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Abstract—Radio environment maps can be a powerful tool
for achieving efficient context-aware resource allocation in 5G
heterogeneous networks. In this paper, we consider an het-
erogeneous network formed by a traditional cellular network
and a wireless sensor network. The role of the wireless sensor
network is to estimate the radio environment map of the cell
using a geostatistical interpolation technique named Kriging.
A distributed clustering algorithm was proposed in a previous
work in order to decrease the complexity of the estimation. In
our contribution, the clustering formation process is modified to
include the communication cost as a metric to determine which
nodes are included in each cluster. Simulation results show that
the proposed algorithm improves the estimation quality for sparse
wireless sensor networks, and preserves the network lifetime by
forming clusters with an average of 5 nodes.

I. INTRODUCTION

Heterogeneous Networks (HetNets) have received increas-
ing attention over the last years as one of the potential tech-
nologies to be included in future 5G mobile communications
standards [1]. HetNets have been proposed as a solution to deal
with the enormous traffic growth predicted for the upcoming
years, generated not only by traditional mobile users, but
also by new paradigms such as the tactile internet [2] and
the internet of things (IoT). By definition, an HetNet should
combine different radio access technologies using different
carrier frequencies in a smart way, including traditional macro-
cell Base Stations (BSs), pico-cells, Wireless-Fidelity (Wi-Fi)
or relays.

One of the open questions is how 5G mobile commu-
nications could benefit from the heterogeneity provided by
HetNets. Basically, context or side information is needed
in order to perform an appropriate context-aware resource
management at the different layers of the HetNet. In this paper,
we consider a HetNet which combines a traditional macro-cell
BS with a Wireless Sensor Network (WSN) and explore Radio
Environment Maps (REMs) [3], [4] as a key tool for providing
this context or side information to the macro-cell BS.

WSNs are systems comprising a large number of sen-
sors with the objective of monitoring a spatial physical
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phenomenon. Traditional WSNs applications require a high
density network topology in order to obtain spatially correlated
data. In our case, the REM is formed by the spatial power
spectrum radiated by the macro-cell BS. The role of the WSN
is to estimate the value of the field at the positions where the
sensors are located, and to provide spatial interpolations of
the field values at the remaining locations where no sensors
are available. This knowledge will be forwarded to the BS for
context-aware resource allocation.

In this paper, the spatial interpolation for field estimation is
performed using a geostatistical tool called Kriging [5]-[10],
and more precisely, the ordinary Kriging version, which does
not require the mean of the spatial field under estimation to
be known and presents a lower complexity. References [5]
and [6] are used as a basis of this work. In these references,
two distributed algorithms based on Kriging are proposed for
field estimation, which work on two phases. In a first step, the
semivariogram, describing the spatial correlation among field
values, is calculated in a distributed manner using an iterative
algorithm. In a second step, sensor nodes apply Kriging to
obtain the field value estimate. Reference [6] extends the
work on [5] by adding a clustering algorithm that allows
the semivariogram and kriging calculations to be performed
distributively by clusters of nodes. Initial clusters are formed
based on the Euclidean distance to the location where the
field value is unknown. The second metric of interest is the
Kriging variance, which can be seen as an approximation
of the estimation error. New nodes are added to the initial
cluster as long as the Kriging variance decreases (and the field
estimation is improved) and the candidate nodes are in distance
range with the initial cluster nodes. The proposed distributed
framework is compared by means of simulations with a more
traditional centralized approach.

In this paper, we modify the clustering algorithm proposed
in [6], where nodes were added to a cluster exclusively based
on a distance criterion, by a more realistic metric based on
a communication cost model, which effectively takes into
account the random nature of the propagation channel. Several
communication cost models are extracted from the literature
and compared in order to choose the more appropriate for our
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Fig. 1: HetNet combining a base station (red cross) with a
WSN of 200 nodes

HetNet. Simulation results are provided to compare the perfor-
mance of the communication cost based clustering algorithm
with the original one from [6].

The remaining of the paper is organized as follows. In
section II, the problem statement is formulated. Section III
reviews different communication cost models available from
the literature. Section IV describes the modified clustering
algorithm and V presents the simulation results. The paper
concludes with section VI.

II. PROBLEM STATEMENT

The HetNet is modeled as a set of N nodes V =
{1,2,..., N}, randomly located following a uniform distribu-
tion over the macro-cell area, where each node i is located at
position x;, with x; € R2, Vi. The macro-cell BS is located
at the center of the area (see Fig. 1). Due to transmission
power limitations, the range of transmission for each node is
limited to a distance R. Therefore, connectivity between nodes
i and j only occurs if the Euclidean distance fulfills d; ; < R.
The field measured by a node located at x; is denoted by
V(xi), i = {1,2,..., N}. Note that nodes are assumed to be
able to calculate inter-node distances.

In order to estimate the REM, estimates of field value V (xo)
at locations xy where the field is unknown are obtained by
means of the Distributed Clustering Algorithm (DCA) [6]. The
field value at location x; is obtained as:

V(XL) = P(Xz) + S(Xi), (1)

where P(x;) is the average received power depending on the
path-loss model and S(x;) is the shadow fading following a
log-normal distribution [11]. The received power at location
x; from N, single antenna transmitters is calculated by the
simple path-loss model:

N:
P(x;) = Kqp + 10alogyq do + 101ogy, (Z d;f) , (2
t=1

where K is the constant path-loss factor, « is the path-loss
exponent, dg is a reference distance for antenna far field and

d;+ is the distance between node location x; and transmitter
location x;.

The DCA algorithm from [6] builds upon two steps: semi-
variogram analysis and Kriging prediction. The semivariogram
measures the correlation between field samples. The Empirical
Semivariogram (EV), 4(h), is defined as follows:

S(h) = — = x;) — V(x;))?
v<h>—2|N(h)|N§(;)(V( i) = V)% 3)

where h = x; — x; is the lag distance, and V (x;) and V (x,)
are field values at spatial locations x; and Xx;, respectively.
N (h) is the set comprising all location pairs (x;,X;) such that
x; —X; = h and | - | denotes its cardinality. Kriging technique
replaces the EV by a semivariogram model, which in this case
is the spherical model given by expression:

) = { e +e {3(E8) - S22,
where c1, co and c3 are nugget, sill and range variables,
respectively. In a second step, ordinary Kriging prediction is

performed, where the Kriging interpolator at target location xq
is given by:

N
Vixo)ly =Y win (x0)V (%), 4)
=1

where N is the number of nodes, w;|y is the weight assigned
for node ¢ from an estimation performed using /N nodes and

V' (X0)|n is the estimated value. These weights can be obtained
by solving the following equations:

A\ =b, (&)
where
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A(xo —xn), DT, (8)

A= [U}h’wz,..

b = [¥(xo — x1),7(x0 — X2), . ..
and £ is the Lagrangian.

III. COMMUNICATION COST MODELING

In reference [6], REM estimation is achieved by means of
the DCA, which adaptively builds clusters of nodes in order
to improve the field value estimation. The metrics involved in
the cluster formation are the Kriging variance, which can be
calculated as:

N
o?(Xo)|n = D wipn (%0)7(Xi> X0) + L (o), )
=1

and the Euclidean distance between sensor nodes or between
nodes and the location where the field value is unknown, xg.
Basically, once an initial cluster is build with the ¢ sensor
nodes which are in-range and closest to the target location
Xo, new nodes are added one by one as long as the Kriging



variance decreases and they are in-range with the cluster
nodes.

In this paper, we modify the clustering formation algorithm
by introducing the communication cost between sensor nodes
as a criterion to adaptively modify the initial cluster. Com-
munication cost in WSNs has been widely explored in the
literature, e.g. [12]-[17]. One of the most well-known reference
in the field is [12], where the objective is to reduce the
energy dissipation required to communicate between nodes.
To this end, expressions for the energy required to transmit
and receive messages of K bits are derived, taking into
account aspects such as the power amplifiers, the transmitter
or receiver circuitry and the distance between nodes. The
same authors extend their work in reference [13], where the
energy consumption expressions are modified to consider free
space (proportional to dfﬁ ;» wWhere d; ; is the distance between
node location x; and node location x;) or multipath models
(proportional to d;{ -

Authors in [14] consider the problem of minimizing the
total communication cost of a WSN with a sink responsible of
gathering data sensed by network nodes. The WSN is modeled
as a network graph, where each link has a positive weight w; ;
and a data rate 7; ; assigned. The communication cost function
is given by:

9(Tij, Wi j) = Tij, Wi ;-

= J°

In the case of wireless communication links, w; ; i

where « is the path-loss exponent 2 < o < 4.

Reference [15] proposes an algorithm to set up and maintain
a network between nodes that are randomly deployed over
an area with capability to move guaranteeing a minimum
energy usage. The power consumption model includes three
terms: the power needed to transmit, the power needed to
receive (when a node needs to relay a packet) and the power
needed to process (negligible compared to the other terms).
The dominant contribution is the power needed to transmit,
which the authors model as:

Pr, = td};,
where ¢ is a constant that indicates the predetection threshold
at each receiver.

In references [16],[17], the following communication cost
model is derived:

No(2B — 1)SNR

fo=—7—"—""",
Gi,j

(10)
where g; ; = x;;d; ;" is the channel gain between nodes @
and j and x;; is a constant chosen randomly following an
exponential distribution with mean equal to one. The total
number of bits is defined by B. p (u > 0) is a parameter
that depends on the particular modulation scheme. SNR is the
desired Signal-to-Noise ratio, while N, is the power spectral
density of the noise.

When analyzing all four models we observe that all the
parameters (except distance) in [12], [14] and [15] will be
constant in every node. This means that when calculating

communication cost between 2 nodes, the only parameter that
will produce different costs between pairs of nodes will be
the distance. In these three models, pairs of nodes with larger
distances will show higher communications costs. Therefore,
introducing any of these models when modifying the DCA
would be the same as forming clusters of nodes based on
the distance, which is one of the criteria in the DCA case.
Considering this fact and that communication cost model in
(10) includes parameters, besides distance, that do change in
each pair of nodes as a consequence of taking into account
the random nature of the propagation channel, model (10) was
the one chosen to modify the original DCA. However, since
the DCA requires the exchange of messages with different
number of bits and this characterization is out of the scope of
this paper, expression (10) is simplified as:
_ NoSNR

Je ;
Yij

Y

where the ;. parameter depending on the modulation scheme
is assumed to be common to all transmissions.

IV. DISTRIBUTED CLUSTERING ALGORITHM BASED ON
COMMUNICATION COST

In this section, the DCA algorithm from [6] is modified to
include the communication cost model from expression (11)
as one of the criteria to adaptively build the clusters of nodes.
In the original DCA, an initial set of ¢ nodes, the ones in-range
and closest to the target location X, obtain the initial Kriging
estimation V(XO)\t (details on distributed semivariogram and
kriging computation can be found in [5]) and compute the
initial Kriging variance from (9). After this process, a new
node, which is the one in-range and closest to initial cluster
nodes, is added to the cluster, if exists, only if the updated
Kriging variance decreases (which means that the estimation
is locally improved).

The proposed Distributed Clustering Algorithm based on
Communication Cost (DCA-CC) replaces the distance crite-
rion by the communication cost model from (11). First of
all, a communication cost threshold needs to be set according
to the HetNet parameters in order to avoid forming clusters
with a large number of sensors, which directly impacts on
the battery life of the sensors. For each target location xg
in the area of interest, an initial cluster is formed with the ¢
nodes showing the lowest communication cost, as long as this
cost is below the predefined threshold. After this, we obtain
the initial Kriging estimation V (xo)|; from (4) and the initial
Kriging variance from (9). Candidate nodes to be included
in the cluster are nodes which show a communication cost
with respect to the target location and nodes in the initial
cluster below the predefined threshold. If such candidates exist,
the node showing the lowest communication cost is added to
the cluster and the Kriging variance updated. If the Kriging
variance decreases, a new node will be added to the cluster.
Otherwise, this means that the estimation cannot be improved
and the process stops.



Algorithm 1 DCA-CC

N: Number of nodes in the network // ¢: Initial number of
nodes in the cluster / f!*: communication cost threshold //
f59: communication cost between sensors located in x; and
x; // fi: communication cost between sensor located in x;
and xg.

1: fi calculated according to HetNet parameters
2: for all xi do

3:  Find set T with t = |7 nodes fulfilling min ;< yon f7
4;  Initial field estimation V (xo)l;
5. Initial Kriging variance o(x)|;
6: fork=t+1to N—-t—1do
7: Find set of candidate nodes C such that fi < £ and
< jeT, iecC
8: Add node which min f?, i € C and min f%/, j € T
9: Estimate field value V (xo)|
10: Calculate Kriging variance o(Xo)|r
11: if UQ(Xo)lkfl SJQ(X0)|k,
then
12: Updating process is terminated
13: else
14: Process is restarted from line 7
k=k+1
15: end if
16:  end for
17: end for

As a result, and due to the random nature of the propagation
channel, clusters of nodes can be formed with nodes which are
not the closest ones in Euclidean distance to the target location
Xo. In principle, this could be a drawback for the DCA-CC and
more details are given in Section V. The proposed DCA-CC
is summarized in Algorithm 1.

V. SIMULATION RESULTS

Simulations were performed considering the scenario de-
picted in Fig. 1, where N sensor nodes are randomly deployed
in a square area of 190 x 190 m. The REM is generated
following equations (1) and (2). Path-loss exponent takes the
value «=3, reference distance dyp=10 m, N; = 1, standard
deviation of shadow fading is 6 dB and K = 38 dB. The BS
maximum transmit power is 24 dBm, whereas sensor nodes
transmit at —10 dBm maximum, following LTE (Long Term
Evolution) standard parameters.

The first step is to obtain the predefined communication
cost threshold. In order to determine this value, the DCA-
CC was evaluated in a network of N = 100 nodes for
communication cost values ranging from 0 to 60 dB. Then,
the Minimum Square Error (MSE) between each estimated
REM and the original one was computed. Fig. 2 shows how
the MSE decreases with the increase of the cost threshold. This
means that as the threshold relaxes, more nodes can participate
in the estimation process and therefore, the quality increases.
From the figure, and considering that the lowest the threshold
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Fig. 2: MSE versus communication cost threshold.
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Fig. 3: MSE versus number of nodes for the DCA and DCA-
CC algorithms.

the least number of nodes participating in the estimation, a
communication cost of 50 dB was predefined.

The quality of the estimation of the REM has been evaluated
for different sizes of WSNs. To this end, the MSE between
the original and the estimated REMs is calculated and shown
in Fig. 3 for the DCA and DCA-CC algorithms. Recall that
the original DCA forms clusters with nodes that are in the
radius of the unknown location. It can be seen that the MSE
generally decreases in a fast manner with the increase in the
network size. This figure shows that for a network size that
is inferior to 150 nodes, the DCA-CC achieves a lower MSE
than the original DCA. On the other hand, for a network of
N > 150 nodes, the values for both scenarios are very close
to each other.

Fig. 4 shows the original REM and the estimations obtained
by the DCA-CC for N = 50, 100 and 250 nodes. Following
the results in Fig. 3, as the size of the network increases,
the REM estimation quality increases as well. This is aligned
with the Kriging theory which indicates that if data locations
are densely located throughout the area of study, a high
estimation quality will be obtained. The REM estimated with
50 nodes shows very small resemblance with the original map.
Regardless of this, it can be noticed that it correctly locates
the areas with higher power spectral density.

HetNets, and in general 5G networks, require very precise



@

Fig. 4: (a) Original REM (b) Estimation with N = 50 (c) Estimation with N = 100 (d)
Estimation with N = 250.

REMs to be able to allocate network resources as efficiently
as possible. As a consequence of this, estimation quality is
an important metric when reconstructing the REM. On the
other hand, there is network lifetime. In WSNs, the lifetime
is defined by the battery capacity. Since battery capacity is
usually very low and the possibilities of changing or charging
the nodes are very low as well, nodes must act as efficiently
as possible to avoid wasting energy unnecessarily. Considering
this, it is interesting to understand the size of the clusters that
were created to perform the estimations for every network size.

Simulations results showed that for all network sizes, there
were a few clusters containing up to 20 nodes. This indicates
that in those particular cases, many nodes had to be added
to the initial cluster until finding a node that increased the
Kriging variance, since a very high Kriging variance was
already obtained with the estimation performed by the initial
cluster. Fig. 5 shows the cluster that was formed to estimate
the value at location xo = (—87,—39). This figure indicates
that all nodes surrounding x, were included in the cluster.
Consecutively, the order in which these nodes were added to
the cluster was studied and revealed that nodes farther away
from xy were being added before closer nodes. If nodes far
away are included before nodes that are closer, it is natural
for the Kriging variance to be so high. Recall that the Kriging
variance is the estimate of the estimation error and then,
obtaining a big Kriging variance is equivalent to having a very
poor estimation. A very poor estimation is obtained because if
Xy is estimated with nodes far away, since these nodes are not
spatially related to it, they highly impact the interpolation and
provide a bad estimation. The theory behind Kriging explains
that Kriging technique will assign a high weight to nodes close
to the unknown location and a very low weight to nodes far
away. Then, since nodes far away will have a minimum impact
in the estimation, the theory suggests to remove these nodes
from the calculations.

To understand why nodes far away were included in the
cluster before closer nodes, we need to review the communi-
cation cost model. Recall that the communication cost is the
metric that is used to define which nodes can be considered
candidates for the cluster and in which order these nodes are
added to it. When analyzing the cost model and reviewing
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Fig. 5: Example of a cluster of 20 nodes formed to estimate
location (-87,-39). The red dot is the target location, whereas
blue dots are the nodes included in the cluster.

TABLE I: Average cluster size

N 50 100
5.49 | 5.44

250
5.25

Average cluster size

the spatial distribution of the cost, we found out that in
some cases, nodes close to the x; would receive a much
higher cost than nodes far away. This is caused by the fact
that the communication cost model includes a shadow fading
component related to the received power and a parameter that
is chosen randomly from an exponential distribution. These
factors vary in such a way that they result in calculating,
in some cases, a higher communication cost for close nodes.
Therefore, even though these nodes are closer to the unknown
location, they are included into the cluster after nodes that are
far away but with a lower communication cost.

Regardless of these unusual situations in which clusters
contain a big number of nodes, Table 2 shows that for different
network sizes the average cluster size is close to 5 nodes,
which is similar to the results for the DCA in [6]. This table
and the results shown in Fig. 4 indicate that reconstructing
a REM by using a distributed clustering algorithm based on
communication cost modeling gives good results from both
perspectives, estimation quality and network complexity.



VI. CONCLUSIONS

A distributed clustering algorithm based on communication
cost has been presented for the estimation of radio environment
maps. This algorithm builds clusters of nodes for distributed
estimation via Kriging interpolation as long as the links
between those nodes and between the nodes and the location
of the field to be estimated show a communication cost
below a predefined threshold. Simulation results indicate that
the proposed algorithm outperforms a distance-based previous
version for scenarios with sparse networks, achieving a good
estimation quality for dense networks and keeping the average
number of sensor nodes included in each cluster in a feasible
number from the point of view of battery life. In future work,
the impact of the predefined communication cost threshold
will be further explored, and an analytical framework will be
derived.
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