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A B S T R A C T   

Contamination of maize and barley grain during storage by the toxigenic fungi Aspergillus flavus (A. flavus) and 
Penicillium Verrucosum (P. verrucosum) is both an economic and a public health problem, especially in less 
industrialized countries. Peracetic acid (PA) is a compound used for the disinfection of food and food contact 
surfaces. Unlike other disinfectants, it leaves no toxic residues and its decomposition products (CH3COOH, O2 
and H2O) are environmentally friendly. In order to apply PA to preserve maize and barley grain during storage, 
first, the Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) against both 
fungi were determined in a 96-well sterile microplates. Then, the antifungal activity of the volatile PA was 
determined by depositing it on filter paper and Hydroxyethylcellulose (HEC) gels, which were placed in airtight 
1L flasks together with PDA and maize and barley grain inoculated with both fungi. The MFC in liquid medium of 
A. flavus and P. verrucosum was 93.8 and 187.5 mg/L respectively. However, PA doses of 300 and 200 mg/L on 
HEC gels were required in order to observe significant antifungal and antimycotoxigenic activity in maize and 
barley grain inoculated with these fungi.   

1. Introduction 

Maize and barley are the raw materials used to produce various 
products for human and animal consumption. However, grain loss in the 
post-harvest stage is relatively high (Abass et al., 2014; Darfour & 
Rosentrater, 2020). In the coming years, demand for grains is expected 
to increase due to the increase in the world population (OECD-FAO, 
2020), and climate change is likely to affect the production and yields of 
grain crops (Singano, Mvumi, & Stathers, 2019; Yu, Luo, Wang, & Feil, 
2020). Many of these cereals, such as maize in Sub-Saharan Africa, 
support the diet and economy of many countries (Gitonga, De Groote, 
Kassie, & Tefera, 2013). 

Working on effective post-harvest technologies is one solution to 
reduce grain waste and ensure that the entire world population has 
physical, economic, and sufficient access to safe and nutritious food. 
Although the post-harvest loss of maize grain can have multiple causes, 
it is crucial to consider the storage stage as a critical point (Dumont. 
Orsat & Raghavan, 2016). 

During storage, maize and barley grain are susceptible to contami
nation by Aspergillus flavus (A. flavus) and Penicillium Verrucosum 
(P. verrucosum) which cause physical, organoleptic, and nutritional 
deterioration. A. flavus produces aflatoxin B1 (AFB1), whereas 
P. verrucosum produces Ochratoxin A (OTA). Both mycotoxins are sec
ondary metabolites that are toxic to humans and animals because they 
are potentially carcinogenic, mutagenic, hepatotoxic, teratogenic sub
stances that can cause alterations at the epigenetic level, growth retar
dation and effects on the reproductive system (Alshannaq & Yu, 2017). 
Such is their importance at the public health level that the EU passed the 
regulation (EU) No. 165/2010 of the Commission of February 26, 2010 
and the regulation (EC) No. 1881/2006 of the Commission of December 
19, 2006 (EC, 2006) that sets the maximum level of aflatoxin B1 and 
ochratoxin A that food must have in order to be marketed. 

In order to minimize the economic loss, caused by these fungi during 
storage, authors have proposed different strategies such as the 
improvement of several hermetic storage technologies, the ecosystem 
approach with the help of mathematical models and the application of 
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environmentally friendly antifungal compounds (García-Díaz, Patiño, 
Vázquez, & Gil-Serna, 2019; Garcia-Lara, García-Jaimes, & Ortíz-Islas, 
2020; Jian & Jayas, 2012; Nazareth et al., 2019). 

Peracetic acid (PA) is an organic peroxide obtained from the acety
lation reaction of acetic acid with hydrogen peroxide. As a powerful 
oxidant, PA oxidizes membranes, proteins and enzymes of the micro
organisms and spores (Leggett et al., 2015; OMRI, 2016; Wang, Yamaki, 
Kawai, & Yamazaki, 2020). PA is environmentally friendly because its 
degradation products are acetic acid and hydrogen peroxide; both sub
stances are considered GRAS (Generally Recognized As Safe) by the 
Food and Drug Administration (FDA). This fact makes PA, a possible 
substitute for chlorine-based disinfectants since they generate toxic 
substances for humans and the environment (Hassaballah, Bhatt, Nyi
trai, Dai, & Sassoubre, 2020). Other studies such as Nicolau-Lapeña et al. 
(2019) and Banach et al. (2020) support polylactic acid as an alternative 
to fruit and vegetable washing. However, data on the antifungal effect of 
PA as preservative of stored grain are scarce in the scientific literature. 

The study goals were first, to determine the PA in vitro antifungal 
activity against A. flavus and P. verrucosum. Then, to evaluate the po
tential of PA as a fumigant to avoid the fungal growth and the produc
tion of AFB1 and OTA on maize and barley grain, respectively. Finally, to 
test a new PA release methodology based on hydroxyethylcellulose 
(HEC) and to evaluate its antifungal and antimycotoxigenic activity in a 
laboratory-scale silo. 

2. Material and methods 

2.1. Chemicals and strains 

PA was obtained from Fisher Scientific (New Hampshire, EE.U.U.) 
and HEC was obtained from Sigma-Aldrich (St. Louis, MO, USA). AFB1, 
OTA (purity of all mycotoxins > 99%), formic acid (analytical grade, 
purity > 98%) and ammonium formate (analytical grade, purity ≥
99.0%) were obtained from Sigma-Aldrich (St. Louis, MO, USA). 
Methanol (LC-MS grade, purity ≥ 99.9%) was purchased from Fisher 
Scientific (Hudson, NH, USA). Deionized water (<18 MΩ cm resistivity) 
was obtained from a Milli-Q water purification system (Millipore, Bed
ford, MA, USA). Previously, water and chromatography solvents were 
filtered with a 0.45 μm cellulose filter from Scharlau (Barcelona, Spain). 
Mycotoxin calibration standards were prepared from a 1 mg/mL stock 
solution (1 mg mycotoxin dissolved in 1 mL methanol). Both the stan
dards and the mycotoxin extracts were stored in the dark at − 20 ◦C 
before use. Maize and barley were obtained from TotAgro (Barcelona, 
España). 

The strain ITEM 8111 of A. flavus was obtained from the Microbial 
Culture Collection of the Institute of Sciences and Food Production 
(ISPA, Bari, Italy). P. verrucosum VTT D-01847 was obtained from the 
VTT Technical Research Centre of Finland (Espoo, Finland). Peptone 
water, PDA, and PDB medium were obtained from Liofilchem Bacteri
ology Products (Roseto Degli Abruzzi, Italy). 

2.2. Inoculum preparation 

The strains were defrosted from liquid medium PDB with 25% 
glycerol and were grown in solid medium PDA at 25 ◦C for 7 d. Conidia 
were then harvested adding 5 mL of peptone water on top of the plates 
and scraping the PDA to form a suspension. The suspensions were 
recovered and transferred to a falcon tube (50 mL). Finally, the conidia 
concentration was adjusted for each trial using a Neubauer chamber. 

2.3. Antifungal activity tests on liquid medium 

The assay was performed in 96-well sterile microplates, using the 
modified Siah, Deweer, Morand, Reignault, and Halama (2010) method. 
The first microplate column was used as a negative control, where 200 
μL of PDB was added to confirm medium sterility. The second column 

served as a positive control, containing non-treated microorganisms. In 
the rest of the columns (3-12), 100 μL of PA at doses between 6 and 
4000 mg/kg were deposited together with 100 μL of a 5⋅104 spores/mL 
suspension in PDB of the mycotoxigenic fungi described in section 2.1. 
These plates were made in triplicate and incubated at 25 ◦C for 72 h in 
the dark. 

The lowest PA concentration, where no visible fungal growth was 
observed, was considered the minimum inhibitory concentration (MIC). 
Finally, 10 μL of each higher PA concentration was deposited on PDA 
Petri plates at 25 ◦C for 72 h in order to determine the lethal concen
tration or minimum fungicide concentration (MFC). 

2.4. Volatile antifungal activity tests in solid medium 

The volatile antifungal activity assay was performed according to 
Nazareth et al. (2016) with some modification. In this test two different 
PA application methodologies were tested: first, the addition in a filter 
paper for a quick release, and secondly, its preparation in a 22% HEC gel 
for a slower release over time. For the gel preparation, 3.3 g of HEC was 
added to 15 mL of distilled water. The volume of PA necessary to obtain 
the desired final concentrations of the fungicide compound was added to 
this solution. 

In both cases, petri dishes (50 mm diameter) were prepared with 
sterile PDA according to the manufacturer’s specifications (42 g of PDA 
per 1 L of distilled water) and were inoculated by depositing in the 
center of the dishes 10 μL of two spore solutions of 1⋅104 CFU/mL and 
1⋅105 CFU/mL for each pair of fungi (A. flavus and P. verrucosum) 
following the procedure described in point 2.2. These plates, together 
with the plate with the treatment were deposited on a glass plate (14 cm 
× 6 cm) and introduced in 1 L glass jars (JUVASA, Spain) previously 
sterilized in a Selecta autoclave (Barcelona, Spain) at 120 ◦C during 21 
min (Fig. 1). 

Thirty volatile PA concentrations between 0.1 mg/L and 200 mg/L 
were tested. In all cases, controls with filter paper and HEC gels without 
PA were incorporated. 

The jars were kept at 25 ± 1 ◦C for seven days with a daily obser
vation of the fungal growth. On the last day, the mycelial growth of the 
treated plates was measured and compared with the control plates. 

2.5. Volatile antifungal activity test on maize and barley 

The system used in this test was similar to the one described in point 
2.4, replacing the inoculated PDA plates with other Petri dishes con
taining 10 g of contaminated cereals with 1 mL of a suspension of 
A. flavus (maize) and P. verrucosum (barley) up to a final concentration of 
1⋅104 conidia/g (Fig. 2). First, maize and barley grain were autoclaved 
at 121 ◦C for 21 min and dried at room temperature inside a level 2 
security cabinet. In this test, only the HEC gel method was tested 
because of its greater similarity to a possible commercial application. 
Volatile PA concentrations tested were 50 mg/L, 100 mg/L, 200 mg/L 
and 300 mg/L. The controls were performed with HEC gels without any 
amount of PA. Finally, the jars were kept at 25 ± 1 ◦C for two weeks, and 
each week the fungal growth and the formation of AFB1 (maize) and 
OTA (barley) were analyzed. 

Along with this test, another similar test was carried out with the 
same doses of PA applied in HEC gel but in which the contaminated 
cereals were replaced by non-autoclaved cereals not contaminated with 
any fungus. These jars were also kept at 25 ◦C for two weeks, and the 
reduction of the natural microbiological load was analyzed every week. 

2.6. Determination of the fungal population 

After the incubation time, 10 g of each sample was transferred to a 
sterile plastic bag containing 90 mL of sterile peptone water (Oxoid, 
Madrid, Spain) and homogenized with a stomacher (IUL, Barcelona, 
Spain) during 30 s. The suspensions formed were serially diluted in 
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Fig. 1. System used to determine the volatile antifungal activity of PA against A. flavus ITEM 8111 and P. verrucosum VTT D-01847 in solid PDA medium using filter 
paper (a) and HEC gel (b). 

Fig. 2. System used to determine the volatile antifungal activity of PA against A. flavus ITEM 8111 and P. verrucosum VTT D-01847 in maize and barley grains using 
HEC gel. 
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sterile plastic tubes containing 0.1% of peptone water. After that, ali
quots of 0.1 mL were plated on Petri dishes containing acidified potato 
dextrose agar (pH 3.5) (Insulab, Valencia, Spain) and the plates were 
incubated at 25 ◦C for 7 d before microbial counting. The results were 
expressed in a log of the colony-forming unit/g of cereal (log CFU/g). All 
analyses were conducted in triplicate. 

2.7. Mycotoxin extraction and LC-MS/MS analysis 

The extraction of mycotoxins was carried out following the method 
described by Serrano, Font, Mañes, and Ferrer (2013) with some mod
ifications. Each cereal sample was crushed using a food grinder (Oster 
Classic Grinder 220e240 V, 50/60 Hz, 600 W, Oster, Valencia, Spain). 
The resulting particles were mixed, and three 5 g aliquots of each sample 
were taken in 50 mL plastic falcon tubes. 25 mL of methanol was added 
to each of these tubes and the samples were homogenized for 3 min by 
Ultra Ika T18 ultraturrax (Staufen, Germany) at 10000 rpm. The extract 
was centrifuged at 10670 G for 5 min at 5 ◦C, and the supernatant was 
transferred to a plastic flask and evaporated to dryness with a Büchi 
Rotavapor R-200 (Postfach, Switzerland). The obtained residue was 
resuspended in 5 mL of methanol, transferred to a 15 mL plastic falcon 
tube and evaporated with a nitrogen gas stream in a multi-sample 
Turbovap LV evaporator (Zymark, Hopkinton, MA, USA). Finally, the 
residue was reconstituted in 1 mL of methanol, filtered through a 13 
mm/0.22 μm filter, and transferred to a 1 mL glass chromatography vial. 
The liquid-chromatography system consisted of an LC-20AD pump 
coupled to a 3200QTRAP mass spectrometer (Applied Biosystems, Fos
ter City, CA, USA) using an ESI interface in positive ion mode. The 
mycotoxins were separated on a Gemini NX C18 column (150 × 2.0 mm 
I.D, 3.0 mm, Phenomenex, Palo Alto, CA, USA). The mobile phases were 
the solvent A (5 mM ammonium formate and 0.1% formic acid in water) 
and solvent B (5 mM ammonium formate and 0.1% formic acid in 
methanol) at a flow rate of 0.25 mL/min. The elution was carried out 
using a linear gradient from 0 to 14 min. The injection volume set was 
20 mL, the nebulizer, the auxiliary, and the auxiliary gas were set at 55, 
50, and 15 psi. The capillary temperature and the ion spray voltage were 
550 ◦C and 5500 V, respectively. The ions transitions used for the 
mycotoxin identification and quantification were: m/z 313.1/241.3 and 
284.9 for AFB1 and m/z 404.3/102.1 and 358.1 for OTA. 

This analytical method was validated by calculating linearity, re
covery, repeatability, reproducibility, limits of detection (LOD) and 
limits of quantification (LOQ), and matrix effect for each mycotoxin 
analyzed. Linearity was evaluated using paired matrix calibrations in 
triplicate at concentrations between 5 and 500 μg/kg. All the myco
toxins showed good linearity in the working range, with resolution 
determination coefficients (R2) greater than 0.9922. LODs and LOQs 
were calculated by analyzing blank samples enriched with the standard 
mycotoxins; these parameters have been assessed as the lowest con
centration of the molecules studied that showed a chromatographic peak 
at a signal-to-noise ratio (S/N) of 3 and 10 for LOD and LOQ, respec
tively. The value of the recovery was carried out in triplicate for three 
consecutive days using three addition levels: LOQ, 2 × LOQ, and 10 ×
LOQ. To calculate the matrix effect, the calibration slope from the matrix 
calibration curve was divided by the slope of the standard calibration 
curve and multiplied by 100. All these results are shown in Table 1. 

2.8. Statistical analysis 

Data were statistically analyzed using the InfoStat software version 
2008. The differences between groups were analyzed by one-way 
ANOVA, followed by the Tukey HSD post hoc test for multiple com
parisons. The significance level was set at p ≤ 0.05. 

3. Results and discussion 

3.1. Antifungal activity tests on liquid medium 

The PA MIC for A. flavus was 125 mg/L, while a dose of 187.5 mg/L 
was necessary to reach the MFC. The PA MIC for P. verrucosum was 62.5 
mg/L, while MFC was 93.8 mg/L. These results show that P. verrucosum 
is more sensitive to PA than A. flavus. 

Kyanko, Russo, Fernández, and Pose (2010) have demonstrated the 
effectiveness of PA against several species of fungi of the genera Peni
cillium and Aspergillus at doses of 0.05%, 0.1% and 0.3% and a contact 
time of 30 min. Specifically, A. flavus presented a log reduction of 0.7 
against an PA concentration of 0.3%. Bernardi et al. (2018), using the 
standards established by the European Committee for Standardization 
(CEN) (European Standard 13697, 2001) have demonstrated the effec
tiveness of PA against several species of fungi of the genera Penicillium 
and Aspergillus at doses of 0.15%, 1% and 3%. Specifically, Penicillium 
comune presented a log reduction of between 2 and 2.9 against PA 
concentration of 0.15% while for the same dose, the reduction of 
Aspergillus brasiliensis was between 1 and 1.9 log. Olivier, Stefanello, 
Gonçalves, Valle, and Venturini (2019), studied the antifungal activity 
of PA (0.15%, 1.5%, and 3%) against several strains of fungal species 
responsible for the deterioration of bakery products (genera Penicillium 
and Aspergillus). Specifically, at PA concentrations of 3%, the spores of 
Penicillium roqueforti and Penicillium paneum strains were reduced by 3–5 
log and those of Aspergillus pseudoglaucus by 0.9 logs. 

3.2. Volatile antifungal activity tests in solid medium 

Semi-quantitative tests for evaluating the antifungal activity of PA 
using filter paper confirmed that the rapid volatilization of PA gaseous 
exerts a fungicidal action on A. flavus and P. verrucosum. As shown in 
Table 2, a concentration of 1 mg/L of volatilized PA can eliminate the 
growth of A. flavus on plates inoculated with ten μL of a concentration of 
1⋅104 CFU/mL spores. The table also shows that 1.5 mg/L of volatilized 
PA can prevent the growth of A. flavus at an inoculum concentration of 
1⋅105 CFU/mL. For P. verrucosum, the PA dose capable of eliminating 
fungal growth was 0.5 1 mg/L for the two inocula (1⋅104 CFU/mL and 
1⋅105 CFU/mL). 

The use of PA as a volatile antifungal has not been studied yet, 
although other similar compounds have been. Ocak, Çelik, Özel, Korcan, 
and Konuk (2012) investigated the growth inhibition of 14 fungal spe
cies using volatile Origanum hypericifolium oil. The author placed a 5 mm 
diameter disk of PDA in Petri dishes with the fungal species to be studied 
and added 20 μL of the volatile oil in the lid of a Petri dish, wich was 
incubated at 20 ◦C. Higher doses were employed in that study, resulting 
in A. flavus inhibition, the most sensitive species, on the third day of 
treatment. In contrast, P. verrucosum grew after six days being the most 
resistant species of the studied fungi. In another study conducted by Ul 
Hassan, Al Thani, Alnaimi, Migheli, and Jaoua (2019), it was observed 
how exposing various fungi to volatile compounds released by Bacillus 
licheniformis managed to significantly reduce the growth of various fungi 
such as A. flavus and P. verrucosum and the production of aflatoxins (AFs) 
and OTA. However, the volatile compounds did not eliminate these 
fungi. 

Concerting the use of HEC gel, the slower release of PA resulted in 
higher lethal doses (Table 3). A concentration of 10 mg/L of volatilized 
PA avoided the growth of A. flavus on plates inoculated with ten μL of a 
concentration of 1⋅104 CFU/mL spores, while one of 25 mg/L of 

Table 1 
LODs, LOQs, recovery, and matrix effect (ME) (%) for AFB1 and OTA in maize 
and barley.  

Mycotoxin LOD (μg/Kg) LOQ (μg/Kg) Recovery (%) ME (%) 

AFB1 0.08 0.27 70.4 78.2 
OTA 0.05 0.17 75.6 89.7  
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volatilized PA inhibited the growth of the inoculum concentration of 
1⋅105 CFU/mL. Regarding P. verrucosum, PA concentration needed 
inhibit fungal growth was 7.5 mg/L wholly, and 10 mg/L for the samples 
inoculated whit 1⋅104 CFU/mL and 1⋅105 CFU/mL, respectively. 

The use of gels with antimicrobial properties for food preservation is 
a new and not developed field of research. However, some studies 
showed how it could be a good alternative to classical preservatives 
against food altering and pathogenic microorganisms. Rao et al. (2020) 
proved how 0.40 mg/mL of a gel formed by carvacol encapsulation in 
ovalbumin nanoparticles managed to eliminate Bacillus cereus and Sal
monella spores. Another study carried out by Paris, Ramírez-Corona, 
Palou, and López-Malo (2020) determined the effectiveness of 

encapsulation in sodium alginate gel of the essential oil Cinnamomum 
zeylanicum in the vapor phase (5% v/v) against the following fungi 
Botrytis cinerea, Penicillium expansum, Alternaria alternata or Colleto
trichum gloeosporioides. The MIC values for each of these fungi were: 
1.89 mg/L, 1.89 mg/L, 1.75 mg/L, 1.32 mg/L, respectively. 

3.3. Volatile antifungal activity test on maize and barley 

The results of the fungal growth of A. flavus on maize and 
P. verrucosum on barley treated with PA HEC gels at weeks 1 and 2 are 
shown in Fig. 3. In the case of A. flavus, after one week of treatment, a PA 
concentration of 100 mg/L inside the jar was able to reduce the fungal 

Table 2 
Antifungal activities of volatile PA against two different inoculums of A. flavus ITEM 8111 and P. verrucosum VTT D-01847. The daily growth observed in the inoculated 
plates (+) and the percentage of reduction in the mycelial diameter at day 7.  

PA (mg/L) Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 % reduction (day 7) 

A. flavus (1⋅104 CFU/mL) 
Control - þ þ þ þ þ þ 0.0% 
0,25 - þ þ þ þ þ þ 5.0% 
0,5 - - þ þ þ þ þ 17.5% 
0,75 - - - þ þ þ þ 22.5% 
1–100 - - - - - - - 100.0% 
A. flavus (1⋅105 CFU/mL) 
Control - þ þ þ þ þ þ 0.0% 
0,25 - þ þ þ þ þ þ 2.1% 
0,5 - þ þ þ þ þ þ 5.0% 
0,75 - - þ þ þ þ þ 12.1% 
1 - - þ þ þ þ þ 15.0% 
1,25 - - þ þ þ þ þ 22.5% 
1,5 -100 - - - - - - - 100.0% 
P. verrucosum (1⋅104 CFU/mL) 
Control - + + + + + + 0.0% 
0,25 - + + + + + + 71.0% 
0,5 -100 - - - - - - - 100.0% 
P. verrucosum (1⋅105 CFU/mL) 
Control - + + + + + + 0.0% 
0,25 - + + + + + + 12.9% 
0,5 -100 - - - - - - - 100.0%  

Table 3 
Antifungal activities of volatile PA in 22% HEC gel against two different inoculums of A. flavus ITEM 8111 and P. verrucosum VTT D-01847. The daily growth observed 
in the inoculated plates (+) and the percentage of reduction in the mycelial diameter at day 7.  

PA (mg/L) Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 % reduction (day 7) 

A. flavus (1⋅104 CFU/mL) 
Control - þ þ þ þ þ þ 0.0% 
1 - þ þ þ þ þ þ 11.8% 
2,5 - þ þ þ þ þ þ 12.5% 
5 - - þ þ þ þ þ 13.2% 
7,5 - - - þ þ þ þ 19.8% 
10–100 - - - - - - - 100.0% 
A. flavus (1⋅105 CFU/mL) 
Control - þ þ þ þ þ þ 0% 
1 - þ þ þ þ þ þ 1.0% 
2,5 - þ þ þ þ þ þ 1.3% 
5 - þ þ þ þ þ þ 2.6% 
7,5 - - þ þ þ þ þ 7.6% 
10 - - - þ þ þ þ 20.3% 
25–100 - - - - - - - 100.0% 
P. verrucosum (1⋅104 CFU/mL) 
Control - þ þ þ þ þ þ 0.0% 
1 - þ þ þ þ þ þ 0.5% 
2,5 - þ þ þ þ þ þ 14.0% 
5 - þ þ þ þ þ þ 15.0% 
7,5-100 - - - - - - - 100.0% 
P. verrucosum (1⋅105 CFU/mL) 
Control - þ þ þ þ þ þ 0.0% 
1 - þ þ þ þ þ þ 5.0% 
2,5 - þ þ þ þ þ þ 6.7% 
5 - þ þ þ þ þ þ 15.0% 
7,5 - - þ þ þ þ þ 35.0% 
10–100 - - - - - - - 100.0%  
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population by 0.85 Log CFU/g (85.99%), 200 mg/L reduced it by 3.65 
Log CFU/g (99.97%), and 300 mg/L eliminated the fungi. In week 2 the 
results were very similar, with a reduction of 0.67 Log CFU/g (78.42%) 
for 100 mg/L, a reduction of 2.75 Log CFU/g (99.82%) for 200 mg/L, 
and the complete disappearance of A. flavus at 300 mg/L of PA. In the 
case of P. verrucosum, after one week of treatment a PA concentration of 
50 mg/L inside the jar was able to reduce the fungal population by 0.45 
Log CFU/g (62.64%), 100 mg/L reduced it by 1.25 Log CFU/g (94.37%), 
and 200 mg/L eliminated the fungi. In week 2, the results were quite 
similar, a reduction of 0.52 Log CFU/g (68.15%) for 50 mg/L, 0.69 Log 
CFU/g (75.54%) for 100 mg/L, and 200 mg/L of PA completely 
inhibited P. verrucosum growth. 

The reduction of AFB1 on maize and OTA on barley treated with APA 
HEC gels at weeks 1 and 2 are shown in Fig. 4. In the case of maize 
inoculated with A. flavus, after one week the untreated control showed 
an AFB1 concentration of 2010.7 μg/kg, while treatments with a PA 
concentration of 100 mg/L inside the jar could reduce AFB1 by 77.57% 
(453.0 μg/kg), 200 mg/L by 92.42% (152.4 μg/kg) and 300 mg/L 
completely inhibited AFB1 formation. At week 2, the results were 
similar, with an AFB1 concentration in the untreated control of 2779 μg/ 
kg and a reduction for the treatment of 100 mg/L of 47.8% (1050.4 μg/ 
kg), 200 mg/L by 84.4% (313.9 μg/kg) and 300 mg/L completely 
inhibited AFB1 formation. In the case of barley inoculated with 
P. verrucosum, none of the samples tested were detected as OTA after one 
week. In the second week, the untreated control showed an OTA 

concentration of 56.3 μg/kg, with no significant difference with the 50 
mg/L PA treatment. In contrast, 100 mg/L PA reduced produced OTA in 
92.42% (152.4 μg/kg), while 200 mg/L completely inhibited it. Com
parison of the results of mycotoxin formation with those of fungal 
growth inhibition in the presence of PA indicates that the reduction of 
AFB1 and OTA is explained by the elimination of toxigenic fungi. 

The reduction of growth of toxigenic fungi and mycotoxins in food by 
using volatile compounds has been studied in substances other than PA. 
Ozone treatments have reduced the AFB1 content in contaminated 
wheat by more than 80%. (Wang, Liu, Lin, & Cao, 2010). Essential oils 
(EO) have shown their efficacy as antifungal compounds and have been 
used to reduce mycotoxin synthesis in food. Reduction of AFs has been 
observed using 250 ppm of EO from Thymus eriocalyx (Rasooli & Owlia, 
2005) and 450 ppm of EO from Rosmarinus officinalis (Rasooli et al., 
2008). In the case of OTA, Cinnamomum verum EO requires doses above 
200 ppm to inhibit its production (Hua et al., 2014). Finally, in a similar 
model to the one studied in this work, Quiles et al. (2019) treated maize 
contaminated with A. flavus with 500 ppm of allyl isothiocyanate (AITC) 
HEC gels, achieving a 98.51% reduction in AFB1 production. 

3.4. Volatile antifungal activity test in non-inoculated commercial maize 

The results of reducing fungal contamination in naturally contami
nated commercial maize treated with PA HEC gels at weeks 1 and 2 are 
shown in Fig. 5. After one week of treatment, a PA concentration of 50 

Fig. 3. Growth of A. flavus ITEM 8111 in maize (a) and P. verrucosum VTT D-01847 in barley (b) in a 1L jar, exposed to PA vapor by HEC gel after 1 week (dark grey) 
and 2 weeks (light grey) of incubation. Significant differences between treatments within each week are marked with different letters (p ≤ 0.05). 
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mg/L inside the jar reduced the fungal population by 2.90 Log CFU/g 
(99.86%) while 100 mg/L eliminated all fungal load. In week two the 
results were similar, with a reduction of 1.91 Log CFU/g (97.13%) for 
the treatment of 50 mg/L, while 100 mg/L eliminated all fungal load. 

This test proves that under conditions of natural contamination, the 
PA doses required to inhibit fungal growth is lower than those required 
in section 3.3. 

Fig. 4. AFB1 detected in maize contaminated with A. flavus ITEM 8111 (a) and OTA detected in barley contaminated with P. verrucosum VTT D-01847 (b) in a 1L jar, 
trated to PA vapor by HEC gel after 1 week (dark grey) and 2 weeks (light grey) of incubation. Significant differences between treatments within each week are 
marked with different letters (p ≤ 0.05). 

Fig. 5. Microbiological growth in uncontaminated maize in a 1L jar, trated to PA vapor by HEC gel after 1 week (dark grey) and 2 weeks (light grey) of incubation. 
Significant differences between treatments within each week are marked with different letters (p ≤ 0.05). 
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4. Conclusions 

The present study demonstrated the ability of PA in a volatile form to 
eliminate or reduce the growth of the toxigenic fungi A. flavus (ITEM 
8111) and P. verrusocum (D-01847 VTT) both in vitro and in stored ce
reals (maize and barley, respectively). Likewise, PA could inhibit the 
synthesis of AFB1 and OTA mycotoxins when their producing fungi were 
exposed to doses between 100 and 200 ppm. These concentrations are 
similar to those of other compounds such as EO from vegetable extracts, 
so it is presented as an interesting alternative to reduce fungal 
contamination and to extend the storage time of cereals for human 
consumption. 
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