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Abstract—In this paper, we consider a sensing-based spectrum the quality of service of the PU network; (iii) sensing-based
sharing scenario in cognitive radio networks where the overall spectrum sharing (SSS) [5], where the CR user senses the
objective is to maximize the sum-rate of each cognitive radio gia4,5 of the channel and adapts its transmit power based
user by optimizing jointly both the detection operation based . . .
on sensing and the power allocation, taking into account the on the decision made by spectrum sensing. In t.h's paper, V\_’e
influence of the sensing accuracy and the interference limitation consider the SSS scheme, where the CR transmitter deals with
to the primary users. The resulting optimization problem for each a performance tradeoff between maximizing its sum-rate and

cognitive user is non-convex, thus leading to a non-convex game,minimizing the performance degradation caused to the PU.
which presents a new challenge when analyzing the equilibria of

this game where each cognitive user represents a player. In order
to deal with the non-convexity of the game, we use a new relaxed o Related Work
equilibria concept, namely, quasi-Nash equilibrium (QNE). A
QNE is a solution of a variational inequality obtained under the The problem of maximizing the rate of the CR user under
first-order optimality conditions of the player’s problems, while  perfect sensing information (e.g. the probability of miss detec-
retaining the convex constraints in the variational inequality jon and false alarm are zero) has been widely studied in the
problem. In this work, we state the sufficient condltlonslfor literature [6]-[8]. However, in practice, the reliability of the
the existence of the QNE for the proposed game. Specifically, , y U At
under the so-called linear independent constraint qualification, PU detection at the CR transmitter is limited by several factors,
we prove that the achieved QNE coincides with the NE. Moreover, such as the attenuation due to path-loss, as well as shadowing
a distributed primal-dual interior point optimization allgorithrr] and fadmg As a consequence, a certain degree of performance
that converges to a QNE of the proposed game is provided yeqradation of the PU is usually unavoidable. In this case, the
in the paper, which is shown from the simulations to yield . .
a considerable performance improvement with respect to an influence of the Sensing accuracy on the rate of the CR user
alternating direction optimization algorithm and a deterministic ~ Should be taken into account in order to perform an appropriate
game. power allocation. Some previous works have focused on the
Index Terms—Cognitive radio, quasi-Nash equilibrium, non- c_omb_ination of the sensing information with the rate of a
convex game, variational inequality theory. simplified CRN with one CR user and one PU [9]-[12]. The
authors of [9] consider the sensing-rate tradeoff for the OSA
scheme assuming a single channel. The problem of designing
the optimal sensing time and power allocation strategy that
He concept of cognitive radio (CR) has been proposed smximizes the average rate for the OSA and SSS schemes
a promising technology to improve spectrum utilizatio@re studied in [10] and [11], respectively. The work in [11] is
efficiency while limiting the performance degradation causezktended in [12], where the problem of finding the optimal
to primary users (PUs). The fundamental principle of a CRensing time and power allocation is studied based on the
network (CRN) is to enhance the efficiency and flexibility imutage capacity constraint and the truncated channel inversion
spectrum usage by allowing CR users to access the resougsstraint, namely, a sensing-enhanced spectrum sharing CR
owned by PUs in an opportunistic manner [2]. There asystem. All the aforementioned schemes are applicable only
currently three main approaches for cognitive communictr a single CRN.
tions regarding the way secondary users access the licenked distributed multiuser scenario, CR users can self-enforce
spectrum: (i) opportunistic spectrum access (OSA) [3], whetlee negotiated agreements on the usage of the available spec-
the CR user decides to access the channel only if the RUmM. Every CR user aims at the transmission strategy that
transmission is detected to be idle; (ii) spectrum sharing [4haximizes its own utility function, usually the average rate.
where the CR user coexists with the PU and applies dmis inherently competitive nature of the distributed multiuser
interference constraint without sensing information to ensuseenario leads to a non-cooperative game (NCG) [13], where
the solution of the game is the well-known concept of Nash
This work was supported by the Spanish MEC Grants TEC2010-19548qilibrium (NE). The NCG theoretical model for power allo-
C04-04 “COSIMA”, TEC2010-19545-C04-01; CONSOLIDER-INGENIO _ "0 =, .
2010 CSD 2008-00010 COMONSENS and by a Telefonica Chair. Part of tf@tion in the SISO and MIMO interference channels has been
material was presented at the IEEE International Conf. on Commun. (IC@idely studied in [14]—[18], while the equilibrium model based

2012 [1]. The authors are with the Group of Information and Communicatiqyp pricing has been discussed in [19] and [20]_ However. the
Systems (GSIC), Institute of Robotics and Information & Communication ’

Technologies (IRTIC), University of Valencia, 46980, Valencia, Spain (e-mai?OWer allocqt'on schemes proposedlln the mentioned papers
Huang.Xiaoge@uv.es, Baltasar.Beferull@uv.es, Carmen.Botella@uv.es). are not applicable to CR systems, since they do not provide
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any mechanism to limit the performance degradation caused t
PUs. Recently, NCG theory has been successfully applied to
the power allocation problem in CRNs [21]-[25]. The finite-
dimensional variational inequality (VI) method [26] hasshe
used in [21]-[24] to analyze the existence and uniqueness
of the solution for the NCG in the CRN. Those works are
extended in [25] for a more practical scenario with imperfec
channel state information. However, in [21]-[25], no sagss
performed by CR users. The sensing information is consitlere
in [27]-[29] for an OSA scenario, and the analysis of the
equilibria of this game is based on a new concept called guasi
Nash equilibrium (QNE) [30]. QNE is a solution of a VI
problem obtained under the first-order optimality conditi@f
each player’s optimization problem, while retaining thewex
constraints in the defining set of the VI problem. The prefix
quasi is intended to signify that a NE must be a QNE under
certain constraint qualifications (CQs) [30].

Primary System

Cognitive Radio System

Fig. 1. System modelN PUs andM CR Tx-Rx pairs. PUk uses channel
k,k=1,..,N.

B. Contributions

In this paper, the resource allocation problem among CR
users for the SSS scheme is analyzed as a strategic NCG,
where each CR user is selfish and strives to use the available
spectrum in order to maximize its own sum-rate by considgerin
the effect of imperfect sensing information. The resultiagne
is non-convex due to non-convexity in both players’ objesti
functions and constraints. Therefore, traditional mathteal
tools are not applicable to show the existence of an eqiuitiior
for this game. We analyze the non-convex non-cooperative
power allocation game (NNPG) based on the new relaxed
mathematical equilibria concept introduced in [30], the QN
The main contributions of the paper are the following:

« We propose a NNPG, where each CR user aims at
maximizing its own sum-rate by jointly optimizing the
sensing information as well as the transmit power over
all channels, which differs from the disjoint case, called
deterministic game, as shown in [21]-[25].

constraint qualification, the achieved QNE coincides with
the NE. Finally, an iterative primal-dual interior point
(PDIP) algorithm that converges to a QNE of the pro-
posed game is provided here. The PDIP algorithm can run
at each node in parallel, since it requires only the local
information of each CR user (e.g. its own transmit power
and the channel gain), and hence, it can be regarded
as a distributed solution. Simulation results show that
the PDIP algorithm vyields a considerable performance
improvement, in terms of the sum-rate of each CR user,
with respect to previous state-of-the-art methods, such as
alternating direction optimization algorithm [1] and the
deterministic game proposed in [25].

« Deviating from the constraints considered in [9]-[12]The rest of the paper is organized as follows. Section I
[21]-[25], [27]-[29] (such as an interference temperatuggresents the system model. The analysis of the NNPG with
and outage probability constraints), a rate-loss comdtraimperfect sensing information is presented in SectionTiHe
is introduced in order to effectively protect the PU frontoncept and the existence of a QNE is discussed in Section
harmful interference caused due to the imperfect sensiig Section V provides a detailed analysis of the primalidua
information. The optimization problem is analyzed in twadnterior point optimization algorithm. Extensive perfaance
different limited regimes, namely, power budget limite@dvaluation results are presented in Section VI. Section VII
regime and rate-loss limited regime. The performance sfates the conclusions.
the CR users in these regimes are evaluated extensiviiytation: Vectors and matrices are boldfade, | , =

through simulation. [1, %2, ...,zN], Vxf(x) denotes the gradient of functigiix)

In addition, a distributed cooperative sensing schenag pointx, Jy) denotes the Jacobian matrix of the vector
based on a consensus algorithm is considered in thmction f(x), Diag denotes the diagonal matrix, denotes
proposed game for a SSS scenario. Compared with therpendicularity”,||x|| and||x||~, denote the Euclidean norm
OSA scenario discussed in [27]-[29], in the scenario, tland the maximum norm of vecter, respectivelyR” denotes
CR users can coexist with PUs, and adjust the transrttie nonnegative:-dimensional spaceP denotes powerpP
power on each channel based on the sensing result (seeotes probability. Tx and Rx denote transmitter and vecgi
Section Il for details). respectively. The variables’ .., 7y, ., ht, ., andhj, . denote
The fourth major contribution of this paper is to provehe instantaneous channel gains in charinbetween CR-Tx
that the proposed NNPG can achieve a QNE under certaiand CR-Rxi, CR-Tx j and CR-Rxi, CR-Tx ¢ and PU, PU
conditions, by making use of the VI theory. Meanwhileand CR-Rxi, respectively. We use CRto indicate theith

we show that, under the so-called linear independe@R pair.



TABLE |

II. SYSTEM MODEL FOUR INSTANTANEOUS RATES ATCR-RX i
Consider an OFDM-based communication system wWNth [~Actual status| Detection result Actual rate at CR-RX
PUs, each one using a different channel (PWses channel o i R . (1+ Pi,o\h}&m\z)
k, k=1,..,N), and M CR Tx-Rx pairs which are close to o o koo T T2 o
each other. CR users are allowed to accessNhehannels Ho Hy g Thor = logs (1 + P’“I‘hi’“‘)
simultaneously, thus the interference in a given channalies : TEANTS
to the interaction of the CR users (see Fig. 1). Before agugss Hik Ho,k Tk,10 = 1082 (1 + W)
the channel, each CR-Tx must first perform spectrum sensing = = P 1 (1 N p,;y'l\h;gyc’fF)
to determine the status of each channel. In this paper, we —“* o "k11 = 082 Tt Pi pe

assume that simultaneous spectrum sensing of alMtohan-
nels is performed by each CR-Tx using an energy detection

scheme. The detection problem on each channel is modelﬁ/etui (01 )?) Hi.@ = LM sz\i1((02,n)2 + P pc)
as a hypothesis test, where hypotheAig; represents the b A (0h1)? = L5 S ((0,)? + Pl ,.)?
absence of a PU in channk] and the alternative hypothesis (5)

H, j represents the presence of a PU in chakn8pecifically, o o ‘
for channelk, at the discrete sample the received signaj;, e probabilities of detectio®; ; and false alarnPy, ,, for

at the CR-Rxi, i = 1,2, ..., M, is given by [31]: the k-th channel for CR-Tx, i = 1,2, ..., M, are given by:
Hoxt i) = i) W Pi ot = O <;7“> ©
Hip: yp(l) = Si(0) + nx() ) R
i (i Tk — Mg,
where n;, (1) denotes additive background noise on #h¢h Pra(tis 1) = Q <%> )
channel, which is assumed to be independent and identically k.1

distributed additive complex Gaussian with zero mean amg this paper, we consider a SSS scheme, where CR-Txs trans-
variance(a}, ,,)*, and S (1) stands for the PU transmit signalmit simultaneously on th& channels and adapt their transmit

in channelk. Let P . = |Sk|*|h;. ,.|* denote the received power on each channel based on the sensing information. If
power by CR-Rx:i from the PU in channek, and L, = tf; channelk is detected to be idléH, ), CR-Tx i transmits
denote the number of samples, wherés the sensing time using powerP;, ,, whereas if channet is sensed to be active
and f, represents the sampling frequency. Under an energy, ,), then each CR-Tx transmits using a relatively lower
detection scheme, for each chantelthe decision is based power Py ,, in order to reduce the interference caused to the
on the sum of the received energy over an interval of iBU. This scheme can be seen as a hybrid approach between
samples, that isy;, = Zf;l lyi(1)|?. Note that the longer protecting the PU and improving the spectrum utilization.

the sensing time, the better the energy estimation accuracy.
However, for a fixed frame length, with a longer sensing time m
t, the transmission time has to be reduced. In order to improve
the sensing accuracy without increasing sensing ttme
distributed cooperative scheme is adopted here. We assumepectral efficiency is the main overall goal of the CR
that the nearby CR-Rxs have the possibility to exchan§éers. thus the objective function chosen by each user to
their local measurements, thus the cooperative sensing maximized is the sum-rate over all the channels. In this
be implemented by the distributed consensus algorithm fro¥gction, we analyze the problem of optimizing the power
[32], which requires only the interaction among nearby cpallocation for the CR users in order to maximize the sum;rate
Rxs. Let us denote by the number of cooperative CR-Rxs taking into account the detection result. Considering it f
State update occurs at discrete time for each CR-Rx locaffjat the spectrum sensing information is not always rediabl
and the final average consensus regjlt(!) = Zij\il yi(l) which |mplles having probabilities of detectiof, ; < 1 and

is asymptotically reached for all nodes [32]. The final segsi Probabilities of false alarr®;, ., > 0, we have four different
decision at each CR-Tx is made by comparing the consendgfantaneous rates at CR-Rin channek, as shown in Table

JOINT OPTIMIZATION OF DETECTION AND POWER
ALLOCATION

result with a primary detection threshoid as follows [33]: |- In this table, the first subindex number of (the third
column of Table 1) describes the actual status of the PWJ (
L i H i H w1 : H
Yio = 2121 | k,c(l)|2 ;H;;; i, k=1,2,...,N. (3) for idle and “1” for active), and the second subindex number

indicates the sensing result obtained by energy detedj;qp.

According to the Central Limit Theorem, for largé,, and I} ,, presenting the noise and the interference observed
yi (I) are approximately normally distributedy; . ~ by CR-Rxi from other CR-Txs in channdl, under sensing

J\/(u}'w, (0270)2) for Ho ., and Yy ~ N(Hi,lv(ai,l)Q) for resultsH,, and H, ; are given by:

Hy 1., where: ) ) M . g
’ 2 2
Lo = (o))" + E i1 ot Py o h?cz,cr| (8)

i i\2 MkOZ%Z?il( ;lcn)Q i i \2 M i 1pdi |2
N(Mk,m (Uk,o) ) : _ L M (4) Ik,l = (Uk,n) + Zj:l i Pk71|hk,cr| (9)




Let P(Hy 1) denote the prior probability that thieth channel In order to simplify the development of (15), we uskg, (e)
is idle, andP(H, ;) denote the prior probability that theth instead oflog, (1+2), which amounts to rewrite this constraint
channel is active. The total achievable average rate at CR-&:

i based on a given sensing timedenoted ag’ (P}, Pj, 1%), |Sk|2 log, e . |Sk[2log, €
P{ = (PN, Ph = [PLiy 7 = [, can be (1= TR)PU) =0 = P PL—
formulated as follows: S 2| k1

v S () (1 - Py BB (16)

> (P00 (= Phyalrron + Ph s ) IR

k=1 Given this, the new rate-loss constraint results in:

+ P(Hi) ((1 — Pha(Ti) k10 + Pé,d(fé)ri,u» (10) LRI LI (1Pl )R <0 (17)

The most important constraint of a CRN involves protectingnere ', . = (1 — T'x)/(0}, ,,)%. In fact, sincezlogye >

the PU from harmful performance degradation. This constraiog:(1 + =), the actual rate-loss gap resulting from the con-
can be imposed on an individual or global level. The indigidu Straint (17) is not the same as in the original constrain).(15
constraint requires the transmit power of each CR user Ife modified constraint (17) is more restrictive than (15),
channelk to be always less than a given threshold. Instead 8 Shown in Sec. VI. The resulting solutions are valid and
specifying individual constraints on the transmit poweeath Satisfactory, providing the sum-rate as the original awmst
CR user per channel, the global constraint adapts the tiansth>) obtained with a smaller rate-loss gap. Further degais
power of each CR-Tx depending on the actions from oth@/en in Appendix A. Furthermore, the total transmit power
CR users that share the same channel, so that the accumul@fe8ach CR-Txi over all channels should not exceed its
interference from all the CR users at a PU does not exce®@ximum allowed power. The power budget constraint for
a given threshold. Though the global constraint may result $ach CR-Txi can be formulated as:

higher network rate (with price mechanism), it requiresrgda V. _ _ _ _ o
information exchange and coordination among CR users, ag <7D(H0,k)((1 = Prta(T)) Pro + Pr o (Th) P1)
shown in [28], [29]. In this paper, we assume that the CR user§=!

are qot willing to (_exchange information. There_fore, We use & i p(ry (Pl (ri)PL, + (1—Pi (i) Pi,) ) < P,
individual constraint, namely, rate-loss constraint,esign the ' ' ’ '

power allocation, ensuring that the performance degranati (18)

experienced by each PU is bounded. This individual comgtrajyhere P . denotes the maximum total transmit power of the

leads to a distributed scenario (see Sec.V). Note that ool | cr-Tx Z-H(l)ver all theN channels. In a real system, a high ,
information exchange among nearby CR-Rxs is needed in thig4 a lowP} ,, are typically required. In this work, without

cooperative sensing stage. On the one hand, the maximig®s of generality, we restrict the target detection prdligb

achievable average rate of the PU in chanhalithout the ang false alarm to the range® , > sand P, < 3,

ierierence Tom el denoisd e respectively. According to the monotonicity of tiaefunction,
¢ |Sk|? and taking into account (6) and (7), constraints}frfg, , and
k,max — P(Hlk) IOgQ 1+ (O'Ilc )2 (1 P}i7fa are equivalent to the inequa“tieS:

; ; o << g (29)
On the other hand, the maximum achievable average rate of kmin =Tk = Tk,max
the PU in channek with the interference from CR-Tx is Whereﬂi,mm = %,o, T;;mm = %,1- Finally, the optimization

denoted as: problem for maximizing the sum-rate of CRcan be formu-
_ _ 1|2 lated as the following problen®1:
B =P(H)Phaloss | 1+ T max_f{(P},Py.7)
, Pi Pi Ti

2 i 7D 7, T i 7

+P(Hyi)(1 = Pjg) log, (1 + |ffl ) @2) S (@)D LG — Pralio — (1= Pra)li <0,
k:O N . . . . . .

(a2) Y (P(Hox)(1 = Pi 1 (i) Pio + Pi. sa(Ti) Pi1)

k=1

+P(H11) (Pra(i) Py + (1= Pralm)Pio)) < Pra

(bl)Tli,min S Tli S Tli,maw7

(b2)0 < P{,,0< Py, 1<i<M,1<k<N. (20)

whereI,i’fJ and 1,175 are the noise and the interference from
CR-Tx i to the PU in channek under sensing result j
and H; , respectively:

L% = (01,0)% + Piolbh eyl (13)

LY = (05,0)% + Pialhi, el (14)

IV. QNE oF THENON-CONVEX NON-COOPERATIVE
POWERALLOCATION GAME

In the scenario, we consider that CR users are selfish and
strive to maximize their own sum-rate under several con-
emax — BE S TeRp s (15) straints, leading to a non-cooperative power allocatiomea

Let I';, denote the maximum acceptable rate-loss gap of the
PU in channek, k£ = 1, ..., N. Then, the rate-loss constraint
for CR-Tx i can be written as follows:



TABLE Il .. . . .
NOTATION OF THE NON-CONVEX NON-COOPERATIVE POWER ALLOCATION O @ proper variational inequality (V1) problem [26]. Lgt’

GAME denote the feasible strategy set of each £Rvhich can be
_ written as:
Symbol Meaning
T Detection threshold of CR V= {xi c Xt | g};(xi) <0, hi(xi) <0}, 1<k<N. (22
P} Transmit power of CR for detection resulty - - -
P Transmit power of CR for detection resultt, Instead of explicitly accounting all the multipliers as rednles
. =Z(P67 P1,7%) | Strategy Seft of CR of the KKT conditions for each player’s optimization proimig
HE3) sum-rate of CR_ : we introduce multipliers only for the non-convex consttsin
95 (x") Non-convex individual constraintz1) of P1 P i . -
R (x7) Non-convex individual constrainta2) of P1 h'(x') <0 and.gk(x ) < .0_1 while the convex constraints
T (i) Jacobian matrix of the vector functiayf, (x’) are embedded in the defining s&t. Denoting by«; and
JhIZ(xi) Jacobian matrix of the vector functio? (x*) B' the multipliers associated with the non-convex constsaint
V2,95 (x) Hessian matrix of the vector functiogf, (x?) gr(x') <0 qnd ht (xl)_ < 0 of player CR-_Txi,_ respectively,
NES) Hessian matrix of the vector functiokt (x?) the Lagrangian function of player CR-Tixis given by:
T(X%;x") Tangent cone of the set” atx’ € X* S
ks Convex individual constraintgbl), (62) of P1 L'(x" o' B = )+ Z akgk )+ Bth( ) (23)
y? Feasible set of CR
The KKT conditions based on the Lagrangian function (23)
are given by:
Consider that there aré&/ players, cqrrespondmg to thM 0<x L VuL(x,al,f) >0
CR-Txs, each one controlling the variables= (P, Pj, 7). i P 9
We denote by the overall vector of all variables = [x*],, O<ap L _gk(’f )20 (24)
while x—% = (x', ..., x'~ 1, x**1, .. xM) stands for the vector 0<3 L -h(x')>0
of t.he variables assqmatgd to gll CR users gxceptzcme where0 < a L b > 0 impliesa > 0, b > 0, a-b = 0, and
main symbols use.d in _thls section are given in Table II. V. L(x',al, B is defined as:
The non-convex individual constraint&:1) and (a2) are v
denoted agjj (x’). We define the function vector€(x) = ¢ . 1(xi of g1) — i (i i i
S R ; iL(X,a, = —Vyi X") + b d ieiy + BT pi(xi
(GG, and hi(x), Hix) — [ (], respec- +* -0 @ P =m0 P 2 g e+ 51

tively, whereas the convex individual constraif#$), (b2) are The components of the gradientV,. f* (x’) _

embedded in the.deflnlng set f, o!enoted ast’. We .denote (Vpl fl( i, Vpl fi(xi), V. fi(x)) are given,
the non-cooperative power allocation gagn@l, G), given as k
. respecuvely, by:
problem P2: , ,
; ; T akOl kcr' b}cOh}clcr|
ma.X .fl (Xl) V i fl(xl) ) 7 (] T
x . . . X . i Pk’U Ik0+Pk0|hkcr| Pkpc+IkO+Pk0|h’kcr|
s. t. 9. (x") <0, hA'(x") <0, x*€ X' (21) (25)
2 7 (4 2
The resulting game2 is non-convex; the objective functlonv - fi(xt) = ak 1|hk orl by, 1 |7, orl
and the constraints are non-convex due to the presence of* I+ Pl 2 Pl + 1y + Piolhi
the false alarm and detection probabilities. As a consempjen (26)
traditional mathematical tools are not applicable to prthes V. fz( ) = P(Ho )P} ; (T,ﬁ)’(rk o1 — T 00)

existence of a NE for the game. In this section, we analyze i i
the proposed non-convex game based on a relaxed equilibrium +P(Hk) Py, a(7i) (rhll = Tk,10)
concept that has been recently introduced by Pang and Scujgiere:

[27], [28], namely, the quasi-Nash equilibrium (QNE). al, o = P(Ho)(1 - P fa(Ti))v a1 = P(Ho )P (i)
A Quas-Nash equilibrium bo =PI = Pla(ri)). by = PULIPLA)
We use the concept of QNE for the non-convex ga :
P2, where the QNE is by definition a tuple that satlsflgﬁ'e componentsy ;: (i) and Jy:(x:) denote the Jacobian
the Karush-Kuhn-Tucker (KKT) conditions of all the playersMatrix of the vector f”nCt'O@k( x') and?’(x’), given as (29)

optimization problems; the prefiquasi is intended to signify 2nd (30), respectively:

that a NE (if it exists) must be a QNE under a certain (p;cc w Pkd(Tk))|hk cp|

constraint qualification (CQ), as explained in [27], [28Dbtide  § = (@ I’LP (1—Pi (r8)))|hi _|? (29)
that for a nonlinear program constrained by finite equations % *" ~ foe ip il RS Rep

and inequalities and a differentiable objective functisiKT Pk,d(Tk) (I — Iyg)

conditions are not always necessary conditions for a giveMore specifically, ifx* are the stationary solutions of game
point to be a solution to the problem. When an appropriatg H, G), and some CQ holds at*, the KKT conditions
CQ holds, the solutions of the KKT conditions are equal t24) can be reformulated to the equivalent form (31). The
stationary solutions of the associated problem [29]. In theystem of inequalities (31) defines a VI problem with varégbl
following, the KKT conditions of the probler®2 are rewritten (x,a, ), denoted a3’ I(Q, ©), where the vector functio®

(27)



M=

(1 = P(Ho k) Pi o (k) = P(H1k) P (7))

k=1
Jnigey = 22 (P(Ho k) Py 0 () + P(H1,k) P a(14)) (30)
k=1
k;(?’(Hl,k)Pi,d(Té)’ + P(Hor)Py 0 (Te) ) (Prq — Pio)
x—x* \" Vi L(xi"*,qi’*,ﬂi’*) M S Mo
ap — o —g,i(xz’*) >0, VY(x'ap,p')e H X' x RY (31)
_ * _hl i,* . =
ﬁ ﬁ (X ) =1 _\1 )
e(x*7a*7ﬂ*) Q
and feasible seQ are defined in (31). Thi¥ 1(Q,0) is an (C4) The set {x' € X|(x' —x""/)Fi(x') <0} s
equivalent reformulation of the KKT conditions (24), where bounded (possibly empty).

the convex constraints are embedded in the feasibleQset ) .

andr is the total number of multipliere, 8. The V1(Q, ) Proof: The non-convex problerfr2 satisfies the hypothe-

problem is to find a poing* = (x*,a*,8*) € Q, such that .ses.(A) a_lnd (B), an_d the proof for the hypotheses in (C1- C4)

(z2—2")TO(z*) > 0. In addition, if (x*, a*, 3*) is the solution 'S 9Ven in Appendix A. u

of the VI(Q,©), there existgy* such that(x*,a*,8*,4*) is An interiority condition (C1l) is needed for the non-

a solution of the gamey* are the multipliers associated withconvex constraints. Conditions (C2) and (C3) highlight the

the players’ convex constraintsl), (b2) [28]. significance of distinguishing the non-convex constraints
Definition 1: A quasi-Nash equilibrium (QNE) of the W¥i(x%"¢/) < 0 from the convex constraints contained in each

game g (H, G) is defined and formed by the solution tupleset X?. The condition (C4) is an assumption imposed for the

(x*,a*, %) of the equivalentV'I(Q,©), which is obtained existence of solutions of thE (X, F(x)).

under the first-order optimality conditions of each plagerin order to show that the KKT conditions are valid necessary

problems, while retaining the convex constraints in thergefi conditions for an optimal solution oP2, we need to verify

set Q. A QNE is said to be trivial, ifP5,P7 = 0 for all that an appropriate CQ holds, as shown in [35]. In this paper,

i=1,..., M [27], [28]. we use the linear independent constraint qualification Q)IC
If the gradients of the constraints are linearly indepenadgn
B. The existence of the QNE x!, we can prove that the LICQ holds =t [35].
Note that a matrixA is copositive whex” Ax > 0 for all Lemmal: The LICQ holds at every feasible solution of the

x > 0. T(X%; x*) denotes the tangent cone of the s&tat problem P2.

x' € Xt [34] ie., Proof: Let the rank ofA™*™ be denoted aR(A™*").
i i Loxpext i ; Note that if R(A™*™) = min(m, n), the matrixA™*" is full
T(X*; =< lim ——— X R, with ’
(&%) qggo Yq %G € X%, yq € Ry rank and nonsingular. According ftheorem 1, problem P2
9t coraing o
i o - 0 admits a solutiox™* = (P}, Py*,7"*), which is not trivial.
oo e T X M Ya = Define the Jacobian matriky: i« = (Jgi(xi,*,Jhi(xi,*) ,
Theorem1: TheVI(Q,©) has a solution, and equivalentlyWheréJy: ix:), Jui(xi) are given by (29), (30), respectively. We
the games (H, G) has a QNE, if the following conditions arean observe that in the first row of matidk: :.+), the first

satisfied [30]: item contains the variableR? andr?, while the second item

(A) Set X' is convex,i = 1,..., M just contains the variable’. Moreover, in the second row of

(B) The functionF(x’) _ [’_"% fi(xi)]M is continuously matrix Jy: xi.+), the variables in the first item are not equal to
- x* i=1

differentiable on its domain, and eadi(x) and G (x) the ones in the second item. Henge, the_z first colw%r@xi_,;)
are twice continuously differentiable on their domains. @nd the second columly,: .. are linear independent at™,

(C) There exists a Vectoxref _ [Xi,ref]il\il c X, X = If |h}'€7cp|2 75 0. The rank OfJ\pi(xi,x), defined a§2(an(xu)),
(XM, such that is 2. Therefore, we can state that the Jacobian matyix:.)
. iref i(wiref _ is nonsingular for any given set of non-zero channel gains,
(C1) \(Ijgi(?xiymf)) hi<(xi="gc’)) where ¥*(x ) and hence, the LICQ holds at every feasible solution of the
k ) .

(C2) The Hessian matrixvZ,gi(x’) is copositive on problem P2, m

T(x%xbrel) for x¥ e X Based onLemma 1, we conclude that the KKT conditions
(C3) The Hessian matrixviihi(xi) is copositive on are valid necessary conditions for an optimal solutionP@f
T(&x%xbrel) for xt € X, namely, the achieved QNE coincides with the NE.



TABLE Il

NOTATION OF PDIP OPTIMIZATION Let A" = Diag(u’), a_nd S = Diag(si),_ e is th_e_ all-ones
column vector. The first order optimality conditions of the
Symbol Value , problem P3 can be written as:
s? (51,00 51+ 54 2)py Slack variables o
2 (x?,8%) iy VeL(ztuhvh) oy (0
v? (v, vt, vl) Barrier parameters VaiL(2', u'sv') = ( S'A'e — vie B 0 (36)
u’ (@',B"7") o
A’ Diag(u’) whereV,. L(z*,u*; v") is given by:
S’ Diag(s”) S o N .
M.i(2") Merit function / ViiL(z',u';v') = =V, f'(x') + Zk_l Oé}ng;‘c (xt)
Dyt i (zi;a;) | Directional derivative ofM. (z") =

. N .
+ B Jpixiy + Zk:l 'yngi (x1) (37)

fo,fi(xi),Jg;(xi),Jm(xi) are given by (25)-(27), (29) and
(30), respectively. The‘lgi (x) is the Jacobian matrix of the
onvex constraintsj; (x’). Applying Newton's method to

aroblemP& we obtain the following primal-dual system:

V. PRIMAL-DUAL INTERIOR POINT OPTIMIZATION

The optimization problenP1 for CR i is non-convex with
respect tox’, thus the optimal solution can not be obtaine
using conventional convex optimization techniques. I} {ig T . -
used the alternating direction optimization (ADO) algomit ( W (z',u’;v') J(x') ) ( d: ) _ ( Vi L(z', u'v') )
for solving a similar non-convex problem. However, for ndg-J* (x*) 0 doi )\ B(z)
convex problems, the ADO algorithm may not converge to the ] (38)
optimal solution, and hence, it can be considered as a lo&z') is defined as:

optimization algorithm [36]. gi(x") + s N
The primal-dual interior point (PDIP) method is a powerful i R 50
. B(z') = | h'(x")+s} (39)
method for both convex and non-convex problems, which Gl (x) + 51
modifies the KKT conditions to ensure that the search doecti L k2 / k=1
is a descent direction for the merit function. In this paper, and W (z’, u’; v*) is defined as:
analyze the iterative PDIP algorithm based on the IP algarit V2, Lz, uisvi) 0
from [37], [38], which combines a line search step and a W(z', u’;v*) = ( 0 xi , a5 (5)-1A° ) (40)

trust region step. In addition, this PDIP algorithm regsin®
information exchange between CR users. We first compute WﬁereviiL(zi, u’; v?) is the Hessian matrix of (z?, u’; v?),
steps using line search whenever the conditions of theps stand J(x') is given by:

can be guaranteed, and turn to the trust region step otherwis N

The trust region step, described in [38], starts by constrgc J(x') = ( Jgi(xi,) Jhi(xi) Jgi(xi) 1 ) (41)
a quadratic model of the Lagrangian function. The search ] o k=1
direction is computed by minimizing the quadratic modeWVe define the search directiods: andd,: as:

subject to the constraints and the trust region, which plesi . doi  doide d di d. Y
sufficient reduction in the merit function, and converges todzt = ( Prot TP TTer Tsket TS0 Usks )kzl
a solution of VI(Q,0), thus to a QNE of our game. The T = (do de. d. N

main symbols are given in Table Ill. The problefi can be LU ( oy T8 Ty )kzl

reformulated as a sequence of the barrier probiesn The objective function component and the component com-
N N prising constraints of the problem®3 are used as the merit
min — f'(x') — vy Y Insj o —vilnsi —v5 > Insj, function for the PDIP algorithm, which can be defined by:
“ k=1 k=1 i i i i
s.t. glic(xi) 4 S?c,o =0 (32) . Mc’“ (Z ) = Pvi (Z ) +c "B(Z )" (42)
Ri(x') + st =0 (33) Where_cl >_O is the penalty parame‘Fer, \{vhich is updated at
i i each iteration so that the search directidp is a descent
gr(x") + 512 =0 (34)

direction for M. (z'). The iterations are given by:

vxiherei glg(x) denotes the convex con;tra|n($1),(b2), Zi(p+1) = 2'(p) + plidyi (p) (43)
Sk.0s51:Sp2 > 0 are vectors of slack variables, denoted as i D — i i q 44
s' = (84,051, Sk.2) ko1 V0, V], v5 > 0 are the barrier param- w(p+1) =u(p) + pyidu(p) (44)
eters, denoted a8’ = (v;, vy, v3). To simplify the problem, wherep is the number of the inner iteration loop}, and

we denotez’ = (x',s'), u’ = (&',,7"), andpyi(z') = p’, are the step-lengths. We then perform a backtracking
—fi(x') —vf S Insl o —vilnsi —vi S0 Insi,. The line search that computes the step-lengths which provide a
Lagrangian function of the problerA3 is given by: sufficient decrease in the merit function. The step-lengths

s . N pLi.pl. € (0,1] are given by:
L(z',u";v") = pyi(z") + Zk:l (95 (x") + sk.0) g = (5 4 phdy > Eos') .

FAR ) s+ Y GhE) +sta)  (35) pii = {u' + plidy > &u'} (46)



where &, € (0,1] is a constant. Moreover, the directionaflgorithm 1 Primal-Dual Interior Point Optimization
derivative of M, (z') is given by: Initialize z*(0) = (x*(0),s’(0)). Compute initial values for
. , , the multipliersu*(0) = (a*(0),8%(0),~7*(0)), set the trust-
Diri(aisa ) = Vipvi(2')dgi — ¢'[B(2)] (47) region ragiusﬁ((g) >> 0 (an((j t)hg tga>rr?ér( p)azrametef‘(o) >
Expressions(38)-(45) provide the basis for the line search 0
steps in the PDIP algorithm. However, due to the non- repeat
convexity of the problemP3, the line search iterations may  for i=1: M

converge to non-stationary points. If the step-lengthsp’ . repeat

converge to zero, we turn to the trust region iterationscthi repeat .

provide a sufficient reduction in the chosen merit function Compute the numbeN; from (38), set LS = 0

for both feasibility and optimality at every iteration arttlis, if No <4N

guarantee progress towards stationary [38]. Calculate the search directiond(p) =
The trust region step treats convex and non-convex problemddz: (p), dui (p)) from (38). Computepy., p,;

uniformly, and allows the direct use of the second derieativ if min{p;,py:} > ¢

information. In addition to preserving the global converge Setj =0,p7 =1

properties of the trust region step, the size of a trust regio repeat o .
radiusY' affects the backtracking line search iterations. Note =~ if Mei(z' (p)+p7pyidai (p)) < Mei(2' (p))+
that if a trust region iteration is rejected, the following i  7P7P,: D, (215a,,) _ o o

erations are still computed by the trust region step until a Updatep,, = p7p,:: Pi = PPy
successful step is obtained. In the trust region step, a step _ Updatez’(p + 1),u’(p + 1) using(43). Up-
d is acceptable if the ratio of actual reduction (adi(to ~ dateT'(p+1). SetLS =1

predicted reduction (pred}) of the merit function is greater . elseUpdatej = j+1, choose a smaller value
than a given constani > 0, denoted as (48), wher& is of pip

defined in (40). We outline the iterative PDIP algorithm in endif _

Algorithm 1, whereN! is the number of negative eigenvalues until j > N, or p7. <e Or LS ==

of the matrix in (38), and N, is the maximum number of endif

backtracking search steps. For our problemNif > 4N, endif

thend,: can not be guaranteed to be the descent direction if LS==0

[39]. In this case, we turn to the trust region steps. We choos Compute the sted(p) = (d,: (p), dui (p))
n=10"8 ¢ =10"% and N, = 4. The resulting algorithm is Compute Lagrange multipliar’(p+1). Update the
ensured to have global convergence, thus achieving a QNE openalty parameter’

the VI(Q,©). For more details of the trust region iterations if aredd) > npredd)

and the global convergence analysis, refer to [37], [38]. Setz'(p+1) = z'(p) + d,: (p). Enlarge the trust
Complexity analysis. The complexity of the iterative PDIP  region radiusY"(p + 1) _

algorithm is dominated by the procedure of line search it- elseSetz’(p+1) = z'(p). Shrink the trust region
eration steps and trust region iteration steps, as well as th T'(p +1) _ _

size of the CRN. Generally, for the inner loop, the time endif Setv'(p+1) =v'(p) p=p+1
complexity of line search is based on the Newton iteration, ~ untl [V L(z',u’;v')|x < ¢ and |[S'eA’ —
which requires at mosO((2N + M)?) computations. For V'e[s <€ ‘ ‘

the e-accurate iteration, the computation of Newton iterations Reset the barrier parameters, so #dp+1) < v*(p)
reduce toO(In(2)v2N + M) [40], and according to [41], until [V L(z", u’; v*)[oo <& and[S*A'|o <€

the complexity for the logarithmic barrier function is thes Updatex®(po) = x'(p), wherepy is the number of the
one given byO(y/2N + M). For our problem, the maximum outer loop.

number of backtracking search steps is given Xy, thus endfor

the time complexity of the line search 8(v2N + M) ~  until [x*(po) —x'(po —1)| < ¢
O(Nyv/2N + M). In addition, the trust region iterations step
is based on the sequential quadratic programming techsique

[42], [43], and the worst-case complexity of reaching aedal VI. SIMULATION RESULTS
stationary point iO(2N + M + /2N + M) [44]. The outer
loop for a CRN with M CR users is a linear problem

with the accuracy, thus the total complexity of the PDIP We consider a CRN withi/ = 3 CR Tx-Rx pairs and
. o 1 N = 2 PU channels. All PUs and CR users are randomly
algorithm is given byOpprp = O{ In(Z)MV2N + M | ~ placed in a 50 metex 50 meter square. The radio environment

) map is shown in Fig.2, where the color-bar shows the received
o ln(%)M((Nb +1)v2N +M + 2N + M) ). Notice that power from PUs in Watt. We use the channel model from the
here we did not consider the time complexity of the conveBGPP Indoor scenario for LTE [45]. The distance-dependent
gence of the consensus algorithm in the cooperative senspagh loss is given byPLyp = 7 + 561og,(d); d = dji/dii
step. (m) is the relative distance between CR-Txand CR-RXxi,

A. Scenario Description



< arec(d) . M. (Zl) — M, (Zi +d,)
TS predd) T “Vey (z0)d, — LdLWd, + ¢i(|B(z)]| — |B(z) + J (x')d,

)

TABLE IV
SIMULATION PARAMETER 15 : : 8
=~ DG, Gap=0.1% . o ®
Symbol Value —+ADOS, Gap=0.1% -
Sensing time; ims =&=PDIPS, Gap=0.1% ‘\o*"
Sampling frequencyfs 2MHz =0 DG, Gap=1% . o8
Probability of channek idle, P(Ho 1) 01,05 2., - ng;ss Zzpll// .
Probability of channek occupied,P(H; ) | 0.9,0.5 8 SR
Transmit power budget of CR P2 .. 0~ 10W & ’\.\'
Transmit power of PU in channdl, | S |2 10W b D
Rate-loss gap of channél T'; 0.1%,0.3%,1% g .'f
£ st >
?
=0 ‘CR—sz\ ‘
45 CR-Rx2 9
40 8
0 2 : 8 10
35 7 P
max
307 6
S = _ Fig. 3. Sum-rate achieved at the QNE verd¥fs,..; Comparison between
52 CR TXS._ER Rx3 5 ADO algorithm and DG. *
20} v 4
CR-Rx1
15¢ ~ 3 : o : Lo
) information is not considered as a part of optimization fo t
107 CR-Tx1 DG. Regarding the constraint inequalities given in (178)(1
5 1 it can be seen that the optimization problem works in two
‘ ‘ . ‘ possible regimes:
10 20 30 40 50 . . .
d(m) (a) Power budget limited regime (PLR), where the transmit
power is bounded by the total power budget constraint
Fig. 2. Network topology: Location of two PU and three CR Tx-pairs. (18), leading to the worst case interference condition. In

this case, each CR-Tkallocates all the available power
budget and causes the maximum interference to other CR-

where d;; and d;; are the distances between CR-Dxand Rxs [6], and the achievable rate is determined by the total

CR-Rx i, CR-Tx j and CR-Rxi, respectively. A lognormal power budget.
shadowing variable with varianck) dBs is considered here,(b) Rate-loss limited regime (RLR), which implies that the

and (o}, ,,)° = 1. Assume that the sensing environment is * yansmit power is bounded by the rate-loss constraint (17).
stable in the optimization process, and the local chanag st Increasing the total power budget can not improve the

information, i.e., the channel gain between a CR-Tx and its o formance of the CR users, and the interference to the
target Rx and each PU, is known by each CR-Tx. The main p|js reaches the upper bound.

simulation parameters are given in Table IV. The results shows that when the CR users work in PLR,

whenT, = 1%, the performances of these three algorithms
are almost the same, while the proposed game with joint

In this section, we first compare the performance of theptimization of the sensing information and transmit potwer
proposed game, in terms of the sum-rate achieved at the QRBIP algorithm yields a considerable performance improve-
for one CR user by the PDIP algorithm, with those achievedent in RLR, whenl', = 0.1%, with respect to the ADO
by the ADO algorithm [1] and the deterministic game (DGalgorithm and the disjoint case of the DG. In fact, the DG
proposed in [25]. Then, we investigate the influence of thman be considered as the perfect sensing information case (i
activity of the PU and compare the sum-rate achieved B ;, = 0 and P; , = 1) with a deterministic interference
different constraints, respectively. Finally, we show #wtual constraint. Specifically, in RLR, a higher transmit powealis
rate-loss of the PUs under constraints (15) and (17). lowed due to the accurate sensing information in the prapose
In Fig. 3, we compare the sum-rate achieved at the QNfame compared to the DG with a deterministic interference
by the PDIP algorithm with those achieved by the ADQ@onstraint, thus the performance can be improved. In aafditi
algorithm and the DG. For the ADO algorithm, the first stewhenT';, = 0.1%, the sum-rate of CR users does not change
is to maximize the sum-rate of each GPased on an initial after P!, > 1W, indicating that the transmit power changes
detection threshold, and then optimize the threshold badedm PLR to RLR. Fig. 4 presents the sum-rate achieved at
on the optimal power obtained in the first step. The sensitige QNE versus the power budggf .. for different average

B. Smulation Results
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Fig. 4. Sum-rate achieved at the QNE verd¥s,.; Comparison between Fig. 5.

Sum-rate achieved at the QNE versgjs,.; Comparison between
P(Hk,l) =0.5 andP(Hk’l) =0.9.

Global constraint and Individual constraint.

25

fr_actlons of the PU’s aCtI\_/IQ/P(HLk) = 0.5,0.9, which are -0 Gap 0.1% original 'f#
directly related to the traffic load of the PU. It can be obsdrv ‘=41 Gap 0.3% original -

H _ s L =& Gap 0.1% modified ,\'
that in RLR, whenl', = 0.1%, the traffic load of the PUs 2 —+—Gag 0.3% mgd:fzgd *
affects the sum-rate of the CR users. The CR users suffer a .
decrease in sum-rate when the traffic load of the PU increases 15 R
from 0.5 to 0.9. In other words, when there is more activity of ,\"
the PU, there is less chance for the CR users to use the channel »

Additionally, in PLR, the performance of the CR users is not - i Sl

sensitive to the traffic load of the PU.

In Fig. 5, we compare the performance achieved by the global

constraint with the individual constraint (17), respeelyv In

order to have the same total interference to the PU, we use a

rate-loss gag'y, , = I'y x M for the global constraint. Based :

on the individual constraint (17), the global constraim ¢ P rax

written as(1—T o) 5 10 —Pf 10 — (1-Pp ) IE <0, _

where I'’P' [°P! stand for the total interference from all the£9- 6. Average-rate gap for PU achieved at the QNE verBys,;
k00 k,1 . . . Comparison between constraints (15) and (17).

CR users. It is rather interesting to notice that when the-rat

loss constraint is active, the performance of the CR users
under the individual constraint is better than those a@uléw  qyict condition on the transmit power of the CR users than th

the global constraint. However, this is due to the unfasneg,e imposed by the modified constraint (17). This leads to a
among the CR users in the global constraint. Each iteraligiyher interference and a larger rate-loss gap experiebged
of the game follows a sequential order, indicating that th@e pys and to an increase of the sum-rate of the CR users.

CR users having the priority to choose their action cap other words, the modified constraint (17) can be seen as
have the preference to maximize their own benefit in thaa constraint (15) with a smaller rate-loss gap.

global constraint case, and the CR users at the bottom of
the iteration loop have to be switched off in RLR. These
inherently unfairness for the global constraint leads toveer
utilization of the channel, yielding a worst performance of In this paper, we considered a sensing-based spectrum
the CR users. Actually, the global constraint can result insharing scenario, where the overall objective was to madmi
better performance than the individual constraint by pgci the sum-rate of each cognitive radio user by optimizingtjgin
mechanism, which uses a penalty in the objective functidwoth the detection operation and the power allocation. In
and encourages the CR users to work in a cooperative manmefer to deal with the non-convexity of the game, we used a
to achieve a higher social welfare [28], [29], [46]. relaxed equilibria concept, the quasi-Nash equilibriurhlE).
Finally, in Fig. 6, we evaluate the interference experiehcéVe presented the sufficient conditions for the existence of a
by the PU under constraint (15) and the modified constrai@NE based on variational inequality theory, and proved that
(17). The rate-loss gap is defined @, ... — R}.)/R}. ..x» the linear independent constraint qualification held atryeve
and R};,max, R} are given by (11), (12), respectively. It carfeasible solution of the proposed game, thus the achieved
be observed that in RLR, the constraint (15) imposes a I638E coincided with the NE. Finally, a distributed iterative

Rate—loss gap for PU (Average)

VII. CONCLUSIONS
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0 |hk cpl Pk d(T ) |hk cp|2
v2lgk( ) | 7};Ccp|4 Pk d(T]Zc) |hk cp|2 (49)
Pk d(Tk) |hk Cp|2 Pk d(Tk) |hk cp|2 Pk,d( )N( ,%)
(x" = x"" ) IV Eigh () (" = xT) = (Plg = Peo™ )2 (1= PLa(r))URE + (Piy = By PP (i) ULY
+2(Po — Po) (i = " YPLa) Il o P (36 + 1SEP) ™ = (L)) (50)
+2(Ply — P ”ef)Pzi () e e (L) ™ = (LF + 1537
+ (=) Pi. ()" 1ogs (14 Sk /Illc,l /(1+ |Slzc|2/[]?,1())))
primal-dual interior point algorithm was stated and shown {57 |? )* - (Ik PYy=2), U0 = |hi el (I, i’p + [SEA) 72 —

converge to a QNE of the proposed game. Simulation resu@%l)

showed that the iterative primal-dual interior point aigon

). The first and the second term on the right side are

negat|ve the fifth term is positive, the sum of the third and

yielded a considerable performance improvement with @spghe forth term can be proved to be positive. Hence, assuming
to the alternating direction optimization algorithm andethU;g > Ukvﬂl’, the V2.g;. .(x") is copositive if the following

deterministic game.

7
APPENDIX A (i —

PROOF OF THE HYPOTHESES INHEOREM 1

((Pk d(Tk) - 1)(Pk o)

mequallty is satisfied:

7"V (i) ogy (1 + |SkI?/Ih )/(1_+|Szi|2/f;i’fé))
_Pk d(Tk)(Pk 1) )U,Z”’ (51)

Due to lack of space, only the sketch is provided. Thgoyever, this condition depends on the values of the system

Hessian matrixV2,g; (x") is given by (49), wherd";,

— parameters as well as the action of the @Rwhich is

(1-T%)/(o},,,)% In order to check that conditions (Cl) (Cz)uncertaln In order to simplify the analysis, we use cofiistra

and (C3) are satisfied, we assume tﬁ’@fjef = P,z ef =0

and 7" =7 .. whererf € [} . .7 ] It follows
thatx®re/ = [Pyocl, Poiel 7o/ || and we have:

(Xi _ 1 ref) Vnglzc(xi)(xref _ i,ref)

= 205, Pl oPh bl + (k= 7" PPl (] — 1) )
+ 27 — ”ef)Pk a(me) (Plil Py 0)|hk cp|

Notice that P, < Pi,, I;h < I7 ., Pi ,(ri) < 0 and
Pp.q(h)" < 0. All the terms are positive, thus the Hessian
matrix of V2, g;(x") is copositive. Similarly, we can show that [3]
the Hessian matrix of functioh’(x?) is copositive. Thus, con-
ditions (C1), (C2) and (C3) are satisfied. For condition (C4)
we need to show that the player’s variables= (Py, Py,7)
are bounded. For every CRwe have) < P/ ; and0 < Py ,,

and from power budget constraint (18) we can get:

(2]

(4

(5]

. P P

PZ S _ max _ _ < max
BO= (- P(Hok)P;, fa(Tk) = P(H1 )Py, 4(14)) Ak,o

Pi < Prlnax Prlnax [6]
1= (P(Hox)PL 1o (1h) + P(H1k)PL 4(Th) — Afy

o (7]
whered; ) = 1—4P(Hok)—P(Hy 1) Q (%) 1 =

LP(Hy )+ P(Ho 1) Q (% In addition,r is bounded

by the constraint (19), and We can conclude that the comditigs)
(C4) is also satisfied. Therefore, the(Q, ©) has a solution,
and the game (H, G) has a QNE. Moreover, every QNE is
not trivial, a trivial QNE can not satisfy (31).

Constraint (15) v.s. Constraint (17):For Constraint (15) de-

noted agj;, ,(x*), we have (50), Wherﬁ,i: e * (10 +

El

(17) instead of constraint (15), which is more suitable for
a general network, and offers a better protection for PU, as
shown in the simulation results.
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