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Introduction

1. Image analysis as an emerging essential player in Life Sciences

State-of-the-art microscopes have become a primary source of quantitative data 
in biological research. Automation and standardisation of image data acquisition have 
utterly transformed microscopes, once mainly used for descriptive tasks and qualitative 
analysis. As a result, the data generated is getting bigger and more complex, hampering 
manual analysis. Besides, spatial and physical factors are gaining importance in the 
study of the regulation of cellular processes and their functions, hardly assessed without 
the application of imaging techniques. This has led to the upswing of bioimage analysis. 
Originated as a specialization of computer vision and image processing, bioimage 
analysis is a relatively new but growing field, whose chief task is to extract quantitative 
information from biological images (especially light or electron microscopy) by means 
of computational methods (Myers et al., 2012; Meijering et al., 2016).

The intrinsic properties of microscopy images make the bioimage analysis 
challenges different from those faced by other related fields traditionally focused on 
natural images. For example, in microscopy images the signal-to-noise ratio is often 
low, the diffraction artefacts might affect the images significantly and the resolution 
can be a limitation. Additionally, microscopes usually acquire multidimensional images 
which can combine several features: spatial dimensions (XYZ), time (T) and channels 
(C). Since automated microscopes are able to capture a large number of fields-of-view 
(F) from each sample, sometimes these are also considered an additional dimension. 
Fields-of-view may be isolated patches of the sample or overlapped tiles meant to build 
a composite view once stitched. Finally, when using multiwell plates, wells (W) may 
also be considered a dimension. Therefore, within the bioimage analysis field we can 
distinguish between two classes of big data. On one hand, large but relatively simple 
image datasets, such as those acquired by means of microscopy-based screening (in 
its simplest expression, XYFW, though usually XYCFW). On the other hand, datasets of 
complex multidimensional images, for example those captured by means of spinning 
disk or the even bigger ones from light-sheet microscopy (in its most complex expression, 
XYZCTFW).

As mentioned above, such datasets preclude visual analysis so are bound to 
require automated tools which, otherwise, also enable faster analysis of smaller datasets. 
Nonetheless, the use of software has a series of advantages beyond the improvement 
of efficiency. The increase of objectivity and reproducibility are the most remarkable 
achievements. Additionally, the use of bioimage analysis methods can also lead to unveil 
subtleties indistinguishable to the naked eye. However, software-based analyses are not 
devoid of difficulties, especially when visual object identification and manual analyses are 
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still considered ‘the proper standard’. In fact, while software algorithms are impervious 
to misinterpretations and assumptions often made by our brain, human perception 
might sometimes easily discriminate what is (still) hard for algorithms. Therefore, fully-
automated image analyses protocols require the implementation of control checkpoints 
to remove ill-quality images and/or inaccurately processed objects. Conversely, semi-
automated tools that prompt for user intervention at specific steps in order to refine or 
amend the software processing are commonly used. Human-supervised protocols give 
up the fully-unbiased analysis of automated processes in return of an increase in object 
identification accuracy.

Although there are numerous software packages developed to perform image 
processing, there are also others specifically built to perform bioimage analysis. Regardless 
of the aim, both general and specific toolkits might be considered as collections of image 
processing and analysis algorithms (Miura et al., 2017). An algorithm is a well-defined, 
unambiguous, finite sequence of instructions which may be given to a computer in 
order to solve a problem. Algorithm implementations available to be accessed within a 
software package may be considered as the collection components. It is important to 
note that a single component is not usually enough to extract meaningful data from 
biological images. Namely, users nearly always need to combine several algorithms 
(even from different collections) to solve a bioimage analysis problem. To this aim it is 
necessary to i) select the appropriate components, ii) fit them together in a purposeful 
order and iii) rightly accustom their functional parameters. In other words, one needs 
to build up a unique sequence of assembled algorithms combined with a specific 
parameter set, thereby obtaining a workflow that takes images as input and generates 
quantitative information and/or other images as output. As a side note, by definition, 
a workflow is just a longer algorithm. Also there are components which actually are 
workflow templates built to solve a common image processing issue.

How components are accessed by users may considerably change between 
collections (see Table 1). Therefore, among the most popular software packages used to 
analyse bioimages we can mainly distinguish between: i) those that include a graphical 
user interface (GUI), such as ImageJ (Rueden et al., 2017), CellProfiler (Carpenter et al., 
2006; McQuin et al., 2018) or ilastik (Berg et al., 2019), and ii) those whose algorithms 
have to be accessed by means of a command line interface (CLI), such as Matlab 
(Higham & Higham, 2016), Python (Van Rossum & Drake, 2009) or R (R Core Team, 
2016). Additionally, many bioimage analysis tools allow the use of one or more scripting 
or programming languages (see Table 1). Image processing libraries, such as ImgLib2 
(Pietzsch et al., 2012), OpenCV (Bradski, 2000) or VTK (Schroeder, Martin & Lorensen, 
2006), are a different kind of collections interfaced for access by means of scripting or 
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programming in most of the cases. Although the direct use of those libraries by life 
scientists is unusual, both GUI and CLI can access image processing libraries in their 
back end, i.e., as a subordinate software which performs a specialized function without 
being directly accessed by the user. All the bioimage analysis tools previously described 
are referred to as collections regardless of their different interfaces.

A significant caveat of bioimage analysis is that each research project relying on 
imaging methods may require its own tailored workflow. On one hand, the underlying 
biological question to be asked is often unique. On the other hand, even when 
repeating a former established protocol, the features of the new image dataset might 
slightly change due to intrinsic experimental variability. It typically requires, at least, the 
readjustment of the parameters set. Accordingly, experts capable of building workflows 
from scratch are meant to have solid knowledge of both bioimage analysis concepts 
and the biological problem to be assessed. It is also important to have an understanding 
of the instruments and methods used to perform and capture a bioimaging experiment, 
from sample handling (i.e. culture medium and conditions, fixation process or labelling 
techniques) to microscope specifications, type of camera sensor and acquisitions settings. 

Table 1. Summary of some commonly used bioimage analysis collections.	 
Software 
collection

GUI CLI Scripting OS Scripting Language License

ImageJ / 
Fiji

Yes Yes Yes All

ImageJ Macro, 
Javascript, Jython, 
JRuby, Beanshell, 
Groovy, Clojure

Public 
domain / 

GPL

CellProfiler Yes Yes Yes All Python BSD-3
ilastik Yes Yes Yes All Python GPL

Matlab No Yes Yes All Matlab Commercial
Python No Yes Yes All Python PSFL

R No Yes Yes All R GPL
OMERO Yes Yes Yes All Python GPL
Huygens Yes Yes Yes All TCL Commercial

Imaris Yes No No
Win, 
OSX

Matlab Commercial

GUI (graphical user interface), CLI (command-line interface), OS (operating system), GPL (General Public Li-
cense), PSFL (Python Software Foundation License), BSD (Berkeley Software Distribution). Table modified from 
Miura, 2016.
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Additionally, in order to assemble components, it is necessary to gain programming 
skills. Materialised in the creation of NEUBIAS (Network of European Bioimage Analysts), 
this has required the emergence of a new kind of specialists, known as bioimage 
analysts, which need to work closely with the other professional communities involved 
in bioimaging: life scientists, instrumentalists and developers. These new experts, 
beyond their interdisciplinary knowledge within the bioimaging field, have a central role 
in setting up workflows to conduct practical bioimage analysis.

During the last decade there have been substantial advances in the establishment 
of this professional figure. Despite the fact that there is still much to accomplish, reading 
the Myers’ viewpoint from 2012, one realizes how different the situation was a few years 
ago:

“The field is still in its early days, and there is no such thing as a typical 
bioimage informatician: they are either computer vision experts looking 
for new problems, classic sequence-based bioinformaticians looking for the 
new thing or physicists and molecular biologists whose experiments require 
them to bite the informatics bullet. There are as yet no established large-
scale forums for the work, both in terms of meetings and journals. Young 
people in the field present challenges to established academic evaluation 
committees. From my perspective, it is very reminiscent of the state of 
bioinformatics in the early 1980s: the exciting, somewhat chaotic free-for-
all that is potentially the birth of something new.”

2. Common steps in bioimage analysis: from components to workflows

Before addressing the basic concepts and strategies of bioimage analysis, it is 
important to make some considerations about what we could consider “biological 
samples’’ on the bioimage analysis field, i.e., the digital images. The quality of the 
measurements that can be extracted from an image is highly dependent on the image 
quality. Therefore, although the image acquisition (digitalization process) is not part 
of the bioimage analysis workflow, it provides the starting point, the raw data of an 
image-based experiment. Indeed, the output generated by means of bioimage analysis 
techniques relies on both experimental design and well-conducted imaging protocols. 
As synthesized in the Computer Science common concept ‘garbage in, garbage out’ 
(GIGO), the quality of the input data restricts the quality of the output data.

It is even more important to take into account how digital images are formed 
in order to properly understand how they can be manipulated and interpreted. An 
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initial consideration of chief importance is to acknowledge that the analogue-to-digital 
conversion involves a transition from a continuous world to a discrete one which implies 
an inescapable loss of information. For example, when acquiring an image by means 
of an 8-bit sensor, its range of intensity values will be limited to a 256 greyscale (0-
255). The same happens with the space, constricted by the pixel (picture element) size, 
which determines the image resolution. Consequently, it must be assumed that digital 
images, and therefore the quantitative information extracted from them, are simplified 
representations of the infinite analogical world. Nonetheless, it is precisely in the discrete 
nature of digital images, where the basis of the image processing algorithms lies. A 
digital image, regardless of the digital-to-analogue conversion that computers perform 
in order to let us visualize it, is actually composed of an ordered matrix of numbers 
representing the intensity values of each pixel. Therefore, image processing was only 
possible after the arrival of digital images, and has been built upon its matrix-based 
structure.

Recognizing the “objects” that need to be quantified within an image dataset is the 
cornerstone of most bioimage analysis workflows. In order to do so, the objects must 
be separated from the background, i.e., the image region irrelevant for the biological 
question. In many cases, such a task may be intuitively accomplished by the human 
brain, which easily recognises patterns to categorize the different elements comprising 
the image. However, objects do not strictly speaking ‘exist’ in the matrix of numbers that 
comprise a raw digital image. So, when it comes to making the computer see what we 
see, one starts to realize the complexity of the problem. There are multiple approaches 
to quantify the information contained in image data. The most popular implementations 
in bioimage analysis software follow two philosophies: the filter-based and the machine 
learning (ML) paradigms. Each approach has its own advantages and caveats, so it will 
be crucial in determining the capabilities of the different software.

The filter-based paradigm consists in the detection and delineation of objects (e.g., 
cells, subcellular compartments...) or regions of interest (ROIs) by means of the application 
of small matrices (filters) which operate locally, taking into account the value of each 
pixel and their corresponding neighbours. Some examples of typical filtering operations 
are those used to reduce noise or suppress background, detect edges or sharpen the 
images. This approach requires prior knowledge on the design of the filtering strategy 
(Sbalzarini, 2016). The ML paradigm is divided into two main approaches (Kan, 2017). 
On one hand, supervised ML consists in the training of a classifier to recognise relevant 
patterns and then use them to classify entire images or sub-image regions (e.g., pixels, 
objects…) relying on those patterns. In order to train the software, a set of classes has 
to be pre-defined because the machine learns from those user annotations (Shamir 
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et al., 2010). On the other hand, unsupervised ML does not require neither classes nor 
classified examples given by the user. Unsupervised learning comprises a wide range of 
diverse tasks. A typical approach is to use predefined rules to subdivide the data into 
clusters. However, it has plenty of applications, from outlier detection (Grys et al., 2017) 
to image restoration (Krull et al., 2020).

On the whole, there is a great diversity of image processing algorithms, as well as 
varied paradigms and strategies aimed to conduct successful analysis of digital images. 
Likewise, there are countless biological problems suitable to be approached from a 
bioimage analysis perspective, aside from a wide range of microscopy techniques to 
assess them. As a consequence, presenting an ideal workflow which may serve as a 
model for any microscopy-based analysis is not an easy task. Even so, there are slightly 
different views of such a workflow (Meijering et al., 2016; Pertusa & Morante-Redolat, 
2019), which I have tried to homogenize below.

2.1. Preprocessing

Imaging is not a flawless process, rather the opposite. Any instrument, including 
optical systems and sensors, are limited by its own error. In fact, bioimage analysis 
workflows often include preprocessing steps aimed to reduce imaging artefacts. For 
example, uneven illumination or vignetting is a widely-extended issue, which usually 
appears as a fading of the illumination intensity as moving away from the centre of 
the optical axis. Although this is sometimes neglected, there is a typical variation on 
the illumination from the central to the outlying regions of 10-30 % (Smith et al., 
2014). Therefore, a series of methods have been described to address this effect. These 
algorithms are based on the application of arithmetic operations between the acquired 
images and correction functions. So the ultimate goal of shading correction techniques 
is to predict corrected images, an estimation of how the uncorrupted true image should 
be. The physical process of image formation, relating the true image Itrue and the acquired 
image Iacq, is typically described by a linear model (Likar et al., 2000; Peng et al., 2017) 
which comprises a multiplicative term F and an additive term D.  	 

𝐼𝐼����𝑥𝑥,𝑦𝑦� = 𝐼𝐼�����𝑥𝑥,𝑦𝑦� × 𝐹𝐹�𝑥𝑥,𝑦𝑦� + 𝐷𝐷(𝑥𝑥,𝑦𝑦) 
F is a representation of the effective illumination variation across Iacq, which is 

known as flat-field. D is mainly due to the offset of the camera sensor and the thermal 
noise and is known as dark-field, due to its independence from the incident light, its 
effect is not as severe as the one resulting from the flat-field. A corrected image Icorr can 
be calculated inverting the image formation model after obtaining an estimation of the 
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flat-field Fest and the dark-field Dest.	  

𝐼𝐼�����𝑥𝑥,𝑦𝑦� = 𝐼𝐼����𝑥𝑥,𝑦𝑦� − 𝐷𝐷����𝑥𝑥,𝑦𝑦� 
𝐹𝐹���(𝑥𝑥,𝑦𝑦)  

 Alternatively, correction functions may be used to identify image subregions with 
higher variations in effective illumination to discard them from the quantitative analysis 
(Jost & Waters, 2019). Depending on how these correction functions are predicted, we 
can distinguish between two main strategies for illumination correction: prospective 
methods and retrospective methods (Peng et al., 2017; Caicedo et al., 2017).

Prospective methods are based on the use of reference images, acquired throughout 
the same imaging system as the experimental dataset, to build the correction function. 
It may be accomplished acquiring flat-field images with no samples in the foreground. It 
is also possible to generate dark-field images with no light reaching the camera (Model, 
2014; Singh et al., 2014).

Retrospective methods build correction functions directly from the images acquired 
for the experiment, then leaving aside the additional effort of acquiring reference images 
throughout the imaging process. Among the retrospective methods we find two major 
approaches. On one hand, retrospective single-image methods compute a correction 
function for each image (Likar et al., 2000; Babaloukas et al., 2011). Since this approach 
generates diverse correction functions from image to image, it is especially useful when 
analysing datasets where the illumination pattern differs between images. On the other 
hand, retrospective multi-image methods may be deployed when batch processing an 
image dataset with a similar illumination pattern. This strategy takes advantage of the 
dataset size to compute a correction function which may be applied as a constant for 
the whole dataset (Singh et al., 2014; Smith et al., 2015; Peng et al., 2017).

Another prominent example of image restoration is deconvolution, applied to 
enhance the blurring introduced by the diffraction limit of any optical system (Lauterbach, 
2012; Hernández Candia & Gutiérrez-Medina, 2014). Time-lapse imaging may generate 
intensity artefacts as well. Lasting laser exposure may cause photobleaching, thus 
showing a baseline drift over time (Peng et al., 2017). Moreover, the enhancement of the 
image contrast is a standard step, in this case by adjusting the image histogram. Due to 
its popularity, most of the image analysis software collections include an implemented 
function to normalize the histogram. Likewise, images are often pre-processed applying 
operations on the frequency domain.

Image quality control is a critical pre-processing step in imaging experiments 
precluding visual inspection, such as microscopy-based screenings. As already 
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mentioned, according to the GIGO concept, analysing ill-quality images will only 
generate ill-quality results. Therefore, a series of metrics for ill-quality image detection 
have been described. The most widely used metrics are focused on the detection of 
blurring and saturated artefacts (Bray et al., 2012; Caicedo et al., 2017). Blurring is 
typically found on out-of-focus images, e.g., due to an occasional failure of the autofocus 
algorithms commonly applied by automated microscopes. There are metrics commonly 
used to detect blurring: i) the ratio of the mean to the standard deviation of the image 
intensity, or inverse coefficient of variation (Bray et al., 2012); the normalized variance 
of the intensity (Groen, Young & Ligthart, 1985); the image correlation (Haralick, 
1979); and the power log-log slope (Field & Brady, 1997). Loss of the dynamic range, 
also known as clipping, must be avoided throughout the imaging process. Clipping 
causes an irreclaimable loss of the photon detection linearity, inevitably avoiding the 
quantification of fluorescence intensities. Saturation, caused by the limited capacity of 
camera sensors to accumulate photons, is the most prominent example of this effect. 
Once reached the maximum capacity of the sensor, newly arrived photons cannot be 
detected (Waters, 2009). Therefore, imaging set up must pursue the maximum use of 
the dynamic range while avoiding saturation (Brown, 2007). Assuming this has been 
accomplished, the detection of saturated pixels is most probably due to the presence 
of debris or aggregations as a consequence of the sample preparation process. Since 
such artefacts are often outstandingly bright, their presence may be revealed by looking 
for saturated pixels. Indeed, the percentage of saturated pixels is a simple metric which 
has shown to be the best option for the detection of saturation artefacts (Caicedo et 
al., 2017).

Registration is also a frequently used method when initialising a workflow. It is 
defined as a process to map the spatio-temporal coordinates of each image to another (or 
to a model). It allows the use of the same coordinates system even for samples obtained 
from different sensors, specimens, time points… thus allowing its comparison through 
data analysis or visualization (Qu, Long & Peng, 2015). As automated microscopes 
enable the acquisition of large areas (e.g. for whole slide imaging), it may be the case 
that all the obtained tiles need to be overlapped in order to obtain a single image as 
output. This process, known as stitching, is usually preceded by a registration step aimed 
to enable a meaningful reconstruction. During registration, the multi-tile experiment set 
is sorted, establishing the spatial relation between the images to facilitate the prediction 
of the overlapping coordinates (Preibisch, Saalfeld & Tomancak, 2009).
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2.2. Detection

At this point, the application of filters based on matrices is a common step aimed 
to reveal the presence of the objects of interest for the analysis (see Figure 1). The goal 
is to enhance or reduce image features to facilitate the subsequent segmentation step, 
when the different components of the image will be actually split from the background 
(Meijering e t al., 2016). Unlike point operations, which are equally and simultaneously 
applied to all the pixels in the image (e.g., arithmetic operations on an image or between 
images), filters are applied to each of the pixels in the image and yield a different result 
for each of them. This is because filtering implies the use of smaller matrices (or kernels) 
that delimit the number of neighbour pixels that will be included in the operation and, 
hence, will affect the output. Kernels may have any size, though quadratic filters are 
typically used to keep symmetry. It is also common, although not compulsory, to use 
odd numbers (e.g., 3x3, 5x5, 7x7…) in order to avoid interpolations. Filters are iteratively 
applied to each pixel as the kernel moves across the image. This approach generates 
smaller images, as certain pixels placed on the image edges cannot be computed 
according to the matrix due to the lack of some neighbours. Actually, in order to keep 
the original size, the missing pixels are usually added to the filtered images by means of 

Figure 1. Effect of diverse 3x3 linear and nonlinear (nl.) filters on a nuclear counterstain 
image.  Fiji’s Gaussian, Sharpen (a variation of the Laplacian), Find Edges (Sobel), Median 
and Kuwahara filters were tested on a crop of a DAPI-stained nucleus, both the raw image 
(Clean) and after artificially adding Gaussian noise (standard deviation of 10) by applying the 
Add Specified Noise plugin (Noisy). For the Sobel filter, both kernels are used to generate 
vertical and horizontal derivatives and the final image is calculated as the square root of the 
sum of the squares.
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different correction methods. However, one must be careful when it comes to interpret 
these peripheral pixels.

There are different ways to classify filter types. The most common distinction is 
between linear and nonlinear filters. Linear filters transform the input image applying 
linear combinations of the neighbouring pixels and the kernel values: first, the product of 
each kernel coefficient and the value of the pixel placed on its corresponding position is 
calculated; second, the value of the evaluated pixel is obtained as the weighted average 
of the products. Non-linear filters perform nonlinear operations with the neighbouring 
pixels such as sorting their pixel values to return the median, the maximum or the 
minimum values. These are known as the median, maximum and minimum filters, 
respectively (Sbalzarini, 2016; Pertusa & Morante-Redolat, 2019). Please note that 
filtering is a handy strategy which is not only used for detection. Indeed, image-filtering 
techniques may be applied for diverse tasks beyond detection including preprocessing 
steps (e.g., deconvolution) and segmentation techniques.

Smoothing structures is a commonly used step for detection, especially in images 
with a low signal-to-noise ratio. Likely, such filters may be quite useful on relatively 
simple images, where there are clearly bright objects over a dark background or vice 
versa. Mean and Gaussian are prominent linear filters to smooth images. On one hand, 
the mean filter is the result of the weighted average of the neighbouring pixels, i.e., all 
the matrix coefficients of the kernel are equal to one. Conversely, in the Gaussian filter 
the central pixel has a higher weight, while neighbouring pixels take different values 
depending on their distance from the central pixel. These filters blur the image, reducing 
noise but also distorting edges. Median filter is a non-linear filter really effective 
removing random spot noise that, additionally, preserves the edges much better than 
the smoothing linear filters. Moreover, smoothing filters larger than the objects to be 
detected may be applied to calculate and subtract the image background. There are 
more complex nonlinear filters aimed to reduce the image noise preserving the edges, 
such as the Kuwahara filter (Kuwahara et al., 1976 Bartyzel, 2016) or the anisotropic 
diffusion (Perona & Malik, 1990).

There are also filters for edge detection, i.e., the transition from a dark region 
to a bright region, or vice versa. The Sobel operator is one of the most popular edge 
detectors. It uses two asymmetric, differently oriented, 3x3 kernels which look for strong 
changes on the first derivative, i.e., the gradients of the intensity function, on x- and 
y-direction. Moreover, in order to avoid noise interference, these kernels combine the 
differencing function along one axis with smoothing along the other one. The resulting 
images represent the horizontal gradient (GX) and the vertical gradient (GY), which must 
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be combined to obtain the gradient magnitude (G) at each point of the image. It is 
calculated as the square root of the sum of the derivatives squares:

𝐺𝐺 =  �𝐺𝐺X� + 𝐺𝐺Y� 

 

	
	 Actually, the Sobel operator uses the same kernels as the Prewitt operator, just 
doubling the value of the four direct neighbours of the central pixel. Laplacians are 
second-order edge detectors as they apply the second-order differencing, which can be 
estimated as the difference between two contiguous first-order differences. Basically, it 
is accomplished by computing the difference between the central pixel and the average 
of its four direct neighbours. Alternatively, it computes the difference between the 
central pixel and the average of all its eight neighbours, including those on the corners. 
The effect is a sharpened image, although Laplacian filters are also more susceptible 
to noise, as they contain no smoothing. Consequently, Gaussian smoothing is often 
incorporated to obtain the Laplacian of Gaussian (LoG) operator (Nixon & Aguado, 
2012). It is also possible to detect different objects by means of their irregular textures, 
for what a wide catalogue of methods has been described (Di Cataldo & Ficarra, 2017). 
Whereas some workflows rely on a few filters to perform detection (or even none), some 
ML approaches use a large amount of them as features to train a classifier (Arganda-
Carreras et al., 2017; Berg et al., 2019).

2.3. Segmentation

Arguably, the most challenging step in image analysis is segmentation, which 
consists in the partition of a digital image into different regions or segments. We 
can distinguish between two types of segmentation. On the one hand, semantic 
segmentation consists of assigning different classes to pixels. For instance, a typical 
fluorescent microscopy image can be segmented to distinguish between ‘nucleus’, 
‘cytoplasm’ or ‘background’ pixels. However, this approach is not suitable to delineate 
the objects on the image since, following the same example, semantic segmentation 
can determine if a pixel belongs to a cell or to the background, but may not identify the 
different cells on the image as independent objects. In order to achieve this, instance 
segmentation goes further, allocating each pixel to the object instance it belongs to (see 
Figure 2). We can distinguish two main strategies to perform instance segmentation. 
On the one hand, the bottom-up approach consists of performing an initial semantic 
segmentation which is then used to group the selected pixels to form objects. On the 
other hand, the top-down approach first predicts bounding boxes containing individual 
objects which are then submitted to a semantic segmentation in order to define the 
object boundaries (Borenstein & Ullman, 2008).
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Therefore, semantic segmentation is a crucial step in most of the bioimage analysis 
workflows, either following a bottom-up approach or applying a top-down strategy. 
One of the most popular methods to compute semantic segmentation on images is 
thresholding. This technique consists in the establishment of one or more threshold 
values among the image greyscale range, so pixels of interest are segmented from 
background pixels (Pertusa & Morante-Redolat, 2019). These values can be determined 
either manually or by means of dedicated algorithms, such as the famous Otsu (Otsu, 
1979), which is based on minimizing the intra-class intensity variance. Bioimage analysis 
collections usually include a variety of methods to establish the threshold value based 
on the image histogram (Tajima & Kato, 2011). This approach is especially useful to find 
bright objects over a dark background, or vice versa. Other examples of methods to 
perform semantic segmentation are clustering (Zheng et al., 2018) or pixel classification 
(Berg et al., 2019). These methods are mainly based on the similarity between the 
greyscale values of pixels (pixel classification to a lesser extent), which can be severely 
affected during the pre-processing and detection steps.
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Figure 2. Semantic and instance segmentation. (A) Cells labelled with Hoechst 33342 
(nuclei, blue), phalloidin (F-actin, red) and wheat germ agglutinin (WGA; Golgi apparatus 
and plasma membrane, red). Scale bar 50 µm. (B) Semantic segmentation of nucleus (blue), 
cytoplasm (red) and background (yellow) pixels performed in ilastik (Berg et al., 2019). (C) 
Nuclei and cell outlines. (D-F) Instance segmentations of nuclei (D), cells (E) and cytoplasms 
(F) performed in CellProfiler (Carpenter et al., 2006; McQuin et al., 2018). The segmentation 
output is represented as labelled images, where each object (instance) is represented with 
a different colour. For the example we used the image set BBBC022v1 (Gustafsdottir et 
al., 2013), available from the Broad Bioimage Benchmark Collection (Ljosa, Sokolnicki & 
Carpenter, 2012).
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Typically, the ultimate output of a segmentation process is a binary image. Also 
known as binary mask, it consists of a representation of the original image where the 
pixels of interest take the value 1 whereas the background pixels take the value 0. 
Alternatively, an instance segmentation process can generate a labelled image, where 
background pixels are labelled with 0 whereas each object instance is labelled with a 
different integer. Both binary and labelled images can be easily computed to quantify 
object features, such as those described on the next section. However, segmented 
images may still require to be corrected before proceeding to a quantification step. For 
example, since bottom-up approaches neglect whether a pixel is part of an object or not, 
they usually generate a certain amount of small, isolated objects which actually consist 
of background noise. Other typical mistakes are the segmentation of objects with holes, 
merging different objects into a single instance or, conversely, splitting single objects 
into diverse particles. These and other segmentation errors can lead to a biased result. 
Therefore, a series of methods can be applied on the binary mask to minimize the error.

Due to their binary nature, masks can be easily computed to enhance the 
segmentation output applying nonlinear operations by means of a series of techniques 
known as mathematical morphology (Serra, 1986). Erosion and dilation are common 
operations which modify the size of the objects. These operations can be combined to 
apply open or close operations, leading, e.g., to split or merge objects while avoiding 
severe effects on their size. In addition, watershed is a classic algorithm widely used 
to separate merged objects. The name is not accidental; the strategy emulates a 
flood filling a concave surface. It starts from specific markers on the objects, which 
can be determined by means of different methods. For example, to separate convex, 
overlapping objects it is common to iteratively erode the objects and use the ultimate 
eroded points as markers. Another typical approach is to use local maxima or minima 
(from the greyscale image). From these markers, the flood grows (dilates) until it reaches 
the object edge or the flood generated from a different marker, which causes the object 
partition. A different class of operations used to process binary images are the logical 
or Boolean operators. In this case, operations are applied between two binary images 
(i.e., AND, OR). A useful application of logical operators is to obtain the actual objects of 
interest by comparing intermediate segmentation results.

2.4. Feature extraction

Once objects have been segmented, the extraction of features (i.e., the quantitative 
information needed to solve the biological problem) is a straightforward step. There are 
plenty of quantitative descriptors to represent the object properties and that constitute 
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the raw information for the data analysis (Rodenacker & Bengtsson, 2003; Ferreira 
& Rasband, 2012). Some of the most common are morphometric, densitometric and 
texture features.

Morphometric features describe the size and shape of the objects as they are 
computed on the boundaries of the segmented particles. Therefore, morphometric 
quantification only requires the object mask but not a greyscale image. Size quantification 
includes basic metrics such as area or perimeter. Another examples of metrics which 
care about size are the major and minor axis of the fitting ellipse or the Feret’s diameter, 
defined as the distance between two parallel tangents on opposed borders of a 
randomly oriented object. It is usual to keep just the maximum Feret’s diameter (also 
known as maximum calliper), i.e., the longest distance between any two points along 
the object borderline. In some analysis, it may be very useful to obtain metrics based on 
the object topological skeleton, i.e., the medial axis of the objects obtained by applying 
mathematical morphology operations to iteratively remove pixels on the binary mask 
edges until objects are reduced to single-pixel-wide shapes. Once skeletonized, it is 
possible to compute metrics such as the number of end-points, the number and type of 
junctions (double, triple…), the count and length of individual branches or the Euclidean 
distance between end-points (Arganda-Carreras et al., 2010). Shape descriptors are 
also powerful in morphometric analyses (Chaki & Dei, 2020). Some notorious examples 
of widely used shape descriptors are circularity, aspect ratio or solidity.

Circularity, C, is based on the idea that the circle is the most compact object. As a 
matter of fact, the circle is the geometrical figure which may enclose the bigger area A 
for any given perimeter P. This shape descriptor is a dimensionless comparison between 
area and perimeter which is equal to one for a circle (taking into account that a circle has 
an area of πr2 and a perimeter of 2πr, where r is the radius), while it becomes smaller 
for less compact objects.

𝐶𝐶 = 4𝜋𝜋 ×  𝐴𝐴𝑃𝑃� 

Aspect Ratio, AR, is a measure of the elongation which is obtained from the fitted 
ellipse of the object. It is defined as the ratio of the major axis (MA) to the minor axis 
(ma). Thus, this relation is equal to one when a fitting ellipse is as high as its wide (i.e., a 
circle), and it becomes greater as the ellipse stretches.

𝐴𝐴𝐴𝐴 =  𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚 

Solidity, S, allows to determine how much convex or concave an object is. It is 
calculated as the ratio of the object area A to its convex hull area ACH. The convex hull 
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area is computed by the gift wrap algorithm (Jarvis, 1973). To visualize the convex hull 
of an object, one can imagine a rubber band tightly attached to the object, wrapping 
around its boundaries. ACH from an already convex object is equal to A, hence solidity 
reaches its maximum value of one. The more concave the object, the less solidity.

𝑆𝑆 =  𝐴𝐴
𝐴𝐴�� 

Densitometric features are intensity-based. Indeed, the absolute intensity values 
are decisive for densitometric analysis, so it is important to obtain measurements 
as standardised and normalised as possible. These include statistics which may be 
computed from the image histogram such as mean, median, maximum and minimum, 
mode, standard deviation, variance, skewness and kurtosis. Additionally, the integrated 
density sums the values of all the pixels forming the object. Likewise, the centre of mass 
is a descriptor which should not be confused with the centroid, as it is calculated as the 
brightness-weighted average of the x and y coordinates of all the pixels in an object. 
Sometimes densitometric measurements may be restricted to subregions of the objects, 
e.g., differentiating the inside border zone from the rest of the object. It is also common 
to compute intensity metrics from the outside border zone of the objects. It may be 
easily accomplished applying dilation or erosion operations.

Texture features comprehend a series of diverse metrics which try to measure the 
appearance and feel which suggests the vision of any surface (e.g., its smoothness or 
roughness). They are based on the patterns of intensities within the objects, i.e., the 
spatial arrangements between different types of pixels. Indeed, sometimes objects are 
more eminent by their texture than by their borders. As the relation between two or 
more pixels at a time needs to be computed, most texture analysis methods use higher-
order statistics. Haralick texture features are widely used. These are based on the use 
of grey level co-occurrence matrices (GLCM) and include metrics such as correlation or 
entropy (Haralick, Shanmugam & Dinstein, 1973; Löfstedt et al., 2019). Gabor filters are 
also typically used to assess image textures (Clausi & Ed Jernigan, 2000).

Additionally, it may be sometimes interesting to obtain context features, which 
depict spatial relationships between objects and other metrics describing their 
microenvironment. Some population context features are local cell density, population 
size, distance between neighbours or position within the cell colony, e.g., distance from 
cell-colony edge (Snijder et al., 2009; Snijder et al., 2012).
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2.5. Data analysis

Once quantification has been performed, it may be considered that the bioimage 
analysis workflow is done since the sought quantitative data has already been extracted 
from the biological images comprising the experimental dataset. Nonetheless, data 
analysis is to be performed in order to finally answer the biological question. It is 
possible to directly carry out the statistical processing of the extracted data. However, 
an alternative option is to compute a large number of descriptors in order to classify 
the objects by means of pattern recognition methods. This approach is commonly used 
in high-content screening assays (Bray et al., 2016). Bioimage analysis workflows may 
also include an object-level quality control based on the quantification output. Some 
issues that may prevent the inclusion of objects in the data analysis are, e.g., inaccurate 
segmentations or errors derived from sample preparation such as staining artefacts. 
Object quality control is often based on outlier detection. However, it may also be a 
dangerous approach, as it is possible to end up removing data representing interesting 
samples, such as minority cell phenotypes (Caicedo et al., 2017).

2.6. Other common steps

Live cell imaging is becoming a common approach to assess complex biological 
problems. In such experiments, in addition to the segmentation, a tracking step is 
necessary. At this stage, each moving object must be interrelated between frames in 
order to determine their trajectories and, in that way, perform a meaningful extraction 
of quantitative data and even lineage reconstruction (Tinevez et al., 2017; Wolff et al., 
2018). Regarding semi-automated workflows, human supervision is required at some 
steps. In such cases, users can interactively visualize the output in order to inspect and 
correct it when necessary. Actually, there are workflows whose main goal is just to 
visualize the image dataset, rather than to obtain quantitative information. Annotation, 
an essential step to train pattern recognition models, is often performed manually 
by experts, and therefore may also depend on visualization (Bankhead et al., 2017). 
Basically, annotation consists of labelling instances, e.g., images or objects. A common 
application of annotation is to assign classes in order to feed a supervised ML algorithm.
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3. Microscopy-based screening: the paradigm of bioimaging 
automation

The evolution of microscopy hardware, e.g., inclusion of auto-focus or motorized 
plate positioning, along with the advances on bioimage analysis software has led to 
major advances on imaging automation. About 20 years ago, this process of microscopy 
‘industrialization’ crystallized with the birth of the image-based screening field (Taylor, 
Woo & Giuliano, 2001), mainly focused on the automated study of cells. For example, 
the identification of cell phenotypes or the understanding of molecular processes such 
as gene regulation have been addressed by means of these methods (Boutros, Heigwer 
& Laufer, 2015; Mattiazzi Usaj et al., 2016). Nowadays, cell-based assays are routinely 
used to screen large libraries of small molecules, assess RNA interference or evaluate 
genetic perturbations, among many others. Indeed, these methods are especially 
associated with the biopharma industry due to its utility for the identification of potential 
drug candidates. However, microscopy-based screening is also used to assess a wide 
spectrum of biological questions such as the identification of stem cell markers, gene 
functions, differentiation pathways… As a matter of fact, the field is no longer limited to 
a ‘cell-centric’ perspective, as it has been adapted to other imaging modalities such as 
light-sheet microscopy for the study of more complex specimens, e.g., 3D cell culture 
models (i.e., organoids and spheroids) or tissues (Li et al., 2016; Glaser et al., 2019; 
Eismann et al., 2020).

Microscopy-based screening techniques can be subdivided into two main classes 
(Boutros, Heigwer & Laufer, 2015). On the one hand, high-throughput screening 
experiments are generally limited to the quantification of a single metric on a large 
amount of samples. The typical readout of a high-throughput screening is a fluorescent 
signal resultant from, e.g., the expression of a reporter gene, the binding of small 
molecules or an enzymatic reaction. Despite being cell-based, high-throughput 
measurements are typically averaged over all cells for each microplate well. Therefore, 
since no complex bioimage analysis is needed it can be performed on-the-fly. On the 
other hand, high-content screening relies on a larger number of measurements to identify 
different phenotypes in individual cells. For example, these analyses often include both 
densitometry and morphometry data either from cells or from one or more sub-cellular 
compartments. Additionally, many other features can be extracted from each individual 
cell. As a consequence, the bioimage analysis step of such assays becomes a complex 
process so it is typically decoupled from image acquisition. Additionally, the wealth of 
the data obtained has led to the combination of high-content imaging with ML methods 
in order to look for deeper patterns within the samples. Indeed, the improvement of 
high-content imaging methods has required novel bioimage data analysis approaches 
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(Bray et al., 2016; Caicedo et al., 2017).

In order to improve the throughput of the assay, high-content microscopes often 
include their own bioimage analysis software. These collections usually include predefined 
workflows for the analysis of typical high-content imaging assays that, in some cases, 
can even be coupled to the image acquisition process. All these features aim to provide a 
quick and straightforward analysis. Naturally, these tools are programmed to recognise 
the image formats generated by their corresponding high-content microscope, a built-
in process which becomes an additional step when using any other bioimage analysis 
collection.  However, the system also has its limitations. As a proprietary software, it is 
not usually open-source. Therefore, the possibility of deploying customized workflows 
to assess a specific biological question is quite restricted, if available. Moreover, the 
use of such software is often restricted to a single workstation. Even when purchasing 
several licenses for its use on different computers, this may lead to overbooking issues. 
This may interfere even with the image acquisition, since both microscope and image 
analysis software are usually installed on the same workstation. As a consequence, we 
decided to create open-source software adapted to our scientific needs and suited 
for the image format generated by the high-content imaging system available on our 
imaging facility.

4. Open-source software for bioimage analysis

There is a wide range of software packages available to analyse bioimages (Eliceiri 
et al., 2012; Miura et al., 2016). To overview all of them is an overwhelming effort which 
is beyond the scope of this work. For this reason, just the main collections applied 
throughout the course of this thesis are presented below. Please note that this work 
has been carried on using exclusively free, open-source software. The fundamental 
basis of the open-source software is that its code is publicly available, which perfectly 
fits with gold standards of science such as the scientific method and the validation of 
results throughout a peer review system. Indeed, transparency is one of the layers of the 
Open Source Initiative (OSI) model, formed in 1998 for the promotion of collaborative 
software development. Another important founding principles are affordability (allowing 
end users to be independent of commercial software), flexibility (making possible 
the enhancement of the code by an entity other than the original developer, even its 
maintenance in order to ensure its perpetuity) or security (users may fully understand 
the code and its functionality).  A relevant factor for the present thesis is that the open-
source approach advocates for interoperability, i.e., enables to develop interfaces for 
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communication between different software (Guiet, Burri & Seitz, 2019), enabling the 
combination of components from different collections.

Nonetheless, it does not mean that the use of commercial software should be 
avoided since it sometimes provides unique solutions. Besides, it is increasingly common 
for the companies to bundle its own bioimage analysis software within microscopes, 
which can be interesting for some applications. However, it is important to make 
some considerations. The proprietary, opaque nature of the code opposes elementary 
principles of science, as it prevents researchers from knowing how their data are actually 
analysed. The commercial approach also limits scientists from modifying the strategy of 
the algorithms composing the collection, bracketing its potential development. For all 
this, as I stated before, this thesis is based on the use of free, open-source, bioimage 
analysis software.

4.1. Fiji is (not) just ImageJ

ImageJ (Schneider, Rasband & Eliceiri, 2012) is one of the most popular software 
for scientific image analysis. This old-timer software has remained faithful to the 
philosophy of its original creator over more than two decades: to be an affordable 
image analysis software for any average bench scientist and to enable its deployment 
by the users themselves. This is how, from Wayne Rasband’s hands, NIH Image was born 
at the US National Institutes of Health (NIH) in 1987. However, NIH was limited to the 
Mac operating system. After the creation of Java (1995), an operating-system-agnostic 
platform, Rasband started a conversion from NIH Image to ImageJ (the ‘J’ was added 
after its new Java foundation).

Since then, ImageJ has become a widely used program in life sciences, amongst 
many other fields. This is not surprising given the long list of benefits of using ImageJ: is 
free, open-source, easily installable in the main operating systems, it has an easy-to-use 
GUI and an extensible plugin architecture to add functionality, besides a macro language 
whose commands are even recordable, all of this combined with advanced image 
analysis solutions. It has allowed contributions coming from professional developers 
to users with no programming experience at all. Indeed, ImageJ was mostly developed 
by scientists for scientists. At a certain point, however, it became a technical limitation, 
since the architecture of ImageJ was not built over up-to-date software-engineering 
principles, which could preclude handling the requirements to support modern imaging 
paradigms. Moreover, in spite of the many advantages of the ImageJ ecosystem, it also 
promoted the overpopulation and redundancy of plugins.
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Fiji (Fiji is just ImageJ) was born as a distribution of ImageJ focused on bioimage 
analysis, a new open-source project to deal with the limitations mentioned above 
(Schindelin et al., 2012). Fiji maintains compatibility with ImageJ and an identical 
GUI, while the new project updates the original architecture using modern software 
engineering practices. Thus, Fiji adds functionality in order to make the system more 
attractive for computer scientists which may develop solutions for cutting-edge image 
analysis. Indeed, Fiji supports a broad range of scripting languages (Jython, Clojure, 
Javascript, JRuby and Beanshell). Moreover, it incorporates a series of organized softer 
libraries (e.g., ImgLib, ITK/VTK, VIGRA…) to allow a rapid transformation of newly 
described algorithms into implementations to conduct practical bioimage analysis. Fiji 
also incorporates a curated selection of plugins for specific bioimage analysis tasks. 
Furthermore, anybody can add their plugins, libraries or scripts to the Fiji source code 
and the code is reviewed for its curation and integration within the Fiji package. Besides, 
it is also possible to provide new tools to the Fiji community through a secondary update 
site. For example, research groups can set up their own update site, allowing users to 
customize a Fiji installation suited to their bioimage analysis requirements by selecting 
the secondary update sites of their interest. Indeed, all the Fiji tools implemented on this 
work are provided throughout the NeuroMol Lab update site.

Fiji has a robust, straightforward distribution system, designed to ensure that 
any change on the source code or the Fiji update sites reaches its users worldwide 
by means of the Fiji Updater. The software is refined thanks to the fluent feedback 
from users and other developers. As a matter of fact, the Fiji project accentuates the 
importance of the communication between the different parts of its interdisciplinary 
ecosystem, promoting collaboration between computer and life scientists to solve 
biological questions by means of practical bioimage analysis, as well as emphasising the 
importance of extensive documentation of the installation, maintenance, programming 
and usage of the software (https://fiji.sc/). Last but not least, as an open-source project, 
Fiji aims to interconnect with other bioimage analysis collections that may outpace Fiji 
on an arbitrary task. For example, there are interfaces to integrate Fiji with Matlab or 
ilastik. Fiji became the outer, application-oriented layer of a very close project, ImageJ2 
(Rueden et al., 2017).

4. 2. CellProfiler and CellProfiler Analyst

CellProfiler (Carpenter et al., 2006) was initially developed for high-content 
analysis from microscopy-based screening datasets to identify cell phenotypes, as its 
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name suggests. Therefore, it has been constructed to easily batch process thousands 
of images, though it is also used for smaller-scale projects. Subsequent versions 
added new analysis methods, e.g., for cell tracking, measuring neurons, worms or 
tissue samples, analysing 3D stacks… (Kamentsky et al., 2011; McQuin et al., 2018). 
Originally, CellProfiler was implemented in MATLAB but later on rewritten in Python. 
Since its inception, it was designed to offer a modular approach to build bioimage 
analysis workflows, known as pipelines among the CellProfiler community. To assemble 
a pipeline, one just has to sort individual modules to process images in a sequential 
order. CellProfiler modules do not reach a hundred, which have been carefully curated 
before its inclusion in the collection. These modules and its settings are limited, avoiding 
superposition of functionalities in an attempt to not overwhelm users. Most of these 
modules are templates of image processing algorithms designed to fulfil a particular 
function. For example, nuclei segmentation is often performed looking at them as 
primary objects, i.e., objects that can be identified without relying on another object 
type as a reference. The module intended for such a task includes a series of settings 
to perform the segmentation, e.g., thresholding and watershed methods, options for 
object size selection or exclusion of the objects touching the edges… Classic secondary 
objects are cells, typically much more clumped than nuclei, so taking as a reference its 
corresponding nuclei eases its instance segmentation. CellProfiler includes many other 
components for advanced image processing, from illumination correction to feature 
extraction modules. Additionally, CellProfiler provides an interactive, straightforward 
test mode to assess how the pipeline is performing throughout its arrangement. It is 
possible to activate/deactivate the pipeline modules, adjust settings and check the 
output on selected images. Indeed, researchers can also customize which intermediate 
results they wish to visualize, checking the pipeline step by step. This, combined with 
its extensive documentation (https://cellprofiler.org/) and an intuitive GUI, makes 
CellProfiler a powerful, easy-to-use collection, even for non-programmers.

Analysis and exploration of data generated through a CellProfiler pipeline is a 
challenging task, due to the wealth of cytometry data that can be extracted from an 
image-based screening. As a consequence, CellProfiler Analyst (Jones et al., 2008) 
was born as a companion software for CellProfiler. Thus, CellProfiler Analyst includes 
tools for data visualization, such as histograms or scatter plots, and to explore 
relations among data, such as brushing. However, probably the most remarkable trait 
of the software is its implementation to train supervised ML classifiers to score cell 
phenotypes (Jones et al., 2009). In this approach, the researcher annotates segmented 
cells to recognise different cell phenotypes according to the large amount of single-
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cell features extracted throughout a CellProfiler pipeline. During the training process, 
CellProfiler Analyst fetches random cells to be annotated by the user, who assigns 
labels of different predefined categories (phenotypes of interest for the experiment). 
The software provides iterative feedback to assess and enhance the classifier. Once a 
satisfactory performance is achieved, rules can be rapidly applied to automatically score 
all the cells on the screening.

4.3. ilastik

ilastik is a collection which includes a series of ML implementations to perform 
bioimage analysis (Berg et al., 2019). Its user-friendly GUI and concise documentation 
(https://www.ilastik.org/) allows ilastik to reach end users without prior experience 
in computer science, not by a long shot ML technical knowledge. This tool provides 
templates of workflows for automated segmentation, classification, tracking and 
counting. These workflows necessitate example annotations from the user, i.e., ilastik 
is based on a supervised ML paradigm. Accordingly, a sum of features of pixels or 
objects are taken into account by the classifier, a nonlinear algorithm which performs 
the workflow parametrisation based on the training data provided by the user. The 
training mode provides real-time feedback of the algorithm class assignment, allowing 
an interactive improvement of the classifier. Once the classifier has been trained on 
a representative subset of the data, it can be used to automatically batch process a 
larger number of images. ilastik is able to handle microscopy multidimensional images, 
although it is important to note that ilastik can load any basic image format (TIF, PNG, 
JPG) or the ilastik preferred HDF5 files, but not all the proprietary formats typically 
loaded within Fiji by means of the Bioformats plugin (Linkert et al., 2010).

ilastik only provides predefined workflows. Although it may be enough to solve 
many bioimage analysis problems, others may require pre- and/or post-processing 
steps within other software packages, as will be stated below. Indeed, ilastik workflows 
can be further ‘imported’ to other tools such as the ones mentioned above, e.g., for 
specific post-processing or analysis tasks. Therefore, ilastik can be combined with other 
bioimage analysis collections to build powerful workflows. The ilastik team has developed 
an ImageJ plugin which allows to import and export ilastik format files (HDF5) and to run 
pre-trained workflows summoning ilastik from Fiji, e.g., embedding an ilastik classifier 
within an ImageJ script.

Pixel classification is the most commonly used workflow provided by ilastik. 
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Indeed, all the other workflows within ilastik can (or even need to) be preceded by pixel 
classification. It consists of a semantic segmentation and, as a supervised approach, 
users must provide examples for each semantic class. This is done just by painting 
brushstrokes on the raw input images. To predict the probability for a pixel to belong to 
each class, ilastik uses the output of image processing filters as features. Users are able 
to set different filter kernels (for colour/intensity, edge-ness and texture) with a potential 
wide range of different radius sizes (σ) which may be applied in both 2D and 3D. As a 
classification algorithm, ilastik uses a Random Forest (Breiman, 2001; Geurts, Irrthum & 
Wehenkel, 2009). As output, pixel classification workflows generate probability maps, 
where every pixel takes the numerical values of its probability to belong to each of 
the user-defined classes. In detail, it generates a multichannel image (one channel per 
user-defined class) whose sum projection should be 1 for each pixel. Alternatively, it is 
possible to obtain a segmented image taking the highest probability as the output class 
for each pixel. It is important to note that pixel classification separates the image into 
classes but not compute connected components. It is to say, semantic segmentation 
does not carry on the partition of an image into individual objects. This so called instance 
segmentation for connected components analysis must be applied on other ilastik 
workflows which use probability maps as input (e.g., object classification, tracking) or 
outside ilastik (e.g., Fiji, CellProfiler). Indeed, for the analysis of considerably overlapped 
objects it is necessary to post-process the pixel classification workflow applying, e.g., 
watershed-based algorithms in order to obtain individual objects.

The object classification workflow computes connected components, i.e., separates 
the image into individual objects. In this case, ilastik assigns a tag to each individual 
object according to several user-defined classes. Objects may be obtained either from 
an ilastik pixel classification workflow or from a different bioimage analysis collection. To 
perform instance segmentation, the workflow uses a single semantic class (either from a 
probability map or a segmented image). For example, one may: i) use pixel classification 
to separate an image into the semantic classes ‘nucleus’ or ‘background’ and, then, ii) 
use object classification segment nuclei as individual instances and classify them as 
‘mitotic’ or ‘non-mitotic’. User example annotations to train the classifier are provided 
just by mouse clicking on the objects to assign the different labels. Object-level classifier 
computes object features comprising size, intensity distribution statistics (both within 
the object and its vicinity), convex-hull shape descriptors, skeleton-based metrics and 
location information.
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5. Bioimage analysis applied to the study of tissue maintenance and 
repair in the mammalian nervous system

Elucidating the complexity of the mammalian brain is probably one of the major 
challenges of modern biological research and neuroscience heavily relies on image data 
as a primary source of information to unravel the intricacy of a highly complex organ. 
Advancements in microscopy have contributed to the generation of a wealth of structural 
and functional image data that need to be objectively, efficiently, and reproducibly 
analysed beyond what the human eye can notice. Relevant data in the analysis of the 
nervous system is collected both at the light and electron microscopy levels using 
either in vitro or in vivo experimental setups. Although some methods and software 
tools have already been developed to this end, the parallel improvement of computing 
techniques, including artificial intelligence, continually offer new opportunities for 
further developments. In this thesis, we have focused on two mammalian neural 
systems that could greatly benefit from the development of new bioimage analysis 
tools or the sophistication of the ones already in use, especially if they can be applied 
to microscopy-based screenings. One is the quantitative assessment of the adult neural 
stem cells (NSCs) basic properties as key elements for understanding the neural tissue 
maintenance and regeneration and the other is the oligodendrocyte-progenitor-driven 
process of myelination. Both topics are somehow interconnected and can be studied 
using both in vitro and in vivo models. The first one was chosen because NSCs can 
be cultured in vitro, either as floating 3D clones or on adherent substrates using well-
established protocols (Ferrón et al., 2007; Belenguer et al., 2016) which enables the 
study of their properties and behaviour in microscopy-based screening assays that differ 
in complexity.  The second one was selected because, despite being a process classically 
addressed using bioimage analysis and the existence of powerful in vivo models to 
study the remyelination process that follows demyelination (Merrill, 2009; Franklin & 
Ffrench-Constant, 2017), current tools are somehow either over simplistic or excessively 
complex for being routinely used by life scientists. Besides, the in vivo approach limits 
the throughput of the analysis taking into account that these experiments involve the 
manual analysis of medium-size datasets of electron microscopy images. Consequently, 
the analysis step often becomes a bottleneck when it comes to getting quantitative 
data. 

5.1. Adult neurogenesis in the mammalian brain: NSCs and neurosphere 
cultures

The generation of new neurons occurs beyond development in the subependymal 
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zone (SEZ; also known as ventricular-subventricular zone or V-SVZ) located in the walls 
of the lateral ventricles (LVs) and in the subgranular zone (SGZ) of the dentate gyrus of 
the hippocampus (Bond, Ming & Song, 2015; Chaker, Codega & Doetsch, 2016). The SEZ 
(Figure 3) is the largest and most active neurogenic niche, responsible for the continued 
production of olfactory neurons throughout the mouse lifespan (Obernier et al., 2018). 
Originated from fetal radial glia, subependymal NSCs, also known as B1 cells, retain a 
characteristic apico-basal polarity (Doetsch et al., 1999; Doetsch, 2003; Kriegstein & 
Alvarez-Buylla, 2009; Fuentealba et al., 2015; Furutachi et al., 2015; Chaker, Codega 
& Doetsch, 2016). This polarity is defined by the extension of two processes from the 
apical and basal regions of the NSC body. A short apical process, that ends in a primary 
cilium, breaks through the ependymal layer, thus reaching the cerebrospinal fluid 
(CSF). Specifically, the process pierces the centre of pinwheels, structured rosettes of 
multiciliated ependymal cells. A longer basal process contacts the specialized vascular 
plexus that irrigates this niche (Mirzadeh et al., 2008; Tavazoie et al., 2008; Fuentealba, 
Obernier & Alvarez-Buylla, 2012; Chaker, Codega & Doetsch, 2016). 
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Figure 3. The adult subependymal zone (SEZ) niche. Schematic representation of the adult mouse brain 
(sagittal view) where the subependymal zone (SEZ) is magnified. The SEZ niche has a particular cytoarchitecture 
where signals coming from different niche cells contribute to the maintenance of neural stem cells (NSC) and 
the production of their progeny. The rostral migratory stream (RMS) serves as the main highway towards the 
olfactory bulb (OB) for newly produced neuroblasts (NB) with the aid of astrocytes (A), while oligodendrocytes 
(O) incorporate into the corpus callosum (CC). LV: lateral ventricle; SGZ: subgranular zone; CSF: cerebrospinal 
fluid; qNSC: quiescent NSC; aNSC: activated NSC; NPC: neural progenitor cell; NB: neuroblast.

Coexisting NSCs show heterogeneous proliferative states which can be grouped into 
two main conditions, quiescence or activation. These states differ both phenotypically 
and transcriptionally (Pastrana, Cheng & Doetsch, 2009; Daynac et al., 2013; Codega 
et al., 2014; Giachino et al., 2014; Mich et al., 2014; Llorens-Bobadilla et al., 2015; 
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Dulken et al., 2017; Basak et al., 2018; Morizur et al., 2018; Belenguer et al., 2020). 
Activated NSCs produce transit-amplifying progenitor cells (Doetsch, García-Verdugo 
& Alvarez-Buylla, 1997; Doetsch et al., 1999), which rapidly perform 3-4 symmetrical 
divisions before progressing into neural progenitor cells called neuroblasts (NBs). Then, 
NBs migrate anteriorly away from the SEZ, and together form the rostral migratory 
stream (RMS) to the olfactory bulb (OB) (Figure 3). In the RMS, newborn NBs migrate 
tangentially and organised in chains surrounded by gliotubes formed by astrocytes 
(Doetsch & Alvarez-Buylla, 1996; Lois et al., 1996; Lalli, 2014). NBs still divide once or 
twice before they differentiate into OB neurons (Chaker, Codega & Doetsch, 2016).

Specifically, NBs differentiate into mature interneurons that integrate into the 
granule and the glomerular cell layers of the OB (Doetsch & Alvarez-Buylla, 1996), 
thus contributing to the neural plasticity for the processing of olfactory information 
and the odour-reward association process (Lledo & Saghatelyan, 2005; Livneh, Adam 
& Mizrahi, 2014; Chaker, Codega & Doetsch, 2016; Lledo & Valley, 2016; Obernier & 
Alvarez-Buylla, 2019). After an injury, such as ischemic stroke, proliferation increases on 
the SEZ and newly-born NBs can divert from the RMS path and instead migrate towards 
the injury site, although most of them seem to have a short lifespan (Arvidsson et al., 
2002). Although to a lesser extent, subependymal NSCs also contribute to the production 
of astrocytes and oligodendrocytes. While newly-born astrocytes migrate to the RMS 
and the corpus callosum (CC), oligodendrocytes migrate to the CC to collaborate in 
myelination (Figure 3) (Menn et al., 2006; Sohn et al., 2015). Although subpendymal 
NSC-based gliogenesis  is not as frequent as neurogenesis under homeostatic 
conditions, it significantly increases after injury. Therefore, newly-generated astrocytes 
and oligodendrocytes migrate towards the lesion site and play an active role in tissue 
repair (Nait-Oumesmar et al., 1999; Picard-Riera et al., 2002; Benner et al., 2013).

The niche cytoarchitecture is essential for the NSC function, which is subtly 
regulated by both niche-intrinsic factors and foreign factors reaching the apico-basal 
processes from the bloodstream and CSF. Regarding these extrinsic elements, the apical 
process receives factors secreted by the choroid plexus to the CSF, whereas the basal 
process participates in the NSCs regulation by means of systemic factors traveling 
throughout blood vessels. Moreover, the interplay with other cells present within the 
niche, also capable of secreting soluble factors, play a major role in NSC regulation. This 
includes the NSCs themselves, their differentiated progeny, glial cells (i.e., parenchymal 
astrocytes) or ependymal cells. In addition, it has been demonstrated that other cell 
types, such as microglia or neurons, can also participate on this complex setup (Porlan 
et al., 2013; Silva-Vargas et al., 2016; Morante-Redolat & Porlan, 2019; Obernier & 
Alvarez-Buylla, 2019; Sirerol-Piquer et al., 2019).
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The isolation and expansion of NSCs from the SEZ of adult mice is possible under 
defined culture conditions. A proliferative state is induced by growing disaggregated 
cells under non-adhesive conditions in serum-free medium containing basic fibroblast 
growth factor (bFGF) and/or epidermal growth factor (EGF) as mitogens. During the first 
days of the primary culture most of the cells die. Nonetheless, a small population of cells 
not only survives, but begins to proliferate forming floating, clonal aggregates known as 
neurospheres (Figure 4, top). Primary neurospheres can be dissociated to subculture the 
obtained individual cells, thus propagating the culture with the formation of secondary 
neurospheres. Moreover, cultured onto an adhesive substrate in the presence of serum, 
neurosphere cultures can be induced  to differentiate (Ferrón et al., 2007; Belenguer 
et al., 2016). Initial neurosphere experiments provided the first in vitro evidence that 
self-renewing and multipotential stem cells were present within the adult mammalian 
brain (Reynolds & Weiss, 1992). Although individual NSCs do not seem able to generate 
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Figure 4. NSCs in vitro culture and applications. Graphic representation of neural stem 
cells (NSC) culture establishment and versatility. Subependymal zone (SEZ) homogenates are 
cultured in the presence of mitogens EGF and bFGF to generate floating clonal aggregates 
named neurospheres. Once established, neurosphere cultures can be used to study multiple 
traits of adult NSC, such as proliferation, differentiation and multipotency, self-renewal, 
adhesion and apoptosis.
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both neurons and glia in vivo (Ortega et al., 2013), cultured NSCs are multipotent  in 
vitro. Indeed, cultured NSCs retain the capability to differentiate into the three neural 
lineages, i.e., neurons, astrocytes and oligodendrocytes (Menn et al., 2006; Bond, Ming 
& Song, 2015; Sohn et al., 2015). 

Neurosphere cultures have become a central technique for the study of adult NSCs 
in a highly controlled environment (Figure 5, bottom). During the last three decades, 
a great effort has been made in order to standardise proper methods for the isolation 
and propagation of NSCs (Reynolds & Weiss, 1992; Richards, Kilpatrick & Bartlett, 
1992; Weiss et al., 1996; Rietze & Reynolds, 2006), as well as for the assessment of 
self-renewal and multipotency on the in vitro culture (Singec et al., 2006; Wachs et 
al., 2003). Indeed, the coexistence of different protocols diverging on experimental 
variables (e.g., cell density, media composition, elapsed culture time…) has sometimes 
led to the generation of inconsistent results  (Reynolds & Rietze, 2005; Singec et al., 
2006; Pastrana, Silva-Vargas & Doetsch, 2011). Therefore, the use of standardised 
protocols is critical for the generation of meaningful results and the reproducibility of 
the experiments.

Despite the fact that neurosphere cultures are a powerful tool for the study of 
NSCs, it is also important to be aware of the inherent limitations of this in vitro approach. 
The major one is the heterogeneity of the cell populations present in the culture 
derived from the selective expansion of proliferative cells in a given culture medium. 
Apart from the NSCs, transit-amplifying progenitors also appear capable of forming 
neurospheres, albeit their clonal capacity is limited to a few passages. Additionally, in 
vitro cultured NSCs continuously generate committed progeny and even differentiated 
cells. Therefore, neurosphere cultures are characterized by the co-existence of NSCs 
and their progeny (Doetsch et al., 2002; Reynolds & Rietze, 2005). As a consequence, 
only a fraction of the cultured cells behave as bona fide NSCs. Indeed, the combination 
of surface markers and fluorescent reporters for the prospective isolation of pure NSCs 
from the SEZ, crucial for the detection of quiescent NSCs populations, showed that 
the strong mitogenic stimulation promotes the selective expansion of activated NSCs 
on the neurosphere culture. However, slowly-cycling NSCs are also retained in in vitro 
cultures and are able to form neurospheres, although at a slower pace (Belenguer et 
al., 2020). The combination of in vitro culture methods with novel cytometry-based 
strategies for the prospective isolation of specific subpopulations from the SEZ niche is 
a promising approach to overcome some of these limitations (Belenguer et al., 2016).
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5.2. Remyelination in the central nervous system

Oligodendrocytes are the myelinating cells of the central nervous system (CNS). 
They extend their processes around axons to form the lipid-rich insulating layer known 
as myelin sheath (Figure 5). The two major functions of CNS myelin are to provide 
metabolic support to the underlying axons and to empower the rapid transmission 
of action potentials along the axon (Smith K.J., Blakemore W.F. & McDonald, 1979; 
Nave, 2010; Frühbeis et al., 2013). On the one hand, oligodendrocytes provide lactate 
as a substrate for the citric acid cycle, thus supporting the axonal production of ATP 
(Lee et al., 2012; Fünfschilling et al., 2012; Morrison, Lee & Rothstein, 2013). On the 
other hand, oligodendrocytes provide an electric insulation of axons. As a consequence, 
voltage-dependant Na+ channels localised in the gap between myelin sheaths (referred 
to as nodes of Ranvier) enable a fast, saltatory conduction of nerve impulses (Arancibia-
Carcamo & Attwell, 2014; Rasband & Peles, 2015). In the adult mammalian brain, mature 
myelinating oligodendrocytes are generated by oligodendrocyte precursor cells (OPCs) 
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Figure 5. Role of oligodendrocytes in the de/remyelination process. Oligodendrocytes 
form the myelin sheath that surrounds and protects neuronal axons. Severe damage to 
oligodendrocytes causes the loss of the myelin sheath, thus leaving underlying axons exposed. 
This enables newly produced oligodendrocytes to naturally activate the regenerative response 
of remyelination in order to generate new sheaths. If remyelination fails, the supportive role of 
the myelin is lost and, consequently, axons degenerate. Adapted from Franklin and ffrench-
Constant, 2017.
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residing in the brain parenchyma (Gensert & Goldman, 1997; Fancy, Zhao & Franklin, 
2004) and by subependymal NSCs (Nait-Oumesmar et al., 1999; Picard-Riera, 2002; 
Menn et al., 2006). Parenchymal OPCs are locally recruited, as they seem to migrate 
short distances (Franklin, Gilson & Blakemore, 1997), whereas subependymal NSCs are 
able to generate oligodendroblasts which migrate to the CC (Menn et al., 2006; Xing et 
al., 2014; Samanta et al., 2015; Kazanis et al., 2017).

Demyelinating diseases, involving the loss or thinning of the myelin sheaths, are 
characterised by extensive loss of oligodendrocytes or their impaired functioning. 
Among these progressive disorders, the most common is Multiple Sclerosis (MS), which 
is predominantly an autoimmune disease (Ludwin, 2000, Compston & Coles, 2008; 
International Multiple Sclerosis Genetics Consortium, 2011). Since the axons remain 
unharmed, CNS demyelinating lesions can be followed by a regenerative response for 
the formation of new myelin sheaths, a process known as remyelination (Franklin, 2002; 
Franklin & ffrench-Constant, 2008, 2017; Zawadzka et al., 2010; Plemel et al., 2017; 
Baaklini et al., 2019) (Figure 5).

The disruption of tissue homeostasis caused by demyelination insults induce 
the activation of adult progenitors that subsequently proliferate to form new 
oligodendrocytes (Levine & Reynolds, 1999; Fancy et al., 2004; Moyon et al., 2015; 
Zhao et al., 2015). Additionally, activation can also imply the recruitment of progenitors 
to the injury site (Messersmith et al., 2000; Murtie et al., 2005; Dehghan et al., 2012; 
Hughes et al., 2013). Once recruited, OPCs differentiate and mature to provide newly-
formed myelin sheaths to denuded axons (Tripathi et al., 2010; Zawadzka et al., 2010; 
Crawford et al., 2016). For the compaction of the myelin membrane, differentiated 
oligodendrocytes produce myelin basic protein (MBP), among others (Kimura et al., 
1989; Watanabe, Toyama & Nishiyama, 2002; Polito & Reynolds, 2005; Snaidero et 
al., 2014). Myelin sheaths formed during a remyelination process are often thinner than 
the ones established during development, a useful feature when it comes to distinguish 
between areas where remyelination has occurred from those retaining normally 
myelinated fibres (Blakemore, 1974).

Despite undergoing spontaneous remyelination, with MS progression this 
regenerative process loses efficiency over time and eventually fails. As a consequence, 
chronically demyelinated axons are prone to degeneration due to the deficiency on 
myelin metabolic support, often resulting in subsequent neuronal degeneration (Nave, 
2010; Franklin et al., 2012). Indeed, like other regenerative processes, remyelination 
losses efficiency with ageing (Shields et al., 1999; Hampton et al., 2012; Pfeifenbring et 
al., 2015), leaving demyelinated axons exposed for longer periods and increasing their 
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susceptibility to irreversible axonal degeneration (Mei et al., 2016).

The use of different animal models based on chemical-induced demyelination 
has become a common strategy to unveil the molecular mechanisms underlying 
remyelination and for the pharmacological assessment in search of drugs to treat 
demyelinating diseases. The most commonly used toxins are lysophosphatidylcholine 
(LPC; also known as lysolecithin), ethidium bromide (EtBr) and bis-cyclohexanone 
oxaldihydrazone (cuprizone). LPC is usually injected into the white matter of the CC or 
the spinal cord, either in mice or rats. The injection of EtBr into cerebellar peduncles is 
common in rats, whereas it is also administered into the spinal cord in both rats and 
mice. Conversely, cuprizone is dispensed by means of oral administration in mouse 
models. The major advantages of using these models for quantitative assays are: i) the 
temporal separation between demyelination and remyelination, ii) the dissociation of 
the demyelination event from the complications derived from the autoimmune process 
and iii) the localization of the produced lesions on anatomically distinct areas (the latest 
to a lesser extent in the cuprizone model)  .
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Background

The synergistic combination of high-content imaging methods with automated 
bioimage analysis is emerging as a cutting-edge approach to address many biological 
questions. However, there are many fields where these techniques are not yet 
implemented and, instead, they still rely on visual inspection and manual analysis, 
which unavoidably limit the reachable throughput and are more prone to introduce the 
investigator bias.

In the present thesis, we have aimed to develop and apply automated bioimaging 
methods to the study of the adult brain, in particular in the areas of the NSC biology 
and the process of axon remyelination. Adult NSCs can be cultured in vitro and different 
assays have been developed in the last decades to specifically assess their basic 
properties, which have greatly advanced our knowledge about adult neurogenesis and 
neural tissue maintenance and regeneration. Nonetheless, the potential of these in vitro 
models in the form of bigger-scale microscopy-based screenings has not been exploited. 
Conversely, most of the current analyses are typically performed manually or, at most, 
software-aided but depending on user supervision. The study of axon remyelination, 
on the other hand, has classically relied on high resolution electron microscopy images 
followed by manual annotation for quantification. A few bioimage analysis protocols 
have been deployed over the years to quantify the myelin ensheathment per axon in the 
form of the well known g-ratio index. However, although some of them attain a certain 
degree of automation, its use has not spread among scientists. Moreover, all these tools 
focus on the g-ratio, but none measures the inner tongue, a key element in the (re)
myelination process.

Hypothesis

Thereby, we considered as a general hypothesis that the application of bioimage 
analysis methods and, when possible, the adoption of microscopy-based screening 
strategies could greatly benefit these two fields of study by increasing both throughput 
and standardisation of the analysis. In order to address the hypothesis, we selected 
specific scenarios of varying complexity that combined an experimental setup, image 
acquisition, and development and implementation of bioimage analysis strategies.
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Objectives

With the former consideration, the specific goals that we aimed to achieve were: 

1.	 To deploy a high-throughput screening assay for the in vitro assessment of 
NSC adhesive properties and regulation in 2D cultures.

2.	 To develop a high-content screening assay for the single-cell analysis of NSC 
proliferation and apoptosis in 2D cultures.

3.	 To establish a high-content screening assay for the evaluation of NSC self-
renewal and clonal-capacity through population analysis of 3D neurospheres.

4.	 To build a semi-automated workflow to enhance the bioimage analysis 
throughput of in vivo remyelination models using a novel parameter in electron 
microscopy.
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High-content imaging system

All the microscopy-based screening assays on this thesis have been set up using the 
high-content imaging system IN Cell Analyzer 2000 (GE Healthcare), hereinafter referred 
just as ICA-2k. It consists on a fluorescence, widefield imaging system configured with: 
i) four lasers along with standard polychroics and filter set, ii) transmitted light imaging, 
iii) four objective lenses with numerical apertures (NA) fitted for imaging plastic-bottom 
microplates (4x / 0.2 NA; 10x / 0.45; 20x / 0.45 NA; 40x / 0.6 NA), iv) hardware (i.e., 
laser) and software autofocus, v) automated objective, correction collar and polychroic 
changing, vi) large chip CCD camera (2048 x 2048 pixels), vii) environment control and 
liquid handling modules, viii) retrospective multi-image restoration software. Additional 
modules such as hardware for 3D imaging or stitching software are not available in our 
ICA-2k configuration. The system enables imaging different types of microplates (96, 
384 or 1536 wells) and includes a module to handle slides. 

ICA-2k stores image data within a single folder (with no subfolders) where each 
image is saved as a single 12-bit, 2D, TIF file. Moreover, all the images are automatically 
tagged following a fixed naming pattern which includes: the correlative well (row and 
column) and field-of-view (code that identifies the specific position of the image the 
well), as well as the corresponding channel (depending on the excitation/emission 
wavelengths selected during the acquisition). The system also includes its own image 
analysis software (IN Cell Investigator and IN Cell Developer Toolbox), decoupled from 
image acquisition, that recognizes and organizes all the captured wells and fields-of-
view in each of them, and offers different analysis tools. However, as already mentioned, 
we decided to design our analysis tools using free open-source programs that can easily 
handle ICA-2k files although cannot directly interpret the information in the filename 
to reconstruct the original plate. In order to do so, we had to implement a customized 
metadata interpretation step in our workflow development.

Neurosphere cultures: establishment of primary cultures, subculture and 
propagation

Neurosphere cultures were obtained from the SEZ of mice between 2-4 months 
old as described by Belenguer et al. (2016). All the cell cultures were obtained from the 
C57BL/6J mice strain, bred and housed at the animal housing facility (Universitat de 
València, Servei Central de Suport a la Investigació Experimental, Burjassot) according 
to the European Union 2010/63/UE and Spanish RD-53/2013 guidelines and under 
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official veterinary supervision. Housing established 12 h periods of light/darkness, 
room temperature of 20-22 °C and free accessible diet of pellets and water. Litters were 
weaned 21 days after birth. All experimental procedures were approved by the Ethics 
Committee of the Universitat de València (CEEA: 2015/VSC/PEA/00132 and 00133).

Mice were sacrificed by cervical dislocation and the brain was carefully extracted 
in order to avoid tissue damage. Brain was kept on cold sterile commercial Dulbecco’s 
Phosphate Buffered Saline without magnesium or calcium (DPBS) until the dissection of 
the SEZ. For the dissection, brains were moved to a cell culture room and SEZs isolated 
under a dissecting microscope using micro-scalpels as described in Belenguer et al. 
(2016). SEZ fragments from each brain were put into a 15 mL sterile tube and moved 
into a laminar flow cabinet in order to keep strict sterile conditions. Then, tissue was 
enzymatically disaggregated.  A papain solution was used to this aim, and tubes were 
incubated 30 min at 37 ºC to digest the tissue. Then digestion was stopped by diluting 
papain with control medium (see Tables 2,3). 

Table 2. Preparation of NSC control medium.	  
Reagent Working conc. Stock conc. Provider Cat. nr.

DMEM/F12 (1:1) 
with L-Glutamine 1x 1x Gibco, BRL 11320-074

D(+)-Glucose 0.6 % 30 % Panreac 141341
Sodium 

bicarbonate 0.1 % 7.5 % Biowest L0680-500

HEPES 5 mM 1 M Biowest L0180-100
L-Glutamine 2 mM 200 mM Gibco, BRL 25030-081
Antibiotic / 
Antimycotic 1x 100x Gibco, BRL 15240-062

Hormone mix 1x 10x Homemade 
(Table 3)

Heparin sodium 
salt 0.7 U/mL 350 U/mL Sigma H3149

Bovine Serum 
Albumin (BSA) 4 mg/mL powder Sigma B4287

DMEM/F12 (Dulbecco’s Modified Eagle Medium / Ham’s F12 Nutrient Mixture); conc.(concentration); Cat. nr. 
(catalogue number).
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Tubes were centrifuged at 100 xg for 2 min and the supernatant was carefully 
removed. Tissue was gently dissociated in control medium. After another centrifuge 
step (200 xg for 10 min), supernatant was removed, the pellet resuspended on growing 
medium (see Table 4) and seeded on 48 microwell plates. Finally, plates were incubated 
at 37 ºC within a 5 % CO2 humidified incubator for 7-10 days to allow progenitors to 
proliferate. Although neurosphere NSCs cultures keep their proliferative potential over 
tens of passages, we have observed that after 9-10 passages cultured cells undergo 
telomere shortening and show signs of stress (Ferrón et al., 2009). Therefore, our NSC 
cultures are only maintained and exploited for research purposes at most until the 
eighth passage.

Table 3. Preparation of 10x hormone mix. 
Reagent Working conc. Stock conc. Provider Cat. nr.

DMEM/F12 (1:1) 
with L-Glutamine 1x 1x Gibco, BRL 11320-074

D(+)-Glucose 0.6 % 30 % Panreac 141341
Sodium 

bicarbonate 0.1 % 7.5 % Biowest L0680-500

HEPES 5 mM 1 M Biowest L0180-100
Apo-transferrin 1 mg/mL Powder Sigma T2252
Bovine insulin 0.05 mg/mL 8.3 mg/mL Sigma I6634

Putrescine 160 μg/ml 96.5 mg/mL Sigma P7505
Progesterone 0.2 nM 2 µM Sigma P6149

Sodium selenite 0.3 μM 3 mM Sigma S9133

DMEM/F12 (Dulbecco’s Modified Eagle Medium / Ham’s F12 Nutrient Mixture); conc.(concentration); Cat. nr. 
(catalogue number).

Table 4. Preparation of NSC growing medium. 
Reagent Working conc. Stock conc. Provider Cat. nr.

Control medium 1x 1x Homemade (Table 2)
EGF 20 ng/mL 4 μg/mL Gibco, BRL 53003-018

bFGF 10 ng/mL 25 μg/mL Sigma F0291

EGF (epidermal growth factor), bFGF (basic fibroblast growth factor).
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NC-L929 cell line

L929 cells proceed from C3H/An mouse areolar adipose and subcutaneous tissue. 
L929 fibroblasts overexpressing N-cadherin (NC-L929) are derived from the L929 
fibroblasts and were generously loaned by Dr Robert Kypta from CiCBiogune (Bilbao). 
These cells grow as a monolayer under adherent conditions on plastic plates and in 
DMEM supplemented with 1% L-glutamine and 10% fetal bovine serum (see Table 5; 
Porlan et al., 2014). Cells were subcultured when a 80-90 % confluence was reached 
to avoid overgrowth. This was done by dilution after treatment with trypsin-EDTA 
(ethylenediaminetetraacetic acid).

Table 5. Preparation of cell line medium.	  
Reagent Working conc. Stock conc. Provider Cat. nr.

DMEM high Glucose (1:1) 
without L-Glutamine or 

Sodium Pyruvate
1x 1x Biowest L0101

Fetal Bovine Serum (FBS) 10 % 100 % Biowest S1810
L-Glutamine 4 mM 200 mM Gibco, BRL 25030-081

Sodium Pyruvate 1 mM 100 mM Gibco, BRL 11360-039 

Penicillin/Streptomycin 1x 100x Sigma-
Aldrich P4458

DMEM/F12 (Dulbecco’s Modified Eagle Medium / Ham’s F12 Nutrient Mixture); conc. (concentration); Cat. nr. 
(catalogue number).

Focal demyelinating lesions

In order to assess remyelination, mice were first submitted to focal demyelinating 
lesions on the CC by means of stereotactic injection of the myelin toxin LPC, following 
the protocol described by Rittchen et al. (2015).

Transmission electron microscopy: sample preparation

An intraperitoneal injection of a ketamine/medetomidine mixture (75 mg/kg and 
1 mg/kg body weight, respectively) was administered to anaesthetise the mice. Then, 
blood was flushed out from the vasculature with ice-cold PBS before proceeding to the 
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intracardiac perfusion of 4 % PFA and 2 % glutaraldehyde in 0.1 M phosphate buffer 
(pH 7.4; PB). Finally, brains were extracted and post-fixed in the aforementioned fixation 
solution for 2-16 hours at 4 °C. Brains were washed in PB and coronal 1-mm thick 
sections were obtained with a vibratome. Sections anterior and posterior containing the 
LPC-focally-injected side of CC were further dissected, keeping only a small portion of 
cortex and CC, and trimmed to a right-angle at the midline of CC. Finally, sections were 
cut in trapezoid shape, in order to aid orientation at the resin embedding stage, and 
post-fixed in 1 % glutaraldehyde in PB at 4 ⁰C. Sections were processed for embedding in 
the resin T031 TAAB 812 premix kit-medium strength, as per manufacturer’s guidelines. 
Blocks were trimmed to expose the tissue and sagittal 1 µm semithin sections were cut. 
In order to determine presence or absence of demyelinating lesions in CC, sections were 
stained with 1 % toluidine blue in 2 % sodium borate solution. Presence was assessed 
based on a series of indicators, such as: i) cell accumulation, ii) crude cell morphology, 
iii) anatomical location along the anterior posterior axis of the CC and iv) reduction of 
myelin staining. Assessment was validated by two blinded observers. Once identified, 
selected areas from tissue blocks containing a demyelinated lesion were cut into ultrathin 
60-nm thick sections  with an ultramicrotome and collected into formvar-coated copper 
grids. Ultrathin sections were stained with uranyl acetate and lead citrate and imaged by 
means of transmission electron microscopy (TEM).

Semithin sections with lesions were selected and imaged using an AxioScan Slide 
Scanner with a 40x objective in order to generate a map of the lesion location. The 
map enabled the orientation of ultrathin sections with respect to lesion location at the 
TEM. Then, representative images were acquired throughout a JEOL JEM-1400 Plus TEM, 
coupled to a GATAN One View camera, at 7.1 K magnification (8.62 µm x 8.62 µm image 
size).

Expert annotations

Neurosphere formation assay images (as whole reconstructed wells) were manually 
annotated using QuPath (Bankhead et al., 2017) by two experts in order to generate 
two independent, redundant annotation sets. Annotations were made using the brush 
tool to label each neurosphere as a single object, as long as neurospheres remained 
clearly distinguishable from each other, even if clumped together. Neurospheres of 
diverse sizes and shapes were annotated, but not individual cells or those cells forming 
small clusters rather than actual neurospheres. Once completed, QuPath annotations 
were converted into ImageJ ROIs (ZIP files) for their comparison with the segmentation 
results. The annotation set from one expert was established as ground truth, whereas 
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the set annotated by the other expert was used to assess the variability between human 
operators. For the annotations of fibre components on remyelination models, three 
ROI sets were manually annotated per TEM image. Annotations were made by a single 
expert with Fiji’s freehand selection tool, generating ground truths for the segmentation 
of the fibres, the inner myelin boundaries and the axoplasms. Each ROI set was saved 
as an independent ZIP file. Since the segmentation assessment is performed on binary 
masks, touching objects were annotated with a separation from each other enough to 
keep them as independent objects setting an 8-connected particle tracing.

Metrics for the assessment of instance segmentation

For the evaluation of the instance segmentation we applied an object-based 
metric that scores every object as correctly segmented or not. The score is based on 
the establishment of a threshold for the minimum area coverage between overlapping 
objects. The area coverage is calculated as the intersection over union (IoU) between the 
target (T), i.e., the ground truth, and the prediction (P) masks:

𝐼𝐼𝐼𝐼𝐼𝐼�𝑇𝑇,𝑃𝑃� = 𝑇𝑇 𝑇 𝑇𝑇
𝑇𝑇 𝑇 𝑇𝑇 

The intersection (T⋂P) is the sum of the pixels shared by both the target and the 
prediction masks (i.e., Boolean operator AND), whereas the union (T⋃P) is the sum of 
the pixels found either on the prediction or the target masks (i.e., Boolean operator 
OR). The per-object IoU was computed using a customised ImageJ macro included in 
the NeuroMol Lab update site within Fiji [NeuroMol Lab > Assess Segmentation > 
Instance Segmentation]. Requirements, installation and usage documentation, as well 
as an example image dataset is to be found in GitHub (https://github.com/paucabar/
assess_segmentation). The macro uses region connection calculus (Landini et al., 2019) 
to identify overlapping objects. This way, IoU is only computed for those target objects 
that overlap to any extent with any object on the prediction mask. As a result, if the 
ground truth contains n true objects and the prediction m estimated objects, the macro 
generates a Cn x m matrix where only the pairs with an IoU above an established threshold 
are set as one. Conversely, the vast majority of pairs are set as zero, since they represent 
pairs with an IoU below the established threshold, including those which do not share 
any pixel at all (see fig …). According to our segmentation method, pixels can only be 
assigned to a single object, so objects from the same mask (i.e., either axoplasm, IMB 
or fibre mask) cannot overlap each other. Therefore, by establishing an IoU threshold 
above 0.5 we ensure that for each neurosphere on the ground truth there is no more 
than one matching neurosphere on the prediction mask. Once filled, the Cn x m matrix is 
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used to score each comparison as true positive (TP), false negative (FN) or false positive 
(FP) result. A TP is obtained when a target mask nx has a corresponding prediction 
mask my, i.e., C(x, y) = 1. A FN is obtained when a target object has no corresponding 
prediction mask, whereas a FP is obtained when a prediction mask does not match any 
target object. From this data the macro calculates the F1 score, an index based on two 
metrics, precision and recall:

𝐹𝐹1 = 2 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

On the one hand, precision determines the proportion of predicted objects that 
had a match on the annotated ground truth:

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

On the other hand, recall determines the proportion of target objects that had a 
match on the prediction mask:

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

Hardware

Bioimage analysis workflows described on this thesis have been performed on a 
HP OMEN 15-DC0000NS laptop with an Intel® Core™ i7-8750H processor, 16 GB of 
RAM and an NVIDIA® GeForce® GTX 1060 graphic card.
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Foreword

Taking into account the variety of experimental paradigms that have been addressed 
from the bioimage analysis point of view in the present thesis, for the sake of clarity, the 
results section has been divided into four different chapters. They are presented ordered 
according to the increasing complexity of the bioimage approaches and include:

1.	 Bioimage analysis for the study of NSC adhesion (relates to Objective 1).
2.	 Bioimage analysis for the study of NSC proliferation and apoptosis (relates 

to Objective 2).
3.	 Bioimage analysis for the study of NSC clonal capacity and self-renewal 

(relates to Objective 3).
4.	 Bioimage analysis for the study of (re)myelination (relates to Objective 4).

We have considered four main topics to organise the content in each chapter: 
i) the description of the biological problem to be solved, ii) the experimental and 
imaging setup established to generate the raw data, iii) the detailed exposition of the 
development and use of the proposed bioimage analysis workflow and iv) the results 
obtained in its application in an experimental case study or, alternatively, the assessment 
of its segmentation performance. Please note that not all the chapters necessarily 
include these four sections. This is mainly due to the fact that, although all the addressed 
biological questions have implied an extensive bioimage analysis development, only 
chapters 1 and 3 include as well work on the optimization of the experimental/imaging 
setup. Chapter 2 has also involved the necessary experimental work to generate a full 
image dataset for the development of the analysis workflow, but using standard well-
established methods. Therefore, the details regarding the experimental development 
are provided in the corresponding chapters whereas the general information about the 
materials and methods can be found in a separated section. Finally, chapter 4 is the 
result of a collaboration carried on during my 4-month stay at Anna William’s Laboratory 
(MRC Centre for Regenerative Medicine, University of Edinburgh). This chapter does 
not include an experimental/imaging setup section because the work only involved the 
development of a bioimage analysis strategy to analyse existing image datasets.

Emphasis is given to the public access to the scripts of the developed tools, which 
are available for anybody keen on their use. Installation of the workflows implemented 
in Fiji is straightforward, since are provided through a Fiji update site. Other workflows, 
implemented either in ilastik or CellProfiler, are provided as projects or pipelines which 
can be directly loaded within the corresponding software for their use. Additionally, 
documentation and example image datasets are also provided along with all the tools.
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CHAPTER 1. BIOIMAGE ANALYSIS FOR THE STUDY OF 
NSC ADHESION

1. Biological background: the role of N-cadherin mediated adhesion 
in the SEZ

Cadherins are type-1 transmembrane proteins that establish calcium-dependent 
homophilic, cell-to-cell, adherens junctions through their extracellular domain. Members 
of this family of cell adhesion molecules play critical and varied roles during development 
and in adult homeostasis. This variety of functions is accomplished because, besides 
their role as anchorage mediators, they also behave as signal transducers involved in 
several pathways such as proliferation and apoptosis (Leckband & de Rooij, 2014; Yulis, 
Kusters & Nusrat, 2018). Interestingly, they have been related to the regulation of the 
quiescence-activation cycle in several stem cell niches (Marthiens et al., 2010; Chen et 
al., 2013; Porlan et al., 2014; Cho et al., 2019; Porlan & Morante-Redolat, 2019). In the 
murine adult SEZ, loss of E-cadherin (cadherin 1, Cdh1) leads to overactivation of transit-
amplifying progenitors (Karpowicz et al., 2009). In 2014, our laboratory demonstrated 
that adhesion of the subependymal B1 NSCs to the ependymal layer through N-cadherin 
(cadherin 2, Cdh2) contributes to maintain the structural organization of the neurogenic 
niche and regulates NSC quiescence. Furthermore, we described that this role is 
dynamic since the N-cadherin regulated cleavage by MT5-MMP, a membrane-type 
metalloproteinase (MMP) encoded by the Mmp24 gene, promotes the activation of B1 
cells under physiological and regenerative conditions (Porlan et al., 2014). However, the 
mechanisms underlying adhesion-mediated quiescence have not been fully elucidated. 
Therefore, we decided to explore the possible implication in the regulation of NSC 
adhesion of another member of the MMP family, the adamlysin ADAM10. This sheddase, 
as other ADAM members, contains disintegrin and metalloprotease domains and has 
been reported to cleave N-cadherin in neurons (Lo Sardo et al., 2012). In fact, it is one 
of the most highly expressed proteases in the adult brain, including the SEZ (Kärkkäinen 
et al., 2000; Guo et al., 2016).

In order to investigate the effects and regulation of the N-cadherin mediated 
adhesion of NSCs and characterize putative niche secreted factors involved in its cleavage, 
we have developed a functional in vitro cellular assay that models the anchorage of 
subependymal cells mediated by N-cadherin and automated its analysis by adopting 
a high-content imaging strategy and developing a bioimage analysis tool for the 
extraction of the relevant quantitative data. Since some of our preliminary in vivo results 
suggested that ADAM10 could be involved in the cleavage of the N-cadherin present 
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at the NSC membrane (unpublished data), we applied our strategy to quantitatively 
address the role of ADAM10 on the regulation of the N-cadherin-mediated adhesion of 
NSCs in culture.

2. Experimental and imaging setup: microscopy-based high-
throughput screening assay to assess N-cadherin anchorage

Cell adhesion assays aim to quantify the anchorage of isolated cells to either 
surfaces coated with purified ligands/matrix components or to other cells usually in the 
form of monolayers. Protocols deployed for this purpose may be divided into two main 
approaches: static and dynamic assays (Butler et al., 2009; Humphries 2009; Mobley 
et al., 2001). Static assays consist of evaluating the capacity of cells in suspension to 
attach to adhesive surfaces (e.g., a coated multiwell plate), whereas dynamic assays 
are flow-based, so cells are perfused over the adhesive surface (e.g., a glass capillary 
coated with an immobilized adhesion molecule). Dynamic systems are suited for live 
cell imaging, which may be really helpful when addressing some specific questions, but 
also reduces the throughput due to a more complex setup and analysis. Therefore, for 
our microscopy-based screening assay we chose a static approach. In addition, to mimic 
as much as possible the in vivo conditions, instead of a purified recombinant protein 
as coating, the adherent substrate was provided by a pre-grown monolayer of live cells 
overexpressing the ligand of interest.

As depicted in Figure 6, in our assay neurospheres are mechanically disaggregated, 
in order to preserve the integrity of the N-cadherin extracellular domains, and deposited 
onto a confluent monolayer of NC-L929 fibroblasts overexpressing N-cadherin (Porlan 
et al., 2014). In case the interrogated NSCs are not intrinsically fluorescent (i.e. obtained 
from transgenic reporter mice or derived from genetically modified cultures), they are 
labelled with the DDAO-SE cell tracer to facilitate their detection. Additionally, in order 
to include a specificity control, part of the cells are pre-incubated with the N-cadherin 
blocking antibody GC4 (NcadBlock) to reduce their N-cadherin-mediated adhesion or 
with isotype mouse IgG (IsoMsIgG) as control (Porlan et al., 2014). Once left to attach 
for a controlled time, non-adhered cells are thoroughly washed out, and cultures are 
fixed for further analysis. Finally, nuclei are counterstained with DAPI in order to visualize 
the subjacent monolayer cells and images are acquired throughout a high content 
microscope. Any experimental scenario leading to alterations in the levels of extracellular 
N-cadherin (i.e. pre-treatment with soluble factors or genetic modifications) might be 
evaluated by this assay.
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Figure 6. Schematic representation of the main steps of 
the experimental and imaging setup of the N-cadherin-
mediated NSC adhesion assay.

In order to get quantitative 
data, we aim at devising an analysis 
protocol that should perform 
two different tasks: estimate the 
percentage of culture surface 
occupied by the N-cadherin 
expressing monolayer, and detect 
and count the number of labeled 
NSCs attached to it. As has already 
been discussed, bioimage analysis 
protocols greatly benefit from 
having properly optimized the 
image acquisition process. The 
idea is to obtain image datasets 
that suit the analyses requirements 
while keeping the file size as small 
as possible. This allows to save 
large amounts of memory space 
(see Table 6), which is especially 
important in high-throughput 
assays and also reduces considerably 
the required computation time. 
In our case, where precise cell 
morphology is not required to 
achieve the aforementioned tasks, 
we observed that it was sufficient 
to capture low resolution images. 
Indeed, imaging conditions have 
been set up to reach a compromise 
between reducing the image size 
to the minimum and still be able 
to efficiently detect the objects 
of interest (tracer-positive cells). 
Simplifying the Nyquist-Shannon 
sampling theorem, if the object size 
is above the Abbe’s diffraction limit, 
a good rule of thumb is to sample 



72

Results

objects with a minimum length of 5-10 pixels.

We set up our ICA-2k imaging system to sample objects close to the lower limit 
of this range.  For NSCs in vitro cultures, this can be achieved using the 40x objective 
with a 4x4 binning. Alternatively, it is possible to use a lower binning and downsize 
the dataset on a post-acquisition step. We sample a minimum of 49 non-overlapping 
fields-of-view per well distributed along the whole well surface, keeping the positions 
constant between wells in the same experiment. Counterstain and DDAO-SE channels 
are acquired with the ICA-2k pre-set DAPI and Cy5 wavelengths, respectively.  Automatic 
focus is performed on the DAPI channel in all the captured fields-of-view by means of 
the built-in Laser Autofocus system, alone or combined with the Software Autofocus 
option. However, since the fibroblast monolayer and the adhered NSCs are expected to 
be in slightly different focal planes, the focus offset is adjusted for each channel. 

3. Bioimage analysis

We have developed a bioimage analysis workflow that has been automated in an 
ImageJ macroinstruction. Like all the ImageJ scripts described in this thesis, the macro 
used in the present chapter can be downloaded just by adding the NeuroMol Lab update 
site by means of the Fiji updater. Requirements, installation and usage documentation, 
as well as an example image dataset, can be found in GitHub (https://github.com/
paucabar/cell_adhesion_assay).

The workflow has been assembled in a single macro, although some additional 
macros may be needed to perform optional pre-processing steps. In its design, we have 
taken into account the following considerations:

Table 6. Effect of binning and bit-depth on file size.	  
Bit-depth Binning 1x1 Binning 2x2 Binning 4x4

8-bit 4 MB 256 KB 16 KB
16-bit 8 MB 512 KB 32 KB
32-bit 16 MB 1 MB 64 KB

Taking as example an image whose dimensions are 2024 x 2024 pixels we observe that: i) file size doubles 
when bit-depth doubles, as both are directly proportional; ii) conversely, applying a 2x2 binning downsizes the 
image to a 1/4 of its original size (512x512 pixels), while the file size experiences a 16-fold reduction. The effect 
is even sharper when applying a 4x4 binning, reducing the image dimensions to its 1/16 fraction (128x128 
pixels) while cutting down 256 times the file size. MB (Megabyte), KB (kilobyte). 1 MB is equal to 1024 KB.
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●	 As mentioned above, we have optimised the image acquisition in our 
assay to get images where cells are within the range of about 5-10 pixels 
of length, so the macro is designed to detect such object size. This implies 
that any image dataset containing larger objects must be previously 
downsized in order to make it optimally analysable by the macro. To help 
with this step, we have developed an optional separate preprocessing 
macro (see 3.1).

●	 Image acquisition has been performed throughout the high-content 
microscope ICA-2k. We take advantage of the fact that metadata 
information is provided following a standardised naming convention 
along the filenames to retrieve and use it during the automated analysis. 
As a consequence, the workflow requires the proper metadata extraction 
of the dataset for its correct interpretation (see 3.2).

●	 In spite of following the same protocol, each performed experiment 
generates an image dataset that is bound to be unique and display a 
different degree of particular features. Therefore, most probably it would 
be necessary to adjust the set of analysis parameters from one experiment 
to the next. For that purpose, the macro enables to adjust key settings of 
the workflow in order to suit the analysis for different datasets. Indeed, the 
macro includes a test mode, which allows the user to tweak the parameters 
and check the output easily. Moreover, the parameter set can be saved 
and imported in future analyses (see 3.3 and 3.6).

●	 In order to favour unsupervised analysis, we have included the measurement 
of different image metrics to serve as a quality control. It is important 
to note that the macro only calculates the quality parameters and does 
not remove ill-quality images from the dataset. Rejection of problematic 
fields-of-view is performed a posteriori as part of the data analysis either 
at the user’s personal criteria or by applying methods to detect outliers 
(Caicedo et al., 2017) or supervised machine-learning approaches (Lou et 
al., 2012) (see 3.4).

●	 The main goal of the assay is to quantify the number of adhered cells. 
However, since we are measuring adhesion over a cell-formed monolayer 
which may sometimes be incomplete or severed, the macro obtains 
the cell count per monolayer surface (mm2). In order to do so, it works 
independently with the counterstain channel (monolayer) and the tracer 
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channel (adhered NSCs) images segmenting them with a filter-based 
approach which rapidly batch processes large datasets. However, proper 
segmentation and object extraction of each of the two components entails 
its own difficulties. Regarding the cell monolayer, NC-L929 fibroblasts 
let to grow till confluence are usually well spread over the well surface 
leaving no empty spaces between them. Nevertheless, since samples 
are nuclei counterstained, monolayer images show only isolated nuclei 
surrounded by unstained areas, actually occupied by the non-visible 
cytoplasm of fibroblasts. As a consequence, segmentation of these images 
is straightforward but further processing is required in order to artificially 
fill the empty spaces between the nuclei as an estimation of the real cell 
monolayer surface. On the contrary, cell tracers stain the whole cytoplasm 
so NSCs are easily spotted on images but occasionally appear forming 
small clumps. These aggregates, despite their small size, often reach 
overlapping levels that greatly hinder cell individualization. Additionally, 
it is not strange to find highly fluorescent precipitates derived from the 
labelling process, which also sediment on the monolayer. These two 
features combined posed a great challenge for designing an effective 
segmentation strategy. In the end, we opted for a method based on the 
detection of local maxima that includes a clump-breaking operation based 
on the voronoi algorithm and a size threshold to avoid precipitated debris 
(see 3.5).

3.1. Downsizing and/or illumination correction (if required)

We have included in the NeuroMol Lab collection a macro built to resize a set 
of images [NeuroMol Lab > other macros > Post-Acquisition Binning]. However, it 
is important to point out that resizing may have severe consequences on the images, 
especially when interpolation methods are required. In order to prevent non-expert 
users from dealing with this, the macro only allows to group neighbouring pixels within 
squared blocks. The binning of the pixels is performed averaging their numerical values. 
The 2x2 binning reduces each image to a 1/4 of its size, the 3x3 binning to 1/9 and the 
4x4 binning applies a scale factor of 1/16 (see Table 6 in section 2). To exemplify the 
need of this preprocessing step, the image dataset provided to test the adhesion macro 
in the aforementioned Github site contains objects much bigger than the 5-10 pixels 
and must be downsized in advance.

In order to decide whether to use binning or not and, if needed, the proper 
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resizing factor, researchers should first estimate the average size of their cells. This can 
be roughly accomplished by manually drawing a couple of straight lines for several cells 
representing the major and minor axis with the selection tools provided within Fiji, and 
measuring their lengths in pixels.

On the other hand, the quantification of this assay is based exclusively on object 
count and only relies on intensity values for segmentation. Therefore, unless the uneven 
illumination of the images harshly affects segmentation, its correction is not required. 
Anyway, in case it is necessary, the NeuroMol Lab collection also includes a macro to 
perform retrospective multi-image illumination correction, which will be documented 
in the next chapter. In case this preprocessing step is needed, it would be advisable to 
place it on the top of the bioimage analysis workflow, even before downsizing.

3.2. Metadata extraction

The script extracts metadata from the image filename assuming the naming 
pattern produced by the ICA-2k, which in a static acquisition contains the well code, the 
field-of-view number and the channel information. The well code is an alphanumeric 
tag consisting of a 6-character substring formed by a capital letter (row) and a two-
digit number (column) separated by a hyphen escorted by two blank spaces (e.g., B 
- 03 corresponds to the well placed on the second row and the third column). This 
string always occupies the filename indexes 0 to 5. The field-of-view code and channel 
information are placed between parentheses immediately after the well code and is 
followed by the file format. Inside the parenthesis it is first found the field-of-view code 
formed by a three-digit number introduced by the substring ‘fld ‘. Therefore, it fills the 
filename indexes 11 to 13. Finally, the channel information (excitation and emission 
wavelengths) is separated from the field-of-view by a blank space and is introduced by 
the substring ‘wv ’. Instead of the specific numerical value in nanometres, the ICA-2k 
acquisition software labels wavelengths using alphanumeric characters that spell the 
name of the most common corresponding fluorochrome (e.g. DAPI, FITC, Cy3, etc.). 
Both excitation and emission labels are included in the filename separated by a hyphen 
that is escorted by two blank spaces. It is important to highlight that not all the channel 
alphanumeric labels are of equal length, so the channel substring is not found filling 
the same indexes in all the images. As an example, C - 09(fld 011 wv DAPI - DAPI).tif 
would be the complete filename of the TIF file corresponding to the DAPI image of the 
eleventh field-of-view captured in the well placed on the third row and the ninth column 
of the microwell plate).
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In case of having acquired the image dataset with an imaging system different from 
the ICA-2k, it is still possible to analyse the experiment. However, it will be necessary 
to recode the images in order to meet the metadata extraction step. To this aim, the 
NeuroMol Lab update site includes a macro which converts the files generated by means 
of other imaging systems into a dataset suited to be analysed by our macro [NeuroMol 
Lab > other macros > IN_Cell_Analyzer_rename].

3.3. Parametrisation

The output of the macro highly depends on the parameters set by the user. 
Therefore, a GUI based on the use of sequential windows has been deployed to guide 
the user on these decisive choices. In the main dialogue window, our cell adhesion 
macro offers two different workflows. On one hand, the pre-analysis mode allows to test 
different sets of parameters by running the analysis on single images selected by the 
user. Instead of obtaining quantitative data, the aim of this mode is to easily visualise 
the result of the segmentation while tweaking the parameters. On the other hand, the 
analysis mode is designed to perform the full analysis as it batch processes and extracts 
the quantitative data from all the images. The user also has to specify the path of the 
folder to be analysed.  Both pre-analysis and analysis modes allow to save the defined 
parameter set as a project file, so the main window offers the possibility to load this 
preset. If so, a specific window will pop-up to browse the project file. Additionally, the 
user can also save the ROIs generated after the segmentation of the adhered, tracer-
positive cells (note that it only works for the analysis mode).

The next dialog box is the one which really allows tweaking the workflow settings. 
In case a project file has been loaded, the pre-selected values will be displayed. As NSCs 
and monolayer cells might be visualized using different tracers and counterstains, it is 
necessary to indicate which channel corresponds to the counterstain (monolayer) and 
which one to the cell tracer (NSCs). The rest of the options define filter sizes, threshold 
values and other similar parameters. For a better understanding, these tweakable 
parameters are indicated along the workflow explanation and are summarised on Table 
7. The last window is different for each mode. On the pre-analysis, the user can pick up a 
well and field-of-view code to apply the selected parameters and visualize the workflow 
output in the corresponding images. This action is iteratively performed until the user 
decides to stop. Conversely, the analysis mode displays a dialogue box to select the 
wells to be analysed, from a single well to the entire experiment dataset. Once checked, 
the macro batch processes all the selected images and automatically stores the results.
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3.4. Image quality control metrics

Our quality control is intended to detect two different types of unsuitable images: 
those that are out of focus or contain saturated artefacts, and those that, despite being 
adequate in terms of image acquisition, contain an incomplete or severed monolayer.

The detection of blurring and saturated artefacts is performed by means of metrics 
which are widely used within the microscopy-based high content screens (Bray et al., 
2012; Caicedo et al., 2017). As a quality control metric for out-of-focus images, the macro 
extracts the inverse coefficient of variation of the counterstain image intensity. Namely, 
the ratio of the mean and the standard deviation of the image intensity (mean/s.d.). This 
is a simple metric, easier to implement compared with others less sensitive to the cell 
count (highly variable in many high-content screens), such as the power log-log slope 
of pixel intensities. On our macro, this blurring metric is retrieved from the counterstain 
channel because it is the one typically used to set the autofocus of the microscope, as 
it usually shows the better signal-to-noise ratio and displays a highly homogeneous 
distribution of objects (nuclei). Another reason is that, while not all the fields-of-view, 
problematic or not, contain adhered, tracer-positive cells, the counterstained monolayer 
is expected to be present in all images. In order to detect saturation artefacts, the 
percentage of saturated pixels is the best metric described. The cell adhesion macro 
extracts this feature also from the counterstain channel since, despite being excited 
by a wide range of wavelengths, saturated artefacts are typically visualized with the 
ultraviolet excitation fluorescence.

Table 7. User-adjustable parameters found in the bioimage analysis workflow for the 
quantification of cell adhesion.

Parameter Variable type Default

Counterstain channel String (set from array list) First element 
on the list

Tracker channel String (set from array list) First element 
on the list

Maximum filter (monolayer) Float (radius) 2.0
Threshold (monolayer) Float (0.00-1.00) 0.10

Prominence (>) Integer (grey level) 30
Threshold (tracker) Float (0.00-1.00) 0.10

Minimum object size Integer (pixels) 5
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To assess the monolayer extension, the macro extracts other measurements which 
are not as typical but, in this case, will be needed to perform an additional quality 
control assessment that we decided to customise and implement in our assay. Since the 
mean/s.d. may vary depending on the cell count, the macro also extracts an estimated 
cell count on the counterstain. To this aim, the counterstain channel is slightly smoothed 
by means of a 3x3 mean filter (radius=1). The cell count is estimated using the Find 
Maxima plugin with a prominence greater than 50. Cell count data of the whole dataset 
is normalized to a 0-1 range. Thus, fields-of-view with a confluent, unharmed monolayer 
will tend to 1, while those containing no cells will be close to 0. Non-confluent or 
damaged monolayers will show intermediate values. Finally, the ultimate output of the 
cell adhesion assay is the cell-adhered count per monolayer area. Therefore, as part 
of the bioimage analysis workflow, the monolayer area has to be measured. Once the 
area segmentation is performed (as explained below), it is easy to obtain the monolayer 
area fraction (monolayer area/field-of-view total area). The ratio must be close to 1, 
unless either the monolayer is not confluent or has suffered damage during any sample 
preparation step.

The combination of these image quality control metrics may be helpful to discard 
ill-quality images avoiding the visual inspection of the entire image dataset. With the aim 
to show the power of these metrics, we have worked with a subset of images extracted 
from our example dataset. By visual inspection, they were manually annotated, labelling 
each of them according to four different predefined classes: suited for the analysis 
high quality fields-of-view (HQ); images with incomplete monolayer (IM); presence of 
saturated artefacts (SA) or images with no cell content (NC) (Figure 7A). Since the ICA-
2k autofocus system usually does a good job focusing the monolayer nuclei, no blurred 
images were found in our dataset although, to our experience on other assays where 
similar metrics are applied, NC images show results akin to those obtained from blurry 
images. Once tagged, the images were artificially sorted as if they belonged to different 
‘wells’ keeping a balanced representation of the four quality classes in all of them. 
Finally, the images were renamed according to the ICA-2k naming pattern in order to 
group fields-of-view in consonance with the annotation labels, obtaining samples of the 
same size for each well, thus allowing the application of the macro on the fabricated 
dataset. Figure 7B shows the potential of the elected metrics to be used to reject ill-
quality images.
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3.5. Detection, segmentation and feature extraction

As already mentioned, the macro obtains the two measurements required to get 
the final result (number of adhered tracer-positive cells and area of monolayer) working 
separately with the two captured channels (Figure 8A).

On the counterstain channel, although the macro already extracts the monolayer 
cell count as part of the quality check, in order to estimate the monolayer extension 
area, it is necessary to fill the empty space between the nuclei. To do so, a maximum 
filter with a radius defined by the user is applied. Images are normalized to a 0-1 range 
and, then, the threshold value set by the user is used for segmentation. Once generated 
the binary mask, the monolayer area and the monolayer area fraction are measured 
(Figure 8B).

On the NSC-tracer channel, adhered cells just need to be detected, individualized 
if necessary and counted. In order to carry out the segmentation different features 
are extracted from the images. Considering that this assay does not require the 
quantification of subtle densitometric differences on the tracer-labelled cells, images 
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Figure 7. Image 
quality control (QC) 
metrics obtained 
from a subset of a 
cell adhesion assay 
dataset. Images 
were annotated and 
renamed to group 
them according to QC 
labels. (A) Up-left, the 
cell count, estimated 
as the count of relative 
maxima (MaxCount) 
normalized to a 0-1 
range. Up-right, the 
area fraction of the 

image covered by the monolayer of fibroblasts overexpressing N-cadherin (MonoAreaFraction). Bottom-left, 
the percentage of saturated pixels (%SatPix). Bottom-right, the ratio of the mean to the standard deviation of 
the image intensity (Mean/s.d.). (B) Annotation examples. Counterstain channel (DAPI) displaying Fiji’s Cyan 
Hot LUT. Scale bar 100 µm. Data was annotated using four different classes: HQ (high quality), IM (incomplete 
monolayer), SA (saturated artefacts), NC (no content). Box plots were generated using the seaborn.catplot 
function to show the distribution of the different quality control metrics across the groups. Boxes show the 
data from the first quartile (Q1) to the third quartile (Q3) and are split by a line showing the median, whereas  
whiskers show the maximum and minimum values (excluding outliers).
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are initially converted to 8-bits. This reduction in the greyscale range does not interfere 
with the cell counting and accelerates the calculation of other necessary features such as 
the coordinates of the local maxima found applying the prominence established by the 
user. Then, on one hand, a new image is created, and the maxima positions are defined 
as single-pixel objects to later divide the image into voronoi territories. On the other 
hand, greyscale images are normalized to a 0-1 range and segmented according to the 
threshold set by the user for this channel. Merged objects are separated according to the 
calculated voronoi boundaries. Objects below a minimum size determined by the user 
are rejected. Moreover, those touching the edges are rejected since it is not possible 
to determine their real size and might bias the results. This strategy was chosen due 
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Figure 8. Bioimage analysis workflow for a static adhesion assay deployed for the assessment of 
N-cadherin-mediated adhesion on in vitro NSC cultures. (A) Representative field-of-view acquired 
throughout a cell adhesion assay. NSCs labelled with the DDAO-SE cell tracer (red) are left to attach to a 
confluent monolayer of NC-L929 fibroblasts overexpressing N-cadherin (DAPI, blue). The experimental and 
imaging setup aims to enable the extraction of the number of adhered cells relative to the monolayer area 
by means of  an automated bioimage analysis workflow. Scale bar 50 µm. (B) Workflow for the segmentation 
of the counterstained monolayer. The nuclei on the foreground of the counterstain channel are mostly 
monolayer nuclei. However, the counterstain alone does not enable the segmentation of the complete 
monolayer (1). Thus, an estimated monolayer is depicted applying a maxima filter. Fiji’s Cyan Hot LUT (2). 
Finally, the processed image is thresholded to obtain the monolayer binary mask. In the workflow pre-analysis 
mode, the monolayer nuclei retain their original greyscale, whereas the estimated monolayer are is color-
coded in green, whereas the background is represented in blue (3). (C) Workflow for the segmentation of the 
cell tracer. The low resolution facilitates the segmentation of the DDAO-SE+ cells, except for those clumped. 
Scale bar 25 µm (1). The workflow uses the relative maxima on the image to identify potential cells (2-4). The 
image is displayed using Fiji’s Fire LUT to visualize the different grey intensities across the cell bodies (2) and 
represented as a surface plot (3). Then, a semantic segmentation of the cells is computed (5), and the relative 
maxima (4) are used as markers to generate Voronoi territories (6), which are applied for the obtention of the 
cell instance segmentation (7). The pre-analysis mode of the workflow displays the bounding boxes of the 
segmented cells (yellow) on the merged, raw data (8). 
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to the difficulty of separating such small objects according to their convexity applying 
the basic watershed plugin within Fiji (Figure 8C). Finally, objects are filtered by the 
size range defined by the user (in pixels) in order to eliminate precipitates or other 
ill-segmented objects. It is possible to ask the macro to save the corresponding ROIs, 
which may be useful to visually check the output of the workflow, an increasing demand 
for data publication.

3.6. Output

The macro generates different outputs depending on the selected mode. The 
pre-analysis mode works with a field-of-view at a time and creates a two-image 
stack representing the segmentation of both the adhered cells and the subjacent 
monolayer. The first image merges the counterstain and the cell tracer channels and 
overlays the bounding box of the ROI obtained from the segmentation on the top of 
the corresponding adhered cells. Additionally, in order to visually check the monolayer 
segmentation output, in the second image the macro assigns a colour code to the 
counterstain greyscale image where: i) the nuclei pixels keep the values of the original 
greyscale image, ii) the artificially generated monolayer area is represented in green and 
iii) the remaining background is shown in blue. Conversely, the analysis mode is focused 
on the extraction of quantitative data. Therefore, the main output is a results table which 
is exported as a TXT file. The table contains metadata for its correct interpretation, as each 
row corresponds to one field-of-view. Moreover, the file contains both the data from 
the quality control metrics and the count of the tracer-positive cells and the monolayer 
area. Additionally, if checked, it also saves the ROIs from the cell tracer segmentation. 
As explained before, on both modes, the macro saves the actual set of parameters 
as a TXT file. This project can be loaded and applied to further analyses. Hence, once 
the pre-analysis generates a satisfactory output, the parameters can be easily imported 
to run the ultimate analysis. Furthermore, as long as new generated image datasets 
keep similar properties, the set of parameters applied on past analysis can probably be 
reused in forthcoming assays.

4. Case study: regulation of N-cadherin proteolysis in the SEZ by 
niche factors

The microscopy-based screening protocol was applied in a real cell adhesion 
experiment aimed to confirm that ADAM10 participates in the proteolysis of the 
N-cadherin present at the NSCs membrane, thus regulating their N-cadherin-mediated 
adhesion. 
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As previously indicated, the assay depends on two different cell cultures which have 
to be handled in order to be grown in parallel, a stable line of fibroblasts overexpressing 
N-cadherin (NC-L929) and in vitro neurosphere cultures. First, fibroblasts overexpressing 
N-cadherin (NC-L929) were seeded on flat, solid bottom, clear CELLSTAR® 96W 
Microplate (Sigma-Aldrich) at a density of 4x104 per well in DMEM supplemented with 1% 
L-glutamine and 10% fetal bovine serum (see Table 5 in Material and Methods). NC-L929 
were incubated at 37 ºC and 5 % CO2 and let grow till confluence (24-48 h after seeding). 
Once the monolayers were confluent, neurospheres were mechanically disaggregated 
on HBSS Hank’s Balanced Salt Solution medium containing Hepes (5 mM) free of Ca2+ 
and Mg2+. To test for the potential specific role of ADAM10, neurosphere cultures had 
been pretreated for 2 days with GI254023X (GIX, TOCRIS) at 50 μM, a potent ADAM10 
inhibitory drug, or its vehicle (dimethyl sulfoxide, DMSO) before conducting the cell 
adhesion protocol. A specificity control with N-cadherin-blocking antibodies (NcadBlock) 
was also included. Individualized NSCs were then labelled with a membrane-permeant, 
fixable, far red fluorescent tracer (CellTrace Far Red DDAO-SE, ThermoFisher Scientific) 
at the manufacturer’s recommended concentration. After 7 min at 37 ºC, DDAO-SE-
containing medium was washed out and cells were resuspended in growing medium 
(with Ca2+) and counted. Each sample was divided into two groups: half of the cells were 
incubated with the NcadBlock and the other half with isotype mouse immunoglobulins 
(IsoMsIgG). After 1 h of treatment, DDAO-SE-labelled cells were seeded onto the NC-
L929 monolayer and let to attach for 1 h at 37 ºC. After this time, non-adhered cells were 
washed out (at least 3 washes with 5 min incubation in a Calcium-containing medium). 
At this point, cultures were fixed with 2 % paraformaldehyde (PFA) in phosphate buffer 
saline (PBS) during 15-20 min at 37 ºC. After fixation, cells were counterstained with 
DAPI (2 mg/mL in ddH2O) for 5 minutes. Imaging was performed through the ICA-2k 
microscope as previously described, capturing a total of 49 fields-of-view per well with 
the 40x objective and a 1x1 binning (so the dataset had to be downsized later on with 
the developed preprocessing macro).

As expected, NcadBlock consistently reduced the NSC adhesion to the NC-L929 
monolayer. Regarding the experimental condition, in case ADAM10 actually participates 
in the proteolysis and shedding of N-cadherin in NSCs, its inhibition would lead to 
increased levels of N-cadherin at the cell surface and, hence in enhanced adhesion. This 
was confirmed as the GIX-treated condition showed a higher count of adhered DDAO-
SE-positive cells per monolayer (Figure 9).
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Figure 9. Quantification of the number of cells labeled 
with the DDAO-SE cell tracer adhered to the NC-L929 
cell monolayer with respect to the monolayer area. 
Neurosphere were pretreated with the ADAM10 inhibitory 
drug GI254023X (GIX) or its vehicle (dimethyl sulfoxide, 
DMSO) to test the role of ADAM10 in the proteolysis of 
N-cadherin. A specificity control with N-cadherin-blocking 
antibodies (NcadBlock) or isotype mouse immunoglobulins 
(IsoMsIgG) was also included. The graph shows the results 
with respect to the values obtained with the control condition, 
i.e., cells pre-treated with DMSO and IsoMsIgG. The data bars 
correspond to the mean ± s.e.m and each point corresponds 
to each analyzed mouse.
 * p-value<0.05; ** p-value<0.01; *** p-value<0.001
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CHAPTER 2. BIOIMAGE ANALYSIS OF NSC 
PROLIFERATION AND APOPTOSIS

1. Biological background:  image-based methods to assess 
proliferation and apoptosis

Cell proliferation and programmed cell death are undoubtedly two of the most 
studied processes in the field of cell biology. In the stem cell field, in particular, cell cycle 
regulation is central to understanding key stem cell properties such as their maintenance 
through the reversible transition between quiescence and activation or the switch from 
pluripotency to differentiation (Liu et al., 2019; Cho et al., 2019). Apoptosis, on the other 
hand, has emerged in the last years as an important topic in the study of stem cells 
since it has been found that apoptotic bodies from surrounding cells can induce stem 
cell proliferation (Brock, 2019) or that specific apoptotic mediators may play a role in 
stem cell differentiation (Fujita et al., 2008; Ryoo & Bergmann, 2012; Ryu et al., 2016). 
Classically, the study of cell proliferation and apoptosis has relied in microscopy-based 
methods or in flow cytometry analysis (Towne et al., 2012; Yin et al., 2017 Fathi et al., 
2019). In this chapter we will focus on methods that can be performed by image-based 
analysis.

Among the methods suitable to assess cell proliferation through microscopy-based 
analysis, pulse-chase experiments with nucleoside analogues stand out for its reliability 
and applicability on screening assays. This approach is based on the detection of traceable 
nucleosides incorporated to DNA while cells undergo the S phase of the cell cycle. To 
this aim, cells are incubated with modified pyrimidines, which perform as thymidine 
analogues, for a short period of time (pulse). After that, cells can be immediately fixated 
and processed for the detection of the labelled DNA, which provides an estimation 
of the overall proliferation in the sample. Conversely, fixation and detection can be 
delayed a variable amount of time to let cells continue dividing, now in the absence 
of the analogue (chase). During this period, each further mitosis will result in half of 
the tagged DNA to be distributed among the daughter cells, so the initial label gets 
‘diluted’ and becomes undetectable after several rounds of division. However, those 
cells that stopped dividing after the pulse (because of terminal differentiation, return to 
quiescence or arrest in G1, for instance) will remain labelled and be detected. Different 
regimes of pulses and chase times can be applied depending on the specific question 
to be addressed (for examples see Ferrón et al., 2007; Ponti et al., 2013; Belenguer et 
al., 2020).



86

Results

Halogen-containing pyrimidines, such as BrdU (5-bromo-2’-deoxyuridine) (Eidinoff, 
Cheong & Rich, 1959) have been used for decades to this aim, requiring the denaturation 
of the DNA to reveal their presence by means of immunostaining with specific antibodies. 
Conversely, the more recently developed EdU (5-ethynil-2’-deoxyuridine) (Chehrehasa 
et al., 2009) can be directly detected by means of bioorthogonal reactive chemistry. In 
this copper-catalyzed “click” reaction (Kolb, Finn & Sharpless, 2001; Best, 2009), the 
alkyne group present in the EdU molecule forms a covalent bond with a fluorophore-
linked azide, making unnecessary the use of antibodies or antigen unmasking by heat 
or acid treatment. Both methods are equally sensitive but, in the recent years, EdU has 
become a popular alternative for microscopy-based screening assays (Mandavilli, Yan 
& Clarke, 2018) due to its ease of use, the high specificity of the “click” reaction, which 
generates stable and inert products, and its compatibility with multiple probes.

From the image analysis point of view, it is important to highlight that cells can 
incorporate different amounts of nucleoside analogue, depending on how advanced 
the S-phase was when the pulse started and the number and frequency of pulses 
administered. Additionally, if a chase period is followed, cells will ‘dilute’ the label 
according to their division rate. As a result, diverse patterns of nuclear staining can be 
found among samples ranging from an irregular punctate pattern of variable density 
and intensity to a full strong nuclear staining .

Apoptosis is a form of cell death triggered through the activation of highly regulated 
proteolytic cascades and characterised by stereotypical biochemical and morphological 
features (D’Arcy, 2019). Apoptotic processes are divided into two main subtypes, 
intrinsic or extrinsic apoptosis, according to the biochemical pathways involved in their 
regulation. On the one hand, intrinsic apoptosis depends on the permeabilization of the 
mitochondrial outer membrane, releasing mitochondrial proteins which are responsible 
for the activation of initiator caspase 9 (Chipuk, Bouchier-Hayes & Green, 2006). On 
the other hand, extrinsic apoptosis is mediated by two different type of membrane 
receptors: i) the presence of death receptors ligands lead to the activation of initiator 
caspases 8 and 10, ii) whereas the absence of dependence receptor ligands leads to the 
activation of initiator caspase 9 (Tang et al., 2019).

Execution caspases 3, 6 and 7 are common effectors for both intrinsic and 
extrinsic pathways, and are cleaved by upstream caspases 8, 9 or 10 in order to initiate 
apoptosis (McIlwain, Berger & Mak, 2015; Galluzzi et al., 2016). Due to its central role 
on the apoptosis signalling pathways, common effectors such as caspase 3 and 7 (also 
known as caspase-3-like proteases) are well established biomarkers for the detection 
of apoptotic cells (Mandavilli, Yan & Clarke, 2018) and can be easily visualized in the 
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nuclei by immunochemistry with the great variety of commercially available antibodies 
that specifically distinguish the activated form of each caspase from its pro-caspase 
zymogen.

2. Bioimage analysis

We have developed a bioimage analysis workflow to analyse a high content screening 
assay for the assessment of cell proliferation and apoptosis. It has been automated in a 
ImageJ macroinstruction which can be downloaded adding the NeuroMol Lab update 
on the Fiji updater. Requirements, installation and usage documentation, as well as an 
example image dataset, is to be found in GitHub (https://github.com/paucabar/cell_
proliferation_assay).

This workflow is a new version of a previous script (Carrillo-Barberà, Morante-
Redolat & Pertusa, 2019) which runs faster and includes new functionalities. Despite the 
fact that the workflow has been assembled in a single macro, some other macros from 
the NeuroMol Lab site may be needed to perform optional pre-processing steps. In its 
design, we have taken into account the following considerations:

●	 Since the assay relies on densitometric data, it is necessary to take into 
account that images acquired throughout an optical microscope are 
affected by vignetting, which is estimated to cause a variation on the 
effective illumination of 10-30 % between the different image regions 
(Smith et al., 2014). In order to improve the quality of the data it is possible 
either to correct the experimental image dataset on a pre-processing step 
or to determine a region with minimal illumination variation in order to 
exclude the rest for the analysis (Jost & Waters, 2019). We provide optional 
pre-processing workflows to address the vignetting issue (see 2.1).

●	 Image acquisition has been performed throughout the ICA-2k. Thus, it is 
necessary to extract the information contained on the filename metadata 
according to the microscope convention (see 2.2).

●	 It is possible to parametrise the workflow in order to adjust the analysis for 
different datasets. With the aim to facilitate the selection of the workflow 
and its parameters, the macro includes a test mode that allows the user to 
test different parameter sets on a subset of images. Moreover, the current 
parameter set can be saved for their use in future analyses (see 2.2 and 
2.4).
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●	 The assay collects densitometric data of different fluorescent probes that 
label molecules located, totally or partially, on the cell nuclei but display 
diverse staining patterns. In consequence, segmentation is performed on 
the nuclear counterstain channel. In order to achieve an accurate nuclei 
segmentation, the macro includes two differentiated strategies: a workflow 
based on classical image processing methods and a deep learning (DL) 
approach (see 2.3 and 2.4).

●	 The use of high-throughput microscopes enables the acquisition of large 
dataset in an automated way. Despite its advantages, this imaging approach 
can also lead to the capture of ill-quality images. Since the analysis of 
such screening datasets preclude the visual inspection of the images, it 
becomes necessary to apply methods for the automatic identification and 
exclusion of those images, in order to prevent a misled interpretation of 
the results (see 2.5).

2.1. Illumination correction (recommended)

The workflow includes an optional step aimed to correct uneven illumination. 
Retrospective multi-image methods are the common choice to perform the illumination 
correction on screening approaches (Caicedo et al., 2017), since the strategy benefits 
from the large image datasets which are typically acquired for these experiments. 
However, this method requires the previous generation of illumination correction 
functions (flat-field images). Therefore, we decided to create an independent workflow 
to perform this task which is also available on the Neuromol Lab update site [NeuroMol 
Lab > other macros > Illumination Correction].

Our workflow uses BaSiC, a retrospective multi-image method which has shown 
a series of advantages compared with other previously developed tools. Among the 
BaSiC qualities it stands out that requires fewer images to achieve a higher accuracy 
and is more robust in the presence of image artefacts (Peng et al., 2017). The macro 
uses the BaSiC plugin implemented within Fiji to calculate the flat-field image of each 
channel. The workflow starts extracting the metadata to identify the different channels 
on the dataset. Then, all the images corresponding to the same channel are imported 
as a stack to be used as the BaSiC input. The flat-field calculation is relatively fast when 
working with several hundreds of images, but the process is RAM-consuming so larger 
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datasets can slow down the performance if working with a regular laptop. In the end, 
the generated correction functions are saved as TIF files that will be needed during the 
initial steps of the main workflow. Nonetheless, in case the user prefers to generate the 
corrected images before running the main analysis workflow, the optional correction 
macro also allows to directly apply the calculated correction functions, i.e., to divide 
each experimental image by its corresponding flat-field function (see Figure 10A).
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Figure 10. Applications of the calculated illumination correction functions, also referred to as flat-field 
images. (A) Illumination correction is performed dividing the acquired image by the calculated flat-field (top). 
In order to show the changes on the effective illumination across the different images (acquired, flat-field, 
corrected), the intensity profile of each image is plotted (bottom). Plot profiles were generated over a 1-pixel 
thick line crossing the images from the left-bottom to the right-top corners (the line is represented in white) 
in Fiji. For a better representation of uneven illumination, an empty field-of-view from a real high-content 
imaging experiment has been selected, which does not contain cells but some small debris. The flat-field 
image was calculated by means of the BaSiC retrospective multi-image method from about 3,000 images 
acquired on the same channel (FITC) and multiwell plate. Images display Fiji's 16_colors LUT.  (B) Flat-field 
images and their plot profiles can be used to determine an area with minimal illumination variation (green 
boxes) with the aim to restrict the bioimage analysis to these regions. The flat-field is also displayed using the 
CET-D1A LUT, from the Fiji update site NeuroCytoLUTs .
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Alternatively, it is possible to use the obtained correction functions to define an 
analysable region around the centre of the optical axis (usually in the centre of the 
image) where illumination is most uniform, thus rejecting those peripheral areas with 
evident attenuated illumination. To this aim, the use of look-up tables (LUTs) for the 
inspection of the illumination correction functions or the calculation of intensity profiles 
across the flat-field images may be useful approaches to determine regions showing 
a minimum illumination variation (see Figure 10B). Once a selection has been defined, 
the NeuroMol Lab site includes a macro which asks for a rectangular ROI in order to 
crop an entire dataset [NeuroMol Lab > other macros > Rectangle Crop Batch] before 
proceeding to the analysis.

2.2. Metadata extraction and parametrisation

Metadata is extracted from filenames according to the ICA-2k naming pattern (see 
section 3.2 on Chapter 1). In addition, parametrisation is performed throughout a GUI 
similar to the one described for the cell adhesion assay (see section 3.3 on Chapter 1), 
but displaying a different set of parameters.

The main dialogue window starts by asking the user to select either the pre-analysis 
(test) or the analysis mode and to choose the directory containing the experimental 
dataset. Then, the macro offers two different approaches to accomplish segmentation. 
On the one hand, a classical filter-based workflow for the detection and segmentation 
of the nuclei. On the other hand, a method based on StarDist, a DL approach designed 
for the prediction of star-convex polygons especially suitable for the segmentation of 
cell nuclei on microscopy images (Schmidt et al., 2018; Weigert et al., 2020). A new 
segmentation protocol can be generated from scratch (parameters will be set in the next 
dialogue window). Conversely, a previously generated file containing all the parameters 
set can be loaded. The macro also allows to import illumination correction functions, 
either generated using the aforementioned NeuroMol Lab macro or a different method. 
If checked, the user must provide the directory containing the flat-field images. Finally, 
it is also possible to set the workflow to save the ROIs obtained from the segmentation 
of the nuclei (only for the analysis mode).

Next, a new dialogue window displays all the necessary parameters for image 
processing. Some of the parameters are common to both segmentation choices, such 
as the channel metadata and the corresponding channel where to apply the illumination 
correction in case flat-field images were loaded. Other parameters, on the contrary, 
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are specific of each segmentation approach and are only displayed depending on the 
chosen method. All the adjustable parameters are summarised in Tables 8 and 9 and, for 
a better understanding, will be explained later on in their corresponding method section. 
Finally, the next dialogue window prompts the user to select all or just a subset of wells 
from the loaded dataset to run the analysis. Pre-analysis mode works slightly differently 
since it enables the visualization of the segmentation output obtained applying the 
established parameters on a series of randomly picked images. In order to do so, this 
mode includes an extra dialogue window where the user can set the number of images 
per well to be tested as well as set some parameters related to the visualization.

Table 8. User-adjustable parameters found in the bioimage analysis workflow for 
the quantification of cell proliferation and apoptosis (filter-based approach).

Parameter Variable type Default

Counterstain channel String (set from array list) First element on 
the list

Nucleoside analogue channel String (set from array list) First element on 
the list

Marker 1 channel String (set from array list) None
Marker 2 channel String (set from array list) None

Normalize Boolean Yes
Gaussian filter Float (sigma) 2.0

AutoThreshold Method String (set from array list) MaxEntropy
Erode Integer (iterations) 2
Open Integer (iterations) 2

Watershed Boolean Yes
Size String (min-max) 0-Infinity

Counterstain flat-field String (set from array list) None
Nucleoside analogue flat-field String (set from array list) None

Marker 1 flat-field String (set from array list) None
Marker 2 flat-field String (set from array list) None
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Table 9. User-adjustable parameters found in the bioimage analysis workflow for 
the quantification of cell proliferation and apoptosis (StarDist).

Parameter Variable type Default
Counterstain channel String (set from array list) First element on 

the list
Nucleoside analogue channel String (set from array list) First element on 

the list
Marker 1 channel String (set from array list) None
Marker 2 channel String (set from array list) None
Overlap threshold Float (0.00-1.00) 0.40

Size String (min-max) 0-Infinity
Counterstain flat-field String (set from array list) None

Nucleoside analogue flat-field String (set from array list) None
Marker 1 flat-field String (set from array list) None
Marker 2 flat-field String (set from array list) None

2.3. Segmentation strategies

The macro starts by applying the illumination correction on the specified channels. 
In order to do this, each image is divided by its corresponding flat-field image. 
Additionally, there is an optional step within the filter-based workflow to normalize the 
counterstain images allowing a 0.1 % of saturated pixels, whereas the StarDist workflow 
is set to always normalize the images. The filtering approach is based on classical image 
processing algorithms, so it includes some of the most common steps on this kind 
of strategies (see Table 8). Each of the components can be set by the user during the 
parametrisation. First, the counterstain image is smoothed by applying a Gaussian filter 
and thresholded to generate a binary mask. Then, objects are submitted to operations 
with the binary mask to improve the segmentation (i.e., erosion or open operations). 
During the parametrisation step, the user needs to set the filter radius (sigma), select 
a thresholding algorithm among those available on the Threshold plugin and establish 
the iterations of the binary operations. Finally, if the option is checked, clumped objects 
are separated by means of the default watershed algorithm, which uses as markers the 
ultimate eroded points (Figure 11A).

Alternatively, StarDist performs the instance segmentation of nuclei applying 
a strategy that is specifically suited to this kind of objects (Figure 11B). It generally 
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obtains better results than other DL approaches that are based either on i) computing 
a semantic segmentation in order to form objects by splitting the obtained mask or ii) 
predicting bounding boxes of individual objects which are then submitted to a local 
semantic segmentation. Conversely, for each pixel, StarDist predicts the probability of 
being part of an object and the distance to the object boundary along a series of radial 
directions. Thus, a star-convex polygon is proposed as a candidate region per every 
pixel inside an object, which generates a large number of redundant shapes which are 

Figure 11. Bioimage analysis workflow for a cell-based proliferation and apoptosis 
assay on in vitro NSC cultures. (A) Filter-based approach for the segmentation of nuclei. 
Segmentation is performed on the counterstain channel. Scale bar 10 µm. Cyan Hot LUT (1). The 
image is smoothed using a Gaussian filter (2) before applying a thresholding method to obtain 
a semantic segmentation (3). Finally, a watershed operation is performed to separate clumped 
objects. The final instance segmentation is displayed as an overlay (4) and labelled image (5). 
Labels are colour-coded with the glasbey on dark LUT. (B) StarDist is a generalist deep learning 
approach which predicts object probabilities and star-convex polygons parametrised by radial 
distances for the segmentation of nuclei. Figure adapted from Schmidt et al., 2018. Scale bar 5 
µm.  (C) The StarDist method can be set to enable the predicted instances to overlap (left) or to 
generate non-overlapping labels (right, labels are colour-coded with the glasbey on dark LUT). 
(D-E) The pre-analysis mode can be used to check the segmentation performance. Additionally, 
it is possible to label the instances (coloured outline) setting thresholds based on object features. 
Scale bar 20 µm. (D) Solidity is a useful feature for the detection of merged nuclei. Objects with 
a solidity greater than 0.9 are outlined in orange, whereas those instances with a lower score 
are outlined in cyan. (E) Densitometric features are typically used for the classification of cells 
labelled with fluorescent probes. A mean grey value threshold has been established on the red 
channel for the classification of cells according to their EdU content.
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then filtered using non-maximum suppression in order to prune those regions that likely 
correspond to the same object. As a supervised approach, it is necessary to annotate a 
ground-truth to train a StarDist model. However, there are also pre-trained models for 
the segmentation of 2D nuclei, e.g., for fluorescent (single channel) or haematoxylin & 
eosin (RGB) images. In the case of fluorescent images, the model was trained on labelled 
images from diverse microscopy modalities (Schmidt et al., 2018). However, this pre-
trained model does not ensure a proper segmentation of any fluorescent image, since it 
can be affected by several factors such as the resolution of the image.

In our experience, the fluorescent pre-trained model provided within StarDist 
accurately segments nuclei of NSCs, which are smaller than those of other cell types in 
our in vitro assays, on images acquired by means of the ICA-2k using the 40x objective 
and a 2x2 binning. Therefore, our macro runs the StarDist 2D plugin included in Fiji set 
to use the pre-trained ‘Versatile (fluorescent nuclei)’ and to send the predicted nuclei 
as ROIs to the ROI Manager. This way, even highly clumped nuclei can be properly 
individualized and segmented, since the algorithm estimates each ROI including its 
overlapping region with other nuclei (overlap threshold percentage can be set during 
the parametrisation step) (Figure 11C). As a supervised learning approach, it relies on 
annotated ground truths, which implies an additional effort in exchange for enabling its 
application by users without image processing prior knowledge.

Finally, after all the instances have been obtained, either through the filter-based 
or the StarDist workflow, some objects are rejected before proceeding to the feature 
extraction. Specifically, both nuclei touching the image borders and those not meeting 
the size threshold set on the parametrisation step are removed. Since segmentation 
by filter approach works with binary masks whereas StarDist method obtains ROIs, this 
post-processing step requires different strategies. Unwanted binary masks are easily 
removed using the Analyze Particles plugin which already includes an option to remove 
border-touching objects and a size filter. However, this is not as straightforward when 
working with ROIs. For this reason, we have built two dedicated functions: the size 
selection function measures the area of the ROI set in order to filter them, whereas the 
border kill function obtains the bounding rectangle coordinates in order to identify the 
border-touching ROIs and discard them.

2.4. Quantification and output

The macro generates different outputs depending on the selected mode. The pre-
analysis mode generates a stack of RGB images, each one composed by the merge of the 
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nuclear counterstain and the nucleoside analogue images of a randomly picked field-of-
view. In order to facilitate the visual inspection of the segmentation output, the outlines 
of the segmented objects are also drawn on the image with a colour code according to 
the visualization settings introduced by the user during the parametrisation step (Figure 
11D). This allows to distinguish between objects according to a selected measurement 
(e.g., densitometry parameters or shape descriptors) and manually set threshold. For 
example, it is possible to label objects with a low solidity, which may be useful, e.g., to 
set filters for the rejection of ill-segmented objects, such as merged or split nuclei (to 
be applied after the bioimage analysis workflow). Alternatively, this can be used to look 
for simple rules to separate cell populations according to fluorescent staining signals 
(Figure 11E).

The output of the analysis mode, on the contrary, is quantitative information 
extracted per image and per object. On the one hand, the script calculates some of the 
image quality metrics already described in Chapter 1, section 3.4 using the counterstain 
channel. On the other hand, the macro redirects either the obtained binary masks or the 
ROIs (depending on the segmentation method) to each channel grey image to obtain 
densitometry parameters (mean intensity and integrated density). Counterstain nuclear 
channel is not measured since it is only used for segmentation. In addition, size and 
shape descriptors are calculated since, as aforementioned, these parameters can be 
applied for the rejection of ill-segmented objects, but also for the identification of cell 
phenotypes. Finally, the analysis workflow generates a CSV results table containing all 
these measurements per each segmented nucleus. Furthermore, since field-of-view 
quality metrics are redundant on the previous table (i.e., all the nuclei from the same 
image show the same quality scores), these are also stored on a separated CSV file 
containing only per image measurements. Moreover, if set by the user, the analysis 
mode saves the obtained ROIs corresponding to each field-of-view as ZIP files. Both 
modes generate a CSV file containing the workflow settings, so it can be imported for 
future analysis.

2.5. Field-of-view quality control using a machine learning approach 
(optional)

Complementary to the basic quality metrics we have included so far in our 
workflows, we have developed a separated pipeline built on CellProfiler to classify the 
images in a dataset according to their quality. Following the metadata extraction, the 
pipeline uses the CalculateImageQuality to compute a series of metrics on the nuclear 
counterstain channel. These parameters include intensity (field-of-view intensity stats), 
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saturation (percentage of pixels with the maximum or minimum intensity) and blur 
(e.g., power log-log slope, focus score assessed or image correlation) metrics (Bray et 
al., 2012; Caicedo et al., 2017). Then, the FlagImage module is used to tag images as 
saturated or non-saturated and blurred or non-blurred. Images are flagged as saturated 
when the percentage of pixels with the upper value represents more than the 0.1 % of 
the total pixels. Conversely, blur metrics, more complex to be interpreted, are applied 
according to a set of rules established by means of a supervised ML algorithm.

In order to train the classifier, it was necessary to generate the annotation of two 
balanced sets of images, i.e., in-focus and blurry images. Nevertheless, as expected if 
capture settings are correctly established, out-of-focus images in the dataset are scarce, 
so it is difficult to assemble a sufficient amount of blurry images for the training. Thus, 
along with the experimental dataset obtained to test the macro, we decided to generate 
two additional datasets composed of intentionally slightly and severely out-of-focus 
images, to be used in the training. Then, a combined dataset was obtained mixing more 
than 200 fields-of-view of each of the three acquisitions (experimental, slightly blurred 
and severely blurred).

Classifier was trained on the Fast Gentle Boosting algorithm provided within 
CellProfiler Analyst (Jones et al., 2008). To this aim, we used a similar pipeline to calculate 
the image quality metrics computed from the combined dataset and to export them into 
a SQL database. On CellProfiler Analyst, random images were fetched and annotated as 
in-focus or out-of-focus to train the classifier, which was tested on a different dataset 
of 100 annotated images. The performance of the classifier proved to be robust, with 
all the blurry images correctly flagged whereas in-focus fields-of-view showed a 0.96 
true positive rate (see Figure 12). These results were achieved using a single metric, the 
power log-log slope.

3. Case study: NSC response to DNA damage

The workflow performance was tested on a real cell proliferation (by a short EdU 
pulse) and apoptosis (by detection of activated caspase 3 by immunocytochemistry) 
screening. We selected a strategy combining BaSiC-computed flat-field images with 
StarDist for illumination correction and segmentation, respectively. The goal of the 
assay was to evaluate the response of NSCs to DNA damage in vitro, which was induced 
by short exposure to the alkylating agent methyl methanesulfonate (MMS). 

To do so, previously grown neurospheres were enzymatically disaggregated using 
Accutase® Cell Detachment Solution to obtain individual NSCs. Cells were seeded on 
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Matrigel®-coated, flat, solid bottom, clear 96-well microplates at 2 x 104 cells per well 
in growing medium. Cells were incubated for n 24 h at 37 ºC in a 5 % CO2 humidified 
incubator in NSC medium supplemented with mitogens before treatment. Then, cells 
were exposed to either a low (0.005 %) or a high (0.02 %) concentration of MMS, for 4 
h. At the end of the treatment, NSCs were submitted to a 1 h EdU pulse and fixed with 
4% PFA in cytoskeletal buffer (Hua & Ferland, 2017) at 37 ºC during 20 min. EdU was 
prepared and its presence revealed by click chemistry combined with Alexa Fluor® azide 
according to the manufacturer’s instructions (Thermo Fisher Scientific). Cells undergoing 
apoptosis were labelled by means of immunocytochemistry with cleaved caspase 
3 specific primary antibodies. To this aim, once fixed, samples were blocked at room 
temperature for 1 h in PBS (0.9% NaCl in PB) with 0.2 % Triton X-100 supplemented with 
10 % Fetal Bovine Serum (FBS). Cells were incubated overnight at 4 °C in a 1:400 dilution 
of primary rabbit-polyclonal antibody for cleaved caspase 3 (Asp175) (Cell Signaling). 
Then, cells were incubated in a 1:600 dilution of secondary antibody Alexa Fluor® anti-
rabbit (Jackson InmunoResearch) for 45 min at room temperature. Finally, nuclei were 
stained with DAPI, as explained before. Image acquisition was performed with the high 
content microscope ICA-2k using a 40x objective and 2x2 binning. The dataset was 
acquired within 4 different channels to image: i) nuclei counterstain, ii) EdU, iii) cleaved 
caspase 3 and iv) brightfield. Focal plane was established using laser autofocus on the 
DAPI channel as reference, slightly adjusting the z position for the different channels.
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Figure 12. Prediction of blurring quality control (QC) rules using machine learning (ML). (A) A ML 
classifier was trained to distinguish in-focus (positive) from blurred (negative) images and tested on a set of 
images annotated as positive or negative. The normalized error matrix represents the performance of the 
QC rules generated by the supervised ML classifier, as each row represents the instances from an annotated 
class (True label), whereas each column represents the instances from a classifier predicted class (Predicted 
label). (B) Representative images from a fabricated dataset generated for the training of the classifier. To this 
aim three different subsets were generated acquiring the counterstain channel of cultured cells: i) in-focus, ii) 
slightly blurry and iii) severely blurry images. Both slightly and severely blurry fields-of-view were annotated 
as negative, whereas in-focus cells were annotated as positive. Scale bar 50 µm. Zoomed nuclei are placed 
below their corresponding field-of-view. Scale bar 5 µm. Counterstain is displayed using Fiji’s Cyan Hot LUT.
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Figure 13. Proliferation and apoptosis results. (A) Representative 
images of proliferating NSC cultures in adherent conditions 
after treatment with low (0.005%) or high (0.02%) concentration 
of the genotoxic drug MMS. DMSO was used as vehicle. 
Immunocytochemistry for EdU (red) as a proliferation marker and 
cleaved Caspase-3 (green) as an apoptotic read-out (upper panels, 
scale bar 50 μm). DAPI (blue) was used to counterstain nuclei. 
Single-cell high-magnification images of different patterns of DAPI 
(EdU--cleaved Caspase 3-), EdU and cleaved Caspase-3 staining are 
shown (lower panels, scale bar 5 μm). (B) Automatic stratification 
by the k-means clustering method to analyse proliferation of MMS-
treated cells. The algorithm divides cells into five clusters (C1-5), 
where non-cycling cells (EdU-) are allocated in C1. (C) Automatic 
stratification by the k-means clustering method to analyse apoptotic 
cell death after MMS treatment. The algorithm divides cells into two 
clusters: C1, non-apoptotic cell ; C2, apoptotic cell.

As expected, treatment effects on cell proliferation were dramatic. While low MMS 
led to an important decrease in EdU positive cells, high MMS caused a complete cell cycle 
arrest (Figure 13A). Moreover, we observed an evident drop of the mean intensity and 
integrated density values of the EdU channel in the low MMS treated EdU+ cells (Figure 
13A, lower panels). This is not surprising since a well-established cellular response to 
moderate DNA damage is to induce a transitory cell cycle arrest to let the DNA repairing 
machinery overhaul the situation. 
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In case DNA integrity is successfully restored, proliferation is resumed whereas 
apoptosis or senescence are triggered if reparation fails (Meek, 2009). As a complementary 
approach to study this phenomenon, we decided to perform an automatic stratification 
of the cells in the sample by means of the k-means clustering method. The algorithm 
was set to divide cells into five clusters (C1-5), which led to non-cycling cells (EdU-) 
being allocated in C1, whereas cycling cells were distributed among the remaining four 
clusters according to their EdU signal (C2 to C5 from lower to higher intensity). As shown 
in Figure 13B, proliferative cells in low MMS condition were preferentially allocated in C2, 
most probably due to the transient interruption of the S-phase. Regarding apoptosis, 
it is important to highlight that it is an extremely rare phenomenon in NSCs cultured in 
regular in vitro conditions (less than 0.03 %). Therefore, despite the fact that low MMS 
caused a 2.5-fold increase and high MMS a 10-fold increase, the highest registered 
apoptosis rate did not surpass the 0.4 % (Figure 13C).
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CHAPTER 3. BIOIMAGE ANALYSIS FOR THE STUDY OF 
NSC CLONAL CAPACITY AND SELF-RENEWAL

1. Biological background: the study of NSC clonality and self-renewal 
in neurosphere formation assays

NSCs, as introduced before, are defined by their clonal and self-renewal capabilities 
and their multipotent nature. The development since the early nineties of the in vitro 
culture conditions of these stem cells (Reynolds & Weiss, 1992) has enabled the in vitro 
assessment of their defining characteristics. On one hand, NSC multipotency can be 
evaluated by means of a clonal differentiation assay in which the presence of an adherent 
substrate and serum, along with the withdrawal of mitogenic stimulation triggers 
the production of all three differentiated neural cell types. On the other hand, both 
clonality and self-renewal assessment rely on the controlled formation of floating clonal 
aggregates known as neurospheres during the called ‘neurosphere formation assay’. 
The assay starts obtaining individual cells either from the dissection and dissociation of 
the SEZ tissue or from the disaggregation of previously grown neurospheres. Then these 
cells are seeded at a standardised cell density in multi-well plates in a defined serum-
free medium supplemented with mitogens. After several days in vitro (DIV), the number 
of formed neurospheres accounts for the clonal capacity of the culture, whereas their 
disaggregation and re-seeding in further rounds of neurosphere formation provides 
information about their self-renewal (Belenguer et al., 2016). Due to the nature of this 
assay, the most crucial parameter to be taken into account is cell density. Excessively 
high cell densities lead to cell aggregation and neurosphere coalescence, which must be 
avoided in order to ensure that each formed neurosphere is a clone originated from a 
single cell. Additionally, paracrine signals may influence the proliferation of the culture. 
There exist two main approaches to achieve clonality on an in vitro cell culture, single-
cell or low-density assays.

Single-cell assays ensure true clonal density since they are performed by culturing 
individual cells independently, i.e., seeding just one cell per well. These pure clones can 
be obtained either by means of limiting cell dilutions or using cell separation methods 
to isolate and handle individual cells such as Fluorescence-Activated Cell Sorting (FACS). 
However, these procedures are not always easy or convenient to perform. Furthermore, 
cell separation methods can be detrimental to the cell viability which may bias the 
output of the assay. Very-low-density assays, on the other hand, are a straightforward 
alternative that, if well conducted, may also generate consistent results. It has been 
demonstrated by our laboratory and others that a cell density of less than 5 NSCs per 
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µL (up to 1,000 cells per well in a conventional 96-well plate), allows the reproducible 
formation of clonal neurospheres from individual cells without signs of aggregation 
(Ferrón et al., 2007). Nonetheless, when working with highly proliferative conditions 
or cell phenotypes even a lower cell density may be required. To differentiate these 
assays from the genuinely clonal ones, they are commonly referred as ‘semi-clonal’ 
or, more correctly ‘pseudo-clonal’ assays. Besides the critical role of cell density, other 
issues also require special attention when setting the assay. Firstly, it is critical to ensure 
the complete disaggregation of the tissue or pre-existing neurospheres to guarantee 
that all the seeded cells have been individualized. Additionally, cells must be uniformly 
distributed along the culture surface upon seeding or at least separated enough to avoid 
neurosphere contact. Finally, it is of paramount importance to keep the multi-well plates 
in a flat evenly levelled incubator tray, to minimize possible vibrations and to refrain 
from manipulating them until the neurospheres have been formed. Otherwise, there 
is a great risk of aggregation and hence underestimation of the neurosphere number 
(Ferrón et al., 2007; Belenguer et al., 2016).

Independently of the chosen strategy, the aim of this assay is to quantify the 
number of neurospheres formed, usually after 5-7 DIV, relative to the number of 
individual seeded cells (or to the number of seeded wells in single-cell assays). Provided 
that NSC cultures are considered of heterogeneous nature in terms of both neurosphere 
forming capacity and proliferation rate, not all of the seeded cells give rise to a clone. 
This is due to the fact that in vitro culture conditions keep a population of self-renewing 
NSCs but cannot prevent the generation of committed progeny as well. This is the case 
of transit amplifying progenitor cells (Bjornsson et al., 2015; Bond, Ming & Song, 2015), 
a highly proliferative subpopulation of progenitors that has been reported that are able 
to generate neurospheres, albeit just for a few passages (Doetsch et al., 2002; Reynold 
& Rietze, 2005; Belenguer et al., 2020). As a consequence, only truly self-renewal NSCs 
will be able to form neurospheres in each passage and ensure the long-term expansion 
of the culture.

The procedure to quantify the outcome of neurosphere assays has typically 
been the direct observation of the culture plate through a phase-contrast inverted 
microscope, so researchers score the number of clonal aggregates by visual inspection 
as they manually scroll through the multi-well plate. Apart from being tedious and time-
consuming, especially in experiments with several technical and biological replicates and 
experimental conditions, it requires a certain training and is not devoid of observer bias. 
Otherwise, in some experimental paradigms, besides the number of clones, the size of 
the formed neurospheres might also be informative and help to characterize a particular 



103

Results

phenotype. Changes in the proliferative rate or in the survival of cells in the culture, 
for instance, might lead to changes in the size of the formed clones, even when their 
number remains constant between conditions. It has also been reported that the most 
self-renewing NSCs might give rise to bigger neurospheres (i.e., more than 100 microns 
of diameter) (Louis et al., 2008). However, neurosphere size is very dependent on the 
culture conditions and days of incubation. On the other hand, changes in neurosphere 
size might be deceiving since there is not a direct correlation between proliferative rate 
and clonal and self-renewal capacity. Therefore, neurospheres size must be taken in 
consideration with caution. In any case, this measure cannot be directly obtained during 
the manual counting of neurospheres as described before. It would require to capture 
representative images of the culture surface and the subsequent measure of the size of 
the sampled neurospheres.

2. Experimental and imaging setup: screening-like imaging of 
pseudo-clonal neurosphere formation assays

For our assay, we chose a pseudo-clonal approach because it is much easier to 
perform on a daily basis in a regular cell culture lab without the need of cell sorting 
equipment and requires just minor cell manipulation. However, in order to optimize the 
analysis and allow the simultaneous and automatic assessment of both the number and 
size of the neurospheres, we decided to develop a screening-like imaging protocol to 
be followed by an automatic bioimage analysis workflow (Figure 14).

To begin with, we had to set a reproducible imaging strategy. The easiest approach 
would have been to acquire a representative sample of each well for the analysis. 
However, neurospheres do not always show a homogeneous distribution across the well. 
Therefore, just sampling an arbitrary number of fields-of-view most probably would lead 
to biased results. As an alternative, we decided to capture a 5x5 ordered grid of partially 
overlapping images covering the whole well surface and combine them later to get a 
complete reconstruction of each well. This strategy circumvents the uneven sampling 
problem as well as prevents the rejection of incompletely sampled neurospheres on the 
image edges.

To automatize the imaging step, we used the ICA-2k system but being aware of its 
limitations in this specific case due to the floating nature of the neurosphere culture. Grown 
neurospheres do not normally attach to the plastic but remain settled at the bottom of 
the well as a result of gravity, while keeping their 3D roughly-spherical shape. Moreover, 
as they display different sizes, the exact focal plane corresponding to their maximum 
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Figure 14. Schematic representation of the main steps of 
the experimental and imaging setup of the Neurosphere
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circumference varies among clones. 
However, the ICA-2k high-content 
microscope can only acquire 2D 
images. As a consequence, finding 
an appropriate focal plane to get a 
focused representative image of all 
the neurospheres in the well is not 
an easy task. Indeed, laser autofocus 
software, typically applied to find 
cells adhered to the well surface, 
largely fails in the attempt to 
focus neurospheres. Therefore, our 
imaging protocol relies on input 
provided by the operator to set the 
best possible focal plane.

As happened in our ‘adhesion 
assay’ (see Chapter 1), the 
output of the neurosphere assay 
(count and size) is not based on 
densitometric information but 
instance segmentation of the 
image is necessary to extract per-
object measurements. However, 
regular neurosphere cultures 
are not fluorescently labelled, 
unless for specific applications. 
Consequently, the system must 
acquire transmitted light images 
of living cells that are usually 
very low-contrasted, converting 
segmentation in a challenging task. 

With the aim to counteract these limitations, we decided to acquire high-resolution 
images so that texture and other image features could help to alleviate deficiencies in 
object detection due to the very low contrast found on some fields-of-view.
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3. Bioimage analysis

We have developed a bioimage analysis workflow to analyse the pseudo-clonal 
neurosphere assay acquired as explained above. The workflow has been automated by 
means of several scripts which combine Fiji and ilastik. The ImageJ macroinstructions 
presented in this chapter can also be downloaded just by adding the NeuroMol Lab 
update site within Fiji. Requirements, installation and usage documentation, as well as 
an example image dataset and a series of ilastik classifiers, are to be found in GitHub 
(https://github.com/paucabar/neurosphere_assay).

The basic core of the workflow consists of two sequential ImageJ macroinstructions, 
the second of which integrates with ilastik to apply a pixel classifier trained on this 
bioimage analysis collection. We have also designed a third optional script that allows 
the quick reanalysis of the pre-generated output images in case the user is not satisfied 
with the obtained segmentation. This option does not require relaunching the pixel 
classification, since this is the most expensive step in terms of computational time. In the 
workflow design we have taken into account the following considerations:

●	 Since image acquisition has been performed by means of the high-content 
microscope ICA-2k, the naming convention already described (see 3.2 at 
Chapter 1) is the base of the metadata extraction.

●	 The macro allows the user to adjust some of the parameter sets in order to 
deal with the expected variability between experiments. Although all the 
scripts begin by popping-up their corresponding dialogue boxes, all the 
settings related with image segmentation are parameterized on the GUI of 
the second and the third (optional) macroinstruction (see 3.1).

●	 Capturing the whole culturing area of a round well in a transparent plastic 
multi-well plate by means of a grid of square images entails two main 
problems with great impact on the bioimage analysis. On the one hand, 
pictures in the periphery of the grid will contain a portion of the well border 
along with an out-of-focus section of the plastic that surrounds it. Those 
areas outside the well boundary must be excluded from the analysis. On 
the other hand, there is the problem of the uneven illumination introduced 
by the well wall reflecting light and/or casting variable shade patterns on 
the captured areas. In fact, this phenomenon is so prominent that masks 
the typical uneven illumination that affects any image acquired using a 
microscope. To cope with this, the first script in the workflow serves as 
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a pre-processing macro aimed to correct the non-uniform illumination 
which is expected to be different on each field-of-view (see 3.2).

●	 As already explained, the image dataset will be composed by very low-
contrast pictures captured using transmitted light, since high-content 
imaging devices do not usually enable phase-contrast microscopy. As a 
consequence, neurospheres are most likely to be detected because of 
their texture rather than their absolute intensities. Therefore, it may be 
more helpful to compute several features rather than applying a filter-
based approach to improve object detection. For that reason, we decided 
to rely on a ML strategy to facilitate the semantic segmentation of the 
image components. Specifically, the workflow includes a pixel classification 
step based on ilastik but integrated in the ImageJ macroinstruction that 
includes all additional image processing steps to complete the analysis. 
Therefore, after the preprocessing macro, all the remaining workflow steps 
from both ilastik (pixel classification for the generation of a probability 
map) and Fiji (stitching, segmentation and data extraction) are performed 
in a single run (see 3.3).

●	 Although the illumination correction and the ilastik pixel classification are 
performed on the individual field-of-view images, the macroinstruction 
obtains a composed single image of each of the wells before undertaking 
the core of the analysis. In order to get a combined image that contains 
all the relevant information required, the script first merges in a tile the 
corrected brightfield image and its calculated probability maps for each 
field-of-view. Then, it applies a stitching algorithm included within the Fiji 
core that has two main requirements: i) a proper parametrisation of the 
tile metadata contained on the filename, so the algorithm can solve the 
puzzle and interpret correctly the spatial relationship between images; ii) 
certain degree of overlapping between tiles, so the algorithm can find the 
exact correspondence among fields-of-view and prevent skewed images 
in the fusion areas. The use of the tiles may provide additional information 
to improve the performance of the stitching algorithm, whereas it also 
ensures that the soldering process will keep a faultless alignment between 
channels (see 3.4).

●	 The main goal of the assay is to count the number of neurospheres 
and to measure their size. Once stitched, segmentation is performed 
on the generated probability maps. Obtained by means of a supervised 
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ML approach, probability maps are now processed using a filter-based 
approach and the resulting instance segmentation is improved by 
means of some mathematical morphology operations. Specifically, two 
different probability maps are used to accomplish different aims. First, the 
neurospheres probability image of each well is the input to perform the 
instance segmentation of the clonal aggregates. However, since the training 
of the ML model is focused on the well content, it may happen that some 
pixels outside its boundaries are classified as neurospheres. However, we 
choose not to correct this misclassification during the classifier training, 
as it might be counterproductive to the actual neurosphere recognition. 
Conversely, the border probability is processed in order to define the 
area corresponding to the well culture surface and then keep only those 
objects within it (see 3.5).

●	 Unlike previously described workflows, the script deployed for the 
neurosphere assay does not include a pre-analysis mode. Since the 
computational time required to perform the image segmentation is 
negligible if compared with the elapsed time of the pixel classification, 
we chose to save the files generated by means of this process (stitched 
probability maps) so that they could be reused to run a shorter workflow 
in case segmentation requires further optimization. To make this practical, 
there is an optional script which is limited to the image processing 
components applied after the pixel classification and the stitching steps 
(see 3.6).

3.1. Parametrisation and metadata extraction

The successful output of a ML classifier is highly dependent on the training 
step, which requires some input from the user. However, once trained, the classifier 
can be applied within the workflow in a fully automated way. It is important to set 
the workflow to take into account some imaging parameters which will significantly 
influence preprocessing steps such as illumination correction and stitching. Besides, 
the classifier is set to generate probability maps rather than a semantic segmentation. 
This way, probability images can be further processed before running the final instance 
segmentation. A reduced number of parameters defined to perform this task are to be 
set by the user. For a better understanding, these tweakable parameters are indicated 
along the workflow explanation and are summarised on Table 10.
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Table 10. User-adjustable parameters found in the bioimage analysis workflow for 
the neurosphere formation assay (pixel classification and stitching script).

Parameter Variable type Default

Grid String (set from array list) First element on 
the list

Tile overlap (%) Integer (0-100) 15
Mean filter Integer (radius) 2.0

Threshold (neurospheres) Float (0.00-1.00) 0.35
Open Integer (iterations) 15

Moreover, metadata extraction is a critical step to perform both illumination 
correction and stitching. These processes are sequentially performed within two 
different macroinstructions, and each one requires different spatial information which 
is extracted from the file name, according to the ICA-2k naming convention (see 3.2 at 
Chapter 1). Of note, contrary to previous chapters, in this workflow channel information 
is irrelevant and hence not recovered, since the dataset only includes brightfield images. 
Additionally, the illumination correction function is calculated for each field-of-view (see 
3.2), so this first macro only needs to comprehend the correspondence of the different 
fields among the dataset images. Finally, in order to perform the stitching, the algorithm 
requires: i) to identify and group every set of images belonging to the same well, and ii) 
to properly map them in the spatial distribution of the fields-of-view, which depends on 
the imaging settings provided by the user (see 3.4).

3.2. Illumination correction

The first macro is a preprocessing script with a single purpose: to perform the 
shading correction of the image dataset. The parametrisation is quite simple, as it is 
possible to perform illumination correction by either retrospective multi-imagel or 
prospective methods. The retrospective workflow uses the BaSiC plugin (Peng et al., 
2017) to calculate the correction functions. On the contrary, the prospective workflow 
requires the use of reference images. Whatever the option, images will be divided by the 
correction functions and exported as HDF5 files using the ilastik plugin. The NeuroMol 
Lab update site already includes a macro to perform illumination correction. However, 
it would not be suitable in this case since correcting the illumination aberrations found 
in this assay requires a specific correction strategy (Figure 15A). Whereas the macro 
explained in the last chapter calculates correction functions computing all the dataset 
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Figure 15. Bioimage analysis workflow for a pseudo-clonal neurosphere formation assay. (A) 
Illumination correction strategy for the neurosphere formation assay. The established imaging setup of the 
neurosphere assay aims to acquire whole wells by capturing a 5x5 grid of overlapping tiles which includes 
the well borders (top, left). As a consequence, each field-of-view presents a different pattern of uneven 
illumination, which greatly depends on the corresponding position with respect to the well border (bottom, 
left). Example of illumination correction performed on the field-of-view outlined in red. The acquired image 
is divided by the flat-field to obtain the corrected image. For a better visualization of the uneven illumination, 
images are displayed using Fiji's Fire LUT (top, right). Illumination correction can facilitate the neurospheres 
segmentation. On the example, illumination correction enables the segmentation (red overlay) by means of 
the ‘Default’ thresholding method within Fiji (bottom, right). (B) Corrected images (top) are submitted to pixel 
classification to obtain probability masks (bottom) pre-trained to identify three labels: background (yellow), 
well edge (red) and neurospheres (blue). (C) Whole wells are reconstructed through a stitching process. (D) 
Workflow for the segmentation of neurospheres, which is performed on the neurosphere probability map. 
The established probability to be classified as a neurosphere pixel is displayed using the CET-D1 LUT (1-2). 
Neurospheres are smoothed (3) and thresholded to obtain a binary mask (5). Then, mathematical (continued...)                  
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images corresponding to the same channel, this one only computes together those 
fields-of-view sharing the same position in each well. The reasoning behind this approach 
lies in the fact that, as explained above, shading artefacts are extremely dependent on 
the location of the sampled area relative to the well edges. Therefore, the retrospective 
strategy generates 25 different correction functions for a single channel. Conversely, the 
prospective method asks the user for reference images, namely, images acquired using 
the same microscope and settings but with no sample on the foreground. However, 
despite the difference between methods, the correction strategy remains the same: to 
enhance each tile composing the well by applying a unique correction function, different 
from the other tiles. Therefore, prospective illumination correction also requires 25 
reference images. It is also important to highlight that the use of HDF5, the preferred 
ilastik file type, has the advantage of being a lossless format but entails the loss of the 
image metadata. For this reason, the image scale is extracted and stored in a CSV file 
for its future retrieval.

3.3. Pixel classification

Detection is performed on the corrected images using an ilastik pixel classification 
workflow (Berg et al., 2019). Here it is important to discriminate between two different 
procedures: the training of the classifier and its subsequent application on an image 
dataset. Training the classifier is a critical step that could be time-consuming and 
computationally demanding. However, as long as researchers are able to keep consistent 
conditions during the sample preparation and imaging protocols, the trained classifiers 
should be reusable and the training step skipped for future experiments. Either one 
way or the other, the ilastik-based classifier is an essential part of the workflow which is 
embedded on the second Fiji macroinstruction.

As a supervised ML approach, pixel classification requires predefined classes and 
user annotations. These annotations are performed on a subset of arbitrary images 
that would serve as a representative sample of the diversity found among the fields-
of-view in the dataset. To facilitate the process, illumination in these images must be 
previously corrected. It is essential to generate an efficient, useful classifier since, as 

morphology operations are applied to the mask to fill holes and remove isolated pixels (6). Segmentation 
overlay (red) over the neurosphere probability map. (E) Workflow for the segmentation of the well, , which is 
performed on the background probability map. The established probability to be classified as a background 
pixel is displayed using the CET-D1 LUT (1). The probability is smoothed (not shown) and thresholded to 
segment the background (2). A size filter is applied to keep just the well background (3) and its convex hull is 
computed (green overlay in 4).
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explained above, the particularities of the imaging protocol used for the neurosphere 
assay generate great dissimilarities between different well areas (e.g., presence/absence 
of edges and neurospheres) and, despite the big efforts made to standardise image 
acquisition, all images are unlikely to be equally focused. Regarding the classes, the 
workflow uses three different labels: ‘background’, ‘neurospheres’ and ‘well edges’. The 
classifier combines features provided within ilastik (intensity, edge and texture features) 
using filters of different sizes but, in the end, it is programmed to export the output 
images in the form of probability maps instead of applying a semantic segmentation. 
Looking for a reasonable balance between segmentation quality and computational 
time, we have used four different sets of features to assess the performance of the 
classifiers and the required computational time (see section 4): i) one set including all the 
forty default features provided by ilastik (AF40); ii) a set of 10 features selected by means 
of the Filter Method implemented within ilastik (FM10); iii) a set of 20 features selected 
by means of the Filter Method implemented within ilastik (FM20); iii) the five features 
established applying the Wrapper Method with a 0.5 Size Set Penalty (WM5). These 
classifiers can be downloaded along with an image dataset following the instructions of 
the aforementioned GitHub repository.

The parametrisation of the second Fiji macro is more complex, as the script contains 
the main part of the bioimage analysis workflow, to be performed after the illumination 
correction. However, regarding the pixel classification, the user just needs to set a couple 
of input parameters: i) the image dataset to be analysed which, like the subset of images 
used to train the classifier, must have been previously corrected by means of the first 
script; ii) the trained classifier. Because after illumination correction images are exported 
as HDF5 files, this workflow uses the HDF5 importer from the ilastik plugin to load those 
images within Fiji. The next step accomplishes the major goal of this section: to use the 
ilastik plugin to compute the pixel classification following the rules established on the 
selected trained classifier generating a probability map (Figure 15B) in the form of a 
3-channel stack (one channel per pre-defined class) of 32-bit images normalized from 
0 to 1. Since it is not required for the analysis, the background channel is next removed 
and substituted by the corrected brightfield image, that must be previously converted 
to 32-bit and normalized from 0 to 1 in order to enable the merge. This process yields a 
new 3-channel image that is temporarily stored as a TIF file.

3.4. Stitching

The next step is stitching the tiles, now in the form of composite images including 
the corrected and normalized brightfield data and probability maps, to reconstruct the 
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wells (Figure 15C). To this aim, the macro applies the Grid/Collection stitching plugin 
(Preibisch, Saalfeld & Tomancak, 2009), which was implemented as part of the Fiji core. 
Of the large set of parameters customizable within this plugin, we have selected just a 
few of the most critical to ask for user input. Firstly, the plugin needs to map the spatial 
coordinates of one image to another to register and stitch them properly. Each image 
filename includes a digital code that identifies its position in the originally set grid, and 
the macro automatically recognises the ICA-2k notation for its registration. Secondly, 
it is important to take into account that the ICA-2k automated system acquires the 
25-fields-of-view grid row by row (or column by column) but can be programmed to do 
it either one by one from left to right (or up to down if acquired by column) or following 
a snake pattern (Figure 14). The user must indicate the chosen capturing method so 
the plugin can order properly the fields-of-view. Finally, the percentage of overlapping 
between tiles, as it was set on the imaging protocol, is a valuable information to perform 
the image registration, a critical step to compute the stitching algorithm. Once stitched, 
a huge composite image is obtained which is made up of three channels, each of them 
of an approximate size of 314 MB. The composite image is then split and channels are 
saved independently.

3.5. Segmentation and feature extraction

Segmentation is performed on probability maps, which are 32-bit images with a 
greyscale range from 0 to 1. To improve the object identification, a series of operations 
are performed on the neurospheres probability map image (Figure 15B). First, the 
application of a mean filter followed by thresholding for mask generation. Then, the 
macro fills the holes of the binary masks and applies a series of opening iterations 
to finally reject those objects smaller than 1,000 pixels (Figure 15D). As in previous 
workflows, some of these operations such as the mean filter radius, the thresholding 
values and the number of opening iterations can be adjusted by the user. Occasionally, 
this approach may segment particles that are placed outside the well boundaries and 
hence, cannot be accounted as neurospheres. To obtain a mask that only covers the well 
culture surface, the macro processes the edge probability map image. First, a median 
filter is applied to the probability map, which is then segmented using a 0.5 threshold. 
Finally, the smaller particles are removed and the convex hull of the remaining mask is 
obtained (Figure 15E).

At this point, the macro has generated two different masks, one containing the 
neurospheres and the other one defining the well surface. In order to keep only the 
particles inside the well, a binary reconstruction is performed using the well mask as 
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seed. The algorithm that performs this task is the implementation provided within the 
Landini’s Morphology update site. However, it is also common to get ill-segmented 
particles in the neurosphere mask around the inner region of the edges, where shadows 
and other imaging artefacts may be misinterpreted by the pixel classifier despite the 
illumination correction. To remove these objects from the assay, the well mask is slightly 
eroded before proceeding to the binary reconstruction.

Once the macro has segmented and filtered the neurospheres, they are ready to 
be counted and measured. Nevertheless, the reconstructed images do not keep the 
original set scale so, in order to measure area units instead of just pixels, the original 
scale is set again from the previously stored CSV file.

3.6. Output, reanalysis and data curation

Finally, features are extracted and stored on a CSV file. Apart from the object count 
(number of neurospheres) and the area and maximum Feret diameter (neurosphere 
maximum diameter), shape descriptors are also calculated, which may allow users to 
identify ill-segmented objects, e.g., looking for outliers. Additionally, the macro saves 
the segmented object ROIs and the three stitched images (corrected brightfield, 
neurospheres probabilities and edges probabilities) as separated TIF files. On one 
hand, the brightfield reconstruction can be used in combination with the stored ROIs to 
perform a visual inspection of the segmentation output. Besides, if researchers consider 
it necessary, these files can also be used for data curation in Fiji or a different software.

Finally, a third separated macroinstruction allows the user to reset the segmentation 
parameters in order to look for a better segmentation without having to run again the 
pixel classification and the stitching. Since these two steps account for most of the 
computational time required to perform the second workflow, this third optional macro 
allows a rapid test of the segmentation on the already generated images.

4. Case study: comparison between the proposed classifiers for 
neurosphere segmentation

For the training of the classifiers and the assessment of the workflow performance 
we conducted a neurosphere formation assay. Previously grown neurospheres were 
enzymatically disaggregated using Accutase® Cell Detachment Solution to obtain 
individual cells. Cells were counted and seeded on flat, solid bottom, clear CELLSTAR® 
96W Microplate (Sigma-Aldrich) at a cell density of 5 cells per µL (1000 cells per well) 
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suspended in growing medium. This type of microplates was selected because the well 
edges appear just as a fine line in the captured images instead of as a thick dark border 
obtained when using other commercial brands. Cells were grown for 4-5 DIV at 37 ºC in a 
5 % CO2 humidified incubator. Imaging was performed using the automated microscope 
ICA-2k acquiring only brightfield images with the 10x objective and 1x1 binning. A grid 
of 5x5 fields-of-view covering the whole well was set with a 15 % of overlap between 
contiguous pictures, and acquired on snake by rows fashion. These conditions allowed 
us to capture the whole well within 25 pictures. A static focal plane was set for each well 
to offer an overall, well-focused vision of the sample.

Randomly selected fields-of-view were annotated within ilastik for pixel 
classification. The same annotations were used for the different classifiers. Since we 
assayed four different classifiers, each based on a different number of extracted features 
(see section 3.3), we set up to compare their performance in the object segmentation. 
In order to do so, we ran our neurosphere workflow applying each of the four classifiers 
keeping constant the set of the tunable parameters (Table 10 in section 3.1). Moreover, 
a ground truth was manually annotated by an expert on the stitched images obtained 
from the transmitted light (corrected) channel, which was used to generate target masks. 
Then, we compared the segmentation output (predicted masks) obtained through our 
bioimage analysis workflow applying the four classifiers with the reference annotations 
(target masks). To this aim, we computed the average F1 score of all the annotated 
images across a range of IoU thresholds, starting from 0.5 up to 0.9, incrementing its 
value by 0.05 each round (see Figure 16A). Plotting this range of F1 scores it is possible 
to look at both the proportion of properly selected objects and the alignment between 
the target and the predicted masks. This metric has been used to assess segmentation 
performance in previous bioimage analysis studies, for instance, for nucleus segmentation 
both on tissue samples (Xing, Xie & Yang, 2016) and on fluorescence images (Caicedo 
et al., 2019a-b). For our study, we implemented a Fiji macro for the calculation of the 
F1 score which is available on the NeuroMol Lab update site [NeuroMol Lab > Assess 
Segmentation > Instance Segmentation].

All the tested classifiers performed similarly well on identifying target neurospheres, 
since all of them got F1 scores greater than 0.95 in the threshold range between 0.5 and 
0.65 (Figure 16A). From there, the score starts to slowly decay with a steep drop after 0.8. 
This indicates that, despite the fact that most of the neurospheres are properly identified, 
the alignment between the ground truth and the prediction is not perfect. Although the 
pattern is similar for all the classifiers, they go apart specially from 0.75 to 0.85, when 
the maximum divergence is observed. In this range, the best performing classifier is 
WM5 showing 15 points of advantage over the worst one (WM5= 0.63 vs FM10=0,47). 
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Figure 16. Evaluation of the segmentation performed by the neurosphere assay workflow 
by means of the identification of object-level errors. (A) F1 score plot for segmentation 
performance applying four different pixel classifiers (40, 20, 10 and 5 features) trained in ilastik 
or manually annotated by an expert (other than the one who annotated the ground truth). (B, 
C) Quantification of the computational time required by the workflow to perform stitching and 
segmentation (B) and pixel classification (C) when applying the different classifiers.

Therefore, in spite of the good results obtained with the four classifiers, WM5, being 
the classifier relying on fewer features, is the one performing better. Indeed, no major 
differences were observed between the F1 score obtained by the WM5 classifier and the 
target mask manually generated by a second annotator when both were compared with 
the ground truth.

Additionally, we were interested in knowing the computational time required 
by each classifier, since this is the most time-consuming step in the workflow. To this 
aim, we added a function within the second macro to calculate the computation time 
elapsed to perform: i) the pixel classification and ii) the stitching plus the segmentation. 
We ran the script thrice using each ilastik classifier to get the average elapsed time. No 
big differences were observed between the elapsed time required for the stitching and 
the segmentation among workflows, as all of them required about 1.6-2 min per well 
(Figure 16B). However, as might be expected, the number of included features during 
the pixel classification had a great impact on the computation time: whereas the use 
of AF40 took more than 40 minutes per well, WM5 showed to be the most efficient 
classifier, as it performed the pixel classification of an entire well in less than 10 minutes 
(Figure 16C). Overall, we conclude that WM5 is not only the classifier which performs 
a better segmentation, but also the fastest one. Moreover, despite the fact that pixel 
classification implies a considerable increase in computational time, manual annotation 
typically requires twice or trice the WM5 elapsed time.
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CHAPTER 4. BIOIMAGE ANALYSIS FOR THE STUDY OF 
(RE)MYELINATION

1. Biological background: (re)myelination and the role of the inner 
myelin tongue 

Oligodendrocytes in the CNS wrap their specialized cytoplasmic projections around 
axons to form the coating structure known as myelin sheath. This peculiar discontinuous 
cover not only insulates axons allowing for faster conduction of nerve impulses, but 
also confers structural protection and provides metabolic support to the underlying 
neuronal projections. In the CNS, OPCs give rise to myelinating oligodendrocytes both 
during embryonic development leading to the process of myelination and in response 
to injury or in the case of demyelinating pathology during the process of remyelination 
(Franklin & Ffrench-Constant, 2017). Due to the undeniable importance of these two 
processes, scientists have looked for approaches to quantify changes in myelin sheath 
thickness to help understand myelin biology in both physiological and pathological 
conditions. Indeed, there is a widespread method which has been applied for over 
one hundred years, thus becoming the gold standard in the field. Typically, axonal 
myelination/remyelination is assessed by means of the parameter known as g-ratio (G), 
defined in the field as the ratio of the axon diameter d to the fibre (axon + wrapped 
myelin sheath) diameter D:

𝐺𝐺 = 𝑑𝑑
𝐷𝐷 

According to this definition, the thicker the myelin sheath, the lower the g-ratio, 
which is equal to one in the absence of myelin. Diameter measurements are obtained 
either from light or electron microscopy (EM) images of axon cross-sections. However, 
section surfaces are irregular objects which, in the best case, approximate to a circle. 
Therefore, diameters are estimated from section areas applying a reductionist approach 
that assimilates them to perfect circles. Given that a circle has an area (A) of πr2, where 
r is equal to the circle radius, an estimated r (rest) can be inferred from the area formula:

𝑟𝑟��� =  �𝐴𝐴𝜋𝜋 

Nevertheless, being interested in obtaining an estimated diameter (dest) it is more 
useful to directly double the previous expression:
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𝑑𝑑��� = 2 �𝐴𝐴𝜋𝜋 

Since the g-ratio is considered a functional and structural index of optimal axonal 
myelination, several theoretical approaches have tried to establish an optimal g-ratio. 
The first one, based on the speed of the electrical conduction along the fibres, estimated 
an optimal g-ratio of 0.6 (Rushton, 1951). A more recent theoretical approach suggests 
a more optimised axonal microstructure, especially in the CNS, where axons are usually 
smaller and show thinner myelin membranes. Thus, the optimal g-ratio of the central 
fibres was amended to approximately 0.77 (Chomiak & Hu, 2009). Conversely, it has 
been observed that some peripheral axons have a tendency to produce lower g-ratio 
values than central axons (Chau et al., 2000). The smaller g-ratio of the peripheral fibres 
could be due to a structural design less constrained by volume. Specifically, according 
to the second model, approximately a 40 % reduction in the space limitation restriction 
would be necessary to decrease the predicted g-ratio to about the 0.6 observed on 
some peripheral fibres (Chomiak & Hu, 2009). Regarding remyelination assessment, 
areas submitted to a remyelination process are typically distinguished by their thinner 
myelin sheaths, i.e., lower g-ratios (Blakemore, 1974; Franklin & ffrench-Constant, 2017).

During myelination, CNS axons are discontinuously ensheathed by oligodendrocytes 
which harbour specialized transmembrane and membrane-associated proteins that 
confer myelin most of its properties. In order to do so, these cells emit cytoplasmic 
processes which are guided to reach the axon, maintain a close contact and wrap 
around to form the multi-layered and concentric cellular covering referred to as myelin 
internodes. How the myelin sheath is formed after the leading edge of the process 
contacts the axon has been debated for decades (Snaidero & Simons, 2014). This 
leading process is known as the inner myelin tongue, also referred as inner cytoplasmic 
tongue (henceforth just inner tongue) (Figure 17). The current model relies on an array of 
cutting-edge imaging and sample preparation techniques such as in vivo live-imaging, 
serial block-face imaging by focused ion beam, high-pressure freezing (HPF) and freeze 
substitution (FS) for a better preservation of the native myelin within EM samples. This 
model suggests that the myelin thickening is due to the wrapping of the apical inner 
tongue around the axon by progressing underneath the pre-formed wrap. In addition, 
each myelin layer has lateral pockets rich in cytoplasm, which are extended in close 
contact to the axon surface towards the future node allocated on the space between 
sheaths (Snaidero et al., 2014).
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Myelin compaction is driven by the membrane-associated MBP, starting just after a 
few wraps. Indeed, membrane growth and myelin compaction take place in a coordinated 
manner occurring first in the outermost, first-formed membrane wraps to avoid the 
untimely compaction of the innermost growing zone. Compaction is then progressively 
spread inwards, always lagging behind the growing region. During myelination, the 
inner tongue is enlarged and is rich in F-actin. Nonetheless, as myelin matures, the 
tongue narrows and F-actin dwindles (Snaidero & Simons, 2014; Michalski & Kothary, 
2015). Once active myelination is completed, a smaller inner tongue remains, although 
usually shrunken. Indeed, adult CNS fibres still preserve non-compacted cytoplasm at 
the ends of the myelin spiral, i.e., the inner and the outer tongues (Chang, Redmond & 
Chan, 2016).

Surprisingly, despite the importance of the inner tongue on the myelination 
process, it has been for long neglected when assessing myelination. As a matter of 
fact, the g-ratio disregards its existence. It may be due to diverse causes, but we could 
highlight two major reasons: i) it is an easily understandable and applicable method 
which, most decisively, has been proven to be reliable; ii) not all the imaging techniques 
enable the visualization of the inner tongue or they lack the sufficient detail for it to be 
accurately delineated. However, there are imaging techniques which empower the inner 
tongue acquisition, such as EM.

Figure 17. Axonal fibre cross-section structure. Transmission electron 
microscopy (TEM) image of a myelinated zone in the corpus callosum 
(scale bar 0.5 μm). A zoomed image (right, scale bar 0.2μm) of a 
myelinated axon shows its characteristic ultra-structure: the axoplasm 
(magenta arrowhead), often containing mitochondria (yellow arrowhead), 
is wrapped by the myelin sheath (white arrowhead); additionally, the 
inner tongue (cyan arrowhead) is the first layer of the myelin sheath 
that contacts the axon during myelination and remains uncompacted, as 
myelin compaction is carried out from the outer to the inner layer of the 
sheath without reaching the innermost area.
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Due to the great popularity of the g-ratio, a considerable number of bioimage 
analysis tools have been deployed over the years to assess the myelin thickness or even 
for a more complex quantification of the tissue microstructure. Nonetheless, among 
these methods, just a few are publicly available. To date, a wide variety of approaches 
have been conducted, most of which are based on classical image processing algorithms 
usually implemented in semi-automated workflows that often require several post-
processing steps. Among these, there are methods based on thresholding algorithms 
followed by mathematical morphological operations (Romero et al., 2000), region 
growing (Zhao et al., 2009; More et al., 2011), watershed (Wang et al., 2012; Liu et al., 
2012) or active contours (Bégin et al., 2014; Zaimi et al., 2016). Furthermore, DL methods 
can also be found (Zaimi et al., 2018; Moiseev, Hu & Li, 2019). Some of them rely on 
very basic approaches just estimating axon radius and myelin thickness while others opt 
for more thorough analyses. ACSON, for instance, is an interesting pipeline for the 3D 
analysis of the axonal ultrastructure which enables the segmentation of myelin, axons 
(either myelinated or unmyelinated), mitochondria, vacuoles and surrounding cells 
(Abdollahzadeh et al., 2019). Each method has its assets and caveats, being some of 
them really promising approaches. However, none of them implement the segmentation 
of the inner tongue. That pushed us to be, to the best of our knowledge, the first ones 
attempting this job.

The proposed analysis requires images obtained by EM which is the sole microscopy 
technique that allows reliable visualization of the inner tongue. In this particular case, 
TEM images had already been generated, following the protocol included in the Material 
and Methods section.

2. Bioimage analysis

Unlike other approaches aimed to enable the analysis of images acquired throughout 
a wide range of imaging techniques (Zaimi et al., 2018), our goal is to be able to segment 
the inner tongue. Indeed, our approach enables the semi-automated segmentation of 
the three main fibre constituents: axoplasm, inner tongue and myelin, provided that 
the image dataset shows the inner tongue with sufficient detail. Therefore, we focused 
on TEM (Figure 18A). This can be eventually combined with the use of other advanced 
sample preparation techniques (Möbius et al., 2010; Snaidero & Simons, 2014; Steyer, 
Ruhwedel & Möbius, 2019), such as HPF and FS. Although not strictly necessary, these 
sample preparation techniques might greatly enhance the workflow performance. Our 
strategy (see Figure 18) relies on supervised machine-learning methods implemented 
in ilastik to improve the segmentation and combines automated image processing with 
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Figure 18. Semi-automated bioimage 
analysis workflow for the segmentation of 
the compacted myelin, the inner tongue 
and the axoplasm on fibres cross-sections. 
(A) Raw data input. (B) Pixel classification 
scores each pixel as: myelin, axoplasm or 
membrane. The classifier is trained drawing 
labels over the raw data. (C) The output of 
the pixel classification is a probabilities map 
(top), much easier to process than the TEM 
raw data. Pixels belonging to the axoplasm 
class are computed to obtain object 
instances (middle). Object classification 
scores each instance as axons or inner 
cytoplasmic tongues (ICT), though two 
different classes are defined for the axons 
according to size (bottom). Objects outside 
myelin will not affect the analysis since they 
will be eliminated later on. The classifiers can 
be reused for different image datasets. (D-
I) A human-supervised workflow follows the 
ML steps. User-required edition (asterisk). 
(D) The myelin probabilities data are taken 
as input. (E) The myelin is processed and 
inverted to select potential myelinated 
axons (myelin inner boundary). The user can 
refine the selection. (F) Voronoi territories 
are defined after the selected objects in 
order to split the myelin. (G) Then the user 
can improve the selection of the myelin 
outer boundaries. (H) After that, the object 
prediction from ilastik is imported. (I) ICT are 
rejected and only axons wrapped by myelin 
are recovered. Users can also improve the 
axoplasm boundaries. (J-K) The macro stores 
the regions of interest (ROI) generated in 
three different sets: axoplasm, myelin inner 
and myelin outer boundaries. (J) Each axon 
data is measured from its three ROI (top). 
Axons on the image edges only generate 
the myelin inner boundaries, so it will be 
counted but not measured. Users also can 
reject the measurement of ill-quality axons 
deleting the outer myelin boundaries during 
the human-supervised process (bottom). (K) 
Myelin and axons overlay of the measured 
axons.



122

Results

interactive user-edition stages. Requirements, installation and usage documentation, as 
well as an example image dataset and its corresponding ilastik projects, are provided in 
GitHub (https://github.com/paucabar/axon_aim).

Currently, our tool consists of several independent workflows to be run sequentially. 
Segmentation relies on both pixel and object classification based on classifiers trained 
in ilastik. To make the files recognizable by ilastik, if necessary, an optional ImageJ 
macroinstruction can be applied to pre-process the dataset before the pattern 
recognition step. After the ilastik workflows, the output of both classifiers is used as 
the input of a semi-automated segmentation workflow. Finally, an ImageJ macro script 
automatically corrects and integrates the previously generated data before generating 
the corresponding results table. In the workflow design, we have taken into account the 
following considerations:

●	 The initial steps of the workflow are performed in ilastik which, unlike Fiji, 
recognises a limited number of image formats. For this reason, we decided 
to include an optional step to convert an image dataset into a file format 
compatible with ilastik. Moreover, this workflow also allows to apply some 
basic adjustments that may be useful to make a specific dataset more 
similar to the one used on a previously generated ilastik classifier (see 3.1).

●	 TEM acquires high resolution images, enabling the visualization of the 
inner tongue among many other structures. Nonetheless, the complexity 
of such images also makes the segmentation of its different components 
more difficult just by means of classical image processing algorithms. As 
aforementioned, in order to facilitate the segmentation of the fibres and 
their different compartments we apply several machine-learning methods 
implemented within ilastik (see 3.2).

●	 After that, the ilastik output is used to perform the sequential segmentation 
of: i) the object defined by the inner myelin boundary (IMB), i.e., the 
axoplasm plus the inner tongue, ii) the whole fibre (axoplasm + inner tongue 
+ myelin sheath) and iii) just the axoplasm without any oligodendrocyte-
derived structure. Then, working with these regions, it is possible to 
automatically estimate the myelin thickness, the inner tongue area or the 
axon diameter, among many other parameters. Nonetheless, despite the 
usage of machine-learning methods, the complexity of the TEM datasets 
still makes it difficult to generate a perfect automatic segmentation. 
Therefore, we decided to deploy a semi-automated workflow in which 
the ImageJ macro automatically obtains the corresponding ROIs and then 
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stops, enabling the user to check the selection subset and, if required, edit 
the output before proceeding to the next phase (see 3.3).

●	 Prior to the final measurement and construction of the results table, 
the macro includes several more steps intended to: i) check the manual 
amends introduced by the user and make sure they are meaningful, and ii) 
integrate the extracted objects by linking together all the identified ROIs 
belonging to the same fibre in order to allow a comprehensive analysis. 
Data correction, integration and quantification is a fully-automated 
process (see 3.4).

3.1. Pre-processing

Before starting the training, our workflow includes an optional, short ImageJ script 
to convert the image dataset into TIF or HDF5 files. To exemplify this step, images in 
our GitHub available example dataset are in DM3 format, which is not recognized by 
ilastik. Therefore, they must be converted into an ilastik-readable format using the pre-
processing macro. Additionally, the macro can also be set either to reduce the bit-depth 
to 8-bit or to normalize the dataset as 32-bit images.

3.2. Pixel and object classification

Machine-learning methods and, particularly, pixel classification, have been 
demonstrated to be a useful approach to overcome the segmentation of EM images 
(Kreshuk et al., 2014; Kreshuk & Zhang, 2019). Therefore, the starting point of our workflow 
are two classifiers trained using supervised machine-learning tools implemented within 
ilastik. Specifically, an initial pixel classification results in a probability map that is used as 
input for the second classifier. Note that there is a difference between the training of the 
classifier, which can be skipped once successfully performed since it might be applied 
to similar datasets, and processing the image dataset applying a previously generated 
classifier, an essential stage of the workflow (see 3.3 at Chapter 3).

The training is performed in a small subset of images randomly selected as the 
training set for both pixel and object classification. It classifies pixels according to three 
different labels: i) compacted myelin, ii) cytoplasm, either from the fiber (axoplasm) 
or the oligodendrocyte (the inner tongue, regions of non-compacted myelin or 
the cell bodies), and iii) cell membranes, either the axolemma or the inner tongue 
membrane. The classifier requires user annotations and a set of features to be trained 
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(Figure 18B). In our classifier, features were automatically selected using the Wrapper 
Method implemented within ilastik with a 0.5 Size Set Penalty. Output images after 
pixel classification are exported as probability maps and, together with the raw data, 
constitute the input of the subsequent object classification. This second process 
performs an instance segmentation (i.e., extracts objects) to classify the instances. In 
order to do so, the cytoplasm probability map is smoothed (0.6 sigma), thresholded (0.5 
threshold) and size-filtered (objects smaller than 2500 pixels are rejected because in 
this experimental design they cannot correspond to objects of interest). Unlike ilastik’s 
pixel classification, where annotations are added by painting brushstrokes on the raw 
input images, annotation in the object classification step is carried out mouse-clicking 
on the segmented objects. Moreover, as a supervised machine-learning technique, it 
also requires pre-defined classes to train the classifier. We have defined three different 
classes:  two different axoplasm cross-sections (larger or smaller) and inner tongue 
cross-sections. The rest of the objects obtained through the instance segmentation, 
such as cells or unmyelinated axons are not annotated during the training process, 
and thus their predictions ignored. Regarding the object features, for the provided 
training we just included all those implemented within ilastik, with the exception of 
the location features. Once trained, predicted objects are exported on a labelled image 
where background pixels are black (0), whereas foreground pixels take the value of the 
assigned object class: 1 and 2 for axoplasms or 3 for the inner tongues (Figure 18C).

Unlike the neurosphere assay workflow, ilastik classifiers are not integrated within 
a Fiji macro but kept as independent processes to be run separately. The reason behind 
this decision lies in the fact that we have developed a semi-automated workflow that 
will require the user intervention at some point. As shown in the previous chapter, pixel 
classification can be a demanding process in terms of computational time and memory 
use. Consequently, having the ilastik classifiers (both pixel and object classification) 
combined with the rest of the workflow in a single run would keep the user waiting 
for too long, making the supervision process much less convenient. Therefore, the 
classifiers must be run as a previous step before the human-supervised segmentation. 
Additionally, we decided to keep each classifier as an independent step, despite the fact 
that ilastik enables the generation of workflows combining pixel and object classification. 
However, this combination requires more computational time and is specially RAM-
demanding, which may limit its operation in many computers. The classifiers must be 
run sequentially, since the object classification relies on both the raw (or pre-processed 
data) and the probability map generated by means of the pixel classification. Probability 
maps are exported as HDF5, 3-channel files, whereas object predictions are exported as 
labelled TIF images.
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3.3. Human-supervised segmentation of the fibre cross-section

As a semi-automated tool, unlike the batch processes described in previous chapters, 
the workflow is limited to analyse only one image at a time. Since no parametrisation 
is required, the user just needs to select an image and the segmentation workflow will 
start after verifying that both the corresponding probability map and object prediction 
are available on the same folder. The workflow is divided in three stages (one per each 
fibre cross-section region to be independently segmented) each of them split into an 
automated and a user-edition sub-stages (Figure 18D-I).

On the stage 1, the macro starts by importing the probability map (HDF5 file) 
corresponding to the image to be analysed using the ilastik plugin. Then, the script 
works with a duplicate of the myelin probability, but with the aim to segment just the IMB 
(i.e., the fibre without the myelin wrap). First, a rough oversegmentation of the myelin 
is performed (0.2 threshold), duplicated and inverted. Then, the generated objects are 
split into two different images, one containing the incomplete objects touching the 
edges and the other one with the rest (i.e., complete objects). Afterwards, objects are 
filtered by circularity, being more permissive with incomplete objects (keep 0.3-1.0) than 
complete objects (keep 0.4-1.0), which also are submitted to a size filter (reject < 1000 
pixels). Finally, all objects are combined on a single image using the Boolean OR. This 
selection constitutes the IMB objects automatically suggested to the user. The process 
stops to enable the visual inspection and, if needed, manual correction of the selection. 
To this aim, selected IMB objects are sent to the ROI Manager and displayed on the 
original raw image. Moreover, the raw data is merged in a composite image with two 
additional channels: the mask of the selected objects is set on the red channel, whereas 
the mask containing all the rejected objects (during the filtering process) is set on the 
blue channel. This facilitates the manual incorporation of incorrectly rejected objects, 
which can be selected just using the ImageJ wand tool (blue channel is automatically 
set to enable this function). Additionally, the user is free to apply any ImageJ selection 
tool to amend the selection before the script automatically saves the IMB-ROI set and 
proceeds to the next stage.

On the second stage, the workflow uses the IMB-ROI set to generate Voronoi 
territories with the aim of separating touching fibres cross-sections. Therefore, the macro 
employs the ROI set generated during the first stage to obtain the corresponding binary 
mask. Then, the Voronoi command generates an 8-bit image of the territory borders 
that is segmented (including 1-255 grey values, i.e., all the pixels except those with a 
value of 0), dilated (2 iterations) and inverted, thus obtaining the characteristic Voronoi 
cells. The Boolean AND is next applied between the myelin segmentation obtained 
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on the first stage and the Voronoi masks, so touching myelin sheaths are separated 
according to the IMB segmentation. After this, isolated myelin-sheath-objects are filled 
to obtain fibre objects and those touching the image borders are excluded. Finally, 
fibres are submitted to an open operation (20 iterations) in order to smooth their edges. 
Moreover, oversegmented prominences are pruned, and pruned ends removed. At this 
point, the workflow waits for the user supervision displaying the obtained fibre-ROIs 
on the raw data. Moreover, raw data is merged with the IMB mask, set on the magenta 
channel, in order to help the user to easily visualize which objects were part of the final 
selection during the first stage. In this case, no additional channels are added. Because 
the whole strategy does not require filtering there are no objects which could have been 
rejected by mistake, so the only automatically rejected objects are the fibres touching 
the borders, due to their incomplete area. Conversely, during the IMB segmentation, 
incomplete objects were not removed for two reasons: i) these objects are necessary to 
generate accurate Voronoi territories at the beginning of this stage and ii), this allows to 
count the number of total myelinated axons (i.e., complete and incomplete axons on the 
image), an additional relevant parameter when assessing remyelination. Furthermore, as 
in the previous stage, the user can still edit the selection before exporting the fibre-ROI 
set and proceeding to the last stage.

On the third stage, the macro opens the object probabilities to perform the 
axoplasm segmentation. Since it is a labelled image, this is easily thresholded including 
the axoplasm classes obtained by means of the object classification (1-2 range). Then, 
objects are submitted to an open operation (5 iterations) and filled before applying 
the Boolean operator AND in order to reject those pixels which are not covered by 
the IMB mask. This generated mask is still post-processed since their segmentation 
is initially based on the axoplasm probability map, resulting objects may sometimes 
appear incomplete, e.g., due to the presence of mitochondria or other organelles. 
Nonetheless, taking into account that axoplasms are the most convex objects of the 
three sets, to circumvent the problem of incomplete masks, the convex hull of the objects 
is computed and suggested as the axoplasm mask. After this automated process, the 
macro stops and asks for the user supervision for the last time, showing the suggested 
axoplasm-ROI set on the raw image (Figure 18J-K). Additionally, objects classified as 
inner tongues are also segmented (label 3) and submitted to a post-processing similar 
to the one applied to the axoplasms. The resulting masks are then merged (set on 
the blue channel) with the raw data. As in the first stage, this enables the addition of 
incorrectly rejected axoplasms just using the wand tool. Additionally, the myelin sheath 
mask of the complete fibre sections (those with their corresponding IMB-ROI and fibre-
ROI) is set as an additional channel (magenta), so the user can easily identify a complete 
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fibre missing its corresponding axoplasm-ROI. Finally, the user can edit the selection 
before storing the axoplasm-ROI set.

3.4. Automated correction, integration and quantification of the ROI sets

Once the three ROI sets have been obtained, the last macro quantifies their 
corresponding areas. However, some additional steps are required before proceeding 
to the feature extraction. First, images lacking any of the three ROI sets are avoided, 
so the workflow can be applied to an entire folder even if the dataset segmentation 
has not been fully accomplished. Conversely, those images ready to be quantified may 
require a correction step to improve the quality of their ROI sets. On one hand, user-
edition stages may lead to the introduction of artefacts within the different ROI sets. 
This last workflow automatically fixes the most typical issue that we have observed: 
the macro automatically removes individual or small groups of pixels isolated from the 
actual ROI. It usually happens as a result of a partial erase of some ROIs looking for a 
better accuracy, as some users may not realize of the residuary pixels when performing 
this kind of freehand edition. Moreover, in order to avoid unnecessary work, the lack 
of the axoplasm-ROI for a certain fibre cross-section is interpreted as the absence of 
inner tongue on the fibre (due to an almost total shrinkage), which prevents the user 
from having to generate two identical ROIs (since IMB and axon surfaces are exactly the 
same in this specific case) during the previous semi-automated workflow. Instead, an 
axoplasm-ROI is automatically generated as a copy of the IMB-ROI, thus completing the 
partial axoplasm-ROI set and circumventing any conflict regarding the IMB-axoplasm 
area coverage. Last but not least, the workflow codifies the ROIs in order to bound the 
different components belonging to the same fibre between the three ROI sets, which is 
a critical step to perform a meaningful quantification. In addition, codes will allow the 
user to trace fibres components back from the results table to the image dataset.

Since this process requires the conversion of the ROI sets into either binary masks 
or labelled images, once checked that an image has its corresponding ROI sets, the 
macro gets the raw image scale and dimensions. Then, a new black, 8-bit, scaled, equally-
dimensioned image is created and the IMB-ROIs imported, so the macro iteratively 
generates the mask of each ROI and checks how many particles are obtained per ROI 
keeping only the larger one. These filtered masks are progressively added to the black 
image using the Boolean operator OR. Formerly, Analyze Particles plugin is used to 
generate the new, corrected ROIs and a labelled image, i.e., a greyscale image where 
background pixels are set as black (0) while the filled outlines of the analysed particles 
are painted with the value corresponding to the object number (1, 2, 3…). Moreover, 
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ROIs are renamed using a three-digit code of the object number and saved overwriting 
the old ones. Later on, the macro also obtains a labelled image of the fibre-ROIs. In this 
case it is not necessary to filter the masks, since the final fibre-ROIs will be reconstructed 
from IMB coordinates, thus avoiding residuary pixels. In this case, the use of labels 
enables the separation of fibres touching each other when working with the labelled 
image instead of the ROIs. Despite the fact that our image processing approach cannot 
generate touching masks, we decided to take this precaution because it is possible for 
the user to introduce touching fibre-ROIs by mistake. Regarding the axon-ROIs, just a 
conventional binary mask is created.

At this point, the macro has already generated a set of IMB-ROIs ready for 
quantification, while the fibre labelled image and the axon binary mask are just 
intermediate steps. The area of the IMB-ROIs is calculated, as well as the starting 
coordinates of the Feret’s diameter. We extract these coordinates instead of the centroid 
ones, since, although unlikely enough in the case of the fibres cross-section, the centroid 
may not necessarily be located inside the object boundaries. The coordinates are used 
to check the corresponding pixel value within the fibre-labelled image. If the value is 
greater than zero, the fibre cross-section is selected by means of the wand tool. Since it is 
done on a labelled image, only the corresponding section is selected, even if neighbour 
sections are in direct contact. The wand selection is added as a ROI, renamed with 
the three-digit code of the corresponding IMB-ROI and its area is measured. However, 
if the pixel value is equal to zero the three area measurements (axoplasm, IMB and 
fibre) are set as NaN (not a number). This way, in the absence of an IMB-ROI, the fibre 
will be skipped for the analysis. Conversely, fibres with only the IMB-ROI (but not the 
other two corresponding sets) are included within the results table but with their area 
measurements stored as NaN, so the myelinated axon is counted but not measured. It 
allows to count ill-quality fibres (e.g., damaged during the sample preparation process) 
or incomplete fibres (i.e., those touching the edges of the image) without including 
biased size measurements.

In the end, fibres with data set as NaN are automatically skipped in the last axon 
correction and quantification steps. For the rest, the masks of each IMB cross-section are 
iteratively obtained to calculate its corresponding axon mask by means of the Boolean 
AND. In case more than one particle is obtained, only the larger one is measured, 
added as a ROI and renamed according to the corresponding IMB-ROI three-digit code. 
Conversely, if no mask is found, a copy of the corresponding IMB-ROI, identically sized 
and coded, is added as the axoplasm-ROI. As aforementioned, this is due to the fact that 
fibre cross-sections with no inner tongue do not need different ROIs for the IMB and the 
axoplasm sections. Finally, the obtained results table is set to include one row per each 
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identified fibre while columns store both metadata (image filename and fibre code) and 
the area of the three components: axoplasm, IMB and fibre.

3. Case study: evaluation of the fibre, inner myelin boundary and 
axoplasm segmentation on an experimental dataset

In order to quantitatively assess the performance of the workflow, we compared 
the segmentation output obtained using the macro described in this chapter with a 
ground truth manually annotated by an expert. This was performed on TEM images 
different from those used to train the classifiers. TEM in vivo images were obtained from 
CC remyelinating areas previously submitted to a demyelination lesion by the injection 
of the toxin LPC. As already mentioned, one critical point in our design are the user-
supervised steps intended to correct the automatic segmentation. Therefore, to evaluate 
the impact of such manual steps, we compared the expert’s fully manual ground truth 
with to different workflow outputs: i) one completely automated, without any user 
intervention and, ii) one semi-automated including all the user supervised steps but 
just allowing either to delete ROIs or to add new ones using the wand tool to select the 
instances automatically suggested by the Fiji macro, avoiding the usage of the freehand 
selection tool for the ROI edition. To make it comparable, the expert annotations 
avoided axons touching the image edges, since the script only extracts quantitative 
measurements from complete axons. Additionally, the sample preparation process for 
TEM imaging can affect the integrity of some axons, e.g., causing the deformation of 
the fibre or damaging its structure to an extent which precludes the recognition of its 
components. As artefacts, these fibres were not annotated either.

Regarding the experimental datasets, both automated and semi-automated 
predictions were processed in the same manner after the corresponding segmentation 
strategy. However, since discarding of the border-touching objects is performed 
later on the workflow, in order to make the predictions comparable just after the 
segmentation step, edge-touching ROIs were deleted using the function described for 
the StarDist workflow (see section 2.3 on Chapter 2). This function is also provided as an 
independent macro within the NeuroMol Lab site [NeuroMol Lab > other macros > roi 
exclude edges]. Finally, the resulting sets were submitted to the automated correction 
provided on the last script of our tool (see section 3.4). The metric used to assess the 
performance of our method was the F1 score. Evaluation was performed by means of 
the macro described in the Materials and Methods section. The average F1 score of all 
the annotated images was calculated across a range of IoU thresholds, starting from 
0.5 up to 0.9 (increasing by 0.05). Scores were computed for fibre, IMB and axoplasm 
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instances independently.

As shown in Figure 19, the automated approach demonstrated a considerable 
capability to predict the fibre constituents, being the fibre the object that the method 
seems to identify the better. Moreover, as might be expected, these results can 
be significantly improved by allowing the user to revise and amend the segmented 
objects, even with the limitation of not allowing to draw ROIs with the freehand tool. 
This enhancement is most noticeable in the fibre segmentation, with an average F1 
score improvement close to 0.06 among the different IoU thresholds, with its maximum 
(0.09) when a 0.9 IoU threshold is set. The axoplasm has been confirmed to be the 
most difficult element to be segmented and the less prone to be enhanced without 
a greater user intervention (limiting the use of freehand selection tools). This makes 
sense since, as the last segmented objects, the axoplasm set is affected by the errors 
accumulated during the first two stages, which determine what is and what is not an 
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axon. Additionally, the axoplasm segmentation faces other issues such as the axolemma 
thinness, which occasionally precludes its detection, and the presence of electron-dense 
bodies within the axoplasm, such as mitochondria or neurofilaments. Regardless, good-
quality axoplasms are nicely segmented in general, which highlights the importance of 
the sample preparation for the workflow output. Finally, as a semi-automated method, 
ill-segmented objects can be improved on-the-fly benefiting the segmentation of 
subsequent stages. Indeed, this semi-automated approach has demonstrated to be 
much more efficient than the fully-manual strategy previously applied. Semi-automation 
reduces considerably the time dedicated to manual annotation, thus enabling the 
analysis of a greater number of fibres. As a matter of fact, before the implementation of 

Figure 19. Evaluation of the fibre components (axoplasm, inner myelin boundary and fibre) segmentation 
performed either in a fully automated or a supervised, machine-aided way. The assessment is performed 
calculating the object-level metric known as F1 score, which is plotted for increasing IoU thresholds for the 
estimation of shape-matching accuracy in both the automated and the supervised results.
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our semi-automated tool, manual annotation was restricted to half of each TEM image 
surface in order to make the analysis feasible, whereas now the annotation process is 
much faster even analysing whole images.
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The bioimaging field has quickly evolved during the last years with the 
implementation of hardware and software for greater automation at the different stages 
that compose a microscopy-based experiment. The topmost representatives of these 
forefront methodologies are those combining high-content imaging with automated 
bioimage analysis protocols, although there is a whole spectrum of intermediate levels 
of throughput up to the manual analysis that is still practiced in many fields. Therefore, 
a big effort is still to be made in order to spread the use of cutting-edge imaging 
technologies throughout the life science fields relying on image-based experiments. 

In this thesis, we have aimed to generate bioimage analysis workflows, in some 
cases including the development and optimization of the experimental and imaging 
setups, for the study of brain-specific processes in the field of regeneration. On one 
hand, we hypothesised that it would be possible to adopt microscopy-based screenings 
combined with automated bioimage analysis for the in vitro study of the subependymal 
NSCs with an emphasis in well-conducted pre-processing steps, which have involved the 
adoption of different illumination correction strategies or the search for more optimised 
protocols to generate rules for the detection of fields-of-view affected by blur. In the 
present work we show that automated bioimage analysis protocols developed for the 
study of cultured NSCs improve the throughput and the reproducibility of the in vitro 
assays of different kinds and analytical complexity. 

On the other hand, we looked at the possibility to semi-automate the TEM analysis 
of in vivo experiments for the assessment of remyelination. We also show that the 
combination of supervised ML with semi-automated  segmentation of fibre cross-
sections on TEM images contributes to enhance the analysis throughput of experiments 
aimed to quantify classic metrics just as the g-ratio, whereas it also empowers the 
inclusion of novel metrics by including inner-tongue-based features to assess new 
parameters.

The study of the NSC biology, despite reaching its greatest level of complexity 
when performed in vivo, heavily relies on in vitro practices that allow much easier and 
versatile decomposition and manipulation of the system variables. As a matter of fact, 
the emerging field of postnatal mammalian neurogenesis in the eighties leapt forward 
thanks to the establishment of in vitro conditions to selectively culture and expand 
primary neurospheres from adult brain neurogenic niches, which demonstrated the 
existence of adult stem cells in the organ (Reynolds & Weiss, 1992). Since then, a series 
of assays have been developed to address numerous hypotheses that may sometimes 
be difficult to confirm just conducting in vivo experiments. Among these in vitro assays, 
the most extensively used are aimed to assess the inherent properties of the stem cells, 
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i.e. self-renewal and multipotency. However, the versatility of the in vitro techniques 
enables the development of additional assays to address other aspects of the NSC 
biology such as proliferation rate, transcriptional profile, metabolism, intracellular 
signalling or adhesion, among many others. Despite the convenience of these assays, 
the value and potential of the neurosphere cultures is not devoid of detractors. In fact, 
there are several limitations of the in vitro NSC cultures that cannot be overlooked: the 
lack of surrounding niche elements and signals, the fact that there is no easy direct 
correlation between neurosphere cells and the SEZ cell types found in vivo, the assumed 
heterogeneity of the culture which is supposed to contain both NSCs and progenitors 
along with more committed progeny, or the limited number of passages that NSCs can 
be maintained before starting to be unreliable due to excessive adaptation to the culture 
conditions and/or telomere shortening (Jensen & Parmar, 2006; Ferrón et al., 2009; 
Belenguer et al., 2016). Nonetheless, the field has experienced exciting advances during 
the past few years. For example, our lab has recently identified diverse populations with 
distinct proliferative dynamics in neurosphere cultures, suggesting that NSCs in different 
states of activation might be found in the culture. We have shown that slow-proliferating 
cells with a molecular profile compatible with in vivo primed-NSCs coexist with activated 
NSCs with a higher proliferative rate in in vitro cultures (Belenguer et al, 2020). This 
observation opens a new road for the study of this interesting and unexplored NSC state. 
Another exciting in vitro approach which may contribute to a better understanding of 
the NSC properties is the deployment of protocols for the maintenance of the cultured 
cells in a quiescence-like state (Martynoga et al, 2013). Most of these advancements 
have been possible thanks to the adoption of FACS-based protocols, which along 
with the classical in vitro assays, have become an essential tool for the field. In this 
context, we considered that the development of high-content screening protocols 
based on some of the most common NSC in vitro assays could provide powerful tools 
to address these new challenges. Additionally, by applying high-content imaging and 
automated bioimage analysis strategies for the study of NSCs in vitro cultures, not only 
we can increase the throughput of such assays but also eliminate the user-introduced 
bias during the analysis. Finally, in the present thesis, we have introduced several 
experimental and imaging setups that would allow better standardisation. Hence, we 
have been able to apply our tools in experimental case studies obtaining reliable results. 
Thus, in our opinion, fostering the adoption of microscopy-based screening methods 
has the potential to become a new boost on the field by, e.g., enabling quantitative 
analysis of image-based protocols previously unquantifiable or the possibility to assess 
multiple experimental conditions at the same time, among other advantages.
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Mechanistic studies of remyelination mostly rely on well established in vivo 
models of chemical-induced demyelination. These methods enable the assessment 
of remyelination without the confounding variable of the concomitant demyelination 
process typically occurring in pathological scenarios. For the analysis of these 
experiments, it is necessary to extract quantitative data about the newly-formed myelin 
sheaths after the recruitment of OPCs. The gold standard for quantifying myelin, the 
g-ratio index, is extensively used in remyelination research, among other fields studying 
the properties of the white matter. It is used as an approximation to the thickness of 
the myelin ensheathment and is typically measured in fibres cross-sections in images 
acquired by diverse microscopy techniques. However, in spite of its well-proven 
usefulness, the method is limited by the necessity  to assimilate fibre cross-sections to a 
perfect circle. This has led researchers to look for complementary metrics with the aim to 
better describe the reality of the complex morphology of axonal fibres. Some examples 
of companion parameters are the myelin thickness, the fibre cross-section area or the 
diameter of the fibre and the axon (Giacci et al., 2018; Ferrari Bardile et al., 2019). Most 
of these metrics can be extracted from the same annotations which are required for the 
calculation of the g-ratio. Notwithstanding, the g-ratio approach neglects a key player 
in the (re)myelination process, the inner tongue. Indeed, the assessment of metrics 
related with the inner tongue is gaining popularity and some new parameters have been 
proposed, such as a modification of the classical g-ratio consisting in the subtraction of 
the inner tongue area from the total fibre area for the calculation of the fibre diameter 
(Meschkat et al., 2020). Thus, a corrected fibre diameter (Dcorr) is first calculated after the 
quantification of the compact myelin area (Amy), the non-compact myelin, i.e., the inner 
tongue area (Ait) and the axoplasm area (Aax):

𝐷𝐷���� � 2����� � ��� � ����
𝜋𝜋  

Therefore, the corrected g-ratio (Gcorr) is a ratio of the axoplasm diameter (d) to the 
Dcorr:

𝐺𝐺���� � 𝑑𝑑
𝐷𝐷����  

In this case the additional annotation of the inner tongue is required for the 
analysis. Therefore, we considered that a tool for the assistance during the annotation 
of the myelin sheath, the inner tongue and the axoplasm on fibre cross-sections could 
be helpful to overcome the bioimage analysis bottleneck. Indeed, our user-supervised 
approach increases the throughput of the assay and enables the quantification of the 



138

Discussion

classic g-ratio along with many other complementary metrics. The use of multiple metrics 
has the potential to enable the characterisation of diverse phenotypes that could not be 
appreciated quantifying a single, even if meaningful, parameter. For example, this may 
enable the application of gating strategies or ML methods for the classification of fibres. 
Moreover, the development of novel DL methods highly depends on the generation 
of richly-annotated datasets, which is a tedious and time consuming task. Thus, the 
existence of user-friendly tools for the annotation of ground truths may also benefit the 
field.

Furthermore, although we focused on the in vivo models, it is also possible to isolate 
and culture OPCs for the study of their properties (Chen et al., 2007; Medina-Rodríguez 
et al., 2013). In the context of my stay at the MRC Centre for Regenerative Medicine 
I had the opportunity to work on a bioimage analysis pipeline for the quantification 
of cell phenotypes on OPC cultures (https://github.com/paucabar/oligodendrocyte_
differentiation) that we have not included in the Results section. Although we did not 
attempt the adoption of high-content imaging methods for these assays, our experience 
suggests that it could be an interesting approach. However, OPC cultures present some 
limitations compared with neurosphere cultures, being the major one that often subtle 
cellular changes lead to phenotypic drift over the passages (Lin et al., 2006).

Setting up a high-content screening assay: the neverending story?

As already mentioned, the proper optimisation of the experimental conditions and 
imaging protocols has a profound beneficial impact on the development of the analysis 
workflow. In fact, the positive influence can be bidirectional if both the experimental 
setup and the analysis strategy are developed in parallel  (Boutros, Heigwer & Laufer, 
2015). As a matter of fact, there are many factors in the experimental and imaging setup 
that can be improved to facilitate the segmentation of the desired objects, such as the 
establishment of the staining procedures, the magnification, exposure time or binning 
during the capture or even not so obvious variables such as the chosen labware or the 
experimental strategy itself. For example, the images that we initially obtained in the 
neurosphere assay by seeding the NSCs in the culture multiwell plates that we regularly 
used in the lab at that moment, displayed a prominent dark ring in the periphery of each 
well caused by an aberration introduced by the plastic wall. This simple fact turned into 
an irresolvable bioimage analysis issue as, despite the application of several restoration 
operations, it prevented the segmentation of the neurospheres in the well border. 
Curiously, a simple change of brand solved one of the main obstacles of the analysis. 
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Otherwise, the first adhesion assays were performed allowing sufficient time for the 
NSCs to attach the monolayer and express their morphological phenotype before 
labelling by means of nestin immunostaining, since activated NSCs express the EGF 
receptor and nestin (Codega et al, 2014; Mich et al, 2014; Chaker, Codega & Doetsch, 
2016). However, this approach made it difficult to individualise attached cells in close 
proximity, which implied a much complex parametrisation for the bioimage analysis. 
Therefore, we decided to shorten the time that NSCs are let to attach after seeding, 
proceeding immediately to the washing and fixation steps. Additionally, we substituted 
the immunostaining step by the previous loading of cells with a cell tracker, a procedure 
that increases the throughput of the assay and avoids the extensive washing during the 
immunocytochemistry protocol, which can lead to the damage of the monolayers and/
or the detachment of some adhered NSCs. One particular choice with great impact on 
the analysis strategy design is how the monolayer cells are detected. In order to obtain 
cleaner images and to avoid interferences with the detection of the adhered NSCs and 
the need of extra repetitive washing steps, we decided to perform a simple nuclear 
counterstain. This way, the number of cells in the monolayer could be easily counted, but 
the image area corresponding to their cytoplasms had to be estimated through image 
processing operations. We are aware that this may lead, in some cases, to a certain 
deviation between the real and the calculated monolayer area. Other experimental 
approaches could have been used to visualise the cytoplasm such as staining of F-actin 
with fluorescent phalloidin or any other general staining (Chambers et al., 2018) or 
using ML for the segmentation of transmitted light images. However this would have 
implied additional sample manipulation steps or the acquisition of images difficult to 
segment. Taking into account that we visually check the confluence and integrity of the 
monolayer at the beginning of the assay, discarding those wells with underconfluent or 
severed monolayers, we believe that our method simplifies the analysis strategy without 
compromising the accuracy of the obtained results.

Another critical step, closely related to the analysis strategy itself, that requires 
adequate optimisation is image acquisition. For example, regarding the neurosphere 
assay, being able to acquire whole wells on a single field-of-view could have great 
advantages. On the one hand, a single laser autofocus plane for the whole well would 
reduce the variability often found among images. On the other hand, the stitching step 
on the bioimage analysis workflow would no longer be necessary. This would require 
the use of 2x objective, currently not available in our  ICA-2k configuration. In any case, 
although it would greatly benefit the imaging and the initial image processing, it might 
introduce an additional problem since the sampling resolution at 2x might not be 
enough to the accurate measurement of the smaller neurospheres.
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The nature and characteristics of the biological sample itself can neither be 
disregarded, not only for the imaging setup but also when it comes to designing the 
analysis strategy. Cell biology approaches are moving fast towards the implementation 
of 3D cultures, such as spheroids, organoids or mini-organs, in which cells are cultured 
in multicellular, three-dimensional structures, imitating the architecture of the parental 
tissue more accurately than is possible in 2D models (Kapałczyńska et al., 2018). This 
poses significant challenges for imaging and analysing cell culture data. Neurospheres 
are 3D aggregates that grow in suspension, so the neurosphere cultures also have the 
potential to be imaged applying optical sectioning methods for a greater comprehension 
of the cell populations which conform a clone and coexist in the spheroid. These 
approaches are still uncommon in the NSC field, but have been performed (Malik et 
al., 2015). However, in our case, we set to acquire 2D images in spite of the fact that 
neurospheres are 3D floating structures and decided to give continuity to the typical 
surface measurements extracted from these assays. Neurosphere formation assays 
have been traditionally analysed either counting neurospheres under the microscope 
or manually annotating the clones estimated major cross-sections (assimilated to the 
neurosphere diameter) on images acquired through a non-automated phase-contrast 
microscope. Naturally, it would be arguable that this 3D-to-2D assimilation introduces 
an excessive bias in the obtained measurements and that the adoption of methods 
for the 3D analysis of neurospheres would be much more adequate. In fact, using a 
fixed focal plane to capture brightfield flat images of an heterogeneous mixture of 
3D spheroids of variable size, certainly leads to certain inaccuracies such as out-of-
focus clones, excessive contribution of the light diffraction creating halos around the 
neurospheres or the presence of a drop shadow effect cast by the clones themselves. 
However, it is important to keep in mind the biological context of the measurement, 
since the precise and absolute quantification of the neurosphere size might not be 
really necessary. It has been reported that neurospheres greater than 100 μm are more 
self-renewing and capable of long-term expansion (Louis et al., 2008) and this type 
of quantification is usually presented as the percentage of clones in size ranges (< 
50 μm, 50-100 μm, > 100 μm) compared among genotypes or between control and 
experimental conditions. Therefore, the small percentage of variation between the real 
and the estimated neurosphere size would have a minor impact on the percentage 
of neurospheres in each size category and, in any case, would affect similarly all the 
compared conditions.  
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Illumination correction: a necessary but tricky operation

The introduction of a pre-processing illumination correction step is almost 
compulsory when it comes to the quantitative analysis of images acquired through 
a microscope. Since in this thesis we were mainly focused in the deployment of 
bioimage analysis tools for high-content screenings we have only applied the most 
common correction strategy for such experiments, the retrospective multi-image 
method, which takes advantage of the large experimental datasets to calculate a single 
correction function per channel and plate. However, as we have seen in the case of 
the neurosphere assay, it may be necessary to calculate different flat-field images per 
field-of-view This requirement becomes a drawback, since the method relies on the 
computation of a large number of images, and this limits the groups to a single image 
per well. In our case, however, we have experienced that the BaSiC algorithm is capable 
of generating valid flat-fields even with a low number of images (i.e., 40). Alternatively, if 
the number of acquired images precludes the application of retrospective multi-image 
methods, it might be still possible to rely on single-image methods. In fact, the use of 
retrospective single-image methods is a popular approach, as most of the bioimage 
analysis collections include tools for the estimation of individual flat-fields by performing 
operations limited to assess single images. This is also an interesting approach if every 
image on the datasets presents different illumination patterns, which prevents the use 
of multi-image methods.

Independently of the applied method, it is advisable to test the performance of the 
calculated flat-fields and not simply apply them and run the analysis blindly. Neglecting 
this may instead lead us to spoil the experimental dataset. For the sake of the assay 
throughput, it is convenient to establish well-defined criteria which can be easily 
addressed. For example, the visual inspection of the obtained flat-fields may be very 
informative. The ideal illumination correction function can be pictured as an image where 
the illumination peak falls in the central point (centre of the optical axis) while fading as 
moving away from the centre. Alternatively, it may appear as a directed (horizontally, 
vertically…) intensity ramp. Obtaining a pattern that diverges from these expected ones, 
unless justified by the specific features of the image dataset, might be suggestive of 
an inappropriate performance of the illumination correction method. However, even if 
the flat-field images ‘look fine’, it does not necessarily mean that they can be trusted. 
Indeed, over- and under-correction are issues derived from the performance of an ill-
calculated flat-field, which can add error to quantitative intensity measurements. A 
common approach to test this is to generate plot intensity profiles of the acquired and 
corrected images looking for a relatively flat distribution of the intensity baseline (Jost 
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& Waters, 2019). Since imaged objects introduce variations on the intensity profile, in 
this thesis, we have checked images without cells on the foreground. A more efficient 
approach could be to deliberately acquire this kind of images (e.g., in wells where no 
cells were grown) to test the flat-field performance.

Implementation of internal quality controls: the road to full automation

The upswing of automated microscopy and bioimage analysis has led to a notorious 
advance in the bioimaging field. Nonetheless, there is still a long road ahead before fully 
automated tools can be broadly accepted by life scientists, especially with the great 
deal of trust generally invested on visual inspection. In fact, it is not uncommon to find 
bioimage analysis users who feel uncomfortable when applying automated workflows 
and even re-analyse the image dataset manually in order to compare the results. The 
fact is that, however convenient, automated tools are far from flawless so a certain 
amount of prudence when interpreting the results generated through fully automated 
protocols is more than advisable. For example, though quite optimised, autofocus 
methods may eventually fail causing the acquisition of blurred images. In addition, the 
blind acquisition of large datasets prevents the detection of issues derived from the 
sample preparation, such as saturated debris. Most likely, these ill-quality images will 
remain unnoticed among a set of mainly well captured images and, if not excluded from 
the analysis, they can impair the results of the assay, as stated by the GIGO concept. As a 
side note, apart from these drawbacks, non-human intervention also has its advantages 
apart from the automation itself, primarily the unbiased acquisition of imaging data 
that, in the end, is the raw data which should answer our biological question. Seen this 
way, and if we take into account that there are methods to quantify the quality of the 
images but not the degree of bias introduced during their capture, it seems that we 
should care more about the latest.

With all this in mind, the necessity of including adequate quality controls properly 
distributed along the automated workflow steps becomes evident. One common strategy 
consists of the extraction of diverse metrics aimed to quantify different image quality 
issues. Indeed, the most common metrics have been designed to quantify the blurring 
and the presence of saturated artefacts, both included in the workflows incorporating 
quality control checks in this thesis. As we have observed, while saturation may be easily 
quantified, the identification of out-of-focus images might be more complex and many 
different metrics have been proposed for this purpose (Caicedo et al., 2017). During 
the set up of the cell proliferation and apoptosis assay, we decided to investigate which 
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metrics would perform better in our cell-based assays using supervised ML for the 
identification of quality control rules. The most relevant among the tested metrics was 
found to be the log-log slope of the power spectrum of pixel intensities, which has been 
also reported to be the most effective metric in other high-content screening assays (Bray 
et al., 2012). However, a limitation of these metrics is that it is often necessary to readjust 
the rules for each experimental dataset. Thus, it may be required to train a classifier every 
time that an experiment is performed. While this could be overcome relatively quickly if 
there were a similar proportion of in-focus and blurred images, actually the probability 
to fetch blurred fields-of-view is quite low if the acquisition of the dataset was properly 
set up. Therefore, to annotate enough images to train and assess the classifier is time 
consuming and it may even become an impossible task. This can be eased by looking for 
outliers plotting different metrics, e.g., in CellProfiler Analyst. Instead, we decided to try 
a different approach based on the capture of additional out-of-focus images to balance 
the proportion of the different classes, which highly enhanced the training throughput.

In spite of the importance of quality control, there is a fully automated bioimage 
analysis workflow in the present thesis which does not include any quality checkpoint. It 
is the case of the neurosphere formation assay. On the one hand, many of the mentioned 
metrics would be useless on the transmitted light images. On the other hand, since our 
imaging setup includes the manual setting of the focal plane for each well no major 
acquisition issues are expected to happen. Moreover, since the output of the bioimage 
analysis workflow includes the stitched well, it is relatively easy to quickly check for any 
imaging or stitching issue across the dataset, as issues are quite evident. In any case, 
in future updates of this tool, it would be advisable to include a preview mode to let 
the user check the result of the illumination correction and the output of segmentation 
before running the whole analysis. This would be particularly useful to evaluate the 
re-usability of pre-trained classifiers.  Conversely, the cell adhesion workflow includes 
customised quality control metrics apart from some of the most typically used. We 
decided to implement these metrics due to the importance of the feeder monolayer 
for the assay, since a damaged or non-confluent monolayer spoils the results already 
at the experimental stage. These metrics have been proven helpful for the rejection of 
incomplete monolayers from the analysis.

Some considerations on cell phenotype quantification

The development of methods for the segmentation of overlapping nuclei on 2D 
images, such as StarDist or the multilayer gas of near-circles (MLGOC) model (Molnar, 
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Kato & Jermyn, 2012), represents a big advantage for counting clumped cells and 
for a more accurate determination of their nuclear morphologies. The latest can be 
of paramount importance for the identification of some phenotypic behaviour on cell 
populations, questions typically addressed on high-content screening assays or tissue 
scanning. Thus, we aimed to implement a workflow including the option to apply these 
methods on our NSC in vitro cultures, so the proliferation and apoptosis workflow can be 
set to apply the StarDist built-in Versatile (fluorescent nuclei) model. In our experience, 
this generalist DL model performs an accurate segmentation on our cell-based high-
content screening assays, for which we adapted an specific imaging setup. Additionally, 
by adding an alternative filter-based workflow we aim to ensure that any assay can be 
analysed, even if the generalist approach fails, whatever the reason.

When it comes to extract densitometric information there are some considerations 
to make which are typically neglected when analysing binary, non-overlapping masks. This 
is related to a property of images acquired through conventional widefield microscopes: 
the intensity values determined by the microscope sensors are proportional to the 
concentration of fluorescent particles on the sample. Hence, we can assume that, using 
low NA objectives, the intensities from superposed nuclei are additive. Therefore, if the 
intensity values of regions where cells overlap is approximately the sum of each individual 
cell intensities, the intensity contribution of two cells growing on top of each other 
doubles that of a single cell (assuming that both cells contain the same concentration 
of fluorescent molecules and a similar thickness on the superposed regions). Indeed, 
MLGOC was extended incorporating a new data term capturing this property, thus 
increasing the performance of their segmentation model (Molnar et al, 2016). Since 
we were not looking for subtle phenotypes, for our cell proliferation and apoptosis 
workflow we chose to extract the densitometric data from whole segmented ROIs, 
without applying any correction or rejecting overlapping regions. In spite of carrying 
this error, this approach allowed us to identify the different proliferative behaviours and 
the detection of apoptosis events applying clustering methods. Nonetheless, if other 
users do not desire to deal with such issues, we consider  the possibility of adding  the 
alternative option of obtaining a labelled image instead of an ROI set as segmentation 
output. These type of images keep the label of the most probable nucleus on the top 
of other overlapping instances. While this affects the morphological features of the 
erased nuclei, this approach may limit the error in the extraction of densitometric 
features. Maybe an interesting strategy could be to combine both overlapping and 
non-overlapping instances to get the better metrics fitted for each approach. Labelled 
images can be easily analysed within Fiji, e.g., by adding the MorphoLibJ update site 
(Legland, Arganda-Carreras & Andrey, 2016). 
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Our workflow was intended to serve as a tool for the quantification of cell 
proliferation and apoptosis on high-content imaging assays of in vitro NSC cultures. 
However, beyond our initial goal, this workflow has also the potential to be used for the 
quantification of up to four nuclear markers, thus enabling the identification of different 
phenotypes by combining the densitometric analysis of nuclear and/or ubiquitous 
molecules and the morphological features of the nuclei. The workflow, however, does 
not include the possibility to segment cytoplasms or cytoplasmic rings. To this aim, we 
have deployed a dedicated CellProfiler pipeline (https://github.com/paucabar/stsm_i3s) 
which enables the segmentation of nuclei, cells and cytoplasms (see Figure 2) either 
for the identification of cell phenotypes or for the localization of labelled proteins 
which can translocate between subcellular compartments, a useful approach for the 
quantification of cellular processes such as cell proliferation (Spencer et al, 2013). Along 
with this pipeline, initially built during a Short Term Scientific Mission in the BioScreening 
Platform at the Instituto de Investigação e Inovação em Saúde (Universidade do Porto), 
we include a companion pipeline for the computation of illumination correction 
functions using a retrospective multi-image approach within CellProfiler. Additionally, 
the pipeline is set to be combined with an ilastik pixel classification for the segmentation 
of cells without using any additional staining. The decision to use CellProfier for the 
segmentation of different cell compartments is based on the fact that it is a bioimage 
analysis collection specifically developed for the quantification of cell phenotypes, which 
enormously facilitates the instance segmentation of cells and subcellular compartments. 
Unfortunately, CellProfiler does not implement yet the possibility to apply DL models to 
overcome such tasks, as currently is eminently based on a filtering approach. Therefore, 
it is not possible to benefit from generalistic approaches such as StarDist. In this sense, 
a novel promising strategy for cell phenotyping is the combination of StarDist and 
Cellpose (Stringer et al, 2021), a generalistic DL method for cellular segmentation.

Metrics for the automatic evaluation of segmentation: a way of quantitatively 
assess if the computer ‘sees’ what we see

The assessment of the segmentation performance has been generally approached 
using metrics which look for differences between the segmented or predicted mask 
and a reference or ground truth mask, generated either manually annotating the target 
objects or using state-of-the-art segmentation methods. For our performance evaluation 
we decided to use a metric aimed to identify object-level errors. Therefore, in spite 
of the fact that both evaluated methods (Chapters 3 and 4) apply pixel classification 
which allocates pixels to different classes (semantic segmentation) but does not actually 
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identify objects on images, we were interested in the assessment of the final output of 
the workflow (instance segmentation) rather than the pixel classification performance. 
As a side note, although we did not assess semantic segmentation on the present 
thesis, the NeuroMol Lab update site includes a macro for the computation of the most 
common metric used for this aim, the IoU, also known as Jaccard index (Van Valen et al., 
2016). Other methods focused on evaluating pixel‐wise segmentation accuracy are the 
root‐mean‐square deviation (Gudla et al., 2008) or the bivariate similarity index (Dima 
et al., 2011). However, these methods fail to quantify object‐level errors.

We decided to implement the F1 score metric within the NeuroMol update site, as 
it is a widely used performance metric based on the IoU, though computed per object, 
thus enabling the quantification of errors at the object level looking at the overlap 
degree between the predicted and the target masks (Caicedo et al., 2019a-b). We 
have applied this metric to assess the instance segmentation of different components 
from fibre cross-sections and neurospheres cross-sections. In the case of the fibre 
segmentation, we were interested in addressing the object segmentation accuracy that 
our workflow can reach without human supervision or limiting the human intervention 
to improvements suggested by the macroinstruction. According to the F1 score, the 
step which requires a greater intervention is the axoplasm annotation. Naturally, the 
thin membrane which separates the axon from the inner tongue may be more difficult 
to estimate than the electron-dense myelin sheath. This often depends on the sample 
quality, as TEM sample preparation is prone to introduce artefacts which may complicate 
the segmentation. In our experience, though not devoid of error, this strategy helps to 
overcome the bioimage analysis bottleneck caused by the manual annotation of the 
TEM images. Regarding the neurosphere formation assay, according to the F1 metric, 
the workflow developed in the present work was able to obtain a score comparable with 
the performance of a human annotator. If we consider that the method consists in a fully 
automated bioimage analysis workflow, this allows us to improve the throughput of the 
assay on a great extent while extracting comparable quantitative data.

Current challenges for the bioimage analysis community

The blooming of quantitative and computational bioimaging has led to the 
creation of new structures for networking and for providing support to the bioimage 
analysis community, such as NEUBIAS in Europe or COBA (Center for Open Bioimage 
Analysis) in the United States, and dedicated publication platforms, e.g., the most recent 
open access journals Biological Imaging or Frontiers in Methods and Tools for Bioimage 
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Analysis. Such is the impact of this growing field that a new profession has arisen to join 
other bioimaging specialists (i.e., life scientists, microscopists and developers). The main 
role of the so called bioimage analysts is to bridge the gap between developers and life 
scientists by providing practical bioimage analysis workflows based on components built 
by developers. To a large degree, all the objectives of the present thesis were related 
to this notion. Specifically, one of our main goals was to increase the throughput of the 
proposed assays to alleviate the bottleneck that the analysis of image-based experiments 
often involves. This is not a minor issue according to an inquiry conducted by NEUBIAS, 
which surveyed almost 2,000 researchers (mainly life scientists) in 2015. They concluded 
that the investments in European bioimaging infrastructures are not well balanced, since 
most of these platforms do not have the capacity to analyse all the produced image 
data. It is possible to extract some important hints to improve the current situation 
from the researchers’ answers: 68 % agreed that there is a lack of training to overcome 
the bioimage analysis hurdle; indeed, 60 % stated that bioimage analysis is the more 
difficult step on projects relying on bioimaging. Moreover, approximately 58 % of the 
bioimaging acquired data is never quantitatively analysed. The survey has been recently 
launched for a second time, so maybe soon we will know the impact of the community 
efforts during the last lustrum.

Probably, as a response to these limitations, it will become increasingly common in 
the next few years to find bioimage analysis specialists working alongside microscopists 
at bioimaging facilities and as researchers integrated within interdisciplinary research 
groups. Actually, in my experience, this is already happening in many research 
institutions. Apart from that, we also consider that it is important to include basic 
bioimage analysis training in the university curriculum for life scientists, as it has been 
the case with other flourishing techniques during the last decades. For example, this 
could help improve the setup of image-based experiments, which are typically designed 
and performed without considering how the analysis will be conducted. Moreover, 
without a basic understanding, users can often be at a loss when it comes to setting 
some workflows, since a certain amount of user intervention during parametrisation is 
almost inescapable. Actually, several parameters can be easily comprehended by life 
scientists, such as object size, but others that may be less familiar for them, such as filter 
types and kernel sizes. Thus, a basic understanding of the applied concepts would give a 
major independence to life scientists for the analysis and even allow them to customise 
already deployed workflows for their particular needs.

In order to provide user-friendly tools, all the practical workflows presented in this 
thesis include a GUI for parametrisation, which saves users from coding or learning to 
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use a CMI. In addition, we have tried to reduce the number of tweakable parameters as 
far as possible and to provide documentation to guide the installation and usage along 
with example datasets to practise. Moreover, we have introduced what we named pre-
analysis workflows, which allow the users to conduct a pilot run on a subset of fields-of-
view across the image dataset, after having set the parameters. This alternative analysis 
mode is intended to help users parameterise the workflow without having to run the 
analysis on the whole dataset. For that purpose, instead of quantitative data, the pre-
analysis mode displays the segmentation output, usually color-coded to facilitate its 
visual inspection. If the user is not satisfied with the obtained result, parameters can be 
easily re-adjusted and the output easily re-evaluated.  However, despite all these efforts, 
in our experience this alone does not allow users to totally circumvent the need of prior 
knowledge, which is the reason why we stand in favour of extending the bioimage 
analysis training to the end users. Additionally, the use of user-friendly, supervised ML 
approaches, such as ilastik, may provide practical solutions with the exchange of prior 
knowledge by an investment on training the computer to ‘see’ what the user is keen to 
find.

This raises some interesting questions, such as how the field will adapt to the age 
of DL, which, despite its drawbacks, is providing more generalist solutions that do not 
necessarily require prior bioimage analysis knowledge. Will the current trends lead to 
the disappearance of the classic image processing and ML methods? From an historical 
point of view, we can easily imagine a time when the appearance of the now classic 
ML methods surely raised similar doubts.  However, ML has peacefully coexisted with 
the filter-based algorithms and other image analysis strategies. As it often happens, 
each approach has its own advantages and caveats. While most filter-based operations 
come from image processing, ML is a field within artificial intelligence. Due to its 
arithmetic nature, filter-based approaches are computationally faster whereas some ML 
approaches may increase the required memory and computation time. However, ML 
provides more flexibility since a classifier can be trained to use features which are more 
likely to be reusable across different image datasets, although this depends to a great 
extent on the training setup. This often implies the annotation of large datasets to train 
supervised classifiers. Conversely, as aforementioned, the use of filters usually requires 
the setting of a larger number of workflow parameters which hardly ever are entirely 
transferable for its use in different datasets and require prior knowledge. Nowadays, the 
current tendency is to rely on DL models for a variety of tasks such as image restoration 
(Weigert et al., 2018), virtual staining (Rivenson et al., 2019) or segmentation (Gómez-
de-Mariscal et al., 2019a). While DL has become in many cases the cutting-edge 
method to address a specific bioimage analysis problem, usually overperforming filter-
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based and classical ML approaches, the requirement of (expensive) IT infrastructures has 
sometimes been a limitation. However, initiatives like DeepImageJ (Gómez-de-Mariscal 
et al, 2019b), a plugin for the generic use of pre-trained DL models (provided by their 
developers) in Fiji, are contributing enormously to democratise DL among the bioimage 
analysis community.

Resuming our question, the success of DL has led to theorizing about the extinction 
of the classical methods of bioimage analysis. However, in my opinion, it is most likely 
that all the methods will coexist, although DL, as it has happened in other fields, will have 
increasing relevance. Nonetheless, if we attend the bioimage analysis concept exposed 
in the Introduction section, practical workflows are made of different components 
and, as we have done in some workflows presented in this thesis, components based 
on different bioimage analysis paradigms can be combined to get the best of them. 
Indeed, as an illustrative example, the aforementioned DeepImageJ plugin enables the 
possibility to run any kind of preprocessing components along with the DL model, and 
then continue with the image processing. Namely, DeepImageJ offers the possibility 
to build a sequence where a DL model is embedded as the key component but it 
needs complementary image processing components to produce a practical bioimage 
analysis workflow. For example, a typical preprocessing step for the application of DL 
models is normalisation, since it aims to be applied to datasets generated from different 
microscopes which may have different bit-depths.

Indeed, the tendency is not only to provide easily executable DL models, but also to 
facilitate the training of new models by bioimage analysts and end users. This raises two 
possible strategies. One would be to generate a limited range of pre-trained DL models 
and put the effort into developing imaging setups and classic workflows aimed to get 
or transform each particular dataset to fit one of the available models. Alternatively, a 
more effective strategy could be to train a dedicated model on your own annotated 
data, as part of each analysis workflow. Regarding the first one, in the cell proliferation 
and apoptosis assay (Chapter 2), we decided to adapt the analysis setup in order to 
be able to use a pre-trained model from StarDist. Interestingly, it proved to be a very 
useful approach since not only prevented us from having to train the model ourselves, 
but also helped us to realise that we were previously oversampling our experiments and 
that a 2x2 binning provides sufficient resolution. Although convenient and faster, the 
usefulness of this modus operandi would be probably restricted to the segmentation 
of basic and common objects, as is the case of the DAPI stained nuclei. Complex 
image datasets from more specific biological scenarios would probably be difficult to 
accommodate to the demands of a generalist model and require their own training. On 
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the other hand, although our strategy in the neurosphere assay (Chapter 3) is not based 
in DL but in a ML random forest classifier, it may serve as an example of an assay where 
the application of generalist training models might not be as straightforward. In this 
case, the intrinsic characteristics of the experimental setup and the biological sample 
impose several technical difficulties (well-plate-specific strongly uneven illumination, 
slightly different focal plane between objects, three-dimensional nature of objects of 
interest...) that pose a great challenge for segmentation. In fact, we have deployed a 
complex workflow that includes an ilastik-based training for semantic segmentation 
that, even having included a very effective illumination correction step, generates a 
training model that is not always possible to reuse in a different dataset. Actually, in our 
experience, there is a great deal of experimental variability in this assay that, whereas it 
does not affect the manual analysis since the experimenter can easily make sense of the 
complexity and tell neurospheres from noise and artefacts, often prevents sharing the 
trained model between different experiments. Therefore, although the type of objects 
of interest in this assay (i.e., neurospheres) meets the requirements for the application 
of the generalistic StarDist ‘star-convex shape’ model, the mentioned aberrations might 
still impede this strategy. Having to train the model or the classifier for each dataset is, 
on the other hand, not that unreasonable if it were not for the increased computational 
time that it requires. To mitigate this, specially if the analyses are to be performed in 
a laptop instead of in a professional workstation (which in most cases should be the 
most efficient approach) it could be possible to adapt the workflow for the use of GPU-
accelerated image processing with CLIJ (Haase et al., 2020) for a faster performance. 

The importance of sharing code, (meta)data and annotations

Reproducibility is a key element of science and it cannot be achieved without a 
rigorous and transparent process of reporting the methods and strategies employed 
to obtain the scientific data. This is of paramount importance, being the validation 
of scientific results by peer review a gold standard of science. Indeed, the interest of 
sharing data goes beyond the importance of reproducibility, being the improvement 
of data reusability an urgent goal for the scientific community. To this aim, a great 
effort is being made to endorse science with the FAIR Data Principles (Wilkinson et al., 
2016) for data management. Bioimage analysis is not unbound to these principles. As an 
eminently digital field, it can easily side with these practises. Consider for example the 
raw data: digital images are much easier to store and share than biological samples. The 
same happens with the bioimage analysis protocols, since they can easily be translated 
into code that not only contain all the workflow steps, but can also be used to execute 
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the same exact analysis. Additionally, image datasets include experimental and imaging 
metadata, which automatically store all the technical details. As for the result, apart from 
the raw and processed quantitative data, it is also possible to share the segmentation 
output or the manual annotations made by experts, reaching a level of transparency 
hardly achieved in the analysis of other types of biological samples. To empower the 
access to primary imaging data a series of community repositories have been deployed, 
such as the Image Data Resource (Williams et al, 2017), a platform for the collection and 
integration of data acquired across many different bioimaging modalities along with 
relevant metadata and additional files, such as bioimage analysis scripts.

In the development of our tools, we have tried to adopt these principles and to 
facilitate the means to fulfil them to any user. To this aim, as already specified on the 
corresponding chapters, all our code is publicly available in GitHub. Moreover, for the 
workflows implying a greater parametrisation, the final setup is stored as a TXT file. 
This not only allows to reuse the parameter set on future experiments but, along with 
the code provided on GitHub, to share the detailed operations performed during the 
bioimage analysis. Additionally, all the workflows include the option to store the ROIs 
of the analysed objects.
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Conclusions

1.	 The development of high-content imaging and automated bioimage 
analysis methods for the study of cultured NSCs improves the throughput 
and the reproducibility of the in vitro assays.

2.	 The proposed experimental setup and analysis strategy for the static, 
cell-to-cell adhesion-based high-throughput assay is a reliable in vitro 
model for the assessment of the N-cadherin-mediated anchorage of 
isolated NSCs.

3.	 Diverse patterns of cell proliferation and viability can be identified by 
means of cell-based proliferation and apoptosis high-content screening 
assays.

4.	 The use of fabricated out-of-focus datasets facilitates the training of ML 
classifiers for the detection of fields-of-view affected by blur.

5.	 The automated bioimage analysis of 2D, screening-like imaged pseudo-
clonal neurosphere formation assays generates data as accurate as 
human annotated.

6.	 ML-aided-human-supervised segmentation of fibre cross-sections on 
TEM images enables the extraction of classic and novel inner-tongue-
based parameters for the study of (re)myelination and improves the 
bioimage analysis throughput.
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ANTECEDENTES
La combinación sinérgica de métodos automatizados de captura y análisis de bioi-

magen está emergiendo como un enfoque de vanguardia para abordar muchas cues-
tiones biológicas. Sin embargo, hay muchos campos en los que estas técnicas aún no se 
implementan y, en cambio, todavía se basan en la inspección visual y el análisis manual, 
que inevitablemente limitan el rendimiento alcanzable y son más propensos a introducir 
el sesgo del investigador. Por lo tanto, aún queda un gran esfuerzo por hacer en la difu-
sión del uso de tecnologías de bioimagen de vanguardia en los campos de las ciencias 
de la vida con una gran dependencia de métodos de microscopía. En la presente tesis, 
nuestro objetivo ha sido desarrollar y aplicar métodos de bioimagen automatizados al 
estudio del cerebro adulto, en particular en las áreas de estudio de la biología de las 
células madre neurales (NSC, del inglés neural stem cells) y el proceso de remielinización 
de axones.

Con respecto a las NSC, la zona subependimaria (SEZ, del inglés, subependymal 
zone) de los ventrículos laterales es el área neurogénica más extensa y activa en el 
cerebro mamífero adulto. En el nicho de la SEZ, las NSC coexistentes muestran esta-
dos proliferativos heterogéneos que pueden agruparse en dos condiciones principales, 
quiescencia o activación. Las NSCs activadas producen neuroblastos, que migran para 
integrarse como neuronas maduras en el bulbo olfatorio. El estudio de la biología de 
las NSC adultas, a pesar de alcanzar su mayor nivel de complejidad cuando se realiza 
in vivo, se basa en gran medida en ensayos in vitro que permiten una descomposición 
y manipulación mucho más fácil y versátil de las variables del sistema. El aislamiento y 
la expansión de NSCs de la SEZ de ratones adultos es posible en condiciones de cultivo 
definidas. Se induce un estado proliferativo mediante el crecimiento de células disgre-
gadas en condiciones no adhesivas en presencia de factor de crecimiento de fibroblas-
tos básico (bFGF) y / o factor de crecimiento epidérmico (EGF) como mitógenos. En 
estas condiciones, una pequeña población de células comienza a proliferar formando 
agregados clonales flotantes conocidos como neuroesferas. Las neuroesferas primarias 
se pueden disociar para subcultivar las células individuales obtenidas, propagando así el 
cultivo con la formación de neuroesferas secundarias. Además, cultivados sobre un sus-
trato adhesivo en presencia de suero, se pueden inducir la diferenciación de las NSCs. 
De este modo, los cultivos de neuroesferas se han convertido en una técnica central 
para el estudio de las NSC adultas en un entorno altamente controlado. En las últimas 
décadas se han desarrollado diferentes ensayos para evaluar específicamente sus pro-
piedades básicas, que han permitido un gran avance en nuestro conocimiento sobre la 
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neurogénesis adulta y el mantenimiento y regeneración del tejido neural. No obstante, 
no se ha aprovechado el potencial de estos modelos in vitro en forma de rastreos a gran 
escala basados ​​en microscopía. Por el contrario, la mayoría de los análisis actuales se 
realizan normalmente de forma manual o, como mucho, con la ayuda de software, pero 
dependiendo de la supervisión del investigador.

Por otro lado, los oligodendrocitos son las células mielinizantes del sistema nervioso 
central (CNS, del inglés central nervous system). Extienden sus procesos alrededor de los 
axones para formar la capa aislante rica en lípidos conocida como vaina de mielina, cu-
yas funciones principales son proporcionar apoyo metabólico a los axones subyacentes 
y potenciar la transmisión rápida de potenciales de acción a lo largo del axón. En el ce-
rebro adulto, los oligodendrocitos mielinizantes maduros son generados por las células 
precursoras de oligodendrocitos (OPC, del inglés oligodendrocyte precursor cells) que 
residen en el parénquima cerebral y por las NSCs subependimarias. Para el estudio de 
la remielinización de axones se han desarrollado una serie de modelos in vivo que con-
sisten en causar una lesión desmielinizante mediante la administración de toxinas para, 
más tarde, estudiar el proceso de la remielinización. El análisis de estos experimentos se 
ha basado clásicamente en la captura de imágenes de microscopía electrónica de alta 
resolución seguidas de anotación manual para la cuantificación. A lo largo de los años 
se han implementado algunos protocolos de análisis de bioimagen para cuantificar la 
envoltura de mielina por axón en la forma del parámetro conocido como g-ratio. Sin 
embargo, aunque algunos de ellos alcanzan cierto grado de automatización, su uso no 
se ha extendido entre los científicos. Además, todas estas herramientas se centran en 
el g-ratio, pero ninguna mide la lengua citoplásmica interna, un elemento clave en el 
proceso de (re)mielinización.

Este trabajo se ha realizado utilizando exclusivamente software de código abierto y 
gratuito. La base fundamental del software de código abierto es que su código está dis-
ponible públicamente, lo que encaja perfectamente con estándares de la ciencia como 
el método científico y la validación de resultados a través de un sistema de revisión por 
pares. En general, el trabajo se ha desarrollado principalmente en ImageJ/Fiji, uno de 
los softwares más populares para el análisis de imágenes científicas. Además también 
se han utilizado otros dos programas de código abierto. Por una parte, CellProfiler (en 
conjunto con CellProfiler Analyst), un software dedicado a la cuantificación de fenotipos 
celulares en rastreos de alto contenido utilizando imágenes de microscopía. Por otro 
lado ilastik, un programa que implementa una serie de flujos de trabajo de aprendizaje 
automático (ML, del inglés, machine learning).
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HIPÓTESIS
Consideramos como hipótesis general que la aplicación de métodos de análisis de 

bioimagen y, cuando sea posible, la adopción de estrategias de rastreo basadas en mi-
croscopía, podrían beneficiar enormemente estos dos campos de estudio al aumentar 
tanto el rendimiento como la estandarización del análisis. Para abordar la hipótesis, 
seleccionamos escenarios específicos de diversa complejidad que combinaban una con-
figuración experimental, adquisición de imágenes y desarrollo e implementación de 
estrategias de análisis de bioimagen.

OBJETIVOS
Teniendo en cuenta las consideraciones anteriores, los objetivos específicos que nos 

propusimos alcanzar fueron:

1.	 Implementar un ensayo de rastreo de alto rendimiento para la evaluación in 
vitro de las propiedades adhesivas y la regulación en cultivos 2D de NSCs.

2.	Desarrollar un ensayo de rastreo de alto contenido para el análisis unicelular 
de la proliferación y apoptosis de NSCs en cultivos 2D.

3.	Establecer un ensayo de rastreo de alto rendimiento para la evaluación de la 
autorrenovación y la capacidad clonal de NSCs a través del análisis poblacional 
de neuroesferas 3D.

4.	Crear un flujo de trabajo semiautomático para mejorar el rendimiento del 
análisis de bioimagen de modelos de remielinización in vivo utilizando un pará-
metro novedoso en microscopía electrónica.

CAPÍTULO 1

Antecedentes biológicos

Las cadherinas son proteínas transmembrana de tipo 1 que establecen uniones ad-
herentes homofílicas, célula-a-célula y dependientes del calcio a través de su dominio 
extracelular. Los miembros de esta familia de moléculas de adhesión celular desempe-
ñan papeles críticos y variados durante el desarrollo y en la homeostasis adulta. Entre 
otras funciones, estas moléculas se han relacionado con la regulación del ciclo de ac-
tivación de quiescencia en varios nichos de células madre. Nuestro laboratorio ha de-
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mostrado que la adhesión de las NSC subependimarias a la capa ependimaria a través 
de N-cadherina (cadherina 2, Cdh2) contribuye a mantener la organización estructural 
del nicho neurogénico y regula la quiescencia de las NSC. Además, describimos que este 
papel es dinámico ya que la escisión regulada por N-cadherina por MT5-MMP, una me-
taloproteinasa de tipo membrana (MMP, del inglés membrane-type metalloproteinase), 
codificada por el gen Mmp24, promueve la activación de las NSCs en condiciones fisio-
lógicas y regenerativas. Sin embargo, los mecanismos subyacentes a la quiescencia me-
diada por adhesión no se han dilucidado por completo. Por lo tanto, decidimos explorar 
la posible implicación en la regulación de la adhesión de las NSCs de otro miembro de 
la familia MMP, la adamlisina ADAM10. Esta shedasa, como otros miembros de ADAM, 
contiene dominios de desintegrina y metaloproteasa y se ha observado que escinde la 
N-cadherina en las neuronas. De hecho, es una de las proteasas más expresadas en el 
cerebro adulto, incluida la SEZ.

Con el fin de investigar los efectos y la regulación de la adhesión mediada por 
N-cadherina de las NSCs y caracterizar los factores de nicho secretados involucrados en 
su escisión, hemos desarrollado un ensayo funcional in vitro que modela el anclaje de 
células subependimarias mediadas por N-cadherina y automatizado su análisis median-
te la adopción de una estrategia de captura de imágenes por rastreo y el desarrollo de 
una herramienta de análisis de bioimágenes para la extracción de los datos cuantitativos 
relevantes.

Configuración experimental y captura de imagen

Los ensayos de adhesión celular tienen como objetivo cuantificar el anclaje de cé-
lulas aisladas a superficies recubiertas con ligandos, componentes de la matriz extrace-
lular purificados u otras células, generalmente en forma de monocapas. Para nuestro 
ensayo de rastreo basado en microscopía, con el fin de imitar en la medida de lo posible 
las condiciones in vivo, en lugar de utilizar una proteína recombinante purificada como 
recubrimiento, el sustrato adherente es proporcionado por una monocapa de células 
vivas que sobreexpresan el ligando de interés.

En primer lugar, las neuroesferas se someten a disgregación mecánica con el fin de 
preservar la integridad de los dominios extracelulares de N-cadherina, y se depositan 
en una monocapa confluente de fibroblastos NC-L929 que sobreexpresan N-cadherina. 
En caso de que las NSC interrogadas no sean intrínsecamente fluorescentes, se marcan 
con el trazador de células DDAO-SE para facilitar su detección. Además, para incluir un 
control de especificidad, parte de las células se incuban con el anticuerpo bloqueador 
de N-cadherina GC4 (NcadBlock) para reducir su adhesión mediada por N-cadherina. 
Una vez que se deja adherir durante un tiempo controlado, las células no adheridas se 



185

Resumen

lavan a fondo y los cultivos se fijan para un análisis adicional. Finalmente, los núcleos se 
marcan con DAPI para visualizar las células de la monocapa subyacente y las células se 
fijan para fotografiarlas mediante un microscopio de rastreo automático.

Para obtener datos cuantitativos del ensayo se deben realizar dos tareas diferentes: 
estimar el porcentaje de superficie de cultivo ocupada por la monocapa que expresa 
N-cadherina y detectar y contar el número de NSCs adheridas a ella. Dado que no se 
requiere una morfología celular precisa para lograr las tareas mencionadas, decidimos 
capturar imágenes de baja resolución. De hecho, las condiciones de obtención de imá-
genes se han configurado para llegar a un compromiso entre reducir el tamaño de la 
imagen al mínimo y aún poder detectar de manera eficiente los objetos de interés, lo 
cual supone un ahorro enorme de espacio al tratarse de un ensayo de rastreo de alto 
rendimiento. Concretamente, muestreamos las NSCs DDAO-SE+ con una longitud míni-
ma de 5 a 10 píxeles. Tanto los parámetros de captura como los de análisis de imagen 
de nuestro protocolo están ajustados para trabajar fotografiar y analizar objetos en este 
rango de tamaño.

Análisis de bioimagen

Hemos desarrollado un flujo de trabajo de análisis de bioimagen que se ha auto-
matizado en una macroinstrucción de ImageJ. Además, dada la importancia del tamaño 
de los objetos para la aplicación de esta herramienta, junto a ella proporcionamos otra 
macroinstrucción que permite disminuir el tamaño de las imágenes agrupando píxeles 
en cuadrados de 2x2, 3x3 o 4x4 que toman el valor de la media de todos los píxeles del 
conjunto.

Una vez las imágenes tienen una resolución adecuada se puede iniciar el flujo de 
trabajo principal. Dado que es probable que sea necesario ajustar el conjunto de pa-
rámetros entre análisis, la macro permite modificar la configuración para adaptarse al 
análisis de diferentes experimentos. De hecho, la macro incluye un modo de prueba, 
que permite al usuario modificar los parámetros y verificar el resultado fácilmente antes 
de lanzar el análisis. Además, el conjunto de parámetros se puede guardar e importar 
en análisis futuros.

Para favorecer el análisis no supervisado hemos incluido la medición de diferentes 
métricas para ser aplicadas en controles de calidad. Nuestro control de calidad está 
destinado a detectar dos tipos diferentes de imágenes inadecuadas: aquellas que están 
desenfocadas o contienen artefactos saturados, y aquellas que, a pesar de ser adecua-
das en términos de adquisición de imágenes, contienen una monocapa incompleta. 
Tal y como se ha descrito previamente, el objetivo principal del ensayo es cuantificar 
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el número de células adheridas por superficie de monocapa. Para contar el número 
de células adheridas, la imagen correspondiente al trazador DDAO-SE se suaviza antes 
de determinar las posiciones de los máximos de intensidad locales. Estos máximos se 
utilizan como marcadores para separar la imagen en territorios de Voronoi. Además, se 
aplica una segmentación por umbrales para generar una máscara binaria que puede 
contener varias células fusionadas en un único objeto. Estos objetos son separados uti-
lizando operadores lógicos con los territorios de Voronoi y, finalmente, los píxeles aisla-
dos y otros objetos demasiado pequeños para ser células son eliminados de la imagen 
binaria. Por lo que respecta a la monocapa, dado que se ha utilizado DAPI para marcar el 
ADN de las células, el área de la monocapa debe estimarse a partir de los núcleos de los 
fibroblastos. Para ello se aplica el filtro del máximo para “rellenar” los espacios de fondo 
que quedan entre núcleos cercanos. A continuación, se aplica una segmentación por 
umbrales para obtener una segmentación semántica de la monocapa. Una vez obteni-
das las máscaras binarias de las células adheridas y la monocapa se utilizan para calcular 
el número de células adheridas y la superficie que ocupa la monocapa.

Estudio: regulación de la proteólisis de N-cadherina en la SEZ por factores 
de nicho

Dado que algunos de nuestros resultados preliminares in vivo sugerían que ADAM10 
también podría estar involucrado en la escisión de la N-cadherina presente en la mem-
brana NSC, aplicamos nuestra estrategia para abordar cuantitativamente el papel de 
ADAM10 en la regulación de la adhesión de las NSCs mediada por N-cadherina. Para 
ello, los cultivos de neuroesferas se trataron previamente con GI254023X (GIX), un po-
tente fármaco inhibidor de ADAM10. Antes de realizar el protocolo de adhesión celular 
también se incluyó un control de especificidad con anticuerpos NcadBlock: la mitad 
de las células se incubaron con NcadBlock y la otra mitad con inmunoglobulinas de 
isotipo de ratón (IsoMsIgG). Tras el tratamiento, las NSCs (marcadas con DDAO-SE) se 
sembraron en la monocapa NC-L929 y se dejaron adherir durante un tiempo determi-
nado antes de lavar las células no adheridas, fijarlas y teñirlas con DAPI para su posterior 
captura y análisis.

Tal y como se esperaba, el NcadBlock redujo consistentemente la adhesión de las 
NSCs a la monocapa NC-L929. Con respecto a la condición experimental, en caso de que 
ADAM10 realmente participe en la proteólisis y el desprendimiento de la N-cadherina 
en las NSC, su inhibición debería provocar un incremento en los niveles de N-cadherina 
en la superficie celular y, por lo tanto, en una mayor adhesión. Esto fue confirmado en 
nuestro ensayo, ya que la condición tratada con GIX mostró un mayor recuento de cé-
lulas DDAO-SE-positivas adheridas por área de monocapa.
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CAPÍTULO 2
Antecedentes biológicos

La proliferación celular y la muerte celular programada son sin duda dos de los 
procesos más estudiados en el campo de la biología celular. En el campo de las células 
madre en particular, la regulación del ciclo celular es fundamental para comprender las 
propiedades clave de las células madre, como su mantenimiento a través de la tran-
sición reversible entre la quiescencia y la activación o el cambio de la pluripotencia a 
la diferenciación. La apoptosis, por otro lado, ha surgido en los últimos años como un 
tema importante en el estudio de las células madre, ya que se ha encontrado que los 
cuerpos apoptóticos de las células circundantes pueden inducir la proliferación de célu-
las madre o que mediadores apoptóticos específicos pueden desempeñar un papel en 
la diferenciación de las células madre.

Entre los métodos adecuados para evaluar la proliferación celular mediante análisis 
microscópico, los experimentos de pulso y caza con análogos de nucleósidos destacan 
por su fiabilidad y aplicabilidad en ensayos de rastreo. Este enfoque se basa en la de-
tección de nucleósidos trazables incorporados al ADN mientras las células pasan por 
la fase S del ciclo celular. Para ello, las células se incuban con pirimidinas modificadas, 
que actúan como análogos de timidina, durante un breve período de tiempo (pulso). 
Después de eso, las células se pueden fijar y procesar inmediatamente para la detección 
del ADN marcado, lo que proporciona una estimación de la proliferación general en la 
muestra (caza).

Las pirimidinas que contienen halógenos, como BrdU (5-bromo-2’-desoxiuridina) se 
han utilizado durante décadas con este objetivo, lo que requiere la desnaturalización del 
ADN para revelar su presencia mediante inmunotinción con anticuerpos específicos. Por 
el contrario, la EdU (5-etinil-2’-desoxiuridina) puede detectarse directamente mediante 
una reacción “click” mediante la cual grupo alquino presente en la molécula de EdU 
forma un enlace covalente con una azida ligada a un fluoróforo, haciendo innecesario 
el uso de anticuerpos o el desenmascaramiento de antígenos por tratamiento térmico o 
ácido. Por esta y otras ventajas, EdU se ha convertido en los últimos años en una alter-
nativa popular para los ensayos de rastreo.

La apoptosis es una forma de muerte celular provocada por la activación de casca-
das proteolíticas altamente reguladas y con características bioquímicas y morfológicas 
estereotipadas. Los procesos apoptóticos se dividen en dos subtipos principales, apop-
tosis intrínseca o extrínseca, según las vías bioquímicas implicadas en su regulación. 
Por un lado, la apoptosis intrínseca depende de la permeabilización de la membrana 
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externa mitocondrial, liberando proteínas mitocondriales que son responsables de la 
activación de la caspasa iniciadora 9. Por otro lado, la apoptosis extrínseca está mediada 
por dos tipos diferentes de receptores de membrana: la presencia de ligandos de re-
ceptores de muerte conduce a la activación de las caspasas iniciadoras 8 y 10, mientras 
que la ausencia de ligandos de receptores de dependencia conduce a la activación de 
la caspasa iniciadora 9.

Las caspasas ejecutoras 3, 6 y 7 son efectores comunes tanto para la vía intrínseca 
como extrínseca, y son escindidas por las caspasas 8, 9 o 10 para iniciar la apoptosis. De-
bido a su papel central en las vías de señalización de la apoptosis, los efectores comunes 
como las caspasa 3 y 7 son biomarcadores bien establecidos para la detección de célu-
las apoptóticas y pueden detectarse fácilmente en los núcleos mediante inmunoquímica 
mediante una gran variedad de anticuerpos disponibles comercialmente que distinguen 
específicamente la forma activada de cada caspasa de su cimógeno pro-caspasa.

Análisis de bioimagen

Hemos desarrollado un flujo de trabajo de análisis de bioimagen para analizar un 
rastreo de alto contenido para la evaluación de la proliferación celular y la apoptosis. 
A pesar de que el flujo de trabajo se ha ensamblado en una sola macroinstrucción de 
ImageJ, se han diseñado flujos de trabajo adicionales para realizar pasos de preproce-
samiento opcionales. Además, igual que en el capítulo anterior, este flujo de trabajo 
también incluye un modo pre-análisis para testar los parámetros ajustables y visualizar 
el resultado.

Dado que el ensayo se basa en datos densitométricos, es necesario tener en cuenta 
que las imágenes adquiridas a través de un microscopio óptico se ven afectadas por el 
viñeteado, que se estima que causa una variación en la iluminación efectiva del 10-30% 
entre las diferentes regiones de la imagen. Para mejorar la calidad de los datos, es posi-
ble corregir las imágenes experimentales en un paso de preprocesamiento o determinar 
una región con una variación de iluminación mínima para excluir el resto del análisis. 
El flujo de trabajo incluye un paso opcional destinado a corregir la iluminación irregu-
lar utilizando la plugin BaSiC, un método retrospectivo que utiliza múltiples imágenes 
aprovechando la gran cantidad de imágenes que se generan en un ensayo de rastreo.

El ensayo computa datos densitométricos de diferentes sondas fluorescentes que 
marcan moléculas localizadas total o parcialmente en los núcleos celulares pero que 
muestran diversos patrones de tinción. En consecuencia, la segmentación se realiza en 
el canal de la tinción nuclear (p.ej., DAPI). Para lograr una segmentación de núcleos 
precisa, el usuario puede elegir entre dos estrategias diferenciadas. Por un lado, un flu-
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jo de trabajo basado en métodos clásicos de procesamiento de imágenes que incluye 
algunos de los pasos más habituales en este tipo de estrategias (filtros de suavizado, 
métodos de segmentación por umbrales y operaciones de morfología matemática). Por 
otro lado, un enfoque de aprendizaje profundo (DL, del inglés, deep learning) utilizando 
el modelo versátil (núcleos fluorescentes) de StarDist. StarDist predice la probabilidad 
de cada píxel de ser parte de un objeto y la distancia al límite del objeto a lo largo de 
una serie de direcciones radiales. de este modo, se propone un polígono de forma 
estrellada-convexa como región candidata por cada píxel dentro de un objeto, lo que 
genera una gran cantidad de formas redundantes que luego se filtran usando supresión 
no máxima para podar aquellas regiones que probablemente correspondan al mismo 
objeto. Para utilizar StarDist hemos adaptado nuestro protocolo de captura de imagen, 
de modo que la resolución obtenida es la más adecuada para aplicar este método.

El uso de microscopios de alto rendimiento permite la adquisición de un gran con-
junto de datos de forma automatizada. A pesar de sus ventajas, el enfoque automático 
también puede conducir a la captura de imágenes de mala calidad. Dado que el análisis 
de dichos rastreos imposibilita la inspección visual de las imágenes es necesario aplicar 
métodos para la identificación automática y la exclusión de esas imágenes a fin de evi-
tar una interpretación errónea de los resultados. Dado que se han propuesto muchos 
parámetros para la detección de imágenes desenfocadas, decidimos entrenar un clasi-
ficador utilizando métodos de ML en CellProfiler Analyst. Para aumentar el número de 
imágenes desenfocadas para el entrenamiento y la validación del método se capturaron 
dos conjuntos de imágenes adicionales: uno de imágenes ligeramente desenfocadas y 
otro de campos de visión afectados severamente. Los resultados demostraron la gran 
exactitud del método utilizando un único parámetro, el power log-log slope.

Estudio: respuesta de las NSCs al daño del ADN

El funcionamiento del flujo de trabajo se probó en un rastreo real de proliferación 
celular (mediante un pulso corto de EdU) y apoptosis (mediante detección de caspa-
sa 3 activada por inmunocitoquímica). Seleccionamos una estrategia que combinaba 
funciones de corrección de la iluminación calculadas con BaSiC y segmentación de los 
núcleos con StarDist. El objetivo del ensayo era evaluar la respuesta de las NSC al daño 
del ADN in vitro, que fue inducido por una breve exposición al agente alquilante metil 
metanosulfonato (MMS). En concreto, las células se expusieron a una concentración 
baja (0,005%) o alta (0,02%) de MMS.

Tal y como se esperaba, los efectos del tratamiento sobre la proliferación celular fue-
ron dramáticos. Mientras que un MMS bajo condujo a una disminución importante en 
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las células positivas para EdU, un MMS alto provocó una detención completa del ciclo 
celular. Además, observamos una caída evidente de la intensidad media y los valores de 
densidad integrados del canal EdU en las células EdU+ tratadas con MMS bajo. Además, 
se estratificaron las células de la muestra en cinco grupos (C1-5), asignando las células 
EdU- a C1 mientras que las EdU+ se distribuyeron entre los cuatro grupos restantes de 
acuerdo con su señal (C2 a C5 de menor a mayor intensidad). De este modo se observó 
que las células proliferantes en condición de MMS baja se asignaron preferentemente 
en C2, muy probablemente debido a la interrupción transitoria de la fase S. Respecto 
a la apoptosis, se trata de un fenómeno extremadamente raro en NSCs cultivadas en 
condiciones regulares in vitro, por lo que a pesar de que un MMS provocó un aumento 
importante la tasa de apoptosis más alta no superó el 0,4%

CAPÍTULO 3
Antecedentes biológicos

Una de las características definitorias de las NSCs es su capacidad clonal y de au-
torrenovación. El desarrollo de cultivo in vitro de estas células madre ha permitido la 
evaluación de sus características definitorias. Tanto la evaluación de la clonalidad como 
la autorrenovación se basan en la formación controlada de agregados clonales flotan-
tes conocidos como neuroesferas durante el denominado “ensayo de formación de 
neuroesferas”. El ensayo se inicia con la obtención de células individuales a partir de la 
disección y disociación del tejido SEZ o de la disgregación de neuroesferas previamente 
formadas. Luego, estas células se siembran a una densidad celular estandarizada en pla-
cas multipocillo en un medio definido sin suero y suplementado con mitógenos. Des-
pués de varios días, el número de neuroesferas formadas define la capacidad clonal del 
cultivo, mientras que su disgregación y resiembra en rondas posteriores de formación 
de neuroesferas proporciona información sobre su autorrenovación.

Los ensayos de una sola célula aseguran la densidad clonal verdadera, ya que se 
realizan cultivando células individuales de forma independiente, es decir, sembrando 
solo una célula por pocillo. Sin embargo, los procedimientos para lograr esto no siem-
pre son fáciles y pueden perjudicar la viabilidad celular. Una alternativa interesante son 
los ensayos de muy baja densidad (ensayo pseudo-clonal), que también pueden ge-
nerar resultados consistentes. Nuestro laboratorio y otros han demostrado que una 
densidad celular de menos de 5 NSC por µL (hasta 1000 células por pocillo en una placa 
convencional de 96 pocillos) permite la formación reproducible de neuroesferas clona-
les a partir de células individuales sin signos de agregación. El objetivo de este ensayo 
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es cuantificar el número de neuroesferas formadas, generalmente después de 5-7 días, 
en relación al número de células sembradas.

El procedimiento para cuantificar el resultado de los ensayos de neuroesferas ha 
sido típicamente la observación directa de la placa de cultivo a través de un microsco-
pio invertido de contraste de fase, por lo que los investigadores obtienen el número de 
agregados clonales mediante inspección visual mientras se desplazan manualmente a 
través de la placa. Además de ser tedioso y lento, especialmente en experimentos con 
varias réplicas técnicas y biológicas y condiciones experimentales, requiere un cierto 
entrenamiento y puede verse afectado por el sesgo del investigador. En algunos para-
digmas experimentales, además del número de clones, el tamaño de las neuroesferas 
formadas también podría ser informativo y ayudar a caracterizar un fenotipo particular. 
Esta medida no se puede obtener directamente durante el recuento manual de neu-
roesferas, sino que es necesario capturar imágenes representativas de la superficie de 
cultivo y medir el tamaño de las neuroesferas muestreadas.

Configuración experimental y captura de imagen

Para nuestro ensayo elegimos un enfoque pseudo-clonal porque es mucho más 
fácil de realizar a diario en un laboratorio de cultivo celular normal. Sin embargo, con 
el fin de optimizar el análisis y permitir la evaluación simultánea y automática tanto del 
número como del tamaño de las neuroesferas, decidimos desarrollar un protocolo de 
captura de imágenes similar a un rastreo de alto contenido al que le sigue un flujo de 
trabajo de análisis de bioimagen automático. Dado que las neuroesferas no se distri-
buyen de manera heterogénea a lo largo del pocillo decidimos capturar una cuadrícula 
ordenada de 5x5 imágenes parcialmente superpuestas cubriendo toda la superficie del 
pocillo, lo que permite combinarlas más tarde para obtener una reconstrucción com-
pleta. Por otro lado, al tratarse de agregados tridimensionales, encontrar un plano focal 
apropiado para obtener una imagen representativa enfocada de todas las neuroesferas 
en el pocillo no es una tarea fácil. De hecho, el software de enfoque automático que se 
aplica normalmente para encontrar células adheridas al fondo del pocillo falla en gran 
medida al intentar enfocar las neuroesferas. Por lo tanto, nuestro protocolo de imáge-
nes se basa en la información proporcionada por el operador para establecer el mejor 
plano focal posible.

Análisis de bioimagen

Hemos desarrollado un flujo de trabajo de análisis de bioimagen para el ensayo 
de neuroesfera pseudo-clonal. El flujo de trabajo se ha automatizado mediante varias 
macroinstrucciones de ImageJ combinadas con un clasificador entrenado en ilastik. En 
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este caso no se ha incluído un modo pre-análisis, pues el flujo de trabajo requiere más 
tiempo para procesar pocillos enteros. Por el contrario, se ha implementado una ma-
croinstrucción adicional en la que se pueden probar con mayor eficiencia los paráme-
tros de la segmentación en las imágenes de los pocillos una vez han sido reconstruidos.

Capturar toda el área de cultivo de un pocillo redondo en una placa multipocillo de 
plástico transparente mediante una cuadrícula de imágenes cuadradas conlleva algunos 
problemas para el análisis de bioimagen. Destaca la iluminación desigual introducida 
por la pared del pocillo, que refleja la luz. De hecho, este fenómeno es tan prominente 
que enmascara la típica iluminación irregular que afecta a cualquier imagen obtenida 
con un microscopio. Para hacer frente a esto, en primer lugar  se preprocesan las imá-
genes del experimento para corregir la iluminación no uniforme. Al contrario que en 
el capítulo 2, la iluminación es diferente en cada campo de visión, según su posición 
respecto a la pared del pocillo. Por esta razón se ha implementado una macroinstruc-
ción que utiliza BaSiC para generar una función de corrección para cada uno de los 25 
campos de visión que conforman un pocillo.

Dado que los microscopios de alto contenido no suelen utilizar contraste de fase, 
es probable que las neuroesferas se detecten mejor debido a su textura más que a sus 
intensidades absolutas. Por lo tanto, decidimos aplicar una estrategia de ML en ilastik 
para facilitar la segmentación semántica de varios componentes de la imagen (fondo, 
neuroesferas y bordes del pocillo) mediante la clasificación de píxeles. El clasificador 
está integrado en la macroinstrucción de ImageJ, en el que genera un mapa de proba-
bilidades como un paso intermedio del flujo de trabajo. A continuación se reconstruyen 
los pocillos (tanto las imágenes de luz transmitida como los mapas de probabilidades) 
utilizando el  algoritmo de “costura” incluido en el núcleo de Fiji.

El objetivo principal del ensayo es contar el número de neuroesferas y medir su 
tamaño. Una vez reconstruidos los pocillos, la segmentación se realiza en los mapas de 
probabilidad generados, que son procesados mediante una estrategia basada en el uso 
de filtros. La imagen de probabilidad de neuroesferas se procesa para segmentar los 
agregados clonales. Además, el mapa de probabilidad de las paredes se invierte y para 
definir el área correspondiente a la superficie de cultivo del pocillo.

Estudio: comparación entre los clasificadores propuestos para la 
segmentación de las neuroesferas

Dado que probamos cuatro clasificadores diferentes, cada uno basado en un núme-
ro diferente de características, decidimos comparar su funcionamiento en la segmenta-
ción de objetos. Para ello, ejecutamos el flujo de trabajo previamente descrito aplican-
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do cada uno de los cuatro clasificadores pero manteniendo constante el conjunto de 
parámetros ajustables. Además, un experto anotó manualmente todas las neuroesferas 
en las imágenes reconstruidas del canal de luz transmitida. Luego, comparamos las 
segmentaciones obtenidas a través de nuestro flujo de trabajo de análisis de bioima-
gen aplicando los cuatro clasificadores con las anotaciones de referencia anotadas ma-
nualmente. Con este objetivo, utilizamos el parámetro F1 para evaluar el rendimiento 
de la segmentación, para lo que implementamos una macro de Fiji. Esto nos permitió 
identificar el mejor clasificador, cuyo resultado fue comparado también con el obtenido 
al enfrentar las anotaciones del primer experto con las generadas por un segundo ano-
tador. De este modo demostramos que nuestro flujo de trabajo automatizado genera 
resultados tan precisos como los anotados manualmente por investigadores. 

CAPÍTULO 4
Antecedentes biológicos

Los oligodendrocitos en el CNS envuelven sus proyecciones citoplasmáticas espe-
cializadas alrededor de los axones para formar la estructura de recubrimiento conocida 
como vaina de mielina. Las OPCs son las encargadas de dar lugar a oligodendrocitos 
mielinizantes, tanto durante el desarrollo embrionario que conduce al proceso de mie-
linización como en respuesta a una lesión o en el caso de patología desmielinizante 
durante el proceso de remielinización. Debido a la innegable importancia de estos dos 
procesos, los científicos han buscado enfoques para cuantificar los cambios en el grosor 
de la vaina de mielina para ayudar a comprender su biología en condiciones fisiológicas 
y patológicas. Existe un método generalizado que se ha convertido en un estándar del 
campo, el parámetro conocido como g-ratio, definido en el campo como la relación 
entre el diámetro del axón y el diámetro de la fibra. Según esta definición, cuanto más 
gruesa es la vaina de mielina, menor es el g-ratio, que es igual a uno en ausencia de mie-
lina. Con respecto a la evaluación de la remielinización, las áreas sometidas a un proceso 
de remielinización se distinguen típicamente por sus vainas de mielina más delgadas, es 
decir, g-ratios más bajos.

Durante la mielinización, los axones del CNS son cubiertos de forma discontinua por 
oligodendrocitos que albergan proteínas especializadas transmembrana y asociadas a 
la membrana que confieren a la mielina la mayoría de sus propiedades. Para hacerlo, 
estas células emiten procesos citoplasmáticos que son guiados para alcanzar el axón, 
mantener un contacto estrecho y envolverlo para formar la cubierta celular multicapa y 
concéntrica conocida como vainas de mielina. El engrosamiento de la mielina se debe a 
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la envoltura de la lengua citoplásmica interna alrededor del axón al avanzar por debajo 
de la envoltura preformada. La compactación de la mielina comienza tras las primeras 
envolturas y es impulsada por la proteína básica de mielina (MBP, del inglés myelin 
basic protein) asociada a la membrana. De hecho, el crecimiento de la membrana y 
la compactación de la mielina tienen lugar de una manera coordinada, con lo que la 
compactación se da primero en las envolturas de membrana más externas, evitando 
la compactación de la zona de crecimiento más interna. Luego, la compactación se ex-
tiende progresivamente hacia el interior, siempre a la zaga de la región de crecimiento. 
Durante la mielinización, la lengua interna se agranda y es rica en F-actina. No obstante, 
a medida que la mielina madura, la lengua se estrecha y la actina F disminuye. Una vez 
que se completa la mielinización activa, queda una lengua interna de mielina sin com-
pactar, generalmente encogida. De hecho, las fibras adultas del CNS aún conservan el 
citoplasma no compactado en los extremos de la espiral de mielina, es decir, las lenguas 
interna y externa.

Sorprendentemente, a pesar de la importancia de la lengua interna en el proceso 
de mielinización, se ha ignorado durante mucho tiempo al evaluar las propiedades de 
la mielina. De hecho,el g-ratio no la tiene en cuenta. De hecho, a pesar de la existencia 
de diversos métodos computacionales para la obtención del g-ratio, hasta ahora no se 
había desarrollado ninguno para la segmentación de la lengua interna. Por esa razón 
decidimos implementar un flujo de trabajo que permitiese calcular el g-ratio tradicional, 
pero también obtener medidas teniendo en cuenta este componente de la fibra.

Análisis de bioimagen

A diferencia de otros enfoques destinados a permitir el análisis de imágenes adqui-
ridas a través de una amplia gama de técnicas de imagen, nuestro objetivo es poder 
segmentar la lengua interna. De hecho, nuestro enfoque permite la segmentación se-
miautomática de los tres componentes principales de la fibra: axoplasma, lengua interna 
y mielina, siempre que las imágenes muestren la lengua interna con suficiente detalle. 
Por lo tanto, nos enfocamos en imágenes TEM. Nuestra estrategia se basa en métodos 
de ML supervisados implementados en ilastik para mejorar la segmentación y combina 
el procesamiento automatizado de imágenes con etapas interactivas de edición del 
usuario.

Los pasos iniciales del flujo de trabajo se realizan en ilastik que, a diferencia de 
Fiji, reconoce un número limitado de formatos de imagen. Por esta razón decidimos 
incluir un paso opcional para convertir las imágenes en un formato compatible con 
ilastik. Además, este flujo de trabajo también permite aplicar algunos ajustes básicos 
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que pueden ser útiles para preprocesar las imágenes con el fin de utilizar un clasifica-
dor de ilastik generado previamente, por ejemplo, normalizando las imágenes. Una vez 
preprocesadas, un clasificador de píxeles entrenado en ilastik se aplica para generar 
mapas de probabilidad con tres clases diferentes: mielina, citoplasma y membrana. A 
continuación, la probabilidad del citoplasma se utiliza para generar una segmentación 
de instancias, a las que se les asignan clases diferentes (axoplasma o lengua de mielina) 
utilizando un clasificador de objetos entrenado en ilastik.

Los resultados obtenidos en ilastik se utilizan para realizar la segmentación secuen-
cial de: i) el objeto definido por el límite interno de mielina, es decir, el axoplasma más 
la lengua interna, ii) toda la fibra (axoplasma + lengua interna + mielina compacta) y iii) 
solo el axoplasma sin ninguna estructura derivada de oligodendrocitos. Finalmente, tra-
bajando con estas regiones será posible estimar automáticamente el grosor de la mieli-
na, el área interna de la lengua o el diámetro del axón, entre muchos otros parámetros. 
No obstante, a pesar del uso de métodos de ML, la complejidad de las imágenes TEM 
aún dificulta la generación de una segmentación automática perfecta. Por lo tanto, de-
cidimos implementar un flujo de trabajo semiautomático en el que la macroinstrucción 
de ImageJ obtiene automáticamente las ROIs correspondientes y luego se detiene, lo 
que permite al usuario verificar la selección y, si es necesario, editarla antes de pasar a la 
siguiente fase. La macroinstrucción sugiere posibles mejoras que pueden ser fácilmente 
aplicadas por el usuario. Alternativamente, el usuario es libre de utilizar la herramienta 
de selección a mano alzada de ImageJ para mejorar la selección.

Antes de medir y generar la tabla de resultados la macro incluye varios pasos auto-
matizados destinados a: i) verificar las enmiendas manuales introducidas por el usuario 
y corregir errores comunes de la edición manual e ii) asociar los objetos pertenecientes 
a la misma fibra mediante un código de tres dígitos para permitir un análisis integral.

Estudio: evaluación de la segmentación de la fibra, el límite interno de la 
mielina y el axoplasma en imágenes de TEM.

Para evaluar cuantitativamente el rendimiento del flujo de trabajo, comparamos la 
segmentación obtenida utilizando la macro descrita en este capítulo con anotaciones 
manuales de un experto. La evaluación se realizó en imágenes TEM diferentes a las 
utilizadas para entrenar a los clasificadores. Las imágenes de TEM in vivo se obtuvie-
ron de áreas remielinizantes del corpus callosum previamente sometidas a una lesión 
de desmielinización mediante la inyección de la toxina lisofosfatidilcolina. Para evaluar 
el impacto de la supervisión se generaron dos segmentaciones diferentes: i) una de 
manera completamente automatizada y, ii) otra semiautomática, incluyendo los pasos 
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supervisados ​​por el usuario, pero evitando el uso de la herramienta de selección a mano 
alzada para la edición de ROIs.

El enfoque automatizado demostró una capacidad considerable para predecir los 
componentes de la fibra, siendo la fibra el objeto que el método parece identificar 
mejor. Además, como era de esperar, estos resultados se pueden mejorar significativa-
mente al permitir al usuario revisar y modificar los objetos segmentados, incluso con la 
limitación de no permitir dibujar ROIs con la herramienta de selección a mano alzada.

CONCLUSIONES
1.	El desarrollo de métodos de captura y análisis de imagen automatizados 
para el estudio de cultivos de NSCs mejora el rendimiento y la reproducibilidad 
de los ensayos in vitro.

2.	La configuración experimental propuesta y la estrategia de análisis para el 
ensayo estático de alto rendimiento basado en la adhesión célula-a-célula es 
un modelo in vitro fiable para la evaluación del anclaje mediado por N-cadhe-
rina de NSCs aisladas.

3.	Se pueden identificar diversos patrones de proliferación y viabilidad celular 
mediante métodos de rastreo de alto contenido en ensayos de proliferación 
celular y apoptosis.

4.	El uso de colecciones de imágenes fuera de foco facilita el entrenamiento 
de clasificadores ML para la detección de campos de visión afectados por el 
desenfoque.

5.	El análisis de bioimagen automatizado de ensayos pseudoclonales de for-
mación de neuroesferas capturados en 2D genera datos tan precisos como los 
anotados en humanos.

6.	La segmentación asistida por ML y supervisada por humanos de secciones 
transversales de fibras axonales en imágenes de TEM permite la extracción de 
parámetros clásicos y novedosos (basados en la lengua interna) para el estudio 
de la (re)mielinización y mejora el rendimiento del análisis de bioimagen.




