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Goals and structure of the thesis 
 

Nanotechnology involves the design, characterization, production and 

application of structures, devices and systems by the control of the shape and size 

at the nanometer scale involving different fields. In the last decade, nanotechnology 

development has boosted the interest in hybrid nanomaterials. These materials are 

a complimenting combination of two (or more) nanoparticles (NPs) with enhanced 

performance characteristics that offer exciting opportunities. It allows the possibility 

of integrating materials with different physical and chemical properties to widen the 

range of practical applications.  

In this context, Au NPs have recently attracted a lot of attention due to the great 

opportunities that Au offers at the nanoscale. In fact, their facile synthesis and 

functionalization can be exploited for constructing hybrid nanoparticles showing 

multi-functionality. In this manner, different Au hybrid nanostructures have been 

developed exhibiting diverse sizes, shapes and compositions displaying novel 

physicochemical properties, opening the door to potential new applications.  

On the other hand, Coordination Polymers (CPs) possess besides interesting 

electronic properties, potential advantages over conventional inorganic 

nanomaterials such as structural and chemical versatility, high specific area and 

biodegradability, among others. Therefore, the integration of both Au and CPs in a 

single heterostructure has emerged as an appealing topic. However, suitable 

chemical design appears as one of the key factors to improve their applicability.  

The work described in this thesis is motivated by the purpose of designing and 

studying novel hybrid nanostructures formed by combining Au NPs with different 

CPs: i) Prussian Blue and its Analogues (PB and PBA), ii) Spin-Crossover 

compounds (SCO) and iii) Metal-Organic Frameworks (MOF). Taking into account 

the numerous possible heterostructures, it will be discussed why these tailored 

hybrid NPs are the most appropriate for magneto-optical, electrochemical and 

electrical applications.  
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In chapter 1, it is described the optical properties and the synthesis of Au NPs 

as well as the main research efforts that have been made to combine CPs 

incorporating Au functionalities within the overall hybrid nanomaterials.  

The main results of this thesis are divided into three parts depending on the 

potential applications: magneto-optics, electrochemistry and electrical conductivity. 

Chapter 2 deals with the preparation of hybrid systems formed by metallic NPs 

decorated by electrostatic attraction onto PBA NPs of different sizes and nature. In 

this approach, the capping agent of the plasmonic NP is modified, thus, allowing to 

select the plasmonic NP (isotropic or anisotropic) and, therefore, to tune the plasmon 

band position in a broad range of the visible spectrum. The heterostructure keeps its 

plasmonic and magnetic properties becoming a suitable hybrid material for magneto-

optical applications. 

In chapter 3, different heterostructures composed of Au and PBA (of NiFe and 

CoFe) are synthesized and evaluated as electrocatalysts for the oxygen evolution 

reaction. The core@shell heterostructures are found to be the most appropriate to 

exploit the Au properties (conductivity and electronegativity). In this way, through a 

suitable chemical design it can be greatly enhanced the electrochemical activity and 

stability of the electroactive PBA. 

In chapter 4, a straightforward protocol is carried out to overgrow a thin SCO 

over different plasmonic NPs. Moreover, this synthetic route was extended to MOF. 

It is observed that thanks to the metallic core and the naked surface of the ultrathin 

SCO/MOF shell, these core@shell NPs are more conductive than the pristine SCO 

NPs when contacted to electrodes. In future work, further development will be done 

by taking advantage of the plasmon properties of the plasmonic core to get a light-

induced spin transition (SCO) and to promote the adsorption/desorption of guest 

molecules (MOF) to obtain advanced sensing devices.  

This Ph.D. thesis is expected to represent a significant advancement in the 

development of novel heterostructures as a result of the incorporation of Au NPs to 

CPs. 

 



Goals and structure of the thesis 

- 19 - 
 

The work described here has given rise to the following publications: 

“Design of Bistable Gold@Spin‐Crossover Core–Shell Nanoparticles Showing Large 

Electrical Responses for the Spin Switching” R. Torres‐Cavanillas, R. Sanchis‐Gual, 

J. Dugay, M. Coronado‐Puchau, M. Giménez‐Marqués, E. Coronado. Adv. Mater. 
2019, 31(27), 1900039. 

“The design of magneto-plasmonic nanostructures formed by magnetic Prussian 

Blue-type nanocrystals decorated with Au nanoparticles” R. Sanchis-Gual, I. Susic, 

R. Torres-Cavanillas, D. Arenas-Esteban, S. Bals, T. Mallah, M. Coronado-Puchau, 

E. Coronado. Chem. Commun. 2021, 57, 1903 - 1906. 

 “Improving the OER electrocatalitic activity and stability of Prussian Blue Analogues 

through the introduction of Au nanoparticles in a core@shell heterostructure” R. 

Sanchis‐Gual, T. F. Otero, M. Coronado‐Puchau, E. Coronado. Submitted. 

“Plasmon‐assisted spin transition in gold nanostar@Spin Crossover 

heterostructures” R. Sanchis‐Gual, R. Torres‐Cavanillas, M. Coronado‐Puchau, M. 

Giménez‐Marqués, E. Coronado. Manuscript in preparation. 

 

Other publications to which the author has contributed during his PhD work are 

the following: 

“Prussian Blue@MoS2 Layer Composites as Highly Efficient Cathodes for Sodium‐ 

and Potassium‐Ion Batteries” M. Morant-Giner, R. Sanchis-Gual, J. Romero, A. 

Alberola, L. García-Cruz, S. Agouram, M. Galbiati, N. M. Padial, J. C. Waerenborgh, 

C. Martí-Gastaldo, S. Tatay, A. Forment-Aliaga, E. Coronado. Adv. Funct. Mater. 

2018, 28, 1706125. 

“Liquid phase exfoliation of carbonate-intercalated layered double hydroxides” J.A. 

Carrasco, A. Harvey, D. Hanlon, V. Lloret, D. McAteer, R. Sanchis-Gual, A. Hirsch, 

F. Hauke, G. Abellán, J. N. Coleman, E. Coronado. Chem. Commun. 2019, 55(23), 

3315-3318. 

 



Goals and structure of the thesis 

- 20 -
 

“Influence of the Interlayer Space on the Water Oxidation Performance in a Family 

of Surfactant-Intercalated NiFe-Layered Double Hydroxides” J.A. Carrasco, R. 

Sanchis-Gual, A. Seijas-Da Silva, G. Abellan, E. Coronado. Chem. Mater. 2019, 

31(17), 6798-6807. 

“Liquid phase exfoliation of antimonene: systematic optimization, characterization 

and electrocatalytic properties” C. Gibaja, M. Assebban, I. Torres, M. Fickert, R. 

Sanchis-Gual, I. Brotons, W. S. Paz, J.J. Palacios, E. G. Michel, G. Abellán, F. 

Zamora. J. Mater. Chem. A. 2019, 7(39), 22475-22486. 

“Boosting the supercapacitive behavior of CoAl‐ layered double hydroxides via tuning 

the metal composition and interlayer space” A. Seijas-Da Silva, R. Sanchis-Gual, 

J.A. Carrasco, V. Oestreicher, G. Abellán, E. Coronado. Batter. Supercaps. 2020, 3, 

499-509.

“Reinforced room temperature spin filtering in chiral paramagnetic metallopeptides” 

R. Torres-Cavanillas, G. Escorcia-Ariza, I. Brotons-Alcazar, R. Sanchis-Gual, P. 

Chandra Mondal, L.E. Rosaleny, S.M. Giménez-Santamarina, M. Sessolo, M. 

Galbiati, S. Tatay, A. Gaita-Ariño, A. Forment-Aliaga, S. Cardona-Serra. J. Am. 

Chem. Soc. 2020, 142, 17572−17580.

"Continuous-flow synthesis of high-quality few-layer antimonene hexagons" I. 

Torres, M. Alcaraz, R. Sanchis-Gual, J.A. Carrasco, M. Fickert, M. Assebban, C. 

Gibaja, C. Dolle, D. A. Aldave, C. Gómez-Navarro, E. García Michel, M. Varela, J. 

Gómez-Herrero, G. Abellán, F. Zamora. Adv. Funct. Mater. 2021, 2101616. 

"Improving the onset potential and Tafel slope determination of earth-abundant water 

oxidation electrocatalysts" R. Sanchis-Gual, A. Seijas-Da Silva, M. Coronado-

Puchau, T. F. Otero, G. Abellán, E. Coronado. Electrochim. Acta. 2021, 388, 138613. 



 

 

Chapter 1 
 

General introduction 

 

 

 

 

 
 



Chapter 1 

- 22 - 
 

1.1  Gold nanoparticles 

Nanoparticles (NPs) are a wide class of materials that in general include particles 

with dimensions of less than 100 nm. Among all the different types of NPs, noble 

metal NPs, especially gold (Au) and silver (Ag), have received much attention 

worldwide throughout human history. Colloidal Au and Ag NPs have been known 

since ancient times and they were commonly used for producing highly colored 

glasses. For instance, red or mauve glasses were highly valued by the Romans. 

Also, the alchemists believed in the existence of a potion called the “elixir of life” 

consisting of a soluble form of Au which, if ingested, would lead to eternal life.1 In 

1857, Michael Faraday discovered for the first time the Au nanoparticles (Au NPs) 

based on the observation of a ‘‘beautiful ruby fluid’’ due to the formation of a deep-

red-colored colloidal Au by the reduction of an aqueous solution of gold chloride 

(AuCl4−).2 This synthesis is considered to be an important milestone in the 

development of nanotechnology. Interestingly, about forty years later, motivated by 

Faraday’s discovery, Richard Zsigmondy introduced the procedure called the “seed-

mediated method” which is still used nowadays in the synthesis of several NPs.3 

Faraday was the first to realize that the color was caused by the small size of the 

Au particles. He supposed that the metallic particles in the colloids should be very 

small because they could not be observed with the best available microscopes. He 

also noted that their colors ranged from ruby, green, violet and blue depending on 

the metallic particle. Approximately a century later, the shorter wavelengths 

generated in electron microscopes evidenced that Faraday’s Au colloids had 

diameters from 3 to 30 nm.1 At the beginning of the 20th century, Gustav Mie, using 

Maxwell's electromagnetic theory, was the first to provide a general theory for 

scattering and absorption of light by spherical metallic particles.4 In 1912, Richard 

Gans generalized Mie’s result to ellipsoidal particles of any aspect ratio in the small 

particle approximation.5 In addition to this, the improvements of electron microscopy 

to study the morphology of metal colloids have led to an important renaissance in 

the study of metal colloids and these studies have led to the investigation and 

exploitation of their properties.  
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1.1.1   Physical properties of metallic nanoparticles 

Physical properties at the nanoscale are notably different from those observed 

in bulk (macroscopic). Along this front, reducing the size of metallic particles and 

entering into the nanometric scale produce drastic changes in the optical behavior, 

hardly achievable in other optical materials. This exceptional characteristic is due to 

the surface plasmon resonance. The Lycurgus cup from the 4th century AC is 

probably the most famous example of the use of surface plasmon in ancient times, 

exhibiting different coloration when observed upon illumination inside or outside of 

the cup.6 This development was empirically achieved without knowing the origin of 

these surprising optical effects.  

A plasmon is a quantum oscillation of the free electron cloud with respect to the 

fixed positive ions in a metal. It plays an important role in the optical properties of 

metals and semiconductors. Plasmons that are confined on surfaces and strongly 

interacting with light are called surface plasmons. Localized surface plasmon 

resonance (LSPR) is a phenomenon that takes place in Au NPs. In general, when 

the electromagnetic radiation of an appropriate wavelength interacts with a metallic 

nanostructure, the electrons near a metal-dielectric interface will be excited (Figure 

1.1). They will undergo a collective oscillation relative to the fixed positive nuclei, with 

the frequency of the incoming light. A momentary electric field is generated on the 

surface of the NP as a result of the oscillations. This effect can be extended into the 

dielectric over nanometer lengths and giving an enhancement of the incident field of 

several orders of magnitude. This phenomenon happens with a size of the metallic 

NP smaller than the wavelength of light used to excite the plasmon and it is 

influenced by various factors such as the size, the shape or the surrounding media 

of the NPs.7–9 
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Figure 1.1 Schematic illustration of a plasmon oscillation in a metallic sphere, showing the 

oscillations of the conduction electron cloud relative to the positive nuclei. 

 

According to Mie's theory, spherical particles with a radius much smaller than 

the wavelength of light exhibit different absorption peaks depending on the NP size 

(i.e. the particle diameter). Indeed, the size effect also influences both the width and 

intensity of the resonance band. The increase in the particle size for nanospheres 

induces undesirable line broadening of the plasmon resonance peak. Moreover, the 

size dispersion affects the absorption band as well, in such a way that for obtaining 

the narrow band, smaller size dispersion is desirable.10 

Furthermore, particle shape and geometry play an important role in the LSPR 

(Figure 1.2). A typical example is the metallic nanorods (NRs). Unlike nanospheres 

(which have only one well-defined plasmon resonance peak), NRs display two 

plasmon bands in the visible/near-infrared (NIR) regions due to longitudinal surface 

plasmon oscillations along the rod axis and transverse surface plasmon oscillations 

perpendicular to the long axis. For other anisotropic NPs such as nanostars (NSs), 

the UV-Vis can be seen as the result of a LSPR hybridization of the core and the 

tips. In general, deviation from sphericity shifts the resonance towards larger 

wavelengths.7,11,12 
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Figure 1.2 a) Absorption spectra and their corresponding TEM images of a) spherical Au NPs, 

b) AuNRs and c) AuNSs. 

 

Another noteworthy factor is the dielectric constant of the surrounding media 

around the NP surface, moving the resonant band towards larger wavelengths as its 

value increases. Therefore, the solvent, the capping agents that are stabilizing the 

NPs and the presence of a shell may have a considerable impact on the surface 

plasmon resonance phenomenon.11,13 
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1.1.2   Synthesis of Au nanoparticles  

Among noble metals, Au is by excellence the element that has motivated more 

interest throughout history because of its importance in many areas of human 

existence. At the nanoscale, its appreciated features, such as the optical properties, 

the amenable surface functionalization, the high stability, and the electrical and 

thermal conductivity, open the possibility to develop successful applications in 

materials science or biomedicine, to mention a few.1,14–16 

The design of generic methods that allow the preparation of Au nanostructures 

with a broad range of narrow size and well-defined morphologies is needed to fully 

exploit their unique properties. In general terms, chemical methods for the synthesis 

of nanomaterials are made starting from atoms generated from ions, in solution, and 

are assembled to make NPs. As the synthesis initiates from atoms, these methods 

are also called bottom-up approaches. This is the case of Au NPs. A typical Au NP 

obtained by chemical synthesis in liquid phase comprises three parts, namely inner 

Au atoms (central atoms), atoms exposed to the surface (surface atoms) and 

surface-protecting organic ligands or surfactants. The central Au atoms determine 

the crystallinity of the structure, whereas the geometry of the surface atoms form 

surface facets and edges that will dominate its reactivity, including the catalytic 

activity. The surfactant is anchored on the surface atoms, stabilizing them and 

providing surface functionality. Today, most of the colloidal synthetic methods for 

preparing Au NPs follow a similar strategy: an Au salt is reduced in aqueous solution 

by surface capping ligands which prevent aggregation of the particles by electrostatic 

and/or steric repulsion.14 

The first achievement in the field of Au NPs was the preparation of spherical Au 

and later on, various anisotropic shapes were obtained such as nanorods, 

nanoshells, and nanocages. In the past decades, numerous solution-based 

approaches have been developed to control the size, shape, and surface 

functionality of Au NPs.16–21 In 1951, Turkevich and coworkers established a 

synthetic method for creating Au NPs by treating hydrogen tetrachloroaurate 

(HAuCl4) with citric acid in boiling water, where the citrate acted as both reducing 

and stabilizing agent.22 Later on, in 1973, Frens extended this protocol by changing 
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the Au:citrate ratio to control the NP size.23 This protocol has been widely employed 

in order to prepare diluted solutions of moderately stable spherical Au NPs with 

diameters ranging from 10 to 20 nm, where larger NPs up to 100 nm can also be 

synthesized.15 

Interest in the shape-controlled synthesis of Au nanostructures started in the 

early 1990s when Masuda et al. and Martin prepared AuNRs by electrochemical 

reduction. These methods produced relatively monodisperse structures, but due to 

the low yield and large diameter (under 100 nm), the optical response from these 

NRs was, at that moment, difficult to discern.14,24,25 A decade after, a colloidal growth 

route based on a seeded growth method was found to produce high yield 

monodisperse AuNRs. Seed-mediated growth involves two consecutive steps: 

- Firstly, single-crystal seed particles of around 2 nm are produced by the 

reduction of HAuCl4 with sodium borohydride in the presence of 

cetyltrimethylammonium bromide (CTAB) that acts as a surfactant.  

- Secondly, a controlled amount of seeds is added into an Au(I) growth solution 

previously prepared by the mild reduction of HAuCl4 with ascorbate in the 

presence of AgNO3 and CTAB. By controlling these growth conditions in 

aqueous surfactant media, it was possible to synthesize AuNRs with a tunable 

aspect ratio (length/width) and thus, with tunable optical properties.14,26,27  

Indeed, the seed-mediated growth has become the most widely used strategy 

for the synthesis of anisotropic NPs of different shapes and sizes.28 For instance, in 

2008, Huang and coworkers reported the synthesis of AuNSs by the seed-mediated 

growth.29 These nanostructures have plasmon bands that are tunable into the NIR 

region, and the NP contains multiple sharp branches that act as “hot spots” and 

greatly enhance the local electromagnetic field.18,29 Thus, anisotropic NPs are 

powerful building blocks for the design of new materials exhibiting unusual properties 

that may afford novel applications. 
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1.2  Hybrid nanomaterials containing Au nanoparticles 

Hybrid materials can be described as an intentional complimenting combination 

of two or more materials, with the aim of obtaining a combination of properties or 

new emergent properties. In this line, hybrid nanomaterials, formed by two or more 

components connected at the nanometer scale, combine the intrinsic characteristics 

of their individual constituents to afford from a simple co-existence of the properties 

of their components to the emergence of novel properties due to synergistic effects 

between them.30,31 As a result, the properties of hybrid nanomaterials can be tuned 

by changing their composition and morphology, leading to materials with enhanced 

performance characteristics, such as high thermal stability, mechanical strength, 

light emission, electrical conductivity, and new optical properties.30 Owing to their 

wide spectrum of accessible properties, hybrid materials are ideal platforms for 

applications in extremely diverse fields.  

 

 

Figure 1.3 a) Number of publications containing the terms “gold nanoparticles”, “hybrid gold 

nanoparticles” and “hybrid nanoparticles” since 1990. b) Zoom of Figure 3a. c) Percentage of 

publications of Au-hybrid NPs/Au NPs and Au-hybrid NPs/Hybrid NPs since 1990. Source: 

Scopus, as assessed in January 2021. 
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Hybrid NPs have received increasing attention from the scientific community 

(Figure 1.3a). Thus, this area of research is a burgeoning field with a significant 

number of publications per year (up to 4000). In the same way, Au NPs have 

gathered intense interest in the last decade due to the great opportunities that Au 

offers at the nanometric scale. In this context, the development of hybrid materials 

containing Au NPs is also attracting widespread attention (Figure 1.3b). Interestingly, 

in recent years, around 8 % of academic publications involving Au NPs are dedicated 

to the development of Au hybrid nanostructures and near 20 % of hybrid NPs studies 

are associated with Au NPs (Figure 1.3c). This noteworthy percentage indicates that 

Au NPs result of high interest in the preparation of complex multi-component NPs. 

 

 

1.2.1   Au heterostructures at the nanoscale  

Au NPs are one of the most versatile nanomaterials reported to date. Their facile 

synthesis and functionalization make them an appealing nano-scaffold for 

constructing hybrid NPs displaying multifunctionality. This has undergone the 

development of different Au hybrid nanostructures exhibiting diverse sizes, shapes 

and compositions with novel physicochemical properties paving the way to potential 

new applications. The incorporation of other functional materials onto Au NPs can 

lead to the introduction of new properties/functionalities.  

The easy surface functionalization has resulted in strong interest especially in 

Au NPs functionalization by a broad variety of organic matrices and coatings 

including proteins.32–34 From an inorganic point of view, other functionalizations, such 

as the incorporation of a transition metal complex, have been performed, providing 

new functionalities to the resulting hybrid.35 Beyond that, Au hybrid NPs composed 

of two different nanosystems (i.e. two different NPs) have recently aroused interest. 

In fact, the combination of two different nanosystems gives rise to a variety of 

different heterostructures (core@shell, Au-coated, NP decoration, dumbbell/Janus, 

etc.) with some peculiarities. To have a better scope of the highly diverse Au hybrid 

nanostructures, a classification is presented in Figure 1.4 based on the most relevant 

heterostructures. Depending on the desired properties and the application field, a 
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given hybrid heterostructure will become the most suitable. Besides, the 

corresponding synthetic strategy must focus on the development of these 

nanomaterials in a simple, efficient and sustainable way. 

 

 

Figure 1.4 Different heterostructures formed by Au hybrid NPs (Au is represented in yellow). 

 

 

1.2.2   Classification of Au hybrid nanostructures 

Colloidal chemistry has become a reliable approach for obtaining high-quality 

hybrid NPs. A great variety of synthetic approaches have been recently developed 

in such a way that one can control a wide range of sizes, shapes and compositions 

of the NPs. In this sense, the most common heterostructures that can be synthesized 

at the moment are: 
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i) Core@shell heterostructures: These nanostructures are highly functional 

materials that exhibit unique properties arising from either the core or the shell.  

These new properties can be modified by modulating the core/shell size ratio. 

Thus, many different synthetic approaches have been developed using a 

plethora of different procedures such as precipitation, grafted polymerization, 

micro-emulsion, reverse micelle, sol-gel condensation, layer-by-layer adsorption 

technique and so on. However, it is still difficult to control the thickness and 

homogeneity of the coating. The shell formation requires highly controlled and 

sensitive synthesis protocols to ensure complete coverage of core particles with 

the shell material. In such a way, if this reaction is not properly controlled, it may 

lead to aggregation of core particles, the formation of separate particles or an 

incomplete coverage.36 Interestingly, some synthetic routes permit to achieve 

core@shell NPs using anisotropic Au NPs (rods, stars, cages, etc)37,38 and 

multishell heterostructures39 (i.e. core having several shells around them), 

thereby, allowing the chemists to modulate the LSPR of the system. Due to the 

close contact between these two nanosystems, the core@shell structure 

presents the largest interface area, thus facilitating the interaction between the 

two components. However, it is important to point out that the Au core is 

completely covered by the shell leading to a minimal interaction of the Au with 

the environment.   

ii) Au-coated heterostructures: In contrast to the previous one, in this case, Au is 

used for covering NPs of different nature. Au confers plasmon properties and 

high chemical and colloidal stability. In addition, as mentioned before, Au exhibits 

an amenable surface functionalization that results in particular interest in some 

applications such as biomedicine. These nanoshells can be mainly prepared by 

two methods: 1) Direct method: the Au precursor is reduced directly onto the 

chemically modified NP surface having similar crystal lattices. 2) Indirect method: 

small Au NPs acting as nucleation sites are previously adsorbed on the surface 

of the NP to facilitate the growth of the Au shell upon the addition of the NPs to 

the growth solution. This method can be easily controlled, allowing the chemists 

to synthesize highly monodisperse Au nanoshells with tunable thicknesses.40 In 

fact, by modifying the thickness of this Au layer, relative to the size of the core, 
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the LSPR of the nanoshell can be tuned to a specific wavelength across the 

visible and infrared range of the electromagnetic spectrum.41 Nevertheless, in 

this sort of heterostructure, the core NP stands chemically inert and only the Au 

shell is able to interact with the environment. 

iii) Dumbbell / Janus heterostructures: In such heterostructures, a single NP is 

attached to another NP offering two functional surfaces. In this manner, the 

hybrid NP integrates two or more functionalities in an individual entity. Depending 

on the interactions at the interface, the physical and chemical properties of each 

component can be retained, enhanced or even weakened. Besides, the break of 

mirror symmetry can lead to interesting effects. They are commonly obtained by 

sequential growth of a second component on the preformed seeds. The 

successful synthesis relies on promoting heterogeneous nucleation while 

suppressing the homogeneous nucleation (i.e. the formation of separate NPs of 

the second component).42 When Au NPs are used, these NPs can also display 

LSPR in a wide range of the visible spectrum.43,44 However, the principal 

disadvantages are related to the lack of simple synthetic procedures and 

difficulties to characterize and unambiguously verify their formation. Moreover, 

the contact area between both nanosystems is smaller than that of core@shell 

heterostructure. 

iv) Au-decorated heterostructures: This structure is the result of linking a large 

number of small Au NPs to the surface of another NP. Frequently, negatively 

charged satellite Au NPs are immobilized on a positively charged NP via 

electrostatic interactions or by using a polymer anchored to both NPs. Then, this 

route relies on surface functionalization that governs the interaction between 

NPs. In this way, the distance between both NPs can be adjusted. Another 

strategy to obtain these heterostructures involves the in situ formation of Au NP 

seeds on the surface of NPs via the reduction of HAuCl4 in a way that the total 

specific  area  is  enhanced.40,45 However, this heterostructure exhibits a lower 

contact between both NPs compared to the above-mentioned nanostructures.  

v) Decorated Au NPs: It represents an analogous case to the previous one but 

in this case, big Au NPs are decorated by smaller NPs of different nature. In this 

approach, the small NPs are linked via electrostatic interaction to a previously 
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prepared bigger Au NP. Therefore, the decoration of Au NP permits to work with 

big Au NPs such as rods, triangles and stars. As in the core@sell 

heterostructure, this heterostructure also exhibits a high total specific area but a 

less intense contact between both NPs. 

 

1.2.3   Au and Fe3O4: the reported combinations 

The combination of iron oxides and Au NPs have attracted a lot of attention due 

to their magnetic and optical properties that open a plethora of different applications 

in the fields of magnetic resonance imaging, hyperthermia treatment, drug delivery, 

DNA-based biosensors, and catalysis.46 Some examples of the possible 

heterostructures are the following (Figure 1.5): 

- Core/shell structures. When comparing Au@Fe3O4 with Fe3O4@Au, it is found 

that Au@Fe3O4 have been much less investigated mainly due to the challenge 

that represents its synthetic process and the alleged quenching of the Au when 

covered by Fe3O4.47 However, it is found that, in Au@Fe3O4, the surface of the 

Au core is inactivated but still keeps its optical properties. In addition, it is 

important to mention that its initial morphology does not necessarily need to be 

spherical, leading to very intense optical absorption bands in the whole visible 

spectrum. Then, the advantage of this structure seems to be that it exhibits 

higher magnetization and higher blocking temperatures because of the lower 

amount of Au. In contrast, Au coated iron oxides exhibit lower magnetization due 

to a higher diamagnetic contribution of Au, but improved stability and 

biocompatibility in aqueous media.48 Indeed, in Fe3O4@Au, the Fe3O4 cores are 

fully covered by Au, making them chemically inert, even in some corrosive 

environments (i.e. blood serum).49 Furthermore, anisotropic Au shells have been 

achieved, thereby permitting the controlled tuning of the LSPR Au response from 

visible to near-infrared region.50  

- Dumbell-like heterostructures. These nanostructures present optimized 

magnetic and optical properties that can be modulated by controlling the size of 

either the Au NP or the Fe3O4 NP. In addition, the presence of Au and Fe3O4 

allows one to functionalize their surface with different chemical functionalities 
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such as biological molecules. Due to the advantages of these heterostructures 

over single component NPs or conventional core@shell nanostructures, 

dumbbell-like Au-Fe3O4 provides a promising integrated theranostic 

nanoplatform.51 

- Decorated heterostructures. One can synthesize single Au NPs decorated by 

many Fe3O4 NPs or vice versa, i.e. a single Fe3O4 NP decorated by many Au 

NPs. The main advantage of such morphology is to provide a high Au (or iron 

oxide) specific area and to offer the possibility of a further functionalization of the 

uncovered iron oxide (or Au) surface.47 Despite the simplicity of this 

heterostructure formation, the important polydispersity due to aggregation has 

hampered its use. However, when this limitation is overcome, the integration of 

these two functional components, with the high surface area provided by the 

satellite NPs, can be very useful for catalytic applications.47 

 

 

Figure 1.5 a) Core@shell NPs of Fe3O4@Au. b) Dumbbell Au-Fe3O4 NPs and c) Au decorated 

Fe3O4 NPs. Adapted from 52–54. 
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1.3  Combination of Coordination Polymers and Au NPs 

For a long time, many groups have studied different synthetic approaches and 

possible applications of hybrid Au-iron oxide nanostructures.47,48,55 Compared to this, 

Au hybrid materials composed of coordination complexes as functional components 

represent a nascent field.56 In this context, Coordination Polymers (CPs) possess 

besides interesting electronic properties, potential advantages over conventional 

inorganic nanomaterials such as structural and chemical versatility, high specific 

area, biodegradability and so on. Moreover, CPs have, among other exciting 

advantages, the facility to be nanoprocessed.57 Therefore, the integration of both Au 

and CPs in a single heterostructure represents a topic that could be very interesting 

in terms of developing new properties and novel applications.   

Even if the term “Coordination Polymer” started to appear in the early 20th 

century, the current extensive interest in CPs was triggered after the reports of 

Robson, Hoskins and coworkers in the early 1990s.58,59 These authors proposed that 

the new materials could be deliberately engineered through describing crystal 

structures in terms of nets which was proposed in 1977 by Wells.60 

A CP is an organometallic polymer structure built from the association of metal 

ions and bridging organic linkers (ligands). The wide variety of metal cations, ligands, 

and structures affords a vast number of possible combinations. Metal cations, often 

called nodes or hubs, are bonded to a specific number of ligands at well-defined 

angles. Regarding the ligands, they donate a lone pair of electrons to a node and 

form a coordination complex via a Lewis acid/ base interaction. Ligands that can 

form one coordination bond are referred to as monodentate, but those which form 

multiple coordination bonds, which could lead to CPs are called polydentate; these 

are particularly important because it can connect multiple nodes, leading to the 

formation of infinite arrays. It is important to remark that polydentate ligands can also 

act as chelates forming multiple bonds to a single node. CPs are formed when a 

ligand can form multiple coordination bonds and act as a bridge between multiple 

nodes. The number of ligands bound to a node is known as the coordination number, 

while the connection between nodes determines the dimensionality of the structure. 

Thus, a structure linked by coordination bonds in one direction and supramolecular 
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interactions in two other directions is a one-dimensional CP; a structure linked by 

coordination bonds in two directions and supramolecular interactions in another 

direction is a two-dimensional CP, and a structure linked by coordination bonds in 

three directions is a three-dimensional CP (Figure 1.6). The coordination behaviors 

of both nodes and ligands play a critical role in the self-assembly of CPs since the 

coordination bonding is a kind of directional and strong interaction in the process. 

Therefore, its judicious choice is crucial for a targeted structure.61–63 

 

Figure 1.6 Examples of different CP nets: first row correspond to 1D, second row to 2D and 

third row to 3D. Adapted from 61. 

 

The metal ions are usually d-transition metals and/or lanthanides. Generally, d-

transition metals have been more popular due in part to the more predictable nature 

of their coordination geometries. Besides, a large range of accessible properties are 

displayed by d-transition metals and they can be conveniently used in CPs because 
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their chemistry is well understood. For d-transition metals, the field is dominated by 

the first-row elements (plus Zn, Cd, Hg, Ag and, to a less extent, Au, Pd, Pt). Their 

low cost, earth abundance, kinetic lability and stability explain why the research in 

these d-transition metal-containing CPs is predominant compared to the rest.63 

The sizes of CPs can be carefully controlled to be uniform and below several 

hundred nanometers.62 In addition to this, they can exhibit different magnetic, 

electronic, optical, and catalytic properties associated by tailoring the wide choice of 

metallic and ligand elements they can contain. 

Current research on CPs is not only focused on their synthesis at the nanoscale 

but also on combining these polymers with other materials. Therefore, the design of 

heterostructures is a promising way towards multifunctional nanomaterials that 

combine multiple properties in a single nanosystem. These heterostructures can 

feature a simple combination of the physical and chemical properties of both 

components or display novel properties that are due to the mutual interactions. In 

addition, the functional components can lead to unique synergy induced properties 

of the resultant hybrid materials.64,65 

Several heterostructured systems that combine inorganic materials with CPs 

have been investigated because of their enhanced catalytic activity or because of an 

association of the magnetic or optical properties of the inorganic NPs with the 

porosity,66 electrochemical67 or magnetic properties68 of the CPs. Therefore, the 

controllable integration of metallic NPs and CPs into advanced hybrid materials with 

targeted functions can extend the scope of the utilization of these materials. This 

thesis will focus on the integration of Au NPs in three different categories of CPs 

forming novel heterostructures with interesting multifunctionalities.  

 

1.3.1   Bimetallic cyanide complexes with the Prussian Blue structure  

Prussian Blue (PB) is an early example of functional CP. It was made by accident 

in the early 18th century and used as a pigment. The structure of PB is illustrated in 

Figure 1.7 where iron centers are octahedrally coordinated by bridging cyanide 

ligands into an infinite 3D network. The structure is cubic with a face-centered cubic 
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(fcc) unit cell alternating FeIII and FeII bridged by the cyanide ligands and with general 

formula AaFex[Fe(CN)6]yꞏnH2O (A = alkali cation). PB is comprised of both FeII and 

FeIII centers and the intense blue color located around 700 nm that gives rise to its 

use as a pigment is due to an intervalence charge transfer band associated with the 

FeII-CN-FeIII. On the other hand, PB is also the first example of a synthetic CP with 

functionality derived from its electronic properties that can potentially be exploited in 

devices and hybrid materials.63,69,70 

Replacing FeIII or FeII by other transition metal ions gives rise to Prussian Blue 

Analogues (PBAs) of general formula AaBx[D(CN)6]yꞏnH2O (A = alkali cation, B and 

D = transition metal ions), which possess the same cubic structure (Figure 1.7). As 

well as in PB structure, it could exist a vacancy on the [D(CN)6]d– site. Vacancies are 

usually filled by water molecules, which complete the coordination sphere of the 

neighboring metallic ions. The term ‘vacancy’ is used to encompass the possible 

occupancy of the M′ site with water.63,71 These vacancies have an important role and 

their manipulation has been proven as an interesting strategy in order to modulate 

the PBA properties.72,73 

 

 

Figure 1.7 Illustrations of the cubic structure of the PBA (left) and the PBA with random site 

defects (right). The appearance of defects leads to a lower amount of alkali metals due to 

charge balance. The PB structure is identical but FeII centers are connected to C atoms while 

FeIII centers are connected to N atoms. 
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PBAs offer several advantages in comparison to other conventional inorganic 

materials and semiconductors because of their different magnetic and optical 

properties, processability and chemical versatility.70 In fact, PB and their PBA can 

easily be synthesized by the simple reaction of hexacyanometalates [D(CN)6]d– with 

a transition metal Lewis acid Bb+ in water to give neutral 3D networks. 

Hexacyanometalate anions are known for many of the transition metal elements, and 

thus PBA can be prepared with a variety of metals. Furthermore, it is possible to 

control the synthesis to obtain individualized NPs over a large size range (2 - 200 

nm). Also, these NPs can be formed in “soluble” colloidal solutions or powders 

depending on the synthetic conditions.69 This versatility has allowed producing PBAs 

in various shapes and sizes including individual NPs,69 films,74 wires75 and even 

core@shell particles formed by the combination of two different PBA or a PBA and 

another different material.76 This huge control over the synthesis and its interesting 

properties makes them key compounds in the field of molecular nanomaterials. 

Indeed, their high chemical versatility leads to a vast number of different properties 

that gives rise to many possible applications (Figure 1.8):  

- Biomedical applications: PBA and especially the PB have a strong charge-

transfer absorption that can be used to undergo a thermal relaxation and can be 

exploited to generate local hyperthermia by light irradiation. In addition to this, 

these CPs are fully biocompatible (PB has already been approved by the FDA), 

biodegradable and easy to be functionalized. These properties make them ideal 

candidates for biomedical applications.77  

- Magnetism: most PBAs are magnets thanks to the magnetic interactions 

between the spin carriers mediated by the cyanide bridge, their high 

dimensionality (3D) and connectivity of the magnetic lattice.78,79 Additionally, the 

versatility of their chemistry has allowed the magnetic ordering temperature to 

be pushed from 5 K in the classical PB to room temperature in a VCr PBA.70 

Furthermore, some PBA exhibit also photomagnetism due to a metal-to-metal 

charge transfer that was evidenced for the first time in a CoFe PBA.80 

- Energy storage: the PBA open framework offers a large interstitial space to host 

big ions like sodium and potassium. The existing bond between the alkali metal 

and cyanide is considerably weaker than the bond existing in oxide materials, 
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facilitating the alkali intercalation in the PBA structure.81  In addition to this, the 

combination of PBA and other compounds in hybrid heterostructures has been 

demonstrated as an efficient strategy to develop novel batteries.82 

- Catalysis: PBAs exhibit open framework structures, large specific surface areas, 

adjustable metal active sites, uniform catalytic centers and also they are 

electrochemically stable in a large pH range making them promising materials 

for electrocatalytic water splitting. In fact, the PBAs based on the first transition 

metals (such as Co, Ni, Cr and Fe) have been proven as excellent catalyzers 

with electrochemical activities comparable to those of metal oxides for the 

oxygen evolution reaction.67,83  

 

Figure 1.8 a) Temperature variations of PB NPs and AuNRs under the continuous irradiation 

of 808 nm laser for 4 cycles and the continuous irradiation for 10 min. b) Charge transfer of 

the reversible photo-induced magnetization. Field-cooled magnetization vs. temperature 

curves at H = 5 G. (hν1 corresponds to visible light illumination while hv2 corresponds to near-

IR light illumination). c) Highly active phase of CoFe-PBA able to promote water oxidation 

under neutral, basic (pH < 13), and acidic conditions (pH > 1). d) Galvanostatic discharge 

curves at different current densities of a PB heterostructure measured in a typical three-

electrode cell using 0.5 m K2SO4 aqueous solution. Adapted from 82–85. 
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The current emerging challenges in the field of PB NPs consist of designing 

multifunctional hybrid nanomaterials combining metals or metal oxides with PB in 

various heterostructures but especially as core@shell or decorated NPs. Such 

nanomaterials combine the properties of each component in a single nanosystem 

exhibiting diverse physical responses. Regarding the heterostructures formed by Au 

and PB/PBA, first combinations were achieved through electrochemical deposition 

of PB where the resulting nanocomposite films were applied for biosensing and 

electrocatalytic reduction of H2O2.86–89 Nevertheless, the achieved hybrid material is 

deposited in an electrode as a film, limiting their applications. Later on, PB coating 

Au NPs were for the first time synthesized by a simple colloidal method by the group 

of Xia.90 In this case, the nanohybrid was also used in electrocatalysis. In this 

synthetic method, the key step is the reduction of ferric ions catalyzed by Au NPs, 

which determines the formation rate of PB. Therefore, colloidal chemistry has 

enabled the control of the nanostructures constituted of both compounds opening a 

wide range of new applications.  

Initially, the method to decorate PB NPs with Au NPs consisted of using albumina 

as a linker between the two components. This hybrid system was used as 

electrochemical sensor.91 However, this protein coverage avoids contact between 

both systems. In addition, a similar approach, using different organic polymers as 

linkers, was developed for in vivo computing tomography and photo-thermal 

therapy.92 More recently, a new strategy was performed to obtain very small 

core@shell NPs by growing a PB shell onto a citrate-stabilized Au core through the 

addition of Fe3+ and ferricyanide in the presence of citric acid.93 The combination of 

plasmonic properties of Au and photo-thermal/magnetic properties of PB was used 

in this case for biomedical applications. In this line, Marin-Pasturel et al. developed 

another core@shell heterostructure consisting of a double shell of PBA in Au 

spherical core, where the core and the shell size can be modulated, therefore 

exhibiting different magnetic and plasmonic properties. They synthesized for the first 

time different Au@PBA@PBA’ using an elegant approach based on the synthesis of 

cyanide-stabilized Au NPs in water through reduction of the precursor [Au(CN)2]− 

with sodium borohydride followed by the sequential growth of one or more PBA 

shells (Figure 1.9).68,94,95 However, following this approach, a first weak magnetic 
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shell located between the magnetic and the plasmonic particles is necessary, thus 

reducing the electronic interaction between the plasmonic and the magnetic 

components.  

 

 

Figure 1.9 a) Schematic representation of the approach used for the synthesis of 

Au@KNi[FeII(CN)6] core@shell NPs. b) TEM image of Au@PBA NPs. c) Thickness of the 

KNi[FeII(CN)6] shell versus the amount of Ni2+ added. Adapted from 94. 

 

 

1.3.2   Spin-Crossover compounds  

A category of CPs that are of special interest is those that display Spin-Crossover 

(SCO). The SCO phenomenon may provide one of the most spectacular examples 

of molecular bistability. The bistability arises from their ability to be switched between 

two electronic states, the high spin (HS) and the low spin (LS) in a readily detectable 

and reversible way. The transition between these two states may be typically induced 
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by means of a variation of temperature, pressure, or by light irradiation. The transition 

metal compounds that may present a spin-crossover are generally octahedrally 

coordinated and have a d4 to d7 electronic configuration (see Figure 1.10). SCO 

induces changes in metal-to-ligand bond distances due to the population or 

depopulation of the eg orbitals that have a slight antibonding character.96–98 

Therefore, this spin transition involves a compression/expansion of the coordination 

site. Reversible changes in their optical, magnetic, mechanical, and electrical 

properties are also occurring, making these compounds promising as molecular 

switches,99 optoelectronic devices,100 actuators,101 and sensors.102 

 

 

Figure 1.10 Example of the SCO phenomenon for a FeII compound in an octahedral 

environment. The spin transition involves switching from a diamagnetic (LS) to a paramagnetic 

(HS) state. 

 

One of the best-known class of SCO compounds features the d6 FeII ion, where 

the transition is typically induced by varying the temperature. Depending on the 

selected ligands, there are several examples of SCO CPs, comprising 1D chains,103 

2D nets104 and 3D networks.105 The design of ligands is crucial because they not 

only provide the correct strength of the crystal field (ΔO) for the SCO phenomenon 

but also enhance the cooperative elastic interactions between the SCO centers in 

the crystal, thus favoring undergo an abrupt and/or hysteretic spin transitions.98 Kahn 
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et al. identified a 1D CP exhibiting SCO with the formula [Fe(Htrz)2(trz)](BF4).96 This 

SCO complex is usually selected owing to its large and abrupt hysteresis that takes 

place above room temperature and its well-established miniaturization protocol,106 

permitting the maintenance of cooperative behavior even in very small NPs.107 

Recently, diverse pathways have been established for the production of SCO 

nanomaterials as colloidal suspensions, thin films and other types of nanoscale 

assemblies using different approaches in order to control the size, shape and even 

the organization of SCO compounds. Hybrid nanostructures that involve SCO in 

complex structures reveal unique functionalities due to the synergy between the 

SCO properties and the physical properties (magnetic, photonic, charge transport, 

etc.) of the surrounding matter. Indeed, many strategies to access the multifunctional 

potential of novel nanomaterials were developed by creating nanohybrids or 

nanocomposites that can combine different materials with different properties. In this 

context, the SCO combination with Au NPs has opened some promising 

perspectives for new physical properties in SCO materials, including plasmonic 

effects.108 

Combinations of SCO entities and Au NPs in hybrid heterostructures are typically 

overtaken following a decoration protocol. In this context, attachment of Au NPs on 

the surface of [Fe(NH2trz)3](Br) was firstly reported in 2008 in order to evidence the 

presence of the amino groups on the SCO surface.109 Later on, in 2012, the first 

attempt to study the synergy between both systems was described by preparing the 

well-known [Fe(Htrz)2(trz)](BF4) polymeric complex covered by Au using thermal 

evaporation deposition.110 The resulting film was analyzed and the authors 

confirmed the persistence of the spin-crossover properties of the Au coated particles. 

In 2014, Suleimanov and coworkers obtained a hybrid to induce the SCO transition, 

reducing the energy needed through the photo-thermal from the LSPR.111 In this 

case, [Fe(Htrz)2(trz)](BF4) was decorated with ultra-small Au NPs of ~2 nm. These 

NPs were attached to silica shell SCO NPs that were firstly synthesized using the 

reverse micelle technique. By exciting the nanocomposite at different laser 

wavelengths, a full switching was carried out and a notable photo-thermal effect was 

noticed. Indeed, the laser power required to complete the spin transition was 

reduced by around 70 % in the presence of the Au NPs. Au size was increased by 



General introduction 

- 45 - 
 

the addition of further AuCl4- precursor, giving rise to ~15 nm NPs. Nevertheless, 

Raman spectra were not possible to be recorded possibly due to the Surface 

Enhanced Raman Spectroscopy (SERS) effect associated with the larger Au 

particles. In the same year, a similar Au decoration was also used by Qiu et al., 

obtaining analogous nanohybrid material displaying a photo-thermal effect.112 Later 

on, in 2016, Moulet et al. went one step further and reported direct Au decoration of 

the [Fe(Htrz)2(trz)](BF4) without any silica shell.113 They developed a simple manner 

to fix Au by taking advantage of o the Au affinity of nitrogen donor atoms present in 

triazole molecules at the surface of the SCO particles, which coordinate to the Au 

surface. Besides, they were able to tune the Au NPs size (from 4 to 45 nm) and 

ensure good coverage, but no photo-thermal effect was recorded maybe because of 

the insufficient applied laser power. After, other plasmonic metals such as Ag were 

used. Li et al. decorated Ag nanowires with two SCO NPs: [Fe(Htrz)2(trz)](BF4) and 

[Fe(pz){Pt(CN)4}] employing an in situ growing method.114 However, although the 

nanocomposites retained their SCO properties, the electrical conductivity was 

unaffected by the spin transition. Therefore, after this short overview, one can 

conclude that even if metal nanocomposite materials have been successfully 

obtained, the impact coming from the metallic decoration on the physical properties 

is still ineffective. This limitation is very likely due to an inefficient interaction between 

the metal and the SCO material. Then, to overcome this limitation, a possible 

pathway is the preparation of a core@shell heterostructure to ensure an intimate 

interaction between both nanosystems. On this basis, the coverage of AuNRs by 

[Fe(Htrz)2(trz)](BF4) was undertaken by another group, obtaining well-defined 

heterostructures.115 In that work, the resulting nanohybrid displayed a widening of 

the thermal hysteresis loop compared to the pure SCO NPs of similar size. Besides, 

it was observed an important reduction of the power laser beam required in order to 

photo-switch the SCO shell. Furthermore, it was also recorded a strong modulation 

of the LSPR upon the spin transition of the SCO shell (Figure 1.11). This synergetic 

effect brings out the importance of chemical engineering for the design of appropriate 

heterostructures. However, the development of more versatile methods to increase 

the contact of Au and SCO NPs still remains a challenge. 
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Figure 1.11 a) TEM image of AuNRs@SCO NPs. b) Optical spectra of the core@shell 

recorded at 313 and 408 K, respectively. c) Evolution of the peak of LSPR upon temperature 

variation in both warming and cooling mode. Adapted from 115. 

 

 

1.3.3   Metal-Organic Frameworks  

Porosity is one of the most widely studied individual properties within the field of 

CPs. In this context, porous CPs, also known as Metal-Organic Frameworks (MOFs), 

are a promising class of porous materials where the combination of the metal centers 

and the organic ligands gives rise to reticular 3D networks with high crystallinity, 

ultrahigh pore volumes (up to 90% free volume) and extremely large specific surface 

areas. Thanks to their modular nature, a chemical control over the structure is 

possible (Figure 1.12), leading to a tunability of the properties and to the 

development of applications.116,117 Thus, MOFs have emerged as a significant class 

of nanoporous materials with potential applications in gas storage, separation, 
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catalysis, and chemical sensing. Still, porosity is not the only property that can be 

exploited. The possibility to introduce functional properties in the MOF, such as 

electrical conductivity, optical properties or magnetism, is also very promising to 

improve the properties of these materials and to expand the range of applications.118 

 

 

Figure 1.12 Crystal structures and organic bridging ligands for some MOFs, evidencing the 

structural tunability of these CPs. Adapted from 119. 

 

A hybrid approach in which a functional nanostructure is mixed with the MOF 

provides a useful way to improve the properties of the MOF. Au NPs have attracted 

much attention in this context. Indeed, a combination of MOFs with suitable Au NPs 

could lead to synergetic effects brought by both sides. Hybrid materials consisting of 

plasmonic NPs and MOFs have become promising nanostructures for several 

applications, especially in sensing120 and catalysis.121 For example, a hybrid material 

can be designed for chemical sensing of high SERS signal molecules by combining 

the selectivity and easy adsorption of MOFs with the plasmonic effect provided by 

the Au NPs.122 Another example comes from the use of light (i.e. photo-thermal 

effect) to control the adsorption or desorption of molecules carried by these hybrid 

nanostructures.123 
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These composites can be prepared by different methods. On the one hand, pre-

synthesized Au NPs can be either encapsulated into the MOF or attached to the 

MOF surface and on the other hand, MOF can be directly grown on the Au NP 

surface. Due to the too high number of publications (more than 250 publications in 

the last 5 years), only core@shell heterostructures composed by an Au core will be 

addressed, representing near 60 % of the heterostructures developed in the last 

decade (source: Scopus). 

The first Au loading into MOF was reported in 2005 for MOF-5.124 However, 

Au@MOF-5  seemed to be inactive for catalytic CO oxidation. Further investigations 

extended this system by encapsulating Au NPs in ZIF-8125 and MIL-101.126 In the 

first case, an improvement of the catalytic activity for CO oxidation was observed 

with increasing Au loadings, and the highest catalytic activity was obtained for 5.0 wt 

% Au@ZIF-8. In the second case, Gu et al. reported Au−Pd clusters adsorbed inside 

activated MIL-101 using a simple liquid impregnation method. This nanocomposite 

catalyzes effectively the dehydrogenation of formic acid. However, despite the 

increasing endeavors to control the size, composition, dispersed nature, spatial 

distribution and confinement of the incorporated NPs within MOF matrices,127 

obtaining a single Au NP core coated with a uniform MOF shell remained still a 

challenge. Indeed, although the aforementioned nanocomposites exhibit core@shell 

structure, they are actually composed of several Au NPs embedded in a MOF matrix 

rather than a single NP surrounded by a MOF shell. In fact, core@shell particles with 

individual cores are more difficult to synthesize because they require correct 

concentrations of Au and MOF precursors as well as a precise control of the reaction 

kinetics to avoid MOF self-nucleation.128 

In 2013, a one-pot method was established for the first time for the preparation 

of single Au NP cores coated with a uniform MOF shell of MOF-5, ZIF-8 and IRMOF-

3.129 Besides, the resulting Au@MOF-5 nanostructure was successfully applied for 

the detection of CO2 and other gases by SERS (Figure 1.13).  
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Figure 1.13 a) SERS effect on Au@MOF-5. b) SERS spectra of single Au NPs (trace 1), 

single MOF-5 spheres (trace 2), and Au@MOF-5 NPs with different shell thickness toward 

CO2 in a CO2/N2 gas mixture. The thinnest shell (under 4 nm) is the only one active (trace 5). 

c) SERS spectra of single Au@MOF-5 NPs with a thinner shell toward N2, CO, and O2. The 

arrows point to the characteristic SERS peak positions of N2, CO, and O2. Adapted from 129. 

 

Simultaneously, Khaletskaya et al. also obtained a core@shell of 

Au@Al(OH)(1,4-ndc) (1,4-ndc = naphthalenedicarboxylate) composed of individual 

AuNR cores surrounded by a MOF shell.130 To ensure the accurate MOF crystal 

nucleation onto Au rods, the Au was first coated with a hydrated amorphous alumina 

layer. These Al-modified rods were then used as reactive seeds in such a way that 

the dissolution of the alumina coating by microwave treatment in the presence of 

1,4-ndc promoted the MOF nucleation specifically on the surface of the rods. 

Besides, in this system, the photo-thermal conversion ability of the NRs acts as an 

optical switch that enables to remotely release the guest molecules adsorbed within 

the pores through an increase of molecular mobility. Just after, Hu et al. proposed a 
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surfactant mediated method for the MOF coating of ZIF-8 on single Au octahedral 

NPs.131 In this work, instead of using a metal layer, CTAB was added to align the 

overgrowth of the MOF. This turned out to be essential. Indeed, it was also found 

that the CTAB adsorbed, even on anisotropic metal surfaces, can efficiently induce 

ZIF-8 nucleation (and/or adsorption) and its further overgrowth.132 This new 

methodology (i.e. using other quaternary ammonium as surfactants or polymers 

such as poly(ethylene glycol) (PEG) allowed researchers to successfully obtain 

single anisotropic Au NPs coated with a uniform MOF shell. In this line, AuNRs 

coated by a NU-901 shell were obtained by functionalizing the Au surface with PEG 

to avoid the aggregation of the Au NPs prior to the MOF shell growth.133 In addition, 

it is essential to remark that these core@shell composites have shown high potential 

for SERS applications.  

The synthesis of the aforementioned heterostructures brings out the importance 

of the high control required in Au surface functionalization prior to the MOF growth. 

However, it is worth mentioning that the majority of the reported syntheses for 

overgrowing MOF shells on metallic NPs do not permit a precise control for shell 

thickness under 10 nm. In order to overcome this limitation, layer-by-layer methods 

have recently been used. For instance, Hinman and coworkers developed a protocol 

for accurate control over the thickness of an HKUST-1 shell on AuNRs.134 

Nevertheless, this protocol requires to centrifugate too many times the 

nanostructures since the centrifugation can easily lead to some aggregation. 

Therefore, the development of new systematic protocols to easily cover Au NPs of 

different morphologies with different MOFs remains a challenge.  
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2.1  Introduction 

Magneto-plasmonic nanoparticles (NPs) are one of the emerging multifunctional 

materials in the fields of physics1 and nanomedicine.2 Still, most of the works in this 

topic have been focused on the design of core@shell NPs formed by an inorganic 

magnetic core (typically a metal oxide) and an Au plasmonic shell. In this line, an 

exciting possibility is that of using as the magnetic component a molecule-based 

magnet instead of a pure inorganic one since the former can provide some 

advantages in terms of chemical versatility, tunability of the properties and optical 

transparency.3 In spite of these features, this possibility has remained so far almost 

unexplored.  

As already mentioned in Chapter 1, Prussian Blue Analogues (PBAs) are 

materials that have gained attention especially due to their interesting magnetic 

properties.3–5 PBAs offer several advantages with respect to other conventional 

inorganic materials and semiconductors because of their processability and 

chemical versatility that permits a high tunability of their magnetic and optical 

properties.3 Their magnetic and optical properties in combination with their optical 

transparency in the visible region make them excellent candidates for magneto-

optical (MO) applications.6  

MO effect is based on the interaction between light and the optical absorption 

properties of magnetically ordered materials. Specifically, a MO effect is a 

phenomenon where an electromagnetic wave interacts and/or propagates through a 

magnetic surface at different speeds as the permittivity changes corresponding to 

left and right rotating elliptical polarizations. Accordingly, the light changes its 

polarization when interacting with the surface of the magnetic material. Typically, 

when a beam of light propagates through a material, the electric field of the light will 

induce a motion of the electrons in the medium. In the absence of an external 

magnetic field, the right and left circularly polarized light drives the electrons into 

respective left and right circular motions with the same radius. Taking into account 

that the electric dipole moment is proportional to the radius of the circular orbit, no 

difference between dielectric constant for each type of circularly polarized 

electromagnetic waves is detected. In this situation, no MO effect shows up. On the 

contrary, in the presence of an external magnetic field, an additional Lorentz force 
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act on each electron, inducing a different radius for each circularly polarized 

component. Consequently, a MO response then shows up.7,8 Notice that the MO 

effect is named differently depending on whether the light is being reflected or 

transmitted through the sample. Therefore, if the light is being reflected, the effect is 

called the magneto-optical Kerr effect and if the light is transmitted, it is called the 

Faraday effect.1 

In this context, plasmonic materials lead to an important enhancement of the MO 

activity thanks to the plasmon-induced phase modification of the reflected or 

transmitted light.9 Interestingly, LSPR effects are so strong that it has been possible 

to measure a substantial MO activity in plasmonic nanostructures of pure noble 

metals due to the increment of the magnetic Lorentz force induced by the large 

collective movement of the conduction electrons in the nanostructures after the 

LSPR excitation.10,11 Considering the fact that the general requirement for 

maximizing the LSPR enhancement effect on the MO activity is the coupling of the 

plasmon band with the dielectric (more specifically, the MO) response of the 

magnetic material,12 the wise selection of both the plasmonic NP and the magnetic 

PBA compound is crucial.  

The most popular example of magneto-plasmonic NPs based on a PBA 

nanostructure can be formulated as Au@PB. However, the chemical approach 

required to prepare the core@shell hybrid nanostructures is quite limited since it is 

restricted to use as shell the PB (FeFe), or the reduced form of the NiFe and CoFe 

PBA derivatives, only.13–16 These derivatives are weakly magnetic since they 

undergo long-range magnetic ordering at low temperatures only (Tc below 5 K). 

Hence, they are quite limited to investigate the enhanced MO properties that may 

arise in these systems as a result of the coupling of the magnetic component with 

the plasmonic one.11,12 To overcome this limitation, other PBAs exhibiting high-Tc 

values need to be grown directly on the Au core. Nevertheless, this requires the 

insertion of a NiFe layer in between the Au and the PBA magnetic shell. Obviously, 

this strongly limits the interaction of this magnetic layer with the plasmonic core, thus 

reducing the intensity of the magneto-plasmonic effects.17 A second limitation of this 

procedure is that it is restricted to spherical Au NPs since anisotropic shapes (such 

as nanorods or nanostars) have shown to be too reactive towards the cyanide 

molecule. Still, these limitations have not been too problematic for using this kind of 
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nanostructures in biomedicine (dual function NPs for imaging, photothermal therapy, 

or biosensing)18,19 and electrocatalysis.20,21  

Hereby, we propose a simple and versatile approach that allows synthesizing 

hybrid Au-PBA nanostructures, which are different from the core@shell one. These 

nanostructures are formed by a PBA cubic NP surrounded by Au NPs of different 

shapes and connected to the PBA surface through a bridging molecule. Owing to 

the possibility of using different plasmonic NPs, the developed protocol allows tuning 

the plasmon band position in the whole range of the visible spectrum. Here these 

possibilities will be illustrated by using as magnetic PBA component the NiIICrIII 

derivative. These results have been published in Chemical Communication.22 

 

 

2.2  Results and discussion 

The synthetic strategy for the obtention of the Au-PBA heterostructures using 

NPs of the NiCr magnetic PBA derivative is illustrated in Figure 2.1. These PBA NPs 

are negatively charged, stable in water in the absence of any coating agent and may 

have a TC as large as 90 K in its bulk form.23 Additionally, they are colorless which 

permits a better study of the plasmonic properties once the heterostructure is formed. 

These PBAs were obtained by slowly mixing the corresponding precursors 

(equimolar 10-3 M aqueous solutions of K3[Cr(CN)6] and NiCl2ꞏ(H2O)6) under 

vigorous stirring at room temperature. Cubic shape NPs of K0.07Ni[Cr(CN)6]0.69 were 

obtained with a mean size of 140 ± 40 nm and a negative ζ-potential value of -37 ± 

11 mV. We chose this size as they are big enough to clearly observe the Au 

decoration while they exhibit high colloidal stability which facilitates the reaction. 
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Figure 2.1 Schematic illustration for the preparation of a heterostructure formed by Au 

nanospheres decorating PBA NPs. The first step involves a capping substitution and the 

second step is related to the attachment of the Au onto the PBA surface. Two different Au 

decorations can be achieved by adjusting the pH solution: a random and a preferential edge 

distribution. 

 

Regarding the synthesis, the magneto-plasmonic heterostructures were 

obtained through two different steps:  

- The first step consists of exchanging, in aqueous solution the citrate 

molecules that coat the Au NPs, by the heteroditopic thiol-

polyethyleneglycol-amine (HS-PEG-NH2) ligand.  

- In a second step, the as-obtained Au NPs are anchored to the PBA NPs 

suspended in water. Such a decoration takes place due to: i) the strong 

affinity of the thiol group to the metal particle surface24 and ii) the strong 

interaction between the amino group and the negatively charged PBA NPs. 
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It is worth noting that the formation of the final hybrid nano-objects is not possible 

using the citrate-stabilized Au NPs due to the electrostatic repulsion between the two 

systems because they are both negatively charged (see Figure 2.2). That is why the 

first step requires a ligand exchange of the starting citrate-stabilized Au NPs of 12.4 

± 1.0 nm (see Figure 2.3)25 with HS-PEG-NH2. This ligand exchange was monitored 

by ζ-potential (see Table 2.1) and by attenuated total reflectance Fourier-transform 

infrared (ATR-FTIR, Figure 2.4).  

 

 

Figure 2.2 a) TEM images of citrate-stabilized Au NPs decorated PBA NPs. 
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Figure 2.3 a) TEM image of citrate-stabilized spherical Au NPs and b) number-based particle 

size distribution measured by manual counting. 

 

 

Table 2.1: ζ-potential values of the different Au and Ag NPs stabilized with 

different capping agents at pH near to 7. 

 

  
ζ-potential / mV 

Citrate CTAB HS-PEG-NH2 

Au NPs -40 ± 6 / 10 ± 3 

AuNRs / 35 ± 7 12 ± 4 

AuNSs / / 12 ± 4 

Ag NPs -35 ± 10 / 11 ± 5 
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Figure 2.4 Infrared spectra of citrate stabilized and HS-PEG-NH2 stabilized Au nanospheres. 

 

ζ-potential is a common technique to characterize colloidal dispersions in order 

to provide information about the surface charge. In our Au NPs, the ζ-potential varies 

from a negative value, corresponding to the citrate capping, to a positive value, 

related to the HS-PEG-NH2 molecule. In addition, the appearance in the ATR-FTIR 

measurements of new bands corresponding to C-H and C-O-C vibration modes of 

the PEG molecule and the decrease of the intensity of the citrate bands indicate a 

major substitution of citrate by the heteroditopic ligand.  

In a further step, the solution of Au NPs stabilized with HS-PEG-NH2 was 

adjusted at pH between 2 and 4 in order to protonate the dangling amino group (ζ-

potential values vary from 9 ± 6 mV to > 20 mV). Mixing this solution with PBA NPs 

resulted in the decoration of the PBA NPs by the Au NPs. pH plays a crucial role in 

the whole process because at low pH (below 2) the Au NPs tend to aggregate (strong 

ionic force), while at high pH (above 5) a poor decoration of the PBA NPs is observed 

(weak electrostatic interaction because the weak positively charged Au NPs) (Figure 

2.5). Hence, to optimize the decoration, the pH value was kept in the range of 2-5.  
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Figure 2.5 ζ-potential measurements of Au nanospheres stabilized with HS-PEG-NH2 

performed in water at different pH. 

 

When the pH is in the 2-3 range, a random decoration of the PBA-NPs by Au is 

obtained, as demonstrated by Transmission Electron Microscopy (TEM) imaging. 

(Figure 2.6). An increase of the pH value (3-5) leads to a preferential binding of the 

Au NPs along the edges of the PBA cube (Figure 2.6). TEM images of the 

preferential edge decoration taken at different incidence angles are shown in Figure 

2.7.  
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Figure 2.6 TEM images of the heterostructure of Au NPs with (a,c) random and (b,d) 

preferential edge decoration onto NiCr PBA. 

 

 

Figure 2.7 High-Resolution TEM images of Au-PBA heterostructure at different angles: (left) 

-30º, (center) 0º and (right) 30º.  
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Figure 2.8 a) High-Resolution TEM image b-d) EDS Mapping of the metals present in the 

heterostructure (red: gold, green: nickel and yellow: iron).  

 

 

Energy-dispersive X-ray spectroscopy mapping (Figure 2.8) confirms the 

presence of Cr and Ni at the center of the NP and Au at its edges. The selective 

decoration of the PBA-NPs edges at a pH ranging 3-5 is due to the larger negative 

charge density on (and near) the NPs edges than on their faces. Indeed, as it can 

be observed from its crystalline structure (presented in Chapter 1), on the particles' 

surface, each Cr(CN)6
3- species is surrounded by 5 Ni2+ (four belonging to the 

surface and one inside the NP), while on the edges each hexacyanometalate is 

surrounded by only four Ni2+ (two belonging to the surface and two to the particles' 

edge). At a pH of 3-5, the positive charge density of the Au NPs is weaker, therefore, 

privileging electrostatic interaction with the PBA-NPs edges where the negative 

charge density is larger. This effect is enhanced because of the possible presence 
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of a larger amount of defects in the vicinity of the NPs edges than on their faces. It 

is worth mentioning that the Au decoration (and thus the electrostatic interaction) is 

maintained after redispersing the hybrid in water at neutral pH (Figure 2.9).  

 

 

Figure 2.9 TEM images of the heterostructure of Au NPs with (a) random and (b) preferential 

edge decoration onto NiCr PBA after centrifuging and redispersing in water at neutral pH. 

 

An optimum decoration of the PBA NPs can be achieved by tuning the ratio 

(Au/PBA) of the two components for the two pH ranges. For the low pH range (2-3, 

random distribution), we carried the experiments with Au/PBA molar ratio in the 

range 0.31 to 0.50. In this range, the higher the ratio is, the higher the decoration is 

(Figure 2.10). For high pH range (3-5, edge distribution), we investigated three 

different ratios, namely 0.28, 0.41 and 1.12. TEM imaging seems to indicate that the 

best results are obtained with the molar ratio of 0.41 (Figure 2.11). In order to assess 

the efficiency of the interaction between the two types of NPs, we determined the 

molar ratio of two thoroughly washed powder samples obtained with Au/PBA = 0.51 

(low pH range) and 0.41 (high pH range) using inductively coupled plasma (ICP) 

measurements. Values of the Au/PBA ratio of 0.43 and 0.26 were obtained for the 

former and latter cases, respectively, allowing the determination of the optimum ratio 

for the two pH ranges.  
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Figure 2.10 TEM image of decorated Au NPs onto PBA low pH 2-3 with ratio Au/PBA of (a) 

0.31:1, b) 0.40:1 and c) 0.50:1. 

 

 

Figure 2.11 TEM image of decorated spherical Au NPs onto PBA with ratio Au/PBA of a) 

0.28:1, b) 0.41:1 and c) 1.12:1. 

 

We have presented a new synthetic approach that allows an optimum selective 

decoration (random vs. preferential) of PBA NPs with Au NPs. Let us now discuss 

the plasmonic and magnetic properties of these hybrid nanostructures. 

The optical properties of Au NPs arise from the Localized Surface Plasmon 

Resonance (LSPR). Hence, the plasmon band is expected to be sensitive to the 

interaction between Au and PBA NPs. In Figure 2.12, we observe that the UV-vis 

absorption spectrum is dominated by the plasmon band.  
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Figure 2.12 a) Spectra in the visible region of Au NPs and Au-PBA heterostructure decorated 

randomly and preferentially on the PBA edges. b) Spectra in the visible region of the attempt 

to obtain the heterostructure using citrate-stabilized Au NPs. Insets: magnified image of the 

plasmon bands. 

 

For the functionalized Au-PEG NPs, the maximum of this band is located at 520 

nm and shifts to 526 nm when Au-PEG is attached to the PBA NPs, independently 

of the type of decoration. The plasmon band shift is related to the change of the 

dielectric properties and, in particular, to the local refractive index at the surface of 

the plasmonic NPs.26,27 It is worth noting that no shift is observed in the control 

experiment where the HS-PEG-NH2 molecule was not used. Therefore, this shift is 

a clear indication of the PBA NPs decoration by the functionalized Au NPs. However, 

we also observe a progressive decay of the absorbance of the plasmonic band after 

2 hours that becomes large after 48 h (Figure 2.13).  
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Figure 2.13 Study of the stability by recording the spectra in the visible region of the Au-PBA 

heterostructure in aqueous solution at room temperature. 

 

A decrease of intensity of the plasmonic band is usually associated with the 

aggregation of the colloidal suspension but may also be due to Au degradation in 

the present case. Indeed, cyanide dissolution of spherical Au colloids usually takes 

place quickly;28 thus, in order to check the chemical stability of the hybrid materials, 

powder X-ray diffraction (PXRD) study was performed on the pure PBA NPs and the 

hybrid material after leaving the suspensions to stand 1 week in water (see Figure 

2.14). The detection of the characteristic Au diffraction peaks (at 38.2 and 44.3 

degrees), together with unaltered PBA peaks indicate that the decrease of the 

intensity of the plasmonic band is due to the aggregation of the colloidal suspension 

with time and not to chemical degradation of the hybrid materials.  
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Figure 2.14 Room temperature PXRD for PBA NPs and Au-PBA heterostructure. Au peaks 

are indicated in red. 

 

As far as the magnetic properties of the hybrid nanostructures are concerned, 

we observe that they are almost identical to those measured for pristine NiCr PBA 

NPs (Figures 2.15).29 Thus, a ferromagnetic behavior below 68 K and a weak 

hysteresis in the magnetization of ca. 60 Oe at 2 K is observed, in agreement with 

the soft character of this PBA derivative. The only noticeable difference between 

hybrid and pristine NPs is the lower value for the saturation magnetization. This is 

due to the contribution of Au to the total weight of the nanostructure. In fact, if the 

presence of Au is corrected using the estimated amount of Au extracted from ICP 

measurements, such a difference disappears. 
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Figure 2.15 a) Hysteresis loop at 2K of PBA and Au-PBA with Au decorated preferentially on 

the PBA edges. b) Temperature dependence of field cooling magnetization of PBA and the 

heterostructure Au-PBA. 

 

The generality of this approach is further illustrated by the fact that any plasmonic 

NP able to form thiol bonds with HS-PEG-NH2 in acid conditions can be potentially 

used. This possibility opens the door to tune at will the plasmonic properties of the 

hybrid nanostructure simply by choosing the appropriate plasmonic NP. The different 

plasmonic NPs that were prepared are presented in Figures 2.16 – 2.18.  
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Figure 2.16 a) TEM image of citrate-stabilized spherical Ag NPs and b) number-based particle 

size distribution measured by manual counting. 

 

Figure 2.17 a) TEM image of CTAB stabilized AuNRs and b) Number-based particle 

size distribution measured by manual counting. 
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Figure 2.18 a) TEM image of HS-PEG-NH2 stabilized AuNSs and b) Number-based 

particle size distribution measured by manual counting. 

 

In this manner, citrate-stabilized spherical Ag NPs were used instead of Au NPs 

following the same experimental procedure in the pH range of 3-5. The obtained 

results are shown in Figure 2.19. The plasmon band of the Ag NPs is now located 

at 410 nm (to be compared with 520 for the Au NPs) and exhibits a red-shift of ca. 7 

nm. This shift is similar to that observed in Au NPs, as it mainly depends on the 

shape of the NP, being independent of the metal.30 Other Au NP with different 

shapes can also be used to decorate the NiCr PBA. Thus, we have chosen 

anisotropic Au NPs (NRs and NSs) which exhibit an intense plasmon band located 

at ca. 800 nm and ca. 700 nm, respectively. In these cases, the plasmon band can 

be tuned in a broad range by changing the ratio length/width in the AuNRs,31 and the 

size of the branches and the core for the AuNSs.32 In these two cases, the optimal 

ratio of Au/PBA changes with respect to that of the Au spheres, being 0.55:1 and 

1.25:1 for AuNRs-PBA and AuNSs-PBA, respectively. This variation can be 

attributed to the different contact areas obtained for the different structures.  
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Figure 2.19 TEM images obtained for the following heterostructures: Ag-PBA (a), AuNRs-

PBA (c) and AuNSs-PBA. UV-Vis spectra recorded for the heterostructures: Ag-PBA (b), 

AuNRs-PBA (d) and AuNSs-PBA (f). The insets show a zoom of the plasmon band shift. 

These heterostructures were obtained at pH 3-5 (preferential edge distribution). 

 

Figure 2.19 shows the resulting nanostructures and plasmonic properties. As in 

the previous case, the synthesis was followed by UV-Vis spectra, searching for the 

plasmon shift as a proof of the interaction between Au and PBA NPs. In both cases, 

a shift in the plasmon band was noticed. Nevertheless, these shifts were more 

pronounced than the ones observed for the Au spheres due to the higher sensibility 

of these plasmons.26,27 Concretely, AuNRs and AuNSs hybrid nanostructures show 

plasmon red-shifts of ca. 9 nm and 22 nm, respectively. 

Furthermore, it is possible to control the decoration (i.e. the distribution) of the 

AuNRs on the cubic PBA surface. As commented above, a pH of 2-3 gives rise to a 

random decoration while a pH of 3-5 leads to a preferential edge distribution (Figure 

2.20). Nevertheless, it is important to remark that the AuNSs decoration cannot be 

controlled possibly due to the high reactivity of these NPs.  
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Figure 2.20 TEM images of AuNRs-PBA obtained at pH a) 2-3 (random decoration) and b) 3-

5 (preferential edge distribution). 

 

Finally, it can be noted that this procedure can also be extended to other PBA 

NPs. For example, NiCr can be changed by PB (FeFe), which was obtained as NPs 

with a size of 110 ± 20 nm and a ζ-potential value of -34 ± 4 mV. Figures 2.21a and 

2.21b show the nanostructures achieved, as well as the corresponding shift in the 

UV-Vis spectrum of ca. 6 nm. Therefore, following this approach it is possible to 

attach Au NPs in any negatively charged PB or PBA NPs without capping agents, 

such as NiFe or CuCr. These nanostructures can be observed in Figure 2.21. Notice 

however that the colloidal stability of these systems is limited by the size of the PBA 

NPs since, if they are too small (below 25 nm), the NPs tend to aggregate (Figure 

2.22) and if they are too big (above 300 nm) the processability is compromised as 

their colloidal stability is lower. Still, the heterostructures can be obtained by 

modifying the PBA size. 
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Figure 2.21 a) b) TEM image and UV-Vis spectrum of Au NPs decorated onto FeFe-PB NPs, 

c) d) decorated onto NiFe-PBA NPs and e) f) onto CuCr-PBA NPs (e) (f). 
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Figure 2.22 a) TEM image of spherical Au NPs decorated onto 20 nm NiCr-PBA NPs b) UV-

Vis spectrum of spherical Au NPs decorated onto 20 nm NiCr-PBA NPs. 

 

 

Besides, to further develop practical MO devices, Au NPs were attached to NiCr 

PBA NPs previously anchored on a silicon substrate.33 Further details of the 

preparation of the self-assembly monolayers of PBA are available below, in the 

experimental part. Atomic Force Microscopy (AFM) images were taken after the 

addition of Au NPs stabilized with the HS-PEG-NH2 molecule. These images show 

cubic morphologies corresponding to the PBA surrounded by spherical particles of 

Au, similar to the hybrid structure formed in solution proving the heterostructure 

formation (see Figures 2.23). Additionally, the Au addition onto the PBA monolayer 

gives rise to the appearance of the characteristic peaks of Ni, Cr, and Au in X-ray 

photoelectron spectroscopy, indicating the presence of Au NPs on the substrate (see 

Figure 2.24).  
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Figure 2.23 AFM images of a representative area of Au nanospheres decorated on a 

monolayer of NiCr-PBA on a SiO2 substrate. 
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Figure 2.24 XPS spectra of a) Ni, b) Cr, c) Au and d) Survey for Au-PBA monolayers. 

 

In future work, different PBAs will be measured to determine the wavelength 

where the maximum MO activity is reached as well as the optimal conditions for 

measuring. Then, a monolayer of the heterostructure with the suitable plasmonic NP 

will be synthesized. The magneto-optical Kerr effect of two different monolayers 

formed by PBA and Au-PBA will be carried out and compared in order to analyze the 

plasmon enhancement. Monolayers will be used to retain as much as possible the 

plasmon band properties that could be modified due to NP aggregation (e.g. in 

powder or pellets).  

  



Chapter 2 

- 88 - 
 

2.3  Conclusions and perspectives 

In summary, we have developed a general and straightforward synthetic 

procedure to prepare, in aqueous solution, hybrid magneto-plasmonic 

nanostructures formed by metallic NPs decorated onto negatively charged magnetic 

NPs based on Prussian Blue Analogues by electrostatic attraction. By adjusting the 

pH, it is possible to control the positioning of Au over the Prussian Blue Analogue 

cubic NP. Indeed, Au can be attached randomly or preferentially on the edges of the 

cubes. This methodology, first tested with spherical Au, was extended in a second 

step to different plasmonic NPs of various shapes. This has permitted to tune the 

plasmon band position in a broad range of the visible spectrum. Finally, a similar 

procedure was carried out to attach Au on Prussian Blue Analogue monolayers 

obtaining the hybrid heterostructure successfully. Thus, this synthetic protocol 

provides appropriate hybrids to investigate the enhancement of the magneto-optical 

properties of the hybrids thanks to their coupling with the plasmonic properties. 

 

 

2.4  Experimental details 

2.4.1   Synthesis  

All chemical reagents were purchased and used without further purification. 

Silver nitrate was purchased from Alfa Aesar.  Chloroauric acid, L-ascorbic acid, 

potassium iodide, sodium citrate tribasic dihydrate, hexadecyltrimethylammonium 

bromide (CTAB), sodium borohydride, thiol polyethyleneglycole amine (HS-

PEG3.5K-NH2) and (3-aminopropyl)triethoxysilane (APTES) were purchased from 

Sigma-Aldrich. Ultra-pure water (18.2 MΩ) was used in the following synthesis.  
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Synthesis of plasmonic nanoparticles  

Au Nanospheres: The synthesis was performed following the standard 

Turkevich’s method.25 The reduction of a gold hydrochlorate solution was achieved 

by adding the sodium citrate to the boiling solution with constant stirring in order to 

maintain a homogenous solution. A faint gray color was observed in the solution 

approximately one minute and in a period of 2–3 minutes later, it further darkening 

to deep wine and red color. Note that the color-changing is a clear visual indication 

that the colloidal Au is being produced. 

Ag Nanospheres: These NPs were synthesized via a citrate reduction protocol.34 

Firstly, 1 mL of an aqueous solution of sodium citrate (1 wt %) and 0.25 mL of an 

aqueous solution of AgNO3 (1 wt %) were dropped into 1.25 mL of water under 

stirring at room temperature. KI was added to the mixture to set a concentration of 

0.06 μL. The mixture was incubated for 5 min prior to use. 50 μL of an aqueous 

solution of ascorbic acid (0.10 mM) was added into 47.5 mL of boiling water, followed 

by boiling for an additional 1 min. After the 5 min incubation, the mixture solution was 

introduced into the boiling water under vigorous stirring. After its color changed from 

colorless to yellow, the reaction solution was further boiled for 1 h under stirring. 
 

Au Nanorods: AuNRs were obtained through a seed-mediated growth method.35 

After adding 25 μL of 50 mM HAuCl4 solution to 4.7 mL of CTAB 0.1 M, the mixture 

was slowly stirred for 5 min. Then, 300 μL of a freshly prepared NaBH4 10 mM 

solution was rapidly injected under vigorous stirring. After 10 s stirring was stopped 

and the obtained seeds were let undisturbed for 1 hour at 30 °C. After the addition 

of 190 μL of HCl 1M and 100 μL of gold hydrochlorate 50 mM solution to 10 mL of 

CTAB 0.1 M, the mixture was shaken for 5 min. Subsequently, 120 μL of AgNO3 0.01 

M solution was added to the mixture, which was then shaken for a few seconds. 

Quickly, 80 μL of ascorbic acid 0.1 M solution was then added to the growth solution 

and thoroughly shaken, turning colorless in few seconds. Finally, 24 μL of seeds 

were added to the mixture, and the solution was vigorously shaken and then left 

undisturbed at 30 °C for 2 hours. AuNRs were centrifuged and redispersed in water 

twice in order to remove the excess of surfactant. 
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Au Nanostars: Au NPs with star-like shapes were obtained by a seeded-growth 

process,36 using citrate-stabilized spherical Au NPs as seeds. For the preparation of 

the growth solution, hydrochloric acid (10 µl, 1 M) was added to a gold hydrochlorate 

solution (10 mL, 0.25 mM). Afterward, aqueous solutions of ascorbic acid (50 µL, 0.1 

M) and AgNO3 (100 µL, 3 mM) were added, followed by the addition of 100 µL of 

seed solution (0.5 mM). Finally, HS-PEG-NH2 was added as capping agent (1 mL, 1 

mgꞏmL-1). After 30 minutes of incubation, AuNSs were ready for further use.  

 

Synthesis of PB and PBA nanoparticles 

NiIICrIII PBA: at room temperature, aqueous solutions of NiCl2ꞏ6H2O (5 mM, 10 

mL) and K3[Cr(CN)6] (5.65 mM, 10 mL) were added simultaneously to 100 mL of 

pure water at 2 mLꞏh-1 rate. After completion of the addition, the mixture was stirred 

for one hour before being centrifuged at 11000 rpm for 20 min. The supernatant was 

removed, and the white powder was redispersed in 10 mL of water. 

20 nm NiIICrIII PBA: small NPs were synthesized by the mixture of NiCl2ꞏ6H2O 

0.2 mM and K3[Cr(CN)6] 0.2 mM aqueous solutions under stirring for 2 hours. 

FeIIFeIII PB: at room temperature, aqueous solutions of FeCl3ꞏ6H2O (5 mM, 10 

mL) and K4[Fe(CN)6] (5.65 mM, 10 mL) were added simultaneously to 100 mL of 

pure water at 2 mLꞏh-1 rate. After completion of the addition, the mixture was stirred 

for one hour before being centrifuged at 11000 rpm for 20 min. The supernatant was 

removed, and the NPs blue powder was redispersed in 10 mL of water. 

NiIIFeIII PBA: at room temperature, aqueous solutions of NiCl2ꞏ6H2O (5 mM, 10 

mL) and K3[Fe(CN)6] (5.65 mM, 10 mL) were added simultaneously to 100 mL of 

pure water at 2 mLꞏh-1 rate. After completion of the addition, the mixture was stirred 

for one hour before being centrifuged at 11000 rpm for 20 min. The supernatant was 

removed, and the yellowish powder was redispersed in 10 mL of water. 
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CuIICrIII PBA: at room temperature, aqueous solutions of CuCl2ꞏ6H2O (5 mM, 10 

mL) and K3[Cr(CN)6] (5.65 mM, 10 mL) were added simultaneously to 100 mL of 

pure water at 2 mLꞏh-1 rate. After completion of the addition, the mixture was stirred 

for one hour before being centrifuged at 11000 rpm for 20 min. The supernatant was 

removed, and the green powder was redispersed in 10 mL of water. 

 

Au/Ag-PB/PBA Decoration 

Firstly, 15 mL of a 0.33 mgꞏmL-1 HS-PEG-NH2 solution was added to 15 mL of a 

5ꞏ10-4 M plasmonic NPs solution and let undisturbed overnight. The resulting capped 

NPs were centrifuged and redispersed to obtain a final concentration of 1.9ꞏ10-4 M. 

Then, 5 mL of the aforementioned solution was adjusted to a pH between 2 and 5 

(depending on the Au decoration), and immediately 0.5 mL of PB/PBA was added 

under magnetic stirring.    

 

Au-PBA Monolayers 

Firstly, thin films of NiCr PBA were prepared following a procedure developed by 

our group.33 Substrates of silicon (dimension 1 × 1 cm) were washed three times 

with basic piranha and sonicated for 10 min each time. The next step was the 

functionalization of substrates by their immersion in a 1 mM APTES ethanolic 

solution for 45 min. Afterwards, they were washed and sonicated in ethanol for 10 

min. Finally, the substrates were immersed in HCl 1 M for 7 min and dried under 

nitrogen flux. Furthermore, thin films of NiCr PBA were prepared by dropping a few 

drops of NiCr solution onto the substrate and after 2 min they were rinsed with water 

and dried. For the preparation of Au-PBA heterostructure, a grafting of spherical Au 

over a NiCr film was performed. A few drops of spherical Au NPs stabilized with HS-

PEG-NH2 at pH 3-4 were added to the NiCr previously prepared film for 2 min. After, 

the substrate was rinsed and dried under nitrogen flux.                                
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2.4.2   Characterization  

UV/Vis Spectroscopy: UV-vis absorption spectra were recorded on a Jasco V-

670 spectrophotometer in baseline mode from 300 to 900 nm range, using 1.000-

cm-optical-path plastic cuvettes. 

Transmission Electron Microscopy (TEM): TEM studies were carried out on a 

JEOL JEM 1010 microscope operating at 100 kV, and Technai G2 F20 microscope 

operating at 200 kV. Samples were prepared by dropping suspensions on lacey 

formvar/carbon copper grids (300 mesh).  

Inductively Coupled-Plasma Mass Spectrometry (ICP-MS): The ICP-MS 

analysis were conducted at the Universidad de Valencia (Sección de Espectrometría 

Atómica y Molecular). Samples were digested in an acid medium at 220 ºC using a 

microwave oven. 

ζ-Potential measurements: ζ-potential measurements were performed at room 

temperature with a Zetasizer Nano ZS instrument (Malvern Instruments Ltd.). 

Attenuated total reflectance Fourier-transform infrared (ATR-FTIR): spectra were 

collected in an Agilent Cary 630 FTIR spectrometer in the 4000−500 cm−1 range in 

the absence of KBr pellets. 

Magnetic Measurements: Magnetic data were collected with a Quantum Design 

MPMS XL-5 susceptometer equipped with a SQUID sensor. dc FC magnetization 

measurements were performed under a magnetic field applied of 1000 Oe. 

Magnetization studies were performed between -0.3 and +0.3 T at a constant 

temperature of 2 K 

Powder X-Ray Diffraction (PXRD): PXRD patterns were collected in a 

PANalytical Empyrean diffractometer using copper radiation (Cu Kα λ= 1.5418 Å) with 

an PIXcel detector, operating at 40 mA and 45 kV at room temperature. 
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X-ray Photoelectron Spectroscopy (XPS): Samples were analyzed ex-situ at the 

X-ray Spectroscopy Service at the Universidad de Alicante using a K-ALPHA 

Thermo Scientific spectrometer. All spectra were collected using Al Kα radiation 

(1486.6 eV), monochromatized by a twin crystal monochromator, yielding a focused 

X-ray spot (elliptical in shape with a major axis length of 400 μm) at 30 mA and 2 kV. 

The alpha hemispherical analyzer was operated in the constant energy mode with 

survey scan pass energies of 200 eV to measure the whole energy band and 50 eV 

in a narrow scan to selectively measure the particular elements. XPS data were 

analyzed with Avantage software. A smart background function was used to 

approximate the experimental backgrounds. Charge compensation was achieved 

with the system flood gun that provides low energy electrons and low energy argon 

ions from a single source. 

Atomic Force Microscopy (AFM): The substrates were imaged with a Digital 

Instruments Veeco Nanoscope IVa AFM microscope in tapping mode, using silicon 

tips with a resonance frequency of 300 kHz and with an equivalent constant force of 

40 Nꞏm-1. AFM images were treated with Gwyddion and WSxM softwares. 
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3.1  Introduction 

The electrolysis of water to generate hydrogen and oxygen offers the exciting 

possibility of storing energy whose importance is out of question today. However, 

this process requires high voltages mainly due to the slow kinetics of the oxygen 

evolution reaction (OER). This reaction represents a significant efficiency loss in 

water-splitting systems and often requires an anode catalyst to reduce the energy 

barriers of the OER. In this context, earth-abundant electrocatalysts have been 

extensively studied in alkaline media.1,2 First-row transition metal oxides of Co, Fe, 

or Ni show extremely high activities but only at very high pH (above 13), where the 

corresponding half-cell reduction reaction (for example, the hydrogen production) is 

more problematic. Nonetheless, at low pH, most of the catalysts suffer corrosion. 

Thus, an efficient catalyst for OER at acidic or near-neutral solution based on earth-

abundant metals remains a significant challenge and highly desirable goal. In such 

conditions, benchmark materials are principally based on Ru or Ir oxides, affecting 

the cost of this technology considerably.3,4 

In this context, Prussian Blue Analogues (PBA) are interesting materials since 

they are robust, chemically tunable and based on earth-abundant metals.5 In fact, 

they have recently been investigated as an interesting implementation in 

multifunctional materials for many energy-related fields, such as supercapacitors, 

sodium-ion batteries and electrocatalysts.6–9 Moreover, well-stabilized PBAs are 

effective and stable in an extensive pH range exhibiting catalytic activities 

comparable to those of metal oxides for OER.9 However, PBAs exhibit low electrical 

conductivities, which increase the required overpotentials in water splitting.10 For this 

reason, the combination of PBA with other nanomaterials has attracted considerable 

attention in order to further improve their electrocatalytic activity.9,11 This activity must 

be a function of the concentration of electrocatalytic active sites in the material. 

Nonetheless, scarce attention has been paid to the number of electroactive sites of 

the electrocatalyst when this enhancement occurs. 

Recent studies have shown that electrocatalysts based on Co, Ni and Fe are 

oxidized before the onset of oxygen evolution, being the oxidized metals the active 

species in the pathway for O2 evolution.12–14 Thus, a possibility to enhance the 
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electrocatalytic activity could be done by combining efficient electrocatalysts with 

highly electronegative metals. In this line, Au is the highest electronegative metal 

and thus it can drain electrons from the catalyst.15,16 Besides, in combination with the 

electrocatalyst, it may contribute to improve the electrocatalytic performance thanks 

to the increase in the conductivity of the resulting material.17–19 To this aim, in this 

work, we have explored the preparation of hybrid materials combining PBAs with Au. 

In particular, we have focused on nanoparticles (NPs) since they are usually the 

preferred form of catalysts due to the large number of electroactive sites provided by 

their high surface areas. Among them, the core@shell structure has been 

extensively used to obtain hybrid materials at the nanometer scale.20,21 Still, 

Au@PBA heterostructure remains an unexplored hybrid material for electrocatalysis. 

Thus, Au@PBA heterostructures have been mostly focused on the pure Prussian 

Blue compound.22–26 Only recently, heterostructures with other metallic compositions 

such as NiFe and CoFe, which are interesting for OER, have been reported.27,28 

In this work, we have studied how the chemical design influences the specific 

density of electroactive sites in different Au-PBA nanostructures. To do so, we have 

synthesized and fully characterized a variety of well-formed core@shell NPs of 

Au@PBA (PBA of NiIIFeII and CoIIFeII) with an Au core diameter of around 15 nm 

and different shell sizes. The electrocatalytical activity of such NPs was 

systematically evaluated and compared to the pristine PBA and other Au-PBA 

heterostructures by studying the OER. By means of coulovoltammetry and 

electrochemical impedance spectroscopy, we noticed that the presence of 5-10 % 

of Au in the core@shell NPs leads to i) an enhancement of the intrinsic catalytic 

activity of the PBA centers and ii) an increment in the electroactive mass able to be 

reduced or oxidized and thus, to a higher number of sites able to take part in the 

OER. These effects decrease the onset potential significantly. At the same time, the 

Tafel slope remains unchanged, possibly indicating that Au reduces the limiting 

potential of the catalyst with no variation in the kinetics of the reaction. These 

improvements are a consequence of the high contact between both systems and the 

protective shell that prevents from Au oxidation. Therefore, these results make 

evident the existence of a strong synergistic effect between the core and the shell. 
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3.2  Results and discussion 

The preparation of core@shell NPs of Au@PBA involves a two-step protocol in 

which KAu(CN)2 reacts with KBH4 in aqueous solution, reducing Au(I) to metallic Au, 

to afford Au NPs stabilized by cyanide groups (Au@CN NPs), followed in a second 

step by a dropwise addition of the PBA precursors to overgrow the PBA around the 

Au surface.27,28 

 

 

Figure 3.1 Schematic illustration of the preparation of Au@PBA NPs. 

 

Still, this protocol needs further optimization to fulfill the requirements that are 

needed to make these hybrid Au@PBA NPs useful for electrocatalysis: (i) the 

amount of Au should be minimized with respect to that of the electroactive PBA shell 

since one needs to have the maximum number of electroactive sites while 

maintaining the beneficial properties of the Au core in terms of conductivity and 

activation of the shell (see below); (ii) a good coverage of the Au by the PBA shell to 

avoid its oxidation and dissolution during the electrochemical process; (iii) a good 

monodispersity in the size of the hybrid NPs to ensure the reproducibility in the 

electrochemical measurements. 
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Keeping these considerations in mind, the first step in the preparation of 

Au@PBA NPs has been carried out at low temperature (around 10 ºC). This 

temperature was set to induce the formation of smaller Au NPs and, consequently, 

to increase the surface area and the contact between Au and PBA. These NPs are 

in an equilibrium between borohydride (reducing agent) and cyanide (capping but 

also oxidizing agent). Furthermore, since KBH4 leads to hydrogen bubbles that 

destabilize the Au NPs as a consequence of the water reduction,29 in our protocol, 

the Au(CN)2:KBH4 molar ratio was increased with respect to the original synthesis 

(from 0.08 to 0.25) to improve the Au monodispersity. This smaller NP size 

distribution was proved by the width of the Au plasmon band (see below). On the 

other hand, in the specific case of Au@CoFe NPs, some additional changes need 

to be introduced to improve the CoFe coverage. Indeed, in this growth process, CoFe 

has a stronger tendency to self-nucleate than NiFe, as a consequence of the different 

kinetics.30 For this reason, following the original protocol afforded an incomplete 

coverage of the Au NP by the overgrown shell (Figure 3.1a). To solve this problem, 

the precursors were added at lower rates in order to give enough time to the CoFe 

shell to grow better over Au (Figure 3.2b). Although a core@shell morphology is 

achieved at this point, a further improvement was still by varying the time delay (time 

between Au NPs formation and the beginning of the addition of the precursors). 

Thus, a higher time delay promotes the formation of single CoFe NPs (Figure 3.2c). 

In contrast, no time delay prevents the formation of well-stabilized Au@CN NPs 

(Figure 3.2d). A time delay of 10-20 min in combination with an addition rate of 0.5 

mLꞏh-1 appears to be the most optimal conditions to get well stabilized Au NPs and 

thus, a well-defined shell growth around the metallic surface. Furthermore, PBA shell 

thickness can be controlled by varying the total PBA precursor volume. Thus, after 

optimizing the protocol, different PBA shells were obtained to evaluate the Au/PBA 

ratio on the electrochemical performance (Figure 3.3). 
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Figure 3.2 TEM images of the NPs obtained through the Au@CoFe protocol and applying the 

following parameters: a) addition rate of 2 mLꞏh-1 and time delay of 20-30 min. b) addition rate 

of 0.5 mLꞏh-1 and time delay of 20-30 min. c) addition rate of 0.5 mLꞏh-1 and time delay of 45 

min. d) addition rate of 0.5 mLꞏh-1 and time delay of 0 min. 
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Figure 3.3 TEM images and histograms of the size distribution for Au@NiFe NPs with thinner 

(a, b) and thicker shells (c, d) and for Au@CoFe with thinner (e, f) and thicker shells (g, h). 
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Transmission Electron Microscopy (TEM) images of the hybrid NPs show a 

core@shell morphology formed by an Au core and a well-defined PBA shell (Figure 

3.3). For NiFe, hybrid NPs with shell thicknesses of 12 ± 2 and 30 ± 3 nm were 

prepared, while maintaining a constant size of about 15 nm for the Au core (Figure 

3.3a to 3.3d). For CoFe, shell thicknesses of 13 ± 3 and 35 ± 6 nm have been 

obtained, but, in contrast to those of NiFe, the size of the Au core varies from 22 to 

15 nm, respectively (Figure 3.3e to 3.3h). This core size difference could be due to 

the major difficulties encountered in the CoFe shell synthesis for growing the PBA 

layer around Au.  

Interestingly, the Localized Surface Plasmon Resonance (LSPR) of the Au NPs 

is progressively red-shifted during shell formation (Figure 3.4). It can be attributed to 

the progressive change in the dielectric constant around the Au surface upon the 

continuous overgrowth of the shell.31,32 Such a shift of the plasmon band occurs upon 

the addition of the precursor salts indicating the formation of the PBA around the 

metallic Au surface. It is expected that NiFe and CoFe exhibit quite similar values for 

the dielectric constant. Indeed, by comparing the red-shift shown by Au@PBA NPs 

with different shell thicknesses, one can notice that for those having a 12-13 nm 

shell, a shift of ca. 21 nm is observed, while for those having a 30-35 nm shell this 

shift turns out to be of ca. 28 nm. In addition, the full width at half maximum (FWHM) 

of the plasmon band is slightly reduced after the PBA overgrowth. In point of fact, 

the modification in the dielectric constant also leads to an increase in the plasmon 

band intensity that decreases the FWHM (Figure 3.4). Moreover, the absence of 

other plasmon bands together with the small width of these bands point toward a 

narrow size distribution for the Au NPs. These plasmonic properties could be also 

beneficial for increasing the catalytic performance by light irradiation since the 

increase in the local temperature could reduce even more the onset potential and 

enhance the reaction rate.33,34 
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Figure 3.4 a) b) UV-Vis spectra of Au and the different Au@PBA NPs. c) d) Plasmon position 

and plasmon FWHM calculated for the different NPs. 

 

Energy-dispersive X-ray spectroscopy (EDX) was carried out to ensure a 

homogeneous distribution of iron and nickel as well as iron and cobalt over the Au 

NPs (see Figures 3.5 and 3.6). The estimated Au content for the thinner and thicker 

shells is ca. 40 % and ca. 8%, respectively (see Table 3.1). The molecular formulas 

estimated by Inductively Coupled-Plasma Optical Emission Spectrometry (ICP-MS) 

can be found in Table 3.2. It is important to note that these PBAs do not contain 

many vacancies (thus, few structural defects are present35) since the KBH4 provides 

the solution with a high amount of potassium cations.    
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Figure 3.5 EDX mapping of the metals present in the Au@NiFe(thin). Au, Ni and Fe are 

represented in red, yellow and green, respectively. 

 

Figure 3.6 EDX mapping of the metals present in the Au@CoFe(thin). Au, Co and Fe are 

represented in red, blue and green, respectively. 
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Table 3.1 Percentage of Au (in weight) estimated for the different NPs. 

 

Table 3.2 Molecular formula estimated for the different NPs. 

 

 

X-ray photoelectron spectroscopy (XPS) was performed on a powder of these NPs 

to characterize the oxidation state of the metals contained in both PBA shells.  
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Figure 3.7 XPS spectra of Au@NiFe (up) and Au@CoFe (down). 

 

For Au@NiFe NPs, as shown in Figure 3.7, nickel is present as NiII but iron is 

reduced from FeIII to FeII. This is in good agreement with previous works reported in 

the literature27 and with the magnetic measurements. Indeed, while the pure NiIIFeIII 

PBA behaves as a magnet below ca. 20 K,36 the Au@NiFe NPs stay paramagnetic 

down to 2 K (Figure 3.8). Similarly, while the pristine CoIIFeIII PBA possesses a 

magnetic ordering below 14 K,36 Au@CoFe (i.e. CoIIFeII) remains paramagnetic at 

lower temperatures (Figure 3.8). These magnetic differences result from the 

reduction of FeIII (with S = ½) to low spin FeII (with S = 0) in the core@shell systems. 

Such a reduction is promoted by the remaining KBH4 used to reduce AuI to metallic 

Au, which is still present in the solution. Indeed, a high concentration of this strong 

reductant is required to reach an equilibrium between the Au reduction and the 

oxidation by the cyanide. Lower amounts lead to non-stabilized Au NPs that can 

precipitate, avoiding the PBA shell overgrowth.  
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Figure 3.8 Magnetization vs. temperature curve performed for Au@NiFe and NIFe-PBA (up) 

and Au@CoFe and CoFe-PBA (down) NPs with an applied field of 1000 Oe. 

 

Even though the presence of FeII, the Au@PBA heterostructures maintain the 

characteristic PB cubic structure in the powder X-ray diffraction (PXRD) data and the 

expected cyanide vibration in the Raman spectra, located at ca. 2150 cm-1 (see 

Figure 3.9). 
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Figure 3.9 a) PXRD and b) Raman spectrum of the core@shell NPs. The cyanide vibration 

peak is highlighted in blue. 

 

To verify the influence of Au on the electrochemical performance and the benefits 

of this sort of core@shell heterostructure, four kinds of NPs were also prepared: i) 

PBA NPs (NiFeIII and CoFeIII) containing many defects (i.e. many vacancies) since 

they give rise to higher electrocatalytic performance,37 ii) PBA with reduced FeII 

(NiFeII and CoFeII) iii) PBA NPs decorated with Au NPs on its surface (Au-PBA)38 

and PBA NPs physically mixed with Au NPs (Au+PBA). TEM images of these 

systems and their respective histograms can be found in Figures 3.10 - 3.13. PBA 

NPs with a lot of defects were synthesized in order to get worthy references for the 

comparison. 
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Figure 3.10 PBA-NiFeII NPs and their corresponding histogram. 

 

 

Figure 3.11 a) b) PBA-NiFe NPs and their corresponding histogram. c) Au-decorated PBA-

NiFe NPs. 
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Figure 3.12 PBA-CoFeII NPs and their corresponding histogram. 

 

 

Figure 3.13 a) b) PBA-CoFe NPs and their corresponding histogram. c) Au-decorated PBA-

CoFe NPs. 
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The different obtained NPs were tested as OER electrocatalysts. Prior to that, 

Cyclic Voltammetry (CV) curves were examined to analyze the redox processes. 

The Au@NiFe NPs exhibit redox peaks in a similar position as those observed for 

PBA-NiFe NPs of similar size (around 1.2 – 1.5 V), which are related to Ni processes 

(Figure 3.14).39 In the CoFe compound, for all NPs it can be found a small redox 

couple between 1.2 and 1.4 V which can be assigned to Co redox process (Figure 

3.15).40  

 

 

Figure 3.14 CVs performed at different scan rates in 1 M KOH aqueous solution for different 

NiFe NPs: a) PBA, b) PBA with FeII, c) Au@PBA (thin shell), d) Au@PBA (thick shell), e) Au 

decorated PBA NPs and f) physical mixture of Au and PBA NPs. 
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Figure 3.15 CVs performed at different scan rates in 1 M KOH aqueous solution for different 

CoFe NPs: a) PBA, b) PBA with FeII, c) Au@PBA (thin shell), d) Au@PBA (thick shell), e) Au 

decorated PBA NPs and f) physical mixture of Au and PBA NPs. 

 

 

Observing the dependence of the charge on the applied potential, it can be 

noticed that NiFe compounds (Figure 3.16) display almost reversible peaks (closed 

coulovoltammetric loops41,42) whereas, in CoFe compounds, an excess anodic 

charge (open coulovoltammetric loops41,42) was detected (Figure 3.17). This 

irreversible charge is a consequence of the low onset potential of the OER that leads 

to the irreversible formation of O2. To the best of our knowledge, this is the first time 

that coulovoltammetry is used to study irreversible electrocatalytic reactions. As it is 

demonstrated here, this is a useful technique since it brings the possibility to 

separate charges consumed by electrodic redox processes from charges expended 

by irreversible electrocatalytic processes, as oxygen evolution here, when both 

processes overlap in the same potential range. Therefore, this technique can provide 
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a deeper study of both, the onset OER potential and the evolution of the oxygen 

production. In this work, coulovoltammetry has been used to extract and analyze the 

reversible charges of the different compounds. 

 

 

Figure 3.16 Evolution of the consumed charge parallel to the voltammetric response to the 

CV performed at 50 mVꞏs-1 in 1 M KOH aqueous solution for NiFe compounds. 
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Figure 3.17 Evolution of the consumed charge during the voltammetric response to potential 

cycles performed at 50 mVꞏs-1 in 1 M KOH aqueous solution for CoFe compounds.  

 

Remarkably, important differences in the current density and reversible charge 

are observed in the NPs, especially for the NiFe systems (Figures 3.14 - 3.17). Thus, 

compared to the pristine NiFeIII and NiFeII, the system Au@NiFe with a thin shell 
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displays lower current density values, possibly due to the low content of electroactive 

NiFe material, which represents ca. 60% of the total mass. In fact, if one takes into 

account the electroactive mass for these three cases, the current density and the 

total charge coming from these redox processes are quite similar (see Figure 3.18), 

suggesting that the density values are controlled by the percentage of electroactive 

PBA. Interestingly, this rule is not followed for Au@NiFe NPs with a thick shell. Then, 

with around 90 % (in weight) of NiFe, the current densities are about 5 times greater 

for the core@shell NPs as compared with those of the NiFeII NPs and even with 

those of the pristine NiFeIII NPs.  

 

 

Figure 3.18 CVs performed at 20 mVꞏs-1 in 1 M KOH aqueous solution for NiFe compound 

compared to: a) NiFeII and the electroactive species of Au@NiFe(thin) and Au@NiFe(thick); 

and b) the electroactive species of Au-NiFe and Au+NiFe. 

 

This strong and anomalous enhancement in the current density could be related 

to the increase in the conductivity of the hybrid material (compared with that of 

pristine PBA NPs), as well as with the number of electroactive sites. In this line, using 

Faraday’s law of electrochemical reactions (Equation 3.1) and the redox charges 

extracted from Figures 3.16 and 3.17, the total PBA mass involved in the redox 

processes was estimated.  

m ൌ  
୕

୊
൉

୑

୸
      (Equation 3.1) 
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In this equation, m is referred to the mass (g), Q to the charge corresponding to 

the reversible redox process, M to the molecular weight of the sample and z to the 

total number of electrons taking part in the redox process. Q was calculated by 

subtracting the total charge involving both reversible and irreversible reactions 

(Qrev+ir) and the charge consumed by the irreversible oxygen evolution, (Qir) 

calculated in Figures 3.16 and 3.17. The reversible charge allows the calculations of 

the number of electroactive metal atoms. The redox processes of NiFe compounds 

are associated with the oxidation/reduction of Ni. Here, the initial NiII is firstly oxidized 

to a mixed valance state of NiIII/NiIV. Therefore, for these materials, calculations were 

carried out considering one (z = 1) or two (z = 2) electrons involved in the reaction. 

For the CoFe compounds, the redox processes associated with the reaction of CoII 

and CoIII involve only one electron (z = 1). 

 

Table 3.3 Amount of PBA material being oxidized or reduced in cyclovoltamperometry. 

              e.a. = electroactive 

 

For pristine PBA, the PBA of FeII and Au@PBA(thin), it was found that the 

reduced or oxidized PBA mass is below 20 % of the total PBA electrodic mass (See 

Table 3.3), suggesting that only the surface of the PBA material is electrochemically 



Chemical design of Au and PBA heterostructures for OER electrocatalysis 

- 121 - 
 

active. Higher electroactive percentages of the PBA mass were estimated for the 

core@shell heterostructures with a thick shell. Indeed, compared to the PBA of FeII, 

in the case of Au@NiFe(thick), an increment in the mass of electroactive species of 

around 600 % was calculated, while for the Au@CoFe(thick) system, this increment 

was found to be around 300 %. These results are in good agreement with the 

increase of the electrochemical surface area (ECSA) found for these compounds 

(Figure 3.19). The ECSA represents the number of electroactive sites in the catalyst 

and some studies have indicated that Au contributes remarkably to the enhancement 

of this parameter.43 Thus, it is reasonable to assume that a higher ECSA implies a 

better material because it implies that more electrocatalyst sites are available for the 

electrochemical reaction, here the OER. In our case and compared to the respective 

PBAs of FeII, an increment in the number of electroactive species of around 350 % 

was calculated for Au@NiFe(thick), while this increment was found to be around 

500 % for the Au@CoFe(thick) system. Here the role of Au is the activation of the 

PBA shell, facilitating the interaction between the oxidized/reduced species and the 

electrolyte thanks to the close contacts established in this kind of core@shell 

heterostructure between the Au core and the PBA shell. This fact is corroborated by 

comparing these results with the lower current densities obtained in systems where 

the contacts between the two components are much weaker (PBA NPs decorated 

with Au NPs, Au-PBA) or inexistent (physical mixture of both NPs, Au+PBA) (see 

Figures 3.14, 3.15 and 3.18). These compounds display ECSA values considerably 

higher than that of the PBA NPs because Au exhibits a huge ECSA by itself (value 

of 0.18 µFꞏcm-2) when it is exposed to the electrolyte. Thus, these larger and 

activated PBA sites from the core@shell heterostructures could be exploited in order 

to increase the number of sites contributing to electrocatalytic reactions such as the 

OER.44 
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Figure 3.19 Linear slopes representing the ECSA calculated from CVs performed in a non-

faradaic region at different scan rates for NiFe (a) and CoFe (c) PBA compounds. ECSA 

values of the different NPs of NiFe (b) and CoFe (d) PBA compounds.  

 

Electrocatalytic activities of different NPs, with and without Au, were tested and 

compared by measuring Linear Sweep Voltammetry (LSV) performed at a slow scan 

rate to minimize the capacitive current (see Figures 3.20a and 3.21A). Figures 3.20b 

and 3.21b display a zoom of the starting catalytic region to evidence the 

electrocatalytic differences. It is important to remark that these curves were not 

corrected with the solution resistance (iR, R value of 3 ± 1 Ω) to make a fair 

comparison of the intrinsic electrocatalytic behavior of each sample. When we 

compare the polarization curves to the PBA NPs of FeII, it can be easily observed 

that both Au@PBA (with a thick and a thin shell) display lower onset potentials. 
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Furthermore, the lowest onset potentials are reached with a thicker shell, obtaining 

values even better than the pristine PBA with many defects (NiFe and CoFe). On the 

other hand, both, Au-PBA and Au+PBA do not result advantageous in terms of 

electrocatalysis. In these two cases, Au is exposed to the electrolyte, oxidizing at 

higher overpotentials in such a way that their LSV resembles the one recorded for 

Au. At this point, it is essential to mention that in the case of PBA NPs decorated 

with Au NPs, a polymer is used to connect both systems. Then, the polymer matrix 

surrounding Au NPs decreases the conductivity of the heterostructure leading to a 

lower electrocatalytic performance compared to that observed in the physical mixture 

(Au+PBA). To analyze the electrocatalytic behavior, some key parameters were 

compared:  

(1) The overpotential required at 10 mAꞏcm−2 (horizontal dotted lines, Figures 

3.20a and 3.21a). The overpotential required at 10 mAꞏcm-2 was chosen 

because it is the approximate current density expected for a 10% efficient solar-

to-fuels conversion device under 1 sun illumination.45 

(2) The current density recorded at an overpotential of 350 mV, corresponding 

to the vertical dotted lines (Figures 3.20b and 3.21b). 

(3) The Tafel slopes. This parameter indicates how much it is necessary to 

increase the overpotential to rise the reaction rate (thus, the current density) by 

an order of magnitude. 

Figures 3.20c and 3.21c evidence that a thin shell leads to lower overpotentials 

but increasing the shell thickness significantly conduces to a further decrease of 

these values. Indeed, this parameter is reduced from 465 mV to 426 and then to 375 

mV for NiFeII, Au@NiFe(thin) and Au@NiFe(thick), respectively. For CoFeII, 

Au@CoFe(thin) and Au@CoFe(thick), the overpotential is decreased from 405 mV 

to 380 and then to 357 mV, respectively. A similar trend was observed for the current 

densities flowing at a fixed overpotential of 350 mV (Figures 3.20d and 3.21d). Here, 

the current density is increased for Au@NiFe(thick) from 1.6 to 5.1 mAꞏcm-2 (i.e. an 

improvement of 320 %) and for Au@CoFe(thick) from 1.9 to 8.1 mAꞏcm-2 (i.e. an 

improvement of 420 %). Besides, the results obtained for Au@PBA with a thick shell 

exceed considerably the performance recorded for a highly defective pristine PBA 
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(NiFe and CoFe). On the other hand, when Au is exposed to the electrolyte (Au-PBA 

and Au+PBA samples), the heterostructure does not seem to be electrocatalytic at 

these overpotentials (Figures 3.20a and 3.21a) even if they display superior ECSA 

(Figure 3.19). Therefore, the electrocatalytic enhancement is originated thanks to 

the presence of a larger number of activated PBA sites as it occurs in a thick PBA 

layer surrounding Au. 

 

Figure 3.20 a) Linear Sweep Voltammetry of the different NiFe NPs measured at 5 mVꞏs−1 in 

1 M KOH aqueous solution. b) Zoom of Figure 3.20a exhibiting the beginning of the OER. c) 

Overpotential required for a current density of 10 mAꞏcm−2 for NiFe NPs. d) Current density 

obtained at an overpotential of 350 mV for NiFe NPs. e) Tafel slopes calculated from LSV 

data for NiFe NPs.  
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Figure 3.21 a) Linear Sweep Voltammetry of the different CoFe NPs measured at 5 mVꞏs−1 

in 1 M KOH aqueous solution. b) Zoom of Figure 3.21a exhibiting the beginning of the OER. 

c) Overpotential required for a current density of 10 mAꞏcm−2 for CoFe NPs. d) Current density 

obtained at an overpotential of 350 mV for CoFe NPs. e) Tafel slopes calculated from LSV 

data for CoFe NPs. 
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To investigate the intrinsic catalytic activity of the PBA sites, turnover frequency 

(TOF) values were calculated at an overpotential of 350 mV (Figure 3.22). 

Considering de total number of PBA centers, Au@PBA nanostructures with thick 

shells exhibit the highest values. This result is not unexpected since these 

heterostructures display the best OER performance. Nevertheless, if the TOF is 

calculated considering only the electroactive PBA centers previously estimated 

(Table 3.3), Au@PBA with thin shells show the highest values. In fact, the proximity 

of the Au core and the PBA centers enhances their intrinsic activity. In this way, these 

hybrids have the lowest number of PBA centers, but they are more active, giving rise 

to better performance than the PBA of FeII. Still, in a thick PBA shell, Au is able to 

slightly activate the PBA centers. Therefore, Au can increase the total number of 

electroactive sites but also enhances their intrinsic activity. Additionally, it is worth 

mentioning that Au+PBA physical mixtures exhibit large variability in the TOF values. 

The reason is that only the catalytic activity of PBA centers close to the Au NPs is 

enhanced and this is difficult to control due to the preparation procedure. In this 

sense, the physical mixture of Au NPs and PBA (Au+PBA) does not result to be 

suitable electrocatalysts. 
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Figure 3.22 Turnover frequencies calculated at 0.35 V overpotential for NiFe compounds (a) 

and CoFe compounds (b). TOF values were calculated using the total PBA mass or the 

electroactive PBA mass previously obtained considering z = 1 (see Table 3.3). 
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Regarding the kinetics, Figures 3.20e and 3.21e show the Tafel slope values 

calculated from the LSV data for NiFe and CoFe compounds, respectively. 

Interestingly, when Au oxidation is not taking place (either the absence of Au or the 

core@shell structure) the NPs exhibit quite similar slopes in agreement with the fact 

that in the core@shell NPs, the PBA is the only electroactive species exposed to the 

electrolyte solution. Therefore, it is expected that all NPs would behave kinetically 

very similar. In fact, the addition of Au decreases the onset potential significantly but 

it does not affect the Tafel slope, possibly indicating that Au reduces the limiting 

potential of the catalyst with no variation in the reaction kinetics. These results are 

in good agreement with those reported for other core@shell structures based on an 

Au core15,46, suggesting that this kind of nanostructure has a strong synergistic effect 

between the core and the shell. To confirm this point, Electrochemical Impedance 

Spectroscopy (EIS) measurements were performed (Figures 3.23a and 3.23b). 

EIS is a technique based on the analysis of electrical circuits and describes the 

response of a circuit to an AC current or an AC voltage. Interestingly, the different 

electrochemical processes taking place in an electrode can be represented by 

different electrical components (e.g. resistors, capacitors or inductors) which 

networks are called equivalent circuits. The technique consists of measuring the AC 

current response, the phase shift and the amplitude changes over an extensive 

frequency range after applying a small AC potential (e.g. less than 10 mV) to an 

electrode. Examining the current response over a range of frequencies allows the 

separation of processes which occur on different timescales, making it an ideal tool 

for separating the different electrochemical processes.  

Impedance expands the concept of resistance to AC circuits. Indeed, when 

working at DC, the resistance is defined by Ohm’s law as V = IR. However, when the 

frequency is not zero (i.e. AC), the equation turns out to be V = IZ. Z corresponds to 

the impedance, which exhibits the same units as the resistance (ohm). As the 

resistance, the impedance is the opposition that a circuit presents to a current when 

a voltage is applied. However, depending on the applied frequency, capacitors and 

inductors can also interfere with the electrons flow, contributing to the impedance 

value. Thus, Z is a complex number composed of a real part, Z', and an imaginary 

part, Z" (Equation 3.2). 
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         Z ൌ Zᇱ ൅ iZ′′   (Equation 3.2)  

The real part (Z') is related to the electronic resistivity, while the imaginary part 

(Z") is mainly associated with capacitive effects. The representation of Z" as a 

function of Z' at different frequencies (Nyquist plot) permits to distinguish the 

electrochemical processes such as the resistance of the redox reactions.47,48 

The equivalent circuits used to fit the EIS data are shown in Figures 3.23e and 

3.23f. Constant phase elements (CPEs), which are non-ideal capacitances, were 

introduced to provide a good match with the experimental data because of the 

possible surface roughness, physical non-uniformity and the non-uniform distribution 

of the electroactive sites. When PBA is the only species interacting with the 

electrolyte, the equivalent circuit is composed of a resistance coming from the ionic 

transport through the solution and the current collectors (Rs) connected in series with 

a first parallel branch (Rint and CPEint) corresponding to the interfacial contact 

between the NPs and the Glassy Carbon. These three elements are observed in the 

high-frequency region. In the low-frequency region, OER processes occurring on the 

PBA surface are represented by a second parallel branch (RPBA and CPEPBA). As 

observed in Figures 3.23c and 3.23d, RPBA is significantly decreased due to the 

existence of defects in the PBA NPs, but an extraordinary drop is observed for the 

Au@NiFe heterostructures, leading to an enhancement of the electrocatalytic 

properties. As expected, a thinner PBA shell gives rise to lower resistance. Still, the 

incorporation of 5-10 % (in weight) of Au is enough to reduce this resistance by 4 for 

the NiFe and by 3 in the CoFe. 
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Figure 3.23 a) b) Nyquist plots of the different samples recorded at an overpotential of 0.4 V. 

Points correspond to experimental data, and lines are curves fitted with the equivalent circuit. 

Resistance values of the PBA associated with the OER process for c) NiFe compounds and 

d) CoFe compounds. These resistance values were calculated from the equivalent circuit. e) 

Equivalent circuit used for the two PBA NPs, Au@PBA(thin) and Au@PBA(thick). f) Equivalent 

circuit used for Au-PBA and Au+PBA. 
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Summarizing, by comparing the different systems exhibiting the same Au loading 

(i.e. Au@PBA(thin), Au-PBA and Au+PBA), one can conclude that the appropriate 

design of the heterostructure is crucial in order to maximize the electrocatalytic 

activity. In fact, Au activates the PBA sites and increases the conductivity of the 

hybrid but must be protected to prevent its oxidation. In this case, the Au@PBA 

system turns out to be the most suitable nanoarchitecture. Here, a thick PBA layer 

further improves the catalytic performance thanks to the larger number of activated 

PBA sites acting on the OER and the still important increment in conductivity.  

Compared with previously reported OER electrocatalysts where their electrical 

conductivity was improved following different strategies in order to decrease the 

onset potential, our strategy turns out to be very useful (Table 3.4). Indeed, the 

introduction of small amounts of Au in a core@shell structure gives rise to a higher 

reduction of the voltage than using reduced graphene oxide (rGO). In addition to this, 

the overpotentials at 10 mAꞏcm-2 match the values obtained for IrO2 and are 

comparable to other reported electrocatalysts (Table 3.5). Furthermore, our 

electrocatalysts still display room for improvement since the electrochemical activity 

can be further improved by using other supporting electrodes (such as Ni foam) and 

by subjecting the heterostructures to different thermal and physical pre-treatments 

(such as plasma activation). 
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Table 3.4 Comparison of overpotential improvement for the OER using previously reported 

strategies to increase the electrical conductivity of the electrocatalyst. 

Sample comparison 
Overpotential decrease 

at 10 mAꞏcm-2 (mV) 
Reference 

Au@NiFe PBA NiFe PBA 92 This work 

Au@CoFe PBA CoFe PBA 51 This work 

Au@Co3O4 Co3O4 50 15 

ZnCo2O4/Au/CNTs ZnCo2O4/CNTs 31 43 

Au@NiO NiO 90 46 

Au@CoFeOx CoFeOx 39 46 

CNTs-Au@Co3O4 CNTs@Co3O4 50 49 

Au/NiFe LDH NiFe LDH 30 50 

Ag+Co(OH)2 Co(OH)2 30 51 

Ag@Co(OH)2 Co(OH)2 100 51 

NiFe-rGO LDH NiFe LDH 30 52 

NiO-NiFe2O4/rGO NiO-NiFe2O4 75 53 

Co(OH)2/SWNT Co(OH)2 40 54 

FeCoYOx – Ni foam FeCoYOx – GC 27 55 

               

 GC= Glassy Carbon 
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Table 3.5 Comparison of the electrocatalytic activity with previous reported OER 

electrocatalysts. 

 

RDE = Rotating Disk Electrode ; GC= Glassy Carbon 

 

Last but not least, the long-term stability of NiFeII and CoFeII with and without Au 

were compared for 24 hours under oxygen evolution at a constant current density of 

20 mAꞏcm-2 (Figure 3.24). Note that Ni foam was used to avoid the detachment of 

the electrocatalyst from the electrode surface during the O2 formation. The reaction 

overpotentials are lower than those expected from Figures 3.20 and 3.21 for the 

same current density due to the porous structure of the substrate used to support 

the NPs in these measurements (Ni foam foil).58 The best electrocatalytic stability 

Sample 
Overpotential at 10 
mAꞏcm-2 (V vs RHE) 

Solution 
iR 

correction 
Electrode Reference 

Au@NiFe 1.59 1M KOH no GC This work 

Au@CoFe 1.57 1M KOH no GC This work 

Au@Co3O4 1.61 0.1 M KOH yes GC 15 

Au@CoFeOx 1.55 1M KOH yes GC 46 

Au@NiO 1.63 1M KOH yes GC 46 

CoFe LDH 1.65 1M KOH no GC 44 

NiFe LDH 1.58 1M KOH yes GC 56 

IrO2 1.57 1M KOH yes GC 56 

CNTs-Au@Co3O4 1.58 1M KOH no GC 49 

NiFe-vCN- PBA 1.513 1M KOH yes RDE GC 37 

CoFe-vCN- PBA 1.599 1M KOH yes RDE GC 37 

ZnCo2O4/Au/CNTs 1.67 1M KOH no RDE GC 43 

NiO-NiFe2O4/rGO 1.53 1M KOH no RDE GC 53 

CoFe oxide 1.54 1M KOH yes Ni foam 57 

CoFe film PBA 1.66 0.1M KOH no FTO glass 8 

Au/NiFe LDH 1.467 1M KOH yes Ti mesh 50 

Ag@Co(OH)2 1.48 1M KOH no Carbon cloth 51 

Ag+Co(OH)2 1.55 1M KOH no Carbon cloth 51 
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was observed when introducing 5-10 % in weight of Au. Thus, after 24 hours of OER, 

the overpotential increment is 50 % lower in the core@shell NPs than when the Au 

is absent. It seems that Au gives rise to lower overpotentials which favors the long 

term stability of the PBA during the OER. It is worth noting that Au-PBA 

nanostructures exposing Au to the electrolyte exhibit a progressive voltage increase 

caused by Au oxidation and dissolution. 

 

Figure 3.24 Stability of NiFeII and CoFeII with (in a core@shell structure) and without Au under 

a constant current density of 20 mAꞏcm−2 for 24 h. 

 

Coulovoltametric responses before and after the stability test can be analyzed to 

calculate the electroactive mass involved in the redox processes (including Ni foam). 

A reduction of the electroactive mass of around 32 % for NiFeII but only 20 % for the 

Au@NiFe(thick) sample was found (Figure 3.25). For CoFe these values are 25 % 
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and 15 %, respectively (Figure 3.26). These results indicate a high stability, which 

could be improved in the future by different treatments. The increment of the reaction 

overpotential is likely a consequence of the loss of electroactive mass caused by the 

physical detachment or the progressive inactivity of these electroactive centers. The 

higher electrochemical stability could be a consequence of the lower required 

overpotentials in the Au@PBA that occurs as a result of the larger number of active 

sites taking part in the reaction. In this way, by applying lower voltages, the number 

of parasitic reactions (i.e. further oxidation of the electrocatalyst, the acetylene black, 

the Nafion and/or the Ni foam) is minimized.59 

 

Figure 3.25 a) b) CVs performed at 50 mVꞏs-1 in 1 M KOH aqueous solution and c) d) evolution 

of the consumed charge (coulovoltammetric response) parallel to the voltammetric response 

to the CV performed at 50 mVꞏs-1 for NiFeII and Au@NiFe(thick) compounds before and after 

stability test. Black colors are referred to measurements done before the stability test and red 

colors are referred to measurements done after the stability test. 
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Figure 3.26 a) b) CVs performed at 50 mVꞏs-1 in 1 M KOH aqueous solution and c) d) evolution 

of the consumed charge (coulovoltammetric response) parallel to the voltammetric response 

to the CV performed at 50 mVꞏs-1 for CoFeII and Au@CoFe(thick) compounds before and after 

stability test. Black colors are referred to measurements done before the stability test and red 

colors are referred to measurements done after the stability test. 

 

Accordingly, these results prove that a proper Au incorporation greatly enhances 

the electrochemical activity of the electroactive PBA shell, improving at the same 

time its electrochemical stability. Along this front, a core@shell heterostructure with 

a good Au coverage is necessary to prevent its oxidation and thus, to achieve this 

synergistic effect between the core and the shell. 
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3.3  Conclusions and perspectives 

In summary, we have reported here a variety of narrow-size distributed 

core@shell NPs of Au@PBA (PBA = Prussian Blue Analogues of NiIIFeII and CoIIFeII) 

formed by an Au core and a PBA shell of different thicknesses. The electrocatalytical 

activity of such NPs has been evaluated and compared to some PBA and other Au-

PBA nanostructures. Compared to the PBA without Au, it was found that the 

introduction of small amounts of Au (5-10 % in weight) in the core@shell structure 

gives rise to a reduction of the overpotentials at 10 mAꞏcm-2 up to 100 mV and an 

increase up to 420 % of the current density recorded at an overpotential of 350 mV 

compared to the PBA without Au. Moreover, these voltage decreases are higher than 

the ones using reduced graphene oxide. Additionally, the Tafel slope remains 

unaffected, indicating that Au reduces the limiting potential of the catalyst with no 

variation in the kinetics of the reaction.  

By means of coulovoltammetry, it was detected for these heterostructures i) an 

important increment in the electroactive mass able to be reduced or oxidized and 

thus, being able to participate in the OER and ii) and enhancement of the intrinsic 

catalytic activity of the PBA sites. These effects in combination with the higher 

conductivity of the hybrid, as observed by impedance, lead to an enhancement of 

the electrocatalytic activity that improves at the same time its electrochemical 

stability. Indeed, by applying lower voltages, the number of parasitic reactions is 

reduced, leading to the higher preservation of the activity of the electroactive centers. 

It should be noted that these effects are not observed in the other Au-PBA 

nanostructures mainly due to the lower contact between both compounds and the 

oxidation of Au.  

Therefore, a core@shell heterostructure with a good Au coverage is required in 

order to get a protective and electroactive layer of PBA. These improvements are a 

consequence of the strong synergistic effect between the core and the shell of the 

Au@PBA nanostructures, which is facilitated by the close contact between both 

components. This work illustrates the importance of the chemical design for 

preparing PBA-based nanostructures exhibiting not only better electrocatalytic 

performances but also higher electrochemical stabilities likely caused by the 
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reduction of parasitic reactions. In subsequent studies both, the electrochemical 

activity and stability of these materials will be further improved by different thermal 

and physical pre-treatments. This will be facilitated, for example, by exploiting the 

plasmonic properties of Au, which will allow us to induce a photo-thermal effect in 

these nanostructures. 

 

3.4  Experimental details 

3.4.1   Synthesis  

Materials:  

All chemical reagents were purchased and used without further purification. 

Potassium ferricyanide, gold (I) potassium cyanide, nickel (II) chloride hexahydrate, 

cobalt (II) chloride hexahydrate, potassium borohydride, Chloroauric acid, sodium 

citrate tribasic dehydrate, thiol polyethyleneglycole amine (HS-PEG3.5K-NH2), 

potassium hydroxide (99.99%) and Nafion (117 solution) were purchased from 

Sigma-Aldrich. Carbon black, acetylene 50% compressed, was obtained from Alfa 

Aesar (99.9%). Milli-Q water was obtained from a Millipore Milli-Q equipment. 

 

Nanoparticles synthesis 

To prepare Au@NiFe NPs, 0.20 mmol of potassium borohydride (KBH4) was 

added to 100 mL of an aqueous 0.5 mM solution of K[Au(CN)2] under vigorous 

stirring at around 10 ºC. After 20-30 min, aqueous solutions of K3[Fe(CN)6] (5.7 mM) 

and NiCl2ꞏ6H2O (5.0 mM) were added simultaneously at a constant rate of 2 mLꞏh-1 

to the Au NPs solution under vigorous stirring. After the total addition, the solution 

was vigorously stirred for half an hour. In order to prepare Au@CoFe NPs, 0.20 

mmol of KBH4 was added to 100 mL of an aqueous 0.5 mM solution of K[Au(CN)2] 

under vigorous stirring at around 10 ºC. 10-15 minutes after the solution turns red, 

aqueous solutions of K3[Fe(CN)6] (5.7 mM) and CoCl2ꞏ6H2O (5.0 mM) were added 

simultaneously at an addition rate of 0.5 mLꞏh-1 to the Au NPs solution under 
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vigorous stirring. After the total addition, the solution was vigorously stirred for half 

an hour. Core@shell NPs were washed with water (11000 rpm for 20 minutes) and 

finally were dried under vacuum. A thinner and a thicker shell were achieved by 

adding respectively 2 and 10 mL of each precursor solution. K[Au(CN)2] reduction 

was carried out in an ice bath in order to produce smaller Au cores. 

PBA-NiFe NPs of around 150 nm were synthesized at room temperature by 

adding, to 100 mL aqueous solution at 2 mLꞏh-1 rate, aqueous solutions of 

CoCl2ꞏ6H2O (5.0 mM, 7 mL) and K3[Fe(CN)6] (5.7 mM, 7 mL) were added 

simultaneously. PBA-CoFe NPs of around 180 nm were also synthesized at room 

temperature by adding, to 100 mL aqueous solution at 2 mLꞏh-1 rate, aqueous 

solutions of NiCl2ꞏ6H2O (5.0 mM, 8 mL) and K3[Fe(CN)6] (5.7 mM, 8 mL). After 

completion of the addition, the mixtures were stirred for half an hour before being 

centrifuged at 11000 rpm for 20 min. The supernatants were removed, and the 

powders were let dried under vacuum. PBA-NiFeII and PBA-CoFeII were prepared 

using the same synthetic procedure but adding 0.4 mmol of potassium borohydride 

(KBH4) to promote the reduction of FeIII. 

Au NPs stabilized by citrate capping agent were synthesized following the well-

known Turkevich method.60 Physical mixture (Au+PBA) was prepared by joining in 

weight 30 % of Au NPs and 70 % of PBA NPs.   

The decoration of Au on PBA NPs was carried out by connecting each NP by a 

polymer containing a thiol and an amine group (HS-PEG-NH2) following the protocol 

described in chapter 2.  
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3.4.2   Characterization  

Electrode preparation 

For the electrode preparation, a dispersion composed of 1 mg of powder 

material, 0.5 mg of acetylene black, 200 µL of water and ethanol (1:1) and 8 µL of 

Nafion (10 %) was prepared and sonicated in order to obtain a well-dispersed 

suspension. Then, 3.6 µL was drop-casted in a previously polished (sequentially with 

1.0, 0.3 and 0.05 µm alumina powder) 3 mm Glassy Carbon electrode. Afterwards, 

the solvent was let evaporated at room temperature. The electrode mass loading 

achieved was around 0.25 mgꞏcm-2.  

 

Electrochemical measurements 

Electrochemical tests were performed in a typical three-electrode cell equipped 

with Glassy Carbon acting as the working electrode and a platinum wire as the 

counter electrode. As the reference electrode, a silver-silver chloride (versus 

Ag/AgCl (3 M KCl)) was used. All potentials were converted referring to the oxygen 

evolution overpotential or the reversible hydrogen electrode (RHE). The 

measurements were performed at least three times for every sample using different 

electrodes on an Autolab PGSTAT 128N potentiostat/galvanostat. Linear sweep 

voltammetry (LSV) measurements were carried out at 5 mV∙s−1 in a previously N2 

purged 1 M KOH aqueous solution. Prior to this, CVs were performed at different 

scan rates (100, 50, 20 and 10 mVꞏs-1). 

Electrochemical Surface Area (ECSA) was acquired by measuring the current 

associated with double-layer capacitance from the scan rate dependence of CVs. 

The potential range used for the CVs was from -0.2 to 0.1 V versus Ag/AgCl (3 M 

KCl). The scan rates were 400, 300, 200, 100 and 50 mVs-1. The double layer 

capacitance was estimated by plotting the (ja–jc) (anodic versus cathodic currents) 

at -0.05 V versus Ag/AgCl (3 M KCl) against the scan rate. The ECSA was measured 

on the working electrodes after performing an activation process consisting of 5 CVs 

at 50 mVꞏs-1 around their redox processes. 



Chemical design of Au and PBA heterostructures for OER electrocatalysis 

- 141 - 
 

The turnover frequencies (TOF) were calculated from the following equation: 

𝑇𝑂𝐹 ൌ ௝஺

ସி௡
      (Equation 3.3) 

where j is the current density at a given overpotential of 0.35 V, A is the surface area 

of the working electrode, F is the Faraday constant, and n is the total number of 

moles of PBA or the elctroactive number of moles of PBA. 

Electrochemical impedance spectroscopy (EIS) measurements were carried out 

using a Gamry 1000E potentiostat/galvanostat controlled by Gamry software by 

applying an AC amplitude of 10 mV in the frequency range of 10-1–105 Hz at an 

overpotential of 0.4 V. EIS data were analyzed and fitted by means of Gamry Echem 

Analyst v. 7.07 software. 

Stability tests were performed under a constant current density of 20 mAꞏcm−2 

for 24 h using Ni foam foil (which area is 0.6 cm2) as the working electrode containing 

0.25 mgꞏcm-2 of electrocatalyst mass.  

 

Physical characterization 

UV/Vis Spectroscopy: UV-vis absorption spectra were recorded on a Jasco V-

670 spectrophotometer in baseline mode from 300 to 900 nm range, using 1.000-

cm-optical-path plastic cuvettes. 

Inductively Coupled-Plasma Mass Spectrometry (ICP-MS): The ICP-MS 

analysis were conducted at the Universidad de Valencia (Sección de Espectrometría 

Atómica y Molecular). Samples were digested in an acid medium at 220 ºC using a 

microwave oven. 

Transmission Electron Microscopy (TEM): TEM studies were carried out on a 

JEOL JEM 1010 microscope operating at 100 kV, and Technai G2 F20 microscope 

operating at 200 kV. Samples were prepared by dropping suspensions on lacey 

formvar/carbon copper grids (300 mesh).  

Magnetic Measurements: Magnetic data were collected with a Quantum Design 

MPMS XL-5 susceptometer equipped with a SQUID sensor. Field Cooling 



Chapter 3 

- 142 - 
 

magnetization measurements were performed under a magnetic field applied of 

1000 Oe.  

Raman Spectroscopy: Raman spectra were acquired with a Raman Emission 

Horiba-MTB Xplora Spectrometer in ambient conditions. NPs were measured with a 

laser wavelength of 532 nm by drop-casting the samples onto silicon substrates.  

Powder X-Ray Diffraction (PXRD): X-ray powder diffraction (PXRD) patterns 

were obtained with a PANalytical X’Pert diffractometer using the copper radiation 

(Cu-Ka = 1.54178 Å) in the 5–50 region.  

X-ray Photoelectron Spectroscopy (XPS): Samples were analyzed using a K-

ALPHA Thermo Scientific spectrometer. All spectra were collected using Al Kα 

radiation (1486.6 eV), monochromatized by a twin crystal monochromator, yielding 

a focused X-ray spot (elliptical in shape with a major axis length of 400 μm) at 30 

mA and 2 kV. The alpha hemispherical analyzer was operated in the constant energy 

mode with survey scan pass energies of 200 eV to measure the whole energy band 

and 50 eV in a narrow scan to selectively measure the particular elements. XPS data 

were analyzed with Avantage software. A smart background function was used to 

approximate the experimental backgrounds. Charge compensation was achieved 

with the system flood gun that provides low energy electrons and low energy argon 

ions from a single source. 
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4.0 Previous considerations 

This chapter is devoted to the development of core@shell nanoparticles formed 

by a plasmonic core surrounded by a smart Coordination Polymer with the aim of 

improving the electrical detection of the switching properties in these nanostructures 

thanks to the presence of the metallic core and a thin shell. Firstly, we present the 

development of a synthetic protocol for covering different metallic cores with a Spin-

Crossover (SCO) compound, which can undergo a spin transition upon varying the 

temperature. After that, with the purpose of extending this procedure to other 

systems, we introduce our preliminary attempts of combining an Au core with porous 

Coordination Polymers (Metal-Organic Frameworks; MOFs). The final goal, in this 

case, is to use the sorption/release of guest molecules as an external stimulus to 

trigger an electrical change. It is important to remark that this is still an ongoing work. 

It is also important to point out that the chemical design of the Au@MOF 

nanostructures has been supervised by Dr. Monica Giménez-Marqués. Regarding 

the electrical measurements, Dr. Julien Dugay and Ramón Torres-Cavanillas have 

been in charge. 

 

 

 

  



Electrical switching in hybrid core@shell NPs based on Au surrounded by smart CPs 

- 151 - 
 

4.1 Introduction 

One of the most appealing perspectives in molecular chemistry is to take 

advantage of molecular systems for information processing and electronic 

applications. In this context, molecular bistable systems are particularly engaging as 

they can switch between two different stable electronic states triggered by a broad 

range of external stimuli. An example of molecular switching is provided by Spin-

Crossover (SCO) compounds. Of particular interest are those SCO materials 

displaying a hysteretic behavior in their spin transition since they can be useful as 

components of non-volatile memory devices.1–3 With the aim of reading-out the spin 

state in these devices, materials with large electrical responses, preferably 

displaying hysteretic spin transitions occurring near room temperature, are required. 

However, the SCO electronic devices reported to date, based on micrometric 

particles, have typically shown a gradual hysteresis in the conductance as well as 

very low electrical responses due to the insulating character of the SCO material.4,5 

This situation becomes even more complex when the SCO system is downscaled to 

the nanometer or single molecule range since, under these circumstances, the 

hysteretic behavior observed in bulk is usually lost.6–8  

A plausible investigated strategy to overcome these limitations in switching 

electronic devices consists of the combination of SCO entities and metallic NPs in 

hybrid heterostructures typically following a grafting protocol.9–13 Although these 

SCO-metal composite materials have been successfully obtained, their impact on 

the physical properties is still ineffective. To improve this result, a careful chemical 

of the hybrid heterostructure is mandatory. The requirements are: i) to use SCO 

nanostructures as small as possible to maintain the molecular bistability and ii) to 

incorporate metallic nanoparticles (NPs) in order to improve the conducting 

properties, while keeping them separate to avoid short circuits. 

According to these requirements, the preparation of core@shell NPs formed by 

a metallic Au core and a SCO shell seems to be a suitable choice. Despite the 

extensive works performed on core@shell NPs,14–16 nanostructures formed by a 

metallic core and a molecular SCO shell are not common. In addition, as compared 

to previous examples that contain simple SCO entities deposited or contacted to Au 
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surfaces/electrodes,9–13,17–19  the core@shell configuration reported here is expected 

to combine in a single nanostructure the metallic behavior of the core with the 

insulating behavior of the SCO shell. In these hybrid nanostructures, the appropriate 

selection of the SCO material should warrant the maintenance of a cooperative spin 

transition at the nanoscale, while the metallic core is expected to make these novel 

nanostructures electrically more conductive. As SCO material the chosen system 

has been the well-known iron(II)-triazole Coordination Polymer (CP) of formula 

[Fe(Htrz)2(trz)](BF4) (Htrz = 1,2,4-triazole).20,21 This SCO material exhibits large and 

abrupt thermal hysteresis occurring near room temperature. Furthermore, its well-

established miniaturization protocol,22–24 enables the maintenance of the cooperative 

spin transition features in NPs as small as 4 nm.25 These NPs have already been 

integrated into electronic devices, showing a detectable conductivity change during 

the SCO transition. Thus, single NP devices (NP mean size of 10 nm) showed an 

ON/OFF ratio in the conductivity of ≈2. This performance is significantly improved in 

electronic devices based on two-dimensional assemblies of SCO NPs for which the 

ON/OFF ratio increases up to a value of ≈300.26 In this context, the only attempt to 

combine metallic Au NPs with SCO molecules for the fabrication of molecular 

devices resulted in 2D arrays of SCO-functionalized Au NPs exhibiting however 

minor switching performances.27 Here, we will show that thanks to the improvement 

in the conductive properties of the core@shell NPs, the corresponding SCO-based 

devices show large electrical responses in the spin switching, with ON/OFF ratios of 

≈5300. These results have been published in Advanced Materials.28 

Besides, we were able to adapt this protocol in order to cover Au nanostars 

(AuNSs) and Ag nanospheres (addressed here as Ag NPs) with the 

[Fe(Htrz)2(trz)](BF4) SCO polymer by slightly modifying the synthesis. In this way, 

the plasmonic NP can be selected. Thus, the Localized Surface Plasmon Resonance 

(LSPR) position can be controlled in a wide range of the visible spectrum. This was 

possible thanks to the simplicity and versatility of the synthetic method. 

In a similar way, the integration of metallic NPs in core@shell nanostructures 

can also be a useful strategy to enhance the electrical response of porous CPs such 

as Metal-Organic Frameworks (MOFs) in order to detect the sorption/release of 

guest molecules by an electrical change. Indeed, electrically conductive and porous 
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solids displaying high surface area are two exciting properties for the development 

of novel electronic devices in the near future. However, as for the SCO compounds, 

the evolution of MOFs in electronic applications has been sluggish, especially due 

to its insulating nature that leads to a dearth of sophisticated molecular recognition 

and signal transduction capabilities for sensors.29,30 That is why in recent years, 

different approaches have been used to obtain conductive MOFs exhibiting high 

conductivity as well as high porosity.31 In this context, the development of Au@MOFs 

heterostructures with a MOF thin shell emerges as an interesting possibility to 

extrinsically incorporate conductivity. As commented in Chapter 1, in general, thick 

MOF shells have been overgrown around different Au nanoarchitectures due to the 

difficulties of having precise synthetic control. For the preparation of small MOF 

shells, layer-by-layer methods have emerged as an alternative that can provide 

greater control.32 However, this protocol involves too many steps with centrifugation 

that can easily lead to some aggregation. Thus, it is relevant to promote new 

protocols to prepare core@shell heterostructures with metallic cores and thin MOF 

shells for their integration in electronic devices. 

Therefore, we have extended the synthetic protocol developed for Au@SCO to 

obtain Au@MOF heterostructures exhibiting a thin shell. The MOFs grown around 

the Au were the MIL-100(Fe) or the MIL-88(Fe). However, these compounds do not 

exhibit any characteristic X-ray diffraction peak suggesting the CPs are amorphous. 

Interestingly, the obtained hybrids exhibit some colloidal stability, plasmonic 

properties and enhanced conductivity thanks to the incorporation of Au NPs. 
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4.2 Results and discussion 

For the preparation of the core@shell NPs, a straightforward protocol that coats 

spherical Au NPs with a thin shell of [Fe(Htrz)2(trz)](BF4) material has been carried 

out (Figure 4.1). At first, citrate-stabilized Au NPs of 12.4 ± 1.0 nm were synthesized 

following the well-known Turkevich method.33 Then, the overgrowth of the SCO 

compound around the Au NP surface was performed following a two-step approach. 

It consists of a partial ligand substitution of the Au surface capping agent, citrate by 

the ligand triazole and the subsequent growth of the SCO polymer by controlled 

addition of the precursors (see below for experimental details).  

 

Figure 4.1 Schematic illustration of the steps involved in the preparation of Au@SCO NPs. 

 

The first critical step occurs at the surface of stable Au NPs colloids, involving 

the partial ligand substitution of citrate capping agent by Htrz ligands. To do so, a 

diluted solution of Htrz ligand (0.5 mM) was added into a stable suspension of citrate-

stabilized Au NPs (0.16 mM). As a result, a partial ligand exchange occurred on the 

NP surface, originating some nucleation sites that act as anchors for the subsequent 

growth of the SCO shell. Such a surface modification occurred thanks to the rather 

weak Au-citrate interaction34 and needed to be partial to maintain the colloidal 

stability of the NPs. It should be noted that a complete surface ligand substitution 

with Htrz can be achieved by using larger amounts of Htrz ligand, although in this 

case the Au NPs were not effectively stabilized and tended to aggregate. Therefore, 

fine control of both the amount of Htrz ligands added as well as the reaction time 

were critical parameters to overgrow the shell while avoiding NP precipitation. This 
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ligand exchange process was checked by X-Ray photoemission spectroscopy 

(XPS), which showed the appearance of nitrogen atoms at the surface of the Au NPs 

after ligand exchange (Figure 4.2), in agreement with the presence of the triazole 

ligands.  

 

Figure 4.2 XPS spectra of a) N, b) Fe, c) F and d) Survey for Au@SCO NPs. 

 

The second key step of the protocol comprises the continuous growth of the SCO 

complex onto the pre-modified surface of the Au NPs (Figure 4.1) upon the controlled 

addition of the precursors. Thus, an aqueous solution of the FeII precursor and the 

Htrz ligand were simultaneously added to the Au suspension at a constant rate (4 

mLꞏh−1) and appropriate concentrations (0.16 and 0.5 mM, respectively), at room 

temperature and under stirring. It is worth mentioning that larger concentrations of 

either Au NPs or FeII precursors (>0.3 mM) results in NP aggregation. After the 

complete addition of reagents, colloidally stable Au@SCO core@shell NPs were 
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obtained. Interestingly and in contrast with the previously reported examples of SCO 

NPs, these Au@SCO NPs possess naked surfaces (i.e., free from any organic 

moiety). Such surfactant-free configuration may turn out to be particularly convenient 

to enhance the interactions between the SCO shells of neighboring NPs or to 

conduct post-synthetic modification on the surface of these NPs. Transmission 

electronic microscopy (TEM) images evidenced uniform Au@SCO NPs with an 

overall diameter of 19.4 ± 1.9 nm and thin SCO shells of 3.6 ± 1.0 nm (Figure 4.3).  

 

Figure 4.3 a) TEM image of Au@SCO NPs. Inset: HR-TEM image of Au@SCO NPs. b) 

Histograms of the size distributions for the Au core (red) and the overall core@shell NP 

diameter (blue). 
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Figure 4.4 Dynamic Light Scattering plot for citrate-stabilized Au NPs and Au@SCO NPs.  

 

An evident core@shell structure was distinguished in all the NPs, demonstrating 

the formation of individual coatings rather than a less controlled composite made of 

Au NPs embedded in a SCO matrix. This narrow size distribution was also confirmed 

by dynamic light scattering (DLS) measurements performed in water suspensions of 

Au@SCO NPs, which indicates a hydrodynamic diameter of 18 ± 5 nm, dismissing 

the presence of aggregates (Figure 4.4). ζ-potential analysis was used to assess the 

colloidal stability of the suspensions (Table 4.1), showing a strong modification from 

−40 ± 7 to −28 ± 4 mV for the Au@citrate and the Au@SCO NPs, respectively. 

Energy dispersive X-ray spectroscopy (EDX) was used to estimate the metallic 

composition of the Au@SCO NPs (Figure 4.5), showing a clear core@shell 

distribution with an estimated ratio of Au/Fe0.58.  

 

Table 4.1: ζ-potentials of Au@citrate NPs, Au@citrate/Htrz NPs and Au@SCO NPs.  

Sample ζ-potential / mV pH 

Au@citrate - 40 ± 7 6.61 

Au@citrate/Htrz - 40 ± 8 6.77 

Au@SCO - 28 ± 4 6.52 
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Figure 4.5 a) High-Resolution Transmission Electron Microscopy (HR-TEM) image and b) 

EDX profile showing the presence of Au and Fe on a single NP; c–e) EDX mapping of the 

metals present in the heterostructure. 

 

A more accurate analysis of the metal content was performed by Inductively 

Coupled-Plasma Mass Spectrometry (ICP-MS), where the relative (atomic) amount 

was found to be Au/Fe0.62. XPS and X-ray diffraction analysis of the powdered 

materials (Figure 4.6) were performed in an attempt to characterize the chemical 

composition of the shell. In the XPS spectra, peaks of iron, nitrogen, and fluorine 

were observed (Figure 4.2), which indicate the presence of metal, ligand, and 

counterion, thus supporting the formation of the spin-crossover compound. 

Nevertheless, the iron peak reveals the existence of an important fraction of iron (III) 

that could be caused by partial iron oxidation of the small SCO shell during the 

synthesis and/or during the XPS sample preparation.   
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Figure 4.6 Room temperature PXRD for Au@SCO (black) and SCO (red) compounds. 

 

The diffraction pattern of the Au@SCO NPs exhibited a unique peak at 38.2° 

characteristic of metallic Au, whereas the expected peaks for the [Fe(Htrz)2(trz)](BF4) 

compound were not observed.35 This absence could be due to the small thickness 

of the SCO shell, which may be beyond the detection limit of the X-ray diffractometer, 

as well as to the large electron density of the crystalline Au cores, which can screen 

the signal coming from the SCO compound.9 

An important aspect during the synthesis of Au@SCO NPs results from the 

change in the optical properties due to the high sensitivity of the LSPR of the Au 

NPs. The optical properties of these hybrid NPs are reported in Figure 4.7 and 

compared with the bare Au NPs. It is observed that the LSPR of Au NPs, which 

exhibits a maximum at 518 nm, is gradually red-shifted during shell growth up to 530 

nm in the Au@SCO NPs. This plasmon shift was visually detected by a color change 

in the suspension from red to pink, evidencing the high sensitivity of the LSPR to the 

presence of a dielectric SCO shell covering the Au NPs. In addition, a subsequent 

increase in the plasmon band intensity was also observed. Similar behavior has been 

recently reported on a system based on Au NPs decorated with SCO molecules 

([Fe(AcS-BPP)2](ClO4)2).27 The mechanism at play may have its origin in the change 

of the dielectric properties at the Au NP surface upon the overgrowth of the SCO 

shells around.36,37 
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Figure 4.7 a) Spectra of Au and Au@SCO NPs in the visible region. b) Evolution of the mean 

particle size and plasmon band position upon the addition of the precursors during the 

Au@SCO synthesis. 

 

On the other hand, by stopping the reaction before finishing, it can be achieved 

core@shell NPs with a thinner shell (Figure 4.8a). It is possible to obtain a thicker 

shell (of maximum ca. 5 nm) by slightly decreasing the initial Au concentration (from 

0.16 to 0.12 mM) in order to reduce the total number of particles (Figure 4.8b). As 

aforementioned above, the plasmon shift depends on the shell overgrowth, allowing 

precise control of the SCO compound formation around the Au NP surfaces (Figure 

4.8c and 4.8d). 
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Figure 4.8 TEM images of Au@SCO NPs with a) thinner shell and b) thicker shell. Insets: 

magnified TEM images of the NPs. Bar scales represent 50 nm. c) Spectra of different size 

core@shell NPs in the visible region. d) Correlation of the mean particle size and plasmon 

band shift. 
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Figure 4.9 DSC curves of Au@SCO; the red line indicates the heating mode and the black 

line represents the cooling mode. b) Variation of the endothermic peak upon DSC cycles. 

 

The occurrence of a spin transition in the hybrid NPs was unambiguously 

confirmed by differential scanning calorimetry (DSC) measurements that show two 

different peaks at 361 and 342 K in heating and cooling modes, respectively (Figure 

4.9a). This result is in good agreement with the already reported spin transition 

values for 4 nm NPs of the same SCO compound estimated from magnetic 

susceptibility measurements (367 and 343 K in heating and cooling modes, 

respectively).25 Eight temperature cycles were carried out to check the stability of the 

spin transition (Figure 4.9b). With the successive cycles, the material undergoes 

progressive fatigue that is especially visible in the exothermic peak. However, a 

remarkable hysteretic behavior remains in the core@shell nanostructure despite the 

reduced thickness of the SCO shell, thus proving the cooperativity of the spin 

transition. It is possible to take advantage of this cooperative spin transition to 

prepare memory devices in which the spin state is thermally addressed and 

electrically detected through temperature-dependent transport measurements. 

Thus, the hybrid Au@SCO NPs were deposited into electrical devices consisting of 

interpenetrated “fingers” (10 μm gap) following a previously reported 

dielectrophoretic deposition process.4 Scanning electron microscopy (SEM) images 

(Figure 4.10) performed after deposition and transport measurements revealed a 

dense and thin assembly of NPs between the electrodes, which remain stable 

without evidence of coalescence. 
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Figure 4.10 Left: Au finger-like electrode device used to measure the transport properties of 

an assembly of NPs. a) Scheme and dimensions of the electrodes (top); STEM transversal 

cross-section of the device (bottom). A zoom of this image to show the packing of the NPs is 

displayed in (c). b) SEM image of the device (top view). A zoom of this image is shown in (d).  

 

Current–voltage (I–V) characteristics before and after Au@SCO NPs deposition 

in the device were first compared. After deposition, two out of twelve devices (i.e. 

17%) displayed a clear increase in conductance as compared to the empty gap 

measurement (Figure 4.11), indicating that several particles in parallel were 

contacted between the electrodes in these devices. These results reflect that the 

deposition of the NPs (using a dielectrophoretic method) is the key step for the 

convenient preparation of the devices.  
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Figure 4.11 Comparison of the room temperature current-voltage characteristics before (black 

line) and after deposition (red curve). Changes in the transport-characteristics can then be 

attributed to the presence of hybrid Au@SCO NPs in the gap. 

 

Then, temperature-dependent charge-transport measurements were performed 

on these devices recording the current at a fixed bias voltage of V = 2 V, while 

ramping the temperature (Figure 4.12). One observes a switching behavior in the 

conductance with two evident different values, which may be associated with the 

conductance of the two spin states, and a sharp transition between these two states. 

The relative change in conductance, as well as a small hysteretic effect (with a width 

of ≈ 5 K), are observed, evidencing a genuine switching/memory effect, in agreement 

with DSC measurements.  
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Figure 4.12 Thermal variation of the electrical current for an applied voltage of 2 V in the 

heating and cooling modes at 1 Kꞏmin−1 scan rate. 

 

To prove that the change in the conductance is reproducible and independent of 

the scan rate, I–V curves at two fixed temperatures close to the spin transition were 

studied. A state with higher conductance was observed at T = 325 K, which has to 

be associated with the LS state, while a lower conductance state was observed at T 

= 355 K (measured in the cooling mode) for the HS state (Figure 4.13).  
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Figure 4.13. I–V curves of the high-conductive (purple) and low-conductive (orange) 

behaviors associated with the LS and HS states, respectively. 

 

This result is in good agreement with previous studies performed in related SCO 

systems.4,26,27,38 The unprecedented sharp transition in the conductance can be 

explained by considering the coexistence of several factors, namely i) the 

preservation of thermal bistability in small SCO NPs (4 nm) of the Fe-triazole 

series;25 ii) a reinforcement of the elastic interactions occurring at the core@shell 

interfaces because of the reduced sizes of the NPs;39 and iii) the excellent thermal 

conductivity of the Au NP center that is expected to provide a homogeneous and 

efficient heat transfer. All these aspects, operating either independently or 

synergistically, could render the observed fast and efficient spin transition. 

Another remarkable feature is the relatively high conductance values observed 

in this Au@SCO-based device in the LS state, which are in the nS range despite the 

large electrode gap used (10 μm, Figure 4.10). These conductance values are well 

above the detection limit of the apparatus (in the pS range) and therefore can be 

measured with reasonable accuracy. In the HS state, the conductance values are in 

the pS range and, therefore, much less accurate and noisy. For comparison, an 

analogous device based on SCO NPs of 16 nm, stabilized by an organic surfactant 

and without the Au core was prepared. In this case, no electrical signal was recorded, 
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likely due to the insulating character of the sample. Such improvement in the 

conductance is attributed to the presence of the Au core, which does enhance the 

conductance of these core@shell NPs, thus facilitating the charge transport through 

the device. Table 4.2 shows a comparison of the conductance values of the present 

device with those exhibited by previous devices based on SCO NPs. It is observed 

that, despite the larger gap between electrodes, the conductance values in the 

present device are higher than those reported in previous works. An important 

consequence of this feature, as far as the device performance is concerned, is that 

the conductances associated with the two spin states exhibit ON/OFF ratios of about 

5300 ± 200. These values are substantially larger than the previous record of 310 ± 

80 reported by some of us in devices that use 2D assemblies of [Fe(Htrz)2(trz)](BF4) 

NPs stabilized by an organic surfactant.26 These exciting results may have their 

origin due to a different transport mechanism. In the present device, electrical 

pathways could be flowing through metallic dots separated by thin insulating shells 

instead of a hopping mechanism as proposed in the pristine SCO NPs. 

 

Table 4.2 Summary of the already published conductance values of SCO NPs under similar 

conditions 

Reference NPs 
Size  
/ µm 

Gap 
/ µm 

Voltage  
/ V 

E / 
Vꞏµm-1 

GLS 

/ S * 
GHS  
/ S * 

This work Au@SCO 0.02 10 2 0.2 3ꞏ10-9 2ꞏ10-12 

40 SCO@AOT 0.01 0.01 0.4 40 0.5ꞏ10-9 0.9ꞏ10-9 

40 SCO@AOT 0.01 0.01 0.4 40 2ꞏ10-11 6ꞏ10-11 

4 SCO@AOT 
ca. 

0.030 
0.1 10 100 0.2ꞏ10-9 0.1ꞏ10-9 

4 SCO-rods 3 4 10 2.5 0.5ꞏ10-9 0.3ꞏ10-9 

4 SCO-rods 0.25 4 10 2.5 4ꞏ10-12 1ꞏ10-12 

26 SCO@AOT 0.025 0.05 15 300 8ꞏ10-11 4ꞏ10-12 

41 SCO > 0.1 - 0.5 - 10-12 - 

42 SCO-rods 2 4 20 5 1ꞏ10-12 1ꞏ10-13 

43 SCO-rods 1 4 20 5 1ꞏ10-10 5ꞏ10-11 

* All conductance values are estimated from the respective publications 
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Interestingly, the synthesis can also be carried out using other Au 

nanostructures. Among others, AuNSs offer great potential due to their hot spot 

created at the star branches. Moreover, as their optical properties result from the 

hybridization of plasmons focalized at the core and the tips of the NPs, they present 

a high plasmon tunability by the synthetic chemical modification of the NP.44  

To prepare analogous core@shell NPs but employing AuNSs as the metallic 

core, the protocol was slightly modified. At first, Polyvinylpyrrolidone (PVP)-stabilized 

AuNSs of 74 ± 13 nm were synthesized by a seed-mediated growth method.45 

Similarly, a two-step procedure was carried out to achieve the growth of a SCO shell 

onto the nanosphere (see Figure 4.14).   

 

Figure 4.14 Schematic illustration of the steps involved in the preparation of AuNSs@SCO 

NPs. 

 

Due to the use of a different capping agent surrounding the Au (PVP in this case) 

as well as the anisotropic shape of these NPs, some aspects have to be considered. 

Indeed, PVP is a high number polymer that sterically stabilizes the NP, mitigating 

any interaction with many ligands but also increasing the colloidal stability. 

Therefore, the incorporation/approximation time of triazole can be increased to one 

hour without compromising the colloidal suspension. However, the ligand presence 

cannot be appropriately checked by XPS because of the initial N corresponding to 

the PVP (see Figure 4.15a). It is important to remark that for AuNSs, this first step is 

not so essential as for the Au spheres. In fact, without this initial step, the resulting 
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NPs exhibit a core@shell structure but the shell is not well-formed. It could be that 

the greater reactivity of the branches leads to easier SCO growth. In any case, a 

pre-modification surface seems to permit a fine and more accurate overgrowth.  

 

Figure 4.15 XPS spectra of a) N, b) Fe, c) F and d) Survey for AuNSs@SCO NPs. 

 

Regarding the second step of the protocol, aqueous solutions of the FeII 

precursor and the Htrz ligand were dropwise added to the AuNSs suspension at a 

constant rate of 4 mLꞏh−1 at room temperature and under stirring. It is worth noting 

that, compared to the nanospheres, AuNSs are considerably bigger (12 vs. 74 nm) 

implying a substantially lower number of particles in the solution, a lower nanoparticle 

total area and a larger SCO volume for the resulting core@shell, assuming a 4 nm 

shell. Therefore, concentrations have to be revised in order to get a well-formed 

shell. Besides, taking advantage of the greater colloidal stability, concentrations can 

be increased, obtaining AuNSs@SCO with a thinner or thicker shell (ca. 4.8 nm and 



Chapter 4 

- 170 - 
 

ca. 14 nm, respectively; Figure 4.16). A thin SCO shell leads to a small variation of 

the obtained surface charge attaining a value high enough to have stable colloidal 

suspensions (Table 4.3 and Figure 4.17). On the other hand, the colloidal stability is 

partially lost for the core@shell with a thicker SCO shell where a combination of 

single and aggregated NPs can be found by TEM and DLS (Figures 4.16 and 4.17). 

 

 

Figure 4.16 TEM images of AuNSs@SCO with a) a thinner shell and b) a thicker shell. 

Histograms of the size distributions for c) the AuNSs and d, e) the overall core@shell with a 

thin and thick shell, respectively. 
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Table 4.3: ζ-potentials of AuNSs@PVP, AuNSs@PVP/Htrz and AuNSs@SCO NPs.  

Sample ζ-potential / mV pH 

AuNSs@PVP - 29 ± 8 6.42 

AuNSs@PVP/Htrz - 28 ± 11 6.70 

AuNSs@SCO(thin) - 20 ± 9 6.53 
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Figure 4.17 DLS plot for PVP-stabilized AuNSs, AuNSs with a thin SCO shell and AuNSs 

with a tick SCO shell.  

 

To characterize the metallic composition, EDX was used (Figure 4.18) 

evidencing a defined core@shell distribution. Also, XPS spectra (Figure 4.15) 

display peaks of iron, nitrogen, and fluorine, indicating the presence of metal, ligand, 

and counterion, thus supporting the formation of the SCO compound. 
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Figure 4.18 EDX mapping of the metals present in the AuNSs@SCO. 

 

Figure 4.19 displays the diffraction pattern of the AuNSs@SCO; once again, a 

unique peak at 38.2°, characteristic of metallic Au, can be noticed. Again, the 

expected peaks for the [Fe(Htrz)2(trz)](BF4) compound were not observed. For this 

measurement, the thickest shell was used (of around 14 nm). Therefore, the 

obtention of an SCO amorphous phase seems the most plausible reason. In any 

case, SCO formation was confirmed by the observation of its characteristic 

vibrational peaks (Figure 4.20) by means of attenuated total reflectance Fourier-

transform infrared (ATR-FTIR). 
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Figure 4.19 Room temperature PXRD for Au@SCO (black) and SCO (red) compounds. 
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Figure 4.20 ATR-FTIR spectra of PVP-stabilized AuNSs before and after the Htrz addition. 
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Comparing the optical properties of these hybrids with the pristine Au (Figure 

4.21), it is observed that the maximum at 697 nm, corresponding to the plasmon 

band, is shifted after the shell formation to 738 nm. This plasmon shift is considerably 

more pronounced than the one observed in the Au spheres (41 vs. 12 nm) as a 

consequence of the higher sensibility of the Au branches.46,47 
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Figure 4.21 Spectra of AuNSs and AuNSs@SCO in the visible region. 

 

On this occasion, the spin-transition was also confirmed by DSC measurements 

that exhibit two different peaks at 352 and 342 K in heating and cooling modes, 

respectively (Figure 4.22a). Nevertheless, smaller hysteresis and extreme 

differences between the intensities of endothermic (LS to HS) and exothermic (HS 

to LS) peaks are recorded. The observation of such smaller hysteresis could be 

associated with the presence of PVP that influences the SCO NP formation. On the 

other hand, the reduction of the endothermic peak indicates the appearance of an 

important and swift fatigue after the first spin-transition (Figure 4.22b). This strong 

reduction in the intensity of the spin-transition peaks could be due to a possible 

introduction of oxygen during the sample measurement. Therefore, these 

measurements must be repeated to extract further conclusions. Interestingly, by 

performing the synthesis under nitrogen atmosphere, a clear endothermic can be 



Electrical switching in hybrid core@shell NPs based on Au surrounded by smart CPs 

- 175 - 
 

discerned in the heating process, while, during the cooling mode, the LS recovery 

can evidence by an exothermic peak at 65ºC (Figure 4.22c). In this way, it seems 

that the preparation of these NPs under an inert atmosphere gives rise to more FeII 

centers able to switch their spin state. Observing the resulting NPs in TEM, they look 

analogous to the AuNSs@SCO shown in Figure 4.16. As future work, we will fully 

characterize and study this obtained heterostructure in order to further improve the 

synthetic protocol. 

 

Figure 4.22 a) DSC curves of AuNSs@SCO obtained by scaling up the reaction; the red line 

indicates the heating mode and the black line represents the cooling mode. b) Variation of the 

endothermic peak upon DSC cycles. c) DSC curves of AuNSs@SCO obtained under nitrogen 

atmosphere.  
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Finally, the Au metallic composition of the core was changed to Ag by 

reproducing the same two-step approach used for the Au nanospheres coverage. 

Ag NPs were firstly synthesized following the seed-mediated growth Lee-Meisel 

method.48 As the Ag NPs stabilized by citrate exhibited similar size, no modification 

of the procedure was required. Core@shell NPs of 23 ± 3 nm were obtained with an 

Ag core of 14 ± 3 nm and a shell size of about 4.5 nm (Figure 4.23). In addition to 

this, the resulting hybrid was colloidally stable (see Table 4.4), presenting a ζ-

potential value of – 20 ± 9, quite similar to the other Au@SCO nanostructures. By 

EDX, a metal ratio of Ag/Fe0.68 was estimated. 

 

Figure 4.23 a) TEM image of Ag@SCO NPs. b) Histograms of the size distributions for the 

Ag core (orange) and the overall core@shell NP diameter (blue). 

 

 

Table 4.4: ζ-potentials of Ag@citrate, Ag@citrate/Htrz and Ag@SCO NPs.  

Sample ζ-potential / mV pH 
 

Ag@citrate 
 

- 29 ± 8 
 

6.84 

Ag@citrate/Htrz - 27 ± 11 6.97 

Ag@SCO - 20 ± 9 6.64 
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Once again, the XPS spectra display peaks of iron, nitrogen, and fluorine (Figure 

4.24), indicating the presence of metal, ligand, and counterion, suggesting the SCO 

formation 

 

Figure 4.24 XPS spectra of a) N, b) Fe, c) F and d) Survey for Ag@SCO NPs.  

 

Regarding the plasmonic properties for the Ag@SCO heterostructure (Figure 

4.25), the plasmon is shifted 15 nm, comparable to the spherical Au shift (15 vs. 12 

nm). This similarity is not unexpected considering the fact that plasmonic NPs with 

the same geometry have analogous sensitivity regardless of the metal 

composition.49 On the other hand, spin transition peaks were found in DSC (Figure 

4.26). Two different endothermic peaks were observed. Taking into account the 

influence of the size on the spin transition,7,50 this could be a consequence of the 

additional formation of different NPs of SCO that could have self-nucleated during 

the synthesis and/or the partial oxidation of the thin SCO shell. 
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Figure 4.25 Spectra of Ag and Ag@SCO in the visible region. 

Figure 4.26 DSC curves of Ag@SCO obtained by scaling up the reaction; the red line 

indicates the heating mode and the black line represents the cooling mode. b) Variation of the 

endothermic peak upon DSC cycles.  

 

In summary, core@shell heterostructures formed by metallic cores of different 

shapes and a SCO shell can be obtained. In these hybrid NPs, the plasmonic band 

can be tuned in a wide range of the visible spectrum by selecting the plasmonic NP. 

This possibility may be exciting in order to selectively induce the spin-transition by 

light irradiation of the appropriate wavelength. 
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As already mentioned, we have attempted to extend this procedure in order to 

develop some heterostructures of Au@MOF with the final aim of tuning their 

electrical properties by the presence of guest molecules. The notation MOF-like is 

used considering the possible synthesis of an amorphous CP based on MIL-100 and 

MIL-88. In this line, two different Au@MOF-like hybrids were obtained. However, 

only preliminary electrical characterization of one of them was carried out. Still, as 

an ongoing work, some future experiments will be proposed at the end of this part. 

The selected MOFs to cover the Au NPs were MIL-100(Fe) and MIL-88(Fe) 

(addressed here as MIL-100 and MIL-88, respectively), well-known compounds that 

offer a great variety of applications. The structure of MIL-100 is a zeotype crystal 

composed of trimesic acid organic linkers and Fe(III) trimers. On the other hand, the 

structure of the MIL-88 is hexagonal and is built up from the connection of Fe(III) 

trimers, octahedrally interconnected through the dicarboxylates of fumaric acid.51–54 

Previously to the shell growing, spherical citrate-stabilized Au NPs of around 12 nm 

were synthesized following the well-known protocol reported by Turkevich.33  

The procedure followed is illustrated in Figure 4.27. As it can be noticed, contrary 

to the Au@SCO heterostructures, a ligand exchange is not required. Citrate 

molecules anchored to the Au surface will act as a nucleation site for the MOF 

growth. In fact, citrate has similarities with the MOF ligands (fumaric and trimesic 

acid): all of them have carboxylic acid groups that can coordinate the Fe. 

Nevertheless, citrate molecules remaining in the solution can also act as nucleation 

sites. Therefore, before the shell overgrowth, Au NPs were washed to remove the 

excess of citrate but with remaining capping molecules located on the surface, as 

can be deduced from ζ-potential and ATR-FTIR measurements. A small amount of 

FeCl3 was added to coordinate the Au@citrate NPs in order to act as anchoring sites. 

It has to be mentioned that by skipping this step, core@shell NPs can also be 

prepared. However, this step leads to a reproducibility improvement and a better 

shell formation. After the Fe stabilization, the continuous growth of the complex onto 

the Au NPs was performed upon the controlled addition of the precursors (i.e. FeCl3 

and trimesic/fumaric acid). The precursors were simultaneously added to the Au 

suspension at a constant rate (4 mLꞏh−1) at room temperature and under magnetic 

stirring. It is important to point out that the formation of a shell requires low particle 
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concentrations to endow the preservation of the colloidal suspension. Higher Au (> 

0.5 mM) and precursor concentrations (> 0.18 and 0.12 mM for Fe and ligand, 

respectively) lead to severe NP aggregation. Despite this, the synthesis can be 

accomplished using higher concentrations (for instance, using double concentrated 

solutions) but the NPs do not present a core@shell structure. It seems that in these 

conditions the MOF compound grows at some facets instead of over the whole metal 

surface.  

 

Figure 4.27 Schematic illustration of the protocol for preparing Au@MOF-like NPs of MIL-100 

and MIL-88. 

 

To further explore the synthesis of the hybrid composites, the addition rate and 

the Au/Fe ratio were modified. However, a faster addition rate gives rise to self-

nucleated NPs, while a slower rate leads to Au aggregation. On the other hand, by 

decreasing the Au/Fe ratio (i.e. an increase in the Fe content), a thicker shell is 

formed but also plenty of self-nucleated NPs. Consequently, 4 mLꞏh-1 and the initial 

Au/Fe ratio of 2.8 are the optimal conditions to achieve a core@shell morphology 

without compromising the colloidal stability.  

 

As it can be observed in Figure 4.28, TEM images evidence the existence of 

grapes of core@shell NPs (for both the MIL-100 and MIL-88). Once the synthesis is 
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completed, these core@shell grapes are principally formed by 100 nm aggregates 

(Figure 4.29). Gradually, they grow in size until the colloidal stability is lost. 

Consequently, after 48-72 hours, the system collapses.  

 

 

Figure 4.28 TEM images for the Au@MOFs-like: Au@MIL-100like (a) and Au@MIL-88 like (b) 

after the reaction being completed. 

 

Figure 4.29 DLS of the Au@MOFs-like: Au@MIL-100 like (a) and Au@MIL-88 like NPs (b). 
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The resulting core@shell NPs were characterized by ATR-FTIR, where 

characteristic vibrational peaks were found (Figure 4.30). In particular, comparing 

with the MIL-100 system, it can be observed: C = O stretching located at 1620 cm-1, 

C – O vibration at 1375 cm-1, – OH vibration at 1445 cm-1, C = O stretching coming 

from the uncoordinated trimesic acid at 1720 cm-1, C – H stretching vibration of 

benzene ring at 760 and 711 cm-1. Comparing with the MIL-88 compound, it can be 

noticed: C = O symmetric and asymmetric vibrations located at 1390 and 1600 cm-

1, C = O stretching coming from the uncoordinated fumaric acid at 1700 cm-1, 

carbonyl vibrations at 675 and 640 cm-1. In Figure 4.31, ATR-FTIR spectra before 

and after Au NPs washing are presented, showing: i) an effective removal of the 

excess citrate in the solution and ii) a persistence of the citrate vibrations coming 

from the molecules acting as capping agent. This fact is in good agreement with ζ-

potential analysis displaying insignificant variation after the washing process. 

 

 

Figure 4.30 ATR-FTIR spectra of the MOF compounds and the Au@MOFs-like. 



Electrical switching in hybrid core@shell NPs based on Au surrounded by smart CPs 

- 183 - 
 

 

Figure 4.31 ATR-FTIR spectra of citrate-stabilized Au NPs before and after washing. 

 

Interestingly, the X-ray diffraction patterns of the core@shell systems, shown in 

Figure 4.32, exhibit two peaks located at 38.2° and 44.3º related to the Au. 

Nevertheless, the peaks related to the MOFs were not observed. As in the Au@SCO 

heterostructure, this absence could be due to the small thickness of the shell, which 

may be beyond the detection limit of the X-ray diffractometer, the large electron 

density of the Au cores, which can screen the signal coming from the SCO 

component, or the existence of an amorphous shell around the Au. However, due to 

the high crystallinity that MOFs usually exhibit, the most likely reason is the presence 

of amorphous CPs formed by iron and trimesic acid (for MIL-100) and fumaric acid 

(for MIL-88). As future work, synthetic parameters will be further optimized in order 

to improve the crystallization of the MOF compound (i.e. increasing the reaction time, 

temperature, etc.). Also, porosity measurements will be carried out to ascertain the 

presence or not of high porosity in these heterostructures. 
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Figure 4.32 PXRD of the MOF compounds and the Au@MOFs-like NPs. 

 

XPS was carried out to evidence the presence of Fe(III) in both cases (Figure 

4.33). In parallel, EDX was carried out to identify the distribution of iron over the NPs. 

Figure 4.34 shows evident core@shell systems connected through a matrix to other 

NPs with an estimated Fe/Au ratio for both cases of around 0.4.  
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Figure 4.33 XPS spectra of the Au@MOFs-like NPs.  

 

Figure 4.34 HR-TEM images and EDX mapping of the metals present in the heterostructures 

(red: Au; green: Fe).   
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Regarding the optical properties, the LSPR of Au NPs is progressively red-

shifted during shell formation. Such a color change from red to pink is essentially 

occurring upon the addition of iron and ligand solutions suggesting the MOF-like 

formation around the Au surfaces. As in the Au@SCO system, the plasmon band 

shift has its origin in the change of the dielectric constant around the Au NP surface 

upon the continuous overgrowth of the shell.36,37  

The kinetics of the reaction was followed by monitoring the plasmon band 

position during the synthesis. Besides, the full width at half maximum (FWHM) was 

calculated to estimate the NP aggregation. Indeed, a widening of the plasmon band 

and a diminution of its intensity are generally associated with aggregation.55 Results 

for both core@shell systems are displayed in Figure 4.35. For the Au@MIL-100like 

heterostructure, it can be observed that the plasmon properties (position and FWHM) 

do not vary considerably before adding 1.0 mL of each precursor. After that, the 

plasmon position is considerably shifted with almost no change in its FWHM until 2.5 

mL. Nevertheless, after adding 2.5 mL of each precursor there is a plasmon red-shift 

with a significant decrease in intensity. This is due to NP aggregation that leads to 

an increase in the plasmon peak width. NP aggregation was also noticed for 

Au@MIL-88like. However, a significant plasmon band shift was observed after adding 

1 mL of each precursor, suggesting a faster shell formation compared to the 

compound based on the MIL-100.  
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Figure 4.35 (Left) UV-Vis spectra at different reaction steps and (Right) plasmon band 

position and FWHM evolution during the reaction for a) Au@MIL-100like and Au@MIL-88like 

compounds. 

 

Au@MIL-100like NPs were deposited into electrical devices consisting of 

interpenetrated “fingers” (2.5 μm gap) in order to study their electrical properties. 

Contrary to the Au@SCO device, a smaller electrode gap was used to improve the 

contact between the electrodes, thus increasing the reproducibility of the 

measurements. Indeed, after deposition, two out of four devices (i.e. 50%) displayed 

a clear increase in conductance as compared to the empty gap measurement.  
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Figure 4.36 a) Comparison of the room temperature current-voltage measurements of the 

Au@MIL-100like and MIL-100 compounds. b) Optical image of the Au finger-like electrode 

device used to measure an assembly of Au@MIL-100like NPs. 

 

I–V curve of the Au@MIL-100like NPs was compared with the MIL-100 compound 

where no electrical signal was recorded due to the insulating character of the sample 

(Figure 4.36). The core@shell system evidences an improvement in the 

conductance which is attributed to the presence of the Au cores. As observed in the 

Au@SCO heterostructure, Au is facilitating the charge transport through the device.  

For future work, the synthetic protocol will be further optimized to improve the 

crystallinity of the MOF systems. Also, porosity measurements will be carried out 

and the adsorption of various gas molecules will be explored and analyzed. In 

addition to this, similar measurements will be carried out for the Au@MIL-88like hybrid 

and the MIL-88 compound to ascertain the conductivity improvement. We expect 

that, thanks to the increase of detection limit, a study on the influence of the electrical 

properties of the guest molecules inside the MOF pores will be possible via transport 

measurements under different gas atsmospheres. In this way, these hybrids could 

act as remarkable electrical gas sensors overcoming the insulating limitations of 

MOFs.  
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4.3  Conclusions and perspectives 

A simple chemical protocol has been reported to prepare stable colloidal 

suspensions of core@shell NPs formed by a spherical metallic Au core of ≈12 nm 

surrounded by a thin shell of an insulating SCO CP, 4 nm thick. This procedure has 

allowed us to prepare Au@SCO NPs having a naked surface, in sharp contrast with 

previous examples that required the presence of a capping agent in the surface 

(surfactant molecules or SiO2 shell) to limit the growth of the SCO NP. Through DSC 

measurements it has been proved that these hybrid NPs undergo a cooperative spin 

transition in the range 340–360 K, in full agreement with the values reported for 4 

nm NPs of the same SCO compound. Thanks to the metallic core and the naked 

surface of the ultrathin SCO shell, these core@shell NPs are more conductive than 

the pristine SCO NPs when contacted to electrodes. As a consequence, these SCO 

devices exhibit a significant improvement in the electrical detection of the spin state, 

with values for the ON/OFF ratio, which are an order of magnitude better than the 

best ones obtained in previous devices based on SCO NPs.  

This chemical protocol is also adapted to nanostars (AuNSs) that present higher 

sensitivity and could help to develop highly sensitive switching devices based on the 

SCO phenomenon, being also possible to extend it to other metallic components 

such as Ag. Additionally, by modifying the chemical protocol, it was possible to cover 

spherical Au NPs with two different CPs based on MOFs (the MIL-88 and the MIL-

100). These resulting heterostructures are mainly formed by grapes of ca. 100 nm. 

As for the Au@SCO NPs, these heterostructures are also more conductive 

compared to the pristine MOF material. Thanks to that, in future work, the electrical 

detection of guest molecules will be explored.  

A further development that can also be imagined for these heterostructures is 

that of taking advantage of the plasmon properties of the Au core. The Au@SCO 

heterostructures could be used to get a light-induced spin transition exactly at room 

temperature. In this case, the efficient absorption of light provided by the plasmonic 

NP should be sufficient to heat the SCO shell and to provoke the spin transition. 

Similarly, the plasmon can be used in Au@MOF systems to get photo-thermal 

desorption of molecules from the MOF shell due to the heating of the system. 
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Finally, the presented procedure is shown to be very effective in covering metallic 

NPs with a thin shell of SCO for improving the SCO electrical detection. In addition 

to this, it can be an effective strategy in order to grow other CPs such as MOF or 

even Hofmann clathrates. 

 

 

4.4  Experimental details 

4.4.1   Synthesis  

All chemical reagents were purchased and used without further purification. 

Chloroauric acid, sodium citrate tribasic dihydrate, 1,2,4-triazole, iron 

tetrafluoroborate hexahydrate, L-ascorbic acid, iron trichloride hexahydrate, trimesic 

acid, fumaric acid and Polyvinylpyrrolidone-30K were purchased from Sigma-

Aldrich. Silver nitrate was purchased from Alfa Aesar and ultra-pure water (18.2 MΩ). 

 

Au@SCO synthesis. 

Iron-triazole polymeric spin-crossover system was grown onto citrate-stabilized 

Au NPs of 12 nm freshly prepared following the well-known Turkevich method33 and 

washed with water to remove the excess of citrate in the solution. To overgrow the 

SCO shell a preliminary step is essential, which consists of the partial triazole surface 

functionalization of the Au NPs. A triazole aqueous solution (200 µL, 0.5 mM) was 

added to Au NPs aqueous solution (3 mL, 0.16 mM) and the mixture is stirred for 30 

minutes. Then, aqueous solutions of the precursors, iron tetrafluoroborate 

hexahydrate (3 mL, 0.16 mM) and triazole (3 mL, 0.5 mM), were simultaneously 

added at a continuous rate (4 mLꞏh-1) under stirring at room temperature. After 

completion of the addition, the aqueous colloidal suspension was washed with water 

at 8000 rpm for 30 minutes to collect the Au@SCO NPs. Thicker SCO shells were 

obtained by decreasing the Au concentration to 0.12 mM. 

Additional note: the optimal triazole/gold ratio required in the preliminary triazole 

surface functionalization was established by adding different concentrations of 
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triazole onto a colloidal suspension of Au NPs of known concentration. For 

triazole/gold molar ratios > 1/3 (1.5ꞏ10-6 mol of triazole per 5.0ꞏ10-6 mol of Au), Au 

NPs immediately collapse and aggregate, whereas, for lower values, the best 

colloidal stability of the resulting NPs was obtained by adding a molar ratio of 1/5 

(1.0ꞏ10-7 mol of triazole) on the same Au dispersion. 

 

AuNSs@SCO synthesis. 

Au NPs with star-like shapes (AuNSs) were obtained by a seeded-growth 

process,45 using citrate-stabilized AuNPs as seeds, obtained following the Turkevich 

method.33 For the preparation of growth solution, hydrochloric acid (10 µL, 1 M) was 

added to a HAuCl4 solution (10 mL, 0.25 mM). Afterward, aqueous solutions of 

ascorbic acid (50 µL, 0.1 M) and AgNO3 (100 µL, 0.003 M) were added, followed by 

the addition of 100 µL of seed solution. Finally, PVP was added as capping agent (1 

mL, 10 gꞏL-1). After 30 minutes of incubation, AuNSs were washed with water to 

remove the excess of PVP in the solution. 

SCO system was grown onto PVP-stabilized AuNSs following a similar two-step 

approach. In a first step, a triazole aqueous solution (250 μL, 0.5 mM) was added 

into the previously prepared Au aqueous solution (3 mL, 0.16 mM) under continuous 

stirring in air for 60 minutes. In a second step, iron tetrafluoroborate hexahydrate (3 

mL, 0.16 mM) and triazole (3 mL, 0.5 mM) aqueous solutions were simultaneously 

added (4 mLꞏh-1) under stirring in air at room temperature. The obtained core@shell 

AuNSs@SCO nanoparticles were then collected by centrifugation (3500 rpm, 15 

min) and easily re-dispersed in different solvents (water, ethanol, acetone, and 

chloroform). Thicker SCO shells were obtained by changing the following 

concentrations: iron tetrafluoroborate hexahydrate (3 mL, 0.5 mM) and triazole (3 

mL, 1.5 mM) and Au (3 mL, 0.4 mM). 

 

 

 



Chapter 4 

- 192 - 
 

Ag@SCO synthesis. 

Iron-triazole polymeric spin-crossover system was grown onto citrate-stabilized 

Ag NPs of 10-20 nm prepared following the seed-mediated growth Lee-Meisel 

method49 and washed with water to remove the excess of citrate in the solution. To 

overgrow the SCO shell, it was performed an experimental protocol similar to the 

Au@SCO synthesis. 

Additional note: All aqueous solutions were purged with Ar before starting the 

synthesis. 

 

Au@MOFlike synthesis 

A CP based on the MIL-100(Fe) was grown onto citrate stabilized Au NPs. Au 

was previously washed with water to remove the excess of citrate in the solution, 

obtaining 3 mL of 0.25 mM solution. To overgrow the “MIL-100” shell, aqueous 

solutions of the precursors, iron chloride hexahydrate (2.5 mL, 0.09 mM) and trimesic 

acid (2.5 mL, 0.06 mM), were simultaneously added at a continuous rate (4 mLꞏh-1) 

under stirring at room temperature. After completion of the addition, the aqueous 

colloidal suspension was washed with water at 8 000 rpm for 30 minutes to collect 

the Au@MIL-100like NPs. 

A CP based on the MIL-88(Fe) system was grown onto citrate stabilized Au NPs. 

Au was previously washed with water to remove the excess of citrate in the solution, 

obtaining 3 mL of 0.25 mM solution. To overgrow the MOFlike shell, aqueous 

solutions of the precursors, iron chloride hexahydrate (2.0 mL, 0.09 mM) and fumaric 

acid (2.0 mL, 0.06 mM), were simultaneously added at a continuous rate (4 mLꞏh-1) 

under stirring at room temperature. After completion of the addition, the aqueous 

colloidal suspension was washed with water at 8 000 rpm for 30 minutes to collect 

the Au@MIL-88like NPs. 
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4.4.2   Characterization 

UV/Vis Spectroscopy: UV-vis absorption spectra were recorded on a Jasco V-

670 spectrophotometer in baseline mode from 400 to 800 nm range, using 1.000-

cm-optical-path plastic cuvettes. 

High-resolution transmission electron microscopy (HRTEM) and transmission 

electron microscopy (TEM): HRTEM studies were carried out on a Technai G2 F20 

microscope operating at 200 kV and TEM studies on a JEM-1010 operating at 100 

kV. Samples were prepared by dropping suspensions on lacey formvar/carbon 

copper grids (300 mesh). 

ζ-Potential (ZP) and Dynamic Light Scattering (DLS) measurements: ZP and 

DLS measurements were performed at room temperature with a Zetasizer Nano ZS 

instrument (Malvern Instruments Ltd.) of the as-synthesized suspension. 

X-ray Photoelectron Spectroscopy (XPS): Samples were analyzed at the X-ray 

Spectroscopy Service at the Universidad de Alicante using a K-ALPHA Thermo 

Scientific spectrometer. All spectra were collected using Al Kα radiation (1486.6 eV), 

monochromatized by a twin crystal monochromator, yielding a focused X-ray spot 

(elliptical in shape with a major axis length of 400 μm) at 30 mA and 2 kV. The alpha 

hemispherical analyzer was operated in the constant energy mode with survey scan 

pass energies of 200 eV to measure the whole energy band and 50 eV in a narrow 

scan to selectively measure the particular elements. XPS data were analyzed with 

Avantage software. A smart background function was used to approximate the 

experimental backgrounds. Charge compensation was achieved with the system 

flood gun that provides low energy electrons and low energy argon ions from a single 

source. 

Transport measurements: Au@SCO and SCO transport measurements have 

been performed using a two terminal device configuration in a temperature range of 

10 to 380 K under a high vacuum. A Physical Properties Measurement System 

(Quantum Design PPMS-9). Electrical measurements have been performed in the 

PPMS chamber using a Keithley 2450 voltage source and a Keithley 6517b 

electrometer. Dielectrophoresis was used to trap Au@SCO NPs between the 



Chapter 4 

- 194 - 
 

electrodes by powering a sinusoidal signal of 10 kHz frequency and 10 V peak-to-

peak potential to the electrodes. Au@MOFlike and MOF transport measurements 

have been performed inside a glovebox under N2 atmosphere at room temperature, 

using a Keithley 4200-SCS as voltage source and electrometer. The measurements 

were carried out in a two-probe configuration using commercial fingerprinted 

electrodes, with a gap of 2.5 µm.  The NPs were organized in the electrodes gap by 

drop-casting a suspension of the material. 

Inductively Coupled-Plasma Mass Spectrometry (ICP-MS): The ICP-MS 

analysis were conducted at the Universidad de Valencia (Sección de Espectrometría 

Atómica y Molecular). Samples were digested in an acid medium at 220 ºC using a 

microwave oven. 

Powder X-Ray Diffraction (PXRD): X-ray powder diffraction (PXRD) patterns 

were obtained with a PANalytical X’Pert diffractometer using the copper radiation 

(Cu-Ka = 1.54178 Å) in the 5–40 region. 

Differential Scanning Calorimetry (DSC): DSC scans were recorded in a Mettler 

Toledo DSC 821e model that operates in the temperature range -25 - 500ºC 

equipped with a liquid nitrogen cryostat and a 200 W furnace. 

Attenuated total reflectance Fourier-transform infrared (ATR-FTIR): spectra were 

collected in an Agilent Cary 630 FTIR spectrometer in the 4000−500 cm−1 range in 

absence of KBr pellets. 
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General Conclusions 
 

This thesis has been focused on the synthesis and characterization of hybrid 

nanomaterials formed by plasmonic nanoparticles (NPs) and Coordination Polymers 

(CPs). These hybrids have been designed to maximize the interaction between both 

nanosystems and thus to enhance some properties of the CPs thanks to the 

introduction of these plasmonic nanostructures. This thesis addresses the field of 

hybrid nanomaterials from three different perspectives: magneto-optics, 

electrocatalysis and electrical conductivity. In each application, different strategies 

have been carried out to prepare suitable heterostructures. 

In chapter 2, we have developed and optimized a general synthetic procedure to 

obtain, in aqueous solution, hybrid systems formed by metallic NPs decorated onto 

any negatively charged Prussian Blue and its Analogues (PB and PBA) NPs by 

electrostatic attraction. By adjusting the pH, it is possible to control the Au decoration 

over the PBA NP surface. Indeed, Au can be attached randomly or preferentially on 

the edges. This methodology has been tested over isotropic NPs of Au with different 

PB/PBA obtaining reproducible heterostructures in each case. In addition, to 

demonstrate the robustness of this methodology, anisotropic Au NPs and isotropic 

Ag NPs were also used to decorate PBAs. Therefore, we have achieved different 

reproducible heterostructures that display different tunable plasmonic properties, 

with plasmon bands covering all the visible region. This tunable plasmon band 

position makes them suitable for future magneto-optical applications. Finally, a 

similar procedure was carried out to attach Au on a PBA monolayer obtaining the 

hybrid material. The resulting heterostructures also display plasmonic and magnetic 

properties. 

In chapter 3, we have reported a variety of narrow-size distributed core@shell 

NPs of Au@PBA (PBA of NiIIFeII and CoIIFeII) formed by an Au core and different 

PBA shell sizes. The electrocatalytical activity of such NPs was evaluated and 

compared to some PBA without Au and other Au-PBA heterostructures by studying 

the oxygen evolution reaction (OER). In this chapter, the coulovoltammetry 
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technique has been applied in electrocatalysis for the first time. This technique 

provides information on the number of electroactive mass that is strongly related to 

the electrocatalytic sites, being able to participate in the OER. It was estimated that 

the introduction of small amounts of Au (5-10 %) in the core@shell structure leads 

to an increment in the electroactive mass. This greater amount of electroactive sites 

largely decreases the onset potential, while the Tafel slope remains unaffected. This 

enhancement of the catalytic activity is related to the increment of the number of 

electroactive sites and the great reduction of the resistance associated with the 

electrocatalytic process due to the improvement of the conductivity. These 

improvements are a consequence of the high contact between both systems and the 

protective shell that prevents Au oxidation. Therefore, these results evidence, in 

core@shell structures, a strong synergistic effect between the core and the shell that 

emerge as an excellent strategy to enhance the electrocatalytic performance and 

the electrochemical stability. In addition, plasmonic properties could also be 

beneficial for increasing the catalytic performance by light irradiation where the local 

temperature increase could reduce even more the onset potential. 

In chapter 4, a simple chemical protocol has been reported to prepare stable 

colloidal suspensions of core@shell NPs formed by a spherical metallic Au core of 

≈12 nm surrounded by a thin shell of an insulating Spin-Crossover (SCO) CP, 4 nm 

thick. This procedure has allowed us to prepare Au@SCO NPs having a naked 

surface, in sharp contrast with previous examples that required the presence of a 

capping agent in the surface (surfactant molecules or SiO2 shell) to limit the growth 

of the SCO NP. These hybrid NPs undergo a cooperative spin transition in the range 

340–360 K, in full agreement with the values reported for 4 nm NPs of the same 

SCO compound. Thanks to the metallic core and the naked surface of the ultrathin 

SCO shell, these core@shell NPs are more conductive than the pristine SCO NPs 

when contacted to electrodes. Consequently, these SCO devices exhibit a significant 

improvement in the electrical detection of the spin state, with values for the ON/OFF 

ratio, which are an order of magnitude better than the best ones obtained in previous 

devices based on SCO NPs. Interestingly, this chemical protocol was also adapted 

to Au nanostars that present higher sensitivity and could help to develop highly 

sensitive switching devices based on the SCO phenomenon. This synthetic route 
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can also be extended to other core@shell with different metallic components such 

as Ag. Accordingly, the plasmon band can be tuned in the visible spectrum permitting 

to induce the spin-transition by light irradiation of the appropriate wavelength. 

Additionally, by further modifying the chemical protocol, it was possible to cover 

spherical Au NPs with two different CPs based on two Metal-Organic Frameworks 

(MOFs): the MIL-88(Fe) and the MIL-100(Fe). As the Au@SCO NPs, these hybrids 

are also more conductive compared to the pristine MOF material. Thanks to that, the 

influence and the detection of guest molecules will be carried out in future work.  

 

The most relevant overall conclusions that can be extracted are the following: 
 

- The core@shell heterostructures have been proven as excellent platforms to 

ensure an intimate contact between both systems. It was observed that a 

plasmonic core, such as a metallic Au core, gives rise to an important 

enhancement of some properties (the conductivity or even the plasmonic 

properties of the resulting hybrid material). In this way, we can take advantage 

of it for electrocatalytic application or spin state detection. 

 

- Core@shell NPs are usually prepared through non-versatile synthetic 

protocols where it is quite challenging to change the metallic core NP and to 

incorporate the functional molecular shell. Here we have developed more 

flexibles synthetic routes that have allowed an easy modification of the size, 

shape and composition of the resulting hybrids. This versatility is key for some 

applications like magneto-optics where the plasmon band control, as well as 

the interaction between the metallic and the molecular systems, are essential 

in order to improve the resulting properties 

 

- Altogether this thesis has contributed to the development of novel plasmonic 

heterostructures based on CPs at the nanometer scale.  
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Resumen de la Tesis Doctoral 
 

Introducción 

Las nanopartículas (NPs) son una clase de materiales que por lo general 

incluyen partículas con dimensiones menores a 100 nm. Entre ellas, las 

nanopartículas de metales nobles son de gran interés. Y es que, cuando reducimos 

el tamaño de la partícula, surgen nuevas propiedades ópticas como resultado de la 

interacción entre la luz y los electrones situados en la superficie metálica. Este 

fenómeno es conocido como resonancia de plasmón localizada en la superficie 

(LSPR, por sus siglas en inglés). Diferentes factores tales como el tamaño, la forma 

y la constante dieléctrica del entorno afectan considerablemente. Por ello, la síntesis 

de nuevas NPs plasmónicas con diferentes morfologías (tales como nanoestrellas 

o nanocilindros) ha permitido un gran control de la posición del plasmón. De entre 

todos los metales nobles, el oro es posiblemente el que más interés ha despertado 

en el transcurso de la historia. En la escala nanométrica, dicho interés se incrementa 

exponencialmente debido a sus atractivas propiedades ópticas, su sencilla 

funcionalización, su alta estabilidad o su conductividad térmica y eléctrica. Por si 

fuera poco, el desarrollo de nuevos métodos sintéticos de NPs de oro ha permitido 

maximizar las propiedades del metal, controlar su morfología y también ha facilitado 

su integración en otros materiales.  

Los nanomateriales híbridos han posibilitado la combinación de las propiedades 

intrínsecas de los componentes individuales, pero también en algunos casos ha 

conllevado la aparición de propiedades adicionales debido a la sinergia entre los 

materiales constituyentes. Es por ello que las NPs híbridas están recibiendo tanta 

atención por parte de la comunidad científica. La integración de NPs de oro en estos 

híbridos resulta muy atractivo, tanto es así que, en la última década, casi el 20 % de 

los materiales híbridos están formados por NPs de oro. 

Las NPs de oro son muy sencillas de sintetizar y de funcionalizar lo que facilita 

la preparación de heteroestructuras. Hay diferentes nanosistemas que pueden 

obtenerse al combinar nanoestructuras de oro con otro material nanopartículado. 
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Las más relevantes son: nucleo@recubrimiento (core@shell en inglés), NPs 

recubiertas de oro, NPs de tipo Janus, NPs decoradas en la superficie de otra NP, 

etc. Cada heteroestructura tiene sus peculiaridades y, dependiendo de las 

propiedades deseadas o de la aplicación final, uno u otro material híbrido será más 

conveniente. De esta manera, el diseño químico de los materiales híbridos resulta 

esencial. 

Los Polímeros de Coordinación (CPs, por sus siglas en inglés) son unos 

materiales poliméricos y organometálicos formados por la asociación de iones 

metálicos y ligandos orgánicos. La amplia variedad de cationes metálicos y ligandos 

permite un número enorme de posibles combinaciones. Generalmente, los metales 

de la primera serie de transición junto al Zn, Cd Hg, Ag, Au, Pd y Pt son los más 

usados ya que su reactividad química está muy estudiada. Por otra parte, la 

coordinación del ligando determina la estructura del CP, así como su 

dimensionalidad. Asimismo, el tamaño de las partículas obtenidas puede ser 

controlado en la nanoescala. Por todo ello, las propiedades que presentan dichos 

materiales son muy amplias: magnéticas, ópticas, electroquímicas, electrónicas, etc. 

Además, los CPs presentan grandes ventajas sobre otros materiales inorgánicos 

como son su fácil nanoprocesado o su variedad estructural. Por todo ello, la 

integración de NPs plasmónicas (especialmente de oro) en una heteroestructura es 

de gran interés para el desarrollo de nuevas propiedades y así extender la aplicación 

de estos materiales organometálicos. En esta tesis doctoral hemos trabajado con 

tres diferentes clases de CPs que se describen a continuación: 

- Materiales análogos al Azul de Prusia (PBA, por sus siglas en inglés): Éstos 

compuestos se componen de una estructura cúbica donde centros metálicos de 

la primera serie de transición quedan coordinados octaédricamente a ligandos 

de tipo ciano en una red tridimensional. La fórmula de dichos compuestos es 

AaBx[D(CN)6]y·nH2O (siendo A un catión alcalino mientras que B y C son 

cationes metálicos de la primera serie de transición). La principal ventaja de 

estos materiales es su variedad química, el gran control sintético de su tamaño 

y la posibilidad de obtener suspensiones coloidales estables. En los últimos 

años se han desarrollado algunas combinaciones de estos materiales con NPs 

de oro que se han enfocado principalmente para la electrocatálisis de agua 
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oxigenada y para aprovechar las propiedades plasmónicas en aplicaciones 

biomédicas (fototerapia).  

- Materiales de transición de espín (SCO, por sus siglas en inglés): La 

transición de espín es un fenómeno que conlleva un cambio en el estado 

electrónico por medio de un factor externo como puede ser la temperatura, la 

luz o la presión. La transición ocurre al cambiar el estado del compuesto de bajo 

espín a alto espín provocando cambios en la distancia de enlaces entre metales 

y ligandos e induciendo cambios en sus propiedades magnéticas, ópticas y 

eléctricas. La integración de NPs plasmónicas en dichos compuestos se ha 

realizado especialmente para aprovechar el plasmón para que, por medio de la 

irradiación por luz, facilite la transición de espín por efecto fototérmico. 

 

- Materiales de red metalorgánica (MOF, por sus siglas en inglés): Los MOFs 

son compuestos de red tridimensionales con alta cristalinidad, altísima 

porosidad y enorme área superficial. Es por ello que son unos materiales muy 

prometedores para el almacenamiento de gases, para la separación de 

compuestos y para catálisis. Se han realizado numerosos trabajos combinando 

MOFs con NPs de oro. En la mayoría de casos, la heteroestructura core@shell, 

siendo el oro el núcleo y el MOF el recubrimiento, es la más adecuada para 

aprovechar la sinergia de ambos compuestos. Por ejemplo, se ha aprovechado 

la capacidad del oro para incrementar la señal obtenida en Raman para detectar 

las moléculas adsorbidas por el MOF. 

 

Objetivos 

La tesis aquí descrita está motivada por el creciente interés en el campo de la 

ciencia de los materiales y, especialmente, por el avance en el desarrollo de 

materiales híbridos. El principal objetivo de esta tesis es el diseño y la preparación 

de heteroestructuras integradas por CPs y NPs plasmónicas (especialmente NPs 

de oro). Concretamente, los CPs que se han utilizado son materiales 

nanoparticulados multifuncionales de PBA, de SCO y de MOF. Los resultantes 

materiales híbridos han sido preparados para mejorar y optimizar diferentes 

propiedades y, por tanto, mejorar su posible implementación en dispositivos 
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magneto-ópticos, electroquímicos y electrónicos. Durante los diferentes capítulos se 

han analizado y se han discutido los protocolos sintéticos empleados, la 

caracterización de los híbridos, sus diferentes propiedades y porqué estas 

heteroestructuras resultan más adecuadas para dichas aplicaciones.  

 

Metodología 

Síntesis 

Por lo general, las NPs de oro fueron obtenidas por medio de la conocida 

reacción de Turkevich, donde una sal de oro es reducida por moléculas de citrato 

que actúan también como agente estabilizador. Las diferentes formas (cilíndros y 

estrellas) se obtuvieron por un protocolo de crecimiento mediado por semillas. Con 

respecto a las NPs de plata, se obtuvieron usando citrato como agente reductor.  

Para la preparación de NPs de PBA decoradas por NPs de oro se procedió 

cambiando el agente estabilizador de las NPs plasmónicas que fue reemplazado 

por un polímero con un grupo tiol y un grupo amino: HS-PEG-NH2. Por otra parte, 

las partículas de PBA se prepararon por adición gota a gota de los precursores por 

medio de perfusores. Estas partículas no requieren de agente estabilizador, 

resultando estables coloidalmente con una carga negativa. Ajustando el pH y la 

concentración de ambas NPs se obtiene la heteroestructura. Curiosamnete, la 

decoración del oro es dependiente del pH. Un pH entre 2-3 conlleva una distribución 

aleatoria por el cubo del PBA mientras que un pH entre 3-5 da lugar a una 

decoración preferencial en las aristas del PBA. Este protocolo fue realizado con una 

gran variedad de PBA con diferentes tamaños. También se prepararon monocapas 

de dichas heteroestructuras. Para ello, se ancló (3-Aminopropil)trietoiysilano 

(APTES) a la superficie de silicio para funcionalizarla. Tras ello, se añadió 

secuencialmente y, a un pH adecuado, NPs de PBA y NPs plasmónicas. 

Para sobrecrecer los PBA (concretamente, de NiFe(II) y el CoFe(II)) alrededor 

de NPs de oro, nos basamos en la síntesis reportada por Larionova. En este caso, 

partimos de una sal de oro y cianuro que, por medio de la adición de un potente 

reductor, forma NPs de oro estabilizadas por grupos ciano. A partir de este punto, 
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con unas condiciones adecuadas (concentraciones, velocidad de adición de los 

precursores del PBA) que optimizamos, es posible sobrecrecer estos PBAs con 

diferentes espesores. Para comparar las propiedades electrocatalíticas, otras NPs 

fueron obtenidas: PBAs con muchas vacantes (y por tanto muchos defectos), PBAs 

con Fe(II), PBAs con NPs de oro decorando su superficie y una mezcla física de 

NPs de oro y PBAs. 

Las heteroestructuras de tipo core@shell formadas de SCO o de MOF fueron 

preparadas a través de un protocolo en dos etapas. Respecto al SCO, el compuesto 

de [Fe(Htrz)2(trz)](BF4) (Htrz = 1,2,4-triazol) fue seleccionado debido a su 

temperatura de transición (situada por encima de temperatura ambiente) y la 

persistencia de sus propiedades incluso en NPs con un tamaño menor a 10 nm. En 

relación al MOF, los compuestos de MIL-100 y MIL-88 fueron escogidos debido a 

que están formados de Fe y de ligandos similares al citrato, resultando muy 

interesantes al permitir continuar con el método anterior aplicado para el crecimiento 

del SCO. Los dos CPs se sobrecrecen por adición de sus precursores: el metal y el 

ligando que, bajo condiciones adecuadas (concentraciones, velocidad de adición de 

los precursores, velocidad de agitación de la suspensión coloidal), se coordinan. 

Para favorecer el crecimiento de dichos materiales en la superficie del oro, en primer 

lugar, se añadió uno de los dos precursores para que se ancle en la superficie o 

coordine el citrato y, de esta manera, sirva como semilla de crecimiento. Tras ello, 

se adicionó secuencialmente gota a gota los precursores en unas concentraciones 

muy diluidas con el fin de evitar la agregación de la heteroestructura.    

 

Caracterización 

Los híbridos resultantes fueron caracterizados por diferentes técnicas. La 

morfología fue principalmente comprobada por microscopía electrónica de 

transmisión (TEM, por sus siglas en inglés) y por dispersión dinámica de luz. Las 

imágenes obtenidas por TEM fueron empleadas para realizar histogramas de las 

dimensiones de las diferentes NPs. Por medio de microscopía electrónica de 

transmisión en alta resolución (HR-TEM, por sus siglas en inglés) y Fluorescencia 

de rayos X por energía dispersiva (EDX, por sus siglas en inglés) se determinó la 
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distribución de los metales en las heteroestructuras de tipo core@shell. La 

presencia de las propiedades plasmónicas fue verificada mediante medidas de 

espectroscopia UV-Vis. Medidas de rayos X fueron realizadas para estudiar la 

estructura cristalina de los materiales. Por otra parte, la espectroscopia infrarroja y 

la espectroscopia Raman permitió ahondar acerca de la presencia de enlaces de 

coordinación. Medidas de potencial zeta resultaron muy útiles para estudiar la 

estabilidad coloidal de diferentes NPs. 

Por otro lado, la espectroscopia de fotoelectrones emitidos por rayos X permitió 

conocer el estado de oxidación de los diferentes elementos. Las formulas 

moleculares se estimaron a través de medidas de espectrometría de masas con 

plasma acoplado inductivamente. Las imágenes de la monocapa de la 

heteroestructura de Au-PB/PBA fue tomada con un microscopio de fuerza atómica 

(AFM, por sus siglas en inglés).  

Respecto a las medidas magnéticas, éstas se adquirieron por medio de medidas 

en SQUID (superconductores de interferencia cuántica). Concretamente, se 

midieron histéresis magnéticas a la temperatura de 2 K y la respuesta magnética 

frente a la variación de la temperatura bajo un campo aplicado de 1000 Oes. 

La actividad electrocatalítica de las partículas Au@PBA fue estudiada por medio 

de la reacción de evolución de oxígeno. Se midió utilizando una celda de tres 

electrodos compuesta de un electrodo de carbono vítreo (electrodo de trabajo), un 

hilo de platino (electrodo auxiliar) y un electrodo de plata/cloruro de plata (electrodo 

de referencia). Todas las medidas fueron realizadas en una disolución acuosa de 

KOH 1 M que fue previamente purgada con nitrógeno. En cuanto a los experimentos 

llevados a cabo, se registraron voltamperometrías (tanto lineales como cíclicas) 

para estudiar el incremento de la densidad de corriente respecto al voltaje aplicado. 

Para comprender las diferencias obtenidas con respecto a las demás partículas 

preparadas, se estudió, por medio de diferentes técnicas (principalmente 

voltamperometrías cíclicas, coulovoltametrías e impedancia electroquímica) la 

masa de material susceptible de ser oxidada y reducida, el área 

electroquímicamente activa y las resistencias internas de cada proceso 

electroquímico.  
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Calorimetrías diferenciales de barrido fueron llevadas a cabo para caracterizar 

la transición de espín en las heteroestructuras elaboradas con diferentes NPs 

plasmónicas y el compuesto de SCO. 

Las medidas de conductividad se llevaron a cabo en electrodos interdigitados 

donde previamente fueron depositadas las NPs ya sea dejando secar una gota 

vertida directamente de la suspensión (Au@MOF) o bien mediante dielectroforesis 

(Au@SCO). 

 

Resultados y discusión 

Anclaje de NPs plasmónicas en la superficie de NPs de PBA  

Respecto a la decoración de NPs de PBA mediante NPs plasmónicas, la 

molécula utilizada (HS-PEG-NH2) resultó ser clave para la unión de ambos 

nanosistemas. El grupo del tiol tiene una gran afinidad por metales como la plata y 

el oro mientras que el grupo amino, a un pH adecuado, es capaz de interaccionar 

electroestáticamente con los PBAs. Observamos que, variando el pH de la 

disolución, la decoración de la superficie del PBA era distinta. En cierto rango de pH 

(entre 2 y 3), la decoración se produce de forma aleatoria por toda la superficie del 

PBA pero, cambiando el rango de pH a 3-5, esta decoración tiene una mayor 

preferencia por los bordes y esquinas del CP. Este protocolo fue realizado con una 

gran variedad de PBA y utilizando diferentes tamaños, resultando muy eficaz en 

todos los casos. En particular, se probó con el clásico PB de FeFe y diferentes 

PBAs: NiCr, CoFe, CuCr y NiFe. Cabe resaltar que las propiedades magnéticas de 

los CPs se mantienen, así como las propiedades plasmónicas provenientes de la 

NP metálica. De hecho, la banda del plasmón se ve desplazada como consecuencia 

del cambio de índice de refracción causado por la presencia de NPs de PBA 

alrededor de la superficie del oro. Por otra parte, dependiendo de la NP plasmónica 

seleccionada es posible modificar y, así, controlar la posición de la banda del 

plasmón en el espectro visible e infrarrojo cercano (entre 400 y 1200 nm). Estos 

híbridos se han diseñado para incrementar la actividad magneto-óptica del 

compuesto magnético de PBA. Para ello, dicha actividad magneto-óptica y la 

posición de la banda del plasmón han de situarse en la misma longitud de onda. Es 
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por eso que este protocolo resulta tan conveniente: podemos escoger la NP 

plasmónica (luego, podemos modular la posición de la banda del plasmón) y la NP 

de PBA. Finalmente, también se pudo preparar monocapas de dichos híbridos que 

fueron caracterizadas por AFM y XPS. Para ello, se realizó un tratamiento de la 

superficie de silicio con APTES, provocando un enlace covalente entre el silano y el 

silicio y dejando el grupo amino libre. Mediante el uso de una disolución ácida (HCl 

1 M) se protonó dicho amino para que se anclara a las NPs de PBA. Tras esto, se 

decoró NPs de oro añadiendo éstas con el HS-PEG-NH2 y con su grupo amino 

protonado. Estas monocapas pueden resultar de gran utilidad para el estudio de la 

actividad magneto-óptica y el posible incremento causado por el plasmón.  

 

Heteroestructuras de Au@PBA como electrocatalizadores de oxígeno  

Las heteroestructuras de tipo core@shell (Au@PBA) fueron preparadas con un 

núcleo de oro de alrededor 15 nm mientras que se obtuvo un espesor del 

recubrimiento de PBA de 12 nm (recubrimiento más fino) y de unos 30 nm 

(recubrimiento más grueso). Para ambos casos, se sintetizaron heteroestructuras 

de NiFe y de CoFe ya que estos metales de transición resultan ser los más 

interesantes y eficientes para la electrocatálisis de la reacción de evolución de 

oxígeno. Los híbridos resultantes son coloidalmente estables, con un recubrimiento 

muy homogéneo (es decir, con una distribución de los metales homogénea), con 

una distribución de tamaños pequeña además de mantener las propiedades 

plasmónicas. De hecho, la banda del plasmón se ve una vez más desplazada como 

consecuencia del cambio de índice de refracción debido al sobrecrecimiento del 

PBA alrededor del oro. Debido a ser una estructura de tipo core@shell, dicho 

desplazamiento es mucho más mayor que en la decoración en la heteroestructura 

anteriormente mencionada. Sin embargo, estos recubrimientos se ven afectados 

debido al uso de borohidruro potásico durante la síntesis, ocasionando la reducción 

del Fe(III) a Fe(II). Este reductor es requerido para mantener el oro en un equilibrio 

entre el cianuro (que oxida el oro) y el borohidruro (que lo reduce). Sin embargo, la 

formación de Fe(II) conlleva importantes cambios en las propiedades magnéticas, 

dando lugar a diferentes temperaturas de ordenación magnética. Sin embargo, a 

pesar de ello, se comprobó por medio de difracción de rayos X y espectroscopia 
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Raman que la estructura cúbica típica de los compuesto cianometálicos se 

mantiene. 

Para evaluar las propiedades electroquímicas de dichos híbridos, se prepararon 

otros compuestos: NPs de PBA sin oro, NPs de PBA con el Fe en estado de 

oxidación 2, NPs de PBA decoradas con oro y una mezcla física de NPs de PBA y 

oro. Se observó que, en las estructuras de tipo core@shell con un recubrimiento de 

PBA grueso, se produce una importante reducción de la sobretensión requerida 

para producir una densidad de corriente de 10 mA·cm-2. De la misma forma, la 

densidad de corriente producida es mucho mayor aplicando una sobretensión fija. 

Para comprender estos resultados se llevó a cabo el estudio de 

coulovoltamperometrías, el cálculo de la superficie electroquímicamente activa y 

medidas de impedancia electroquímica. Se apreció que la introducción de oro (5-10 

% en peso) en la heteroestructura de tipo core@shell ocasiona una mayor cantidad 

de masa de PBA capaz de reaccionar electroquímicamente, una mayor superficie 

activa donde puede tener lugar la electrocatálisis y una reducción de la resistencia 

asociada a la formación de oxígeno, posiblemente debido al incremento de la 

conductividad del material. Finalmente, se analizó la estabilidad del PBA durante el 

proceso de evolución de oxígeno de los compuestos conteniendo y sin contener oro. 

De este modo, además de una notoria mejora en la actividad catalítica, también se 

observó una mayor estabilidad tras la introducción de una pequeña cantidad de oro 

en el sistema core@shell. 

 

Heteroestructuras de Au@SCO y Au@MOF para aplicaciones eléctricas 

Se desarrolló un protocolo sintético para sobrecrecer SCO en la superficie de 

nanoesferas, nanoestrellas de oro y nanoesferas de plata. Esta síntesis consiste en 

dos etapas: la sustitución de citratos coordinados al oro por triazoles y la adición 

controlada de los precursores (Fe(BF4)2 y triazoles). En el caso de las nanoesferas 

de oro, es importante recalcar que, si una gran cantidad de triazoles reemplazan los 

citratos, la estabilidad coloidal se pierde imposibilitando así el sobrecrecimiento del 

SCO. Una pequeña cantidad de triazol es suficiente de forma que los triazoles sirvan 

como germen de nucleación del compuesto en la siguiente etapa. La presencia de 
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estos ligandos se determinó por XPS al observar la aparición de un pico de 

nitrógeno. La adición de los precursores se llevó a cabo bajo unas condiciones muy 

concretas. En caso de incrementar la velocidad de adición o las concentraciones 

conlleva a la malformación del recubrimiento o, directamente, la formación del 

compuesto de SCO por su cuenta. Usando técnicas de microscopía, vimos la 

aparición de un recubrimiento muy fino (en torno a 4 nm de espesor) pero bastante 

homogéneo alrededor de la superficie de las nanoesferas de oro. Las propiedades 

plasmónicas nuevamente se ven afectadas con respecto a las propiedades iniciales 

del oro. El plasmon es desplazado como consecuencia del cambio de índice de 

refracción. Por rayos X solo pudo observarse los picos correspondientes al oro. Es 

posible que la ausencia de picos del SCO se deba al pequeño tamaño del 

recubrimiento, el enmascaramiento del oro o la formación de un compuesto amorfo. 

En cualquier caso, el híbrido mantiene también su transición de espín, con valores 

de temperatura muy similares al compuesto prístino de SCO. Sin embargo, se vio 

una importante fatiga del material al realizar muchos ciclos de transición de espín. 

Tras caracterizar el nanomaterial, se diseñó un dispositivo, en donde este híbrido 

fue depositado entre electrodos interdigitados, para evaluar los efectos causados 

por la transición de espín en las propiedades eléctricas. Al variar la temperatura se 

registró un importante cambio de la conductividad eléctrica en un rango de 

temperatura similar al registrado por calorimetría. Asimismo, se distinguieron dos 

estados eléctricos muy diferenciados relacionados con el estado de espín del 

compuesto de SCO: un estado más conductor (dentro del rango de los nS/cm) que 

coincide con el bajo espín y uno menos conductor (dentro del rango de los pS/cm) 

que coincide con el alto espín. Paralelamente, un compuesto análogo de SCO sin 

NPs de oro fue medido, pero no se pudo detectar señal debido al comportamiento 

aislante del material. Por tanto, la introducción de oro permite mejorar la detección 

del estado de espín del compuesto de SCO. Por otra parte, las propiedades 

plasmónicas pueden ser aprovechadas para inducir la transición de espín por medio 

de la irradiación de luz. La luz puede dar lugar al calentamiento del oro por efecto 

fototérmico, facilitando la transición del compuesto de SCO. Debido a esto, el diseño 

y la preparación de híbridos con mayores propiedades plasmónicas resulta de gran 

interés. Por ejemplo, las nanoesferas de plata presentan una banda de plasmón 

alrededor de 400 nm mientras que las nanoestrellas de oro tienen el plasmón 
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situado entre 600 y 1200 nm (dependiendo del tamaño de las puntas). Sobrecrecer 

el compuesto de SCO nos permite tener un híbrido con propiedades de transición 

de espín y con un gran control de las propiedades plasmónicas en toda la ventana 

del espectro visible. La preparación de estas NPs de core@shell se llevó a cabo de 

forma análoga, pero modificando parámetros tales como la concentración o el 

tiempo y volumen de adición. Y es que la estabilidad coloidal resulta nuevamente 

crucial. En caso de desestabilizarse la suspensión coloidal se imposibilita el 

sobrecrecimiento del recubrimiento de SCO alrededor de la superficie metálica.  

Este protocolo fue modificado para hacer viable la síntesis de NPs de Au@MOF. 

Particularmente, se intentó formar los MOFs de MIL-100 y MIL-88 ya que el metal 

(hierro) es el mismo, salvo por el estado de oxidación, que el utilizado en el apartado 

anterior. Además, los ligandos de estos MOFs se parecen bastante al citrato 

(molécula que estabiliza las NPs de oro) al tener varios grupos carboxílicos, 

haciendo la síntesis más sencilla gracias a las semejanzas con la síntesis del 

Au@SCO. Sin embargo, debido a que la formación de estos MOFs está más 

favorecida con respecto al SCO, se obtuvo una malla con NPs de oro embebidas 

en ella, formando “racimos de uva” de unos 100 nm. Por otro lado, la ausencia de 

picos de difracción en rayos X relacionados con el MOF sugiere que podríamos 

haber obtenido polímeros de coordinación amorfos basados en el MIL-100 y el MIL-

88. Por este motivo, en el futuro optimizaremos la síntesis para así mejorar la 

cristalinidad del material. Respecto a las propiedades ópticas, el híbrido posee 

propiedades plasmónicas y, como en los casos anteriores, el plasmón se ve 

afectado por el cambio en la constante dieléctrica. Por otra parte, se realizaron 

medidas de conductividad eléctrica utilizando electrodos interdigitados, 

observándose una mayor conducción eléctrica en este híbrido que el material 

prístino. De hecho, el material sin oro exhibe una corriente eléctrica que no supera 

el límite de detección del aparato empleado (del orden de los pA). Teniendo esto en 

cuenta, este híbrido resulta especialmente interesante para incrementar la 

respuesta eléctrica aumentando el límite de detección del compuesto. De esta 

forma, es posible aprovechar las propiedades del MOF para adsorber diferentes 

moléculas y poder así analizar la influencia de dichas moléculas en las propiedades 

eléctricas.  
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Conclusiones 

En conclusión, la presente tesis doctoral aborda el campo de los materiales 

híbridos dentro de la escala nanométrica formados por NPs plasmónicas y 

polímeros de coordinación. Los materiales híbridos presentados a lo largo de este 

trabajo se han diseñado para maximizar la interacción entre ambos nanosistemas 

y, así, gracias a la presencia de las NPs plasmónicas mejorar las propiedades de 

los polímeros de coordinación para sus aplicaciones magneto-ópticas, 

electroquímicas y eléctricas. Las principales conclusiones del trabajo realizado se 

pueden resumir de la siguiente manera: 

- Las heteroestructuras de tipo core@shell resultan muy favorables para 

aumentar al máximo las interacciones entre ambos nanosistemas. En este 

trabajo, comprobamos que la introducción de un núcleo de oro confiere al híbrido 

de una mayor conducción que puede ser beneficioso para incrementar la 

actividad electrocatalítica o la detección del estado de espín de compuestos de 

transición de espín. 

- Por otra parte, las metodologías que suelen utilizarse para preparar las 

heteroestructuras de tipo core@shell son, por lo general, bastante rígidas 

haciendo muy complejo cambiar de NP plasmónica y más aún su morfología. 

Para ciertas aplicaciones (como es el caso de la magneto-óptica) la posición de 

absorción del plasmón resulta crucial por lo que este tipo de heteroestructura no 

resulta tan conveniente. Por consiguiente, desarrollamos un procedimiento más 

flexible que permite la decoración de NPs plasmónicas en la superficie de 

polímeros de coordinación negativamente cargados.   

- El diseño químico es esencial para aprovechar las propiedades de las NPs 

plasmónicas. Por tal motivo, resulta imprescindible desarrollar y explorar nuevas 

rutas sintéticas que conduzcan a una mayor sinergia y una mejora en las 

propiedades del material híbrido resultante.  

En su conjunto esta tesis representa un avance significativo en el desarrollo de 

nuevos materiales híbridos plasmónicos utilizando NPs metálicas y plasmónicas 

aportando nuevos resultados que puedan repercutir en un mayor conocimiento y 

desarrollo en este campo.  
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