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Abstract—In this paper, we consider a sensing-based spectrum
sharing scenario in cognitive radio networks where the overall
objective is to maximize the sum-rate of each cognitive radio
user by optimizing jointly both the detection operation based
on sensing and the power allocation, taking into account the
influence of the sensing accuracy and the interference limitation
to the primary users. The resulting optimization problem for each
cognitive user is non-convex, thus leading to a non-convex game,
which presents a new challenge when analyzing the equilibria of
this game where each cognitive user represents a player. In order
to deal with the non-convexity of the game, we use a new relaxed
equilibria concept, namely, quasi-Nash equilibrium (QNE). A
QNE is a solution of a variational inequality obtained under the
first-order optimality conditions of the player’s problems, while
retaining the convex constraints in the variational inequality
problem. In this work, we state the sufficient conditions for
the existence of the QNE for the proposed game. Specifically,
under the so-called linear independent constraint qualification,
we prove that the achieved QNE coincides with the NE. Moreover,
a distributed primal-dual interior point optimization algorithm
that converges to a QNE of the proposed game is provided
in the paper, which is shown from the simulations to yield
a considerable performance improvement with respect to an
alternating direction optimization algorithm and a deterministic
game.

Index Terms—Cognitive radio, quasi-Nash equilibrium, non-
convex game, variational inequality theory.

I. I NTRODUCTION

T He concept of cognitive radio (CR) has been proposed as
a promising technology to improve spectrum utilization

efficiency while limiting the performance degradation caused
to primary users (PUs). The fundamental principle of a CR
network (CRN) is to enhance the efficiency and flexibility in
spectrum usage by allowing CR users to access the resources
owned by PUs in an opportunistic manner [2]. There are
currently three main approaches for cognitive communica-
tions regarding the way secondary users access the licensed
spectrum: (i) opportunistic spectrum access (OSA) [3], where
the CR user decides to access the channel only if the PU
transmission is detected to be idle; (ii) spectrum sharing [4],
where the CR user coexists with the PU and applies an
interference constraint without sensing information to ensure
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the quality of service of the PU network; (iii) sensing-based
spectrum sharing (SSS) [5], where the CR user senses the
status of the channel and adapts its transmit power based
on the decision made by spectrum sensing. In this paper, we
consider the SSS scheme, where the CR transmitter deals with
a performance tradeoff between maximizing its sum-rate and
minimizing the performance degradation caused to the PU.

A. Related Work

The problem of maximizing the rate of the CR user under
perfect sensing information (e.g. the probability of miss detec-
tion and false alarm are zero) has been widely studied in the
literature [6]–[8]. However, in practice, the reliability of the
PU detection at the CR transmitter is limited by several factors,
such as the attenuation due to path-loss, as well as shadowing
and fading. As a consequence, a certain degree of performance
degradation of the PU is usually unavoidable. In this case, the
influence of the sensing accuracy on the rate of the CR user
should be taken into account in order to perform an appropriate
power allocation. Some previous works have focused on the
combination of the sensing information with the rate of a
simplified CRN with one CR user and one PU [9]–[12]. The
authors of [9] consider the sensing-rate tradeoff for the OSA
scheme assuming a single channel. The problem of designing
the optimal sensing time and power allocation strategy that
maximizes the average rate for the OSA and SSS schemes
are studied in [10] and [11], respectively. The work in [11] is
extended in [12], where the problem of finding the optimal
sensing time and power allocation is studied based on the
outage capacity constraint and the truncated channel inversion
constraint, namely, a sensing-enhanced spectrum sharing CR
system. All the aforementioned schemes are applicable only
for a single CRN.
In a distributed multiuser scenario, CR users can self-enforce
the negotiated agreements on the usage of the available spec-
trum. Every CR user aims at the transmission strategy that
maximizes its own utility function, usually the average rate.
This inherently competitive nature of the distributed multiuser
scenario leads to a non-cooperative game (NCG) [13], where
the solution of the game is the well-known concept of Nash
equilibrium (NE). The NCG theoretical model for power allo-
cation in the SISO and MIMO interference channels has been
widely studied in [14]–[18], while the equilibrium model based
on pricing has been discussed in [19] and [20]. However, the
power allocation schemes proposed in the mentioned papers
are not applicable to CR systems, since they do not provide
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any mechanism to limit the performance degradation caused to
PUs. Recently, NCG theory has been successfully applied to
the power allocation problem in CRNs [21]–[25]. The finite-
dimensional variational inequality (VI) method [26] has been
used in [21]–[24] to analyze the existence and uniqueness
of the solution for the NCG in the CRN. Those works are
extended in [25] for a more practical scenario with imperfect
channel state information. However, in [21]–[25], no sensing is
performed by CR users. The sensing information is considered
in [27]–[29] for an OSA scenario, and the analysis of the
equilibria of this game is based on a new concept called quasi-
Nash equilibrium (QNE) [30]. QNE is a solution of a VI
problem obtained under the first-order optimality conditions of
each player’s optimization problem, while retaining the convex
constraints in the defining set of the VI problem. The prefix
quasi is intended to signify that a NE must be a QNE under
certain constraint qualifications (CQs) [30].

B. Contributions

In this paper, the resource allocation problem among CR
users for the SSS scheme is analyzed as a strategic NCG,
where each CR user is selfish and strives to use the available
spectrum in order to maximize its own sum-rate by considering
the effect of imperfect sensing information. The resultinggame
is non-convex due to non-convexity in both players’ objective
functions and constraints. Therefore, traditional mathematical
tools are not applicable to show the existence of an equilibrium
for this game. We analyze the non-convex non-cooperative
power allocation game (NNPG) based on the new relaxed
mathematical equilibria concept introduced in [30], the QNE.
The main contributions of the paper are the following:

• We propose a NNPG, where each CR user aims at
maximizing its own sum-rate by jointly optimizing the
sensing information as well as the transmit power over
all channels, which differs from the disjoint case, called
deterministic game, as shown in [21]–[25].

• Deviating from the constraints considered in [9]–[12],
[21]–[25], [27]–[29] (such as an interference temperature
and outage probability constraints), a rate-loss constraint
is introduced in order to effectively protect the PU from
harmful interference caused due to the imperfect sensing
information. The optimization problem is analyzed in two
different limited regimes, namely, power budget limited
regime and rate-loss limited regime. The performance of
the CR users in these regimes are evaluated extensively
through simulation.

• In addition, a distributed cooperative sensing scheme
based on a consensus algorithm is considered in the
proposed game for a SSS scenario. Compared with the
OSA scenario discussed in [27]–[29], in the scenario, the
CR users can coexist with PUs, and adjust the transmit
power on each channel based on the sensing result (see
Section II for details).

• The fourth major contribution of this paper is to prove
that the proposed NNPG can achieve a QNE under certain
conditions, by making use of the VI theory. Meanwhile,
we show that, under the so-called linear independent
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Fig. 1. System model:N PUs andM CR Tx-Rx pairs. PUk uses channel
k, k = 1, ..., N .

constraint qualification, the achieved QNE coincides with
the NE. Finally, an iterative primal-dual interior point
(PDIP) algorithm that converges to a QNE of the pro-
posed game is provided here. The PDIP algorithm can run
at each node in parallel, since it requires only the local
information of each CR user (e.g. its own transmit power
and the channel gain), and hence, it can be regarded
as a distributed solution. Simulation results show that
the PDIP algorithm yields a considerable performance
improvement, in terms of the sum-rate of each CR user,
with respect to previous state-of-the-art methods, such as
alternating direction optimization algorithm [1] and the
deterministic game proposed in [25].

The rest of the paper is organized as follows. Section II
presents the system model. The analysis of the NNPG with
imperfect sensing information is presented in Section III.The
concept and the existence of a QNE is discussed in Section
IV. Section V provides a detailed analysis of the primal-dual
interior point optimization algorithm. Extensive performance
evaluation results are presented in Section VI. Section VII
states the conclusions.
Notation: Vectors and matrices are boldface,[xk]Nk=1 =
[x1, x2, ..., xN ], ∇xf(x) denotes the gradient of functionf(x)
at point x, Jf(x) denotes the Jacobian matrix of the vector
function f(x), Diag denotes the diagonal matrix,⊥ denotes
“perpendicularity”,||x|| and||x||∞ denote the Euclidean norm
and the maximum norm of vectorx, respectively.Rn

+ denotes
the nonnegativen-dimensional space.P denotes power,P
denotes probability. Tx and Rx denote transmitter and receiver,
respectively. The variableshii

k,cr, hji
k,cr, hi

k,cp andhi
k,pc denote

the instantaneous channel gains in channelk between CR-Tx
i and CR-Rxi, CR-Tx j and CR-Rxi, CR-Tx i and PU, PU
and CR-Rxi, respectively. We use CRi to indicate theith
CR pair.
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II. SYSTEM MODEL

Consider an OFDM-based communication system withN
PUs, each one using a different channel (PUk uses channel
k, k = 1, ..., N ), andM CR Tx-Rx pairs which are close to
each other. CR users are allowed to access theN channels
simultaneously, thus the interference in a given channel isdue
to the interaction of the CR users (see Fig. 1). Before accessing
the channel, each CR-Tx must first perform spectrum sensing
to determine the status of each channel. In this paper, we
assume that simultaneous spectrum sensing of all theN chan-
nels is performed by each CR-Tx using an energy detection
scheme. The detection problem on each channel is modeled
as a hypothesis test, where hypothesisH0,k represents the
absence of a PU in channelk, and the alternative hypothesis
H1,k represents the presence of a PU in channelk. Specifically,
for channelk, at the discrete samplel, the received signalyi

k

at the CR-Rxi, i = 1, 2, ..., M , is given by [31]:

H0,k : yi
k(l) = nk(l) (1)

H1,k : yi
k(l) = Si

k(l) + nk(l) (2)

where nk(l) denotes additive background noise on thek-th
channel, which is assumed to be independent and identically
distributed additive complex Gaussian with zero mean and
variance(σi

k,n)2, andSi
k(l) stands for the PU transmit signal

in channelk. Let P i
k,pc = |Sk|2|hi

k,pc|2 denote the received
power by CR-Rxi from the PU in channelk, andLs = tfs

denote the number of samples, wheret is the sensing time
and fs represents the sampling frequency. Under an energy
detection scheme, for each channelk, the decision is based
on the sum of the received energy over an interval of its
samples, that is,Yk =

∑Ls

l=1 |yi
k(l)|2. Note that the longer

the sensing timet, the better the energy estimation accuracy.
However, for a fixed frame length, with a longer sensing time
t, the transmission time has to be reduced. In order to improve
the sensing accuracy without increasing sensing timet, a
distributed cooperative scheme is adopted here. We assume
that the nearby CR-Rxs have the possibility to exchange
their local measurements, thus the cooperative sensing can
be implemented by the distributed consensus algorithm from
[32], which requires only the interaction among nearby CR-
Rxs. Let us denote byM the number of cooperative CR-Rxs.
State update occurs at discrete time for each CR-Rx locally,
and the final average consensus resultyi

k,c(l) = 1
M

∑M

i=1 yi
k(l)

is asymptotically reached for all nodes [32]. The final sensing
decision at each CR-Tx is made by comparing the consensus
result with a primary detection thresholdτ i

k as follows [33]:

Yk,c =
∑Ls

l=1
|yi

k,c(l)|2 RH1,k

H0,k
τ i
k, k = 1, 2, . . . , N. (3)

According to the Central Limit Theorem, for largeLs,
yi

k,c(l) are approximately normally distributed:Yk,c ∼
N (µi

k,0, (σ
i
k,0)

2) for H0,k, and Yk,c ∼ N (µi
k,1, (σ

i
k,1)

2) for
H1,k, where:

N (µi
k,0, (σ

i
k,0)

2)

{

µi
k,0 = Ls

M

∑M

i=1(σ
i
k,n)2

(σi
k,0)

2 = Ls

M2

∑M
i=1(σ

i
k,n)4

(4)

TABLE I
FOUR INSTANTANEOUS RATES ATCR-RX i

Actual status Detection result Actual rate at CR-Rxi

H0,k H0,k ri
k,00

= log2

(

1 +
P i

k,0
|hii

k,cr
|2

Ii
k,0

)

H0,k H1,k ri
k,01

= log2

(

1 +
P i

k,1
|hii

k,cr
|2

Ii
k,1

)

H1,k H0,k ri
k,10

= log2

(

1 +
P i

k,0
|hii

k,cr
|2

Ii
k,0

+P i
k,pc

)

H1,k H1,k ri
k,11

= log2

(

1 +
P i

k,1
|hii

k,cr
|2

Ii
k,1

+P i
k,pc

)

N (µi
k,1, (σ

i
k,1)

2)

{

µi
k,1 = Ls

M

∑M
i=1((σ

i
k,n)2 + P i

k,pc)

(σi
k,1)

2 = Ls

M2

∑M

i=1((σ
i
k,n)2 + P i

k,pc)
2

(5)

The probabilities of detectionP i
k,d and false alarmP i

k,fa for
the k-th channel for CR-Txi, i = 1, 2, ..., M , are given by:

P i
k,fa(τ i

k, t) = Q
(

τ i
k − µi

k,0

σi
k,0

)

(6)

P i
k,d(τ

i
k, t) = Q

(

τ i
k − µi

k,1

σi
k,1

)

(7)

In this paper, we consider a SSS scheme, where CR-Txs trans-
mit simultaneously on theN channels and adapt their transmit
power on each channel based on the sensing information. If
channelk is detected to be idle(H0,k), CR-Tx i transmits
using powerP i

k,0, whereas if channelk is sensed to be active
(H1,k), then each CR-Txi transmits using a relatively lower
powerP i

k,1, in order to reduce the interference caused to the
PU. This scheme can be seen as a hybrid approach between
protecting the PU and improving the spectrum utilization.

III. JOINT OPTIMIZATION OF DETECTION AND POWER

ALLOCATION

Spectral efficiency is the main overall goal of the CR
users, thus the objective function chosen by each user to
be maximized is the sum-rate over all the channels. In this
section, we analyze the problem of optimizing the power
allocation for the CR users in order to maximize the sum-rate,
taking into account the detection result. Considering the fact
that the spectrum sensing information is not always reliable,
which implies having probabilities of detectionP i

k,d < 1 and
probabilities of false alarmP i

k,fa > 0, we have four different
instantaneous rates at CR-Rxi in channelk, as shown in Table
I. In this table, the first subindex number ofri

k (the third
column of Table I) describes the actual status of the PU (“0”
for idle and“1” for active), and the second subindex number
indicates the sensing result obtained by energy detection.Ii

k,0

and Ii
k,1, presenting the noise and the interference observed

by CR-Rx i from other CR-Txs in channelk, under sensing
resultsH0,k andH1,k are given by:

Ii
k,0 = (σi

k,n)2 +
∑M

j=1,j 6=i
P i

k,0|hji
k,cr|2 (8)

Ii
k,1 = (σi

k,n)2 +
∑M

j=1,j 6=i
P i

k,1|hji
k,cr|2 (9)
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Let P(H0,k) denote the prior probability that thek-th channel
is idle, andP(H1,k) denote the prior probability that thek-th
channel is active. The total achievable average rate at CR-Rx
i based on a given sensing timet, denoted asf i(Pi

1,P
i
0, τττ

i),
Pi

1 = [P i
k,1]

N
k=1, Pi

0 = [P i
k,0]

N
k=1, τττ i = [τ i

k]Nk=1, can be
formulated as follows:

N∑

k=1

(

P(H0,k)

(

(1 − P i
k,fa(τ i

k))ri
k,00 + P i

k,fa(τ i
k)ri

k,01

)

+ P(H1,k)

(

(1 − P i
k,d(τ

i
k))ri

k,10 + P i
k,d(τ

i
k)ri

k,11

))

(10)

The most important constraint of a CRN involves protecting
the PU from harmful performance degradation. This constraint
can be imposed on an individual or global level. The individual
constraint requires the transmit power of each CR user in
channelk to be always less than a given threshold. Instead of
specifying individual constraints on the transmit power ofeach
CR user per channel, the global constraint adapts the transmit
power of each CR-Tx depending on the actions from other
CR users that share the same channel, so that the accumulated
interference from all the CR users at a PU does not exceed
a given threshold. Though the global constraint may result in
higher network rate (with price mechanism), it requires a large
information exchange and coordination among CR users, as
shown in [28], [29]. In this paper, we assume that the CR users
are not willing to exchange information. Therefore, we use an
individual constraint, namely, rate-loss constraint, to design the
power allocation, ensuring that the performance degradation
experienced by each PU is bounded. This individual constraint
leads to a distributed scenario (see Sec.V). Note that only local
information exchange among nearby CR-Rxs is needed in the
cooperative sensing stage. On the one hand, the maximum
achievable average rate of the PU in channelk without the
interference from CR-Txi is denoted as:

Ri
k,max = P(H1,k) log2

(

1 +
|Sk|2

(σi
k,n)2

)

(11)

On the other hand, the maximum achievable average rate of
the PU in channelk with the interference from CR-Txi is
denoted as:

Ri
k =P(H1,k)P i

k,d log2

(

1 +
|Sk|2
Ii,p
k,1

)

+ P(H1,k)(1 − P i
k,d) log2

(

1 +
|Sk|2
Ii,p
k,0

)

(12)

whereIi,p
k,0 and Ii,p

k,0 are the noise and the interference from
CR-Tx i to the PU in channelk under sensing resultsH0,k

andH1,k, respectively:

Ii,p
k,0 = (σi

k,n)2 + P i
k,0|hi

k,cp|2 (13)

Ii,p
k,1 = (σi

k,n)2 + P i
k,1|hi

k,cp|2 (14)

Let Γk denote the maximum acceptable rate-loss gap of the
PU in channelk, k = 1, ..., N . Then, the rate-loss constraint
for CR-Tx i can be written as follows:

Ri
k,max − Ri

k ≤ ΓkRi
k,max (15)

In order to simplify the development of (15), we usex log2(e)
instead oflog2(1+x), which amounts to rewrite this constraint
as:

(1 − Γk)P(H1,k)
|Sk|2 log2 e

(σi
k,n)2

− P(H1,k)P i
k,d

|Sk|2 log2 e

Ii,p
k,1

− P(H1,k)(1 − P i
k,d)

|Sk|2 log2 e

Ii,p
k,0

≤ 0 (16)

Given this, the new rate-loss constraint results in:

Γi
k,cI

i,p
k,1I

i,p
k,0 − P i

k,dI
i,p
k,0 − (1 − P i

k,d)I
i,p
k,1 ≤ 0 (17)

where Γi
k,c = (1 − Γk)/(σi

k,n)2. In fact, sincex log2 e ≥
log2(1 + x), the actual rate-loss gap resulting from the con-
straint (17) is not the same as in the original constraint (15).
The modified constraint (17) is more restrictive than (15),
as shown in Sec. VI. The resulting solutions are valid and
satisfactory, providing the sum-rate as the original constraint
(15) obtained with a smaller rate-loss gap. Further detailsare
given in Appendix A. Furthermore, the total transmit power
of each CR-Txi over all channels should not exceed its
maximum allowed power. The power budget constraint for
each CR-Txi can be formulated as:

N∑

k=1

(

P(H0,k)((1 − P i
k,fa(τ i

k))P i
k,0 + P i

k,fa(τ i
k)P i

k,1)

+ P(H1,k)(P i
k,d(τ

i
k)P i

k,1 + (1 − P i
k,d(τ

i
k))P i

k,0)

)

≤ P i
max

(18)

whereP i
max denotes the maximum total transmit power of the

CR-Tx i over all theN channels. In a real system, a highP i
k,d

and a lowP i
k,fa are typically required. In this work, without

loss of generality, we restrict the target detection probability
and false alarm to the rangesP i

k,d ≥ 1
2 and P i

k,fa ≤ 1
2 ,

respectively. According to the monotonicity of theQ-function,
and taking into account (6) and (7), constraints inP i

k,d and
P i

k,fa are equivalent to the inequalities:

τ i
k,min ≤ τ i

k ≤ τ i
k,max (19)

whereτ i
k,min = µi

k,0, τ i
k,max = µi

k,1. Finally, the optimization
problem for maximizing the sum-rate of CRi can be formu-
lated as the following problemP1:

max
Pi

1
,Pi

0
,τττi

f i(Pi
1,P

i
0, τττ

i)

s. t. (a1)Γi
k,cI

i,p
k,1I

i,p
k,0 − P i

k,dI
i,p
k,0 − (1 − P i

k,d)I
i,p
k,1 ≤ 0,

(a2)

N∑

k=1

(P(H0,k)((1 − P i
k,fa(τ i

k))P i
k,0 + P i

k,fa(τ i
k)P i

k,1)

+ P(H1,k)(P i
k,d(τ i

k)P i
k,1 + (1 − P i

k,d(τ
i
k))P i

k,0)) ≤ P i
max,

(b1)τ i
k,min ≤ τ i

k ≤ τ i
k,max,

(b2)0 ≤ P i
k,1, 0 ≤ P i

k,0, 1 ≤ i ≤ M, 1 ≤ k ≤ N. (20)

IV. QNE OF THE NON-CONVEX NON-COOPERATIVE

POWER ALLOCATION GAME

In the scenario, we consider that CR users are selfish and
strive to maximize their own sum-rate under several con-
straints, leading to a non-cooperative power allocation game.
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TABLE II
NOTATION OF THE NON-CONVEX NON-COOPERATIVE POWER ALLOCATION

GAME

Symbol Meaning
τττ i Detection threshold of CRi
Pi

0 Transmit power of CRi for detection resultH0

Pi
1 Transmit power of CRi for detection resultH1

xi = (Pi
0,Pi

1, τττ i) Strategy set of CRi
f i(xi) Sum-rate of CRi

gi
k
(xi) Non-convex individual constraint(a1) of P1

hi(xi) Non-convex individual constraint(a2) of P1
Jgi

k
(xi) Jacobian matrix of the vector functiongi

k
(xi)

Jhi(xi) Jacobian matrix of the vector functionhi(xi)

∇2
xig

i
k
(xi) Hessian matrix of the vector functiongi

k
(xi)

∇2
xih

i(xi) Hessian matrix of the vector functionhi(xi)

T (X i;xi) Tangent cone of the setX i at xi ∈ X i

X i Convex individual constraints(b1), (b2) of P1
Yi Feasible set of CRi

Consider that there areM players, corresponding to theM
CR-Txs, each one controlling the variablesxi = (Pi

1,P
i
0, τττ

i).
We denote byx the overall vector of all variables:x = [xi]Mi=1,
while x−i = (x1, ...,xi−1,xi+1, ...,xM ) stands for the vector
of the variables associated to all CR users except CRi. The
main symbols used in this section are given in Table II.
The non-convex individual constraints(a1) and (a2) are
denoted asgi

k(xi). We define the function vectorsG(x) =
[(gi

k(xi))N
k=1]

M
i=1, and hi(xi), H(x) = [hi(xi)]Mi=1, respec-

tively, whereas the convex individual constraints(b1), (b2) are
embedded in the defining set ofxi, denoted asX i. We denote
the non-cooperative power allocation gameG (H,G), given as
problemP2:

max
xi

f i(xi)

s. t. gi
k(xi) ≤ 0, hi(xi) ≤ 0, xi ∈ X i. (21)

The resulting gameP2 is non-convex; the objective function
and the constraints are non-convex due to the presence of
the false alarm and detection probabilities. As a consequence,
traditional mathematical tools are not applicable to provethe
existence of a NE for the game. In this section, we analyze
the proposed non-convex game based on a relaxed equilibrium
concept that has been recently introduced by Pang and Scutari
[27], [28], namely, the quasi-Nash equilibrium (QNE).

A. Quasi-Nash equilibrium

We use the concept of QNE for the non-convex game
P2, where the QNE is by definition a tuple that satisfies
the Karush-Kuhn-Tucker (KKT) conditions of all the players’
optimization problems; the prefixquasi is intended to signify
that a NE (if it exists) must be a QNE under a certain
constraint qualification (CQ), as explained in [27], [28]. Notice
that for a nonlinear program constrained by finite equations
and inequalities and a differentiable objective function,KKT
conditions are not always necessary conditions for a given
point to be a solution to the problem. When an appropriate
CQ holds, the solutions of the KKT conditions are equal to
stationary solutions of the associated problem [29]. In the
following, the KKT conditions of the problemP2 are rewritten

to a proper variational inequality (VI) problem [26]. LetYi

denote the feasible strategy set of each CRi, which can be
written as:

Yi = {xi ∈ X i | gi
k(xi) ≤ 0, hi(xi) ≤ 0}, 1 ≤ k ≤ N. (22)

Instead of explicitly accounting all the multipliers as variables
of the KKT conditions for each player’s optimization problem,
we introduce multipliers only for the non-convex constraints
hi(xi) ≤ 0 and gi

k(xi) ≤ 0, while the convex constraints
are embedded in the defining setX i. Denoting byαi

k and
βi the multipliers associated with the non-convex constraints
gi

k(xi) ≤ 0 and hi(xi) ≤ 0 of player CR-Txi, respectively,
the Lagrangian function of player CR-Txi is given by:

Li(xi,αααi,βββi) = −f i(xi) +
∑N

k=1
αi

kgi
k(xi) + βihi(xi) (23)

The KKT conditions based on the Lagrangian function (23)
are given by:

0 ≤ xi ⊥ ∇xiL(xi,αααi,βββi) ≥ 0

0 ≤ αi
k ⊥ −gi

k(xi) ≥ 0

0 ≤ βi ⊥ −hi(xi) ≥ 0

(24)

where0 ≤ a ⊥ b ≥ 0 implies a ≥ 0, b ≥ 0, a · b = 0, and
∇xiL(xi,αααi,βββi) is defined as:

∇xiL(xi,αααi,βββi) = −∇xif i(xi) +
N∑

k=1

αi
kJgi

k
(xi) + βiJhi(xi)

The components of the gradient∇xif i(xi) =
(∇P i

k,0
f i(xi),∇P i

k,1
f i(xi), ∇τ i

k
f i(xi)) are given,

respectively, by:

∇P i
k,0

f i(xi) =
ai

k,0|hii
k,cr|2

Ii
k,0 + P i

k,0|hii
k,cr|2

+
bi
k,0|hii

k,cr|2
P i

k,pc + Ii
k,0 + P i

k,0|hii
k,cr|2

(25)

∇P i
k,1

f i(xi) =
ai

k,1|hii
k,cr|2

Ii
k,1 + P i

k,1|hii
k,cr|2

+
bi
k,1|hii

k,cr|2
P i

k,pc + Ii
k,1 + P i

k,1|hii
k,cr|2

(26)

∇τ i
k
f i(xi) = P(H0,k)P i

k,fa(τ i
k)′(ri

k,01 − ri
k,00)

+ P(H1,k)P i
k,d(τ

i
k)′(ri

k,11 − ri
k,10) (27)

where:

ai
k,0 = P(H0,k)(1 − P i

k,fa(τ i
k)), ai

k,1 = P(H0,k)P i
k,fa(τ i

k)

bi
k,0 = P(H1,k)(1 − P i

k,d(τ
i
k)), bi

k,1 = P(H1,k)P i
k,d(τ i

k)
(28)

The componentsJgi
k
(xi) and Jhi(xi) denote the Jacobian

matrix of the vector functiongi
k(xi) andhi(xi), given as (29)

and (30), respectively:

Jgi
k
(xi) =






(Γi
k,cI

i,p
k,1 − P i

k,d(τ
i
k))|hi

k,cp|2
(Γi

k,cI
i,p
k,0 − (1 − P i

k,d(τ
i
k)))|hi

k,cp|2
P i

k,d(τ
i
k)′(Ii,p

k,1 − Ii,p
k,0)




 (29)

More specifically, ifx⋆ are the stationary solutions of game
G (H,G), and some CQ holds atx⋆, the KKT conditions
(24) can be reformulated to the equivalent form (31). The
system of inequalities (31) defines a VI problem with variables
(x,ααα,βββ), denoted asV I(Q,ΘΘΘ), where the vector functionΘΘΘ
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Jhi(xi) =











N∑

k=1

(1 − P(H0,k)P i
k,fa(τ i

k) − P(H1,k)P i
k,d(τ

i
k))

N∑

k=1

(P(H0,k)P i
k,fa(τ i

k) + P(H1,k)P i
k,d(τ

i
k))

N∑

k=1

(P(H1,k)P i
k,d(τ

i
k)′ + P(H0,k)P i

k,fa(τ i
k)′)(P i

k,1 − P i
k,0)











(30)





x − x⋆

αk − α⋆
k

β − β⋆





T 



∇xiL(xi,⋆,αααi,⋆,βββi,⋆)
−gi

k(xi,⋆)
−hi(xi,⋆)





M

i=1
︸ ︷︷ ︸

ΘΘΘ(x⋆,ααα⋆,βββ⋆)

≥ 0, ∀(xi, αi
k, βi) ∈

M∏

i=1

X i × R
r
+

︸ ︷︷ ︸

Q

(31)

and feasible setQ are defined in (31). ThisV I(Q,ΘΘΘ) is an
equivalent reformulation of the KKT conditions (24), where
the convex constraints are embedded in the feasible setQ,
and r is the total number of multipliersααα,βββ. The V I(Q,ΘΘΘ)
problem is to find a pointz⋆ = (x⋆,ααα⋆,βββ⋆) ∈ Q, such that
(z−z⋆)TΘΘΘ(z⋆) ≥ 0. In addition, if(x⋆,ααα⋆,βββ⋆) is the solution
of the V I(Q,ΘΘΘ), there existsγγγ⋆ such that(x⋆,ααα⋆,βββ⋆, γγγ⋆) is
a solution of the game,γγγ⋆ are the multipliers associated with
the players’ convex constraints(b1), (b2) [28].

Definition 1: A quasi-Nash equilibrium (QNE) of the
gameG (H,G) is defined and formed by the solution tuple
(x⋆,ααα⋆,βββ⋆) of the equivalentV I(Q,ΘΘΘ), which is obtained
under the first-order optimality conditions of each player’s
problems, while retaining the convex constraints in the defined
set Q. A QNE is said to be trivial, ifP⋆

0,P
⋆
1 = 0 for all

i = 1, ..., M [27], [28].

B. The existence of the QNE

Note that a matrixA is copositive whenxT Ax ≥ 0 for all
x ≥ 0. T(X i;xi) denotes the tangent cone of the setX i at
xi ∈ X i [34], i.e.,

T(X i;xi) =

{

lim
q→∞

xi
q−xi

yq
| xi

q ∈ X i, yq ∈ R+ with

lim
q→∞

xi
q = xi, lim

q→∞
yq = 0

}

Theorem1: TheV I(Q,ΘΘΘ) has a solution, and equivalently
the gameG (H,G) has a QNE, if the following conditions are
satisfied [30]:
(A) SetX i is convex,i = 1, ..., M .
(B) The functionF(x) = [−∇xif i(xi)]Mi=1 is continuously

differentiable on its domain, and eachH(x) and G(x)
are twice continuously differentiable on their domains.

(C) There exists a vectorxref = [xi,ref ]Mi=1 ∈ X ,X =
[X i]Mi=1, such that
(C1) Ψi(xi,ref ) < 0, where Ψi(xi,ref ) =

(
gi

k(xi,ref ), hi(xi,ref )
)
.

(C2) The Hessian matrix∇2
xigi

k(xi) is copositive on
T(X i;xi,ref ) for xi ∈ X i.

(C3) The Hessian matrix∇2
xihi(xi) is copositive on

T(X i;xi,ref ) for xi ∈ X i.

(C4) The set
{
xi ∈ X i|(xi − xi,ref )Fi(xi) ≤ 0

}
is

bounded (possibly empty).

Proof: The non-convex problemP2 satisfies the hypothe-
ses (A) and (B), and the proof for the hypotheses in (C1- C4)
is given in Appendix A.

An interiority condition (C1) is needed for the non-
convex constraints. Conditions (C2) and (C3) highlight the
significance of distinguishing the non-convex constraints
Ψi(xi,ref ) < 0 from the convex constraints contained in each
setX i. The condition (C4) is an assumption imposed for the
existence of solutions of theV I(X ,F(x)).
In order to show that the KKT conditions are valid necessary
conditions for an optimal solution ofP2, we need to verify
that an appropriate CQ holds, as shown in [35]. In this paper,
we use the linear independent constraint qualification (LICQ).
If the gradients of the constraints are linearly independent at
xi, we can prove that the LICQ holds atxi [35].

Lemma1: The LICQ holds at every feasible solution of the
problemP2.

Proof: Let the rank ofAm×n be denoted asR(Am×n).
Note that ifR(Am×n) = min(m, n), the matrixAm×n is full
rank and nonsingular. According toTheorem 1, problemP2
admits a solutionxi,⋆ = (Pi,⋆

1 ,Pi,⋆
0 , τττ i,⋆), which is not trivial.

Define the Jacobian matrixJΨi(xi,⋆) =
(

Jgi
k
(xi,⋆),Jhi(xi,⋆)

)

,
whereJgi

k
(xi),Jhi(xi) are given by (29), (30), respectively. We

can observe that in the first row of matrixJΨi(xi,⋆), the first
item contains the variablesPi

1 andτττ i, while the second item
just contains the variableτττ i. Moreover, in the second row of
matrixJΨi(xi,⋆), the variables in the first item are not equal to
the ones in the second item. Hence, the first columnJgi

k
(xi,⋆)

and the second columnJhi(xi,⋆) are linear independent atxi,⋆,
if |hi

k,cp|2 6= 0. The rank ofJΨi(xi,⋆), defined asR(JΨi(xi,⋆)),
is 2. Therefore, we can state that the Jacobian matrixJΨi(xi,⋆)

is nonsingular for any given set of non-zero channel gains,
and hence, the LICQ holds at every feasible solution of the
problemP2.

Based onLemma 1, we conclude that the KKT conditions
are valid necessary conditions for an optimal solution ofP2,
namely, the achieved QNE coincides with the NE.
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TABLE III
NOTATION OF PDIPOPTIMIZATION

Symbol Value
si (si

k,0
, si

1, si
k,2

)N
k=1

Slack variables

zi (xi, si)
vi (vi

0, vi
1, vi

2) Barrier parameters
ui (αααi, βββi, γγγi)
ΛΛΛi Diag(ui)
Si Diag(si)
Mci(zi) Merit function
DM

ci (zi;d
z

i ) Directional derivative ofMci(zi)

V. PRIMAL -DUAL INTERIOR POINT OPTIMIZATION

The optimization problemP1 for CR i is non-convex with
respect toxi, thus the optimal solution can not be obtained
using conventional convex optimization techniques. In [1], we
used the alternating direction optimization (ADO) algorithm
for solving a similar non-convex problem. However, for non-
convex problems, the ADO algorithm may not converge to the
optimal solution, and hence, it can be considered as a local
optimization algorithm [36].
The primal-dual interior point (PDIP) method is a powerful
method for both convex and non-convex problems, which
modifies the KKT conditions to ensure that the search direction
is a descent direction for the merit function. In this paper,we
analyze the iterative PDIP algorithm based on the IP algorithm
from [37], [38], which combines a line search step and a
trust region step. In addition, this PDIP algorithm requires no
information exchange between CR users. We first compute the
steps using line search whenever the conditions of these steps
can be guaranteed, and turn to the trust region step otherwise.
The trust region step, described in [38], starts by constructing
a quadratic model of the Lagrangian function. The search
direction is computed by minimizing the quadratic model,
subject to the constraints and the trust region, which provides
sufficient reduction in the merit function, and converges to
a solution ofV I(Q,ΘΘΘ), thus to a QNE of our game. The
main symbols are given in Table III. The problemP1 can be
reformulated as a sequence of the barrier problemP3:

min
zi

− f i(xi) − vi
0

N∑

k=1

ln si
k,0 − vi

1 ln si
1 − vi

2

N∑

k=1

ln si
k,2

s.t.gi
k(xi) + si

k,0 = 0 (32)

hi(xi) + si
1 = 0 (33)

g̃i
k(xi) + si

k,2 = 0 (34)

where g̃i
k(xi) denotes the convex constraints(b1), (b2),

si
k,0, s

i
1, s

i
k,2 > 0 are vectors of slack variables, denoted as

si = (si
k,0, s

i
1, s

i
k,2)

N
k=1. vi

0, v
i
1, v

i
2 > 0 are the barrier param-

eters, denoted asvi = (vi
0, v

i
1, v

i
2). To simplify the problem,

we denotezi = (xi, si), ui = (αααi,βββi, γγγi), and ϕvi(zi) =
−f i(xi) − vi

0

∑N

k=1 ln si
k,0 − vi

1 ln si
1 − vi

2

∑N

k=1 ln si
k,2. The

Lagrangian function of the problemP3 is given by:

L(zi,ui;vi) = ϕvi(zi) +
∑N

k=1
αi

k(gi
k(xi) + si

k,0)

+ βi(hi(xi) + si
1) +

∑N

k=1
γi

k(gi
k(x̃i) + si

k,2) (35)

Let ΛΛΛi = Diag(ui), and Si = Diag(si), e is the all-ones
column vector. The first order optimality conditions of the
problemP3 can be written as:

∇ziL(zi,ui;vi) =

(
∇xiL(zi,ui;vi)
SiΛΛΛie− vie

)

=

(
0
0

)

(36)

where∇xiL(zi,ui;vi) is given by:

∇xiL(zi,ui;vi) = −∇xif i(xi) +
∑N

k=1
αi

kJgi
k
(xi)

+ βiJhi(xi) +
∑N

k=1
γi

kJg̃i
k
(xi) (37)

∇xif i(xi),Jgi
k
(xi),Jhi(xi) are given by (25)-(27), (29) and

(30), respectively. TheJg̃i
k
(xi) is the Jacobian matrix of the

convex constraints̃gi
k(xi). Applying Newton’s method to

problemP3, we obtain the following primal-dual system:
(

W(zi,ui;vi) J(xi)
JT (xi) 0

) (
dzi

dui

)

=

(
∇ziL(zi,ui;vi)
B(zi)

)

(38)
B(zi) is defined as:

B(zi) =





gi
k(xi) + si

k,0

hi(xi) + si
1

g̃i
k(xi) + si

k,2





N

k=1

(39)

andW(zi,ui;vi) is defined as:

W(zi,ui;vi) =

(
∇2

xiL(zi,ui;vi) 0
0 (Si)−1ΛΛΛi

)

(40)

where∇2
xiL(zi,ui;vi) is the Hessian matrix ofL(zi,ui;vi),

andJ(xi) is given by:

J(xi) =
(

Jgi
k
(xi) Jhi(xi) Jg̃i

k
(xi) I

)N

k=1
(41)

We define the search directionsdzi anddui as:

dT
zi =

(

dP i
k,0

, dP i
k,1

, dτ i
k
, dsi

k,0
, dsi

1

, dsi
k,2

)N

k=1

dT
ui =

(

dαi
k
, dβi , dγi

k

)N

k=1

The objective function component and the component com-
prising constraints of the problemP3 are used as the merit
function for the PDIP algorithm, which can be defined by:

Mci(zi) = ϕvi(zi) + ci||B(zi)|| (42)

where ci > 0 is the penalty parameter, which is updated at
each iteration so that the search directiondzi is a descent
direction forMci(zi). The iterations are given by:

zi(p + 1) = zi(p) + ρρρi
zidzi(p) (43)

ui(p + 1) = ui(p) + ρρρi
uidui(p) (44)

where p is the number of the inner iteration loop,ρρρi
zi and

ρρρi
ui are the step-lengths. We then perform a backtracking

line search that computes the step-lengths which provide a
sufficient decrease in the merit function. The step-lengths
ρρρi
zi , ρρρi

ui ∈ (0, 1] are given by:

ρρρi
zi = {si + ρρρi

zidsi ≥ ξ0s
i} (45)

ρρρi
ui = {ui + ρρρi

uidui ≥ ξ0u
i} (46)
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where ξ0 ∈ (0, 1] is a constant. Moreover, the directional
derivative ofMci(zi) is given by:

DM
ci (zi;d

z
i ) = ∇ϕvi(zi)dzi − ci||B(zi)|| (47)

Expressions(38)-(45) provide the basis for the line search
steps in the PDIP algorithm. However, due to the non-
convexity of the problemP3, the line search iterations may
converge to non-stationary points. If the step-lengthsρρρi

zi , ρρρi
ui

converge to zero, we turn to the trust region iterations, which
provide a sufficient reduction in the chosen merit function
for both feasibility and optimality at every iteration and thus,
guarantee progress towards stationary [38].
The trust region step treats convex and non-convex problems
uniformly, and allows the direct use of the second derivative
information. In addition to preserving the global convergence
properties of the trust region step, the size of a trust region
radiusΥi affects the backtracking line search iterations. Note
that if a trust region iteration is rejected, the following it-
erations are still computed by the trust region step until a
successful step is obtained. In the trust region step, a step
d is acceptable if the ratio of actual reduction (ared(d)) to
predicted reduction (pred(d)) of the merit function is greater
than a given constantη > 0, denoted as (48), whereW is
defined in (40). We outline the iterative PDIP algorithm in
Algorithm 1, whereN i

e is the number of negative eigenvalues
of the matrix in (38), and Nb is the maximum number of
backtracking search steps. For our problem, ifN i

e > 4N ,
then dzi can not be guaranteed to be the descent direction
[39]. In this case, we turn to the trust region steps. We choose
η = 10−8, ε = 10−6, andNb = 4. The resulting algorithm is
ensured to have global convergence, thus achieving a QNE of
the V I(Q,ΘΘΘ). For more details of the trust region iterations
and the global convergence analysis, refer to [37], [38].
Complexity analysis. The complexity of the iterative PDIP
algorithm is dominated by the procedure of line search it-
eration steps and trust region iteration steps, as well as the
size of the CRN. Generally, for the inner loop, the time
complexity of line search is based on the Newton iteration,
which requires at mostO((2N + M)3) computations. For
the ε-accurate iteration, the computation of Newton iterations
reduce toO(ln(1

ε
)
√

2N + M) [40], and according to [41],
the complexity for the logarithmic barrier function is the best
one given byO(

√
2N + M). For our problem, the maximum

number of backtracking search steps is given byNb, thus
the time complexity of the line search isO(

√
2N + M) ∼

O(Nb

√
2N + M). In addition, the trust region iterations step

is based on the sequential quadratic programming techniques
[42], [43], and the worst-case complexity of reaching a scaled
stationary point isO(2N + M +

√
2N + M) [44]. The outer

loop for a CRN with M CR users is a linear problem
with the accuracyε, thus the total complexity of the PDIP

algorithm is given byOPDIP = O

(

ln(1
ε
)M

√
2N + M

)

∼

O

(

ln(1
ε
)M((Nb + 1)

√
2N + M + 2N + M)

)

. Notice that

here we did not consider the time complexity of the conver-
gence of the consensus algorithm in the cooperative sensing
step.

Algorithm 1 Primal-Dual Interior Point Optimization

Initialize zi(0) = (xi(0), si(0)). Compute initial values for
the multipliersui(0) = (αααi(0),βββi(0), γγγi(0)), set the trust-
region radiusΥi(0) > 0 and the barrier parametervi(0) >
0.
repeat

for i =1: M
repeat

repeat
Compute the numberN i

e from (38), set LS = 0
if N i

e ≤ 4N
Calculate the search directiond(p) =

(dzi(p),dui(p)) from (38). Computeρρρi
zi , ρρρi

ui

if min{ρρρi
zi , ρρρi

ui} > ε
Set j = 0, ρρρi

T = 1
repeat

if Mci(zi(p)+ρρρi
Tρρρi

zidzi(p)) ≤ Mci(zi(p))+
ηρρρi

Tρρρi
ziDM

ci (zi;d
z

i )

Updateρρρi
zi = ρρρi

Tρρρi
zi , ρρρi

ui = ρρρi
Tρρρi

ui

Updatezi(p + 1),ui(p + 1) using(43). Up-
dateΥi(p + 1). Set LS = 1

elseUpdatej = j+1, choose a smaller value
of ρρρi

T

endif
until j > Nb or ρρρi

T < ε Or LS == 1
endif

endif
if LS == 0
Compute the stepd(p) = (dzi(p),dui(p))
Compute Lagrange multiplierui(p+1). Update the

penalty parameterci

if ared(d) ≥ ηpred(d)
Setzi(p +1) = zi(p) +dzi(p). Enlarge the trust

region radiusΥi(p + 1)
elseSetzi(p+1) = zi(p). Shrink the trust region

Υi(p + 1)
endif Setvi(p + 1) = vi(p), p = p + 1

until ||∇xiL(zi,ui;vi)||∞ ≤ ε and ||SieΛΛΛi −
vie||∞ ≤ ε

Reset the barrier parameters, so thatvi(p+1) < vi(p)
until ||∇xiL(zi,ui;vi)||∞ ≤ ε and ||SiΛΛΛi||∞ ≤ ε
Updatexi(p0) = xi(p), wherep0 is the number of the

outer loop.
endfor

until ||xi(p0) − xi(p0 − 1)|| ≤ ε

VI. SIMULATION RESULTS

A. Scenario Description

We consider a CRN withM = 3 CR Tx-Rx pairs and
N = 2 PU channels. All PUs and CR users are randomly
placed in a 50 meter× 50 meter square. The radio environment
map is shown in Fig.2, where the color-bar shows the received
power from PUs in Watt. We use the channel model from the
3GPP Indoor scenario for LTE [45]. The distance-dependent
path loss is given byPLdB = 7 + 56 log10(d); d = dji/dii

(m) is the relative distance between CR-Txj and CR-Rxi,
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η <
ared(d)

pred(d)
=

Mci(zi) − Mci(zi + dzi)

−∇ϕvi(zi)dzi − 1
2d

T
ziWdzi + ci(||B(zi)|| − ||B(zi) + J(xi)dzi ||) (48)

TABLE IV
SIMULATION PARAMETER

Symbol Value
Sensing timet 1ms
Sampling frequency,fs 2MHz

Probability of channelk idle, P(H0,k) 0.1, 0.5
Probability of channelk occupied,P(H1,k) 0.9, 0.5
Transmit power budget of CRi, P i

max 0 ∼ 10W

Transmit power of PU in channelk, |Sk|
2 10W

Rate-loss gap of channelk, Γk 0.1%,0.3%,1%

d(m)

d
(m

)
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Fig. 2. Network topology: Location of two PU and three CR Tx-Rx pairs.

where dii and dji are the distances between CR-Txi and
CR-Rx i, CR-Tx j and CR-Rxi, respectively. A lognormal
shadowing variable with variance10 dBs is considered here,
and (σi

k,n)2 = 1. Assume that the sensing environment is
stable in the optimization process, and the local channel state
information, i.e., the channel gain between a CR-Tx and its
target Rx and each PU, is known by each CR-Tx. The main
simulation parameters are given in Table IV.

B. Simulation Results

In this section, we first compare the performance of the
proposed game, in terms of the sum-rate achieved at the QNE
for one CR user by the PDIP algorithm, with those achieved
by the ADO algorithm [1] and the deterministic game (DG)
proposed in [25]. Then, we investigate the influence of the
activity of the PU and compare the sum-rate achieved by
different constraints, respectively. Finally, we show theactual
rate-loss of the PUs under constraints (15) and (17).
In Fig. 3, we compare the sum-rate achieved at the QNE
by the PDIP algorithm with those achieved by the ADO
algorithm and the DG. For the ADO algorithm, the first step
is to maximize the sum-rate of each CRi based on an initial
detection threshold, and then optimize the threshold based
on the optimal power obtained in the first step. The sensing
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Fig. 3. Sum-rate achieved at the QNE versusP i
max; Comparison between

ADO algorithm and DG.

information is not considered as a part of optimization for the
DG. Regarding the constraint inequalities given in (17), (18),
it can be seen that the optimization problem works in two
possible regimes:
(a) Power budget limited regime (PLR), where the transmit

power is bounded by the total power budget constraint
(18), leading to the worst case interference condition. In
this case, each CR-Txi allocates all the available power
budget and causes the maximum interference to other CR-
Rxs [6], and the achievable rate is determined by the total
power budget.

(b) Rate-loss limited regime (RLR), which implies that the
transmit power is bounded by the rate-loss constraint (17).
Increasing the total power budget can not improve the
performance of the CR users, and the interference to the
PUs reaches the upper bound.

The results shows that when the CR users work in PLR,
when Γk = 1%, the performances of these three algorithms
are almost the same, while the proposed game with joint
optimization of the sensing information and transmit powerby
PDIP algorithm yields a considerable performance improve-
ment in RLR, whenΓk = 0.1%, with respect to the ADO
algorithm and the disjoint case of the DG. In fact, the DG
can be considered as the perfect sensing information case (i.e.
P i

k,fa = 0 and P i
k,d = 1) with a deterministic interference

constraint. Specifically, in RLR, a higher transmit power isal-
lowed due to the accurate sensing information in the proposed
game compared to the DG with a deterministic interference
constraint, thus the performance can be improved. In addition,
whenΓk = 0.1%, the sum-rate of CR users does not change
after P i

max > 1W , indicating that the transmit power changes
from PLR to RLR. Fig. 4 presents the sum-rate achieved at
the QNE versus the power budgetP i

max for different average
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max; Comparison between

P(Hk,1) = 0.5 andP(Hk,1) = 0.9.

fractions of the PU’s activity,P(H1,k) = 0.5, 0.9, which are
directly related to the traffic load of the PU. It can be observed
that in RLR, whenΓk = 0.1%, the traffic load of the PUs
affects the sum-rate of the CR users. The CR users suffer a
decrease in sum-rate when the traffic load of the PU increases
from 0.5 to 0.9. In other words, when there is more activity of
the PU, there is less chance for the CR users to use the channel.
Additionally, in PLR, the performance of the CR users is not
sensitive to the traffic load of the PU.
In Fig. 5, we compare the performance achieved by the global
constraint with the individual constraint (17), respectively. In
order to have the same total interference to the PU, we use a
rate-loss gapΓk,g = Γk ×M for the global constraint. Based
on the individual constraint (17), the global constraint can be
written as(1−Γk,g)I

i,pt
k,1 Ii,pt

k,0 −P i
k,dI

i,pt
k,0 −(1−P i

k,d)I
i,pt
k,1 ≤ 0,

whereIi,pt
k,0 , Ii,pt

k,1 stand for the total interference from all the
CR users. It is rather interesting to notice that when the rate-
loss constraint is active, the performance of the CR users
under the individual constraint is better than those achieved by
the global constraint. However, this is due to the unfairness
among the CR users in the global constraint. Each iteration
of the game follows a sequential order, indicating that the
CR users having the priority to choose their action can
have the preference to maximize their own benefit in the
global constraint case, and the CR users at the bottom of
the iteration loop have to be switched off in RLR. These
inherently unfairness for the global constraint leads to a lower
utilization of the channel, yielding a worst performance of
the CR users. Actually, the global constraint can result in a
better performance than the individual constraint by pricing
mechanism, which uses a penalty in the objective function
and encourages the CR users to work in a cooperative manner
to achieve a higher social welfare [28], [29], [46].
Finally, in Fig. 6, we evaluate the interference experienced
by the PU under constraint (15) and the modified constraint
(17). The rate-loss gap is defined as(Ri

k,max − Ri
k)/Ri

k,max,
and Ri

k,max, Ri
k are given by (11), (12), respectively. It can

be observed that in RLR, the constraint (15) imposes a less
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Global constraint and Individual constraint.
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strict condition on the transmit power of the CR users than the
one imposed by the modified constraint (17). This leads to a
higher interference and a larger rate-loss gap experiencedby
the PUs, and to an increase of the sum-rate of the CR users.
In other words, the modified constraint (17) can be seen as
the constraint (15) with a smaller rate-loss gap.

VII. C ONCLUSIONS

In this paper, we considered a sensing-based spectrum
sharing scenario, where the overall objective was to maximize
the sum-rate of each cognitive radio user by optimizing jointly
both the detection operation and the power allocation. In
order to deal with the non-convexity of the game, we used a
relaxed equilibria concept, the quasi-Nash equilibrium (QNE).
We presented the sufficient conditions for the existence of a
QNE based on variational inequality theory, and proved that
the linear independent constraint qualification held at every
feasible solution of the proposed game, thus the achieved
QNE coincided with the NE. Finally, a distributed iterative
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∇2
xigi

k(xi) =





0 Γi
k,c|hi

k,cp|4 −P i
k,d(τ

i
k)′|hi

k,cp|2
Γi

k,c|hi
k,cp|4 0 P i

k,d(τ
i
k)′|hi

k,cp|2
−P i

k,d(τ
i
k)′|hi

k,cp|2 P i
k,d(τ

i
k)′|hi

k,cp|2 P i
k,d(τ

i
k)′′(Ii,p

k,1 − Ii,p
k,0)



 (49)

(xi − xi,ref )T∇2
xigi

k,c(x
i)(xi − xi,ref ) = (P i

k,0 − P i,ref
k,0 )2(1 − P i

k,d(τ
i
k))U i,p

k,0 + (P i
k,1 − P i,ref

k,1 )2P i
k,d(τ

i
k)U i,p

k,1

+ 2(P i
k,0 − P i,ref

k,0 )(τ i
k − τ i,ref

k )P i
k,d(τ

i
k)′|hi

k,cp|2((Ii,p
k,0 + |Si

k|2)−1 − (Ii,p
k,0)

−1)

+ 2(P i
k,1 − P i,ref

k,1 )(τ i
k − τ i,ref

k )P i
k,d(τ

i
k)′|hi

k,cp|2((Ii,p
k,1)

−1 − (Ii,p
k,1 + |Si

k|2)−1)

+ (τ i
k − τ i,ref

k )2P i
k,d(τ

i
k)′′ log2((1 + |Si

k|2/Ii,p
k,1)/(1 + |Si

k|2/Ii,p
k,0))

(50)

primal-dual interior point algorithm was stated and shown to
converge to a QNE of the proposed game. Simulation results
showed that the iterative primal-dual interior point algorithm
yielded a considerable performance improvement with respect
to the alternating direction optimization algorithm and the
deterministic game.

APPENDIX A
PROOF OF THE HYPOTHESES INTHEOREM 1

Due to lack of space, only the sketch is provided. The
Hessian matrix∇2

xigi
k(xi) is given by (49), whereΓi

k,c =
(1−Γk)/(σi

k,n)2. In order to check that conditions (C1), (C2)
and (C3) are satisfied, we assume thatP i,ref

k,0 = 0, P i,ref
k,1 = 0

and τ i,ref
k = τ i

k,min, whereτ i
k ∈ [τ i

k,min, τ i
k,max]. It follows

that xi,ref = [P i,ref
k,0 , P i,ref

k,1 , τ i,ref
k ]Nk=1, and we have:

(xi − xi,ref )T∇2
xigi

k(xi)(xref − xi,ref )

= 2Γi
k,cP

i
k,0P

i
k,1|hi

k,cp|4 + (τ i
k − τ i,ref

k )2P i
k,d(τ

i
k)′′(Ii,p

k,1 − Ip
k,0)

+ 2(τ i
k − τ i,ref

k )P i
k,d(τ

i
k)′(P i

k,1 − P i
k,0)|hi

k,cp|2

Notice that P i
k,1 < P i

k,0, Ii,p
k,1 < Ip

k,0, P i
k,d(τ

i
k)′ < 0 and

P i
k,d(τ

i
k)′′ < 0. All the terms are positive, thus the Hessian

matrix of∇2
xigi

k(xi) is copositive. Similarly, we can show that
the Hessian matrix of functionhi(xi) is copositive. Thus, con-
ditions (C1), (C2) and (C3) are satisfied. For condition (C4),
we need to show that the player’s variablesx = (P0,P1, τττ )
are bounded. For every CRi, we have0 ≤ P i

k,0 and0 ≤ P i
k,1,

and from power budget constraint (18) we can get:

P i
k,0 ≤ P i

max

(1 − P(H0,k)P i
k,fa(τ i

k) − P(H1,k)P i
k,d(τ

i
k))

≤ P i
max

Ai
k,0

P i
k,1 ≤ P i

max

(P(H0,k)P i
k,fa(τ i

k) + P(H1,k)P i
k,d(τ

i
k))

≤ P i
max

Ai
k,1

whereAi
k,0 = 1− 1

2P(H0,k)−P(H1,k)Q
(

µi
k,0−µi

k,1

σi
k,1

)

, Ai
k,1 =

1
2P(H1,k)+P(H0,k)Q

(
µi

k,1−µi
k,0

σi
k,0

)

. In addition,τττ is bounded

by the constraint (19), and we can conclude that the condition
(C4) is also satisfied. Therefore, theV I(Q,ΘΘΘ) has a solution,
and the gameG (H,G) has a QNE. Moreover, every QNE is
not trivial, a trivial QNE can not satisfy (31).
Constraint (15) v.s. Constraint (17):For Constraint (15), de-
noted asgi

k,c(x
i), we have (50), whereU i,p

k,0 = |hi
k,cp|4((Ii,p

k,0+

|Si
k|2)−2 − (Ii,p

k,0)
−2), U i,p

k,1 = |hi
k,cp|4((Ii,p

k,1 + |Si
k|2)−2 −

(Ii,p
k,1)

−2). The first and the second term on the right side are
negative, the fifth term is positive, the sum of the third and
the forth term can be proved to be positive. Hence, assuming
U i,p

k,0 > U i,p
k,1, the ∇2

xigi
k,c(x

i) is copositive if the following
inequality is satisfied:

(τ i
k − τ i,ref

k )2P i
k,d(τ

i
k)′′ log2(1 + |Si

k|2/Ii,p
k,1)/(1 + |Si

k|2/Ii,p
k,0))

> ((P i
k,d(τ i

k) − 1)(P i
k,0)

2 − P i
k,d(τ

i
k)(P i

k,1)
2)U i,p

k,0 (51)

However, this condition depends on the values of the system
parameters as well as the action of the CRi, which is
uncertain. In order to simplify the analysis, we use constraint
(17) instead of constraint (15), which is more suitable for
a general network, and offers a better protection for PU, as
shown in the simulation results.
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Spain, in 2003 and 2008, respectively. In 2009
and 2010, she was a postdoctoral researcher in the
Communications Systems and Information Theory
group, Chalmers University of Technology, Sweden.
In 2011, she joins the Group of Information and
Communication Systems, University of Valencia, as
an Assistant Professor. Her research interests include
the general areas of coordination and cooperation in

wireless systems.


	Página en blanco

