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This thesis focuses on the theoretical and experimental study of the passive
mode locking method based on semiconductor saturable absorber mirrors
(SESAM). This method is used to develop lasers of ultra-short pulsed emis-
sion (pulse duration from femtosconds to few picoseconds) in the 1.5 um
band that cover a wide range of scientific and industrial applications. The
application requirements in terms of repetition rate are diverse for this type
of lasers. Low repetition rates from single shot to several kilohertz are
used in sample analysis applications where response times are in the order
of milliseconds, such as the two photon absorption transient current tech-
nique. Mid repetition rates from megahertz to few hundreds of megahertz
are typically used in supercontinuum generation, terahertz waves genera-
tion, multi-photon microscopy and ultrafast spectroscopy. High repetition
rates, above one gigahertz, are required in optical communication appli-
cations such as photonic radar, photonic analog-to-digital conversion, and
wireless photonic communication. In this thesis, architectures have been
developed that allow covering the entire range of repetition rates, from
single shot to gigahertz.

The first part of the thesis is dedicated to developing the mathematical
model based on the Non-Linear-Schrodinger Equation that has been used
in the design phase of the lasers and its numerical implementation through
the Split-Step Fourier method. This model includes fiber pulse propaga-
tion, gain equation for erbium emission active media and semiconductor

saturable mirror operation.

Next, the theoretical model is adapted to design GHz range passively mode-
locked fiber lasers. The modeled cavities of the lasers are configured by a
highly doped and polarization- maintaining single fiber of a single type.
For different pulse repetition rates, ranging from one GHz to ten GHz, gain
parameters and pump threshold for a stable mode-locked laser emission
are studied. Pulse time width, spectral width and SESAM properties are
defined to achieve stable emission. To experimentally validate the theo-
retical model, 1.0 GHz and 2.2 GHz laser cavities have been built up and
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amplified. A stable and robust operation for both frequencies was obtained
and the experimental measurements have been found to match the theo-
retical predictions. Enhanced environmental stability has been achieved
using a cavity temperature control system and an antivibration enclosure,
ending in a robust and marketable prototype.

Finally the thesis addresses the design and development of low repetition
rate ultrafast fiber lasers from single shot to tens of megahertz. In particu-
lar, a system developed to fulfil the specific optical excitation requirements
of the Two-Photon Absorption Transient Current Technique, TPA-TCT, is
described. This technique is used for localized characterization of radia-
tion semiconductor detectors. The system is composed of three modules:
a pulsed laser source, a pulse management module and a dispersion man-
agement module. Such modules are designed to provide the following
configurability of the properties of the pulsed signal delivered at the out-
put of the complete system: variation of the pulse energy between 10 n]
and 0.1 p]J, variation of the pulse repetition rate from 8.0 MHz to single
shot and variation of the pulse duration between 300 and 600 fs. Besides,
the system provides analysis elements such as reference signals, real-time
measurement of pulse repetition rate and energy, autocorrelation of the
pulse in the sample plane and electro-mechanic commutation of the pulsed
signal with response time below 2 ms. Finally, the validity of the system as
excitation source in the TPA-TCT is demonstrated by measuring spatially

resolved excited electric charge in a semiconductor charge.
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Resumen

Esta tesis se centra en el estudio tedrico y experimental del método de
bloqueo de modos pasivo basado en espejos absorbentes saturables de
semiconductor (SESAM). Este método se utiliza para desarrollar laseres de
emision pulsada ultracorta (duracion de pulso desde femtosegundos hasta
unos pocos picosegundos) en la banda de 1,5 ym que cubren una amplia
gama de aplicaciones cientificas e industriales. Los requisitos de frecuencia
de repeticion de pulsos son diversos para este tipo de laseres, en funciéon
de su aplicacion. Bajas frecuencias de repeticiéon, desde un solo disparo
hasta varios kilohercios, se utilizan en aplicaciones de andlisis de muestras
donde los tiempos de respuesta son del orden de milisegundos, como la
técnica de corriente transitoria de absorcién de dos fotones. Frecuencias de
repeticion medias, desde megahercios hasta unos pocos cientos de mega-
hercios, se utilizan tipicamente en la generacién de supercontinuo, gen-
eracion de ondas de terahercios, microscopia multifotén y espectroscopia
ultrarrdpida. Finalmente, se requieren altas frecuencias de repeticién, por
encima del gigahercio, en aplicaciones de comunicacién 6ptica como el
radar foténico, la conversion foténica analégica a digital y la comunicacion
foténica inaldmbrica. En esta tesis se han desarrollado arquitecturas que
permiten cubrir todo el rango de frecuencias de repeticiéon, desde un solo
disparo hasta gigahercios. Esté estructurada en cinco capitulos. El primero,
es una introduccién que pone en contexto la investigacién a través de un
breve anélisis del estado del arte. El segundo capitulo recoge los conceptos
que se han utilizado para elaborar el modelo tedrico que permite simular
cavidades laser con el fin de disefiar osciladores que proporcionen los pul-
sos deseados con una estructura de bloqueo de modos. Los capitulos ter-
cero y cuarto recogen las dos principales arquitecturas laser desarrolladas
a lo largo de esta tesis: laseres de frecuencias de repeticién en el rango de
los gigahercios (capitulo tres) y laseres de frecuencia de repeticion desde
disparo tnico a decenas de megahercios (capitulo cuatro). Finalmente, el
capitulo cinco habla de la proyeccién futura de la investigacion realizada
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en este trabajo. La tesis ha sido llevada a cabo en el marco de un doctorado
industrial en la empresa FYLA LASER S.L., dando como resultado prototi-
pos laser que han sido, posteriormente, comercializados como productos
de vanguardia tecnoldgica.

La 6ptica ultrarrdpida ha sido un campo de investigaciéon en auge durante
las tltimas décadas y, en la actualidad, los sistemas laser de pulso ultra-
corto presentan numerosas aplicaciones en dreas de investigaciéon funda-
mental, asf como en medicina e industria. Los sistemas laser ultrarrapidos
se utilizan para estudios de resoluciéon temporal en quimica, metrologia de
frecuencia 6ptica, generacion de terahercios, espectroscopia, microscopia
no lineal, tomografia 6ptica de coherencia, técnicas de corriente transitoria
de absorcién de fotones, conversioén foténica de analédgico a digital y co-
municaciones inaldmbricas foténicas. Ejemplos de aplicacion relacionada
con la medicina son la cirugia ocular con laser y los taladros dentales. Por
otro lado, en la industria, los l4seres ultrarrapidos se utilizan para micro-
mecanizado y marcado. La piedra angular de la 6ptica ultrarrdpida es el
laser de bloqueo de modos. A lo largo de las dos tltimas décadas, el de-

sarrollo de estos laseres ha sido un 4rea de investigacién en si misma.

Tradicionalmente, los laseres de estado s6lido de bloqueo de modos (laseres
basados en cristales no lineales como los laseres de titanio zafiro (Ti:Sapphire)
o los de cristal de granate de aluminio de itrio dopado con neodimio (Nd:Yag))
han dominado el mercado. Sin embargo, este tipo de ldser requiere en-
tornos estables de laboratorio con mesas 6pticas que minimicen las vibra-
ciones y temperatura ambiente estabilizada. Ademads, los laseres de estado
s6lido tienen un alto consumo de energia y, a menudo, precisan un manten-
imiento costoso. Para que la 6ptica ultrarrapida gane terreno en mercados
comerciales mucho mds amplios y pueda ser industrializada, es necesario

encontrar soluciones a estas limitaciones.

En comparacion con los ldseres de gas y de estado sélido, los laseres de fi-
bra 6ptica son mds compactos dado que las fibras 6pticas se pueden doblar
y enrollar facilmente. El potencial de fabricar sistemas ldser compactos
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y resistentes con bajo consumo de energia a un precio relativamente ase-
quible hace que los laseres de fibra 6ptica amplificados sean una alternativa

muy prometedora a los laseres de estado sélido clasicos.

Las propiedades clave que hacen que las fibras dopadas de tierras raras
sean atractivas como medios activos laser son: la elevada ganancia del
medio activo debido a la sencillez de obtener un medio activo muy largo,
el amplio ancho de banda de los espectros de emisién y absorcién y la ex-
celente calidad de haz. En los laseres de fibra 6ptica de bloqueo de modos,
el medio activo es el ntcleo de una fibra 6ptica dopada con iones de el-
ementos de tierras raras. Dichos elementos (iones) son tipicamente erbio
(Er®*), neodimio (Nd?*), iterbio (Yb®*), tulio (Th?*) o praseodimio (Pr?*).

En esta tesis, se estudian laseres cuyo medio activo se basa en fibra dopada
con erbio, y en fibra co-dopada con erbio e iterbio. Los medios activos de
laser de fibra pueden bombearse directamente mediante diodos laser de
onda continua. El enorme progreso y desarrollo tecnolégico de los laseres
de diodo de alta potencia ofrece una ventaja competitiva en comparaciéon
con los laseres de estado solido cldsicos. En un sentido amplio, un laser de
fibra es capaz de convertir la salida de baja calidad de un diodo laser de
bombeo de onda continua en una luz temporal y espacialmente coherente
de alta intensidad. Ademads, la salida del laser de fibra puede tomar varios
formatos temporales, segtn el régimen de operaciéon: Q-switch, onda con-
tinua o bloqueo de modos, siendo este tiltimo el régimen objeto de estudio
en esta tesis.

El bloqueo de modo de un léser se refiere al bloqueo de las relaciones de
fase entre muchos modos longitudinales vecinos de la cavidad laser. El
bloqueo de tales relaciones de fase permite una variacién periddica de la
potencia de salida del l4dser que es estable en el tiempo y tiene una peri-
odicidad dada por el tiempo de ida y vuelta en la cavidad. Si se bloquean
un namero considerable de modos longitudinales individuales de forma
que sus diferencias de fase sean suficientemente pequefias, se produce un
pulso corto que puede tener una potencia de pico significativamente mayor
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que la potencia media del laser. El origen del bloqueo de modos se com-
prende mejor en el dominio del tiempo. Un l4ser en estado estable es un
sistema de retroalimentaciéon, donde la ganancia de la sefial 6ptica en el
medio activo por viaje de ida y vuelta se equilibra con las pérdidas. Si se
introduce en la cavidad un elemento que produce una mayor pérdida a
menores potencias, el ldser puede favorecer una superposiciéon de modos
longitudinales correspondientes a un pulso corto con alta potencia pico.
Otro requisito para obtener un bloqueo de modos estable es que el pulso
se reproduzca después de un viaje de ida y vuelta (dentro de un desplaza-
miento de fase total en todos los modos longitudinales). Las relaciones
de fase entre los diferentes modos se ven afectadas por efectos como la
dispersion, la ganancia de ancho de banda y los cambios de fase no lin-
eales. Aunque se puede construir un nimero infinito de pulsos distintos
como diferentes superposiciones de modos longitudinales, generalmente
solo un pulso tnico especificado por su forma, duraciéon, potencia max-
ima y fase es una solucién estable de la cavidad y, por lo tanto, se pueden
disefar las caracteristicas del pulso de salida controlando y adaptando los
pardmetros fisicos de los elementos laser que los comprenden. Existen var-
ios mecanismos, tanto activos como pasivos, para conseguir que los modos
en la cavidad entren en fase y se produzca el bloqueo. Concretamente, en
esta tesis se estudian ldseres de bloqueo de modo pasivo basados en espe-
jos absorbentes saturables de semiconductor (SESAM) como elemento de
bloqueo de modos.

Ratios de repeticién en el rango de los Gigahercios

Los laseres pulsados de femtosegundos y picosegundos con altas tasas
de repeticién (centenares de megahercios a decenas de gigahercios) son
de interés en diferentes aplicaciones. Algunas de ellas son: conversiéon
analégica-digital asistida por fotones (PADC), espectroscopia ultrarrapida,
biomedicina 6ptica y comunicaciones de ultra alto ancho de banda en mul-
tiplexacién por divisién de longitud de onda. En referencia a los PADC, se
sabe desde la década de 1970 que se pueden usar pulsos 6pticos cortos
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(de duracién < 100 ps) para mejorar la velocidad de los interruptores de
muestreo electrénicos a través de un disefio optoelectrénico. El pulso 6p-
tico proporciona una fluctuacién pulso a pulso més baja que la electrénica
y tiempos de subida mads rdpidos. Los laseres disponibles actualmente ca-
paces de ofrecer tasas de repeticiéon de pulsos en el rango de GHz no son
muy robustos y proporcionan sefiales de baja calidad. Esto ha hecho im-
posible la implementacién de sistemas PADC confiables, que ahora es una
posibilidad abierta debido al tipo de ldser presentado en esta tesis. Una
solucion interesante para obtener altas tasas de repeticién en una config-
uraciéon de modo bloqueado es utilizar cavidades lineales de Fabry-Pérot.
Uno de los pardmetros mds importantes cuando se hace referencia a los
peines laser basados en tecnologia de bloqueo de modos en PADC es su
estabilidad a largo plazo. Aunque se han logrado osciladores Fabry-Pérot
de un gigahercio, el umbral de dafio térmico del espejo absorbente sat-
urable basado en semiconductor (SESAM) se alcanza produciendo un dafio
progresivo en la superficie del SESAM y eventualmente cambiando las
propiedades del laser. En este punto, surge la necesidad de un modelo
tedrico para estudiar cavidades de l4ser de fibra de bloqueo de modos pa-
sivo a frecuencias de GHz.

En esta tesis doctoral se ha desarrollado un modelo teérico basado en la
Ecuacién de Schrodinger No Lineal (NLSE). Se han estudiado diferentes
frecuencias de repeticién cambiando la longitud total de la cavidad (1.0
GHz, 2.2 GHz, 5.0 GHz y 10.0 GHz). Algunos de los pardmetros clave
caracterizados para cada una de las frecuencias estudiadas son el umbral
de potencia del bombeo de onda continua y las condiciones de ganancia
para que se produzca la emisién de pulsos en régimen de bloqueo de mo-
dos estable. Ademads, también han sido incluidas en el modelo tedrico las
propiedades del absorbente saturable (tiempo de relajacién, fluencia, ab-
sorbancia y longitud de onda de reflexiéon) que influyen directamente en
la duracién del pulso y su ancho espectral. La cavidad del oscilador se
ha modelado utilizando una tinica fibra especialmente seleccionada para

absorber la potencia de la sefial 6ptica de bombeo de onda continua y la
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luz laser que llega al SESAM, lo que le permite trabajar por debajo de su
umbral de dafio térmico, < 1 m]/cm?. Para alcanzar los valores de ab-
sorcién requeridos de cientos de decibelios por metro (dB/m), se ha uti-
lizado una fibra codopada con erbio e iterbio que también proporciona las
propiedades de dispersion necesarias para generar una solucién soliténica
de la ecuaciéon de Schrodinger no lineal. Teniendo en cuenta todos estos
parametros, se ha conseguido modelizar una emisién de bloqueo de mo-
dos estable.

Ademas, todas las etapas laser (bombeo y cavidad) tienen una configu-
raciéon mantenedora de polarizaciéon (PM) compacta que, correctamente
alineada, hace que el ldser funcione en un régimen de polarizacién lin-
eal, mejorando la estabilidad debido a la inexistencia de acoplamiento en-
tre modos de polarizacién. Los laseres de fibra de 2 GHz y las cavidades
con frecuencias superiores a 10 GHz se lograron anteriormente utilizando
arquitecturas complejas o fibras 6pticas especialmente disefiadas. Sin em-
bargo, en esta tesis, el enfoque es obtener laseres de fibra de GHz opti-
mizados, robustos, compactos y repetibles utilizando componentes com-
erciales. Al integrar laseres de fibra de modo bloqueado en aplicaciones
précticas como PADC, es necesario garantizar la estabilidad a largo plazo
de la fuente ldser en un entorno de condiciones no controladas (es decir,
en un entorno de no laboratorio). Para confirmar experimentalmente la
fiabilidad del modelo, se han conseguido fuentes de luz pulsadas robus-
tas, estables y ultracortas para 1.0 y 2.2 GHz. Finalmente, se ha desarrol-
lado un disefio mecdnico para mejorar la estabilidad ambiental del laser,
introduciendo un sistema de control de temperatura de la cavidad y un
encofrado anti-vibratorio.

Frecuencias de repeticion desde disparo tinico a decenas de Megahercios

Los laseres de femtosegundos de bajas frecuencias de repeticién de pulsos,
desde un solo disparo hasta decenas de megahercios, se utilizan en apli-
caciones de inspeccién, como la técnica de corriente transitoria de absor-

ciéon de dos fotones (TPA-TCT) donde se necesita una potencia de pico de
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pulso alta pero un tiempo prolongado entre pulsos. La técnica de corriente
transitoria (TCT) es un método ampliamente utilizado para caracterizar
detectores de radiacién de semiconductores. Entre otras ventajas, permite
determinar la eficiencia de recoleccién de carga, el voltaje de agotamiento
total, el signo de la carga espacial y el tiempo efectivo de atrapamiento
de los portadores en los defectos generados por radiacién; lo que la ha
posicionado como una de las técnicas preferidas a la hora de estudiar la
degradacion de detectores que operan en entornos de alta radiaciéon. La
técnica de corriente transitoria se ha establecido como una herramienta es-
tdndar para la caracterizacién de detectores de particulas de silicio irradi-
adas y no irradiadas. En esta técnica, la luz laser se utiliza para generar
pares de huecos de electrones dentro del material del detector. Posteri-
ormente, se mide la corriente de deriva resultante del movimiento de los

portadores de carga generados en el detector de silicio polarizado.

Con el objetivo de lograr una caracterizaciéon completamente tridimen-
sional de los detectores de silicio, se puede utilizar la absorcién de luz no
lineal de dos fotones (TPA). Esta actualizacién de la técnica de corriente
transitoria busca aprovechar el proceso de absorcién de dos fotones man-
teniendo la longitud de onda de emision de los pulsos del laser en la banda
prohibida del silicio (por debajo de 1,12 eV). Sin embargo, la alta potencia
de pico de los pulsos ultracortos permite poder hacer un mapeado preciso
generando pares de hueco y electrén mediante la absorcion instantdnea de
dos fotones tan s6lo en el punto en el que se enfoque el haz laser. El punto
focal del laser se puede mover dentro del detector de silicio en los tres ejes
espaciales para lograr una resolucién tridimensional.

La técnica de corriente transitoria basada en la absorcion de dos fotones se
ha validado en detectores de silicio utilizando un ldser de estado sélido
de titanio - zafiro (Ti: Sapphire) como fuente de luz y un amplificador
paramétrico 6ptico, OPA, para cambiar la longitud de onda de emisién a
1,3 p m. Sin embargo, el uso de esta fuente de luz tiene varias limitaciones

y desventajas. En primer lugar, un laser de titanio - zafiro (la fuente de
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pulsos de femtosegundos més utilizada) no emite en longitudes de onda
donde el silicio es transparente, lo que dificulta el mapeo 3D. Para cambiar
la longitud de onda, se debe usar un OPA, lo que reduce la eficiencia del
sistema y agrega complejidad a la configuraciéon experimental. En segundo
lugar, la energia por pulso es demasiado alta, sobredimensionada para los
requisitos de energia de la TPA-TCT. Esto agrega el riesgo de causar dafio
térmico a los cristales del OPA y requiere, en la mayoria de los casos, que
todo el sistema se enfrie con agua. En tercer lugar, para lograr una tasa
de repeticion lo suficientemente baja que permita analizar el efecto de un
solo pulso en el detector de silicio, es necesario utilizar celdas Pockel que
funcionan a alto voltaje, lo que introduce ruido eléctrico en las medidas
realizadas. Finalmente, las fuentes laser de femtosegundos basadas en ti-
tanio - zafiro adaptadas con un OPA tienen altos costes, dificultades de
alineacién y mantenimiento debido a su estructura laser de espacio libre y
vida util limitada.

En esta tesis se presenta el desarrollo y la aplicacién de un laser de fibra
a la técnica TPA-TCT, disefiado para superar las limitaciones que muestra
el laser de estado solido de titanio - zafiro. Esta fuente l4ser tiene todas
las ventajas de una arquitectura de fibra 6ptica: robustez, excelente disi-
pacion térmica, alta eficiencia y salida de fibra. Su libertad de disefio per-
mite cumplir con los requisitos del TPA-TCT. Al ser un laser con un medio
activo dopado con erbio, la longitud de onda de emisién es de 1550 nm,
dentro de la regioén de transparencia del silicio. Como ya se ha comentado,
esto permite el mapeo 3D de las muestras. Los pulsos de salida tienen un
ancho temporal de menos de 300 fs y mds de 10 n] de energia por pulso,
lo que posibilita una excitacién eficiente de dos fotones. El sistema com-
pleto no presenta ningtn elemento que requiera de un alto voltaje, por lo
que el ruido eléctrico en los equipos de medida es inexistente. Finalmente,
el sistema ldser presenta una desviacion estdndar en potencia promedio y
amplitud pulso a pulso por debajo del 1 %, lo que facilita obtener medidas
directas evitando correcciones matematicas, reduciendo el error derivado
en los datos finales. Adicionalmente, se ha desarrollado un médulo de
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gestion de pulsos para satisfacer las necesidades especificas de la TPA-TCT.
El médulo incluye, en primer lugar, un selector de pulsos basado en tec-
nologfa de modulacién actistodptica. Este dispositivo permite disminuir la
frecuencia de repeticion de la sefial pulsada, desde 8.0 MHz hasta disparo
anico, sin introducir ruido eléctrico ni alterar las propiedades del pulso
6ptico. En segundo lugar, un filtro de densidad neutra variable que hace
posible una selecciéon continua de energia de pulso desde 10 nJ hasta 10 p].
Finalmente, un disparador de salida sincronizado, una sefial fotodetectada
con una amplitud proporcional a la energia del pulso de salida y un ob-
turador electromecénico, para facilitar el procedimiento de medicién. En
el marco de esta tesis, se ha desarrollado un primer prototipo y se ha uti-
lizado para realizar pruebas de validacion como fuente de excitacién en la
TPA-TCT.

Doctorado Industrial

Un aspecto importante de esta tesis es su cardcter industrial, lo que sig-
nifica que los laseres que se desarrollan en ella deben poder ser indus-
trializados y comercializables. Para lograr un producto industrializado,
debe pasar todos los niveles de disponibilidad de la tecnologia (TRL), que
constituyen un método para estimar la madurez de la tecnologia durante
la fase de desarrollo de un producto. Estos niveles fueron creados por la
NASA durante la década de 1970 y su uso permite discusiones consistentes
y uniformes sobre la madurez técnica en diferentes tipos de tecnologia. Los
TRL se basan en una escala del 1 al 9, siendo 9 la tecnologia mas madura.
Seguin la definicion de la Comisién Europea, los niveles de disponibilidad
de la tecnologia son:

TRL 1 - Principios basicos observados;
TRL 2 - Concepto tecnolégico formulado;
TRL 3 - Prueba de concepto experimental;

TRL 4 - Tecnologia validada en laboratorio;
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TRL 5 - Tecnologia validada en un entorno relevante (entorno industrial-

mente relevante en el caso de tecnologias habilitadoras clave);

TRL 6 - Tecnologia demostrada en un entorno relevante (entorno indus-

trialmente relevante en el caso de tecnologias habilitadoras clave);
TRL 7 - Demostracién del prototipo del sistema en el entorno operativo;
TRL 8 - Sistema completo y cualificado;

TRL 9 - Sistema real probado en el entorno operativo (fabricacién compet-
itiva en el caso de tecnologias habilitadoras clave; o en el espacio).

Por lo general, las tesis doctorales que estudian fenémenos experimen-
tales o desarrollan soluciones para ser utilizadas en aplicaciones especi-
ficas avanzan tecnolégicamente hasta el nivel TRL3, como méximo hasta
el nivel TRL4. En esta tesis, los modelos l4ser presentados pasan por to-
dos los niveles de TRL, alcanzando el nivel TRL9, lo que refleja el caracter
industrial de la misma. Ademas, el desarrollo se centra en conseguir una
nueva tecnologia, adaptada a las aplicaciones, que sea a su vez robusta,
reproducible y comercializable.

Trabajo Futuro

El desarrollo y los resultados del trabajo que se presenta en esta tesis plantean
un conjunto de nuevas ideas y propuestas que podrian llevarse a cabo en
un futuro préximo. Las propiedades de los laseres de fibra 6ptica estudi-
adas en la seccion de frecuencias de repeticién en el rango de los gigaher-
cios son adecuadas para aplicaciones de baja potencia. Sin embargo, las
aplicaciones mas prometedoras desde el punto de vista de las perspecti-
vas comerciales, como las comunicaciones foténicas de larga distancia, las
comunicaciones dpticas inaldmbricas y la PADC, necesitan laseres de fibra
que entreguen mayor potencia de pico, mayor potencia media y menor du-
racion de pulso. En ese sentido, los conceptos y técnicas estudiados en este
volumen para cavidades ultracortas podrian extenderse para implementar
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etapas amplificadoras de alta potencia utilizando fibras de dispersién y co-
eficiente no lineal que permitan ampliar el espectro y comprimir el pulso
durante el proceso de amplificacién. Trabajando en esta direccién, actual-
mente se ha conseguido construir un prototipo para lograr un haz emisor
con las siguientes caracteristicas: longitud de onda central de emisién de
1535 nm, pulsos de <100 fs, potencia promedio> 1.0 W y tasa de repeti-
cién> 1 GHz, con resultados prometedores. Para mejorar atin mas las apli-
caciones de telecomunicaciones, también es importante centrar la longitud
de onda central de la emisién l4ser alrededor de 1550 nm. Debido a la
relacién entre la absorcién y la ganancia en el ntcleo de las fibras activas,
estas tienden a emitir a longitudes de onda mas cortas cuanto mas corta es
la fibra activa. Las cavidades que emiten naturalmente con frecuencia de
repeticion de gigahercios tienen solo unos pocos centimetros de largo (10,3
c¢m a una frecuencia de repeticiéon de 1 GHz y 4,7 cm a una frecuencia de
repeticién de 2,2 GHz), por lo que la longitud de onda central de emisién
se desplaza hacia longitudes de onda cortas, en este caso, 1535 nm. Para
lograr una emisién a longitudes de onda mas largas, la solucién mas di-
recta seria actuar sobre la funcién de reflexion de uno de los espejos, obli-
gando a la cavidad a emitir a la longitud de onda deseada. Una primera
aproximacion es utilizar un espejo absorbente de semiconductor resonante
(RSAM) cuyo espectro de reflexion sea mds afilado alrededor de 1550 nm.
Por otro lado, también es posible actuar sobre el espectro de reflectancia del
segundo espejo de la cavidad centrando su funcién de reflexién en 1550 +

10 nm.

Aunque es muy versatil, el laser presentado en la seccion referente a fre-
cuencias de repeticién desde disparo tnico a decenas de megahercios se
podria mejorar para proporcionar una estructura de fibra completa y pul-
sos mds cortos. Esto aumentaria su aplicabilidad en la técnica de corriente
transitoria basada en la absorciéon de dos fotones. La estructura “todo-
fibra” simplificara el sistema de medicién reduciendo el ndmero de ele-
mentos Opticos entre la salida del laser y la muestra. Los pulsos mas cor-

tos producirdn un aumento en la eficiencia de la absorcién de dos fotones,
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aumentando el rango dindmico del sistema. Para lograr pulsos més cor-
tos es necesario mantener la coherencia pulso a pulso a través de las eta-
pas de estiramiento y amplificacién para que el pulso pueda comprimirse
hasta el limite de la transformada de Fourier de su espectro. Una prop-
uesta que se estd investigando actualmente en FYLA es reemplazar la etapa
de estiramiento basada en una fibra de alta dispersién normal con un par
de redes de Bragg dispersivas. Ademds, estas redes se pueden controlar
por temperatura para ajustar la dispersion neta del sistema. Esta config-
uracién se conoce como TPSR (reflector extensible de pulso sintonizable).
Se espera que esta etapa de estiramiento mantenga la coherencia pulso a
pulso mejor que el estiramiento producido por la fibra utilizada en esta
tesis (PM2000D). En esta configuracién, se evitan los empalmes entre difer-
entes fibras (PM2000D empalmada a PM1550-XP) y el camino 6ptico total
recorrido por el pulso es mucho méds corto (40 m vs 1-2 m). Por otra parte,
la capacidad de sintonizacién del TPSR mueve el sistema hacia la solucién
totalmente de fibra, ya que esta configuraciéon reemplaza al compresor de
espacio libre y se puede calibrar para lograr variaciones en la duracién del

pulso entre 100 y 300 fs.

Otra actualizacién que se estd investigando para lograr un sistema més ro-
busto es incluir un selector de pulsos acustodptico con entrada y salida en
fibra. Esto permitird controlar la frecuencia de repeticion del equipo de-
spués de la etapa de amplificacién y también, cambiando la potencia de
la sefial de RF de control, modificar las pérdidas introducidas por el selec-
tor de pulsos, variando asi la energia del pulso a la salida del laser. Estas
mejoras harfan posible eliminar el médulo de gestiéon de pulsos de espacio
libre (LPM), dando como resultado un sistema més compacto, robusto y
portatil.
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Chapter 1

Introduction

Ultra-fast optics have been a very rich research field for decades, and to-
day ultrashort-pulsed laser systems find numerous applications in areas of
fundamental research as well as for medical and industrial applications.
Ultra-fast laser systems are used for time resolved studies in chemistry
[1], optical frequency metrology [2], terahertz generation [3], two photon
and CARS spectroscopy and microscopy [4], optical coherence tomogra-
phy [5], two photon absorption transient current techniques [6, 7] , pho-
tonic analog-to-digital conversion [8] and photonic wireless communica-
tions [9, 10]. Medical related applications are eye laser surgery and dentist
drills [11]. In the industry, ultrafast lasers are used for micro-machining
and marking [12, 13]. The corner stone of ultrafast optics is the mode-
locked laser, and developments of mode-locked lasers have been a huge

research field in itself.

Traditionally, classical solid-state mode-locked lasers (lasers based on laser
crystals like the Ti:Sapphire and the Nd:YAG lasers) have dominated the
market. However, solid-state lasers require stable laboratory-like environ-
ments with optical tables and stabilized room temperature. Furthermore,
solid-state lasers have a high power consumption, and often require main-
tenance. If ultrafast optics are to gain grounds on much wider commercial

markets, solutions to these limitations must be found.
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Compared to gas and solid state lasers, fiber lasers are more compact as
fibers can be easily bent and coiled [14, 15]. The potential of making com-
pact, rugged laser systems with low power consumption at relative low
price make amplified fiber lasers a very promising alternative to classical
solid state lasers.

The key properties that make rare-earth doped fibers attractive as laser
gain media are the high single pass gain combined with broad gain band-
widths and excellent beam quality. These qualities make fibers attractive as
gain media in mode-locked lasers. The active medium is the core of an op-
tical fiber doped with ions of rare earth elements [16]. Such elements (ions)
are: erbium (Er3+), neodymium (Nd3+), ytterbium (Yb3+), thulium (Th3+)
or praseodymium (Pr3+) among others. The fiber laser active media can be
directly pumped by laser diodes. The huge progress and technological de-
velopment of high power diode lasers, gives a competitive edge compared
to classical solid state lasers. In a broad sense, a fiber laser is capable of
converting the poor quality output of a continuous wave pump laser diode
into a high-brightness spatially coherent light. Moreover, the output of the
fiber laser can take several temporal formats, depending on the operation
regime: Q-switch, continuous wave or mode-locked, the latter being the
regime under study in this thesis.

Mode-locking of a laser refers to a locking of the phase relations between
many neighboring longitudinal modes of the laser cavity [17, 18]. Lock-
ing of such phase relations enables a periodic variation in the laser output
power which is stable over time, and with a periodicity given by the round
trip time of the cavity. If sufficient longitudinal modes are locked together
with only small phase differences between the individual modes, a short
pulse results which may have a significantly larger peak power than the
average power of the laser. The origin of mode-locking is best understood
in the time domain. A laser in steady state is a feedback system, where the
gain per round trip is balanced by the losses. If an element that produces a
higher loss at lower powers is introduced in the cavity, the laser may favour
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a superposition of longitudinal modes corresponding to a short pulse with
high peak power. There are various active and passive elements to achieve

this regime.

A further requirement for obtaining stable mode-locking is that the pulse
reproduces itself after one round trip (within a total phase-shift on all the
longitudinal modes). The phase relations between different modes are af-
fected by effects such as dispersion, gain bandwidth and nonlinear phase
shifts. Although an infinite number of different pulses can be constructed
as different superpositions of longitudinal modes, usually only a single
pulse specified by its shape, duration, peak power and chirp is a stable
solution of the cavity, and thus the output pulse characteristics can be de-
signed and controlled by changing the physical parameters of the compris-

ing laser elements.

Various mechanisms, both active and passive [19], exist for mode-locking
lasers. In this thesis, passive mode locked lasers based on semiconductor

saturable absorber mirrors (SESAM) as mode locking element are studied.

1.1 Ghz-range repetition rates

Femtosecond and picosecond pulsed lasers with high repetition rates (tens
of megahertz to tens of gigahertz) are commonly used in different appli-
cations. Some of them are photonic-assisted analog-to-digital conversion
(PADC) [8, 20], ultrafast spectroscopy [21], optical biomedicine [22-24] and
ultrahigh-bit-rate communications such as wavelength-division multiplex-
ing [25, 26] . In reference to PADC'’s, it has been known since the 1970s [27-
31] that short optical pulses (< 100 ps) can be used to enhance the speed of
electronic sampling switches through an optoelectronic design. The optical
pulse provides lower pulse-to-pulse jitter than electronics and faster rise
times. Currently available lasers capable to deliver GHz-range pulse repe-
tition rates are not quite robust and provide low quality signals. This made
impossible implementing a reliable PADC system, which is now an open
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possibility due to the kind of laser presented in this thesis. An interesting
solution to obtain high-repetition rates in a mode-locked configuration is to
use linear Fabry—-Pérot cavities [16, 28, 32-34]. One of the most important
parameters when referring to mode-locked laser combs in PADC is their
long term stability. A 1 GHz single fiber Fabry-Pérot oscillator has been
achieved previously [32], however, the thermal damage threshold of the
SESAM (Semiconductor Saturable Absorber Mirror) is reached producing
progressive damage in the SESAM surface and eventually changing laser
properties. At this point, the necessity of a theoretical model to study GHz-

rate passively mode-locked fiber laser cavities appears.

In this phd thesis, a theoretical model based in the Non-Linear Schrodinger
Equation (NLSE) has been developed. Different repetition rates have been
studied changing the cavity total length (1.0 GHz, 2.2 GHz, 5.0 GHz and
10.0 GHz). Some of the key parameters characterized for each of the fre-
quencies studied are pump power threshold and gain conditions for stable
mode locked emission, SESAM properties, pulse time width and spectral
width. The oscillator cavity has been modeled by using a single fiber spe-
cially selected to absorb the power of the continuous wave pumping opti-
cal signal and the laser light reaching the SESAM, allowing it to work be-
low its thermal damage threshold , < 1 m]/cm?. To reach the required ab-
sorption values of hundreds of dB/m, a co doped Erbium/Ytterbium fiber
has been used, which also provides the dispersion properties needed to
generate a solitonic solution of the NLSE, resulting in a stable mode-locked
emission. Moreover, all the laser stages (pump and cavity) have a complete
PM configuration that, correctly aligned, makes the laser work in a single-
polarization regime, enhancing the stability due to the lack of mode com-
petition compared to previous publications. 2 GHz all-fiber lasers [35] and
cavities with frequencies above 10 GHz [36] have been previously achieved
using complex architectures or specially designed optical fibers. However,
in this thesis, the focus is obtaining optimized, robust, compact and re-
peatable GHz all-fiber lasers using commercial components. When inte-
grating mode-locked fiber lasers in practical applications such as PADC,
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it is mandatory to guarantee the long term and environmental stability of
the laser source. To confirm experimentally the reliability of the model, ro-
bust, stable and ultra-short pulsed light sources have been achieved for 1.0
and 2.2 GHz. Finally, a mechanical design has been developed to enhance
the environmental stability of the laser, introducing a cavity temperature
control system and an antivibration enclosure.

1.2 Single-shot to MHz range repetition rates

Femtosecond lasers of low repetition rates, from single shot to tens of mega-
hertz, are used in inspection applications, such as the two photon absorp-
tion transient current technique (TPA-TCT), where high peak power but
long time between pulses is needed. The Transient Current Technique
(TCT) is a widely used method for characterizing radiation detectors. Among
other advantages, it allows the determination of the efficiency of charge
collection, the full depletion voltage, the sign of the space charge or the ef-
fective trapping time of the carriers in the defects generated by radiation;
which has positioned it as one of the preferred techniques when studying
the degradation of detectors operating in high radiation environments [37-
40].

TCT has been established as a standard tool for the characterization of
unirradiated and irradiated silicon particle detectors. In TCT, laser light
is used to generate electron hole pairs inside the detector material. The
drift current, resulting from the movement of the generated charge car-
riers in the biased silicon detector is measured. To achieve a fully three-
dimensional characterization of silicon detectors nonlinear two-photon ab-
sorption (TPA) of light can be used. To exploit the process of two photon
absorption, a laser with photon energies smaller than the band-gap energy
in silicon (1.12 eV) has to be used. With high enough intensities at the focal
point of the laser, electron-hole pairs can be created by the simultaneous

absorption of two photons [6]. The focal point of the laser can be moved
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inside the silicon detector in all three spatial axes to achieve a three dimen-
sional resolution [41].

The TPA-TCT technique has been validated on silicon detectors using a Ti:
Sapphire solid-state laser as the light source [6] and an Optical Paramet-
ric Amplifier, OPA, to shift the emission wavelength to the 1.3 ym range.
However, the use of this light source has several limitations and disad-
vantages. Firstly, a Ti:sapphire laser (the most commonly used source of
femtosecond pulses) does not emit at wavelengths where silicon is trans-
parent, which makes correct 3D mapping difficult. To shift the wavelength
an OPA must be used, which reduces the efficiency of the system and adds
complexity to the experimental setup. Second, the energy per pulse is too
high, oversized for the energy requirements of TPA-TCT. This adds the risk
of causing thermal damage to the crystals and requires, in most cases, the
entire system to be cooled by water. Third, to achieve a repetition rate low
enough to analyze the effect of a single pulse on the silicon detector, it is
necessary to use pockel cells that work at high voltage though introducing
electronic noise into the measurements. Finally, femtosecond laser sources
based in Ti:Sa and OPA have high costs, alignment and maintenance diffi-

culties due to their free space laser structure and limited service life.

In this thesis we present the development and application of a fiber laser
to the TPA-TCT , designed to overcome the limitations presented by the
Ti: Sapphire solid-state laser. This laser source has all the advantages of a
fiber optic architecture: robustness, excellent thermal dissipation, high ef-
ficiency and fiber output delivery. Its freedom of design allows to meet
the requirements of the TPA-TCT. An emission wavelength of 1550 nm
(whithin the transparency region of silicon) allows 3D mapping of sam-
ples. Less than 300 fs in time width and more than 10 nJ of energy per pulse
enable efficient two photon excitation. Finally, the laser system presents a
standard deviation in average power and pulse- to-pulse amplitude below
1 %, which allows obtaining direct measurements avoiding mathematical

corrections, which reduces the derived error in the final data.
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Additionally, a pulse management module has been developed to provide
specific needs for TPA-TCT. The module includes: First, a pulse selector
based on acousto optic modulation technology. This device allows to de-
crease the repetition rate of the pulsed signal, from 8.0 MHz o single shot,
without introducing electronic noise. Second, a variable neutral density
filter that allows continuous pulse energy selection from 10 nJ to 10 pJ.
Finally, a synchronizing output trigger, a photodetected signal with an am-
plitude proportional to the energy of the output pulse and an electrome-
chanical shutter, to facilitate the measurement procedure.

A first prototype has been developed and used to carry out validation tests
as excitation source in the TPA-TCT.

1.3 Industrial PhD

An important aspect of this thesis is its industrial nature, which means that
the lasers that are developed in it must be able to be industrialized and
marketable. To achieve an industrialized product, it must pass all the tech-
nology readiness levels. Technology readiness levels (TRLs) are a method
for estimating the maturity of technologies during the acquisition phase of
a program, developed at NASA during the 1970s. The use of TRLs enables
consistent, uniform discussions of technical maturity across different types
of technology [42]. TRLs are based on a scale from 1 to 9 with 9 being the
most mature technology.

The TRLs, as defined by the European Comission are:
TRL 1 - Basic principles observed

TRL 2 — Technology concept formulated

TRL 3 — Experimental proof of concept

TRL 4 — Technology validated in lab
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TRL 5 — Technology validated in relevant environment (industrially rele-
vant environment in the case of key enabling technologies)

TRL 6 — Technology demonstrated in relevant environment (industrially

relevant environment in the case of key enabling technologies)
TRL 7 — System prototype demonstration in operational environment
TRL 8 — System complete and qualified

TRL 9 - Actual system proven in operational environment (competitive

manufacturing in the case of key enabling technologies; or in space)

Typically, doctoral theses that study experimental phenomena or develop
solutions to be used in specific applications advance technologically up to
the TRL3 level, at most TRL4. Unlikewise, in this thesis, the laser models
presented go through all the TRL levels, reflecting the industrial charac-
ter of the thesis. In addition, development is focused on achieving a new
technology, adapted to the applications that is robust, reproducible and
marketable at the same time.



Chapter 2

Mode-Locked Fiber Lasers
Dynamics

2.1 Propagation of ultra-short pulses in optical fibers

Ultrafast optics is based on an understanding a quantitative description
of the propagation of laser light in a dispersive optical medium. In this
chapter, the basic wave equation will be explained [43], followed by the
theory of pulse propagation in nonlinear dispersive media [44] .

Like all electromagnetic phenomena, pulse propagation through optical

fiber is governed by Maxwell’s equations:

V-D=p (2.1)
V-B=0 (2.2)
vxE=_28 (2.3)

ot
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VxH=j+ b 2.4)
ot

In equations (2.1) to (2.4) E and H are the electric and magnetic vectors,
respectively. In the same way, D and B are the corresponding electric and
magnetic flux densities. Finally, p represents the free charges and j the
current density. However, there are no free charges in optical fibers, hence
the terms implying p and j will vanish. The relation between flux densities
and electromagnetic fields are generally given by:

D=¢E+P and B=uyH+ M (2.5)

In equation (2.5), g9 and pg are the vacuum electric permittivity and the
vacuum magnetic permeability, respectively. M and P are the magnetic
and electric polarization, respectively. As we manage an optical medium,
M is zero and it is possible to write the following expression using (2.4)
and (2.5):

oE oP
V-B= €opo5, +Ho5, (2.6)
Taking the curl on both sides of equation (2.3) and using the identity V x

(V x E) = V(V - E) — V2 Eitis possible to relate B to E:

d(V x B)

. — 2:_
V(V-E)—V =

(2.7)
Finally, using equation (2.6), taking into account that there are no free
charges (V - E = 0) and supposing that the material is homogeneous (eg o =
C%) the equation above reduces to the wave equation for isolating, polariz-
able nonmagnetic materials:

1 9%E 9P
2 YV = — i
V E C2 at2 “I/l() 8t2 (28)



2.1. Propagation of ultra-short pulses in optical fibers 11

To obtain the equation that describes pulse propagation through nonlinear

media, the following conditions must be taken into account:

- The polarization response of the material is supposed instantaneous. This
is valid for nonlinearities based in electronic nature since the electronic
response is much faster than the period of light.

- The nonlinearity in P is supposed small enough to be treated perturba-
tively.

- The optical field maintains the polarization state, so a scalar approxima-

tion can be made.

The first of these conditions, allows to expand the induced polarization in
a series of powers of the instantaneous electric field:

P="P +Py=e(xV - E+x? E-E+x® .E-E-E.) (2.9)
In equation (2.9), x' represents the susceptibility of order i of the medium.

The electromagnetic field can be written as a product of a slowly varying
component and a plane wave:

B(r 1) = %ux (E(r, £)eiPoriet | ¢.c] — %ux[F(x,y)A(z, pefboz—iot | ¢ ]

(2.10)
~ 1 ) .
Pr(r,t) = Eux[PL(r,t)elﬁ[’Z‘Wt + c.c] (2.11)
N 1 ) .
Pni(r,t) = Zuy[PNL(r, t)elPoz=iwt ¢ ] (2.12)

2

Here, u, is the unit vector perpendicular to the direction of propagation,
which can be dropped due to the assumption that the polarization is pre-
served during the propagation through the fiber. Also, E(r,t) and Py /N (7, t)
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are the slowly varying envelopes of the electric field and linear /nonlinear
polarization respectively. In addition, it is convenient to separate the x,y
dependence (F(x,y), modal pattern) from that on z,t (A(z,t), propagation).
Finally, it is understood that only the real part is physically meaningful and

hence the complex conjugate will not be explicitly stated.

Now, from (2.9) it is possible to write an expression for Py, [44]:

. 3
Pnp(r,t) = eoenp(r, t)E(r, t) with enp(r,t) = ZX(3)|E(r,t)|2 (2.13)

In equation (2.13), ey, refers to the nonlinear contribution to the dielectric
constant. Moreover, the spacial and temporal variations of ey are sup-
posed to be slow in comparison to the optical wavelength and period. x(?)
is not considered because the optical fiber has not a crystal structure, and
x® = 0 in this kind of systems. With this in mind, the main objective
is to find a solution to the equation (2.8). Aiming this purpose, it is use-
ful to apply a Fourier transform to this equation. When applying Fourier
transform, the following form is used:

+o00 . +oo .
E(r,w) = / E(r,)e“! dt and E(r,w) = / E(r)e @ dr  (2.14)

—o0 —00

Usually, ey, is intensity dependent and Fourier transform must apply to
it too, however, since a perturbational approach is used (supposing that
enr is the perturbation) it can be treated as locally constant. After all this,
equation (2.8) is re-written:
2
(V2 — e(r,w)%)]f(r,w) =0) (2.15)

With the dielectric function given by:
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e(w) =1+ + ZX“’) (2.16)
Equation (2.15) can be solved by making an Ansatz that is the Fourier trans-
form of equation (2.10). Here, A(z, w) is a slow varying function of z and
F(x,y) is the modal distribution of the pulse in the fiber. Tha Ansatz is the

folowing;:

E(r,w — wo) = F(x,y)A(z,w — wp)e™ (2.17)

In equation (2.17) wy is the carrier frequency and kg is the wavenumber of
wp. Some calculations [44], lead to a couple of equations, for A(z,w) and

F(x,y):

0’F  9°F w?
ﬁ + W + [e(w)cT - ‘B (w)]F =0 (2'18)

2122+ () ~ A =0 2.19)

Owing the assumption that A(z,w) is a slowly varying function of z, its
second derivative with respect to z is neglected in both equations. The
wavenumber B(w) is determined by solving the eigenvalue equation of
the fiber modes, for details see [44]. At this point, one can approximate the
dielectric function by:

e(w) = (n(w) + An)? ~ n* + 2nAn (2.20)

In equation (2.20) An is given by the nonlinearity n, of the refractive index
and the absorption i and the gain § of the fiber:
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An = my|EJ2 + TW) —&(w) (2.21)
2k
The solution for the modal distribution F(x,y) is unchanged compared to
the case without the perturbation, but the eigenvalue solutions are altered
by the perturbation:

ko [ An(x,y)|F(x,y) 2 dx dy

Pl = PL) 8 with AP = = e b ) Pdrdy

(2.22)

This first order perturbative method is used also in quantum mechanics.
Moreover, as only the transversal single-mode case is contemplated here,
the modal distribution is the fundamental mode of the fiber HE; given by
[44]:

F(x,y) = Jo(xp) with p=/x2+y2<a (2.23)

F(x,y) = \/a/pJo(xp)e "0~ with p=\/x2+ 12 >a (2.24)

In equations (2.23) and (2.24), ]y refers to the order zero Bessel function.
This modal distribution is hard to work with and for practical purposes it
is approximated by the Gaussian distribution:

- (242

F(x,y) =e «* (2.25)

In equation (2.25) w is the width parameter that is obtained fitting the exact
distribution to a Gaussian form.

Rewriting equation (2.19) and approximating f?(w) — B3 =~ 2Bo(B(w) —
Bo) yields:
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0A . -

5, = B(w) +AB —fo]A (2.26)
For a final step, one takes the Fourier transform of above equation to arrive
at a time-domain representation of the slowly varying envelope function
A(z,t). Since generally an analytic expression for f(w) is not known, it is

helpful to expand it in Taylor series:

B dp 1 d*p
Blw) = Po+ (w = wo) 7 ~lw-wy + 5 (@ = “JO)Zﬁ'“’_wO o (2.27)

= [Eo-l-ﬁo(w—wo)-l-%ﬁz(w—wo)z-l----

The cubic and higher terms are negligible if the pulse duration is in the ps-
range. For femtosecond pulses, the third order must be taken into account.
Substituting equation (2.27) into (2.26) and taking the inverse Fourier trans-
form results in:

0A A P PA

Fiber losses and nonlinear effect are accounted for by the term Ap and can
be evaluated using the equation (2.21), leading to:

A A P PA a

. . Nnawo
— — i A =iy|A|PA with v =
5z TPig tig gp t oA =0IAlA with o

CSeff

(2.29)

In equation (2.29) 1y is the nonlinear parameter and S, ¢ the effective area of
the optical fiber. This equation is called Nonlinear Schrodinguer Equation,
and it is most commonly used to describe the propagation of ps-range opti-
cal pulses along an optical fiber, taking into account fiber losses, chromatic
dispersion and fiber nonlinearities.
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This is the basic propagation equation that is used in this thesis to design
our fiber laser cavities. A gain term has been added for making the simu-
lations and it is presented in the next sections.

2.2 Amplification in rare-earth doped fibers

Incident light of the correct wavelength can be amplified in optical fibers
through stimulated emission. This is realized by optically pumping the
amplifier fiber to obtain population inversion. Depending on the energy
level of the dopants, the lasing scheme can be classified as three or four
level scheme (see figure 2.1). In either case, the dopants absorb pump
photons and reach an excitation stage and then relax rapidly into a lower-

energy excited state.

The lifetime of this “high energy state” is usually long (around 10 ms for
Erbium and 1 ms for Ytterbium), and the stored energy is used to amplify
incident light through stimulated emission. The difference between the
three and four level lasing schemes is the level to which the dopant relaxes
after stimulated emission. In the case of a three level lasing scheme, it is
directly the ground state, whereas in the case of a four level lasing scheme,
it is another intermediate state. Erbium presents a three level lasing scheme
while ytterbium has a four level lasing scheme.

Pumping creates the necessary population inversion and hence provides
the optical gain. Generally speaking and using the appropriate rate equa-
tions [45] for a homogeneously broadened gain medium, one can write:

80
= 2.30
g(w) 1+ (w — wa)2T2 + P/ P (2:30)
In equation (2.30) go is the peak gain value, w is the frequency of the inci-
dent signal, w, the atomic transition frequency and P is the optical power
of the signal being amplified. The saturation power P is mainly influenced
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FIGURE 2.1: Illustration of three (a) and four (b) levels laser

scheme.The main difference is the way to reach the ground

state (E; and Ej respectively) from the excited state (E; for
both cases).

by parameters such as the fluorescence time T; and the transition cross sec-
tion ¢. The parameter T is the dipole relaxation time.

If one neglects the saturation effect for the moment, the equation shows
that the gain reduction for frequencies off the transition frequency is gov-
erned by a Lorentzian gain profile as to be expected from a homogeneously
broadened system. The gain bandwidth Av is defined as the full width at
half maximum (FWHM) of the gain spectrum g(w), given for a Lorentzian
spectrum as:

b

— (2.31)

Ave =
However, the gain spectrum of a fiber laser is considerably affected by the
amorphous nature of the silica and the presence of other co-dopants such
as aluminum or germanium, presenting several peaks. It can be clearly
seen, that the Lorentzian approximation is not sufficient.

To make a better estimation of the influence of the gain in a doped media,
the implications of gain provided by dopants for the nonlinear Schrodinger



18 Chapter 2. Mode-Locked Fiber Lasers Dynamics

equation will be described.

The lifetime of the first upper state is significantly shorter than the lifetime
of the level from which stimulated emission takes place. Thus the lasing
process can be approximated by a two-level system. The dynamics of a
two level system are described by the Maxwell-Bloch equations [45]. The
starting point is the wave equation (2.8). The induced polarization P(r) has
to be altered to include a third term P, () representing the contributions of
the dopants. Using the slowly varying envelope approximation (SVEA)

similar to equation (2.12), one obtains:

Py(r,t) = %ux[Pd(r,t)e(iﬁoz’i“’t) + c.c] (2.32)

The slowly varying part obeys the Bloch equations [45] which relate the
population inversion density W = N, — Nj to the polarization and electric
field:

2

dP(r, P(r, '

i(;; t) _ (;:Zt) — 1((4),1 - wo)P(T, t) — %E(;’, t)W (2.33)
W Wo-W 1

o =1 TRpmErY-Pr) (2.34)

In these equations, Wy is the initial population inversion, y is the magnetic
dipole moment, w, is the atomic transition frequency, and E(7,t) is the
slowly varying amplitude. Following the same derivation, the nonlinear
Schrodinguer equation (2.29) is modified as follows:

9A B2 A 2, | Wy
> +51 + > IR + A i Al A+2€0C(Pd(r,t)> (2.35)

The brackets angles denote an averaging over the mode profile |F(x,y)|?.

This term is written as g in the equation (2.51) and reflects the gain in the
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amplitude of the pulse field throughout its propagation. In summary, the
pulse propagation in an optical fiber is governed by a generalized nonlin-
ear Schrodinguer Equation (2.29) including gain parameters if dopants are
present in the fiber.

2.3 Mode-Locking

Ultra-short pulses with a duration of a few ps or less can only be achieved
by mode-locking the laser. For this purpose, one has to establish a rigid
phase relation between the many longitudinal modes which can exist in
a laser cavity of a certain length. The principle of mode-locking will be
introduced with special emphasis on passive mode-locking using saturable
absorber device, as this is the method of choice for the erbium and erbium-
ytterbium doped fiber lasers developed in this thesis.

The propagation of electromagnetic pulse in a laser resonator can be de-
scribed by a superposition of plane waves with different wavelengths. The
possible wavelengths of the longitudinal modes in a Fabry-Pérot resonator
are given by the condition:

n-Anp=2L (2.36)

Here, A, is the wavelength of the longitudinal mode, L is the resonator
length and 7 is an integer. In principle, a large number of modes of differ-
ent frequencies can exist at the same time. These modes will be indepen-
dent in phase and amplitude. Thus the total electric field in the resonator
is given by the sum of the field of all the excited modes:

E(z,t) =Y _Eu(z,t) = Y_Eoue®™* ™ with Eo, = |Ese®™  (2.37)
n n
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In equation (2.37) Eo, is the complex amplitude of the n-th mode and ®,
is its phase. Assuming an equal amplitude for all modes, the intensity is

given by:

N N
I(z,t) = E(z,t)E*(z,t) = | Eo|? 22 =) (n=m)Q(E ) (2.38)
Here,

O =wy —wn= % (2.39)

In equations (2.38) and (2.39), () is the frequency difference between two
neighbouring modes. If all modes have a fixed phase relation, which means
that ®, — ®,, = 6P, equation (2.38) yields:

N N
I(z,t) = |Eo[?"® Zze@i*mm(%*ﬂ (2.40)
n=1m=1

The second exponential function in equation (2.40) becomes equal to 1 for
all terms of the sum if the following condition is fulfilled:

Q(%—t)zZn-j — z—ct=2L-] being j=0,1,2,3..  (241)

The maximum of equation (2.40) undes these condition is:

Luax = N?|Eo|* = N?Iy (2.42)

One can derive the spatial and temporal distances of consecutive pulses
when this conditions are fulfilled:

2L
c

Az =2L, At= T (2.43)
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Where T results the repetition rate of the pulsed mode-locked laser.

That means that through a fixed phase relation between the many modes

in the resonator, regular pulses with peak intensity I,y will develop, pro-
portional to the sqare of the number of involved modes, as it is seen in

figure 2.2.
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FIGURE 2.2: Superposition of a different number of longi-
tudinal modes with a fixed phase difference. The intensity
of these pulses scales quadratically with the number of in-

volved modes.

To calculate the FWHM (full width half maximum) of the pulses, one can

assume that at a fixed time t=0 the superposition of N modes is similar to
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the interference of N planar waves. Using the geometric series, one arrives
at [46, 47]:

sin (N—t)

I(t) = Io 5 2.44
Using equation (2.44) one can derive the FWHM of the pulses:
T
AT = — 2.45
= (245)

So the pulse width decreases with the number of superposed modes and it
is proportional to the revolution time of the laser cavity.

This rigid phase relation between superposing modes can be achieved by
a modulation of the gain of the resonator (or the losses respectively) with
the difference frequency () of adjacent modes. All mechanisms to achieve
a mode-lock rely on that principle (see figure 2.3).

Through the loss modulation, the electromagnetic field in the resonator

acquires an additional time dependence:

E.(z,t) = [EO/H —l—Ede . cos(Qt)] ptknz—iwnt
_ |, eiwnt 4 Lpmod < it | Ot it | iknz
= O,ne 2 n e +e e e (246)

_ [Eone—iw,zt+1 (eiwnﬂt_'_e—iw,,,]t) oiknz
’ 2

Equation (2.46) shows that the time dependence induces sidebands in ev-
ery mode whose frequencies coincide with the one of the neighboring modes.
As this principle is valid for the total bandwidth, a phase synchronization
between all longitudinal modes is reached. There are various possibilities
to achieve this time dependence of the electromagnetic field. They can be
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FIGURE 2.3: Schematic illustration of active mode-locking
through modulation of cavity losses [44]

categorized by the method of how the gain modulations are accomplished.
If an actively driven device, for instance a switch or amplitude modulator
is used, one speaks of active mode-locking, if a passive device (a saturable

absorber, for instance) is used, one speaks of passive mode-locking.

2.3.1 Active Mode-Locking

This very common form of mode-locking requires an actively driven el-
ement in the laser cavity, either modulating the amplitude (AM mode-
locking) or the phase (FM mode-locking) of the propagating light. To en-
sure phase synchronization, the amplitude/phase must be modulated with
a frequency equal to the harmonic of the mode spacing. Active mode-
locking can be understood in both time and frequency domains. An am-
plitude modulation of a sinusoidal signal creates modulation sidebands as
is well known through, for example, AM radio transmission. In time do-
main, the picture is that the modulator creates cavity losses. As the laser
emits more light during minimum loss, this intensity difference will accu-
mulate during successive round trips leading to a mode-locked behavior
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after reaching a steady state (see figure 2.3). The cavity loss introduced by

a modulator can be written as:

& = ¢+ ay [1 — cos(wpt)] (2.47)

Here, a, are the regular cavity losses and «,, is the additional loss intro-

duced at frequency w;,.

2.3.2 Passive Mode-Locking

Besides the ability to model dispersion, gain, losses, nonlinearities etc. in
fibers, one important component is still missing to model mode-locked
lasers. This is the nonlinear component used to make mode-locked las-
ing more favorable than CW lasing. For a laser to favor lasing mode with
short pulses, an element or a combination of elements have to be present
in the cavity, which introduce a higher loss at low power, so that a short

pulse with higher peak power experiences a stronger net gain.

One possibility is to use a SESAM (Semiconductor Saturable Absorber Mir-
ror) as in this thesis. A SESAM consists of a Bragg-mirror on a semiconduc-
tor wafer like GaAs, incorporating materials with an intensity dependent
absorption. The saturable absorber layer consists of a semiconductor ma-
terial with a direct bandgap slightly lower than the photon energy. Often
GaAs/AlAs is used for the Bragg mirrors and InGaAs quantum wells for
the saturable absorber material. During the absorption electron-hole pairs
are created in the film. As the number of photons increases, more elec-
trons are excited, but as only a finite number of electron-hole pairs can be
created, the absorption saturates. The electron-hole pairs recombine non-
radiatively, and after a certain period of time they are ready to absorb pho-
tons again. Key parameters of the SESAM when designing mode-locked
lasers are the recovery time, the modulation depth of absorption, the band-
width, the saturation intensity and the non-saturable losses.
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Generally the Bragg stack can be chosen to be either anti-resonant or res-
onant. SESAM based on resonant Bragg stacks can have quite large mod-
ulation depths, but with the limited bandwidth of the resonant structure.
Anti-resonant SESAM can have quite large bandwidths (>100nm), but at
the expense of a smaller modulation depth. A larger modulation depth can
be obtained from an anti-resonant design at the expense of higher intrinsic
losses. In solid state lasers where the single pass gain is low, the unsat-
urable losses of the SESAM must also remain low, but in fiber lasers where
the single pass gain is much higher, unsaturable losses are less important.

The recovery time should ideally be as small as possible. Recovery times
on the order of the pulse duration will cause asymmetric spectra if the
pulse is chirped when it interacts with the SESAM, and hence strongly
affect the pulse dynamics inside the cavity. Even larger recovery times
can limit the obtainable pulse duration from the laser. This time, a fast
SESAM is used. For an extensive overview of SESAMs [48, 49]. For an ex-
tensive theoretical and analytical analysis of mode-locking with saturable
absorbers see [46, 47].

For fast saturable absorbers with recovery times much faster than the pulse
length, the loss can be modeled by:

90
= 24
1= P (2.48)
Psp
For SESAM where the recovery time is of the order of the pulse length
or more, one cannot suppose that it works instantly. A more appropriate

model of the SESAM is:

aq(t)  g—qo |A]?
L ) e (2.49)

In equations (2.48) and (2.49), A(z,t) is the slow varying component of
the electromagnetic field, go is the non-saturated but in principle saturable
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loss, Psa is the saturation power, Eg4 is the saturation energy and 754 is
the recovery time. In the limit 754 — 0 equation (2.49) approaches to (2.48)

The differential equation can be numerically integrated to give g(t), and
from ¢(t) the reflectance from the SESAM can be calculated as:

R(H) =1—q(t) — I (2.50)

Here, Iy is the intrinsic insertion loss. Reflection of the slowly varying elec-
tric field can then be calculated as A(t)\/R(t). The saturation energy can
be calculated as the product of the saturation fluence and the effective area
of the SESAM.

A general tendency of mode-locked lasers with saturable absorbers of fi-
nite recovery times is that the laser may tend to Q-switch mode-lock (i.e.
emit a mode-locked pulse train which is highly amplitude modulated on
a nanosecond time scale and hence resemble a nanosecond pulse with a
mode-locked pulse train underneath the pulse envelope). The tendency
to Q-switch mode-lock is increased if the modulation depth is high. To
avoid Q-switched mode-locking, the spot size on the SESAM can either be
decreased, or the intra cavity average power increased (by either decreas-
ing the output coupling or by increasing the pump power). However, the
limit is set by the damage threshold of the SESAM. If the peak intensity of
the pulse is increased above the damage threshold of the SESAM (typically
300MW /cm?2), the SESAM may be permanently damaged, and a small spot
burned on the surface.

There are other methods of passive mode-locking but they are not contem-
plated in this thesis since a SESAM is used on the fiber mode-locked lasers.
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2.4 Split-Step Fourier Transform Method

Aiming a proper design of the cavity, several numerical simulations have
been done. They are based on the nonlinear Schrodinguer equation. The
method that has been employed is the Split-step Fourier transform method

that is briefly explained in this section.

As it has been said, this is a convenient method for solving the nonlinear
Schrodinger equation in which the third order dispersion, By, and the gain,
g, have been included:

J0A ,32 82A 133 83A g

2
oz +ﬁ at 2 T 6 B A =iy|A["A (2.51)

This method is based on the assumption that dispersion and nonlinear ef-
fects act independently over a short piece of fiber. It is useful to write
equation (2.51) formally as:

0A

= =(D+N)A (2.52)

Where D is the differential operator counting for dispersion and absorption
in a linear medium and N is the nonlinear operator governing all nonlinear

effects on pulse propagation. They are given by:

_ 504 PPA P4 a-g
LA TR T T 2

(2.53)

= iy|A|? (2.54)

Propagation over a small distance h is carried out in three steps. First the
pulse propagates over half the distance with only dispersive effects. Then,
in the middle of the section, nonlinearity is included after which the pulse
propagates again half the distance.
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Mathematically, this results in:

h . z+h h .
A(z+h,t)~exp (=D | exp N(Z')dz Jexp | =D | A(z,t) (2.55)
2 2 2

The exponential operator can be readily evaluated in the Fourier domain.
For the dispersive operator exp (%ﬁ) , this yields:

exp <I;f)> A(z,t) = FFT; lexp (ZD(iw)) FA(z,t) (2.56)

Here D(iw) is obtained replacing the differential operator 9/9t by iw. As
D(iw) is just a number in Fourier space, the evaluation of equation (2.56)

is fairly straightforward.
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Chapter 3

GHz-Range Passively
Mode-Locked Fiber Lasers

The theoretical model presented in chapter 2 is adapted to design GHz
range passively mode-locked fiber lasers. The modeled cavities of the
lasers are configured by a highly doped and polarization- maintaining sin-
gle fiber of a single type. For different pulse repetition rates, ranging from
one GHz to ten GHz, gain parameters and pump threshold for a stable
mode-locked laser emission are studied. Pulse time width, spectral width
and SESAM properties are defined to achieve stable emission. To experi-
mentally validate the theoretical model, 1.0 GHz and 2.2 GHz laser cavities
have been built up and amplified. A stable and robust operation for both
frequencies was obtained and the experimental measurements have been
found to match the theoretical predictions. Enhanced environmental sta-
bility has been achieved using a cavity temperature control system and an
antivibration enclosure, ending in a robust and marketable prototype.

3.1 Theoretical Model

Laser mode-locking is the best technique to achieve ultra-short pulses with

a temporal width of a few ps or less. For this purpose, one must establish
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a rigid phase relation among the many longitudinal modes which can ex-
ist in a laser cavity of a certain length. When this length is short (< 0.2
m), gain conditions for laser emission, which imply high values for both
pump absorption and emission cross section, are difficult to meet. Addi-
tionally, low and anomalous net dispersion values are required to achieve
a solitonic regime, which is needed in this kind of lasers. There is no con-
solidated theoretical model to predict the necessary parameters for a sta-
ble mode-locking emission in ultra-high frequency cavities (1.0-10.0 GHz).
The aim of this work is to provide a method to predict the requirements
that a laser cavity must meet to achieve a stable passively mode-locked
emission regime in all-fiber laser cavities of short cavity length (20.0 cm-
2.0 cm).

In order to reach passive solitonic mode-locked stable emission an option
is to use a SESAM as the saturable element inside the cavity. The SESAM
considered in our model and used to experimentally assemble the laser is
consider a fast type one, with a recovery time of 2 ps, a modulation depth
of 37 % and a saturation fluence of 40 us/cm?. For a detailed theoretical
and analytical analysis of SESAM use in the development of mode-locked
lasers see [47-50].

Considering the gain conditions that the laser cavity is expected to need,
and since the required emission wavelength is located in the telecommu-
nications band C, a fiber doped with Erbium and Ytterbium has been cho-
sen for the theoretical model. This double doping is performed to achieve
higher pump absorption (> 300 dB/m) through the ytterbium [51], to im-
prove the efficiency of the erbium emission, located around 1550 nm.

Figure 3.1 shows the laser architecture used in the theoretical model and
the experimental set up used to compare and validate the results of the
theoretical model. It is a mode-locked, polarization maintaining (PM, as
the model works with a single polarization), Fabry— Pérot threshold fiber
cavity. The active fiber has been directly connectorized to minimize transi-
tions and polarization changes inside the cavity.
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A laser diode (LD, 915 nm / 980 nm) was used as pump!. The light from
the LD was inserted into the laser cavity through a dichroic mirror (DM)
coated on the FC/PC connector of the common port of a standard single-
mode 915/1550 nm polarizer wavelength division multiplexer (PWDM),
which couples the pump to the laser cavity. A second FC/PC connector
attached directly to the active fiber of the cavity is coated with a DM that
has a reflectance of 99 % at 1550 nm, and a transmittance of more than 90
% at 900 — 1000 nm. The DM is positioned between the two flat connec-
tors. The active fiber is a highly Erbium and Ytterbium co doped PM fiber
(OFS YPC23401) of length L with an anomalous dispersion of approx. 16
ps/nm/km at 1550 nm. The end of the active fiber is attached to another
FC/PC connector. A Batop InGaAs SESAM with a modulation depth, satu-
ration fluence and recovery time of 37 %, 30 ] /cm? , and 2 ps, respectively,
was butt coupled to the FC/PC connector.

Pump Laser Fiber
Diode Length L
PWDM

- DM
i ) OD— s <SESAM

1535

im

PISO PEC (> 10% Reference

- 94
Oscillator  15350m 0%

Qutput

FIGURE 3.1: Oscillator internal structure. PWDM: po-

larizer wavelength division multiplexer; DM: dichromic

mirror; SESAM: semiconductor saturable absorber mirror;
PISO: polarizer isolator; PFC: polarizer fiber coupler.

The laser light (1550 nm) emitted from the cavity passes through the DM

1915 nm pumping was used in long cavities (1.0 GHz and 2.0 GHz) because the absorp-
tion at 980nm was too high and the pump light was completely absorbed in the first third
of the cavity, causing a signal re-absorption and a negative gain regime.
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and is extracted from the 1550 nm port of the PWDM. A PM single mode
polarizer isolator (PISO) was fusion-spliced to the 1550 nm port of the
WDM to protect the cavity from back-reflections and guarantee its long
term stability. Finally, a 90:10 standard single-mode PM polarizer fiber cou-
pler (PFC) was fusion-spliced to the output port of the isolator, allowing
multiple measurements to be carried on simultaneously. This experimen-
tal setup enables an easy modification of the cavity to go through a full
study of different fiber lengths, thus different repetition rates (10 cm/10.0
GHz, 4.7 cm/2.2 GHz and 1.0 cm/10.0 GHz) 2.

Real and accessible elements have been used to build the theoretical model.
As a result, the modeled cavities are easy to manufacture so that they can
evolve into a commercial laser prototype as simple as possible.

In order to numerically model the emission properties of our fiber laser,
pulse propagation in the laser cavity is computed by solving the Non-
Linear Schrodinger Equation (NLSE) ((3.1)) using a standard symmetrized
split-step Fourier method algorithm [44]

2 Az T) = (L+R)A(z T) (3.1)

14 g iﬁz 82 153 873

L=+ o ot e ot

(3.2)

N=iy|A(zT) |? (3.3)

(3.1), is a crucial equation in a fiber transmission system. It describes the
propagation of the slow-varying envelope A(z, T) of a single polarization

of the scalar electric field of an optical pulse normal to its propagation axis.

2The oscillator is built using a Fabry-Perot structure. This means that the length of the
fiber and the length of the cavity are different concepts and are related to each other as
Lengthcavity = 2Lengthpiper
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z is the spatial coordinate along the fiber length and T is a group veloc-
ity moving-frame time defined as T = t — Bz , with t being the absolute
time and B; being the inverse of the group velocity. L. is a linear operator
that accounts for gain, losses and dispersion of the optical fiber and N is a
nonlinear operator that governs the effect of fiber nonlinearities on pulse
propagation. Regarding the [ and N operators, « is the fiber loss coeffi-
cient, ¢ is the signal gain (dependent on pump power and wavelength),
and B, are the n-order group velocity dispersion parameters. In (3.3), we
have only considered self-phase modulation (SPM) through the nonlinear
parameter 7y of the fiber. More complex nonlinear effects are neglected in
the simulations. In [52] it is described the complete mathematical process
to correctly model a solitonic passive mode-locked laser.

The key point to characterize the conditions for a stable mode-locked emis-
sion is the gain equation. To apply it in a more realistic scenario, a de-
pendence in z-position has been considered. From [52] we can extract the
following;:

PP (Z) Tabs (A)

pth o Ufm()\) 1
g(A,z) = INoem (A) —- (34)
em 14 P;&f) 14+ %(z)
P

In (3.4), I and N; are the estimated overlap factor between mode field and
erbium dopant distribution and the total ion density, respectively. Param-
eters o,;5(A) and o, () represent the wavelength-dependent absorption
and emission cross-sections of the active fiber. Ps denotes the average pulse
power, calculated as Ps = Ep/Tr , with Ep being the energy of the pulse and
Tr being the cavity round-trip time. Py, Pléh and P, are the intrinsic satu-
ration power of the active medium, the pump power threshold (the pump
power for which the ground and upper populations are equal) and the ef-
fective saturation power of the fiber. The mathematical expression used to

characterize Py, PY' and P

'+ 1 and its usage to describe passive mode-locked



34 Chapter 3. GHz-Range Passively Mode-Locked Fiber Lasers

lasers emitting in a solitonic regime is elaborated in detail in [52]. (3.4) re-
lies on a quasi-two level system valid to describe erbium doped systems.
The ytterbium co-doping leads to a significant increase in the conversion
efficiency of the erbium fibers, which is caused by a decrease in the erbium
ion clustering [53]. The theoretical model has been adapted using the er-
bium/ytterbium co-doped fiber pump wavelength absorption value given
by the manufacturer and increasing accordingly the cross-section (absorp-
tion and emission) values of the fiber to match the high conversion effi-
ciency given by the ytterbium.

Regarding the SESAM effect in the numerical calculation, it was evalu-
ated as an insertion loss dependent on the pulse intensity as done in [54].
The equation describing the temporal response of the intensity dependent
losses in the SESAM, ¢(t) is the following;:

909(A(zt)  q—q0  |A(zt)]?
ot Y (35

In (3.5), A(z, t) is the slow varying component of the electromagnetic field
of the signal, qo is the modulation depth, Es4 the saturation energy, and
Tsa the recovery time.

Table 3.1 shows the values used in the simulations of this work to adapt
the theoretical model to GHz repetition-rate cavities.

The performance of the oscillator has been completely simulated and the
results experimentally validated. As an example, figure 3.2 shows the
calculated stable mode-locked pulse formation in our laser system corre-
sponding to the laser architecture described in figure 3.1 for the 1.0 GHz
cavity (top) and for the 2.2 GHz cavity (bottom). Evolution of both the
spectra and the time full width at half maximum (FWHM) of the output
pulses are depicted in the insets. Stability of both parameters is reached
after few hundreds of round trips, when the initial random noise input is
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TABLE 3.1: Simulation Parameters

Parameter Value
Resolution in z 0.3125 cm
Resolution in A 0.3 nm
Resolution in ¢ 31 fs

SESAM non-saturable losses 15 %
SESAM recovery time (Ts4) 2 ps
SESAM saturation fluence 40 uJ /m?
SESAM modulation depth (AR) 37 %
Pump wavelength 915 nm / 980 nm
Signal wavelength 1535 nm

Active fiber pump absorption at 915 nm 355dB/m
Active fiber pump absorption at 980 nm 600 dB/m

Effective area of the laser mode (Aff) 60.8 pm?
Average second-order dispersion (7) —0.015 ps?/m

Average third-order dispersion (B3) 0 ps®/m
Average nonlinear parameter () 2.7 (W xkm)~!

mode-locked into a stable pulse. Pulse width is 2.1 ps for the 1.0 GHz cav-
ity and 1.1 ps in the 2.2 GHz case. As the length of the active fiber of the
cavity changes, so does the net dispersion of the oscillator, which leads to
different resulting pulses. According to the spectral width obtained, the
Fourier transform of the 1.0 GHz cavity gives a minimum pulse of 1.3 ps
and the 2.2 GHz cavity, a minimum pulse of 1.0 ps, obtained from a spectral
FWHM of 2.0 nm and 2.5 nm respectively. According to this, the obtained
results are consistent with the expected case.

A 10.0 GHz cavity (of 1.0 cm fiber length) was tested under the same pump-
ing conditions, modeling also the co doped Erbium/Ytterbium fiber. The
algorithm did not converge because the short active length of the cavity did
not provide a proper positive gain regime. From this point onwards, some
modifications were required to reach the proper emission regime. The first
one was to model a 980nm pump to exploit the fact that the absorption of



36 Chapter 3. GHz-Range Passively Mode-Locked Fiber Lasers

Output pulse evolution, 1.0GHz
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FIGURE 3.2: Calculated stable mode-locked pulse forma-

tion regime corresponding to the setup described in figure

1. (top) 20.8 cm cavity, 1.0 GHz rep. rate. (bottom) 9.6 cm
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the active media is higher for this wavelength (355 dB/m at 915 nm ver-
sus 600 dB/m at 980 nm). With a cavity absorbing more pump power, the
required gain conditions should be easier to reach. The convergence test
that contemplates these conditions can be seen in Figure 3.3 (top). As the
image shows, a 980 nm pump wasn’t enough to achieve a convergence in
the algorithm. To reach a theoretical convergence, the gain of the cavity
must be improved either by increasing the pump power or by increasing

the emission cross-section of the active media.

In Figure 3.3 (top) a pulse evolution for 10.0 GHz can be observed. De-
spite the simulation converging, the values of pump power (> 1 W) are
out of the experimental possibilities as the SESAM can’t hold such a high
pump power and there is no commercial fiber matching the emission cross-
section requirements. However, these simulations show that a 10.0 GHz

cavity is buildable if the architecture adapts to its necessities.

The following is a full analysis for different frequencies, to study and pre-
dict the ideal conditions for mode-locked emission and transfer them to
real prototypes. Fixing the laser architecture (same SESAM, same active
fiber, same dichroic mirror), convergence at different lengths of the cavity
has been studied, those being 20.8 cm (1.0 GHz), 9.6 cm (2.2 GHz), 4.0 cm
(5.0 GHz) and 2.0 cm (10GHz). For each of these frequencies, a complete
sweep has been performed by varying the pumping power and recording
key parameters: spectral width, temporal width, and average power.

Figure 3.4 shows the spectral width as a function of the pump power at
convergence of the simulations. When the convergence gives a near-to-
zero spectral bandwidth, there is no stable mode-locking emission. Stable
emission starts when the width curve becomes monotonous and shows a
smooth evolution. To estimate the pump power threshold for stable mode-
locked emission for each of the frequencies the pump power where the
slope of the derivative is 45 © has been used, being: 112 mW@1.0 GHz, 142
mW@2.2 GHz, 257 mW@5.0 GHz and 693 mW@10.0 GHz.



38 Chapter 3. GHz-Range Passively Mode-Locked Fiber Lasers

Output pulse evolution, 10.0GHz
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Figure 3.5 shows temporal width (top) and average output power (bottom)
as a function of the pump power after the convergence of the simulation
for different frequencies of the cavity. For all frequencies the pulse time
width at convergence is similar, about 2 ps. This can be easily explained
by considering the key factors that determine the duration of the output
pulses in mode-locked cavities which are both the net dispersion and three
SESAM parameters: relaxation time (7s4), fluence and modulation depth
(AR). However, they do not affect the pulse width as the SESAM is the
same for all cases. On the other hand, to calculate the net dispersion of
the cavity, the group velocity dispersion of the fiber (D) can be estimated
as D = —16 ps/nm/km. Despite the difference in relative value between
the lengths of the cavities, from 20.8 cm to 2.0 cm, the net value of the
dispersion barely changes (3.4 fs/nm for 20 cm and 0.32 fs/nm for 2.0
cm), resulting in pulses of similar temporal width.

Looking at the average output power, it is observed that for the higher
frequency cavities (5.0 GHz and 10.0 GHz), the net gain is lower, so the
efficiency is smaller. This can also be seen in figure 4.12, in which the emis-
sion threshold for high frequency cavities is also higher, 110 mW for 1.0
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GHz and more than 600 mW for 10.0 GHz.
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FIGURE 3.6: (top) Blue : Temporal width for different fre-

quencies when the cavity average power output is 500 yW.

Green : Measured temporal width after the amplification

stage. (bottom) Spectral width for different frequencies

when the cavity average power output is 500 uW. (bot-

tom) Spectral Width for different frequencies when the cav-
ity average power output is 500 uW.

The target applications of this work need an average output power greater
than the obtained for the cavities (50-1000 # W). To achieve the correct
power specification (>100 mW) by amplification while maintaining a cor-
rect signal to noise ratio (SNR) (>27 dB), the seed average power to the
amplifier must be in the order of magnitude of hundreds of pW. Figure
3.6 illustrates a comparison between the simulated temporal and spectral
width of each cavity for those conditions in which they emit 500 ptW of
output average power and the measured temporal and spectral width us-
ing an autocorrelator and a spectrum analyzer respectively. The sensitiv-
ity of the autocorrelator was not high enough to measure signals with an
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average power of less than 1 mW at high frequencies. To obtain the auto-
correlation traces, the pulses were measured after the amplification stage.
Corresponding autocorrelation traces are shown in figure 3.7. The value of
temporal width at FWHM for 1.0 GHz and 2.2 GHz cavities are 2.8 ps and
2.0 ps respectively. To obtain the values of temporal width, a deconvolu-
tion factor of 0.648 has been applied, assuming a sech? pulse shape.

There are two main reasons why the simulated values may differ from the
measured ones. On one hand, due to the dispersion introduced through
the fiber of the amplifier, the temporal pulse width increases from the os-
cillator to the amplification stage. On the other hand, dispersion resulted
from Gires-Tournois interferometers (intrinsic to the SESAM functioning)
has not been taken into account in the calculations. In long cavities, with a
maximum frequency of several hundreds of megahertz, the dispersive ef-
fect of the SESAM is neglected. Once the cavity length is sufficiently short
its value must be considered. The SESAM used to build the cavities in this
work has a dispersion value that is strongly dependent on the wavelength
from 2.74 fs/nm at 1525 nm to -2.74 fs/nm at 1560 nm, being 0.73 fs/nm at
1535 nm.

3.2 Experimental Results

In order to verify the validity of the theoretical study and achieve the im-
plementation of a prototype of stable emission at GHz-range frequency,
cavities of 1.0 GHz, 2.2 GHz and 10.0 GHz have been built. Furthermore, in
order to perform measurements with a wider dynamic range and to meet
the power needs of the target application, the output from the laser cavities

has been amplified with a fiber amplifier (see figure 3.9).

3.2.1 Oscillator

Figure 3.8 (top) shows the measured optical spectrum (blue line) corre-
sponding to a cavity with a repetition rate of 1 GHz and 140 mW of pump
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power, where the red line shows the theoretical predicted spectrum. In the
legend box, spectral FWHM (both measured and simulated) are shown.
Figure 3.8 (bottom) shows the measured optical spectrum (blue line) cor-
responding to a cavity with a repetition rate of 2.2 GHz and 180 mW of
pump power. Again, the red line shows the theoretical predicted spec-
trum. The high stability of this laser optical spectrum during long term
stability measurements (< 0.3 dB/nm in a 4 h long MAX HOLD vs MIN
HOLD measurement) relies on the all-PM-fiber cavity.
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FIGURE 3.8: Experimental and simulated output optical
spectrum of the mode-locked fiber oscillator in logarithmic
scale for 1.0 GHz cavity (top) and 2.2 GHz cavity (bottom).

Same tests have been performed using the same laser architecture for 5.0
and 10.0 GHz cavities. As predicted by our simulations the required gain
conditions were not reached. To have the conditions for an adequate gain
regime, the pumping power should be increased to levels higher than the
SESAM damage threshold, or a greater gain in the fiber should be achieved
by making a non-commercial fiber design. High fundamental frequency
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fiber mode-locked lasers (10 to 20 GHz) have been previously demonstrated
using carbon nanotubes as a saturable absorbent [33]. However, in this
work, the focus is getting optimized, robust, compact and repeatable GHz

all-fiber lasers using commercial components.

3.2.2 Amplifier

After the oscillator stage a co doped Erbium/Ytterbium double cladding
PM fiber amplifier has been included. Fig. 3.9 shows the amplification
stage. A 976 nm laser diode (PD) delivering a maximum output power of
8 W was used as a pump. Light delivered from the PD was introduced
into the first clad of the active fiber through the pump input of the power
combiner (PC). This stage is shared for all cavities of different repetition

rates.

Pump Laser
Diode, LD
. PC C) PISO 1535
07 6rm ™A 335nm
— S — d
Laser
Qutput

Ogcillator

FIGURE 3.9: Fiber Amplifier structure.

The seed signal coming from the oscillator is introduced in the core of the
active media through the main input of the PC. The PC is spliced to 1.5 m
of double clad co doped Erbium/Ytterbium PM fiber (Nufern PM-EYDEF-
6/125-HE). A PM single mode isolator was fusion-spliced to the output of
the active fiber to protect the cavity from back-reflections and guarantee its

long term stability.
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The performance of the setup to amplify the oscillator output signal has
been analyzed. Figure 3.10 shows average power of the laser signal at the
output of the amplifier vs. current driving the pump laser diode. As it
can be seen in figure 3.10, the amplifier performance in terms of power is
similar for 1.0 GHz and 2.2 GHz frequency inputs.
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FIGURE 3.10: Amplifier output power vs pump diode cur-
rent. 200 mW of output average power are reached at 4
A current of pump diode (at 4 A the pump diode gives 5
W of continuous wavelength signal at 976 nm). In black,
amplified average output power for 1.0 GHz seed. In red,
amplified average output power for 2.2G Hz seed.

It is possible to evaluate the gain factor in terms of power of the amplifier,
using equation (3.6). The final product will have 100 mW of output power,
which the value used for P,,; in both cases. For the 1.0 GHz seed, P;,, = 185
uW and for 2.2 GHz, P;, = 355 uW. The pulse energy is 18.5 pJ and 16.1 p]
respectively for 1.0 GHz and 2.2 GHz cavities.

b,

Gainl,OGHZ = Pfut = 540
! 3.6
i Pout _ (3.6)
ainy2GHz — 2 = 282
in

The long term stability of the laser working in a > 100 mW average power
output regime has been studied. Figure 3.11 shows on the left ordinate axis

a record of the average laser output power and on the right axis a record of
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the calorimeter measuring head temperature, both measurements taken at
5-second intervals. The observable temperature variations are caused by
uncontrolled environmental changes around the measuring head, specif-
ically, the variation after 45 h happens because there was an increase in
laboratory activity due to the end of the test. A standard deviation on
the output average power of < 0.25 % is obtained. The high long term
stability indicates that there is no SESAM degradation over time due to
the high-absorption fiber chosen in the cavity that prevents undesired Q-
switch laser modes and thermal damage caused by the pumping power
in the SESAM. In short cavities, uncontrolled Q-switching instabilities can
also cause permanent thermal damage in the SESAM leading to an un-
stable behavior [55]. For this reason, during the experiments the damage
threshold of the SESAM (1 m] /cm?) was neither overcome by the pumping
power nor by the power of the laser signal.

The all-PM design of both oscillator and amplifier forces the laser to work
in a single-polarization regime which enhances the overall power stability.
Similar curves have been obtained for both, 1.0 GHz cavity and 2.2 GHz
cavity. The one shown in figure 3.11 corresponds to 2.2 GHz rep. rate.

48h stability, STD=0.25%
T T T T

Average Output Power (mW)
Environmental Temperature (°C

L . . . L .
0 5 10 15 20 25 30 35 40 45
Time (h)

FIGURE 3.11: Stability of laser signal at the output of the
amplifier for 48 hours.

The amplifier structure has been numerically simulated for the 1.0 GHz
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seed using the pulse propagation engine described in section III but chang-
ing the clad pump absorption from 355 dB/m to 10 dB/m, the core signal
absorption from 30 dB/m to 37 dB/m and the lengths of active and passive
fibers. All the characterizing parameters (temporal width, average output
power and spectral width) have been obtained theoretically and measured
in the laboratory. The comparison between them can be seen in Table 3.2.

TABLE 3.2: Simulation Comparison

Parameter Theory Measured
Temporal Width FWHM (ps) 2.58 2.59
Spectral Width FWHM (nm) 1.55 1.52

Average Output Power (mW)  102.82 105.3

The very small differences between measured and simulated values indi-
cate that the theoretical values of fiber length (1.5 m) and net dispersion
(0.024 ps/nm) used in the simulation are an accurate approximation to the
real values of these parameters. The oscillator output pulse from the pre-
vious simulation was employed as the initial seed in the amplifier stage.
For the sake of completeness, a simulation of the output oscillator pulse
through the amplifier stage in comparison with the oscillator output pulse
is shown in figure 3.12. The temporal width stretching of the pulse after
the amplification stage is due to the dispersion introduced by the ampli-
fying fiber, and was estimated by experimental results, obtaining a value
interval of 12-16 ps/nm/km.

Finally, the optical spectra at the output of the amplifier for different val-
ues of the pump current is shown in figure 3.13, for 1.0 GHz (top) and 2.2
GHz (bottom) signal seeds, respectively. As it is shown, the curve shape re-
mains unchanged. This means that the peak power of the amplified pulses
remains below the threshold of nonlinear effects. SNR is higher for higher
frequencies ( 27 dB for 1.0 GHz and > 40 dB for 2.2 GHz). The energy
of the pulses at the input of the amplifier is similar (18.5 pJ for 1.0 GHz
and 16.1 p]J for 2.2 GHz). Taking this into account the SNR improvement
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FIGURE 3.12: The blue line represents the oscillator output
pulse; the red line represents the amplified oscillator out-
put pulse.

must be caused by the increase in the frequency. The higher repetition rate
implies less time of the active media being pumped with no signal going
through, which translates into less amplified spontaneous emission (ASE)
energy that can be observed in figure 3.13 (top) at ~ 1543 nm.

From the point of view of the spectral domain, mode-locked-lasers are, in-
deed, optical frequency combs. Frequency tones of the comb are not seen
in the spectra represented in fig. 3.13 because the spectrum analyzer reso-
lution of 50 pm is insufficient to resolve tones of an FSR of 8 pm (1.0 GHz)
or 18 pm (2.2 GHz).

To visualize the optical spectrum of the comb with detail, a Brillouin opti-
cal spectrum analyzer (BOSA) has been used. BOSAs are equipment that
reach resolutions up to 0.08 pm, far better than regular optical spectrum
analyzers [56]. Figure 3.14 (top) shows a 0.1 nm span, 0.08 pm resolution
measurement of the optical spectrum at the output of the amplifier for the
2.2 GHz laser architecture. The 18 pm free spectral range between har-
monics corresponds with the 2.2 GHz repetition rate, measuring > 50 dB
SNR of spurious free spectrum between two consecutive tones. Figure 3.14
(bottom) shows the same measurement with a 2.0 nm span.
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FIGURE 3.13: Spectra at the output of the amplifier for dif-
ferent values of the current applied to the LD. 2.2 A corre-
sponds with 100 mW average output power.
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FIGURE 3.14: Optical spectrum of the 2.2 GHz amplified

signal measured with a Brillouin Optical Spectrum Ana-

lyzer (BOSA). (top) Span of 0.1 nm and resolution of 0.08
pm. (bottom) Span of 2 nm and resolution of 0.08 pm.

3.2.3 Amplifier: Radio Frequency Domain

Radio frequency (RF) measurements of the photo detected oscillator out-
put were carried out for both 1.0 GHz and 2.2 GHz frequencies. Figure 3.15
(A) shows the RF spectrum of the photo detected fundamental harmonic
of the mode-locked laser (MLL) oscillator output corresponding to a setup
with a FSR of 0.999 GHz, with a signal to noise ratio (SNR) of 65 dB at 500

kHz offset from the fundamental frequency.

Figure 3.15 (B) shows the RF spectrum of the photodetected fundamental
harmonic of the mode-locked laser (MLL) oscillator output corresponding
to a setup with a FSR of 2.231 GHz, a SNR of 76 dB at 500 kHz offset from
the fundamental frequency. Figure 3.15 (C,D) shows a 25 GHz spanned
radio frequency spectrum of both photo detected oscillator signals.

These measurements have been reproduced after the amplifier stage. As
it can be observed in figure 3.16 (A,B), the RF spectra has a signal to noise
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ratio (SNR) of > 110 dB at 500 kHz offset from the fundamental frequency.
Figure 3.16 (C,D) shows the corresponding RF spectra with 25 GHz span.
Figure 3.16 shows that this laser (at both repetition rates) has a very low
phase noise, and it’s free of spurious frequencies within the FSR between
harmonics of the fundamental frequency. The signal-noise relation in the
RF measures is better than the oscillator one because the higher power out-
put allows to take advantage of the entire dynamic range provided by the
measurement system consisting of photo detector plus spectrum analyzer.

These measurements were carried out with an Agilent electric spectrum
analyzer (N9020A-526-EA3-B25-P26-PFR-N9075A-2FP-N9068 A-2FP).

3.3 Prototype

Once the laser is working properly, the next step is to implement an opti-
mal commercial mechanical design. The mechanical structure is organized
by levels, one for the optical elements and the other for the system elec-

tronic control. A global sight of this structure is illustrated in figure 3.17.

As the target applications are focused on PADC and photonic radars, the
laser must be stable regardless of the environmental conditions. A chest
(figure 3.18) has been implemented to introduce the laser cavity and control
its temperature with an accuracy of 0.1 °C using a Peltier cell. The chest is
mounted on a platform with low frequency anti-vibration components (2-
20 Hz), to further improve the resistance and stability of the equipment,
since it is possible that as a photonic radar the laser is implemented inside
transport means (Normative: MIL-STD-810 Rev. G-CHG-1).

The temperature control allows to optimize the stability of the output power
and the temporal jitter, obtaining a drift in frequency lower than 15 kHz,
as figure 3.19 shows. To analyze the frequency drift, a MAX HOLD mea-
surement has been done. This measurement keeps always the maximum

intensity value for each frequency. The width of RF spectrum corresponds



3.3. Prototype

53

Rel. Power (dB)

Rel. Power (dB)

Rel. Power (dB)

A) 1.0GHz Cavity B) 2.2GHz Cavity

-60 -60

80 5 -80
-100 "'é’ -100
-120 L 420

[0]
[
-140 -140
-160 -160
099 099 1 1005 1.0 223 223104 223108
Frequency (GHz) Frequency (GHz)

C) 1.0GHz Cavity

60

-80
-100
-120

] 10 12 20 25
Frequency (GHz)
2.2GHz Cavi

D) T T t¥ T

60

-80

-100

-120
5 10 15 20 25

Frequency (GHz)

FIGURE 3.15: A,B: RF spectra of the photo detected funda-
mental harmonic of the mode-locked oscillator output cor-
responding to setups of 1.0 GHz and 2.2 GHz pulse repeti-
tion rates. A: fundamental harmonic, bandwidth of 1 MHz
and 2 Hz resolution. B: fundamental harmonic, bandwidth
of 10 MHz and 2 Hz resolution. C,D: corresponding RF
spectra with 25 GHz span and 6.2 MHz resolution.
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FIGURE 3.16: A,B: RF spectra of the photodetected funda-

mental harmonic of the mode-locked amplified laser with
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kHz, 2 Hz resolution. C,D: corresponding RF spectra with
25 GHz span and 6.2 MHz resolution.



3.3. Prototype 55

FIGURE 3.17: Left: Fiber optic laser structure situated in a
compact layout. Right: closed structure. Output elements
are situated in the back of the laser.

FIGURE 3.18: Temperature control and antivibration me-
chanical design to enhance the stability (average power
and frequency drift) of the laser cavity
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to the frequency drift of the laser signal. The cavity is controlled in tem-
perature (0.1 °C accuracy), minimizing the length changes due to thermal
expansion (< 0.05 um). The control over the thermal expansion implies a
controlled frequency drift (< 15 kHz).
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FIGURE 3.19: MAX HOLD measure of the amplified sig-
nal during 2 h of continuous emission. In the X axis the
frequency drift from 2.2311 GHz is represented

The temperature control system allows to set the temperature of the cavity,
controlling the laser emission frequency in a range of Fundamental Freq
+300 kHz selection. A central frequency emission curve for different sta-
bilization temperatures is shown in figure 3.20 with measured drifts < 20
kHz for range [23-30] °C.

From the need for a high frequency fiber laser that could be used as a
source in applications of PADC and photonic radar and with the aim of
making an optimal design of the laser cavity, a theoretical model based on
the solution of the NLSE has been crafted. Using this theoretical model,
a complete study has been made for cavities of 1.0, 2.2, 5.0 and 10.0 GHz
based on an architecture manufactured with accessible components. By



3.3. Prototype 57

Drift stability measured at different T, At >20min
T T

80 T

23°C, AF = 8.8kHz
24, He

T . ‘ 7 %
” PT ———29°C, AF =47kHz

85

30 °C, AF = 19.8kHz

20—

er (dB)

100 - B

Electrical Rel. Pow

150 100 50 0 50 100 150 200 250 300 350
Difference from fundamental frequency at 25°C (kHz)

FIGURE 3.20: MAX HOLD measure made for different
thermalization temperatures

recording values of interest (temporal width, average power and spectral
width) the convergence conditions for stable laser emission solutions have
been obtained.

The 1.0 and 2.2 GHz cavities have been implemented using a fully reli-
able ready-for-industrialization laser architecture. In order to reach the
necessary specifications in PADC and photonic radar and to achieve mea-
surements with a better dynamic range, an amplifying stage was added
increasing the power up to 100 mW. The system has been completely char-
acterized: optical spectra, RF spectra, pulse width, spectral stability and
power output-power pump curves for each one of the frequencies. The
spectra and pulse width obtained were consistent with the values obtained
from the theory.

The higher frequency cavities (5.0 and 10.0 GHz) could not be built because
the convergence occurred for pumping powers that were above the dam-
age threshold of the SESAM. However, the consistency of the results for
short cavities indicates that higher frequencies are feasible if adequate con-

ditions are achieved. Some options would be using a pumping wavelength
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that is better absorbed in the active fiber of the cavity (980 nm instead of
915 nm), using fibers with more absorption capacity and therefore more
gain or a combination of both. The model offers the adequate parameters
to build a correct laser architecture for 5.0 GHz and 10.0 GHz.

Compared to previous works on GHz-rate fiber frequency combs, we have
achieved a stable cavity with enhanced spectral and power stability and
durability for 1.0 GHz and 2.2 GHz. This relies on the singularities of our
cavity: all-PM configuration and single type fiber cavity have been spe-
cially selected to not reach the thermal damage threshold of the SESAM as
well as to engineer control on temperature and vibration.

Finally, a mechanical layout has been built to correct the instabilities caused
by environmental changes: immunity to vibrations and temperature vari-
ations. For this, a copper chest has been built that has been assembled on
a TEC system. Both parts, the TEC system and the chest, are located on
an anti-vibration platform. This, together with the all fiber configuration
make the laser a robust system suitable for PADC and photonic radar ap-
plications.
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Chapter 4

Single-shot to MHz-Range
Ultra-Short Fiber Laser System

This chapter addresses the design and development of low repetition rate
ultrafast fiber lasers from single shot to tens of megahertz. However, re-
ducing the fundamental repetition rate of a mode lock fiber lasers below
the megahertz range and achieving stable emission is complicated. For this
reason, a laser system is proposed, with a pulse selection module based
on acousto-optic modulation that allows the repetition rate to be reduced
without altering the other optical properties of the laser. In particular, a
system developed to fulfil the specific optical excitation requirements of
the Two-Photon Absorption Transient Current Technique, TPA-TCT, is de-
scribed. The system is composed of three modules: a pulsed laser source,
a pulse management module and a dispersion management module. Such
modules are designed to provide the following configurability of the prop-
erties of the pulsed signal delivered at the output of the complete system:
variation of the pulse energy between 10 nJ and 0.1 p]J, variation of the
pulse repetition rate from 8.0 MHz to single shot and variation of the pulse
duration between 300 and 600 fs. Besides, the system provides analysis
elements such as reference signals, real-time measurement of pulse repeti-

tion rate and energy, autocorrelation of the pulse in the sample plane and
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electro-mechanic commutation of the pulsed signal with response time be-

low 2 ms.

4.1 Laser System

The system consists of three modules (see the block diagram in figure 4.1).
The LPS module is the source of laser pulses, with a repetition rate of 8.2
MHz, central emission wavelength of 1550 nm and a pulse width below
300 fs. The LPM module is used to select the energy of the pulses (from
below 10 p]J to above 10 n] measured at the system output), the repetition
rate of the pulsed signal (from 8.2 MHz to single shot) and to arbitrarily
commute the laser emission at a response time of ~ 1 ms. The D-SCAN
module comprises a motorized time-domain compressor to select the tem-
poral duration of the pulses in the range of 300 to 600 fs. Pulse characteri-
zation is performed preferably at the fundamental repetition frequency of
the pulses (8.2 MHz). Once characterized, pulse energy, pulse repetition
rate and pulse width can be tuned independently without altering other
light properties.

4.2 Laser Pulse Source (LPS)

The laser pulsed source is composed of several stages, as shown in fig-
ure 4.2. First, a mode-locked fiber optic laser is used as seed to provide
ultra-stable high quality pulses, of fundamental repetition rate of 8.2 MHz,
FWHM duration of < 300 fs and pulse energy of 1.5 nJ. The standard de-
viation of the average emission power achieved is less than 0.2 %. The
chirped pulse amplification (CPA) technique [57, 58] is used to amplify the
high quality signal avoiding unwanted nonlinear effects. The light deliv-
ered by the seed propagates in a stretcher stage through 40 meters of dis-
persion compensating fiber, stretching the temporal duration of the pulses
up to more than 50 ps. To reach the energy levels required by the target
application (TPA-TCT), E, > 10 nJ, the output signal of the stretcher stage
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is amplified through two stages. A first core-pumping amplification is car-
ried out with an erbium-doped fiber to achieve a high quality signal with
the necessary signal to noise ratio (SNR) for a proper noise free high power
amplification. Then, with a clad-pumping amplification using an erbium-

ytterbium codoped fiber, pulses of more than 150 nJ energy are obtained.

Seed

Stretcher
I:I Main PCB — Optical signal. Optical Fiber
----- +------ Optical signal. Free-Space
—_———————— » Electrical signal / RF

Amplifier Fiber
Compressor

FIGURE 4.2: Fiber laser structure.

Once the pulses have the appropriate energy, they are compressed down to
the femtosecond range avoiding unwanted nonlinear effects using a pho-
tonic band-gap hollow core fiber. The final laser output provides pulses of
energy E, > 30 nJ and duration Atrwpm < 300 fs . The properties of the
pulsed signal after each stage are shown in table 4.1.

4.2.1 Oscillator

When designing the oscillator, the needs of the target application and the
technical limitations of some elements that form the later stages of the laser
have to be considered. On the one hand, the oscillator must provide a
pulsed signal at 1550 nm, with high pulse-to-pulse stability in phase and
in amplitude, high signal to noise ratio and sufficient energy per pulse for
a subsequent noise-free amplification up to the level of the order of 10 nJ.
On the other hand, the limited rise/fall time (80 ns) of the acousto-optic
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Stage E, n)) f(MHz) Py (mW) AT (ps)
Seed 1.54 8.2 12.6 0.219
Stretcher 0.61 8.2 5.0 51.7
Preamplifier | 3.48 8.2 28.6 53.6
Amplifier 150.0 | 8.2 1230.0 51.4
Compressor | 30.7 8.2 252.0 0.239

TABLE 4.1: Pulsed signal properties after the different
stages of the laser pulse source (LPS).

modulator used in a later stage for pulse repetition rate down conversion,
conditions the oscillator to work at repetition rates below 10 MHz. At a
repetition rate of 10 MHz, the output average power of the oscillator for a
noise-free amplification has been determined experimentally to be > 1 mW.
Such low repetition rates are not common in fiber-optic passively mode-
locked cavities, which are typically several tens or hundreds of MHz, since
for their correct operation the net dispersion of the cavity must be close to
zero which is easier to achieve the shorter the length of the cavity. Besides,
the oscillator is designed to reach a stable emission regime autonomously
(self-starting). Taking all this into account, three different setups for the
optical cavity of the oscillator have been designed and tested (see figure
4.3).

All three configurations have been designed solving the non-linear Schréodinger
equation (NLSE) with the split-step Fourier method [44, 59]. The mathe-
matical development of the simulations used in the laser design process
that we discuss in this work is explained in detail in [52]. From a theoret-
ical point of view, the three configurations were viable. Configurations a)
and b) had a lower pumping power threshold than configuration c): ~ 80
mW in configuration a) and b) and ~ 250 mW in configuration c). Uncon-
trolled pulse behavior of pumping power higher than 80 mW happened
frequently in configurations a) and b). Configuration c), despite being

more demanding in terms of pumping power, had a cavity net dispersion
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value closer to zero (D, = 0.012 ps/nm).

The three cavities were tested experimentally. The mirrors of configuration
a) are a SESAM (Semiconductor Saturable Absorber Mirror) and a dichroic
mirror with reflectivity > 99 % in the 1500-1600 nm band and transmission
> 99 % at pump wavelength. The active medium is a 60 cm length erbium-
doped fiber with an estimated dispersion value of ~ 16 ps/nmkm and an
emission band centered in 1550 nm. To extract the pulses and ensure that
only a single polarization oscillates in the cavity, a 70/30 polarizing fiber
coupler (PFC) is used. To obtain the required frequency (<10MHz), the
cavity length has to be longer than 10.4 m, which, according to the Fabry-
Peérot configuration of the cavity, corresponds to a repetition rate lower
than 10 MHz. This is achieved by adding meters of passive fiber (PM1550-
XP, Coherent) with an estimated dispersion per meter of ~ 12 ps/nmkm.
Configuration a) meets all the required specifications but presents a very
unstable self-starting. To obtain a stable solitonic emission regime, a net
anomalous dispersion close to zero is necessary. The excessive length of
the cavity causes a net dispersion value of 0.13 ps/nm which is too high,

resulting in an unstable and not easily repeatable emission regime. Stable
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Parameter Target Conf.a Conf.b Conf.c
Emission Center Wavelength (nm) | 1550 1560 1560 1550
Power Output (pW) >1000 | 550 600 >12000
Repetition Rate (MHz) <10 13.5 10.0 8.2

Net Dispersion (ps/nm) <0.04 | 0.99 0.02 0.01
Self-Starting Consistency Yes No No Yes

TABLE 4.2: Oscillator target specifications and values ob-
tained with each configuration.

emission is only achieved when the PM1550-XP fiber length is reduced
down to 7.7 m or below, which corresponds to a Dt = 0.1 ps/nm and a
pulse repetition rate of 13.5 MHz.

Configuration b) attempts to achieve an adequate dispersion regime intro-
ducing two meters of dispersion shifted fiber (PM2000D, Coherent). The
dispersion value of this fiber is -50 ps/nmkm. Despite solving the dis-
persion mismatch, the small core diameter of the dispersion shifted fiber
(Mode field diameter of 3-4 ym for PM2000D vs 9-10 ym for PM1550-XP)
causes high losses in splices with the PM1550-XP (> 95%), and a positive
gain regime is not achievable.

In configuration c), the dispersion compensating fiber is removed and the
dichroic mirror is replaced by a chirped fiber Bragg grating (CFBG). The
CFBG has a reflectivity of 10 % centered at 1550 nm and introduces a dis-
persion of -0.120 ps/nm. The normal dispersion introduced by the CFBG
induces the cavity to emit in a stable solitonic mode-locked regime. To
compensate for the losses introduced by the low reflectivity of the grating,
the PFC ratio has been modified to 90/10. In this configuration, the output
with the highest average power is the output from the CFBG itself. The
specifications obtained from the output of each of the settings are shown
in table 4.2

Configuration c) is the one that best meets the specifications required by
the TPA-TCT and by the technical limitations of later stages of the laser.
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The results obtained with configuration c) and its complete characteriza-
tion follow.

Figure 4.4 shows the laser setup of the passively mode-locked, polariza-
tion maintaining (PM), Fabry-Pérot cavity fiber laser. A 976 nm butter-
fly laser diode (LD) delivering a maximum output power of 300 mW is
used as pump. The light delivered from the LD is launched into the linear
cavity using a polarization maintaining wavelength division multiplexer
(PWDM), a chirped fiber Bragg grating acts as reflector of the laser cavity,
with a reflectance of 7 % at 1550 nm and a transmittance of 99 % at 976
nm. Besides, the CFBG introduces a normal dispersion of —0.120 ps/nm.
To keep a high-quality solitonic pulsed regime, the net dispersion of the
cavity must be anomalous (> 0) and close to 0. The CFBG is selected to
compensate the dispersion introduced by the optical fibers in the cavity.
Taking into account both dispersive elements, the net value is estimated to
be +0.010 ps/nm from subsequent simulations. The laser cavity is com-
posed of an active and a passive fiber, the length of which are calculated
to obtain a repetition rate of 8.2 MHz. The active fiber is an erbium-doped
PM fiber of 80 cm length (EFS 7/125, Coherent) and the passive fiber is
a PM1550-XP fiber of 10 m length (Coherent). After the passive fiber, a
90/10 polarizing fiber coupler (PFC) is placed to have access to a 10% aux-
iliary output for synchronous measurements and security checks. A Batop
InGaAs SESAM with modulation depth, saturation fluence and recovery
time of 37 %, 30 #J/cm? and 2 ps respectively, is introduced as second re-
flector at the end of cavity using a FC/PC connector. The laser output is the
1550 nm port of the polarizing wavelength division multiplexer (PWDM),
which is connected to a polarizer isolator (PISO) to protect the laser cavity
from back reflections that can cause instabilities and damage the laser.

Figure 4.5 (top) shows the measured optical spectrum corresponding to a
cavity with a repetition rate of 8.2 MHz and pump power of 210 mW. The
spectral bandwidth is 20.4 nm @10 dB. The optical spectrum was stable in
long-term measurements, <0.3 dB/nm in a 4 h long MAX HOLD (Optical
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spectrum analyzer keeping the higher signal value for each wavelength
over time) vs MIN HOLD (Optical spectrum analyzer keeping the lower
signal value for each wavelength over time) spectral measurement. The
average output power was also very stable in long-term measurements,
< 0.5 % in a 4 h long average output power measurement . The pulse
has been characterized with an autocorrelator (Femtochrome FR-103XL).
The pulse shape and the FWHM temporal width (219 fs), both simulated
and measured, are shown in figure 4.5 (bottom). The pulse width value
is calculated from the autocorrelation trace assuming a sech? shape of the
pulse. The average output power is 12.6 mW and the pulse energy is E, =
1.54 n]J.

4.2.2 Stretcher

The target application requires pulses of energy above 10 nJ. The funda-
mental repetition rate of the oscillator is 8.2 MHz, therefore, the target av-
erage power at the system output is 82 mW. Considering the losses in-
troduced in the compression stage (>70 %), a gain of 20 dB is needed
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(from 12.6 mW at the oscillator output to 1230 mW at the amplifier out-
put). To achieve these values avoiding unwanted nonlinear effects that
would worsen the temporal coherence of the pulse and the shape of the
spectrum, the the chirped pulsed amplification (CPA) technique is used.
The CPA technique consists in stretching the pulse before going through
the amplifying stages in order to decrease the peak power of the pulses
thus avoiding unwanted nonlinear effects during the amplification pro-
cess. Once the power requirement is achieved, the pulse is recompressed
through a linear medium. This technique is explained in detail in [60, 61].

The fibers in the oscillator and amplifier stages have anomalous disper-
sion. To form the stretcher, 40 m of a dispersion shifted fiber with a nor-
mal dispersion D = —50 ps/nmkm is selected (Nufern, PM2000D). Being
stretched with normal dispersion, the pulse is compressed throughout the
subsequent stages of the laser. In this way, the final compression stage is
easier to construct, since the pulse at the output of the main amplifier is
partially compressed. On the other hand, the pulse leaves the oscillator
having suffered an anomalous net dispersion. When it propagates in a
normal dispersion fiber, it crosses a zero of suffered net dispersion. At this
point, a minimum of temporal width is reached and, consequently, a max-
imum in peak power that causes a spectral broadening due to self-phase
modulation (SPM). The spectrum is coherently broadened up to a band-
width of 40 nm @10dB, supporting a transform limited pulse width of <
300 fs in subsequent compression stages.

Figure 4.6 (top) shows the measured optical spectrum after a length of dis-
persion shifted fiber, Lpynooop = 40 m. Spectral bandwidth @10 dB of

40.0 nm is shown in the legend. The autocorrelation trace and the FWHM
temporal width (51.7 ) are shown in figure 4.6 (bottom). The average power
outputis 5.2 mW due to the losses in the fiber and the coupling between the

core of the oscillator output fiber and the dispersion shifted fiber (MFDpp1550—xp =
8 ym and MFDpppooop = 4 pm). Pulse energy is E, = 0.61 n].

Pulse evolution through the stretcher stage has been simulated solving
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the Non-Linear Schrodinger Equation (NLSE) using a split-step Fourier
based method that is developed in deep detail in [52]. The optical pulse
obtained from the oscillator simulation has been introduced into 40 m of
PM2000D. In figure 4.7, the theoretical results are compared to the auto-
correlator traces obtained from the real pulses. The oscillator output pulse
(figure 4.7,top) was employed as the initial seed in the stretcher stage. The
small differences between measured and simulated values (< 3 % in the
FWHM) indicate that the theoretical value for net dispersion in PM2000D
fiber of - 60 ps/nm used in the simulation is an accurate approximation to
the real value of the parameter.
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FIGURE 4.7: Simulated and measured autocorrelation
traces of the input pulse to the stretcher (top) and the out-
put pulse from the stretcher (bottom).
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4.2.3 Amplifier

After the stretcher, a double stage amplifier is included, with the goal of
providing an energy per pulse of > 10 nJ at the output of the full system.
The structure of the complete amplifier is illustrated in figure 4.8.

G CONIN Specialty Optical Fiber

Preamp PCB Main PCB — Optical signal. Optical Fiber

""" #----- Optical signal. Free-Space
—.—-—-—-—-» Electrical signal / RF

Butterfly PR -
Diode

High Power
| Laser Diode

High Normal Active Erbium Erbium/Ytterbium
Dispersion Fiber Doped Fiber Codoped DC Fiber
an — Q0 —1 :_Cm_,:' .
| IS | | S|
PWDM PISO pC Pump Power
Stripper

FIGURE 4.8: Amplifier structure. PCB: Printed Circuit

Board, PWDM: Polarizing Wavelength Division Multi-

plexer, PC: Power Combiner, DC: Double Clad, PISO: Po-
larizing Isolator.

The first stage is based in core-pumping amplification using 50 cm of erbium-
doped fiber (Coherent EFS 7/125). A 976 nm butterfly diode that emits a
maximum power of 300 mW is used as a pump. The objective of this first
stage is to achieve a power gain of around 10dB while maintaining a noise-
free spectrum and stable pulsed emission. The spectrum and the autocor-
relation trace are shown in figure 4.9. The average output power is 28.6
mW, the spectral bandwidth @10dB is 29.0 nm and the pulse duration at
FWHM is 53.6 ps.

The second stage is based in clading-pumped amplification. The objective
of this second stage is to achieve a power gain of around 15 dB. As an ac-
tive medium, an erbium-ytterbium codoped double clad fiber - has been
chosen (Coherent PM-EYDF-12/130). Double doping makes it possible to
take advantage of the higher absorption efficiency that ytterbium has at
976 nm but using the erbium emission band centered at 1550 nm, which al-
lows building a more efficient system to amplify signals at this wavelength.
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For pumping, a temperature stabilized 18 W diode has been used, which
emits precisely at 976 nm thanks to wavelength stabilization provided by
a volume Bragg grating placed at the output of the laser diode. During
the experimentation process it was observed that a small variation in the
wavelength of the diode due to changes in the environment temperature
(~ 0.2 — 0.5 nm) entailed a large instability (> 5 % in std. deviation during
4 h) of the pulse energy. Codoped fibers with erbium and ytterbium have
a very sharp absorption peak centered at 976 nm, so small variations in the
emission wavelength of the pump diode can translate into high instabili-
ties of the energy of the pulse. After stabilizing the emission wavelength
of the diode with the Bragg grating, this value was reduced to below 1 %.

A longer length, despite decreasing the pump power required, induced
undesired non-linear effects. The desired power is achieved with 90 cm
of active fiber and 4.4 W of pumping power. The spectrum and the pulse
structure are shown in figure 4.10. The average output power is 1230 mW,
the spectral bandwidth @10dB is 40.1 nm and the pulse duration at FWHM
is 51.4 ps.

4.2.4 Fiber Compression

After the amplifying stage, a compression stage is implemented to com-
press the pulse without non-linear effects. The proposed solution is to use
a photonic band-gap hollow core fiber (PBG-HC). The air core has a very
low non-linear index so it avoids unwanted non-linear effects for the peak
powers that are handled in this work (up to 100 kW). The photonic crys-
tal structure is designed to obtain a flat dispersion curve with a value of
< +100 ps/nmkm at 1550 nm.

The structure of the laser (oscillator, stretcher and amplifier) is entirely con-
structed with polarization maintaining elements. Hence, input to the PBG-
HC fiber is linearly polarized. However, the PBG-HC fiber introduces dif-
ferent dispersion for each polarization mode, preventing the pulse to be
compressed to its Fourier limit. This effect is known as polarization mode
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dispersion (PMD) [62-64]. The solution implemented in this work is to
introduce a Faraday rotator mirror at the end of the PBG-HC fiber. Fara-
day rotator mirrors take the output beam from a single-mode fiber and
rotate the polarization state by 90 degrees before sending it back through
the same fiber. By doing so, a Faraday mirror functions as a phase conju-
gate mirror and cancels out any birefringent effects the beam experienced
along the forward path [65, 66]. To implement the Faraday mirror, a free
space stage consisting of a polarizing beam splitter and a half wave plate
is set up. This solution allows the linearly polarized light to be introduced
directly into the PBG-HC fiber and to obtain the laser output with the po-
larization state rotated 90 degrees. The detailed design is shown in figure
4.11.

— (XD, specialty Optical Fiber

—— Optical signal. Optical Fiber

----- +------ Optical signal. Free-Space
—_—— » Electrical signal / RF

Polarizing
Beam Splitter

Fiber Collimator Standard Fiber
T b e O ey Rotator Minor
H Hollow Core v
A/2 Plate Fiber

1
1
i Fiber Collimator
1
1
1
1
]

Laser Output

FIGURE 4.11: Optimized compressor design.

The compressor is composed of 19 m of PBG-HC fiber with anomalous
dispersion of + 100 ps/nmkm and a fiber pigtailed Faraday rotator mirror
(Thorlabs, MFI-1550). The spectrum and the autocorrelation trace at the
output of the compressor are shown in figure 4.12. The average output
power is 252 mW, the spectral bandwidth is 34.0 nm @10dB and the pulse
duration at FWHM is 239 fs.
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4.3 Laser Pulse Management Module (LPM)

This stage allows selecting the energy of the pulses (from less than 10 p]J to
more than 10 n] measured at the output of the system), selecting the pulse
repetition rate of the laser source and arbitrarily commuting the emission
of the laser at a response time of ~ 1 ms. It is composed of four main el-
ements: first, a pulse picker is included to arbitrarily select the repetition
rate of the equipment from 8.2 MHZz to single shot. It is based in the switch-
ing effect of an acousto-optic modulator, of a high cutoff frequency (> 10
MHZz) and rise / fall times (10 — 90%) < 80 ns. Time referenced to a TTL
sync signal, the acousto-optic modulator down-converts the fundamental
repetition frequency of the pulse train to sub-multiple frequencies of the
fundamental one. Second, a variable neutral density filter with an optical
density between 0 and 4.0 is used to vary the energy of the pulses. The
automatic selection of the pulse energy is carried out through a motorized
electromechanical enclosure. Third, a highly sensitive InGaAs photodiode
is incorporated as a monitor. Its function is to convert part of the optical
beam into an electrical signal to provide pulse count, reading of energy and
peak power of the pulses in real time. Last, an electromechanical shutter
with a response time of < 1 ms to close and open the output of the laser
beam is included. Shuttering or opening is performed automatically in
synchronous reference with the optical pulse train. A scheme of the pulse
management module is shown in figure 4.13.

The properties of the pulse through the different stages of the LPS and LPM
are shown in table 4.3. The resulting pulse meets optimal spectrum, disper-
sion, and duration conditions for the operation of the dispersion manage-

ment module.

The power stability at room temperature of the signal at the output of the
complete system has been analyzed, measuring its value every five sec-
onds during 15 hours. A standard deviation of 0.352 % is obtained, which
is below the targeted stability (1 % standard deviation) for reliable TPA-
TCT. The output power stability measurement is shown in figure 4.14.
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FIGURE 4.13: Pulse Management Module internal struc-
ture.
Stage E, (n]) f (MHz) Payg (mW) AT (ps) AA (nm)
Seed 1.54 8.2 12.6 0.219 20.4
Stretcher 0.61 8.2 5.0 51.7 40.0
Preamplifier | 3.48 8.2 28.6 53.6 29.0
Amplifier 150.0 8.2 1230.0 514 40.1
Compressor | 30.7 8.2 252.0 0.239 34.0
LPM 10.98-0.02 | 8.2-one shot | 90.0 to 0.09 | 0.300-0.600 | 34.0

TABLE 4.3: Pulse main properties along the different stages

of the system
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The photodetector inside the pulse management module provides a real-
time electric replica of the output of the laser system. As illustrated in
figure 4.15, the detected signal provides information on the repetition rate
once the signal has passed through the pulse picker.

The shutter offers a fast response of less than 2 ms. Figure 4.16 shows the
shutter control signal and the pulse train detected at its output. When the
control signal goes from 5V to 0V, the shutter is commanded to shut. Since
the response time is less than 2 ms, it blocks completely the pulse train
of 500 Hz repetition rate. The shutting command is synchronized with a
reference signal inside the pulsed laser source so the control signal goes
from 0 to 5 V just after a pulse passing thorough, so there is no possibility
of half pulse passing the shutter window as long as the period of the pulsed

signal is > 2 ms.
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FIGURE 4.15: Oscilloscope traces of the photodetected sig-

nal at the output of the laser system at different repetition
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FIGURE 4.16: Oscilloscope traces of the shutter control sig-
nal (top) and the photodetected signal at the output of the
laser system (bottom).

4.4 Dispersion Management Module

This stage is designed to tune and measure the pulse duration, from 300 to
600 fs. It is composed of two elements: a free space compressor and an au-
tocorrelator. The free space compressor designed and tailored by SPHERE
Photonics works by inserting dispersion of normal type in the optical path
through a high precision motor to stretch or compress the pulse duration.
The transmission bandwidth of the dispersive material is large enough to
not affect any other property of the pulsed signal than the pulse duration.
The pulse duration is measured using a Femtochrome autocorrelator (FR-
103TPM/1100). The autocorrelator is designed to perform the measure-
ment at the sample plane, which is especially convenient since this gives
the information of the pulse profile at the actual point of the semiconductor
under test where the two-photon excitation happens.

To optimize the dynamic range of the compressor and achieve a dispersive
match between the fiber stretcher stage, the fiber compression stage and
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the free-space dispersion management module, a study of the pulse length
in relation to the length of the dispersive fiber of the fiber stretcher has been
made for different insertion lengths of the dispersive material of the free-
space dispersion management module. Figure 4.17 shows the temporal
duration of the pulse with respect to the removed length of fiber PM2000D
in the stretcher.
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FIGURE 4.17: Pulse temporal duration vs length of
PM2000D fiber removed in the stretcher from an initial
value of 40 m. Asterisk: Minimum insertion length of dis-
persive material, 3 mm. Squares: Intermediate insertion
length of dispersive material, 8 mm. Crosses: Maximum
insertion length of dispersive material, 13 mm.

Taking into account the results of the study, the fiber length of the stretcher
has been configured so that the duration of the pulse at the laser output
is minimal. Figure 4.18 shows the autocorrelation traces obtained in the
minimum configuration for different insertion lengths of the dispersive el-

ement, 3, 8 and 13 mm.
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FIGURE 4.18: Autocorrelation traces of the laser output af-
ter the pulse management module for different insertion
lengths of the dispersive element.

4.5 Application in TPA-TCT

One of the benefits of TPA-TCT is the true three dimensional resolution for
testing silicon detectors. With conventional TCT with red, or near infra-
red (< 1200 nm) light, it is only possible to fully resolve the tested device
by changing the illumination direction in different measurement configu-
rations. TPA- TCT provides resolution along the beam propagation direc-
tion and thus allows for a three-dimensional scan of the device in a single
measurement setup. The diagram of the measurement set up is shown in
figure 4.19.

Figure 4.20 (top) shows a measurement of the charge generated in a silicon
detector when irradiated with the laser source described in previous sec-
tions. The charge signal is integrated over 10 ns, as a function of the sensor
position along the beam propagation direction (z-axis). The z-values are
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corrected for the refraction of the beam due to the refractive index of sili-
con and the resulting shift of the position of the focal point. The zero value
on the horizontal axis is arbitrarily set to the rising edge of the graph. The
sensor is illuminated from the top, whereas the z-value indicates the posi-

tion of the motion stage.

Therefore, moving from z = 0 to higher values, the focal point of the laser
moves from the top of the device to the back side. For every recorded
waveform a baseline subtraction is done. Except this, no background cor-
rection is performed. The signal vanishes quickly when the focal point
of the laser beam is not inside the detector anymore. This indicates that
no contribution of single photon absorption is measured. It is important
to note that no resolution could be obtained in this way for conventional
TCT.

The amount of charge generated by two photon absorption depends quadrat-
ically on the beam irradiance. Figure 4.20 (bottom) shows a measurement
of the integrated signal as a function of the energy per laser pulse (laser
power). The pulse energy is varied by changing the orientation of the
neutral density filter inside the laser power management module. For
this measurement a 210 microns thick silicon detector was biased at 200
V. The focal point remained at a constant position in the center of the de-
tector. The measured values are fitted to the quadratic function Q = poP»
. The data is compatible with a purely quadratic function, indicating again
that no contribution from single photon absorption can be observed. The
last three data points at high pulse energies are excluded from the fit be-
cause for these measurements an increase of the charge collection time
was observed. An increase of the collection time hints at the formation of
an electron-hole plasma inside the sensor. For more detailed information
about these measures and their implementation, see [7].
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4.6 Conclusion

The complete laser system developed in this works stem from the need of a
configurable light source to be used as a scanning element in TPA-TC tech-
niques. The pulse provided fulfills the demanding requirements to be used
as a TPA generator. It is also thoroughly explained how the combination
of the D-Scan and the pulse management module allows to tune the key

parameters such as pulse energy, repetition rate and time pulse width.

To achieve the appropriate laser source an architecture design based on
the CPA technique has been chosen in an all-fiber configuration that uses
hollow core photonic crystal fibers as the compressive element. The manu-
facturing process has been extensively described above and the main prop-
erties that demonstrate and ensure the laser operation in the experimental
framework described by this work are a central emission wavelength of
1550 nm, time pulse width of 239 fs, pulse energy above 10 nJ, fundamental
repetition rate of 8.2 MHz and a standard deviation in the power average

power below 1%.

Finally, the laser system was used in CERN laboratories to carry out a proof
of concept of the TPA-TCT in a silicon detector, which demonstrated its
viability as a light source in this novel technique.
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Chapter 5

Future Work

The development and results of this thesis work raise a set of new ideas
and proposals which could be carried out in the near future.

The properties of fiber lasers presented in Chapter 3 are adequate for low
power applications. However, the most promising applications from the
point of view of commercial prospects, such as long distance photonic com-
munications [67, 68], optical wireless communications [9] and PADC [8],
need of fiber lasers delivering higher peak power, higher average power
and shorter pulses. In that sense, the concepts and techniques studied in
this volume for ultra-short cavities should be extended to implement high
power amplifier stages using fibers of dispersion and nonlinear coefficient
allowing to broaden the spectrum and compress the pulse during the am-
plification process. Working in this direction, we are currently building a
prototype to achieve an emitting beam with the following characteristics:
1535 nm central wavelength of emission, <100 fs pulses, > 1.0 W Average

power, and > 1 GHz of repetition rate, with promising results.

To further improve telecommunication applications, it is also important to
shift the central wavelength of laser emission towards longer wavelengths.
Therefore, a logical next step would be to achieve an emission wavelength
around 1550 nm. Due to the relationship between absorption and gain
in the core of active fibers, these tend to emit at shorter wavelengths the
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shorter the active fiber is. The cavities that emit naturally at gigahertz ra-
tios are only a few centimeters long (10.34 cm at 1 GHz rep. Rate and 4.7
cm at 2.2 GHz rep. Rate) so the central wavelength of emission is shifted
towards short wavelengths, in this case, 1535 nm [69]. To achieve an emis-
sion at longer wavelengths, the most direct solution is to act on the reflec-
tion function of one of the mirrors, forcing the cavity to emit at the desired
wavelength. A first approximation is to use a resonant SESAM whose re-
flection spectrum is sharper around 1550 nm (RSAM) [70]. On the other
hand, it is also possible to act on the reflectance spectru of the second mir-

ror of the cavity, aiming a reflectance band of 1550 4 10 nm.

Although being very versatile, the laser presented in chapter 4 can be im-
proved in order to provide an all fiber structure and shorter pulses. This
would increase its applicability to the TPA-TCT. The all fiber structure will
simplify the measurement system reducing the number of optical elements
between the laser output and the sample. The shorter pulses will produce
an increase in the efficiency of the two photon absorption, increasing the
dynamic range of the system. To achieve shorter pulses it is needed to
maintain the pulse-to-pulse coherence through the stretching and ampli-
fication stages so that the pulse can be compressed down to the Fourier-
transform limit. One proposal that is currently being researched at FYLA
is to replace the fiber stretcher with a pair of chirped Bragg gratings [71].
In addition, these gratings can be temperature controlled to adjust the
net dispersion of the system. This setting is known as TPSR (Tuneable
Pulse Stretcher Reflector) [72]. This stretching stage is expected to main-
tain the pulse-to-pulse coherence better than the stretching produced by
the PM2000D fiber. In this configuration, splices between different fibers
(PM2000D spliced to PM1550-XP) are avoided and the total optical path
traveled by the pulse is much shorter (40 m vs 1-2 m). In addition, the
tuneability of the TPSR moves the system towards the all-fiber solution,
since this configuration replaces the free space compressor and can be cal-
ibrated to achieve variations in pulse duration between 100 and 300 fs.
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Another update that is being investigated to achieve a more robust system
is to include a fiber pigtailed pulse-picker. This will allow to control the
repetition rate of the equipment after the amplification stage and also, by
modifying the power of the control RF signal, to modify the losses intro-
duced by the pulse-picker. This results in a variation of the pulse energy at
the output of the laser. These improvements will make it possible to elim-
inate the free space pulse management module (LPM), resulting in a more

compact, robust and portable system.
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