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Abstract—Radio Environment Maps (REM) can be an essential
tool for numerous applications in future 5G wireless networks.
In this paper, we employ a popular geo-statistical method called
ordinary kriging to estimate the REM of an area covered by a
eNodeB equipped with multiple antennas. Wireless sensors are
distributed over the area of interest and adaptive clusters of
sensors are arranged in order to improve the quality of the
estimation. In this paper, we modify the distributed clustering
algorithm proposed in a previous work to reduce the complexity
of kriging prediction. Simulations are performed to detail the
cluster formation technique and to analyze the performance in
comparison with centralized and classical interpolation methods.
The computational complexity is verified in terms of the number
of message exchanges among the sensor nodes. Simulation results
demonstrate that clusters are formed by an average of 5 sensor
nodes.

Index Terms—Radio environment maps, Distributed channel
prediction, Ordinary Kriging, Wireless sensor networks.

I. INTRODUCTION

Radio Environment Map (REM) is an advanced framework
that enhances contextual awareness of radio environment in
the spatial domain through geo-location aware spectrum mea-
surements [1] [2]. Such measurements are gathered by devices
such as Wireless Sensor Nodes (WSNs). A REM indicates
the radio signal strength, delay spread and interference levels
over a finite geographical region. Exploiting this knowledge
of REM is relevant for resource allocation [3], coverage hole
prediction and detection [5], interference management [4] and
in Anticipatory Networks [6]. In this paper, a REM is formed
by the power radiated by the eNodeB. The power received
by the WSNs can be probabilistically modeled as multi-scale
dynamical system with three major components: path-loss,
shadowing and small scale fading [7].

In order to estimate a REM, we rely on mathematical
models from geo-statistics. In this paper, we employ the
Ordinary Kriging (OK) interpolation method [8]- [13], because
of its robustness and its best trade-off between complexity and
performance. In addition, OK does not require the knowledge
of the mean of the field. It works with the assumption of a
constant mean and only requires a variogram function and
data values for implementation. The ordinary kriging method
presents several key features: (1) It is a local interpolator,
which operates within a small area around the estimation
location and captures the short-range variations [10]. (2) It
employs semivariance as the function to represent spatial
dependence instead of covariance. Hence, the mean estimation

is not necessary. (3) Along with the estimates, it also quantifies
kriging variance. The kriging variance can be used for data
screening in order to choose the best set of measurements
in the neighborhood [11]. The local nature of the ordinary
kriging and its ability to quantify the kriging variance are
the key elements that make clustered interpolation feasible in
WSNs. The prediction of kriging increases with the number
of measurements and its correlation with the unmeasured
location. Kriging is a local predictor and only, the closest
sensors carry significant weights. Furthermore, the kriging
method implies a computational cost that scales as the cube
of the number of sensor measurements N , resulting in cubic
time complexity O(N3).

In this paper, we build on the work of [8] and [9], and
modify [8] to reduce the complexity of kriging to O(n3),
where n � N . In [8], the Distributed Clustering Algorithm
(DCA) for spatial field reconstruction in WSNs was proposed.
The algorithm operates in two phases. Firstly, an initial cluster
of sensor nodes is built and the kriging operations such as
semivariogram estimation and kriging prediction are locally
performed in a distributed way. Secondly, the sensor nodes
that reduce the kriging variance are added to the initial set of
nodes to enhance the estimation quality. However, in [8] the
size of initial cluster was not fixed and was estimated from
a minimum square error analysis by comparing various initial
cluster sizes. In this paper, our main contributions compared to
our previous work are as follows: (1) an analytical expression
to begin the clustering phase is provided, (2) the DCA perfor-
mance is analyzed by comparing its performance with classical
interpolation methods and (3) The computational complexity
in terms of number of messages exchanged is analyzed for
both centralized and distributed clustering algorithms.

II. MODEL AND PROBLEM STATEMENT

A. Network and Channel Model

Consider an heterogeneous networks in a square area x ∈
R2, consisting of a base station t and N wireless sensor
nodes. The eNodeB is located at the center of the square at
location xt, whereas the sensor nodes are deployed randomly
at locations xi = (x, y). Fig. 1 depicts the considered scenario.
We will model the WSNs as a connectivity graph G = (V, E),
where V and E represent the N sensor nodes and links,
respectively. We assume that the resource constraints of sensor
nodes limits the transmission range of each node to a distance



−100 −50 0 50 100
−100

−50

0

50

100

meter

m
et

er

Fig. 1. Heterogeneous network. The red and blue circles indicate eNodeB
and sensor nodes, respectively

R. As a result, the link is established only if the euclidean
distance ||xi − xj || ≤ R. N and

Let Pt be the power transmitted through the wireless chan-
nel. The power sensed by the sensor nodes can be modeled
as:

V (xi) = Pr(xi,xt)+ni, i = 1, 2, . . . , N, (1)

where Pr(xi,xt) is the power received at a sensor node
located in xi from transmitter node located at xt. The term ni
accounts for a zero mean additive white gaussian noise random
variable. The power received at a sensor node, Pr(xi,xt),
averaged over small scale fading in time or frequency, can
be expressed in dBm scale as [14]:

Pr(xi,xt) = Pt + P (xi,xt) + ψ(xi,xt), (2)

where ψ(xi,xt) is the location dependent shadow fading be-
tween transmitter and receiver. The shadow fading component
follows a log-normal distribution with zero mean and variance
σ2
ψdB

. P (xi,xt) depends on path-loss and is given by [14]:

P (xi,xt) = KdB+10η log10 d0−10η log10 d(xi,xt), (3)

where KdB is the constant path-loss factor which depends on
antenna characteristics and other propagation gains, η is the
path-loss exponent, d0 is a reference distance for antenna far
field and d(xi,xt) = ||xi − xt|| is the distance between sensor
node location xi and transmitter location xt.

B. Problem Statement

The goal of this paper is to perform distributed cluster based
ordinary kriging interpolation for constructing the REM to
significantly reduce the complexity. This is achieved by pre-
dicting the received power V̂ (x0) at all unmeasured locations
x0, using the least number of geo-location aware sensor node
measurements V (xi).
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Fig. 2. AIC versus number of sensor nodes for typical semivariogram models

III. ORDINARY KRIGING

Ordinary kriging (Ok) is based on the assumption that mean
is not required for prediction. The two step process of OK
consists of semivariogram estimation and kriging prediction.
The semivariogram measures the spatial correlation in the
data while kriging employs a semivariogram model to perform
prediction. The Empirical Semivariogram (EV) is defined as,

γ̂(h) ≡ 1

2|N (h)|
∑
N (h)

(V (xi)− V (xj))
2, (4)

where V (xi) and V (xi) are field values at locations xi and
xj , and N (h) is the number of paired comparisons at lag h.

For kriging, due to computation reasons (refer [10]), The EV
has to be replaced by a mathematical model. The most popular
choices in geostatistics literature are spherical, gaussian and
exponential models. In this paper, we use Akaike Information
Criterion (AIC), a quantitative measure for selecting the model
that best fits the computed EV values. AIC is estimated by
[13]:

ÂIC = N ln r + 2P, (5)

where N is the number of points in the EV, r is the mean
of the squared residuals between the experimental values and
the fitted model, and P is the number of parameters in the
semivariogram model. Fig. 2 shows the AIC performance
evaluation for the three typical semivariogram models, which
is computed from equation (5) by varying the WSN network
size. The semivariogram model with the smallest AIC is the
best model for kriging [13]. Hence, from the results, we choose
the spherical model for fitting, which is given by the following
mathematical function,

γ(h) =


c0 + c1

{
3
2 (

h
a )−

1
2 (

h
a )

3
}
, 0 < h ≤ a ,

c0 + c1, h > a,

0, h = 0,

(6)



where c0, a and c0 + c1 specifies nugget, range and sill,
respectively. The spherical model is fitted by weighted least
squares estimation [12]. The following equations are used to
compute the initial values from the EV [13]:

c0ini = max

[
0, γ̂(h1)−

h1

h2 − h1
γ̂(h2)− γ̂(h1)

]
,

aini =
hN

2
,

c0ini
+ c1ini

=
γ̂(hN-2) + γ̂(hN-1) + γ̂(hN)

3
,

(7)

where c0ini , aini and c0ini + c1ini are the initial values
for nugget, range and sill, respectively. Once the γ(h) is
computed, it is used in the OK system of equations to obtain
the weights,

N∑
i=1

wi|N (x0)γ(xi − xj) + L(x0) =
N∑
i=1

γ(xi − x0),

j = 1, 2, . . . ,N, (8)

where γ(xi−xj) is the semivariogram between measurements
from sensor node locations xi and xj , γ(xi − x0) is the
semivariogram between samples from sensor node location xi
and target location x0 and L(x0) is the Lagrange multiplier.
Note that γ(.) is obtained from the model (6).

Finally, the OK estimate and variance is computed using,

V̂ (x0)|N =
N∑
i=1

wi|N (x0)V (xi), (9)

σ2(x0)|N =
N∑
i=1

wi|N (x0)γ(xi − x0) + L(x0). (10)

IV. LOW COMPLEXITY DISTRIBUTED CLUSTERING
ALGORITHM

In this section, the DCA algorithm proposed in [8] is
modified to reduce its computational complexity. The DCA
consists of initial cluster estimation followed by adaptive
cluster estimation, which is illustrated in the flowchart (from
Fig. 3).

A. Initial Cluster Estimation
Each node employs a broadcast protocol in order to find its

neighbors and acquire information about its multi-hop neigh-
borhood. This information includes knowledge about neighbor
measurements and geo-location. During this phase, an initial
set of t nodes closest to an unknown location x0 begins
the prediction process and estimates γ̂(h)|t and V̂ (x0)|t. In
this paper, we modify the DCA of [8] in order to begin the
estimation with an initial cluster size of t = 3. We make use
of equation (7) to fix the size of the initial cluster. γ̂(h)|t
is computed using a distributed semivariogram algorithm by
solving (4) in a distributed manner. And, V̂ (x0)|t is obtained
using a distributed kriging algorithm, which performs a Gauß-
jordan elimination method in an iterative way. We refer the
reader to [9] for further details on distributed semivariogram
and kriging estimation.
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Fig. 3. DCA algorithm

B. Adaptive Cluster Estimation

In the adaptive clustering phase, the initial estimation using
t = 3 nodes is improved by adding more sensor nodes that
are in the communication range. Sensor nodes are successively
added to the initial cluster until the incorporation of a new
node no longer improves the estimation i.e., the kriging
variance is no longer decreased. As a result, a cluster is
formed with n = t + k nodes, where n represents the total
number of nodes in the cluster and k denotes the number
of nodes added during the adaptive clustering phase. Note,
the kriging variance can be seen as an approximation of the
estimation error. Algorithm 1 in our previous work [8] shows
this operation in detail. With DCA, nodes with high correlation
to x0 are given all the weights while the non-cluster nodes are
ignored. This ensures that all the information relevant to the
spatial prediction is captured effectively.

V. SIMULATION RESULTS

We consider a LTE-sensor network in a sub-urban envi-
ronment for simulations. The WSNs consisting of N sensor
nodes with 8 m inter-node spacing are randomly distributed
in a square area of 190 m × 190 m, while the LTE picocell
eNodeB is placed at the center. The key parameters for the
simulation scenario are used from references [15] [16], with
path-loss exponent η = 3, standard deviation of shadow fading
σψdB

= 6 dB, shadowing correlation distance dc = 10
m and Pt = 24 dBm. Based on propagation environment,
we obtained R = 21 m. The complete REM is obtained
by estimating the received power at 9216 locations, when
considering a 2 m resolution grid on the square area under
study.



The accuracy of field estimation and complexity are im-
portant aspects to gauge the performance of reconstruction
algorithms in WSNs. In order to analyze the accuracy, we
consider the Mean Squared Error (MSE) between the actual
and the estimated field value. The DCA performance (see Fig.
4) is compared with centralized and partitioned cases. In a
centralized case, sensor nodes send their measurements to a
central node for REM estimation whereas, in partitioned case,
sensor nodes send their measurements to a subregion head.
Each subregion head estimates the REM by making use of
local measurements. However, in DCA, each sensor node acts
as a cluster head and functions according to the distributed
architecture. The trend of the MSE plot proves that the quality
of kriging estimation improves when increasing the number of
measurements. This happens due to the decrease in the inter-
node distance, which in fact increases the spatial correlation
between the samples. It is worth to notice from the Fig. 4,
that the prediction quality of DCA outperforms the partitioned
kriging, and it is similar to the centralized case for networks
with N > 150. On the other hand, for N < 150, the algorithm
suffers from lack of sensor nodes within the communication
range to build clusters. In case of partitioned kriging, since
the inter-region sensor node sharing is not allowed, the cluster
heads have less samples to interpolate at the subregion borders.
As a result, the prediction quality degrades at the borders. This
will be noticed in Fig. 6(c).
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Fig. 4. Comparison of DCA with centralized and partitioned estimation

In order to model the complexity of the algorithms, the
number of message exchanges has been evaluated for the
centralized and DCA cases. For discovering nodes, a shortest
path algorithm is used in the centralized case whereas for
DCA, a broadcasting protocol is used. From table I, it can be
seen that DCA requires significantly lower message exchanges
than centralized kriging. Thus, reducing the complexity and
also improving the network lifetime. We also compute the
average size of clusters required to build REMs for various
WSNs sizes. From Table II, it is clear that DCA requires
an average of 5 nodes, which is prominently lower than the
centralized case.

TABLE I
COMPLEXITY IN TERMS OF NUMBER OF MESSAGE EXCHANGES

WSNs size Centralized kriging DCA

100 3060376 83352

150 5115990 83587

200 7706248 83906

250 8655702 83920

300 10665226 84365

350 12637878 84620

400 13790128 85098

TABLE II
AVERAGE SIZE OF CLUSTER FOR VARIOUS WSNS SIZES

WSNs size 50 100 200 300 400

Average size
of the cluster 4.03 4.91 4.95 5.06 5.27

In Fig. 5, the MSE of DCA is compared with two classical
interpolation methods such as natural neighbor and spline. The
performance evaluation plot clearly illustrates that the DCA
outperforms the classical interpolation methods. To illustrate
the excellent reconstruction quality of our algorithm, we
present interpolated maps in Fig. 6.
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Fig. 5. Comparison of DCA with classical interpolation methods

VI. CONCLUSION

In this paper, a distributed clustering algorithm is modified
to reduce the complexity of prediction in REM. The proposed
method employs an average of 5 nodes to perform the esti-
mation for various network sizes. The kriging variance has
proved to be a good metric for minimizing the computational
complexity. Simulation results indicate that the distributed
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Fig. 6. Interpolated maps for different estimation frameworks

clustering algorithm outperforms the centralized and classical
interpolation methods in terms of prediction and complexity,
making it more suitable for practical applications. As a part of
future work, we aim to investigate the influence of location un-
certainty on the prediction quality. Also, we aim to investigate
the performance of our algorithm in sparse wireless networks.
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