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Abstract—Radio maps are expected to be an essential tool for
the resource optimization and management of 5G automotive. In
this paper, we consider the problem of radio map reconstruction
using a wireless sensor network formed by sensor nodes in
vehicles, access nodes from a smart city infrastructure, etc.
Due to limited resource constraints in sensor networks, it is
crucial to select a small number of sensor measurements for
field reconstruction. In this context, we present a novel distributed
incremental clustering algorithm based on the regression Kriging
method for radio map reconstruction in terms of average received
power at locations where no sensor measurements are available.
The path-loss and shadowing components of the wireless channel
are separately estimated. For shadowing estimation, clusters of
sensors are adaptively formed and their size is optimized in
terms of the least number of sensors by minimizing the ordinary
Kriging variance. The complexity of the proposed algorithm is
analyzed and simulation results are presented to showcase the
algorithm efficacy to field reconstruction.

Index Terms—Radio maps, distributed channel prediction,
Kriging.

I. INTRODUCTION

G will be a key enabler for the Internet of Things,

providing the platform to the next generation of connected
and autonomous vehicles through vehicle-to-everything (V2X)
communications [1]. Vehicles will need to communicate with
each other and with the network incorporating a traffic man-
agement system, in real-time, for more efficient and safer
use of existing road infrastructure [2], [3]. In this context,
the connectivity or in other words, wireless channel quality,
is critical in fulfilling the vision of 5G automotive [4]. The
wireless channel quality varies significantly as vehicles moves
from one location to another, specially in urban scenarios. The
location of vehicles, specifically, the mobility pattern including
the routes and stops of public transportation vehicles is known,
and constitutes a major portion of traffic [5]. Studies have
also shown that is possible to predict the locations of cars
[6]. Assuming that knowledge of the mobility patterns and
radio maps were available, the channel quality of the vehicle
along the trip could be predicted. Such awareness would guide
the network to learn if a vehicle is heading towards a poor
coverage area, thus adapting its resources to maintain the
quality of services. Moreover, all this process needs to be
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performed in a distributed way. To tackle this problem, this
paper proposes an algorithm to reconstruct radio maps in a
distributed way that could support vehicular communications
in the smart city context, addressing the challenges related to
5G automotive.

Radio maps can provide a precise awareness of the radio
environment in the spatial domain by processing the geo-
localized spectrum use. Such information can be gathered by
measurement capable devices like on-board sensor nodes of
vehicles or from access nodes deployed in a smart city context
[7], etc. Updating the radio map frequently is expensive and
practically inefficient as measurements are collected from
various devices. Therefore, it is cost and resource effective to
update the radio map depending on the mobile data traffic and
time in a day. Radio maps also find their potential applications
in 5G heterogeneous networks, where their availability could
be crucial in spectrum sensing in cognitive radios [8]-[10],
interference management [11], coverage analysis [12]-[14],
device to device communications [15], formation control and
connectivity maintenance in multi-agent system [16], and
proactive resource allocation in anticipatory networks [6],
[17], [18]. A radio map contains information such as radio
signal strength, delay spread and interference levels over a
finite geographical region. By definition, radio maps require
to know the field value at every point on the whole area
of interest. However, in practical scenarios it is difficult to
have all such measurements. Therefore, we rely on spatial
interpolation methods to predict the field values at spatial
locations where no measurements are available, based on a
set of available measurements.

Spatial interpolation methods combine the available sensor
node measurements with geo-location information to construct
a complete map. One of the key challenging tasks in radio map
reconstruction is choosing an appropriate interpolation method
offering good quality and complexity trade-off. Methods that
have been specifically proposed are: nearest neighbor [19], thin
plate splines [20], [21], natural neighbor [20], inverse distance
weighting [22]-[25], Kriging [26] and GPR [16], [27]. Kriging
is one of the most frequently applied methods for radio map
reconstruction [8], [9], [13], [14], [28]—-[34]. It is a stochastic
method capable of modeling deterministic variations (large-
scale), spatially autocorrelated variations (small-scale) and
uncorrelated noise. The advantage of Kriging is that estimation
error maps can be obtained, i.e., uncertainties associated with
predictions. The two-step process of Kriging begins with a
semivariogram modeling and Kriging prediction. The semi-
variogram model characterizes the spatial correlation in the



data and the Kriging method employs this model to generate
the best linear unbiased estimates. Some notable work in this
line is for example, [14], where fixed rank Kriging is applied
to cellular coverage analysis with the aim of lowering the
complexity of the spatial interpolation. In [12], [13], bayesian
Kriging is implemented to construct the radio map for the
purpose of coverage hole detection in cellular networks. In
[23], universal Kriging is utilized for estimating the radio
environment. In [35], a distributed Kriging algorithm based on
ordinary Kriging (OK) is proposed in wireless sensor networks
(WSN5s) in order to interpolate the physical phenomenon inside
the coverage holes. Another tool from spatial statistics is the
kriged kalman filter, for modeling spatio-temporal variations
[36]. Note, this paper deals with purely spatial models and
temporal variations are not considered.

In this paper, we consider a cellular V2X standard which
includes direct communication (between vehicles, vehicle-to-
pedestrian, and vehicle-to-infrastructure) and cellular commu-
nications with networks [37]. In the smart city context, we
consider a heterogeneous network combining one transmitter
and a network of receivers, which consists of sensors placed
in vehicles, specially from the public transportation network,
pedestrian phones and fixed access nodes. In this framework,
we employ a hybrid variant of Kriging interpolation known
as regression Kriging (RK) [38], [39] to predict the wireless
channel in terms of the transmitter’s average received power.
The received signal power can be probabilistically modeled
as a multi-scale dynamical system consisting of path-loss,
shadowing and small-scale fading [40]. Small-scale fading
decorrelates within tens of centimeters, making it infeasible to
predict even with highly accurate position information [27].
RK can harness both path-loss and shadowing using well
established models [41]. Basically, RK is a non-stationary geo-
statistical method that combines a regression of the dependent
variable on auxiliary variables with Kriging of the regression
residuals [38]. The auxiliary information (known as drift in
geo-statistics) is assumed to be available at all the sensor
nodes and it is the path-loss in our work. The key assumption
of the RK is that there is no spatial dependence between the
auxiliary variable and the residual of the linear regression. This
makes it simpler to implement compared to its mathematical
equivalent universal Kriging [39]. In RK, the drift is accounted
by the regression model, while the model residuals by OK.
The OK method works with assumption of constant mean
and presents several interesting features such as: (1) It is a
local interpolator, which operates within a small area around
the estimation location and captures the short-range variations
[42], [43]. (2) Along with the estimates, it also quantifies
Kriging variance. Thus, Kriging combined with regression
and thereby incorporating auxiliary information has proven to
improve the precision of the prediction, when compared with
plain OK, co-Kriging and plain regression [38].

Most of the existing work in the radio map reconstruction
literature has focused on centralized estimation techniques,
where all the measurements are forwarded to a central node
or sink that performs all the field estimation. However, the
centralized solution shows several drawbacks. Firstly, high

energy is required to communicate between the sensor nodes
and the central link. Secondly, the centralized schemes are
neither robust to central node failure nor scalable to network
size increments. Lastly, the most important limitation is the
large computational complexity resulting from calculating
prediction using all sensor measurements. Further for Kriging
method, due to the inversion of a N x N semivariance matrix,
the computation cost scales as the cube of the number of sensor
measurements N, resulting in cubic time complexity O(N3).
The scaling problem of cubic time complexity with respect
to the sensor measurements prevents practical applications of
centralized Kriging.

To overcome these limitations, in this paper, we apply
the RK interpolation method, with the aim of reconstructing
radio maps through a novel distributed incremental clustering
algorithm (DICA-RK). The objective of this paper is two
fold: (a) to propose a distributed reconstruction algorithm
and (b) to reduce the computational complexity through an
adaptive clustering of sensor nodes. Our algorithm employs
the least possible number of measurements n < N without
compromising the accuracy of Kriging interpolation. As a
result, the complexity is significantly reduced to O(n?). Thus,
driven by the advantages of combining regression with OK
(i.e., RK) and also by the key features mentioned above that
shows OK towards clustering, we extend our previous work
[34], [44] on standard OK and propose a novel distributed
algorithm based on RK for spatial prediction. Our main
contributions can be summarized as follows:

e The problem of distributed spatial field reconstruction
of radio maps that could support 5G automotive in a
smart city context is formulated and analyzed, in terms
of algorithm design and complexity analysis.

« A novel DICA-RK is presented, which consists of dis-
tributed ordinary least square estimation (D-OLS) and
distributed cluster based OK prediction (DC-OK). The D-
OLS estimates the path-loss while the DC-OK estimates
the shadowing. In DC-OK, initial clusters of sensors
are built first to perform semivariogram estimation and
Kriging prediction locally in a distributed way. Later,
sensor nodes which minimize the Kriging variance are
added to the initial clusters to improve the quality of
estimation. The final prediction estimate is obtained by
summing the estimates of D-OLS and DC-OK.

e We detail the cluster formation technique in the DC-
OK for shadowing estimation and present an update
model to instantly calculate the Kriging weights and
Kriging estimates. Our method is highly local in the sense
that it operates within a small neighborhood around the
estimation point and captures the local or short-range
variations.

o Performance assessment results and interpolated maps
are presented to interpret the reconstruction quality. In
addition, the results obtained with the DICA-RK algo-
rithm are compared with classical interpolation methods
such as splines and natural neighbor approaches. We
also investigate the impact of location uncertainty on the
performance of the proposed algorithm.
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Fig. 1. Random deployment of 225 sensor nodes.

II. MODEL AND PROBLEM STATEMENT
A. Network model

We consider a heterogeneous network formed by a trans-
mitter TX and a network of wireless receivers RXs. The
receiver network is modeled as a connectivity graph G(V, E),
composed by a set of N sensor nodes V = {1,2,..., N} and
a set of links E. The sensor nodes are deployed over a square
area s € R? to monitor a 2-D spatial physical field denoted
by z(s;), where i = {1,2,...,N}. Each sensor node i is
located at a spatial location denoted by s; = (z;, ;). In matrix
notation, z = [2(s1), z(s2), ..., 2(sy)] and S = [s1, S2, ..., SN]-
We denote the spatial location where the field needs to be
estimated as sg. Due to sensor network power constraints,
the transmission range of each sensor node is limited to a
distance R. As a result, the communication between sensor
nodes ¢ and j is feasible only if the euclidean distance
d(si,s;) = ||si —s;|| is less than R. We assume that sensor
nodes have perfect knowledge of their location information,
allowing them to estimate the inter-node distance d(s;, s;) with
one hop neighbors and also, calculate the distance d(s;,so)
with spatial location sg. N and n represent the network size
and cluster size, respectively. The sensor node deployment and
transmission range define the WSN topology, which in this
paper is a random distribution of sensor nodes as shown in
Fig. 1.

To fulfill the challenges posed by 5G automotive, we assume
a completely distributed architecture. Each sensor node acts
as a cluster head in the fully distributed architecture. Sensor
nodes within the communication range collaborate and form
clusters. Sensor nodes in each cluster perform local field
reconstruction by exchanging measurements in each cluster
within their neighborhood. Sensor nodes in the network op-
erate co-operatively in the sense that they are allowed to
contribute to multiple location estimations depending on their
position.

B. Channel model

Consider a transmitter TX located at s; in a square area
s € R? and assume that Prx is the power transmitted through
a wireless propagation channel. The power measured by N
sensor nodes can be modeled as:

Z(SZ) :PRx(Si)+Tli, iil,?,...,N, (1)

where Prx(s;) is the power received by a sensor node at
location s; from a single-antenna transmitter TX located at
s;. The term n; accounts for measurement noise and can be
modeled as a zero mean additive white Gaussian noise with
variance o2 .

The received signal power in dB scale can be expressed as
the sum of path-loss and shadowing components:

PR)((SZ‘) =Gy — 107710g10 ||St — SiH + y(Sl) 2)

Constant Gy = Prx + K4p + 10n1log, do, where K,p is the
constant path-loss factor, 7 is the path-loss exponent and d
is the reference distance. The term ||s; — s;|| is the distance
between transmitter at location s; and sensor node at location
s;, and y(s;) is the location dependent shadowing. We assume
that the shadowing follows a log-normal distribution i.e.,
y(si) ~ N(0,0%), where o3 is the shadowing variance. The
channel model (2) has been empirically tested by [45]-[48], to
accurately model the variations of the received signal power
in a wireless propagation channel. The path-loss component
is clear from equation (2) whereas for modeling the spatial
correlation of shadowing, we employ the Gudmundson model
[41]:

O(sivs)) = o exp (— 'S;SJ”) )

where d. is the correlation distance of the shadowing.

C. Problem statement

The objective of this paper is to obtain a high-quality radio
map for future 5G automotive in smart city deployments. In
other words, our aim is to perform

1) Distributed semivariogram/ parameter estimation: esti-
mate the channel parameters 0 = [n, Gy, 0%, d., 02]T
from measurements {S, z}.

2) Distributed prediction: obtain an estimate of the field
value 2(sg) at location sy where values are not known,
using the least number of geo-location aware sensor
node measurements z(s;).

III. SPATIAL STATISTICS

In this section, we present the techniques developed in the
context of geo-statistics, a subfield of spatial statistics, for
capturing the spatial structure from sensor measurements and
for the reconstruction of a realistic radio map. We modify
the regression Kriging presented in [38] to be suitable for
wireless channel prediction assuming first a centralized setting,
which means that all the sensor measurements are available at
a central entity. Geo-statistics treats the various processes in
the environment as the realizations of random processes [26],
[43]. Since we are are dealing with a two-dimensional space,
we will treat the measurements as a random field.

A. Random field

Sensor node measurements obtained at various sensor node
locations represent a continuous spatial phenomenon that can
be modeled as a random field. The random field in two



dimensions is denoted as {z(s;) : s; € D C R?}, where
i ={1,2,..,N} and D is the domain of interest. z(s;) is
decomposed into [49]:

p(si) + y(si),

where pu(s;) = E[z(s;)] is a deterministic mean function:

z(s;) = 1=1,2,..., N, 4

p(sq) sil| )

and y(s;) is a zero mean stationary random process with
variogram function (h), called residual variogram function

of y(s;):

= Prx + Go — 10nlog, |[s¢ —

1

v(h) = §Var[y(si) —y(si +h)]
(6)

- éE[(y(Si) —y(si+h)7],

where y(s;) and y(s; + h) are the values of shadowing at
location s; € D and s; + h € D, respectively, E is the
expectation and h (or ||h||) is the lag distance representing the
separation between two spatial locations. The random field is
further assumed to be isotropic and thus, v(h) depends only
on h. In terms of semivariance, the Gudmundson model (3)
is known as exponential model in the geo-statistics literature
and it is given by:

(h) = {03 + 02 (1 — exp (—W)) . lsi = sl >0,
0, s; =8,

(7
where the nugget 02 specifies the uncertainty of the semivari-
ogram at a distance close to zero, o3, is the spatially correlated
variance and the range d. is the spatial correlation limit. The
quantity o + 0% is known as sill and it is the value at which
the semivariogram attains the range.

B. Semivariogram analysis

For predicting random fields at unmeasured locations based
on observations of the random field, we use the Kriging
interpolation method. Moreover, for choosing an appropriate
Kriging type, we need to first perform a semivariogram
analysis.

The semivariogram describes the spatial variability of a
random field from a set of observations. It is a structural
and descriptive tool that measures the spatial correlation as
a function of distance. Basically, a semivariogram analysis
consists of estimating the experimental semivariogram (EV)
followed by semivariogram modeling. The spatial statistics of
the random field can be obtained from the set of observations
z(s;), where i = {1, 2, ..., N}, by estimating the EV 4(h). The
EV, which is defined as half the average squared difference
between the points separated by a lag distance h, is computed
using Matherons method of moments estimator [49]:

7 2 (e

N(h

y(h) 2 8
) =5 N (s5)) ®)
where z(s;) and z(s;) are field values at locations s; and
s;, respectively. N'(h) = {(s;,s;) : s;, —s; € hfor i,j =

., N'} denotes the set of all location pairs separated by the
particular lag distance h, whereas |\ (h)| denotes the number
of distinct pairs in N'(h).

Semivariogram modeling is an important step between
spatial description and spatial prediction. The EV provides
semivariance estimates only at a finite set of lags. However,
the Kriging method requires correlation between samples
where no measurements are available. In order to obtain the
estimates at arbitrary lags, the EV is replaced by a parametric
semivariogram model (SV). A SV model is a simple math-
ematical expression that models the trend in the EV. The
typical choices in geo-statistics are spherical, Gaussian and
exponential models. In this paper, we consider the exponential
model, denoted as F(h), to model the spatial correlation, as
it is equivalent to the Gudmundson model (3) proposed for
cellular networks. Note, 7(h) is presented earlier in equation
().

After the model selection, the model parameters 0 =
(62, d.] can be determined by fitting the semivariogram model
to the EV using a given analytical method. The most employed
methods are maximum likelihood estimation (MLE), weighted
least squares estimation (WLSE) and generalized least squares
estimation (GLSE) [50], [51]. The drawback is that the MLE
relies heavily on a Gaussian distribution and the estimates are
biased, and that the GLSE is computationally more demand-
ing. Hence, we employ WLSE because of its true compromise
between simplicity and statistical efficiency [26]. One of the
crucial steps in the fitting process is the initialization of the
model parameters. We use the following equations to compute
the initial values from the EV [50]:

. h, | .
08, = maz|0,7(hy) = == (ha) = (hy) |,
h, — h,
hy
de,; = — (€))
ini 2 )
¥ (hn- ¥ (hn- y(h
where ng,/, de,,, and 00 4+ O'w are the initial values for

nugget, range and sill, respectlvely

An EV and SV for a given set of sensor measurements z(s;)
are shown in Fig. 2 in red color. In general, it can be seen that
the semivariance increases when increasing the lag distance,
which is a characteristic of global trend in the measurements.
However, the figure shows that the EV of the measurements
is no longer a function of a single random variable and the
assumption of intrinsic stationarity on which the variogram
function is defined no longer holds. As a result, z(s;) should
be modeled as a combination of a deterministic mean function
(known as drift in geo-statistics) and a random component.
For dealing with the trend in the measurements, we employ a
variant of universal Kriging known as regression Kriging.

C. Centralized Regression Kriging

RK provides the solution to the problem of field estimation
based on the spatial statistical model of a random field. Let z =
[2(s1), z(s2), ..., 2(sn)] be the data observed using N sensor
nodes at measured spatial locations (s1, Sg, ..., sn ). We assume
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Fig. 2. Semivariogram modeling of z(s;) versus y(s;)

that the sensor nodes know G and o,. Then, RK provides
an estimate of channel parameters 6= M, 63, afc} and predicts
£(sp) at unmeasured spatial locations sg using N sensor nodes,
by summing the estimated mean and the residuals:

Z(so)|v = fulso)[n + 9(so)| N, (10)

where the mean [i(sg) is obtained using linear regression
analysis and the residual g(sg) is interpolated using OK.
Comparing the model (10) and the channel model (2), we
can deduce that the mean is the path-loss and the residual is
the shadowing.

1) Path-loss Estimation: Assuming that the correlation be-
tween the path-loss component and the random shadowing is
zero, the ordinary least square (OLS) estimate of the path-loss
exponent 7) can be computed as

i = (h"h)"'hT(z (11)

where hT = —10[log,o(||s1 — s¢|]),10g;0(|[s2 — stl]), -,
(|lsnv — s¢||)]T. Once 7 is estimated, the mean of the path-loss
estimate at sg is given by,

-17Gy),

fi(s0)| v = 17Go + nhy, (12)

where h} = —10

(Ilsv = solD]™
2) Shadowing Estimation: The random residual for shad-

owing estimation is obtained by de-trending the measurements

z(s;):

[logyo([|s1 — soll),logyo(l[s2 — soll); -,

y(sz) :Z(SZ)_H(SZ)7 i = 17277N (13)

Then, y(s;) becomes a zero-mean random variable. As a re-
sult, the stationarity condition holds and OK can be used. Field
estimation using OK follows two key steps: semivariogram
estimation and Kriging prediction. The objective of semivari-
ogram estimation is to obtain the parameters 6= [Jq,, d .]. For
the sake of readability, we refer readers to section III-B for
details on semivariogram modeling and present the results of
EV and SV for y(s;) in Fig. 2.

After estimating 0, semivariogram model can be employed
in the Kriging system of equations for prediction. Kriging is

log

a statistical interpolation method for obtaining an estimation
of the shadowing §(sp) at an unmeasured spatial location
sp, from the weighted linear combinations of available data.
This is achieved by allocating weights to each sensor node
in such way that the Kriging variance is minimized. Let
(y(s1),y(s2),...,y(sy)) be the N shadowing data at measured
spatial locations (s1,S2,...,Sx). Then, the kriged estimate
§(so) at unmeasured spatial location sy using N sensor nodes
is the weighted average of the data in its neighborhood given
by [26]:
N
4(so)|n = Zwi(so)|N y(si),

i=1

(14)

where N is the number of available sensor nodes, §(sg)|n is
the shadowing estimate using N sensor nodes and w;(sg)|n
is the weight allocated for sensor node ¢ from an estimation
performed using N sensor nodes. These weights fulfill the
unbiased conditions of the estimator, that is:

N
Zwi(so)\N =1,
i=1

and the expected error between the estimated value and the
actual value at location sg, E[g(sg) — y(so)], is 0. The weights
in equation (14) can be obtained by solving a set of linear
equations known as the Kriging system, which contains the
semivariance drawn from an analytical model. The Kriging
system is given by:

15)

N N
> wilso) v (i s5)+L(so) = > A(sivs0)id = 1,2,..., N
=1 =1 (]6)

where I'(s;,s;) is the semivariogram between measurements
from sensor node locations s; and s, (si,s0) is the semi-

log,, variogram between samples from sensor node location s; and

target location sg and L(sg) is the the Lagrange multiplier.
Note that I'(s; — s;) and 7(s; — sg) are obtained from the
theoretical exponential model (7).

The OK system can be represented in matrix form as:

A\ = b, 17
where
f(Si,Sj), Z7j: 1)"'aNa
R i=N+1,j=1,...,N,
= j=N+1,i=1,...,N,
0, i,j=N+1,
A= [w17w25"'awN;‘C]T7

b= [7(50751)77(50; 52)5 cen 37(507 SN)? HT

The minimized estimation variance for N sensor nodes,
referred to as the OK variance, can be calculated as:

So \N = E U/z So

(si,80) + L(s0)- (18)

)



IV. ALGORITHM DESCRIPTION

In centralized estimation, the Kriging equations (10) and
(18) use all the available sensor measurements to calculate
the spatial interpolations. In this paper, our objective is to
minimize the number of measurements through DICA-RK.
The DICA-RK estimates the path-loss and shadowing sepa-
rately, and subsequently, combines them to obtain the final
wireless channel prediction. These operations are performed
in a distributed way using a D-OLS and a DC-OK algorithms.
The complete algorithm is represented in the flowchart (see
Fig. 3). DICA-RK consists of the following phases:

A. Neighbor discovery

We employ a broadcasting protocol in order to find the set
of sensor nodes in the neighborhood of sy i.e., NSO, and the
node closest to sg. Note that the neighborhood of s includes
all the nodes that are in-range and at one-hop distance from s;.
Neighbor discovery is performed by each node to gather infor-
mation about its multi-hop neighborhood. During this stage,
each node broadcast its one-hop neighborhood information to
its neighbors. At the end of multiple message exchanges, each
node is aware about its multi-hop neighborhood. The broadcast
messages are received by multiple sensor nodes that are
within the communication range R. These messages include
information about node measurements and their location. All
the information gathered during this stage is later utilized for
local message exchanges for mean estimation and Kriging
prediction.

B. Distributed OLS (D-OLS)

Once the sensor nodes are aware about the information
of their multi-hop neighborhood, they can estimate 7 and
thereby compute [i(sg). OLS equation (11) can be solved using
standard distributed methods, such as distributed recursive
least-squares algorithm from [52]. Each node can compute the
path-loss component and subtract it with its own measurement
to obtain the shadowing component y(s;) using (13).

C. Distributed Cluster based OK (DC-OK)

For shadowing estimation, equations (14) and (16) require
the knowledge of the semivariogram between the unmeasured
location and all the sensor nodes in the WSN. However, this
estimation technique is practically inefficient, since OK is
a local interpolator method and the closest sensor nodes to
the unmeasured location carry more significant weight than
the distant ones. Moreover, the influence of distant sensor
measurements on the estimates is minimal [43]. Due to this, we
can restrict the assumption of stationarity of the mean of the
shadowing y(s) to the local neighborhood of the unmeasured
location. The semivariogram can be estimated and modeled
only at a few lag distances by capturing only local variations.
This means that the Kriging system (16) can be formed with
a small number of sensor nodes, n < N. Consequently,
inverting matrix A will be rapid and computational time can be
saved. Therefore, we present a DC-OK algorithm to minimize
the computation complexity of the shadowing estimation, by

Add new node
and update

72(s0)|n > 02(s0)|n+ ves

Fig. 3. DICA-RK algorithm

using only a small subset of sensor nodes. The objective is
to improve the quality of shadowing estimation by forming
adaptive clusters with the least number of sensor nodes. Note
that each cluster can be formed by a different number of
sensors. This is achieved by progressively incorporating the
most relevant sensor node to each cluster and simultaneously
updating the Kriging weights and variances. The size of the
cluster is optimized by using the Kriging variance as a metric.
DC-OK consists of:

1) Initial cluster estimation: An initial set of one-hop, in-
range, p sensor nodes, that are closest to unmeasured spatial
location sg, forms an initial cluster and begins the initial
estimation process. In this paper, the WLSE analytical fitting
method is employed. Due to this, the initialization of the
semivariogram model parameters using equation (9) require
a minimum of three sensor node measurements. Therefore, in
our algorithm, the value of the initial cluster size is set to
p = 3. The initial cluster of p sensor nodes computes the
spatial statistics of the data and the Kriging estimate through
a distributed OK operation, which consists of two steps:

a). Distributed semivariogram estimation: The EV between
all the sensor nodes in the cluster is obtained by the iterative
process of computation and exchange of information with the
sensor nodes within the cluster. Due to this iterative process,
an initial cluster is built, the field similarity is known and the
EV is estimated between all the sensor nodes in the cluster. To
compute the EV, we present an iterative algorithm described in
Algorithm 1, which solves equation (8) in a distributed way.
Sensor node ¢ closest to sg, 7 € NSO, activates and sends a
packet containing its field measurement value and geo-location
information to the next closest sensor node j to sg, j € NSO,



Algorithm 1 Distributed semivariogram algorithm (DSA)

Algorithm 2 Distributed Kriging prediction algorithm (DKPA)

Ns,: Set of sensor nodes in sy neighborhood // p: Number of
nodes in the initial cluster // h: Lag distance //

d(si,s;): Euclidean distance between sensor nodes (i,7) //
4(h): Experimental semivariogram // N,: Set of sensor nodes
included in the initial cluster.

1: Sensor node ¢ closest to sg, ¢ € N;m activates and looks
for next closest sensor node j to sq, j € Ng,.

2: Sensor node ¢ sends a packet containing y(s;), location s;
and 4(h) to sensor node j.

3: Sensor node j receives the packet and calculates the
d(s;,s;) and 4(h) using (8).

4: Sensor nodes i,j € N, look for the next closest sensor

node k to sp.

while |N,| < p do
if exists a sensor node k closest to sg, k € N, then

A new node is added to the cluster.

end if

end while

10: An initial cluster is formed by p nodes and semivariogram
is calculated.

11: Each sensor node in N, performs semivariogram model-
ing.

R A

where NSO is the set of one-hop, in-range sensor nodes that
can be found in sy neighborhood. Sensor node j receives the
packet and updates the EV value with the received data. As a
result, sensor nodes 7, j € Np form the initial cluster, where
N, is the set of sensor nodes included in the initial cluster. The
packet is iteratively relayed between the neighborhood of N,
until the next closest sensor node to sg, k € ./\/'SO, is found.
This process continues until an initial cluster with p nodes
is formed and the EV is computed between all the p sensor
nodes. Once the EV is obtained, each sensor node performs
semivariogram modeling to obtain the model parameters. In
our case, since p = 3, the iterative process is terminated when
sensor nodes i, j, k € N, are found.

b). Distributed Kriging prediction: After the parameter
estimation, the sensor nodes in the initial cluster are able
to predict g(so)|, by solving the Kriging estimator (14) and
Kriging system (16) in a distributed way. Each sensor node in
the cluster ¢ € N, creates one row r; of the Kriging system
consisting of the semivariogram I'(s;,s;) between all the
sensor nodes in the cluster and the semivariogram 7(s; — so)
to the target location sy. The Kriging system is solved by
the modified Gaussian elimination method as described in
Algorithm 2. We adapted the algorithm from [33], to work
with the cluster of sensor nodes. The closest sensor node to
sop, m € N, is chosen to begin the iterative process. The
sensor node m also constructs an additional array row of ones
r; of size p + 2 and sends it to each sensor node in the
cluster j € N,. Each sensor node j updates its row r; by
substracting its stored row with the received row r;. Note that
the content of row r; depends on the type of Kriging variant
employed. Following to the initial iteration, each sensor node
i € N, sends its row r; to each sensor node j € N, and

r;: row of Kriging system (16) created by sensor node @ //
I'(s;,s;): semivariogram between sensor nodes i and j //
L: Lagrange multiplier.

1: Each sensor node i € NV, creates row r;.

2: Each sensor node ¢ computes f(si,sj), Vj € N, using
stored distances and model parameters.

3: Each sensor node i € N, assigns values for all elements
in row r;:
ri(1:p) < [¥(si,81),7(sis82), - - -, 7(si,8p)]
ri(p+1:p+2)« [¥(si,s0), 1]

4: Closest sensor node, m € N, to sq initiates the iteration
and creates an additional row:
ri(l:p+2)«[1,1,...,1]

5: Sensor node m sends row r to each sensor node j € N,,.

6: Each sensor node j receive row r; and update its Tow r;
by:

r; < r; — I'j(l) X T

7: Sensor node i € N, sends its row r; to each sensor node
JjEN,.

8: Each sensor node j € N, updates its r; by:

r; < r; — I‘Z‘/I‘j(i)
and sensor node m also updates row r; by:
1+1-—1;/1(3)

9: Steps 7-10 are repeated for p 4 1 iterations. Then, sensor
node m sends row r,,.

10: A back-substitution is performed from sensor node m.
Hence, weights w;(so)|, for each sensor node ¢ and £ are
obtained.

updates its row elements by substracting the stored row from
the received row. As a result of iterations, the weight w;(so)|p
for each sensor node and Lagrange multiplier is obtained. The
gaussian elimination method is implemented in a iterative way
by local computation and the exchange of rows between the
sensor nodes in the cluster.

At the end, the Kriging estimate 3(so)|, can be obtained
from the Kriging estimator (14) in a distributed way i.e.,
by multiplying the weight of each sensor node with its
measurement and summing at each sensor node.

2) Adaptive Cluster Estimation: After the initial estimation
phase, an initial cluster is formed by p sensor nodes within the
range of the unmeasured location and, the local semivariogram
and kriged estimate are obtained. With this approach, the
sensor nodes in the cluster which are highly correlated to
the estimation point are given all the weights whereas the
non-cluster sensor nodes are neglected. The quality of the
field estimation can be further improved by incorporating
one or more sensor nodes to the initial cluster of p sensor
nodes. However, because of the local nature of Kriging, adding
more sensor nodes to the initial cluster does not guarantee
the best estimation value. Furthermore, adding more sensor
nodes also increases the computational complexity. Thus, a
metric with better trade-off between the size and quality is
necessary. To this end, a distributed adaptive clustering (DCA)
is proposed, which employs the OK variance in combination
with the Kriging system to optimize the cluster size. The



Algorithm 3 Distributed adaptive clustering (DAC)

p: Initial number of sensor nodes in the cluster // n: Total
number of sensor nodes in the cluster after updating process //
§(80)|n: Final field estimate value obtained through clustering
/l sg: location where field value is not known // t: Number
of sensor nodes added to the initial cluster // d.: Range
parameter of semivariogram model // d(s;,sp): Euclidean
distance between s; and sg.

1: for all sy do
22 forn=ptop+t—1do
3: Compute ;V(h)|n and ﬁ(h)‘n-‘rl'
4: Estimate field values 4(sp)|, and §(so)|n+1-
5 Kriging variances o (sg)|, and 0(sg)|,+1 are com-
puted by using equation (18).
if 02(so)|n < 0%(sg)|ns1 then
Terminate update process and cluster formation.
Field estimate value at location sy and Kriging
variance are obtained.
9(s0) = 1i(so)|n
a?(s0) = o*(s0)n

9: else

10: A new sensor node is added to the cluster and
process is restarted from line 3
n=n+1

11: end if

12:  end for

13: end for

clustering procedure for shadowing estimation is explained in
Algorithm 3.

Subsequent to the initial estimation of §(sg)|,, the Kriging
variance o2 (s)|, is computed. Note that the Kriging variance
given by equation (18) can be computed distributively by sum-
ming the local multiplications with the Lagrange multiplier. A
new sensor node ¢ € N, is added to the initial cluster, and
the estimate §(so)|,+1 and the Kriging variance o (so)|p+1
are obtained. The Kriging estimate and the weights are quickly
updated when one sensor node is added to the cluster by the
following set of equations [53]:

9(s0)lp+1 = 9(s0)lp — wq(S0)p+1[0(sq)lp — y(sq)],  (19)
w;(80)[p+1 = Wipp(s0) — wq(S0)p+1wi(Sq)lp, i =1,2,....,p,
(20)

where §(so)|p+1 is the estimate at sy using p + 1 sensor
nodes located at si,S2,...,Sp,Sq, We(So)pt1 is the weight
assigned to sensor node ¢ when predicting y(so)|p+1, 9(Sq)lp
is the Kriging estimate at s, from sensor nodes located at
S1,S2,...,8p and y(s,) is the measurement of sensor node ¢
at location s,.

The Kriging variance of clusters with p and p + 1 sensor
nodes are compared. If o2(sg)|, is greater than o%(so)|p+1,
the new sensor node ¢ is added to the initial cluster to reduce
the Kriging variance. This process is iteratively repeated with a
total number of sensor nodes ¢ > 1 until the resulting variance
02(S0)|p+t+1 is higher or equal to the one with o2(so)|p++-
Note, that d, is estimated from semivariogram modeling. As

a result, a cluster is formed with n = p+t sensor nodes. Each
sensor node is successively considered from closest to farthest
to the unmeasured location sg and included in the cluster if
the above condition is satisfied. The cluster is not only formed
by the least number of sensor nodes but also by the best set
of sensor nodes giving the best estimation value in the area.

V. COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity of
the DICA-RK at each stage of its operation.

e DSA involves the exchange of information among the
sensor nodes and local computations in each sensor node.
The local computations are basically the distance and
semivariogram calculations, which are either integer sums
or multiplications. Such computations can be neglected
since they have lower complexity when compared to
transmission. Semivariogram complexity substantially de-
pends on the number of iterations. Hence, the cost to
implement DSA is costpga € O(n).

e DKPA consists of solving the Kriging system using the
Gaussian elimination method by creating a row at each
sensor node by applying the semivariogram model and
the exchange of rows between the sensor nodes. The
complexity of the Gaussian elimination method is widely
known, which is costgqyss € O(ns) Moreover, obtain-
ing the Kriging estimate by equation (14) shows low
complexity, since it is computed by local multiplication
and a single packet transmission by each sensor node.
Therefore, the cost of DKPA is costpgpa € O(n?).

e In DAC, a cluster is formed with n = p + ¢ sensor
nodes, where p is the initial set of sensor nodes to
begin the estimation and ¢ is the number of additional
sensor nodes incorporated to improve the quality. Spatial
estimation §(sg)|, using the initial cluster requires one
operation. However, §(sg)|: requires ¢ operations since
the estimation is performed for every new sensor node
addition. Thus, the adaptive cluster estimation requires
t + 1 times the local semivariogram and the Kriging
operations.

Finally, the complexity of the DICA-RK is [t + 1| x
(costpsa +costprxpa+costpac) € O(N +n?). If the esti-
mates are required at m unmeasured locations, the complexity
further increases to O(m(N + n?)).

VI. SIMULATION RESULTS

To assess the performance of the proposed DICA-RK, we
consider a LTE-sensor network in a sub-urban environment in
a square area of 200 m x 200 m. The LTE picocell eNB
is placed at location s = [0,0]7 and the WSN consisting
of N sensor nodes with a minimum 2 m inter-node spacing
are randomly and uniformly deployed. We simulate a realistic
radio environment based on the propagation model (2) and
compute the received signal power that could be sensed by
the sensor nodes at any location. The key parameters for the
simulation scenario are presented in Table I [54], [55]. The
complete radio map is obtained by performing predictions in
a fine grid of Ny = 2601 locations, when considering a 4 m
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resolution grid on the square area under study. The DICA-RK
was tested for estimating locations sequentially and randomly.
The generated spatial maps revealed that the estimation quality
remained the same irrespective of the estimation sequence.
Note that in the proposed DICA-RK, a single sensor node can
contribute to the estimation at multiple points depending on
its location. This means that the clusters can overlap.
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TABLE I

SIMULATION PARAMETER VALUES
LTE standard parameter value
Field dimension 200 m x 200 m
Picocell BS Transmission power 24 dBm
Picocell BS antenna height S5m
Picocell BS Carrier frequency 2000 MHz
802.15.4 Transmission power -10 dBm
802.15.4 RX sensitivity -90 dBm
802.15.4 Base frequency 2400 MHz
Path-loss exponent 3
Shadow fading standard deviation | 6 dB
Correlation distance of shadowing | 10 m
Path-loss for 1 m distance 38 dB

Important factors for implementing the DICA-RK are the
network size and the initial cluster size. Based on the model (9)
presented in section III-B, our algorithm requires a minimum
of three samples to begin the semivariogram modeling. This
means that an average of p = 3 sensor nodes must cover
each estimation point. Hence, we define the outage probability
as the probability that each spatial location sg is not in the
communication range of three sensor nodes for initial cluster
formation. Fig. 4 illustrates the outage probability for different
WSNss sizes in the scenario under consideration.

In order to demonstrate the cluster formation procedure, we
consider the unmeasured location sg = [0,36]T of Fig. 5(a)
as an example. An estimation is started by an initial set
p = 3 composed by sensor nodes {V7, Vs, V3}, which are
closest to sg. After applying the adaptive cluster estimation
procedure based on minimizing the Kriging variance, sensor
nodes {V,}, {Vs} and {Vs} are added to the initial cluster.
This procedure can be seen in Fig. 5(b), which illustrates how

Cluster size

(b) Kriging variance versus cluster size

Fig. 5. An example of cluster formation procedure at so = [0, 36]T

Kriging variance changes as new sensor nodes are added to the
initial cluster. As seen from the Fig. 5(b), adding new sensor
nodes could reduce the Kriging variance further. However, the
computational complexity also increases geometrically with
the number of sensor nodes. Therefore, in this case, a cluster
is formed with 6 sensor nodes without having a significant
impact on the prediction quality and precision. Note that the
above procedure is the same for estimating every unmeasured
location. This implies that the size of each cluster changes
depending on the field behavior and especially, the Kriging
variance.

The accuracy of prediction is an important criteria to
benchmark the performance of spatial interpolation methods.
The prediction quality depends on the sensor node deployment,
the quality of measurements and the number of sensor nodes.
In order to analyze the accuracy, we consider the mean
squared error (MSE) between the ground truth z(sg ;) and the
predicted mean value Z(sg ;) for each spatial location I, where
I1={1,2,...,Np}. It is defined as,

1 -

MSE = > " (2(s0.0) — £(s00))

L3

2n

In Fig. 6, the DICA-RK is compared with a centralized
RK and a partitioned RK, and study their effect on the
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reconstruction quality. In centralized RK, sensor nodes send
their measurements and location information to a central
node for global field reconstruction. On the other hand, in
partitioned RK, the total area is divided into subregions and
a subregion head performs local field reconstruction, using
only the measurements and positions from the subregion. It is
similar to the centralized case except that the global problem is
divided into smaller problems. The solution to the prediction
problem is known only by the subregion heads. DICA-OK
stands for distributed incremental clustering algorithm based
on OK and is proposed in our previous work [34]. The
mean MSE is averaged over 50 realizations of the channel
field. Note that this average accounts for the mobility of the
sensor nodes located in vehicles. The trend of the MSE plot
proves that the quality of prediction grows with the number
of measurements. This is because the sensors are able to
exploit the spatial correlation effectively, when there are more
number of measurements. It is worth to notice from the Fig. 6,
that the MSE for DICA-RK is lower than the DICA-OK and
partitioned Kriging, and converges to the centralized case for
networks with N > 200. On the contrary, for N < 200,
the algorithm suffers from lack of sensor nodes within the
communication range to build clusters and thereby, fails to
exploit spatial correlation. In case of partitioned Kriging, since
the inter-region sensor node sharing is not allowed, the cluster
heads have less information at the borders. Therefore, the
prediction quality deteriorates at the borders, which can be
seen in the interpolated map of Fig. 8(c). Finally, we remark
that for path-loss only prediction using OLS, i.e., centralized
OLS or D-OLS, the MSE is significantly higher than other
methods that consider path-loss plus shadowing, highlighting
the importance of predicting shadowing correlation in wireless
channels.

Vehicle mobility is subject to erroneous location measure-
ments. Hence, we analyse the impact of location uncertainty
on the prediction. Sensor nodes are assumed to obtain noisy
location measurements S; = S; + L;, where L; ~ N(0,0?)
is zero mean additive white Gaussian noise with the location
error standard deviation 0. We draw o from an exponential
distribution, i.e., o "~ exp(A), where A is the average error
location standard deviation. We consider true location with
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Fig. 7. Comparison of DICA-RK with classical interpolation methods
A =6m and A = Om for estimated location Ny,. It can be

seen in the Table II how the performance degrades under the
impact of location noise.

TABLE II
PERFORMANCE UNDER LOCATION UNCERTAINTY.
WSN size 50 100 200 300 400
MSE DICA-RK 36.54 | 30.52 | 23.78 | 20.98 | 18.86
MSE DICA-RK 38.60 | 3395 | 2849 | 2635 | 25.13
under location uncertainty

We also compare the performance of DICA-RK with two
classical interpolation methods such as natural neighbor and
spline. Fig. 7 demonstrates that MSE for the classical inter-
polation methods is significantly higher than for the DICA-
RK. To illustrate the excellent reconstruction quality of our
algorithm, we present interpolated maps in Fig. 8, where all
the interpolation methods presented are visually compared. An
important aspect to notice is the performance of DICA-RK
with N = 50, where predictions rely largely on path-loss only.

VII. CONCLUSION

In this paper, we proposed a novel distributed incremental
clustering algorithm for radio map reconstruction as a powerful
tool to realize the vision of 5G automotive. The algorithm
minimizes the total number of sensor measurements required
for radio map reconstruction through distributed processing
and clustering of sensor nodes. The complexity of Kriging is
significantly reduced while retaining its excellent prediction
quality. The Kriging variance used for data screening has
proved to offer a good trade-off between quality and com-
plexity. Simulation results highlight the fact that both path-loss
and shadowing components are important in wireless channel
prediction. In terms of prediction quality, regression Kriging
leads to a superior performance than the plain regression and
standard OK. Our future work aims to apply the proposed
algorithm to real field measurements. In addition, mobility pat-
terns will be included to account for the temporal correlation
of the field.
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