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A series of hybrid organo–inorganic mononuclear lanthanoid complexes, [n-NBu4]3[LnH(PW11O39)

(phen)2]·H2O, denoted as LM4-1-Ln (Ln = DyIII, TbIII, EuIII, NdIII, ErIII, HoIII and GdIII), were synthesized via

hydrothermal synthesis and were structurally characterized by X-ray diffraction. The optical properties of

all complexes have been investigated in the solid state. The temperature-dependent emission spectra of

LM4-1-Dy, LM4-1-Tb and LM4-1-Eu complexes show intense lanthanoid emissions in the visible region,

while LM4-1-Nd shows near-infrared (NIR) luminescence. The EuIII complex shows typical strong red

emissions from the 5D0 → 7F0,1,2,3,4 transitions, with the CIE colour coordinates (0.631,0.364), the colour

purity value of 83.9% and a quantum yield of up to 4.3%, suggesting that the organic fragment has an

effect on the optical properties compared to fully inorganic systems, making this complex very attractive

as a red component of light-emitting diodes. The luminescence decays of LM4-1-Dy, LM4-1-Tb and LM4-

1-Eu exhibit a biexponential behaviour, with τAV = 4.1(7) μs, 0.35(2) ms and 0.94(3) ms, respectively. The

values obtained for Judd–Ofelt intensity parameters Ω2 and Ω4 support the interaction between the EuIII

and the ligands. Furthermore, those with ErIII and HoIII present weak emissions in the visible region. The

T-dependent photoluminescence results show that the LM4-1-Dy, LM4-1-Tb and LM4-1-Nd complexes

have good temperature sensitivity, demonstrating that the materials have the potential to be used as a

sensing element for luminescent thermometers in different temperature ranges.

Introduction

Temperature-sensitive luminescent molecules have potential
applications as optical thermo-sensors for electronic devices,
and for medical and biological applications.1,2 Various
thermo-sensing luminescent molecules like organic dyes,3

metal complexes, polymers and extended systems like metal
organic frameworks (MOFs) have been reported.4

Among these types of molecules lanthanoid (Ln) complexes
have been considered as ideal materials for these purposes since
Ln ions have unique photophysical properties, showing sharp
and characteristic transitions in the visible or near-infrared
regions and also long excited-state lifetimes.5 The plasticity of
the coordination chemistry of lanthanoid ions (Ln) allows the
design of novel coordination compounds. In this sense Ln com-
plexes based on aromatic organic ligands can work as “anten-
nas” in order to harvest light. The energy is then transferred
from the excited state of the ligand onto the metal ion which
eventually gives off its characteristic light since the dipole
strengths of f–f transitions are very small (Laporte forbidden)
and the direct excitation into the 4f excited levels is very rare.5,6

Among trivalent lanthanoid ions, TbIII, EuIII and DyIII, generally,
present intense green, red and blue emissions respectively, being
used as emitters in white light-emitting diodes (WLED), as lumi-
nescent probes in the investigation of biochemical systems, and
as red activators in X-ray detection materials among others.7–10

Moreover, inorganic ligands like polyoxometalates (POMs)
have been also used in order to obtain Ln coordination com-
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pounds.11 Polyoxometalates (POMs) are metal–oxygen clusters
of zero dimensionality, presenting characteristic architectures
and various compositions as well as having potential appli-
cations in materials science.12 These molecules can be used as
multidentate inorganic ligands, especially for tungsten lacun-
ary POMs (LPOMs) with defined vacancies having also various
sizes, shapes, solubility, flexible coordination sites and
modes.13,14 These inorganic ligands have also shown pro-
perties of harvesting light like organic ones. In these systems,
it is possible to observe that the luminescence intensity can be
very low, suggesting that the excitation energy of the O → W
charge transfer band of this compound can be quenched by
non-radiative transitions within the LPOM.15

The combination of conjugated organic and inorganic
ligands (LPOMs) with lanthanoid centres can generate hybrid
organic–inorganic Ln complexes. This can afford species
usually forming dinuclear and/or polynuclear complexes with
two different routes for sensitizing the lanthanoid lumine-
scence (the organic and inorganic ones).16–21 Many of the
systems reported in the literature show that in general in poly-
nuclear systems the coordination sphere of the Ln ion has low
symmetry and its coordination sphere is completed by H2O
molecules, quenching the emission properties.21 Moreover,
this hybrid organic–inorganic molecule can have potential
applications such as magneto-optical devices, optoelectronics,
optical markers, laser materials, catalysts and others.5,6,22–26

So, high symmetry mononuclear systems with no water
molecules are necessary in order to obtain good optical pro-
perties in Ln complexes. Despite the exquisite control of
coordination chemistry, the preparation of mononuclear
hybrid organo–inorganic Ln complexes has remained elusive.
These hybrid materials could be benefitted from the combi-
nation of the flexibility of organic ligands with the robustness
of the LPOM inorganic moieties.27

In this work the optical properties (UV-Vis-NIR absorption,
excitation, emission and lifetime) in the solid state of the iso-
structural family of hybrid organo–inorganic Ln complexes
(LM4-1-Ln‡), where Ln = DyIII, TbIII, EuIII, NdIII, ErIII, HoIII and
GdIII, are presented).

Results and discussion
Structural characterization

The preparation of mononuclear hybrid organic–inorganic Ln
complexes is not a simple task, dinuclear or polynuclear
systems being the published ones.28–30

These compounds were obtained by hydrothermal synthesis
at 160 °C for 48 h, giving single crystals of [n-NBu4]3[LnH
(PW11O39)(phen)2]·H2O (LnIII = DyIII(LM4-1-Dy), TbIII(LM4-1-
Tb), EuIII(LM4-1-Eu), NdIII(LM4-1-Nd), ErIII(LM4-1-Er),
HoIII(LM4-1-Ho) and GdIII(LM4-1-Gd) suitable for X-ray diffrac-
tion (see section S1 to S2, Fig. S1 and Table S1†). These com-

pounds are all isostructural, crystallizing in the monoclinic
P21/c space group (see section S3 and Table S2†).
Electroneutrality is achieved by three [n-NBu4]

+ cations that exist
in the crystal lattice, and by one proton that is delocalized over
the oxygen atoms of the LPOM.31 A complex of the formula
[LnH(PW11O39)(phen)2]

3− is formed by two types of ligands,
one inorganic and two organic, forming an octacoordinated
complex (Fig. 1). The organic ligands correspond to two phe-
nanthroline molecules and the inorganic one corresponds to
the Keggin lacunary polyoxotungstate ([PW11O39]

7−). The
importance of having a lacunary POM is that it has a rigid
crystal field around the lanthanoid cation, in contrast to the
more flexible organic ligands being also softer than the POM
from the HSAB point of view. The distances between the Ln
and the nitrogen atoms of the phenanthrolines are in the
range of 2.545(14) to 2.646(16) Å, whereas the distances
between the Ln to oxygen atoms of the [PW11O39]

7− are in the
2.225(14) to 2.358(11) Å range.

The compounds are arranged in the crystal packing by π–π
stacking between the aromatic rings (N20 C17 C18 C19 C23
C24; N40 C37 C38 C39 C43 C44) of the phenanthroline
ligands, forming pairs with distances ranging from 3.568 Å to
3.108 Å, for the studied complexes (Fig. S2†). The distance
between two molecules in each pair (Ln–Ln) is 9.714(1) Å,
9.783(1) Å, 9.784(1) Å, 9.791(2) Å, 9.783(2) Å, 9.781(1) Å and
9.778(1) Å, for LM4-1-Dy, LM4-1-Tb, LM4-1-Eu, LM4-1-Nd, LM4-
1-Er, LM4-1-Ho and LM4-1-Gd complexes, respectively.

Continuous shape measurement (CShMs) calculations
done using the SHAPE code32,33 reveal that the geometry of the
Ln complexes can be described as a square antiprism (sa),
thus implying that the Ln centres present a pseudo-D4d sym-
metry (Fig. S3†). This type of geometry is very common since
most LnIII complexes with octacoordinated geometries present
square antiprism, or triangular dodecahedron or bicapped tri-
gonal prism types of geometries.34–38 Reported data show that
the metal centres of the fully inorganic ligand systems of

Fig. 1 Ball-and-stick representation of hybrid organic–inorganic
molecular complexes [LnH(PW11O39)(phen)2]

3−. Water molecule and
[n-NBu4]

+ cations are omitted for clarity. Colour label: Ln (cyan),
W (yellow), N (blue), C (grey) O (red) and P (green).‡LM4 = Laboratory of molecular magnetism and molecular materials.
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[Ln(PW11O39)2]
11− and [Ln(SiW11O39)2]

13− present a square
antiprism geometry,31 also observed for the systems presented
in this work.

Finally, the XRPD pattern of LM4-1-Ln is quite similar for
all the Ln complexes, but some slight differences in some
intensities exist, which are due to the textural problems of the
material. The crystalline products are isostructural and also
are in agreement with their simulated patterns, demonstrating
that the crystal structures of the compounds are truly represen-
tative of the bulk materials (Fig. S4 and S5†).

Electronic spectra

The solid-state UV-Vis-NIR spectra of the LM4-1-Ln complexes
collected at room temperature are depicted in Fig. S6.† All
LM4-1-Ln complexes do not have water molecules in the first
coordination sphere of the LnIII ion.

The absorption spectrum of LM4-1-Dy shows typical bands
for DyIII attributed to the transitions from the 6H15/2 ground
state to the 6F3/2,

6F5/2,
6F7/2,

6H7/2,
6H9/2 and 6H11/2 excited

states respectively, due to the electronic transitions of trivalent
dysprosium with the 4f9 intra configuration (Fig. S6a†).39

The UV-Vis-NIR spectrum of the LM4-1-Tb complex is
depicted in Fig. S6b,† where only one band could be observed
in the whole spectral range and due to the 7F6 →

7F0 transition
at 1694 nm.

The spectrum of LM4-1-Eu, Fig. S6c,† taken from 350 to
850 nm, shows characteristic absorption lines assigned to the
7F0 → 5D0,1,2 and 7F0 → 5L6 transitions at 590, 540, 511 and
385 nm respectively.40 A small peak at 2075 nm is attributed to
the 7F0 → 7F6 transition. Several absorptions associated with
the overtones of OH of the POM and CH of the phenanthroline
appear at 747 and 804, 1950, 2150 and 2280 nm.

Fig. S6d† shows the absorption spectrum of LM4-1-Nd;
several sharp bands can be observed in the 400–850 nm range,
each one corresponding to the transitions from the 4I9/2
ground state to the excite states 4F3/2, (

4F5/2,
2H9/2),

4F7/2,
4S3/2,

4F9/2,
4F3/2,

2H11/2,
4G5/2,

2G7/2,
4G7/2,

4G9/2, (
2D3/2,

2G9/2),
4G11/2

and 2P1/2.
41 The band positions are in good agreement with

those of other NdIII polyoxometalate complexes.42

For the LM4-1-Er complex, the UV-Vis spectrum, Fig. S6e,†
shows a number of spectral bands corresponding to the tran-
sitions between the 4I15/2 ground state and the 4I9/2,

4F9/2,
4S3/2,

4F7/2,
4F5/2, (

4G, 4F, 2H)9/2 and
4G11/2 excited states.43

The absorption spectrum for the LM4-1-Ho complex is pre-
sented in Fig. S6f,† and the observed transitions from the 5I8
ground state to the 2S+1LJ excited states 5F5, (

5F4,
5S2),

5F3, (
5F2,

3K8), (
5F1,

5G6) and
5G5.

44

Fig. S7† shows the room temperature solid state absorption
spectra of both free ligands, the inorganic ([PW11O39H3]

4−)
and the phenanthroline and also of the LM4-1-Gd complex.
Fig. S7a and b† correspond to the absorption spectra
of the [PW11O39H3]

4− ligand, taken in the UV-Vis region
(200–500 nm), showing a broad band with a prominent
shoulder at ∼250 nm, which can be associated with the oxygen
to metal (W) charge transfer. The spectrum of the phenanthro-
line (Fig. S7c†) ligand shows a broad absorption band in the

200–450 nm range, with a series of shoulders at 225, 275, 290
and 345 nm, as reported by Linnell and Kaczmarczyk.45

The absorption spectrum of LM4-1-Gd shown in Fig. S7d†
consists of a broad absorption, in which three intense bands
are observed: 250, 290 and 345 nm. The first band can be
associated with the [PW11O39]

7− unit and the other two must
correspond to the phenanthroline ligand, as observed in the
spectra of free 1,10-phenanthroline. As the GdIII ion does not
present any absorption below 311 nm, the LM4-1-Gd complex
will be used to investigate any charge transfer processes
between both ligands (1,10-phenanthroline and LPOM) to the
emitting levels of DyIII, EuIII and TbIII ions. In the UV region
(below 380 nm) no f–f transitions were observed for all studied
compounds.

Photoluminescence results

Solid-state emission spectra for all LM4-1-Ln complexes have
been collected at room temperature in the visible and IR
regions. The results confirm that the antenna effect is
observed for all compounds. The results for LM4-1-Gd will be
used to determine the singlet and triplet state of the ligand for
the analysis of the energy transfer (see ESI, Fig. S8†). For com-
pounds LM4-1-Dy, LM4-1-Tb, LM4-1-Eu and LM4-1-Nd the
intensity profiles associated with each compound were
observed with different excitation energies all of them in the
range, in which both ligands absorb. Finally, the excitation
energy used is the one that provides more intense emissions
in each case (see Fig. S9†).

The emission spectra of [NBu4]4[PW11O39H3] and 1,10-phen-
anthroline were obtained at room temperature, Fig. S10.† The
experimental measurements are in agreement with previously
reported data, in which the observed emission of 1,10-phen-
antroline is in the range of 380 nm to 500 nm,46 and for the
[PW11O39]

7− anion the emission is in the same spectral
range.47 The results show that the organic ligand has a more
intense signal compared to the LPOM one, suggesting that the
transition between the S0 and S1 energy levels of the organic
ligand is more predominant compared to the 3T1u → 1A1g tran-
sition of the LPOM fragment. However, both ligands contrib-
ute to the antenna effect.

LM4-1-Dy

The excitation and emission spectra of the LM4-1-Dy com-
pound are shown in Fig. 2. The excitation spectra, Fig. 2a,
monitoring the emission corresponding the 4F9/2 → 6H13/2

transition at 573 nm, consist of an intense band centred at
352 nm attributed to the transition between the S0 and S1
energy levels of the phen ligand with the π–π* character; DyIII

does not show absorption bands in this region. In Fig. 2b the
temperature dependence of the emission spectra from 15 to
300 K is shown, in which the intensities of the bands are nor-
malized to the 4F9/2 → 6H13/2 transition and obtained under
excitation at 352 nm. All the spectra consist of three bands at
479, 571 and 658 nm assigned to the 4F9/2 → 6H15/2 (blue, B),
4F9/2 → 6H13/2 (yellow, Y) and 4F9/2 → 6H11/2 transitions,
respectively. All the emission line energies are independent of
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the temperature; the 4F9/2 → 6H15/2 and 4F9/2 → 6H11/2 tran-
sitions are the highest and less intense bands, respectively. No
change in the position of the DyIII transitions is observed in
the whole temperature range. Also, one intense and broad
band can be observed centred at ∼390 nm attributed to both
ligands, as mentioned above (Fig. S10†), which becomes less
intense with the increasing temperature. The B transition has

a magnetic dipole (MD) nature being less affected by the site
symmetry, in contrast to the hypersensitive Y transition, which
has an electric dipole (ED) nature that is strongly influenced
by the local environment.48 The Y/B intensity ratio for DyIII can
give information about the strength of the covalent/ionic
bonding character between the DyIII and the atoms of the first
coordination sphere, and the asymmetry of the site occupied

Fig. 2 Excitation spectra: (a) LM4-1-Dy by monitoring the 4F9/2 →
6H13/2 transition at 573 nm, (c) LM4-1-Tb by monitoring the 5D4 → 7F5 and 5D4 →

7F6 transitions at 543 and 485 nm and (e) excitation spectrum of the LM4-1-Eu complex by monitoring the 5D0 → 7F2 transition at 615 nm. Emission
spectra: thermal dependency of the emission spectrum for (b) LM4-1-Dy (d) LM4-1-Tb and (f ) LM4-1-Eu under excitation at 350, 325 and 394 nm,
respectively. The emission spectra of LM4-1-Nd at room temperature under excitation at 330 and 350 nm are shown in (g) and the temperature
dependence of the emission spectra under 804 nm excitation is shown in (h).

Research Article Inorganic Chemistry Frontiers

3052 | Inorg. Chem. Front., 2020, 7, 3049–3062 This journal is © the Partner Organisations 2020

Pu
bl

is
he

d 
on

 3
0 

A
pr

il 
20

20
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
t d

e 
V

al
èn

ci
a 

on
 7

/1
3/

20
21

 1
0:

11
:4

4 
A

M
. 

View Article Online

https://doi.org/10.1039/d0qi00232a
Rectangle

Rectangle

Rectangle



by the lanthanoid ion.49 The temperature dependence of the
Y/B intensity ratio, obtained from the experimental spectra, is
nearly independent of temperature as shown in Fig. S11a,† Y/B
≈ 0.63(6); this result is associated with the fact of the 4F9/2 →
6H15/2 transition is more intense than the 4F9/2 → 6H13/2 tran-
sition, suggesting a more covalent character of the bonding
between the atoms of the first coordination sphere and the
DyIII ion.50

LM4-1-Tb

The excitation spectra of the LM4-1-Tb compound were
acquired by monitoring the emissions at 543 and 485 nm,
corresponding to the 5D4 → 7F5 and 5D4 → 7F6 transitions,
respectively (Fig. 2c). The broad absorption band at ∼276 nm,
by monitoring the emission at 485 nm, is assigned to the π–π*
transition of the ligands, being much more intense than those
attributed to the TbIII absorptions. In addition, the two peaks
at 368 and 377 nm are due the 5L10 → 5D4 absorption. The
presence of the broad band indicates the existence of the
energy transfer from both ligands to the energy levels of the
TbIII ion.

The emission spectra of the TbIII compound as a function
of temperature, Fig. 2d, show typical emission bands corres-
ponding to 5D4 →

7F6 (blue, B) at 486 nm, 5D4 →
7F5 (green, G)

at 543 nm, 5D4 → 7F4 (586 nm) and 5D4 → 7F3 (618 nm) f–f
transitions of TbIII ions as a function of the temperature from
15 to 300 K. The spectra also present a rather broad and
intense emission in the 340–450 nm region attributed to the
phen and LPOM ligand, as observed for LM4-1-Dy. No change
in the position of the TbIII transitions is observed in the entire
temperature range. Among all transitions, the 5D4 → 7F5 tran-
sition has a magnetic dipole (MD) character, being dominant
over the others indicating that TbIII ions can emit green light
when excited with UV light. The TbIII G/B ratio, as well as the
Y/B of DyIII, plays the role describing the covalent/ionic
bonding character between the TbIII and the first coordination
sphere atoms. For LM4-1-Tb, the dependence of the G/B ratio
as a function of temperature has a mean value of ∼1.9 in the
whole temperature range and it is depicted in Fig. S11b.†

LM4-1-Eu

The excitation spectrum of LM4-1-Eu (Fig. 2e) was acquired
monitoring the hypersensitive 5D0 → 7F2 EuIII transition at
615 nm at room temperature, and it is possible to identify the
characteristic bands related to EuIII excited states at 395 nm
(7F0 → 5L6), 414 nm (7F0 → 5D3), 465 nm (7F0 → 5D2), 525 nm
(7F0 → 5D1) and 535 nm (7F1 → 5D0), in good agreement with
the absorption spectra. In addition, one broad band centred at
352 nm is observed and assigned as a MLCT from the EuIII to
both ligands (phen and LPOM). The emission spectra under
excitation at 394 nm at different temperatures are given in
Fig. 2f, showing the characteristic emission bands of EuIII,
being the first one centred at 579 nm corresponding to the 5D0

→ 7F0 transition, and the second one at 593 (orange, O) nm is
the 5D0 → 7F1 transition, which has a magnetic dipole (MD)
nature and it is known to be less affected by the site symmetry.

The third one is the most intense transition, centred at
614 nm (red, R, 5D0 → 7F2), being a hypersensitive electric
dipole (ED) transition that is strongly influenced by the local
environment.51,52 Weak EuIII emissions can also be observed
at 652 and 697 nm, due to the 5D0 → 7F3 and 5D0 → 7F4 tran-
sitions, respectively. Also, a broad and less intense band can
be observed to be centred around 440 nm due to the excitation
of both ligands (Fig. S10†). The presence of a single line of the
5D0 →

7F0 transition is an indication that the EuIII ions occupy
one single site symmetry without an inversion centre,19,53 in
agreement with the structural results. Note that all 5D0 →
7F1,2,3,4 split into doublets (Fig. 2f), Stark splitting, indicating
that EuIII ions occupy a low site symmetry.51 The 5D0 → 7F6
transition does not appear in the spectrum due to the experi-
mental conditions, being out of the range of the detector. No
changes in the barycentre position of each EuIII transition are
observed in the whole temperature range. The ratio of the inte-
grated areas of the 5D0 →

7F2 (R) and
5D0 →

7F1 (O) transitions,
R/O = I(5D0 →

7F2)/I(
5D0 →

7F1), provides the same information
as Y/B for DyIII. The R/O values are nearly independent of
temperature and range from 4.3 (17 K) to 4.5 (300 K),
Fig. S11c.† This indicates a low degree of covalency between
the EuIII and the donor atom of the first coordination sphere,
with the EuIII occupying a low symmetry coordination
centre.19,49 Furthermore, the obtained Y/B, G/B and R/O ratios
can be correlated with those obtained in previous results for
other Ln-POMs.20,21

To obtain more information about the spectral properties
of the EuIII compound, the experimental intensity Ω2 and Ω4

parameters, the radiative emission rates (Arad), the radiative
lifetime (τrad) and the branching ratios β02 and β04 were calcu-
lated. This was done by comparing the emission data associ-
ated with the 5D0 → 7F2 and 5D0 → 7F4 transitions to the MD
transition 5D0 →

7F1, using a Judd–Ofelt (JO) theory.54,55

The JO theory states that the Ω2 intensity parameter is
related to the LnIII site symmetry and could be interpreted as a
consequence of a hypersensitive behaviour of the 5D0 → 7F2
transition, and that the spontaneous emission probabilities
for EuIII transitions 5D0 → 7F0,1,2,3,4 could be expressed by the
equation:52

Að5D0 !7 FJÞ ¼ 4e2ω3

3ℏc3
n0ðn02 þ 2Þ

9

X
λ

Ωλ
7FJ k UðλÞ k5 D0

D E2

ð1Þ

where e is the electron charge, n0 is the index of refraction of
the host, ω is the frequency of the transition, ħ is the Planck’s
constant, Ωλ are the Judd–Ofelt intensity parameters54,55 and
〈7FJ||U

(λ)||5D0〉
2 is the reduced matrix element for λ = J = 0, 2

and 4, given by Carnall et al.56 The total radiative decay rate,
Arad, for the particular case involving the EuIII ion is written
in terms of the integrated area of their emission spectra
I0J as:

Arad ¼ A01hcω01

S01

X6
J¼0

I0J
hcω0J

ð2Þ
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where A01 is the spontaneous decay rate for the 5D0 →
7F1 tran-

sition given by A01 = A′01n
3 with A′01 = 14.65 s−1 in a vacuum

and I0J is the area of the emission curves. The intensity para-
meters Ωλ could be calculated with the relation:6

Ωλ ¼ 3h
64π4e2ω̄3c3

9
nðn2 þ 2Þ

1
7FJUðλÞ5D0
�� ��2 A0J ð3Þ

with λ = J = 0, 2 and 4. The reduced matrix elements: 〈5D0||
U(λ)||7F2〉

2 = 0.0032 and 〈5D0||U
(λ)||7F4〉

2 = 0.0023 were taken
from a report by Carnall et al.56 The predicted radiative life-
time τrad is given by the inverse of the total area under the
emission curves, τrad = 1/Arad, and the branching ratios are
given by β0J′ = A0J′/Arad, with J′ = 1, 2 or 4. As the 5D0 →

7F6 tran-
sition was not observed, Ω6 cannot be estimated from the
experiment. The evolution of the temperature dependence of
the obtained JO intensity parameters Ω2 and Ω4 is shown in
Fig. 3. The radiative emission rates (Arad), the radiative lifetime
(τrad) and the branching ratios β02 and β04 are presented in
Fig. S12a and b.† All these parameters are nearly independent
of the temperature. In Table 1 some values of these parameters
for selected temperatures are summarized, revealing relatively
high values of the Ω2 parameter, which tends to Ω2 > Ω4

throughout the temperature range. The large Ω2 values could
be associated with the distortion of the site symmetry of the
EuIII compound (short range effect) and/or moderate covalence
of the metal–ligand bonds,57 as shown by the crystallographic
data. The Ω2 and Ω4 values can be compared with the
[Eu(DPA)3]

3− (DPA = dipicolinate) complex data: Ω2 = 10.5 × 10−20

cm2 and Ω4 = 5.31 × 10−20 cm2.57 The radiative lifetimes (τrad)
of LM4-1-Eu are 2.9(3) at 17 K and 2.7(2) ms at 300 K, which

can be compared with those of the fully organic Cs3[Eu(DPA)3]
complex with a τrad = 2.6 ms and also with several other
organic based EuIII complexes with benzothiazole-, benzox-
azole-, and benzimidazole-pyridine ligands (2.7 to 6.8 ms).58,59

These results suggest that the hybrid organic–inorganic EuIII

complex has a similar luminescence efficiency compared to
the organic EuIII complexes. Analysing the β0J′ branching ratios
(see Fig. S12b†), β01 = 17%, β02 = 79% and β04 = 4% (300 K),
follow the order of relative intensities 5D0 →

7F2 >
7F1 >

7F4, in
the entire temperature range.

LM4-1-Nd

The photoluminescence spectrum in the UV-VIS and NIR
regions for the LM4-1-Nd complex is displayed in Fig. 2. The
emission spectra present a large and intense band with a
maximum at 408 nm, when excited at wavelengths of 330 nm
or 350 nm, which can be attributed to the emission of the
1,10-phenanthroline and LPOM ligands, whereas no emission
of the NdIII ions in this region is observed (Fig. 2g). The NIR
spectrum for LM4-1-Nd under an excitation at 804 nm
(200 mW power from a diode laser), associated with 4F3/2 →
4I11/2, shows emissions at 890, 1066 and 1343 nm, attributed
to the 4F3/2 → 4I9/2,

4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions
(Fig. 2h), respectively.56 Similar results have been observed for
other Nd-POM systems.42

Fig. 2h shows the NIR emission spectra for LM4-1-Nd as a
function of temperature (20 to 300 K) under excitation at
804 nm. All the spectral data are normalized with respect to
the 4F3/2 → 4I11/2 transition intensity taken at 20 K. The inten-
sity of the transition 4F3/2 → 4I11/2 is nearly temperature inde-
pendent, in contrast to the intensity of the 4F3/2 → 4I13/2 tran-
sition that presents a great temperature dependency. No
change in the position of the barycentre of these transitions is
observed in the whole temperature range.

LM4-1-Er and LM4-1-Ho complexes

The LM4-1-Er emission spectrum (Fig. S13a†) presents two
weak emission bands at 546 and 614 nm attributed to the ErIII
4S3/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions, respectively, but
does not exhibit emission in the IR region (800–1600 nm)
under any excitation or temperature. The emission spectrum
of LM4-1-Ho is depicted in Fig. S13b,† in the range of
450–850 nm, exciting directly the HoIII 3K8(I1′) energy level,44

observing three intense broad bands centred at 510, 552 and
569 nm, and two other small bands at 649 and 660 nm. The
high energy bands are attributed to the emission from the two
types of ligands and the bands at lower energy are assigned to
the 5F5 →

5I8 transition. As observed for LM4-1-Er no emission
in the infrared region was also observed for LM4-1-Ho.

Energy transfer between ligands and LnIII ions

Latva et al.60 have proposed an empirical rule that establishes
the optimal conditions for an efficient energy transfer from a
ligand to a metal centre based on the energy difference ΔE
between the triplet excited state (T1) and the excited state of
LnIII ions. This approach has been used by other authors, by

Fig. 3 Judd–Ofelt Ω2 and Ω4 intensity parameters as a function of
temperature for LM4-1-Eu.

Table 1 Radiative decay rates Arad, lifetime τrad, Ω2 and Ω4 Judd–Ofelt
parameters and β0J branching ratios for selected temperatures

LM4-1-Eu

Temp. Arad τrad Ω2 Ω4 β01 β02 β04
[K] [s−1] [ms] [10−20 cm2] [%]

17 344.1 2.91 7.17 0.65 18 78 4
50 345.2 2.90 7.22 0.64 18 78 4
140 346.6 2.89 7.25 0.66 18 78 4
240 353.9 2.83 7.42 0.69 17 78 5
300 362.0 2.73 7.64 0.68 17 79 4
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defining regions depending on the LnIII ions, for EuIII from
2000 to 5000 cm−1, for DyIII from 2500 to 4500 cm−1 and for
TbIII 2000–5000 cm−1.61–63 The emission spectrum of LM4-1-
Gd was used to distinguish the emission bands of the ligands
(both the organic and inorganic ones) (Fig. S8†). It consists of
a broad and intense band centred at 435 nm (22 988 cm−1).
Since the energy absorbed by the ligands could not be trans-
fered to the 6P7/2 energy level at ∼312.5 nm (32 000 cm−1) of
the GdIII ions, the triplet state of the ligand is determined by
the lower emission band observed in the GdIII spectrum.25

For these calculations it has been assumed that the energy
transfer process occurs mainly through the phen ligand since
it has the most intense emission band compared to the in-
organic ligand. The energy transfer level schemes for LM4-1-
Dy, LM4-1-Tb, LM4-1-Eu and LM4-1-Nd are shown in Fig. 4. The
triplet energy level of the ligand is higher than that of the
lowest EuIII excited state at 579 nm (17 267 cm−1), ΔE[T1–5D0] =
5721 cm−1, the 4F9/2 state of DyIII at 479 nm (20 877 cm−1), ΔE
[T1–

4F9/2] = 2111 cm−1, and to the 5D4 TbIII energy level at
486 nm (20 576 cm−1), ΔE[T1–5D4] = 2412 cm−1. These results
indicate that the emission mechanisms of EuIII, DyIII and TbIII

compounds correspond to a ligand sensitized photo-
luminescence process, the so called antenna-effect being in
agreement with the difference between the intensity of the
ligand and the LnIII bands observed in the excitation spectra
of LM4-1-Dy, LM4-1-Tb and LM4-1-Eu depicted in Fig. 2a–c–e.5

The large experimental ΔE values indicate that, for LM4-1-Dy,
LM4-1-Tb and LM4-1-Eu, the phen ligand can sensitize more

adequately the lanthanoid ions avoiding any energy back trans-
fer in the process.64

It is also possible to elucidate the partial energy level
scheme for NdIII explaining the emission and excitation of
LM4-1-Nd (Fig. 4). It can be inferred that the emission mecha-
nism is a direct excitation of the 4F9/2 energy level followed by
a non-radiative decay to the 4F3/2 level which leads to the three
emissions observed, 4F3/2 → 4I13/2,

4I13/2 and 4I13/2. No NdIII

emission was observed by exciting the ligand.
The relatively low intensity of the emissions observed (or

the absence of these emissions) for LM4-1-Dy, LM4-1-Tb and
LM4-1-Eu, or no emission in the case of M4-1-Nd, in the
visible region taken at any temperature, is in accordance
with the experimental data reported by Ritchie et al.65 for
dinuclear and octanuclear TbIII and EuIII ternary lanthanoid-
organic-polyoxometalate (Ln-org-POM) complexes, based on
[As2W19O67(H2O)]

14− and 2-picolinic acid (picH). This is attrib-
uted to different relaxation mechanisms such as non-radiative
deactivation, and charge-transfer between the excited states of
the ligands and the emitting Ln energy levels. Even the nature
of the LPOM and the organic ligands play an important role in
the photophysical properties of these materials and their
applications as temperature sensing systems.

Luminescence lifetimes and colour coordinates

The luminescence lifetimes of the excited state of EuIII (5D0),
DyIII (4F9/2) and TbIII (5D4) ions were estimated from the decay
curves shown in Fig. 5. It was obtained by monitoring the
emissions at 614, 571, and 543 nm corresponding to the 5D0 →
7F2,

4F9/2 → 6H13/2 and 5D4 → 7F5 transitions from EuIII, DyIII

and TbIII ions, respectively. The decay curves were fitted with
one- and two-exponential functions, obtaining the best results
by using the bi-exponential expression I(t ) = A1 exp(−t/τ1) +
A2 exp(−t/τ2) + I0, where Ai represent the integrated areas, τ1
and τ2 are the decay components fast and slow, respectively,
and I0 is the intensity at t = 0. The average lifetime τAV can be
calculated by using the formula τAV = (A1τ1

2 + A2τ2
2)/(A1τ1 +

A2τ2).
66 The results of τAV, τi and Ai are given in Table 2 for

LM4-1-Dy, LM4-1-Tb and LM4-1-Eu. The non mono-exponential
decay results indicate that two types of transitions are involved
in the observed emissions, as pointed by Priya et al.67 The
short and long lifetimes correspond to two different mecha-

Fig. 4 The energy level diagram and energy transfer schemes for LM4-
1-Dy, LM4-1-Tb, LM4-1-Eu and LM4-1-Nd. ISC and NRR refer to the
intersystem crossing and non-radiative relaxation, respectively.

Fig. 5 Luminescence decay curves for LM4-1-Dy (a), LM4-1-Tb (b) and LM4-1-Eu (c) complexes. Symbols and solid lines represent the experimental
and theoretical data respectively.
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nisms: the energy transfer from the ligands to the LnIII ions
and to the sensitized emission of LnIII, respectively. At room
temperature the average lifetime τAV of the multiplet 4F9/2,

5D0,
and 5D4 for Dy

III, EuIII and TbIII, respectively, was calculated to
be 4.1(7) μs, 0.94(3) ms and 0.35(2) ms. These values are in
good agreement with other reported Ln-POM systems.28,68,69

For example, these values are practically the same as for
[Eu(W5O18)2]

9−, with a value of 2.8 ms at 300 K, and approxi-
mately 3 times higher than [Eu3(H2O)3(SbW9O33)(W5O18)3]

18−

compound, with a value of 1.1 ms in all the temperature range
(4.2 to 300 K).70 Moreover, the obtained values for LM4-1-Tb
and LM4-1-Eu are greater than those reported by Wang et al.24

for Lindqvist type POMs containing the 6-peroxoniobio-4-phos-
phate building block, [LnIII(H2O)6][H4(NbO2)6P4O24]·nH2O
(Ln = Dy, Eu, Tb), where the LnIII ions are coordinated with
eight oxygens, six of them being from water molecules, τTb ≈
0.018 ms and τEu ≈ 0.148 ms.

The intrinsic quantum efficiency (η) for LM4-1-Eu was calcu-
lated through the ratio of τAV and τrad obtained from the Judd–
Ofelt theory,71 and the value is ∼34.1%. The internal and exter-
nal quantum yields (iQy and eQy) of the 5D0 →

7FJ emission of
LM4-1-Eu under 394 nm excitation are 4.3 and 1.7%, respect-
ively. These QY values are associated with the energy gap of
EuIII 5D0 → 7F4 (712 nm, 14 045 cm−1) that matches with the
overtones of C–H and O–H vibration frequencies, 3ν ≈
13 953 cm−1, that promote a small emission quantum yield
and a temperature-dependent luminescence, as observed
for LM4-1-Eu, similar analysis can be made for both
LM4-1-Dy and LM4-1-Tb compounds. The quantum yield
values obtained for LM4-1-Eu are quite higher compared to
those of fully inorganic systems like [Eu(W5O18)2]

9− and
[Eu3(H2O)3(SbW9O33)(W5O18)3]

18− compounds, with a QY of
ca. 1%.70

The CIE 1931 (Commission International d’Eclairage)72

diagram is a universal method for studying all the possible
colours using the photoluminescence spectra and the changes
in the intensity of the emission bands by determining the
chromaticity coordinates (x,y). These coordinates are usually
employed to distinguish the precision emission colours. For
DyIII and TbIII complexes the (x,y) chromaticity coordinates
lie in the blueish region, respectively, (0.215, 0.174) and

(0.175, 0.125), while for the EuIII complex (0.631, 0.364) lies in
the deep red region of the CIE diagram, near to the coordi-
nates for ideal red phosphors (Fig. 6 and Table 2).73 These values
can be compared with the {[Ln2(DMF)8(H2O)6][ZnW12O40]}·4DMF
complex reported by Zhao et al.,74 whereas they report that for
the TbIII analogue, the coordinates lie in the green region in
contrast to that reported in this work that lies in the blue
region. This could be because the emission spectrum for
LM4-1-Dy and LM4-1-Tb complexes presents an important con-
tribution coming from the organic and inorganic ligand
emission, absent in the {[Tb2(DMF)8(H2O)6][ZnW12O40]}·4DMF
compound.

The colour purity of complexes LM4-1-Dy, LM4-1-Tb and
LM4-1-Eu was calculated by using the equation:75

CP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xið Þ2þ y� yið Þ2
xd � xið Þ2þ yd � yið Þ2

s
� 100% ð4Þ

where CP is the colour purity, (x,y) for each sample given in
Table 2, (xi,yi) = (0.333,0.333) and (xd,yd) are, respectively, the
colour coordinates of the overall light emitted by each [LnH
(PW11O39)(phen)2]

3− complex, the standard white light and the
dominant wavelength point, (0.688,0.331) for red, (0.15,0.06)
for blue and (0.29,0.60) for green colour.

Table 2 Photometric parameters: experimental lifetimes τ of the fitted decay curves, CIE (x,y) coordinates, CCT (K) and colour purity (CP) values for
EuIII, TbIII and DyIII complexes

Sample T (K)
τ1 (ms) τ2 (ms)

τav (ms) CIE CCT (K) CP (%)(A1) (A2)

LM4-1-Eu 300 1.05(1) 0.45(1) 0.94(3) (0.631, 0.364) 1897 84
(81.6%) (18.4%)

17 (0.629, 0.368) 1846 83

LM4-1-Tb 300 0.432(8) 0.123(2) 0.353(6) (0.185, 0.139) n.d. 48
(75.1%) (24.9%)

17 (0.201, 0.176) n.d. 42

LM4-1-Dy 300 0.011(2) 0.003(1) 0.0041(7) (0.218, 0.177) n.d. 52
(18.8%) (81.2%)

17 (0.225, 0.191) n.d. 45

Fig. 6 CIE 1931 chromaticity coordinate diagram in LM4-1-Ln (LnIII =
EuIII, DyIII and TbIII) complexes vs. temperature.
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The calculated CP values are 47.6%, 52.0% and 84.6% for
LM4-1-Dy, LM4-1-Tb and LM4-1-Eu, respectively. The CP value
found for LM4-1-Dy is very close to the one reported by Wu
et al.69 for [N(CH3)4]6K3H7[Dy(C4H2O6)(PW11O39)]2, with a CP
value of ca. 43.35%. The correlated colour temperature (CCT)
values were calculated, using the McCamy formula: CCT =
−437n3 + 360n2 − 6861n + 5514.31, where n = (x − xc)/(y − yc), x
and y being the chromaticity coordinates, and xc = 0.3320 and
yc = 0.1858 being the coordinates of the chromaticity epicentre
extracted from a report by McCamy et al.76 The found values
for EuIII range between 1846 K at 17 K and 1897 K at 300 K. For
DyIII and TbIII it was not possible to determine this parameter.

Thermometric studies

The temperature dependency of the ratio between the LnIII

emission intensity and the ligand emission intensity, related
to the phen and LPOM, for LM4-1-Dy and LM4-1-Tb is analysed
from 20 K to 300 K. For LM4-1-Dy (Fig. 7a), in the range of 120
to 300 K, the ratio between the intensity of the emission
associated with the DyIII transition 4F9/2 → 6H13/2 at 479 nm
and the intensity of the ligand emission ðI6H13=2

=IligandÞ shows a
decrease in this temperature range, and between the 20 to
120 K range, the intensity ratio value becomes almost con-
stant. For the temperature dependency of the ratio between
the intensity of the 4F9/2 → 6H15/2 transition (at 571 nm) and
the intensity of the ligand emission ðI6H15=2

=IligandÞ a similar
trend is observed. The linear parts follow these equations:
I6H15=2

=Iligand ¼ 1:71� 0:0028T and I6H13=2
=Iligand ¼ 1:51� 0:0026T .

Thus, the ratios of both DyIII transitions decrease with,
approximately, the same relative sensitivity ca. ∼ 0.27% per
Kelvin.

For the LM4-1-Tb complex, the ratios were calculated
between the intensities of the TbIII 5D4 → 7F5,6 transitions
(at 486 and 542 nm, respectively) and the intensity of the
ligand emission ðI7F5;6=IligandÞ, Fig. 7b. The results show a
linear decrease over the entire temperature range, which
follows these equations: I7F6=Iligand ¼ 0:41� 0:0003T and
I7F5=Iligand ¼ 0:61� 0:0007T , indicating that for LM4-1-Tb the
relative sensitivities are 0.03 and 0.07% per K. These results
are in contrast to the obtained intensity ratios for LM4-1-Dy,
where the rates for the two transitions are similar. One poss-
ible explanation for this difference is the relative sensitivity of
LM4-1-Dy compared to the LM4-1-Tb sensitivity, since for LM4-
1-Tb the emission band of both ligands is more intense, broad
and closer to the first TbIII emission line. In the case of LM4-1-
Dy, for the same emission bands of the ligands the intensity is
less intense than the nearest DyIII emission (see Fig. 2b, d, 7a
and b). The lower emission intensities for DyIII and TbIII emis-
sion with the increase of temperature are principally due to
thermal nonradiative deactivation pathways involving the LnIII

energy levels and the excited state from the two types of
ligands of the complexes.

For the LM4-1-Dy compound the IDyIII/Iligand ratios indicate
that the intensity of the 4F9/2 →

6H13/2 and
4F9/2 →

6H15/2 tran-
sitions decreases by ∼35% from 140 to 300 K. For LM4-1-Tb,
the ITbIII/Iligand ratios, from 20 to 300 K, indicate that the tran-

sitions at 486 and 572 nm decrease by 32 and 10%, respect-
ively. These results indicate an important role in the tempera-
ture response for both monitored DyIII transitions (4F9/2 →
6H15/2,13/2) and for the 5D4 →

7F5 transition at 486 nm of TbIII,
in accordance with the CIE chromaticity diagram (Fig. 6),
where it can be observed that LM4-1-Dy and LM4-1-Tb show
small CIE coordinates temperature dependence.

Fig. 7 Temperature dependent intensity ratios of (a) DyIII 4F9/2 →
6H15/2,13/2 transitions to ligands (b) TbIII 5D4 → 7F5,6 transitions to ligands,
(c) 7F0,2,4 by 7F1 from EuIII 5D0 → 7F0,1,2,4 transitions and (d) NdIII:
4I11/2/

4I13/2 emissions. Solid lines in (a), (b) and (d) are the best linear fits.
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For LM4-1-Nd, the NdIII transitions (4F3/2 → 4I11/2,13/2) do
not present overlap and were used to evaluate the temperature
response of NdIII emission. The ratio I4I11=2=I4I13=2 decreases line-
arly from 20 to 300 K, and can be fitted with the linear func-
tion: I4I11=2=I4I13=2 ¼ 8:72� 0:0095T , i.e., the relative sensitivity
of the I4I11=2 intensity from 20 to 300 K is 0.95%, being the
highest among the studied complexes (Fig. 7d).

The obtained relative sensitivities of LM4-1-Dy, LM4-1-Tb,
and LM4-1-Nd can be compared with those of the
[EuW10O36]

9− polyoxometalate reported by Salomon et al.77

with a relative sensitivity of 0.26% K−1. As reported by Xu
et al.,78 the thermometric mechanisms could be explained by
the fact that as the temperature increases, the number of mole-
cules in the excited state energy level will gradually increase in
proportion, while the ratio of the number of molecules in the
excited state of the low energy level will reduce. Thus, the
intensity ratios of the LnIII bands with the ligand band
undergo a remarkable decrease as the temperature increases.

Finally, the LM4-1-Dy, LM4-1-Tb, and LM4-1-Nd compounds
have the necessary requirement to have potential applications
as temperature sensors. Furthermore, LM4-1-Dy and LM4-1-Tb
have an energy gap between the emitting LnIII levels and the
excite sates of the ligands, in the range of 200 to 2000 cm−1,
avoiding any overlap between them.2

Experimental
Materials and reagents

FTIR-ATR (Fourier Transform Infrared-Attenuated Total
Reflectance) spectra (4000–400 cm−1) of the compounds were
obtained using a Jasco FTIR-4600 spectrophotometer equipped
with an ATR PRO ONE (Jasco, Easton, MD, USA), Fig. S1.†
Elemental analyses (C, N, H) of bulk samples were performed
using a Thermo elemental analyser Flash 2000. The Ln : P :W
ratios of the bulk samples were estimated by electron probe
microanalysis (EPMA) performed with a Jeol, JSM 5410
equipped with an EDAX NORAN microprobe, Table S1.†
Amorphous, polycrystalline or crystalline samples of all com-
pounds were lightly ground with a pestle in an agate mortar
and filled into 0.5 mm borosilicate capillaries prior to being
mounted and aligned on an Empyrean PANalytical powder
diffractometer, using Cu Kα radiation (λ = 1.54056 Å). For each
sample, two or three repeated measurements were collected at
room temperature (2θ = 2–40°) and merged into a single
diffractogram.

Synthesis of [n-NBu4]3[LnH(PW11O39)(phen)2]·[H2O]

All chemical reagents were directly used without further purifi-
cation. [n-NBu4]4[PW11O39H3] was synthesized according to a
previously reported method.79 Hydrothermal synthesis was
done using a Parr reactor of 23 ml model 4749.

The corresponding hydrated LnIII acetates (0.1 mmol),
LnAc3·XH2O where LnIII = DyIII (LM4-1-Dy), TbIII(LM4-1-Tb),
EuIII(LM4-1-Eu), NdIII(LM4-1-Nd), ErIII(LM4-1-Er), HoIII(LM4-1-
Ho) and GdIII(LM4-1-Gd) were mixed with [NBu4]4[PW11O39H3]

(365 mg, 0.1 mmol) and phenanthroline (0.036 mg, 0.2 mmol)
in 10 mL of water in a Parr reactor and heated under autoge-
nous pressure at 160 °C for 48 hours. The reaction mixture was
filtered off, and pale pink crystals of LM4-1-Ln, suitable for
X-ray diffraction, were obtained by mechanical separation.
Then, these crystals were washed with water and acetone. For
more information see section S1 and S2 in the ESI.†

Physical measurements

The single crystals obtained were mounted on the tip of a
glass fibre. The intensities for LM4-1-Ln were recorded on a
Bruker Smart Apex diffractometer, using separations of 0.3°
between frames and 10 s by frame. Datasets were reduced by
using SAINTPLUS,80 while the structure was solved by direct
methods and completed by Difference Fourier Synthesis.
Least-squares refinement was conducted by using
SHELXL.81,82 All atoms were anisotropically refined. However,
the N and C atoms of the tetra-n-butylammonium cations were
isotropically refined. Hydrogen atom positions were calculated
after each cycle of refinement with SHELXL using a riding
model for each structure, with a C–H distance of 0.93 Å or
0.97 Å. Uiso(H) values were set equal to 1.2Ueq of the parent
carbon atom. Additional crystallographic and refinement
details are given in Table X.† Structural drawings were carried
out with DIAMOND-3.2k, supplied by Crystal Impact.83

Crystallographic data for the structure reported in this paper
have been deposited with the Cambridge Crystallographic
Data Centre as supplementary publication number CCDC
1951517 for 1-Tb, 1962564 for 1-Eu, 1962563 for 1-Nd and
1951518 for 1-Ho.† The crystallographic data of LM4-1-Dy,
LM4-1-Er and LM4-1-Gd have been reported previously.27

Optical measurements

Solid-state absorption spectra were obtained on a PerkinElmer
Lambda 1050 spectrometer, operating in the 350 to 2500 nm
spectral range, making a KBr pellet with LM4-1-Ln complexes.
Photoluminescence (PL) emission spectra of the solid samples
were obtained using a Horiba-Jobin Yvon spectrofluorimeter,
Model Fluorolog-3 (FL3-221), under excitation with a 450 W Xe
lamp and Horiba PPD-850 picosecond photon detector in the
UV-VIS region and an InGaAs detector in the infrared region.
The excitation and emission slits used were of 1.15 nm. PL
emission was corrected for the spectral response of the mono-
chromators and the detector using a typical correction spec-
trum provided by the manufacturer. The luminescence decay
curves were obtained by using a 50 W Xe-pulse lamp. Low-
temperature spectra were obtained, using a closed cycle cryo-
stat model CS202AI-X15 (ARS Cryo) monitoring the tempera-
ture with a Lake Shore model 332 controller. The quantum
yield (QY) of the LnIII emission of all complexes was acquired
using an integrating sphere (Quanta-φ equipment, F3029,
Horiba Jobin Yvon) of Spectralon® coupled by means of
optical fibers. The internal and external QYs were calculated
following the method developed by Wrighton et al.84 The
internal and external photoluminescence quantum yields (Φ)
were determined with the FluorEssence V3.5 software that
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compares the number of photons emitted by the sample with
the number of reflected photons from the reflection standard
(Spectralon®).85 For IR emission measurements a diode laser
(Crystal Laser LC) with a power of 200 mW was used.

Conclusions

In summary, this article describes the synthesis, crystal struc-
ture and photophysical properties of a family of mononuclear
hybrid organic–inorganic lanthanoid complexes (Ln = DyIII,
TbIII, EuIII, NdIII, ErIII, HoIII and GdIII). All LnIII ions are eight-
coordinated with 4 O atoms from the lacunary Keggin POM
[PW11O39]

7− and 4 N atoms from the phen molecules, with a
square-antiprism geometry (pseudo D4d symmetry). As the
minor distance between LnIII ions is ∼10 Å the energy transfer
process by the exchange mechanism is almost absent, so the
principal mechanism occurs through the ligands and the emit-
ting levels of LnIII ions. The thermal-dependence of the
luminescence intensity ratios Y/B, R/O and G/B of LM4-1-Eu,
LM4-1-Eu and LM4-1-Tb, respectively, indicates that these com-
pounds present a thermal structural stability and lanthanoid
emissions within the studied temperature range. On the other
hand, the ratios between lanthanoid and ligand emissions
change as a function of temperature giving the possibility of
being used as thermosensors with good sensitivity (from 140 K
to 300 K for the LM4-1-Dy complex, and from 20 K to 300 K for
the LM4-1-Tb and LM4-1-Nd complexes). The CIE coordinates
and the high colour purity values for LM4-1-Tb and LM4-1-Eu
show that these compounds are good candidates to be applied
as red and blue components of WLEDs. Also, for the LM4-1-Eu
complex the Judd–Ofelt intensity parameters were determined
from the emission spectra. The obtained value for the Ω2 para-
meter suggests a moderate covalent degree of the metal–ligand
bonds. The temperature luminescence studies of LM4-1-Eu
show that the intensity, CIE coordinates and CCT values do
not change in the temperature range of 20 to 300 K, and a
quantum yield of 4.3% is obtained, which is four times larger
than that of the fully inorganic analogue, conferring to this
material interesting characteristics for applications as active
media in red OLEDs or even in the catalytic and biological
imaging fields.

Abbreviations

phen 1,10-Phenanthroline
POM Polyoxometalate
MOF Metal organic framework
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picH 2-Picolinic acid
iQY Internal quantum yield
eQY External quantum yield
CIE Commission International d’Eclairage
CCT Correlated colour temperature

OLED Organic light-emitting diode
WLED White light-emitting diode
dpa Dipicolinate
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