
Contents

Executive summary
Previous work
Session in the lab
Further work
Virtual machines

The Data Storage Infrastructure lab sessions are designed to complement the lectures. For this reason, each
lab session consists of a previous work and a work to be done during the session in the laboratory. As
each lab session lasts 3 hours, the previous work is meant to require a maximum of 4.5 hours. After the lab
session there is no more assessable work, although the student can complete and/or review the work done
to improve the learning process.

It is recommended to do the previous work and the work in the lab session in pairs. Although it will not be
compulsory unless the groups are full, doing the work in pairs enables faster progress and also improves
the learning process. In fact, it is less common to get stuck when working in pairs. Moreover, it must be
considered that both, receiving an explanation from our partner and/or explaining a concept to our partner
could give us a better understanding of the matter.

During the whole semester students are going to have the support of laboratory lecturers to complete the
assigned tasks, both during face-to-face and/or virtual tutoring (especially for the previous work) and in
the laboratory during the practical sessions.

The NETinVM virtual machine is going to be used in the lab sessions.

Why do we have previous work?

The previous work prepares the student for the lab work. It is worthwhile reviewing both
theoretical and practical concepts before attending the laboratory session because the lab sessions
complement the lectures. Moreover, lab sessions also complement the lectures on topics such as the
shell, scripts, or system administration. Therefore, the previous work must be fully completed to
make the most of the lab sessions.

How is the previous work done?

We use the specified virtual machine. By working in this way, it is possible to have the same work
environment as in the laboratory. VMware Workstation Pro works on Windows, Mac OS, and
Linux, so it is not necessary to change any setting in the personal computer.

If neither of the two students in a lab pair has a computer that can run the virtual machines,

Data Storage Infrastructure - Introduction to the Laboratory

1 / 4

laboratory lecturers can suggest alternatives for preparing the lab sessions.

What if previous work is not done?

You will experience difficulties. Mainly because you are going to spend most of the lab session
recalling theoretical concepts and solving simple doubts that should not require help from the
lecturer. Therefore, experience tell us that it is highly likely that you are not going to have time to
finish the lab work.

What must be uploaded?

In each lab session script, it will be clearly stated what must be uploaded. Sometimes it will just be
the answers to several questions related to the lectures or to the preparation of the lab session. In
other cases, you must complete small exercises that prove that previous work has been reviewed.
All work must be in a single file. If multiple files must be included, they can all be packed into a
ZIP or a compressed TAR file.

How is the previous work uploaded?

There will be a task in the Virtual Classroom tagged in Spanish 'entrega del trabajo previo', which
means 'upload of previous work'. The deadline for this task is the day before the laboratory session.

What happens if I do not upload the task?

A one-point penalty will be subtracted from the lab session mark. However, the main problem will
be that it is going to be difficult to make the most of the lab session. Therefore, it is quite common
to obtain a much lower mark than the mark that would have been obtained if the previous work had
been done.

How does a lab session work?

Lab exercise tasks are divided into several exercises. Even when the session’s main goal is to carry
out a single programme, there are several intermediate exercises.

When an exercise is finished or a checkpoint is reached, the laboratory lecturers must be asked to
check it. The lecturer will ask some questions to be sure that both students understand what they
have done, and if there are mistakes, the lecturer will suggest how to correct them. Students, after
correcting them, should call the lecturer again to make a quick check.

Failing while checking the work does not result in points being subtracted, since making a mistake
helps learning. Thus, a group that at the end finishes the lab session correctly, even if they have had
to correct some mistakes during the session, will receive the maximum mark (10). It must be
considered that groups that continuously make mistakes will advance more slowly and will not be
able to reach the end of the lab session - and so marks will be lower.

The previous work has been designed to help students to complete the tasks in the lab. If a group
has not done the previous work (or they have done it but do not understand it very well), they will
naturally have more doubts, will make more mistakes, and are likely to advance more slowly.

Why work in pairs? Is it mandatory?

As already explained, doing the work in pairs enables faster progress and improves the learning
process. This happens because, when working in pairs, a student who does not understand
something may find that their colleague does understand, and therefore it is less common to get
stuck. Moreover, having to explain something forces us to try to understand it better. In the same
way, a colleague’s explanation may be more effective than that of the lecturer. This is because a

Data Storage Infrastructure - Introduction to the Laboratory

2 / 4

colleague has just faced the same problem and has a similar background, therefore, they may have
a better understanding of what is difficult about the question or exercise.

It will not be compulsory to do practices in pairs unless the groups are very full.

How is work assessed in the lab session?

The laboratory lecturer mainly considers the following points:

How far have the students reached in the lab tasks?
Are the various exercises solved adequately?
Have the students been able to properly answer questions made by the lecturer. (It must be
noted that the lab lecturer will ask both students, and consequently, the marks of the two
members of the group may be different).

To do this, the lecturer will consider both the notes taken during the session and the material
uploaded at the end of the session by the students.

As at the end of the session, requests for checking the tasks tend to accumulate, and the final parts
may remain unchecked by the lecturer. In this case, the lecturer would take into consideration the
materials of these final unchecked parts that have been uploaded by students. This is only for the
final parts of the sessions if it has not been possible to check them before leaving the lab.

Notice: Uploaded material will not be considered unless it has been reviewed during the session by
the laboratory lecturer.

Do I have to write a lab report?

No. It is only needed to compile all the materials requested in each lab session: screenshots;
answers to questions; commands used; programme lists; etc. Nevertheless, it is a good idea to
complete these with notes that can help the lab lecturer mark the exercise. Moreover, these notes
can be helpful later when studying for the exam or using the contents in another subject, final
degree project, or in professional activity.

What must be uploaded?

A ZIP file that contains the information requested in the lab script: screenshots; answers to
questions; commands used; program listings; and so on. (In some cases all this information can be
included in a single text or PDF file. In that case, uploading this file will be sufficient).

How is the work submitted?

There is a task in the Virtual Classroom (Aula Virtual) labelled 'entrega del trabajo de la sesión de
laboratorio' (lab work submission) which will include a deadline for uploading the file, the lab
session (with some few additional minutes).

Why cannot I improve my grades later?

Because the lab sessions are designed so that the previous work is done before the lab session and
the lab session is designed to be completed on schedule.

Could my marks be kept for later courses?

In this subject, the lab marks are not saved from one course to another year. The reason is that lab
sessions are designed to complement the lectures and it makes sense to do them at the same time
and while lectures and problems are being studied. Moreover, the laboratory work is not evaluation
by examination, which would be considered necessary to be able to save the marks for later
courses.

Data Storage Infrastructure - Introduction to the Laboratory

3 / 4

What is it for?

It is useful to complement the learning process. Students can review and complete the work done in
the laboratory. In addition, by having the virtual machines, it is possible to delve into all those
additional contents that they are interested in.

Is it mandatory?

No, but it is advisable.

Is this considered for the marks?

No. However, reviewing and completing laboratory work helps in the learning of theoretical
concepts.

Why do we use virtual machines?

Because students can prepare lab session in advance, review, and complete them even after the lab
session. In addition, they enable students to delve into those topics that are most interesting to
them. It is also possible to test many things that will help students in the learning process.

Do I have to use the virtual machines of the subject?

Yes. Although it is true that many lab sessions could be done on any Linux machine, using our own
virtual machines avoids compatibility issues caused by using other versions of the tools or using a
different system configuration.

Do I need a USB external hard drive? Why?

It is highly recommended, but not essential. The idea is to store a copy of the subject's virtual
machines on the USB hard drive and run them from there. This allows you to have the previous
work when you arrive at the lab (since you use the same virtual machine hosted on the USB disc)
and you can take with you the work done at the end.

If you do not have a USB hard disc, you can use the copy of the virtual machines that are in the 'D:'
drive of the laboratory computers. However, the work done will be lost when the virtual machine is
shut down, so it should be copied first. In some lab sessions this is simple (for example, when
making a program); but in others it is not possible (for example, when changes are made to the
system in the systems administration lab session).

Notice: It is not possible to use a USB memory stick, it must be a hard drive because writes to USB
sticks are usually too slow to run virtual machines fluently.

Can I use my laptop?

Yes. However, you need to run the machine on your laptop before attending the lab and be sure that
it runs smoothly enough. Generally, any system with a processor that supports virtualisation and 4
GB of RAM should be powerful enough.

If I use my laptop, do I need an external hard drive?

No, except as a backup or in case the laptop does not work during one of the sessions.

Generated on: 2021-05-27 15:09 UTC. Generated by Docutils from reStructuredText source.

Data Storage Infrastructure - Introduction to the Laboratory

4 / 4

Contents

Goals
Introduction
Required downloads
Booting the virtual machine
How to be more efficient with the shell

Editing the current line
Using command execution history

First commands
Exercise 1: man
Exercise 2: Some basic commands
Exercise 3: Users

In this first session, the Linux virtual machine that will be used in the laboratory sessions of the subject
will be introduced. The goal is that students become familiar with the Linux environment and learn the
basic commands for manipulating files and directories from a terminal or console.

A virtual machine is software that emulates a computer and, therefore, can run programs as if it were a real
computer. System virtual machines (such as the one that will be used in this lab) simulate hardware that
can be configured from the program that runs the machine, enabling a new operating system to be
installed, which may be different from the host system. The virtual machine that will be downloaded will
enable testing on any computer without having to change its configuration, since the virtual machine will
not affect the operating system installed on the host.

The GNU/Linux operating system is a free operating system. This means, among other things, that it is
free and that the source code of the system can be provided. In this way, it is possible to study and modify
the system to fix possible bugs or introduce improvements. Linux is understood to be the kernel (the
program that starts taking control of the machine) of the operating system. But this kernel by itself does
not form an operating system. It must be supported by more free programs, developed by the Free
Software Foundation, and known collectively as the GNU project. It is more appropriate to refer to the
system as GNU/Linux (although sometimes only Linux is used).

Since there are many free software programs (such as word processors, graphics, programming
environments, and spreadsheets), there are different Linux systems, and this is when the concept of
distribution appears. A distribution is nothing more than a Linux kernel plus a selection of free programs

DSI - Laboratory Session 0: Virtual Machine Installation and First C...

1 / 5

together with a particular management of its installation. Some of the most used Linux distributions
include RedHat, Debian, Ubuntu, OpenSUSE, LliureX, and Fedora

To attend lectures or the laboratory with the laptop, it is necessary to have downloaded the virtual machine
with which the sessions will be carried out (3.4 GB):

https://informatica.uv.es/~carlos/ns/netinvm/netinvm-kvm_2020-07-15_vmware.zip

NETinVM is a virtual machine image from VMware that provides the user with a complete computer
network. NETinVM can be used to learn about operating systems, computer networks, and system and
network security.

An in-depth description of the machine NETinVM can be found at:

https://informatica.uv.es/~carlos/docencia/netinvm/netinvm.html

In addition, an introductory lab session ('Introducción a NETinVM ', in Spanish) is available. It was
designed for students of 'computer security' in the computer engineering degree course and can be used to
deepen your understanding of the management of NETinVM and as a reference manual.

The virtual machine works with software that executes it. In this case it is VMware, which is free in its
VMware Workstation Player version (available for Windows and Linux) and sufficient for these lab
sessions. Nevertheless, it is recommended to install the WMware Workstation Pro version, available for
UV students at https://software.uv.es with a campus license (license paid by the university and free for
students). Mac OS X users can use VMware Fusion and we have a campus license (there is no free version
of this software).

To run this virtual machine, you need a version higher than 15 (Workstation), but it is always
recommended to install the most recent version. It is recommended to follow the following procedure:

Go to https://software.uv.es and login (green box on the right).
In 'Search' (top right), write 'Workstation' (or 'Fusion' in the case of Mac OS X).
Follow the 'VMware Workstation' (or 'Fusion') link for the host operating system.
Click on the icon in the form of a spider web, available both in 'Access' and in 'Code', within
'License data'. This is how to access the university section of the VMware store.
Make a purchase (must show a cost of € 0) of the chosen software (eg: VMware Workstation
15).
The download of the program is made from the store itself.
Once downloaded, the software must be installed as an administrator.

To boot the virtual machine, VMware Workstation must run first. To launch the virtual machine, the option
'Open a Virtual Machine' must be selected, and the file with the extension '.vmx' must be chosen. This file
is found inside the folder where the '.zip' file corresponding to the Linux virtual machine has been

DSI - Laboratory Session 0: Virtual Machine Installation and First C...

2 / 5

unzipped. When this document was written, it was named 'NETinVM KVM 2020-07-15.vmx' but you may
find a newer version. Once the machine is loaded, it must be started by selecting the option Start up this
guest operating system.

At the first start it will ask if the machine has been moved or copied. 'I copied it' must be selected.

Once the machine has started, links are available through icons in the lower left. The 'K' symbol, bottom
left, is the start menu. From there, it is possible to launch applications, configure the system, review the
history, close the session, etc.

One of the characteristics of the shell is that commands and their parameters must be typed. This can
become time consuming with commands with complex syntax and many parameters. Fortunately, this task
can be made easier using some key combinations that can be custom configured, but which, by default, are
those described below.

Tabulator
By pressing the tab once, the word in progress (name of the program, of a file...) is autocompleted.
Pressing twice displays a list of candidates for autocompletion.

Home (or control-a)
Go to the beginning of the line.

End (or control-e)
Go to the end of the line.

Left arrow (or control-b) and right arrow (or control-f)
Move one character left or right.

Control-k
Kill to the end of the line and save the content.

Control-y
Yank the last thing deleted.

Up arrow (control-p) and down arrow (control-n)
Go to the previous (up) or later (down) command.

Control-r
Search for a previous command based on a string.

man

DSI - Laboratory Session 0: Virtual Machine Installation and First C...

3 / 5

The Unix/Linux man command is a system manual, which is useful to avoid memorising all commands
and/or all their options. For example, to find what a command does and what its options are, just type:

man <command>

to invoke the man page for the specified command. If the goal is to discover how to operate with the man
command, the system must be asked with a 'man' of the 'man' command:

user1@base:~$ man man

To exit and return to the shell, just press q. Generally, there are different sections within the manual, and
there may be information about the same command in different sections.

The Linux command list is very long. This laboratory session it is going to deal with some basic
commands to operate in the system and handle files. In the first two laboratory sessions, more advanced
commands will be used with the intention of building command lines to search and manage data.

DSI - Laboratory Session 0: Virtual Machine Installation and First C...

4 / 5

The Linux system is a multi-user system, so that different users can be working on the same machine at the
same time. The who command shows which users are currently connected to the machine. The command
whoami shows which user is using the terminal. Additionally, the id command shows the identifier of the
user and the group to which it belongs.

Generated on: 2021-05-27 15:02 UTC. Generated by Docutils from reStructuredText source.

DSI - Laboratory Session 0: Virtual Machine Installation and First C...

5 / 5

Contents

Goals
Previous work

Basic commands from the terminal
Previous exercise 1: directories
Previous exercise 2: files
Previous exercise 3: permissions

Changing permissions
Previous exercise 4: move, rename, and delete files
Previous exercise 5: using wildcards

Work in the laboratory
Input/output redirection

Exercise 1: redirecting input/output
Commands that can be used as filters

The cat program
The head program
Exercise 2: using head
The tail program
Exercise 3: using tail
The cut program
Exercise 4: using cut
The grep program
The sort program
Exercise 5: sorting with sort
The uniq program
Exercise 6: using cut, sort and uniq
The find program
Exercise 7: using find to find objects

Commands linked by pipes
Example: applying a filter to a set of files
Example: applying several successive filters
Example: detecting users with duplicate identifier in '/etc/passwd'
Exercise 8: finding big files
Exercise 9: removing headers and footers
Exercise 10: count the shells used

The main goal in this first session is that students become familiar with basic commands for manipulating
files and directories from a terminal. To do this, the tasks in the previous work section must be completed
before the laboratory session, and the remaining activities must be completed in the laboratory.

DSI - Laboratory Session 1: Command Line

1 / 18

A terminal on base at NETinVM must be executed. This can be done in several ways:

Click on the icon with the shape of a black screen that appears at the bottom left.
Use the 'Application Launcher' to launch the 'Terminal' or 'Konsole'.

Once opened, you will see the prompt with the name of the user, the machine name and the working
directory: 'user1@base:~$'. The orders that are written on the keyboard will appear on the right of this
prompt.

Unix/Linux commands have the following structure:

command [options] <file list>

Options are not strictly necessary. In some cases, the file list is not needed either. Options are expressed
with a hyphen before the option, for example: 'ls -l'. If you want to use more than one option, they can
be joined together or use separate hyphens. For example: 'ls -l -a' is equivalent to 'ls -la' or 'ls -al'.

Simple commands return a value that represents their exit status. If there has been no error, the return value
is 0, otherwise it will return a value other than 0. It is possible to see at any time what the returned value is
by running the command 'echo $?'

user1@base:~$ ls -l
total 12
drwxr-xr-x 2 user1 user1 4096 Jul 15 16:04 Desktop
drwxr-xr-x 2 user1 user1 4096 May 19 15:51 Documents
drwxr-xr-x 2 user1 user1 4096 May 22 13:31 Downloads
lrwxrwxrwx 1 user1 user1 12 May 19 17:20 netinvm -> /srv/netinvm
lrwxrwxrwx 1 user1 user1 14 May 19 17:20 shared -> netinvm/shared
user1@base:~$ echo $?
0
user1@base:~$ ls -l itdoesntexist
ls: cannot access 'itdoesntexist': No such file or directory
user1@base:~$ echo $?
2
user1@base:~$

DSI - Laboratory Session 1: Command Line

2 / 18

To create a new directory from the command line, you must execute:

mkdir <directory name>

To delete a directory, you must execute:

rmdir <directory name>

This command deletes a directory providing the permissions are correct and the directory is empty.

To change directory:

cd <directory name>

In Unix, the directory '.' is the current directory, and '..' is the directory above the current directory. In this
way, the command 'cd .' does not make any change, since we go to the current directory. However, the
command 'cd ..' goes up one level in the directory tree. The command 'cd', run without arguments, makes
the current directory the home directory, which is the directory where the session starts. It is always
possible to establish in which directory you are by using the command 'pwd'. The command 'ls' shows the
contents of the current directory.

Although you can use text editors or input/output redirection, the easiest way to create a file called 'file' is
to use the command 'touch file'. Although the function of 'touch' is to enable changing the time
attributes associated with the file (e.g. the last time the file was accessed); if the file does not exist, it

DSI - Laboratory Session 1: Command Line

3 / 18

creates an empty one.

The command 'ls' with the appropriate options shows information about the files that the current directory
contains:

-l: detailed information about files
-a: shows all files, even hidden ones
-X: shows files sorted by name
-r: shows files sorted by name, but in reverse order
-t: shows the files sorted by date and time
-d: if an argument is a directory, only its name is shown
-F: distinguish between files and directories
-1: displays the information in one column

The command 'cp <src_file> <dst_file>' is used to copy the file '<src_file>' into a new file with the
name of the destination file '<dst_file>'. If the full path is not specified in the file names, it will be
assumed that the files are in the current working directory.

The command 'cat [<file_list>]' shows the content of the files on the screen, without pause. It is better
to use the command 'more', for viewing text files. This command pauses at the end of each screen until the
space bar is pressed. Even better is the command 'less', that enables the use of the arrows and advance and
rewind page keys to navigate through the file.

As an example, if 'ls -al' is executed in the home directory, information like this will be displayed:

total 1460
drwxr-xr-x 12 user1 user1 4096 Sep 1 10:23 .
drwxr-xr-x 3 root root 4096 May 19 15:45 ..
-rw------- 1 user1 user1 15 Aug 31 17:33 .bash_history
-rw-r--r-- 1 user1 user1 220 May 19 15:45 .bash_logout
-rw-r--r-- 1 user1 user1 3526 May 19 15:45 .bashrc
drwxr-xr-x 6 user1 user1 4096 Sep 1 10:25 .cache
drwxr-xr-x 17 user1 user1 4096 Sep 1 08:56 .config
drwxr-xr-x 2 user1 user1 4096 Jul 15 16:04 Desktop
-rw------- 1 user1 user1 60 May 19 16:22 .directory
drwxr-xr-x 2 user1 user1 4096 May 19 15:51 Documents
drwxr-xr-x 2 user1 user1 4096 May 22 13:31 Downloads

DSI - Laboratory Session 1: Command Line

4 / 18

drwx------ 5 user1 user1 4096 May 25 10:57 .gnupg
-rw-r--r-- 1 user1 user1 375 Sep 1 08:56 .gtkrc-2.0
drwxr-xr-x 3 user1 user1 4096 May 19 15:51 .kde
-rw------- 1 user1 user1 54 Sep 1 10:23 .lesshst
drwxr-xr-x 3 user1 user1 4096 May 19 15:51 .local
drwx------ 5 user1 user1 4096 May 19 16:25 .mozilla
lrwxrwxrwx 1 user1 user1 12 May 19 17:20 netinvm -> /srv/netinvm
drwx------ 3 user1 user1 4096 May 20 19:23 .pki
-rw-r--r-- 1 user1 user1 1010 May 19 17:21 .profile
lrwxrwxrwx 1 user1 user1 14 May 19 17:20 shared -> netinvm/shared
-rw------- 1 user1 user1 49 Sep 1 08:56 .Xauthority
-rw------- 1 user1 user1 1405039 Sep 1 10:23 .xsession-errors

The information displayed is grouped in columns (separated by spaces). The first column contains the
permissions. The first character of the first column gives information about the type of object, 'd' for
directory, '-' for file, 'l' for symbolic links (an object which is a link to another - like a Windows direct
access) and so on. The encoding of the rest of the characters corresponds to the different permissions and
its interpretation is as follows:

drwxrwxrwx
d********* object type (d, l, or -)
*r******** read for the object owner (r or -)
w***** write for the owner (w or -)
x*** execution (search if directory) for the owner (x, s, S, or -)
****r***** read for the group (r or -)
*****w**** write for the group (w or -)
******x*** execution/search for group (x, s, S, or -)
*******r** read for other users (r or -)
********w* write for others (w or -)
*********x execution/search for others (x, t, T, o -)

If one of these positions contains '-', the object does not have the permission indicated by the
corresponding position. For example, a file with the permissions '-rwxr-xr--' can be read, written and
executed by the user, read and executed by the group, and only read by the rest of the users. It is important
to note that files in Linux are not executable files just because they have a specific name or extension (exe
or com extensions in Windows), but because they have permission to be executed. The rest of the columns
show information such as the name of the user, the group to which it belongs, the size of the object in
bytes, the date and time of the last modification, and, finally, the name of the file.

Changing permissions

It is possible to change the permissions of files and directories if you are the owner or the administrator
(root):

chmod <who><action><permissions> <file_list>
who: u -> user

 g -> group
o -> other
a -> all

action: + -> add permissions
- -> remove permissions
= -> assign permissions

permissions:r -> read
 w -> write
 x -> execution

The difference between '=' and '+/-' is that '=' establishes a set of permissions, while '+/-' preserves the
existing permissions (other than the set being added or removed).

DSI - Laboratory Session 1: Command Line

5 / 18

In the command 'mv <src_file> <dst_file>' both source and destination can be files or directories. It is
also possible to use 'mv <file_list> <directory>' to move the list of files to that directory.

The command 'rm [options] <file_list>' deletes files. But, depending on the options, it can also delete
a complete directory tree.

Options:

-i

Interactive mode. Permission is sought before performing an operation.
-r

Recursive mode. If applied to a directory, it deletes the directory and all the elements
contained in it.

DSI - Laboratory Session 1: Command Line

6 / 18

Linux supports the use of wildcards to search for files and strings. The asterisk '*' stands for zero or more
characters. In this way, a command like 'ls /etc/o*' will generate a list of files in '/etc/' that start with the
letter 'o' and the directories, including their content, that start with the same letter. (An object named '/etc/o'
would also match the wildcard).

The wildcard '?' stands for a single character. You can also specify a single character, or a range of
characters, using a pair of square brackets ('[]'). Thus 'ls [a-d]*' will generate a list of files and
directories starting with 'a', 'b', 'c' or 'd'. Similarly, 'ls *[a,z]' will generate a list of files and directories
ending in 'a' or 'z'. It is also possible to use '!' as negation. So, the command 'ls [!a]*' will show all
files/directories that do not start with 'a'.

To test the different possibilities, it is recommended to go to a directory with many files, such as '/usr/bin',
and then practise wildcard substitution to find different sets of files.

Most Linux commands read data from the standard input, write the results of their operation to the
standard output, and display error messages in the standard error. By default, the standard input ('stdin') is
the keyboard and the standard output and error ('stdout' and 'stderr') are the terminal.

Before a command is executed, its input, output, and error can be redirected using '<', '>', and '>>' as
follows:

command < file

DSI - Laboratory Session 1: Command Line

7 / 18

Before executing 'command', the shell changes the standard input so that 'command' reads from 'file'.

command > file

Before executing 'command', the shell opens 'file' for writing, creating it if it does not exist and
truncating it if it exists; and redirects the standard output of 'command' to 'file'. For example:

user1@base:~$ date > date.txt

'date.txt' contains the output of the command 'date'.

command >> file

This is similar to the previous one. The difference is that in this case if 'file' exists it is not truncated,
but the output of 'command' is appended to the end of 'file'. For example:

user1@base:~$ date > date.txt
user1@base:~$ ls >> date.txt

'date.txt' contains the date in the first line and then the current directory listing. Instead, if you now
run:

user1@base:~$ ls / > date.txt

the content of 'date.txt' becomes exclusively the listing of the '/' directory.

command 2> file

Before executing 'command', the command interpreter opens 'file' for writing, creating it if it does
not exist and truncating it if it exists; and redirects the standard error of 'command' to go to 'file'. For
example:

user1@base:~$ gcc 2> errors.txt

'errors.txt' contains the 'gcc' error messages.

command &> file

Redirects both the output and the standard error from 'command' to 'file'.

Exercise 1: redirecting input/output

Using the previous information, different redirection tests must be carried out.

DSI - Laboratory Session 1: Command Line

8 / 18

In Linux, there are many commands that are designed so that they can be used together to search, filter, or
select data. In this section, some of these are presented and their true potential will be seen in the section
'Commands linked by pipes '.

The characteristics that allow these commands to be combined in many different ways are:

Each command performs a specific task, such as copying, sorting, and looking for patterns.
All are intended to take data from their standard input and provide results through their
standard output. (Hence, they can be seen as filters).

The cat program

cat [options] [file]...

This program concatenates files (or standard input) and sends them to standard output. For example,
supposing that there is a text file called 'hello', with the content 'Hello!', and another text file called
'goodbye', with the content 'Goodbye!':

user1@base:~$ cat hello
Hello!
user1@base:~$ cat goodbye
Goodbye!
user1@base:~$ cat hello goodbye
Hello!
Goodbye!
user1@base:~$

Thus, it is possible to process several files as if they were one. Indeed:

user1@base:~$ cat hello goodbye > hello_goodbye
user1@base:~$ cat hello_goodbye
Hello!
Goodbye!
user1@base:~$

The head program

head [options] [file]...

This program prints the beginning (10 lines by default) of each file in the standard output. For example:

user1@base:~$ head -n 2 /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
user1@base:~$

shows the first two lines of the file '/etc/passwd'. If the number of lines is negative, 'head' shows all but the
last N lines. For example:

user1@base:~$ wc -l /etc/passwd
38 /etc/passwd
user1@base:~$ head -n -35 /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
user1@base:~$

The 'wc' program with the '-l' option counts the lines it reads from the input files, or from the standard
input, if no file is specified. In this case, it counts the lines in the '/etc/passwd' file.

With the 'head' command, as the number of lines is negative, the last 35 lines of the file are removed from
the output. This option is useful when a file contains additional information at the end that should not be
processed.

DSI - Laboratory Session 1: Command Line

9 / 18

Exercise 2: using head

You want to show the first eight lines of the file '/etc/bash.bashrc'.

The tail program

tail [options] [file]...

This program prints the end (10 lines by default) of each file to standard output. For example:

user1@base:~$ tail -n 2 /etc/passwd
libvirt-qemu:x:64055:106:Libvirt Qemu,,,:/var/lib/libvirt:/usr/sbin/nologin
uuidd:x:116:124::/run/uuidd:/usr/sbin/nologin
user1@base:~$

shows the last two lines of the file '/etc/passwd'. If the number of lines has the form '+N', 'tail' prints from
line N to the end. For example:

user1@base:~$ cat f1
First name:Last name
Carlos:Pérez
Carolina:Sáez
Juan:Puerto
user1@base:~$ tail -n +2 f1
Carlos:Pérez
Carolina:Sáez
Juan:Puerto
user1@base:~$

since the number of lines is '+2', 'tail' discards the first line (prints from the second one to the end). This
option is useful for removing header lines, as in the example.

Exercise 3: using tail

Given the file 'f1' with the following content:

First name:Last name

Carlos:Pérez
Carolina:Sáez
Juan:Puerto

Write a command line that displays the first and last names without any of the header lines. The line
should work correctly for all files that have three header lines, regardless of the number of lines they
contain.

DSI - Laboratory Session 1: Command Line

10 / 18

Although there are several ways to create a file with that content, an easy way to create the file is to use the
'cat' program:

user1@base:~$ cat > f1

Since the 'cat' program reads from standard input, it will be stuck waiting for us to type in information. It
is easier to paste the file content in the terminal, instead of typing it. The end of the file is generated with
'Ctrl-d'.

In fact, it can be checked using the 'cat' program itself:

user1@base:~$ cat f1

First name:Last name

Carlos:Pérez
Carolina:Sáez
Juan:Puerto
user1@base:~$

The cut program

cut [options] <file_list>

This program displays part of each line of the files on the screen. For example, using as input a copy of the
first five lines of the users file:

user1@base:~$ head -n 5 /etc/passwd > pw
user1@base:~$ cat pw
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
user1@base:~

The following command only shows the first ten characters of the previous file:

user1@base:~$ cut -c 1-10 pw
root:x:0:0
daemon:x:1
bin:x:2:2:
sys:x:3:3:
sync:x:4:6
user1@base:~$

The 'cut' program can also work with fields, for example:

DSI - Laboratory Session 1: Command Line

11 / 18

user1@base:~$ cut -d ':' -f 3 pw
0
1
2
3
4
user1@base:~$

generates a list of the first five user identifiers (3rd field of the file '/etc/passwd'). The '-d' option specifies
the delimiter character. Quoting the colon is to prevent the shell from giving it a special meaning (with a
colon it is not important, but it would be, for example, with '|').

Exercise 4: using cut

Given the file 'f1' with the following content:

Title/Year/Director/Cast
Casablanca/1942/Michael Curtiz/Humphrey Bogart, Ingrid Bergman
Citizen Kane/1941/Orson Welles/Orson Welles, Joseph Cotten
From Here to Eternity/1953/Fred Zinnemann/Burt Lancaster, Montgomery Clift
Vertigo/1958/Alfred Hitchcock/James Stewart, Kim Novak

List the title and director of the films in the file.

The grep program

grep [options] <pattern> <file_list>

This command displays the lines of files that match a pattern. For example:

user1@base:~$ cat f1
Title/Year/Director/Cast
Casablanca/1942/Michael Curtiz/Humphrey Bogart, Ingrid Bergman
Citizen Kane/1941/Orson Welles/Orson Welles, Joseph Cotten
From Here to Eternity/1953/Fred Zinnemann/Burt Lancaster, Montgomery Clift
Vertigo/1958/Alfred Hitchcock/James Stewart, Kim Novak
user1@base:~$ grep 'Orson Welles' f1
Citizen Kane/1941/Orson Welles/Orson Welles, Joseph Cotten
user1@base:~$

Although the easiest way to use 'grep' is with a string, 'grep' supports more complex filtering using regular
expressions. For example:

user1@base:~$ grep -E '^[FV]' f1
From Here to Eternity/1953/Fred Zinnemann/Burt Lancaster, Montgomery Clift
Vertigo/1958/Alfred Hitchcock/James Stewart, Kim Novak
user1@base:~$

DSI - Laboratory Session 1: Command Line

12 / 18

In this command, 'grep' selects the lines that start with 'F' or 'V'.

The sort program

sort [options] <file_list>

This command is used to sort the lines of the text files and print the result to standard output. For example:

user1@base:~$ cat f1
one
two
three
four
five
user1@base:~$ sort f1
five
four
one
three
two
user1@base:~$

'sort' offers several interesting options, such as sorting numerically (30 goes before 100) or sorting based
on a certain field. For example:

user1@base:~$ cat f1
First name,Last name,Age
Carlos,Pérez Conde,18
Carolina,Sáez Iniesta,52
Pedro,López Sáez,52
Juan,Puerto Sáez,8
user1@base:~$ sort -t ',' -k 3n -k 2 f1
First name,Last name,Age
Juan,Puerto Sáez,8
Carlos,Pérez Conde,18
Pedro,López Sáez,52
Carolina,Sáez Iniesta,52
user1@base:~$

sorts the content of file 'f1' by age (numerically) and undoes the ties using surnames.

Exercise 5: sorting with sort

You want to sort the content of the file '/etc/passwd' by user identifier (it is the third field), considering that
the identifier is a number.

DSI - Laboratory Session 1: Command Line

13 / 18

The uniq program

uniq [options] [src_file [dst_file]]

This command discards from the input successive identical lines (leaving only one) and writes the result to
the output. For example:

user1@base:~$ cat f1-ordered
one
three
three
three
two
two

user1@base:~$ uniq f1-ordered
one
three
two
user1@base:~$

Note that 'uniq' only discards consecutive identical lines and hence the need to work on an ordered input
file. If applied to a not ordered file, the result is different:

user1@base:~$ cat f1
one
two
three
two
three
three
user1@base:~$ uniq f1
one
two
three
two
three
user1@base:~$

Exercise 6: using cut, sort and uniq

Extract the list of the different shells used by system users, erasing duplicates.

As an aid to solve the problem, it is known that:

The requested information is in the file '/etc/passwd'.
In each line of the file, the last field (the seventh) is the shell of the corresponding user.

DSI - Laboratory Session 1: Command Line

14 / 18

The find program

find [path(s)] [search condition(s)] [actions]

This command enables searching for files through the directory trees specified by the paths, evaluating the
search conditions from left to right. Furthermore, actions to be performed can be specified on the results
obtained.

For example, if we want to search for files that start with 'pass' in the '/etc' directory we would write:

user1@base:~$ find /etc -name "pass*" 2>/dev/null

If we want to find files that are larger than 10 Mbyte in '/usr/bin' and do an 'ls -lh' of each one, we would
write:

user1@base:~$ find /usr/bin -size +10M -exec ls -lh {} \;

where '{}' is the name of each file that matches the required conditions and ';' indicates the end of the
command (it is the ';' character, but it must be preceded by '', since ';' has a special meaning for the shell).

The 'find' command is very functional. Using logical operations, several conditions can be combined that
allow for more complex and exact searches. For more information, it is possible to check the command
manual page.

Exercise 7: using find to find objects

Use 'find' to find in the '/usr/bin' directory those files that, at the same time, begin with the letter 'b', are
less than 10 KB in size, and are files (and not other types of objects, such as directories or symbolic links).
For each one of them, a long list with an easily readable size (options '-lh') must be printed.

To solve the exercise, it is recommended to check the 'type' and 'size' options of 'find' in the manual.

A pipe is a sequence of one or more commands separated by the '|' character. In this case, the standard
output of one command is connected to the standard input of the next one. The shell waits for all
commands in the pipeline to finish before requesting the next command line. (The exit status of a pipe
corresponds to the exit status of the last command.)

An example:

user1@base:~$ ps -A | less

'ps -A' generates a list with all the processes of the system. This listing, instead of going to the terminal,

DSI - Laboratory Session 1: Command Line

15 / 18

goes to the pipeline, from where it is read by the 'less' program, which sequentially displays it in the
terminal page by page. Finally, when 'less' finishes its execution, the shell displays the prompt again.

A set of commands are used with pipes (as filters) to accomplish quite complex tasks in a simple way, as
can be seen in the following examples.

Example: applying a filter to a set of files

user1@base:~$ cat f1 f2 | wc -l
22
user1@base:~$

In this example, the 'cat' program concatenates the files 'f1' and 'f2', allowing 'wc' to work on them as if
they were a single file.

Example: applying several successive filters

user1@base:~$ ls -l /usr/bin | cut -d ' ' -f 3 | sort | uniq

daemon
root
user1@base:~$

In this example, a list without duplicates of the users who own files in the directory '/usr/bin' is obtained.
As expected, only system users (root, the administrator, and daemon, another system user) have files in
this folder.

However, it is possible to see an additional blank line in the output. Why does this happen? How can you
remove it? To shed light on this unexpected result, apply filters one by one. However, as the result of 'ls'
would be very long, it is a good idea to limit it by using 'head':

user1@base:~$ ls -l /usr/bin | head -n 4
total 303548
-rwxr-xr-x 1 root root 60064 Feb 28 2019 [
-rwxr-xr-x 1 root root 96 Oct 11 2019 2to3-2.7
-rwxr-xr-x 1 root root 10384 Jan 30 2016 411toppm
user1@base:~$

As it is possible to see, the first line shows a summary and, thus, it should be deleted. How to do this is left
as an additional exercise.

Example: detecting users with duplicate identifier in '/etc/passwd'

user1@base:~$ cat /etc/passwd | cut -d ':' -f 3 | sort | uniq --count --repeated
user1@base:~$

This pipeline works as follows:

'cat' feeds the pipe with '/etc/passwd'
'cut' extracts the numeric identifier (the delimiter is ':' and it is the 3rd field)
'sort' sorts the list of identifiers
'uniq' shows the repeated elements together with the number of occurrences ('--count')

In this case, as you would expect in a well-configured system, there are no repeating identifiers. However,
what would happen if a hacker added an alternative name for the system administrator (identifier 0)?

user1@base:~$ cp /etc/passwd passwd-probe
user1@base:~$ echo 'hacker:x:0:0:I am the hacker:/root:/bin/bash' >> passwd-probe
user1@base:~$ cat passwd-probe | cut -d ':' -f 3 | sort | uniq --count --repeated
 2 0

user1@base:~$

As can be seen from the test file, duplicates are detected. To see which entries have user ID '0', use the
grep program.

DSI - Laboratory Session 1: Command Line

16 / 18

user1@base:~$ grep "^.*:.*:0:" passwd-probe
root:x:0:0:root:/root:/bin/bash
hacker:x:0:0:soy el hacker:/root:/bin/bash
user1@base:~$

Exercise 8: finding big files

Using pipes generates a list sorted by size (from largest to smallest) of the three largest files in the '/usr/bin'
directory. The output should be something like:

-rwxr-xr-x 1 root root 19M Feb 2 2020 mysql_embedded
-rwxr-xr-x 1 root root 13M Apr 21 14:26 qemu-system-x86_64
-rwxr-xr-x 1 root root 13M Apr 21 14:26 qemu-system-i386

Suggestions:

Use 'ls' to generate the list ordered by size (check the manual for the option '--sort').
Do not forget to eliminate the first line of the list.

Exercise 9: removing headers and footers

Given the file 'f1' with the following content:

===
Registered list
Course 2020-21
Last updated: September 1, 2020
===

First name:Last name

Carlos:Pérez
Elena:Rubio
Carolina:Sáez
Rafael:Martínez
Alberto:Marqués
Sonia:Puerto

Total=4

Write a command line that shows the first and last names without headers or final summary. The line
should work correctly with all files that have eight header lines and three footer lines, regardless of the
number of registered students.

DSI - Laboratory Session 1: Command Line

17 / 18

Exercise 10: count the shells used

It is known that the users' shell is the last field in the '/etc/passwd' file. We want to find out how many
different shells are used in the system.

Generated on: 2021-05-28 10:47 UTC. Generated by Docutils from reStructuredText source.

DSI - Laboratory Session 1: Command Line

18 / 18

Contents

Goals
Previous work

Commands lists
Previous exercise 1: conditional command list

Command substitution
Previous exercise 2: taking advantage of command substitution

Evaluation of conditional expressions
File evaluation
String evaluation
Numerical evaluation
Combining conditional expressions with '[[...]]'
Previous exercise 3: working with conditional expressions

The read command
Previous exercise 4: using read

Work in the laboratory
Scripts

Exercise 1: a simple script
Arguments in scripts

Arithmetic expansion
Repetitive structure while

Exercise 2: testing loops with while
The read command with while
Exercise 3: testing read with while

The shift command to shift the arguments of a script
Repetitive structure for

Exercise 4: testing loops with for
Conditional structure if-then-else

Exercise 5: combining 'for' loops with 'if-then-else'

The main goal in this second session is that students become familiar with the use of files with a sequence
of commands that the command interpreter must execute. Additionally, to construct more complex scripts,
some control structures and the use of variables are going to be introduced. All the experiments are going
to be performed in the base machine of NETinVM.

DSI - Laboratory Session 2: Scripts

1 / 15

A command list is a sequence of one or more pipes separated by one of the operators ';', '&', '&&' or '||', and
optionally ended by ';', '&' or 'new line'. Operators '&&' and '||' have equal precedence, followed by ';' and
'&', which have the same precedence between them.

Commands separated by ';' are executed sequentially. The result is the same as if the commands were
written one after the other, each on one line. The difference is that, in this way, all the commands to be
executed can be written on a single line. The command interpreter waits for each command to be finished
before executing the next one. For example:

$ date; sleep 5; date

In this example, the command 'date' is executed first, and shows the current date and time to the standard
output. Once the execution of this command has finished, the next command is executed ('sleep 5'). This
command pauses for five seconds. Once this pause has finished, the last command is executed, which
again shows the current date and time, and so revealing that those five seconds have actually passed.

Commands that end with the control operator '&' are executed in the background (the shell does not wait
for the command to finish before executing the next one). For example:

$ kcalc & kwrite &

The control operators '&&' and '||' stand for AND and OR lists respectively. An AND list has the form:
'command1 && command2'. In this case, command2 is executed if and only if command1 returns an exit
status of 0 (that is, if it succeeds). For example:

$ cd test && echo "I have been able to change to the directory"
bash: cd: test: File or directory does not exist
$ mkdir test
$ cd test && echo "I have been able to change to the directory"
I have been able to change to the directory
$

If the directory change is successful, the message is printed. Otherwise, when the 'cd' command fails, the
'echo' command cannot be executed and the message does not appear (although the error message of the
'cd' command does appear).

Similarly, an OR list has the form: 'command1 || command2'. In this case, the command2 is executed if and
only if the command1 returns an exit status distinct from 0 (that is, if it is unsuccessful). For example:

$ cd temp || echo "The directory does not exist"

If the directory 'temp' does not exist, the command 'cd' cannot be executed. In this case, the message will
appear as the directory does not exist. (Note that 'cd' will also print its own error message).

Finally, several commands can be grouped between braces, so that several commands are syntactically
treated as one. For example:

$ cd temp || { echo "The directory does not exist, I am going to create it ...";
mkdir temp && echo "Directory created"; }

Previous exercise 1: conditional command list

It must be written a conditional command list which:

creates the directory '/tmp/backup-copy'.
if it is successful, the file '/etc/passwd' must be copied to that directory and then the contents of the
directory must be listed.

DSI - Laboratory Session 2: Scripts

2 / 15

This allows a command to be substituted by its output. For example:

ps >processes_$(date +"%Y-%m-%d")

saves a list of processes in a file whose name will be 'processes_2019-02-21' (if it is executed on 21
February 2019), since the command interpreter, before doing the redirection, evaluates the commands that
are inside '$()'. In this case, 'date +"%Y-%m-% d"'. Some examples follow below.

Using 'echo' in a simple way:

echo "There are $(ps -A | tail -n +2 | wc -l) processes on the system."

This command shows the number of processes running on the system. ('ps' is used to generate the
list of processes, 'tail' to remove the header, and 'wc' to count the number of lines).

A more extensive example:

echo -e "System: $(hostname) \n- processes: $(ps -A | tail -n +2 | wc -l) \n-
Disk:\n$(df -h /)"

This example is quite similar to the previous one, although with several lines of information. The '-e'
option enables 'echo' to process escape sequences like '\n', which indicate a new line. In addition, it
also displays information about the usage of the root file system employing 'df'.

Previous exercise 2: taking advantage of command substitution

A command line must be prepared that when executed adds the following information to the 'registry.txt'
file:

The name of the host, obtained with the 'hostname' command.
The date and time, obtained with the 'date' command.
The list of users connected to the system, generated by the 'who' command.

DSI - Laboratory Session 2: Scripts

3 / 15

The format of the record should be as close as possible to the following lines:

==== START
System review: base
Date: Tue Sep 26 10:19:00 CEST 2017
Users:
user1 pts / 2 2017-09-26 10:08 (:0)
==== END

It is useful to be able to evaluate conditional expressions, so as to establish if a number is greater than
another, if there is a file, or if two text strings are equal. This evaluation is useful both for the flow control
structures that are going to be reviewed below and for generating command lists using '&&' and '||'.

The recommended way to use these expressions is by using the following conditional construction:

[[expression]]

Although it is also possible to use these expressions with the commands 'test' and '[', it is necessary to
enclose the characters that have a special meaning for the shell, such as '<' or '>'.

There are different types of expressions that can be evaluated. The most important follow.

File evaluation

Many file evaluation options can be found on the man page for the 'test' command. Some of them are:

-a file
Returns true if file exists.

-f file
Returns true if file exists and it is a normal file.

-d file
Returns true if file exists and it is a directory.

arch1 -nt arch2
Returns true if arch1 is newer than arch2.

arch1 -ot arch2
Returns true if arch1 is older than arch2.

Example:

f="/etc"
[[-a $f]] && echo "'$f' exists"

DSI - Laboratory Session 2: Scripts

4 / 15

[[-f $f]] || echo "'$f' is not a normal file"
[[-d $f]] && echo "'$f' is a directory"

String evaluation

-z string
Returns true if the string length is zero.

-n string
Returns true if the string length is not zero.

string
Equivalent to the previous one.

cd1 == cd2
Returns true if the strings are equal.

cd1 = cd2
Equivalent to the previous one.

cd1! = cd2
Returns true if the the strings are not equal.

cd1 < cd2
Returns true if cd1 is alphabetically sorted before cd2.

cd1 > cd2
Returns true if cd2 is alphabetically sorted before cd1.

Examples:

[["$(uname)" = "Linux"]] && echo "This is Linux"

[[$HOME]] && echo "HOME has a length greater than 0"

[["abc" < "bcd"]] && echo "The first string goes before the second"

Numerical evaluation

Syntax:

number1 op number2

Numeric values must be integers (positive or negative). The numerical operators that can be used are:

-lt
Less than

-le
Less than or equal to

-gt
Greater than

-ge
Greater than or equal to

-eq
Equal to

-ne
Not equal to

Example:

a=1; [[$a -lt 10]] && echo "a (a=$a) is less than 10"

Combining conditional expressions with '[[...]]'

(expression)
Returns the value of expression. It can be used to avoid the default precedence of the
operators.

DSI - Laboratory Session 2: Scripts

5 / 15

! expression
True if expression is false.

expression1 && expression2
True if both expressions are true.

expression1 || expression2
True if any expression is true.

The expression2 of '&&' and '||' is evaluated only if it is necessary.

Examples:

[[! -f /etc]] && echo "/etc is not a normal file"

[[-d /etc || 3 -gt 2]] && echo "It is accomplished"

[[-f /etc || ("abc" <"bcd" && 3 -lt 10)]] && echo "Also true"

Previous exercise 3: working with conditional expressions

When the different examples in the previous sections have been reviewed and fully understood, build a
command that writes 'Everything is OK :-)' when all the following conditions are met:

The content of variable 'n' is numerically less than or equal to 80.
The object whose name is in the variable 'f' is a normal file.
The name of this object is '/usr/bin/date'.

The 'read' command waits for a line of text to be entered through the standard input.

The easiest way of using it is to read a line and assign it to a variable:

echo -n "Enter a text: "; read x; echo "You have entered: $x"

It is also possible to assign multiple variables at the same time separated by spaces. For instance:

echo "one two" | { read a b; echo "a is '$a' and b is '$b'"; }

In the case that 'read' is used to read several variables from the keyboard, the separation is made by spaces.
If ENTER is pressed before entering as many strings separated by spaces as there are variables, the last
variables are left unassigned.

DSI - Laboratory Session 2: Scripts

6 / 15

Previous exercise 4: using read

Construct a command that asks for a name and an age, writing the phrase: 'X is Y years old', where X is
the name and Y is the age entered by the user.

The task that must be performed with the shell may require a large number of commands. In this case, it is
a good idea to keep all these commands in a file and thus be able to execute them together by invoking the
file name. These files are called 'scripts'.

The simplest way to run a script is to run the shell, passing the file name as a parameter: 'sh file'.
Moreover, to execute it directly, it is possible to write './file'. Prior to that, the file must have the
appropriate access permissions for its execution (this is a quick reminder to change the permissions: 'chmod
+x file'). The first line of the script should also be:

#! /bin/bash

assuming that the script is going to be executed by the '/bin/bash' interpreter. This mechanism is wider,
applicable both to shell scripts and to any other shell (Python or Perl, for example). Replace '/bin/bash'
with the name of the program with which the operating system must process the file.

Example:

#! /bin/bash
Show the N largest files in /usr/bin
echo "Enter the number of files to display:"
read num
ls -lh --sort size /usr/bin | tail -n +2 | head -n $num

When executed, the script asks for a number and that number of files in '/usr/bin' appears on the screen,
ordered by size from largest to smallest.

DSI - Laboratory Session 2: Scripts

7 / 15

Exercise 1: a simple script

Most but not all Linux programs are in '/usr/bin'. A useful command in Linux is the command 'which
<command>', which locates the place (absolute path) where 'command' is located. The proposed simple script
must do something quite similar; namely, searching for user files in the home directory tree.

Arguments in scripts

The previous script is simple and invoked by its name, it requests information, and it executes a series of
commands. However, in this case, it would be interesting to provide the name of the file to search as an
argument. In general, a script can have arguments.

To do this, the command interpreter has a series of predefined variables (as has been previously shown, the
reference of the variables is made with the symbol '$'):

$#
Stands for the number of arguments passed to the script

$*
Refers to all arguments except the name of the script

$?
Stores the return code of the last command

$0
Represents argument 0 (the name of the script)

$1 to $9

DSI - Laboratory Session 2: Scripts

8 / 15

Represent the first 9 arguments

Example:

#! /bin/bash
script that displays the variables $#, $0, $* and $?
echo "$0 was called with $# arguments"
echo "The arguments are: \"$*\""
echo -n "System date and time: "; date
echo "The code returned by the last command was $?"

Once the script is saved and the necessary permissions have been given, this could be one of the results (it
is assumed that the file has been saved with the name 'show'):

$./show one two three four
./show has been called with 4 arguments
The arguments are: "one two three four"
System Date & Time: Tue Oct 11 08:52:57 CEST 2016
The code returned by the last command was 0
$

Although it is possible to use the 'expr' program to perform arithmetic calculations, the simplest way to
substitute an arithmetic expression for its result is as follows:

$((arithmetic expression))

If the arithmetic expression is invalid, the shell prints an error message and no substitution occurs.

The arithmetic evaluation rules are as follows:

++, --
increment and decrement (can be post or pre)

!, ~
logical and binary negation, respectively

**
power

*, /, %
multiplication, division, remainder

+, -
addition and subtraction

<<, >>
bits shift to the left and to the right

<=, >=, <, >
comparisons

==, !=
equality and inequality comparisons

&, ^, |
Binary AND, XOR and OR

&&, ||
Logical AND and OR

expr?expr:expr
conditional evaluation

=, *=, /=, %=, +=, -=, <<=, >>=, &=, ^=, |=
assignments

Example:

#! /bin/bash
Powers of 2

DSI - Laboratory Session 2: Scripts

9 / 15

echo "Please enter a number"
read x
echo "2 raised to $x = $((2 ** x))"

Syntax:

while list; do list; done

The 'while' command continually executes the 'list' 'do' as long as the last command in the 'list' 'while'
returns a zero exit state. The exit status of the command 'while' 'is that of the last command executed of the
'do' 'list', or zero if no command has been executed.

Examples:

Print n numbers in a decreasing way, until reaching zero, passing n as an argument:

#! /bin/bash
Print n numbers

n=$1
while [[$n -gt 0]]
do

 echo "$n"
 n=$((n - 1))

done

Wait until the file '/tmp/end' exists, checking it every n seconds, and using n as an argument:

#! /bin/bash
Wait until the file "/tmp/fin" exists

while [[! -f "/tmp/end"]]
do

 echo -n "."
 sleep $1;

done
echo -e '\n It exists!'

Tip: to check that it finishes properly, another terminal can be opened and then create the file (ex: 'touch
/tmp/end').

Exercise 2: testing loops with while

A script must be written with the name create that creates n files, whose name will have a common part
that will be used as a parameter - and the rest of the file name will simply be a number to distinguish them.
In this way, executing the command:

create name 100

It will create 100 files (from 0 to 99), following the pattern: 'name0', 'name1', ..., 'name99'. The files will
have a common part and a different part. Example of file 50:

This file is called: name50
Line_1 ****************************

DSI - Laboratory Session 2: Scripts

10 / 15

The read command with while

The most common way of using the read command is to read a variable by the keyboard. Moreover, the
read command can also be used as a filter to read multiple data from a pipe and then display the chosen
information. An example is shown with the script:

#! /bin/bash
Example of using read with while

ls -l | while read perm links usr grp size month day time name
do

 [[-f $name]] && echo "The file $name: has a size of $size bytes, and the 2nd
line is: $(cat $name | head -n 2 | tail -n 1)"
done

The script lists the contents of the current directory with 'ls -l'. The 'read' command assigns sequentially
the different fields to the variables. In this case, the first field to 'perm', the second to 'links', etc. On the
assumption that there were more fields than variables, the last variable would collect the final fields that
could not be assigned to separate variables. If there were fewer fields than variables, the final variables
would remain unassigned. The rest of the script explains itself. In the case of a normal file, its name and
size are shown in the terminal and the second line is also displayed.

Exercise 3: testing read with while

Following the model of the previous script, build a script that shows the number of links of each
subdirectory contained in any directory. To do this, the directory name will be used as a parameter. In the
script, the number of links must be the second field in the instruction 'ls -l'. In the case of a directory, this
number is at least two, since it contains the current directory ('.') and a link to the upper directory ('..').
Therefore, 2 would have to be subtracted to show the number of 'real' or different subdirectories from the
two described. Additionally, the script must be invoked from our working directory, and indicate the
directory to analyse. For example, if the script had the name 'show-dirs', executing 'show-dirs /etc' will
display something like the following:

aliases.d: 0
alternatives: 0
ant.d: 0
apparmor: 0
apparmor.d: 5
audisp: 1
audit: 1
auto.master.d: 0
avahi: 1
bash_completion.d: 0
binfmt.d: 0
ca-certificates: 1
chrony.d: 0
cifs-utils: 0
ConsoleKit: 1
...

It must be noted that to test the existence of the directory, the absolute address has must used, since this is
done on any directory. This absolute address is constructed from the script argument and the 'name'
variable.

DSI - Laboratory Session 2: Scripts

11 / 15

In a script, 'shift' is used typically to handle any number of arguments. The command 'shift' drops
argument 1 and shifts the other arguments so that 2 becomes 1, and so on and so forth:

#!/bin/bash
Script that displays the variables $#, $0, $* and $?
echo "$0 was called with $# arguments"
echo "The arguments are as follows:"
i=1
while [[$# -gt 0]]
do

 echo "- argument $((i ++)): $1"
 shift

done

#! /bin/bash
for name [in words]
do

 list
done

The list of 'words' after 'in' is expanded to generate a list of items. The variable 'name' is defined as each of
the elements in each iteration, and then 'list' is executed each time. The return status is the exit status of the
last command that was executed. If the element expansion after 'in' is empty, no command is executed and
the exit status is zero.

Example:

#! /bin/bash
Create tmp folder in each subdirectory

for x in *
do

 (cd $x && mkdir temp) 2>> /dev/null
done

This script creates a folder with the name 'temp' in each of the subdirectories of the current working
directory. The redirection of the standard error output to '/dev/null' is used to prevent the error messages
from appearing on the terminal. Those messages are created when trying to change to a name that is not a
directory.

It is possible to obtain information through the shell man page ('man bash') about other flow control
structures. These are the 'until', 'case', and 'select' structures. Information about the 'break', 'continue', and
'exit' commands can also be found on that man page, which enable stopping the execution of repetitive

DSI - Laboratory Session 2: Scripts

12 / 15

structures, in a similar way to C/C++.

Exercise 4: testing loops with for

The policy for naming files that has been followed in Exercise 2 is not very smart. For example, when the
files are listed in the directory that contains them, 'name10' comes before 'name2'. This would not happen
if the names were 'name02' and 'name10'. Following this idea, make a new script that fulfils the task
proposed in Exercise 2, but with the new naming policy. In this way, create a script called 'create2 <name>
<n>' that creates 'n' files with the same content as in Exercise 2, this time with the reference to the file
name, included in the first line, changed to the new policy. In this way, after executing 'create2 name 240'
the following files will be obtained:

name000
name001
...
name238
name239

In this case, the elements of the list must be numbers of equal size (by adding leading zeros if necessary).
One way to do this is with the command 'seq [options] <first> <last>'. This command creates a list
of numbers from first to last. The command is quite flexible (options can be seen in the 'seq' man page).
For example, it is possible to set only the last number, the increment, etc. There are also several options,
including the '-w' option, which generates numbers with the same width. That is, adding leading zeros if
necessary. Finally, it must be ensured that the 'n' files are numbered from 0 to 'n-'.

Syntax:

#!/bin/bash
if list
then

 list
[elif

 list
 then

 list]
...
[else

 list]
fi

DSI - Laboratory Session 2: Scripts

13 / 15

The 'list' of the 'if' is executed. If its exit status is zero, then the 'list' of the 'then' is executed. Otherwise,
each 'elif' list is executed in turn (executing its corresponding 'list' 'then' in the case of obtaining an output
result equal to zero). If its exit state is non-zero, the 'else' list is executed. The exit status is that of the last
command executed or zero if no condition was true.

Example:

#! /bin/bash
if who | grep -s paco> /dev/null
then

 echo "paco is connected"
else

 echo "paco is not connected"
fi

In this example, a check is made as to whether the user paco is connected or not. The '/dev/null' redirection
of the 'grep' command output is made so that this information is not displayed on the screen.

Exercise 5: combining 'for' loops with 'if-then-else'

Unfortunately, despite our warnings, a user has generated 1000 files using the script 'create'. In this way,
the first file will be 'name0' and the last one will be 'name999'. These files have the structure described in
'Exercise 2: testing loops with while'.

This file naming must be corrected so that they follow the naming policy of the exercise 'Exercise 4:
testing loops with for'. It should be considered that the files may have been edited by adding information
on any line except the first one (which contains the name). The added information must be kept, so the file
must be renamed following the new naming policy (but keeping the content).

Design a script, which will be invoked as 'correct <name> <number>', and which will correct both the file
name and the reference to this name in the first line, if necessary, but keeping the rest of the information in
the file.

DSI - Laboratory Session 2: Scripts

14 / 15

Generated on: 2021-05-27 15:02 UTC. Generated by Docutils from reStructuredText source.

DSI - Laboratory Session 2: Scripts

15 / 15

28 May 2021
Contents

Goals
Previous work

Introduction
The ps command

Previous exercise 1: understanding the ps command
The top command

Previous exercise 2: adjusting the top information as needed
The kill command

Previous exercise 3: killing processes with kill
The killall command

Previous exercise 4: killing processes with killall
The pgrep and pkill commands

Previous exercise 5: killing processes with pkill
The time command

Work in the laboratory
Threads versus processes in Python
Exercise 1: multi-threading and multi-processing programming in Python

Multi-threading programming
Multi-processing programming

Exercise 2: passing parameters to threads/processes and shared memory access
Multi-threading programming
Multi-processing programming
Programming with shared memory between processes

Exercise 3: parallelisation of programs that require high computing capacity
Program with only one process
Parallelising the program using threads
Parallelising the program using processes

Exercise 4: parallelisation of programs that require data input and output
Setting up a web server in the 'extf' machine
Program for processing files with environmental parameters

Goals

DSI - Laboratory Session 3: Execution of Python Applications, Mana...

1 / 24

The main goal of this session is to provide a global understanding of how processes and threads are
managed in Unix. In addition, this session deals with the parallelisation of Python applications using
multi-threading and multi-processing techniques. The contents of this session are focused on:

Commands for managing the execution of processes in Unix: ps, top, kill, killall.
Programming of Python applications that use multiple threads and processes, understanding
the different way in which Linux manages their execution.

Previous work
Before attending the lab session, students should:

Read the lab session document, paying special attention to the explanations of each section.
Complete the exercises in the previous work section, which help to understand how to use the
main commands for process management.
Analyse and understand the examples. It is advisable to use these commands in the virtual
machine and make only small changes until you are sure you understand their execution.

Introduction
As it has already been introduced in the course, a process is a program that is executed by a
processor. While a program is defined by the code that results from compiling and linking the
program's source code, a process is an active structure that includes the program's code, its data, and
the state of the resources the program needs to run.

The ps command
The operating system allows you to see the state of the processes at a given time by means of the
'ps' command. The following may be an example of the list presented after the execution of the 'ps'
command (without arguments) at a certain time:

 PID TTY TIME CMD
4304 pts/3 00:00:00 sh
4313 pts/3 00:00:00 ps

where PID is the process identifier, TTY is the shell associated with that process, TIME is the time
in which the process is running and CMD is the command corresponding to the process. By means
of the 'man' command we can consult the different options to invoke the 'ps' command.

The Linux command 'ps' enables using different types of options (Unix, BSD, and GNU). It is
advisable to learn the standard Unix options. Optionally, it may be useful to use some of the GNU
options that are not included in Unix (such as '--sort', which enables the generation of sorted lists).

Some particularly interesting options are:

ps -A, -e

selects all the processes (by default 'ps' only shows the processes associated with the current
shell)

ps -C cmdlist

DSI - Laboratory Session 3: Execution of Python Applications, Mana...

2 / 24

selects processes whose executable file is 'cmdlist'; for example:

ps -C bash

shows the processes that are running the program 'bash', and

ps -C bash,mingetty

shows the processes that are running 'bash' or 'mingetty'

ps -u userlist

shows the processes of the indicated users (a comma-separated list of users)

ps -g grouplist

selects processes by group name

ps -f

shows additional information (full-format)

ps -o format

'format' must be a list of fields separated by commas indicating which columns should be
shown; for example:

ps -u carlos -opid,command

shows all the processes for the user 'carlos' ; for each process, only the columns 'PID' and
'COMMAND' are shown (name of the executable file and the arguments)

ps -H

provides a hierarchical output (child processes are indented after their parent)

Previous exercise 1: understanding the ps command

This exercise should be performed in a shell of the 'base' machine in the NETinVM environment. In
this exercise, the following types of lists of processes must be obtained using the ps command:

a. All the processes of the 'root' user, with full-format (full-format).
b. Processes of the user 'user1' in a hierarchical form. The following fields must appear

in the list:
the PID of each process
the PID of its parent process
the name of the executable file without the arguments

As a suggestion, the section of the ps manual page that explains which specifiers can be used with
'-o' is 'STANDARD FORMAT SPECIFIERS'.

DSI - Laboratory Session 3: Execution of Python Applications, Mana...

3 / 24

The top command
The top command enables dynamically visualising the state of the system and the processes, the
CPU time consumed by each one, the occupied memory, the priority of each process, and so on.

When used interactively, it has a built-in helper that is activated by pressing the letter 'h' (for help).
Through this help it is easy to find out how to modify the default setting of top to best suit the user
requirements. Some possibilities are highlighted below:

Enable/disable (toggle) different types of information: summary of process and
processor information ('t'), summary of the use of different types of memory ('m'),
detailed information about each processor ('1') (example '1' for the first processor),
show inactive processes (idle, 'i'), etc.
Select the columns that are shown and the column by which they are sorted ('f' or 'F').
Filter by user ('u').
Modify the current state of a process by sending it a signal (kill, 'k') or by changing the
nice parameter (renice, 'r').

Previous exercise 2: adjusting the top information as needed

Configure the top command to show the required information in an easy-to-read way. Specifically,
it is required to show:

Detailed information about the use of each processor in the system.

The following fields in the order shown below:

Process identifier
Process parent identifier
User
Percentage of CPU usage
Percentage of memory usage
Order (program) corresponding to the process, including the arguments

The information is sorted by memory usage (from more to less).

Show only the first ten processes.

Determine the 'top' command required to show a list of your own processes sorted by % of memory
used.

An example of the output that meets these conditions would be:

DSI - Laboratory Session 3: Execution of Python Applications, Mana...

4 / 24

 top - 18:10:23 up 1 day, 6:53, 3 users, load average: 0.04, 0.11, 0.30
 Tasks: 166 total, 1 running, 165 sleeping, 0 stopped, 0 zombie
 %Cpu0 : 3.7 us, 1.3 sy, 0.0 ni, 95.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0
st
 %Cpu1 : 6.1 us, 1.4 sy, 0.0 ni, 92.5 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0
st
 %Cpu2 : 4.0 us, 3.3 sy, 0.0 ni, 92.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0
st
 %Cpu3 : 3.7 us, 2.0 sy, 0.0 ni, 94.3 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0
st
 KiB Mem : 4032136 total, 795828 free, 1547672 used, 1688636 buff/cache
 KiB Swap: 10485756 total, 10485756 free, 0 used. 2170088 avail Mem

 PID PPID USER %CPU %MEM COMMAND
12221 1 user1 0.7 12.5 qemu-system-x86
 2849 2633 user1 0.3 7.7 firefox-esr
 2694 2691 user1 20.9 4.2 kwin_x11
 2828 2633 user1 1.3 2.2 konsole
 2642 2633 user1 0.3 1.4 kded5
 2700 2691 user1 0.3 0.8 xembedsniproxy
 2638 2633 user1 0.0 0.8 klauncher
 2657 1 user1 0.0 0.8 kaccess
 2633 1 user1 0.0 0.5 kdeinit5
 1867 1 user1 0.0 0.1 systemd
13968 2828 user1 0.0 0.1 bash
14665 13968 user1 0.0 0.1 top
 2570 1 user1 0.0 0.1 dbus-launch
 2571 1 user1 0.0 0.1 dbus-daemon
 2599 1870 user1 0.0 0.0 ssh-agent
 2632 1 user1 0.0 0.0 start_kdeinit
 1868 1867 user1 0.0 0.0 (sd-pam)
 1870 1861 user1 0.0 0.0 startkde

The kill command
The kill command is actually a user interface for the use of the kill() function. This function
enables sending a signal or notification to another process, if the one generating the signal owns the
process or is the superuser. With the -l option, the kill command shows a list of all the signals. A
more detailed description can be obtained by calling the man 7 signal command. If the signal is
not specified, the kill command sends the SIGTERM signal (orderly completion of a process, signal
15) by default. Signals can be identified by name or by number (see the complete list of signals),

DSI - Laboratory Session 3: Execution of Python Applications, Mana...

5 / 24

although it is more advisable to use the name, as the numbers are not standard and can change from
one system to another.

When killing a process, it is better to send it the SIGTERM signal first, because the process can deal
with this signal and can perform an orderly termination. The SIGKILL signal should only be used
as a last resort, when the process does not respond to the SIGTERM signal and it must be
terminated.

Therefore, to send the SIGTERM signal to process 1234 the following command must be used:

kill -s SIGTERM 1234

However, since kill sends SIGTERM by default, the following command could also be used:

kill 1234

Previous exercise 3: killing processes with kill

The 'kwrite' application is not responding and it must be terminated. The kill command must be
used to send it the proper signal.

The killall command
The killall command enables sending a notification to all the processes that are running a
program. This command allows terminating all processes generated by a wrong program simply by
specifying the command used to execute it. The options, available on the corresponding manual
page (man killall), are similar to kill. For example, to kill all the processes generated by the cat

DSI - Laboratory Session 3: Execution of Python Applications, Mana...

6 / 24

program, it is required to use the following command:

killall -TERM cat

Since killall can kill many processes, a very useful option, especially when acting as
administrator ('root' user), is '-u user1', which indicates that signals should only be sent to processes
of the 'user1' user.

Previous exercise 4: killing processes with killall

Many copies of the 'dolphin' application have been launched over time. To avoid shutting down all
the instances of the program one by one, it is required to use the killlall command.

The pgrep and pkill commands
Although the commands seen so far (ps, kill, and killall) are usually enough to manage the
execution of processes, it is useful to know that there are two commands with a similar syntax and
with complementary purposes. These commands are pgrep and pkill. In this case, instead of
describing them in this document, an introductory video is supplied. However, to carry out the
exercise it will be necessary to consult the manual (command man).

DSI - Laboratory Session 3: Execution of Python Applications, Mana...

7 / 24

Previous exercise 5: killing processes with pkill

Many copies of the 'dolphin' application have been launched over time. To avoid shutting down
some of the instances of the program one by one, it is required to use the pkill command to
terminate some of them.

The time command
The time command is used to determine how long it takes to execute a command. It is useful for
testing the performance of scripts and commands executed on Unix. For example, if there are two
different scripts doing the same work and the goal is to establish which one completes the action
most quickly, it is possible to use this command to determine the duration of the execution of each
script.

The way to use the time command is to link it with the command that is going to be measured. For
example, it is possible to measure the time it takes the find command to find all files larger than
10MB in the folders inside /usr, as seen in the lab session 1:

time find /usr -size +10M -exec ls -lh {} \;

Results of the time command are specified by three different time measurements:

Real: the time elapsed from the beginning to the end of the command execution. This is the
time since the Enter key is pressed until the command is completed.
User: the amount of time the CPU spends in user mode during the execution of the command.
This time includes the time spent by a CPU core, or the sum of the times of several cores, if

DSI - Laboratory Session 3: Execution of Python Applications, Mana...

8 / 24

the program is using several cores at the same time.
Sys: the amount of time the CPU spends in kernel mode during the command execution.

Work in the laboratory

Threads versus processes in Python
Multi-threading programming is one of most well-known techniques that can be used to achieve
concurrency in Python. Multi-threading is a feature provided by the operating system. Threads are
lighter than processes and share the same memory space. However, due to the limitations of the
Python interpreter, threads generated in a program are executed concurrently but not in parallel, that
is, the execution will change from one thread to another, whenever one of them is ready to do some
work, but at a given moment only one thread is running. In this approach, the Python interpreter
uses only one core of the CPU and it shares it between all the threads implementing a time division
multiplexing.

Multi-processing programming in Python enables a program to spawn new processes that do not
share memory. In this case, the execution can be truly parallel, with several processes running at the
same time in different cores of the CPU. Thus, when new processes are generated each will have its
own memory range assigned, in which a copy of the memory content of the original process is
made.

This lab-session is devoted to learning which solution is most suitable depending on the type of
application that must be programmed. Thus, if a program has a high computational cost, a
multiprocessing approach is likely to provide better performance, especially if the computer's CPU
has multiple cores. There are also applications that perform input and output data operations, where

DSI - Laboratory Session 3: Execution of Python Applications, Mana...

9 / 24

the programs are usually blocked and waiting to receive new data blocks. In this case, both
solutions, multi-threading and multi-processing, can increase the program performance – although
multi-processing may have a higher memory overload.

Exercise 1: multi-threading and multi-processing
programming in Python

Multi-threading programming

The following program ('ex1_threads.py') is an example that shows how to use threads in Python.
The program creates several threads equal to the number of the cores on the 'base' machine. Each
thread executes the info() function which prints out the process PID and the parent PID. It then
calls the time.sleep(20) function and waits 20 seconds. The main function creates the threads
with the function threading.Thread(). Threads are started with the start() method and the main
program waits until their completion with the join() method. The main program concludes when
all the threads have finished. The code in this example is:

#!/usr/bin/env python3
import random
import threading
import os
import multiprocessing
import time

Function executed by the threads
def info():
 print ("PID y PPID:", os.getpid() , os.getppid(), flush = True)
 time.sleep(20)

def main():

 # The number of threads created is equal to the number of cores
 num_threads = multiprocessing.cpu_count()
 print ("Number of threads:", num_threads, flush = True)
 jobs = []

 # Variable num_threads has the number of threads to be declared
 for i in range(0, num_threads):

 mythread = threading.Thread(target = info)
 jobs.append(mythread)

 # Threads are started
 for j in jobs:

j.start()

 # Main program waits until the completion of the threads
 for j in jobs:

j.join()

 print ("Threads completed")

if __name__ == "__main__":
 main()

Download the program to the 'base' machine and execute it with the command:

python3 ex1_threads.py

The following example implements the same work but using processes.

Multi-processing programming

DSI - Laboratory Session 3: Execution of Python Applications, Mana...

10 / 24

The following program ('ex1_processes.py') is an example that shows how to use processes in
Python. The program creates a number of processes equal to the number of cores on the 'base'
machine. In a similar way to the previous example, each process executes the info() function
which prints out the values of its PID and the parent PID. The time.sleep(20) function is then
called and it implements a 20-second delay. The main function creates the processes with the
multiprocessing.Process() function and then starts them and waits for their completion with the
start() and join() methods. The code in this example is:

#!/usr/bin/env python3
import random
import threading
import os
import multiprocessing
import time

Function executed by the processes to establish the PID
def info():
 print ("PID y PPID:", os.getpid() , os.getppid(), flush = True)
 time.sleep(20)

def main():

 # The number of processes created is equal to the number of cores
 num_processes = multiprocessing.cpu_count()
 print ("Number of processes:", num_processes, flush = True)
 jobs = []

 # Variable num_processes has the number of threads to be declared
 for i in range(0, num_processes):

 myprocess = multiprocessing.Process(target = info)
 jobs.append(myprocess)

 # Processes are started
 for j in jobs:

j.start()

 # Main program waits until the completion of the processes
 for j in jobs:

j.join()

 print ("Processes completed")

if __name__ == "__main__":
 main()

Download the program to the 'base' machine and execute it with the command:

python3 ex1_processes.py

DSI - Laboratory Session 3: Execution of Python Applications, Mana...

11 / 24

Exercise 2: passing parameters to threads/processes and
shared memory access
Passing parameters to threads or processes during program execution requires the inclusion of a list
of parameters in functions: threading.Thread() and multiprocessing.Process(). These
functions define the list of arguments that will be passed when the thread or process starts running.

Multi-threading programming

The following program ('ex2_threads.py') is an example that demonstrates how to pass arguments to
threads. A list of arguments is declared in the thread declaration. For example, in the case
threading.Thread(target = calculate, args=(out_list, i)), it is specified that each thread
receives the out_list, declared in the main process, and an integer value, defined with the i
variable. When the thread is executed, the integer value received in the i variable is added to the
list. The program creates several threads equal to the number of the CPU cores in the 'base'
machine. The code of this example is:

#!/usr/bin/env python3
import random
import threading
import os
import multiprocessing
import time

#Function executed by the threads to establish the PID
def info():
 print ("PID and PPID:", os.getpid() , os.getppid(), flush = True)

DSI - Laboratory Session 3: Execution of Python Applications, Mana...

12 / 24

#Threads starting function to add an element to out_list
def compute(out_list, i,):
 time.sleep(i)
 info()
 out_list.append(i)
 print("Thread",i,"Result",out_list)

def main():

 #Number of threads equal to number of cores
 num_threads = multiprocessing.cpu_count()

 #List where the results will be saved
 out_list = [j for j in range(num_threads)]

 jobs = []
 for i in range(0, num_threads):

 mythread = threading.Thread(target = compute, args=(out_list, i))
 jobs.append(mythread)

 for j in jobs:
j.start()

 for j in jobs:
j.join()

 print ("Threads completed.")

 #Print the final result
 print ("Result:", out_list)

if __name__ == "__main__":
 main()

The program must be executed on the 'base' machine using the command:

python3 ex2_threads.py

The following example is almost the same program but implemented using processes.

Multi-processing programming

The following program ('ex2_myprocess_1.py') is an example that demonstrates how to pass
arguments to processes. As in the previous example, a list of arguments is included in the process
declaration: multiprocessing.Process(target = calculate, args=(out_list, i)). The
meaning of the variables is the same as in the previous case and the program performs the same
work and copies the value of the i variable into the list. The code in this example is:

#!/usr/bin/env python3
import random
import threading
import os
import multiprocessing
import time

Function executed by the processes to know the PID
def info():
 print ("PID y PPID:", os.getpid() , os.getppid(), flush = True)

Processes starting function to add an element to out_list
def compute(out_list, i,):
 time.sleep(i)

DSI - Laboratory Session 3: Execution of Python Applications, Mana...

13 / 24

 info()
 out_list.append(i)
 print("Process",i,"Result",out_list)

def main():

 # Number of processes equal to number of cores
 num_processes = multiprocessing.cpu_count()

 # List where the results will be saved
 out_list = [j for j in range(num_processes)]

 jobs = []
 for i in range(0, num_processes):

 myprocess = multiprocessing.Process(target = compute, args=(out_list,
i))

 jobs.append(myprocess)

 for j in jobs:
j.start()

 for j in jobs:
j.join()

 print ("Processes completed.")

 # Print the final result
 print ("Result:", out_list)

if __name__ == "__main__":
 main()

Execute the program on the 'base' machine using the command:

python3 ex2_myprocess_1.py

After running both programs, the following questions must be answered.

Programming with shared memory between processes

The Manager class of the multiprocessing library enables the implementation of shared variables
between processes. The parent process will own an object, which is returned by calling the function

DSI - Laboratory Session 3: Execution of Python Applications, Mana...

14 / 24

Manager(). Child processes can access this object to read or modify its content. Unlike parameters
or objects of their own, child processes do not obtain a copy of the object but access the parent's
copy. An object returned by Manager() supports different types of structures such as: lists;
dictionaries; locks; variables; and arrays.

For example, in the following program ('ex2_myprocess_2.py') an object that implements a list is
shared and used by all the child processes for saving the data in the output list out_list:

#!/usr/bin/env python3
import random
import threading
import os
import multiprocessing
import time

#Function executed by the processes to know the PID
def info():
 print ("PID y PPID:", os.getpid() , os.getppid(), flush = True)

#Processes starting function to add an element to out_list
def compute(out_list, i,):
 time.sleep(i)
 info()
 out_list.append(i)
 print("Process",i,"Result",out_list)

def main():

 # Number of processes equal to number of cores
 num_processes = multiprocessing.cpu_count()

 # List where the results will be saved
 out_list = multiprocessing.Manager().list(range(num_processes))

 jobs = []
 for i in range(0, num_processes):

 myprocess = multiprocessing.Process(target = compute, args=(out_list,
i))

 jobs.append(myprocess)

 for j in jobs:#
j.start()

 for j in jobs:
j.join()

 print ("Processes completed.")

 # Print the final result
 print ("Result:", out_list)

if __name__ == "__main__":
 main()

The program must be executed on the 'base' machine using the command:

python3 ex2_myprocess_2.py

DSI - Laboratory Session 3: Execution of Python Applications, Mana...

15 / 24

Exercise 3: parallelisation of programs that require high
computing capacity
This section is focused on the evaluation of the performance increase achieved when applications
that have a high computational cost are parallelised in Python. In addition, a comparison will be
made depending on whether the parallelisation is done using threads or processes. The evaluation
will be performed measuring the execution time of the programs with the command time using
different workloads.

The problem to be solved is the calculation of the PI value using the Monte Carlo method. The
calculation is based on the formula to calculate the area of the circumference A = PI*R2. If the
radius is 1, then A = PI and if we focus on the first quadrant of the circumference the area is divided
by 4: A = PI/4. To calculate this area, we will use the Monte Carlo method, which is based on the
generation of random points whose coordinates are in the first quadrant (1,1) of the plane. These
points may or may not fall within the area of the circumference. They will fall within that area if the
distance from the random point to the origin is less than 1 and they will be outside otherwise. The
probability of falling within the area of the circumference in the first quadrant will be the number of
random cases with distances less than 1 divided by the total cases generated. This probability gives
an estimate of the area of the circumference in the first quadrant, and so if this result is multiplied
by the four quadrants of the plane that make up the circumference with the centre at the origin of
coordinates and radius equal to 1, the area of A, and therefore the PI value, will be obtained.

Program with only one process

The program ('ex3.py') in Python that calculates the PI value using this approach is shown next:

#!/usr/bin/env python3
import random
import threading
import os
import multiprocessing

Simulation of the points falling within the circle in the first quadrant
def monte_carlo_pi(index, iterations, result):

 # Counter of the number of cases when the point falls within the
circumference
 count = 0
 for k in range(iterations[index]):

 x = random.random()
 y = random.random()
 if x*x + y*y <= 1:

 count=count+1

 result.append(count)
 print ("Index, PID, PPID, result:", index, os.getpid() , os.getppid(),
result, flush = True)

DSI - Laboratory Session 3: Execution of Python Applications, Mana...

16 / 24

 return

def main():

 np = 1
 print ('Example with %i process' % np)

 # Number of simulated points to calculate PI
 n = 10000000

 # Input list with the points to be simulated for each process
 in_list = [int(n/np) for j in range(np)]

 # Output list with the results of each process
 out_list = list()
 print("List of iterations:", in_list)

 index = 0
 monte_carlo_pi(index, in_list, out_list)

 # Result
 print("List of results:", out_list)
 print ("Estimated PI value:: ", sum(out_list)/(n*1.0)*4)

if __name__ == "__main__":
 main()

In the program, the parameter np has the meaning of the number of parallel processes that are
executed, in this case only 1, since we are using the non-parallel version np = 1. The in_list
contains the number of iterations that each process or thread would have to perform, in this case the
list contains a single element with all the iterations. The out_list would be the list where the
processes would save their partial result. The variable n means the number of total iterations
performed and it will be divided by the number of processes. In this first case, a single process will
perform all the iterations. The execution of the program on the 'base' machine can be carried out
using the command:

time python3 ex3.py

DSI - Laboratory Session 3: Execution of Python Applications, Mana...

17 / 24

Parallelising the program using threads

The objective of this section is the parallelisation of the previous version of the IP calculation
program using multi-threading. The program must spawn a number of threads equal to the number
of CPU cores. The value n will be divided by the number of threads, so that each thread calculates
int(n/np) iterations. The partial results of each thread will be added to the out_list output list
from which the final computation of the PI value is made.

Parallelising the program using processes

The objective of this section is the parallelisation of the previous version of the IP calculation
program using multi-processing. The program must spawn a number of processes equal to the
number of CPU cores. The value n will be divided by the number of processes, so that each process
calculates int(n/np) iterations. The partial results of each process will be added to the out_list
output list from which the final computation of the PI value is made.

DSI - Laboratory Session 3: Execution of Python Applications, Mana...

18 / 24

Exercise 4: parallelisation of programs that require data input
and output
The objective of this section is the evaluation of applications that require the download of
information from a networked server and its subsequent processing. In this case, programs perform
data input/output transactions that influence the performance of the application, since much of the
program execution time will be spent transferring the information from the server. During the
download periods, the program will be blocked while waiting to receive new data to resume the
execution. Once new data is available, the program will continue its execution until completing the
processing of the downloaded block of data.

Setting up a web server in the 'extf' machine

The evaluation of this application involves two networked machines within the NETinVM
environment. Specifically, the 'extf' machine, which is configured as a web server, and the 'base'
machine where the application that downloads the files and processes them is executed. The backup
file of the KVM machines in which the Apache web server has been enabled in the 'extf' machine
can be downloaded from the link 'kvm_machines_2020-11-03_12-19.tgz'. This file must be
downloaded to the 'base' machine on NETinVM to restore the KVM machines using the option
Restore KVM machines on NETinVM, with all KVM machines turned off. The 'extf' machine must
then be booted. To do this, open the configuration file in the menu of the KVM machines,
Configure my machines comment on the boot of all other KVM machines, since they will not be
used in this session, and add the line:

netinvm_run -E extf

that starts the 'extf' machine opening a console on the current desktop. Finally, the command 'Run
my machines' must be executed.

Once the machine has started, it is possible to check that the web server is working correctly by
using the wget command. To do this, the following command on the 'base' machine must be
executed:

wget http://10.5.0.15/2015.tmax

where http is the protocol used to download the file, 10.5.0.15 is the network address of the 'extf'

DSI - Laboratory Session 3: Execution of Python Applications, Mana...

19 / 24

server machine and 2015.tmax is the file that is going to be downloaded.

The download speed of the files can be changed by limiting the bandwidth of the connections
accepted by the Apache server. This limitation can be introduced modifying the server
configuration. To do this, open a console on the 'etxf' server for the user 'root'. Edit then the
'ratelimit.conf' file located in the '/etc/apache2/conf-available' folder and change the bandwidth. The
content of the file is initially:

<Location "/">
 SetOutputFilter RATE_LIMIT

 SetEnv rate-limit 0
</Location>

When SetEnv rate-limit is 0 there is no limit set. To configure a download limit measured in
KB/s, the value 0 must be changed to the new limit. For example, to set a limit of 800 KB/s the file
would look like:

<Location "/">
 SetOutputFilter RATE_LIMIT

 SetEnv rate-limit 800
</Location>

Once the file has been modified and saved, the new configuration must be reloaded on the server
'etxf' using the command:

systemctl reload apache2

Execute again with this new configuration the command wget http://10.5.0.15/2015.tmax on
the 'base' machine.

Program for processing files with environmental parameters

The objective of this section is to evaluate applications that perform the download and processing of

DSI - Laboratory Session 3: Execution of Python Applications, Mana...

20 / 24

environmental parameters saved in data files. Specifically, the estimated daily temperature
information on Earth positions identified with their longitude and latitude will be used (a grid
covering the entire globe is established). The objective is to evaluate the maximum and average
temperature on an annual basis. The temperature files to be used do not have the meaning of the real
temperature, but they include the temperature anomaly measured over those points. These daily
anomalies files were created considering the temperatures for the 1961–1990 reference period for
each contributing station. Therefore, the data files for each year each include the maximum daily
temperature anomaly. The format of the files consists of six columns of data:

1ª column: Month
2ª column: Day
3ª column: Grid box ID (value range: 1 to 7002, grid spacing = 3.75 deg 2.5
deg)
4ª column: Longitude of lower left corner of grid box (degrees)
5ª column: Latitude of lower left corner of grid box (degrees)
6ª column: Temperature anomaly (whole degrees Celsius)

All the information on the temperature files can be found at 'https://www.metoffice.gov.uk/hadobs
/hadghcnd/'.

The objective is to create a program that computes the maximum daily temperature anomaly value
in a year and the average of the maximum daily anomaly values for that year. The years considered
are from 2015 to 2018 and the name of the files in the server is: 2015.tmax, 2016.tmax, 2017.tmax
and 2018.tmax.

Below is the code of the program that computes the maximum and average temperature anomaly
within each of the files considered sequentially. The program is called 'ex4.py' and it downloads and
processes the four files sequentially. The download_process function accepts two parameters: the
link to the server where the file to be processed resides and the year to which that file refers. The
program repeats the call four times to complete the processing of the four files::

http://10.5.0.15/2015.tmax http://10.5.0.15/2016.tmax http://10.5.0.15/2017.tmax
http://10.5.0.15/2018.tmax

The function download_process performs the download and processing of the file concurrently.
The download is accomplished by the Python library urllib.request. Specifically, the urlopen()
method, which returns a file-like object that can be used to access the downloaded data as if it were
a file. The data is processed by lines and the temperature field used to calculate the average of the
whole file and the maximum value is extracted.

The program code is:

#!/usr/bin/env python3

from urllib.request import urlopen

Function that performs the download and computes the maximum and average
temperature values
def download_process(link, year):

 points_number = 0

 # Open the link to the file on the server and start the download
 link=urlopen(link)
 print("Downloading and processing", link)

 # When a new line is downloaded, it is processed
 for l in link:

 # Split the line and extract the temperature value
 line = str(l)
 line = line.strip()
 data = line.split()
 temp = float(data[5][:-3])

DSI - Laboratory Session 3: Execution of Python Applications, Mana...

21 / 24

 # If point_number is greater than 0, update the fields with the new
values

 if points_number != 0:

 points_number += 1

 if (temp > maximum):
 maximum = temp

 difference = temp - average
 average += difference / (number_points)

 # The first line initializes the values
 else:

 maximum = temp
 average = temp
 number_points += 1

 # Close the connection
 link.close()

 # When finished, it prints out the calculated values
 print("Obtained results: year, temp max, temp avg and number of points.")
 print("year:%s tmax:%5.1f tavg:%5.1f n:%i" % (year, maximum, average,

number_points))

def main():

 # List of years to process
 year_list = [j for j in range (2015,2019,1)]

 # Server address
 address='http://10.5.0.15/'

 # List of links to files on the server
 links_list = [address+str(year_list[j])+'.tmax' for j in
range(len(year_list))]

 for k in range(len(links_list)):

 download_process(links_list[k],year_list[k])

 print('All the files have been processed')

if __name__ == "__main__":
main()

This program must be executed with the command:

time python3 ex4.py

With this command, the time needed by the program to download and process the four files can be
obtained. In this case, the server will be configured without any limit on the download speed, that is,
the server will be configured with the parameter SetEnv rate-limit 0.

Once the program has been tested, the objective of this section is to create new two parallel versions
of the program using threads and processes. The goal is that each thread or process downloads and
processes a different file. In this way, it is not necessary to wait until the completion of a call to the
download_process function before starting the next call, and the four files can be downloaded and
processed concurrently. The new versions of the program with threads or processes will create four
threads/processes and each one will perform the download and processing of a different file within
the range (2015.tmax - 2018.tmax). Evaluate the performance of the new parallel versions of the
program measuring the time it takes them to download and process the four files.

DSI - Laboratory Session 3: Execution of Python Applications, Mana...

22 / 24

DSI - Laboratory Session 3: Execution of Python Applications, Mana...

23 / 24

Generated on: 2021-05-28 14:36 UTC. Generated by Docutils from reStructuredText source.

DSI - Laboratory Session 3: Execution of Python Applications, Mana...

24 / 24

Contents

Goals
Previous work
Introduction
Session preparation

NETinVM virtual machine
How to become administrator
Previous exercise 1: remembering how to work from the command line
Package management system
Users and security
File owners, groups, and permissions
Previous exercise 2: becoming familiar with the user and group files

Package management
Exercise 1: updating system packages
Exercise 2: installing new software
Metapackages and tasksel
Exercise 3: testing tasksel

Backups
Exercise 4: making backups with rsync

User and group creation
Exercise 5: creating the initial users and groups
Exercise 6: creating a shared directory ('/home/datascience')
Exercise 7: sharing files through the '/home/datascience' directory

Software installation and maintenance with aptitude
Optional exercise 1: installing the aptitude program
The aptitude program interface
Optional exercise 2: becoming familiar with aptitude. Installing and removing packages
Optional exercise 3: fixing faulty installations

Understand the basis for managing packages, users, and groups.
Learn to perform simple administration tasks related to software installation, package
maintenance, user, and group creation.

Before attending the lab session, students must:

DSI - Laboratory Session 4: Package, User and Group Administration

1 / 19

Read this laboratory session document and become familiar with concepts such as
repositories, package managers, users, and groups on a Linux machine. These concepts have
been used in lectures and problem classes and should be carefully reviewed before the
session.
Review the lab session about the shell, since part of what was learned in that session is going
to be used in this session.
Prepare the machine NETinVM to be able to develop the work in the laboratory.
Complete the exercises marked as previous work.

Tasks to be completed in this session are considered operating system administration tasks. For those who
want to complete the explanations on system administration, the following reference may be useful:

Unix and Linux System Administration Handbook. Evi Nemeth, Garth Snyder, Trent R. Hein, Ben
Whaley. Prentice Hall.

Moreover, handbooks of common Linux distributions may also be useful, both those included in the
distribution itself and those available online. In the case of the NETinVM virtual machine, Debian 9.5 is
used, and the online documentation can be found at www.debian.org.

In this lab session, you must work as system administrator and make significant changes to the system. To
work with freedom and security, the NETinVM virtual machine will be used. For this reason, it is
necessary to consider that:

Students must come to the laboratory with a ready virtual machine, either on the student’s
own laptop or on a USB hard drive (it must be a hard drive as a USB memory stick will not
work for this purpose).
It may be necessary to undo the changes if mistakes are made, or simply repeat an exercise.
To do so, a snapshot must be captured before starting the lab session and, subsequently, each
time an exercise is completed. In this way, if something goes wrong, it is possible to return to
the previous state.

In this session, it is not recommended to use the NETinVM copy installed on the laboratory
computers. Nevertheless, they can be used if none of the students in the group has a laptop or
a USB hard drive, but it is necessary to consider that:

It is not going to be possible to turn off the machine during the whole session,
because it will provoke a full data loss.
The use of snapshots is not going to be possible during the session.

DSI - Laboratory Session 4: Package, User and Group Administration

2 / 19

During the session, it will be necessary to perform the administration tasks such as 'root' (the administrator
on Unix systems). To become an administrator, simply use the following command:

su -

Additionally, during the session it will be necessary to edit text files as system administrator. This can
be done with the 'nano' editor in the terminal (after becoming administrator with 'su -'). The 'nano' editor is
pre-installed in NETinVM. A graphical application such as Kwrite is not recommended, because many
lines that implement the graphical interface are executed with administrator privileges, and this is a
potential security threat.

After reviewing (if needed) the first two lab sessions, briefly answer the following questions:

a. What numeric identifier does the administrator of Linux systems have?
b. And what name? (hint: become an administrator with 'su -' and use 'id' to find the answer.

You must work on the machine base of NETinVM).
c. Write the command to create the folder 'd1' in the directory '/home/user1'
d. Write the command to copy the file 'f1' (which is in the folder '/home/user1') to the folder

'/tmp'.
e. Write the command to delete the file 'f1' (which is in the current directory).
f. Write the command to delete the directory 'd1' (which is in the current directory), assuming it

is empty.
g. And, if it is not empty, what command should be used to delete that directory and everything

it contains?
h. With what command can the file name 'f1' be changed to 'f2'?
i. With what command can the directory 'd1' be renamed to 'd2'?

A package manager program keeps a record of the software installed on the computer. Additionally, it
enables installing new programs, updating already installed programs to more recent versions or easily
removing programs. A program generally consists of several files that are grouped together in the concept
of a package. A particular package can also have dependencies on other packages that must also be
installed to ensure the proper functioning. A package manager program solves all dependencies and
recommends the installation of other needed packages (as can be read in the Debian manual):

If a package A depends on another package B, then B is necessary for A to work properly.
For example, the gimp package depends on the gimp-data package to enable the GIMP

DSI - Laboratory Session 4: Package, User and Group Administration

3 / 19

graphical editor to access its critical data files.
If package A recommends another package B, then B offers significant extra functionality
for A that would be desirable in most circumstances. For example, the mozilla-browser
package recommends the mozilla-psm package which adds secure data transfer capability to
Mozilla's web browser.
If package A suggests another package B, then package B offers functionality to A that may
improve A but is not necessary in most cases. For example, the kmail package suggests the
gnupg package which contains encryption software that can be used by KMail.
If a package A conflicts with another package B, the two packages cannot be installed at the
same time. For example, fb-music-hi conflicts with fb-music-low because they offer
alternative sets of sounds for the Frozen Bubble game.

There are several software packaging formats and this depends on the Linux distribution. In the Debian
case and its derived distributions, like Ubuntu, packages have the extension .deb. Red Hat-based
distributions have packages with the .rpm extension. In contrast, the .tgz format is common on Unix,
compressed with the zip GNU compressor. There are programs to convert packages from one format to
another such as alien, but a package does not always work correctly if it is installed after it has been
transformed from a different type of package, designed for another distribution.

A package manager helps the administrator in managing the set of packages that are installed on the
system. There are several package managers, depending on the Linux distribution. Package managers are
high-level tools, some even with a graphical interface, that are based on lower-level commands. For
example, in the case of Debian and its derived distributions, the low-level tool is dpkg, which is used to
install Debian packages, but does not manage dependencies, and so it is always more useful to use higher-
level tools than take dependencies into account. In the case of Debian, apt (short for advanced package
tool) offers more advanced package management than dpkg. Additionally, the apt program groups the
most common commands and options of existing programs for managing dependencies, such as apt-get
or apt-cache, offering a simple interface. There are also other programs that offer an interactive interface
in text mode, such as aptitude. As additional documentation, at the end of the session is an introduction to
the aptitude program, along with several voluntary exercises to be completed outside the session (section
'The aptitude program interface').

On UNIX systems, users who have access to the system are identified by a unique number called user ID.
Each system process has an effective user ID associated with it, which indicates which are the access
permissions of the process (initially, the same as the user it is associated with).

To be able to control, in a unified way, the access of groups of users to resources, groups are defined; each
user belongs to one or more groups and each process has associated one or more group IDs that set which
group permissions it has (all those that the associated groups possess).

All system files have associated a user ID and a group ID and some permissions (read, write, and execute)
associated with those identifiers (in addition to a third group of permissions that indicates the level of
access for users and groups that do not own the file).

Databases are used to store the information of users and groups of the system. These data are traditionally
kept in files ('/etc/passwd' for users and '/etc/group' for groups). For a description of the format and the
information stored in these files, the manual pages of the files can be read ('man 5 passwd' and 'man 5
group').

Traditionally, user passwords were stored in the file '/etc/passwd' in encrypted form, but since the file is
visible to all users, this represented a security threat because the encryption system is known and if the
encrypted version of a key is copied, thousands of tests can be made to try and decrypt it without anyone’s
knowledge.

To solve this problem, the shadow passwords system was introduced, which instead of storing the keys in
'/etc/passwd' saves them in the file '/etc/shadow', a file that is used to validate and change passwords and is
only available to users of a special group. The system that is going to be used in the lab session is
configured to use this system. For more information on the file format see 'man 5 shadow'.

DSI - Laboratory Session 4: Package, User and Group Administration

4 / 19

File system objects have the user who creates them as default owner, a group (the group of the user who
creates them) and a set of permissions. For example, from the file 'file':

labdi:~/tmp # ls -l
total 8
drwxr-xr-x 2 root root 4096 Nov 16 12:21 dir
-rw-r--r-- 1 root root 29 Nov 16 12:19 file
labdi:~/tmp #

It can be said that:

it is a normal file, since the first letter is '-' (notice the difference with 'dir', which is a
directory, with a 'd' as the first letter)
permissions for the owner are 'rw-' (read and write, but not execution)
the permissions for the group are 'r--' (read only)
the permissions for the rest of the world (that is, those users who are neither the owner nor
the group of the file) are 'r--' (read only)
has a unique alias
belongs to the 'root' user
belongs to 'root' group
its size is 29 bytes
was created on 16 November at 12:19

The command chown enables changing the owner of the file and, optionally, its group. For example:

chown juan file

makes the user 'juan', the owner of the file, if this user exists;
chown juan.DSI file

makes the user 'juan' the owner of the file, and also makes the group of the file 'DSI'. Again,
as long as both exist.

In the same way, chgrp enables change the group of a file. For example:

chgrp DSI file

makes the file group 'DSI'.

Also, the video 'chown-chgrp.mp4' shows some examples of the use of these two commands.

Finally, the command chmod is used to change the permissions, for which there is also an explanatory
video ('chmod.mp4'). This command expects a series of actions to be carried out, as in the following
example:

chmod u=rw,go=r file

This command includes two actions separated by commas. The first 'u=rw' indicates that the owner (the
user, letter 'u') must have read ('r') and write ('w') permissions on the file 'file'. The second, 'go=r', indicates
that the members of the file's group (group, 'g') and those of the rest of the world (other, 'o') must have
read permissions exclusively.

In addition to setting permissions, permissions can be added to existing ones using the '+' action:

chmod u+w file

This command would add the write permission ('r') for the owner (user, 'u') to the file 'file'. (Note that in
this case there is only one action).

Finally, permissions can be removed:

chmod go-w file

DSI - Laboratory Session 4: Package, User and Group Administration

5 / 19

In this case, write permission ('w') is removed for both group (group, 'g') and the rest of the world (other,
'o').

Finally, a quite common case is to remove all permissions for the group and/or the rest of the world. For
example:

chmod go= file

This command removes all permissions for the group and the rest of the world, as it applies an empty
permission set (no permission to the right of the '=').

Both chown, chgrp and chmod can be applied to groups of files using the shell expansion and also
recursively using the '-R' option.

After reading the introduction to the section Users and security and checking, if needed, the manual pages
of the 'passwd' and 'group' files, the following questions must be briefly answered:

a. What user of NETinVM has the numeric identifier 101?
b. What shell does the user 'gnats' of NETinVM have?
c. What is the name of the default group of the user 'user1' in NETinVM?
d. What numerical identifier does this group have?

The apt tool enables installing, updating, or removing programs, managing repositories and performing
queries. The most common tasks are going be introduced in this section:

DSI - Laboratory Session 4: Package, User and Group Administration

6 / 19

apt update

update is used to update available package information from all available configured sources
(repositories). For each installed package, the latest available version is verified. This option does not
update or change any system package. A typical output when executing this command would be (it may be
different):

root@base:~# apt update
Ign:1 http://ftp.es.debian.org/debian stretch InRelease
Get:2 http://ftp.es.debian.org/debian stretch-updates InRelease [91.0 kB]
Get:3 http://security.debian.org/debian-security stretch/updates InRelease [94.3
kB]
Hit:4 http://ftp.es.debian.org/debian stretch Release
Fetched 185 kB in 0s (391 kB/s)
Reading package lists... Done
Building dependency tree
Reading state information... Done
243 packages can be upgraded. Run 'apt list --upgradable' to see them.

Ign expresses that this repository is ignored - probably because the font is outdated and there are no valid
updates. Get shows that the repository does contain relevant information on new packages and versions
and that it is therefore updated from that source. Hit indicates that the system already has this information
and is up to date. In the case of the example shown, it is also reported that 243 packages can be updated.

In fact, if the command apt update is immediately executed again, in the case of the previous example we
would get:

root@base:~# apt update
Hit:1 http://security.debian.org/debian-security stretch/updates InRelease
Ign:2 http://ftp.es.debian.org/debian stretch InRelease
Hit:3 http://ftp.es.debian.org/debian stretch-updates InRelease
Hit:4 http://ftp.es.debian.org/debian stretch Release
Reading package lists... Done
Building dependency tree
Reading state information... Done
243 packages can be upgraded. Run 'apt list --upgradable' to see them.

It must be noted that now there is no Get. Those previous Get have passed to Hit, since the information in
the repositories had just been updated. In either case, no packages are updated. To do this, you must
execute:

apt upgrade

upgrade is the option used to update the system using a sequence of actions. First, it lists the packages that
were previously installed but are no longer needed. Additionally, it shows new packages that will be
installed, plus the packages that will be kept unchanged and finally the packages that will be upgraded
(and indicating the amount of additional disc required). New packages required to satisfy dependencies
will be installed, but installed packages will not be removed. If it is necessary to remove a package to
update another one, this action is not performed.

apt full-upgrade

full-upgrade does the same as upgrade, but it also removes packages, if needed, to update others.

apt search name

This is used to search for the string name, both in the list of packages in the repositories and in their
description. This is useful if the name of a package is unknown, but instead some keywords are known that
can describe it.

apt show package

show package shows information about the package: version; priority; source; maintainer; dependencies;
size and a description of its functionality.

apt list [--option]

apt list displays the list of packages specified with --option. For example, this option can be

DSI - Laboratory Session 4: Package, User and Group Administration

7 / 19

--installed to show installed packages or --upgradeable to show packages that are upgradeable.

apt depends package

depends package shows the packages that package depends on. Typically, three categories of packages
are shown: dependencies (packages that are required and therefore must be installed); recommendations
(packages that are not necessary but are installed by default); and suggestions (packages that could be
installed but which are not installed by default).

apt install package

install package installs the package package. It asks for confirmation after reporting the amount of disc
required. To prevent the installation of the recommended packages use:

apt --no-install-recommends install package

Additionally, to install a package and its suggested packages (which are not installed by default, unlike the
recommended packages), execute:

apt -o APT::Install-Suggests="true" install package

apt remove package

remove package removes a package. It asks for confirmation after reporting the amount of disc to be
released.

apt purge package

purge package removes the package package and any additional software configuration files. It asks for
confirmation after reporting the amount of disc to be released.

apt autoremove

autoremove removes packages that were installed to satisfy dependencies but are no longer required. It is
very useful for removing unnecessary software and freeing disc space.

apt rdepends package

rdepends package shows the reverse dependency, that is, packages that depend on package.

The status of the NETinVM machine must be known. To do this, the information in the repositories must
be updated and so it will be possible to discover how many updates are pending.

DSI - Laboratory Session 4: Package, User and Group Administration

8 / 19

Installing new software is a similar procedure to updating already installed packages. It is proposed as an
exercise to install the classic games package that includes minesweeper on the NETinVM machine.

DSI - Laboratory Session 4: Package, User and Group Administration

9 / 19

A metapackage is a list of packages that install with a common purpose a group of applications, libraries
with their documentation, and dependencies. Typically, a set of packages which offer a functionality is
called a task. This possibility offers an easy way to install software to dedicate a machine to a specific
purpose: print server, office management, general-purpose laptop, etc. It is even possible to use tasks to
dedicate a machine to a more specialised use: such as astronomy or android application development. A
task is a list of packages and/or metapackages with a specific purpose. Metapackages can also be installed
with apt, as described in the previous section, but a more user-friendly application such as tasksel is
commonly used.

tasksel is a program that presents a simple interface for users who want to configure their system to
perform a specific task. This program is usually used at the beginning when installing a machine, but it can
also be used any time later. For example, when executing:

tasksel --list-tasks

The tasks available on the system are displayed, with an 'i' to show that they are installed or a 'u' to show
that they are not (uninstalled). It is possible to see the tasksel options in the manual. Task descriptions
available in the system are at /usr/share/tasksel/descs and have the .desc extension. They are
typically configuration files. Each metapackage has the following fields (not all are essential):

Task: is the name of the task or metapackage.
Relevance: a single digit from 1 to 9 that specifies the relevance of the task, where 1 is
higher and 9 is lower. 5 is the default value.
Enhances: Informs us that the task should only be installed if the tasks described in this field
are also installed.
Description: These are two lines that describe the task. The first line should be very short.
The following text can be longer, but must be indented with the first line.
Key: Necessary packages that must be previously installed so that the task can be installed.
Packages: List of packages that shape the task and which will be installed.

DSI - Laboratory Session 4: Package, User and Group Administration

10 / 19

Test-*: Informs us that the task can be installed automatically from a test program located in
/usr/lib/tasksel/tests/

Section: Area where the type of task, location, server, or user is described.
Parent: Enumerates the tasks that can be parents of this task or metapackage.

If the command tasksel is executed directly, a graphical interface is displayed in text mode, which shows
both installed and available tasks. It is possible to move through the tasks with the keyboard arrows. A task
is selected by moving the cursor to its position and pressing the space bar. When all the tasks to be
installed/uninstalled have been selected, it is possible to select OK by pressing TAB, and then just pressing
ENTER.

The following tasks must be performed with tasksel.

DSI - Laboratory Session 4: Package, User and Group Administration

11 / 19

A simple way to make a backup is with the command 'rsync'. Its main characteristic is that it uses an
algorithm that copies only the files and directories that have changed, and within each file it only transfers
the information that has changed, ans so avoids sending the complete file.

To make a local copy (as opposed to making it over the network) simply the source and destination folders
must be specified. For example, to recursively copy 'd1' into the directory 'd2' (like 'd2/d1') use:

rsync -aP d1 d2

The '-a' option is used to apply the archive mode, which respects the owner of the file, its group, and
permissions. The '-P' option is used to show a progress indication (especially useful when copying large
files.) Note that the destination directory may well be on a removable device, such as a USB stick.

It is important to note that to copy the contents of the directory 'd1' into the directory 'd2', the source path
must end in '/'

rsync -aP d1/ d2

In this second example, the file 'd1/f1' would be copied as 'd2/f1'. Instead, in the first example (without '/'
at the end), 'd1/f1' would be copied as 'd2/d1/f1'.

rsync

A backup copy of the '/home/user1/Documents' directory on a pendrive must be made. If no pendrive is
available, the exercise is identical, except that the copy will be made in another directory on the machine.

If a pendrive is available, when the pendrive is connected, if prompted, it must be specified to connect to
the NETinVM virtual machine and not to the host. Once this has been done, the device is going to be

DSI - Laboratory Session 4: Package, User and Group Administration

12 / 19

automatically detected and the file system mounted. Typically, it is going to be mounted in '/media/user1/',
but to confirm this, it is possible to find the mounting location with the command df. In '/media/user1/' a
directory is going to appear with the name of the pendrive. The name of the pendrive is going to be
assumed to be MYPENDRIVE, but of course it must be replaced by the given name in each case. If no
pendrive is available, the directory '/tmp/backup' is going to be the destination directory, which must be
created previously with the command mkdir.

Note that, by default, rsync does not delete objects in the destination directory. If this possibility must be
allowed, then the '--delete' option must be included.

A basic task of a system administrator is to add, modify, or delete user accounts and/or user groups. In this
section we are going to register new users and groups. To create accounts, it is enough to simply modify
the password and group files with the user information, create their base directories, and copy the files
found in the '/etc/skel' directory to the base directories of the users. This task can be prone to errors, so
several utilities available in the operating system are used (such as useradd and groupadd) that help
simplify the process.

The group 'students' and the two user accounts detailed below must be created, after reading the
corresponding manual pages, using the commands groupadd and useradd:

Login UID GID COMMENT
stu1 5001 students Student one
stu2 5002 students Student two

DSI - Laboratory Session 4: Package, User and Group Administration

13 / 19

It should be noted that:
First, the group must be created and then the users can be created to establish 'students' as the
default group for 'stu1' and 'stu2'.
The numerical identifier of the group 'students' must be 700.
The command useradd does not create the user's home directory by default, so it is necessary to
include the option '-m'.
Both groupadd and useradd assign right default values (established in the system configuration).
In this way, to create the group, it will be enough to specify, the name of the group and its
identifier. To create the users specify: the user name; the numeric user identifier; the default
group; the comment (with the full name) and the '-m' option.

To finish the exercise, a correct password for each of the previous users must be assigned (the easiest
method is to use the passwd command) and check that users can connect to the system. (Hint: in a
terminal that is 'user1', the command 'su - stu1' can be used to test 'stu1' user. Next, in another terminal,
in a similar way, 'su - stu2 ' can be used.

There are also commands that enable deleting users or groups from the system: deluser or delgroup.
Moreover, the first command can be used to delete a user from a group. The manual should be reviewed if
they are going to be used.

The two users recently created are going to work together on a secret project called 'datascience' and so
they must share all the files that are in the '/home/datascience' directory.

The system must be prepared, so that both have full access to the files in this directory and no one else in
system can have any kind of access to the directory or its content.

To do this, it must be considered that:

DSI - Laboratory Session 4: Package, User and Group Administration

14 / 19

Users participating in the project must all belong to an additional group created specifically
for that project (for example, 'datascience'). To create the group use the command groupadd,
and to add users to that group use the command usermod.
It must be considered that the same user can work on several projects, so the project group
(in this case 'datascience') must be an additional group. Their default group (in this case)
should remain 'students'.
Owner, group, and permissions of the directory are those that authorise which users can
access the content and which operations they can perform with it.
The group must logically be the group 'datascience'. The most appropriate owner would be
the administrator ('root' user), since in this way only users included in the group can access
the directory (the administrator can access it anyway, even if he is not the owner). (Hint: use
chown and optionally chgrp).
The permissions must enable full access to all members of the group, and no access rights to
the rest of the system users. (Hint: to assign permissions use chmod).
In addition, it will be helpful to activate the SGID bit in the permissions associated with the
directory group. (Find out why it is proposed as an exercise).

To check the result of 'Exercise 6: creating a shared directory ('/home/datascience')', the user 'stu1' has to
create a file (for example, 'stu1.txt') within the directory '/home/datascience' with the right permissions so
that all members of the 'datascience' group can modify it.

To do this, users 'stu1' and 'stu2' must:

DSI - Laboratory Session 4: Package, User and Group Administration

15 / 19

This section is left as additional optional work that can be completed at home on a voluntary basis. If
students had time in the laboratory session, after completing the compulsory part, work can be started in
the laboratory. In any case, this aptitude tutorial is considered optional and no material from this section
needs to be uploaded.

To install any program, after becoming an administrator, it is necessary to update the information about the
available packages and their sources. To do this, execute:

apt update

Once the package information has been updated, the installation of aptitude can be done. To do this the
following command must be executed:

apt install aptitude

In the previous exercise, the aptitude program was installed, so it should now be available on the
NETinVM machine. Although any modification of the installed packages must be made as administrator, it
is possible to execute it as user1. In this way, it is possible to navigate and become familiar with the menus

DSI - Laboratory Session 4: Package, User and Group Administration

16 / 19

and the package system without risk. Later, it is possible to enter the administrator password, and proceed
to modify the system.

From a shell, and as user1, the program aptitude must be launched. In the same shell, without opening
any additional window, the graphical environment of the program will appear in text mode. The screen is
divided into several areas:

The upper part, with a blue background, is the menu bar. The top line shows the main options:

Actions Undo Package Resolver Search Options Views Help

The second line shows information about the keys that must be pressed to execute some important
commands. The third line shows information about the version of aptitude and about the chosen view. The
commands on the top line can be accessed with the mouse, selecting the appropriate option, or by using the
key combination 'Crtl' and 'T' (this information also appears in the help of the second line, as 'C-T: Menu').
Other options are 'Crtl' and 'Space' or directly 'F10'. The menus can then be navigated with the keyboard
arrows. Navigation on the top line can be exited by pressing the same key combination again. The 'Q' key
from the 'Actions' submenu is used to completely exit the program, and for doing this a confirmation is
needed. If the answer is 'No', it exits the menus, but not the program. Also 'Q' is used as an escape in other
menus. Additionally, if we have mistakenly selected one or more packages to delete or install, pressing
'Crtl' + 'u' will undo these changes (similarly to 'Crtl' + 'z' in Windows).

Below the blue area there is a drop-down information area through which it is possible navigate, either
with the mouse or with the cursor arrows and then pressing 'Enter':

--- Security Updates (17)
--- Upgradable Packages (37)
--- Installed Packages (2147)
--- Not Installed Packages (54716)
--- Virtual Packages (14431)
--- Tasks (217)

The names are self-descriptive and the numbers in each category may be different. It is possible to press
'ENTER' on a category to display it, then it will appear with the prefix '--'. Pressing again closes the
category. If '[' is pressed, all the subcategories that depend on a category are opened. If ']' is pressed, the
present subcategory is closed. The cursor is used to move through the lists. Common keys, such as 'Up',
'Down' or 'Home' and 'End', can be used as in any editing program. In this way, if categories from top to
bottom are described, the following is obtained:

Security updates.
Upgradable packages: installed packages for which an update is available.
Installed packages but without any update.
Not installed packages: packages available in the distribution that are not installed.
Virtual packages: there are sometimes several packages that offer similar functionalities. In
this case, it is useful to define a virtual package whose name describes that common
functionality. (Virtual packages only exist logically, not physically; that is why they are
called virtual.) So any other package that requires that function can simply depend on the
virtual package without having to specify all possible packages individually.
Tasks: groups of packages that provide an easy way to select a predefined set of packages for
a specific purpose.

The final part of the screen, after a blue horizontal line, includes a description of the navigation zone
selection: package groups, packages, etc.

Install the 'aptitude' hmtl documentation in Spanish from the 'aptitude' program itself. To do this:

As user1, aptitude must be executed.

DSI - Laboratory Session 4: Package, User and Group Administration

17 / 19

First, available packages sources must be updated. To do this, select Actions> Update
package list or press the 'u' key. It will be notified that the user is not an administrator, and
the option to become root will be offered.
The option to become root must be chosen, and the password must be introduced (copy and
paste from the passwords.txt file).
The package, whose name is aptitude-doc-es, is not installed, so it should be searched under
Not Installed Packages > doc> main, which could be quite laborious. Another option is
to select Search (or just pressing the slash '/') and type the string 'aptitude'. Packages with the
referenced string will appear. By pressing 'n' to go forward and 'N' to go backwards, it is
possible to move between the various occurrences until the desired package is found.
Once the cursor is on the package, it can be selected for being installed by pressing '+'.
Similarly, it can be deselected with the '-' sign. In this case, it must be installed and so the '+'
key must be pressed, which will show an 'i' next to the 'p' indicating that this package is
going to be installed when the action is consolidated. The required disc space for installation
will be shown.
To install the package, select the menu Actions > Install/remove packages or directly
press 'g'. The program warns us of possible dependencies on additional packages. Press 'g' to
install the package with its dependencies.
Check that the package now appears in the category of installed packages. Additionally, it is
possible to go to the installation path to verify that the package has been installed:
/usr/share/doc/aptitude/html/es/

The aptitude program detects if any package is broken because dependencies are not met (not all
mandatory packages are installed on the system). This should not happen if software is always
installed/removed with a tool that considers dependencies between packages. Despite this, a software
installation/removal tool may have been misused and this error should be corrected. To illustrate this
capability, we will simulate a mistake, remove a package that should not have been removed, and see how
aptitude helps to detect and correct this problem. Before starting the exercise, a snapshot must be taken,
and any instance of aptitude should be closed.

GIMP or GNU Image Manipulation Program is a bitmap drawing program that is similar to Windows
paint. As user1, it can be checked that the program works correctly by invoking it from a shell (the
executable file is called 'gimp') or from the application launcher (KDE menu> Applications > Graphics >
Image Editor). The program should then be closed as it has only been executed to verify that it is working
properly.

To force a wrong installation, the package gimp-data, on which the main package gimp depends on, is
going to be removed, and then it is going to be fixed. To remove gimp-data, with superuser privileges, the
following command must be executed:

dpkg -r gimp-data

What messages appear? Why is not recommended to remove the package gimp-data?

Ignore the warnings and execute:

dpkg --force-all -r gimp-data

What has happened in this case? Open the gimp program again and see if it works.

DSI - Laboratory Session 4: Package, User and Group Administration

18 / 19

The dpkg command should never be used, unless we know very well what we are doing. Moreover,
warnings should never be ignored, and the system should never be forced into this incorrect behaviour.

Now aptitude must be opened (acting as user1 for security reasons). The message #Broken: 1 appears on
the third line in the top blue area. This indicates that there is a broken package. Additionally, a red message
should appear at the bottom of the window, indicating actions to fix this problem. By pressing '.' or ',' we
go forward or backwards between the possible actions to solve the problem, which consist of either
installing the removed package (gimp-data) or removing the package (gimp) which needs the removed
package. The action number, among all possible actions appear in square brackets. In this case, installation
of the missing package will be chosen to fix the problem, so that option should be left active.

By pressing 'b' or choosing from the aptitude menu Search > Find Broken the broken package will
appear in red. With what character is the broken package marked?

It is possible press ENTER and see information related to the package and its dependencies. In this section,
the broken dependencies appear (red lines). What package is shown as required and which version of it?

To solve the problem, just select the installation of the gimp-data package (by pressing '+'), or from the
gimp package, apply the proposed solution with '!'. Warning: ensure that the chosen option has been to
install the dependencies and do not delete gimp. Note: with 'Crtl' + 'U' any selection can be undone.

The installation solution must be applied. The red message is going to disappear and a 'B' will appear
showing that, when the installation is consolidated, the broken package will be fixed. If it has been
mistakenly chosen to delete gimp as a solution, the gimp line will appear in purple, and the label will be
'Bd' instead of 'B'. In all cases, the next character is 'A' which indicates that the package is upgradeable, but
this is not relevant for the exercise.

Pressing 'g' proceeds to consolidate the actions, fixing the broken package by installing the missing
package. Information about the package to be installed appears. The 'g' key must be pressed again to
confirm this installation. When requested, the root password must be written to proceed with the
installation. Once supplied, 'g' has must be pressed again to complete the installation. Does the version of
the installed package match the version that was needed to fix the broken package?

Once this is done, if 'b' is pressed in aptitude (check for broken packages), no broken packages should
appear.

Generated on: 2021-05-27 15:56 UTC. Generated by Docutils from reStructuredText source.

DSI - Laboratory Session 4: Package, User and Group Administration

19 / 19

Contents

Goals
Previous work

Disc management
Disc partitioning

Previous questions 1
Previous exercise 1: adding new discs to exta

Partitions and file systems
Previous question 2
Previous exercise 2: creating a file system

Swap memory in partitions and files
Previous exercise 3: adding swap memory to the system

Physical Volumes, Volume Group and Logical Volumes
Previous question 3

Work in the laboratory
Working with physical volumes, volume groups and logical volumes

Exercise 1: preparing NETinVM to create PVs, VGs, and LVs
Exercise 2: creating PVs and VGs
Exercise 3: creating LVs from VGs
Exercise 4: creating a file system (FS) on an LV
Exercise 5: replacing a disc from a VG/LV

Snapshots of LVs
Exercise 6: creating snapshots as backups

The main goals of this session are focused on:

Understanding the basic concepts related to discs, partitions, logical volumes (LVMs), and
file systems (SFs).
The management of discs, partitions, logical volumes (LVMs), and file systems (SFs).

Before attending the lab session, students must:

Read this document and become familiar with concepts such as discs, partitions, and swap.
Most of these concepts have been introduced in the lectures.

DSI - Laboratory Session 5: Discs Management, Partitions, LVMs, an...

1 / 14

Answer the questions made in the different parts of the document.

In UNIX systems the computer's devices are usually accessible using special files in the '/dev/' directory;
these special files have an associated type (block or character file) and a pair of device numbers (known as
the major and minor device number) that the system uses to know which device driver to use when
someone accesses them.

Normally these devices are of the character type, which means that the reading and writing processes are
performed by accessing only one octet at a time without buffering. However, as discs are block devices,
since in their case it makes sense to access specific positions within the device and the driver can use
buffering.

In Linux, discs have names like '/dev/sda', '/dev/sdb'...; usually the prefix '/dev/sd' is used for SCSI and
SATA (Serial ATA) discs; while for IDE discs (ATA or Parallel ATA discs) '/dev/hd' is used. These letters
enable distinguishing between different devices, depending on the order of detection. For example,
'/dev/sda' is the first disc, '/dev/sdb' is the second disc and so on.

It is usual to divide discs into partitions which are then accessible with the disc name, followed by a
number (e.g. the first partition of the disc '/dev/sda' will be the device '/dev/sda1').

The partition tables of the hard discs can be managed using special programs ('fdisk, cfdisk, ...'). These
programs know how partition tables should be organized depending on the boot system (firmware) used by
the computer; thus, PCs with BIOS (basic input/output system) use a different partition table format than
PCs with UEFI (unified extensible firmware interface) or systems with open firmware (also known as
OpenBoot).

Although partition tables have traditionally used the format 'MBR' (master boot record), also known as
'DOS' format (introduced by the MS-DOS operating system), currently there is a tendency to a greater use
of format 'GPT' (GUID partition table), which is more flexible, since it allows more partitions.
Traditionally systems with BIOS used 'MBR' and systems with UEFI used the new one 'GPT'. Today's
main operating systems can work with 'GPT', even if the system uses the older BIOS.

Previous questions 1

a. Is the device '/dev/sdj' a disc or a partition? Why?
b. Which of the following programs are used to edit the partition table of a disc: 'dd', 'fdisk', 'ls',

'mkdir', 'cfdisk'?

Previous exercise 1: adding new discs to exta

During the session, the work will be performed in the exta machine, of NETinVM. In the first part of the
session the work will be done with the 20 GiB 'sda' disc, which will be divided into two classical
partitions. The first one will be used to set up a file system and the other one will be configured as 'swap'
space. In the second part of the session, the work will be performed with eight discs of 1 GiB, to create
physical volumes (PVs), arranged in groups of volumes (VGs) and to build logical volumes (LVs) on
them.

DSI - Laboratory Session 5: Discs Management, Partitions, LVMs, an...

2 / 14

A script that creates the nine discs and connects them to exta has been prepared. Once NETinVM is
started, all the machines should be stopped by using the Shutdown all option in the KVM machines
window of the base machine. Once this is done, with the script 'prepare-disks.sh' and the using the account
'user1', it is possible to add additional discs to the specified machine. If these discs are added to the exta
machine the command is:

./prepare-disks.sh exta

Similarly, it will be possible to remove all the discs added to exta with the following script ('remove-
disks.sh'). In this case, it would be possible to remove the disc with (do not execute the command!):

./remove-disks.sh exta

Since only the exta KVM machine will be used, the following command is enough to start it up:

netinvm_run exta

However, it may be more convenient to set the Run my machines script to start only this machine and then
use the Run my machines icon in the KVM machines window of the base machine.

Once exta has started, it is possible to check that the new discs have been detected by the operating system.
Thus, the command 'lsblk' should include the nine new discs, from '/dev/sda' to '/dev/sdi'. It should be
noted that '/dev/sda' is a 20 GiB disc, as opposed to '/dev/sd[b-i]', which are 1 GiB discs.

Create two primary partitions ('/dev/sda1' and '/dev/sda2') on that disc using the program cfdisk: the
partition table will be of type 'GPT', the first partition will be of type Linux files system and will have a size
of 18 GiB. The second partition will occupy the rest of the disc and will be of type Linux SWAP.

DSI - Laboratory Session 5: Discs Management, Partitions, LVMs, an...

3 / 14

File systems can be created in partitions (formatting the partitions) using the command mkfs:

mkfs -t file_system /dev/device

where '-t' indicates the file system type (for example, ext3, ext4, xfs or btrfs) and '/dev/device' indicates the
special device file that corresponds to the partition to be formatted (for example, '/dev/sda1').

Once the file system has been created on the partition, it must be mounted in order to enable access. The
partition can be mounted manually using the 'mount' command. For instance, for mounting a partition with
the default options:

mount /dev/sda3 /home

All the files and directories that can be seen in the path '/home' will be files that will be stored in the third
partition of the disc '/dev/sda'.

If different options are needed with the 'mount' command, they must be explicitly included (these options
can be checked in the 'mount' manual page).

A partition can be mounted automatically by just adding a new line to the file '/etc/fstab' that includes the
information about the device, the directory, and additional options (see 'man fstab' for an explanation of
the meaning of the fields). The partition can then be mounted using the 'mount' command specifying only
the mount point (e.g. 'mount /home') or it can also be mounted by executing the command for all the file
systems configured for automatic mounting ('mount -a'). When the machine is rebooted the partitions that
are marked in the file '/etc/fstab' as auto-mount will be mounted automatically.

Information about the mounted devices can be obtained with the output of the 'mount' command without
arguments or, alternatively, by checking the contents of the file '/etc/mtab'.

DSI - Laboratory Session 5: Discs Management, Partitions, LVMs, an...

4 / 14

A partition can be unmounted with the 'umount' command followed by the device name or mount point.

Previous question 2

In which order does it make more sense to execute the following commands: 'mkfs', 'mkdir', 'umount',
'cfdisk', 'mount'? Justify the answer.

Previous exercise 2: creating a file system

A file system on the device '/dev/sda1' must be created and it should be mounted in a directory with the
name '/mnt/adic'. Since the mount point is a directory to which the mounted file system is attached, the
directory '/mnt/adic' must be created before executing the 'mount' command.

In addition to using the partitions to hold files, they can be used to increase the available memory on the
system by using them as swap space (virtual memory).

The partition will be formatted using the command 'mkswap' and activated using the command 'swapon'
followed by the partition name.

The command 'swapoff' followed by the name of the device can be used to deactivate a swap partition.

The automatic activation of swap partitions can be configured by adding the corresponding entries in the
file '/etc/fstab':

/dev/sda2 none swap sw 0 0

The command 'swapon -a' can be used to start using them and 'swapoff -a' to stop using them. (When the
system boots, the command 'swapon -a' is automatically executed).

Additionally, files can also be used as swap memory with the only restriction being that the files used must
not have any gap.

An example of how to create a file with name '/var/local/swapfile' and 512MiB of free space is below (the

DSI - Laboratory Session 5: Discs Management, Partitions, LVMs, an...

5 / 14

creation of the file will take a few seconds):

dd if=/dev/zero of=/var/local/swapfile bs=1M count=512

Once the file is created, it can be used in the same way as a swap partition. In this case, the activation
command includes the path to the file instead of the name of a swap partition. It must also be formatted
with the 'mkswap' command and then activated/deactivated with 'swapon/swapoff', as in the case of swap
partitions.

The disadvantage of using files instead of partitions is that access is less efficient, but the advantage is that
they facilitate the management of swap memory (it is possible to add, delete, or modify swap memory
without touching partition tables). However, since these files may end up containing private information
from running applications, only the ‘root’ should be able to access them.

Previous exercise 3: adding swap memory to the system

The swap partition '/dev/sda2' must be permanently added to the system. Additionally, it should also be
added 1 GiB of space in a swap file.

Logical volume management (LVM) is a useful technique for implementing logical storage – which
provides greater flexibility than physical storage. With LVM, 'logical' partitions can be extended across
physical hard discs and resized as needed, unlike traditional partitions. In this way, it is possible to increase
the size of a partition. It is also possible to reduce the size of a partition, providing that the space is not in
use, without data loss. It is therefore possible to allocate minimal amounts of space for each logical volume
and leave part of the disc unallocated. Later, when the partitions start to fill up, they can be expanded as
needed.

A physical disc is divided into one or more physical volumes (PV). Each PV is made up of fixed-size
physical extents (PE). A volume group (VG) is created by grouping PVs. A VG is where a logical volume
(LV) is created, which is formed by logical extents (LEs). Later, it is possible to define a file system (FS)

DSI - Laboratory Session 5: Discs Management, Partitions, LVMs, an...

6 / 14

on the LV and mount it on the system for normal use.

LVs provide more flexibility than traditional partitions. For example, it is possible:

Any number of discs can be used as a single large disc, spreading logical volumes over
several discs.
Small logical volumes can be created and their size can be changed 'dynamically' as they fill
up.
Logical volumes can be resized regardless of their order on the disc. It does not depend on
the position of the LV inside the VG, there is no need to ensure surrounding available space.
Resize/create/delete/substitute logical volumes or physical discs in a running system.

The power of using LVs will be illustrated by showing the whole process, starting with the creation of the
PVs, VGs, LVs and concluding with the implementation of an FS in the LV. In addition, the physical
replacement of a disc will be simulated, with the system running and avoiding data loss. All these tasks are
going to be done on NETinVM.

Previous question 3

Which of the following statements is more accurate?

a. LVs are stored on discs, which can hold one or more VGs.
b. PVs are stored on LVs, which can hold one or more VGs.
c. VGs can hold several LVs and they are stored in one or more PVs.

Exercise 1: preparing NETinVM to create PVs, VGs, and LVs

This exercise is a type of tutorial that the student must follow. Answers to the questions must be copied to
a text file, which will be the result of this exercise.

In the first exercise of the previous work, the discs required for this section were created. Thus, once
logged as superuser in exta, the block devices must be listed with the command 'lsblk'. Therefore, it is
possible to check that the discs 'sd[b-i]' of 1 GiB are available.

It is possible to check the performance of each disc (in the example 'sdb') with the command:

hdparm -Tt /dev/sdb

It is necessary to install additional packages to complete the work of this session, therefore, the
repositories must be updated, and two packages must be installed, with the commands:

apt update
apt install lvm2
apt install thin-provisioning-tools

DSI - Laboratory Session 5: Discs Management, Partitions, LVMs, an...

7 / 14

Exercise 2: creating PVs and VGs

The command 'lvmdiskscan' is useful to obtain the list of devices that can be used to create PVs. The list
shows if they are already formatted for this purpose. The output of the command must be copied to a text
file.

The commands 'pvscan', 'pvdisplay' and 'pvs' provide information about the PVs of the system. Initially
there should not be any (this can be checked with any of these commands).

A PV can be created with the command 'pvcreate'. For example, to create a PV in the 'sdb' disc, the
command is:

pvcreate /dev/sdb

The commands 'vgscan', 'vgdisplay' and 'vgs' provide information about the VGs that are present in the
system. Initially there is no VG and it can checked with any of the previous commands.

The creation of VGs is performed with 'vgcreate'. For example, to create a volume group called 'vg1',
with three PVs ('sdb', 'sdc' and 'sdd'), use:

vgcreate vg1 /dev/sd[b-d]

There are more commands that enable expanding, reducing, mixing, renaming and deleting VGs. For
example, it is possible to add PVs with 'vgextend'. Thus, the PVs 'sde' and 'sdf' can be added to 'vg1' with
the command:

vgextend vg1 /dev/sd[ef]

Similarly, 'vgreduce' can be used to reduce a VG. In this way, the PVs 'sdc' and 'sdd' can be removed from
the VG 'vg1' with the command::

vgreduce vg1 /dev/sd[cd]

The command 'vgmerge' merges two existing VGs. In the following example 'vg2' is merged into 'vg1':

vgmerge vg1 vg2

DSI - Laboratory Session 5: Discs Management, Partitions, LVMs, an...

8 / 14

The command 'vgsplit' splits one VG into two VGs or moves one or more PVs from the source VG into a
destination VG. In the following example, the PVs '/dev/sd[gh]' are moved from 'vg1' to 'vg2':

vgsplit vg1 vg2 /dev/sd[gh]

In the example 'vg1' is the source VG and 'vg2' is the destination VG. If the destination VG does not exist,
it is created.

The commands 'vgrename' and 'vgremove' have the utility that their name indicates, and it is left to the
student to check the manual if these commands are needed.

Once the VGs have been created, the PVs commands 'pvscan', 'pvdisplay' and 'pvs' provide information
about the VG in which the PVs have been included. It is also possible to obtain the PVs included in a
particular VG with the command:

pvs --select vg_name=vg1

Exercise 3: creating LVs from VGs

Once there is a VG, it is possible to create an LV from it and finally to format the LV to have an FS. The
flexibility of the LVs will then be tested, which can be resized on-line.

Create an LV from an existing VG using the command 'lvcreate'. Jointly with the command, it is
necessary to include: the '-L' option to specify the size of this LV, the '-n' option to set the name of the LV,
and finally the VG to create the LV. In this way, to create a 1GiB LV, called 'lv1', from the VG 'vg1', the
command is:

lvcreate -L 1G -n lv1 vg1

DSI - Laboratory Session 5: Discs Management, Partitions, LVMs, an...

9 / 14

It is also possible to create an LV with the option '-l', indicating the percentage of free space assigned to
that LV. To create an LV called 'lv1', with 50% of the free space of 'vg1', the command is:

lvcreate -l 50%FREE -n lv1 vg1

Similarly to the commands for PVs and VGs, it is possible to discover with the command 'lvs' the number
of LVs (including their features). With 'lvscan' it is possible to search for the existing LVs on all the discs.
Detailed information about the LVs present in the system is obtained with 'lvdisplay'.

An LV can be removed using 'lvremove' jointly with its name, including VG/LV:

lvremove vg1/lv1

The capacity of an LV can be increased with 'lvextend' and the '-L' option to set the size (default in MiB).
Thus, the capacity can be increased by half a GiB with:

lvextend -L +512 vg1/lv1

An increase of 1GiB can be achieved with:

lvextend -L +1G vg1/lv1

If the '+' sign is not present, the size is taken as absolute value, i.e., the resulting size is fixed to that value
(not adding the value). If the new absolute value is less than the current size, it is not changed.

It is also possible to directly add a PV:

lvextend vg1/lv1 /dev/sdc

With the '-l' option the command enables specifying the number of PEs. If the '+' sign is included this value
is added to the existing values. If not, it is taken as an absolute value. In addition, it can be added
[%{VG|LV|PVS|FREE|ORIGIN}] to indicate the percentage to set or add (with '+'). The meaning of each
option is:

%VG is the percentage of the total space in the VG
%LV is the percentage of space in the LV
%PVS is the percentage of free space remaining in the PVS
%FREE is the percentage of free space remaining in the VG
%ORIGIN is the percentage of the total space of the original LV (if it is a snapshot of another LV)

For example, the 50% of the free space of the VG can be added to the LV:

lvextend -l +50%FREE vg1/lv1

DSI - Laboratory Session 5: Discs Management, Partitions, LVMs, an...

10 / 14

Exercise 4: creating a file system (FS) on an LV

A common use of LVs is to create a file system. For example, it is possible to format 'lv1' with an ext4 file
system as would be done in a classic partition:

mkfs.ext4 /dev/vg1/lv1

With 'lvs' it is possible to check that the attributes of the LV do not change: 'w' (read/write mode), 'i'
(inherited space allocation policy) and 'a' (active). If the created FS is mounted (with the 'mount'
command), after again running 'lvs' the 'o' (open) attribute appears, thus indicating that it is in use. In this
case, it is not possible to delete it with the command 'lvremove'.

For most FS, the size of the LV can be increased without unmounting the FS. However, to decrease the
size of the LV there must be free space not used by the FS, and it must be unmounted. This does not have
to be done beforehand, since when 'lvreduce' is run, it is unmounted and then mounted again. If there are
processes using the file system, then it will fail when trying to unmount. For example, the LV 'lv1' can be
decreased by 1 GiB and the FS on it resized with the command:

lvreduce -L -1G --resizefs vg1/lv1

If the file system is mounted, the system will ask if it must be unmounted to reduce the size.

Similarly, 'lvextend' enables increasing the size of the LV. For example, for extending the LV to occupy
100% of the free space in the VG, use the command:

lvextend -l 100%FREE --resizefs vg1/lv1

In this case, the file system can remain mounted during the process.

DSI - Laboratory Session 5: Discs Management, Partitions, LVMs, an...

11 / 14

Exercise 5: replacing a disc from a VG/LV

A disc failure is a situation that every system administrator will eventually have to face. Discs usually start
to show symptoms of fatigue when the components wear out and they perform error correction techniques
more often than is average. When this happens, it is worthwhile replacing the disc with a new one as soon
as possible.

This exercise is going to start with an LV with an active (mounted) file system. One of the VG discs is
going to be replaced and the LV will be created without interrupting service, that is, without unmounting
the file system.

The procedure is conceptually simple, although it can be time consuming, especially if the disc to be
replaced is large and has many occupied PEs. The process has the following stages:

Add a new disc to the VG. This step is only necessary if the VG does not have enough free space to
copy the information of the disc that is starting to fail.

Move the PEs from the damaged disc to the newly added disc. To do this, use the command
'pvmove'. For example, the PEs from the PV '/dev/sde' must be moved to the PV '/dev/sdf' with the
command:

pvmove /dev/sde /dev/sdf

Remove the damaged disc. Use the command 'vgreduce', which was explained previously.

DSI - Laboratory Session 5: Discs Management, Partitions, LVMs, an...

12 / 14

A very interesting feature of LVMs is that they enable making snapshots of LVs. These can be used as a
backup, which enables returning an LV to its initial state (when the snapshot was made) if the new changes
introduced are not satisfactory. If the changes are correct, these changes become permanent, and the
snapshot can be removed.

It should be noted that if the snapshot runs out of space it would be unusable. Therefore, its state must be
controlled, and if it is about to fill up, its space must be expanded, as with any normal LV.

The snapshot is created with the same 'lvcreate' command already shown, but with the '-s' option,
indicating the name of the snapshot and the name of the source LV. For example, a snapshot of 'lv1', called
'lv1s1', with a size equal to 100% of the space of 'lv1' can be created using the command:

lvcreate -s --name lv1s1 -l 100%ORIGIN vg1/lv1

With the 'lvs' command it is possible to check the state of both LVs. It can be observed how the attribute
'o' (origin) is activated in 'lv1' and how 'lv1s1' is marked as LV-SH ('s', snapshot) with origin in 'lv1'.

It is possible to mount the new LV and see how its content is identical to the source LV at the time of
making the snapshot. It is also possible to show how the original LV changes with respect to the moment
in which the copy was made. On the other hand, the snapshot 'lv1s1' will occupy more space of the LV
when changes are made because it must keep the original content of the files that are modified.

Since the snapshot LV serves as a backup, all the modifications made to the content of 'lv1' can be
discarded and its original content can be recovered using the snapshot 'lv1s1'. This is possible with the
command:

lvconvert --merge vg1/lv1s1

This makes the snapshot disappear. If the changes made to the original LV must be kept, simply remove
the snapshot with 'lvremove'.

Exercise 6: creating snapshots as backups

The exercise aims to simulate the scenario in which irreversible changes are going to be made, so it is a

DSI - Laboratory Session 5: Discs Management, Partitions, LVMs, an...

13 / 14

good idea to create a backup before applying the changes. In this case, the snapshot of the LV can be used
as a mechanism to undo the changes made.

In this exercise, the 'lv1' is going to be used in the state in which it was left at the end of the previous
exercise. The 'lv1' has been created on the VG 'vg1' with a capacity of 2GiB and it has no free space.

Generated on: 2021-05-28 14:43 UTC. Generated by Docutils from reStructuredText source.

DSI - Laboratory Session 5: Discs Management, Partitions, LVMs, an...

14 / 14

Contents

Goals
Previous work

RAID concept
RAID 0
RAID 1
RAID 10
RAID 5
RAID 6
Summary of benefits
Previous question 1
Previous question 2
Previous exercise 1: preparing the discs in exta of NETinVM

The mdadm command
Previous exercise 2: installing mdadm
Introduction to mdadm

The fio command
Previous exercise 3: installing fio

Work in the lab
Creating RAIDs and measuring their performance

Exercise 1: creating a RAID 0
Exercise 2: creating a RAID 1

Including RAIDs in the file system
Exercise 3: creating a RAID 10
Exercise 4: testing the operation of RAID 10

Growing RAIDs and testing their Fault Tolerance
Exercise 5: creating a RAID 5 and growing it
Exercise 6: testing RAID 5 fault tolerance
Exercise 7: creating a RAID 6 and measuring its performance
Exercise 8: testing RAID 6 fault tolerance

Understand the basic concepts related to several kinds of RAIDs, in particular their features:
size, read speed, and write speed.
Learn to create and manage most types of RAIDs.

DSI - Laboratory Session 6: Redundant Array of Independent Discs

1 / 17

[1]

Students, before attending the lab session, must:

Read the file of the lab session and be familiar with the concept of RAID: advantages and
disadvantages of each type, capacity, speed, etc. These concepts have been introduced in
lectures and problem classes.
Carry out the tasks marked as 'Previous exercise'.

The term RAID was born in a work published in 1988 [1]. Currently the term RAID is an acronym for
redundant array of independent discs. A RAID is a way of organising information on multiple hard drives
with the intention of obtaining protection against disc failures, and/or faster access to information.

A RAID for the operating system appears to be a single logical hard drive. Data is written in chunks to
multiple discs simultaneously. There are diverse RAID arrangements that offer greater fault tolerance and
higher levels of performance than a single hard drive or a group of independent hard drives. Each RAID
level offers a specific combination of fault tolerance, performance, and cost, designed to meet different
storage needs. There are RAID levels that focus on fault tolerance, without increasing speed. Other levels
are valid to increase access speed, but without protection against failures. Finally, there is another group of
RAIDs in which two objectives are combined, protection against disc failures and improved performance.

Originally, more RAID levels were defined than those that will be seen in this lab session. Some
theoretical RAID configurations are not implemented nowadays in a practical way, being outmatched by
other RAID levels in terms of performance/cost. Other levels that originally had great acceptance, have
become obsolete due to cheaper discs and increased disc capacity or speed. Cost initially discouraged
certain RAID configurations, which over time have become feasible and therefore more popular. Many
real configurations are mixes of several RAID levels and tailored to specific problems. The most popular
RAID configurations are described below

D. Patterson, et al. 'A Case for Redundant Arrays of Inexpensive Discs (RAID).' SIGMOD
International Conference on Management of Data, Chicago, IL, USA, 1-3 June 1988. SIGMOD
RECORD (Sept. 1988) vol.17, no.3, p. 109-16.

RAID 0

This RAID level is called disc striping. It consists of dividing the information of the original files into
pieces of data that are written or read in parallel on the discs. The more discs there are, the more
fragmented the information when writing and/or reading from N discs at the same time. This type of RAID
offers the highest speed performance: with N discs with X speed, there is a reading and writing speed of
N·X. (Assuming that reading and writing speed is the same). The weak point of this RAID configuration is
that it has no fault tolerance.

The storage space is fully used. Thus, with N discs of size S the storage capacity is N·S.

The minimum number of discs for RAID 0 is two.

RAID 1

This case is the opposite of RAID 0. Instead of striping, mirror copies of the original disc are made:
mirroring. The advantage of this method is that there is fault tolerance, but on the downside, no speed

DSI - Laboratory Session 6: Redundant Array of Independent Discs

2 / 17

improvement is achieved. In this way, a RAID 1 with N discs of speed X has a read speed of N·X since it is
possible to make read requests of different fragments to the different discs in parallel. However, it is not
possible to speed up writing, as the same chunk must be written to the N discs at the same time, so the
writing speed will be X.

Similarly, storage space is used in backup copies and therefore having more discs does not mean increased
space. With N discs of size S there is a space of S, as with a single disc.

The minimum number of discs to build a RAID 1 is two. With two discs the RAID can tolerate the failure
of one of them. With more discs, a greater redundancy is achieved and so the failure of more discs is
tolerated.

RAID 10

Also known as RAID 1+0. This consists in combining both strategies: striping and mirroring. This makes
it possible to increase speed, while providing fault tolerance through redundancy. A RAID 10 with N discs
of speed X would have a reading speed of N·X, since it is possible to read the information by fragments of
all discs at the same time, even from those that are redundant copies. On the contrary, with writes it is not
possible to take advantage of the access to the N discs at the same time, since half of the discs are used to
mirror the other half. Therefore, the writing speed is N·X/2.

The visible storage space will therefore be that of half the discs. With N discs of size S there is a space of
N·S/2.

The minimum number of discs to build a RAID 10 is four. With four discs the failure of one disc is
tolerated.

RAID 5

This offers striping with distributed parity. Instead of having mirrored discs or discs fully dedicated to
parity, the parity information is distributed in an interlaced manner across the N discs of the RAID, so that
it is possible to rebuild the information in real time if any disc in the RAID fails.

With N discs with X speed, there will be a reading speed of N·X. However, to do a write it is necessary to
read the data, read the parity, then write the data and the parity, so writing speed is penalised by four,
yielding N·X/4.

The storage space is also reduced from the original N discs due to redundant information. With N discs of
size S the available storage space is (N-1)·S.

The minimum number of discs to build a RAID 5 is three. In this type of RAID, the failure of one disc is
tolerated.

RAID 6

This level of RAID is similar to RAID 5, but offering a double parity system, so that there is more
redundancy and therefore fault tolerance.

With N discs with X speed, the reading speed is N·X. However, a different result is obtained for writing. To
make a write, it is necessary to read the data, read the two parity fragments, then write the data and the two
parity fragments, and so the writing speed is penalised by six and yields N·X/6.

The storage space is also reduced compared to the original N discs, but more markedly due to the double
parity scheme. With N discs of size S the available storage space is (N-2)·S.

In this case, the minimum number of discs to build a RAID 6 is four. The most interesting part of this type
of RAID is that it tolerates the failure of two discs.

Summary of benefits

The following comparison table summarises the capabilities of the various types of RAID described in this
lab. It is assumed that N discs are equal, with speed X and with capacity S. The RIOPS column shows the
read speed: Read Input/output Operations Per Second. The WIOPS column shows the write speed: Write

DSI - Laboratory Session 6: Redundant Array of Independent Discs

3 / 17

[*]

Input/output Operations Per Second. The Capacity column shows the available storage space on the
RAID. The Minimum column indicates the minimum number of discs required to build a RAID of the
indicated type, and the Failures column shows the number of discs that are tolerated to fail
simultaneously.

RAID RIOPS WIOPS Capacity Minimum Failures
0 NꞏX NꞏX NꞏS 2 0
1 NꞏX X S 2 (N-1)
10 NꞏX NꞏX/2 NꞏS/2 4 Between 1 and N / 2-1 [*]
5 NꞏX NꞏX/4 (N-1)ꞏS 3 1
6 NꞏX NꞏX/6 (N-2)ꞏS 4 2

Depends on which specific discs in the RAID configuration fail.

Previous question 1

Initially, there are four equal discs of 500 GB. The goal is to build a RAID with a capacity of at least 1.5
TB, offering fault tolerance of at least one disc and with the highest possible speed, for both reading and
writing. What type of RAID would be best suited to these requirements? The answer must be reasoned,
and the advantages and disadvantages of the selected RAID must be explained.

Previous question 2

The cost of 1TB magnetic discs is considered a critical parameter in this example, so the number of discs
should be minimized in this case. The goal is to build a RAID with a capacity of at least 3 TB, tolerating at
least one disc failure, and at least doubling the write speed of an individual disc. What would be the type
of RAID that with fewest discs would meet the specifications? Justify both choosing a RAID type and
discarding the rest.

Previous exercise 1: preparing the discs in exta of NETinVM

During the session, the exta machine, inside NETinVM, is going to be used.

In this session eight equal discs of 300 MB are going to be used. For this reason, if the discs of the
previous version are still in place, they must be removed with the script remove-discs.sh that was
provided with that laboratory assignment.

The eight discs in this session are different from those in the previous session. To be able to clearly
observe the speed gain in the various types of RAID, the speed of the discs will be limited to 200 iops. A
script has been prepared that creates the eight 300 MB discs with limited speed and connects them to exta.
Once NETinVM has been started, all machines must be stopped by pressing the Shutdown all button in the
KVM machines desktop widget. Once this is done, with the script 'prepare-discs.sh', as user1 in 'base', the
additional discs can be added to any KVM machine. For example, to add the discs to exta:

./prepare-discs.sh exta

Similarly, it would be possible to remove all the discs added to exta with the script 'remove-discs.sh'
(although it should not be necessary):

./remove-discs.sh exta

As only the KVM machine exta will be used, it is enough to execute the following command:

netinvm_run exta

However, it may be more convenient to configure the 'Run my machines' script to only start this machine
and then use the 'Run my machines' icon.

DSI - Laboratory Session 6: Redundant Array of Independent Discs

4 / 17

Once exta is booted, it can be verified that the new discs have been detected by the operating system. To
do this, the command lsblk should include the eight new discs, from '/dev/sda' to '/dev/sdh'. It should be
noted that the eight discs are equal and 300 MB.

The exta machine does not have the mdadm command installed (useful for creating and managing RAIDs
in Linux environments). This tool originally developed by Derek Vadalam was published on the internet in
2002 [2]. The article is not now available at the original address, since the same author published a book in
2009 with the extended content of that article [3]. The documentation provided by the Linux manual, once
the command is installed, is enough for the development of the session.

Previous exercise 2: installing mdadm

To install the mdadm command in exta, several tasks must be performed:

Update the system repository sources using the apt command, update option:

apt update

Install the mdadm command:

apt install mdadm

DSI - Laboratory Session 6: Redundant Array of Independent Discs

5 / 17

Introduction to mdadm

mdadm has seven main modes of operation. Usually only Create, Assemble and Monitor modes are used.
The rest of the modes are useful to fix or modify the RAID in some way. In general, mdadm commands
have the following format:

mdadm [mode] <raiddevice> [options] <component discs>

To run mdadm, administrator privileges are needed, and so it is assumed that mdadm is executed as root.

The modes can be specified with options. Sometimes, when a certain option is set, a certain mode is
assumed, without the need to explicitly specify it. If a certain mode is needed, the following options can be
used:

--create or equivalently -C

Creates a new RAID, with the specified name, specifying the level after the --level option, and
the devices specified with the --raid-devices option. For example, to create a RAID 5, called
myraid5, with three active discs forming the RAID: sda, sdb and sdc, leaving sdd as hot spare:

mdadm --create /dev/md/myraid5 --level=5 --raid-devices=3 --spare-
devices=1 /dev/sd[a-d]

--assemble or equivalently --A

Starts a previously defined RAID. The array may have been previously defined from the command
line or it may be specified in /etc/mdadm.conf. This is usually done in start-up scripts after a
system reboot. For example, the following command will boot all RAIDs defined in mdadm.conf:

mdadm --assemble --scan

--follow or --monitor or equivalently --F

It monitors one or more RAIDs and acts on any change of state, being able to configure mdadm as
a daemon to send alerts and/or execute commands when a disc fails. By default, the alert messages
are sent to the root user of the system. The following command monitors events every 60 seconds
in the RAID myraid5, sending an email to the system administrator:

mdadm --monitor --mail=sysadmin --delay=60 /dev/md/myraid5

--build or equivalent --B

Build a RAID without superblocks. For these types of RAIDs, mdadm cannot differentiate between
the initial build and later assembly. Moreover, it is not possible to check that the discs are suitable.
This mode should not be used unless the command is fully understood.

--grow or equivalently --g

Useful to grow, shrink or reshape a RAID in some way. An example would be, given the RAID
level 5 example, myraid5, with 3 active discs and a spare disc, it would be possible to increase the
number of discs in the RAID using the spare disc, for this it would be possible to do:

mdadm --grow --raid-devices=4 /dev/md/myraid5

To add another spare disc, in this case sde, it is possible simply add it with the --add-spare option.
This causes it to enter manage mode, which does not have an option as such to be selected. The
command would be:

mdadm /dev/md/myraid5 --add-spare /dev/sde

DSI - Laboratory Session 6: Redundant Array of Independent Discs

6 / 17

[2]

[3]

--misc or equivalent --M

This includes all options that are not included in the rest of commands. For example, if a disc is
included as the first parameter, or if the first option is --add, --re-add, --add-spare, --fail, --remove,
or --replace, then it is assumed to be in manage mode. Any other option will cause misc mode to
be assumed.

Useful examples within this mode would be the following to see the status of the RAID or one of
its components:

mdadm --misc --detail /dev/md/myraid5
mdadm --examine /dev/sdd

An interesting option is to mark a disc as faulty. This means that if the RAID implements
redundancy, the system is properly reconfigured. It must be noted that in the case of a RAID with
large discs this time can be a long time. In the case of the session, with 300 MB discs, these times
will not exceed one minute. In the example below, the sda disc is marked as faulty:

mdadm /dev/md/myraid5 --fail /dev/sda

In the lab session students will be guided through the sequence of actions to create various types of RAID,
make them grow, remove them completely, etc.

Derek Vadala. 'mdadm: A New Tool for Linux Software RAID Management'. 2002. Originally
published in http://www.linuxdevcenter.com/pub/a/linux/2002/12/05/RAID.html.

Derek Vadala. 'Managing RAID on Linux. Fast, Scalable, Reliable Data Storage'. Publisher: O'Reilly
Media. March 2009.

The hdparm command is not the best choice for measuring the read and write speed of a RAID. It operates
at a low level, and the results are often inconstant for the same measurement, and there are not many
options to adjust exactly what to measure and how.

The fio command has been created specifically to allow benchmarking of I/O disc workloads. It has many
options and it is possible to make measurements taking into account different file sizes, access types, cache
use, etc. During the session, the full fio command will be given, with all of its options set for reading in
one case and writing in another, so that only the name of the RAID on which the measurement is going to
be made will have to be changed. As it is a long command to write, intensive use of COPY and PASTE the
first time, and then CTRL+R, is recommended to retrieve the command from the shell history.

Previous exercise 3: installing fio

To install the fio command in exta, the following instructions must be completed:

Update the sources of the system repository using the apt command, update option. If the sources
were just updated by the mdadm installation, this step would not be necessary:

apt update

Install the command fio:

apt install fio

DSI - Laboratory Session 6: Redundant Array of Independent Discs

7 / 17

The starting situation is that the external machine must have eight discs of 300 MB with the speed limited
to 200 iops. It is important to make sure that the work is done on the exta machine and that the correct
version of the discs is installed, along with the mdadm and fio commands.

The creation of the first RAID is going to be guided, and so it is important that not only the commands are
executed, but that it is understood what is being done. In this way, the rest of the session will be
straightforward, as CRTL+R will simply be used to retrieve the commands and edit them properly.

Create a RAID 0 with two discs: sda and sdb, with the name myraid0. No hot-spare discs are used because
this type of RAID does not implement redundancy. This could be done with the command:

mdadm --create /dev/md/myraid0 --level=0 --raid-devices=2 /dev/sd[a-b]

To establish how many RAIDs there are in the system, one possibility is to execute the command:

cat /proc/mdstat

It is possible to obtain details of the RAID using mdadm --detail, specifying the name of the RAID. The
command will return RAID information, such as size, status of the discs, etc.

mdadm --detail /dev/md/myraid0

In this case, it should be noted that the size is as expected with a RAID 0 of two discs of 300 MB, the final
space available in the RAID is that of the sum of the discs, as indicated in RAID 0 .

To measure speed performance, the fio command shown below must be executed. Warning, the RAID
name should be changed as necessary. In this first case of RAID 0 (myraid0), the correct name is already
written, so just copy and paste:

fio --filename="/dev/md/myraid0" --direct=1 --norandommap --rw=randread
--ioengine=libaio --bs=512B --iodepth=16 --runtime=60 --name=totaliops200

The reading speed measurement will start, and the progress percentage will be displayed on the console.
Some time is needed until it reaches 100%. The final information in the command will look like the
following (it is recommended that the terminal be large enough to avoid being confused by line breaks):

fio-2.16
Starting 1 process
Jobs: 1 (f=1): [r(1)] [100.0% done] [202KB/0KB/0KB /s] [404/0/0 iops] [eta 00m:00s]
totaliops200: (groupid=0, jobs=1): err= 0: pid=1765: Thu Oct 24 13:11:28 2019

 read : io=11868KB, bw=202285B/s, iops=395, runt= 60075msec
 slat (usec): min=53, max=948, avg=74.37, stdev=23.30
 clat (usec): min=2, max=136319, avg=40414.65, stdev=33629.90

 lat (usec): min=345, max=136384, avg=40489.02, stdev=33619.49
 clat percentiles (usec):

 | 1.00th=[354], 5.00th=[442], 10.00th=[454], 20.00th=[
478],

 | 30.00th=[3280], 40.00th=[22656], 50.00th=[41728], 60.00th=
[60160],

 | 70.00th=[76288], 80.00th=[78336], 90.00th=[80384], 95.00th=
[81408],

 | 99.00th=[82432], 99.50th=[83456], 99.90th=[83456], 99.95th=
[87552],

DSI - Laboratory Session 6: Redundant Array of Independent Discs

8 / 17

 | 99.99th=[127488]
 lat (usec) : 4=0.01%, 250=0.01%, 500=24.47%, 750=4.48%, 1000=0.40%
 lat (msec) : 2=0.06%, 4=1.47%, 10=3.09%, 20=5.38%, 50=15.49%
 lat (msec) : 100=45.09%, 250=0.03%

 cpu : usr=0.03%, sys=3.57%, ctx=19278, majf=0, minf=11
 IO depths : 1=0.1%, 2=0.1%, 4=0.1%, 8=0.1%, 16=99.9%, 32=0.0%, >=64=0.0%

 submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%,
>=64=0.0%

 complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.1%, 32=0.0%, 64=0.0%,
>=64=0.0%

 issued : total=r=23735/w=0/d=0, short=r=0/w=0/d=0,
drop=r=0/w=0/d=0

 latency : target=0, window=0, percentile=100.00%, depth=16
Run status group 0 (all jobs):
READ: io=11867KB, aggrb=197KB/s, minb=197KB/s, maxb=197KB/s, mint=60075msec,
maxt=60075msec

The fifth line (the one that begins with read), contains the final result of the measurement of input/output
operations (in this case reads). The figure in the example is 'iops=395' but it may be slightly different. It is
interesting to compare this result with the expected result. As it is a RAID 0 (striping), the expected speed
will be that of a disc, multiplied by the number of discs. In this case, as the read speed of a disc is 200 iops,
and there are two discs in the RAID, the expected speed is 400 iops. The experimental result of 395 iops is
very close, the relative error being (400-395)/400*100=1.25%.

To measure the writing speed, the command to execute is:

fio --filename="/dev/md/myraid0" --direct=1 --norandommap --rw=randwrite
--ioengine=libaio --bs=512B --iodepth=16 --runtime=60 --name=totaliops200

The measurement process will start again, taking a few seconds to reach 100%. The final result will be
something similar to:

fio-2.16
Starting 1 process
Jobs: 1 (f=1): [w(1)] [100.0% done] [0KB/195KB/0KB /s] [0/391/0 iops] [eta 00m:00s]
totaliops200: (groupid=0, jobs=1): err= 0: pid=1773: Thu Oct 24 13:14:56 2019

 write: io=11742KB, bw=200224B/s, iops=391, runt= 60049msec
 slat (usec): min=10, max=9190, avg=54.56, stdev=77.67
 clat (usec): min=885, max=84057, avg=40852.66, stdev=9742.20
 lat (msec): min=1, max=84, avg=40.91, stdev= 9.74

 clat percentiles (usec):
 | 1.00th=[18560], 5.00th=[24448], 10.00th=[28032], 20.00th=

[33536],
 | 30.00th=[35584], 40.00th=[38656], 50.00th=[40704], 60.00th=

[43264],
 | 70.00th=[45824], 80.00th=[49408], 90.00th=[53504], 95.00th=

[57088],
 | 99.00th=[63232], 99.50th=[66048], 99.90th=[70144], 99.95th=

[71168],
 | 99.99th=[74240]

 lat (usec) : 1000=0.01%
 lat (msec) : 2=0.03%, 4=0.14%, 10=0.02%, 20=1.35%, 50=80.76%
 lat (msec) : 100=17.71%

 cpu : usr=0.00%, sys=2.77%, ctx=12518, majf=0, minf=8
 IO depths : 1=0.1%, 2=0.1%, 4=0.1%, 8=0.1%, 16=99.9%, 32=0.0%, >=64=0.0%

 submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%,
>=64=0.0%

 complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.1%, 32=0.0%, 64=0.0%,
>=64=0.0%

 issued : total=r=0/w=23483/d=0, short=r=0/w=0/d=0,
drop=r=0/w=0/d=0

 latency : target=0, window=0, percentile=100.00%, depth=16
Run status group 0 (all jobs):
WRITE: io=11741KB, aggrb=195KB/s, minb=195KB/s, maxb=195KB/s, mint=60049msec,
maxt=60049msec

In this case, the write speed is 391 iops, also quite close to the expected 400 iops write speed.

Delete the created RAID and create a new RAID 0 as an exercise – and in this case with four discs.

DSI - Laboratory Session 6: Redundant Array of Independent Discs

9 / 17

To eliminate the RAID, as a file system has not yet been created and it has not been mounted on the
system, it will be enough to stop the RAID, indicating the name of the RAID, with the command:

mdadm --stop /dev/md/myraid0

It is a good idea to remove any configuration information from the RAID, and so make the disc ready for
use in subsequent RAIDs. This can be done with the command:

mdadm --misc --zero-superblock /dev/sd[a-b]

RAID myraid0 should no longer be present. This can be checked with the command:

cat /proc/mdstat

The system is now ready for the creation of a new RAID.

Exercise 1: creating a RAID 0

Create a RAID 0 with four discs, /dev/sd[a-d], which will be called myraid0. The capacity of the system
must now be established. Does the observed size match the predictions explained in the RAID 0 section?
Similarly, the RAID read and write speed must be measured in iops. What is the percentage difference in
both measurements from the expected value?

Exercise 2: creating a RAID 1

Create a RAID 1 with two discs called myraid1. In this case, by supporting this type of fault-tolerant
RAID, it is possible to add hot-spare discs so add an additional disc of this type. The create section of the
mdadm command shows the use of the --create option to create RAIDs with spare discs. Warning, the
command that appears there must be customized in the appropriate way. In this case, the name myraid1 is
proposed, the option --level must be 1, as it is a RAID 1. The number of active discs will be 2, so the
option --raid-devices will be two. The spare disc will be specified with --spare-devices=1. The discs
used will be /dev/sd[a-c]. The system will take a few seconds to create. It is possible to observe the state of
the system, even the percentage of creation with cat /proc/mdstat.

Similarly, as has been done before, the size of the available storage in the RAID must be measured, along

DSI - Laboratory Session 6: Redundant Array of Independent Discs

10 / 17

with its speed. Does the observed size match the predictions explained in the RAID 1 section? What is the
percentage difference in speed measurements from the expected value?

When the RAID speed measurement has been completed, a disc failure, for example sda, will be simulated
and what happens in the system must be observed. The command to mark the sda disc as faulty is:

mdadm /dev/md / myraid1 --fail /dev/sda

As soon as the sda disc is marked as faulty, it is possible to see how the system is rebuilt using cat
/proc/mdstat or mdadm --detail /dev/md/myraid1.

RAID 10, as described in RAID 10, combines the advantages of RAID 0 (striping) and RAID 1
(mirroring).

Create a RAID 10 with the name myraid10 – initially with four discs in RAID and two hot-spare. The
creation time will be longer than in the previous case when making redundancy with more discs. It is a
good idea to watch the build process with the command cat /proc/mdstat until it completes.

It is possible to observe the RAID configuration with the command:

mdadm --detail /dev/md/myraid10

In this case, not only the size is relevant, but the configuration they form. There are two sets of discs called
set-A and set-B. Each set is a mirror copy of the other (RAID 1). Additionally, the two discs in a set form
a RAID 0.

DSI - Laboratory Session 6: Redundant Array of Independent Discs

11 / 17

Once any type of RAID has been created, it is possible to create a file system on it and to mount it in an
existing file system. To create an ext4 file system on the created RAID 10, the command is:

mkfs -t ext4 /dev/md/myraid10

To mount the RAID in the file system, the directory /mnt/test:

mkdir /mnt/test

The RAID will be mounted with the command:

mount /dev/md/myraid10 /mnt/test/

Finally, /etc will be copied to verify that the RAID works:

rsync -avP /etc /mnt/test

Exercise 3: creating a RAID 10

Create a RAID 10 that will also be incorporated into the file system. In this case, the speed and space
characteristics of this type of RAIDs will also be measured.

Exercise 4: testing the operation of RAID 10

In this case, in addition to capacity and speed, simulate the fault tolerance of the RAID, and carry out the
following actions:

DSI - Laboratory Session 6: Redundant Array of Independent Discs

12 / 17

It is possible to grow a RAID that is included in the file system by adding discs to the system. It should be
noted that growing a RAID consists of adding active discs to the RAID, not adding spare discs, although it
is also possible to add a disc, which by default will be added as spare, and then actively incorporate it into
the system.

As an example for this section create a RAID 5 with four active discs:

mdadm --create /dev/md/myraid5 --level=5 --raid-devices=4 /dev/sd[a-d]

The creation process can be observed by:

cat /proc/mdstat

Once the RAID is created, format it and m̀ount it in /mnt/test:

mkfs -t ext4 /dev/md/myraid5

mount /dev/md/myraid5 /mnt/test/

DSI - Laboratory Session 6: Redundant Array of Independent Discs

13 / 17

Use the RAID to copy /etc:

rsync -avP /etc /mnt/test

It is possible to add directly an active disc. To do this, the option --grow must be used, indicating the new
disc, in this case sde, and the new RAID configuration with five discs with the option --raid-devices:

mdadm --grow /dev/md/myraid5 --add /dev/sde --raid-devices=5

Reconfiguration time will be appreciable as parity must be recalculated and written for each group of data
segments.

The RAID size can be checked with:

mdadm --detail /dev/md/myraid5

However, the file system has not changed its size. It can be observed if the command df -h is executed.
To make the file system grow and occupy all the RAID space, execute the command:

resize2fs /dev/md/myraid5

Check with df -h how the file system has grown to occupy all the space in the RAID.

Add spare discs directly with --add. This process is almost instantaneous as they are not actively
incorporated, so no additional information must be recalculated or written. To add sdf as spare:

mdadm --add /dev/md/myraid5 /dev/sdf

To make the spare disc active, simply set the new size of the RAID as six discs:

mdadm --grow /dev/md/myraid5 --raid-devices=6

Again, the process can be expensive as parity must be recalculated and rewritten on the discs.

Exercise 5: creating a RAID 5 and growing it

Create a RAID 5 with four active discs, observe its performance (capacity and speed), and subsequently
increase its size. First, an active disc will be directly added to the system. A spare disc will then be added,
which will later become active, thus growing the array.

DSI - Laboratory Session 6: Redundant Array of Independent Discs

14 / 17

Exercise 6: testing RAID 5 fault tolerance

The starting situation is a RAID 5, with six active discs in the RAID, mounted in /mnt/test, and with the
/etc directory copied in it. In this section, the fault tolerance of the system is going to be checked,
simulating a disc failure.

As described in the initial section on RAID 5, this type of RAID supports the failure of one disc,
whichever it may be, since the data fragments are distributed over the N-1 discs, leaving one disc to store
the error-correcting code. This parity information is also distributed in an interleaved manner across the
discs, so there is no dedicated parity disc. In this way, it does not matter which disc is failing.

DSI - Laboratory Session 6: Redundant Array of Independent Discs

15 / 17

Exercise 7: creating a RAID 6 and measuring its performance

The RAID 6 offers a double distributed fault tolerance scheme, thereby tolerating the simultaneous failure
of two RAID discs.

Create a RAID 6 (--level=6) with four discs, the minimum number of discs in a RAID 6. This RAID will
be called myraid6. It is possible to try to create it with fewer discs, but mdadm will give an error and warn
of the minimum number needed.

DSI - Laboratory Session 6: Redundant Array of Independent Discs

16 / 17

Exercise 8: testing RAID 6 fault tolerance

In the following exercise observe the performance of this type of RAID. To do this, the RAID is going to
be grown by adding two spare discs, and the simultaneous failure of two discs will later be forced. Finally,
grow RAID 6 to reach six active discs and measure the speed.

Generated on: 2021-05-27 16:09 UTC. Generated by Docutils from reStructuredText source.

DSI - Laboratory Session 6: Redundant Array of Independent Discs

17 / 17

Contents

Goals
Previous work

Previous exercise 1: preparing NETinVM for the laboratory session
Previous exercise 2: find out the configuration of 'exte'
Previous exercise 3: script to prepare test data

Work in the laboratory
Installing a RAID 1

Exercise 1: add the discs to 'exte'
Exercise 2: create the RAID 1
Exercise 3: move '/home'
Exercise 4: creating the file system for data

Playing with data and backups
Exercise 5: using rsync

Optional exercise 1: using snapshots

Reinforce the learning of several aspects of the subject, with special emphasis on storage
management and shell scripts.

Before attending the lab session, students must:

Review previous laboratory assignments, especially those related to shell scripting and
storage.
Do the exercises labelled as 'previous exercise'.

DSI - Laboratory Session 7: DSI Review

1 / 9

During the lab session, a modified version of 'exte' will be used, so the first step is to update, if needed, the
script 'Run my machines' and restore the backup labelled 'p7' (the full name of the file is
'kvm_machines_2020-11-19_12-24_p7.tgz').

Using the logical volumes and RAID tools studied during the course, find out what type of storage is used
in this version of 'exta'.

After reading the introduction to the section 'Playing with data and backups ', make a script for the bash

DSI - Laboratory Session 7: DSI Review

2 / 9

command interpreter that creates the directories and files indicated by a CSV file with the following
format:

Each line is a record with three fields: directory, file, content for file.
Fields are separated by commas.
The first line is the header.

The script should work like this:

It must create the directories in the working directory.

It must read the listing from the standard input.

It must ignore the header.

For each record:

If the directory does not yet exist, it must create it. (If it exists, the script should
not fail).
It must create the file in the indicated directory.
The file must contain exactly the indicated data, without adding line breaks or
any other additional character.

During development, it is recommended to use a reduced version of the listing. For example:

user1@exte:~/p7$./list_generation.py > list.txt
user1@exte:~/p7$ head -n 5 list.txt >short_list_5.txt
user1@exte:~/p7$ cat short_list_5.txt
directory,file,file_content
process,f0012,570d2de0b8df0e6cface5f51956c69bf90659964192e5cd28be7987464772620
process,f0924,3da71f773af23f68f2a8d284fe2c1331d9b387b1ce3796283ce62700d6c58307
process,f0878,5e075233c6d6160c9329c18cddce59e6a5d26980e1d3dea2bf1786765155e156
process,f0432,9290851ba77c5b69df944ffc9a671cdc32384229e2b4606729d1e65b48a63c2a
user1@exte:~/p7$ mkdir tests
user1@exte:~/p7$ cd tests
user1@exte:~/p7/tests$../list_processing.sh < ../short_list_5.txt
user1@exte:~/p7/tests$ ls -l
total 4
drwxr-xr-x 2 user1 user1 4096 Nov 18 15:37 process
user1@exte:~/p7/tests$ ls -l process
total 16
-rw-r--r-- 1 user1 user1 64 Nov 18 15:37 f0012
-rw-r--r-- 1 user1 user1 64 Nov 18 15:37 f0432
-rw-r--r-- 1 user1 user1 64 Nov 18 15:37 f0878
-rw-r--r-- 1 user1 user1 64 Nov 18 15:37 f0924
user1@exte:~/p7/tests$ cat process/f0012
570d2de0b8df0e6cface5f51956c69bf90659964192e5cd28be7987464772620user1@exte:~
/p7/tests$

Note that since the file 'process/f0012' does not include a line break at the end, the shell prompt appears
after the content of the file. Also, note that all files must have the same length: 64 bytes.

Additionally, when everything seems right, a test should be made with the verifier. Of course, the verifier
only works with a complete list (25 directories and 100 files per directory). To avoid dragging errors from
previous tests, it is best to remove the previous tests and generate everything from scratch:

user1@exte:~/p7/tests$ cd ..
user1@exte:~/p7$ rm -rf tests
user1@exte:~/p7$ mkdir tests
user1@exte:~/p7$ cd tests
user1@exte:~/p7/tests$../list_processing.sh < ../list.txt
user1@exte:~/p7/tests$../list_check.sh < ../list.txt
Comprobación correcta / 2500 files :-)
user1@exte:~/p7/tests$

DSI - Laboratory Session 7: DSI Review

3 / 9

'exte' it is going to be used to learn what to do in the following example:

There is a desktop computer on which some previous work was done and the results are stored in the
'/home' folder.
This project, which began as small tests, has become more complex and takes up more space, so the
'/home' file system is almost full.
In addition, it is our goal to have an independent file system to store data.
It is an objective to tolerate failures of a disc, both in '/home' and in the new file system for data, so
it has been decided to switch to using a RAID 1 system.
Two new 15 GB discs each have been purchased, hot-pluggable (without turning off the machine).
The transition must / done without neither the computer nor the '/home' data becoming unavailable.

The following steps are necessary to make this project a reality:

Add the discs to 'exte'.
Build the RAID 1.
Add it to the existing volume group.
Move the logical volume containing '/home' to that group.
Reuse the space freed by '/home' on the disc '/dev/vda'.
Create a logical volume for the data.
Create a file system for the data.
Mount the file system and configure the system to use it automatically (at boot time).
Prepare the new system so that 'user1' can use it comfortably and access it as '/home/user1/data'.

Exercise 1: add the discs to 'exte'

DSI - Laboratory Session 7: DSI Review

4 / 9

Exercise 2: create the RAID 1

Exercise 3: move '/home'

DSI - Laboratory Session 7: DSI Review

5 / 9

Exercise 4: creating the file system for data

Developing tools for data processing often involves the following:

Generate a certain set of files and directories that, although they meet certain requirements or
follow certain patterns, change each time. (The fact that they change each time makes it

DSI - Laboratory Session 7: DSI Review

6 / 9

easier to detect possible programming errors).
Make copies of the starting data and/or the results.
Carry out functional tests and quickly return to the initial state.

During this section, exercises will be done that follow this pattern, and for this, the following programs are
available:

list_generation.py
This is a program that generates a random list of directories, files, and content that are going
to be used to carry out the tests. The program generates the listing on standard output. The
list is a CSV file with the following format:

Each line is a record with three fields: directory; file; file content.
The fields are separated by commas.
The first line is the header.

The usual way of using it will be:

./list_generation.py > list.txt

An example line is:

process,f0012,570d2de0b8df0e6cface5f51956c69bf90659964192e5cd28be7987464772620

Where 'process' is the folder in which the file 'f0012' must reside, and whose content must be
the string '570d2de0b8df0e6cface5f51956c69bf90659964192e5cd28be7987464772620'.

list_processing.sh
Shell script that must have been developed before the laboratory session. (See 'Previous
exercise 3: script to prepare test data').

list_check.sh
Shell script that checks that the content of the current directory is consistent with the listing it
reads from its standard input. For example:

user1@exte:~/p7$./list_generation.py > list.txt
user1@exte:~/p7$ mkdir tests
user1@exte:~/p7$ cd tests
user1@exte:~/p7/tests$../list_processing.sh < ../list.txt
user1@exte:~/p7/tests$../list_check.sh < ../list.txt
2500 files perfectly checked! :-)
user1@exte:~/p7/tests$

makes_changes.py
Program that makes changes to files and directories in the current folder. For example:

user1@exte:~/p7/tests$../list_check.sh < ../list.txt
2500 files perfectly checked! files :-)
user1@exte:~/p7/tests$../makes_changes.py
user1@exte:~/p7/tests$../list_check.sh < ../list.txt
ERROR: Wrong content in file: USB/f0424 :-(
user1@exte:~/p7/tests$

Exercise 5: using rsync

In this exercise, a disc for backups must be added and then use the rsync program both to perform backups
and to discard the changes made.

DSI - Laboratory Session 7: DSI Review

7 / 9

Assuming that the backup disc does not have to be used every time a test is done, perform the following
actions using snapshots of the logical volume 'data', bearing in mind that logical volume management must
be done as root.

Verify that the content of '/home/user1/data/.' is correct using the program 'list_check.sh'.
Prepare logical volume 'data' for testing.
Verify that the content of '/home/user1/data/.' is correct using the program 'list_check.sh'.
Make random changes to '/home/user1/data/.' using the program 'makes_changes.py'.
Check, using the verifier, that '/home/user1/data/.' no longer passes the verification process.

DSI - Laboratory Session 7: DSI Review

8 / 9

Discard changes made to logical volume 'data'.
Verify that the content of '/home/user1/data/.' is correct again.

Generated on: 2021-05-28 16:14 UTC. Generated by Docutils from reStructuredText source.

DSI - Laboratory Session 7: DSI Review

9 / 9

	Introduction to the Laboratory
	Laboratory Session 0. Virtual Machine Installation and First Commands
	Laboratory Session 1. Command Line
	Laboratory Session 2. Scripts
	Laboratory Session 3. Execution of Python Applications, Management of Processes and Threads
	Laboratory Session 4. Package, User and Group Administration
	Laboratory Session 5. Discs Management, Partitions, LVMs, and SFs
	Laboratory Session 6. Redundant Array of Independent Discs
	Laboratory Session 7. DSI Review

