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Abstract Women show a lower incidence of cardiovascular diseases than age-matched men,
but this benefit disappears after menopause. Oestrogen-mediated vascular actions are mainly
attributed to oestradiol and exerted by oestrogen receptors (ERα, ERβ and G protein-coupled
oestrogen receptor), through rapid and/or genomic mechanisms, but these effects depend on
ageing and inflammation. A cardiovascular approach in women’s health has arisen due to
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controversy regarding oestrogen’s beneficial impact as reported in experimental and observational
studies and large randomized trials. These can be explained, in part, by two mutually non-exclusive
hypotheses. On the one hand, the timing hypothesis, which states that oestrogen-mediated benefits
occur before the detrimental effects of ageing are established in the vasculature; on the other hand,
ageing and/or hormonal-associated changes in ER expression that could lead to a deleterious
imbalance in favour of ERβ over ERα, generally associated with higher inflammation and end-
othelial dysfunction. In experimental studies, oestradiol acting on ERα promotes the release of
vasoactive compounds such as nitric oxide (NO) and prostacyclin, and shifts the angiotensin
axis towards angiotensin 1–7 production. Mechanisms underlying oestradiol vascular function
also include anti-inflammatory and epigenetic modifications. 17β-Oestradiol changes the trans-
criptomic profile of endothelial cells, and the involvement of miRNA in the regulatory pathways
of vascular function reinforces assumptions regarding the vascular actions of oestrogen. Thus,
the present Symposium Review aims to postulate the role of ERα in oestrogen modulation of
endothelium-derived mediators and vascular physiology, as well as its relationship with miRNA
and inflammation, and elucidate how physiological changes in postmenopausal women counter-
act the observed effects.
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Abstract figure legend The beneficial effects mediated by oestrogen involve different intracellular signalling pathways,
such as nitric oxide (NO), prostanoids and the renin–angiotensin system (RAS), towards a vasoprotective profile
involving oestrogen receptors, mainly ERα. Physiological changes as ageing and menopause and in epigenomics affect
the cardiovascular effects of oestrogen. (Created by Biorender.com.)

In-depth study of cardiovascular diseases (CVD) has led
to a fuller understanding of sex differences in cardio-
vascular physiology. CVD is currently the leading cause
of death in women from developed countries (WHO,
2016) although statistical data reveal that women develop
CVD 10 years later than men (Burns & Korach, 2012),
and incidence increases from menopause on (Deroo &
Korach, 2006; Burns & Korach, 2012; Vrtacnik et al.
2014). Women’s time-related advantage regarding CVD
development has been attributed to hormonal status, and
both clinical and experimental data have demonstrated
the beneficial effects of oestrogen at the cardiovascular
level (Hayward et al. 2000; Mendelsohn & Karas, 2005).
However, hormonal replacement therapies (HRT) have
been used in postmenopausal women with controversial
findings (Mendelsohn & Karas, 1999; Mikkola et al. 2013).
While the largest randomized controlled trial, Women’s
Health Initiative (WHI), initially reported no protective
role against coronary heart disease risk (Rossouw et al.
2002), a reanalysis by age and years since menopause
(Rossouw et al. 2007) demonstrated a significant benefit
in healthy women initiating oestrogen therapy soon
after menopause onset (Manson et al. 2003; Rossouw
et al. 2007; Novella et al. 2012). In fact, age and years
since menopause are important variables affecting the
benefit/risk profile of HRT (Sood et al. 2014). The so-called
timing hypothesis postulates that the beneficial impact

of hormonal replacement in CVD prevention can occur
only when HRT is initiated before the detrimental effects
of ageing on the cardiovascular system have become
established (Clarkson et al. 2013). In this regard, it has
been reported that age moderates oestrogen’s vasodilatory
(Sherwood et al. 2007) and anti-inflammatory (Novella
et al. 2012) effect on vascular tissue in postmenopausal
women. The current consensus on HRT is that the cardio-
vascular protective role of oestrogen depends on the timing
of treatment after menopause (Lobo, 2017).

Since the publication of the WHI results in 2002, much
has been learned, yet much controversy remains. The 2017
position statement of the North American Menopause
Society (NAMS), which evaluates new literature and
reaches consensus on recommendations for the use of
HRT for the treatment of menopause-related symptoms,
identified future research needs as the risks of HRT differ
depending not only on timing of initiation but also on
type, dose, duration of use, route of administration and
whether a progestogen is needed (Hormone Therapy
Position Statement Advisory Panel, 2017). In agreement
with the timing hypothesis, the position statement of
NAMS assessed that for women aged younger than 60 years
or who are within 10 years of menopause onset, HRT
appears favourable for treatment of some menopausal
symptoms, but for those who initiate HRT more than
10 or 20 years from menopause onset or when aged
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60 years or older, the benefit–risk ratio appears less
favourable than for younger women, with greater
absolute risks of coronary heart disease, stroke, venous
thromboembolism and dementia.

Oestrogen receptors in the cardiovascular system

The most abundant form of circulating oestrogen is
oestradiol, also termed 17β-oestradiol, which is pre-
dominantly synthesized and secreted by the ovaries
during a woman’s reproductive years. Vascular tissues,
particularly endothelial cells, vascular smooth muscle
cells (VSMCs) and cardiomyocytes, are oestradiol targets
as they express different types of oestrogen receptors
(ERs) (Khalil, 2013). This expression is also shared by
monocytes, macrophages and dendritic cells, suggesting a
modulatory role for oestradiol in inflammatory processes,
a key event in onset and development of CVD (Harkonen
& Vaananen, 2006; Kovats, 2015). Oestradiol binds to
classical ERs including both ERα and ERβ in cytoplasm,
to create homo- or heterodimers. They then bind to
specific DNA motifs called oestrogen response elements
(EREs) in the promoter region of oestrogen-responsive
genes to regulate transcription (Klinge, 2001) and induce
changes in gene expression. ERα and ERβ have different
distributions, and selective activation of either the ERα
or the ERβ isoform may involve contrasting biological
effects, having opposing gene-expression regulatory effects
(Lindberg et al. 2003; Tsutsumi et al. 2008) or alternatively
having redundant mediatory roles (Arias-Loza et al. 2007;
Lahm et al. 2008). Oestrogen signalling is thus selectively
regulated by the relative balance between ERα and ERβ
expression in target organs (Murphy & Steenbergen,
2014), although studies using ERα and ERβ knockout
mice revealed that the beneficial effects oestrogen has on
the vascular system are mainly mediated by ERα (Pare
et al. 2002; Arnal et al. 2017).

Besides this classical genomic action, oestradiol also
binds to membrane-bound ERα and ERβ receptors
as well as to G protein-coupled ER (GPER) (Levin,
2009), rapidly activating nuclear transcription factors and
triggering faster responses (within minutes). Many of the
effects of oestrogen seen in human and animal models,
such as reduced myocardial pro-inflammatory cyto-
kine expression, inhibition of VSMC proliferation, and
nitric oxide (NO)-dependent vasodilatation (Prossnitz &
Barton, 2011), have recently been attributed to GPER
expression in the cardiovascular system (Revankar et al.
2005).

The present overview is a Symposium Review pre-
sented in Europhysiology 2018, partially based on our
own results, and aims to highlight the role of ERα in
oestrogen modulation of endothelial-derived mediators
and vascular physiology, and how physiological changes in
postmenopausal women counteract the observed effects.

Vascular protective effects of oestrogen through ERα

The vascular-protective impact of oestrogen has also
been attributed to its effects on the vascular wall,
in both endothelium and smooth muscle, releasing
vasoactive-mediators which promote arterial vaso-
dilatation, modulate inflammatory processes and regulate
systemic lipid metabolism and oxidative-stress balance
(Kondo et al. 2009; Barton, 2013; Usselman et al.
2016). Figure 1 summarizes the role of ERα in
endothelium-derived mediator and vascular smooth
muscle cell function. Next the effects on these mediators, in
particular NO, prostacyclin and angiotensin 1–7 pathways,
will be discussed (some of the actions are summarized in
Table 1).

Oestrogen and nitric oxide. In endothelial cells, which
form the luminal cell monolayer of the vascular wall,
oestradiol modulates the release of multiple vasoactive
substances via both genomic and non-genomic action.
Oestradiol increases NO bioavailability by either directly
increasing NO generation or decreasing NO inactivation.
Oestrogen increases NO bioavailability by mechanisms
such as increasing endothelial NO synthase (eNOS) gene
expression at the transcriptional level (Sumi & Ignarro,
2003); non-genomic and rapid activation of enzyme
activity via cascades that activate kinases c-Src (Haynes
et al. 2003), extracellular signal-regulated kinase (ERK)
(Chen et al. 2004), phosphoinositide 3-kinase (PI3K)
(Simoncini et al. 2003), and Akt, which leads to eNOS
activation through phosphorylation at residue Ser1177
(Haynes et al. 2000; Meyer et al. 2009); increasing
intracellular free Ca2+ concentration in endothelial cells
(Rubio-Gayosso et al. 2000); regulating endogenous
inhibitors and cellular location (Chambliss & Shaul, 2002;
Monsalve et al. 2007; Novella et al. 2013); and attenuating
superoxide anion (O2

−) concentration, thereby decreasing
O2

−-mediated NO inactivation (Wassmann et al. 2001;
Dantas et al. 2002; Ospina et al. 2002). Some of
these rapid effects of oestradiol on the NO signalling
pathway require no changes in gene expression and are
mediated by different plasma membrane-associated ER
subtypes. In addition to full-length ERα (ER66), an
N-terminal truncated ERα isoform, ER46, plays a key
role in these endothelial responses to oestradiol (Kim
et al. 2014). Besides this, recent findings reveal that a
GPER-mediated cascade acts as an alternative pathway
in oestradiol-induced endothelium-dependent vaso-
dilatation and NO formation via c-Src/PI3K signalling
pathways (Fredette et al. 2018). Thus, in physiological
conditions oestradiol stimulates vascular NO formation
via GPER and mainly through ERα, which acts at a
vascular level as a potent vasodilator, but also conveys
vasoprotection through antithrombotic mechanisms and
modifies proliferation and migration of the underlying
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VSMC (Förstermann & Sessa, 2012), thereby controlling
the vascular tone.

In processes related to vascular injury associated with
inflammation, ERβ expression in endothelium increases
the expression of superoxide dismutase (SOD2) and
eNOS, which altogether also raise NO bioavailability,
ameliorating ischaemia–reperfusion-mediated vascular
injury and minimizing reactive oxygen species generation
(Zhan et al. 2016). On the other hand, pharmacological
activation of the ERβ increases the expression of
cytokine-driven inducible NO synthase (iNOS) in rat
vascular smooth muscle (Panic et al. 2018), raising the
hypothesis that ERβ can be induced by injuries and
contributes to inflammation (Sartoretto et al. 2019). In
non-vascular cells, ERβ activation also increases levels of
phosphorylated neuronal NO synthase (nNOS) and NO

production through a Src/PI3K/Akt-dependent pathway
in hypothalamic neurons (Gingerich & Krukoff, 2008).

The effect of oestradiol on the NO pathway observed
in cultured cells has been confirmed in a large number
of isolated blood vessel preparations including the rat
aorta (Freay et al. 1997), rat femoral artery and rat
portal vein (Kitazawa et al. 1997), rabbit coronary
artery (Jiang et al. 1991) and porcine coronary artery
(Teoh et al. 1999). Although oestradiol’s mechanism of
action differs according to the vascular bed and species
studied, in general ERα, ERβ and GPER all seem to
contribute. Generally, oestradiol exposure in women
increases vascular relaxation and endothelial-dependent
vasodilatation, increasing blood flow in numerous
vascular beds. In studies performed in healthy young
women, oestradiol is also associated with increases in
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Figure 1. Role of ERα on endothelium-derived mediators and vascular smooth muscle cell function
Oestradiol (E2) binds to oestrogen receptor α (ERα) triggering both genomic and cytoplasmic response. E2–ER
complex is translocated to the nucleus and induces transcription of specific genes by binding to oestrogen
response elements (ERE) in their promoter region. Endothelial nitric oxide synthase (eNOS), cyclooxygenase 1
(COX1), prostacyclin synthase (PGIS) and angiotensin converting enzymes (ECA) are regulated transcriptionally by
ERα. In addition to its genomic effect, E2–ERα also regulate eNOS activity by inducing phosphorylation through
different kinase signalling pathways (PI3K/AKT, SCR, ERK), and reducing the endogenous inhibitor asymmetric
dimethylarginine (ADMA) by regulating dimethylarginine dimethylaminohydrolase (DDAH). Moreover, E2–ERα

enhances activity of angiotensin converting enzymes (ECA), increasing the production of angiotensin 1–7, and
plays a role in NO-dependent vasodilatation through a mechanism that involves Mas receptor. As a result, NO
diffuses into the vascular smooth muscle cells and binds to guanylate cyclase (GC), increasing cGMP that in turn
cause relaxation. E2 also increase prostacyclin (PGI2) production through the COX1–PGIS pathway. PGI2 is released
from endothelial cells and binds to specific receptors located in the membrane of smooth muscle cells, which leads
to an increment of cAMP by adenylate cyclase (AC) and muscle relaxation. E2 can also interfere with different
signalling pathways, such as protein kinase C (PKC) and Rho-kinase and membrane ion channel activity through
non-genomic actions. Altogether, these mechanisms lead to oestrogen-mediated vascular relaxation. (Created by
BioRender.com.)
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Table 1. Vascular protective factors mediated by oestradiol

Vasoactive-mediator
production Mechanism Experimental model Reference

↑ NO bioavailability ↑ eNOS activation
ER46

EA.hy926 cells Haynes et al. (2003)

↑ eNOS expression
Oestrogen-related receptor α1
(ERRα1)

COS-7 cells and bovine pulmonary
artery endothelial cells

Sumi & Ignarro, (2003)

↑ NO production
GPER

Human endothelial cells, TIVE cells Fredette et al. (2018)

↓ O2
−-mediated NO inactivation Mesenteric arteries from SHR Dantas et al. (2002)

↑ DDAH expression and ↓ the
endogenous L-arginine analogue
ADMA
ERα

HUVECs Monsalve et al. (2007)

↑ DDAH activity and ↓ the
endogenous L-arginine analogue
ADMA
ERα

HUAECs Novella et al. (2013)

↑ PGI2 ↑ COX-1 and PGIS expression
ERα

HUVECs Sobrino et al. (2010)

↓ ET-1 ↓ ET-1 expression and secretion
ERα

Mesenteric arteries from DOCA
hypertensive rats

David et al. (2001)

↓ ET-1 expression and secretion
ER-independent mechanism

Porcine coronary artery endothelial
cells

Dubey et al. (2001)

↑ Ang-(1–7) ↑ ACE2 activity and expression Renal wrap model of hypertension Ji et al. (2008)
↑ ACE2 activity and expression

ERα

HUVECs Mompeón et al. (2016)

Oestradiol mediates the release of vasoactive mediators mainly from endothelium, some of which effects are summarized in
the following table along with the oestrogen-receptor involved. ACE2, angiotensin-converting enzyme 2; ADMA, asymmetric
dimethylarginine; Ang-(1–7), angiotensin 1–7; COX-1, cyclooxygenase 1; DDAH, dimethylarginine dimethylaminohydrolase; DOCA,
deoxycorticosterone acetate; ER, oestrogen receptor; ET-1, endothelin-1; GPER, G protein-coupled oestrogen receptor; HUAEC,
human umbilical artery endothelial cell; HUVEC, human umbilical vein endothelial cell; PGI2, prostacyclin; PGIS, PGI2 synthase; SHR,
spontaneously hypertensive rat; TIVE, telomerase-immortalized human umbilical vein endothelial.

flow-mediated dilatation (FMD), a measure of conduit
artery endothelial function mediated primarily by NO
(Adler et al. 2018). When oestrogen levels declines in post-
menopausal women, oestradiol administration improves
also endothelial function (Hurtado et al. 2016) but
the magnitude of improvement depends on the timing
of when this treatment is initiated. The interactions
of oestrogens on multiple pathways regulating vascular
function, which also are involved in the ageing process, are
complex, multifactorial and not completely understood.
For example, the expression of ERα and eNOS in end-
othelial cells harvested from peripheral veins of women are
lower in postmenopausal women than in young women
(Gavin et al. 2009). Thus, not only does oestradiol decline
with ageing, ERα receptor expression also declines, and an
increase in oxidative stress is produced as well. How female
and male sex hormones interact with the cardiovascular
system, and in age-associated endothelial dysfunction in
healthy woman and men has been recently reviewed in
depth (Stanhewicz et al. 2018).

Oestrogen and cyclooxygenases. Cyclooxygenase
(COX)-derived factors are particularly important in
regulating vascular tone as they can induce both vascular
relaxation (through prostacyclin (PGI2) production)
and contraction (through thromboxane A2 (TXA2)
and prostaglandin H2 (PGH2) production). Oestradiol
has been implicated in the modulation of peripheral
vascular synthesis of vasodilatory mediators, including
prostanoids through COX, as the rate-limiting step in
the formation of vasoactive prostanoids (Sobrino et al.
2009). In human endothelial cells, oestradiol, acting
through ERα, induces stimulation of the vasodilator and
antiaggregatory PGI2 production by up-regulating COX-1
and PGI2 synthase (PGIS) expression without altering
vasoconstrictor TXA2 production (Sobrino et al. 2010).
This mechanism supports the hypothesis that oestradiol
is able to maintain vascular health and protect endothelial
cells against vascular disorders (Mikkola et al. 2013).
The beneficial effects of oestrogen on the endothelium
can also be partially explained by an inhibitory effect
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on production of the COX-derived vasoconstrictor
agents PGH2 and TXA2 (Davidge & Zhang, 1998; Dantas
et al. 1999; Vidal-Gómez et al. 2016), and endothelin-1
(David et al. 2001; Dubey et al. 2001), tipping prostanoid
balance toward increased PGI2 production. However,
in the absence of oestrogen, arachidonic acid is actively
converted to a COX-1-dependent constrictor, indicating
that oestrogen-mediated elevation in COX-1 and PGI2

synthase appears to shift the balance of prostanoid
products from constrictor to dilator (Ospina et al.
2002). These effects observed in cultured endothelial
cells have been also observed in cerebral blood vessels
from ovariectomized rats, where oestradiol increases
protein levels in both COX-1 and PGIS and up-regulates
the production of PGI2, promoting increased cerebral
perfusion and conferring resistance against thrombotic
events (Ospina et al. 2002). Apart from this, ERβ has also
been associated with COX-2 expression and both PGI2

and TXA2 concentrations at basal state, which suggests the
possibility of a ligand-independent regulation of COX-2
activity and PGH2 substrate availability (Su et al. 2009).
GPER also mediates oestrogen-dependent inhibition
of endothelium-derived vasoconstrictor prostanoid
production and activity under pro-inflammatory
conditions, providing evidence for a novel mechanism
through which GPER could inhibit vascular tone and
inflammation (Meyer et al. 2015).

In addition to regulating endothelium-derived factors,
oestradiol directly regulates the smooth muscle layer by
inhibiting VSMC proliferation, migration and vascular
contraction (Suzuki et al. 1996). Indeed, oestrogen-
mediated relaxation can also occur in endothelium-
denuded segments (Mugge et al. 1993). Several
mechanisms, involving among others ion channels and
kinase cascades, have been proposed to explain this
vasorelaxant effect. Oestrogen can interfere with ion
channels through non-genomic actions and decrease
smooth muscle constriction by interfering with Ca2+
mobilization and Ca2+ entry responses (Crews &
Khalil, 1999) and activating K+ channels (White et al.
2002), leading to membrane hyperpolarization and
vascular relaxation. The role of ER has been studied in
female rat mesenteric microvessels, where ER subtypes
mediate distinct vasodilatation and decreased intra-
cellular Ca2+ (mainly through ERα, with both ERβ and
GPER being also implicated) through endothelium-
and K+ channel-independent inhibition of Ca2+ entry
mechanisms of VSMC contraction (Mazzuca et al. 2015).
Direct interaction of oestradiol with voltage-gated Maxi-K
channel subunit β, which confers higher Ca2+ sensitivity,
may modulate vascular smooth muscle (Valverde et al.
1999). Oestrogen can also modulate vasoconstriction by
interfering with protein kinase C (Kanashiro & Khalil,
2001) and Rho-kinase signalling in VSMC (Hiroki et al.
2005).

Oestrogen and angiotensin 1–7. Additionally, oestradiol
is able to modulate the renin–angiotensin system (RAS)
(Farhat et al. 1996; Alvarez et al. 2002), which plays
a pivotal role in physiological regulation of blood
volume and blood pressure and is involved in controlling
vascular contractibility. Renin released from the kidney
converts angiotensinogen from the liver to the decapeptide
angiotensin-I (Ang I), which undergoes proteolytic
cleavage, through activating angiotensin-converting
enzyme (ACE) to generate angiotensin-II (Ang II). The
discovery of angiotensin-converting enzyme 2 (ACE2),
which cleaves COOH-terminal residues from Ang I and
II, producing primarily vasoprotective angiotensin 1–7
(Ang-(1–7)), suggested that RAS involves two axes: (1)
Ang II, which mediates vasoconstriction and remodelling
effects through receptor type 1 (AT1R) while exert
opposing effects through Ang II receptor type 2 (AT2R),
and (2) Ang-(1–7), which acts as a protective and vaso-
dilator pathway acting on the Mas receptor. Changes
in Ang II/Ang-(1–7) balance are therefore essential to
maintain cardiovascular homeostasis (Jiang et al. 2014).

Evidence indicates that components of the RAS
are markedly affected by oestrogen (Sullivan, 2008;
Hilliard et al. 2013b) shifting the balance towards the
ACE2/Ang-(1–7)/Mas and AT2R pathways in females. In
general, oestrogen increases the synthesis of circulating
angiotensinogen, while decreasing the synthesis of the RAS
enzymes renin and ACE (Fischer et al. 2002; Komukai
et al. 2010). Accordingly, sex differences in vascular RAS
mechanisms have commonly been assumed to play a role
in the relative protection against CVD in premenopausal
women. Circulating plasma Ang-(1–7) concentrations
have been reported to be higher in healthy premenopausal
women than in healthy men of a similar age (Sullivan
et al. 2015), and its relationship with oestrogen is under-
scored in studies showing an increase of urinary Ang
1–7 levels among pregnant women (Valdes et al. 2001).
Vascular AT1R expression in ovariectomized rats treated
with oestradiol is down-regulated (Nickenig et al. 1998;
Rogers et al. 2007). There is also evidence that AT2R
plays a protective role by regulating blood pressure in
female mice (Armando et al. 2002; Brown et al. 2012), rats
(Sampson et al. 2012) and women due to its up-regulation
by oestrogen (Hilliard et al. 2013a). Furthermore, there
is evidence that ERα is involved in oestradiol-mediated
effects on RAS as primarily responsible for oestrogen
regulation of kidney ACE2, AT1R and AT2R genes in
ovariectomized mice (Brosnihan et al. 2008), which
reinforces the central role of ERα in oestrogen’s beneficial
impact on cardiovascular physiology.

Aside from the classical circulating RAS pathway,
the intracellular RAS described as the ‘non-classical’
RAS pathway has gained attention for its ability to
antagonize classical RAS signalling. RAS components are
also expressed in the heart and vascular wall, and control
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vascular tone and arterial structure (Nguyen Dinh Cat
& Touyz, 2011). Oestrogen also regulates tissue RAS,
in that oestradiol diminishes cardiac ACE expression
in human atrial tissue, while simultaneously inducing
ACE2, which counteracts the classical RAS activity towards
the vasodilator pathway. This ACE2 induction is pre-
vented by the ERα antagonist, suggesting a role for
ERα in mediating the cardiovascular protective effects of
oestrogen (Bukowska et al. 2017). Enhanced ACE2 activity
and expression have also been reported in the kidney
and uterus of experimental animals during pregnancy
(Joyner et al. 2007; Neves et al. 2008) and in different
models of hypertensive rats, where both ACE (Gallagher
et al. 1999; Dean et al. 2005) and ACE2 tissue expression
are decreased by ovariectomy and restored by oestrogen
replacement (Ji et al. 2008; Shenoy et al. 2009). In end-
othelial cells we reported that oestradiol stimulates the
production of Ang-(1–7) via ERα by increasing ACE and
ACE2 expression and activity (Mompeón et al. 2016), and
demonstrated that the Mas receptor plays an essential role
in NO-dependent vasodilatation mediated by oestradiol
(Sobrino et al. 2017). In this regard, the blockade of
Mas receptor is equivalent to ER blockade in preventing
the effects of oestradiol, indicating crosstalk between
oestradiol and the Ang-(1–7)–Mas axis (Sobrino et al.
2017). Thus, the loss of cardiovascular protection observed
in postmenopausal women could also partly result from
the change from the ACE2–RAS protective axis to the
classic ACE–RAS pathway (Komukai et al. 2010; Hilliard
et al. 2013b; Stanhewicz et al. 2018).

Oestrogen-regulated miRNA

Besides oestrogen-mediated regulation of important
cardiovascular pathways through a direct gene
transcription mechanism, oestrogen has recently
been posited as a modulator of cardiovascular physio-
logy by modifying another group of important gene
expression regulators based on epigenetic mechanisms.
Among them, miRNAs are small non-coding RNAs
that can inhibit gene expression post-transcriptionally
via sequence-specific interactions with target genes. In
addition, circulating miRNAs found in the blood stream
have been proposed as non-invasive biomarkers in CVD
(Fichtlscherer et al. 2011) and changes in the circulating
miRNA profile have been linked to oestrogen levels in
women (Peréz-Cremades et al. 2018a).

Changes in miRNA levels induced by sex hormones,
sex chromosome expression and regulation of key
components of miRNA biosynthesis machinery have
been described as possible underlying mechanisms of
miRNA-mediated regulation of cardiovascular function
in women. In this regard, ERs have an important role in
the regulation of the miRNA-mediated oestrogen effects.
First, they act as a transcription factor, as demonstrated

by differences in miRNA profile between ER+ and ER−
breast cancer cells (Bailey et al. 2015; Cizeron-Clairac et al.
2015). Indeed, down-regulated miRNAs in ER− breast
cancer compared to ER+ lose their ER binding sites in
the promoter region near the miRNA sequence (Bailey
et al. 2015). At a cardiovascular level, ER binding sites
near oestrogen-regulated miRNAs have also been found in
VSMC (Zhao et al. 2013; Deng et al. 2015) and endothelial
cells (Vidal-Gomez et al. 2018). We recently demonstrated
the involvement of different ERs in the expression of
oestradiol-regulated miRNAs by using specific ER agonists
and antagonists. Although most of the analysed miRNA
were regulated by ERα, ERβ and GPER were also found
to be involved in oestradiol-regulated miRNA expression
(Vidal-Gomez et al. 2018). In addition, oestradiol can
regulate miRNA expression by acting directly on its
biosynthesis machinery (Gupta et al. 2012). Although
oestradiol regulation of miRNA biosynthesis components
has been reported mainly in reproductive tissues, for
example in differences observed between ER+ and ER−
breast cancer cells (Cheng et al. 2009; Cizeron-Clairac
et al. 2015), transcriptomic data in human endothelial cells
treated with physiological concentrations of oestradiol
highlight the changes in the expression of specific genes
involved in miRNA synthesis (Pérez-Cremades et al.
2018b).

The role of specific miRNAs in the regulatory
mechanisms of oestrogen in cardiovascular function
has recently been reviewed in depth elsewhere
(Pérez-Cremades et al. 2018a). However, the role of
ERs in this effect has been addressed only for certain
miRNAs (Fig. 2). For example, miR-203 is one of the
dysregulated miRNAs in cultured VSMCs after oestradiol
exposure (Zhao et al. 2013). It is up-regulated by an
ERα-dependent mechanism, but not by ERβ, through
a transcription activation mechanism mediated by the
transcription factors activator protein 1 (AP-1) and Zinc
finger E-box-binding homeobox 1 (Zeb-1). Moreover, the
authors demonstrated the role of miR-203 in regulating
VSMC proliferation, showing that inhibition of miR-203
expression cancelled out the oestradiol-mediated effect
on VSMC proliferation through targeting Abl and p63
(Zhao et al. 2013). These results suggest that this miRNA
is involved in the antiproliferative action of oestrogens on
VSMCs and could explain oestrogen-induced inhibition
of neointimal formation after vascular damage (Mori et al.
2000; Xing et al. 2009). In addition, the ER-regulated
miRNA, miR-22, contributes to the antioxidant effect
of oestrogen on cardiovascular tissues (Wang et al.
2015). miR-22 activity is related to cardiac remodelling
and hypertrophy (Huang & Wang, 2014). However,
oestradiol treatment decreases miR-22 expression in
in vitro cardiomyocytes and in vivo myocardium of
ovariectomized mice via ERα-mediated mechanisms.
miR-22 down-regulation increases the expression of its
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target SP1, a transcription factor that regulates the cyto-
protective enzyme cystathionine γ-lyase, as well as H2O
production and antioxidant defence (Wang et al. 2015).
Taken together, these results may explain in part the female
cardioprotection against oxidative stress (Wang et al.
2010). Furthermore, miR-22 inhibits oestrogen signalling
by targeting ERα, suggesting a reciprocal regulation
(Pandey & Picard, 2009). Finally, miR-21 is regulated
by oestradiol via ERβ-dependent mechanisms in female
cardiac tissue (Queiros et al. 2013). This miRNA has
been implicated in myocardial hypertrophy by regulating
mitogen-activated protein kinase (MAPK) signalling in
fibroblasts (Thum et al. 2008). In this regard, miR-21 is
down-regulated in female cardiac fibroblasts exposed to
oestradiol and to a specific ERβ agonist, and its expression
is up-regulated in the left ventricle of ERβ knockout
female mice (Queiros et al. 2013). Oestradiol regulates
MAPK signalling through targeting three specific negative
regulators of this pro-fibrotic pathway, the negative
regulator sprouty homologue 1 (Spry1), RAS p21 protein
activator 1/GTPase activating protein 1 (Rasa1) and

Gap1m/RAS p21 protein activator 2 (Rasa2), results that
may explain the mechanisms underlying the protective
effect of oestrogen on cardiac remodelling.

Effects of oestrogen on inflammation

Female cardiovascular health is a complex issue, since at
menopause women face a decrease in oestrogen levels
together with an active vascular ageing process. Coupled
with known risk factors, findings from epidemiological
and experimental studies have closely linked inflammatory
processes with vascular ageing (Seals et al. 2011). Pre-
dominant features of the ageing process are chronic
progressive increase in pro-inflammatory status (Najjar
et al. 2005) and development of a more adhesive end-
othelium (Csiszar et al. 2008), and the process per se
is known to have a positive association with levels of
inflammation biomarkers and increased risk of CVD
(Singh & Newman, 2011).

Data regarding the effects of oestrogen on the
inflammatory process are contradictory, with both
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Figure 2. Role of oestrogen receptors in miRNA-dependent regulation of cardiovascular physiology in
women
Oestradiol (E2) binds to oestrogen receptor (ER) and regulates miRNA expression directly by binding to specific
oestrogen responsive elements (ERE) in the promoter region of the miRNA genes, or indirectly by recruiting
different transcription factors that regulate miRNA expression via their transcription factor binding sites (TFBS).
E2 can also impact miRNA expression by regulating transcription activity of miRNA biosynthesis components.
The role of ER in E2-dependent miRNA regulation in cardiovascular physiology has been described for different
miRNA: E2-dependent up-regulation of miR-203 is implicated in vascular smooth muscle cell (VSMC) proliferation
through targeting Abl and p63 (Zhao et al. 2013); miR-22 down-regulation mediated by E2 in cardiomyocytes
induces increased expression of SP1 transcription factor that increase cystathionine γ -lysase (CSE)-dependent H2S
production and antioxidant defence (Wang et al. 2015); miR-21 is regulated by E2 via ERβ in cardiac tissue,
preventing cardiac fibrosis through direct inhibition of three negative regulators of the MAPK signalling pathway
(Spry1, Rasa1, Rasa2) (Queiros et al. 2013). (Created by BioRender.com.)
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anti-inflammatory (Straub, 2007) and pro-inflammatory
(Cutolo et al. 2006) effects reported. The inflammatory
pathway is downstream of many vascular signalling
mechanisms that are affected by sex and ageing,
further obscuring distinct effects of sex hormones on
inflammation. On one hand, oestrogen has been reported
to suppress vascular inflammation by down-regulation
of pro-inflammatory molecules, including cytokines
and adhesion molecules (Stork et al. 2002; Kip
et al. 2005). On the other hand, several clinical
studies have described oestrogen as a pro-inflammatory
modulator in autoimmune diseases (Cutolo et al. 2006).
Numerous experimental studies report that oestradiol
down-regulates tumor necrosis factor α and interleukin
1β in different cell types and suggest an anti-inflammatory
and vasculoprotective action for oestrogens (Straub,
2007; Novella et al. 2012). Whether the conversion of
vasoprotective/anti-inflammatory effects of oestrogen to
vasotoxic/pro-inflammatory effects in ageing subjects is
a function of prolonged oestrogen deficiency per se or is
related to the ageing process and/or the development of
vascular disease remains unresolved.

As previously expressed, ERα mediates a great number
of oestradiol effects that can be beneficial to cardiovascular
physiology: it produces vasodilatation and prevents vaso-
constrictive and proaggregating factors, reduces VSMC
proliferation and induces a beneficial lipid profile. ERβ
(and as far as is known, GPER) exerts different effects
and, in some conditions, counteracts the beneficial profile
of oestradiol through ERα. The balance, or imbalance,
between ERα and ERβ is therefore an important factor
when analysing the cardiovascular effects of oestradiol.
In fact, ERα activation has been shown to attenuate
injury-induced vascular remodelling (Brouchet et al.
2001), but in vitro studies have also shown that ERβ also
plays a protective role in injured arteries (Xing et al. 2007),
leading us to posit that both ER subtypes contribute to
vasoprotection.

Note that ERβ is more highly expressed than ERα in
oxidative stress, hypoxia and inflammation (Rider et al.
2006). In these cases, ERβ modulation can be important in
regulating pathophysiological ERα-stimulated processes.
This link between ERs seems to be more evident in the
vascular response to oestrogen, which appears to change
during ageing and depend on years since menopause. In
previous studies, we observed a gradual increase in ERβ
expression in uterine arteries of postmenopausal women
in line with age, even 10 years after menopause onset, while
there was only a slight increase in ERα expression (Novella
et al. 2012). This age-related increase in ERβ expression
was positively associated with a pro-inflammatory profile
of oestradiol. Likewise, in an experimental murine model
of menopause, an increased ratio of ERβ/ERα in both
vascular endothelium and smooth muscle in aged female
mice caused a reversal of the antioxidant effect of oestrogen

to a pro-oxidant profile responsible for increased oxidative
stress during ageing (Novensa et al. 2011); also, in
bone marrow-derived macrophages, ERα expression is
greatly diminished with age (Bowling et al. 2014). Thus,
evidence suggests that vasoprotective effects of oestradiol
are age-dependent and this could explain the high cardio-
vascular risk of HRT seen in clinical trials in post-
menopausal women. While the role of ERα has been
extensively studied, the actions of ERβ on the cardio-
vascular system and the age- and menopause-related
changes of vascular ERβ actions remain unclear.

Conclusion

The beneficial effects conferred by oestrogen involve
a precise balance of different intracellular signalling
pathways, such as NO, prostanoids and RAS, towards a
vasodilator and vasoprotective profile involving oestrogen
receptors, mainly ERα. Changes in vascular oestrogen
receptor expression, age- and menopause-related end-
othelial injury and epigenomics could also affect
the cardiovascular effects of oestrogen. More research
is therefore warranted to elucidate these important
topics that are probably closely related to the sex
differences observed in cardiovascular physiology and
pathophysiology.

Future perspectives

Recent studies have provided compelling evidence that the
sex of the endothelial cells will influence the responses to
not just the sex hormones, but the host of vasoactive agents
(Hermenegildo et al. 2013; Addis et al. 2014; Cattaneo et al.
2017). Even more, it is important to note that not only the
sex of the subject but the location of the endothelial cells
in the body have profound influence (Huxley et al. 2018).

The majority of the studies performed so far, including
those reviewed in the present article and Table 1,
do not take into account those factors. Sex is as a
fundamental variable that should be considered when
designing and analysing basic and clinical research. Cells
of males and females have many basic biochemical
differences, and many of these stem from genetic and
also hormonal differences. Thus, including female sub-
jects or female-derived specimens in research would lead
to a better understanding of cardiovascular physiology in
both women and men.
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