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Abstract

Quantum fields in curved spacetime undergo
fluctuations that produce non-vanishing vacuum
expectation values of the stress-energy tensor, i.e.,
energy can be generated due to the gravitational
field. The same happens for other type of back-
ground fields like gauge or scalars. This effect plays
an important role in the early Universe, in astro-
physical compact objects, and in strong electromag-
netic phenomena.

However, the computation of the stress-energy
tensor, among others, is a highly nontrivial issue.
In particular, non-trivial divergences appear when
computing expectation values of local observables.
The objective of my thesis is to tackle this issue by
studying regularization and renormalization mech-
anisms for quantum fields in curved spacetime, es-
pecially in Friedman-Robertson-Walker-Lemaitre

spacetimes.
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On the one hand, this will be done by extend-
ing adiabatic regularization to include interacting
tields (scalar, gauge fields). On the other hand, run-
ning of the coupling constant by introducing a mass
parameter will be computed for general curved
spacetime and a subtraction scheme, that naturally
incorporates decoupling for higher massive fields
will be obtained. A particular application will be
given in the context of the cosmological constant

problem.
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Resumen de la Tesis

Motivacion y Contexto

Una de las mayores riquezas de la fisica fundamental es su relativa
nitidez a la hora de clasificar fenémenos fisicos en sus correspon-
dientes teorfas fisicas. Si queremos estudiar la interaccién de una
particula cargada en un campo electromagnético, nadie discutiria
que la mejor forma es hacer uso de la Electrodindmica Cudntica
(QED). Lo mismo ocurre con el estudio de interacciones nucleares
o desintegraciones de particulas . Por otro lado, si deseamos es-
tudiar la evolucién del Universo, el colapso de una estrella o la
propagacion de ondas gravitacionales, la Teorfa de la Relatividad
General seria la teoria ideal para describir dichos fenémenos. En
gran aproximacién, el mundo observable parece dividirse en las
descripciones de dos teorias fundamentales: la Teoria Cudntica de
Campos y el Modelo Estandar y la Teoria de la Relatividad General.

Ahora bien, a pesar del enorme éxito cosechado por ambas
teorias en cuanto a explicaciones y predicciones de nuevos feno-

menos, quedan importantes cuestiones sin resolver. En primer lugar,
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existen observaciones empiricas que no pueden ser explicadas por
ninguna de las dos teorias: la materia oscura, la masa de los neutrinos o
el origen de la distribucién del Fondo Césmico de Microondas. En
segundo lugar, la biisqueda de una teoria de la gravedad cudntica o
de una teoria mas fundamental que unifique ambas teorias surge
directamente de la necesidad de acoplar de forma consistente la
materia, cuantizada, a la gravedad tal y como obliga la Teoria de la
Relatividad General.

Ante esta dltima cuestidn, varias propuestas han ido adquiriendo
forma durante las tltimas décadas (ver [89] para un visién general).
Sin embargo, todas se enfrentan a obstdculos tanto teéricos como
précticos. En especial, su conexién con posibles predicciones ob-
servables hoy en dia se ve obstaculizada debido a su complejo
formalismo matemdtico. Una propuesta intermedia consiste en
aprovechar la formulacién de Teoria Cudntica de Campos en espa-
cio plano y generalizarla a espacios curvos. En efecto, dado que
el obstaculo cualitativo de una teoria mds fundamental es la cuan-
tizacion de la gravedad, se puede aparcar momentdneamente el
problema usando uno de los enfoques maés fructiferos de la fisica
contemporénea: las teorias de campos efectivas. Estas consisten en
asumir que una teoria, en este caso la teoria cudntica de campos
en espacio curvo es una descripcién valida a escalas de energia (o
longitud) mucho menor (0 mayor) que cierta escala, en este caso la
masa de Planck (o longitud de Planck):

Mp = G~ V211/2c1/2 02 x 107 5g 1)
Ip = GY271/2c73/2 2 1.4 x 10~ 3em )
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donde usando unidades de ¢ = % = 1 implica Mp ~ 10! GeV
(usaremos a partir de ahora ¢ = i = 1). Excepto casos particulares
como el interior de un agujero negro o el origen del Universo en
el modelo ACDM no existen demasiados fenémenos que alcancen
este tipo de energias y por lo tanto es una buena suposicién asumir
que la Teoria Cudntica de Campos en Espacios Curvos (QFTCS)
pueda describir la mayor parte de fenémenos detectables hoy en

dia en el Universo.

El estudio de un campo cudntico en presencia de un campo
clasico externo ya fue considerado previamente en el caso de un
campo electromagnético antes de dar paso a una teorfa cudntica
de la electrodindmica. Uno de los efectos de esta teoria semiclasica
es la produccién espontdnea de particulas (p.ej. un par electrén-
positrén) debido a un campo electromagnético cldsico, conocido
como mecanismo de (Sauter-Heisenberg-Euler-)Schwinger [97,99].
Andlogamente es esperable que un campo gravitatorio también
produzca particulas. En efecto, uno de los primeros resultados
en QFTCS fue, a partir del uso novedoso de transformaciones de
Bogoliubov, la produccién de particulas en universos en expansion
a finales de los afios 60 [78] y, més tarde, en el contexto de colapso
gravitatorio y agujeros negros [57]. En los modelos inflacionarios
durante los primeros instantes del Universo, este efecto estaria
detras de las anisotropias que se observan hoy en dia en el Fondo
Coésmico de Microondas. Asi mismo, se espera también que haya
sido determinante para la formacién de materia (electrones, fotones,
etc.) durante el periodo c6smico conocido como Recalentamiento
(0 Reheating).
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Otra consecuencia de la cuantizacién de un campo es la estruc-
tura no trivial del estado de vacio que, entre otras, deja su huella
como polarizacién del vacio y sobre la cual se asientan importantes
efectos como el efecto Lamb y el momento magnético del electron
o el muén. En el caso de un campo gravitatorio, la estructura del
estado de vacio estarfa codificada en el tensor momento-energia no
nulo. Cuantificar la densidad de energia del vacio ha sido hasta
ahora una tarea bastante esquiva, pero es necesaria para entender
correctamente el efecto de la presencia de campos cuanticos en
espacio-tiempo curvo. En particular, la energia de vacio podria
actuar como fuente en universos en expansion dando lugar a una

posible contribucién a la expansion acelerada del Universo [88].

Una de las magnitudes mds importantes en QFTCS es el valor
esperado de vacio del tensor energia-momento (0|T,;,|0). Este con-
tiene informacién tanto de la produccién de particulas como los
efectos de polarizacién del vacio. Ademas, siguiendo la Teoria de
la Relatividad General, esta magnitud tiene que contribuir en la
dindmica del espacio-tiempo, a través de la ecuacién semicldsica de

Einstein!
1
Rap — ERgab = 87TG<O‘Tab’O>' 3)

La construccion de este tipo de objetos no estd exenta de problemas.
Las infinitas, no equivalentes, formas de seleccionar el estado de
vacio, los limites de la aproximacién semiclésica y las soluciones

generales de las ecuaciones de los campos son algunos de ellos

1A lo largo de la tesis seguiremos las covenciones de signos de [86].
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(para un estudio més detallado nos referimos a las referencias [15,
52,64,86,112]).

Un problema adicional esta relacionado con las divergencias que
aparecen al calcular magnitudes como (0|T,;|0). Las divergencias
en teorias de campos en espacio plano son ya conocidas y diversos
métodos han sido disefiados para superarlas [91,98]. En general,
estos métodos consisten en aislar las divergencias de las diversas
magnitudes a través de la reqularizacién para posteriormente definir
consistentemente los términos del Lagrangiano de tal forma que
se obtenga un Lagrangiano renormalizado que resulte en cantidades
finitas. De manera esquematica podemos construir el tensor energia-
momento renormalizado como

<O‘Tab’0>ren = (0[Tap|0) — T;}lalb/ 4
de tal forma que ambas cantidades del lado derecho cancelen sus
divergencias dando como resultado una cantidad finita. En QFTCS
también se han ido construyendo distintos métodos de regular-
izacién y renormalizacion [15,86] dando como resultado distintos
T;l‘}b. Sin embargo, existen ciertas restricciones sobre los términos
de sustraccion [112]. Deben ser compatibles con la conservaciéon
covariante del tensor energia-momento V*(0|T,;|0),., = 0y con-
struirse de manera local y geométrica. Finalmente, cabria exigir
tener solamente un nimero finito de términos de sustraccién, im-
itando el criterio de renormalizabilidad usual. Una consecuencia

de estas exigencias es que ciertos resultados especialmente signi-
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ficativos, como las anomalias conformes, resultan ser esencialmente

independientes del método particular de renormalizacién.

Durante la tesis, presentaremos algunos métodos de regular-
izacién ampliamente usados en la teoria cudntica de espacios curvos
como regularizaciéon dimensional o regularizaciéon adiabéatica para
el caso particular de métricas de Friedman-Lemaitre-Robertson-
Walker. Antes de continuar, es importante matizar ciertos términos
usados en este contexto. Estrictamente hablando, nos referimos a
un método de regularizacién a un método que introduzca un regu-
lador v que en un cierto limite, normalmente v — co hace divergir
la magnitud calculada. De esta forma se pueden aislar las diver-
gencias de tal forma que se pueda construir un método o esquerma
de sustraccion. Regularizacién adiabatica obtiene un esquema de
substraccién sin necesidad de un regulador. Otro método cono-
cido que usaremos es el esquema de sustraccion DeWitt-Schwinger.
Estos métodos se han estudiado en detalle [15,86] asegurando los
requisitos antes explicados, demostrando la equivalencia entre uno
y otro y obteniendo resultados explicitos en métricas especificas

relevantes en astrofisica y cosmologia.

La mayor parte de resultados de regularizacién adiabatica se
han desarrollado para campos escalares libres [86] y s6lo recien-
temente para campos de Dirac [31,72,73]. Uno de los objetivos
de esta tesis serd extender estos resultados para incluir campos
escalares y Dirac en interaccién con otros campos escalares cldsicos
y electromagnéticos. Ambas interacciones aparecen en diversos
escenarios fisicos relevantes en cosmologia. En efecto, la mayor

parte de modelos apuntan a la existencia de al menos un campo
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escalar como fuente del periodo inflacionario al comienzo del Uni-
verso. Este serfa responsable tanto de la expansion acelerada, de las
anisotropias observadas en el fondo césmico como de la produccién
de materia observable durante Reheating [8, 55, 56,70, 71]. Otro
campo escalar, experimentalmente verificado, es el campo de Higgs
que tiene un papel importante en la transiciéon Electrodébil en los

primeros instantes del Universo.

Campos electromagnéticos también pueden generar pares de
particulas cargadas a partir del mecanismo (Sauter-Heisenberg-
Euler-)Schwinger [97,99]. Para poder tener una sefial de este efecto
en el laboratorio, la opcién maés eficiente requeriria alcanzar un
campo eléctrico critico y una escala de intensidad [41] de
2 &2
E=—"L~10"%/m I.=-5~4x10°W/cm?. (5)

e 87
Laseres tradicionales no alcanzan estas escalas, lo cual explica que
esta produccion de particulas no haya sido observada. Avances
recientes [1-3, 16,33, 38,40, 60] sugieren la posibilidad de alcanzar
este tipo de efecto en el Extreme Light Infrastructure (ELI) [41]. Otro
laboratorio potencial puede venir del campo de la cosmologia y
la astrofisica. En efecto, estrellas de neutrones altamente magne-
tizadas [96] y produccién de campos electromagnéticos durante
el Universo temprano [66] podrian alcanzar este tipo de escalas.
Esta tiltima posee un gran interés puesto que es uno de los posibles
origenes de los recientes descubrimientos de campos magnéticos a

escala cosmolégica [42].
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La regularizacién adiabatica, a pesar de restringirse a métricas
particulares, es muy eficiente para cdlculos numéricos. Esto es
esencial no sélo para poder cuantificar, en escenarios fisicamente
motivados, la produccién de particulas y la polarizaciéon de vacio,
sino también para calcular la respuesta de estos fenémenos en el

campo cldsico que los produce, proceso conocido como backreaction.

La segunda parte de la tesis se centra en estudiar la parte finita
que sobrevive a la renormalizacién y en especial a la dependencia de
las constantes de acople de una escala arbitraria y. Regularizacién
dimensional, ampliamente utilizada en scattering de particulas en
fisica de altas energias, proporciona una arbitrariedad a la hora de
seleccionar un esquema de substraccién de contratérminos particu-

lar, codificado en un pardmetro de dimensiones de energia y.

La introduccién de este parametro es bastante practica para cal-
cular cierto tipo de magnitudes. Asi por ejemplo se utiliza con
frecuencia el esquema de Minimal Subtraction (MS) en lugar del
esquema on-shell. En este tiltimo ni los acoples ni las magnitudes
tienen una dependencia explicita en y y se relaciona directamente
con cantidades fisicas (masa, carga, etc.). MS es muy ttil en Cro-
modindmica Cudntica (QCD) donde particulas como los quarks no
tienen estados asintéticos definidos y las condiciones de on-shell
no son las mas adecuadas [98]. Dado que los resultados fisicos
no deben depender del esquema de renormalizacién que se use
(on-shell, MS, etc.), la invariancia en u resulta en las ecuaciones del
grupo de renormalizacién, que permite predecir el comportamiento
de las teorias en ciertos limites de energia. En efecto, dos resultados

clasicos de la Teoria Cudntica de Campos en espacio plano son las
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funciones beta de las cargas de QED y QCD:

de e d 2n 3
QED _ _ . gQcp — 48 _ ) 8
P = dlogu 1272’ P = dlogu (11 3 ) 1672 (©)

donde 7y es el numero de sabores, y e y g los acoples de interaccion
de ambas teorias. Estas expresiones permiten inferir el compor-
tamiento a altas energias de ambas teorias: la primera aumenta su
carga efectiva y se hace no perturbativa y la segunda se vuelve mas
débil, y tiene libertad asintética.

Uno de los resultados mas importantes de QFTCS es que es
renormalizable, es decir, que se necesita un ntiimero finito de términos
en el Lagrangiano para absorber las divergencias. En efecto, la
ecuacion de Einstein semiclasica (renormalizada) seria de la forma
[15]

K2Gap + Agap + *W Hyy + B Hyy = — (0] T50) o, - (7)

Regularizacién dimensional y MS se pueden aplicar para calcular
(0|T;5|0) e, ¥ de esa forma obtener una dependencia en y tanto para
(0] Tap|0)
el running andlogo a los casos de QED y QCD. Sin embargo, la

ren COMO para las distintas constantes x, A, a y B, imitando
interpretacion fisica no es tan sencilla y dedicaremos parte de la

tesis a analizarlo con mas detalle.

Otro aspecto importante en la vision moderna de las teorias
cuanticas de campos estd relacionado con entender las teorias ac-
cesibles hasta ahora como teorias efectivas, en un cierto limite de

energias, de otras teorias més fundamentales. Un ejemplo de teoria
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efectiva es el Lagrangiano de Euler-Heisenberg

L= —1F /L —64
- w 3607r2m4

7 -
4 (FuF™)" + 7 (BuF™)’ | .. ®)

donde el efecto del campo del electrén estd codificado en términos
de orden superior del campo electromagnético y en potencias inver-
sas de la masa del electrén. Esta teoria efectiva permite estudiar de

una manera simple efectos como el scatterring de fotones.

Un resultado fundamental en este contexto es el desacoplamiento
de campos masivos a bajas energias. Esto significa que las contribu-
ciones de los campos cudnticos son despreciables cuando la escala
de energia del sistema es mucho menor que la masa del campo. Asi
por ejemplo, no necesitamos saber fisica de la masa del top para

estudiar el &tomo de Hidrégeno.

Sabemos por el teorema de Appelquist-Carazzone [7] que un
esquema de sustraccion dependiente de la masa en teoria de cam-
pos perturbativa produce desacoplamiento. En efecto, tanto las
funciones beta como la magnitud calculada tenderia a cero en el
caso m — co. Sin embargo, usando MS no se hace explicito este
desacoplamiento [74]. En QED, por ejemplo, esto se resuelve cam-
biando al esquema de substraccion de momentos (MOM). Una

cuestion importante es recuperar desacoplamiento para el caso de
QFTCS.

Finalmente, es bien conocido que la renormalizacién en espacios
curvos produce resultados en tensién con los datos observacionales.

En efecto, tanto un regulador tipo cutoff como MS producen con-
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tribuciones a la constante cosmoldgica muchos 6érdenes superiores
al valor observado. Esta discrepancia se conoce como problema de
la constante cosmoldgica [22,113]. Por lo tanto, es fundamental com-
prender correctamente la renormalizacién en QFTCS para entender

la 16gica de esta aparente o real discrepancia con las observaciones.

Resultados y Conclusiones

Hemos dividido los resultados obtenidos durante la tesis en dos
partes: regularizacion adiabética en teorias con interacciones y

renormalizacion en espacios curvos generales.

En primer lugar, se generaliz6 el método de regularizacién adia-
batica de campos escalares cuanticos para incluir interacciones con
un campo eléctrico clasico. Para ello, se extendi6 el método usual de
expansion tipo WKB [86] para incluir la interaccién con el potencial
A(t) definido a partir de F,,, = 9, A, — 9, A, [46]. Un punto crucial
fue darse cuenta que para que el método de regularizacién fuese
consistente con la conservacién del tensor momento energia era
necesario que el potencial eléctrico A fuese de orden adiabético uno,
andlogamente a 4 en el caso de gravedad [49]. Esto es un resultado
destacado puesto que habia sido obviado en la mayor parte de la
literatura de regularizacién adiabatica [11,59,69,105].

Se desarroll6 tanto la regularizacién del tensor momento-energia
como del vector de corriente eléctrica y se obtuvo la anomalia de

traza esperada en este caso [46]. También se generaliz6 el método
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de regularizacién adiabatica para incluir el pardmetro de renormal-
izacion u [47]. Un resultado determinante para que la regularizacion
adiabética con y fuese consistente es que en primer lugar no gen-
erase nuevas divergencias en comparacién con el método usual
de regularizacion adiabatica [86], es decir, el caso y = 0y que la
diferencia entre dos posibles esquemas de sustraccion, es decir, dos
regularizaciones con parametros p1 y yo solo se diferenciasen en
finitos términos covariantes,

(0| T,p[0)11 — (0| T,p[0)2, = @+ bGy + c'VH , +dTEM . (9)

ren ren

Aplicando la invariancia con respecto a y de las ecuacion semi-
clasicas de Einstein (7), se puede obtener la dependencia de las
constantes de acople con y, codificadas en las funciones beta fp =
y%O. Para el caso de las constantes dimensionales obtenemos

L C—5_
= — = 1
Pr= T2 m? + p? =" m? 4 2’ (10)
mientras que para las adimensionales
2
3 2 F—1 2
S ) S S

'86:4.8712;42+m2 Po="%p p?+m?

Para el tltimo caso, recuperamos en el limite > >> m? los resultados
estdndar de la teorfa perturbativa de campos, usando regularizacion
dimensional y MS [101]. Sin embargo, un resultado destacado es
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que para los casos dimensionales si obtenemos diferencias con MS

4 2
MS m ms _ m- (1
= =—|-=-- . 12
A 16712 P 4772 (6 C) (12)

Estos resultados fueron publicados en [46,47,49] y estdn descritos

en mds detalle en el capitulo 2 de esta tesis.

En segundo lugar, se extendi6 la regularizacion adiabética para
campos de Dirac en dos dimensiones interactuando con un campo
eléctrico clasico. Para ello, se gener6 la expansion adiabatica adap-
tando los resultados obtenidos del campo de Dirac libre [31,72,73]
para ser consistente con la introduccién del campo electromagnético
y los resultados del caso previo del campo escalar. Se regularizé
tanto la corriente eléctrica como el tensor momento-energia y se

obtuvo correctamente la anomalia quiral y de traza.

Se encontr6 una arbitrariedad a la hora de generar la expan-
sioén adiabdtica ya presente en el caso del campo libre [31,72,73].
Para solucionarlo, se propuso un método alternativo a [31,72,73]
para contruir la expansién adiabatica que no generaba ninguna

ambigiiedad.

A partir del resultado obtenido de la anomalia quiral en dos
dimensiones, obtuvimos un resultado peculiar: en el caso de un
campo sin masa de Dirac, la invariancia adiabatica del nimero de
particulas queda rota, generando una corriente eléctrica atiin en el
caso de un potencial eléctrico que evoluciona adiabdticamente. En
efecto, un potencial eléctrico A(t) producira particulas por muy

lenta que sea su variacién con respecto al tiempo. Esto es una difer-
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encia importante entre el comportamiento de un campo gravitatorio,
que si respecta invariancia adiabatica, con respecto al campo eléc-
trico. Este resultado se extendi para el caso de cuatro dimensiones
con el mismo resultado: en presencia de un campo electromag-
nético, para un campo de Dirac sin masa, la anomalia quiral rompe
la invariancia adiabatica, produciendo particulas. Estos resultados
fueron publicados en [10,12,46] y estdn descritos en més detalle en

el capitulo 3 de esta tesis.

Finalmente, la regularizacion adiabética del campo de Dirac libre
en cuatro dimensiones se extendié también para incluir interaccion
con un campo escalar clasico de la forma gy p¢. En primer lugar, se
asigno al campo escalar el orden adiabatico uno en consonancia con
su dimensién. Se obtuvo correctamente la regularizacion del tensor
momento-energia y la anomalia conforme. Se discuti6 este altimo
resultado y su consistencia con otros métodos de regularizacion.
Finalmente, se obtuvo la renormalizacion de la teoria a través de
la introduccion de contratérminos en el Lagrangiano inicial. Estos
resultados fueron publicados en [29] y estan descritos en més detalle
en el capitulo 4 de esta tesis. Se obtuvo ademads el running para
las constantes de acoplo usando la regularizacién adiabética con el
pardmetro y descrito anteriormente, un resultado novedoso de esta

tesis.

En la segunda parte de la tesis, se extendi6 el método de sub-
traccion de DeWitt-Schwinger (DS) para incluir un pardmetro de
renormalizacién y, andlogo a la expansion adiabatica. Para ello, en
vez de centrarnos en el valor de expectacioén del vacio del tensor
usamos la accion efectiva S g a one

momento-energia (0] T;y|0),p,



XXV

loop que contiene toda la dindmica cldsica més las correspondientes
correcciones cuanticas. La expansion de DeWitt-Schwinger de la ac-
cién efectiva permite aislar los términos divergentes, andlogamente

al caso de regularizacioén adiabaética.

Incluyendo el pardmetro y de forma consistente en los términos
de sustraccién, confirmamos que efectivamente su introducciéon
no genera nuevas divergencias. Ademas, la diferencia entre regu-
larizar la contribucién cudntica a la accion efectiva respecto de dos

parametros distintos 1 y yp resulta en
They — TR = a4 bR + cR? + dCppyC™ + eF,, FP.  (13)

Esta diferencia estd formada por términos que tienen que estar
presentes en la accion original para ser renormalizable. En el caso de
una métrica FLRW recuperariamos los resultados de regularizacién
adiabdtica con la introduccién de p. En efecto, para las constantes
de acople, usando la invariancia de la accion efectiva con respecto a

i obtenemos las siguiente funciones beta:

S TGP S N P e W s
’86_48712y2+m2 ‘B“_Snzyz-l—mz ﬁ7_960712;42+m2
1 6 < 4
T (1)

’8/\:167t2m2+;12 A m2 4 2

Otro resultado destacado es que estas funciones beta son con-
sistentes con el desacoplamiento de campos masivos a bajas en-
ergfas. Sabemos por el teorema de Appelquist-Carazzone [7] que
un esquema de regularizacion dependiente de la masa en teoria de
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campos perturbativa produce desacoplamiento. En efecto, tanto
las funciones beta como la magnitud calculada tenderia a cero en
el caso m — oco. Un resultado conocido es que MS no tiene este
desacoplamiento [74]. Nuestra version extendida del método de
DeWitt-Schwinger es por lo tanto un esquema compatible con los
resultados teorema de Appelquist-Carazzone en espacio curvo. En
efecto, observando los resultados (14) concluimos que todas las
funciones beta, incluyendo las dimensionales, tienden a cero en el
limite m — co. Estos resultados fueron publicados en [48] y estan
descritos de forma mads detallada en el capitulo 5.

Una de las aplicaciones de este resultado es estudiar las posibles
contribuciones de campos cudnticos a la constante cosmolégica.
Es bien conocido que métodos de regulador tipo cutoff generan
contribuciones con una discrepancia de 120 6rdenes de magnitud
[113] con respecto a la constante cosmoldgica observada, mientras
que la discrepancia se reduce a 32 6rdenes de magnitud si utilizamos
Minimal Subtraction [75]. En la tesis, hemos argumentado que
ambos esquemas no son métodos practicos para renormalizacién en
QFTCS. En primer lugar, ya es bien conocido que un regulador tipo
cutoff que genera problemas en si mismo (puesto que no respeta
covariancia general [75] y no recupera resultados importantes en
QFTCS [62]).

Minimal Subtraction si es compatible con estos ultimos reg-
uisitos pero, como ya se ha comentado, no es compatible con el
desacople de campos masivos. En teoria perturbativa de campos
esto se soluciona integrating out los campos masivos [74,92] y con-

struyendo distintas teorias que contienen solo campos ligeros (con
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respecto a la escala de validez de la teoria). Para constantes adi-
mensionales como la carga eléctrica la diferencia entre las distintas
teorias son correcciones logaritimas. Sin embargo, para la con-
stante cosmoldgica esta diferencia es del orden de ~ m*log (Z—i) ,
generando la enorme discrepancia con el valor observado. Sin
embargo, usando un esquema de sustracciéon que si incluye de-
sacople, como el método extendido de DeWitt-Schwinger, evita este
problema dado que la correccién generada es del orden ~ % Por
lo tanto, esto indica que el problema de la constante cosmolégica
parece estar més relacionado con una generalizacién incorrecta de
ciertas herramientas usadas en teoria cudntica de campos pertur-
bativa que con una prediccién catastrdfica de la propia teoria de

campos.

Comentarios Finales y Futuras Direcciones

Durante la tesis han aparecido diversas cuestiones que merecen
especial atencién y que no han podido ser estudiadas con més
detalle.

En primer lugar, aunque se ha conseguido desarrollar por primera
vez la regularizaciéna adiabatica para un campo escalar cargado en
presencia de un campo electromagnético en espacio curvo, queda
por generalizar el procedimiento para un campo de Dirac en es-
pacio curvo?. Otra posible extension de nuestros resultados serfa

determinar correctamente las magnitudes relevantes en la produc-

2E] caso limite de Minkowski ha sido desarrollado recientemente en [14].
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cién de particulas en el caso del Universo temprano y estudiar
también los posibles efectos en el origen de los campos magnéticos
co6smicos [11,59,69,105].

En segundo lugar, una aplicacion interesante asociada a la in-
troduccion del pardametro u en la regularizacion adiabética es su
potencial ventaja en la determinacién de espectros de produccion
de particulas en ciertos escenarios fisicos. Por ejemplo, para un
campo de Dirac cuantizado interactuando con un campo escalar
clasico y aproximadamente constante ® ~ cte, se puede obtener
el bilinear (0|¢y|0),,,, renormalizado usando regularizacién adi-
abatica descrita en el capitulo cuatro. En el caso de la regular-
izacion estandar, con y = 0, obtendriamos (0|¢|0),,,, ~ D> que
puede ser arbitrariamente grande. Si en cambio elegimos y = ®
se obtiene (0||0)

calibrar las ecuaciones semiclasicas. Esto también podria permitir

ren = 0. La eleccién de p permite por lo tanto
extender los limites de las aproximaciones semiclésicas, estudia-
dos recientemente [6,93]. Una de las lineas de investigacion que
estamos tratando actualmente consiste en entender este tipo de
regularizacién y calibracién, y sus consecuencias en los espectros
de densidad de energia de produccién de campos escalares y de
Dirac durante Preheating, donde no sélo existe un campo escalar

constante sino que evoluciona acompafiado de un cierto potencial.

Continuando en este contexto, otra propuesta es realizar calcu-
los y simulaciones numéricas de produccion de fluctuaciones del
campo de Dirac durante preheating, incluyendo backreaction, es de-
cir, la respuesta de dicha produccién tanto en el campo gravitatorio

como en el campos escalar clasico. Tener en cuenta la regularizacion
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de los observables es especialmente importante en campos de Dirac
puesto que no existe una distincién nitida entra modos infrarrojos y
ultravioletas como en el caso escalar. Otra propuesta seria calcular
magnitudes renormalizadas necesarias para la produccién de ondas
gravitacionales [24].

Finalmente, otra cuestién que surgi6 al estudiar expansiones
de tipo DeWitt-Schwinger, como la expansién de Parker-Raval
[84,85,88], es entender como influye en la evolucién del Universo
las posibles soluciones de vacio. En efecto, una de las plausibles
explicaciones para la aceleracién actual del Universo tiene su origen
en los efectos del vacio cudntico de un campo escalar con una masa
muy por debajo de las masas del Modelo Estdndar. En este sentido,
una posibilidad es estudiar extensiones de esta soluciones para
incluir otro tipo de campos, masas, aproximaciones de la solucién
del vacio y posibles efectos afiadidos como la dependencia en tem-
peratura, o la interaccion con campos electromagnéticos y escalares.
Por otro lado, seria interesante analizar el comportamiento de este
tipo de soluciones a altas energias, es decir, en los primeros instantes
del Universo y entender la influencia de ellas en las dindmicas de
Inflacién y Reheating.
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Chapter 1.

Summary of the Thesis

1.1. Motivation

One of the best features of fundamental physics is its relative sharp-
ness to classify physical phenomena into its corresponding theories.
If we wish to study the interaction between a charged particle in an
electromagnetic field, nobody would argue that the best option is to
make use of quantum electrodynamics (QED). The same happens
with the study of nuclear interactions or particle disintegration.
On the other hand, if we want to study the evolution of the space-
time of our Universe, the collapse of a star or the propagation of
gravitational waves, the theory of General Relativity (GR) would
be the ideal theory for describing these phenomena. With great
approximation, the observable world seems until now to be divided

into descriptions of two fundamental theories: Quantum Field The-
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ory (QFT) together with the Standard Model (SM) and General
Relativity (GR).

Nonetheless, in spite of the enormous success of both theories
as to explaining and predicting new phenomena, several questions
remain unsolved. First, several experimental observations cannot
be explained by these two theories: Dark Matter, neutrino masses or
the origin of the distribution of the Cosmic Microwave Background.
Secondly, the search of a theory of quantum gravity or a more
fundamental theory that unifies both theories arises of the need of
coupling consistently (quantized) matter to gravity, as required by
GR.

In view of this last question, several proposals have been shaped
during the last decades (see [89] for a general view). However, they
tace both theoretical and practical obstacles. Specially, its connection
to possible observable predictions is in the present day obstructed
by its mathematical complexities. An intermediate proposal consist
on taking advantage of QFT in flat spacetime and generalize it to
curved spacetime. Indeed, since a qualitative obstacle in a more
fundamental theory is the quantization of gravity, it can be set
aside momentarily using one of the most successful approaches of
modern physics: the effective field theory approach. This consist
on assuming that any theory, in this case, Quantum Field Theory in
Curved Space-time (QFTCS) is a valid description up to energy (or
length) scales much smaller (or bigger) than a certain scale, in this
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case the Planck Mass (or Planck length):

Mp = G~ V2p1/21/2 202 x 107°g
Ip=GY2n'/2c73/2 1.4 x 107 Pem , (1.1)

where using units of ¢ = i = 1 implies Mp ~ 10°GeV (we will
use from here on the units c = /i = 1) . Except in some particular
cases such as the interior of a black hole or at the very beginning
of the Universe in the ACDM model, there isn’t many phenomena
that reach this energy scales and therefore it seems a good assump-
tion that QFTCS could describe most parts of the observational
phenomena in the present.

The study of a quantum field in the presence of a classical ex-
ternal field was previously considered in the case of an electro-
magnetic field before the arise of QED. One of the effects of this
semi-classical theory is the spontaneous particle production (e.g.
electron-positron pair) due to the electromagnetic field, also known
as (Sauter-Heisenberg-Euler-)Schwinger mechanism [97,99]. Analo-
gously, it is expected that a gravitational field also produces parti-
cles. Indeed, one of the first results of QFTCS, through the novel use
of Bogoliubov transformations, was the production of particles in
the case of an expanding universe [78], and later on, in the context
of gravitational collapse and black holes [57]. In the inflationary
models during the first instants of our Universe, this effect would
be the cause of the observed anisotropies of the Cosmic Microwave
Background. In addition, it is expected to be vital for the formation
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of matter (electrons, photons, etc.) during a period also known as
Reheating.

Another consequence of the field quantization is its non-trivial
structure of the vacuum state, which, among others, can leave a
print as vacuum polarization. Important effects such as the Lamb
shift or the anomalous magnetic moment of the electron field rely on
this. In the case of a gravitational field, the vacuum state structure
is encoded in the non vanishing stress-energy tensor. Quantifying
the energy density of the vacuum has been an elusive task, but
necessary to correctly understand the effect of the presence of a
quantum field in a curved spacetime. In particular, the energy of
the vacuum could act as a a source in expanding universes giving
rise to a possible contribution of the accelerated expansion of the
Universe [88].

One of the most important quantities of QFTCS is the vacuum
expectation value of the stress-energy tensor (0|T,;|0). This con-
tains information of both the particle production and the vacuum
polarization effects. Moreover, following General Relativity, this
magnitude has to contribute to the dynamics of space-time, through
the semi-classical Einstein equation’

1
Rap — ERgtzb = 87TG<O‘Tab’O>’ (1.2)

The construction of this kind of object is not exempted of obstacles.
The infinite and in-equivalent forms of selecting the vacuum state,

the limits of the semi-classical approximation and the general solu-

1We will use in this thesis the sign conventions used in [86].
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tions of the equations of fields are among them (for a more detailed
description we refer to [15,52,64,86,112]).

An additional problem is related with the divergences that ap-
pear when computing magnitudes like (0|T,;|0). The divergences
in quantum field theories in flat space are well known and several
methods have been defined to overcome them [91,98]. In general,
these methods consist on isolating the divergences of the magni-
tude through regularization and afterwards defining consistently
the counter-terms of the Lagrangian such that the renormalized
Lagrangian results in finite quantities. In general, we define the
renormalized stress-energy tensor as

(0| Tap[0}ren = (01T |0) — T, (13)
in such a way that both quantities from the right hang side cancel
their corresponding divergences giving as a result a finite quan-
tity. In QFTCS, different regularization and renormalization tech-
niques [15,86] have also been constructed, resulting in different
T;’fl’b. Nevertheless, there exists some restrictions on them [112].
Among others, the renormalization has to be compatible with the
= 0; and
has to be constructed in both local and covariant way. Finally, we

conservation of the stress energy tensor V?(0|T,;|0),o,
would require to have only a finite number of subtraction terms, im-
itating the usual renormalizability criteria. A consequence of these
requirements is that certain relevant results, such as the confor-
mal anomaly, must result essentially independent of the particular

renormalization prescription.



6 Summary of the Thesis

During this thesis, we will present some well known regulariza-
tion methods in QFTCS, e.g. dimensional regularization and adia-
batic regularization for the particular case of Friedman-Lemaitre-
Robertson-Walker space-times. Before continuing, it is important
to clarify some terminology. Strictly speaking, we refer to a regu-
larization method to some method that introduces a regulator v,
that at some limit v — makes the calculated magnitude divergent.
That way, we can isolate the divergences in such a way that we can
construct a subtraction scheme. Adiabatic regularization obtains
a subtraction scheme without invoking a regulator (we could still
apply dimensional regularization but it is not necessary). Another
well-known method we will use is the DeWitt-Schwinger subtrac-
tion scheme (DS). These methods have been studied in detail [15,86]
ensuring the above mentioned results, proving the equivalence be-
tween them and obtaining explicit results in some well motivated

metrics for astrophysics and cosmology.

Most of the results of adiabatic regularization have been de-
veloped for free scalar fields [86] and only recently of Dirac fields
[31,72,73]. One of the aims of this thesis will be to further extend
these results to include scalar and Dirac fields interacting with clas-
sical scalar and electromagnetic fields. Both interactions appear in
different physical scenarios relevant for cosmology. Indeed, most of
the models point towards the existence of at least one scalar field
as a source of the inflationary expansion at the beginning of the
Universe. This would be responsible for the accelerated expansion,
the anisotropies of the cosmic microwave background, and for the
production of observable matter during Reheating [8,55,56,70,71].
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Another scalar field, experimental verified, is the Higgs field which
has a leading role in the electroweak transition during the first
instants of the Universe.

Electromagnetic fields can also generate pairs of charged parti-
cles through the (Sauter-Heisenberg-Euler-)Schwinger mechanism
[97,99]. In order to obtain a signal of this effect in the laboratory the
most efficient option would be to reach a critical electric field and a
critical intensity of [41]

2 2
E=—"~10"%/m I = 88—7€T ~4x10°W/em?.  (14)

Traditional lasers do not reach these scales, which is why this effect
has not been observed yet. Recent advances [1-3,16,33, 38,40, 60]
suggest the possibility of reaching this type of effect in the Extreme
Light Infrastructure (ELI) [39]. Another potential laboratory could
come from cosmology and astrophysics. Indeed, highly magnetized
neutron stars [96] and the production of electromagnetic fields
during the early Universe [66] could reach the necessary scales.
This last option has a big interest since it is one of the possible
origins of the recent discoveries of magnetic fields at cosmological
scales [42].

Adiabatic regularization, although restricting to a particular
metric, is enormously efficient for numerical computations. This
is essential not only to be able to quantify, in physical motivated
scenarios, particle production and vacuum polarization, but also
to compute the answer of these phenomena on the classical back-
ground field, also known as backreaction.
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The second part of the thesis is focused in studying the finite part
that survives the renormalization and in particular the dependence
of the coupling constants with an arbitrary scale p. Dimensional
regularization, which has been extensively used in computing scat-
tering amplitudes in particles physics at high energy, provides
an arbitrariness when selecting a concrete subtraction scheme of
counter-terms, which is codified in an energy dimension-full pa-

rameter y.

The introduction of this parameter is very useful for computing
certain kind of magnitudes. For example, a frequently used subtrac-
tion scheme is Minimal Subtraction (MS), as opposed to the on-shell
scheme. In the latter, neither the couplings nor the magnitudes have
a explicit u dependence and is related directly to physical quanti-
ties. MS is very efficient in quantum chromodynamics (QCD) where
tields as quarks do not have defined asymptotic states and the con-
ditions imposed to on-shell scheme are not suitable [98]. Since
physical results can not depend on the renormalization scheme, the
invariance under yu results in the equation of the renormalization
group, which allows to predict the behavior of the theories at some
energy limit. Indeed, two classical results of quantum field theory
in flat spacetime are the beta functions of the charges of QED and
QCD

de e d 2n 3
QED _ _ . pQCD _— _ 48 f_ g (
o= dloguy 1272”7 P = dlogu ( 3 11) 16772 1.5

where 7 is the number of flavours and e and g the coupling of the
interaction of both theories. These expressions allow us to infer the
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high energy behaviour of both theories: the first one increases its
effective charge and becomes non perturbative while the second

one becomes weaker, also known as asymptotic freedom.

One of the most important results of quantum field theory in
curved spacetime is that is is renormalizable, i.e., only a finite num-
ber of terms in the Lagrangian are needed to absorb the possible
divergences. Indeed, the renormalized semi-classical Einstein equa-
tion is of the form [15]

K2Gab + Agqy + oW Hy, + PP Hy, = —(0]T,|0) (1.6)

ren °

Dimensional Regularization and MS can be applied to compute
(0] Tap10)
and for the different couplings constants x, A, « and 8, obtaining

such that we obtain a u dependence both for (0|T,;|0)

ren ren

an analog result to QED and QCD. Nevertheless, the physical inter-
pretation is not straightforwards and we will dedicate part of the

thesis to analyze this in more detail.

Another important aspect of the modern approach to quantum
field theory is related to understand the today’s accessible theories
as effective theories, in an certain energy range of more fundamental

theories. An example of a effective theory is the Euler-Heisenberg

Lagrangian
1 let 2 7 i 2
L=—1BuF" + o5 g (FuwF*)" + 2 (Fu F*) (1.7)
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where the effect of the electron field has been encoded in higher
order terms of the electromagnetic field in a limit where this field is
much smaller than the electron mass. This theory allows to study
in a more simpler way effects like photon scattering.

A fundamental result in this context is the decoupling of massive
tields at low energies. This means that contributions of quantum
fields are negligible when the energy scale of the system is much
smaller then the mass of the field. For example, we do not need to
know the physics of the top mass to study in detail the Hydrogen

atom.

We know from the Appelquist-Carazzone theorem [7] that a
mass dependent subtraction scheme in perturbative quantum field
theories is compatible with decoupling. Indeed, the beta functions
go to zero in the limit m — co. However, using MS this decoupling is
not explicit [74]. In QED, for example, this is solved by changing to
the Momentum subtraction scheme (MOM). An important question

is to recover decoupling in the case of QFTCS.

Finally, it is well-known that renormalization in quantum field
theory produces results in tension with observational data. Indeed,
both a cutoff regulator and MS produces contributions to the cos-
mological constant many orders of magnitudes higher than the
observed quantity. This discrepancy is known as the cosmological
constant problem [22,113]. It is fundamental in this sense to better
understand renormalization of quantum field in curved spacetime
to better understand the logic of this apparent or real discrepancy

with observations
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1.2. Results and Conclusions

We have divided the obtained results in this thesis in two parts:
adiabatic regularization with interactions and renormalization in

curved spacetimes.

First, we generalized adiabatic regularization for quantum scalar
fields to include interaction with a classical electric field. For this,
we have extended the usual WKB expansion [86] to include inter-
actions with a potential A(t) defined as F,, = 0, A, — 0, A, [49]. A
crucial point was to realize that in order to have a regularization
methods consistent with the conservation of the stress-energy tensor
it was necessary that the electric potential A to be of adiabatic order
one, analog to 4 in case of gravity [49]. This was an outstanding
result since it has been ignored in most of the literature in adiabatic
regularization [11,59, 69, 105].

We develop both the regularization of the stress-energy tensor
and the electric current and we obtained the expected trace anomaly
for this case [46]. We also introduced an extension of adiabatic
regularization to include the parameter y [47]. An essential result
was to check that adiabatic regularization with the parameter y is
consistent. This required that we did not generate new divergences
in comparison to the standard adiabatic regularization [86] (the case
of 1 = 0) and that the difference between two possible subtraction
schemes, i.e., two regularizations with parameters y; and p; had a
difference parametrized by covariant terms as

(0T |0YL — (0| T,p|0)2. = a + bGyp + W H, + dTEM . (1.8)

ren ren
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Applying the invariance with respect to p in the semi-classical
FEinsteins equations (1.6), we can obtain the dependence of the
coupling constants with respect to y, encoded in the beta functions

Bo = Iu%O. For the case of the dimensionfull constants we obtain

1 (-5 u
= 1.
Pa= 1672 m2 + u? Px 472 m? + u?’ (1.9)
while for the adimensional ones
2
3 2 F—1 2
Be= -yt ) (1.10)

48712 y2 + m? bu="gm ur+m?’

For the last one, we recover in the limit 4> > m? the standard
results of perturbative quantum field theory, using dimensional
regularization and MS [98,101]. However, an intriguing result is
that for the dimensional case we do obtain a difference with respect
to MS

m* m? (1
V=g A= (69) 1)

These results were published in [46,47,49] and are described in
more detail in chapter 2.

In second place, we developed adiabatic regularization for a
Dirac field interacting with an electromagnetic field in two dimen-
sions. First, we generated the adiabatic expansion adapting the
results obtained for the free Dirac field [31,72,73] to be consistent

with the introduction with the classical electric field and the pre-
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vious results for the scalar field. We regularized both the electric
current and the stress-energy tensor and we obtained the correct
chiral and trace anomaly. There exists an arbitrariness when gen-
erating the adiabatic expansion which is present even in the free
case [31,72,73].

We presented a possible solution to this last issue and it consists
on an iterative method that generated an adiabatic expansion with-
out any ambiguity. From the result obtained of the chiral anomaly
in two dimensions, we obtained a peculiar result: in the case of a
mass-less Dirac field, adiabatic invariance of the particle number
is broken. Indeed, an electric potential A will produce particles
independent of the slowness or adiabaticity of the time evolution.
This is an important difference in comparison to the behavior of
the gravitational field which do respect adiabatic invariance. This
result was extended for the case of four dimensions with the same
conclusion: in presence of an electromagnetic field, for a mass-less
Dirac field, the chiral anomaly breaks the adiabatic invariance, pro-
ducing particles. These result were published in [10,12,46] and are
part of chapter 3 of the thesis.

Finally, adiabatic regularization for a free Dirac field [31,72,73]
was extended to also include an interaction with a classical scalar
field of the form gy . First, the scalar field was assigned with
adiabatic order one, consistent with its dimension. We obtained
the regularization of the stress-energy tensor and the conformal
anomaly. This last result was discussed and the consistency with
other methods were checked. Finally, we obtained the renormaliza-

tion of the Lagrangian by the introduction of finite counter-terms.
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These results were published in [29] and are part of chapter 4. We
also obtained the running of the coupling constants using adiabatic

regularization with a u parameter, a novel result of this thesis.

In the second part of this thesis we extended the DS expansion
to include a renormalization parameter y, analog to the adiabatic
expansion. For this, instead of focusing in the expectation value of

the stress-energy tensor (0|7, |0) ., We can equivalently use the

ren’
effective action Segr which contains all the classical dynamics plus
the correspondent quantum corrections at a given loop (corrections
with increasing order of /7). The DeWitt-Schwinger expansion of the
effective action allows to isolate the divergent terms, analogously

to the adiabatic regularization case.

Introducing the y parameter in a consistent way into the sub-
traction terms, we confirmed that it is indeed correct and no extra
divergences wold be generated. Moreover, the difference between
regularizing the quantum contribution to the effective action with

two different parameter y1 and p; resulted in

TRl — TR = a4+ bR + cR? + dCpoyC* + eF,,F. (1.12)

This difference is formed by terms that have to been present in
order for the original action to be renormalizable at any loop. In
the case of the FLRW metric we recover the results from adiabatic
regularization with the introduction of y. Indeed, for the coupling

constant, using the invariance of the effective action with respect to
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1 we obtain the following beta functions

&3 2 72 2 1 2
Pe= 152 s T Pa= : 8772 s T Pr= 2 . 2
4872 2 +m 8% 2 +m 960712 1% + m
LI ¢ u
= = ) 1.1
Pa 16712 m? 4 u? P 4712 m? + p? (1.13)

An outstanding result is that this beta functions are consistent
with the decoupling of massive fields at low energy. We know,
by the Appelquist-Carazzone theorem [7] that a mass dependent
subtraction scheme in perturbative QFT is compatible with decou-
pling. Indeed, both the beta functions and the compute magnitude
would ten to zero in the case of m — co. A well-known result is
that MS does not have this decoupling [74]. Our extended DeWitt-
Schwinger subtraction scheme is therefore a scheme compatible
with the Appelquist-Carazzone theorem in curved spacetime. In-
deed, observing the results (1.13) we conclude that all the beta
functions, including the dimensional ones, go to zero in the limit
m — . These results were published in [48] and are described in
more detailed in chapter 5.

One of the applications of this result is to study possible con-
tributions from quantum fields to the cosmological constant. It is
well-known that cut-toff regulators generate contributions with a
discrepancy of 120 orders of magnitude [113] with respect to the
observed cosmological constant, while the discrepancy is reduced
to 32 orders of magnitude [75] if we use Minimal Subtraction. In
this thesis, we argue that both schemes are not practical methods
for renormalization in QFTCS. First, it is well understood that a cut-
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off regulator generates problems in itself (since it does not respect
general covariance [75] and does not recover important results in
QFTCS [112]).

Minimal Subtraction is compatible with these last requirements
but, as we have already stated, it is not compatible with the de-
coupling of massive fields. In perturbative quantum field theory
this is solved by integrating out by hand the massive fields [74,92]
and building different theories that contain only light fields (with
respect to the validity scale of the theory). For adimensional cou-
pling constants, e.g. electric charge, this difference between theories
has only logarithmic corrections. However, for the cosmological
constant this difference is of the order of ~ m*log (7’;—22) , generating
the enormous discrepancy with the observed value. Nevertheless,
using a subtraction scheme that is compatible with decoupling, such
as the extended DeWitt-Schwinger scheme, we avoid this problem
since the generated correction is of order ~ % This indicates that
the problem of the cosmological constant is more related to an incor-
rect generalization of specific tools in perturbative quantum field

theory than a catastrophically prediction of field theories.

1.3. Methodology

The methods employed in this thesis are essentially mathematical
computations of physical relevant observable, consult of bibliog-
raphy, analyzing different theoretical descriptions of physical phe-
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nomena, extending mathematical tools of different theories and

some numerical computations.

We have used mostly tools from modern areas of physics such
as Quantum Field Theory, General Relativity, Electrodynamics and
Cosmology. Also specific tools from mathematics such as differen-
tial equations, real and complex calculus, and functional analysis
were used. Specific methods have already been commented along

the introductory text.
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Part I.

Adiabatic Regularization and
Running Couplings in

Interacting Theories
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Introduction and Motivation

One of the first applications of quantum fields propagating in a
curved space-time was the computation of the particle number
expectation value of the vacuum in a FLRW metric [79-81]. In a
statically bounded smooth expansion, the particle number can be
computed by the expectation value of the number operator in terms
of creation and annihilation operator of the late time Minkowski
vacuum evaluated in early time vacuum. This, for general time de-
pendence of the expansion parameter, gives rise to a non vanishing
expectation value that can be interpreted as a particles being spon-
taneously produced by the vacuum. For example, the generation
of inhomogeneities of the Cosmic Microwave Background can be
interpreted as the non vanishing particle number in a configura-
tion of two, late and early times, asymptotically Minkowski limit
between a De Sitter expansion [54].

The particle number magnitude does not need to be regularized
since it is finite at the late time Minkowski limit. However, for non-
bounded expansions, like the current accelerated Universe, this
description is no longer valid, and the particle number is indeed
divergent. Furthermore, even in a bounded expansion, one would

21
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wish that the expectation value is finite at intermediate steps. There-
fore, we require a regularization procedure to cure this divergences
resulting in finite observables. In this context, adiabatic regulariza-
tion was proposed [78] (see for a historical review [82]). In a FLRW
spacetime, adiabatic regularization is introduced by computing the
v.e.v. of the particle number in form a momentum-space integral
(n) = [ dk®ny such that ny diverges as k — co. Adiabatic regular-
ization fixes uniquely the divergences of 7y such that they can be

subtracted from the original .

It was later generalize to regularize the v.e.v. of the stress-energy
tensor [51, 53, 83] in such a way that locality and covariance of
the renormalization were maintained. The v.e.v. of of the stress-
energy tensor also carries UV divergences. In order to regularize
expectation values, we introduce an asymptotic expansion of the
mode function of the quantized fields, with increasingly higher
number of time derivative of the scale factor, also called, adiabatic
order. On dimensional grounds, an increasingly adiabatic order
is equivalent of a decreasing momentum, such that a given order
n 4 1 it will no longer be divergent. The adiabatic regularization
prescription consist on subtracting from the original v. e.v. the n
divergent adiabatic order terms. For the stress-energy tensor this

means to subtract up to adiabatic order four,
0—4
(Thren = [ Ek(Th— (T} .

These subtraction terms have been shown to be reabsorbed in the

usual Einstein-Hilbert term with extra finite higher order terms [19],
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which agrees with the results of more general renormalization meth-
ods in curved spacetime. However, a standard result with renor-
malization in flat spacetime involves the running of the couplings.
These were not computed until now for adiabatic regularization. It
is important for a renormalization prescription to obtain well estab-
lished result such as the running of the electric charge. Moreover, a
correct interpretation of the running of the gravitational couplings
allow to explore in more detail the possible effects of these running
in the history of our Universe [102,103].

Adiabatic regularization is a very efficient method for numeri-
cal purposes since it is relatively simple to incorporate numerical
integration of the modes to a given accuracy. This is important
since the computation of higher order contributions, i.e., possible
backreaction effects make the calculations rather involved. Other
regularization prescriptions such as point-splitting involve differen-
tiation and longer computations, which makes it almost impossible
for most physical interesting models, except for very specific cases
such as the De-Sitter solution [20].

Most of the results for adiabatic regularization focused on a
free scalar field in FLRW space-times, but recent generalization to
quantized Dirac field have been proposed [31,72,73], and extra
background fields have also been incorporated. In this part of the
thesis we will extend adiabatic regularization to include an electro-
magnetic background for a scalar fields in four dimensions and a
Dirac field in two dimensional spacetime. We will also incorporate
adiabatic regularization with a classical background field with a

Yukawa interaction. In the four dimensional cases we will make use
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of the extended adiabatic regularization that includes a u parameter

in order to obtain the running of the couplings.

In chapter 2 and 3 we will focus on adiabatic regularization with
a time varying background gauge field [10,12,46,47,49]. Electric
fields also generated new divergences in the computation of local
quantities of quantum fields. We have extended adiabatic regular-
ization to consistently tackle this issue by subtracting the correct
divergent pieces of these quantities, while satisfying the conserva-
tion of the stress-energy tensor and the correct computations of the
trace anomaly and the chiral anomaly in case of the Dirac field.

In chapter 2 we extend the usual WKB ansatz to generate the
adiabatic expansion of the modes of the quantum scalar field to
include the interaction with the potential A [46]. We discuss the
assignation of adiabatic order one to the potential A in order to
generate the expansion in consistence with the conservation of the
renormalized stress-energy tensor [49]. We also introduce an arbi-
trary u parameter in the expansion such that it does not generate
any new divergences and correctly results in covariant finite contri-
butions between two different parametrizations y; and i, that can
be reabsorbed in the original Lagrangian [47].

We correctly regularize both the stress-energy tensor and the
electric current, which are the two magnitudes that enter in the semi-
classical Einstein-Maxwell equations. Furthermore we reproduce
the conformal anomaly. Finally we use the y invariance to generate
the correct beta functions for QED and discuss the corresponding

beta functions of the Newton and cosmological constant.
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In chapter 3, we extended adiabatic regularization for the case of
two dimensional Dirac field. We propose a novel procedure [10] to
generate the adiabatic expansion for Dirac fields, since the standard
WKB ansatz is no longer possible [72]. Moreover, this method
avoids an unnecessary arbitrariness that appears other approaches
[31,72,73]. We correctly regularize both the stress-energy tensor and
the electric current and recover the conformal and chiral anomaly.
We link the chiral anomaly in two dimensions with the breaking of
the adiabatic invariance in the case of a slow varying electric fields

that produce pairs of electron-positron type of particle [12].

In chapter 4, we extend adiabatic regularization for a Dirac field
to include a Yukawa interaction. The advantage of the method
proposed in [10] for two dimensional Dirac fields with an electric
field is that it can also be used for this case. We consistently generate
the adiabatic expansion and the regularization of the stress-energy
tensor and the bi-linear () by requiring the classical scalar field
® to be of adiabatic order one, analog to A and 4. We obtain the
conformal anomaly and compare this result with other standard
regularization methods in general curved spacetimes. We also
add the p parameter analog to the scalar case which supports the
robustness of this arbitrariness since it again generate the correct
finite and covariant quantities between two parametrizations. We
briefly comment on the running of the gravitational couplings and
the new couplings generated by the Yukawa interaction.
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Chapter 2.

Adiabatic Regularization for a
Scalar Field in an EM
Background

Consider a massive charged scalar field and a classical electromag-
netic background in a general curved spacetime. We start from the

classical Einstein-Maxwell theory

R 1
— 4 — o 2 v
S /d xy/ g( At 1 — g FwF )+5M 2.1)

coupled to a quantized charged scalar field described by the action
Sm= [dxy/=g ((D)'D'p — P9 ~¢RIgP) ,  (22)
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with D, = V, +igA,. The scalar field obeys the Klein-Gordon
tield equation

(DyD¥ +m* +ER)p = 0. (2.3)

By variations of the action with respect to the metric we obtain the
stress energy of the scalar field

e 2 (12 o)

+(1—2¢) {qu), vap*} + (2@ - %) g’ {qub, D0¢+}
~2¢ {DuDup,¢' | + g {9, 9"}

¢ [Ru = (3~ 3¢) Rw| {or0') 4

where the symbol {} denotes the anti-commutator. The electric
current is

j' =iq |9'D"9 — (D'p)"9) - 25)

The semi-classical equations are obtained from the Einstein-
Maxwell equations by replacing the classical source terms by its
corresponding vacuum expectation values

-G _
<sz >ren + TfﬁM = 87'(2;[3 - Agtx,B vaF“ﬁ = <]'B>1‘en ’ (26)
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where Tfé\/f = (}1 FroF7gus — Ef Fﬁp>. We include here only the
expectation value of the quantized complex scalar field. It is a
standard result that both (T,s) and (j#) diverge for a general metric
and EM field configuration. Therefore, we need to regularize and
renormalize these bilinears in order to obtain the finite, physical
semiclassical equations. It is also useful for future discussion the

conservation of the left hand side of the Einsteins equation in (2.6)
vtx<T[X’B>ren - _vthgf/I — <juc>renPa'B (2-7)

where we have use the Maxwell equation from (2.6).

Assuming that the electric field is spatially homogeneous and the
magnetic field is zero, we take the electric field in the direction of the
x axis. For our purposes it is very convenient to choose a gauge such
that only the x-component of the vector potential is nonvanishing;:
A, = (0,—A(t),0,0). Therefore, the field strength is given by Fy; =
(—A(t),0,0). In a FLRW metric ds? = dt?> — a?(t) (dx? + dy? + dz?)
the Klein-Gordon equation (2.3) becomes

V2o 4. 2igA A2

p——3 43¢+ =0+ ¢+ (M +ER)$ =0 (28)

with ¢ = ¢(X,t). Here R = 6 <é + Z—i) We can do a Fourier

a
expansion with respect to space

/ PR AL (1) + Ble M1 (1], (29)

1
#lx) = V/2(2ma)3
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where A%, B% and Aﬁ, B% are the usual creation and annihilation

operators. The normalization condition is
]’l;]’lk - h;hk =2i and hkh—k - hkh—k =0. (210)

These ensure the standard commutation relations. The Klein-Gordon

equation is then
e+ (a*Z (ky — gAY +a 23 +m? + a) =0 (211)

where ky and k2 = ki + k% the 3-momentum parallel and per-
pendicular to the direction of the electric field respectively and
o = (6¢—3/4)(a/a)?>+ (6 —3/2)i/a. We can now construct
physical observables for the scalar field. The two-point function

. ~ 1 o
(Olg(x1, t)¢p(x2,£)0) = 20PB /d3kelk(x1 2. (2.12)
For the scalar stress-energy tensor we define
1
(Thw) = {01Tl0) = (52053 / (T ) (2.13)
From (2.4) and the field expansion of (2.9) we have
: 9 a\?
(o= I+ (720 el + (5 -128) (5) el

(65 — ;) g(hkh; + hihy) (2.14)
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<T,-~>ka_2 = (4§ — 1) lel_2|hk|2 + Za_z(kl- — qA(Six)2|hk|2

(4= 1)l (48— 1) e+ (88 - 3) & G + )

- ((Z + 2482 — 175) <g)2+ (2462—46) <Z)) > (2.15)

where we have defined P2 = (k, — gA)* + k% . The electric current

is
. 1 L
(0[fl0y = W/d% (F+qA) (2.16)

In the ultraviolet, i.e., large k the modes behave as || ~ k1. Asa
consequence the stress-energy tensor can have quartic, quadratic
and logarithmic divergences. The electric current on the other side
has cubic, quadratic and logarithmic divergences. This defines
the adiabatic terms we need to subtract: up to order four for the
stress-energy tensor and up to adiabatic order three for the electric

current.

2.1. Adiabatic Regularization

The adiabatic expansion for the scalar field modes is based on the
usual WKB ansatz

h-
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where Wy (#) is a real function. One can substitute the above ansatz
into Eq. (2.11) and the Wronskian condition (2.10). We then get the
equations (we drop the k index for simplicity)

dZ
W2 =a2P2+m> 4o+ Wl/ZWW_l/Z . (2.18)

We have to solve order by order to obtain the different terms
of the expansion. As usual [86], we will consider a(t) of adiabatic
order zero, a(t) of adiabatic order one, etc. However, to get an
unique series expansion we have to assign also an adiabatic order
to the vector potential function A(t). We will choose A(t) to be of
adiabatic order 1. This assignment of adiabatic order 1 is consistent
with the scaling dimension of the field A(t), as it possesses the same
dimensions as 4. The mass dimension of the scale factor a(t) is zero,
while that of a(t), or the field A(t), is unity (We will reexamine
this point in connection with the conservation of the stress-energy
tensor requirement in 2.2.1). Therefore, A(t) will be of adiabatic
order 2, A(t) of order 3 and so on.

On the other hand as stated in [47] there is an arbitrariness in
choosing the zeroth order of the expansion which can be parametrized
by a parameter u

0w =w=1/m2+ w2+ —. (2.19)
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In order to obtain the expansion we rewrite (2.18) as

d2
W2:w2+a—y2+wl/2—

e w—1/2 (2.20)

and fix y? to be of adiabatic order two while w? is of adiabatic order
zero. The next terms are iterative calculated and result in

a)(l): _qux
a’w
W) — A | qPA* 3ga* 3a* P

20403 ' 202w | 2w 8d2w 2w
3¢i  3d | 34w @

— — 2.21
aw  4daw + 8w3  4w? (2.21)

_|_

The same procedure can be repeated for all higher orders.

2.2. Regularization of the Stress-Energy

Tensor and the Electric Current

Since all of the relevant results only involve (Tyg) and (T?) and for
simplicity purposes, we will only compute adiabatic expansions of
these terms, but the generalization for each component is straight-
forward. We start performing the adiabatic expansion for both
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components

1
(27ta)3
(T}) = Gy [ T (T = T+ (D .

(2.22)

(Too) = /d3k<Too>k (Too)k = (Too)y”) + (Too)y" + ...

All the divergences are encapsulated in the first four adiabatic
terms. This can be seen by dimensional grounds, since each adia-
batic order increases the dimension. To obtain the expansion, we
plug (2.17) up to adiabatic order four using the obtained w™, into

(2.15). For example, the result for the first two terms are:

1) 29Aky

(Too)y” =20, (Two)” = —==%, (2.23)
\(0) _ 2m? (1) _ 2qA(m? 4+ Pk | 2q9Aky
(T = W —20, (T = a2w3 + 2w
(2.24)

Note that in standard results form free fields in curved space-
time, odd terms vanishes [86], wheres in the case of an additional
electromagnetic field this is no longer the case. Finally, for the

electric current the only non vanishing component is

) = gz [ G (= (= ad) (O 229
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The electric current has the divergences encoded only in the first
three terms and therefore we repeat the procedure by only including
(2.17) up to adiabatic order three, obtaining

A0 _ ke ) _qAKE gA
U = P (U’ = B3 aw (2.26)
The regularized components are
1 _
(Too)ren = ) /d3k [<T00>k - <T00>1(<0 4)}
i 1 i iy (0—
(T = g [ %[ (T (T
. 1 NO=
(iren = Gaeyaas | 4% [tk =) () = ()~
(2.27)

where the super-index =" denotes the sum of the first adiabatic
terms up to order n. Note here that we have maintained the )
symbols for the subtraction terms, but they do not dependent on
the actual vacuum state. In general we would define e.g.

Sul sub _ 1 0—4
<T00>ren = <T00> - OOb; Toob = W /d3k<T00>l(( ) (228)

2.2.1. Conservation of the Stress-Energy Tensor and
Adiabatic Order

We have required that the electric potential A is of the same adi-

abatic order as 4, i.e., of adiabatic order one. This may seem an
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arbitrariness but it is a mandatory prescription for a consistent reg-
ularization. To see this, let us assume for simplicity # = 0. We recall

the leading order of the adiabatic expansion
wlgo) =Vk/ai2+m?=w, (2.29)

here, since the potential is of adiabatic order one it does not ap-
pear in the leading order. Let us now assume instead that A is of
adiabatic order zero such that the leading order is now

w}go) = \/(k —qA)? /a2 +m? =@ . (2.30)

All the subtraction terms of both the stress-energy tensor and
the electric current are going to be different. In principle, this
could be possible since it is a standard result of QFTCS that two
regularization prescriptions can differ [112]. However one of the
conditions for any regularization is that the conservation of the
stress-energy tensor has to hold, i.e.,

vz>c<TD(ﬁ>ren - —szTgf/I - <].zx>renF“ﬁ- (2-31)

Adiabatic regularization for free fields ensures that this holds for
each adiabatic order [86] and accordingly, we wish that it still holds
for interacting fields. Let us compute the 00 component of (2.31) for
a FLRW spacetime and a time dependent electric field,

a . A .
a()<T00>ren + 3E<T00>ren + aaéij<TZ]>ren - p<]x>ren- (2-32)
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One can check that this is valid for each adiabatic order by using

the aforementioned prescription (2.29), i.e.

o (T0) (") 4 3§<T00>(”) + +aad; (T — %(jx>(”1) =0 (2.33)

forn =0,...,4. Here we have defined

s[RI G0 = [k,

(2.34)

<Tab>(n) —

We have also taken into account that A is of adiabatic order one and
therefore A of adiabatic order two. Let us now assume option (2.30),
we compute the adiabatic subtractions for the stress-energy tensor
and the electric current current and we find that the conservation

of the stress-energy tensor takes now the form
o(T0) (1) 4 3§<T00>(”) + +aad; (T — %(jx>(”) =0 (2.35)

since now A is of adiabatic order one for n = 0, ...,3. Since the
electric current has only to be regularize to adiabatic order three
by consistency with the adiabatic regularization prescription, for
n = 4 this results in

(T + 3§<T0°><4> + +aad; (T £ 0 (2.36)

and therefore the prescription fails to fulfill the requirement. In most
of the literature [27, 67, 68], it is assumed this specific implemen-

tation of the adiabatic renormalization program without realizing
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an underlying inconsistency when gravity is turned on. This fact
has been largely overlooked in the literature. However, one can
check that if we turn off gravity, and only have an electromagnetic
background field both schemes are equivalent and consistent. We
will not address this result here and refer to [49] for further details.

In conclusion, the gauge field should enter at the next to leading
order in the adiabatic expansion: A(t) should be treated as a field of
adiabatic order 1, in the same footing as d(t), as displayed in Table
2.1.

Field Adiabatic order assignment
a(t) 0
a(t), A(t) 1
i(t), a?(t), A%(t), a(t)A(t) 2
at),d(t)a(t), A3(t), a(t)A(t), ... 3
(1), . 4

Table 2.1.: We summarize the adiabatic order assignment for different
numbers of derivatives for the metric and the gauge field.

2.2.2. Conformal Anomaly

Another nontrivial test for our proposal is to reproduce the trace
anomaly for the quantized charged scalar field for { = 1/6 and
m = 0 (and u = 0). To evaluate the trace anomaly in the adiabatic

regularization method, we have to start with a massive field and
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take the mass-less limit at the end of the calculation. Moreover,
for a massive charged field T/, = 2m?¢p¢’. However, this formal
identification does not imply that (T} )ren = 2m*(¢¢")ren. The
divergences of the stress-energy tensor components have terms
of fourth adiabatic order, while the divergences of {¢¢') involve
only terms untill second adiabatic order. Therefore, in order to
evaluate the trace anomaly by using the above formal expression,
the adiabatic subtractions for {(¢¢') should also include subtractions
up to fourth adiabatic order. The same argument has been used to

work out the trace anomaly of a real scalar field [86]. Therefore,

(T )ren = lim 2> (97 ren — (pg") @) . (2.37)

The fourth-order subtraction term, which produces a nonzero finite
contribution when the mass vanishes, is codified in (¢p¢*)*). The
piece m?(¢p¢*)en vanishes when m? — 0. The remaining term pro-
duces the anomaly, which in terms of adiabatic expansion of the

functions is

(™) (" m s | [kl (w )Y i, . @38)

After some computation, the trace anomaly is finally given by

a® N ii? N a®a a2ii g2 A2
24072a  2407t%a2  8072a?2 807243 487242
(2.39)

<Tﬁ>ren -
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This last term is in full agreement with the well-known trace anomaly
for a background electromagnetic field in Minkowski spacetime [35].
The remaining terms reproduce the trace anomaly of the gravita-
tional background with FLRW metric ds?> = dt*> — a?(t)dx%. The
result is twice the value obtained for a real scalar field [86]. In

covariant form, we get

=L for (R~ KV 8 p e
H/ren T 144072 AEEY 962 M
(2.40)

The ability to reproduce the conformal anomaly is a nontrivial test
for our renormalization scheme. One can check that using the
prescription of (2.30), the anomaly is not recovered, adding and
additional obstacle for this prescription (see [46] for more detail).

2.3. Renormalization and Running

Couplings

Until now, the results obtained assumed y = 0 consistent with
the standard results of adiabatic regularization for a free field.
The introduction of the mass scale y leads to an inherent ambi-
guity in the adiabatic renormalization scheme, as also happens
in dimensional regularization. It is natural to compare the renor-
malized current at two different scales: (jP) ren (%) — (j#) ren(p0) =
(8)O0=3) (ug) — (j#)(0=3)(1). By using the above adiabatic expan-
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sion we find! (we rewrite the result in covariant terms)

<jﬁ>ren(ﬂ) - <jﬁ>ren(7/‘0) = —25anF"‘/3, (2.41)
. _ 1 ‘uz—|—m2 . . .
with 6, = e log (W) The semi-classical Maxwell equations
0

should be independent of the y, and therefore it is natural to include
a dependence of y in the coupling parameter, in this case the electric
charge

1

—szpxﬁ: ip ren . 242
200 (7 ) ren () (2.42)

The independence of u implies that we must also have

1
——V F*F = (jP : 243
Demanding now physical equivalence between between (2.42) and

(2.43), and using (2.41), one obtains the running of the electric charge

1 1 1 12+ m?
B = e8| 5|, 2.44
g*(n)  4*(po) 1872 08 (V% + mz) (2.44)

in full agreement with the result obtained within perturbative scalar
QED in Minkowski space in the limit yz > m? (using, for instance,
dimensional regularization and the modified minimal subtraction
scheme [104]). Note that, for getting the above result, there has
been no need to assume a generic form for the electromagnetic

!For simplicity, we have reabsorbed here the charge dependence into the elec-
tromagnetic field term of the original Lagrangian.
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background. It has been enough to use a background potential of
the form A, = (0, —A(t),0,0). We also remark that (2.44) has been
obtained without using any perturbative expansion in the coupling

constant g.
Comparing now (Ty)ren(#) and (T ) ren(po) we find (for sim-
plicity we take here o = 0)
<Taﬁ>ren(7/‘) - <Taﬁ>ren(m) =
1

with

o —l4 22 W+ m?
a= (87r)23(1 6@‘)( W +m log( -

I P N e

b= (8%)29(1 6¢) log< o

_ 1 2.2 4 4 u2 4 m?
c= 872 <2m W —u*+2m*log "

_ 1 pe+m?

d_3(47r)2 log( po— > (2.46)

Here (1)HW is the conserved curvature tensor obtained by func-
tionally differentiating the quadratic curvature Lagrangian R? with
respect to the metric. The extra term cVH uv implies the existence
of a modification of general relativity due to quantum effects, as
tirst pointed out in [109] for asymptotically flat spacetimes. Here
there is no need to introduce the additional conserved tensor, H;,%),
coming from the Lagrangian R, R*". This is because, in a FLRW
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spacetime, (1)HW and (Z)HW are not independent. As long as we
treat the gravitational field as a classical background, no terms of

higher order in the curvature are required.

At this point we should remark that expression (2.45) is compat-
ible with the ambiguities in the quantization of the stress-energy
tensor found in the algebraic approach to QFT in curved space-
time [61,63,112]. To be more precise, any two local and covariant
procedures of renormalization of the stress-energy tensor should
differ at most in a linear combination of conserved local terms:
aguv + BGuy + ’y(l)HW + 5(2)HIW' In a FLRW spacetime, H;(f,) is
proportional to Hl(j,), hence é can be reabsorbed into y. Moreover,
since we have an additional external field (the electromagnetic back-
ground), the ambiguity should also include the electromagnetic
stress-energy tensor. Therefore, given two prescriptions to renor-
malize the stress-energy tensor, denoted by (Taﬁ)ren and <T,Xﬁ>ren,
the difference for the expected stress-energy tensor is parametrized
by (2.45) where the constant parameters 4, b, c and d are not con-
strained within the axiomatic approach. We can identify (T, B)ren
with the standard adiabatic prescription to renormalize the stress-
energy tensor (Tug)ren = (Typ)ren(0), and (Tyg)ren With our mod-
ified adiabatic prescription (parametrized by the mass scale y):
(T, 5>ren = <sz,B>ren( i). Therefore, the constant and finite parame-
ters a,b, c and d naturally acquire a dependence on the scale y as
in (2.46). Furthermore, as we will see now, this implies a natural
running for the gravitational coupling constants.
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The semi-classical Maxwell-Einstein equations are given by
(2.42) together with

-G,
(Taphren (1) + Tip (1) = gy = A)gap = (0 H, L 247

with TEéVI = 112%14) (}1 FopF7Pgup — Ef F/;p>. The coupling A is related
to the cosmological constant A, by the relation A = A./(87G).
Enforcing that the above equations be independent of the scale y,
we obtain, using the above results for 2 and b, the running of the
Newton gravitational constant G and A. The running of g can also
be obtained, and coincides with the result (2.44), derived directly
from the renormalization of the electric current. We can encode the
running of all the couplings in the beta functions o = ‘u%O. For

the case of the dimensionfull constants we obtain

1 -5 1
Pa= 1672 m2 + u? P = 472 m? 4 2 (2.48)
where x = (87t1G) !, while for the adimensional ones
2
3 2 -1 2
By = q 1 Bo = ( > H (2.49)

48702 y? 4+ m? 82 uZ+m?’

For the last one, we recover in the limit ]/12 > m? the standard
results of perturbative quantum field theory, using dimensional
regularization and MS [86]. However, an intriguing result is that
for the dimensional case we do obtain a difference with respect to
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MS [101]
4 2
Ms _ M ms _ M~ (1
A= e P = e (6 g) ' (2:50)

We will see in chapter 5 how this difference is determinant for the
correct decoupling of the gravitational couplings in the limit where
m? > 2.
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Chapter 3.

Adiabatic regularization for a
2-D Dirac field in an EM
Background

We consider two-dimensional spinor QED in an expanding space-
time described by the metric ds?> = dt> — a®(t)dx?. The classical

action is given by
S = / dx*\/—g (—%FWF“V + gDy — m¢¢) , (3.1)
and the corresponding Dirac equation reads
(iv'Vy —m)p =0, (3.2)

where V,, = 9, — T}, — igA, and T is the spin connection. 7/ (x)
are the spacetime-dependent Dirac matrices satisfying the anti-

47
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commutation relations {9#,7"} = 2¢"". These gamma matri-
ces are related with the Minkowskian ones by 1°(t) = 7° and
Il(t) = q!/a(t), and the components of the spin connections are
Iy =0and I'y = (a/2)y071.- Therefore, Y = —%'yo and we fix
a gauge for the potential as A, = (0, —A(t)). The Dirac equation
(3.2) becomes

B PN I P A DS _
<Z’)f 80+2a7 + <a81+ p )’)/ m> P =0. (3.3)

From now on we will use the Weyl representation (with 7° = 7%91)

po() () ().

Expanding the field in momentum modes (¢, x) = Y ¢y (t)e’*,
(3.3) is converted into

<80 + 2[1_51 + é(k + A)y° + im'yo) P =0. (3.5)

We can construct two independent spinor solutions

ikx —ikx .
et x) = — < i ) okt x) = — (h”k“)), (3.6)

27ta \ (1) 27ta \ ()

where hl(t) and hl!(t) are appropriate solutions of the equations

hI —k—A hl

0 = ¢ . 7
ot hII —m k+A hII (3 )
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The normalization condition |i!|2 + |h!!|> = 1 leads to the usual
Dirac scalar products

(ux, up) = 6(k —K'); (v, op) = 6(k—K'); (ug, o) =0. (3.8)

These conditions guarante the anticommutation relations for the
creation and annihilation operators By and Dy, defined by the ex-

pansion of the Dirac field operator in terms of the above spinors
P(t,x) = / dk [Bkuk(t, x) + Dfv(t, x)] : (3.9)

The usual equal-time anticommutation relation holds

{$u(t, %), 9f(t,y)} = 6(x — y)dup - (3.10)
The stress-energy tensor is given by

mo. 2 5Sm_ sz 55111_1 T o 17
T = = 5o = detvey! 2 [W(uvv)lp (v(”lp)zv)ﬂ ’

(3.11)

which for a FLRW spacetime, introducing the expansion (3.9) with
the modes (3.8) can be simplified in

(Tw) = 5z [ dkoett) et

ahl* ahH*
: 17"k 117"k
Z<hk ot T ) /

(3.12)
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and

1 [e<]
(Tii) = E/o dkp(t),  pi(t) = (k+qA) (g2 = 1) -
(3.13)

The electric current is

1 0
o 2 2
() = 5o [ de (11T = IR (314)
Both magnitudes (T,;,) and (j*) carry divergences. In particular the
stress-energy tensor has quartic and logarithmic divergences and
therefore need to be subtracted up to adiabatic order two whereas
the electric current only need to be subtracted up to adiabatic order

one.

3.1. Adiabatic Regularization

As mentioned in the previous section the Dirac equation in terms of

the modes can be expressed as!

I I
S L P BLC Y " g

htl B(t) —al(t) ht

'We will present here the regularization procedure for a more general config-
uration as (3.15), since the same mechanism will be performed in the next
chapter but with different coefficients a and .
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which is a Schrédinger type equation

i9:h = H(t)h (3.16)
with
= (0 P (3.17)
B(t) —alt)

The adiabatic expansion consists on an iterative procedure to trans-
form (3.15) in such a way that we get consistent approximations for
its solutions at the desired adiabatic order. The three basic features
of the proposed procedure are [10]:

1. At each step we introduce a change of variables defined by an
unitary transformation. This guarantees that the normalization

condition |i!|2 + |h!!|2 = 1 is automatically preserved.

2. At each step it will be evident how to truncate the resulting
equations to reach the desired order in the adiabatic approxi-
mation.

3. The truncated equations involve a diagonal time-dependent
Hamiltonian and, hence, can be trivially solved.

We first diagonalize the matrix Hamiltonian

H(t) = Uy(t)Do(t)Ug (t) (3.18)
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with
wo(t) 0
Do(t) = ,
0 —wo(t)
wo (1) +a(t) wo(t)—a(t)
Taw®m PV 2w
wo(t)—a(t)  [wo(t)Fa(t)
By 200 NV 2
where wo(t) := \/a?(t) + B2(t) and o denotes the sign of B(t).

We introduce a change of variables ho(t) := U{(t)h(t). They
satisfy the new Schrodinger equation

idthy = Hy(t)ho, (3.20)

where Hy(t) := Dy(t) — il (t)9:Up(t) has the explicit form

. Wok —aw
wy log 0 0
2wo /w3 — a2
Hy =
. Wk — xwg
—log —wy
2w/ W — a2

Here we have used dots to represent time derivatives and lightened

the notation by not writing the explicit time dependence.
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The key observation at this point is to realize that the lowest adi-
abatic order of the off-diagonal terms of Hj is one unit higher than
that of the corresponding ones in H. If we repeat now the previous
procedure (diagonalization of the Hamiltonian and “unitary change

of variables”) this same behavior will occur at each iteration order.

Once the non-diagonal elements of the Hamiltonian surpass a
certain adiabatic order n we will discard them. By doing this the
resulting Schrédinger equation can then trivially solved (because
the corresponding Hamiltonian is diagonal) and, by undoing the
sequence of changes of variables arrive at an approximate solution
to (3.15).

If at a certain iteration order j > 0 we have h]- obtained from
the Schrodinger equation associated with the Hamiltonian H; the
objects in the j + 1 step are given by

hivn=Ufyhj Hiq=  Dpg—illf 9, (321)

with the diagonal matrix D; 1 and the unitary matrix U; 1 obtained
by diagonalizing H;:

Hj = Uj 1D U}, . (3.22)
Notice that h; 1 satisfies the Schrodinger equation
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The explicit expressions for the H]-, Uj and Dj are

W; S', PV SR S
] J715 T 2
H — Za}] Wi —wi_y
J gr  Win1j Wi W
=1 2wj /w]-sz]zfl /
w]'er]-,l ‘q (U]*(Uj‘,l
26()] lS]_l 20.)]
u; =
] S wj—wj_1 1 j+1 w]—l—wj_l ’
! ]_1 2w]~ ( ) 2w]~
(U]' 0
D] — 7
0 —(U]'

where the positive frequencies w; satisfy the recurrence

(wj_10) — wjwj_1)?

(2wj)*(w? — w? ) ’

w]ZH = w]Z + (3.24)

with initial data

2 _ 2. g2 2 _ 2 4 (woi—dpn)® , i
wy =a+p°, wi=wj+ mr T The S; coefficients are

given by

—isj_1, ]even
Si= (3.25)
S]'_l , ] odd
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where s; = s;_1sign(w;_1w; — w;j_1w;) for the case of j > 1, and
S50 = o*/gsign(oca')o — a)oljé) .

Several comments are in order now. First it is important to notice
that the lowest adiabatic weight of the non-diagonal terms of the
Hamiltonian H; is larger than j (although even higher orders may
be present). This fact suggests a terminating criterion to obtain
an approximate solution valid at adiabatic order n: replace the
Hamiltonian H, by its diagonal part D,, and approximate h, by
satisfying the Schrodinger equationatfln = D, h, This way we get

hn(t) = ﬁn(tl to)f](to)

_ ( exp(—iftfJ wy) 0 ) ( 1 )
0 exp(iftg wy) 0

where our choice of initial data selects positive frequencies.

The final form for the approximate solution h(t|n) of (3.15) can
be obtained by undoing the unitary transformations introduced
above

h(t) ~h(tn) == Up(H)Uy (t) - - - U () Un(t, t0)b(fo) . (3.26)
From this last expression it is straightforward to obtain the adiabatic
expansion of h to order n.

For the 1+1 dimensional Dirac field we only need to compute

up to adiabatic order two in order to subtract the divergences of
(3.12), (3.13) and (3.30). We compute h(t|2) from (3.26). After a
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straightforward computation we find now

[w—k
hl~ wz—w/a <1 + ¢ 4 47(2)> exp (—i/w2> (3.27)

where w? = m? + k?/a% and

oV — Aqg  Akq | im*a ia ika
20w  202w?  4aw®  daw  4a?w?

4’(2)  A%kg? _ 5A%m2q> A% B 7iAkm?qa  iAkqa

2a3w3 8a2w* 202 w? 8a3w> 2a3w3
3iAm*qa  iAqa iqgA ikqgA kii m2i
C 4a20t 202002 ' 4aw? ' 44203 8423 ' 8aw*
i 3km?a>  ka* 11m*a®  15m%a? a2

C8aw? | 8a%w®  8adwd 3242w * 3202wt 8a2?

w A3km?q3 N 3542 A?mbq? 4502 A’m*q*  5A*migt
2= — -

2a%wd 16a*w? 16a%w? 8atw’

32 Am?q>  A*mPq®  A*mPqt  5a’Akmtq  3a®Akm?q

4a4w> 2a2w3 + 2a4w? + 8atw? 8atwd
aAkm?q ~ Akq 5aAAmiq®>  A’mPq*>  aAAm*q?

 4a30° 2w 4add7 8a2wd aswd

3a°mbi  m*i>  Pmtd . mPi? a’m2i 37a*m®
16a3w?® 3242w’  4a3w? + 32a2wb + 16a3w®  128a4w!!
31a*m® 294%*m* a?m* a*m? a%m?

— — ; 28
64a4w®  128a%w’  8a?w® + 32a4wd + 8a2w?3 tw. (3.28)

The asymptotic expansion for h!! can be obtained from that of h! by
substituting a(t) for —a(t) and introducing a global minus sign [46].
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3.2. Regularization of the Stress-Energy

Tensor and Electric current

The adiabatic subtractions for the stress-energy tensor are calculated
by plugging h' and h!! from the last section into (3.12) and (3.13).
The regularized tensor is then

+

1 kgA  m?q* A2 K*m?a?
(Too)sen = %/ aK <‘0k Tot 20203 8atwd >

1 oo k2 k 2 A ka A 4. 2.
<T11>renzﬂ/ dkpk—}-__|_ m-q q _mEl m-ea

aw aws aw  4wd 4wl
5mba?  3m*a®  m?a*>  3m*qPA? mPqPA?
8aw?  4daw® ' 8awd 200°  2awd
(3.29)

For the electric current we obtain

oy 0 k m2
= 5 [k (1= i 2~ ) a20)

27a? ) aw  aw

One can check that the conservation of the stress-energy holds
as in the 4D scalar field, V;, (T"")en + V#Te%c = 0, with Tffjc =
%Ez Suv- Again, if we were to choose A of adiabatic order zero, the

conservation would fail [49].

To account for the trace anomaly, the trace of the energy momen-

tum tensor can be written as: Tp’f = mipyp. After renormalization we
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have a residual contribution when the mass goes to zero

BN T B (D) — T —_m/oo Lepdl | il 1) @
(T )ren = lim —m(fy)®) = lim — _oodk(h L h) .
(3.31)

By using the adiabatic expansion from (3.27) and (3.28) and inte-

grating we can write:

a _R (3.32)

SN = — =
(T Dren 127a 247’

where in the last step we have used the expression of the two-
dimensional scalar curvature in the terms of the expansion factor.
The result agrees with the value of the trace anomaly for a Dirac
spinor in two dimensions [37], which in turn coincides with the

trace anomaly of a real scalar field [15,28, 36].

3.3. Chiral Anomaly

To test the self-consistency of the above adiabatic expansion we are
also going to show how the chiral anomaly is obtained from it. We

will consider the axial current
="y, (3.33)

which is conserved in the massless limit. To evaluate the expectation
value (V,,j,) we will reintroduce the mass and evaluate the right-
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hand-side of

(Vi) = 2im(py°y), (3.34)

in the limit m — 0. Since the formal expression for (V,j, ) has diver-
gences till second adiabatic order we need to perform subtractions
in (¢y°¢) up to second adiabatic order. Therefore,

(Vidh)ren = — lim 2im ()2 (3.35)
By writing (V,,j!,) in terms of {h!, h'T}

(Fr°y) = 21% /_ O:O dk(h* R — ety | (3.36)

and using our adiabatic series expansion, we arrive at

- 5 (2) . ZE]A
)@ = (3:37)

This result leads immediately to the axial anomaly in two dimen-

sions
w  _9A __q
<Vy]A>ren = un _EGWFHV , (3.38)
where €' = |g|1/2 = a~!. This result reproduces exactly the

chiral anomaly for spinor QED; [86]. For a massive field we obtain
(Vi ren = —5=€" Euy + 2im {7 ) ren.
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3.4. Breaking of Adiabatic invariance

The obtained chiral anomaly obtained in the last section can be

interpreted as follows. We use the fact that in 2-D the axial current

j& = Py is related by duality to the electric current (jy)ren =

q€uv (jt ) ren- Hence, the result for the axial anomaly (3.38) implies
g*(A(=00) = A(+0))

(" )ren = - ’ (3.39)

where we have integrated the differential equation. The result (3.39)
implies that for a massless field a net electric current will be gener-
ated by an electric potential independently of the time evolution
history of the potential. This means that if we consider a slowly
varying electric potential, i.e., and adiabatically slow evolution,
there will be still particle production, which is a counterexample of
the adiabatic invariance for a time dependent field as the gravita-
tional field.

In order to see this in more detail, we will analyze a particular
electric field configuration that exemplifies the adiabatic evolution
of the field. We first start with a brief introduction of the adiabatic
invariance in a gravitational time dependent field and then proceed
with the electric field analogue. The former will be introduced for
the scalar field case since it only has pedagogical purposes. The
same scalar case can also be performed for the electric case [12], with
a similar result as the Dirac field case. We omit this computation
here and focus only in the Minkowski spacetime limit a = 1.
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3.4.1. A brief orientation: Adiabatic invariance in
FLRW

The adiabatic invariance of the particle number operator in an
expanding universe can be easily illustrated with a simple two-
dimensional example borrowed from [15]. This example, although
well-know, will serve to better clarify the main idea of the next

sections. Consider the following metric
ds* = dt* — a®(t)dx* = C(y)(dn* — dx?), (3.40)

where dy = a~1(t)dt and the conformal scale factor is given by
the function C(r7) = 1+ B(1 + tanh p7), with B a positive constant.
This represents a smooth expansion bounded by asymptotically
static and flat spacetime regions. The expansion factor has smoothly
shifted from a;, = a(—o) = 1 to agy; = a(+o0) = /1 + 2B.

In the remote past the normalized modes of a scalar field are
assumed to behave as the positive frequency modes in Minkowski

space

1

—eikxe—iwmt , (341)
2(27)w;y,

with w;, = Vk? +m?2. As time evolves these modes behave, in
the remote future, as a mixture of positive and negative frequency
modes of the form

Xk eikxp—iourt Bk kX ptriourt , (3.42)
2(27‘()w0ut 2(27T)wout
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k

Aout
coefficients. The annihilation operators for physical particles at late

With wouf — (

)2 + m2. ay and By are the so-called Bogoliubov

times a; are related to the annihilation and creation operators at
early times (Ay and AZ) by the relations

ap = apAp + BiAT (3.43)

The average density number of created particles 1, with momen-

tum k, is given by

sinh?(r%=)

2 0

pu— p— " 7 3-44

e = |Bl sinh(n—“;;”) sinh(n—ao'“;‘"’“*) (3.44)
where w_ = %(aoutwout — wiy). It is very easy to check that in the

adiabatic limit, that is, for an extremely slow expansion p — 0, the
density number of created particles goes to 11y ~ e~2in/# — (. This
shows the fact that the particle number is an adiabatic invariant.
This behavior of the particle number observable is generic, and it
can be extended to isotropically expanding universes in four dimen-

sions, irrespective of the value of the mass [79-81].

3.4.2. Adiabatic Invariance in an Electric Field

In order to study the adiabatic limit for the electric pair production,
we need to consider a bounded potential A(t). Note that A(t) will
play a somewhat similar role to the conformal factor C() for the
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expanding spacetime. To this end we choose for convenience a

Sauter-type electric pulse [97] of the form

E(t) = —pTAO cosh™2(pt) (3.45)

which can be described, in the Coulomb gauge, by the potential
(E(t) = —A(t))

A(t) = %AO (tanh(pt) + 1) . (3.46)

This potential is bounded both at early and late times. The adia-
batic limit is an extremely slow evolution of the potential, obtained
when p — 0. We have to remark that the adiabatic limit is not the
limit of a vanishing electric field. If the electric field had support
in a bounded period of time, there would not be production of
particles when E(t) — 0. But the adiabatic limit is a more subtle
limit, in which the electric field varies very slowly. Although E — 0
when p — 0, the width of the pulse is also very large maintaining

constant and non-vanishing the integral

400 +00
/oo E,, (t)dt = /oo Ey,(t)dt = constant = —gAg. (3.47)
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With this input the mode equations (3.7) can be solved exactly
in terms of hypergeometric functions

in Fk —;%n ; Cout
R/ — 4 Win + 95 (1 — 2) %
k ( ) 2wWin Z ( Z)

« F <i2“’ 40 44 20-Fq40 4 i“’i“,-z) (3.48)
2p 2p P

where z = %;), win = VK2 +m?2, wout = v/ (k+qAg)?2 + m? and
w4 = %(wout + wjin ). We have fixed the initial condition in order to

recover the positive frequency solution for a free field at early times

t— — o0
Tk
LIS %e—lwwf . (3.49)
m

At late times t — + oo the modes can be written as
1/11
R/ (E) ~

L [@our F (k+940) oot 4 [ @out £ (k +qAp) Beoont
2Wout 2Wout

(3.50)

ax and By are the Bogoliubov coefficients satisfying the relation
lax |2 + |Bx|> = 1. These coefficients relate the early time creation
and annihilation operators By, Dy with the late time operators by, dy
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b = aBe+piDY, (3.51)
di = a_yDy— B BT, . (3.52)

The density of created quanta is given by
Ni = (0]bfb|0) + (0|didy|0) = ny + 7y, (3.53)

where 1, = |Bi|? and 71, = |B_i|?. Therefore, the particle number is
also

Ny = o [~ akNe= o [T ak(IgR+ 15 4P) . 659

The matching of (3.48) with (3.50) at late times determines the Bo-
goliubov coefficients. For the beta coefficients we get

By = Wout winp —k F(l — i%)r(_i%)
Win Wout +k+qgAoT(1 + i%‘%/z)r(l n i%,qo/z)
(3.55)
Therefore,

_ A
Win —k  2w_ +gAgcosh (2mr%5) — cosh (71”770)

wWout +k+qAg2w- —qAg 2sinh (ﬂ%) sinh (n%)
(3.56)

|Bk|* =

The number of particles decreases as p — 0 and increases as m — 0.
For fermions, the relation |ax|? + |B¢|> = 1 implies that |B;]? < 1
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for any value of k, according to Pauli’s exclusion principle. In the

massless case, irrespective of the value of p, one obtains

lim B> =1 (3.57)

m—0

for k € (0,qAp), and hence

0 fork ¢ (—gApy,gA
N, — (—q40,940) (3.58)
1 forke (—qA(), qu)
The total density of created quanta is
1 rladol |9A0]
Ny = o [ kN = o 3.59
(N) =5~ oy T NE= T (3.59)

This implies that the particle number is not and adiabatic invari-
ant for the massless case. The same result (3.59) occurs for the scalar
field in 1+1 D, but in this case the result was obtained by performing
the adiabatic limit p — 0. Here, we did not have to do this since
the result is independent of the Dirac field history between the two

asymptotic limits [12].

For massive fermions and in the limit p — 0, expression (3.56)

behaves essentially as
Brl2~e ?°, (3.60)

where § = 2w — |qAg|. For m # 0, the former has a minimum at

k= —@, with value 6,,;, = v/(qAo)? + 4m? — |gAp| > 0. Hence,
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5 > 0 and |By|*> — 0. Therefore we can conclude that the particle
number is an adiabatic invariant only for massive Dirac fields.

Using the renormalization method described in the last section
for a Dirac field interacting with an homogeneous time-dependent

electric field, the vacuum expectation value of the electric current
j* = —qpy'p is given by

. k m2
(j" )ren = % /dk (Ih,{fl2 — Kl - - ”760—3 > . (361

To study the explicit dependence of the electric current (j*) with

the mass, we can compute their time derivative

x 2 . 2
0t (j" )ren = % (/I (h]I(IhII( ) dk) — %A. (3.62)

It is immediate to see that in the massless limit the first term
vanishes, and the equation below can be easily integrated. With

A(—0c0) = 0 as initial condition one obtains

FA(t)

- (3.63)

<jx>ren - =

The same result can be obtained by analyzing the behaviour of
the Bogoliubov coefficients from (3.50) in the case of m — 0. In
conclusion, in the special case of mass-less Dirac fields, where the
axial symmetry is broken trough the chiral anomaly the adiabatic
invariance is broken, i.e., there is a net production of electric current
(or particles) in an infinite slow varying electric potential. A similar

result was obtained for the four dimensional case [12].
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Chapter 4.

Adiabatic regularization of
Dirac Fields in a Scalar field
background

We consider the theory defined by the action functional of the form
S = S[guv, D, ¢, Vip], where 1 represents a Dirac field, ® is a scalar
field, and g, stands for the spacetime metric. We decompose the
actionas S = S¢ + S, where S,;, is the matter sector

i . . .
S = [ 5/~ {51029 = (VuP)29)] - mfy - g0y}
(4.1)
and S, is the gravity-scalar sector. Here, 9#(x) are the spacetime-
dependent Dirac matrices satisfying the anti-commutation relations

{7", 7"} = 2g"", related to the usual Minkowski ones by the vier-
bein field Vjj(x), defined through g;v(x) = Vﬁ(x)Vf (x)#4p. On the
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other hand, V, = ay — T’y is the covariant derivative associated to
the spin connection I'; m is the mass of the Dirac field; and gy is
the dimensionless coupling constant of the Yukawa interaction. In
(4.1), both the metric g, (x) and the scalar field ®(x) are regarded
as classical external fields. The Dirac spinor 1(x) will be our quan-
tized field, living in a curved spacetime and possessing a Yukawa

coupling to the classical field ®. The Dirac equation is
(i(r'Vy—m—gy®)Pp =0, (4.2)

and the stress-energy tensor is given by [15]

2 6Sy T - _
T;ﬁ/ = \/—_—g(sg;w = % [QIJZ(#V],)IIJ - (v(pﬂub)lv)l/]} . (4.3)

The complete theory, including the gravity-scalar sector in the

action, can be described by

R 1
4 — /1% _
S—/d xy/ g{—16nG+2g vV, oV, P V(@)}+sm, (4.4)

where S, is the action for the matter sector given in (4.1). We will
reconsider the form of the action in Section 4.4, in view of the coun-
terterms required to cancel the UV divergences of the quantized
Dirac field. However, let us work for the moment with the action
(4.4). The Einstein equations are then

1
G + 8G(VIOV'® — gl VIOV, & + g"'V(®)) = —8nGT),
(4.5)
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and the equation for the scalar field is

oV _
b + 36 = —gyyy. (4.6)
The semiclassical equations are obtained from (4.5) and (4.6) by
replacing T, and (i by the corresponding (renormalized) vacuum
expectation values <T,§[1V>ren and (P1h)ren,

G + 1 (VIOV D — %ngp@qu) + 8"V (@) = —«(Th dren
(4.7)
v

P + 3D —8Y () ren

(4.8)

with k¥ = 87G. In a spatially flat FLRW spacetime, the time-
dependent gamma matrices are related with the Minkowskian ones
by 1°(t) = 9" and Ii(t) = 7'/a(t), and the components of the spin-
connections are Iy = 0 and I'; = (4/2)707;. The Dirac equation
with the Yukawa interaction iy#*V ¢ — myp = ¢y Py, taking ® as a
homogenous scalar field ® = ®(t), is then

3a 1 e .
(80 + Eg + E'YO’YV +i(m+ S(t))’)’o) p=0, (4.9)
where we have defined s(t) = ¢y ®(t). If we expand the field ¥ as

p= %q)%(t)e’ﬁ, and we substitute it into (4.9), we obtain the
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following differential equation for iy

3¢ . ok .
(at + ﬁ + z'yO’yE + 7% (m + s(t))) Pr=0. (4.10)

In order to solve this equation, it is convenient to write the Dirac

tield in terms of two-component spinors of the generic form

(52 (k)
- (H) = A K ) 411
il “””(h,£1<t>%<ﬁ>) .

where ) with A = £1 are two constant orthonormal two-spinors
(g}g A = 0y ), eigenvectors of the helicity operator g’-’,ﬁé A= %é‘ A-
The time-dependent functions k! and h}! satisfy the first-order cou-

pled equations

ia (oh] . ia (ol
hl = - <<9_tk +z(m+s)h,1<) , hi= - (a—f —i(m+s)hi! ) .
(4.12)

Given a particular solution {//(t),hl!(t)} to equations (4.12), one

can construct the modes

L1, (F
up (1) = — ( 116 (0) ) (4.13)
k

(27)3a3(t)

Equation (4.13) will be a solution of positive-frequency type in
the adiabatic regime. A solution of negative-frequency type can

be obtained by applying a charge conjugate transformation Cy =
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—i?* (we follow here the convention in [91])

—ik® hII* t)C_ %
UE,A(t) = Cum(t) = 6—3 k ( )C A( ) ) . (4.14)

The Dirac inner product is defined as (1, y) = [ d®xa’pip,. The

normalization condition for the above four-spinors, (”E 2 Up A,) =0,
(”E/\'”E’A') = (UE/\'UE')«) = 6300 (% — E’), reduces to
IhE2 4 |hi 2 =1, (4.15)

Since the Dirac scalar product is preserved by the cosmological
evolution, the normalization condition (4.15) holds at any time.

This ensures also the standard anticommutation relations for the
1_ o 3 —_ —
i Bo v =0 (k=K)dn,

{Bk v k' /\,} = 0, and similarly for the Dk v Dll:',)\' operators), de-

fined by the Fourier expansion of the Dirac field operator

creation and annihilation operators ({ B;

/d3k2 i () + DY og, (0] (4.16)

In order to perform the adiabatic expansion, t is useful to write
the modes equation of motion (4.12) as

, Wl m+ s(t) a 'k h!
iy - . 417)
htl a~ 'k —m—s(t) hlt
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We define the vacuum state |0) as B ,[0) = Dy, [0) = 0, and de-
note any expectation value on this vacuum as e.g. (T;;y) = (0|T,,,|0).
In the quantum theory, the vacuum expectation values of the stress-
energy tensor (4.3) take the form

1 o0 ' ahl* ahll*
(0] Too|0) = 5—— /O dkk®or,  pp = 2i (h,{ a]; + R 2K )(4.18)

ot
and
Lo e _ 2k e s
(Tii) = %/0 dkk“pr, Pk = _3_a(hkhk +hh') . (4.19)
whereas the two point function is
7 L[ 2 (12 _ pll2
O§l0) = 5= [ aki (2= n{'2). (@20

4.1. Adiabatic Regularization

In order to regularize the aforementioned bilinears, we need to
perform the adiabatic expansion of the modes, identically as in the
2D of the last chapter. We will not repeat the complete procedure
since from (3.15) it is easy to see that we can use the result (3.26)
with & = m + s and B = a~'k. The difference between the four and
two dimensional case is that for the former we need to compute up
to adiabatic order four in order to fully regularize the stress-energy
tensor.



Adiabatic regularization of Dirac Fields in a Scalar field
background 75

Additionally, we will introduce here again the y parameter pre-
sented in chapter two and in [47] to further extend the regulariza-
tion method for the for Dirac fields and for Yukawa interactions. In
order to this we can rewrite the equation of motions (4.21) as

. n! m+u+3(t) a~ 'k Wt
i = :
t h!! ak —m—u—3§(t) h!!
(4.21)

where 5(t) = s(t) — u. It can be seen that the difference between
this and the standard procedure [10,29] is a shift s(¢) — 5(¢) and
ms m—+ .

The product Uy(t)U;(t) - - - Us(t) can be exactly computed in
principle, however we only need its adiabatic expansion to fourth

order. After a long but conceptually direct computation we get

4
T +m (1 +(w—m) ) 4;(”)) exp (—i/w4) (4.22)
n=1

2w

where w? = (m + )% + k*/a® and

1 ima ina g
¢! = L tawd 207
o2 — (m4wi  11(m+p)3a>  (m+4p)*a®  (m+ p)a?
8aw* 32a2wb 32a2w> 8a2w?
Zilm+u)?sa  im+wu)sa  isa  S(m+wu)? & is
8awd + 8aw*  daw® 8wt C 8w?  4w?

(4.23)
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for the first two terms. The third and fourth adiabatic order terms
can be computed in the same way and can be found in [10]. The
asymptotic expansion for h!! can be easily obtained from that of k!
by performing the exchange m — —m and s — —s.

4.2. Regularization of the Stress-Energy

Tensor

We start by performing the adiabatic expansion of the energy den-
sity in momentum space (4.18)

oe=pp +o) o o o 1 @2

where p](cn) is of nth adiabatic order. Applying the mode expan-

sion of (4.22) in (4.18) we can iteratively obtain each terms of the

expansion (4.24)
plgo) = 2w,
(1) _  2m+u)(s+p)
Py = w ’
@ _ _@m+pt Bt p)?  (mtp)?(s+p)” s+’
P = 4a2 4a23 w3 w

(4.25)

The rest of the terms can be computed in the same way and
can be found in [29]. We note that if we turn off the Yukawa cou-
pling (and u = 0), we recover the results obtained in [31]. The
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Yukawa interaction produces new contributions and, in particular,
we have now non-zero terms at first and third adiabatic orders.
Note here that in the UV limit, p,(co) ~k, (plgl) + p,(cz)) ~k~1, and
(pf’) + p,(c4)) ~ k3. This indicates that subtracting the zeroth-order
term will cancel the natural quartic divergence of the stress-energy
tensor, subtracting up to second order will cancel also the quadratic
divergence, and subtracting up to fourth order will cancel the loga-

rithmic divergence. Therefore, defining the adiabatic subtraction

terms as
sub —— 1 0 1 2 3 4

(4.26)

and the renormalized 00-component of the stress-energy tensor is

. 1 e _
(Too)ren = (Too) — T° = W/o dkk? (g — p,ﬂO 4>) . (4.27)

wherep,&of&l) = p](co) + plgl) + plgz) + plg?') + p,(f)This integral is, by

construction, finite. The method proceeds in the same way for
the pressure. The renormalized ii-component of the stress-energy
tensor is given by

1 o -
(Tihren = (T) = T = — [k (p— pl*™Y),  (428)

- 272a Jo
where p,(co_4) = pl((o) + plgl) + p,(cz) + pl((?’) + pl(f), and

w1 ®© 0—4
T = /0 diek2p®Y) (4.29)
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The corresponding adiabatic terms for the pressure are

(0) 2w+%m+m2

e T T

¢U22WH40@®+V)_ﬂm+ﬂf@¢+ﬂ)

k 3w 3w3 ’

@ 5@(m+w)°  dm+wt Pm+p)? | (s+p)’

Pk = T T 8207 e 128203 T 3w

A )t (meta ()i (m+p)* (s +p)”
3w3 6aw> 6aw3 w? '

(4.30)
As before, we see that in the UV limit, Pl(<0) ~k, (pl(cl) + pl(<2)) ~k71,
and (p,(f) + pl(f)) ~k~3. Subtracting the zeroth-order term elimi-
nates the quartic divergence, subtracting up to second order re-
moves the quadratic divergence, and subtracting up to fourth order

removes the logarithmic divergence.

Finally, we are also interested in computing the renormalized
expectation value () ren. The formal (unrenormalized) expression
for this quantity is

- -1

B9) = s | ARG, By)e = WP - P @3

w203

We define the corresponding terms in the adiabatic expansion as

() = (B + @) + (@)Y + (Py))) + ... Due to the

Yukawa interaction, ultraviolet divergences arrive till the third adi-
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abatic order. In general, we have

) = S (pE) o ()™ s

2w 2w

From here, we obtain

= (0) _ ptm
G =
- s — +m 2(s—
)V = wﬂ _(m ()03( )
()2 = 5@t (ptm)® Tt m)d  aF(ptm) (gt m)’d
e = 8aZw” 8aZw> 4a23 4aw?
C(pmi 3utmP(s—p)? 3(u+m)(s—p)’
4acw3 2w° 2w3

(4.33)

In this case, we observe that in the UV limit we have ((1,547),((0) +
= (1 - = (2 =\ (3 _ .
<lptp>,£ )) ~k~1, and ((gbgb),(( ) 4 <1/J1/)>,£ )) ~k~3). Subtracting up to
tirst order eliminates the quadratic divergence, and up to third
order removes the logarithmic one. The renormalized quantity is
then

-1 [ - _ _
(F)uen = 5 [ bk (= @G9)0 V). @
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4.3. Conformal Anomaly

In the massless limit the classical action of the theory enjoys invari-

ance under the conformal transformations

v (1) = () gy (x),  @(x) = Q7 (x)®(x) (4.35)
with

px) = Q32 ()p(x),  Plx) = QP 2()P(x).  (436)

Variation of the action yields the identity
1 oSy _
V—g 6o

which, in our case, turns out to be ¢*' T, — gyPPy = 0. At the

gMT + @ (4.37)

quantum level the theory will lose its conformal invariance as a

consequence of renormalization and generates an anomaly

gVV<T$/>ren - ng)<ll}l/)>ren - Cf 7£ O . (438)

Cy is independent of the quantum state and depends only on local
quantities of the external fields.

To calculate the conformal anomaly in the adiabatic regulariza-
tion method, we have to start with a massive field (and p = 0) and
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take the massless limit at the end of the calculation. Therefore,

Cr = 8W<Tp%>ren — 8y P(PiP)ren = nliinom(@wren - <1/J¢’>(4)) .
(4.39)

Since the divergences of the stress-energy tensor have terms of
fourth adiabatic order, the adiabatic subtractions for () should
also include them. The fourth order subtraction term, which pro-
duces a non-zero finite contribution when m — 0, is codified in
() ). The term m () e, vanishes when m — 0. The remaining
piece produces the anomaly [recall (4.31)-(4.32)]. Applying the adia-
batic expansion computed in Section 4.2 and doing the integrals we
obtain (see [29] for more details)

4) 2 2 2.2

al

Co— n S<ii i n 3ssa n s<a
f = 80m2a " 8m2a ' 80m2a ' 4m2a | 8m2a?
3aa®) a2ii s§ g2 st
— 3 4.40
807t2a% 6077243 + 4772 + 8772 + 8772 (4.40)

Since C ris an scalar, we must be able to rewrite the above result
as a linear combination of covariant scalar terms made out of the
metric, the Riemann tensor, covariant derivatives, and the external

scalar field ®. Our result is

1 1
= —11 ( RygR* — ZR?
Cr= g [ ( R 3R ) +6DR]
2
+% [chvﬂcbﬂcpmqm %CI)QR%—g%(D‘*} . (441)
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In the absence of Yukawa interaction (h = 0, gy = 0) we repro-
duce the well-known trace anomaly for spin-1/2 fields (restricted
to our FLRW spacetime) [15]. We recall that the trace anomaly is
generically given for a conformal free field of spin 0,1/2 or 1 in
terms of three coefficients

8" (Tyw),,, = ACupeCH* + bG + cOR,, (4.42)

where Cy, o0 is the Weyl tensor and G = Ryypo R¥P7 — 4Ry R*Y + R?
is proportional to the Euler density. The coefficients a and b are

independent of the renormalization scheme and are given by [36,58]

1
a 0 (Ns + 6Nf + 12N,) ,
1
= 11 2 4.4
b 360(47T)2(1\@+ Nf +62Ny) (4.43)

where N is the number of real scalar fields, N ris the number of
Dirac fields, and N, is the number of vector fields. Our results with
gy = 0 fit the values in (4.43). [We note that in the FLRW spacetime
of adiabatic regularization the Weyl tensor vanishes identically].
In contrast, the coefficient ¢ depends in general on the particular
renormalization scheme [111]. A local counterterm proportional
to R? in the action can modify the coefficient c. For instance, for
vector fields the point-splitting and the dimensional regularization

method predict different values for c.
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When the Yukawa interaction is added, the general form of the
conformal anomaly is
1 ,6S
pv [ m Gomy Hvpo
q <Tﬂ‘/>ren L ﬁ< ) sen = CyupeCMP7 + G + cOR
+d @ VIOV, D + e g PO + fg3P’R + g g1 d* . (4.44)

Now, the coefficients f and g are independent of the renormalization
scheme but d and ¢ are not since the finite Lagrangian counterterms
required by the renormalizability of the Yukawa interaction can be
modified by

07 082

—g"'V VYV, ® — —Z=RP* — OA4

5 > I ot (4.45)

which might alter the values of the coefficients 4 and e, but not the
coefficients f and g. Note that, due to classical conformal invariance,
one should consider only those counterterms having dimension-
less coupling parameters. Therefore, our results for the f and g
coefficients are (including a quantized scalar field, see [29])

1 -1 /3
f= 3(47T)2Nf, 8= 30 (ENS - 6Nf> . (4.46)

The same result can be obtained via heat-kernel in general curved
spacetime [29].
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4.4. Renormalization and Running of the

Couplings

The ultraviolet divergent terms of the adiabatic subtractions can
be univocally related to particular counterterms in a Lagrangian
including the background gravity-scalar sector. By writing

L=Ly— (A+6A)+ % (G—1 - 5G—1> R% (1462)g"'V,®V,®

4A+M

“L

1
— @' = (§1 4 681) R® — 5 (G2 + 082) RD? (4.47)
=1
the semi-classical Einstein Equation is

GH
87TGB

+ Apg™ + (14 52)(VIOV'® — %gﬂvvpcpvpcp)

4 (o \ 2 x . . :
rgmy, Mgl gy 8 (Grgl - grtiel + vIVre) = (T))
i=1 =1

(4.48)

where we have defined the bare constants as ag = « + da. In
order to fix the counterterms da we can use dimensional regulariza-
tion to integrate the divergent adiabatic terms of the stress-energy

tensor (see [29] for more details).

For example, for the zeroth adiabatic order, we have

1w © o (mtw? 1
T /0 a2l ~ (4.49)
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1 e oo o) o (mEp)ia® 1
s [, Akt~ L @s0)

This can be done for all the subtraction terms [29]. The complete
divergent expressions can be written covariantly as

o _ (m+p)*
(Tuv) pg = 872 (n __4)&41/'

(1) o, &y®—p)(m+p)°
(T g ~ 2m2(n — 4) Spvr
(T2 3@y — (g (mtp)?
i Ad 472 (n — 4) o242 (n—4) M
3 m+
(T g ~ —ﬁ Gy (gy® — ) — ODgyy +8yV,, V., @
—6(gv® — 1)°gr|

(@) __ 1
(T)sa ~ gy =gy |Cor(&r® = 1) = guD(gy® = ) + V, V02

1
—68y (Vy @V @ = 28,0V, ®VF®) = 3(gy® — jo)*gu |, (4:51)

and can be consistently removed by the renormalization parameters

- "2 g2
NP LA vet D LS VN
g 8m2(n—4)’ ¢ 3t(n—4)’ g 472(n — 4)

m3gy 3m2g3 3mgs
M=—s5—, 6Ag=——>— T, A3=———°L_
oM 212(n—4)’ oA2 212(n—4)’ oA3 m2(n —4)
_ 38y _ mgy _ 8

074 = T 2(n—4) 061 = 24m2(n—4)’ 062 = C24m2(n—4)°

(4.52)
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Note that the y dependence has disappeared. This is a con-
sequence of the fact that any regularization scheme defines the
same divergences. We remark that the set of needed counterterms
are all possible counterterms having couplings with non-negative
mass dimension, up to Newton’s coupling constant. This is also in

agreement with the results in perturbative QFT in flat spacetime.

The renormalizability of the Yukawa interaction gy¢¢y of a

quantized massive scalar field ¢ with a massive quantized Dirac

tield ¢ requires to add terms of the form %474, Ki" »°,and also a

term linear in ¢ [104]. The presence of a curved background would
require to add the terms ¢; R and & Rg?. We note that a term of the
form & R¢? is required by renormalization for a purely quantized
scalar field ¢ if a self-interaction term of the form %(p‘l appears in
the bare Lagrangian [17,21]. Here we have found that the Yukawa
interaction demands the presence of the renormalized terms ¢;R¢
and & Rg? (as well as the terms A;¢"), even if they are not present
in the bare Lagrangian. Similar counterterms have been identified

in the approach in Ref. [9].

Finally, let us briefly comment about the u dependence. Fol-
lowing the approach of chapter two and [47] we can compute the
difference between the renormalized stress-energy tensor with two
different parametrizations y; and py. Note that we can not use
directly (4.51) since these expressions only contain the pole term
and not the finite parts that survive when n — 4. In any case we can
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compute the difference

(Tap)ren (1) — (Tap)ren(m) =

1
118ap + 12Gap + b1 (VIOV'D — ngvpcbqu’)gw

4 . 2 g , . .
+3) %cpl -2Y %(GWCI)Z — g0 + VIV (4.53)
i=1" i=1""

Here we have again chosen y; = p and p; = 0 for simplicity.
Following the same procedure as in chapter two, i.e, forcing the
invariance of the semiclassical equation (4.48) with (4.53) we can
obtain the beta function for each coupling. For the gravitational
couplings we found

5 -1 “Ll3
ﬁK:8—2
TEm4+u

1
Ba E

= Sdmin (4:54)

where k¥ = (877G) !, while for the Yukawa coupling and the mass
contribution of the classical scalar field A, we find

3 2
8y K 8 M 2 2
== =25 — - M) . 4.55

Pe 82 u+m TN 27r2y+m<y ) (4:55)
A possible application of this renormalization has been compute
in [44]. See also [45] for a similar computation in general curved

spacetime.
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Part I1.

Renormalization, Running
Couplings and Decoupling in

Curved Spacetime
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Introduction and Motivation

In the first part of this thesis, we have focused on adiabatic regular-
ization to overcome the divergences that appear when computing
vacuum expectation values of relevant magnitudes, e.g. the stress
energy-tensor or the electric current, in a FLRW spacetime. The
main advantage of adiabatic regularization is its numerical effi-
ciency both for quantifying the energy density of the quantum fields

and the possible backreaction to the expansion of the universe.

However, usually we wish to obtain robust results that are valid
for general curved spacetime, in the spirit of general covariance. A
very common and useful approach in this case is to use the path
integral formalism, where we define the propagator G(x,x") of
a given quantum field and compute the quantum contributions

through the stress-energy tensor of the effective action.

Again, divergences appear when computing the propagator or
the effective action and a renormalization mechanism is needed.
In this case, it is very useful to perform the (DeWitt-Schwinger)
proper-time expansion (DS) [99,109]. This is the equivalent of the
adiabatic expansion of the modes I explained in part one.
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In chapter 5, we will present several subtraction schemes built
from the DS expansion to construct finite magnitudes. We will com-
pute the subtraction terms for the effective action since it is more
transparent to obtain the running of the coupling constants encoded
in its corresponding beta functions. For pedagogical purposes, we
will include a charged scalar field and a classical electromagnetic
background. We will present two examples to see how the regu-
larization and subtraction mechanism works: the R-summed form
of the DeWitt-Schwinger expansion, also known as Parker-Raval
approximation, and the constant electromagnetic field. We will
also describe Minimal Subtraction scheme (MS) and consequently

obtain the running of the coupling constants.

There is an equivalence between adiabatic expansion in FLRW
spacetimes, also known as Parker-Fulling (PF) expansion and the
DeWitt-Schwinger expansion [13,30]. As a consequence a natural
question is whether it is possible to introduce an arbitrary mass pa-
rameter y in the later, equivalently to PE. We will see that this is pos-
sible and leads to what we defined as extended DeWitt-Schwinger
subtraction scheme. We will introduce this scheme and compute its

corresponding beta function.

A relevant result of renormalization is the expected decoupling
of higher massive particles, as enforced by the Appelquist-Carazzone
theorem [7]. This means that particles with mass higher than the
relevant physical energy scale should not contribute to any com-
puted observable. This ensures that for low energy physics we
do not need to know about the related very high energy physics,
hence supporting the effective field theory framework. The minimal
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subtraction (MS) scheme in dimensional regularization [106,107]
is a very efficient method to evaluate the behavior of the running
couplings. However, MS does not fulfill the decoupling theorem
and one needs to resort to a mass-dependent scheme to capture
the low energy behavior of the beta function. This is the case in
perturbative quantum field theory in flat spacetime. However, the
same results in curved spacetime when using minimal subtraction
in dimensional regularization [17,86,101]. We will see that the beta
functions of the extended DeWitt-Schwinger subtraction scheme do

decouple, i.e. they vanish in the limit m — oco.

Another interesting feature we can extract from the renormal-
ization techniques and the proper-time expansion is the effective
tield theory approach. This consist on designing a theory that is
valid up to some scale and that generally is more convenient to
use for computations of physical motivated scenarios. We have
explained that QFTCS is in itself a effective field theory since we
have lay aside the quantum properties of the gravitational fields by
assuming it can be neglected below some energy scale M. How-
ever, computing the effective action in general curved spacetime is
generally not possible, except in some particular cases where some
special symmetry is present.

A possible effective field theory that can be constructed is an
effective action that encodes the information of some quantum field
with mass m in curved spacetime where it happens that the mass

m is greater as any possible construction of the gravitational field
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tensor, i.e., m? > R, m* > RabR“b, etcl. In chapter 6, we will use
the proper-time DeWitt-Schwinger expansion to build this effective
theory. The physical motivation behind this is to analyze the pos-
sible radiate corrections to the cosmological constant. Indeed, the
observation of the cosmological constant today is performed at a
scale where m? > R is valid for all the massive Standard Model
particles. We will see that the traditionally known as cosmological
constant problem arises in the context of effective field theory and
the tools that we have develop so far will be useful to perform a

critical analysis of the cosmological constant problem.

IWe define this condition as m? > R.



Chapter 5.

Extended DeWitt-Schwinger

Subtraction Scheme

Let us assume a scalar field ¢ on a general smooth four-dimensional

spacetime

R 1
Y 7 S el o~ 0t P 242 2
5 /dx«/ g[ At ot 5 (Vi — 5R¢)}(5.1)
with the associated Klein-Gordon equation
(Dx om? CR) $=0. (5.2)

From the matter section of the action (6.11) we can construct the

functional integral
ZIT] = (out,0[0, in) = /D[4>] exp (iSM—i—i/d”x](x)gb(x)) (53)
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The functional allows to obtain the n point function. In particular

for the two point function we can define the Feynman propagator

, 6%log Z
Grlxy) = OO0 = (780) - 69
which follows the equation
(Dx+m2+§R) Gr(x,x) = —(—g) 20*(x—%).  (5.5)

To implement the renormalization program it is very useful to
construct an adiabatic expansion of G(x, x") in terms of the number
of derivatives of the background metric. Since we are interested
in the coincident limit of the propagator Gr we can introduce the
Riemann normal coordinates y# for the point x with origin in the

point x’, and we expand consequently

1 1
§w = Mwt3 waﬁy yP — ‘RWVﬁ AV YPYT

1 2
g Ruswpre + 25 Rappa R sy yPyy’ + .. (5.6)

where 77, is the Minkowski metric tensor, and the coefficients are
evaluated at y = 0. Defining Gr(x,x’) = (—g(x))V/2G(x,x"), we
can write

Ge(x,¥') = (270) " / ke %Y Gy (k) (5.7)

with ky = 5"‘5k0¢yﬁ. Now we can use equation (5.5) with (5.6), and
introducing (5.7) we can iteratively obtain the adiabatic expansion
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(see [15,21] for more detail). The result up to adiabatic four (four
derivatives of the metric) is

(R~ m2) ™~ (5~ OR(E — ) 4+ L (2~ R (R — )2

1 L[ 2 .

Lag P ) (- 2R 2| ()
(5.8)

where 0, = 9/0k%, and
1, 1 1 1 1
up = (8 = §Rap + 135 Rns — ggRapn — 3gRaRos
1 1

+ o RSRa+ SR Ry (59)

Substituting (5.8) in (5.7) we obtain
efzk
~ n
N/denn

[ao(x, x") +ay(x, %) (8__11182) +ap(x, %) (%)2] (K% — m2)!

with ag(x,x") = 1 and

a0 x) = (2~ DR~ (2~ DRy — sauyy? G.11)

ay(x,x'") = %(% — &)2R% 4 Za}. (5.12)
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Here the geometric terms are valuated at x’. If we now introduce
the proper time s representation K—! = —i fooo dse’K in (5.10) and
integrate d"k we finally obtain, using (5.7)

Gg(x, x') = _—i[(—4g7£;6n);22 /Ooo ids(is) /2

g ims+(0/2is) (1 + (is)ay (x, x') + (is)?az(x, x") + ) (5.13)

where o(x,x') = Tyay~.

We recall here that the coefficient a; is of adiabatic order 2j. In
four spacetime dimensions, and for arbitrary ¢, the first two terms
in (5.7) are divergent in the UV limit, namely, when s — 0 and ¢ = 0.
For instance, the first two leading terms in the adiabatic expansion
are, after performing the ds integral,

—-1/4
(Z)Gp(x,x’) _ —Z|g(x)’ m

a7 |V

Ki(m —20)+612—1K0(m —20)

(5.14)

where K are the modified Bessel functions of second kind. The factor
|g(x)] 7/

coordinates with origin at x” [30]. Higher-order terms do not involve

in the above expression is evaluated in Riemann normal

any UV divergences for the two-point function. However, the
fourth adiabatic order term, a,, is necessary to tame the logarithmic

divergences of the stress-energy tensor and the effective action
[25,26,32] (see also Refs. [15,86]).
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For a general coordinate space, an equivalent result was obtained
[32]

GPS(x,x) = —i / dse= " (x, s|x’, 0) (5.15)
0
with
1
;o 1AZ(x, X)) /2,
(x,s|x',0) = @ (is) ez
(1 +ay(x, x') (is) + ax (x, x') (is)? + - - - ) (5.16)

where A(x, x’) is the Van Vleck-Morette determinant
Ax,x") = —det [0,9,0(x, x')] [g(x)g(x")] /2. (5.17)

In normal coordinates A reduces to [—g(x)] ~2 and both results are
equivalent. The stress-energy tensor can be obtained by a metric

variation

2 6Z[0]
(~g)2 98"

= i{out,0| Ty |0, in) . (5.18)

On the other hand, it is useful for the discussion of renormalization
to define the effective action W as Z[0] = ¢'"V, such that

W = —ilog (out,0|0,in) (5.19)
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and from (5.18) we find

2 O6W _ (out,0|T,|0,in)
(_g)%égl‘”_ (out,0)0,in)

(5.20)

Since the DeWitt-Schwinger expansion is performed for the
Feynman propagator, it is useful to write the effective action in
terms of this magnitude. For this, we can obtain a relation between
the propagator and the effective action as (see [15])

W = —ilog Z[0] = —%itrlog (—Gr) . (5.21)

Here Gr is interpreted as an operator acting on the space of vector

|x), normalized by
(x[x') = 0" (x —2')[~g(x)] 12 (5.22)

such that Gp(x,x') = (x|G¢|x). After some manipulations, and
using the DeWitt-Schwinger proper time integral Gp = —K~! =

—i [y (x|e7™¢|x)ds we can finally write

W= 1 , dmz/d”x[— (2)]Y% lim Gg(x,x'). (5.23)

2 x'—x

It will be useful for further discussion to define the effective action

as

/d” ]1/2/0 (is)"1e=™ lim (x,s|x’,0)ds (5.24)

x'—x

where we have used results (5.23) and (5.15).
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5.1. Equivalence with Parker-Fulling

adiabatic expansion

Both the adiabatic (proper time) DeWitt-Schwinger expansion (DS)
and the adiabatic expansion for FLRW space-times, also known
as Parker-Fulling (PF) adiabatic expansion are very similar in its
construction. Indeed, the different orders of the expansion are
defined in terms of adiabatic order, which for the gravitational field
if based on the derivatives of the metric (or expansion parameter
a in case of PF expansion). An important result, is the robustness
of the equivalence between the two methods. We follow here the
description of [30] and [50]. We will compute the first terms of both
adiabatic expansions of the propagator Gr to see the equivalence.

In order to compute both the DS and PF expansion, let us assume
a spatially flat metric of the form ds?> = dt?> — a®(t)d¥x?. The scalar
field satisfies the equation

(O4+m?+¢ER)p =0, (5.25)

where R = 6(c'12/ a’+ i/ a). The quantized field is expanded in
Fourier modes as
1 B
x) = ———— [ dPk[A-f-(x) + AT (%)), 5.26
00 = o | FHAS ) + AL 529

where f(x) = eiﬁfhk(t) and A% and Ay are the usual creation and
annihilation operators. Substituting (5.26) into (5.25) we find hy +
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a~2

[w? + 0] b = 0, where 0 = (66 — 3)(%) + (65 — 3)(%) and w =
\/ ’;—; + m2. The adiabatic expansion for the scalar field modes is
based on the usual WKB ansatz [15, 86]

e (t) = ——— et /"W (1) = w® o) 1 (527)
v Wi(t)
where the adiabatic order is based on the number of derivatives of
the expansion factor a(t). The function Wi (t) obeys the differential
equation
3W2Z 1W

W2 =w?4+0o+>—k_ % (5.28)
: AWZ  2W

If we now fix the leading term as w(®) = w, one can substitute the
ansatz into Eq. (5.28), and solve order by order to obtain recursively

the different terms of the expansion:

1 3 1
w 2w3{aw +4w zww}
1 3 1
(G @ —502(w)2 + 2ww® — Z(wo® )¢
w 2w3{20ww 5w (w') 4 W 2(ww +w w)}

(5.29)

From the mode expansion, we can expand any observable at any
fixed adiabatic order. For the two-point function at the coincident
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limit G(x,x) ~ [ dkk?W: 1 we have

(1) Gpp(x, %) = 4n12a3 /0 ik {w ™+ (WO w0l
(5.30)
where the first terms are
2.2 2. 4:2 z
_1y(2) _ Ma m=i  5m*a~ (R
(W= 2a2w> + 4aw®  8a’w’ 2wS (5:31)
2
(4) w(z)
W H® =24 ( ) (5.32)

Just as the DS expansion, only the first two terms in (5.30) are
divergent, in such a way that it serves to isolate all the ultraviolet
divergences of the propagator. More precisely, we have

R 1 e 1 ¢R
2 _ 2
( )GPF(x/ x) = 28871’2 + 47'[2113 /0 dkk |:a — 2—a)3:| . (533)

After subtracting the divergences, one gets a finite result. Even
though we have written (5.28) in a compact form, we can further
expand this expression and obtain an analytic expression for w (")

in terms of the lower adiabatic orders (see for instance Ref. [30]).

To compare both adiabatic expansions, we have to restrict the
DeWitt-Schwinger expansion of the Feynman propagator to the
(spatially flat) FLRW universe considered above. Moreover, it is nat-

ural to compare the expansion of the two-point function Gp(x, x)
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at the coincident limit x = x’. The comparison is highly nontrivial
since in the DS formalism the coincidence limit is defined in terms of
the geodesic distance with o — 0. We follow the analysis in Ref. [30].

From (5.14), the zeroth-order contribution (V) Gpg(x, x) can be
re-expressed as [here x = (¢,X) and x' = (t,X')]

S o

x—x' (271)2y/ =20
»sin(k|AX|) 1
/O e 53

i
28872 T as o 1203

where we have used

1 1 a2 »
20 = #a7 o TOBY), (5:35)
and
-1/4 __ dz il o 3/2
lg(x)] = 1- {2; + E} Al O(c”’?). (5.36)

Similarly, the second-order adiabatic contribution to @) Gpg(x,x) is
found to be

Ll ()

K —20) =
x—x! 4772 2 O(m U)

,sin(k|AX|) ¢R
Ax—>04ﬂ2a3/ akk k|IAZ|  2w3

(5.37)
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Therefore, taking into account (5.33), one can write

@ Gpr(x,x) = i®Gpg(x,x) =

1 /°° K2 1 _ ¢R(x) R(x)
4r2ad Jo (5 +m2)1/2 (8 4 m2)3/2] 2887

(5.38)

A detailed analysis can be found in Ref. [30]. It was explicitly
checked (up to and including the sixth adiabatic order) that the
Parker-Fulling expansion of the two-point function Gpr(x, x) coin-
cides with the corresponding DeWitt-Schwinger expansion of the
two-point function at coincidence Gps(x, x), that is,

. 1 0
©)Gpr(x,x) =i Gps(x,x) = W/o dkk?

1 IR() R(x) | m(x) | o)
B4+ m2)12 2B 4 p2)3/2| 28872 lem?m? - l6mimt
a a

(5.39)

This provides enough evidence for the equivalence at any adiabatic
order,

@) Gpp(x, x) = i®Gpg(x, x) . (5.40)

A similar result can be obtained for more involved asymptotic
expansions, such as the R-summed form of the propagator found
first by Parker and Toms [87](see also [65]) Here the equivalence is
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given as @) Gpr(x, x) — @) Gpp(x, x) forn > 21is given by

(zn)GPF(x/ X) - (zn)GPF(x/ X) = i<(2n)GDS (X, X) - (Zn)GDS (X, x)) =

1 MZ _ no a; a;
e V18 () R FL0-2(Gp a2 )

(5.41)
where the coefficients of the new expansion 4; are given by
k
L
in=) k= - (5.42)

This was proven in [50] and demonstrate the robustness of the

equivalence between the two methods.

5.2. DeWitt-Schwinger Subtraction Scheme

In this section we want to construct the DeWitt-Schwinger subtrac-
tion scheme, including regularization and renormalization, of the
quantum charged scalar field coupled to an electromagnetic field in

curved spacetime

Sm= [ dxy/=g ((Du9) D¢ —mllgp ~eRIP) , (543
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with D, = V,, +iA,'. Here, the complete action is

R 1

S— / dixy /= < Tt W@JW) FSy.  (5.44)

The inclusion of an electromagnetic field can be carried out analog
to the free field case (see [15,86]). The only difference is an extra
factor two due to the complex field and the DeWitt-Schwinger
coefficients. We have then the following effective action

n 1/2 yy —1 _—ims

W= /d /0 (is) e x11Lnx(x s|x’,0)ds  (5.45)
(x,s]x/,0) = %(zﬁ) /2y

(1 + a1 (x, x") (is) + ax (x, x") (is)> + - - - ) (5.46)

The divergences at the coincident limit are encoded in the first three
coefficients,

1
aO(x):lr ﬂl(X):— (é—g)R
1 1 1/1
22(x) = g RaproR™"” — 755 R Rap — (5 - 5) K

% (g — —) R% - 11—2PP”/F (5:47)

!We have absorbed the electric charge in the electromagnetic field for simplicity,
but the same calculations can be done without this.
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We define the DeWitt-Schwinger subtraction scheme such that it
subtracts the first three coefficients of the original divergent effective

action. In terms of the effective Lagrangian at one loop L{1) defined
as W = [dx",/—gL) this results in

o0 , P2 ‘
LG = /o %e_lmzs ((x,s|x,0) — (4;)2 p aj(x)(is)f_z) , (5.48)
where the renormalized effective Lagrangian is constructed from
the divergent initial Lagrangian L(1) and the subtraction terms. In
general, the overall integral in the proper-time parameter s is fi-
nite and well-defined. There is no need to introduce any auxiliary
regularization. However, each individual term generates ultravi-
olet divergences at s = 0 since this corresponds to o(x,x’) — 0.
One could also wish to manage these partial divergent integrals
by introducing an accessory regularization procedure (i.e. a lower
cut-off sy > 0 for the integral in ds or dimensional regularization)
to make all single divergent terms well defined before performing
the complete subtraction. The final result is the same, irrespective
of the additional mass scale introduced in by the auxiliary regular-
ization method. This is why the subtraction procedure acts also as
a regularization method.

We will show how to perform this regularizations for two well-
known examples: the effective action for a quantized scalar field
in a constant electromagnetic background and the Parker-Raval

solution for a quantized scalar field in curved spacetime.
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5.2.1. Scalar Field in a Constant Electromagnetic

Background

If we assume a constant electromagnetic field F,, = d,A, —d, A,
with A, = —JF,x" + a, an explicit expression for the kernel and
for the effective action can be obtained. We refer to the complete

calculation to [86]. The exact one-loop effective Lagrangian is

O S e NI N O A
LY = (477)2 /o $3 P ( m25> Sm[cosh sy] (.49)

where ¢ = V2 (F + ig)%, F = }levFW and G = }IIEWFW. Here we
have rotated the contour of the integration from the positive real
axis to lie along the negative imaginary axis, by replacing s — — is.
If we introduce in (5.48) expression (5.49), taking into account the
factor two of complex scalar fields, and the coefficients (5.47) for an

electromagnetic field in flat spacetime, we obtain

©ds _ims (S)Zg . . 1,
/K 3¢ Sm[cosh sy] (1 3° f)}

(5.50)

(1) _ a1
Lren = lim 0 {

where we have introduced an ultraviolet cutoff (remember that
the UV divergence comes from s — 0). This expression can not be
directly integrated but some special cases can be calculated. For
example, in the case where the electromagnetic field is weak in
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comparison with the mass, we can expand (5.49) such that

(1) _ g 1 /ooﬁimzs i 2 1 2
Lren —1}1310 62 e ¢ %0 G-+ 7]: +..] (651

obtaining the finite result

L) = m(%ﬂ +GH +0(m™"). (5.52)
The same result could have been obtained without invoking the
cutoff. This result is the scalar analog to the traditional Euler-
Heisenberg Lagrangian, which is nothing but the quantum effects
of scalar QED in the low field regime, where the quantum field
has been integrated out and all the corrections can be accounted in
terms of higher order electromagnetic field terms with an expansion

in terms of the inverse mass of the quantum field.

5.2.2. Parker-Raval effective action

The Parker-Raval effective action is an expansion of the DeWitt-
Schwinger type for a scalar field in curved spacetime but including
an exponential factor of the type e’ (g_E)R, which is a resumation
of all the Ricci scalar dependence of the coefficients. This result
has major physical consequences to account for the effective dy-
namics of the Universe and the observed cosmological acceleration.
By integrating out the quantum fluctuations of an ultra-low-mass
scalar field the effective gravitational dynamics provides negative

pressure to suddenly accelerate the Universe, without the need of
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an underlying cosmological constant [84, 85,88](see also Ref. [23]).
This approach can also alleviate [34] the increasing HO tension of

the standard cosmological model.

The effective Lagrangian has the form

LM ZZaJ / —isHEDR) (j)3ds . (5.53)

where the modified coefficients d; are related to the initial a; from
(5.47) by dg = ap, 1 = a1+ ({ — $)Rand @, = ay — a1 (¢ — 2)R+
(¢ — $)?R%. Dimensional regularization can be used to convert the
divergent effective Lagrangian into a finite term. In this case we

extend (5.53) to n dimensions

. 2 0 ) )
0 = g [
i=0 0
2\n/2—j n
47T S Z ) (M2)"/2-iT (; 2) . (5.54)

where we have defined M? = m? + (¢ — )R. In order to retain
the units of L) as (lenght) even when n # 4, we introduce an
arbitrary mass scale y such that

12

2\ 2
1) _ M ND— n
LW — (72) = m} ) (M2)2IT (] 2) . (5.55)
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We can expand the first three divergent terms around the limit n — 4

using
n 4 2 3
Iﬂ<_§>:n(n—2) (4—n_7+§)+0(n_4)
n 2 2
r<1—§>_(2_n) <4_n—7+1>+(9(n—4)
n 2
r(2—§)= Syt O(n—4) (5.56)
and using (m/ ”_4:14—1 n—4)log u?/m? + ... we find
& K 2 gH
2 no 02 (_M2)2—j~
471-3]%{ (E‘”l)“"g(W)] E—pr

(5.57)

The same process can be performed for the subtraction terms of
(5.48) and we obtain

o= i 2 [ 2w (o) vies(15)] G,

n
2 ]:O

(5.58)

After performing the subtraction of (5.48) we obtain

(1) _
Lren - 647(2

[zm2§R +3¢7R? — (2m* + 4m*GR + 4az) log <m2n-1|-2§R) ]
(5.59)

with=¢— 1.
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Finally, it is interesting to realize that the coefficient a, can
include non-gravitational interactions. In the case of the com-
plex scalar field we have a contribution to the effective action
of the form ~ F,,F"log (m‘z’;gR). This can be interpreted as a
non-perturbative gravitational dependence of the effective electric

charge. A similar effect has been recently studied [95,108] but

further deeper understanding need to be carried out.

5.3. Minimal Subtraction Scheme

Let us consider again the proper time DeWitt-Schwinger expansion
of the effective Lagrangian of the complex scalar field

L= (4711)2 a;(x) /000 e M (is)]3ds (5.60)
=0

Introducing now dimensional regularization in the same form as

before we obtain
>

-
—|n—4 Ty (g _j+1> + log (Z_iﬂ ((_gm_z)j)!]“j

]

N\ /2

m (n—3)!
+<E) L n

—
=
N

LW ~ !
(477)

n
2

(5.61)

Now, we have to give a prescription of which part will be subtracted.

There are infinite one parameter family of performing this subtrac-
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tion [18]. If we subtract all the terms of (5.61) except Lg,, as in the
on-shell regularization when computing the S-matrix in flat space-
time quantum field theory [91] we would do the DeWitt-Schwinger
subtraction scheme explained in the section 5.2.

However, it can also useful (see Appendix A for a discussion in
QED), to perform Minimal Subtraction or Modified Minimal Sub-
traction, which consists on maintaining the logarithmic contribution
plus some extra constant term. In order to recover well-known re-
sults from running of the coupling constants in flat spacetime, let
us subtract both the divergent part and the i term from (5.61), i.e.,

2
m o L mt P (1) g (o
Lren~(4n)2{2 mal—l—az] log (m2)+(47t T an

n=>3
(5.62)

after performing the limit n — 4. There are two important issues
here. First, the last summation term in (5.62) is only valid in the
adiabatic limit and will in general have a different form. Secondly,
the arbitrariness of subtracting Lgjy, Or Lgiy + Liog, OF Laiv + Liog +
constant... is parametrized by the y scale and is in complete agree-
ment with the standard result of quantum field theory in curved
spacetime that any two renormalization prescription can differ only
in local terms as included in coefficients ag, a; and a,. The com-
plete effective action, together with the classical gravitational and
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electromagnetic term, is

1 1
s = /dx4\/—_g [—A + R+ 4—q2FWFW + Leff | + SHG,
(5.63)

where renormalization requires that the original classical Lagrangian
be modified by the addition of higher derivative terms of the form
SHg = f dx* V8% C? + apR?, where a1 and a; are dimensionless
coupling constants. Here C? = RymﬁRW“ﬁ — 2R,y RF + %Rz is the
square of the Weyl tensor.

Since we have introduced an arbitrary y dependence in the renor-
malized Lagrangian L, we need to ensure the y-independence of
the effective action, by introducing a dependence of y into each of
the coupling constants that absorb the contributions of Lg;,, namely
A, G, g, a1 and ap. Demanding that the total effective Lagrangian,
including the classical part, be y-independent leads to the following

beta-functions (see e.g. [101])

MS _ m’* BMS — _@ pMS — 7’
A 162 ! 472 M4 48772
1 1 .
MS MS 2
=— =& 5.64
1 960712 *2 16712‘3 (5.64)

where k¥ = 87G. The beta functions are defined as Bp = Iu%O.

There are two interesting points to make. First, we recover the

same beta function for scalar QED [98] in the Minimal Subtrac-
3

tion scheme in perturbative QFT in flat spacetime, pM° = 4g7.

However, in the limit y? < m?, the beta function do not decouple,
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analog to the perturbative case in QED in flat spacetime (Appendix
A). Moreover, for the cosmological constant and Newton constant
the beta functions actually diverge, making them very sensitive
to the higher massive fields. We will see in the next chapter that
this result is the cause of one of the possible formulations of the
cosmological constant problem.

5.4. Extended DeWitt-Schwinger
pu-Subtraction

As we have seen, the equivalence between DeWitt-Schwinger adi-
abatic expansion and adiabatic Parker-Fulling expansion is very
robust. Since we have proven that there is an inherent ambiguity in
the definition of the subtraction terms in adiabatic regularization, it
seems appropriate to analyze if there is an equivalent arbitrariness
in the DeWitt-Schwinger subtraction scheme explained in the last

section. The subtraction terms from (5.48) are of the form

i 2 S
Lsub = m Z a]'(X) /0 e 1sm (IS)] 3d5 . (565)
j=0

In the same way as the zeroth adiabatic order was defined as

w©) = /a=2kZ + m2 + u2, we can propose the ansatz

(0) — 2 /oo ds fis(m2+y2)
Lg, —2(4n)2a0 ; (is)3e . (5.66)
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An important improvement of this ansatz is the avoidance of the
infrared divergence that usually appears in the mass-less limit,
since in that limit we would have to add an arbitrary parameter
either way (see [15]). In order to subtract all the divergences of
the effective Lagrangian we need again to subtract the first three
coefficients, such that

2i 2 S S -
o _ = =, —zs(m +u ) Y )
Ly (4] ];:)a](x) /0 e (is)/"°ds . (5.67)

The new coefficients need to be modified with respect to (5.65)

in order to not generate new divergences. The new coefficients are
_ _ . 2, 14
dp=ag dy=ay+yu° dy=ax+aju +§y . (5.68)

We can see from the coefficients that in this case 42 is of adiabatic
order two, equivalently to the adiabatic Parker-Fulling expansion.
In the same way as the Minimal Subtraction in dimensional regular-
ization we have the renormalized effective Lagrangian expressed
as Lﬁé& =L - Lgup (). In order to obtain the beta functions of the
coupling constant under this renormalization scheme, we ensure

the invariance of the total effective action

1 1
1 4 2 2
g1 _/d x\/—¢ {—A+—167TGR—|——4q2FyVF"V—|—uc1C 4+ &y R + Lyen

(5.69)
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under p, i.e. P‘%S (1) = 0. This invariance imposes a running
into the coupling constants of the background Lagrangian due to
the u dependence of the renormalized effective Lagrangian. It is
useful to compute

d —i ©
yﬁLren = (@) /0 p—is(m+1?) (Zyzaz + 2uta; + y6> ds
—1 2 4 6

From this result, and the invariance of S(), we obtain the beta

functions
2
1
o L ﬁ2:_<5 I
! 960712 m? + p? 16712 m? + u?
YL S et S AR S
A remm2 42 T a2 22 P 482 m? 4 2
(5.71)

It is interesting to note that we can recover the beta functions of
minimal subtraction for the dimensionless couplings, including the
electric charge, in the limit of u? > m?. However, the dimensional
constant differ in this limit. The main result is that this subtraction
scheme generate beta functions that decouple in the limit y? < m?,
such that B, — 0 for all couplings, including the dimension-full

ones.
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In conclusion, the extended DeWitt-Schwinger subtraction scheme
compatible with the results of the Appelquist-Carazzone theo-
rem [7] for perturbative QFT in flat spacetime. This is an important
difference with respect to Minimal Subtraction. In the next chap-
ter we will explore this result in the context of the cosmological
constant problem.
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Chapter 6.

Heavy Fields, Decoupling and
the Cosmological Constant

Problem

“It isn't that they can’t see the solution. It is that they
can’t see the problem.”
— G. K. Chesterton, Scandal of Father Brown

As we have seen, contributions to the dynamics of the back-
ground fields, e.g. the gravitational field, from quantum fields can
be computed through the effective action

1
/d‘lx,/ [ A+ =R+ 01C? o+ R + Lyen | + Su
©6.1)
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where Sy are the possible classical matter fields. We can derive
from this action the semi-classical Einstein Equation

1

1 2
=G+ g+ B Hyw + B Hy = (T hren + i (62)

The Standard Model of Cosmology, ACDM, assumes that T% is
mostly constituted by non-relativistic matter, and a non vanishing
A. The contributions of higher order terms of the gravitational field

are usually neglected, and so are quantum corrections. Introducing
the FLRW metric

dr?

1— kr?

ds? = dr2 — a2(t) ( + 12 (d92 + sin? 9d¢2)) (6.3)

where a(t) is the expansion parameter and k the curvature, into the

Einstein equation we find the Friedman equations

LN\ 2

a 871G kK A
i 4G A
E:_T(p+3p)+§' (6.5)

The energy density and pressure of the matter components are
usually classified in two: relativistic fields (radiation) where p = 3p
and non-relativistic fields (matter) with p = 0. It is useful to define
the energy density of each component in terms of the critical energy

: 3H};
density p. = g

M A k
OQyu=—" Opr=— O =——5—. 6.6
M 0c A 3H5 k Q%Hg ( )
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Cosmological observations from different sources: type IA su-
pernova, Barionic Acoustic Oscillations and the Cosmic Microwave
Background allow us to restrict the possible values of these contri-

butions as shown in figure 6.1.

Supernova Cosmology Project
Suzuki, et al., Ap.J. (2011)
; T

Union2.1 SN ia
Compilation

1.0

08F

Qa

0.6

021

0. (b

Figure 6.1.: Observational constraints from ype IA supernova, Barionic
Acoustic Oscillations and the Cosmic Microwave Background
for Oy and Q4. Here, O =~ 0 as suggested by data from the
Cosmic Microwave Background [43].

As a consequence we know that apart from the matter content

of the Universe we need a non-vanishing cosmological constant of

oa = Oppe = 107 GeV* | 6.7)
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The discovery of the accelerated expansion of the Universe [90,94],
and the non-vanishing cosmological constant can be interpreted
in two ways. We can assume that the cosmological constant is
part of the classical gravitational background field, which value is
determined by observation. This is the approach we have assumed
so far. Another approach is to assume that there is a source, called
dark energy, which has an equation of state p = —p and that, at
current times, mimics a cosmological constant term, i.e., Ty ~ Aggp.
This is similar to the possible origin of inflationary expansion due
to a scalar field with a potential. However, even if a dark energy
proposal ends to be correct, there is no reason to assume that a
cosmological constant term should be zero, and both contributions

would be involved in the explanation of the current observations.

The question that arises is how does the quantum correction
of, e.g. the Standard Model fields, contribute to the cosmologi-
cal constant today. For this task it is interesting to analyze the
physical scales present at this type of computation. Here, we will
only study the case of the free massive fields !. In this case, the
range of masses (see fig 6.2) would go from the electron mass
m, ~ 0.511 MeV to the quark top mass m; ~ 173.1 GeV. On
the other hand, the gravitational field can be parametrized by the
Hubble constant today Hy ~ 3.7 x 10~4 GeV and the cosmological
constant A =~ 10~#GeV*. It is straightforward to realize that there
is a big separation between the two scales. This will simplify enor-

mously the computation of the effective action, and equivalently,

LA possible direction of research would be to include mass-less fields such as
the photon field, interactions and possible beyond Standard fields as massive
neutrinos.
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Standard Model of Elementary Particles
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Figure 6.2.: Standard Model fields with its corresponding masses.

the stress-energy tensor; since we can construct an effective field
theory where we would have R < m? — oo for each mass of the
Standard Model. Here we have defined R as any possible terms
constructed from the gravitational field, e.g. R? or R,pR%,

When computing the possible corrections of the vacuum po-
larization of massive field to the cosmological constant, one en-
counters naturally the well-known cosmological constant prob-
lem [22,75,113]. Briefly, the formulation of the problem is as follows.
If we compute the zero point energy density of a quantum field
with mass m a divergent quantity results. Using a cuttoff M yields
a contribution of ~ M* and using dimensional regularization and
MS yields ~ m*. In both cases the contribution is of many orders of
magnitude higher than the observed quantity, such that the prob-
lem can be regarded as a regularization-independent result. In the

following sections, we will analyze this argument in more detail by



Heavy Fields, Decoupling and the Cosmological Constant
126 Problem

considering both cases and comparing these result with the already

mentioned extended DeWitt-Schwinger subtraction scheme.

6.1. The Cosmological Constant Problem I

Let us assume a scalar field with mass m. We will work in a flat
spacetime as in the original work [113]. The vacuum expectation
value of the stress-energy tensor can be split in the non vanishing
components of the energy density (p) and pressure (p) (see [75]
for more details of the computations). In terms of the momentum
integral we have

1 1 k2
)= sy | P )= | P
(6.8)

Both integrals are divergent and a regularization method need to
be imposed?. A natural option is to introduce a cutoff regulator M
in the upper limit such that, for the case of M >> m we have

<>_£4 1+m_2+ <>_1£4 1_m_2+
Pl = Tem2 M2 Pl = 37672 M)
6.9)

The regulator can be regarded as an intermediate step to finally

obtain a finite renormalized result. However, from a effective field

ZNote that we can use adiabatic regularization in this integrals giving a vanish-
ing result for both terms.
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theory point of view we can consider the cutoff M to be some phys-
ical limit of the theory. For example, we believe that at the Planck
scale, the QFTCS in general is no longer valid. Choosing M = Mp
this would mean that from (6.9) (p) ~ % = 2 x 1071GeV*. Of
course this is a "catastrophically” prediction, since we have seen

that the observational value is Ag,s ~ 10~ GeV* [75,113].

There are several comments to make at this point. First, results
from (6.9) cannot be regarded as a physical prediction of the energy
density since the use of this kind of regulator leads to inconsistent
results. Just by analyzing (6.9) we find that (p) # —(p), which
implies that general covariance does not hold [4,76]. This is of no
surprise since we know that this kind of regulator leads to unde-
sirable breaking of symmetries, even in perturbative QED in flat
spacetime [5]. It is also worth mentioning that quantum field the-
ory in itself cannot be regarded as just a collection of low energy
degrees of freedom, in this case |k| < M if we wish to recover impor-
tant results as the Casimir effect or the well-known anomalies [62].
This makes it rather complicated and obscure to use the techniques
of perturbative flat spacetime in more general, non perturbative
regimes such as QFTCS.

Second, even if we are able to construct a cut-off like regular-
ization that is maintains covariancy of the results (see e.g. [100]
donoghue) the use of physical cut-offs in field theories, even in flat

spacetime, is a non trivial issue [74].

We know that the fields of the Standard Model in curved space-

time are renormalizable in the sense that we can always construct a
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theory with defined counter-terms that reabsorb the divergences of
the different quantities. Therefore, we actually do not need to make
use of a cut-off regulator at all and make us of a specific subtraction
scheme, e.g. MS (or MS or y scheme) in dimensional regularization.
This can be done as in the last chapter by upgrading the above
integrals to a d dimensional spacetime and then subtracting the

pole terms. The final result is for y scheme [75]

4 2 4 2
o= gratos (G ) R = —gistog (1), 610
where we obtain now the correct equation of state <p>ffen = — <p)?en.
Here we would face a contribution of order m*, which for the
Masses of the Standard Model, e.g. m, >~ 0.511MeV, is still a very
magnitudes far away from the observed quantity. One can still
argue, that since a renormalizable theory can reabsorb the contribu-
tions into the couplings of the theory, there is no problem in doing
this for the vacuum contribution. We could tune the couplings to
describe the physics at the current (low) energy scales and have a
perfectly valid description.

Nevertheless, we could go a step further and not only have a
low energy description, i.e., an effective field theory description of
the current observations but also connect this low energy theory

3

with possible high energy formulations” , we would face again a

cosmological constant problem4 [22].

3We could take a more humble approach, by not considering the possibility of
the existence of this kind of "bridge", (see [74]).

4 A similar description of this formulation of the cosmological constant problem
can be found in [77].
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In order to properly understand this formulation let us first
review a possible effective field theory that describes the massive
Standard model fields in curved spacetime in the case where we
observe the cosmological constant, i.e.,, R < m? — oo. We consider
here a quantized scalar field for simplicity but the same can be
developed for Dirac and Gauge fields.

6.2. Effective Field Theory for a Scalar Field

Let us consider a quantum scalar field in curved spacetime

R
S = /d4x\/ ( At o=ty ((Vy<p)v?*cp+m ¢* + ER¢p )) .
6.11)
The effective field theory is constructed by requiring that R < m?.

A good approximation consists on taking the DeWitt-Schwinger
proper time expansion for the effective Lagrangian as

NN o ® s w2 (i
L 2(4n)2];)a](x,x)/0 (is)3e (is) (6.12)
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where the coefficients 4; only depend on gravitational magnitudes,
the first three being

1 1 1/1 1.
ay(x) = mRaﬁng“ﬁw — 1—R"‘5Raﬁ — - (5 — g) OR + §§2R2
(6.13)

We can perform dimensional regularization as in 5.3 obtaining

n 2—j
1 2 2 no. 12 (—m?)
it & G i) s ()| + e
Léin, (6.14)
where we have defined the finite contribution as
m2\ " @ (n—3)!
L= — . 1
fin (47T) 11;3 m2n n (6 5)

Note that the infinite finite terms from (6.15) is an expansion of
inverse powers of m? such that it is indeed an effective field theory.
We have now to take care of the divergent part. The standard sub-
traction scheme for effective field theory maintains the logarithmic
term (MS, MS, u-subtraction, etc.). Let us consider for simplicity u-

subtraction scheme, where we only maintain the logarithmic term.
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In this case the renormalized effective Lagrangian takes the form

—1 [m* m? m2\> & (n—3)!
}l ~ 2~ A
Lien ~ o [ > m-iq —i—az} log (VZ) + (4%) nz 5 n-

=3
(6.16)

The complete effective action results in

1
/dx4« /= [ At Rt wCl 4 iR+ Lren} ,(6.17)
where all the coupling constants have its corresponding u depen-
dence. Note that we recover the results obtained in (6.10), i.e., the
cosmological constant A receives a Contrlbutlon from Lk, such that

the observable quantity is Agps = A + log ( > ~ 10"¥GeV*.

647‘(2
There is no apparent problem at this stage.

The cosmological constant problem as outlined in [22] arises
when we wish to connect the effective field theory with the exact
effective action (that is valid at high energy scales) in the limit of

low energy.

6.3. The Cosmological Constant Problem II

Let us assume we have n light scalar fields £; with mass m; and
couplings ¢; and a heavy scalar field H with mass M and coupling
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&y In the complete exact theory® we have the following effective
action

1
167TGH(P‘)R

s = /dx4\/—g

—Ap(p) +

+arg(W)C?+ aap(WR*+ Y Lien| . (6.18)
LiH

The running of the coupling constants are determined by

Ms _ y my n Mm* BMS _ Z_mlzé_i _ Mg,
AT ERp? R Tt &

8> 8m?’
1 1 5, 1 ;
MS _ _ MS _ _ 2 _ 2
o EZH 192072" %2 ; 32m2% ~ 32

(6.19)

Here { = ¢ — %. In the low energy regime where R < M? holds
we have (using the results of (6.16))

1

M2)2 © (1 —3)! "
an+ Lren .
) Lo Zﬁi

+ a1 (1) C? + apr (1) R* + (
n=3

(6.20)

>Here we mean a theory that is valid at higher energies but below the Planck
Mass, where QFTCS is meant to fail.
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Here we have absorbed the problematic contribution into the effec-
tive coupling constant in the low energy regime. This is a result
from integrating out the heavy massive field (see Appendix A)
that is typically done in MS, since the beta functions (6.19) do not
decouple®.

We can automatically see where the problem is. The effective
contribution to the cosmological constant differ between the two

theories as

MS MS M W

A () = AL () + 25 log (W) - (6.21)
This is the cosmological constant problem as outlined in [22]. The
problem has to do with the fact that we have good arguments to
think that the cosmological constant is not only small but remains
small at higher energies, at least at energies higher than for exam-
ple the mass of the electron m, ~ 0.511MeV. Here the difference
between both couplings just for the electron mass is Ay (i) — Ap =~
10 16GeV* in comparison with the A = Agps 10~¥GeV*. The
cosmological constant problem arises when we try to connect the
low energy effective field theory with its more fundamental theory
valid at high energy.

However, it is important to take into account that we have used
a subtraction scheme that actually does not decouple and integrated
out the corresponding heavy field by redefining the coupling con-
stants of each theory (see Appendix A for the QED analog). This

The beta functions of the coupling constants of (6.20) would be the same as
(6.19) but without the contribution of the massive field .
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is an artificial construct in order to safe Minimal Subtraction for it
advantages in higher order loop calculations in scattering ampli-
tudes, but there is no requirement of QFTCS that this subtraction
scheme has any preference in comparison to others. Indeed, we
can perform the extended DeWitt-Schwinger subtraction scheme’

presented in 5.4 we would obtain

AR (1) = AL (n) +

MZ M4 2+M2
4 2 H
282" " et Ve log( M2 ) '

(6.22)

Of course, integrating out in this case is not needed since the beta
functions in itself decouple, analog to the Momentum Subtraction

scheme in perturbative QED (see Appendix A).

If we assume that there are no lighter massive fields than the elec-
tron mass (omitting possible beyond Standard Model fields), then
the difference between the theory at an energy higher and loxéver
Taking now the low energy constant to be the observable magnitude
AL = Agps ~ 107¥GeV* and e.g. 11~ Hy ~ 3.7 x 10741GeV we ob-
tain Ay — A; ~ 107248GeV*. This implies that the cosmological

constant problem points towards the fact that Minimal Subtraction

than the mass of the electron M = m, givesnow Ay ~ A +

(or its modifications) may not be suitable for constructing effective
field theories in curved spacetime, but it does not mean at all that
we cannot construct such a theory and that it cannot be consistent

with the current observational data.

"Note that even using the un-extended DeWitt-Schwinger subtraction scheme
would not generate this problem since there is no explicit 4 dependence.
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In conclusion, if one takes the cuttoff approach to identify possi-
ble predictions one arrives at a catastrophically result of 122 orders
of magnitudes. But the method by itself is well known to have
troubles [112] even in gauge theories in flat spacetime [5,74]. More-
over, in a renormalizable theory as in QFTCS, cut-off regulator
are actually not needed. The other possibility is to use Minimal
Subtraction that does not carry these problems but we get again a
similar catastrophe of more than 20 orders of magnitude. But as
we have seen the problem comes from the construction of effective
field theories and the fact that this scheme does not decouple even
in flat spacetime so we have to integrate out by hand the fields.
This is possible for example for QED, where the shift between the
charge of the heavy theory and the light theory is just logarithmic
(see Appendix A). However, this integrating out seems not to be
possible in the case of the cosmological constant so we have to make
use of other schemes, e.g. extended DeWitt-Schwinger subtraction
schemes. There is no issue in doing that since Minimal Subtraction
is just more optimal for computations in flat spacetime but has no

preference as a scheme in any case in QFTCS.

6.4. Decoupling and Sensitivity of the

Cosmological Constant

We have seen that we can built a effective field theory compatible
with the observed cosmological constant. It is interesting to analyze

if the cosmological constant can be sensible to quantum corrections



Heavy Fields, Decoupling and the Cosmological Constant
136 Problem

and which conditions must hold. In order to do this, let us assume
that we have a scalar field coupled to another classical scalar field

with Klein Gordon equation
<D P 4 P2 gR) $=0. (6.23)

We can do the same computation of the DeWitt-Schwinger proper

time expansion and regularize using the extended DeWitt-Schwinger
subtraction scheme. (see [45] for the extended DeWitt-Schwinger

subtraction scheme of the Yukawa model). Assuming that the clas-
sical external field ® (and its derivative) is also smaller than the

mass h?®? < m? we can use the expansion 6.2 and obtain

1
- A+ —GR + 041C2 + 0(2R2

m2\*> & (n—3)!
+<E> Z m2n n |-

n=3

/dx4\/_

Here we have omit the explicit ; dependence of the coupling con-
stants. Using the DeWitt-Schwinger coefficient a3 from [86,110]

which gives the first correction to the classical action in the effective
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field theory, such that

R
— A+ 167G +0€1C2+062R2

N/dx4\/_

1 RO
. 650 1 1,434 252 Grav
v IeE <h<I> + Sh'O'R + 1P g>+—m2 ,

(6.24)

where G = IDR + 12R2 + 30 RyyapRF"™ p— %RWRVV and Rér)av
sum of six dimensional operators constructed only my gravitational
tensor. In this case, for an almost constant scalar field ® ~ T we

have a contribution to the cosmological constant as

hoT®

Nopp = AN+ ——.
eff +1927t2m2

(6.25)
We can compare the contribution of (6.25) to the observed quantity
A ~ 10~¥GeV* for difference masses with respect to the field T
(see figure 6.3). For the electron mass m, ~ 0.511MeV we find that
a induced cosmological constant is of the order of the observed A
at a scale of hT ~ 3eV, which is still far from the mass scale but
enough for the cosmological constant to be sensible to this effect.

In conclusion, at the energy scales where we usually observe
the cosmological constant, we can use the effective field theory
description of e.g. (??), where here A would be the observed value
A ~ 107¥GeV*. The quantum contributions appear as higher
order corrections, in alliance with the rules of the effective field

theory approach. The corrections could be important in situations
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Figure 6.3.: We plot the induced cosmological constant term Aj,g =
ngiT;mz for different masses: m,, = 5 eV,m, = 0.511 MeV and
mpg = 125 MeV and compare it with the observational cosmo-

logical constant Agps ~ 10~ GeV*. We take here h = 1.

where these extra contributions (e.g. (6.25)) approach the observed

quantity.



Appendix A.

Vacuum polarization in
perturbative QED

A.1. Renormalization and Subtraction

Schemes

Let us assume a Dirac field and an electromagnetic field in QED

L = iy o,y — mpy — jIFvaW —epypAy. (A1)

The contribution of the one-loop vacuum polarization can be en-
coded in (see [98] for more details)

e 1 —x(1 —x)g?* + m? e?
H(qz):ﬁ/o dxx(l—x)log( ( )q )

u? C6m2e Osubr
(A2)
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where g is the external momentum of the photon propagator. Here
dsub contains the divergent terms what we will subtract by reab-
sorbing it in the coupling constants of the Lagrangian (A.1), in this
case into the electric charge e. The first possible prescription is the
on-shell subtraction, which has the advantage of maintaining the
physical quantities. In this case we have

(32 62 mz
(Ssub = —67'[2€ + T]‘[z log (?> . (A3)

The final quantity is then

(1 — x)g* + m?
2

2 _
I1(q%) = 26?/0 dxx(1 — x) log< a ) . (A4)

From this quantum contribution we can obtain the corrected Coulomb
potential in momentum space [98]
)

V@)= mr—T@) (A.5)

The large momentum expansion g2 > m? leads to

vHish () = e A6
q) = = (A6)

7 (1~ 18 o8 ()

while the low energy limit g2 < m? implies

o2

Vov(q) =
2 72 ¢
P (1+ 5252 )

(A7)
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which in position space implies the well known Lamb-Shift [91].
Here, the electric charge e ~ 0.302 and the mass m ~ 0.510MeV are
the physical magnitudes we obtain from low energy experiments.
As we have explained, we could also decide to subtract not (A.3)
but

2
Osub = T ee (A.8)
In this case the corrected Coulomb potential has the form
o2
v(7) = = (A.9)

7* (1 —Tys(72))

with

s (1 —x(1 — x)g* + m?
Mys(g%) = ﬁ/ﬂ dxx(1— x) log( ( yz)q ) (A.10)

This is the case of Minimal Subtraction scheme in dimensional
regularization. The contribution (A.10) must be independent of the
scaling # and therefore must include a variation in y such that for a

change from two different scales the charge is

2
es(1) = —— e“(f)(m) (A.11)
0
1-— M5 10g< )

which compensates the change of scale of (A.10). This scaling de-

pendence of the electric charge gives us the usual beta function

3
By = 16’2%. We obtain again for both the high and the low energy
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limit
2
Ve () = ) (A12)
7 (1- %% 10g (7))
Viow (7) = ‘M2 . (A.13)

(1352 (s s (1))

It is interesting to note that in the high energy limit, choosing the p

parameter to be i = |g| we obtain

nigh — _ ems(lq])

Vs (7) = quT‘l (A.14)
which mimics the classical Coulomb potential but with a electric
charge that runs with the momentum ¢. This gives us a well-
founded equivalence between the y parameter of dimensional reg-
ularization and the only relevant scale at high energy, in this case

the momentum 4.

The situation is dramatically different in the low energy limit
since the assignation of y = |g| does only introduce a problematic
logarithmic term. Indeed, an important result for further discussion
is that Minimal Subtraction do not decouple massive fields in the
low energy regime [74]. Decoupling is a very relevant property for
constructing effective fields theories as we will see in chapter 6. The
physical motivation behind decoupling has to do with the fact that
we believe, and experiments supports this idea, that high energy
scales do not affect the low energy description. An equivalent
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3
explanation can be seen from the beta function g, = {"2%”52 which is
independent from the mass and therefore contributes equal to the

charge at any physical scale.

A possible way of overcoming this problem is to change the
subtraction scheme and use a more physical scheme, in this case
the momentum subtraction scheme. In this scheme we subtract the

value of the magnitude in (A.2) at p?> = —pu%, obtaining

2 1 2 .2
2y _ € B —x(1—x)g°+m
Ivom(g7) = ) /0 dxx(1 — x)log (x(l —2, > (A.15)

In the limit of 4> < m? we obtain

2 (1?42 4
Myom(q%) = T ( 30m2M +0 (%) (A.16)

such that the massive field does indeed decouple. This can also be
seen by the corresponding beta function

et x(1 = x)puiy
= — dxx(1—x)1 A.17
Bmom 27r2/0 xx(1—x)log (x(l—x)y%\,IerZ (A.17)

- 2 2 ~ _ 2 2 -
which for m* < uj,is Bvom ~ Bwms = 157 but for m* > muy, is
&S Hu

Pmom = g5 s — 0. The decoupling of the quantum contributions

from massive fields in the low energy regime can be encapsulated
in the Appelquist-Carazonne theorem [7] which ensures that mass
dependent subtraction scheme, as MOM, decouple in this limit in
perturbative QFT.
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A.2. Effective Field Theory in QED

We have already seen that one of the flaws of Minimal Subtraction
scheme (or its modifications) is related to the fact that it is not
compatible with decoupling and we must use a more physical,
mass dependent scheme such as Momentum subtraction scheme.
However, MS is very efficient for loop calculations in gauge theories
and therefore it is desirable to main this scheme [74,92]. The solution
to this is to integrate out the massive fields by hand such that at the
low energy regime there is no explicit radiative corrections of the
massive field. The vacuum polarization contribution for the heavy
field (A.10) in the limit of g% < m? is

2 1 2 2 4
r(g?) = ) /0 (1 - x)log (%) +-1 40 (%) (A.18)

272 30m?2

where we have dropped the MS index for simplicity and ey is the
running coupling of the high energy theory that includes all the
tields, also the heavy field. The effective Lagrangian can encode
this information by adding a correction to the original Lagrangian
of the form [74]

2
e (1)

Apart from this extra higher order operator term we have a shift in
the running coupling constant between the both theories

1 1 1 m?
= — lo (—> (A.20)
G~ i 120\
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where both couplings have different beta functions, since ey in-
cludes the running of the heavy field and ey does not. This is called
to integrate out the heavy degrees of freedom, which results in a
theory that includes the quantum contribution of the heavy field in
terms of higher order corrections and shifts in the couplings.
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