetry adapted PKS vibra-
tions for the Keggin structure involving twelve sites. The analysis of the PKS model for
the Keggin anion shows [68b] that two kinds of vibrations are active, namely the doubly
degenerate e- vibrations and triply degenerate t,-vibrations. Pictorial representation of the
PKS coordinates in terms of ‘breathing’ displacements of the octahedral metal sites is given
in Figure 18.

The vibronic coupling leads to a rather complicated JT/pseudo JT problems involv-
ing six-dimensional electronic space and five-dimensional vibrational one. In the
standard notation the problem can be designated as AT, +'E+14))®(e+12) and
(T; +3T,)®(e+ t2), which means that the vibronic coupling with five vibrations (e and
t;) mixes six electronic states. The frequencies of T, and E vibrations coincide with the
frequency of the local ‘breathing’ mode and, therefore, the electronic system is effec-
tively coupled to a five-dimensional oscillator whose unperturbed levels are enumerated
by the quantum number n = n; + ny + n3 + n4 + ns. These levels are multiple degenerate
because a definite number 7 can arise from different combinations of #;. Thus, the dimen-
sion of the vibrational space is 6G(N), where the factor 6 appears as the dimension of the
electronic subspace, while G(N) is the dimension of the vibrational subspace including five
modes (e and £;). Simple calculations show that 6G(N) can be expressed as

N
6GN) =6 Y g0 = LN F DN F DN+ N+ HN 49, (20
n=0

where g(n) = 2—14(n + 1)(n+2)(n + 3)(n + 4) is the total degeneracy of the level with a
given n, while N is the number of the levels included in the basis. One can see that the size
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Figure 18. Pictorial representation of the shapes of the E- and T5- types of PKS vibrations in Keggin
anion ‘breathing’ displacements of the coordination surrounding of the metal sites. Red balls symbol-
ise the octahedral units. Left part of the figure shows symmetric (undistorted, Ty) structure. Large and
small circles symbolise expanded and compressed octahedral sites, intermediate size circles denote
undistorted units. One component for each type (irrep) is shown. Colour online.

Table 2. Group-theoretical classification of five low lying
vibrational levels for PKS vibrations of e- and t,-types in
Keggin anion with T4 point symmetry.

n Vibrations e Vibrations t;

0 Aq A

1 E T,

2 A +E A +E+T,

3 Ay +A+E A1 +T1+27T;

4 A+ 2E 2A1+2E+ T+ 2T,

of the matrix of the vibronic Hamiltonian becomes huge even if a relatively small number of
the vibrational levels is included in the basis set employed to solve the combined JT/pseudo
JT problems ATy +'E+1A))Q®(e+t;) and CTy +3T,)R(e + 1) for the pair I in the 2e-
reduced Keggin anion. For example, for N = 40 the size of the matrix of to be diagonalised
is 6G(N) = 7.330.554. This demonstrates that, in order to make the problem solvable, an
efficient use of the symmetry is needed.

At the first step it is worthwhile to reveal the symmetry labels for the harmonic oscillator
states for the two involved degenerate vibrations. Omitting the details of the group-
theoretical procedure (see Ref. [43]), we give the final results in Table 2. One can see that
the ground state is non-degenerate for both types of vibrations. The first level (n = 1) is
a doublet E for e-vibrations and triplet T, for #,-vibrations that means that the first vibra-
tional level of the system is 6-fold degenerate. Then the n = 2 level involves irreps A; + E
for e-vibrations and A; + E + T for t,-vibrations. The results for n = 0, 2, 3, 4 are given
in Table 2.
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Table 3. Symmetry adapted wave-functions of a bi-dimensional har-
monic oscillator (e-vibrations) expressed in terms of simple functions
with certain occupation numbers |n1n;), (n = ny + ny).

n=2 n=3
1 1
[2.A1) = —=(120) + [02), 3,40 =3 (V3121) - 103))
12,80 = 111) . 13,A2) = 1 (|3o> V3112) )
12,Ey) = E(IZO) —102)) |3, Ex) % (ﬁ|30 )+ 112) )
E

3,60 =3 (121 +v3103))

Notes: Short notations; [n = 2, A1) = |2, A1), etc. are used.

To simplify the solution of the eigen-problem one should construct the functions
belonging to all allowed irreps for each value of n = n; + ny + n3 4+ ng + ns. The pro-
cedure includes the design of the operators (which we proposed to refer to as ‘mul-
tivibronic operators’ [43]), which being applied to the degenerate harmonic oscillator
functions |n1nyn3nans), create the vibrational states belonging to the allowed irreps of
the point symmetry group. Then, the symmetry adapted vibrational functions are cou-
pled to the electronic ones to give full vibronic functions of certain symmetry (irreps).
The key result is that the full matrix of the Hamiltonian to be diagonalised can be
reduced to reach block-structure, with each block corresponding to a definite irrep. The
mathematical tools to solve this problem are described in detail in Ref. [43]. With the
aim to illustrate the results, we give here the final expressions for the vibrational func-
tions (which are normalised and orthogonal) for the double degenerate vibrations of the
e-type.

The functions of the bi-dimensional oscillator can be labelled as |n;n;) with n; =
0,1...00,ny =0,1...00. The basis of the irrep E in Tq is chosen in a standard way:
u o 322 — r?, v o /3(x* — y%). One can find the symmetry adapted basis in terms of the
linear combinations of simple vibrational functions |n1n;) with the definite occupation
numbers. The final results for the vibrational levels with n = 2 and n = 3 are given in
Table 3.

In a similar way one can obtain the functions for n = 4, etc. and those for the t;-
vibrations. Finally, these vibrational functions are coupled to the electronic ones. This
procedure represents a core of the symmetry assisted approach to the vibronic problem.
The efficiency of the symmetry assisted approach is illustrated in Table 4 containing the
dimensions of the electron-vibrational spaces for different blocks arising in the dynamic
JT/pseudo JT problems (1T, +'E+'A;)®(e+t;) and T +°T2)®(e+t;) in Keggin
anion for different dimensions of the truncated basis. One can see, for example, that for
N = 12 the full dimension of the Hilbert spaces for spin-singlets and spin-triplets is 37.128.
The use of the symmetry adapted basis essentially simplifies the computational proce-
dure by blocking the full matrix. Thus, for N = 12 the maximum sizes of the blocks are
4.676 x 4.676 (for each of the terms ! T, 3T and 3T>).

In Ref. [43d] we have presented a program called VIBPACK, based on the symmetry
assisted approach, which takes full advantage of the point symmetry arguments. The VIB-
PACK program allows to tackle the multidimensional dynamic JT/pseudo JT problems
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Table 4. Dimensions of the electron-vibrational spaces for the blocks arising for the JT/pseudo JT
problems for the pair I in Keggin anion.

N 6G(N) A A; E T T,
Spin singlets

10 18.018 819 728 1.547 2.184 2.275
1 26.208 1.176 1.065 2.240 3.192 3.304
12 37.128 1.652 1.512 3.164 4.536 4.676
Spin triplets

10 18.018 728 728 1.456 2.275 2.275
1" 26.208 1.064 1.064 2.128 3.304 3.304
12 37.128 1.512 1.512 3.024 4.676 4.676

through the reduction of the vibronic matrices to full extent. Using VIBPACK program one
can calculate the energy levels of large scale vibronic systems and related thermodynamic
and spectroscopic characteristics, such as magnetic moments and vibronically assisted
optical bands. The last requires large vibronic basis and therefore serves as a benchmark of
the accuracy of the VIBPACK program.

Figure 19 shows a sample of the vibronic levels of the MV Keggin anion calculated
as functions of the vibronic coupling parameter v for a rather restricted basis set N = 8.
For the sake of simplicity only the pair I is considered. At P = 0 one obtains the elec-
tronic levels superimposed with the unperturbed harmonic oscillator levels. The level 1A,
which is the ground state of spin paired system, is chosen as a reference level for both spin-
singlets and spin-triplets. Then, one can see that a simple equidistant picture of the levels
is strongly distorted when the vibronic coupling increases. Finally, when the vibronic cou-
pling is strong enough, the excited levels approach the ground level which can be attributed
to the presence of degeneracy due to the existence of several energetically equivalent deep
wells of the adiabatic potential or to Ham reduction of the transfer processes. The analysis
of the composition of the vibronic spin-levels demonstrates the effective increase of the
magnetic moment of the system that can be considered as a result of the combined action
of the JT/pseudo JT couplings.

4. Mixed-valence reduced polyoxometalates with partial electron
delocalisation

4.1. The polyoxovanadate anion [KV}' V} (03AsOH)3027(As04)1®"

4.1.1. Structure of polyoxovanadate anion [KV3 Vg (03AsOH)3027(As04)1®

The systems with partial electron delocalisation contain interacting spin-localised and
delocalised moieties in the same molecule. The [KV}IVVX (03AsOH);0,7(As04)]%" cluster
anion belongs to a special class of MV POMs containing coupled localised and delocalised
triangular subunits which form the magnetic part of the molecule. Ball-and-stick represen-
tation of this cluster, which will be referred to as VIV, VVy, is shown in Figure 20. Further
details of the structure can be found in Ref. [74]. The magnetic properties of vIV,vVs
are interrelated with the metal sites, which involve a localised trimeric VgH unit (with
three spins 1/2) and a MV VIV V¥, unit comprising one unpaired electron shared among
three sites [74]. Therefore, this system can be referred to as a system with partial electron
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Figure 19. Vibronic levels vs vibronic coupling parameter for spin-singlet (left) and spin-triplets (right)
terms belonging to the ground manifold (pair I) of the 2e-reduced Keggin anion. The ground level ('4;)
is taken as the origin in both parts of the energy pattern. The energies are evaluated using the VIBPACK
program.

delocalisation in which the localised and itinerant electrons coexist and interact. The net-
work of the magnetic sites in the structure of K¢ [H3KV12As3039(AsO4)-8H, O] is shown in
Figure 21a. Exchange coupled (spin-localised) trimer d' — d' — d! (sites a, b, ¢) and spin-
delocalised d' — d° — d-cluster (sites o, B, y) lie in parallel planes, so that the overall
symmetry is C3y as well as the ‘site symmetry’ of each subunit.

4.1.2. Group-theoretical classification of the delocalised states in mixed-valence
systems
The group-theoretical classification for partially localised systems has some peculiarities
which will be described below. For highly symmetric systems with partial delocalisation the
symmetry assignation can be done by combining the states of the two subunits, localised
and delocalised. The exchange coupled (localised) spin systems have been considered in
Section 2.1.4. Let us illustrate the procedure for the spin-delocalised subsystem by taking
as an example a trimeric cluster d' — d' — d? with one electron delocalised over three one-
electron spin cores.

Hund type (ferromagnetic) coupling of a spin core with a trapped electron forms a
§* = 1 centre, while the remaining centres have spins 1/2. The spin coupling scheme for
this system can be symbolised as

3(DV? @ D2 @ pV) = 3D 4 6DV 4 3D?, (25)
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Figure 20. Ball-and-stick representation of the cluster anion [KVLYVY (03AsOH)30,7(As04)1%.
General view of the structure indicating localised frustrated triangle of V'V ions (shaded by orange) and
delocalised triangle (green) (a); view from the direction along C3 axis (b).

@ —localised O-—delocalised @-localised O—-delocalised

Figure 21. Scheme of the magnetic sites in a double triangular vanadium cluster in VvV,\Ws,(a) and
scheme of the exchange pathways in a localised configuration (b).

where the factor 3 on the left-hand side of Equation (25) takes into account three pos-
sible localizations and two possible spin-triplet states which appear due to two possible
intermediate spins in three-spin coupling scheme.

The full basis set involves four-electron determinants |a, (sa) b, (sp)cm, (sc) | related to
three possible localizations of the ‘extra’ electron. For example, for c-localisation s, = s, =
1/2 and s, = 1. For M = § = 2, there is only a determinant for each localisation and we
find a three-dimensional representation with the basis set:

1 1 1 1
a2 (5) b1)2 (5) ca(D)],|a12 (5) bi(L)cyy2 (5)

for which one gets x M=2)(R) = x ®=2)(R) for all R and then we find 3D?® —° A, +° E.
Continuing this procedure as in previous example one can find the following result for the

> >

1
a1 (1)bi)2 <5> 61(1)‘
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group-theoretical classification of the delocalised states of the d! — d! — d? system:

3D® — A, + °F,
6DV — 34, + 34, + 23E, (26)
3D 1A, 41E.

One can see that the only 2 x 2 matrix corresponding to 2°E should be diagonalised
while the remaining energies can be found directly as the diagonal matrix elements of the
Hamiltonian in the symmetry adapted bases.

4.1.3. Group-theoretical classification of spin multiplets in a partially delocalised
system, the main features of V'V

To make some general qualitative judgments one has to classify the states of the system
from the symmetry point of view. The basis set is formed by 3-2* = 48 determinants
|ama (%) b, (%) Cm, (%) U, (%) |, etc., which are built from the orbitals localised on the
sites depicted in Figure 22 (notations of spin-orbitals are the same as in previous sections).
Applying operations of C3, symmetry group and using the approach so far discussed (we
omit here the details), one can find the ST"-multiplets of the system with partial delocali-
sation. For example, for maximal M = § = 2 we have the three-dimensional basis which

consists of the four-electron determinants:

lai/2b1/2¢1/2001/21; la1/2b1/2¢1/2B1)215 la1/2b1j2¢1/211 2]

with TWM=2) = 18=2) — A, 4+ E, and hence, we find °A, + °F multiplets. Then, in the
present case when the subunits have common Cj3 axis, the STI"-multiplets of the partially
delocalised system can be found as the decomposition of the direct products: D) @
D®MV) and T,y x Ty, where Sppelexe and Syv v are the terms of the localised and
delocalised units (the Pauli principle in this case does restrict possible resulting states).
Finally, one can find the following group-theoretical assignment:

(*A; +*E) x A1 +%E) ='A; +'4, +1E+3A; + 24, + 2°E+°4, +°E. (27)

One can see that the 48-dimensional space is reduced to the blocks of lower dimen-
sionality, i.e. into the subspaces with the maximal dimension of 2 that allows to find the
analytical solutions of the eigen-problem in this rather complicated system.

The theoretical model [74] includes the following key interactions which are specific for
a partially delocalised system: HDVV exchange in the three localised configurations, AS
exchange in the localised spin-frustrated triangle (see Section 2.1) and electron delocali-
sation over three sites in the delocalised triangle. The analysis of these interactions along
with the symmetry of the states shows that they are in a complicated interplay leading to
interesting physical conclusions about the magnetic behaviour of Vi VY. A brief conclu-
sion is that in the localised limit (see Figure 21b) the AS exchange is partially suppressed
by the low symmetry component of the isotropic exchange produced by the inter-triangle
coupling. When the delocalisation is involved, it can restore the trigonal (actually, axial)
symmetry and the AS exchange appears again as a first order effect in the orbital doublets,
while the orbital singlets are not involved in this phenomenon. Thus, the coexistence of the
localised and delocalised states is an immanent feature of the partially delocalised systems.
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Figure 22. Scheme of the one-electron levels of the MV trimer of d' — d" — d? in the three possible
localizations of the itinerant electron.

This can be understood in terms of the so called motional narrowing, which in the case
under consideration can be referred to as averaging of the isotropic inter-triangle exchange
interactions which drastically increases the magnetic anisotropy of the system (see details
in Ref. [74]).

4.2. Partially delocalised cluster anion [V’ V] AsgOao(H20)1*~ = {V1,Asg}

Two more complicated isostructural dodecanuclear systems [Vi2Asg O40(HCO2)]? (D)
and [V12As304(HCO,)]>~ (1) (Figure 23) with partial electron delocalisation have been
considered in Ref. [75]. These compounds have been modelled under the assumption that
they contain a central V1 square containing four localised spins sandwiched between two
spin-delocalised squares containing one (in I) or two (in IT) delocalised electrons. The the-
oretical consideration of these rather complicated POM:s is quite similar to that described
in Section 4.1. The model for the partially delocalised {V12Asg} systems includes Coulomb
interaction between itinerant electrons in different localised configurations, delocalisation
effects and exchange interactions between spins located at different squares.

This rather complicated problem can be solved with the aid of symmetry arguments,
which also help to understand the results in terms of the physical concepts. The method-
ology is quite similar to that so far described. At the first step we consider the exchange
problem for the fully localised s = 1/2 square, which has an obvious analytical solution.
Then, one can assign the labels of the irreps of the point group Dy, to the spin levels of the
internal square (using the approach described in Section 2.1.4). Using the method of the
group-theoretical classification for MV systems (Section 4.1.2) one can find at the second
step the labels of the terms for the MV squares containing two-electrons. The localised and
delocalised subunits have a common C,4 axis which allows to combine the terms of three
subunits in order to find terms of the entire system and the energy pattern. The electronic
and vibronic problems for the external MV bi-electronic squares are considered in detail in
[76] An interesting feature for this kind of system is the spin polarisation effect exerted by
the moving electrons over the localised square subunit. This effect tends to stabilise an elec-
tron configuration in which the upper electron pair is inverted with respect to the lower
one. This feature may have a promising application of this cluster as a quantum cellular
automata (QCA).
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Figure 23. Ball-and-stick representation of the cluster anion [V!VgV¥4Asg049(H;0)1* = {V;2Asg} from
two perspectives emphasising the central VIV4 rectangle (blue) which is sandwiched between two
mixed-valent V'Y,V groups (blue lines squares). Hydrogen positions of the enclosed water molecule
are omitted for clarity (V-green; As-orange, O-beige). Colour online.

In: 1 e n:0

T s
. __./ .l__./
e
@ d

o d° Out: 0 g Qut: 1

Figure 24. Scheme of the function of the {V;,Asg} POM as quantum inverter. Only the two external
squares in MV metal network are shown (balls). Colouring: occupied sites-green balls, empty sites-yellow
balls. Colour online.

Thus, as distinguished from the initial idea of the molecular QCA, in which a molecule
was supposed to act as a quantum cell, the MV cluster V,Asg can act as a logical gate,
namely as a quantum inverter. This is illustrated by Figure 24 in which the switching func-
tion is shown. The upper square is assumed to play a role of the input cell which is set to the
binary 1. As one can see (Figure 24) the mobile pair of the electrons in the lower rectangle
tends to be localised in such a way to encode the binary digit 0 in order to gain the intercell
Coulomb repulsion energy. The lower square can be referred to as output cell and therefore
this POM is expected to act as the quantum inverter. This qualitative consideration should
be supported by quantitative estimations in order to justify the real possibility to design
the quantum inverters based on this POM.
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5. Conclusions and comments beyond the scope of this review

In this article we have summarised the main symmetry based theoretical tools as applied to
large magnetic clusters with complex molecular structures using complex POMs as model
systems. The main emphasis is on the question of how the symmetry can help us to evaluate
the physical characteristics and (mainly) to understand the properties of these molecu-
lar compounds in most general terms. The symmetry properties are not confined by the
approximate models (which sometimes are hard to substantiate) and for this reason the
symmetry based approaches are especially valuable to treat large POM clusters containing
exchange coupled localised spins, fully delocalised electrons and, finally, combinations of
localised spins and delocalised electrons.

We have discussed appropriate symmetry concepts for each of these three types of
POMs, namely: (1) spin symmetry that is taken into account through application of the
ITO approach. The use of ITO and related MAGPACK software allows to essentially reduce
the matrices of the HDVV Hamiltonian and in this way to facilitate evaluation of the
thermodynamic and spectroscopic properties of high-nuclearity metal clusters; (2) the
group-theoretical classification (assignment) of the exchange multiplets, dealing with both
spin-symmetry and point symmetry, which allows to establish one-to-one correspondence
between spin quantum numbers in HDVV scheme and irreps of the point group of the
exchange system. This theoretical tool essentially simplifies the analysis of the magneti-
cally anisotropic contributions to the exchange Hamiltonian in general terms of symmetry
and pseudo-angular momentum representation. Although the anisotropic contributions
are small within the physical frame of the HDVV model, they can play crucial role in sym-
metric systems possessing degenerate multiplets. Also one can find the selection rules for
the magnetic resonance, optical and inelastic neutron scattering transitions. This approach
provides direct access to the selection rules for the active JT coupling and gives clear
understanding of the interrelation between spin frustration and structural instabilities; (3)
group-theoretical classification of the delocalised electronic and electron-vibrational states
of MV compounds (including the states of delocalised electronic pair) in terms of spin and
point symmetries that essentially reduces the time of calculations and gives access to the
selection rules for different kinds of transitions. This becomes crucially important if one
is aimed to solve dynamical JT vibronic problems (inherently related to mixed-valency),
which are sometimes hardly executable even when strongly truncated basis sets are used.
The proposed approach (realised as the MVPACK program) that includes the design of
the symmetry adapted vibronic basis enormously extends computational abilities in such
cases.

Although we have discussed the main symmetry related theoretical tools in molecular
magnetism and a wide (even being intentionally restricted by POMs) range of applica-
tions, it is worth mentioning what was not said in this article. Here we have not considered
a rather difficult (and requiring complex mathematical tools) problem of exchange inter-
actions in polynuclear metal complexes involving orbitally degenerate metal ions that was
a subject of the study in Ref. [77] (see details in review article [77a]). Under this condition
the conventional HDVV model dealing with the spin degrees of freedom becomes inap-
plicable. In general, the degenerate magnetic ions carry an unquenched orbital angular
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momentum that manifests itself in all their magnetic properties. The exchange interac-
tion between orbitally degenerate metal ions can be described by the so-called orbitally-
dependent exchange Hamiltonian deduced in Ref. [77]. The structure of this Hamiltonian
is more complicated and involves both spin and orbital variables (the so-called orbital
matrices). From the physical point of view the degeneracy of the constituent ions in clusters
has shown to lead to an anomalously strong magnetic anisotropy that can be consid-
ered as the main physical manifestation of the unquenched orbital angular momentum
in magnetic systems. An inherent interaction that should be taken into account under the
condition of degeneracy (or pseudo degeneracy) is the spin-orbital coupling. The theoreti-
cal background was used to account for the magnetic properties of some magnetic clusters
and low-dimensional systems such as binuclear face-shared unit [Ti, Clo]>~, the rare-earth
compounds Cs3Yb,Cly and Cs3Yb,Bry, a zig-zag Co(II) chain exhibiting unusual com-
bination of single-chain magnet behaviour and antiferromagnetic exchange coupling, a
trigonal bypiramidal Ni3Os; complex.

In some cases of orbital degeneracy a simplified approach can applied that takes
into account orbital effect (such as spin-orbital coupling, orbital part of Zeeman inte-
taction, etc) but the exchange interaction is assumed to be isotropic. The systems of
this type are exemplified by the Fe;Co trimers in heteronuclear iron-cobalt complex
[Fe;CoO(CH3COO)6(3-Cl-Py)s] synthesised and characterised in Ref. [78]. This com-
pound contains orbitally degenerate Co(II) ion in an octahedral position that possesses
spin and also orbital angular momentum. In is to be noted that ITO technique allowed
to include in the computational pipeline spins, orbital angular momentum, spin-orbital
interaction and low-symmetry crystal field.

As a system involving two orbitally degenerate ions and exhibiting single molecule
magnetism one has to mention the trigonal bipyramidal cyano-bridged -cluster
[Mn''(CN)g], [Mn!!(tmphen),]; (tmphen = 3,4, 7, 8-tetramethyl-1, 10-phenanthroline)
synthesised and experimentally characterised in Refs. [79,80]. Strong cubic field produced
by six carbon ions leads to the ground orbital triplet > T (t,*) of each Mn(III) ion giving rise
to a significant single ion anisotropy. These two examples illustrate also the universality of
the approach based on ITO and corresponding software.

Finally, the problem of degeneracy (in mono- and polynuclear magnetic systems) is
closely related to the Jahn-Teller or/and pseudo Jahn-Teller interactions. This problem
is presently still has not received due attention in the theory of the magnetic clusters with
constituent orbitally degenerate ions.

The applications discussed in this article clearly demonstrate the key role played by
symmetry concepts for the understanding of the properties of magnetic clusters with
complex structures and, in general, for the whole area of molecular magnetism. In this
article we have summarised the applications of symmetry to the study of POMs in the
framework of the effective Hamiltonian. This symmetry-adapted approach has shown to
be very powerful to treat highly complex systems and to understand their fundamen-
tal physical properties. Still, this approach is parametric and in some cases needs to be
complemented with an ab initio evaluation of these local parameters (exchange, transfer,
Coulomb repulsions), especially when the parametric approach has excessive flexibil-
ity or when the detailed inner nature of the parameters is important for the picture of
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the phenomenon under consideration. In this context, the results that illustrate an enor-
mous progress achieved in the quantum-mechanical evaluation of electronic and vibronic
parameters in molecular magnets can be found in Refs. [81,82].
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