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Resumen

Esta tesis se desarrolla en el terreno común entre el ámbito del análisis
funcional y el estudio de la información cuántica. El principal objetivo
que ha servido de guía para este trabajo es el estudio de la Criptografía
Cuántica Basada en la Posición desde el punto de vista de la teoría
local de espacios de Banach. Tal programa se ha llevado a cabo en dos
fases. En primer lugar, se han contruido conexiones entre los problemas
abordados en el ámbito de la información cuántica y ciertas ramas
del análisis funcional. Esto nos ha permitido desarrollar herramientas
de naturaleza analítica con las cuales avanzar en la comprensión del
escenario criptográfico. Es más, de la conexión anterior surgen nuevas
técnicas e ideas cuyo impacto no se restringe al estudio de la criptografía
cuántica. Una muestra de ello es el estudio de los Procesadores Cuánticos
Programables. Las técnicas aquí desarrolladas nos han permitido un
mejor entendimiento de estos objetos fundamentales en la teoría cuántica
de la computación. Esta es otra de las principales aportaciones de esta
tesis.

Comenzaremos con un breve resumen de la estructura del trabajo.
Los Capítulos 1 y 2 son de naturaleza introductoria. El objetivo del
Capítulo 1 es introducir los elementos necesarios relativos al estudio
cuántico de la información mientras que el Capítulo 2 está dedicado a
las herramientas de análisis funcional necesarias para el desarrollo de los
capítulos subsiguientes. En dichos capítulos, Capítulos 3 y 4, se presen-
tan los principales resultados obtenidos. En el Capítulo 3 se estudian
los Procesadores Cuánticos Universalmente Programables, considera-
dos por vez primera por Nielsen y Chuang en [72]. Los Procesadores
Cuánticos Programables se caracterizan por incluir una memoria cuya
programación permite modificar la operación implementada por el proce-
sador. La dimensión de memoria requerida para elevar a universal el
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conjunto de operaciones programables es la principal cantidad estudiada,
para la cual se han obtenido nuevas cotas que mejoran exponencialmente
las conocidas con anterioridad. En el Capítulo 4 se presenta nuestro
estudio sobre Criptografía Basada en la Posición. Es sabido que en
este escenario criptográfico no es posible establecer seguridad frente a
adversarios arbitrariamente poderosos. La principal pregunta abierta
en este campo es hasta qué punto deben restringirse los recursos de
los que pueden disponer los adversarios para evitar que puedan romper
la seguridad del protocolo. Más en concreto, y ya en el ámbito de la
criptografía cuántica, para comprometer la seguridad de la Criptografía
Basada en la Posición, un equipo de adversarios necesita en general
compartir entrelazamiento cuántico. Aquí abordamos el estudio de la
dimensión necesaria de dicho recurso para comprometer la seguridad
de cualquier protocolo en este escenario. Nuestra contribución a dicha
pregunta se basa en la construcción de un determinado protocolo para
la Verificación de Posición y la obtención de cotas al entrelazamiento
necesario para atacarlo. Esto nos ha permitido desentrañar una pro-
funda conexión entre el problema fundamental presentado y una serie
de preguntas circunscritas naturalmente a la teoría local de espacios
de Banach. Finalmente, en el Capítulo 5 se han recopilado algunas
preguntas abiertas surgidas del trabajo antes presentado.

A continuación se hacen algunos apuntes históricos que servirán para
contextualizar mejor el trabajo aquí expuesto. Más adelante en esta
introducción retomaremos la descripción de los contenidos de la tesis
para dar al lector una visión algo más detallada de los mismos antes de
sumergirse en el texto principal.

Tan pronto como la teoría cuántica fue formalizada por J. Von Neu-
mann en su tratado Mathematische Grundlagen der Quantenmechanik,
publicado en 1932 aunque prácticamente completo ya en 1927 [120],
emergieron fuertes lazos con el análisis funcional. Aunque tras casi un
siglo ambos campos han experimentado un espectacular desarrollo de
forma independiente, la relación entre ellos no ha hecho más que conso-
lidarse por medio de un creciente número de sorprendentes conexiones.
Una de estas conexiones es la que aquí nos trae: el entendimiento de
ciertas construcciones en información cuántica a través de la teoría local
de espacios de Banach y los espacios de operadores.
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Respecto a la teoría local de espacios de Banach, el primero en
reconocer el papel fundamental de los subespacios finito dimensionales
fue A. Grothendieck. Su seminal Résumé [40] fue popularizado toda
una década después de su publicación en 1953, cuando Lindenstrauss y
Pełczyński reinterpretaron el “teorema fundamental de la teoría métrica
de los productos tensoriales topológicos” de Grothendieck como una
sencilla desigualdad de normas sobre matrices finito dimensionales [61].
Esta es la que hoy en día se conoce en este contexto como desigualdad
de Grothendieck. Nacía así la teoría local de espacios de Banach que
enriquecería notablemente el entendimiento de estos espacios. Algunos de
los creadores de esta hermosa rama del análisis funcional son A. Pietsch,
R. Schatten, G. Pisier, N. Tomczak-Jaeggermann, B. Maurey, J. L.
Krivine, S. Kwapień y muchos otros que no nombramos aquí atendiendo
a criterios puramente personales, y por tanto, arbitrarios.

Cambiando de tercio, el estudio de la información cuántica se comienza
a erigir como un cuerpo de estudio independiente dentro de la teoría
cuántica a partir de la invención del “Código Conjugado” de Wiesner.
Este avance data de finales de la década de los 60, aunque tuvieron que
pasar quince años para que la publicación de este trabajo fuera aceptada
[127]. La idea de Wiesner supuso el nacimiento de la criptografía cuántica
y, más ampliamente, el campo de la información cuántica. Esta rama de
estudio acabaría conformándose como un cuerpo heterogéneo y extenso
que actualmente abarca la computación cuántica, la cuantización de la
teoría de Shannon de la información y otros campos como el estudio
de los juegos no locales. En la última dirección señalada, es pertinente
citar también el trabajo de Bell [6] como el origen de muchas de las ideas
que han acabado siendo fundamentales. Una primera conexión entre el
estudio de los juegos no locales y la teoría local de espacios de Banach se
remonta a los trabajos de Tsirelson, que en [117] probó que la máxima
violación de desigualdades de Bell bipartitas por medio de correlaciones
cuánticas está acotada precisamente por la desigualdad de Grothendieck.
El posterior desarrollo de esta conexión descubierta por Tsirelson ha
resultado en una profunda interacción entre el estudio de juegos no
locales y el estudio de normas tensoriales (en el sentido en el que las
concibió Grothendieck) y espacios de operadores. La combinación de las
ideas anteriores ha desembocado en fascinantes descubrimientos que han
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impactado de forma notable tanto el campo de la información cuántica
como ciertas ramas del análisis funcional. Dos ejemplos destacados son
el descubrimiento de violaciones no acotadas de desigualdades de Bell
[81], que refuta la posibilidad de cierta extensión trilinear de la desigual-
dad de Grothendieck, y la incomputabilidad del valor entrelazado de
juegos no locales [48], que implica la resolución del famoso problema
de inmersión de Connes. El trabajo recogido en esta tesis continúa la
tradición esbozada por las interconexiones entre los párrafos anteriores.

En el resto de esta introducción recogemos un resumen de los con-
tenidos de este documento. El objetivo del Capítulo 1 es introducir
algunas nociones de información cuántica al mismo tiempo que fijar
cierta notación. Para ello, es necesario que dicho capítulo comience con
una exposición muy elemental sobre espacios vectoriales y C*-álgebras.
No se persigue aquí ninguna clase de completitud, los contenidos se han
seleccionado por su utilidad más adelante en esta tesis y con la idea de
establecer cierto convenio notacional. Tras esto, en la Sección 1.2 se
presenta el formalismo de la mecánica cuántica siguiendo un enfoque
abstracto que facilita la introducción de las nociones de estado, canal
e instrumento cuánticos de manera más afín a la forma en la que es-
tos elementos aparecerán más adelante. Los resultados de esta sección
son plenamente autocontenidos, habiéndose adaptado ciertas pruebas
clásicas a la presentación más bien peculiar que se ha escogido de esta
materia. Además de aportar cierto grado de originalidad en la exposición
de contenidos de sobra conocidos entre los practicantes del campo, esta
forma de exposición ayuda a entroncar de forma mucho más natural la
tradición recogida en este primer capítulo con los desarrollos posteriores
realizados en este trabajo. Este primer capítulo finaliza introduciendo
cierto tipo de juegos cuánticos que constituirán el marco adecuado para
formalizar la conexión entre el estudio de la Criptografía Basada en
la Posición y los espacios de Banach construida en el Capítulo 4. El
Capítulo 2 es también de naturaleza introductoria. En él se introducen
las herramientas de análisis funcional necesarias para el desarrollo de
los Capítulos 3 y 4. La Sección 2.1 está dedicada a introducir algunas
definiciones básicas relativas a los espacios de Banach y los espacios de
operadores. Estas construcciones son las bases de naturaleza analítica
sobre las que descansan los resultados alcanzados más adelante. En la
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Sección 2.2 se discute la teoría de tipo y cotipo en espacios de Banach,
nociones de importancia capital en esta tesis que aparecerán en los prin-
cipales resultados presentados en los Capítulos 3 y 4. En el Capítulo
4 harán falta algunas herramientas técnicas adicionales, parte de las
cuales se introducen en las Secciones 2.3 y 2.4. Más concretamente,
en la Sección 2.3 se discute brevemente la interpolación compleja de
espacios de Banach y en la Sección 2.4, con algo más de profundidad,
los ideales de operadores entre espacios de Banach. Estos últimos están
estrechamente relacionados con el estudio de normas tensoriales, iniciado
por Grothendieck en su Résumé. En la última parte de esta última
sección podemos encontrar la primera contribución original de esta tesis.
Allí se introduce una clase de operadores que surge de manera natural de
nuestro estudio en el Capítulo 4. La definición de esta clase de operadores
puede entenderse como una generalización de los operadores de clase
débil Schatten-von Neummann cuando se tienen en cuenta ciertos ele-
mentos nativos de la teoría de espacios de operadores. Hasta donde llega
nuestro conocimiento, esta clase es nueva en la literatura. Concluyendo
este capítulo, se prueban algunas propiedades básicas de estos operadores
posponiendo para el futuro un estudio más profundo de ellos.

En el Capítulo 3 iniciamos el estudio de los Procesadores Cuánticos
Universalmente Programables. Estos son un modelo de computador
cuántico que trata de cuantizar la arquitectura de programa-en-memoria
en la cual están basados los computadores clásicos más usuales. En [72],
donde estos objetos son definidos por vez primera, M. A. Nielsen e I.
L. Chuang prueban el conocido como teorema de no programabilidad1.
Este resultado establece que un Procesador Cuántico Universalmente
Programable capaz de implementar cualquier unitaria sobre un registro
de dimensión dada, necesita una memoria de dimensión infinita para su
funcionamiento. Es decir, el modelo exacto introducido por Nielsen y
Chuang no es realizable en la práctica. Esto nos motiva a considerar
modelos aproximados en los que la computación se lleva a cabo de
forma imperfecta. De hecho, en [72] se muestra también que el modelo
aproximado si que es factible cuando únicamente se dispone de recursos
finito dimensionales. Un ejemplo sencillo de esto puede obtenerse a partir
del protocolo de teleportación cuántica [7]. Dado esto, surge de manera

1Esto es una traducción libre del término no-programming theorem.
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natural la pregunta acerca de la optimalidad de estos objetos. Más
concretamente, nos preguntamos por la dimensión de memoria óptima
para alcanzar cierto grado de precisión sobre un registro de entrada de
dimensión dada. El trabajo presentado en este capítulo se orienta a
acotar esta cantidad.

Nuestro principal resultado es una cota inferior a la memoria re-
querida por un Procesador Cuántico Universalmente Programable, la
cual es exponencialmente más fuerte que los resultados conocidos en
relación a la dependencia de esta con la dimensión del registro de entrada.
En cierto sentido, esta cota es cercana a ser óptima. No obstante, la op-
timización de la dimensión de memoria en este contexto es un problema
multiparamétrico que hace difícil obtener resultados que sean óptimos
en todos los rangos de valores que uno pueda considerar. Para obtener
esta cota hemos conseguido caracterizar los Procesadores Cuánticos Uni-
versalmente Programables como inclusiones isométricas de espacios de
operadores de clase traza, Sd1 para cierto número natural d, en espacios
de operadores acotados (equipado con la norma de operadores), Sm∞ para
cierto número natural m. La mera existencia de estas isometrías impone
restricciones sobre los espacios implicados, las cuales pueden traducirse
a fortiori en restricciones sobre los recursos requeridos por Procesadores
Cuánticos Universalmente Programables. La herramienta clave para el
estudio de las isometrías antes referidas resulta ser la constante de tipo-2
de los espacios de Banach involucrados. Como consecuencia de este análi-
sis se obtiene la cota inferior anunciada. Por otra parte, complementamos
el resultado anterior con una construcción de Procesador Cuántico Uni-
versalmente Programable basada en ϵ-recubrimientos del grupo unitario.
Dicha construcción puede entenderse como una adaptación de trabajos
anteriores en el contexto de las Medidas Cuánticas Programables [29]. De
lo anterior se deducen nuevas cotas, ahora superiores, para la dimensión
de memoria de dichos procesadores. Estas cotas, pese a la sencillez de la
construcción propuesta, son esencialmente óptimas en cierto rango de
dependencia. En particular, la dependencia del tamaño del Procesador
Cuántico Universalmente Programable considerado con el parámetro de
error coincide con otras cotas inferiores previamente. La combinación de
los resultados obtenidos aclara significativamente la fenomenología que
puede darse en estos objetos teóricos.
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Tal y como se comentó al principio del párrafo anterior, el en-
tendimiento último de la relación entre los parámetros de este tipo
de procesadores es complejo y deja aún varias preguntas abiertas. En
primer lugar, nuestras cotas inferiores son sólo esencialmente óptimas, en
el sentido de que predicen una dependencia exponencial con la dimensión
del registro de entrada mientras que las construcciones de Procesadores
Cuánticos Universalmente Programables más eficientes conocidas ha-
cen uso de una memoria exponencial en una cantidad cuadrática en la
dimensión del registro de entrada. Esto deja algo de espacio para la
mejora, ya sea encontrando nuevas cotas inferiores más fuertes o nuevas
construcciones más eficientes. De momento no sabemos cuál de las dos
posibilidades tiene mayor verosimilitud. Es interesante notar que la
anterior pregunta abierta puede traducirse al ámbito del estudio de los
subespacios del espacio normado de operadores acotados en dimensión
finita por medio de la caracterización obtenida de los Programadores
Cuánticos Universalmente Programables como inclusiones isométricas.
La respuesta a la pregunta resultante, puramente matemática, parece ser
desconocida pese a resultar ser una pregunta muy natural en este con-
texto. Acotando un poco el problema en cuestión conseguimos obtener
algunos resultados parciales, aunque, como se ha dicho, el anterior sigue
siendo un problema abierto. Por otro lado, probar nuevas cotas que
recojan satisfactoriamente la dependencia de la dimensión de memoria
con la dimensión del registro de entrada y el parámetro de error en
todos los posibles rangos de valores parece estar fuera del alcance de las
técnicas manejadas aquí. Tal mejora podría aportar nueva información
relevante sobre la construcción conceptual estudiada en este capítulo.
Los contenidos del Capítulo 3 están basados en la publicación:

• A. M. Kubicki, C. Palazuelos and D. Pérez-García. Resource
quantification for the no-programming theorem. Physical Review
Letters, 122(8), 2019.

En el Capítulo 4 presentamos nuestro estudio sobre Criptografía
Basada en la Posición. La Criptografía Basada en la Posición se basa en
la idea de desarrollar tareas criptográficas usando la posición geográfica
como el único credencial que identifica a una parte. Así, la principal
tarea a llevar a cabo es la Verificación de Posición, en la cual un agente
ha de probar su posición a un grupo de verificadores a su alrededor. En
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escenarios puramente clásicos, esta propuesta es inherentemente insegura
frente a ataques coordinados. Un grupo de adversarios sin acceso a
la localización geográfica a verificar puede interceptar la comunicación
procedente de los verificadores y simular cualquier acción que pudiera re-
alizar un agente honesto ubicado en la posición que se pretende verificar.
Esto motiva el estudio de protocolos para la Verificación de Posición
considerando el uso de canales cuánticos para la comunicación entre las
partes implicadas. Esta idea fue explorada originalmente por A. Kent
[53] y formalizada más tarde en [15] por H. Buhrman y coautores. Pese
a que los ataques coordinados que son capaces de burlar la seguridad de
protocolos clásicos no pueden extenderse a este caso, en [15] los autores
construyen un ataque genérico a cualquier protocolo de Verificación de
Posición incluso cuando la comunicación entre verificadores y agentes es
cuántica. No obstante, dicho ataque tiene la interesante característica
de requerir la delicada manipulación de entrelazamiento cuántico. De
hecho, en [15] se muestra también que esto es una característica indis-
pensable para comprometer la seguridad de ciertos protocolos cuánticos
de Verificación de Posición. De nuevo, esto plantea una pregunta sobre
la optimalidad de los recursos necesarios para dicha tarea: ¿cuánto en-
trelazamiento es necesario y suficiente para atacar cualquier protocolo
de Verificación de Posición?

Esta pregunta ha resultado ser inesperadamente dura y, de hecho, su
entendimiento sigue siendo relativamente pobre. Los avances alcanzados
en esta tesis sólo pueden calificarse de parciales en este sentido. En
primer lugar, porque hemos estudiado aquí un escenario particular en el
que nos hemos centrado en cuantificar los recursos cuánticos requeridos
por la acción deshonesta de los adversarios despreciando los recursos
clásicos puestos en juego, los cuales han sido considerados como recursos
libres. La motivación para tal simplificación es que en el futuro cercano el
coste del uso de recursos cuánticos será previsiblemente mucho mayor que
el coste de usar recursos clásicos. No obstante, en un futuro más lejano en
el que la computación cuántica universal con tolerancia a errores sea una
realidad, la consideración del escenario especificado aquí puede dejar de
ser adecuada. Aún así, el entendimiento de escenarios intermedios como
este nos permite ahondar en la comprensión de la Criptografía Basada
en la Posición y desarrollar técnicas que contribuyan a tal fin último. En
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segundo lugar, el entendimiento que aportan los resultados obtenidos
en esta tesis de este escenario intermedio es también parcial, quedando
importantes preguntas abiertas aún por contestar incluso en este caso.
Sin embargo, pese a no haber alcanzado aún un conocimiento respecto a
este escenario criptográfico tal que nos permita extraer consecuencias
de relevancia práctica, el avance obtenido en esta tesis forma una sólida
base sobre la que seguir desarrollando ideas y técnicas que permitan la
resolución del puzle criptográfico planteado por la Criptografía Basada
en la Posición.

En un nivel de concreción mayor, nuestra contribución en este con-
texto consiste en la construcción de cierto protocolo cuántico de Ver-
ificación de Posición y el desarrollo de técnicas para el estudio de la
cantidad de entrelazamiento necesaria para atacarlo. Por un lado, se
han obtenido cotas inferiores totalmente explícitas para esta cantidad
pero que dependen de ciertas propiedades analíticas de las estrategias
de los adversarios que tratan de corromper la seguridad del protocolo.
Estas propiedades cuantifican en un sentido concreto la regularidad de
dichas estrategias. Para estrategias suficientemente regulares, nuestros
resultados implican fuertes cotas que muestran la seguridad de nuestro
protocolo a todos los efectos prácticos en este caso restringido. El caso
general queda aún abierto. El estudio de las constantes de tipo de ciertos
espacios normados juega de nuevo un papel crucial en estos resultados.
De hecho, también se presentan cotas alternativas que son válidas con
total generalidad pero que vienen dadas en términos de ciertas constantes
de tipo-2 que no hemos logrado estimar. No obstante, proponemos una
conjetura en relación a dicha constante de tipo y obtenemos algunos
resultados parciales que apoyan una posible resolución positiva de la
conjetura. En particular, se muestran estimaciones para las constantes
de tipo de diversos subespacios y para la razón de volumen de ciertos
espacios normados que son compatibles con la validez de la conjetura.
La verificación de esta supondría un avance muy destacado en la com-
prensión de este escenario criptográfico. Por otro lado, su revocación
podría tener consecuencias inesperadas sobre la relación entre la razón
de volumen y las constantes de cotipo en espacios de Banach.

Para completar esta perspectiva sobre el Capítulo 4 de este docu-
mento, daremos algunas pinceladas sobre su contenido a un nivel más
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técnico. Los resultados anteriores se han obtenido reinterpretando la
acción de los adversarios como la estrategia para jugar cierto juego
cuántico cooperativo en el que la comunicación entre los jugadores está
restringida de forma muy particular. Esto aparece en la Sección 4.3.
Una característica importante de estos juegos es que permiten una sa-
tisfactoria y elegante caracterización matemática. Adicionalmente, el
protocolo de Verificación de Posición que proponemos ha sido construido
de manera que su estructura nos ha permitido relacionar las estrategias
deshonestas con funciones sobre el hipercubo Booleano que toman valores
sobre determinados espacios normados. La probabilidad de éxito en el
juego alcanzada por una estrategia viene controlada precisamente por el
valor esperado de la norma de la imagen de la función asociada. Nuestros
resultados principales se obtienen del estudio de esta cantidad. Para
ello, recurrimos a una desigualdad de tipo Sobolev debida a Pisier que
nos permite obtener cotas en función de cierto parámetro de regularidad
asociado a la función y las constantes de tipo de cierto espacio normado
sobre el que toma valores la función, cf. Sección 4.4. Estudiando estas
constantes de tipo es como se deducen las cotas obtenidas. En la Sección
4.6 se prueban los resultados para estrategias suficientemente regulares
mientras que la Sección 4.7 se dedica a enunciar formalmente nuestra
conjetura relativa al caso general y la prueba de cierta evidencia que
la respalda (constantes de tipo de subespacios y estimaciones para la
razón de volumen). Las herramientas empleadas en esta última sección
pertenecen al repertorio clásico de la teoría local de espacios de Banach,
como, por ejemplo, la desigualdad de Balschke-Santaló, la desigualdad
de Chevet o ciertas propiedades de operadores 2-sumantes y espacios
con suficientes simetrías.

Este capítulo está basado en el trabajo:

• M. Junge, A.M. Kubicki, C. Palazuelos and D. Pérez-García. Ap-
plications of geometric Banach space theory to Position Based
Cryptography. Preprint, 2021.

En el Capítulo 5 se recogen algunos comentarios finales y se proponen
ciertas preguntas abiertas motivadas por este trabajo. Las principales
líneas de continuación de esta tesis se circunscriben al estudio de los
problemas que quedan abiertos en los Capítulos 3 y 4. Respecto al
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estudio de Procesadores Cuánticos Programables (Capítulo 3), aunque
las nuevas cotas obtenidas en esta tesis para los recursos requeridos por
dichos objetos mejoran sustancialmente el conocimiento preexistente
de estos, aún queda cierto margen de mejora. Por un lado, aún queda
por resolver la dependencia correcta del tamaño óptimo de memoria de
un Procesadores Cuántico Universalmente Programable con el tamaño
del registro de entrada. Este problema tiene una interesante contra-
partida a nivel puramente matemático: decidir cual es la dimensión d del
mayor subespacio del espacio de operadores Sm∞ que es aproximadamente
isométrico a Sd1 . Pese a ser una pregunta muy natural en este contexto,
aún no es conocida una respuesta definitiva a ella. Volviendo al estudio
de Procesadores Cuánticos Programables, dejamos abierto también la
deducción de cotas al tamaño de memoria que sean óptimas tanto en
la dependencia con el parámetro de error del procesador como con el
tamaño del registro de entrada. Resulta curioso observar que las cotas
existentes (tanto superiores como inferiores) parecen capturar de forma
adecuada el comportamiento de la cantidad en estudio solamente con
respecto a uno de los parámetros. Esto parece indicar que la obtención
de cotas que vayan más allá de este rango de parámetros puede ser un
problema ciertamente desafiante.

En cuanto al estudio de la Criptografía Basada en la Posición (Capí-
tulo 4), son más las preguntas que quedan abiertas que las respuestas
alcanzadas en esta tesis. El trabajo mostrado aquí abre una vía nueva
para explorar tales cuestiones. La principal pregunta en este contexto,
la cantidad de entrelazamiento frente a la que se puede garantizar la
seguridad criptográfica en este escenario, queda aún ampliamente abierta.
Nuestros avances se centran en un escenario más concreto en el que com-
paramos los recursos cuánticos necesarios para comprometer la seguridad
de este tipo de protocolos criptográficos con la cantidad de recursos
cuánticos requeridos en la ejecución honesta de estos, dejando de lado el
uso de recursos clásicos los cuales hemos considerado como recursos libres.
Una primera cuestión a explorar sobre la base de este trabajo es qué
parte de los resultados obtenidos pueden extenderse al escenario original
en el que recursos cuánticos y clásicos son medidos de igual manera.
Este es el escenario criptográfico estándar. Aunque ciertos resultados en
esta dirección pueden obtenerse como continuación directa del trabajo



xxii

aquí presentado, el estudio en profundidad de esta cuestión se deja para
el futuro. Otra importante pregunta abierta en este punto es la validez
de la conjetura hecha en el Capítulo 4. Su resolución podría aclarar el
escenario analizado aquí así como producir nuevas herramientas técnicas
con las que seguir avanzando en la comprensión de este campo de la
criptografía cuántica.

Dejando de lado las preguntas más directamente relacionadas con los
principales resultados de la tesis, las profundas conexiones establecidas
en ella motivan además la exploración de otras cuestiones en el ámbito
del análisis funcional. Del estudio llevado a cabo en el Capítulo 4 se
pueden extraer diversas líneas de investigación interesantes por sí mismas,
como es el estudio de la clase de operadores que introducimos al final
del Capítulo 2, del parámetro de regularidad introducido en el estudio
analítico de estrategias deshonestas en el contexto de la Criptografía
Basada en la Posición o el desarrollo de nuevas técnicas que permitan
profundizar en el estudio de las propiedades de tipo y cotipo de los
espacios tratados en el Capítulo 4.



Summary

The present thesis develops at the intersection of functional analysis
and quantum information science. In this vein, this work is mainly
concerned with the study of Position Based Quantum Cryptography
from the perspective of local Banach space theory. This programme is
conducted first by building a connection between both fields and then
by developing tools in the context of the latter to tackle open questions
in the cryptographic setting. Additionally, some of the techniques that
we build along the way are of independent interest to other problems
within quantum information. In particular, here we also make notorious
progress in the understanding of Programmable Quantum Processors.

First, we succinctly explain the structure of this work. We begin
by setting out some preliminary notions in Chapter 1 – mainly devoted
to a presentation of some relevant elements of quantum information –
and Chapter 2 – devoted to providing the necessary functional analytic
background. The main results are presented in subsequent chapters.
In Chapter 3 we discuss Universal Programmable Quantum Processors,
introduced by Nielsen and Chuang in [72], and obtain bounds for the
optimal dimension of the memory used by these objects. In Chapter
4 we study the setting of Position Based Cryptography. The main
open problem in this field consist on studying the amount of resources
required by a team of attackers to defeat the security of any protocol
in this setting. We contribute to the understanding of this question
by constructing a Position Verification protocol and obtaining new
lower bounds for the entanglement dimension necessary to compromise
its security. Interestingly, while doing so, we uncover a deep relation
between the above fundamental problem and natural questions in the
context of local Banach space theory. Finally, in Chapter 5 we summarize
a collection of open questions that arise from the work presented in this
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thesis. A more thorough overview of the contents of this manuscript will
be provided later in this introductory text. But before that, we make
some remarks that help to contextualize better the work presented here.

Quantum theory and functional analysis were intimately tied up as
early as the formalization of the former was initiated by J. Von Neumman
in his famous treatise Mathematische Grundlagen der Quantenmechanik,
originally published in 1932 although almost completed in 1927 [120].
Since then, both fields have independently undergone an extraordinary
growth remaining, however, tightly intertwined by a growing number
of connections between them. Here, we will be mainly concerned with
one of these connections: the understanding of some constructions in
quantum information in terms of the local theory of Banach spaces and
operators spaces.

In what concerns local Banach space theory, the first one in recog-
nizing the importance of finite dimensional subspaces in the theory of
Banach spaces was A. Grothendieck. His celebrated Résumé [40] was only
popularized a decade after its publication in 1953, when Lindestrauss and
Pełczyński reinterpreted Grothendieck’s “fundamental theorem of the
metric theory of topological tensor products” as an inequality between
norms on finite dimensional matrices [61] – this is nowadays known as
Grothendieck’s inequality –. This nascent local Banach space theory
was fully established in subsequent decades, deeply enriching the under-
standing of Banach spaces. Some of the authors we are indebted to for
this beautiful field of functional analysis are A. Pietsch, R. Schatten, G.
Pisier, N. Tomczak-Jaeggermann, B. Maurey, J. L. Krivine, S. Kwapień
and many others that we do not include here attending uniquely to
personal and, therefore, arbitrary reasons.

On the other hand, the origins of quantum information can be traced
back to Wiesner’s Conjugate Coding, discovered in the late 1960s and
only published fifteen years later in [127]. This resulted in the birth
of quantum cryptography and, more broadly, the study of quantum
information that would end up encompassing the theory of quantum
computation, Shannon’s quantum information theory and other fields
such as the study on non-local games. In this broad sense, it is fair to
also point out to Bell’s work in 1964 [6] as the source of some of the
ideas that have become seminal in the field.
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A first connection between the study of non-local games and local
Banach space theory appears in the work of Tsirelson, who showed
in [117] that the maximal violation of Bell inequalities by quantum
correlation matrices is upper bounded precisely by Grothendieck’s in-
equality. Further exploration of the connection uncovered by Tsirelson
had led to deep interactions between the seemingly innocent setting of
non-local games and tensor norms of Banach spaces (as conceived by
Grothendieck) and operator spaces. The combination of these ideas
has resulted in exciting discoveries that have had a major impact in
the field of quantum information as well as in functional analysis. Two
culminating instances of that are the discovery of unbounded violations
of tripartite Bell inequalities [81] – that refutes a natural trilinear ex-
tension of Grothendieck’s inequality – and the uncomputability of the
entangled value of non-local games [48] – that solves in the negative the
long-standing Connes’ embedding problem –. Moreover, the study of non-
local games has had a great repercussion also in more practical contexts,
leading to the creation of the field of device-independent cryptography
[67, 4], among other applications such as randomness generation [84]
or verification of quantum computations [99, 100]. We contribute to
this circle of ideas by building new connections between quantum games
– a generalization of non-local games –, Position Based Cryptography
and local Banach space theory. As we have already mentioned, these
connections also spread over other subfields of quantum information. In
fact, another relevant contribution of this thesis is a better understanding
of Programmable Quantum Processors.

To conclude, we summarize is some detail what can be found in this
document. The aim of Chapter 1 is to introduce some notions of quantum
information relevant to us at the same time as setting some notation.
This chapter begins with an elementary exposition on finite dimensional
linear spaces and C*-algebras. This exposition does not intend any sort
of completeness, it is tailored to serve for our latter purposes. With that,
we present the formalism of quantum mechanics in Section 1.2 following
a rather abstract approach that facilitates the introduction of the basic
constructions of states, channels and instruments in the precise form
used later on. After proving some standard results of importance for
the present work, this chapter concludes with the notion of quantum
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games. This kind of games provides the right framework to formalize the
connection between Position Based Cryptography and Banach spaces
developed in Chapter 4.

Chapter 2 is also introductory in nature. There, we provide the
functional analytic tools necessary to develop forthcoming chapters. In
Section 2.1, basic definitions concerning Banach spaces and operator
spaces are presented. In Section 2.2, the notions of type and cotype
of a Banach space are discussed stating some key results that will be
needed in the remaining chapters. Type and cotype turn out to be
fundamental notions in this thesis, appearing at the heart of the results
presented in Chapter 3 and Chapter 4. Chapter 4 will require some
additional artillery, part of which is introduced in Sections 2.3 and 2.4.
There, we briefly discuss the method of complex interpolation and, more
thoroughly, the essential construction of operator ideals between Banach
spaces, intimately related with the subject of tensor norms initiated by
Grothendieck. In Section 2.4 we find the first original contribution of
this thesis. At the end of the cited section, we define some spaces of
operators that have appeared naturally in our investigations of Chapter
4. These can be seen as a generalization of the class of weak Schatten-von
Neummann operators enriched with ingredients coming from operator
space theory. To the best of our knowledge, this is new in the literature.
The chapter concludes with the proof of some very basic properties of
this new class of operators. A deeper understanding of them is left for
future work.

In Chapter 3 we present results in the subject of Universal Pro-
grammable Quantum Processors. These conform a conceptual model
for a quantum computer that mimics the stored-program architecture
of daily used classical computers. In [72], where the definition of these
objects was introduced, M. A. Nielsen and I. L. Chuang showed their no-
programming theorem. This result states that a Universal Programmable
Quantum Processor able to perfectly implement any unitary opera-
tion in an arbitrary input state of given dimension requires an infinite
dimensional system as memory. Therefore, the exact model is not imple-
mentable in practice and we are invited to explore approximate models
in which the computation is performed imperfectly. The authors of
[72] also showed that the approximate model is in fact implementable
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with a finite amount of resources. A simple example is given by the
protocol of quantum teleportation [7]. However, the question about the
optimality of Universal Programmable Quantum Processors naturally
arises here. In particular, we ask for the optimal memory dimension
for a given input dimension and a given error threshold. Our work in
this chapter is devoted to obtaining bounds for this quantity. Our main
result is a lower bound that exponentially outperforms any previous
bounds in terms of the dependence with the input dimension of the
processor. This is achieved by means of a characterization of Universal
Programmable Quantum Processors as nearly isometric embeddings of
the finite dimensional first Schatten class into a finite dimensional space
of bounded operators (endowed with the operator norm). Given that,
we use the type constants of the spaces involved to obtain bounds on
the distortion of the isometric embedding in terms of the dimension
of the spaces. Additionally, we also show that in terms of the error
parameter – considering a fixed input dimension – previously known
lower bounds are nearly optimal by providing a simple construction of
an approximate Universal Programmable Quantum Processor based on
ϵ-nets for the unitary group. This construction can be understood as
an adaptation of previous work in the related field of Programmable
Quantum Measurements [29]. The content of this chapter is based on
the work:

• A. M. Kubicki, C. Palazuelos and D. Pérez-García. Resource
quantification for the no-programming theorem. Physical Review
Letters, 122(8), 2019.

In Chapter 4 we present our study of Position Based Cryptogra-
phy. This consists on the development of cryptographic tasks using
the geographical position of an agent as its only credential. Therefore,
the central task in this context is Position Verification, in which the
agent, who communicates with a team of verifiers surrounding it, has to
convince them of its location. When the verification protocol is purely
classical it is easy to show that Position Based Cryptography is inherently
insecure against colluding attacks. This motivates the investigation of
protocols for Position Verification that incorporate the use of quantum
messages. This idea was first explored by A. Kent [53] and formalized
later on in [15] by H. Burhman and coauthors. In [15], the authors
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presented a generic attack that allows colluding cheaters to break the
security of Position Verification even when quantum communication is
considered. An intriguing feature of this attack is that the cheaters
have to engage in a convoluted manipulation of the delicate resource of
quantum entanglement. In fact, it was already shown in [15] that this
resource is in general imperative to break Position Verification protocols.
Again a question about optimality arises: how much entanglement is
necessary and sufficient in order to break the security of any Position
Verification protocol?

This has proven to be a difficult question and, intriguingly, the answer
is still very poorly understood. We contribute to its understanding by
presenting a protocol for Position Verification and providing lower bounds
on the entanglement necessary to break it. Our contributions here can
be separated into two blocks. First, we obtain explicit lower bounds
depending on some analytic properties of the cheating strategies that
quantify their regularity (in some specific sense). When only strategies
that are regular enough are considered, our results imply strong lower
bounds that turn our protocol secure for all practical purposes against this
kind of attacks. Nonetheless, the general case remains open. Secondly,
we contribute to this broader context providing alternative lower bounds
that apply in full generality (independently of the regularity properties
of the strategies). The drawback of these unconditional bounds is that
they are given in terms of the type-2 constant of a Banach space that
we have not been able to estimate. Still, we conjecture a particular
behaviour for this type constant and provide some computations that
support a possible positive solution to our conjecture. The verification
of the conjecture would remarkably improve our understanding of this
cryptographic scenario. On the contrary, its refutation might also have
some new implications in the relation between volume ratio and cotype
constants of Banach spaces.

To obtain these results, we first assimilate the cheating action in the
studied setting to the strategy to win a cooperative quantum game when
the communication between the players is restricted in a concrete manner.
This is explained in Section 4.3. Given that, the definition of the Position
Verification protocol that we present allows us to understand cheating
strategies as vector valued functions on the Boolean hypercube. The
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score attained by a considered strategy is given by the expected value
of the norm of the image of the previous function. Our results follow
from bounding this quantity. For that, we appeal to a Sobolev-type
inequality due to Pisier that provides us with a bound in terms of some
smoothness parameter depending on the function and the type constants
of appropriate Banach spaces, see Section 4.4. The announced bounds
are obtained from the study of these type constants. In Section 4.6
we prove the results for regular enough strategies while Section 4.7 is
devoted to formally stating the conjecture for the unconditional case and
proving some results supporting the conjecture. This chapter is based
on:

• M. Junge, A.M. Kubicki, C. Palazuelos and D. Pérez-García. Ap-
plications of geometric Banach space theory to Position Based
Cryptography. Preprint, 2021.

Finally, in Chapter 5 we make some concluding remarks and collect
some interesting open questions emerging from our work.





Resum

Aquesta tesi es desenvolupa en el terreny comú entre l’àmbit de
l’anàlisi funcional i l’estudi de la informació quàntica. El principal
objectiu que ha servit de guia per fer aquest treball és l’estudi de la
Criptografia Quàntica Basada en la Posició des del punt de vista de la
teoria local d’espais de Banach. Això s’ha dut a terme construint primer
connexions entre els dos camps que ens han permet desenvolupar eines de
naturalesa analítica amb les quals abordar qüestions relatives a l’escenari
criptogràfic. Les tècniques així desenvolupades resulten d’interès al
marge del context criptogràfic anterior, siguent potencialment útils en
altres problemes d’informació quàntica. Una mostra d’això és l’estudi
dels Processadors Quàntics Programables, el millor enteniment del qual
és una altra de les principals aportacions d’aquesta tesi.

Començarem amb un breu resum de l’estructura del treball. Els
Capítols 1 i 2 són de naturalesa introductòria. L’objectiu del Capítol 1
és introduir els elements necessaris relatius a l’estudi de la informació
quàntica mentre que el Capítol 2 està dedicat a les eines d’anàlisi funcional
necessàries per al desenvolupament dels capítols subsegüents. En aquests
capítols, Capítols 3 i 4, es presenten els principals resultats. En el Capítol
3 s’estudien els Processadors Quàntics Universalment Programables,
considerats per primera vegada per Nielsen i Chuang a [72], obtenint-
se cotes òptimes per a la dimensió de memòria utilitzada per aquests
objectes. En el Capítol 4 es presenta el nostre estudi sobre Criptografia
Basada en la Posició. El problema obert més important en aquest camp és
la pregunta sobre la dimensió d’entrellaçament que un equip d’adversaris
necessiten compartir per comprometre la seguretat de qualsevol protocol
en aquest escenari. La nostra contribució a aquesta pregunta es basa en
la construcció d’un determinat protocol per a la Verificació de Posició i
l’obtenció de cotes a l’entrellaçament necessari per atacar-lo. Això ens ha
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permès descobrir una profunda connexió entre el problema fonamental
presentat i una sèrie de preguntes circumscrites naturalment a la teoria
local d’espais de Banach. Finalment, en el Capítol 5 s’han recopilat
algunes preguntes obertes sorgides de la feina abans presentada.

A continuació, es mostraran alguns apunts històrics que serviran
per contextualitzar millor el treball aquí exposat. Més endavant en
aquesta introducció reprendrem la descripció dels continguts de la tesi
per donar al lector una visió un poc més detallada dels mateixos abans
de submergir-se en el text principal.

Tan prompte com la teoria quàntica va ser formalitzada per J. Von
Neumann en el seu tractat Mathematische Grundlagen der Quanten-
mechanik, publicat el 1932 tot i que estava pràcticament complet ja
en 1927 [120], van emergir forts llaços amb l’anàlisi funcional. Encara
que després de gairebé un segle els dos camps han experimentat un
espectacular desenvolupament de forma independent, la relació entre
ells no ha fet més que consolidar-se per mitjà d’un creixent nombre de
sorprenents connexions. Una d’aquestes connexions és la que aquí ens
porta: l’enteniment de certes construccions en informació quàntica a
través de la teoria local d’espais de Banach i els espais d’operadors.

Respecte a la teoria local d’espais de Banach, el primer a reconèixer el
paper fonamental dels subespais finit dimensionals va ser A. Grothendieck.
El seu seminal Résumé [40] va ser popularitzat tota una dècada després
de ser publicat en 1953, quan Lindenstrauss i Pełczyński van reinterpre-
tar el“teorema fonamental de la teoria mètrica dels productes tensorials
topològics” de Grothendieck com una senzilla desigualtat de normes sobre
matrius finit dimensionals [61]. Aquesta és la que avui dia es coneix en
aquest context com a desigualtat de Grothendieck. Naixia així la teoria lo-
cal d’espais de Banach que enriquiria notablement l’enteniment d’aquests
espais. Alguns dels creadors d’aquesta bella branca de l’anàlisi funcional
són A. Pietsch, R. Schatten, G. Pisier, N. Tomczak-Jaeggermann, B.
Maurey, J. L. Krivine, S. Kwapień i molts altres que no anomenem aquí
atenent a criteris purament personals, i per tant, arbitraris.

Canviant de tema, l’estudi de la informació quàntica es comença
a erigir com un cos d’estudi independent dins de la teoria quàntica a
partir de la invenció de el “Codi Conjugat” de Wiesner. Aquest avanç
data de finals de la dècada dels 60, tot i que van haver de passar quinze
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anys perquè la publicació d’aquest treball fos acceptada [127]. La idea
de Wiesner va suposar el naixement de la criptografia quàntica i, més
àmpliament, el camp de la informació quàntica. Aquesta branca d’estudi
acabaria conformant-se com un cos heterogeni i extens que actualment
abasta la computació quàntica, la quantització de la teoria de Shannon
de la informació i altres camps com l’estudi dels jocs no locals. En
l’última adreça assenyalada, és pertinent citar també el treball de Bell
[6] com l’origen de moltes de les idees que han acabat sent fonamentals.

Una primera connexió entre l’estudi dels jocs no locals i la teoria local
d’espais de Banach es remunta als treballs de Tsirelson, que en [117] va
provar que la màxima violació de desigualtats de Bell bipartites per mitjà
de correlacions quàntiques està fitada precisament per la desigualtat
de Grothendieck. El posterior desenvolupament d’aquesta connexió
descoberta per Tsirelson ha resultat en una profunda interacció entre
l’estudi de jocs no locals i l’estudi de normes tensorials (en el sentit en
què les va concebre Grothendieck) i espais d’operadors. La combinació
de les idees anteriors ha desembocat en fascinants descobriments que han
impactat de manera notable tant en el camp de la informació quàntica
com en certes branques de l’anàlisi funcional. Dos exemples destacats
són el descobriment de violacions no acotades de desigualtats de Bell
[81], que refuta la possibilitat de certa extensió trilinear de la desigualtat
de Grothendieck, i la incomputabilitat del valor entrellaçat de jocs no
locals [48], que implica la resolució del famós problema d’immersió de
Connes.

A la resta d’aquesta introducció recollim un resum dels continguts
d’aquesta tesi. L’objectiu de l’Capítol 1 és introduir algunes nocions
d’informació quàntica al mateix temps que fixar certa notació. Per a
això, és necessari que aquest capítol comenci amb una exposició molt
elemental sobre espais vectorials i C*-àlgebres. No es persegueix aquí
cap classe de completesa, els continguts s’han seleccionat per la seva
utilitat en aquesta tesi i amb la idea d’establir cert conveni notacional.
Després d’això, en la Secció 1.2 es presenta el formalisme de la mecànica
quàntica seguint un punt de vista abstracte que facilita la introducció
de les nocions d’estat, canal i instrument quàntics de manera més afí a
la forma en què aquests elements de sortir a més endavant. Després de
presentar les proves d’alguns resultats importants, aquest primer capítol
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finalitza introduint cert tipus de jocs quàntics, que constituiran el marc
adequat per a formalitzar la connexió entre l’estudi de la Criptografia
Basada en la Posició i els espais de Banach construïda al Capítol 4.

El capítol 2 és també de naturalesa introductòria. En ell s’introdueixen
les eines d’anàlisi funcional necessàries per al desenvolupament dels Capí-
tols 3 i 4. La Secció 2.1 està dedicada a introduir algunes definicions
bàsiques relatives als espais de Banach i els espais d’operadors. A la
Secció 2.2 es discuteix la teoria de tipus i cotipus en espais de Banach.
Aquestes són nocions de cabdal importància en aquesta tesi que apareix-
eran en els principals resultats presentats en els capítols 3 i 4. En el
Capítol 4 caldran algunes eines tècniques addicionals, part de les quals
s’introdueixen en les seccions 2.3 i 2.4. Més concretament, en la Secció
2.3 es discuteix breument la interpolació complexa d’espais de Banach i
en la Secció 2.4, amb un poc més de profunditat, els ideals d’operadors
entre espais de Banach. Aquests últims estan estretament relacionats
amb l’estudi de normes tensorials, iniciat per Grothendieck en el seu
Résumé. En l’última part d’aquesta última secció podem trobar la
primera contribució original d’aquesta tesi. Allà s’introdueix una classe
d’operadors que sorgeix de manera natural del nostre estudi en el Capítol
4. La definició d’aquesta classe d’operadors es pot entendre com una
generalització dels operadors de classe feble Schatten-von Neummann
quan es tenen en compte certs elements natius de la teoria d’espais
d’operadors. Fins on arriba el nostre coneixement, aquesta classe és
nova en la literatura. En conclusió aquest capítol, es proven algunes
propietats bàsiques d’aquests operadors posposant per al futur un estudi
més profund d’ells.

En el capítol 3 es presenten els resultats relatius a Processadors Quàn-
tics Universalment Programables. Aquests són un model de computador
quàntic que tracta de quantitzar l’arquitectura de programa-en-memòria
en la qual estan basats els computadors clàssics més usuals. En [72],
on aquests objectes són definits per primera vegada, M. A. Nielsen i
I. L. Chuang proven el conegut com a teorema de no programabilitat2.
Aquest resultat estableix que un Processador Quàntic Universalment
Programable capaç d’implementar qualsevol unitària sobre un registre de
dimensió donada necessita una memòria de dimensió infinita per al seu

2Això és una traducció lliure de el terme no-programming theorem
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funcionament. És a dir, el model exacte introduït per Nielsen i Chuang
no és realitzable en la pràctica. Això ens motiva a considerar models
aproximats en què la computació es porta a terme de forma imperfecta.
De fet, en [72] es mostra també que el model aproximat si que és factible
quan únicament es disposa de recursos finit dimensionals. Un exemple
senzill d’això pot obtenir a partir de l’protocol de teleportació quàntica
[7]. Atès això, sorgeix de manera natural la pregunta sobre l’optimalitat
d’aquests objectes. Més concretament, ens preguntem per la dimensió de
memòria òptima per aconseguir cert grau de precisió sobre un registre
d’entrada de dimensió donada. El treball presentat en aquest capítol
s’orienta a delimitar aquesta quantitat. El nostre principal resultat és
una fita inferior exponencialment més fort que els resultats coneguts en
relació a la dependència amb la dimensió del registre d’entrada. Aque-
sta cota s’obté caracteritzant els processadors Quàntics Universalment
Programables com inclusions isomètriques d’espais d’operadors de classe
traça en espais d’operadors acotats (equipat amb la norma d’operadors).
Addicionalment, en termes ara del paràmetre d’error, vam mostrar que
altres cotes inferiors prèviament conegudes són òptimes en cert sentit
donant una construcció de Processador Quàntic Universalment Program-
able basada en ϵ-recobriments de el grup unitari. Aquesta construcció
es pot entendre com una adaptació de treballs anteriors en el context
de les Mesures Quàntiques Programables [29]. Els continguts d’aquest
capítol estan basats en la publicació:

• A. M. Kubicki, C. Palazuelos and D. Pérez-García. Resource
quantification for the no-programming theorem. Physical Review
Letters, 122(8), 2019.

En el capítol 4 presentem el nostre estudi sobre Criptografia Basada
en la Posició. En aquest àmbit, l’objectiu és el desenvolupament de
tasques criptogràfiques usant la posició geogràfica com l’únic credencial
que identifica una de les parts. Així, la principal tasca a dur a terme
és la Verificació de Posició, en la qual un agent ha de provar la seva
posició a un grup de verificadors al seu voltant. En escenaris pura-
ment clàssics, aquesta proposta és inherentment insegura davant d’atacs
coordinats. Això motiva l’estudi de protocols per a la Verificació de
Posició considerant l’ús de canals quàntics per a la comunicació. Aquesta
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idea va ser explorada originalment per A. Kent [53] i formalitzada més
tard a [15] per H. Buhrman i coautors. En [15], els autors construeixen
un atac genèric a qualsevol protocol de Verificació de Posició fins i tot
quan la comunicació entre verificadors i agents és quàntica. No obstant
això, aquest atac té la interessant característica de requerir la delicada
manipulació d’entrellaçament quàntic. De fet, en [15] es mostra també
que això és una característica indispensable per a comprometre la se-
guretat de certs protocols quàntics de Verificació de Posició. De nou,
això planteja una pregunta d’optimalitat dels recursos necessaris per a
aquesta tasca: quant entrellaçament és necessari i suficient per a atacar
qualsevol protocol de Verificació de Posició?

Aquesta pregunta ha resultat ser inesperadament dura i, de fet, el
seu enteniment segueix sent relativament pobre. La nostra contribució
al respecte consisteix en la construcció de cert protocol de Verificació de
Posició i la prova de cotes inferiors a l’entrellaçament necessari per atacar-
lo. En primer lloc, s’han obtingut cotes inferiors totalment explícites
però que depenen de certes propietats analítiques de les estratègies dels
adversaris que intenten corrompre la seguretat el protocol. Aquestes
propietats quantifiquen en un sentit concret la regularitat d’aquestes
estratègies. Per estratègies prou regulars, els nostres resultats impliquen
fortes cotes que mostren la seguretat del nostre protocol a tots els efectes
pràctics en aquest cas restringit. El cas general queda encara obert. Per
a aquest cas genèric presentem cotes alternatives que són vàlides amb
total generalitat però que vénen donades en termes de certes constants
de tipus-2 que no hem aconseguit estimar. No obstant això, proposem
una conjectura en relació a aquesta constant de tipus i obtenim alguns
resultats parcials que donen suport a una possible resolució positiva de
la conjectura. La verificació d’aquesta suposaria un avanç molt destacat
en la comprensió d’aquest escenari criptogràfic. D’altra banda, la seva
revocació podria tenir conseqüències inesperades sobre la relació entre la
raó de volum i les constants de cotipo en espais de Banach.

Els resultats anteriors s’han obtingut reinterpretant l’acció dels ad-
versaris com l’estratègia per jugar cert joc quàntic cooperatiu en què la
comunicació entre els jugadors està restringida de forma molt particular.
Això apareix en la Secció 4.3. Amb això, l’estructura de l’protocol de ver-
ificació de Posició proposat ens ha permès relacionar aquestes estratègies
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amb certes funcions vectorials sobre el hipercub Booleà. La probabilitat
d’èxit en el joc aconseguida per una estratègia ve controlada precisament
pel valor esperat de la norma de la imatge de la funció associada. Els
nostres resultats principals s’obtenen de l’estudi d’aquesta quantitat. Per
a això, vam recórrer a una desigualtat de tipus Sobolev deguda a Pisier
que ens permet obtenir cotes en funció de cert paràmetre de regularitat
associat a la funció i les constants de tipus de cert espai de Banach, cf.
Secció 4.4. Estudiant aquestes constants de tipus és com es dedueixen les
cotes obtingudes. A la secció 4.6 es proven els resultats per estratègies
prou regulars mentre que la Secció 4.7 es dedica a enunciar formalment
la nostra conjectura relativa a el cas general i la prova de certa evidència
que dóna suport. Aquest capítol està basat en el treball:

• M. Junge, A.M. Kubicki, C. Palazuelos and D. Pérez-García. Ap-
plications of geometric Banach space theory to Position Based
Cryptography. Preprint, 2021.

En el Capítol 5 es recullen alguns comentaris finals i es proposen
certes preguntes obertes motivades per aquest treball.
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Chapter 1

Preliminaries I: Some notions
on quantum information

The aim of this first chapter is to introduce the formalism of the
quantum theory of finite dimension systems. This is the natural frame-
work in the study of quantum information, at least for what this thesis is
concerned, and it is the basic framework to state the questions we address
later on. Once we establish the fundamental elements of quantum theory
needed for the development of our work – in Section 1.2 – we present an
application of this formalism that will become particularly relevant in
Chapter 4: the notion of quantum games – cf. Section 1.3. Before that,
we review some elementary facts about linear spaces and C*-algebras in
Section 1.1.

1.1 Basic mathematical constructions

1.1.1 Vector spaces and linear operators
In this section we are mainly concerned with finite dimensional vector

spaces. Later on we will be interested in some normed structures on
these objects, but for the moment, we start recalling some basic facts
relying only on their linear structure. The main goal of this section is
fixing some notation and nomenclature.
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Vector spaces. Given a natural number d, we consider the complex
d-dimensional vector space Cd. In the case of real vector spaces we
simply specify it as Rd, although we will usually consider the underlying
field to be C. We understand Cd (or Rd) simply as the linear span of the
elements of a standard basis denoted by {|i⟩}di=1. This follows standard
notation used in quantum mechanics. Sometimes, the considered vector
space will be defined by a given alphabet – a non-empty, finite set –,
X , as the linear span of a basis indexed by elements of X , {|x⟩}x∈X . In
this case, the corresponding |X |-dimensional complex vector space will
be denoted by CX (alternatively RX ). We will usually use this latter
notation reserving calligraphic X , Y , Z, . . . to denote alphabets.

The algebraic dual of a vector space CX , denoted (CX )♯, is the space
of linear forms acting on it. Given a basis of CX , {|x⟩}x∈X , the dual (CX )♯
can be constructed as the linear span of the basis dual to {|x⟩}x∈X . The
latter is defined by a sequence of forms, denoted by {⟨x|}x∈X , verifying
⟨x|(|x′⟩) =: ⟨x|x′⟩ = δxx′ for any x, x′ ∈ X . This in fact defines the
pairing:

⟨u|v⟩ := u(v) =
∑
x∈X

ux vx, (1.1)

for any u = ∑
x∈X ux⟨x| ∈ (CX )♯, v = ∑

x∈X vx|x⟩ ∈ CX . We also fix
the following convention. Given an element u = ∑

x∈X ux|x⟩ ∈ CX , we
associate to it a unique element u∗ = ∑

x∈X ux⟨x| ∈ (CX )♯, where ux is
the complex conjugate of the complex number ux. Notice that this fixes
a bijection CX ≃ (CX )♯. When there is no risk of confusion, we denote
such elements also in bra-ket notation: u ≡ |u⟩ ∈ CX , u∗ ≡ ⟨u| ∈ (CX )♯.
Given two vector spaces CX , CY we can construct another vector space of
dimension |X | |Y| as the linear span of the set {|x, y⟩}x∈X , y∈Y . This is the
tensor product of these vector spaces, denoted by CX ⊗ CY . Accordingly,
we also use the notation |x, y⟩ ≡ |x⟩ ⊗ |y⟩ for any x ∈ X , y ∈ Y .

Euclidean spaces. We can understand the pairing (1.1) as an inner
product on CX . This inner product turns CX into an Euclidean space,
also refereed later on as Hilbert space1 and denoted HX . With that
definition at hand, two non-zero vectors u, v ∈ HX are orthogonal if

1Recall that in the infinite dimensional case, to call a space Hilbert we also require
completeness w.r.t. the norm induced by the scalar product. Here, we will use the
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⟨u, v⟩ = 0. Therefore, the standard basis {|x⟩}x∈X considered before
turns out to be an orthonormal basis – recall the definition of the dual
basis {⟨x|}x∈X . The pairing (1.1) also induces a norm on HX : for any
|u⟩ ∈ HX ,

∥|u⟩∥HX :=
(
⟨u|u⟩

)1/2
. (1.2)

This norm is sometimes called Euclidean norm and provides the
natural normed structure in a Hilbert space.

Linear operators. Consider again two vector spaces CX , CY . The
set of linear operators (or simply operators) from CX into CY is de-
noted L(CX ,CY). Any operator f ∈ L(CX ,CY) can be characterized
by |X | |Y| scalars (fxy)x∈X ,y∈Y such that |f(x)⟩ = ∑

y∈Y fxy|y⟩ for each
x ∈ X . Furthermore, this allows us to identify f with an element
f̂ in CY ⊗ (CX )♯: f̂ = ∑

x∈X , y∈Y fxy|y⟩ ⊗ ⟨x|. From now on, we sim-
plify a bit the presentation denoting elements in this tensor product
as f̂ = ∑

x∈X , y∈Y fxy|y⟩⟨x|. In the opposite direction, given an ele-
ment ∑x∈X , y∈Y λxy|y⟩⟨x| ∈ CY ⊗ (CX )♯ we can associate an operator
λ ∈ L(CX ,CY) such that |λ(x)⟩ := ∑

y∈Y λxy|y⟩. That is, in the finite
dimensional case, we have the equivalence L(CX ,CY) ≃ CY ⊗ (CX )♯.

We notice that, in the previous representation of operators f ∈
L(CX ,CY) as vectors in CY ⊗ (CX )♯, the array of scalars (fxy)x∈X ,y∈Y
is just the matrix representation of f in the bases {|x⟩}x∈X , {|y⟩}y∈Y .
In view of this observation, the bra-ket convention chosen to denote
elements of a vector space and its dual matches the standard convention
on regarding kets |x⟩ as column vectors and bras ⟨x| as row vectors.
When |X | = |Y|, the matrix representing an operator in some bases is
a square matrix and we can consider the trace as the linear functional
that outputs the sum of its diagonal terms. Coming back again to the
representation of operators as vectors in the tensor product CX ⊗ (CX )♯,
we have the following representation for the trace map:

Tr : CX ⊗ (CX )♯ −→ C
f̂ = ∑

x,x′∈X fxx′|x′⟩⟨x| 7→ Tr(f̂) := ∑
x∈X fxx.

nomenclature of Hilbert rather than Euclidean spaces, even though for us there will
be usually no difference between these two notions.
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It is an elementary fact that this definition is independent of the choice
of bases.

For the sake of completeness we also introduce the space of bilinear
forms on CX ×CY , denoted by Bil(CX ×CY). An element in Bil(CX ×
CY) is a function

f : CX × CY −→ C
(|x⟩, |y⟩) 7→ f(x, y)

that is linear in each one of its components. In a similar vein as before, we
can also identify the tensor product (CX )♯ ⊗ (CY)♯ with Bil(CX × CY):
the map f above defines a tensor f̂ = ∑

x∈X , y∈Y f(x, y)⟨x| ⊗ ⟨y| and
any tensor t̂ = ∑

x∈X , y∈Y txy⟨x| ⊗ ⟨y| defines a bilinear form by t(x, y) =
⟨ t̂, (|x⟩ ⊗ |y⟩) ⟩ = txy for any x ∈ X , y ∈ Y .

In Chapter 2, we will revisit the previous identifications, CX ⊗
CY ≃ L((CY)♯,CX ) ≃ Bil((CX )♯ × (CY)♯), in the more subtle infinite
dimensional case. These identifications play an important role in the
fundamental notion of tensor norms on the tensor product of Banach
spaces.

Moving to the following notion we need to introduce, one can notice
that the tensor representation ∑

x∈X , y∈Y fxy|y⟩⟨x| is not unique (one
might consider a different basis on CY ⊗ (CX )♯). The singular value
decomposition provides us with a canonical representation:

Theorem 1.1 (Singular value decomposition). Let f ∈ L(CX ,CY)
be an operator with rank r. Then, there exist orthonormal systems
{|u1⟩, . . . , |ur⟩} ⊂ CY , {|v1⟩, . . . , |vr⟩} ⊂ CX , and unique (up to reorder-
ing) complex numbers 0 < s1(f) ≤ · · · ≤ sr(f) such that

f̂ =
r∑
i=1

si(f) |ui⟩⟨vi|.

The numbers s1(f) ≤ · · · ≤ sr(f) < 0 are the singular values of
the operator f . The definition of singular values allows us to introduce
the second family of normed spaces appearing in this thesis: the finite
dimensional Schatten classes Sp(CX ,CY), for 1 ≤ p ≤ ∞.
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Given 1 ≤ p ≤ ∞, the space Sp(CX ,CY) is the vector space L(CX ,CY)
endowed with the norm

∥f∥Sp(CX ,CY ) :=
( r∑
i=1

|si(f)|p
) 1

p ,

for any f ∈ L(CX ,CY).
In order to extend these notions to the infinite dimensional case, we

have to take into account some further subtleties. In first place, we
upgrade the linear spaces CX , CY to Hilbert spaces (taking into account
completion in the Euclidean norm). Next, in order to make sense of the
definitions above – that involve the singular value decomposition of the
operator under consideration – we have to restrict to compact operators2.
Therefore, being H and K arbitrary Hilbert spaces, Sp(H,K) denotes de
Banach space consisting of the closed subspace of compact operators in
L(H,K) with finite ∥ · ∥Sp norm.

For p = ∞, the norm ∥ · ∥S∞ coincides with the operator norm:

∥f∥ := sup
|u⟩∈ball(H)

∥f(|u⟩)∥K,

that no longer relies on the singular value decomposition of f ∈ L(H,K).
In fact, we can define the Banach space of linear operators in L(H,K)
with finite operator norm, denoted as B(H,K). Notice that S∞(H,K) ⊊
B(H,K). Of course, when H or K is finite dimensional every opera-
tor f ∈ L(H,K) is automatically compact and both spaces coincide,
S∞(H,K) = B(H,K).

A consequence of the singular value decomposition, together with
the bijection CX ≃ (CX )♯, is a canonical representation of elements in
CX ⊗ CY known as Schmidt decomposition:

Corollary 1.2 (Schmidt decomposition). Given |u⟩ ∈ CX ⊗ CY , there
exists a natural number r ≤ min(|X |, |Y|), orthonormal systems {|u1⟩,
. . . , |ur⟩} ⊂ CX , {|v1⟩, . . . , |vr⟩} ⊂ CY and complex numbers λ1, . . . , λr

2The singular value decomposition stated in Theorem 1.1 can be extended to the
infinite dimensional case when the operator is restricted to be compact, see e. g. [97,
Section VI.5].
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such that:
|u⟩ =

r∑
i=1

λi|ui⟩ ⊗ |vi⟩.

Next, we define the adjoint operator associated to f ∈ L(CX ,CY).
Given a tensor f̂ ∈ CY ⊗(CX )♯, we have already seen how we can associate
an operator f ∈ L(CX ,CY) to it. However, given f̂ = ∑

x∈X ,y∈Y fxy|y⟩⟨x|
we can also construct an operator f ∗ : (CY)♯ → (CX )♯ defined by
⟨f ∗(y)| = ∑

x∈X fxy⟨x| ∈ (CX )♯. This is the adjoint operator of f , that
is, the operator fulfilling ⟨f ∗(u)|v⟩ = ⟨u|f(v)⟩ for any u ∈ (CY)♯, v ∈
CY . When understood as a matrix, the tensor associated to f ∗ is the
conjugate transpose of (fxy)x∈X ,y∈Y , traditionally denoted by a dagger.
This motivates the notation f̂ † for the tensor associated to the adjoint
operator f ∗. Throughout this thesis, this choice will result much more
natural than it seems now.

There are several classifications of operators attending to different
properties of them. Here, we briefly recall some of them that are relevant
for us.

• We say that an operator f ∈ L(CX ) is normal if f ◦ f ∗ = f ∗ ◦ f .
Furthermore, f is hermitian if3 f ∗ = f . Another example of
normal operators is the case of unitary operators, that are those
f ∈ L(CX ) such that f ◦ f ∗ = IdCX = f ∗ ◦ f . This set will appear
very often later on so we choose a specific notation for it, U(CX ).
For normal operators, the singular value decomposition of Theorem
1.1 can be strengthened as follows:

Theorem 1.3 (Spectral decomposition). Let f ∈ L(CX ) be a nor-
mal operator. There exist an orthonormal basis of CX , {|ux⟩}x∈X ,
and unique (up to reordering) complex numbers {λx(f)}x∈X such
that

f̂ =
∑
x∈X

λx(f) |ux⟩⟨ux|.

Furthermore, if f is hermitian, {λx(f)}x∈X are real numbers.
3To make sense of this last definition, one has to identify CX ≃ (CX )♯. When f̂

is regarded as a matrix, f = f∗ simply means that f̂ is invariant under conjugate
transposition.
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This representation of normal operators will be referred as the
spectral decomposition of f and {λx(f)}x∈X as the eigenvalues of
f .

• An hermitian operator f ∈ L(CX ) is positive semi-definite if all
its eigenvalues are in R+. This is equivalent to the condition
⟨u|f (u)⟩ ≥ 0 for all |u⟩ ∈ CX and also to the existence of a
decomposition f = g∗ ◦ g for some operator g ∈ L(CX ). The set
of positive semi-definite operators on a vector space CX is denoted
Pos(CX ). A particular case of positive semi-definite operators is
the set of density operators, that are elements ρ ∈ Pos(CX ) such
that Trρ = 1.

• Finally, projectors are idempotent operators, i.e., f ∈ L(CX ) such
that f 2 = f . When a projection is also hermitian, it is said to be
orthogonal.

1.1.2 Basics on C*-algebras
A C*-algebra, A, is a Banach algebra such that:

• there is an antilinear involution ∗, such that (f g)∗ = g∗ f ∗ for all
elements in the algebra;

• and this involution is compatible with the norm in the sense that
∥f f ∗∥ = ∥f∥2 = ∥f ∗f∥ for any f in the algebra.

Example 1.4. The C*-algebra of bounded operators on a Hilbert space,
B(H).

• The group operation on B(H) is given by the operator composition;

• the involution of an element f ∈ B(H) is provided by the adjoint
operator f ∗;

• the norm is given by the operator norm:

for any f ∈ B(H), ∥f∥B(H) = sup
|u⟩∈H : ∥|u⟩∥H≤1

∥∥∥|f(u)⟩
∥∥∥

H
.
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The GNS representation places the previous example in a central position,
since it allows us to understand C*-algebras as C*-subalgebras of the
canonical space B(H). We will always consider unital C*-algebras in
which there exists an identity.

When restricted to finite dimensional algebras, the underlying Hilbert
space H can be always taken to be finite dimensional. Therefore, finite
dimensional C*-algebras are simply matrix algebras where the involution
is given by the conjugate transpose operation and the C*-norm, by the
operator norm defined in the preceding example. When the relevant
dimension is signified, H = Cd, we use the more compact notation Sd∞ to
denote the C*-algebra B(Cd). The abelian C*-(sub)algebra of diagonal
d-dimensional complex matrices is correspondingly denoted by ℓd∞ or ℓX

∞
when it is the alphabet X what is specified.

The ∗ operation endows any C*-algebra A with a natural order. In
terms of ∗, an element f ∈ A is positive if f = g∗ g for some g ∈ A. It is
a standard result that this set is a closed convex cone. Given elements
f, g ∈ A, we say that f ≥ g if f − g is positive.

Remark 1.5. Notice that in the case A = Sd∞, the definition of posi-
tivity coincides with the definition of positive semi-definite operators,
introduced in the previous section.

Furthermore, being A a C*-algebra and d a natural number, there is
a natural way to regard the tensor product Sd∞ ⊗ A also as a C*-algebra.
In fact, this C* structure is unique (the C*-norm is determined in a
unique way by the algebraic structure) and the resulting C*-algebra is
denoted by Sd∞(A) from now on. A concrete way to understand this
construction is identifying A as a subspace of B(H), for some Hilbert
space H, and then understanding Sd∞(B(H)) ≃ B(H⊗d) as the space of
bounded operators on the Hilbert space H⊗ d). . . ⊗H. Clearly, we have
again a notion of positivity in this C*-algebra and a related order. This
observation will be important for the next paragraph.

Given two C*-algebras, A, B, we say that a linear map f : A→ B

is positive if it maps positive elements of A into positive elements of B.
Furthermore, f is completely positive if the maps IdSd

∞
⊗ f : Sd∞(A) →

Sd∞(B) are positive for any d ∈ N. The set of completely positive
maps between A and B is denoted CP(A,B). In the concrete case that
A≃ B(H), B≃ B(K), we simplify the notation to CP(H,K).
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Remark 1.6. When the range or the domain C*-algebra is commutative,
positive maps are automatically completely positive, see for example [76,
Chapter 3] for this well known result.

Another important property of maps between unital C*-algebras is
unitality: f : A→ B is unital if it maps the identity in A to the identity
in B.

The last notion we introduce is a combination of the previous two.
A state in a C*-algebra is a unital and positive functional ρ : A → C.
In the case A = Sd∞, ρ : Sd∞ → C can be understood as an operator
Cd → Cd. Under this identification, ρ is a state when it is a density
operator, in the sense of our previous discussion of linear operators.

1.2 Quantum theory of finite dimensional
systems

1.2.1 Registers, states and evolution
Our main focus is on the description of systems whose observation

leads only to finitely many different possible outcomes. For reasons that
will become clear later, we refer to such systems as finite dimensional.
Following [124], we identify those systems with registers, as defined next.
Therefore, we use both words – system and register – interchangeably,
although system evokes a more concrete nuance while register emphasizes
the abstract description deprived of the details of any physical realization.

Definition 1.7. A register X is either one of the following objects:

1. a finite, non-empty, set (that is, an alphabet) X ;

2. an n-tuple X = (X1, . . . ,Xn) being n a positive integer and X1, . . . ,Xn,
registers. For a composed register as X, we refer to X1, . . . ,Xn as
subregisters.

According to the previous definition, any register can be identified
with an alphabet. We denote the corresponding alphabet with the same
letter as the register but in calligraphic style.
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The second item in the definition emphasizes the composability nature
of the alluded notion, that reflects the idea that we can regard multiple
systems as a unique, composed, one. For the sake of concreteness, we
specify the alphabet of a composite register in terms of its components:

The alphabet associated to register X = (X1, . . . ,Xn) is the Cartesian
product of the alphabets of subregisters X1, . . . ,Xn,

X = X1 × · · · × Xn.

Classical states. Once we have fixed this basic convention, we briefly
describe classical finite dimensional systems. The following discussion
can be seen as a reformulation of basic probability theory over finite
sample spaces.

In consonance to previous paragraphs, we identify a classical finite
dimensional system with a register X. The elements of the corresponding
alphabet X represent the possible outcomes of an observation of the
system. The result of an observation is described by a probability
distribution describing the probability of obtaining each of the elements
in X as result. We refer to this probability distribution as a classical
state of the register X. More concretely,

Definition 1.8. The classical state space associated to a register X is
the set of probability measures over register’s alphabet X . We denote that
set as P(X ).

Remark 1.9. Elements of P(X ) are indeed positive functions

p : X −→ [0, 1]
x 7→ p(x) ,

normalized such that ∑x∈X p(x) = 1. When linearly extended to a linear
form

p : CX −→ C∑
x∈X λx|x⟩ 7→ ∑

x∈X λx p(x) ,

it is positive and unital. That is, p can be understood as a state on the
commutative C*-algebra ℓX

∞.
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Classical evolutions. The most general evolution that a (classical)
state of a given register X can undergo is a map between probability
vectors

E : RX −→ RY

p 7→ E(p) ,

satisfying the following consistency conditions:

i. Linearity. A convex combination of probability vectors λ p+(1−λ)p′,
λ ∈ [0, 1] is another probability vector whose interpretation is as
follows: with probability λ, the register is in the state p while, with
probability (1 − λ), it is in the state p′. Therefore, after evolution
E , the state of the register is E(p) with probability λ and E(p′)
with probability (1 − λ). That is, the interpretation of classical
states as probability distribution enforces that E(λp + (1λ)p′) =
λE(p) + (1 − λ)p′ for any p, p′ ∈ P(X ), λ ∈ [0, 1].

ii. Positivity. For any p ∈ P(X ), E(p) must be also positive.

iii. Measure preserving. For any p ∈ P(X ), E(p) must be also well
normalized.

Observations and post-selection. As noted at the beginning of this
section, the description of classical systems that we have presented above
is just a convenient reformulation of probability theory over discrete,
finite probability spaces. Given a register X, the role of the sample space
is played here by the alphabet X : events related to the observation of
X are just subsets of this alphabet. Finally, the probability measure
in each case is determined by the state p ∈ P(X ) of the register. We
specify now the customary interpretation of such a probability measure.

Given an event S ⊆ X , the probability that S happens on an obser-
vation of the register X is given by ∑

x∈S p(x). Understanding p as a
vector (p(x))x∈X ∈ RX , we can express the previous probability in the
following way:

⟨χS , p⟩ :=
∑
x∈X

χS(x) p(x),

where
χS(x) =

{
1 if x ∈ S,
0 o.w.
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is the characteristic function associated to the event S.
The last concept we discuss before passing to the quantum setting is

the notion of post-selection. After an observation, the provided informa-
tion update produces a change in the state describing X. The classical
state describing the system is updated to the conditional probability
distribution

p′ : p′(x) := p(x|S) = χS(x) p(x)
⟨χS , p⟩

.

As a final comment, we remark the prominent role played by χS in
the observation process. We further stress that we can associate to χS
the linear operator

ℓX
∞ −→ ℓX

∞
|x⟩ 7→ χS(x)|x⟩, (1.3)

that can be represented by the tensor χ̂S = ∑
x∈S |x⟩⟨x| ∈ (CX )♯ ⊗ CX .

Notice that the previous operator is in fact an orthogonal projection. As
commented in Remark 1.9, a classical state p ∈ P(X ) can be regarded
as a state in the C*-algebra ℓX

∞, while ℓX
∞ can be also understood as

the subalgebra of diagonal matrices of SX
∞. By these means, p can be

identified with a diagonal matrix p̂ ∈ Sd∞. With this, we can rewrite the
probability that S happens as:

⟨χ̂S , p̂⟩ = Trχ̂S p̂.

This remark puts the process of observing a classical system and its
quantum analogue, that we describe later on, in similar grounds.

These notions complete the abstract description of a classical finite
dimensional system: states, evolutions and observations. We stress that
there is one more ingredient that was provided implicitly in the previous
discussion, that is the way different systems are combined into a global
one. This step, that might seem rather trivial in the classical case, is one
of the crucial differences with the quantum description that we present
next.

Quantum states. The quantum description of a system can be under-
stood as a non-commutative extension of the classical case.
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Definition 1.10. The quantum state space, simply state space from now
on, associated to a register X is the set of density operators on a complex
|X |-dimensional Hilbert space HX . We denote that set as D(HX ).

Remark 1.11. In order to spot the parallelism with Definition 1.8, we
note that elements in D(HX ) are unital positive operators

ρ : L(HX ) −→ C
A 7→ ρ(A) := Tr(Aρ) .

That is, ρ is a state in the C*-algebra B(HX ). Unitality is imposed by the
proper normalization of ρ. One just has to notice that ρ(IdHX ) = Trρ.

From this point of view, it is clear that the classical state space of
a register X is included in its (quantum) state space. P(X ) can be
identified with the subset of diagonal operators of D(HX ). From now
on, we understand P(X ) as this subset. In this sense, D(HX ) is a more
general description of X.

Concluding with the introduction of quantum states of X, we review
the state space of composite systems. Recall that the alphabet of
a composite register (X1, . . . ,Xn) is given by the Cartesian product
X1 × · · · × Xn. Accordingly, the state space of such a composite system
is the set of density operators on the tensor product of the individual
Hilbert spaces, HX1 ⊗ · · · ⊗ HXn .

Quantum evolutions. The evolution of states is given again by a lin-
ear map between state spaces fulfilling some positivity and normalization
conditions. More specifically,

Definition 1.12. A quantum channel (or simply channel) is a completely
positive and trace preserving linear map

E : L(HX ) → L(HY)

where HX , HY are complex Hilbert spaces. We denote CPTP(HX ,HY)
the set of such channels, using the shortcut CPTP(HX ) when input and
output spaces are the same.
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Linearity can be again motivated by the fact that the convex com-
bination of density matrices λρ + (1 − λ)ρ′, λ ∈ [0, 1], is interpreted
as the state in which we associate probability λ to the system being
described by ρ and probability 1 − λ to being described by ρ′. Complete
positivity is enforced by the requirement that the image of a density
operator must be again a density operator. But this has to happen
not only under the action of E , but also when E acts on a subregister
(then the total evolution would be described by the tensor product of
evolutions, E ′ ⊗E). Finally, trace preservation is the natural replacement
to measure preservation in the classical case. It guarantees that the state
after the evolution is still well normalized.
Example 1.13. The trace as a channel. The mapping

Tr : L(HX ) −→ C
T 7→ TrT,

as well as the partial trace TrHX := Tr ⊗ IdHY : L(HX ⊗ HY) → L(HY)
are channels. Tr is clearly positive and trace preserving (interpreting
the trace on C simply as the trivial function 1 : C ∋ λ 7→ λ ∈ C).
Furthermore, positive maps with values in a commutative C*-algebra are
also completely positive – recall Remark 1.6 –, hence Tr ∈ CPTP(HX ,C).
In addition, notice that the partial trace is nothing else than a matricial
extension of Tr and therefore it is also completely positive. Trace
preservation can be checked again by direct computation.
Example 1.14. The completely dephasing channel. Another map that
naturally appears in the present context is:

∆ : L(HX ) −→ L(HX )
T 7→ ∑

k ⟨k|T |k⟩ |k⟩⟨k|,

known as the completely dephasing channel. Notice that this map is the
orthogonal projection on the subalgebra of L(HX ) of diagonal matrices.
This allows us to see ∆ as a map taking values on the commutative
C*-algebra ℓX

∞, and therefore, again ∆ is completely positive iff it is just
positive – cf. Remark 1.6. But ∆ is clearly positive, hence it is also
completely positive. Trace preservation also follows straightforwardly, so
∆ is a channel, ∆ ∈ CPTP(HX ).
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The completely dephasing channel ∆ plays an important role in
our presentation of quantum observations. This is the next topic we
introduce.

Quantum observations. Analogously to the situation depicted in
the classical description of X, the state of the register represents the
information about X that is available to the observer. Now, the ac-
quisition of that information from the system is more subtle. For us,
the measurement process merely consists on the extraction of classical
information about the system, formalizing this process as follows.

The idea is reducing this process to the observation of classical
systems, that was already introduced before. First, we introduce the
notion of quantum-to-classical channels. These are particular channels,
E ∈ CPTP(HX ,HY), verifying that E(D(HX )) ⊆ P(Y), where P(Y)
is regarded as a subalgebra of SY

∞. That is, quantum channels whose
output is a classical state. ∆ is a prominent example of such a channel.
More explicitly, we can define quantum-to-classical channels as CPTP
maps with the following structure:

E : L(HX ) −→ L(HY)
ρ 7→ E(ρ) = ∑

i∈Y Ei(ρ) |i⟩⟨i| ,

where Ei ∈ L(X ,C) for any i ∈ I. The subset of such channels is
denoted here by CPTPqc(HX ,HY).

We again distinguish between observations and post-selection.
Observation: it consists of a quantum-to-classical evolution followed

by an observation of the resulting classical state.
First, we can think of the system evolving according to a quantum-

to-classical channel
E : L(HX ) −→ L(Y).

After that, the observation of register Y follows in the same way as in
the classical case. The probability of obtaining a result associated to an
event S ⊆ Y is:

⟨χ̂S , E(ρ)⟩ = Tr(χ̂S E(ρ)) = ⟨E∗(χ̂S), ρ⟩,

where χ̂S was defined in Equation (1.3).
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Furthermore, given a partition of Y , {Si}i∈I ⊆ Y , and a quantum-to-
classical channel as above, E ∈ CPTPqc(HX ,HY), E∗(χ̂Si

) is a positive
operator on HX for each i ∈ I and ∑

i∈I E∗(χ̂Si
) = E∗

(∑
i∈I χ̂Si

)
=

E∗(IdHY ) = IdHX . A family of positive operators with this property is
called a positive operator-valued measure (POVM).

Definition 1.15. A POVM on a register X is a family of positive oper-
ators {Ei}i∈I ⊆ L(HX ) summing to the identity on HX , i.e., ∑i∈I Ei =
IdHX . We denote POVM(HX ) the set of POVMs on X.

Remark 1.16. Any POVM can be understood as in the discussion
above.

Proof. We have already proven one direction: a quantum-to-classical
channel E ∈ CPTP(HX ,HY) together with a partition of Y, {Si}i∈I ,
define a POVM {E∗(χ̂Si

)}i∈I .
For the other direction we start with a family of positive operators on

HX , {Ei}i∈I , summing up to the identity, ∑i∈I Ei = IdHX . Now we show
the existence of a quantum-to-classical channel E ∈ CPTP(HX ,HI) and
a partition {Si}i∈I of HI such that Ei = E∗(χSi

).
We first fix the partition with the naïve choice Si = {i}. Therefore,

χSi
= |i⟩⟨i|. Next, we construct E∗ ∈ CPTP(HI ,HX ) according to the

prescription E∗(|i⟩⟨j|) = δi,jEi for any i, j ∈ I. Next we show that E∗ is
completely positive and unital, hence E is in fact a channel. The fact
that E∗ is positive follows directly from the fact that the operators Ei
are positive by construction. Furthermore, to see that E∗ is completely
positive we realize that it is the composition of two completely positive
operators:

L(HY) L(HX )

P(Y)

E∗

∆
Ẽ∗

,

where ∆ is the completely dephasing channel introduced previously, and
Ẽ∗ is defined by Ẽ∗(|i⟩⟨i|) = Ei. ∆ is completely positive (it is indeed a
channel) and Ẽ∗ is also completely positive since it is a positive operator
acting on the commutative C*-algebra ℓI

∞. Finally, since ∑i∈I Ei = IdHX ,
E∗ it is clearly unital.
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Post-selection: the state after an observation must be again updated
according to the revealed information. In the case described before, in
which the system undergoes a quantum-to-classical evolution E prior
to the observation, the classical state resulting from this evolution is
updated as described in previous sections: the updated state is the
corresponding conditional probability distribution. In order to describe
the most general situation, we complement the process depicted before
with the possibility that the channel E additionally outputs a register
in a general quantum state. We define quantum-to-classical-quantum
channels as CPTP maps with a bipartite output register (Y,Z) such
that:

E : L(HX ) −→ L(HY ⊗ HZ)
ρ 7→ E(ρ) = ∑

i∈Y |i⟩⟨i| ⊗ Ei(ρ)
,

where now Ei ∈ CP(HX ,HZ) for each i ∈ I. We denote the set of this
channels as CPTPqcq(HX ,HY ⊗ HZ).

According to our previous discussion, a measurement consists on the
observation of the classical register Y. The probability of occurrence of
an event S ⊆ Y is given by:

⟨χ̂S ,TrHZ ◦ E(ρ)⟩ = ⟨(TrZ ◦ E)∗(χ̂S), ρ⟩,

where (TrZ ◦ E)∗(χ̂S) = E∗(χ̂S ⊗ IdHZ ).
Provided that the event S ⊆ Y have occurred, the state of the

system is updated taking into account this information. Denoting here
χSi

⊗ IdHZ ( · ) = (χ̂Si
⊗ IdHZ ) ( · ) (χ̂Si

⊗ IdHZ ), where the action in the
RHS is given simply by matrix multiplication, the updated state is
described by:

ρ′ = χS ⊗ IdHZ (E(ρ))
⟨E∗(χ̂S ⊗ IdHZ ), ρ⟩ .

Given a partition of Y, {Si}i∈I , we have a family of completely
positive maps {Ei := TrHY ◦ χSi

⊗ IdHZ ◦ E}i∈I whose sum is a trace
preserving map, i.e., a channel. Any family of completely positive maps
with this property is called an instrument.

Definition 1.17. An instrument on a register X is a family of completely
positive maps {Ei}i∈I ⊆ CP(HX ,HZ) summing to a channel ∑i∈I Ei ∈
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CPTP(HX ,HZ). We denote the set of instruments on a register X with
output register Z by Ins(HX ,HZ).

Remark 1.18. Any instrument can be understood as in the discussion
above.

Proof. As in the case of Remark 1.16, we have already proven one
direction: any E ∈ CPTPqcq(HX ,HY ⊗ HZ) together with a partition
of Y , {Si}i∈I , defines an instrument {Ei = TrHY ◦ χSi

⊗ IdHZ ◦ E}i∈I ∈
Ins(HX ,HZ).

Conversely, given an instrument {Ei}i∈I ∈ Ins(HX ,HZ), consider:

• the quantum-to-classical-quantum channel E ∈ CPTPqcq(HX ,HI ⊗
HZ) defined by:

E( · ) =
∑
i∈I

|i⟩⟨i| ⊗ Ei( · ).

E is completely positive since it is a the sum of the completely pos-
itive maps: · 7→ |i⟩⟨i| ⊗ Ei( · ). Furthermore, it is trace preserving
since ∑i∈I Ei( · ) is trace preserving by hypothesis.

• The partition {i}i∈I of the alphabet I.

Then, it is easy to check that TrHI ◦ χ{i} ⊗ IdHZ ◦ E = Ei.

1.2.2 Some results about quantum states, channels
and measurements

Most proofs appearing in this section are adaptations of the ideas
presented in [124].

Distinguishability. In quantum information theory, one usually en-
counters some notions of closeness between states and channels. In the
case of states, a natural distance is based on the trace norm on L(H):

Definition 1.19. The trace distance between two states ρ, σ ∈ D(H) is
defined by D(ρ, σ) := 1

2∥ρ− σ∥S1(H).
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The trace distance is intimately related with the task of state dis-
crimination. In the latter, a register X is randomly prepared in one out
of two possible states, ρ, σ ∈ D(HX ), each with probability 1

2 . Based on
an observation of that register, we want to determine in which state X
was actually prepared. The optimal success probability on this task is
elegantly determined by the trace distance D(ρ, σ). This is the content
of the Holevo-Helstrom theorem we state next:

Theorem 1.20 (Holevo-Helstrom). Let ρ, σ ∈ D(H). Then,

p∗
dis(ρ, σ) = 1

2 + 1
2D(ρ, σ)

is the optimal probability of distinguishing between states ρ and σ when
a single instance of one of them is provided with probability 1

2 each.

Proof. We make first some initial remarks:

• The most general action to discriminate between ρ and σ is char-
acterized by a POVM on H, E = {Eρ, Eσ}. When the outcome of
the measurement is the one associated to Eρ, we guess that the
actual state of the system was ρ. Similarly for Eσ and the state σ.

• Given E = {Eρ, Eσ} ∈ POVM(H) , the probability of successfully
discriminate between ρ and σ when the system is prepared in each
one of these states with probability 1/2 is:

pE
dist(ρ, σ) = 1

2TrEρ ρ+ 1
2TrEσ σ.

The corresponding error probability is:

pE
err(ρ, σ) = 1

2TrEρ σ + 1
2TrEσ ρ.
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• Since pE
err(ρ, σ) = 1 − pE

dist(ρ, σ) we can write:

pE
dist(ρ, σ) = 1

2 + 1
2(pE

dist(ρ, σ) − pE
err(ρ, σ))

= 1
2 + 1

2

(
Tr (Eρ − Eσ) 1

2(ρ− σ)
)

= 1
2 + 1

2

〈
Eρ − Eσ,

ρ− σ

2

〉
.

Therefore, we have the following expression for the optimal probability
of distinguishing ρ and σ:

p∗
dist(ρ, σ) = 1

2 + 1
2 sup

E={Eρ,Eσ}∈POVM(H)

〈
Eρ − Eσ,

ρ− σ

2

〉
.

We note that for any POVM E = {Eρ, Eσ}, Eρ − Eσ = 2Eρ − IdH. In
particular, ∥Eρ − Eσ∥B(H) ≤ 1. That is,

p∗
dist(ρ, σ) ≤ 1

2 + 1
2 sup
E∈ball(B(H))

〈
E,

ρ− σ

2

〉
= 1

2 + 1
2
∥∥∥ρ− σ

2
∥∥∥
S1(H)

.

Furthermore, taking into account the spectral decomposition ρ−σ
2 =∑

k λk |ψk⟩⟨ψk|, where the singular values λk are real, we can write the
trace norm of this operator as follows:∥∥∥ρ− σ

2
∥∥∥
S1(H)

=
∑
k

|λk| =
〈
P+ − P−,

ρ− σ

2
〉
.

Here, P+, P− are the orthogonal projections on the eigenspaces associated
to positive and negative singular values, respectively. Notice that these
projections indeed define a projective measurement {P+,P−}. Hence:

1
2 + 1

2
∥∥∥ρ− σ

2
∥∥∥
S1(H)

≤ p∗
dist(ρ, σ).

According to the definition of D(ρ, σ), this concludes the proof.

We can extend the previous discussion to the case of channels instead
of states. In this case, the natural notion for distance is provided by
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the diamond distance. We first define the diamond norm of an operator
E : L(H) → L(K) as:

∥E∥⋄ = sup
K′,

T∈ball(S1(H⊗K′))

∥E ⊗ IdK′(T )∥S1(K⊗K′),

where K′ is an arbitrary finite dimensional Hilbert space.

Definition 1.21. The diamond distance between two channels E , R ∈
CPTP(H,K) is defined by D⋄(E ,R) := 1

2∥E − R∥⋄.

This distance is again perfectly motivated by a discrimination task.
In the task of channel discrimination, we are provided with a black box
that implements channels E , R, each with probability 1/2. After a single
application of the black box, we are required to determine which channel
was actually implemented. The optimal probability of succeeding at this
task is characterized by the diamond distance D⋄(E ,R):

Theorem 1.22. Let E , R ∈ CPTP(H,K). Then,

p∗
dist(E ,R) = 1

2 + 1
2D⋄(E ,R),

is the optimal probability of distinguishing between channels E and R
when a single instance of one of them is provided with probability 1/2
each.

In the proof of this theorem we will make use of the following lemma:

Lemma 1.23. For Hermitian preserving linear maps E : L(H) → L(K),

∥E∥⋄ = sup
K′,

ρ∈D(H⊗K′)

∥E ⊗ IdK′(ρ)∥S1(K⊗K′).

Furthermore, the state ρ in the supremum can be restricted to be pure.

Proof. It is clear that

∥E∥⋄ ≥ sup
K′,

ρ∈D(H⊗K′)

∥E ⊗ IdK′(ρ)∥S1(K⊗K′),
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so we focus on the converse inequality. For any K′ and T in the unit ball
of S1(H ⊗ K′), we consider the hermitian element

T̃ := T ⊗ |0⟩⟨1| + T † ⊗ |1⟩⟨0| ∈ S1(H ⊗ K̃′).

where K̃′ = K′ ⊗ ℓ2
2. The norm of this element is bounded by the norm

of T : ∥T̃∥S1(H⊗K̃′) = ∥T∥S1(H⊗K′) ≤ 1.
With the previous definition, and taking into account that E ⊗ IdK̃′

is Hermitian preserving,

E ⊗ IdK̃′(T̃ ) = E ⊗ IdK̃(T ) ⊗ |0⟩⟨1| + (E ⊗ IdK̃(T ))† ⊗ |1⟩⟨0|,

from where it is easy to deduce that

∥E ⊗ IdK̃′(T̃ )∥S1(K⊗K̃′) = ∥E ⊗ IdK′(T )∥S1(K⊗K′).

Now, since T̃ is hermitian, we can consider its spectral decomposition
T̃ = ∑

k λk|ξk⟩⟨ξk|, that allows us to bound the previous norm as:

∥E ⊗ IdK̃′(T̃ )∥S1(K⊗K̃′) ≤
∑
k

|λk|∥E ⊗ IdK̃′(|ξk⟩⟨ξk|)∥S1(K⊗K̃′).

Furthermore, since ∥T̃∥B(H⊗K̃′) = ∑
k |λk| ≤ 1, it must hold that

∥E ⊗ IdK̃′(T̃ )∥S1(K⊗K̃′) = ∥E ⊗ IdK̃′(T̃ )∥S1(K⊗K̃′)

≤ ∥E ⊗ IdK̃′(|ξ⟩⟨ξ|)∥S1(K⊗K̃′).

for some |ξ⟩ ∈ {|ξk⟩}k. Therefore, we finally obtain that:

∥E∥⋄ = sup
K′,

T∈ball(S1(H⊗K′))

∥E ⊗ IdK′(T )∥S1(K⊗K′)

≤ sup
K′,

|ξ⟩∈H⊗K̃′

∥E ⊗ IdK′(|ξ⟩⟨ξ|)∥S1(K⊗K̃′)

= sup
K′,

|ξ⟩∈H⊗K′

∥E ⊗ IdK′(|ξ⟩⟨ξ|)∥S1(K⊗K′),

that is the desired inequality.
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Proof of Theorem 1.22. The theorem can be understood as a conse-
quence of the Holevo-Helstrom theorem, Theorem 1.20. For that, we
have to note that the most general way to discriminate between channels
E and R –recall the previous discussion for the specification of the dis-
crimination task– is acting with the black box in part of a bigger system
with underlying Hilbert space H ⊗ K′ when the system is prepared in a
state ρ ∈ D(H ⊗ K′) of our choice. That is, p∗

dist(E ,R) is the supremum
over finite dimensional Hilbert spaces K′ and states ρ ∈ D(H ⊗ K′)
of the optimal probability of distinguishing the states E ⊗ IdK′(ρ) and
R ⊗ IdK′(ρ). Therefore, according to the previous Holevo-Helstrom
theorem:

p∗
dist(E ,R) = 1

2 + 1
2 sup

K′,
ρ∈D(H⊗K′)

∥∥∥∥1
2(E − R) ⊗ IdK′(ρ)

∥∥∥∥
S1(K⊗K′)

.

Finally, since the operator E − R is Hermitian preserving, the statement
in the theorem is obtained thanks to Lemma 1.23.

Dilation theorems. The main contents of this section are the standard
purification results of quantum states and channels, that allow us to
understand any quantum state (channel) as part of a pure state (unitary
channel) in a bigger system. We start with the simpler case of states.

Definition 1.24. A state ρ ∈ D(H) is pure if it is a rank-one projection.
Therefore, pure states are of the form ρ = |ψ⟩⟨ψ| for a unit vector
|ψ⟩ ∈ H.

Theorem 1.25. For any positive semi-definite operator ρ ∈ L(H)
there exist a Hilbert space K and a vector |ψ⟩ ∈ H ⊗ K with norm
∥|ψ⟩∥H⊗K = Trρ such that

ρ = TrK|ψ⟩⟨ψ|.

Furthermore, the dimension of K can be taken equal to rank(ρ).

Proof. We just have to consider the spectral decomposition of ρ. Since
it is a positive semi-definite operator, its spectral decomposition can be
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written as

ρ =
rank(ρ)∑
i=1

λi|ψi⟩⟨ψi|,

where λi ≥ 0 for any i and {|ψi⟩}i is an orthonormal system in H. To
finish, consider a Hilbert space K of dimension rank(ρ) and construct
the unit vector:

|ψ⟩ =
rank(ρ)∑
i=1

√
λi|ψi⟩H ⊗ |i⟩K.

It is now a straightforward calculation to check that

ρ = TrK|ψ⟩⟨ψ|.

The previous purification is not unique, there exist different vectors
|ψ⟩ purifying a given density operator ρ. However, all these purifications
are related:

Theorem 1.26. Given two vectors |ψ⟩, |ψ′⟩ in a composite Hilbert space
H ⊗ K, they verify

TrK|ψ⟩⟨ψ| = ρ = TrK|ψ′⟩⟨ψ′|,

if and only if there exist a unitary operator U ∈ U(K) such that |ψ′⟩ =
IdH ⊗ U |ψ⟩.

Proof. Consider a Schmidt decomposition for |ψ⟩ = ∑
i λi |ξi⟩H ⊗ |ϕi⟩K

where {|ξ⟩}i, {|ϕi⟩}i are orthonormal systems in H, K, respectively, and
every λi is different from zero. Let us expand the previous systems
to orthonormal bases in H, K that we denote again {|ξ⟩}i, {|ϕi⟩}i in
the rest of the proof. We rewrite |ψ⟩ = ∑

i,j λi,j |ξi⟩H ⊗ |ϕj⟩K where
λij = 0 whenever j ̸= i. Consider next the expression of |ψ′⟩ in the basis
{|ξi⟩ ⊗ |ϕj⟩}i,j:

|ψ′⟩ =
∑
i,j

λ′
ij |ξi⟩H ⊗ |ϕj⟩K.
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Defining |ϕ′
i⟩ := ∑

j

λ′
ij

λii
|ϕj⟩ for i = 1, . . . , dim(H) we can rewrite:

|ψ′⟩ =
∑
i

λii|ξi⟩H ⊗ |ϕ′
i⟩K.

The condition TrK|ψ⟩⟨ψ| = TrK|ψ′⟩⟨ψ′| now implies that:∑
i

|λi|2|ξi⟩⟨ξi| =
∑
i,k

λiiλkk⟨ϕ′
k|ϕ′

i⟩ |ξi⟩⟨ξk|.

But from this condition follows that {|ϕ′
i⟩}i is in fact an orthonormal

system in K. Expand again this orthonormal system to a basis of K
referred also as {|ϕ′

i⟩}i (where now there are more elements in this set
than before). Now, notice that there exists a unique unitary U ∈ U(K)
such that |ϕ′

i⟩ = U |ϕi⟩ for all i = 1, . . . , dim(H). This is enough to
conclude one direction of the statement of the theorem. The other
direction follows from a straightforward calculation.

Next, we move to the description of channels presenting three stan-
dard representations of these objects. First we introduce an identification
of channels with states that is known as the Choi-Jamiołkowski isomor-
phism, denoted here as J( · ).

Definition 1.27. Given finite dimensional Hilbert spaces H, K, for any
map E : L(H) → L(K)

J(E) :=
dim(H)∑
i,j=1

E(|i⟩⟨j|) ⊗ |i⟩⟨j| ∈ L(K ⊗ H),

is the Choi representation of E.

Remark 1.28. J is a linear and invertible mapping. The inverse map
J−1 is determined by the following relation

E( · ) = TrH J(E) (IdK ⊗ · t),

where t denotes the transpose.

With that we can state the following theorem that subsumes the
most standard representations of a quantum channel.
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Theorem 1.29. Given finite dimensional Hilbert spaces H, K and an
arbitrary linear map E : L(H) → L(K), the following statements are
equivalent:

1. E ∈ CPTP(H,K);

2. (Choi’s representation) J(E) is a positive operator in L(H ⊗ K)
and TrKJ(E) = IdH.

3. (Kraus’ representation) there exists an alphabet A and a collection
of operators {Aa}a∈A ⊂ L(H,K) such that

E( · ) =
∑
a∈A

Aa( · )A†
a

and ∑a∈A A
†
aAa = IdH. Furthermore, A can be taken with cardinal

rank(J(E));

4. (Stinespring’s representation) there exist a Hilbert space K′ and an
isometry A ∈ L(H,K ⊗ K′) such that

E( · ) = TrK′A( · )A†.

Furthermore, K′ can be taken rank(J(E))–dimensional.

Proof. We follow the natural order (1.) ⇒ (2.) ⇒ (3.) ⇒ (4.) ⇒ (1.) in
the following proof.

•(1 .) ⇒ (2 .) :
The complete positivity of E straightforwardly implies the positivity

of J(E). One only needs to realize that J(E) is the image of the positive
element ∑i,j |i⟩⟨j| ⊗ |i⟩⟨j| by the positive map E ⊗ IdH. Furthermore,
since E is trace preserving, Tr E(|i⟩⟨j|) = δij and therefore:

TrKJ(E) =
dim(H)∑
i,j=1

Tr
(
E(|i⟩⟨j|)

)
|i⟩⟨j| =

dim(H)∑
i=1

|i⟩⟨i| = IdH.

•(2 .) ⇒ (3 .) :
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The spectral decomposition of the positive semi-definite operator
J(E) ∈ L(H ⊗ K) can be written:

J(E) =
∑
a∈A

|αa⟩⟨αa|,

for an alphabet A with cardinal rank(J(E)) and vectors |αa⟩ ∈ H ⊗ K
for any a ∈ A. In the following we consider the expansion on coefficients
of those vectors. For each a ∈ A:

|αa⟩ =
dim(K)∑
i=1

dim(H)∑
j=1

αa,ij |i⟩|j⟩.

In the following lines we no longer specify the ranges of the sums ap-
pearing, so that we can obtain cleaner expressions.

Now, according to Remark 1.28, for any ρ = ∑
i,j ρij|i⟩⟨j| ∈ L(H)

we can write:

E(ρ) = TrH J(E) (IdK ⊗ ρt) =
∑
a

TrH|αa⟩⟨αa| (IdK ⊗ ρt)

=
∑
a

∑
i,j,k,l

αa,ij ρjl αa,kl |i⟩⟨j|

=
∑
a

Aa ρA
†
a,

where we have defined the operators Aa = ∑
i,j αa,ij |i⟩⟨j| ∈ L(H,K).

Additionally, we also have that

IdH = TrKJ(E) =
∑
a

TrK|αa⟩⟨αa| =
∑
a

∑
i,j,l

αa,ij αa,il |j⟩⟨l|

=
∑
a

A†
aAa.

In the last equality we simply have taken into account the definition of
the operators {Aa}a.

•(3 .) ⇒ (4 .):
Identify K′ = HA. Then, the operator A = ∑

a |a⟩ ⊗ Aa ∈ L(H,K ⊗
HA) fulfils conditions in the statement.

•(4 .) ⇒ (1 .):
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Finally, it is clear that for any finite dimensional Hilbert space H′,
the map TrK′(IdH′ ⊗ A) ( · ) (IdH′ ⊗ A†) is positive. Furthermore, since
A is an isometry, A†A = IdH and

TrE(ρ) = TrAρA† = Tr ρA†A = Trρ,

for any ρ ∈ L(H). That is, we have concluded that E ∈ CPTP(H,K).

Remark 1.30. We further note that, given E ∈ L(H⊗K), rank(J(E)) ≤
dim(H) dim(K).

We will usually refer to the representation in the last item of the
previous theorem as a purification of the channel E . This convention
is motivated by the fact that the Stinespring’s representation allows us
to understand the channel as a unitary operation in a bigger system
followed by a partial transpose.

Extremality. Now we turn our attention to the convex structure that
naturally appears underlying the objects we have introduced before. For
convenience, we state the results in this section for the case of quantum-to-
classical-quantum channels. Specific results for states, general channels,
POVMs and instruments can be obtained as particular cases from the
former.

We start settling the convex structure we analyse later on.

Proposition 1.31. Given registers X, Y, Z where Y is considered classi-
cal, the set of quantum-to-classical-quantum channels CPTPqcq(HX ,HY ⊗
HZ) is compact and convex.

Proof. According to Theorem 1.29, 2., the set
CPTPqcq(HX ,HY ⊗ HZ) can be identified with the image via J−1 of the
set

S =

∑
y∈Y

|y⟩⟨y| ⊗ ρy :
ρy ∈ Pos(HZ) ∀y ∈ Y ,∑

y∈Y TrHZρy = IdHX

 .
The claim in the proposition follows now from proving that S is a
compact and convex set. That is the case because S can be understood
as the intersection of the cone of positive semidefinite operators on the
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C*-algebra ℓY
∞(B(HZ)) and the affine subspace {∑y∈Y |y⟩⟨y| ⊗ ρy :∑

y∈Y TrHZρy = IdHX }. Both sets are closed and convex, so the same
holds for S.

Finally, any element in S has bounded trace norm, so this set is also
bounded and, hence, compact.
Remark 1.32. The set of states is the particular case in which X and Y
are trivial4 while general quantum-to-quantum channels are recovered
setting only Y to be trivial. The case in which Z is trivial is intimately
related with the definition of POVMs – recall Remark 1.16 – while the
original case considered in the statement of Proposition 1.31 is concerned
with quantum instruments – recall Remark 1.18.

The previous proposition motivates the description of sets of states,
channels and instruments as convex hulls of their respective extreme
points. These extreme points can be characterized by the following
theorem, originally discovered by Man-Duen Choi, [26]5.
Theorem 1.33. Given registers X, Y, Z where Y is considered classical,
a quantum-to-classical-quantum channel E ∈ CPTPqcq(HX ,HY ⊗ HZ) is
an extreme point of the set CPTPqcq(HX ,HY ⊗ HZ) if and only if

E( · ) =
∑
i∈Y

|i⟩⟨i| ⊗
∑
a∈Ai

Aia ( · )Aia
†

for alphabets Ai and operators Aia ∈ L(HX ,HZ) such that {Aib
†
Aia}i∈Y, a,b∈Ai

is a linearly independent set.
For the proof we need the following lemma:

Lemma 1.34. Let A, B be alphabets such that |A| ≤ |B|. For any two
collections of operators {Aa}a∈A, {Bb}b∈B ⊂ L(H,K):∑

a∈A
Aa( · )A†

a =
∑
b∈B

Bb( · )B†
b ,

4Given a state ρ ∈ D(HZ), it can be seen as an operator ρ : L(HZ) → C. The
dual map, ρ∗(λ) = λρ for any λ ∈ C, is completely positive and trace preserving,
ρ∗ ∈ CPTP(C, HZ).

5Choi originally stated these results for CPTP maps and that is as it usually
appears in the literature. However, the statement we prove is more convenient for
our purposes and follows essentially from the same techniques used in [26]
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if and only if there exists an isometry λ = ∑
a∈A, b∈B λab|a⟩⟨b| satisfying

Bb = ∑
a∈A λabAa for all b ∈ B. Moreover, λ is unitary when |A| = |B|.

Proof. The operators {Aa}a∈A, {Bb}b∈B ⊂ L(H,K) define completely
positive maps A, B : B(H) → B(K) with

A =
∑
a∈A

Aa( · )A†
a, B =

∑
b∈B

Bb( · )B†
b .

Therefore, ∑a∈A Aa( · )A†
a = ∑

b∈B Bb( · )B†
b holds iff their correspond-

ing Choi’s representations also coincides, J(A) = J(B). These Choi’s
representations can be written in this case as:

J(A) =
∑
a,i,j

Aa|i⟩⟨j|A†
a ⊗ |i⟩⟨j|, J(B) =

∑
b,i,j

Bb|i⟩⟨j|B†
b ⊗ |i⟩⟨j|,

where J(A), J(B) ∈ L(K ⊗ H). Consider now a third Hilbert space
H′ of dimension max(|A|, |B|). Using this space we can consider the
purifications

J(A) = TrH′ |α⟩⟨α|, J(B) = TrH′ |β⟩⟨β|,

where we have defined vectors

|α⟩ =
∑
a,i

Aa|i⟩ ⊗ |i⟩ ⊗ |a⟩H′ , |β⟩ =
∑
b,i

Bb|i⟩ ⊗ |i⟩ ⊗ |b⟩H′ .

Now, recalling Theorem 1.26, J(A) = J(B) iff |β⟩ = (IdK⊗H ⊗λ)|α⟩ for a
unitary operator λ ∈ U(H′). Writing down this operator in coordinates,
λ = ∑

a,b λab|b⟩⟨a|, we can equivalently state that:

J(A) = J(B) iff Bb =
∑
a

λabAa for all b ∈ B.

This is equivalent to the claim in the statement.

Proof of Theorem 1.33. •Only if part:
Consider an extreme quantum-to-classical-quantum channel

E( · ) =
∑
i∈Y

|i⟩⟨i| ⊗ Ei( · ) : L(HX ) → L(HY ⊗ HZ).



1.2 Quantum theory of finite dimensional systems 31

Fix a Kraus representation E( · ) = ∑
i∈Y |i⟩⟨i| ⊗∑

a∈Ai Aia ( · )Aia
†, such

that for each i ∈ Y, {Aia}a∈Ai is a linearly independent set. Consider
now a collection of complex numbers {λiab}i,a,b such that

∑
i,a,b

λiabA
i
b

†
Aia = 0. (1.4)

We will see that the extremality of E implies that λiab = 0 for all
i ∈ Y , a, b ∈ A.

Firstly, we notice that we can assume λi = (λiab)a,b to be an hermitian
matrix for each i ∈ Y. This follows from the fact that λiab = 0 for
all i ∈ Y , a, b ∈ Ai iff λiab ± λiab = 0 for all i ∈ Y , a, b ∈ Ai and the
observation that condition (1.4) also implies ∑i,a,b(λiab+λiab)Aib

†
Aia = 0 =∑

i,a,b i (λiab − λiab)Aib
†
Aia. Furthermore, we can also assume λi such that

−IdHAi
≤ λi ≤ IdHAi

simply dividing (1.4) by the scalar maxi∈Y ∥λi∥.
Next, we construct the channels

R±( · ) =
∑
i∈Y

|i⟩⟨i| ⊗
(
Aia ( · )Aia

† ±
∑

a,b∈Ai

λiabA
i
a ( · )Aib

†)
,

that trivially decompose E as the convex combination E = 1
2(R+ +

R−). The fact that R± are channels follows from the positivity of
the operators IdHAi

± λi and the hypothesis (1.4): the positivity of
IdHAi

± λi allows us to factorize IdHAi
+ λi = αi

†
αi for some operators

(αiab)a,b, one for each i ∈ Y . Defining Bi
a := ∑

a∈Ai αiabA
i
b, we can rewrite

R+( · ) = ∑
i∈Y |i⟩⟨i| ⊗ ∑

a∈Ai Bi
a ( · )Bi

a
†. Moreover, (1.4) implies that∑

i∈Y
∑
a∈Ai Bi

a
†
Bi
a = ∑

i∈Y
∑
a∈Ai Aia

†
Aia, and, according to Theorem

1.29,3., this equals IdHX . Therefore R+ is indeed a channel. Similarly
for R−.

Finally, the extremality of E implies that R+ = E . Hence, in virtue
of Lemma 1.34, the matrices (αiab)a,b are unitary6. Nonetheless, recalling
their definition we have IdHA + λi = αi

†
αi = IdHA , that is, λi = 0 for

any i ∈ Y .
•If part:

6Notice that the linear independence of {Ai
a}a∈Ai determines uniquely the coeffi-

cients αi
ab.
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Consider a channel

E( · ) =
∑
i∈Y

|i⟩⟨i| ⊗
∑
a∈Ai

Aia ( · )Aia
†
,

where {Aib
†
Aia}i∈Y, a,b∈Ai are linearly independent. Now, suppose that E

is the convex combination of two other channels:

E = λR1 + (1 − λ)R2, λ ∈ (0, 1),

with Rk( · ) = ∑
i∈Y |i⟩⟨i| ⊗ ∑

a∈Bi Bk,i
a ( · )Bk,i

a
† such that ∑i∈Y

∑
a∈Bi

Bk,i
a

†
Bk,i
a = IdHX , for k = 1, 2.

Accordingly, denoting λ1 = λ, λ2 = 1 − λ, we rewrite

E( · ) =
∑
i∈Y

|i⟩⟨i| ⊗
∑
k=1,2

∑
b∈Bi

λk B
k,i
b ( · )Bk,i

b

†
.

Recalling again Lemma 1.34, the last line implies that

Bk,i
b =

∑
a∈Ai

αk,iba A
i
a,

for scalars αk,iba , where k = 1, 2, i ∈ Y , a ∈ Ai, b ∈ Bi. Moreover, since

IdHX =
∑
i∈Y

∑
a∈Ai

Aia
†
Aia =

∑
i∈Y

∑
b∈Bk,i

Bk,i
b

†
Bk,i
b

=
∑
i∈Y

∑
a,c∈Ai

∑
b∈Bk,i

αk,iba α
k,i
bc A

i
a

†
Aic,

and {Aia
†
Aic}i,a,c are linearly independent, it must hold that ∑b∈Bk,i αk,iba

αk,ibc = δac. That is, ∑i∈Y |i⟩⟨i| ⊗ ∑
a∈Ai, b∈Bk,i αk,iba |b⟩⟨a| is an isometry,

and therefore, again by Lemma 1.34, Rk = E .

Corollary 1.35. The extreme points of the set of quantum states of a
given register Z are the pure states in D(HZ).

Proof. As pointed out before, the set of states D(HZ) can be iden-
tified as the set of channels CPTP(C,HZ). Given ρ ∈ D(HZ), the
corresponding map ρ∗ : C ∋ λ 7→ λρ ∈ L(HZ) is an element in
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CPTP(C,HZ). Conversely, any element σ ∈ CPTP(C,HZ) defines
a state σ∗ ∈ D(HZ) ⊆ L(L(HZ),C). According to the previous theo-
rem, σ ∈ CPTP(C,HZ) is an extreme point of the set CPTP(C,HZ)
iff

σ(λ) =
∑
a∈A

λ |αa⟩⟨αa| for any λ ∈ C,

where {|αa⟩}a∈A ⊂ L(C,HZ) ≃ HZ are such that {⟨αb|αa⟩}a,b∈A ⊂ C
is a linearly independent set. The last condition clearly implies that
|αa⟩ = 0 for any a ∈ A except one. Call |α⟩ the unique non-null element
of {|αa⟩}a. Then,

σ(λ) = λ |α⟩⟨α|.

Since σ is a channel, |α⟩ must be a unit vector in HZ . This implies that
the corresponding state σ∗ ∈ D(HZ) is the rank-one operator |α⟩⟨α|
where |α⟩ is a unit vector in HZ .

Corollary 1.36. The extreme points of the set of instruments Ins(HX ,HZ)
have at most |X |2 possible different outcomes.

Proof. An instrument in Ins(HX ,HZ) is a sequence of completely positive
maps {Ei}i∈I ⊂ CP(HX ,HZ), for some alphabet I, such that ∑i∈I Ei ∈
CPTP(HX ,HZ). In consonance with Remark 1.18, the former instrument
can be characterized by the quantum-to-classical-quantum channel:

E( · ) =
∑
i∈I

|i⟩⟨i| ⊗ Ei( · ).

Taking into account Theorem 1.33, if this channel is an extreme point,
Ei ̸= 0 for at most (dim HX )2 different indices i ∈ Y. This implies the
claim in the statement.

1.3 Quantum games
We finish this first chapter with an application of some of the previous

notions to a particular setting: cooperative quantum games or, simply,
quantum games.

In the last sixty years, multiplayer cooperative games have proven to
be a perfect representative of a field in which the irruption of quantum
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mechanics leads to far-reaching implications. Starting with Bell’s work in
the sixties, the study of quantum agents interacting in cooperative games
is nowadays the cornerstone of a continuously increasing amount of lines
of work. Substantive examples can be found in quantum cryptography
[35, 4, 2, 52, 21], complexity theory [96, 14, 16, 47] and even the recent
resolution of Connes’ embedding problem [48].

The cited groundbreaking developments can be classified in the study
of non-local games, that are cooperative games in which the interaction
between players and referee is mediated by classical messages. However,
the players are usually considered to use quantum resources in their
strategy.

Here, we are interested in a generalization of such games in which also
the communication between players and referee can be quantum. These
are what we call quantum games. In particular, we restrict ourselves
to the case of two-player quantum games. In this setting, two players,
Alice and Bob, interact with a referee receiving from him a bipartite
quantum state. Acting on the received system, Alice and Bob obtain
another bipartite state which is communicated back to the referee who
checks the validity of players’ answer performing a measurement.

Quantum games have appeared naturally in quantum information
theory in several places, see [78, 112, 55, 60, 25] for some examples,
and some specific classes of quantum games were rigorously defined and
studied in [28, 98, 20, 51]. Indeed, our starting point is one of these
latest notions. In the rest of this section we introduce rank-one quantum
games, originally defined in [28], and present a slight generalization that
we call mixed rank-one quantum games. This setting will be central for
Chapter 4. Rank-one quantum games also underlie some of the key ideas
in Chapter 3, even though we will not make any explicit reference to
this fact anymore.

A (two-player one-round) rank-one quantum game, ROQG, is speci-
fied by:

1. a tripartite Hilbert space HA ⊗ HB ⊗ HC;

2. and unit vectors |ψ⟩, |γ⟩ ∈ HA ⊗ HB ⊗ HC.

The game then proceeds as follows:
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• the referee starts preparing the state |ψ⟩ ∈ HA ⊗ HB ⊗ HC and
sends registers HA, HB to Alice and Bob, respectively;

• the players apply an allowed quantum operation7 on the received
registers, HA and HB, sending them back to the referee;

• finally, in order to decide whether the players win or lose the game,
the referee performs the projective measurement given by elements
{|γ⟩⟨γ|, Id − |γ⟩⟨γ|}. When the outcome of this measurement is
the one associated to |γ⟩⟨γ|, the referee declares Alice and Bob
winning. Otherwise they lose.

We give now a formal definition for this type of games (see [28] for
further details):

Definition 1.37. We identify a rank-one quantum game (ROQG), G,
with a tensor Ĝ in the unit ball of S1(HA ⊗ HB). Such a tensor can be
always written in the form Ĝ = TrHC |ψ⟩⟨γ| for some ancillary Hilbert
space HC and vectors |ψ⟩, |γ⟩ in the unit ball of HA ⊗ HB ⊗ HC (see [28,
Prop. 3.1] for an explicit proof of this easy fact) .

A strategy for G is a quantum channel S acting on the system HA ⊗
HB. That is, S∈ CPTP(HA ⊗ HB). The value achieved by this strategy
is defined by:

ω(G; S) := Tr
[

|γ⟩⟨γ| (IdC ⊗ S)
(
|ψ⟩⟨ψ|

) ]
, (1.5)

and corresponds to the winning probability achieved in the game described
above when the players use strategy S to play.

In general, not any quantum operation will be considered to be an
allowed strategy, since the actions of Alice and Bob might be restricted in
a given situation. For example, one can consider situations in which Alice
and Bob are spatially isolated so they cannot communicate between them.
In other situations, even when the players have the capability to share
messages, the communication might be constrained in their structure, as
it will be the case in Chapter 4. We refer to sets of allowed strategies as

7The action of the players might be constrained for physical or other reasons
forbidding Alice and Bob to apply a completely general quantum channel. Below we
state these limitations in more detail.
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scenarios, which are usually motivated by physical constraints on the
players.

Definition 1.38. In a particular scenario S ⊆ CPTP(HA ⊗ HB), the
value of the game G is:

ωS(G) := sup
S∈S

ωS (G; S) . (1.6)

Example 1.39. The honest scenario. In this preliminary chapter we
only introduce the simplest scenario, the one in which we allow any
quantum channel on HA ⊗ HB to be a valid strategy. That is, in this
scenario, the set of allowed strategies is S = CPTP(HA ⊗ HB). This
corresponds to the case in which Alice and Bob are allowed to apply
any global operation, so they perform as if they were a single agent with
access to the full question in the game. We refer to this situation as the
honest scenario.

Definition 1.40. The Honest value of G is given by:

ωH(G) = sup
S∈CPTP(HA⊗HB)

ω(G; S). (1.7)

The nomenclature for this scenario was borrowed from the interpre-
tation we give to such games in Chapter 4 and it is not in any sense
standard. In fact, in [28] the previous value was called maximal. More
importantly, this scenario serves as a natural normalization for the
game, it is the largest value achievable under the unique assumption
that quantum mechanics is the underlying model explaining players’
behaviour.

Remark 1.41. It turns out that the supremum in (1.7) can be restricted
to unitary channels without altering its value. In this case, we can work
out (1.7) to obtain the following equivalent expression:

ωH(G) = sup
U∈U(HA⊗HB)

ω(G;U( · )U †) = sup
U∈U(HA⊗HB)

(
Tr(Ĝ U)

)2

≡ sup
U∈U(HA⊗HB)

⟨U, Ĝ⟩2 = ∥Ĝ∥2
S1(HA⊗HB). (1.8)
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Indeed, by compactness, this supremum is achieved by some unitary
UG, that can be interpreted as the ideal action the players have to
perform to maximize their chances to win the game. This gives us a
useful interpretation of rank-one quantum games: Alice and Bob have
to simulate the application of a given unitary, UG, on registers HA ⊗ HB
of the system HA ⊗ HB ⊗ HC prepared on the initial state |ψ⟩.

Proof of (1.8). According to Definitions 1.40 and 1.37,

ωH(G) = sup
S∈CPTP(HA⊗HB)

Tr
[

|γ⟩⟨γ| (IdC ⊗ S)
(
|ψ⟩⟨ψ|

) ]
. (1.9)

Considering a purification of S, cf. Theorem 1.29, 4, we can write S
in terms of an isometry A ∈ B(HA ⊗ HB,HA ⊗ HB ⊗ K′) to obtain:

Tr
[

|γ⟩⟨γ| (IdC ⊗ S)
(
|ψ⟩⟨ψ|

) ]
= Tr

[
(|γ⟩⟨γ| ⊗ IdK′) (IdC ⊗ A) |ψ⟩⟨ψ| (IdC ⊗ A†)

]
=
∥∥∥(⟨γ| ⊗ IdK′) (IdC ⊗ A) |ψ⟩

∥∥∥2

K′

= sup
⟨ξ|∈ball(K′)

(
(⟨γ| ⊗ ⟨ξ|) (IdC ⊗ A) |ψ⟩

)2

= sup
⟨ξ|∈ball(K′)

(
Tr [ ⟨ξ|ATrC|ψ⟩⟨γ| ]

)2

= sup
⟨ξ|∈ball(K′)

〈
⟨ξ|A, Ĝ

〉2
.

Taking this manipulation into account, we can rewrite (1.9) as:

ωH(G) = sup
K′,

A∈B(HA⊗HB,HA⊗HB⊗K′),
⟨ξ|∈ball(K′)

〈
⟨ξ|A, Ĝ

〉2
,

where A in the supremum is an isometry. Therefore, the supremum is
actually taken over bounded operators of the form ⟨ξ|A ∈ B(HA ⊗ HB).
This translates into the fact:

ωH(G) ≤ sup
A∈B(HA⊗HB)

⟨A, Ĝ ⟩2,
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but the former supremum can be restricted to unitary operators U ∈
U(HA ⊗ HB), which turns out that can be always written in the form
⟨ξ|A (consider A = |ξ⟩ ⊗ U , for instance) and hence we have an equality
in the previous expression. Concluding, we have shown that

ωH(G) = sup
U∈U(HA⊗HB),

⟨U, Ĝ ⟩2.

To complete this section, we introduce the notion of mixed rank-one
quantum games. These games are constructed from a family of ROQGs,
say {Gta,tb}ta,tb , indexed by ta ∈ TA, tb ∈ TB, together with a probability
distribution {pta,tb}ta,tb 8. For the sake of readability, we refer to pairs
(ta, tb) by t, so that t ∈ TA × TB. The game proceeds as follows:

• The referee chooses randomly one of the ROQG, Gt, according to
the probability distribution pt.

• The referee prepares the state corresponding to the game Gt. He
sends a quantum system to Alice and Bob, as specified by the
ROQG Gt, together with the classical information t. Alice receives
ta and Bob tb – recall that t = (ta, tb);

• Alice and Bob, with the information they received, prepare a state
to answer the referee;

• finally, with the state communicated by Alice and Bob, the referee
performs the final measurement defined in Gt. This decides whether
the players win or lose.

Once we introduced this family of games, we now give a formal
definition:

Definition 1.42. We identify a mixed rank-one quantum game (MROQG),
G, with a sequence of tensors

{
Ĝt = TrC |ψt⟩⟨γt|

}
t
, where each Ĝt is

in the unit ball of S1(HA ⊗ HB), together with a probability distribution
{pt}t.

8For each ta tb, pta,tb
≥ 0 and

∑
ta,tb

pta,tb
= 1. We restrict ourselves to finite

index sets TA, TB .
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A strategy for G is a sequence of quantum channels {St}t acting on
the system HA ⊗ HB. The value achieved by this strategy is defined by:

ω(G; {St}t) := Et Tr
[

|γt⟩⟨γt| (IdC ⊗ St)
(
|ψt⟩⟨ψt|

) ]
, (1.10)

where Et denotes the expectation over the random variable t distributed
according to {pt}t.

As in the previous discussion, we also consider restricted families
of allowed strategies for MROQGs, that is, subsets S ⊆ CPTP(HA ⊗
HB)×|TA×TB |. This leads to the value of a MROQG in a given scenario:

Definition 1.43. In a particular scenario S ⊆ CPTP(HA⊗HB)×|TA×TB |,
the value of the game is:

ωS(G) := sup
S∈S

ωS (G; S) . (1.11)

Matching our earlier discussion on ROQGs, we also comment that
the honest scenario is defined considering any strategy as valid; that
is, setting S = CPTP(HA ⊗ HB)×|TA×TB |. This leads to define ωH(G)
for a MROQG in analogy with (1.7). With similar computations as in
Remark 1.41 we can obtain:

ωH(G) = Et ∥Gt∥2
SAB

1
.

Formally, this equation perfectly matches the idea of MROQGs as
distributions of ROQGs.

As said before, we will come back to MROQGs in Chapter 4, where
this notion of quantum games will be the key to formalize our construc-
tions in the study of Position Based Quantum Cryptography.





Chapter 2

Preliminaries II: Banach
spaces and operator space
theory

In this chapter we develop some basic notions mainly concerned with
Banach spaces, although we make a brief introduction to operator spaces
in Section 2.1.2. The selection of the contents of this chapter, as well
as its presentation, is strongly biased towards the tools that we will use
in next chapters. After providing basic some definitions about Banach
and operator spaces in Section 2.1, we introduce in Section 2.2 one of
the main notions that we study in this thesis: the type and cotype of a
Banach space. We introduce in Section 2.3 some technical tools from
interpolation theory and we finish this chapter devoting Section 2.4 to
the important notion of operator ideals in Banach spaces.

2.1 Some basics on Banach spaces and
operator spaces

2.1.1 Banach spaces
A finite dimensional Banach space is simply a vector space endowed

with a norm. According to that, a Banach space is identified with a
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couple (X, ∥ · ∥X) being X a vector space while ∥ · ∥X denotes the norm.
However, we will usually refer to such a space simply by X, referring to
the norm only implicitly. In general, X is also required to be complete
with respect to ∥ · ∥X . When completeness is not guaranteed, it is
customary to refer to X as a normed space. In the finite dimensional
case, completeness is always granted and both notions refer to the same
thing, being this the reason why we sometimes use both nomenclatures
interchangeably. The underlying field for us will be always the set of
complex numbers, unless the contrary is specified. Given a Banach space
X, we fix the notation ball(X) for the closed unit ball of X.

Some particular Banach spaces. As we said repeatedly before, this
thesis is mainly concerned with the study of finite dimensional Banach
spaces. We introduce next some of the spaces that appear frequently in
next chapters. Our first example was already introduced in Chapter 1.
That is the case of the Hilbert space HX in which the norm was defined
by:

for any |u⟩ =
∑
x∈X

ux|x⟩ ∈ CX , ∥u∥HX = ⟨u|u⟩
1
2 .

To refer to arbitrary – finite or infinite dimensional – Hilbert spaces
we use H, K, . . .

The previous norm can be generalized as follows. For 1 ≤ p < ∞
and any |u⟩ = ∑

x∈X ux|x⟩ ∈ CX :

∥u∥ℓXp =
( ∑
x∈X

|ux|p
)1/p

.

For p = ∞ is customary to fix:

∥u∥ℓX∞ = supx∈X |ux|.

This gives rise to the classical ℓX
p spaces, that motivates the alternative

notation ℓX
2 for the Hilbert space HX . We usually use this alternative

notation when the dimension of the space is explicitly known: we refer
to a d-dimensional Hilbert space as ℓd2. The previous definition extends
in an obvious way to the infinite dimensional case of sequences (ui)i∈N
instead of finite dimensional vectors (ux)x∈X . We denote the Banach
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space obtained (after completion) simply by ℓp. In particular, ℓ2 denotes
a separable Hilbert space.

Another natural Banach space that we consider is the space of
bounded operators between two Banach spaces X, Y . We define B(X, Y )
as the Banach space of linear operators f : X → Y such that

∥f∥ := sup
x∈ball(X)

∥f(x)∥Y < ∞.

Bounded operators, as defined above, are the natural morphisms
between Banach spaces. In fact, they give us the right abstraction to
define the dual of a Banach space X: X∗ is simply identified with the
space of bounded linear forms acting on X,

X∗ ≃ B(X,C).

It is easy to check that, according to the previous definition, the following
isometric relations between ℓp spaces hold:

(ℓp)∗ ≃ ℓq for 1 ≤ p < ∞ and q : 1
p

+ 1
q

= 1.

In the finite dimensional case, the above isometric identification is
also true in the case p = ∞ (q = 1).

The previous example allows us to reintroduce Schatten classes, cf.
Section 1.1.1. In the present context, these can be understood as a
non-commutative generalization of ℓp spaces. From this perspective,
given Hilbert spaces H, K, Sp(H,K) is the Banach space of compact
operators from H into K whose sequence of singular values is in ℓp. When
the underlying Hilbert spaces are separable, H = ℓ2 = K, we use the
simpler notation Sp = Sp(ℓ2, ℓ2). In the finite dimensional case, we use
the notation Sd,d

′
p to refer to Sp(ℓd

′
2 , ℓ

d
2).

Inherited from the duality between ℓp spaces, Schatten classes also
display a similar relation:

(Sp(H,K))∗ ≃ Sq(H,K) for 1 ≤ p < ∞ and q : 1
p

+ 1
q

= 1,
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where the case p = ∞ is also included when H or K are finite dimensional.
The case p = 2 is a notable one. According to the previous relation,
S2(H,K) is self-dual. In fact, S2(H,K) can be identified with the Hilbert
space H ⊗ K.

Concluding the basic set of examples presented here, we consider now
the vector valued version of the former ℓp spaces. Concretely, given a
Banach space X and 1 ≤ p ≤ ∞, ℓp(X) is the Banach space of sequences
(xi)i∈N of elements in X such that

∥∥∥(xi)i∈N

∥∥∥
ℓp(X)

:=
(∑
i∈N

∥xi∥pX
)1/p

< ∞.

Some other classical Banach spaces include the space of p-integrable
functions, Lp, as well as its vector valued generalization, Lp(X), being
X a Banach space. For our purposes, it is enough to define the latter
as the Banach space of measurable functions on a measure space M ,
f : M → X, such that

∥f∥Lp(X) :=
(∫

M
∥f(t)∥pX dµ(t)

) 1
p

,

for an (implicitly) given measure µ. Notice that fixing M to be the set of
natural numbers endowed with the discrete measure with unit weights,
we recover the definition of ℓp(X) spaces.

2.1.2 Operator spaces
From the perspective of pure maths, the technical contributions

appearing in this thesis can be mainly circumscribed to the local theory
of Banach spaces. Nonetheless, some of the constructions appearing
later are properly understood only within the context of operator spaces.
This explains the need to provide a brief introduction to that matter.
We redirect the interested reader to the standard references [34, 88] for
an in-depth exposition on operator spaces.

An operator space is a complex Banach space X together with a
sequence of reasonable norms on the spaces Mn ⊗X = Mn(X) for any
n ∈ N, where Mn(X) is the space of n × n matrices with entries in X.
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Reasonable here means that these matrix norms satisfy the following
properties for any n, m ∈ N and any x ∈ Mn(X), y ∈ Mm(X):

• ∥x⊕ y∥Mn+m(X) ≤ max(∥x∥Mn(X), ∥y∥Mm(X));

• for any α ∈ Mm,n, β ∈ Mn,m,

∥αxβ∥Mm(X) ≤ ∥α∥Mm,n∥x∥Mn(X)∥β∥Mn,m .

Setting up this sequence of norms turns out to be equivalent to
consider X as a closed subspace of some B(H) via a chosen isometric
embedding (this equivalence was originally proven in [129]). This em-
bedding fixes the matrix norm Mn(X) as the norm inherited from the
embedding Mn(X) ⊂ Mn(B(H)) ≃ B(ℓn2 (H)). The precise choice of a
sequence of reasonable norms (Mn(X))n∈N, – equivalently, the isometric
identification of X as a subspace of B(H) – defines an operator space
structure (o.s.s) on X.

The natural morphisms in the category of operator spaces that are
compatible with this additional structure are the completely bounded
(cb) maps. Given a linear map between operator spaces Φ : X → Y ,
we define its completely bounded norm as ∥f∥cb := supn ∥IdMn ⊗ f :
Mn(X) → Mn(Y )∥. Thus, the cb maps are those for which ∥f∥cb < ∞,
and we denote them by CB(X, Y ). Additionally, we say that a map
is completely contractive if ∥f∥cb ≤ 1 and it is a complete isometry if
IdMn ⊗ Φ : Mn(X) → Mn(Y ) is an isometry for all n ∈ N. Finally, cb
maps provides us also with the notion of duality for an operator space X.
The operator space X∗ is determined such that Mn(X∗) = CB(X,Sn∞)
for any n ∈ N . It is a basic result that the completely bounded norm
coincides with the usual operator norm when the range is a commutative
C*-algebra – see, for instance, [34, Proposition 2.2.6]. In particular,
CB(X,C) ≃ B(X,C) isometrically, showing that the duality between
operator spaces restricted to the first matrix level (n = 1 above) coincides
with the duality as Banach spaces.

Some particular operator spaces. Following a structure similar to
the previous section, we now introduce some particular operator spaces
that will appear in subsequent sections. In first place, we make the
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observation that the Banach space B(H) carries over a natural o.s.s.,
the one inherited from the identification Mn(B(H)) ≃ B(ℓn2 (H))1. This
trivial observation has the interesting consequence of providing us with
a natural o.s.s. also in the spaces S∞(H) and S1(H). In the first case,
the o.s.s. can be fixed regarding S∞(H) as the closed subspace of B(H)
of compact operators. Then, S1(H) inherits a natural o.s.s. as the dual
of S∞(H), where the dual action is given by ⟨A,B⟩ = TrABt, denoting
by Bt the transpose of B.

It is now crucial to remark that, in general, for an arbitrary Banach
space X, there is no privileged way to endow X with an o.s.s. In fact,
we encounter many different o.s.s. on the same Banach space2. Apart
from the spaces B(H), S∞(H) and S1(H), we briefly discuss the case of
the Hilbert space H. There are two o.s.s. on H that we use later on in
Section 2.4. These are the row and column o.s.s., denoted R(H) and
C(H), respectively. R(H) is defined via the row embedding:

H ≃ B(H,C), (2.1)

while C(H) is defined by the column embedding:

H ≃ B(C,H). (2.2)

We simplify the notation to R and C when the Hilbert space involved is
separable and to Rn, Cn when it is the finite dimensional ℓn2 .

These last two operator spaces turn out to be non-isomorphic, on the
contrary to what happens at the Banach level, where they are simply
Hilbert spaces. Despite that, they are still dual between themselves, that
is, C∗ ≃ R and C ≃ R∗ completely isometrically.

For the sake of completeness, we briefly comment on the possibility
of endowing the spaces ℓp, ℓp(X) and Sp(H) with an o.s.s. via complex

1Furthermore, for any C*-algebra the GNS representation provides us with a
canonical isometric embedding into B(H), and therefore, we can also endow the
C*-algebra with a natural o.s.s.

2Interestingly, Paulsen showed that this is always the case for any operator space
of dimension ≥ 5 [77], a result that was refined to any dimension ≥ 3 in [93]. There,
Pisier also commented on the striking fact that the only known examples of Banach
spaces with unique o.s.s. are ℓ2

1 and ℓ2
∞. According to the recent [95], this seems to

be still the state of the art regarding this innocent-looking question.
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interpolation starting with S1(H) and S∞(H) as extreme cases. Once
again, this was firstly realized by G. Pisier in [91].

2.2 Type and cotype of a Banach space
The notion of type and cotype becomes central in this thesis, ap-

pearing at the core of the results presented in upcoming chapters. This
notion is probabilistic in nature and it is a way to study certain geometric
properties of Banach spaces. The development of a systematic theory
of type/cotype traces back to the work of J. Hoffmann-Jørggensen, S.
Kwapień, B. Maurey and G. Pisier in the 1970’s.

We are concerned here with Rademacher random variables that are
random variables taking values −1 and 1 with probability 1/2 each.
We usually denote by (εi)ni=1 a family of i.i.d. such random variables.
Typically we will be interested on the expected value of some real valued
function of such random variables, f : {−1, 1}×n → R, denoting it as
Ef
(
(ε)ni=1

)
or Eε f

(
(ε)ni=1

)
when we want to make explicit reference to

the random variables in which the expected value acts. More concretely,
denoting ε = (εi)ni=1, Eεf(ε) = 1

2n

∑
ε∈{±1}n f(ε).

Given that, we introduce now the notion of type and cotype of a
Banach space.

Definition 2.1. Let X be a Banach space and let 1 ≤ p ≤ 2. We say
X is of type p if there exists a positive constant T such that for every
natural number n and every sequence {xi}ni=1 ⊂ X we have

(
E
[∥∥∥ n∑

i=1
εixi

∥∥∥2

X

])1/2

≤ T
(

n∑
i=1

∥xi∥pX

)1/p

.

The infimum of the constants T fulfilling the previous inequality is the
type-p constant of X, denoted as Tp(X).

The notion of type of a normed space finds a dual notion in the one
of cotype:
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For 2 ≤ q < ∞, X is of cotype q if there exists a positive constant C
such that for every natural number n and every sequence {xi}ni=1 ⊂ X,

C−1
( n∑
i=1

∥xi∥qX
)1/q

≤
(
Eε
[∥∥∥ n∑

i=1
εixi

∥∥∥2

X

])1/2

.

The infimum of the constants C is the cotype-q constant of X, denoted
as Cq(X).

If the number of elements xi in the definitions above is restricted to
be lower than or equal to some natural number m, we obtain the related
notion of type/cotype constants of X with m vectors, denoted here as
T(m)
p (X) and C(m)

q (X). Although frequently is enough to work with the
notion of type/cotype constants, sometimes we will need to make use of
the more precise latter notion.

Remark 2.2. An alternative characterization of the type-p constant of
a Banach space X is given by the norm of the linear map:

Rad : ℓp(X) −→ L2(X)
(xi)i 7→ ∑

i εi xi
,

where {εi}i are i.i.d. Rademacher random variables and3

∥∥∥∑
i

εi xi
∥∥∥
L2(X)

:=
(
Eε
∥∥∥∑

i

εixi
∥∥∥2

X

) 1
2

.

With that, the following equivalence is clear:

Tp(X) = ∥Rad : ℓp(X) −→ L2(X)∥ .

We use this equivalent definition for Tp(X) in our discussion on the
behaviour of type constants with respect to the method of complex
interpolation, in Section 2.3.

3Formally, to establish this identification we can consider a realization of the
random variables εi as real valued functions on the interval [0, 1]. A standard choice is
setting εi(t) = sign

(
sin(2iπt)

)
. In that way, for a function ϕ of the random variable

ε, Eεϕ(ε) =
∫ 1

0 ϕ(ε(t))dt, which makes the connection with Lp spaces.
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Basic properties regarding type and cotype. In latter chapters we
will be very interested in the study of type constants of certain Banach
spaces. In sight of that, we collect some properties of type constants
that will be relevant for us.

The following proposition follows straightforwardly from Definition
2.1.
Proposition 2.3. Tp(X) is preserved by subspaces. That is, if S is a
subspace of X, then Tp(S) ≤ Tp(X).

The following result also follows easily from the definition of type
constant:
Proposition 2.4. Given a linear isomorphism between two Banach
spaces X and Y , Φ : X → Y , the following relation between type
constants holds:

Tp(X) ≤ ∥Φ∥∥Φ−1∥ Tp(Y ). (2.3)
Proof. Let us assume that Y has type p constant Tp(Y ). Then, for any
n and any family {xi}ni=1 ⊂ X we note that, since Φ is an isomophism,
for any i there exist an yi ∈ Y such that xi = Φ−1(yi). Then,

(
E
[∥∥∥ n∑

i=1
εixi

∥∥∥2

X

])1/2

=
(
E
[∥∥∥ n∑

i=1
εiΦ−1(yi)

∥∥∥2

X

])1/2

≤ ∥Φ−1∥
(
E
[∥∥∥ n∑

i=1
εiyi

∥∥∥2

X

])1/2

≤ ∥Φ−1∥Tp(Y )
( n∑
i=1

∥yi∥pY
)1/p

= ∥Φ−1∥Tp(Y )
( n∑
i=1

∥Φ(xi)∥pY
)1/p

≤ ∥Φ∥∥Φ−1∥Tp(Y )
( n∑
i=1

∥xi∥pX
)1/p

.

Since Tp(X) is by definition the smallest constant satisfying the inequality
above, the stated inequality must hold and we conclude our proof.

As we have already announced before, there exists some kind of duality
between type and cotype. In particular, we can state the following:
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Proposition 2.5. Given a Banach space X and 1 < p ≤ 2, 2 ≤ q <
∞ : 1

p
+ 1

q
= 1,

Cq(X∗) ≤ Tp(X).

On the contrary, the reverse inequality fails in general – a classical
example is given by the spaces ℓ1 and ℓ∞. However, it turns out that
such a relation can be made true up to logarithmic factors:

Proposition 2.6. Given a finite dimensional Banach space X and
1 < p ≤ 2, 2 ≤ q < ∞ : 1

p
+ 1

q
= 1,

Tp(X) ≤ c log(dim(X)) Cq(X∗),

for some universal constant c.

See [64, Section 6] for a proof of the previous two results. In a
historical note, we comment that the latest is a direct consequence of
Pisier’s studies on the notion of K-convexity and its relation with type
and cotype, see [86].

Type constants of some specific Banach spaces. To finish the
present section we state some well-known estimates of the type and
cotype constants of some classical spaces. We begin with the case of
Hilbert spaces. Any Hilbert space H satisfies that C2(H) = 1 = T2(H).
Actually something deeper can be said in this case: Any Banach space
of type 2 and cotype 2 is isomorphic to a Hilbert space, result that was
proven by Kwapień in [58].

A situation in which type and cotype properties are also remarkably
well understood is the case of ℓp spaces. The following bounds are
well-known, see [115, Section 4]:

Considering 1 ≤ p ≤ 2 and 2 ≤ q ≤ ∞ such that 1
p

+ 1
q

= 1,

n
1
r

− 1
p ≤ Tp(ℓnr ) ≤ c r

1
2 n

1
r

− 1
p when r ∈ [1, 2], (2.4)

Cq(ℓnr ) ≤ c q when r ∈ [1, 2], (2.5)
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and

Tp(ℓnr ) ≤ r
1
2 when r ∈ [2,∞), (2.6)

n
1
r

− 1
p ≤ Cq(ℓnr ) ≤ c q n

1
r

− 1
q when r ∈ [2,∞], (2.7)

being c an independent constant.
Considering the previous estimates, the following bound can be easily

obtained for the type constants of ℓn∞:

(log n)1− 1
p ≤ Tp(ℓn∞) ≤ c (log n) 1

2 , 1 ≤ p ≤ 2. (2.8)

We provide next a short proof.

Proof. For simplicity, we consider in the proof the Banach space ℓn∞ to
be real. The same argument applies for the complex case with minor
adjustments.

The first inequality follows from identifying in ℓn∞ an isometric copy
of ℓlog(n)

1 . The bound is obtained from the estimates (2.4) taking into
account Proposition 2.3.

For the second inequality we use the fact that the Banach-Mazur
distance between ℓnr and ℓn∞ is n 1

r , for r ≥ 2. With that, and Proposition
2.4, we can obtain:

Tp(ℓn∞) ≤ n
1
r Tp(ℓnr ) ≤ n

1
r r

1
2 .

The claim follows considering r = log(n).

N. Tomczak-Jaegermann proved in [114] that Schatten classes behave
with respect to type and cotype in a similar way than their commutative
analogues, the previously discussed ℓp spaces. In particular, the estimates
in Equations (2.4)–(2.7) still apply for Snr spaces instead of ℓnr . This is
also true for the estimate (2.8)4 . Of special relevance for upcoming
chapters are the following two particular cases, that we explicitly state
here for future reference:

T2(Sn1 ) = n
1
2 , (log(n)) 1

2 ≤ T2(Sn∞) ≤ c (log(n)) 1
2 , (2.9)

4To adapt the proof above, notice that the Banach-Mazur distance between
Schatten classes also behaves exactly in the same way as in the case of ℓp spaces.
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where c is an independent constant. In the rectangular case Sn,mr , one
realizes that the relevant dimension is given by the minimum between n
and m. More precisely, the following bounds hold:

T2(Sn,m1 ) = min(n,m) 1
2 ,

(log(min(n,m))) 1
2 ≤ T2(Sn,m∞ ) ≤ c (log(min(n,m))) 1

2 .

2.3 Interpolation of Banach spaces
The content of previous sections will be enough to develop Chapter

3, but later on, in Chapter 4, we will make use of some more involved
constructions for which we give a basic introduction in the following two
sections.

Interpolation methods have proven very useful in many areas of
functional analysis and their appearance in this thesis is motivated
by the good behaviour of type constants with respect to them. Here
we restrict ourselves to the study of the complex interpolation space
(X0, X1)θ for 0 < θ < 1 and finite dimensional Banach spaces X0, X1.
We decided to avoid a full treatment of the rather cumbersome definition
of this space and focus on stating some natural properties it displays.
That is enough for the scope of this work. We redirect the interested
reader to the classical references [9, 116].

In our case, in which X0, X1 are finite dimensional, the space
(X0, X1)θ can always be constructed. In the general case, for arbitrary
Banach spaces, if we still can define (X0, X1)θ we say that the couple
(X0, X1) is compatible5, so we fix this terminology from now on. For
the sake of concreteness, here we will consider the case in which X0,
X1 and (X0, X1)θ are algebraically the same space but endowed with
different norms. The complex interpolation method, that assigns to any
compatible couple (X0, X1) the space (X0, X1)θ, is an exact interpolation
functor of exponent θ. This means that it satisfies the following:

5Technically, this condition is usually stated as the requirement that X0 and X1
embed continuously in a common Hausdorff topological vector space.
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Theorem 2.7 ([9], Thm. 4.1.2.). For any compatible couples (X0, X1),
(Y0, Y1), and any linear map f : (X0, X1)θ → (Y0, Y1)θ:∥∥∥f : (X0, X1)θ → (Y0, Y1)θ

∥∥∥ ≤
∥∥∥f : X0 → Y0

∥∥∥1−θ ∥∥∥f : X1 → Y1

∥∥∥θ.
Now we turn our attention to the classical sequence ℓp spaces. Inter-

polation in this case becomes remarkably natural. We have the isometric
identification ℓp = (ℓ∞, ℓ1)1/p for any 1 ≤ p ≤ ∞. Indeed, such an
identification follows in a much more general setting, as the following
theorem states:

Theorem 2.8 ([9], Thm. 5.1.2.). For any compatible couple (X0, X1),
p0, p1 ∈ [1,∞] and θ ∈ (0, 1) the following identification is isometric:(

Lp0(X0), Lp1(X1)
)
θ

= Lp

(
(X0, X1)θ

)
,

where 1
p

= 1−θ
p0

+ θ
p1

.

Identifying ℓp(X) spaces as particular vector valued Lebesgue spaces
Lp(X), we can translate the previous statement also to this case:(

ℓp0(X0), ℓp1(X1)
)
θ

= ℓp
(
(X0, X1)θ

)
, (2.10)

where 1
p

= 1−θ
p0

+ θ
p1

.
Pleasantly, an analogue result for Schatten classes is also true.

Theorem 2.9 ([92], Cor. 1.4.). For p0, p1 ∈ [1,∞] and θ ∈ (0, 1) the
following identification is isometric:

(Sp0 , Sp1)θ = Sp,

where 1
p

= 1−θ
p0

+ θ
p1

.

Our interest now turns into the interaction between type and inter-
polation. We state the following general known result:

Proposition 2.10. Let X0, X1 be an interpolation couple, where Xi has
type pi for some 1 ≤ pi ≤ 2, i = 0, 1. Let 0 < θ < 1 and 1 < p < 2 be
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such that 1
p

= 1−θ
p0

+ θ
p1

. Then,

Tp ((X0, X1)θ) ≤ (Tp0(X0))1−θ (Tp1(X1))θ .

The proof follows easily from the interpolation properties of vector
valued ℓp and Lp spaces. We decided to include a simple proof next.

Proof. As said in Section 2.2, the type-p constant of a Banach space X
can be understood as the norm of the mapping:

Rad : ℓp(X) −→ L2(X)
(xi)i 7→ ∑

i εi xi
,

where {εi}i are i.i.d. Rademacher random variables and

∥
∑
i

εi xi∥L2(X) :=
(
Eε
∥∥∥∑

i

εixi
∥∥∥2

X

) 1
2

.

Then, we write

Tp ((X0, X1)θ) = ∥Rad : ℓp ((X0, X1)θ) −→ L2 ((X0, X1)θ)∥ .

Taking into account the equivalences (Theorem 2.8):

ℓp ((X0, X1)θ) = (ℓp0(X0), ℓp1(X1))θ , L2 ((X0, X1)θ) = (L2(X0), L2(X1))θ ,

we can bound:

∥Rad : ℓp ((X0, X1)θ) −→ L2 ((X0, X1)θ)∥
≤ ∥Rad : ℓp0(X0) −→ L2(X0)∥1−θ ∥Rad : ℓp1(X1) −→ L2(X1)∥θ

= (Tp0(X0))1−θ (Tp1(X1))θ ,

where Theorem 2.7 was used in the first inequality.
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2.4 Operator ideals
In Chapter 4 we will make use of some constructions coming from

the theory of ideals of operators between Banach spaces and tensor
norms. These are nowadays fundamental structures in local Banach
space theory whose origins are traced back to the work of Schatten [103]
and, independently, to Grothendieck’s Résumé [40] – from the point of
view of tensor norms. Later, Pietsch further developed a systematic
theory from the point of view of operator ideals [82]. In this section we
introduce some basic definitions and particular examples that will be
relevant to us. We mainly base the discussion below on references [83, 30],
where the interested reader can find further details. What cannot be
found there is the content of the end of this section, where we introduce
what we have called weak-cb Schatten-von Neumman operators. That is
a notion that arises naturally from the study in Chapter 4 and that, to
the best of our knowledge, did not appear before in the literature. This
class of operators is a natural extension of the classical weak Schatten-
von Neumman operators when elements from operator space theory are
incorporated. It turns out that precisely this new class describes the
basic structures in our study of cheating strategies in Position Based
Cryptography, cf. Chapter 4.

Recall that B(X, Y ) denotes the Banach space of bounded operators
between Banach spaces X and Y . An operator ideal can be thought of
as an assignment α that associates to any pair of Banach spaces X, Y ,
a subspace of B(X, Y ), α(X, Y ), that has the ideal property of being
closed under composition with bounded linear maps. This assignment
is further called a normed operator ideal when it additionally endows
α(X, Y ) with a norm ∥ · ∥α(X,Y ) satisfying the property:

∥T ◦ S ◦R∥α(X0,Y0) ≤ ∥T∥∥S∥α(X,Y )∥R∥, (2.11)

for any T ∈ B(Y, Y0), S ∈ B(X, Y ), R ∈ B(X0, X). Above ∥ · ∥ denotes
the operator norm. When α(X, Y ) is complete w.r.t. the ideal norm we
refer to ir as a Banach operator ideals.

Changing the subject for a moment, we consider now the tensor
product of Banach spaces and the fundamental notion of tensor norm.
Later, we will see that there is an intimate relation between tensor norms



56 Preliminaries II: Banach spaces and operator space theory

and normed operator ideals, as introduced above. We start expanding
on the discussion in Section 1.1.1 of tensor product of vector spaces
in order to include the general infinite dimensional case. With a clear
resemblance to the finite dimensional case, we can define X ⊗ Y as the
vector space of finite linear combinations of elements of the type x⊗ y,
where x ∈ X and y ∈ Y , when the linear structure is determined by the
identities:

(λ1x1 + λ2x2) ⊗ y = λ1 x1 ⊗ y + λ2 x2 ⊗ y,

x⊗ (λ1y1 + λ2y2) = λ1 x⊗ y1 + λ2 x⊗ y2,

for any scalars λ1, λ2 and vectors x, x1, x2 ∈ X, y, y1, y2 ∈ Y .
Now we summarize some customary ways to look at elements in

X ⊗ Y . Firstly, and very importantly for us, an arbitrary tensor u =∑n
i=1 xi ⊗ yi ∈ X ⊗ Y unequivocally defines a map6

fu : X♯ −→ Y
x 7→ ∑n

i=1⟨x|xi⟩ yi.

Therefore, X ⊗ Y can be seen as a subspace of L(X♯, Y ) – it is in fact
the subspace of finite rank operators in L(X♯, Y ). This observation can
be subsumed in the inclusion

X ⊗ Y ⊆ L(X♯, Y ). (2.12)

It is clear that, in a similar way, X ⊗ Y can be also identified with
the space of finite rank operators in L(Y ♯, X).

Apart from that, we can also identify u = ∑n
i=1 xi ⊗ yi ∈ X ⊗ Y with

a bilinear form bu ∈ Bil(X♯ × Y ♯) defined by

bu : X♯ × Y ♯ −→ C
(x, y) 7→ ∑n

i=1⟨x|xi⟩⟨y|yi⟩.

That is, we also have the inclusion

X ⊗ Y ⊆ Bil(X♯ × Y ♯). (2.13)
6Recall that the symbol ♯ denotes the algebraic dual of a vector space.
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When X, Y are, in addition, Banach spaces, one is invited to think
about X ⊗ Y also as a Banach space. However, the normed structure
on the tensor product X ⊗ Y is far from being uniquely determined by
those of X and Y separately, as we show next. A first natural way to set
a norm on X ⊗ Y is endowing L(X∗, Y ) with the operator norm and
promoting the embedding

X ⊗ Y ⊆ B(X∗, Y ),

to an isometry. By these means, X ⊗ Y inherites a norm. This norm is
usually called the injective tensor norm and the resulting Banach space
(after completion when necessary), denoted here as X ⊗ε Y .

In contrast, we can also endow X ⊗ Y with a norm by imposing the
natural condition: for any x ∈ X, y ∈ Y ,

∥x⊗ y∥ ≤ ∥x∥ ∥y∥.

The largest norm that still fulfils this property is given by the following
definition: for any u ∈ X ⊗ Y ,

∥u∥X⊗πY := inf
{∑

i

∥xi∥X∥yi∥Y : u =
∑
i

xi ⊗ yi
}
. (2.14)

This is called the projective tensor norm, and the resulting Banach space
will be denoted here by X ⊗π Y .

It is easy to check that the previous norms satisfy also the metric
mapping property: being α = ε or π, for any Banach spaces X0, X1, Y0,
Y1, and any operators f ∈ B(X,X0), g ∈ B(Y, Y0),

∥f ⊗ g : X ⊗α Y → X0 ⊗α Y0 ∥ ≤ ∥f∥ ∥g∥. (2.15)

More generally, there are several ways to endow X ⊗ Y with a norm
compatible with the local norms on X and Y . We say that an assignment
α that associates to X⊗Y a norm α(X, Y ) for any pair of Banach spaces,
is a tensor norm if it satisfies the following two properties:
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• α is in between of the injective and projective tensor norms, that
is,

for any x ∈ X ⊗α Y, ∥x∥X⊗εY ≤ ∥x∥X⊗αY ≤ ∥x∥X⊗πY ;

• α satisfies the metric mapping property (2.15).

The resulting Banach space in each case is denoted X ⊗α Y . Later on,
in Chapter 4, Section 4.7, we will more generally refer to tensor norms
as norms defined tensorizing consecutively different tensor norms. For
example, if α, α′ are tensor norms, the assignment on any three Banach
spaces X, Y, Z of the norm (X ⊗α Y ) ⊗α′ Z will be called also tensor
norm.

Tensor norms act as basic building blocks that allow us to understand
Banach spaces from a different standpoint, emerging a deeper under-
standing from this shift of perspective. This point is cleanly illustrated
by the following example.

Example 2.11. The tensor product structure of the spaces S1 and S∞.
Recall that S1 and S∞ are subspaces of B(ℓ2, ℓ2). On one hand, S∞
is the norm-closed subspace of bounded compact operators on ℓ2. In
this case, this subspace is the same as the norm closure of the space of
finite rank operators7, but this is nothing else than the definition of the
injective tensor product of ℓ2 with itself, i.e., S∞ ≃ ℓ2 ⊗ε ℓ2.

On the other hand, S1 was defined as the norm-closed subspace of
compact operators with finite ∥ · ∥S1 norm. Remind that this norm
was defined as the ℓ1-sum of singular values. A careful look at (2.14)
particularized to X = ℓ2 = Y reveals that the infimum is attained at the
value ∑i∈N si(f) = ∥f∥S1 . This is easy to show for finite rank operators.
For that, consider the singular value decomposition in the optimization
present in (2.14). The case of arbitrary compact operators follows from
considering a sequence of finite rank operators converging to the original
compact operator.

In conclusion, we have the following very important isometric identi-
fications:

S∞ ≃ ℓ2 ⊗ε ℓ2, S1 ≃ ℓ2 ⊗π ℓ2.
7This can be seen as a consequence of ℓ2 being a space with the approximation

property, see, for instance, [102].
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Now we revisit the relation (2.12) between tensor products and
spaces of operators to remark that tensor norms and Banach operator
ideals are in fact two sides of the same coin. Under the identification
(2.12) the metric mapping property is precisely the ideal property (2.11)
understood at the level of tensor products. In fact, in the category
of finite dimensional Banach spaces, tensor norms and operator ideals
are in one-to-one correspondence. As usual, things become subtler in
the infinite dimensional case, although a tight relation between both
notions still exists in this case, see [30, Section 17] for further information.
Based on that, we will tend to present our results making explicit the
underlying tensor product structure, although sometimes, especially in
this preliminary chapter, it will be more natural to look at some Banach
spaces as operator ideals.

Apart from the injective and projective norms introduced before,
another classical tensor norm that will briefly appear in Chapter 4 is
the 2-summing norm: the space π2(X∗, Y ) is the space of operators
f ∈ B(X∗, Y ) such that

∥f∥π2(X∗,Y ) :=
∥∥∥Id ⊗ f : ℓ2 ⊗ε X

∗ → ℓ2(Y )
∥∥∥ < ∞. (2.16)

According to the notation set before, we can also refer to this Banach
space as X ⊗π2 Y .

In the next few lines, we restrict ourselves to spaces of operators
between Hilbert spaces. In this setting, let us recall the Schatten classes
introduced in Section 2.1.1, denoted as Sp(H) for 1 ≤ p ≤ ∞. These
spaces satisfy the ideal property (2.11), although they are not Banach
operator ideals in the sense above: Schatten classes endow with a norm
any pair of Hilbert spaces but not arbitrary Banach spaces. A way to
generalize Schatten classes to spaces of linear maps between arbitrary
Banach spaces is provided by weak Schatten-von Neumman operators,
as defined next:

Definition 2.12. Given an operator f : X → Y and 1 ≤ p ≤ ∞ we say
that f is of weak Schatten-von Neumann type ℓp if

∥f∥Sw
p (X,Y ) := sup


∥∥∥∥(si(g ◦ f ◦ h)

)
i

∥∥∥∥
ℓp

:
∥g : Y → ℓ2∥ ≤ 1
∥h : ℓ2 → X∥ ≤ 1

 < ∞,
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where (si(g ◦ f ◦ h)
)
i

is the sequence of singular values of the operator
g ◦ f ◦ h : ℓ2 −→ ℓ2.

We denote by Sw
p (X, Y ) the space of operators f : X −→ Y of weak

Schatten-von Neumann type ℓp. Sw
p (X, Y )the space of operators of weak

Schatten-von Neumann type ℓp from X into Y

See e.g. [83] for a discussion on the properties of these spaces. Here,
Definition 2.12 serves us to motivate the following class of operators that
has appeared in the study of strategies for Position Based Cryptography
– Chapter 4 – and that seems to be new in the literature. Its definition,
while based on Definition 2.12, incorporates elements of the theory of
operators spaces. Moreover, while this space of operators does not satisfy
the ideal property (2.11) it does satisfy an equivalent ideal property in the
category of operator spaces, underlining the fact that this construction
belongs more naturally to this latter category. For the definition, recall
that R and C denote the row and column operator spaces over the
separable Hilbert space ℓ2:

Definition 2.13. Given an operator between operator spaces f : X → Y
and 1 ≤ p ≤ ∞ we say that f is of weak-cb Schatten-von Neumann type
ℓp if

∥f∥Sw−cb
p (X,Y ) := sup


∥∥∥∥ (si (g ◦ f ◦ h))i

∥∥∥∥
ℓp

:

∥∥∥ g : Y −→ C
∥∥∥
cb

≤ 1∥∥∥h : R −→ X
∥∥∥
cb

≤ 1


< ∞,

where (si(g ◦ f ◦ h)
)
i

is the sequence of singular values of the operator
g ◦ f ◦ h : ℓ2 −→ ℓ2.

We denote by Sw−cb
p (X, Y ) the space of operators f : X −→ Y of

weak-cb Schatten-von Neumann type ℓp.

It is straightforward to see that ∥ · ∥Sw−cb
p (X,Y ) is in fact a norm. The

following ideal property also follows easily from the previous definition:

Proposition 2.14. Given operator spaces X0, Y0, X, Y and elements
f ∈ CB(Y, Y0), g ∈ Sw−cb

p (X, Y ), h ∈ CB(X0, X):

∥f ◦ g ◦ h∥Sw−cb
p (X0,Y0) ≤ ∥f∥cb ∥g∥Sw−cb

p (X,Y ) ∥h∥cb.
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Notice the appearance of the completely bounded norm in contrast
with (2.11).

Proof of Proposition 2.14. We only need to explicit Definition 2.13 for
f ◦ g ◦ h ∈ L(X0, Y0) – for notational convenience, we restate the ℓp sum
of the singular value of the operator involved as the Sp norm of that
operator:

∥f ◦ g ◦ h∥Sw−cb
p (X0,Y0) = sup ∥r ◦ f ◦ g ◦ h ◦ s∥Sp

= ∥f∥cb∥h∥cb sup
∥∥∥∥
(
r ◦ f
∥f∥cb

)
◦ f ◦

(
h ◦ s
∥h∥cb

)∥∥∥∥
Sp

.

The supremum (in both lines) is taken over maps r ∈ ball(CB(Y0, C)),
s ∈ ball(CB(R,X0)). Notice that, thanks to the normalization in the
second line above, r◦f

∥f∥cb
∈ ball(CB(Y,C)) and h◦s

∥h∥cb
∈ ball(CB(R,X)).

Therefore, the previous expression is upper bounded by

∥f∥cb∥h∥cb sup ∥r ◦ g ◦ s∥Sp ,

where now the supremum runs over maps r ∈ ball(CB(Y,C)), s ∈
ball(CB(R,X)). However, this is nothing but ∥f∥cb∥h∥cb∥g∥Sw−cb

p (X,Y ),
which is the stated bound.

Next, we look at the relation between Sw−cb
p (X, Y ) and some other

more standard norms. In first place, we can readily notice that, since ball
(CB(X, Y ))⊆ball(B(X, Y )) for any operator spaces X, Y , the following
inequality holds for any 1 ≤ p ≤ ∞ and any f ∈ Sw−cb

p (X, Y ):

∥f∥Sw−cb
p (X,Y ) ≤ ∥f∥Sw

p (X,Y ). (2.17)

A bit less obvious is the following relation with the interpolation
space (X ⊗ε Y,X ⊗π Y ) 1

p
.

Proposition 2.15. Given finite dimensional operator spaces X, Y , for
any 1 ≤ p ≤ ∞ and any f ∈ L(X, Y ),

∥f∥Sw−cb
p (X,Y ) ≤ ∥f∥Sw

p (X,Y ) ≤ ∥f∥(X∗⊗εY,X∗⊗πY ) 1
p

.
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Proof. We have already established the first inequality in previous com-
ments. Therefore we focus on the second inequality.

According to the definition of Sw
p (X, Y ), Definition 2.12, we can

write:

∥f∥Sw
p (X,Y ) = sup

g∈ball(B(Y,ℓ2))
h∈ball(B(ℓ2,X))

∥g ◦ f ◦h∥Sp = sup
g∈ball(B(Y,ℓ2))
h∈ball(B(ℓ2,X))

∥g ◦ f ◦h∥(S∞,S1) 1
p

,

where we have used Theorem 2.9 to state the last equality.
The map g ◦ f ◦ h : ℓ2 → ℓ2 can be interpreted, as a tensor, as the

image of the mapping h∗ ⊗ g : X∗ ⊗ Y → ℓ2 ⊗ ℓ2 acting on f . Then, the
previous expression can be written as:

∥f∥Sw
p (X,Y ) = sup

g∈ball(B(Y,ℓ2))
h∈ball(B(ℓ2,X))

∥(h∗ ⊗ g)(f)∥(S∞,S1) 1
p

≤ ∥f∥(X∗⊗εY,X∗⊗πY ) 1
p

sup
g∈ball(B(Y,ℓ2))
h∈ball(B(ℓ2,X))

∥h∗ ⊗ g : (X∗ ⊗ε Y,X
∗ ⊗π Y ) 1

p
→ (S∞,S1) 1

p
∥.

Now, it only remains to show that for any contractions h∗ : X∗ → ℓ2,
g : Y → ℓ2

∥h∗ ⊗ g : (X∗ ⊗ε Y,X
∗ ⊗π Y ) 1

p
→ (S∞,S1) 1

p
∥ ≤ 1.

This follows from the interpolation property, Theorem 2.7:

∥h∗ ⊗ g : (X∗ ⊗ε Y,X
∗ ⊗π Y ) 1

p
→ (S∞,S1) 1

p
∥

≤ ∥h∗ ⊗ g : X∗ ⊗ε Y → S∞∥
p−1

p ∥h∗ ⊗ g : X∗ ⊗π Y → S1∥
1
p ,

together with the understanding of S∞ and S1 as the tensor products
ℓ2 ⊗ε ℓ2 and ℓ2 ⊗π ℓ2, respectively. This allows us to bound

∥h∗ ⊗ g : X∗ ⊗ε Y → S∞∥ ≤ ∥h∗ : X∗ → ℓ2∥ ∥g : Y → ℓ2∥ ≤ 1,
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thanks to the metric mapping property displayed by the injective tensor
norm. Analogously

∥h∗ ⊗ g : X∗ ⊗π Y → S1∥ ≤ ∥h∗ : X∗ → ℓ2∥ ∥g : Y → ℓ2∥ ≤ 1.

Hence, the claim in the statement follows.

The last remark we make here concerns with the more specific setting
that appears in Chapter 4. There, we will be interested in the case
in which p = 2 and X∗ = Y = S

n,m
1 , that is, we study the space

Sw−cb
2 (Sn,m∞ ,Sn,m1 ). Equivalently, we use next the notation S

n,m
1 ⊗Sw−cb

2
S
n,m
1 . The lemma is a simple characterization of the norm in Definition

2.13 that brings it closer to the setting analysed later on:
Lemma 2.16. Given a tensor f ∈ S

n,m
1 ⊗ S

n,m
1 , where S

n,m
1 is endowed

with its natural o.s.s., we have that:

∥f∥S
n,m
1 ⊗

Sw−cb
2

S
n,m
1

= sup
r∈N

g,h∈ball(Snr,m
∞ )

∥∥∥(h⊗ g)(f)
∥∥∥
ℓr

2
2
.

Above, the action of h = ∑n
i=1

∑r
j=1

∑m
l=1 hijl|ij⟩⟨l| ∈ Snr,m∞ on a tensor

t = ∑n
i=1

∑m
j=1 tij|i⟩⟨j| ∈ S

n,m
1 is defined by

h(t) :=
r∑
j=1

(
n∑
i=1

m∑
l=1

hijltijl

)
|j⟩ ∈ ℓr2.

Proof. The claim follows from the following observations:
• a standard argument shows that the supremum in Definition 2.13

can be taken over finite dimensional Cr and Rr, where r ∈ N is
arbitrarily large;

• for an operator between Hilbert spaces, as g ◦ f ◦ h in Definition
2.13, the ℓ2-sum of the singular values coincide with the Hilbert-
Schmidt norm of the operator, which is the same as the Euclidean
norm of the associated tensor. In our case, with a slight abuse of
notation, the relevant tensor is (h⊗ g)(f);

• finally, when we set X = Sn,m∞ , Y = S
n,m
1 in Definition 2.13,

the optimization is carried over elements g ∈ ball(CB(Sn,m1 , Cr))
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ans h ∈ ball(CB(Rr,S
n,m
∞ )). But now, it is again a standard

result that the following are complete isometries [34, Section 9.3]:
CB(Sn,m1 , Cr) ≃ Snr,m∞ ≃ CB(Rr,S

n,m
∞ ). The claim of the lemma

is obtained acting with g, h viewed as elements in ball(Snr,m∞ ) as
defined in the statement.



Chapter 3

Resource quantification for
the no-programming theorem

This chapter reflects joint work with C. Palazuelos and D. Pérez-
García. In particular, its content is mainly based on the publication
[57].

The no-programming theorem prohibits the existence of a Universal
Programmable Quantum Processor. This statement has several impli-
cations in relation to quantum computation, but also to other tasks
of quantum information processing, making this construction a central
notion in this context. Nonetheless, it is well known that even when
the strict model is not implementable, it is possible to conceive of it in
an approximate sense. Unfortunately, the minimal resources necessary
for this aim are still not completely understood. In this chapter, we
investigate quantitative statements of the theorem, improving exponen-
tially previous bounds on the resources required by such a hypothetical
machine. The results presented here are based on a new connection
between quantum channels and embeddings between Banach spaces that
allows us to use classical tools from geometric Banach space theory in a
clean and simple way. More concretely, we characterize Universal Pro-
grammable Quantum Processors as approximate isometric embeddings
of the Banach space Sd1 into subspaces of Sm∞.

We summarise the contents of this chapter. After setting the problem
we study and providing an overview of previous related work in Section
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3.1, in Section 3.2 we outline the results that will be obtained here.
Section 3.3 is devoted to introducing the necessary formal definitions. In
Section 3.4 the characterization of Universal Programmable Quantum
Processors as approximate isometric embeddings is obtained. With that,
the main results of this chapter are obtained in Section 3.5. We finish
with some final remarks in Section 3.6.

3.1 Background and previous work
Since the early days of Quantum Information Theory, no-go theorems

have served as guideline in the search of a deeper understanding of
quantum theory as well as for the development of applications of quantum
mechanics to cryptography and computation. They shed light on those
aspects of quantum information which make it so different from its
classical counterpart. Some renowned examples are the no-cloning [41,
32, 70, 123, 63], no-deleting [75] and no-programming [72] theorems.

The no-programming theorem concerns with the so-called Universal
Programmable Quantum Proccesor, UPQP1. A UPQP is a universal
machine able to perform any quantum operation on an arbitrary input
state of fixed size, programming the desired action in a quantum register
inside the machine (a quantum memory). It can be understood as the
quantum version of a stored-program computer. For the sake of simplicity,
we will consider programmability of unitary operations, although this
is not really a restrictive assumption2. With this figure of merit, the
no-programming theorem is stated as the non-existence of a UPQP using
finite dimensional resources. The key observation made in [72] is that in
order to program two different unitaries we need two orthogonal program
states. Then, the infinite cardinality of the set of unitary operators, even
in the simplest case of a qubit, leads immediately to the requirement
of an infinite dimensional memory. Similar consequences follow for the
related concept of Universal Programmable Quantum Measurements
[33, 36, 29], which are machines with the capability to be programmed
to implement arbitrary quantum measurements.

1Originally called Programmable Quantum Gate Array [72].
2Even in this case we could program general quantum channels implementing a

unitary first and tracing out a part of the output.
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From a conceptual point of view, the no-programming theorem points
out severe limitations in how universal quantum computation can be
conceived. However, these limitations can be surpassed by relaxing the
requirements on the model of UPQP. In particular, one can consider
programmable devices working noisily or probabilistically. Indeed, in
the last two decades, several proposals of such approximate UPQPs
have appeared in the literature [72, 54, 42, 13, 8, 122, 45]. Thus, it
is interesting to look for more quantitative statements about quantum
programmability. To put it in explicit words, we worry here about the
relation between the memory size of an approximate UPQP, m, and both,
the accuracy of the scheme, ϵ, and the size of the input register in which
we want to implement the program, d. Despite their relevance, these
relations are still poorly understood. Existing results are summarized in
Table 3.1.

3.2 Summary of results
In this chapter we provide new upper and lower bounds which sub-

stantially clarify the ultimate resources required by approximate UPQPs.
See the second column in Table 3.1. Our results entail exponential
improvements over previously known results, narrowing significantly the
optimal dependence of m with parameters ϵ and d separately. In fact,
the lower bound provided by Theorem 3.11 is nearly saturated for fixed
ϵ by the performance of Port Based Teleportation, which was originally
conceived as a UPQP [45]. On the other hand, in Proposition 3.9 we
deduce an upper bound that saturated almost optimally the scaling with
ϵ of the bound from [80].

Our proofs are based on a connection with geometric functional
analysis that we uncover. The use of techniques from this branch of
functional analysis, in particular, from Banach space theory and operator
spaces - as it is the case here - have proven to be very fruitful in the study
of different aspects of quantum information such as entanglement theory,
quantum non-locality and quantum channel theory (see [3, 74] and
references therein). We find the path to put forward this mathematical
technology to the framework studied here. More precisely, we characterize
UPQPs as isometric embeddings between concrete Banach spaces which
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Previous results This thesis

Lower
bounds

m ≥ K(1
d
) d+1

2
(

1
ϵ

) d−1
2

m ≥ K
(
d
ϵ

)2

[80]
[62]

m ≥ 2
(1−ϵ)

K d− 2
3 log d [Th.3.11]

Upper
bounds m ≤ 2

4d2 log d

ϵ2 [45, 5, 27] m ≤
(

K
ϵ

)d2

[Prop.3.9]

Table 3.1 Best known bounds for the optimal memory size of UPQPs in
comparison with the results presented here. Above, K denotes universal
constants, not necessarily equal between them. Let us point out that the
bound from [80] was deduced for programmable measurements instead of
UPQPs. However, since a UPQP can always be turned into a Universal
Programmable Quantum Measurement, this lower bound also applies
for the case studied here. Notice that the alluded bound, although it
enforces a strong scaling of m with ϵ, becomes trivial for large input
dimension d. It is in this regime where the bound from [62] is more
informative, but still exponentially weaker than the bound provided by
Theorem 3.11.
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are in addition complete contractions (considering some operator space
structure). Once this characterization is established, the results about
UPQPs are deduced comparing the type-2 constant of the spaces involved
in the embeddings. We think that the general ideas presented here and
potential generalizations of them can provide further insights in other
contexts related with quantum computation and cryptography. A first
step in this direction will be taken in Chapter 4, where some of the ideas
and techniques of the present chapter are used in the study of Position
Based Cryptography.

3.3 Universal Programmable Quantum
Processors, UPQPs

We will consider repeatedly a d-dimensional complex Hilbert space
ℓd2 as input state space, and an ancillary m-dimensional complex Hilbert
space ℓm2 as the memory of the programmable device under consideration.
We recall that logarithms are taken in base 2.

We start formally defining the objects we study later on. Firstly, we
provide a rigorous definition for UPQPs:

Definition 3.1. A quantum operation P ∈ CPTP(ℓd2 ⊗ ℓm2 ) is a d-
dimensional Universal Programmable Quantum Processor, UPQPd, if
for every U ∈ U(ℓd2) there exists a unit vector |ϕU⟩ ∈ ℓm2 such that:

Trℓm2 [P (ρ⊗ |ϕU⟩⟨ϕU |)] = UρU †, for every ρ ∈ D(ℓd2).

Essentially, this is the concept of Universal Quantum Gate Array
introduced in [72], and whose impossibility is the content of the no-
programming theorem discovered also there. As we said in the previous
section, the no-programming theorem does not apply if one considers a
relaxation of the previous definition; that is, in the case of approximate
UPQPs. Two notions of approximate UPQPs have been considered in the
literature: probabilistic settings [72, 43], which implement exactly the
desired unitary with some probability of failure, obtaining information
about the success or failure of the procedure; and deterministic UPQPs
[121], which always implement an operation which is close to the desired
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one. Notice that both notions are related, since probabilistic UPQPs can
be also understood as deterministic ones just ignoring the information
about the success or failure of the computation. A natural way to express
these notions of approximation is through the distance induced by the
diamond norm, recall Definition 1.21:

Definition 3.2. Given 0 < ϵ ≤ 1, we say that P ∈ CPTP(ℓd2 ⊗ℓm2 ) is a d-
dimensional ϵ–Universal Programmable Quantum processor, ϵ− UPQPd,
if for every U ∈ U(ℓd2) there exists a unit vector |ϕU⟩ ∈ ℓm2 such that:

1
2
∥∥∥Trℓm2 [P ( · ⊗ |ϕU⟩⟨ϕU |)] − U( · )U †

∥∥∥
⋄

≤ ϵ,

where ∥ · ∥⋄ denotes the diamond norm.

Two illustrative examples of approximate UPQPs are given next:

Example 3.3. Standard teleportation as a (probabilistic) ϵ− UPQPd

[72]. It was observed by Nielsen and Chuang that the celebrated quantum
teleportation protocol can be arranged in a probabilistic UPQP in the
following way: we proceed to teleport a qudit state |ψ⟩ ∈ ℓd2 by means
of a d2 dimensional maximally entangled state |φ⟩ = ∑d2

i=1 |ii⟩ ∈ ℓd2 ⊗ ℓd2.
Now, instead of carrying the usual teleportation protocol we apply the
desired unitary, U ∈ U(ℓd2

2 ), to the part of the resource state receiving
the teleported input, |φ⟩ → |φU⟩ = (idd⊗U)|φ⟩. Then, we continue with
the teleportation protocol but without correcting the output, obtaining
U |ψ⟩ in the second part of the resource state with probability 1

d2 . This
is an ϵ–UPQP with ϵ = 1 − 1

d
.

Example 3.4. Port Based Teleportation [45]. The interesting protocol
of Port Based Teleportation was originally conceived as an approximate
UPQP. Here, an input state |ψ⟩ ∈ ℓd2 is again teleportated by means of a
resource state |φ⟩ ∈ (ℓd2)⊗N ⊗ (ℓd2)⊗N , but now, the correcting operations
after the teleportation consists simply on discarding any of the N d-
dimensional systems of the second part of the resource state except one,
determined by the outcome of a POVM measured at the other side of
the protocol. Taking advantage of the commutativity of the partial trace
applied in the correction step with (iddN ⊗ U⊗N), we can encode the
desired unitary U ∈ U(ℓd2

2 ) – before the teleportation is performed – in
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the state |φU⟩ = (iddN ⊗ U⊗N )|φ⟩. The result is a noisy version of U |ψ⟩
that provides us with an ϵ−UPQPd where the relation between the error
ϵ and the dimension of the resource space is m = O

(
exp(d2 log d/ϵ2)

)
[5, 27].

Notice that in the first case, the resources used are remarkably
efficient. The counterpart is that the success probability (accuracy of the
setting) is rather low. In contrast, in the second example the accuracy
can be arbitrarily improved at the prize of increasing the dimension of
the resource state. These examples show the rich landscape of behaviours
displayed by UPQPs, which turns the understanding of these objects
challenging. The results presented here shed new light on them.

3.4 UPQPs and ϵ-embeddings
In this section we establish the key connection between ϵ− UPQPd

and isometric embeddings between Banach spaces, that is at the heart
of the proofs of our main results.

The crucial ingredient is the characterization of UPQPd as isometric
embeddings Φ : Sd1 ↪→ Sm∞ with completely bounded norm ∥Φ∥cb ≤ 1,
i.e., complete contractions. For ϵ− UPQPd, the characterization holds
distorting the isometric property of the embedding with some disturbance
δ(ϵ). This characterization is obtained in Theorems 3.5 and 3.6 below.

The appearance of the completely bounded norm here is due to
the completely isometric identification S∞(ℓd2 ⊗ ℓm2 ) ≃ CB

(
Sd1 ,S

m
∞

)
.

This constitutes the starting point in establishing the characterization
proved in this section. The identification is established putting any
V ∈ S∞(ℓd2 ⊗ ℓm2 ) in one-to-one correspondence with the linear map3

ΦV : Sd1 ↪−→ Sm∞
σ 7→ ΦV (σ) := Trℓd2V (σT ⊗ Idℓm2 ). (3.1)

Given this, the completely bounded norm of ΦV can be simply regarded
as ∥ΦV ∥cb = ∥V ∥S∞(ℓd2⊗ℓm2 ), see [34, Proposition 8.1.2].

3Algebraically, this is precisely the identification between tensors and linear maps
discussed in Chapter 2, (2.12) (applied twice). In this case we have an identification
rather than an inclusion because we are dealing here with finite dimensional spaces.
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The rest of this section is devoted to prove Theorems 3.5, 3.6. Firstly,
in Theorem 3.5 we associate to any ϵ−UPQPd an approximate isometric
embedding Φ : Sd1 → Sm∞.

Theorem 3.5. Every unitary ϵ− UPQPd, given by P( · ) = V ( · )V † ∈
CPTP(ℓd2 ⊗ ℓm2 ), defines a completely contractive map ΦV : Sd1 −→ Sm∞
such that

∥σ∥Sd
1

≥ ∥ΦV (σ)∥Sm
∞ ≥ (1 − ϵ)1/2∥σ∥Sd

1

for every σ ∈ Sd1 . Such a map is called a completely contractive ϵ-
embedding.

Proof. Given a unitary channel P( · ) = V ( · )V †, we consider the map
ΦV : Sd1 −→ Sm∞ defined by

ΦV ( · ) := Trℓd2V ( ·T ⊗ Idℓm2 ).

The completely bounded norm of ΦV : Sd1 −→ Sm∞ coincides with
∥V ∥Sdm

∞
= 1. Thus, ΦV is completely contractive. In addition, since

∥ΦV : Sd1 → Sm∞∥ ≤ ∥ΦV : Sd1 → Sm∞∥cb = 1,

we immediately deduce that ∥ΦV (σ)∥Sm
∞ ≤ ∥σ∥Sd

1
for every σ ∈ Sd1 .

For the second inequality in the statement, we elaborate on the norm:∥∥∥ΦV (σ)
∥∥∥
Sm

∞
= sup

∥∥∥Trℓd2
[
V (σT ⊗ Idℓm2 )

]
|ξ⟩
∥∥∥
ℓm2
,

where the supremum is taken over unit vectors |ξ⟩ ∈ ℓm2 . Now, we consider
the singular value decomposition of σT = ∑

i µi|ψi⟩⟨γi|, being (|ψi⟩)di=1,
(|γi⟩)di=1 orthonormal bases of ℓd2. Therefore |γi⟩ = U |ψi⟩ for some unitary
U . Furthermore, we can take µi ≥ 0 and then ∑i µi = ∥σT∥Sd

1
= ∥σ∥Sd

1
,

which can be assumed to be, obtaining the general case by homogeneity.
Besides, it is convenient to express σT as

σT =
∑
i

µi|ψi⟩⟨ψi|U †

= TrK
(∑

i

√
µi|i⟩K|ψi⟩

)(∑
j

√
µj⟨j|K⟨ψj|U †

)
= TrK|ψ⟩⟨γ|, (3.2)
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where we have considered a new auxiliary Hilbert space K and have
defined |ψ⟩ := ∑

i
√
µi|i⟩K|ψi⟩, |γ⟩ := (IdK ⊗ U)|ψ⟩. Now, we are ready

to rewrite∥∥∥ΦV (σ)
∥∥∥
Sm

∞

= sup
|ξ⟩∈ball(ℓm2 )

∥∥∥TrK⊗ℓd2

[
(IdK ⊗ V )(|ψ⟩⟨γ| ⊗ Idℓm2 )

]
|ξ⟩
∥∥∥
ℓm2

= sup
|ξ⟩∈ball(ℓm2 )

[
Tr
[
(|γ⟩⟨γ| ⊗ Idℓm2 )(IdK ⊗ V )(|ψ⟩⟨ψ| ⊗ |ξ⟩⟨ξ|)(IdK ⊗ V †)

]] 1
2

≥
[
Tr
[
(|γ⟩⟨γ| ⊗ Idℓm2 )(IdK ⊗ V )(|ψ⟩⟨ψ| ⊗ |ξU⟩⟨ξU |)(IdK ⊗ V †)

]] 1
2
,

(3.3)

where |ξU⟩ is the state associated to U in the definition of ϵ− UPQPd,
Definition 3.2.

At this point, we appeal to the operational interpretation of the
distance induced by the diamond norm given by Theorem 1.22. In fact, it
turns out that (3.3) can be understood in terms of the optimal probability
p∗
dist of distinguishing the channel P|ξU ⟩( · ) := Trℓm2 V ( · ⊗ |ξU⟩⟨ξU |)V †

from the ideal channel U( · )U †. We claim that

∥ΦV (σ)∥Sm
∞ ≥

√
2(1 − p∗

dist)1/2. (3.4)

With this estimate at hand, we can easily finish our proof since, according
to the operational characterization of the diamond distance, Theorem
1.22, we obtain

∥∥∥ΦV (σ)
∥∥∥
Sm

∞
≥
(
1 − 1

2
∥∥∥P|ξU ⟩( · ) − U( · )U †

∥∥∥
⋄

)1
2 ≥ (1 − ϵ)

1
2 .

To finish our proof, let us show claim (3.4). To this end, we recall the
operational meaning of p∗

dist. A strategy to distinguish between channels
P|ξU ⟩( · ) and U( · )U † consists on: first, applying the channel received to
a larger system K ⊗ ℓd2 prepared in a state of our choice, ρ; and then,
measuring a dichotomic POVM to try to distinguish between states
IdK ⊗ P|ξU ⟩(ρ) and (IdK ⊗ U) ρ (IdK ⊗ U †). Using such a strategy, we
succeed at correctly distinguishing between given channels with some
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probability. p∗
dist is the supremum of that probability when optimizing

over auxiliary spaces K, states ρ and distinguishing POVMs. Therefore,
p∗
dist can be lower bounded by the success probability attained by the

particular strategy specified by:

• the state |ψ⟩⟨ψ| ∈ D(K ⊗ ℓd2) defined in (3.2);

• the POVM {|γ⟩⟨γ|, IdK⊗ℓd2
− |γ⟩⟨γ|}, where |γ⟩ ∈ K ⊗ ℓd2 was also

defined in (3.2).

Explicitly, we have that

p∗
dist ≥ 1

2Tr
[
|γ⟩⟨γ| (IdK ⊗ U)(|ψ⟩⟨ψ|)(IdK ⊗ U †)

]
+ 1

2Tr
[
(Id − |γ⟩⟨γ|) (IdK ⊗ P|ξU ⟩(|ψ⟩⟨ψ|))

]
= 1 + 1

2Tr
[
|γ⟩⟨γ|

(
IdK ⊗ P|ξU ⟩(|ψ⟩⟨ψ|)

)]
,

where we can recognize the last expression in (3.3) recalling that P|ξU ⟩( · ) =
Trℓm2

[
V ( · ⊗ |ξU⟩⟨ξU |)V †

]
. Claim (3.4) follows now straightforwardly.

The previous theorem is the basis for our main results about the
performance of UPQPs, that will be presented in Section 3.4. Before
that, we find next a converse to Theorem 3.5 that promotes the relation
between UPQPs and ϵ-embeddings (in the sense of Theorem 3.5) to a
characterization.

Theorem 3.6. Every completely contractive map Φ : Sd1 −→ Sm∞ such
that

∥σ∥Sd
1

≥ ∥Φ(σ)∥Sm
∞ ≥ (1 − δ)∥σ∥Sd

1

for every σ ∈ Sd1 , defines an ϵ − UPQPd with ϵ =
√

2δ and memory
dimension at most m2.

The statement can be proved combining the two lemmas we state
next, for which we fix two finite dimensional Hilbert spaces H, K.

To motivate the first one, we begin with an elementary observation.
Let H be a finite dimensional Hilbert space. Given an arbitrary tensor
σ ∈ S1(H) and considering its polar decomposition σ = ρU †, being ρ ≥ 0
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and U a unitary operator, we can find a norming element for σ that is
independent of its positive part, ρ. In particular, the norming element is
simply given by U . That is, the norm of σ in S1(H) can be computed as
∥σ∥S1(H) = ⟨U, σ⟩ = Tr ρ. The next lemma shows that this property is
approximately preserved by ϵ-embeddings Φ : S1(H) → S∞(K).

Lemma 3.7. Consider an injective linear map Φ : S1(H) → S∞(K) with
bounded inverse Φ−1 when restricted to its range . Then, for any unitary
U ∈ U(H) there exists an element ΘU ∈ S1(K) with norm one satisfying
that

∥Φ∥ Tr ρ ≥ ⟨ΘU ,Φ(ρU †)⟩ ≥ 1
∥Φ−1∥

Tr ρ,

for any positive element ρ ∈ S1(H). Above, ∥Φ−1∥ :=
∥∥∥Φ−1|Φ(S1(H)) :

Φ(S1(H)) ⊆ S∞(K) → S1(H)
∥∥∥.

Proof. Consider a unitary U ∈ U(H). In virtue of the duality relation
S1(H)∗ = S∞(H) we can identify U with a linear map,

u : S1(H) −→ C
σ 7→ u(σ) := ⟨UT, σ⟩ = Tr[Uσ]

with norm one.
Given that, consider the map u◦Φ−1 : Φ(S1(H)) ⊆ S∞(K) → C, that

already fulfils:

u ◦ Φ−1(Φ(ρU †)) = Tr ρ, for any 0 ≤ ρ ∈ S1(H).

Moreover, the norm of this map is upper bounded by ∥u ◦ Φ−1∥ ≤
∥u∥ ∥Φ−1∥ = ∥Φ−1∥.

To finish the proof, we extend u ◦ Φ−1 to a map acting on the full
space S∞(K), ũ ◦ Φ−1 : S∞(K) → C. Such an extension is guaranteed by
the Hahn-Banach theorem, that also provides us with the norm of the
extended map: ∥ũ ◦ Φ−1 : S∞(K) → C∥ = ∥u ◦ Φ−1 : Φ(S1(H)) → C∥ ≤
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∥Φ−1∥. This construction can be summarized in the following diagram:

S1(H) Φ(S1(H)) ⊆ S∞(K)

C

Φ

u u◦Φ−1

ũ◦Φ−1

Again, due to the duality S∞(K)∗ ≃ S1(K), ũ ◦ Φ−1/∥ũ ◦ Φ−1∥ can
be identified with an element in the unit sphere of S1(K). This is the
norming element ΘU that we wanted.

The second lemma associates to any linear map Φ : S1(H) → S∞(K)
with completely bounded norm one a channel with some programmability
properties. Concretely:

Lemma 3.8. Given a linear map Φ : S1(H) → S∞(K) such that
∥Φ : S1(H) → S∞(K)∥cb = 1, there exists an associated channel PΦ ∈
CPTP(H ⊗ K) verifying

1
2
∥∥∥TrK[PΦ( · ⊗ |ξ⟩⟨ξ|)] − U( · )U †

∥∥∥
⋄

≤ sup
ρ∈ball(S1(H))

: ρ≥0

(
1 −

∥∥∥Φ(ρU †) |ξ⟩
∥∥∥2

K

) 1
2

for any unitary U ∈ U(H) and any unit vector |ξ⟩ ∈ K.

Proof. We start constructing a channel associated to Φ. In view of the
completely isometric identification CB(S1(H),S∞(K)) ≃ S∞(H ⊗ K),
we can identify Φ with a norm one operator Φ̂ ∈ S∞(H ⊗ K) in such a
way that

Φ( · ) = TrHΦ̂( · ⊗ IdK).

Furthermore, the Russo-Dye Theorem provides us with a decomposition
of Φ̂ as a convex combination of at most dim H dim K unitaries:

Φ̂ =
∑
i∈I

λi Vi, for some unitaries Vi ∈ S∞(H ⊗ K),

where I is an alphabet whose cardinal is no greater than dim H dim K.
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Given that, consider the following unitary operator

V :=
∑
i∈I

Vi ⊗ |i⟩⟨i| ∈ U(H ⊗ K ⊗ HI).

Together with the state |λ⟩⟨λ| := ∑
k,l∈I

√
λkλl |k⟩⟨l| ∈ D(HI), we can

now define the channel:

PΦ( · ) := TrHI V ( · ⊗ |λ⟩⟨λ|)V †.

We prove next that this channel has the property stated in the lemma.
Consider a density matrix ρ ∈ S1(H) with purification |ψ⟩ ∈ H ⊗ H′

such that ρ = TrH′ |ψ⟩⟨ψ|. Consider also a unitary U ∈ U(H) and a unit
vector |ξ⟩ ∈ K. We denote |γ⟩ := U ⊗ IdH′|ψ⟩. We are interested now on
bounding the fidelity F

(
|γ⟩⟨γ|,TrK[PΦ ⊗ IdH′(|ψ⟩⟨ψ| ⊗ |ξ⟩⟨ξ|)]

)
, where

F(|γ⟩⟨γ|, ρ) := (Tr|γ⟩⟨γ| ρ) 1
2 for any positive ρ ∈ S1(H⊗H′). Expanding

on PΦ we have

F
(
|γ⟩⟨γ|,PΦ ⊗ IdH′(|ψ⟩⟨ψ| ⊗ |ξ⟩⟨ξ|)

)
=
(

Tr
[(

|γ⟩⟨γ| ⊗ IdK ⊗ IdHI

)
(
V ⊗ IdH′(|ψ⟩⟨ψ| ⊗ |ξ⟩⟨ξ| ⊗ |λ⟩⟨λ|)V † ⊗ IdH′

)]) 1
2

,

that can be lower bounded by:

≥
(

Tr
[(

|γ⟩⟨γ| ⊗ IdK ⊗ |λ⟩⟨λ|
)

(
V ⊗ IdH′(|ψ⟩⟨ψ| ⊗ |ξ⟩⟨ξ| ⊗ |λ⟩⟨λ|)V † ⊗ IdH′

)]) 1
2

=
(∑

i,j

λiλjTr
[(

|γ⟩⟨γ| ⊗ IdK
)
Vi ⊗ IdH′

(
|ψ⟩⟨ψ| ⊗ |ξ⟩⟨ξ|

)
V †
j ⊗ IdH′

]) 1
2

=
∥∥∥∑

i

λi⟨γ|Vi ⊗ IdH′|ψ⟩|ξ⟩
∥∥∥

K
=
∥∥∥∑

i

λiTrH
[
Vi(ρU † ⊗ IdK)

]
|ξ⟩
∥∥∥

K

=
∥∥∥Φ(ρU †)|ξ⟩

∥∥∥
K
.
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The proof concludes with the following application of the Fuchs-van de
Graaf inequalities [37, Theorem 1]:

1
2

∥∥∥∥TrK[PΦ( · ⊗ |ξ⟩⟨ξ|)] − U( · )U †
∥∥∥∥

⋄

≤ sup
|ψ⟩∈ball(H⊗H′)

H′

(
1 − F

(
|γ⟩⟨γ|,PΦ ⊗ IdH′(|ψ⟩⟨ψ| ⊗ |ξ⟩⟨ξ|)

)2
) 1

2

.

Together with the bound proved before, that is enough to obtain the
claim in the lemma.

Proof of Theorem 3.6. Consider the map Φ : Sd1 → Sm∞ in the statement
having completely bounded norm one (otherwise we could simply divide
Φ by its completely bounded norm). Notice that the hypothesis in the
Theorem implies that ∥Φ−1∥ ≤ 1

1−δ .
We will show that, given Φ, Lemma 3.7 allows us to promote the

channel provided by Lemma 3.8 to an ϵ− UPQPd.
Consider an element σ ∈ Sd1 . Writing down the polar decomposition

σ = ρU †, where ρ ≥ 0 and U is a unitary operator, we can apply Lemma
3.7 to obtain an element ΘU ∈ ball(Sm∞) such that

⟨ΘU ,Φ(σ)⟩ ≥ (1 − δ)∥σ∥S1(H). (3.5)

Next, we carry out a sort of purification of ΘU . Consider the sin-
gular value decomposition of this element, ΘU = ∑

i∈I λi|αi⟩⟨βi| with
a suitable alphabet I of cardinal at most m. Now, we can rewrite
ΘU = TrHI |ξU⟩⟨χU |, where |ξU⟩ := ∑

i∈I λ
1/2
i |αi⟩⊗|i⟩, |χU⟩ := λ

1/2
i |βi⟩⊗

|i⟩ ∈ ball(ℓm2 ⊗ HI). Accordingly, we modify the map Φ to

Φ′ : Sd1 −→ S∞(ℓm2 ⊗ HI)
σ 7→ Φ(σ) ⊗ IdHI .

In terms of this new map, inequality (3.5) transforms into:

⟨ |ξU⟩⟨χU |,Φ′(σ) ⟩ ≥ (1 − δ)∥σ∥S1(H).
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Furthermore, we notice that

⟨ |ξU⟩⟨χU |,Φ′(σ) ⟩ = ⟨χU |Φ′(σ)|ξU⟩ ≤
∥∥∥Φ′(σ)|ξU⟩

∥∥∥
ℓm2 ⊗HI

,

i.e.
∥Φ′(σ)|ξU⟩∥ℓm2 ⊗HI ≥ (1 − δ)∥σ∥S1(H). (3.6)

Additionally, it is straightforward to check that ∥Φ′∥cb = ∥Φ∥cb = 1.
Therefore, Lemma 3.8, applied to the unitary U ∈ U(ℓd2) and the vector
|ξU⟩ ∈ ball(ℓm2 ⊗ HI), provides us with a channel PΦ′ ∈ CPTP(ℓd2 ⊗ ℓm2 ⊗
HI) such that

1
2
∥∥∥Trℓm2 ⊗HI [PΦ′( · ⊗ |ξU⟩⟨ξU |)] − U( · )U †

∥∥∥
⋄

≤ sup
ρ∈ball(S1(H))

: ρ≥0

(
1 −

∥∥∥Φ′(ρU †) |ξU⟩
∥∥∥2

K

) 1
2
.

Inequality (3.6) finishes the proof. For the quantification of the memory
dimension of PΦ′ we recall that dim HI was upper bounded by m.

3.5 Bounds on resources required by
UPQPs

The characterization given in the preceding section leads to a better
understanding of UPQPs. In this section we obtain lower and upper
bounds for the optimal memory dimension of ϵ − UPQPd. These are
summarized in the last column of Table 3.1. Let us begin with the upper
bound:

Proposition 3.9. For any natural number d, and any ϵ > 0, there exists
an ϵ− UPQPd with memory dimension

m ≤
(
C̃

ϵ

)d2

,

being C̃ an independent constant.
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Proof. Although this bound follows easily from an ϵ-net argument, we
find instructive to follow the lines of the proof of Theorem 3.6 in this
simplified case.

We think at the level of embeddings between Banach spaces and
consider the following mapping:

Φ : Sd1 −→ ℓball(Sd
∞)

∞
σ 7→

(
Tr[AσT]

)
A∈ball(Sd

∞)
.

(3.7)

Recall that ball(X) denotes the unit ball of a Banach space X and, for a
given set X , ℓX

∞ denotes the space of bounded functions from X to C
endowed with the supremum norm. Then, it is straightforward to see
that this embedding is isometric. Indeed, noting that Sd∞ is the Banach
dual of Sd1 , the embedding considered is usually recognized as a standard
consequence of the Hahn-Banach theorem [101].

In addition, the fact that ℓX
∞ can be understood as a commutative

C*-algebra guarantees that the bounded and completely bounded norms
of Φ : Sd1 → ℓX

∞ coincide [34, Proposition 2.2.6]. This also allows us to
drop out the awkward transposition in (3.7).

In order to obtain a finite dimensional version of the embedding (3.7),
we discretize the image by means of an ϵ–net on U(ℓd2). That is, we
consider a finite sequence {Ui}|I|

i=1 ⊂ U(ℓd2) such that for every U ∈ U(ℓd2)
there exists an index i ∈ I verifying ∥U − Ui∥Sd

∞
≤ ϵ. Then, we define

the embedding

Φ̃ : Sd1 −→ ℓI
∞ ↪−→ S∞(HI)

σ 7→
(
Tr[Uiσ]

)
i∈I

7→ ∑
i∈I Tr[Uiσ] |i⟩⟨i|,

being HI a complex Hilbert space of dimension |I|.
Now, it is an easy exercise to see that

∥σ∥Sd
1

≥ ∥Φ̃(σ)∥S∞(HI) ≥
(

1 − ϵ2

2

)
∥σ∥Sd

1
,

for every σ ∈ Sd1 . Then, Φ̃ is a particular instance of a map in the
conditions of Theorem 3.6, but its very simple structure allows to get to
the conclusion of the theorem very easily in this case, as we show now.
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The embedding Φ̃ suggests considering the channel P( · ) = V ( · )V †,
with V ∈ U(ℓd2 ⊗ HI) being the controlled unitary:

V =
∑
i∈I

Ui ⊗ |i⟩⟨i|,

where the register HI plays the role of a memory. Finally, with Definition
3.2 in mind, let us compute the diamond distance of this channel (with
a suitable memory state) to any unitary U ∈ U(ℓd2). Since the action of
the considered channel on the input state is unitary, the problem reduces
in this case to compute the usual trace distance

min
i∈I

max
|ψ⟩∈ball(ℓd2)

1
2∥Ui|ψ⟩⟨ψ|U †

i − U |ψ⟩⟨ψ|U †∥1

= min
i∈I

max
|ψ⟩∈ball(ℓd2)

√
1 − |⟨ψ|U †

i U |ψ⟩|2

≤ max
|ψ⟩∈ball(ℓd2)

√√√√1 −
(

1 − ϵ2

2

)2

≤ ϵ.

Therefore, the considered channel, P , is an ϵ− UPQPd with memory
dimension |I|, the cardinality of the ϵ-net considered. This cardinal
can be taken lower than (C̃/ϵ)d2 for some constant C̃ [3, Theorem 5.11],
which is the announced bound.
Observation 3.10. Due to the particular structure of the ϵ− UPQPd

constructed in Proposition 3.9, we notice that the program states encoding
different unitaries of the ϵ–net {Ui}|I|

i=1 are indeed orthogonal. This is in
consonance with the fact discovered by Nielsen and Chuang that, for a
UPQPd (ϵ = 0), any two program states encoding different unitaries must
be orthogonal [72]. Then, given an arbitrary ϵ−UPQPd, it is tempting to
try to reverse the previous ϵ–net argument to find |I| mutually orthogonal
program states, lower bounding in this way the dimension m with the
cardinality |I|. However, in general (ϵ > 0) the orthogonality between
program states is no longer true (one can consider, for example, the
case of Port Based Teleportation [45]). Moreover, previous lower bounds
in [80] and [62] (see Table 3.1) were based precisely on this kind of
ϵ–net arguments which, in the end, essentially reduce to rough volume
estimations. It turns out that the type constants of the Banach spaces
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involved in Theorem 3.5 give a more refined information of their geometry,
as we see next.

The following is the main result of this chapter, the lower bound on
m that appears on the upper-right corner of Table 3.1. It follows from
the combination of Theorem 3.5 with the type properties of the spaces
involved:

Theorem 3.11. Let P ∈ CPTP(Hd ⊗ Hm) be an ϵ− UPQPd. Then

m ≥ 2
(1−ϵ)

3C
d− 2

3 log d

for some positive constant C. Furthermore, if P is a unitary channel
one has m ≥ 2

(1−ϵ)
C

d.

The basic idea to obtain the statement consists on studying ϵ-
embeddings between Sd1 and Sm∞. These two spaces are extremely different
as Banach spaces and it is this intuition which leads us to Theorem
3.11. For simplicity, we restrict to the case where the considered UPQP
is a unitary channel. The general case can be handled by means of a
Stinesprings dilation of the channel under consideration. See Appendix
A.1 for a detailed argument.

Proof (unitary case). A quick argument to study necessary conditions
on the dimensions of the spaces involved is provided considering their
type-2 constants. Since ΦV in Theorem 3.5 maps Sd1 into a subspace
of Sm∞ –with distortion (1 − ϵ)1/2– the following relation between type
constants of these spaces is enforced:

T2(Sd1 ) ≤ 1
(1 − ϵ)

1
2

T2(ΦV (Sd1 )) ≤ 1
(1 − ϵ)

1
2

T2(Sm∞).

The first inequality follows from ΦV being an ϵ-embedding (in the sense
of Theorem 3.5), while the second inequality follows from the property
of type constants being preserved by subspaces. Introducing in those
inequalities the following known estimates for type constants of the
spaces involved:

√
d ≤ T2(Sd1 ), T2(Sm∞) ≤

√
C logm,
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we obtain the desired bound:

d ≤ C

(1 − ϵ) logm ⇒ m ≥ 2
(1−ϵ)

C
d.

The constant here, as well as in the general case of nonunitary
channels, can be taken equal to 4.

Observation 3.12. The type-argument sketched above can be made
more explicit, obtaining bounds for the memory size necessary to program
specific families of unitaries. For instance, we notice that the proof re-
mains unchanged if we restrict to the family of elements

{
diag(ε1, . . . , εd)

: εi ∈ {±1}
}

⊂ Sd1 instead of considering the action of ΦP on the whole
Sd1 . That is true since these elements are enough to estimate T2(ℓd1) ≥

√
d

– this can be checked by direct calculation. More importantly, this means
that a programmable processor implementing the family of unitaries{
diag(ε1, . . . , εd) : εi ∈ {±1}

}
up to accuracy ϵ−1 also has to satisfy

the bound of Theorem 3.11. Explicitly, it means that to program the 2d
elements in

{
diag(ϵ1, . . . , ϵd) : ϵi ∈ {±1}

}
⊂ Sd1 a memory of dimension

at least 2
(1−ϵ)

3C
d− 2

3 log d is needed, while a classical memory of dimension 2d
is enough to store them with no error.

When looking at m as a function of the input dimension d, fixing the
error parameter ϵ, the previous observation shows that Theorem 3.11 is
optimal in a sense. However, in the case of universal programmability
– where one desires to program the full unitary group U(ℓd2) – we see
that there is still a gap between the upper bound in Proposition 3.9
and the lower bound in Theorem 3.11. Summarizing both results, we
have proven that the optimal memory dimension of an ϵ− UPQPd, as a
function of d, is restricted by:

Ω(exp(d)) = m = O(exp(d2)). (3.8)

Therefore, a question that remains open is the correct exponent in the
previous bounds.

According to the characterization built in Section 3.4, the previous
question can be stated purely in the context of normed spaces. In
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particular, we remark the following open question in local Banach space
theory:

Question 1. Given ϵ > 0, what is the largest natural number d such
that there exists a d–dimensional subspace of Sm∞ that is ϵ–isomorphic
to Sd1 ?

Coming back to the study of ϵ− UPQPd, we recall that in Theorem
3.6 we had to enforce the additional condition that the ϵ–embedding
Φ : Sd1 ↪→ Sm∞ must be completely contractive. Therefore, a hypothetical
solution to question 1 with d such that m = O(exp(d)) will not suffice
to solve the problem for ϵ − UPQPd. A particular case in which the
condition about complete contractivity can be relaxed is the one in which
Sm∞ is replaced by its commutative version, ℓm∞ – the completely bounded
norm of a map Φ : Sd1 → ℓm∞ coincides with its usual operator norm. This
is precisely the case of the construction in Proposition 3.9. It turns out
that, in this restricted case, a more satisfactory answer to Question 1
exists, showing that the upper bound m = O(exp(d2)) is almost optimal.
In precise terms, we state:

Theorem 3.13. Let Φ be a linear map Φ : Sd1 −→ ℓm∞ such that

∀σ ∈ Sd1 , ∥σ∥Sd
1

≥ ∥Φ(σ)∥ℓm∞ ≥ (1 − ϵ)∥σ∥Sd
1
.

Then
m ≥ 2

d2(1−ϵ)2
C log d ,

being C a constant.

The proof is based on more involved arguments regarding the type
constant of Sd∞ and its relation to ϵ–nets for certain spaces. The main
argument can be seen as an adjustment of a result by B. Maurey, which
appears in [85, Theorem 3]. For the convenience of the reader we provide
a proof following the main ideas in [85]. The starting point is the
following lemma:

Lemma 3.14 (Maurey, [85, Lemma 2]). Let X be a Banach space of
type p, and Ψ : ℓm1 −→ X a bounded linear map. Then, ∀k ∈ N there
exists an ϵk–net covering Ψ(ball(lm1 )) ⊂ X with ϵk = 2k−1/qTp(X)∥Ψ∥
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and cardinality Nk ≤ (2m)k. Here, Tp(X) is the type p constant of X
and q is such that 1

p
+ 1

q
= 1.

This lemma also allows to obtain an alternative proof of Theorem 3.11.
This proof uses essentially the same ingredients as the one appearing
above but we found it less transparent. Besides, it provides a bound
that is weaker than the one we have already obtained. Therefore, we
decided not to put more emphasis on that and relegate this alternative
proof to Appendix A.2.

Let us come back to the proof of Theorem 3.13:

Proof of Theorem 3.13. We begin considering a naive modification of
the embedding Φ, defined just by Φ̃ := 1

1−ϵΦ. Then,

∀σ ∈ Sd1 ,
1

1 − ϵ
∥σ∥Sd

1
≥ ∥Φ̃(σ)∥ℓm∞ ≥ ∥σ∥Sd

1
. (3.9)

Now, we wonder about the adjoint map Φ̃† : ℓm1 −→ Sd∞. Inherited from
(3.9), Φ̃† verifies that ball(Sd∞) ⊂ Φ̃†(ball(ℓm1 ))4 and ∥Φ̃†∥ = ∥Φ̃∥ ≤ 1

1−ϵ .
Then, by Lemma 3.14 (choosing p = 2) applied to Φ̃†, we obtain a

δ–net of ball(Sd∞) with cardinality N ≤ (2m)k and δ = 2
1−ϵ(

c
k

log d)1/2

(recall that T2(Sd∞) ≤ (c log d)1/2, cf. (2.9)) for k ∈ N chosen freely and
c an independent constant. On the other hand, by standard volume
considerations, for any d dimensional normed space the following lower
bound for the cardinality of an δ–net covering the unit ball of the space
must hold:

N ≥
(1
δ

)d
.

In our case, this yields to the following condition:
(

2
1 − ϵ

(
c

k
log d

)1/2
)−d2

≤ (2m)k. (3.10)

Finally, to conclude the proof it is enough to consider k ∈ N large enough
in order to fulfil

2
1 − ϵ

(
c

k
log d

)1/2
≤ 1

2 . (3.11)

4To see why, it is enough to consider that, restricting to ball(Sd
∞), (Φ̃†)−1 = (Φ̃−1)†
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Therefore, we get that

2d2 ≤ (2m)k i.e. m ≥ 2 d2
k

−1.

Analysing (3.11), we choose k ≥ 8c log d
(1−ϵ)2 , which implies the statement

of the theorem.

Theorem 3.13 proves that the construction in Proposition 3.9 is
optimal in the restricted sense of this theorem. However, we insist that
the gap (3.8) remains open for the general case.

In fact, ϵ − UPQPd as the one in the proof of Proposition 3.9 –
whose associated embedding Φ has commutative range – can be regarded
as making use of a classical memory. Hence, the question about the
optimality of Equation (3.8) can be interestingly understood as whether
a quantum memory allows to improve over Proposition 3.9 or not. For a
possible answer in the negative, we now comment on the obstructions for
a generalization of Theorem 3.13. Firstly, the proof of the key Lemma
3.14 uses crucially the fact that ball(ℓm1 ) is a polytope with just 2m
extremal points. In the general case of embeddings Sd1 −→ Sm∞, if we
want to follow the line of the previous proof, the unit ball of ℓm1 is replaced
by ball(Sd1 ). This unit ball has infinitely many extremal points, hence the
proof cannot be adapted to this case. Furthermore, the original Theorem
3 in [85] is also valid (with modifications in the factors appearing in the
bound) for embeddings Φ : X −→ ℓm∞, being X any finite dimensional
normed space. In particular (choose X = ℓd2), the theorem implies the
well known fact that ℓd2 cannot be embedded isomorphically in ℓm∞ when
m is lower than O(exp d). Turning again to the possibility of replacing
ℓm∞ by Sm∞ in Theorem 3.13, such a generalization would imply similar
bounds for embeddings ℓd2 −→ Sm∞. But this cannot be true since ℓd2
can embedded isometrically in Sd∞ – recall, for instance, the row and
column embeddings (2.1), (2.2). In conclusion, in case the right scaling
in (3.8) is of order Θ(exp d2), it seems that the proof should come from
different techniques that the ones used here or at least from a substantial
refinement. In the opposite direction, proving that the optimal scaling
for m(d) is Θ(exp d) would probably imply new constructions for ϵ-
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embeddings Sd1 → Sm∞ that exploits the non-commutative structure of
Sm∞ in a highly non-trivial way.

3.6 Discussion
In this chapter we have studied the minimal conditions, in terms of

resources, that have to be satisfied by approximate UPQPs. The bounds
presented here have clarified several questions about optimality of this
conceptual construction. In fact, we have almost closed the gaps in the
optimal scaling of the memory size of UPQPs with the accuracy ϵ and
input dimension d, when considered separately.

Firstly, in Proposition 3.9 we have deduced an upper bound for m
giving a construction based on an ϵ–net on U(ℓd2). In this sense, this
construction can be seen as a generalization to the case of UPQPs of
the programmable measurement introduced in [29]. As in that case,
our proposal improves exponentially the memory resources consumed
by other known constructions (see Table 3.1). In fact, this bound
exponentially improves the scaling with the accuracy ϵ of Port Based
Teleportation and nearly saturates the lower bound deduced in [80] in
the context of Universal Programmable Measurements. This shows that,
indeed, this is the optimal dependence on that parameter also in the case
of UPQPs. More generally, it also outperforms Port Based Teleportation
whenever C̃/ϵ ≤ d4/ϵ2 . Obviously, the drawback is that the optimal
ϵ − UPQPd constructed here cannot be used to achieve any kind of
teleportation.

On the other hand, the main result in this chapter is the lower
bound in Theorem 3.11. The first and most obvious consequence of
this result is that for any fixed value of ϵ, the dimension of the memory
of ϵ − UPQPd must scale exponentially with the input dimension d.
Indeed, in this case the dependence with d in the stated lower bound
is exponentially stronger than all known previous results. Furthermore,
this bound is nearly saturated in this sense by the performance of Port
Based Teleportation, referred in table 3.1 as the best upper bound for
m. However, as expressed in Question 1, there still remains a gap in this
case that we were not able to close.
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Furthermore, more difficult relations ϵ–d can be considered, being
the general scaling in this case still another open question. However, we
also contribute to this point giving an upper bound for the achievable
accuracy by UPQPs with memory of size poly(d). As a straightforward
consequence of Theorem 3.11 we obtain the next:
Corollary 3.15. For any ϵ − UPQPd with memory size m ≤ kds for
some constants k, s, the following inequality is satisfied:

ϵ ≥ 1 − C ′
k,s

log d
d

,

where C ′
k,s = 3C(s+ log k + 2/3).

This severely restricts the accuracy achievable by ϵ− UPQPd with
polynomially sized memories. Moreover, up to a logarithmic factor,
the scaling in the previous bound matches the performance of standard
teleportation when understood as an ϵ − UPQPd, cf. Example 3.3.
Interestingly, this shows the optimality of the protocol of quantum
teleportation from the perspective of its programmability properties.

Approaching the end of this chapter, we remark the relation between
UPQPs and other tasks such as quantum teleportation [72, 45], state
discrimination [33, 104, 105, 131, 130, 106], parameter estimation [49,
108], secret and blind computation [39, 79], homomorphic encryption
[128], quantum learning of unitary transformations [10], etc. This spreads
the potential implications of the knowledge about UPQP to a wide variety
of topics. For example, as a direct application of the results presented
here, we also obtain a lower bound for the dimension of the resource
space necessary to implement deterministic Port Based Teleportation.
There exist more accurate bounds for this particular case, see [27], but
notice that we did not use in any way the many symmetries presented in
that protocol, and our bound is generic for any protocol implementing,
in some sense, a UPQP. Furthermore, it is deduced from our results that
the unavoidable exponential scaling with ϵ−1 in the case of Port Based
Teleportation, comes entirely from the signalling restrictions imposed in
this protocol, and cannot be deduced from the programming properties
of it.

Finally, we comment on some other interesting questions related with
the work presented here. In first place we can ask whether it is possible to
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deduce a lower bound on m unifying the bound from [80] and the bound
from Theorem 3.11. This could give more information about optimality
of UPQPs in cases beyond the scope of this work. In relation with that,
it would be desirable to improve the exponents in the bounds to match
exactly lower and upper bounds, as we have already discussed. Further
on, it would be also very interesting to look for relations between memory
requirements on UPQPs and circuit complexity problems. A way to
explore this line of research could consist on looking for correspondences
between circuits and memory states in UPQPs.





Chapter 4

Lower bounds for
entanglement consumption in
attacks to Position Based
Cryptography

This chapter is based on joint work with M. Junge, C. Palazuelos and
D. Pérez-García. In this work we initiate the study of Position Based
Quantum Cryptography (PBQC) from the perspective of geometric
functional analysis and its connections with quantum games. The main
question we are interested in asks for the optimal amount of entanglement
that a coalition of attackers have to share in order to compromise the
security of any PBQC protocol. Known upper bounds for that quantity
are exponential in the size of the quantum systems manipulated in the
honest implementation of the protocol. However, known lower bounds
are only linear.

In order to deepen the understanding of this question, here we
propose a Position Verification protocol and find lower bounds on the
resources needed to break it. The main idea behind the proof of these
bounds is the understanding of cheating strategies as vector valued
assignments on the Boolean hypercube. Then, the bounds follow from
the understanding of the type constants of particular Banach spaces.
Under some regularity assumptions on the former assignment, our results
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lead to exponential lower bounds on the quantum resources employed,
clarifying the question in this restricted case. Known attacks indeed
satisfy the assumption we make, although we do not know how universal
this feature is. Furthermore, we show that the understanding of the type
properties of some more involved Banach spaces would allow to drop out
the regularity assumption and lead to unconditional exponential lower
bounds on the resources used to attack our protocol. Unfortunately, we
were not able to estimate the relevant type constant. Despite that, we
conjecture an upper bound for this quantity and show some evidence
supporting that conjecture. A positive solution of the conjecture would
lead to prove the Position Verification protocol we propose to be secure
for all practical purposes and to a major progress towards the question
asked above.

We sum up the structure of this chapter: in Section 4.1 we present
and motivate the setting of Position Based Cryptography summarizing
previous work that is relevant to us. In Section 4.2 we give an overview
of the results that we obtain along the chapter. In Section 4.3 we discuss
more formally the setting of Position Verification in one spatial dimension,
that is the precise setting in which this work develops. In that section
we also relate the adversarial action in 1-D Position Verification with
mixed rank-one quantum games, introduced in Chapter 1, Section 1.3.
Section 4.4 is technical in nature. There, we introduce an inequality of
Pisier for vector valued functions on the hypercube and use it together
with type constants to provide generic bounds that will be used later on.
We also provide some estimates for type constants used in subsequent
sections. In Section 4.5 we define the protocol analyzed in this work
and deduce some necessary simplifications. In Section 4.6 our results
for strategies fulfilling additional regularity assumptions are proven. In
Section 4.7, this approach is abstracted in order to remove the extra
assumptions. This leads us to the announced conjecture about the type
constants of certain spaces. Computations supporting the conjecture
are also presented in that section. Finally, in Section 4.8 we make some
final remarks spotting at possible connections and future directions for
this work. For the sake of readability, in this chapter we use symbols
≳, ≲, ≳log, ≲log to denote inequalities up to multiplicative dimension
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independent constants or up to multiplicative factors that are logarithmic
in the dimension, respectively.

4.1 Background and previous work
In the field of Position Based Cryptography (PBC) one aims to

develop cryptographic tasks using the geographical position of an agent
as its only credential. Once the agent proved to the verifier that he is
in fact at the claimed position, they interact considering the identity of
the agent as guaranteed. Basing cryptographic security on the position
of the communicating parties could result very appealing in practical
contexts such as the use of autonomous cars, or the secure communication
between public services or banks. Besides that, at a more fundamental
level, secure PBC could also serve as a way to circumvent insecurity
under man-in-the middle attacks, a security leak suffered by standard
cryptographic primitives. This vulnerability still prevails even in presence
of information-theoretical security, as, for example, in the celebrated case
of Quantum Key Distribution. In these settings, the security guarantees
always come after the assumption that the identity of the trusted agents
is granted. In PBC this assumption can be, at least, relaxed. Moreover,
PBC proved to be a rich field of research emanating deep questions and
connections from its study. To mention a few, attacks for PBC have
been related with quantum teleportation [5], circuit complexity [107],
classical complexity theory [17] and, very recently, with properties of the
boundary description of some processes in the context of the holographic
duality AdS/CFT [65, 66]. In this work, we add to this list a connection
with deep questions on the geometry of Banach spaces.

The main task in PBC is the one of Position Verification (PV). In PV
a prover has to convince a verifier (usually composed by several agents
spatially distributed) that it is located at a claimed position. This setting
has been studied since the 90’s in the context of classical cryptography.
Nonetheless, in purely classical scenarios, PV is easily proven to be
insecure against a team of colluding adversaries surrounding the honest
location [23]. This motivates the study of quantum PV schemes, in which
the communication between prover and verifier is in general quantum.
This idea was initially developed by A. Kent [53] and made rigorous
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only later on in [15]. In this last paper, the authors construct a generic
attack for any quantum PV scheme. To this end, the general attack
of [15], the authors built on works by L. Vaidman [119], realizing that
the cheating action in the setting of PV consists on performing what
they called instantaneous non-local computation. In this last task, two
(or more) distant agents have to implement a quantum operation on
a distributed input when subjected to non-signalling constraints – see
[15] or Section 4.3 below for more details. At a first sight, the existence
of general attacks to quantum PV renders the development of secure
PBQC a hopeless program. However, their attack did not come for
free for the adversaries, as in the case of classical PV. On the contrary,
in order to cheat, the dishonest agents have to use a huge amount of
entanglement – a delicate and expensive resource in quantum information
processing. Even when in [5] another generic attack to PV was proposed
exponentially reducing the entanglement consumption, the amount of
entanglement required is still far from what is realizable in any practical
situation. This leads naturally to the following question, which is the
one motivating this work:

Question 2. How much entanglement is necessary to break any PV
scheme?

Answering this question with a large enough lower bound would
lead to the existence of PBC schemes which are secure for all practical
purposes, term coined in [22]. The search of such an answer has been an
active field of research in the last decades, specially in the years right
after the publication of [15]. Therefore, some progress is already available.
Indeed, [15] provides the first PV protocol secure against cheaters with
no entanglement. This was improved in [5] and later in [113] providing
PV protocols requiring a linear amount of entanglement (linear in the
size of the quantum system used in the honest protocol). In terms of this
figure of merit, the entanglement consumption in the generic attack of [5]
is exponentially large, hence leaving an exponential gap between lower
and upper bounds for the amount of entanglement necessary to break
PV schemes. After almost ten years since [15] this is still essentially all
it is known about Question 2 in its original formulation. Other works
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have studied attacks with some specific structure [17], have designed
attacks that are efficient emulating the computation of unitaries with low
complexity [107] or have studied security under additional cryptographic
assumptions [118].

4.2 Summary of results
Here we aim to go back to Question 2 in its simplest form: the

one-dimensional case without any further assumptions. Unfortunately,
we were not able to find a definite answer to the question but we report
here some progress that opens an avenue for a deeper understanding of
the problem. From now on, we focus on the study of quantum resources
required to attack PV, considering classical communication as a free
resource and unlimited computational power for all the agents involved.
In this work,

• we rephrase the setting of PV in the framework of quantum games,

• connecting that way Question 2 with powerful techniques coming
from Banach space theory,

• and providing new lower bounds on the amount of entanglement
necessary to break a specific PV protocol presented in Section 4.5.
However, the bounds presented are not completely general and they
depend on some properties of the strategies considered. Intuitively,
smooth strategies, i.e., strategies with a smooth dependence in
the unitary to be implemented, lead to exponential lower bounds
providing evidence supporting the existence of PV schemes that
are secure for all practical purposes;

• finally, we relate the possibility of turning the previous bounds
unconditional with a collection of open problems in local Banach
space theory. In particular, we relate the bounds on resources to
break our PV protocol with estimates for type constants of tensor
norms of ℓ2 spaces. In this direction, we put forward a conjecture
that would imply to the desired unconditional exponential lower
bounds and then provide some evidence supporting it.
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The protocol GRad. To formalize this discussion, we propose a PV pro-
tocol that we denote GRad. This makes reference to a family {G(n)

Rad}n∈N
rather than to a single task. The index n represents the security param-
eter and it determines the size of the quantum systems manipulated in
the honest implementation of the protocol.

The general structure of a PV protocol in the studied setting – one-
dimensional PV – proceeds in four basic steps:

1. The verifier prepares a bipartite system and distributes it to two
verifying agents that surrounds the location to be verified, x. For
the sake of concreteness, we locate these agents at points x± δ for
some positive δ.

2. Agents at x ± δ, when synchronized, communicate the registers
their hold to x.

3. an honest prover located at x, upon receiving both registers, im-
mediately applies a required computation resulting in another
bipartite system. The latter has to be returned to locations x± δ.
One register should be sent to the agent at the left of x (x − δ),
and the other, to its right (x+ δ).

4. Finally, the verifiers check whether prover’s answer arrives on time
and whether the computation was performed correctly. Based on
this information they declare the verification successful or not.

In the dishonest scenario, two cheaters surrounding the location x,
intercept the communication with the honest prover and try to emulate
the ideal action in the honest protocol preventing any delay in their
response. This restricts cheaters’ action to consist of two rounds of local
operations mediated by a step of simulatenous two-way communication –
see Section 4.3 for a detailed discussion of this model.

Once we have fixed this basic setting, let us describe the protocol
GRad involved in our main results. The honest implementation is as
follows:

1. Given a natural number n, in G
(n)
Rad the verifier starts uniformly

sampling a vector of n2 signs ε = (εij)ni,j=1, where each εij =
±1, and preparing the state |ψ⟩ := 1

n

∑
i,j |i⟩A ⊗ |j⟩B ⊗ |ij⟩C in a
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tripartite Hilbert space HA ⊗HB ⊗HC. The agent at x− δ receives
registers HA ⊗ HB while the one at x+ δ is informed (classically)
of the choice of ε. Register HC is kept as private for the verifier
during the execution of the protocol.

2. Then, registers HA ⊗ HB are forwarded to the verifying location x
from its left. From the right, the classical information about the
choice of ε is communicated.

3. an honest prover located at x, upon receiving both pieces of in-
formation, has to apply the diagonal unitary determined by ε on
HA ⊗ HB. Immediately, registers HA ⊗ HB must be returned, but
this time only HA should travel to the verifier at the left. HB
should be sent to the verifier at the right.

4. After receiving those registers, the verifiers check answer’s timing
and, at some later time, they perform the measurement {|ψε⟩⟨ψε|, Id−
|ψε⟩⟨ψε|} on system HA ⊗ HB ⊗ HC, where |ψε⟩ := 1

n

∑
i,j εij|i⟩A ⊗

|j⟩B ⊗ |ij⟩C . They accept the verification only if the arriving time
was correct and the outcome of the measurement was the one
associated to |ψε⟩⟨ψε|.

Next, let us specify the implementation of G(n)
Rad in an adversarial

scenario. In this situation, we consider that two cheaters located between
the honest location x and the verifying agents at x± δ, intercepts the
communication in the honest protocol. In this work, we refer to these
cheaters as Alice, at position x − δ′, and Bob, at position x + δ′, for
some 0 < δ′ < δ. Their general action proceeds as follows1: in advance,
the cheaters share a bipartite state |φ⟩ in which Bob, after receiving
the information about ε, applies an isometry Wε and sends part of
the resulting system to Alice together with the classical information
determining ε. On her part, when Alice receives registers HA ⊗ HB
of |ψ⟩, she applies another isometry V (independent of ε) on these
registers and her part of the shared state |φ⟩. Part of her resulting
system is communicated to Bob. After this step of simultaneous two-way

1For simplicity, we state here the case in which Alice and Bob use what we call
pure strategies. The most general case can be reduced to this one by purification.
See Section 4.5 for a detailed discussion.



98 Entanglement consumption in attacks to PBC

communication Alice and Bob are allowed to apply another pair of local
isometries Ṽε⊗W̃ε on the systems they hold. Then, they have to forward
an answer to agents at x± δ.

Main results. The structure of GRad allows us to understand cheating
strategies as vector valued assignments on the n2-dimensional boolean
hypercube, Qn2 = {±1}n2 . In our main result, we find lower bounds for
the resources consumed in such an attack depending on the regularity of
the former assignment. Very informally, we can state:

Cheating strategies depending on the value of ε ∈ {±1}n2 in a suffi-
ciently regular way require an amount of entanglement exponential in n
to pass G(n)

Rad .

To quantify the regularity of a strategy we introduce a parameter σ
that can be regarded as a measure of the total influence of the associated
function on the Boolean hypercube. We give a precise definition for
this parameter in Section 4.6. Here, we restrict ourselves to give an
intuitive idea behind this definition presenting some approximations
below. Based on two complementary ideas, given a strategy we construct
two different assignments leading to two parameters σiS and σiiS . The
subscript S makes reference to the strategy we started with. According
to the previous discussion, any such strategy can be characterized by a
sequence of elements S = {Ṽε, W̃ε, V,Wε, |φ⟩}ε∈Qn2 . With that, we can
bound, up to logarithmic factors:

σiS ≲log Eε

∑
i,j

1
2
∥∥∥Ṽε ⊗ W̃ε − Ṽεij ⊗ W̃εij

∥∥∥2
1/2

+O
( 1
n

)
,

σiiS ≲log Eε

∑
i,j

1
2
∥∥∥ (V ⊗ (Wε −Wεij )) |φ⟩

∥∥∥2

ℓ2

1/2

+O
( 1
n

)
.

Here, εij denotes the sign vector (ε11, . . . ,−εij,. . . , εnn). The first of
these parameters is therefore related with how strongly the second round
of local operations in the strategy depends on ε. On the other hand, σiiS
is similarly concerned with the dependence on ε of the first round of
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local operations. With this at hand, we can state – yet informally – our
main result. Denoting ω(G(n)

Rad; S) the success probability attained by a
strategy S in G

(n)
Rad:

Theorem 4.1 (Informal). Given a cheating strategy for G(n)
Rad, S, using

quantum resources of local dimension k,

I.
ω(G(n)

Rad; S) ≤ C1 + C2 σ
i
S log1/2(nk) +O

( 1
n1/2

)
;

II.

ω(G(n)
Rad; S)

≤ C̃1 + C3 σ
ii
S n

3/4 log3/2(nk) +O

(
1
n1/2 + log3/2(nk)

n

)
;

where C1, C̃1 < 1, C2, C3 are positive constants.

What this theorem tells us is that cheating strategies for GRad for
which σiS or σiiS are small enough necessarily need to make use of quantum
resources of size exponential in a power of n, (loosely) matching the
exponential entanglement consumption of known attacks2. We give a
more concrete statement in the form of a corollary:

Corollary 4.2 (Informal). Consider a cheating strategy for G(n)
Rad, S,

attaining value ω(GRad; S) ≥ 1 − ϵ for some 0 ≤ ϵ ≤ 1
8 . Denote by k the

local dimension of the quantum resources used in S.
If σiS = O(polylog(n)/nα) or σiiS = O(polylog(n)/n3/4+α) for some

α > 0, then:
k = Ω

(
exp

(
nα

′)) for some α′ > 0.

As we see, the regularity parameters σi(ii)S play a key role in these
results. We notice that known attacks in [15, 5] in fact fulfil the hypothesis

2The attack from [5] requires an entangled system of dimension O(exp(n4)), that
is still much larger than our bounds for smooth strategies. Nonetheless, we consider
any strategy using quantum systems of dimension exponential in a power of n to be
infeasible for all practical purposes. This is our main motivation in this work.
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of the previous corollary: the second round of local operations in these
attacks is ε-independent, hence σiS ∼ log(n)/n. However, we do not
known how generic this behaviour is. More generally, it turns out
that from any Programmable Quantum Processor [72] – as the already
considered protocol of Port Based Teleportation, for example – with the
capability of implementing the diagonal unitaries required in G

(n)
Rad, we

can construct an assignment Φ fulfilling Theorem 4.1 with regularity
parameter again of order σiΦ ∼ log(n)/n. Therefore, Corollary 4.2 also
applies to this broader case allowing to recover some of the results
obtained in Chapter 3. This is not a coincidence, our approach here
builds on ideas introduced in this previous work.

Turning our attention towards σiiS , a trivial example of a family of
smooth attacks for which σiiS ∼ log(n)/n is given by cheaters sharing
no entanglement in advance – even when entanglement can be created
in the first round of local operations and distributed for the second
round. On the contrary, we can also easily compute σiiS for the attack
in [5] obtaining σiiS ≥ O(1). Therefore, our second item in Theorem 4.1
is not able to predict good lower bounds for this case. Still, we think
that this second item might be useful for restricting the structure of
possible attacks to PV, especially in conjunction with the first part of
the theorem.

More importantly, the second part of Theorem 4.1 leads us to put
forward the possibility of an unconditional lower bound for k, i.e., a
bound in the spirit of Corollary 4.2 but dropping out the assumptions
regarding σ

i(ii)
S . Even when we were not able to prove such a bound,

we relate its validity with a conjecture about the geometry of some
Banach spaces. The positive resolution of this conjecture would prove
our scheme GRad secure for all practical purposes. More precisely, our
conjecture has to do with estimates of type constants of tensor norms
on finite dimensional Hilbert spaces. Even when these constructions are
relatively simple and well known in the theory of Banach spaces, there
are long-standing open questions about the type of this kind of spaces.
E.g., the type-2 constant of the simple space ℓn2 ⊗ε ℓ

n
2 ⊗ε ℓ

n
2 is still poorly

understood. In fact, the related cotype-2 constant of its dual is a famous
open question asked by Pisier decades ago – see, for instance, [89].
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4.3 Position Verification in 1-D
The major aim of this work is to make progress towards Question

2. For that, we restrict ourselves to the simplest scenario: position
verification in 1-D. In this situation, we restrict the world to a line in
which we consider a preferred location, x – the position to be verified.
The verifier, composed by two agents, VA and VB, is located around the
honest position x. Let us consider VA at position x−δ and VB at position
x+ δ. Then, VA and VB perform an interactive protocol sending in the
direction of x (possibly quantum) messages. These messages arrive to x
at the same time, so that an honest prover located at x could receive
them and generate answers for VA and VB. The verifier accepts the
verification if and only if

• (correctness) the answers are correct with respect to verifier’s
messages (according to some public rule);

• (timeliness) the answers arrive on time to the locations of VA and
VB. Assuming that the signals between verifier and prover travels
at some known velocity c, the answers should arrive to VA and VB
at time 2δc after the start of the protocol.

Before continuing, let us set a generic structure for such a protocol.
To prepare the messages VA and VB must forward to the prover, the
verifier prepares a (publicly known) state in a composite system with
some underlying Hilbert space HA ⊗ HB ⊗ HC. That is, he prepares a
density matrix ρ0 ∈ D(HA ⊗ HB ⊗ HC) and sends register HA to VA
and HB to VB. HC is considered to take into account the possibility
that the verifier keeps some part of the initial system as private during
the protocol. Then, VA and VB send their systems in the direction of x.
Now, the agent(s) interacting in the middle with VA and VB apply some
quantum operation on the communicated system HA ⊗ HB obtaining as
output another state ρans ∈ D(H′

A ⊗ H′
B). The subsystems H′

A, H′
B are

forwarded to VA, VB, respectively. To decide whether the verification is
correct or not, the verifier first check the timeliness condition is fulfilled
and then performs a (publicly known) dichotomic measurement on the
system H′

A ⊗ H′
B ⊗ HC.
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Remark 4.3. Above, ρ0 and ρans are in general quantum states but
they could perfectly describe also classical messages as well as quantum-
classical messages. This will be indeed the case in the concrete scheme
analysed in this work.

Remark 4.4. Note that an honest prover, that is, an agent at position
x, should have no problem to pass the test: at time δc he would receive
the whole system HA ⊗ HB from the verifiers, having the capability to
perform any global operation on it to prepare the answer. This answer
can still arrive on time to VA and VB. The depicted prover’s action is
the most general operation that can be performed on verifier’s messages,
which are the only information transmitted in the protocol. Therefore, if
the challenge is well designed (it can be passed), the honest prover must
be able to succeed at it3.

Next, let us focus on how the general protocol described above can
be cheated. In order to impersonate the identity of an honest prover at
position x, a couple of adversaries, Alice and Bob, at positions x ± δ′,
0 < δ′ < δ, can intercept the message systems HA, HB, interact between
themselves to generate answers for the verifier and forward those answers
in correct timing. In order to respect the timeliness of the protocol, the
most general action of the cheaters proceeds as specified in Figure 4.1.

We call in this work simultaneous two-way communication scenario,
s2w, the set of actions – strategies from now on – with this structure.
This scenario is central for us and will appear repeatedly in the rest of
this manuscript.

To finish this section, we relate the setting that we have just intro-
duced with the setting of quantum games, that was introduced in Section
1.3. Conceptually, this is the link between PBC and the techniques we
exploit later on.

3We don’t take into account here the computational limitations at which the
agents might be subjected.

4In general, we model in that way any kind of communication between Alice
and Bob, classical or quantum. However, in the particular setting studied later on
in Section 4.5, we will see that the dimension of HA�B and HB�B is essentially
determined by the quantum resources the cheaters share, allowing us to disregard the
classical communication that they might additionally use. See Section 4.5, Lemma
4.11, for a precise statement.
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1. Before the start of the protocol, Alice and Bob prepare some
shared entangled state in a private register HAE

⊗ HBE
;

2. Alice receives question register HA and applies a quantum
channel A ∈ CPTP(HA ⊗ HAE

, HA�B ⊗ HA�A). Similarly,
Bob receives HB and applies B ∈ CPTP(HB⊗HBE

, HB�A⊗
HB�B);

3. the cheaters interchange registers HA�B and HB�B, keeping
HA�A, HB�B

4;

4. after this last step, Alice holds system HA�A ⊗ HB�A, in
which she applies another channel Ã ∈ CPTP(HA�A ⊗
HB�A, H′

A). Similarly, Bob applies B̃ ∈ CPTP(HB�B ⊗
HA�B, H′

B);

5. finally, Alice sends H′
A to VA and Bob H′

B to VB.

Figure 4.1 Structure of adversarial action attacking 1-D PV schemes.
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In particular, we will restrict to PV protocols that can be understood
as mixed rank-one quantum games, MROQGs. Having in mind the
setting explained above, we now think of two players, Alice and Bob –
assimilated as cheaters in the PV protocol–, interacting with a referee –
assimilated as the verifier.

On the side of PV, we first mildly restrict the protocol in order to
make the connection with the later definition of GRad clearer. Let us
assume that the state prepared by the verifier at the beginning, ρ0, is a
quantum-classical state of the form

ρ0 =
∑
t∈T

pt |ψt⟩⟨ψt| ⊗ |t⟩⟨t|,

where T is an alphabet, {pt}t∈T is a probability distribution on this
alphabet and {|ψt⟩}t∈T are unit vectors in a Hilbert space HA ⊗HB ⊗HC.
One can imagine that, in each execution of the protocol, the verifier
picks at random a label t with probability pt, causing the initial state
to be ρ0,t = |ψt⟩⟨ψt| ∈ D(HA ⊗ HB ⊗ HC). Furthermore, assume the
message that agent VA communicates to the prover is composed by
register HA, while VB communicates HB together with the classical
information about t. On these messages, the prover applies a channel
St ∈ CPTP(HA ⊗ HB,HA′ ⊗ HB′) to generate an answer. To finish the
protocol, after receiving this answer, the verifier measures the whole
system HA′ ⊗ HB′ ⊗ HC with a dichotomic POVM, that we also assume
to be of a specific form:

for each t ∈ T , the verifier measures {|γt⟩⟨γt|, Id − |γt⟩⟨γt|}

being |γt⟩ a unit vector in HA′ ⊗ HB′ ⊗ HC. The PV is successful when
the outcome of this measurement is the one associated to |γt⟩⟨γt|.

Turning into quantum games, we notice that for each t ∈ T , the
above protocol can be readily understood as the implementation of a
rank-one quantum game characterized by a tensor Gt = TrHC |ψt⟩⟨γt|,
recall Definition 1.37. The players in the game are identified with
cheaters in the PV protocol and the referee of the game is identified
with the verifier (together with agents VA, VB). The distribution of such
games according to the probability distribution {pt}t∈T is in fact a mixed
rank-one quantum game, recall Definition 1.42.
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In particular, given a sequence of channels St ∈ CPTP(HA⊗HB,HA′⊗
HB′), t ∈ T , the probability of success of a prover applying these chan-
nels in the PV can be identified with the value achieved by the strategy
S = {St}t∈T in the MROQG. This value was defined as:

ω(G; {St}t) := Et Tr [ |γt⟩⟨γt| (IdC ⊗ St)(|ψt⟩⟨ψt|) ] , (4.1)

and will be the central quantity of interest in our study.
The understanding of MROQGs as PV protocols also affects in a

crucial way the strategies that we consider to play such games. The
scenarios – recall the terminology of Section 1.3 – that we consider now
are two: the honest scenario and the s2w scenario.

The first one was already defined in Chapter 1, Section 1.3, and now
it becomes clear the appearance of the qualifier honest for this scenario.
In this case, any sequence of channels in CPTP(HA ⊗ HB,HA′ ⊗ HB′) is
considered as valid to play a MROQG. The set of allowed strategies in
this scenario is therefore identified with CPTP(HA ⊗HB,HA′ ⊗HB′)×|T |.
As was stressed in Remark 4.4, this describes the set of possible actions
for an honest prover in a PV protocol. The corresponding honest value,
that was defined by

ωH(G) = sup
S∈CPTP(HA⊗HB,HA′ ⊗HB′ )×|T |

ω(G; S),

will be the reference value that the cheaters have to attain.
In the s2w scenario the set of allowed strategies is the subset of chan-

nels in CPTP(HA ⊗ HB,HA′ ⊗ HB′)×|T | that are constructed according
to Figure 4.1. That is, channels that are implementable by two cheaters
in the PV protocol associated to the game under consideration. We can
straightforwardly define a value ωs2w(G) as the supremum of ω(G; S)
over strategies allowed in the s2w scenario. Interestingly, the main re-
sult in [15], the existence of general attacks for PV, translates into the
equivalence of the previous two scenarios in the context of MROQGs:

for any MROQG G, ωH(G) = ωs2w(G).

However, this equivalence holds as far as the resources in the s2w
scenario are unbounded. In fact, it is not even known whether the precise
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value ωH(G) can be still attained in the s2w scenario when the ancillary
systems used – recall Figure 4.1 – are restricted to be finite dimensional.
Moreover, it is known that the equivalence above does not hold when
the use of any ancillary system is forbidden. The situation in between
is precisely what Question 2 asks about. This motivates considering
restricted versions of the s2w scenario in which the dimension of the
ancillary, resourceful, systems is bounded. We postpone the precise
definition of these models, as well as the discussion of them, to Section
4.5.

4.4 Type constants and functions on the
boolean hypercube

The main idea underlying the results in this chapter consists on
studying strategies to break a particular family of PV protocols – defined
in Section 4.5 – as assignments on the boolean hypercube Qm = {−1, 1}m.
We will associate to any cheating strategy a vector valued mapping
Φ : Qm → X, being X some Banach space. In this section we introduce
a key inequality of Pisier that allows us to control some properties of
such maps. We will see that this inequality can be complemented with
the information about the type properties of the involved Banach space,
building a bridge for the second part of this section, where we present
some estimates for the type-2 constant of some relevant spaces.

We start defining a measure of regularity for such functions – Defini-
tion 4.5 –, to introduce later on the alluded Pisier’s inequality – Lemma
4.7 – and relate it with the type-2 constant of the Banach space involved
– Corollary 4.8.

To quantify the regularity of maps Φ : Qm → X we introduce the
following parameter (depending also on the choice of X):

Definition 4.5. To any Banach space valued map Φ : Qm → X we
associate the parameter:

σΦ := log(m) Eε∈Qm

(
m∑
i=1

∥∂iΦ(ε)∥2
X

)1/2

,
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where

∂iΦ(ε) := Φ(ε1, . . . , εi, . . . , εm) − Φ(ε1, . . . ,−εi, . . . , εm)
2

is the discrete derivative on the boolean hypercube in the i-th direction.

Intuitively, σΦ is an average on both, the point ε ∈ Qm and the
direction (unnormalized in this last case), of the magnitude of the
derivative of the map Φ. The prefactor log(m) is of minor importance
for our purposes and we added it to the definition of σΦ with the only
aim of obtaining more compact expressions later on.

Example 4.6. In order to gain some familiarity, let us compute the
parameter σ of a linear map

Φ : Qm −→ X

ε 7→ Φ(ε) := 1
m

∑
j εjxj

,

where xj ∈ ball(X) for j = 1, . . . ,m.
First, for any point ε ∈ Qm, and any direction i ∈ [m]:

∂iΦ(ε) = 1
2m

∑
j

εjxj − εj(−1)δi,jxj

 = 1
m
εi xi.

Therefore,

σΦ = log(m)
m

(∑
i

∥xi∥2
X

) 1
2

≤ log(m)
m

1
2

.

This example is the ideal representative of a smooth function for
which our results lead to powerful lower bounds on the resources required
to break PBC – recall Corollary 4.2.

Ultimately, the motivation for the definition of σΦ is the bound in
Corollary 4.8 below. This is a consequence of the following Sobolev-type
inequality due to Pisier for vector-valued functions on the hypercube:
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Lemma 4.7 ([87], Lemma 7.3). In a Banach space X, let p ≥ 1, Φ :
Qm → X and ε, ε̃ be independent random vectors uniformly distributed
on Qm. Then,

Eε
∥∥∥∥Φ(ε) − EεΦ(ε)

∥∥∥∥p
X

≤ (C logm)p Eε,ε̃
∥∥∥∥∑

i

ε̃i ∂iΦ(ε)
∥∥∥∥p
X
,

where C is an independent constant.

It is now very easy to combine this result with the type properties of
X in order to obtain:

Corollary 4.8 (of Lemma 4.7). In a Banach space X, consider a
function Φ : Qm −→ X. Then

Eε
∥∥∥Φ(ε)

∥∥∥
X

≤
∥∥∥EεΦ(ε)

∥∥∥
X

+ C σΦ T(m)
2 (X),

where C is an independent constant.

This is the cornerstone of the building leading to Theorem 4.1.

Proof of Corollary 4.8. Fix p = 1 in Lemma 4.7. Therefore, we have
that :

Eε
∥∥∥∥Φ(ε) − EεΦ(ε)

∥∥∥∥
X

≤ (C logm) Eε,ε̃
∥∥∥∥∑

i

ε̃i∂iΦ(ε)
∥∥∥∥
X
.

Additionally, we can trivially bound:

Eε
∥∥∥∥Φ(ε) − EεΦ(ε)

∥∥∥∥
X

≥ Eε
∥∥∥∥Φ(ε)

∥∥∥∥
X

−
∥∥∥∥EεΦ(ε)

∥∥∥∥
X
.

On the other hand, according to the definition of the type-2 constant
(with m vectors if one wants to be more precise) of X we can also can
say:

Eε,ε̃
∥∥∥∥∑

i

ε̃i∂iΦ(ε)
∥∥∥∥
X

≤ T(m)
2 (X) Eε

(∑
i

∥∂iΦS(ε)∥2
X

)1/2

.

That’s enough to obtain the statement.
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Corollary 4.8 provides us with a tool to upper bound the expected
norm of the image of Φ, provided that we have some control over the
RHS of the inequality in the statement. The only piece there that
is independent of the map Φ is the type-2 constant (with m vectors)
T(m)

2 (X), to which the rest of this section is devoted.
In the precise maps that we will study in Sections 4.6 and 4.7, the

spaces Sn,m∞ and S
n,m
1 ⊗Scb−w

2
S
n,m
1 appear in a natural way – recall that

the second space was defined in Chapter 2, Section 2.4, Definition 2.13.
The type and cotype properties of the first space are well known, in fact,
we have already used them in Chapter 3. For future reference, we recall
here that

C2(Sn,m∞ ) ≲ min(n1/2,m1/2),
T2(Sn,m∞ ) ≲ log1/2(min(n,m)).

(4.2)

For S
n,m
1 ⊗Scb−w

2
S
n,m
1 the situation is not that well understood at all.

In fact, we were not able to obtain any non-trivial estimate for its type
properties so far. Then, instead of dealing directly with this space, we
will consider the interpolation space (Sn,m1 ⊗ε S

n,m
1 ,Sn,m1 ⊗π S

n,m
1 ) 1

2
, that

turns out to be useful to upper bound the norm in S
n,m
1 ⊗Scb−w

2
S
n,m
1 .

This was shown in Proposition 2.15 in a more general context. We
recall the specific statement for the case we study now. Denoting
S
n,m
1 ⊗(ε,π)θ

S
n,m
1 := (Sn,m1 ⊗ε S

n,m
1 ,Sn,m1 ⊗π S

n,m
1 )θ, for 0 < θ < 1, we

have:

Proposition 4.9 (Particular case of Proposition 2.15). Given any f ∈
S
n,m
1 ⊗ S

n,m
1 ,

∥f∥S
n,m
1 ⊗

Sw−cb
2

S
n,m
1

≤ ∥f∥S
n,m
1 ⊗Sw

2
S

n,m
1

≤ ∥f∥S
n,m
1 ⊗(ε,π)1/2

S
n,m
1
.

Thanks to the extra structure in S
n,m
1 ⊗(ε,π)1/2 S

n,m
1 provided by

interpolation, we are able to obtain a bound for its type constants. To
simplify the presentation, we consider in the following that min(n,m) = n.
Then, we can state:

Proposition 4.10. Given 0 < θ < 1, and natural numbers n ≤ m:

T 2
1+θ

(
S
n,m
1 ⊗(ε,π)θ

S
n,m
1

)
≲log n

1−θ
2 .
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An immediate consequence of the previous corollary is a bound for
the type-2 constant with n2 vectors:

T(n2)
2

(
S
n,m
1 ⊗(ε,π)θ

S
n,m
1

)
≤ nθ T 2

1+θ

(
S
n,m
1 ⊗(ε,π)θ

S
n,m
1

)
≲log n

1+θ
2 .

Particularizing for θ = 1
2 :

T(n2)
2

(
S
n,m
1 ⊗(ε,π) 1

2
S
n,m
1

)
≲log n

3
4 . (4.3)

This is the key type-estimate to obtain part II. of the main Theorem
4.1.

For the sake of concreteness, we explicit here the logarithmic correc-
tions in (4.3):

T(n2)
2

(
S
n,m
1 ⊗(ε,π) 1

2
S
n,m
1

)
≲ n3/4 log1/2(nm) log(n).

Proof of Proposition 4.10. The proof proceeds in two steps. First, using
techniques from [89, 90], we obtain the estimate

T2(Sn,m1 ⊗ε S
n,m
1 ) ≲log n

1/2. (4.4)

With this at hand, Proposition 4.10 follows from the behaviour of type
constants with respect to the complex interpolation method, Proposition
2.10. In particular, it is enough to fix p0 = 2, p1 = 1 in that result and
consider the trivial bound T1(Sn,m1 ⊗π S

n,m
1 ) = 1.

Therefore, there remains to provide a proof for (4.4). To prove the
stated estimate we bound the cotype-2 constant of the dual, Sn,m∞ ⊗πS

n,m
∞ .

From the duality between type and cotype, Proposition 2.6, we obtain:

T2(Sn,m1 ⊗ε S
n,m
1 ) ≲ log(nm) C2(Sn,m∞ ⊗π S

n,m
∞ ).
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To estimate C2(Sn,m∞ ⊗π S
n,m
∞ ), we use the following bound on the

cotype of the projective tensor product, implicit in [89]5:

C2(Sn,m∞ ⊗π S
n,m
∞ ) ≲ C2(Sn,m∞ ) UMD(Sn,m∞ ) T2

2(Sn,m∞ ),

where UMD(X) is the analytic UMD (unconditional martingale differ-
ence) parameter of the Banach space X. We now bound each of the
quantities in the RHS of the last inequality:

• recalling (4.2) we have that C2(Sn,m∞ ) ≲ n1/2 and T2(Sn,m∞ ) ≲
log1/2(n);

• we estimate UMD(Sn,m∞ ) from known bounds for the UMD constant
of the p-Schatten class Sp, for 1 < p < ∞. It is known that
these spaces are UMD and the following estimate for UMD(Sp) is
available [94]:

UMD(Sp) ≲ p.

This also translates on the same bound for the subspace Sn,mp .
Now, we take into account the following relation between the
UMD constants of arbitrary spaces X and Y at Banach-Mazur
distance d(X, Y ). This is a direct consequence of the geometric
characterization of the UMD property due to Burkholder [18] – see
also [19]:

UMD(X) ≲ d(X, Y ) UMD(Y ).

Finally, with this at hand, we obtain the bound

UMD(Sn,m∞ ) ≲ d(Sn,m∞ ,Sn,mp ) UMD(Sn,mp ) ≲ n1/p p.

Adjusting the parameter p as p = log(n) we obtain

UMD(Sn,m∞ ) ≲ log(n),
5The key result here is Theorem 5.1 in [89]. The bound we use is obtained keeping

track of the constants appearing in the isomorphic statement of that theorem. We
are indebted to Jop Briët for kindly sharing with us some very useful private notes
on Pisier’s method.
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which is enough to conclude that

T2(Sn,m1 ⊗ε S
n,m
1 ) ≲ log(nm) log2(n)n1/2.

4.5 The game GRad

In this section we describe the precise setting that we study, which we
denote GRad. As explained in the second part of Section 4.3, our aim is
to understand GRad as a MROQG. But first, we look at it from the point
of view of protocols for PV – cf. first part of section 4.3. Actually, GRad

will rather refer to a family of protocols indexed by a natural number,
n, making reference to the size of the protocol. Nonetheless, we omit
explicit reference to this index when there is no risk of confusion. GRad

proceeds as follows:

1. The verifier prepares the state |ψ⟩ = 1
n

∑n
i,j=1 |ij⟩AB ⊗ |ij⟩C ∈

HA ⊗ HB ⊗ HC and distributes registers HA ⊗ HB to VA. He
also chooses uniformly at random an n2 dimensional sign vector
ε = (εij)ni,j=1 ∈ Qn2 and informs VB of that choice.

2. VA forwards the quantum system HA ⊗ HB to the prover at x.
From the other side, VB communicates the classical information
specifying the vector ε.

3. After receiving both messages, an honest prover located at x has to
apply the unitary Uε = diag(ε11, . . . , εnn) on the received system
HA ⊗ HB and forwards HA back to VA and HB to VB.

4. At some later time, VA and VB perform the joint measurement
defined by elements {|ψε⟩⟨ψε|, Id−|ψε⟩⟨ψε|}, where we have defined
|ψε⟩ = Uε ⊗ IdC |ψ⟩. The verification is correct if the outcome of
this final measurement is the one corresponding to |ψε⟩⟨ψε| and
the registers HA ⊗ HB were received on time.

Consider now a coalition of attackers, Alice and Bob, trying to
impersonate the honest prover intercepting the communication with VA
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and VB at points x− δ′, x+ δ′. As commented before, cheaters’ action
can be understood as Alice and Bob playing a collaborative quantum
game with suitable restrictions in their resources – we consider the s2w
scenario defined in Figure 4.1. The associated game is a MROQG. This
game, which we also denote as GRad, is defined by tensors

{
Gε := TrC |ψε⟩⟨ψ| = 1

n2

n∑
i,j=1

εij|ij⟩⟨ij|
}
ε∈Qn2

and the uniform probability distribution over Qn2 . The game proceeds
as follows:

1. The referee prepares the state |ψ⟩ = 1
n

∑n
i,j |ij⟩AB ⊗ |ij⟩C ∈ HA ⊗

HB ⊗ HC and samples uniformly at random an n2 dimensional sign
vector, ε = (εij)nij=1 ∈ Qn2 .

2. He sends registers HA ⊗ HB to Alice and the classical description
of ε to Bob.

3. Alice and Bob apply a quantum operation on the information
received and send to the referee quantum messages resulting from
that operation. Register HA has to be communicated from Alice
and HB from Bob. Their action is restricted to be of the form of
Figure 4.1. We study in detail this scenario below.

4. The referee performs the measurement {|ψε⟩⟨ψε|, Id − |ψε⟩⟨ψε|}
on registers HA ⊗ HB ⊗ HC. He declares the players winning
the game when the outcome of this last measurement is the one
corresponding to |ψε⟩⟨ψε|.

The main object of study in this work is the value of this game in
the s2w scenario, denoted by ωs2w(GRad). A strategy in this scenario is
determined by – cf. Figure 4.1:
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• a shared entangled state φ ∈ D(HAE
⊗ HBE

) that we assume here
to be pure6. From now on we use indistinguishably the notation φ
or |φ⟩⟨φ| to refer to that state;

• a family – indexed by ε – of tuples of four “local” channels:
for each ε ∈ Qn2 ,

A ∈ CPTP(HA ⊗ HB ⊗ HAE
,HA�A ⊗ HA�B),

Bε ∈ CPTP(HBE
,HB�B ⊗ HB�A),

Ãε ∈ CPTP(HA�A ⊗ HB�A,H′
A),

B̃ε ∈ CPTP(HB�B ⊗ HA�B,H′
B).

For verification, H′
A, H′

B should be communicated to VA and VB
respectively. Therefore, according to the definition of the game,
these registers should be isomorphic to the originals HA and HB.

Understood as a family of quantum channels, the strategy defined by
these elements reads:

Sε : D(HA ⊗ HB) −→ D(HA ⊗ HB)

ψ 7→ Sε(ψ) = (Ãε ⊗ B̃ε) ◦ (A ⊗ Bε)(ψ ⊗ φ)
,

(4.5)
for each ε ∈ Qn2 . Recalling (4.1), we denote ω(GRad; {Sε}ε) the value
attained by such a strategy. Further denoting Ss2w the set of strategies
in the form (4.5), we define the value of GRad in the s2w scenario:

ωs2w(GRad) = sup
{Sε}ε∈Ss2w

ω(GRad; {Sε}ε) (4.6)

= sup Eε ω
(
Gε; (Ãε ⊗ B̃ε) ◦ (A ⊗ Bε)( · ⊗ φ)

)
,

6It can be easily checked that, by convexity, the value achieved in GRad by
strategies using mixed states is always upper bounded by the value when using pure
states. Since the quantity we are interested in is the optimal value of the game,
restricting ourselves to strategies using pure states would be enough.
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where the supremum is over Ãε, B̃ε, A, Bε and φ as indicated above
and over any finite dimensional auxiliar Hilbert spaces appearing there
– HAE(BE), HA(B)�A(B), HA(B)�B(A). For future reference, we recall here
the expression for the value of GRad in our particular case: consider the
strategy defined by the family of channels (4.5), then

ω(GRad; {Sε}ε) := Eε Tr [ |ψε⟩⟨ψε| (IdC ⊗ Sε) (|ψ⟩⟨ψ|) ] , (4.7)

where |ψε⟩ = 1
n

∑n
i,j εij |i⟩ ⊗ |j⟩ ⊗ |ij⟩, and |ψ⟩ = 1

n

∑n
i,j |i⟩ ⊗ |j⟩ ⊗ |ij⟩ ∈

HA ⊗ HB ⊗ HC.
Recall that, when rephrased in this language, the existence of general

attacks for arbitrary PV schemes translates into the coincidence of the
value in the s2w scenario with the honest value. In our particular case:

ωs2w(GRad) = ωH(GRad) = 1. (4.8)

The main question we are interested in is the amount of entanglement
necessary to establish this equality. It is natural then to define a restricted
version of ωs2w(GRad) considering only strategies using a limited amount
of resources. Here, we restrict the local dimension at any time during
the protocol. Considering the definition of A, Bε, Ãε, B̃ε, |φ⟩ and the
corresponding auxiliar systems HAE(BE), HA(B)�A(B), HA(B)�B(A) in the
Ss2w model established above, we now restrict their dimension:

Given k, k̃ ∈ N, we constrain:

dim(HAE(BE)) ≤ k, dim(HA(B)�A(B)) dim(HA(B)�B(A)) ≤ k̃.

I.e., we restrict the elements defining a strategy in our model to be as:

|φ⟩ ∈ ℓk
2

2 ,

A ∈ CPTP(ℓn2k
2 , ℓk̃2), Bε ∈ CPTP(ℓk2, ℓk̃2),

Ãε ∈ CPTP(ℓk̃2, ℓn2 ), B̃ε ∈ CPTP(ℓk̃2, ℓn2 ).

The model defined by the set of tuples S = {Ãε, B̃ε,A,Bε, φ}ε of
such elements is denoted Ss2w;k̃,k. The corresponding value of GRad in
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this model is denoted:

ωs2w;k̃,k(GRad) = sup
S∈Ss2w;k̃,k

ω(GRad; S). (4.9)

Clearly,

lim
k̃,k�∞

ωs2w;k̃,k(GRad) = ωs2w(GRad) = ωH(GRad). (4.10)

We want to study the rate of convergence of this limit. To the best
of our knowledge, it is not even known whether the limit is in general
attained for finite k, k̃. We worry about lower bounds in k, k̃ to achieve a
given degree of approximation in (4.10). More precisely, we lower bound
the difference ωH(GRad) − ωs2w;k̃,k(GRad) in terms of k, k̃ and properties
of the strategies considered. However, we postpone those results until
Section 4.6. Before that, we need to provide here two reductions to the
kind of strategies we consider in order to prepare the ground for next
section.

Classical communication in the s2w scenario. First, we consider
the role of classical communication between Alice and Bob. In our
model, we regard this resource as free and, in fact, we have included in
the structure of the considered strategies the free communication of the
classical information about ε (in the second round of local operations this
parameter was considered as public). This is justified by the fact that our
interest is bounding the quantum resources used for attackingGRad, which
are assumed to be much more expensive than classical communication.
However, there is a potential problem with this approach. That is the
possibility that the players use further classical communication apart
from that of ε – extra classical communication from now on. In our model,
this extra classical communication would be included in the definition
of channels A and Bε. In the Ss2w,k̃,k scenario, this would affect the
dimension k̃ being no longer a reliable witness for the quantum resources
employed in a given strategy: k̃ would also include the dimension of the
extra classical messages shared by Alice and Bob. Nonetheless, we show
that the amount of useful extra classical communication in our setting
is bounded by the initial dimension of the quantum system manipulated
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by the players, that is, by k and n. The following lemma allows us to
control the contribution of the classical part of players’ action to k̃.
Lemma 4.11. The optimization over S ∈ Ss2w,k̃,k in (4.9) can be
restricted to strategies using extra classical communication of local di-
mension k̃cl ≤ n4k2.
Proof. The result follows from convexity taking into account the structure
of extreme points in the set of instruments acting on a given Hilbert
space, Chapter 1, Corollary 1.36.

Consider an arbitrary strategy S = {Ãε, B̃ε,A,Bε, φ} ∈ Ss2w;m,k
using extra classical communication of local dimension mcl, where mcl ≤
m are arbitrary natural numbers that will be conveniently fixed at the end
of the proof. Therefore, we can further specify these classical messages
in the structure of the channels A and Bε:

A( · ) =
mcl∑
ca=1

Aca( · ) ⊗ |ca⟩⟨ca| : Aca ∈ CP(ℓn2k
2 , ℓ

m/mcl
2 ) for any ca,

Bε( · ) =
mcl∑
cb=1

Bcb
ε ( · ) ⊗ |cb⟩⟨cb| : Bcb

ε ∈ CP(ℓk2, ℓ
m/mcl
2 ) for any cb.

These expressions are just the description of some instruments in Ins(ℓk2, ℓ
m/mcl
2 )

(Ins(ℓn2k
2 , ℓ

m/mcl
2 ) in the first case) with mcl outcomes each. The extreme

points of Ins(ℓk2, ℓ
m/mcl
2 ) consist of instruments with at most k2 outcomes

(n4k2 in the first case) – cf. Corollary 1.36. Therefore, we can rewrite
the channels A, Bε as a convex combination of such extreme points:

A( · ) =
∑
s

αsAs( · ),

Bε( · ) =
∑
s

βε,sBε,s( · ),

where, for each s and each ε:
• 0 ≤ αs, βε,s ≤ 1 : ∑s αs = 1 = ∑

s βε,s;

• As ∈ Ins(ℓn4k2
2 , ℓ

m/mcl
2 ), Bε;s ∈ Ins(ℓk2, ℓ

m/mcl
2 ) with at most n4k2 and

k2 outcomes, respectively. For simplicity we just fix k̃cl bounded
by the largest of these bounds, k̃cl ≤ n4k2.
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Denote Ss,s′ the strategy specified by elements {Ãε, B̃ε,As,Bε,s′ , φ}ε
and Sε;s,s′( · ) the corresponding channels, defined by the generic prescrip-
tion (4.5). Notice that Sε( · ) = ∑

s,s′ αsβs′ Sε;s,s′( · ). Now, let us focus
on the value achieved in GRad. We remark that ω(GRad; S) is linear in
S, fact that allows us to write:

ω(GRad; S) =
∑
s

αs Eε
∑
s′
βε,s ω(GRad; {Sε;s,s′}ε)

≤ max
s

{
Eε max

s′
{ω(GRad; {Sε;s,s′}ε)}

}
.

Denoting s∗, s′
ε
∗ the indexes at which the maxima above are attained, the

strategy {Ãε, B̃ε,As∗ ,Bε,s′
ε

∗ , φ}ε, that uses extra classical communication
of local dimension at most k̃cl ≤ n4k2, can be now regarded as an element
in Ss2w;k̃,k with k̃ = mk̃cl/mcl. This proves the claim.

Pure s2w strategies. The second reduction consists on purifying ar-
bitrary strategies. We start fixing some notation. We say that a strategy
S = {Ãε, B̃ε,A,Bε, φ}ε ∈ Ss2w is pure if the channels Ãε, B̃ε,A,Bε can
be written as:

A( · ) = V ( · )V †, Bε( · ) = Wε( · )W †
ε ,

Ãε( · ) = Tranca Ṽε( · )Ṽ †
ε , B̃ε( · ) = Trancb

W̃ε( · )W̃ †
ε ,

for some contractive operators

V : HA ⊗ HB ⊗ HAE
−→ HA�A ⊗ HA�B,

Wε : HBE
−→ HB�B ⊗ HB�A,

Ṽε : HA�A ⊗ HB�A −→ HA ⊗ HAanc ,

W̃ε : HB�B ⊗ HA�B −→ HB ⊗ HBanc ,

being HAanc , HBanc arbitrary ancillary Hilbert spaces. In the restricted
scenario s2w;k̃, k, these operators are of the form:

V : ℓn2k
2 −→ ℓk̃2, Wε : ℓk2 −→ ℓk̃2, Ṽε, W̃ε : ℓk̃2 −→ ℓnr2 , (4.11)
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being r some natural number. For convenience, we identify pure strate-
gies with families of such pure objects, setting the notation S U =
{Ṽε, W̃ε, V,Wε, |φ⟩}ε.

We further denote SU
s2w the subset of pure strategies in the s2w

scenario and SU
s2w;k̃,k the corresponding subset in the model with dimen-

sional constraints. Due to Stinespring’s dilation theorem, Chapter 1,
Theorem 1.29, 4., it turns out that SU

s2w = Ss2w. However, when we
restrict the dimension of the considered strategies, the situation is a bit
subtler and the Stinespring’s dilation of the channels involved affects the
relevant dimensions defining the models Ss2w;k̃,k and SU

s2w;k̃,k. This is
taken care of by the following lemma:
Lemma 4.12. Any strategy S ∈ Ss2w;k̃,k can be regarded as a pure strat-
egy S U ∈ SU

s2w;k̃′,k
where k̃′ = n2kk̃4. That is, the chain of containments

SU
s2w;k̃,k ⊆ Ss2w;k̃,k ⊆ SU

s2w;k̃′,k
holds.

Proof. Set a strategy S = {Ãε, B̃ε,A,Bε, φ} in Ss2w;k̃,k.
We are going to consider Stinespring’s dilations to purify the corre-

sponding channels

Sε( · ) = (Ãε ⊗ B̃ε) ◦ (A ⊗ Bε)( · ⊗ φ). (4.12)

We start with
Ãε, B̃ε ∈ CPTP(ℓk̃2, ℓn2 ).

These channels can be lifted (due to a Stinespring’s dilation) to be
of the form:

Ãε( · ) = TrãncṼε( · )Ṽ †
ε , B̃ε( · ) = TrãncW̃ε( · )W̃ †

ε ,

where Ṽε, W̃ε : ℓk̃2 −→ ℓn2 ⊗ Hãnc are Stinespring’s isometries and
dim(Hãnc) can be upper bounded by nk̃.

Proceeding similarly with A ∈ CPTP(ℓn2k
2 , ℓk̃2) and Bε ∈ CPTP(ℓk2, ℓk̃2)

we obtain:

A( · ) = Tranc1V ( · )V †, Bε( · ) = Tranc2Wε( · )W †
ε ,

for Stinespring’s dilations V : ℓn2k
2 −→ ℓk̃2 ⊗Hanc1 , Wε : ℓk2 −→ ℓk̃2 ⊗Hanc2

such that dim(Hanc1) ≤ n2kk̃, dim(Hanc2) ≤ kk̃.
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With all that, and denoting HAanc ≡ Hanc1 ⊗ Hãnc, HBanc ≡ Hanc2 ⊗
Hãnc, we define the channels

ÃU
ε ( · ) := TrAancṼε ⊗ Idanc1( · )Ṽ †

ε ⊗ Idanc1 ,

B̃U
ε ( · ) := TrBancW̃ε ⊗ Idanc2( · )W̃ †

ε ⊗ Idanc2 ,

AU( · ) := V ( · )V †, BU
ε ( · ) := Wε( · )W †

ε .

Then, we can rewrite (4.12) as:

Sε( · ) = (ÃU
ε ⊗ B̃U

ε ) ◦ (AU ⊗ BU
ε )( · ⊗ |φ⟩⟨φ|).

But clearly the strategy S U := {ÃU
ε , B̃U

ε ,AU,BU
ε , φ}ε is pure, fin-

ishing the proof of the lemma. A careful look at the definition of the
channels defining S U reveals that S U ∈ SU

s2w;k̃′,k
for some k̃′ ≤ n2kk̃2.

For concreteness, we fix k̃′ to be n2kk̃2 enlarging the underlying Hilbert
space in the obvious way if necessary.

With Lemmas 4.11 and 4.12 at hand we can focus now in the study
of strategies in SU

s2w;k̃′,k
. Given a general strategy S ∈ Ss2w;k̃,k, Lemma

4.11 guarantees that S can be taken such that the dimension of the
classical resources used is upper bounded by

k̃cl ≤ n4k2. (4.13)

Then, Lemma 4.12 allows us to relate S with a pure strategy S U ∈
SU
s2w;k̃′,k

such that
k̃′ ≤ n2kk̃2. (4.14)

Accordingly, in the rest of this manuscript we will mainly work in
the model SU

s2w;k̃′,k
redirecting the reader to (4.14) and (4.13) for the

relation with the resources used by more general strategies. However,
notice that these correspondences are at most polynomial in n, k and k̃
and, in fact, will only introduce corrections by constant factors in the
bounds we state later on. In this sense, the precise exponents in (4.14),
(4.13) are irrelevant. This will become clear in the next section.

For convenience, we finish the present section recalling the expression
of ω(GRad; S U), Equation (4.9), particularized for pure strategies S U=
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{Ṽε, W̃ε, V,Wε, φ}:

ω(GRad; S U) = Eε Tr
[

|ψε⟩⟨ψε| (IdC ⊗ S U
ε )
(
|ψ⟩⟨ψ|

) ]
, (4.15)

where now:

S U
ε ( · )

= TrHABanc

[
(Ṽε ⊗ W̃ε) (V ⊗Wε) ( · ⊗ |φ⟩⟨φ|) (V † ⊗W †

ε ) (Ṽ †
ε ⊗ W̃ †

ε )
]
,

with HABanc = HAanc ⊗ HBanc .
Notice that for strategies in the more specific model SU

s2w;k̃′,k
, the

operators Ṽε, W̃ε, V,Wε are specified as in (4.11) and, therefore, HAanc

and HBanc in this case are identified with ℓr2 for some r ∈ N that will be
irrelevant for us.
Remark 4.13. Alternatively, (4.15) can be rewritten as:

ω(GRad; S U)

= Eε
∥∥∥∥ 1
n2

∑
i,j

εij(⟨i|Ṽε ⊗ ⟨j|W̃ε) (V |ij⟩ ⊗Wε) |φ⟩
∥∥∥∥2

HABanc

. (4.16)

As commented before, in the SU
s2w;k̃′,k

scenario, HABanc = ℓr
2

2 .
Before showing the easy proof of this claim, let us clarify the notation

used above. By V |ij⟩ we mean the operator V ∈ Sk̃
′,n2k

∞ with its indices
corresponding to ℓn

2
2 contracted with the vector |ij⟩. That is, if we

expand V on its coordinates, V = ∑n
k,l=1

∑k
m=1

∑k̃′

p Vp,klm|p⟩⟨klm|, and
then V |ij⟩ = ∑k

m=1
∑k̃′

p Vp,ijm|p⟩⟨m| ∈ Sk̃
′,k

∞ . Similarly with ⟨i|Ṽε and
⟨j|W̃ε.

Proof of (4.16). In first place, we notice that for finite dimensional
Hilbert spaces H, H′, K, any vectors |ξ⟩ ∈ H, |η⟩ ∈ H′ and any operator
U ∈ S∞(H′,H ⊗ K)

Tr
[
|ξ⟩⟨ξ| TrKU |η⟩⟨η|U †

]
= Tr

[
(|ξ⟩⟨ξ| ⊗ IdK)U |η⟩⟨η|U †

]
= ⟨η|U †(|ξ⟩ ⊗ IdK) (⟨ξ| ⊗ IdK)U |η⟩

=
∥∥∥(⟨ξ| ⊗ IdK)U |η⟩

∥∥∥2

K
.
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Applying this elementary identity to |ψε⟩ ∈ HA ⊗ HB ⊗ HC ≡ H, |ψ⟩ ⊗
|φ⟩ ∈ HA ⊗ HB ⊗ HC ⊗ HAE

⊗ HBE
≡ H′ and the operator IdC ⊗ (Ṽε ⊗

W̃ε) (V ⊗Wε) ∈ S∞(H′,H ⊗ HABanc) we have that, for each ε ∈ Qn2 :

Tr
[

|ψε⟩⟨ψε| (IdC ⊗ S U
ε )
(
|ψ⟩⟨ψ|

) ]
= Eε

∥∥∥(⟨ψε| ⊗ IdABanc)
(
IdC ⊗ (Ṽε ⊗ W̃ε) (V ⊗Wε)

)
(|ψ⟩ ⊗ |φ⟩)

∥∥∥2

HABanc

.

Equation (4.16) is obtained from the last line above just recalling the
definitions |ψε⟩ = 1

n

∑n
i,j=1 εij|ij⟩AB ⊗ |ij⟩C , |ψ⟩ = 1

n

∑n
i,j=1 |ij⟩AB ⊗

|ij⟩C .

4.6 Bounds for “smooth” strategies
This section is devoted to the proof of Theorem 4.1, which provides

lower bounds on resources needed to break GRad by strategies character-
ized by regularity parameters based on Definition 4.5, Section 4.4. When
we refer here to a cheating strategy for GRad, unless the opposite is explic-
itly specified, we mean a pure strategy S U = {Ṽε, W̃ε, V, Wε, |φ⟩}ε ∈
SU
s2w;k̃′,k

.
As we have explained before, the main idea leading to Theorem 4.1

is the understanding of cheating strategies for GRad as assignments on
the hypercube Qn2 , i.e., vector-valued functions Φ : Qn2 → X where
X is a suitable Banach space. Given a strategy S U, the corresponding
assignment ΦS U must be related with the value attained by the strategy,
ω(GRad; S U). Ideally, we hope to bound ω(GRad; S U) by the expected
value of the norm of ΦS U(ε), quantity for which we can use Corollary 4.8
to obtain upper bounds. Equation (4.16) gives us a first hint on how to
construct ΦS U. Given S U = {Ṽε, W̃ε, V, Wε, |φ⟩}ε, consider the map:

ΦS U : Qn2 −→ ℓr
2

2

ε 7→ ΦS U(ε)
, (4.17)
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where

ΦS U(ε) := 1
n2

∑
ij

εij (⟨i|Ṽε ⊗ ⟨j|W̃ε) (V |ij⟩ ⊗Wε)|φ⟩,

and r is determined by the strategy, recall (4.11).
The referred Equation (4.16) now reads:

ω(GRad; S U) = Eε∥ΦS U(ε)∥2
ℓr

2
2
, (4.18)

so we are in good track. Since ∥ΦS U(ε)∥
ℓr

2
2

≤ 1 ∀ε ∈ Qn2 , we can use
the trivial bound Eε∥ΦS U(ε)∥2

ℓr
2

2
≤ Eε∥ΦS U(ε)∥

ℓr
2

2
and Corollary 4.8 to

obtain – recall Definition 4.5 for σΦS U
:

ω(GRad; S U) ≤
∥∥∥EεΦS U(ε)

∥∥∥
ℓr

2
2

+ C σΦS U
T(n2)

2 (ℓr2

2 ).

Furthermore, T(n2)
2 (ℓr2

2 ) = 1 since, more generally, T2(ℓr
2

2 ) = 1.
The main problem with this approach is that the quantity

∥∥∥EεΦS U(ε)
∥∥∥
ℓr

2
2

might be of the same order as ω(GRad; S U), making the previous bound
trivial. The reason is that we can easily modify the map ΦS U without
increasing any relevant dimension composing ΦS U(ε) with an ε depen-
dent unitary that “aligns” all vectors ΦS U(ε) in the same direction. For
this modified map, ∥EεΦS U(ε)∥2

ℓr
2

2
= Eε∥ΦS U(ε)∥2

ℓr
2

2
= ω(GRad; S U). The

approach presented so far is unable to detect such an artefact, so we now
look at alternative constructions for ΦS U.

Next, we simplify the image of the map ΦS U at the expense of
considering more involved choices for the output Banach space. This
allows us to preserve an equivalence of the kind of (4.18) while obtaining
good upper bounds for

∥∥∥EεΦS U(ε)
∥∥∥
X

.
Given a strategy S U = {Ṽε, W̃ε, V, Wε, |φ⟩}ε we define the following

two alternatives to ΦS U:

Φi
S U : Qn2 −→ Sr

2,kk̃′
∞

ε 7→ Φi
S U(ε)

,
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with
Φi

S U(ε) := 1
n2

∑
ij

εij (⟨i|Ṽε ⊗ ⟨j|W̃ε) (V |ij⟩ ⊗ Id
ℓk̃

′
2

);

and
Φii

S U : Qn2 −→ S
k̃′,n
1 ⊗(ε,π)1/2

S
k̃′,n
1

ε 7→ Φii
S U(ε)

,

with
Φii

S U(ε) = 1
n2

∑
ij

εij ⟨i| ⊗ ⟨j| ⊗ (V |ij⟩ ⊗Wε) |φ⟩.

These are the central objects we study to obtain Theorem 4.1. Recall
that the output space in Φii

S U was defined at the end of Section 4.4 as
the interpolation space (Sk̃

′,n
1 ⊗ε S

k̃′,n
1 ,Sk̃

′,n
1 ⊗π S

k̃′,n
1 )1/2.

Now we comment on the idea behind the definition of these maps:
recall that a strategy S U = {Ṽε, W̃ε, V, Wε, |φ⟩}ε consists of two rounds
of local operations with a communication stage in between. Fixing the
first round, that is related to V, Wε and |φ⟩, and understanding the
optimization over any Ṽε, W̃ε as computing a particular norm, leads
to the definition of Φii

S U. When the elements we fix are Ṽε, W̃ε and V
– this last one is ε-independent –, and the optimization is taken over
(Idℓk2 ⊗Wε)|φ⟩, the map Φi

S U is naturally obtained.
Next we describe how these maps are related to GRad, postponing

the proofs to Section 4.6.1.

Lemma 4.14. For any strategy S U,

ω(GRad; S U) ≤ Eε
∥∥∥Φi(ii)

S U (ε)
∥∥∥
Xi(ii)

,

where we have denoted X i = Sr
2,kk̃′

∞ and X ii = S
k̃′,n
1 ⊗(ε,π)1/2

S
k̃′,n
1 .

Remark 4.15. For Φii
S U, the previous statement can be strengthen to

ω(GRad; S U) ≤ Eε
∥∥∥Φii

S U(ε)
∥∥∥
X̃ii
,

where X̃ ii = S
k̃′,n
1 ⊗Sw−cb

2
S
k̃′,n
1 . Recall Chapter 2, Definition 2.13 for this

last norm.
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The regularity of these maps can be characterized by parameters
σiS U := σΦi

S U
and σiiS U := σΦii

S U
– recall Definition 4.5. More explicitly:

σ
i(ii)
S U = log(n2)Eε

∑
i,j

∥∂ijΦi(ii)
S U (ε)∥2

Xi(ii)

1/2

. (4.19)

These quantities can be bounded by the easier expressions appearing
in Section 4.2. See Appendix B.1 for details.

In the case of an arbitrary (possibly non-pure) strategy S, we can
assign parameters σiS , σiiS to S with the simple prescription:

σ
i(ii)
S := inf

S U

purifying S

σ
i(ii)
S U .

With definition (4.19) at hand and taking into account Corollary 4.8
and Lemma 4.14 (with the refinement in Remark 4.15), we can obtain:

Lemma 4.16. For any strategy S U,

i.
ω(GRad; S U) ≤

∥∥∥EεΦi
S U(ε)

∥∥∥
Xi

+ C σiS U T(n2)
2

(
X i
)
,

ii.
ω(GRad; S U) ≤

∥∥∥EεΦii
S U(ε)

∥∥∥
X̃ii

+ C σiiS U T(n2)
2

(
X ii

)
,

where we have denoted X̃ ii = S
k̃′,n
1 ⊗Sw−cb

2
S
k̃′,n
1 .

Comment 4.6.1. Notice the change of norms in the second item of the
lemma. This refinement is needed later on in order to obtain Proposition
4.17 below.

Lemma 4.16 allows us to somehow exchange the lack of control on
the behaviour of a general strategy by the control of some properties of
the Banach spaces involved. Bounding the quantities appearing there,
we obtain our main result:

Theorem 4.1 (Formal statement). Given an arbitrary strategy S ∈
Ss2w;k̃,k,
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I.
ω(G; S) ≤ C1 + C2 σ

i
S log1/2(nkk̃) +O

( 1
n1/2

)
;

II.

ω(G; S) ≤ C̃1+C3 σ̃
ii
S log1/2(nkk̃)+O

(
1
n1/2 + log(n) log1/2(kk̃)

n

)
,

where we have denoted σ̃iiS = n3/4 log(n)σiiS .

Above, C1, C̃1, C2, C3 are positive constants such that C1. C̃1 are strictly
lower than 1.

Proof. To obtain the statement of the theorem, as we already said, we
start considering Lemma 4.16. Then, we need to bound:

1. the type constants T(n2)
2 (X i) and T(n2)

2 (X ii). These bounds are
already provided in Equations (4.2) and (4.1), respectively. We
recall these bounds here for reader’s convenience:

T(n2)
2 (X i) ≤ T2(X i) ≲ log1/2(kk̃′),

T(n2)
2 (X ii) ≲ n3/4 log(n) log1/2(nk̃′);

2. the terms
∥∥∥EεΦi

S U(ε)
∥∥∥
Xi

and
∥∥∥EεΦii

S U(ε)
∥∥∥
X̃ii

. These quantities are
handled by Proposition 4.17 below.

With this we obtain the stated bound in the case of pure strategies.
Nonetheless, statements about pure strategies can be transformed into
statements about general strategies taking into account the relation
(4.14). As we said at the end of Section 4.5, this relation is polynomial
in the parameters involved and therefore, the change from pure to
general strategies only induces corrections by constant factors that can
be absorbed in the constants C2, C3 present in the statement. Similar
considerations deals with the amount of classical communication included
in k̃, in this case one has to recall Equation (4.13). See Appendix B.2
for further details.



4.6 Bounds for “smooth” strategies 127

In the rest of this section we first state the proposition alluded in the
previous proof and then give the proofs, in this order, of Lemma 4.14,
Lemma 4.16 and Proposition 4.17.

Proposition 4.17. For any pure strategy S U ∈ Ss2w;k̃′,k:

i. ∥∥∥EεΦi
S U(ε)

∥∥∥
Xi

≤ 3
4 + C√

n
.

ii. ∥∥∥EεΦii
S U(ε)

∥∥∥
X̃ii

≤
√

3
2 + C ′

√
n

+ C ′′ log(n) log1/2(kk̃′)
n

.

Here C, C ′, C ′′ are universal constants.

4.6.1 Proof of Lemmas 4.14 and 4.16
Proof of Lemma 4.14. The proof of both items in the lemma follows the
same structure. We start with the bound regarding Φi

S U:
Recalling (4.16):

ω(GRad; S U) = Eε
∥∥∥∥ 1
n2

∑
i,j

εij(⟨i|Ṽε ⊗ ⟨j|W̃ε) (V |ij⟩ ⊗Wε) |φ⟩
∥∥∥∥2

ℓr
2

2

.

We bound this quantity as follows:

ω(GRad; S U)

= Eε

∥∥∥∥∥∥ 1
n2

∑
i,j

εij(⟨i|Ṽε ⊗ ⟨j|W̃ε) (V |ij⟩ ⊗ Id
ℓk̃

′
2

) (Idℓk2 ⊗Wε) |φ⟩

∥∥∥∥∥∥
2

ℓr
2

2

≤ Eε sup
|φ⟩∈ball(ℓkk̃′

2 )

∥∥∥∥∥∥ 1
n2

∑
i,j

εij(⟨i|Ṽε ⊗ ⟨j|W̃ε) (V |ij⟩ ⊗ Id
ℓk̃

′2
2

) |φ⟩

∥∥∥∥∥∥
2

ℓr
2

2

= Eε sup
|φ⟩∈ball(ℓkk̃′

2 )

∥∥∥Φi
S U(ε)(|φ⟩)

∥∥∥2

ℓr
2

2
= Eε

∥∥∥Φi
S U(ε)

∥∥∥2

S
r2,kk̃′
∞

≤ Eε
∥∥∥Φi

S U(ε)
∥∥∥
S

r2,kk̃′
∞

≡ Eε
∥∥∥Φi

S U(ε)
∥∥∥
Xi
.
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For Φii
S U, we prove a stronger result. That is, considering the map

Φii
S U taking values on the space X̃ ii = S

k̃′,n
1 ⊗Sw−cb

2
S
k̃′,n
1 , we show that:

ω(GRad; S U) ≤ Eε
∥∥∥Φii

S U(ε)
∥∥∥
X̃ii
. (4.20)

Since the norm in X̃ ii is smaller than in X ii, cf. Proposition 4.9, the
statement of the lemma is also true. Following the proof of the first item,
we start bounding:

ω(GRad; S U)

= Eε

∥∥∥∥∥∥ 1
n2

∑
i,j

εij(⟨i|Ṽε ⊗ ⟨j|W̃ε) (V |ij⟩ ⊗Wε) |φ⟩

∥∥∥∥∥∥
2

ℓr
2

2

≤ Eε sup
Ṽ ,W̃∈ball(Snr,k̃′

∞ )

∥∥∥∥∥∥ 1
n2

∑
i,j

εij(⟨i|Ṽ ⊗ ⟨j|W̃ ) (V |ij⟩ ⊗Wε) |φ⟩

∥∥∥∥∥∥
2

ℓr
2

2

= Eε sup
Ṽ ,W̃∈ball(Snr,k̃′

∞ )

∥∥∥∥∥∥(Ṽ ⊗ W̃ )
 1
n2

∑
i,j

εij (⟨i| ⊗ ⟨j|) (V |ij⟩ ⊗Wε) |φ⟩

∥∥∥∥∥∥
2

ℓr
2

2

= Eε sup
Ṽ ,W̃∈ball(Snr,k̃′

∞ )

∥∥∥(Ṽ ⊗ W̃ )
(
Φii

S U(ε)
)∥∥∥2

ℓr
2

2

(Lemma 2.16 )
≤ Eε

∥∥∥Φii
S U(ε)

∥∥∥2

S
k̃′,n
1 ⊗

Sw−cb
2

S
k̃′,n
1

≤ Eε
∥∥∥Φii

S U(ε)
∥∥∥
S

k̃′,n
1 ⊗

Sw−cb
2

S
k̃′,n
1

≡ Eε
∥∥∥Φii

S U(ε)
∥∥∥
X̃ii

.

Proof of Lemma 4.16. The first item is a direct consequence of Corollary
4.8 applied to the bound in Lemma 4.14, i.

The second item proceed similarly but with a small detour. Using
now Pisier’s inequality, Lemma 4.7 (with p = 1 and a trivial triangle
inequality, as in the proof of Corollary 4.8), from inequality (4.20) we
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obtain

Eε
∥∥∥Φii

S U(ε)
∥∥∥
X̃ii

≤
∥∥∥EεΦii

S U(ε)
∥∥∥
X̃ii

+ C log(n)Eε,ε̃

∥∥∥∥∥∥
n∑

k,l=1
ε̃kl∂klΦii(ε)

∥∥∥∥∥∥
X̃ii

.

Now, according to Proposition 2.15, we can upper bound the last
summand above changing the norm X̃ ii by X ii. Considering that

Eε,ε̃

∥∥∥∥∥∥
n∑

k,l=1
ε̃kl∂klΦii(ε)

∥∥∥∥∥∥
Xii

≲ T(n2)
2 (X ii) Eε

 n∑
k,l=1

∥∂klΦii(ε)∥2
Xii

1/2

,

we have:

ω(GRad; S U)

≤
∥∥∥EεΦii

S U(ε)
∥∥∥
X̃ii

+ C log(n) T(n2)
2 (X ii) Eε

 n∑
k,l=1

∥∂klΦii(ε)∥2
Xii

1/2

.

We obtain Lemma 4.16, ii., identifying σiiS U above.

4.6.2 Proof of Proposition 4.17
Finally, as promised, we prove Proposition 4.17:

Proof of Proposition 4.17, i. The norm in the L.H.S. of Proposition 4.17,
i., is attained at unit vectors |φ⟩ ∈ ℓkk̃

′
2 , |ξ⟩ ∈ ℓr

2
2 (independent of ε):∥∥∥EεΦi

S U(ε)
∥∥∥
S

r2,kk̃′
∞

=
∣∣∣Eε ⟨ξ| Φi

S U(ε) |φ⟩
∣∣∣ ≤ Eε

∣∣∣⟨ξ| Φi
S U(ε) |φ⟩

∣∣∣.
Expanding this expression, we have:

∥Eε Φi
S U(ε)∥

S
r2,kk̃′
∞

≤ Eε
∣∣∣ 1
n2

∑
ij

εij⟨ξ|
(
⟨i|Ṽε ⊗ ⟨j|W̃ε

) (
V |ij⟩ ⊗ Id

ℓk̃
′

2

)
|φ⟩

∣∣∣
= Eε

∣∣∣⟨ξε |φ⟩
∣∣∣,
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where we have defined the unit vectors:

⟨ξε| := 1
n

∑
i,j

εij⟨ij|C ⊗ ⟨ξ|
(
⟨i|Ṽε ⊗ ⟨j|W̃ε

)
,

|φ⟩ := 1
n

∑
i,j

|ij⟩C ⊗
(
V |ij⟩ ⊗ Id

ℓk̃
′

2

)
|φ⟩.

Now, notice that there exists at least one ε∗ such that |⟨ξε∗ |φ⟩| ≥
∥Eε Φi

S U(ε)∥
S

r2,kk̃′
∞

. Moreover, ⟨ξε∗ |φ⟩ can be taken to be real w.l.o.g.,
since we can absorb any phase in |φ⟩ without changing our argument.
This is taken into account in the rest of the proof. Next, consider ε∗ to
rewrite |φ⟩ = |ξε∗⟩ + (|φ⟩ − |ξε∗⟩). An application of Cauchy-Schwartz
inequality gives us the following:

∥Eε Φi
S U(ε)∥

S
r2,kk̃′
∞

≤ Eε
∣∣∣⟨ξε|φ⟩

∣∣∣
≤ Eε

∣∣∣⟨ξε|ξε∗⟩
∣∣∣+ ∣∣∣⟨φ− ξε∗|φ− ξε∗⟩

∣∣∣1/2
. (4.21)

Now we bound both summands in the R.H.S. of the previous expression
separately:

• For the second:∣∣∣⟨φ− ξε∗ |φ− ξε∗⟩
∣∣∣1/2

≤
(
2(1 − ⟨ξε∗|φ⟩)

)1/2
≤
(
2(1 − ∥Eε ΦS U(ε)∥

S
r2,kk̃′
∞

)
)1/2

≤ 7
4 − 4

3∥Eε Φi
S U(ε)∥

S
r2,kk̃′
∞

.
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• For the first one, we have the following bound:

Eε
∣∣∣⟨ξε|ξε∗⟩

∣∣∣ = Eε
∣∣∣∣ 1
n2

∑
ij

εijε
∗
ij⟨ξ|

(
⟨i|Ṽε Ṽ †

ε∗ |i⟩ ⊗ ⟨j|W̃ε W̃
†
ε∗|j⟩

)
|ξ⟩
∣∣∣∣

≤ Eε sup
|ξi⟩,|φj⟩∈ball(ℓr2

2 )
for i,j=1,...,n

∣∣∣∣ 1
n2

∑
ij

εijε
∗
ij⟨ξi|φj⟩

∣∣∣∣
≈ Eε

∥∥∥∥ 1
n2

∑
ij

εijε
∗
ij|i⟩ ⊗ |j⟩

∥∥∥∥
ℓn1 ⊗εℓn1

= Eε
∥∥∥∥ 1
n2

∑
ij

εij|i⟩ ⊗ |j⟩
∥∥∥∥
ℓn1 ⊗εℓn1

.

In the last two lines we have used, in this order, Grothendieck’s
inequality [40] and the fact that {εijε∗

ij}i,j are i.i.d. Rademacher
random variables for any fixed signs ε∗

i,j. Finally, to conclude we
can bound:

Eε
∥∥∥ 1
n2

∑
ij

εij|i⟩ ⊗ |j⟩
∥∥∥
ℓn1 ⊗εℓn1

≲
1√
n
.

One way to see this is considering the metric mapping property of
the injective tensor norm and the estimate ∥Id : ℓn2 → ℓn1 ∥ =

√
n.

With this:

Eε
∥∥∥ 1
n2

∑
ij

εij|i⟩ ⊗ |j⟩
∥∥∥
ℓn1 ⊗εℓn1

≤ n Eε
∥∥∥ 1
n2

∑
ij

εij|i⟩ ⊗ |j⟩
∥∥∥
ℓn2 ⊗εℓn2

= 1
n

Eε
∥∥∥∑

ij

εij|i⟩⟨j|
∥∥∥
Sn

∞
.

The well-known estimate Eε
∥∥∥∑ij εij|i⟩⟨j|

∥∥∥
Sn

∞
≲

√
n provides the

desired bound.

Joining everything in (4.21) we obtain the bound in Proposition 4.17,
i.
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Proof of Proposition 4.17, ii. Notice first that, up to this point, we al-
ready have a full proof of Theorem 4.1, I. It turns out that Proposition
4.17, ii. is a consequence of this first part of our main theorem.

The key idea to see this is to understand the norm
∥∥∥EεΦii.

S U

∥∥∥
X̃ii

as
the optimization over a family of strategies with small enough parameter
σiS U. Concretely, considering the characterization of the norm X̃ ii given
in Lemma 2.16, we can prove that∥∥∥EεΦii

S U(ε)
∥∥∥
X̃ii

≤ sup
r∈N

Ṽ , W̃∈ball(Snr,k̃′
∞ )

ω1/2
(
GRad; {Ṽ , W̃ , V, Wε, |φ⟩}ε

)
.

(4.22)
The desired bound follows now from realizing that in the strategies on

which this optimization is performed, the second round of local operations,
Ṽ ⊗ W̃ , is ε-independent. Therefore, for these strategies, according to
Example 4.6, σi ≈ log(n)

n
, which, in conjunction with Theorem 4.1, I.,

leads to the desired statement. To obtain the precise statement appearing
there, we have considered the elementary inequality

√
1 + x ≤ 1 + x/2.

Then, to finish, let us prove claim (4.22).
Recall that, according to Lemma 2.16 in Chapter 2, we can write:∥∥∥EεΦii

S U(ε)
∥∥∥
X̃ii

= sup
r∈N

Ṽ , W̃∈ball(Snr,k̃′
∞ )

∥∥∥∥Eε (Ṽ ⊗ W̃ )
( 1
n2

∑
i,j

εij (⟨i| ⊗ ⟨j|) (V |ij⟩ ⊗Wε) |φ⟩
)∥∥∥∥

ℓr
2

2

≤ sup
r∈N

Ṽ , W̃∈ball(Snr,k̃′
∞ )

Eε
∥∥∥∥ 1
n2

∑
i,j

εij (⟨i|Ṽ ⊗ ⟨j|W̃ ) (V |ij⟩ ⊗Wε) |φ⟩
∥∥∥∥
ℓr

2
2

.
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Furthermore, considering the elementary bound Eε ϕ(ε) ≤
(
Eε ϕ(ε)2

) 1
2
,

valid for any function ϕ : Qn2 → R, we can finally write:∥∥∥EεΦii
S U(ε)

∥∥∥
X̃ii

≤ sup
r∈N

Ṽ , W̃∈ball(Snr,k̃′
∞ )

(
Eε
∥∥∥∥ 1
n2

∑
i,j

εij (⟨i|Ṽ ⊗ ⟨j|W̃ ) (V |ij⟩ ⊗Wε) |φ⟩
∥∥∥∥2

ℓr
2

2

) 1
2

= sup
r∈N

Ṽ , W̃∈ball(Snr,k̃′
∞ )

ω1/2
(
GRad; {Ṽ , W̃ , V, Wε, |φ⟩}ε

)
,

as claimed.

We make a final comment that, in some sense, connects with the next
section, where we discuss possible extensions of the approach presented
up to this point.

Remark 4.18. The appearance of the norms X i = Sr
2,kk̃′

∞ , X ii =
S
k̃′,n
1 ⊗(ε,π)1/2

S
k̃′,n
1 above might seem, at some point, arbitrary, in the sense

that we have used these norms to upper bound the value ω(GRad,S U)
being these upper bounds not tight in general. Part of the motivation to
consider these spaces is the fact that we are able to properly understand
their type properties. But we can wonder: is any norm upper bounding
ω(GRad,S U) a reasonable choice provided that we can control the relevant
type constants? This is not the case. Actually, in Section 4.7 we explore
further this issue. For the moment, let us note that the chosen norms
also satisfy some basic normalization conditions. In particular, it can
be shown that the elements constituting Φi

S U, Φii
S U are well normalized

when regarded as elements in X i and X ii, respectively. Concretely, for
each i, j ∈ [n] ∥∥∥(⟨i|Ṽε ⊗ ⟨j|W̃ε) (V |ij⟩ ⊗ Id

ℓk̃
′

2
)
∥∥∥
Xi

≤ 1

and
∥⟨i| ⊗ ⟨j| ⊗ (V |ij⟩ ⊗Wε)|φ⟩∥Xii ≤ 1,
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no matters which are the operators Ṽε, W̃ε, V, Wε as long as they are
contractive or which is the vector |φ⟩ as long as its Euclidean norm is
upper bounded by one.

The first bound is straightforward. Since Ṽε ⊗ W̃ε and V ⊗ Id
ℓk̃

′
2

are
contractive operators, ⟨i|Ṽε⊗⟨j|W̃ε and V |ij⟩⊗ Id

ℓk̃
′

2
are also contractive

and the same applies to their composition.
For the second bound, fixing i, j, we first notice that |φ̃⟩ := (V |ij⟩ ⊗

Id
ℓk̃

′2
2

)(Idℓk2 ⊗Wε)|φ⟩ has norm ∥|φ̃⟩∥
ℓk̃

′2
2

≤ 1. Furthermore, considering
the norm-one injections ιi : ℓk̃′

2 ∋ |φ⟩ 7→ |i⟩ ⊗ |φ⟩ ∈ S
k̃′,n
1 , we have that

|i⟩ ⊗ |j⟩ ⊗ |φ̃⟩ = ιi ⊗ ιj
(
|φ̃⟩
)
. Therefore

∥∥∥|i⟩ ⊗ |j⟩ ⊗ |φ̃⟩
∥∥∥
S

k̃′,n
1 ⊗(ε,π)1/2

S
k̃′,n
1

≤
∥∥∥|φ̃⟩

∥∥∥
ℓk̃

′2
2

∥∥∥ιi ⊗ ιj : ℓk̃′2

2 → S
k̃′,n
1 ⊗(ε,π)1/2

S
k̃′,n
1

∥∥∥
≤ 1.

It remains to justify that, in fact,∥∥∥ιi ⊗ ιj : ℓk̃′2

2 → S
k̃′,n
1 ⊗(ε,π)1/2

S
k̃′,n
1

∥∥∥ ≤ 1.

This can be proved recalling that S
k̃′,n
1 ⊗(ε,π)1/2

S
k̃′,n
1 is the interpolation

space
(
S
k̃′,n
1 ⊗ε S

k̃′,n
1 ,Sk̃

′,n
1 ⊗π S

k̃′,n
1

)
1
2

and ℓk̃′2
2 can be also regarded as the

space
(
ℓk̃

′
2 ⊗ε ℓ

k̃′
2 , ℓ

k̃′
2 ⊗π ℓ

k̃′
2

)
1
2
. Then,

∥∥∥ιi ⊗ ιj : ℓk̃′

2 → S
k̃′,n
1 ⊗(ε,π)1/2

S
k̃′,n
1

∥∥∥
≤
∥∥∥ιi ⊗ ιj : ℓk̃′

2 ⊗ε ℓ
k̃′2

2 → S
k̃′,n
1 ⊗ε S

k̃′,n
1

∥∥∥ 1
2

∥∥∥ιi ⊗ ιj : ℓk̃′

2 ⊗π ℓ
k̃′

2 → S
k̃′,n
1 ⊗π S

k̃′,n
1

∥∥∥ 1
2

≤
∥∥∥ιi : ℓk̃′

2 → S
k̃′,n
1

∥∥∥ ∥∥∥ιj : ℓk̃′

2 → S
k̃′,n
1

∥∥∥
≤ 1.
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4.7 A conjecture towards unconditional
lower bounds

In the previous section, we have modified the naïve choice (4.17)
for ΦS U in order to circumvent the problem that

∥∥∥EεΦS U(ε)
∥∥∥
ℓr

2
2

can be
in general too large, damning that way the bounds obtained through
Corollary 4.8 to be trivial. The variations Φi

S U, Φii
S U allowed us to obtain

the bounds in Theorem 4.1. An unsatisfactory feature of this result
is that, in order to obtain concrete bounds on the quantum resources
employed by a given strategy for GRad, we still need to make some
additional assumption on that strategy. Recall that, in particular, the
bounds in Theorem 4.1 depend on the regularity parameters σiS U, σiiS U.
Ideally, we would like to obtain bounds only depending on the dimension
of the quantum systems Alice and Bob manipulate.

Following this line of thought, one could ask whether given a strategy
S U it is possible to construct a corresponding assignment ΦS U that
additionally display the property of being regular enough, that is, with
σΦS U

≲log 1/n. The answer is affirmative, but the cost of doing so is
that the output Banach space of ΦS U becomes more involved and its
type properties escape from the techniques used in this work. Given a
strategy S U = {Ṽε, W̃ε, V,Wε, |φ⟩}ε, we define:

Φiii
S U : Qn2 −→

(
S
k̃′,n
1 ⊗Scb−w

2
S
k̃′,n
1

)
⊗ε ℓ

kk̃′
2

ε 7→ Φiii
S U(ε)

, (4.23)

where
Φiii

S U(ε) := 1
n2

∑
ij

εij ⟨i| ⊗ ⟨j| ⊗ (V |ij⟩ ⊗ Id
ℓk̃

′
2

).

This map relates with the value of the game GRad as stated in the
following

Lemma 4.19. For any pure strategy S U ∈ Ss2w;k̃′,k:

ω1/2(GRad; S U) ≲ Eε ∥Φiii
S U(ε)∥Xiii ,
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where X iii :=
(
S
k̃′,n
1 ⊗Scb−w

2
S
k̃′,n
1

)
⊗ε ℓ

kk̃′
2 .

Proof. For each ε ∈ Qn2 , we have to interpret the tensor Φiii
S U(ε) as the

mapping:
Φiii

S U(ε) : ℓkk̃
′

2 −→ S
k̃′,n
1 ⊗Scb−w

2
S
k̃′,n
1

|φ⟩ 7→ Φiii
S U(ε)(|φ⟩)

,

where

Φiii
S U(ε)(|φ⟩) = 1

n2

∑
ij

εij ⟨i| ⊗ ⟨j| ⊗ (V |ij⟩ ⊗ Id
ℓk̃

′
2

) |φ⟩.

Then, the norm of this map is

∥Φiii
S U(ε)∥

= sup
|φ⟩∈ball(ℓkk̃′

2 )

∥∥∥∥ 1
n2

∑
ij

εij ⟨i| ⊗ ⟨j| ⊗ (V |ij⟩ ⊗ Id
ℓk̃

′
2

) |φ⟩
∥∥∥∥
S

k̃′,n
1 ⊗

Scb−w
2

S
k̃′,n
1

= sup
W∈ball(Sk̃′

∞)
|φ⟩∈ball(ℓkk̃′

2 )

∥∥∥∥ 1
n2

∑
ij

εij ⟨i| ⊗ ⟨j| ⊗ (V |ij⟩ ⊗W ) |φ⟩
∥∥∥∥
S

k̃′,n
1 ⊗

Scb−w
2

S
k̃′,n
1

.

Recalling again Chapter 2, Lemma 2.16, and proceeding similarly to the
proof of Proposition 4.17, ii., we can write explicitly the norm above as:

∥Φiii
S U(ε)∥

= sup
m∈N

Ṽ ,W̃∈ball(Sk̃′,nm
∞ )

W∈ball(Sk̃′
∞), |φ⟩∈ball(ℓkk̃′

2 )

∥∥∥∥ 1
n2

∑
ij

εij (⟨i|Ṽ ⊗ ⟨j|W̃ ) (V |ij⟩ ⊗W ) |φ⟩
∥∥∥∥
ℓm

2
2

.
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Finally, squaring this last expression and taking the expectation over
ε we conclude that:

Eε ∥Φiii
S U(ε)∥2

= Eε sup
m∈N

Ṽ ,W̃∈ball(Sk̃′,nm
∞ )

W∈ball(Sk̃′
∞), |φ⟩∈ball(ℓkk̃′

2 )

∥∥∥∥ 1
n2

∑
ij

εij (⟨i|Ṽ ⊗ ⟨j|W̃ ) (V |ij⟩ ⊗W ) |φ⟩
∥∥∥∥2

ℓm
2

2

≥ Eε
∥∥∥∥ 1
n2

∑
ij

εij (⟨i|Ṽε ⊗ ⟨j|W̃ε) (V |ij⟩ ⊗Wε) |φ⟩
∥∥∥∥2

ℓm
2

2

= ω(GRad; S U),

where we have considered that S U = {Ṽε, W̃ε, V,Wε, |φ⟩}ε. With that
we are almost done. This last expression is enough to obtain

ω(GRad; S U) ≤ Eε ∥Φiii
S U(ε)∥2 ≤ Eε ∥Φiii

S U(ε)∥.

Furthermore, using Kahane’s inequality [46], we can improve on that
taking into account the equivalence Eε ∥Φiii

S U(ε)∥2 ≈ (Eε ∥Φiii
S U(ε)∥)2. This

allows us to obtain the statement of the lemma.

Now, notice that Φiii
S U is by construction a linear map of the kind

of Example 4.6, and, consequently, σΦiii
S U

≲ log(n)/n. Furthermore,
by symmetry, EεΦiii

S U(ε) = 0. Therefore, Corollary 4.8 applied to the
statement of Lemma 4.19 directly implies the bound:

ω(GRad; S U) ≲log

T(n2)
2 (X iii)
n

2

. (4.24)

The problem now reduces to find a good estimate for the type-2
constant in the last expression.

We note that the norm X iii is the smallest one for which we were able
to prove an equivalent to Lemma 4.19. However, the whole argument
from this lemma until here would be valid for any norm larger than X iii

fulfilling a normalization condition with respect to the elements that
sum up to Φiii

S U(ε). We will be more explicit later on. An example of
such a norm is X ii ⊗ε ℓ

kk̃′
2 where X ii = S

k̃′,n
1 ⊗(ε,π)1/2

S
k̃′,n
1 . Motivated by



138 Entanglement consumption in attacks to PBC

the type properties of X ii, cf. Proposition 4.10 and, more particularly,
Equation (4.3), we are led to conjecture that:

T(n2)
2

((
S
k̃′,n
1 ⊗(ε,π)1/2

S
k̃′,n
1

)
⊗ε ℓ

kk̃′

2

)
≲log T(n2)

2

(
S
k̃′,n
1 ⊗(ε,π)1/2

S
k̃′,n
1

)
.

Recalling that T(n2)
2

(
S
k̃′,n
1 ⊗(ε,π)1/2

S
k̃′,n
1

)
≲log n

3/4, we start stating
our conjecture as follows:

Conjecture 1 (strongest form).

T(n2)
2

((
S
k̃′,n
1 ⊗(ε,π)1/2

S
k̃′,n
1

)
⊗ε ℓ

kk̃′

2

)
≲log n

3/4. (4.25)

A weaker conjecture which would also imply the desired bounds in
the setting of PBC is:

Conjecture 1 (weaker form).

T(n2)
2

((
S
k̃′,n
1 ⊗(ε,π)1/2

S
k̃′,n
1

)
⊗ε ℓ

kk̃′

2

)
≲log n

β for some β < 1. (4.26)

According to what we explained above, there is a plethora of norms
for which the positive resolution of the corresponding conjecture would
imply unconditional exponential lower bounds for the resources in attacks
to PBC. Next, we formalize this discussion characterizing those norms
and rewriting Conjecture 4.25 in a unified form.

First, we characterize what we need from a norm X to follow the
previous argument substituting X iii by this X. As usually, we use the
notation X to denote the norm as well as the corresponding Banach
space itself. In this section we refer to X as a valid norm if it satisfies:

P.i. X is a norm on the algebraic tensor product S
k̃′,n
1 ⊗ S

k̃′,n
1 ⊗ ℓkk̃

′
2 ;

P.ii. ∥x∥X ≳ ∥x∥Xiii for any x ∈ X;

P.iii.
∥∥∥⟨i| ⊗ ⟨j| ⊗ (V |ij⟩ ⊗ Id

ℓk̃
′

2
)
∥∥∥
X

≤ 1 for any V ∈ ball(Sn2k,k̃′
∞ ) and any

i, j = 1, . . . , n.

Notice that P.ii. guarantees a relation with the value of GRad in analogy
with Lemma 4.19 and P.iii. guarantees that Φiii.

S U : Qn2 → X still falls in
the setting of Example 4.6, i.e., we still have σΦiii

S U
≲ log(n)/n. These
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two properties therefore translates into the fact that the bound (4.24) is
still true with the type-2 constant of any valid norm X instead of X iii.

We can state
Conjecture 1 (even weaker form). For some valid norm, i.e. a norm
X satisfying properties P.i., P.ii. and P.iii. above, and some dimension
independent constant β < 1 :

T(n2)
2 (X) ≲log n

β. (4.27)

Now, to state our conjecture in its weakest form we need to introduce
the notion of type constant of an operator f : X → Y . The type-2
constant of a linear map f : X → Y is the infimum of the constants T
such that (

Eε
[∥∥∥∑

i

εif(xi)
∥∥∥2

Y

])1/2

≤ T
(∑

i

∥xi∥2
X

)1/2

,

for any finite sequence {xi}i ⊂ X. In analogy with the case of the
type constant of a Banach space, when the cardinal of this sequence is
restricted, we refer to the type-2 constant with m vectors of f : X → Y
and denote T(m)

2 (f : X → Y ).
We are interested here in the type of the identity map Id : X → X iii,

being X a valid norm. In fact, the final statement of our conjecture is as
follows:
Conjecture 1 (weakest form). For some valid norm, i.e. a norm X
satisfying properties P.i., P.ii. and P.iii. above, and some dimension
independent constant β < 1 :

T(n2)
2

(
Id : X → X iii

)
≲log n

β. (4.28)

Remark 4.20. Notice that in particular, T(n2)
2 (Id : X → X iii) ≲ T(n2)

2 (Y )
for any valid norm Y such that ∥x∥Xiii ≲ ∥x∥Y ≲ ∥x∥X . Therefore, the
last form of the conjecture, Equation (4.28), is indeed weaker than the
previous ones.

Within the family of valid norms characterized by properties P.i., P.ii.,
P.iii. we obviously find the spaces X iii and

(
S
k̃′,n
1 ⊗(ε,π)1/2

S
k̃′,n
1

)
⊗ε ℓ

kk̃′
2 .
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But also, spaces such as
(
S
k̃′,n
1 ⊗Sw

2
S
k̃′,n
1

)
⊗ε ℓ

kk̃′
2 or

(
S
k̃′,n
1 ⊗π2 S

k̃′,n
1

)
⊗ε

ℓkk̃
′

2 , see Chapter 2, Section 2.4 for the definition of Sw
2 and π2. An

obstruction for the techniques used in this work to obtain upper bounds
for the type constants of these spaces is the pathological behaviour of
the injective tensor product with respect to interpolation methods [59].
In order to support the validity of the stated conjecture, in the next
subsections we explore the most direct approaches to disprove it, lower
bounding the type-2 constant of the spaces involved. We find that these
approaches do not lead to bounds stronger than T2(X) ≳log n

3/4 for at
least some valid norm X.

4.7.1 Type constant of subspaces
From the definition of the type constant of a normed space X, Tp(X),

1 ≤ p ≤ 2, it follows that,

for any subspace S ⊆ X, Tp(X) ≥ Tp(S).

This applies as well to T(m)
p instead of Tp. Then, a way to disprove (4.27)

is finding for any valid norm X, a subspace with type-2 constant of order
n or greater.

For the sake of concreteness, we now restrict our attention to norms
of the form

(
S
k̃′,n
1 ⊗α S

k̃′,n
1

)
⊗ε ℓ

kk̃′
2 , being S

k̃′,n
1 ⊗α S

k̃′,n
1 a normed space

in between of S
k̃′,n
1 ⊗Sw−cb

2
S
k̃′,n
1 and S

k̃′,n
1 ⊗(ε,π)1/2

S
k̃′,n
1 . That is, for any

x ∈ S
k̃′,n
1 ⊗α S

k̃′,n
1 :

∥x ∥
S

k̃′,n
1 ⊗

Sw−cb
2

S
k̃′,n
1

≤ ∥x ∥
S

k̃′,n
1 ⊗αS

k̃′,n
1

≤ ∥x ∥
S

k̃′,n
1 ⊗(ε,π)1/2

S
k̃′,n
1

.

All these norms clearly satisfy properties P.i., P.ii, P.iii.7
What we do here is looking at the most obvious subspaces of

(
S
k̃′,n
1 ⊗α

S
k̃′,n
1

)
⊗εℓ

kk̃′
2 and study their type properties. Concretely, we study the

following subspaces (in increasing order of complexity):

1. first, we find copies of ℓkk̃′
2 and S

k̃′,n
1 ;

7For P.iii., recall Remark 4.18.
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2. at the next level, we also find the subspaces S
k̃′,n
1 ⊗α S

k̃′,n
1 and

S
k̃′,n
1 ⊗ε ℓ

kk̃′
2 ;

3. finally, we also study the subspaces
(
ℓk̃

′
2 ⊗α S

k̃′,n
1

)
⊗ε ℓ

kk̃′
2 and

(ℓn1 ⊗α ℓ
n
1 ) ⊗ε ℓ

kk̃′
2 . We were not able to obtain non-trivial esti-

mates for
(
ℓn1 ⊗α S

k̃′,n
1

)
⊗ε ℓ

kk̃′
2 .

Next, we provide upper estimates for the type-2 constants of these
spaces for some choices of α, showing that at least these estimates are
compatible with Conjecture (4.27). The limitation on the possible norms
for which following bounds apply comes from the limited scope of the
techniques available. Nonetheless, it might be the case that these bounds
are more general than stated here. In fact, we did not find any choice
of α for which we have results contradicting 4.27, so in principle any of
these norms could be suitable for a positive solution of the conjecture.

The first item above is already well understood. The following
estimates are very well known:

T2(ℓ2) = 1, T2(Sk̃
′,n

1 ) =
√

min(n, k̃′).

Continuing with the second item, in Section 4.4, Equation (4.3), we
have already obtained a satisfactory bound for the type constant (with
n2 vectors in this case) of Sk̃

′,n
1 ⊗α S

k̃′,n
1 with α = (ε, π)1/2. We don’t rule

out the possibility that a similar bound applies to other α’s, but we were
not able to find a proof for that. The reason why we managed to better
understand the case α = (ε, π)1/2 is purely technical in origin, and it is
due to the nice behaviour of type constants under interpolation methods.

A bound for the type-2 constant of Sk̃
′,n

1 ⊗ε ℓ
kk̃′
2 is easier to obtain.

Taking into account that ∥Id : Sk̃
′,n

2 → S
k̃′,n
1 ∥ ∥Id : Sk̃

′,n
1 → S

k̃′,n
2 ∥ ≤

√
n

and that ℓnk̃′
2 ⊗ε ℓ

kk̃′
2 = Snk̃

′,kk̃′
∞ , we obtain

T2(Sk̃
′,n

1 ⊗ε ℓ
kk̃′

2 ) ≲log
√
n.

Finally, we state our findings regarding the third item in the form of
two propositions. For the first one, recall the Definitions 2.12 and (2.16)
for the norms appearing next:
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Proposition 4.21. For α = Sw
2 or α = π2,

T2
(
(ℓk̃′

2 ⊗α S
k̃′,n
1 ) ⊗ε ℓ

kk̃′

2

)
≲log

√
n.

Proof. The proof is as simple as noting that ∥Id : Sk̃
′,n

1 → ℓnk̃
′

2 ∥ ∥Id :
ℓnk̃

′
2 → S

k̃′,n
1 ∥ ≤

√
n and, for the α’s in the statement of the proposition,

ℓk̃
′

2 ⊗α ℓ
nk̃′
2 = ℓnk̃

′2
2 . This provides the following bound for the quantity of

interest:

T2
(
(ℓk̃′

2 ⊗α S
k̃′,n
1 ) ⊗ε ℓ

kk̃′

2

)
≤

√
n T2

(
ℓnk̃

′2

2 ⊗ε ℓ
kk̃′

2

)
≲
√
n log(nkk̃′2).

Proposition 4.22. For any α in between of ε and π2:

T2
(
(ℓn1 ⊗α ℓ

n
1 ) ⊗ε ℓ

kk̃′

2

)
≲log

√
n.

Proof. The reason for which the claim turns out to be valid for α in a
wide range of norms is due to Grothendieck’s inequality, which makes
all these norms collapse:

ℓn1 ⊗α ℓ
n
1 ≈ ℓn1 ⊗ε ℓ

n
1 .

Therefore, it is enough to study the type-2 constant of the space ℓn1 ⊗εℓ
n
1 ⊗ε

ℓkk̃
′

2 . For this, we can isomorphically embed ℓn1 into ℓcn

∞ for some constant
c > 2. Therefore, we obtain ℓn1 ⊗ε ℓ

n
1 ⊗ε ℓ

kk̃′
2 ≈ ℓc

n

∞ ⊗ε ℓ
cn

∞ ⊗ε ℓ
kk̃′
2 = ℓc

2n

∞ (ℓkk̃′
2 ).

To conclude, we note that the type-2 constant of this last space is, up to
logarithmic factors, of order

√
n.

4.7.2 Volume ratio
Although the Banach spaces that appear in this thesis are prominently

complex, for the sake of simplicity, we will restrict ourselves to real spaces
in this section. There exist standard tools [68, 111, 125, 71] to transpose
results in this case to the complex domain, albeit some technicalities
might appear in that process [126]. Since our aim here is restricted to
show some evidence in favour of our conjecture, we do not think that
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these intricacies add anything of essential importance to the following
discussion.

A standard approach to understand the type/cotype properties of a
space X consists on the computation of its volume ratio, vr(X), a notion
originated in [109, 110]. The reason is that this parameter provides
a lower bound for the cotype-2 constant. This is the content of the
following result due to Milman and Bourgain:

Theorem 4.23 ([11]). For a Banach space X,

C2(X) log (2C2(X)) ≳ vr(X).

Taking into account the duality relation between type and cotype –
cf. Chapter 2, Proposition 2.5 – the last result translates into a lower
bound for the type-2 constant of the dual space:

T2(X) ≥ C2(X∗) ≳log vr(X∗).

This provides us with another technique to try to disprove Conjecture
4.27. In this section we upper bound the volume ratio of various valid
norms – in the sense of Conjecture 4.27 – obtaining results that are again
compatible with a positive solution of the conjecture.

We make now a tiny digression about the relation between volume
ratio and cotype. In few words, this relation is still far from being
well understood. In fact, in [110] it was asked whether vr(X) can be
estimated from the cotype-2 constant of the space and, in the more recent
work [38], the authors of that paper commented on the question whether
bounded volume ratio implies cotype q for every q > 2. Studying further
these questions is an extremely interesting avenue to tackle the problems
we are concerned with in this work, at the same time as clarifying the
relation between two very fundamental notions in local Banach space
theory.

Next we define the volume ratio of a normed space X, vr(X). Given
a d-dimensional Banach space X,

vr(X) =
(

vold(ball(X))
vold(EX)

)1/d

, (4.29)
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where EX is the ellipsoid of maximal volume contained in ball(X) and
vold( · ) denotes the d-dimensional Lebesgue measure.

We focus again on spaces of the form
(
S
k̃′,n
1 ⊗α S

k̃′,n
1

)
⊗ε ℓ

kk̃′
2 , as in

the previous section. We prove:

Theorem 4.24. Let α be a tensor norm such that, for any x ∈ S
k̃′,n
1 ⊗α

S
k̃′,n
1 :

1. ∥x∥
S

k̃′,n
1 ⊗αS

k̃′,n
1

≤ ∥x∥1/2
S

k̃′,n
1 ⊗πS

k̃′,n
1

∥x∥1/2
S

k̃′,n
1 ⊗εS

k̃′,n
1

;

2. ∥x∥
ℓn

2k̃′2
2

≤ ∥x∥
S

k̃′,n
1 ⊗αS

k̃′,n
1

.

Then, for X =
(
S
k̃′,n
1 ⊗α S

k̃′,n
1

)
⊗ε ℓ

kk̃′
2 , we have

vr(X∗) ≲ n3/4.

The proof uses several standard tools from geometric Banach space
theory, mainly following the approach of [38]. But before going into the
proof, we note that some of our valid norms indeed fulfil the conditions
of the theorem. Some examples are S

k̃′,n
1 ⊗Sw

2
S
k̃′,n
1 or S

k̃′,n
1 ⊗π2 S

k̃′,n
1 .

An important feature of these spaces is the fact that, by construction,
they have enough symmetries. This will be exploited in the following
proof with no further mention. The reader can find some additional
information in Appendix B.3.

Proof. We start noticing that α being a tensor norm translates into the
fact that X has enough symmetries. This means that the only operator
on that space that commutes with every isometry is the identity (or a
multiple of it). The same happens with the dual X∗. Next, we provide
an alternative way to compute the volume ratio using this property. To
simplify notation, denote d = dim(X) = n2kk̃′3. Then, we can bound
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(4.29) as follows:

vr(X∗) (i.)=
(

vold(ball(X∗))
vold(ball(ℓd2))

)1/d ∥∥∥Id : ℓd2 → X∗
∥∥∥

(ii.)
≤
(

vold(ball(ℓd2))
vold(ball(X))

)1/d ∥∥∥Id : ℓd2 → X∗
∥∥∥

(iii.)
≲

∥∥∥Id : ℓd2 → X∗
∥∥∥

√
d

(
1

vold(ball(X))

)1/d

(iv.)
≲

∥∥∥Id : ℓd2 → X∗
∥∥∥

√
d

E ∥G∥X , (4.30)

where G = ∑
i,j,k,l,m gijklm|i⟩⟨j| ⊗ |k⟩⟨l| ⊗ ⟨m| is a tensor in X with i.i.d.

gaussian entries gijklm. The expectation is over these random variables.
With respect to the chain of claims implicit in the previous manipulation:
(i.) follows from the fact that the maximal volume ellipsoid EX∗ coincides
with

∥∥∥Id : ℓd2 → X∗
∥∥∥−1

ball(ℓd2) when X∗ has enough symmetries [115,
Section 16], in (ii.) we have used the famous Blaschke-Santaló inequality
[88, Section 7], in (iii.), the standard volume estimation for the Euclidean
ball, vold(ball(ℓd2)) ≈ d−d/2 and (iv.) follows from Lemma 3.4. in [38].

As a consequence, to obtain the stated bound we have to estimate
the quantities

∥∥∥Id : ℓd2 → X∗
∥∥∥ and E ∥G∥X .

• Upper bounding
∥∥∥Id : ℓd2 → X∗

∥∥∥:
We show two complementary bounds for this quantity. The first
one uses the second condition in the statement of the theorem, that
can be equivalently stated as:

∥∥∥Id : Sk̃
′,n

1 ⊗α S
k̃′,n
1 −→ ℓn

2k̃′2
2

∥∥∥ ≤ 1.
This allows us to bound:∥∥∥Id : ℓd2 → X∗

∥∥∥ =
∥∥∥Id : X → ℓd2

∥∥∥
=
∥∥∥Id :

(
S
k̃′,n
1 ⊗α S

k̃′,n
1

)
⊗ε ℓ

kk̃′

2 −→ ℓn
2k̃′2kk̃′

2

∥∥∥
≤
∥∥∥Id : ℓn2k̃′2

2 ⊗ε ℓ
kk̃′

2 −→ ℓn
2k̃′2kk̃′

2

∥∥∥
≤
√
kk̃′.



146 Entanglement consumption in attacks to PBC

The assumption
∥∥∥Id : Sk̃

′,n
1 ⊗α S

k̃′,n
1 −→ ℓn

2k̃′2
2

∥∥∥ ≤ 1 was used in the
first inequality above.
Our second bound comes from the observation that the operator
norm we want to bound is indeed upper bounded by the 2-summing
norm of the identity between S

k̃′,n
1 ⊗α S

k̃′,n
1 and ℓn

2k̃′2
2 . We can

alternatively understand the studied norm as:∥∥∥Id : ℓd2 → X∗
∥∥∥ =

∥∥∥Id : X → ℓd2
∥∥∥

=
∥∥∥Id : ℓkk̃′

2 ⊗ε

(
S
k̃′,n
1 ⊗α S

k̃′,n
1

)
−→ ℓkk̃

′

2 (ℓn2k̃′2

2 )
∥∥∥

≤ sup
k∈N

∥∥∥Id : ℓk2 ⊗ε

(
S
k̃′,n
1 ⊗α S

k̃′,n
1

)
−→ ℓk2(ℓn2k̃′2

2 )
∥∥∥

= π2
(
Id : Sk̃

′,n
1 ⊗α S

k̃′,n
1 −→ ℓn

2k̃′2

2

)
,

where the last equality is simply the definition of the 2-summing
norm of the indicated map – recall Chapter 2, Equation (2.16).
While now we don’t need the hypothesis used before, we need to
invoke the tensor norm properties of α. Hopefully, thanks to this
property8, Lemma 5.2. of [31] provides us a satisfactory way to
compute the above norm. Under the consideration that S

k̃′,n
1 ⊗α

S
k̃′,n
1 as well as ℓn2k̃′2

2 have enough symmetries in the orthogonal
group – see Appendix B.3 –, the cited lemma allows us to write
the following identity:

π2
(
Id : Sk̃

′,n
1 ⊗α S

k̃′,n
1 −→ ℓn

2k̃′2

2

)
= nk̃′∥∥∥Id : ℓn2k̃′2

2 −→ S
k̃′,n
1 ⊗α S

k̃′,n
1

∥∥∥ .
Taking into account the two bounds above, we can state that,
under the conditions in the theorem:∥∥∥Id : ℓd2 → X∗

∥∥∥
≤ min

√kk̃′,
nk̃′∥∥∥Id : ℓn2k̃′2

2 −→ S
k̃′,n
1 ⊗α S

k̃′,n
1

∥∥∥
 . (4.31)

8See again Appendix B.3 for clarification.
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• Upper bounding E ∥G∥X :

The upper estimate of this quantity follows from Chevet’s inequality
[24], see also [115, Section 43]. According to that:

E ∥G∥X = ∥G∥(
S

k̃′,n
1 ⊗αS

k̃′,n
1

)
⊗εℓkk̃′

2

≤ sup
φ∈ball

((
S

k̃′,n
1 ⊗αS

k̃′,n
1

)∗)
∑
i,j,k,l

∣∣∣∣φ (|i⟩⟨j| ⊗ |k⟩⟨l|)
∣∣∣∣2
1/2

× E
∥∥∥∥ ∑

m

gm⟨m|
∥∥∥∥
ℓkk̃′

2

+ sup
φ∈ball((ℓkk̃′

2 )∗)

(∑
m

|φ (⟨m|)|2
)1/2

× E
∥∥∥∥ ∑
i,j,k,l

gijkl|i⟩⟨j| ⊗ |k⟩⟨l|
∥∥∥∥
S

k̃′,n
1 ⊗αS

k̃′,n
1

.

Here we note the coincidence of the 2-sums above with the norm of the
following identity maps:

•

sup
φ∈ball

((
S

k̃′,n
1 ⊗αS

k̃′,n
1

)∗)
∑
i,j,k,l

|φ (|i⟩⟨j| ⊗ |k⟩⟨l|)|2
1/2

=
∥∥∥Id :

(
S
k̃′,n
1 ⊗α S

k̃′,n
1

)∗
−→ ℓn

2k̃′2

2

∥∥∥,
•

sup
φ∈ball(ℓkk̃′

2 )

(∑
m

|φ (⟨m|)|2
)1/2

=
∥∥∥Id : ℓkk̃′

2 −→ ℓkk̃
′

2

∥∥∥ = 1.
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Furthermore, to simplify the presentation we also introduce the notation
g = ∑

i,j,k,l gijkl|i⟩⟨j| ⊗ |k⟩⟨l|. With these comments, we can write

E ∥G∥X ≤
∥∥∥Id :

(
S
k̃′,n
1 ⊗α S

k̃′,n
1

)∗
−→ ℓn

2k̃′2

2

∥∥∥ E ∥∥∥∥ ∑
m

gm⟨m|
∥∥∥∥
ℓkk̃′

2

+
∥∥∥Id : ℓkk̃′

2 −→ ℓkk̃
′

2

∥∥∥ E ∥g∥
S

k̃′,n
1 ⊗αS

k̃′,n
1

≈
∥∥∥Id :

(
S
k̃′,n
1 ⊗α S

k̃′,n
1

)∗
−→ ℓn

2k̃′2

2

∥∥∥ √kk̃′

+ E ∥g∥
S

k̃′,n
1 ⊗αS

k̃′,n
1

.

Now, it is just left to bound E ∥g∥
S

k̃′,n
1 ⊗αS

k̃′,n
1

. For that, we make use of
condition 1. in the statement of the theorem, that is:

E ∥g∥
S

k̃′,n
1 ⊗αS

k̃′,n
1

≤ E
(

∥g∥1/2
S

k̃′,n
1 ⊗πS

k̃′,n
1

∥g∥1/2
S

k̃′,n
1 ⊗εS

k̃′,n
1

)
≤
(
E ∥g∥

S
k̃′,n
1 ⊗πS

k̃′,n
1

)1/2 (
E ∥g∥

S
k̃′,n
1 ⊗εS

k̃′,n
1

)1/2
.

The first term can be bounded as follows:

E ∥g∥
S

k̃′,n
1 ⊗πS

k̃′,n
1

= E ∥g∥
ℓn2 ⊗πℓn2 ⊗πS

k̃′
1

≤
√
k̃′ E ∥g∥

ℓn
2

1 (Sk̃′
2 )

≤ n

√
k̃′ E ∥g∥

ℓn
2

2 (Sk̃′
2 ) = n

√
k̃′ E ∥g∥

ℓn
2k̃′2

2

≲ n

√
k̃′nk̃′ = n2k̃′3/2.

For the other term, we use again Chevet’s inequality:

E
∥∥∥∥ ∑
i,j,k,l

gijkl|i⟩⟨j| ⊗ |k⟩⟨l|
∥∥∥∥
S

k̃′,n
1 ⊗εS

k̃′,n
1

≤ 2
∥∥∥Id : Sk̃′,n

∞ −→ ℓnk̃
′

2

∥∥∥ E
∥∥∥∥ ∑

i,j

gij|i⟩⟨j|
∥∥∥∥
S

k̃′,n
1

≤ 2
√
n E

∥∥∥∥ ∑
i,j

gij|i⟩⟨j|
∥∥∥∥
S

k̃′,n
1

≲
√
nn

√
k̃′ = n3/2k̃′1/2.
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With the previous bounds, we obtain:

E ∥G∥X ≲
∥∥∥Id : ℓn2k̃′2

2 −→ S
k̃′,n
1 ⊗α S

k̃′,n
1

∥∥∥ √kk̃′ + n7/4k̃′. (4.32)

To finish, we introduce in (4.30) the information given by (4.31) and
(4.32):

vr(X∗)≤

∥∥∥Id : ℓd2 → X∗
∥∥∥

√
d
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×
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√
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nk̃′
√
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n7/4k̃′

= 1 + n3/4.

That is enough to conclude the proof of the theorem.

4.8 Discussion
In this chapter we have proposed a protocol for PV, referred as

GRad throughout the text, and proved lower bounds on the quantum
resources necessary to break it. Our bounds, appearing in Theorem
4.1, do not answer in a definite way Question 2 and, in particular, are
not enough for proving GRad secure for all practical purposes. The
reason is that the bounds presented in Theorem 4.1 depend on some
additional properties of the strategy under consideration: the parameters
σiS , σiiS , related with the regularity of the strategy when regarded as
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a vector-valued assignment on the Boolean hypercube, cf. Section 4.6.
However, our Theorem 4.1 is strong enough to encapsulate some previous
results. As mentioned in Section 4.1, the hypotheses of Corollary 4.2 are
satisfied by the teleportation based attacks of [15] and [5] and also by
Universal Programmable Quantum Processors, rederiving in that way
some results in [15, 5, 57]. In particular, Theorem 3.11 in Chapter 3
can be obtained from Corollary 4.2. Furthermore, we have related the
final solution of Question 1 with the type/cotype properties of specific
Banach spaces and, in fact, the results we obtained led us to put forward
a conjecture about these mathematical objects. The positive solution
of this conjecture would imply the security for all practical purposes of
GRad. This would represent a major progress toward Question 2 – See
Section 4.7 for a formal statement of the conjecture and details about the
connection with the security of GRad. In this last section we have also
provided some estimates supporting the conjecture. Concretely, we have
obtained bounds for the type-2 constants of some subspaces involved in
the conjecture as well as bounds for the volume ratio of the duals of the
spaces appearing there. This last estimate relates our conjecture, and
therefore, the problem about the security of GRad, with open problems in
Banach space theory concerning the relation between cotype and volume
ratio.

The future direction for this work is clear: trying to resolve the
status of the security of GRad. Starting with the setting we introduced
in Section 4.7, the most direct approach consists on developing new
techniques to estimate type/cotype constants of tensor norm spaces.
This is in fact an interesting avenue also in the context of local Banach
space theory and we hope that this work could serve as motivation to
pursue it. Extending the family of spaces whose type/cotype constants
can be accurately estimated might shed new light on several poorly
understood questions in this context, as it is the relation between volume
ratio and cotype or the prevalence of type/cotype in tensor norms.

Coming back to our σ–dependent bounds, Theorem 4.1, it would
be also a desirable development to achieve a better understanding of
the regularity parameters introduced there, σiS and σiiS . For example, it
would be very clarifying to understand how the structure of strategies is
restricted under the assumption of these parameters being small (in the
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sense of Corollary 4.2) or whether general strategies can be made more
regular in order to have a better behaviour in terms of these parameters.
Another interesting question in this direction is understanding whether
σiS , σiiS can be related with some physical properties of the strategies
involved, such as their robustness against noise or the complexity of the
operations performed.

Beyond the specific setting studied here, we have introduced a whole
toolbox of constructions and connections that can be of interest in other
related contexts. Firstly, most of the ideas we have used to study GRad

can be explored in other MROQGs or even in more general games. Being
more speculative, the recent connection between PBC and AdS/CFT
[65, 66] seems to indicate that the tools we use here might have potential
application to the understanding of holographic duality. Along this
line, we can ask, for example, whether the notions of regularity studied
here can be related with properties of the mapping between bulk and
boundary theories in this context. In [66] it was claimed that properties
of the AdS/CFT holographic correspondence allow to find cheating
strategies that break PBC with polynomial resources. According to that,
the exponential lower bounds in Corollary 4.2 opens the possibility to
impose restrictions on the regularity of such holographic correspondence.
This would be in consonance with a recent result of Kliesch and Koenig
[56], based on previous work of Jones [50]. In [56], the continuum limit
of discrete tensor-network toy models for holography was studied finding
that, generically, this limit is extremely discontinuous.





Chapter 5

Concluding remarks and open
questions

In this thesis we have established new connections between problems
arising in the study of quantum information and local Banach space
theory. In particular, type constants appear as the central quantity of
interest. We have shown how the understanding of this parameter for
some particular Banach spaces can be translated into bounds for the
resources necessary to achieve some quantum information processing
tasks. Here we have analysed the case of Universal Programmable
Quantum Processors – cf. Chapter 3 – and attacks to Position Based
Quantum Cryptography – cf. Chapter 4 –. However, there is no reason
to think that the ideas we have introduced must only apply to these
specific situations and further applications to other contexts within the
study of quantum information remains as a promising future avenue
to be explored. In fact, type constants had appeared before a related
context in the work [12].

Focusing in the work filling these pages, we find some questions that
remain open and that we think are worth of further exploration. We
summarize next the ones that we consider most relevant.

Question 1. Given ϵ > 0, what is the biggest natural number d such
that there exists a d–dimensional subspace of Sm∞ that is ϵ–isomorphic
to Sd1 ?
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In Chapter 3 we have shown that ϵ−UPQPd correspond to completely
contractive ϵ–embeddings of Sd1 into a subspace of Sm∞. When fixing an
arbitrary ϵ > 0 as constant, the bounds we have obtained still leaves
open the gap:

Ω(exp(d)) ≤ m ≤ O(exp(d2)), (5.1)

for the optimal memory dimension m. We have already mentioned that
the previous gap is still open when we forget about the condition about
the completely bounded norm of the embedding, resulting in Question 1
asked above. This question is remarkably natural in the context of the
local theory of Banach spaces. Closing (5.1) by its upper edge, providing
a stronger lower bound m ≥ Ω(exp(d2)), would also resolve the more
stringent question about Universal Programmable Quantum Processors.
On the contrary, the existence of ϵ–embeddings for which m ≤ O(exp(d))
might provide some insights on the geometry of Sd1 .
Question 2. How much entanglement is necessary to break any PV
scheme?

This is the main question that we tried to answer in Chapter 4.
Despite the progress presented there, a satisfactory answer is still missing.
However, our results establish some connections that naturally raise
further questions of potential interest also beyond the setting of Position
Based Cryptography. In first place, in Chapter 4, Section 4.6, we have
related an analytical property – denoted as σ – of some vector-valued
functions on the hypercube with the resources consumed to attack
the Position Verification protocol GRad. This parameter σ, defined in
Definition 4.5, can be understood as a non-commutative analogue of the
total influence, a basic notion in the analysis of Boolean functions. In
view of the relevant role played by the total influence in the study of
real valued Boolean functions, we can wonder:
Question 3. Which properties of a vector valued function on the hyper-
cube, f : Qn → X, can be related with its regularity parameter σf? Are
there any other applications in which this parameter plays a relevant
role?

It is tempting to explore an extension of the classical theory of
Boolean functions to the vector valued case in which the natural pa-
rameter σf , or some close variant, plays the role of the influence in the
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commutative theory. From our innocent ignorance about the feasibility
of such a program, we can ask, for instance, whether non-commutative
versions of the celebrated KKL theorem can be obtained in terms of the
non-commutative influence σf or whether an analogous non-commutative
extension of the recently proven [44] sensitivity conjecture holds. Fur-
thermore, influence and related notions appear as key quantities in many
practical application such as social choice, learning theory [73] or compu-
tational complexity [44, 1]. This partially explains the rich development
of real valued Boolean analysis in stark contrast with the vector-valued
extension discussed above. The work presented in this thesis opens the
door for the exploration of further applications in the realm of quantum
cryptography and, more generally, quantum computation.

In Chapter 4, Section 4.7, we have alternatively obtained uncondi-
tional bounds that only depend on the type constant of certain spaces.
In this direction, the most obvious question that we leave open is the va-
lidity of Conjecture 1. Besides that, we can ask some other independent
questions that are naturally related with that conjecture.

Question 4. For which spaces X the type-2 constant of X ⊗ε ℓ
k
2 is

determined, up to logarithmic factors, by the type-2 constant of X?

First, we note that the logarithmic corrections are, in general, un-
avoidable. This is shown by the simple example of ℓk2 ⊗ε ℓ

k
2. In the

positive side, we can understand the previous question as motivated
by the bounds T2(ℓk∞ ⊗ε X) ≲log T2(X) and T2(ℓk2(X)) ≲ T2(X). The
space considered in Question 4 is a sort of hybrid between the previous
two, which prompts us to ask whether the previous inequalities extend in
some sense to that case. In the negative, we mention that the previous
question is significantly challenging. Following the example considered
earlier in this paragraph, the type constants of ℓk2 ⊗ε ℓ

k
2 ⊗ε ℓ

k
2 are widely

unknown.
In relation with our estimates for the volume ratio of some tensor

norms of ℓ2 spaces – cf. Theorem 4.24 – we can ask:

Question 5. Is it possible to establish any non-trivial relation between
the volume ratio of tensor norms of ℓ2 spaces and its cotype constants?

Volume ratio and cotype are strongly interrelated notions, as shown
by Milman-Bourgain’s Theorem 4.23 or the characterization of weak
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cotype in terms of the volume ratio of subspaces, studied by Milman
and Pisier [69]. However, there are features of this relation that are not
understood yet. In particular, we do not known whether an inequality

C2(X) ≲log vr(X) (5.2)

can be established for some family of well-behaved spaces, for example,
spaces with enough symmetries or tensor norms of ℓ2 spaces, as in
Question 5. A negative solution to Conjecture 1, in view of the estimates
shown in Theorem 4.24, might show a counterexample to (5.2) in the last
situation. In the opposite direction, an inequality as (5.2), even in the
restricted case of tensor norms of ℓ2 spaces, would prove the conjecture
true.
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Appendix A

A.1 Theorem 3.11. General case.
In this section, we prove that any ϵ − UPQPd, P, not necessarily

unitary, satisfies the restrictions given by Theorem 3.11.

Proof. First, we consider a Stinespring’s dilation for P :

V ∈ U(ℓd2 ⊗ ℓm
′

2 ), such that P( · ) = TrKV ( · )V †,

where ℓm′
2 = ℓm2 ⊗ K and K is an ancillary Hilbert space of dimension

equal to the Krauss rank of P, rank(P) ≤ (dim(ℓd2 ⊗ ℓm2 ))2 ≡ (dm)2.
Fixing the dimension of K, V is uniquely determined up to unitaries on
K.

Now, we construct ΦP as in the unitary case:

ΦP : Sd1 ↪−→ Sm
′

∞
σ 7→ ΦP(σ) := Trℓd2V (σT ⊗ Idℓm′

2
), (A.1)

and from Theorem 3.5 we obtain that:

∥σ∥Sd
1

≥ ∥ΦP(σ)∥Sm′
∞

≥ (1 − ε)1/2∥σ∥Sd
1
, for every σ ∈ Sd1 .
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Using in the first place Proposition 2.4 and then Proposition 2.3, the
last inequalities imply that:

T2(Sd1 ) ≤ 1
(1 − ε) 1

2
T2
(
ΦV (Sd1 )

)
≤ 1

(1 − ε) 1
2
T2
(
Sm

′

∞

)
. (A.2)

Taking into account the estimates (2.9) we finally arrive to:

d ≤ C

(1 − ε) log(dim ℓm
′

2 ) ⇒ dim ℓm
′

2 ≥ 2
(1−ε)

C
d,

where C can be taken equal to 4 or maybe better. Recalling that
ℓm

′
2 = ℓm2 ⊗ K with dim K ≤ (dm)2 we get the stated bound:

m ≥ 1
d2/3 2

(1−ε)d
3C = 2

(1−ε)d
3C

− 2
3 log d

.

A.2 Alternative proof of Theorem 3.11
As we have commented in Chapter 3, Section 3.5, Maurey’s Lemma

3.14 allows us to give an alternative proof of Theorem 3.11 involving
counting of cardinals of ε–nets. What we obtain following this route is1:

Claim A.2.1. Let P ∈ CPTP(H ⊗ HM ) be a unitary ϵ− UPQPd, then

dim HM ≡ m ≥ 2
(1−ε)

64
d

log 2d
.

Proof. By Theorem 3.5, the considered ϵ− UPQPd defines a linear map
Φ : Sd1 ↪→ Mm such that:

∥σ∥Sd
1

≥ ∥ΦV(σ)∥Mm ≥ (1 − ε)1/2∥σ∥Sd
1

∀σ ∈ Sd1 , (A.3)

where m was the dimension of the memory register of the ϵ− UPQPd.
Now, we focus on the restriction of Φ to the subspace ℓd1 ⊂ Sd1 . Then,
using Lemma 3.14, we construct a δk–net for Φ(ball(ℓd1)), {Φ(σi)}|I|

i=1,
1For simplicity, we restrict to the case of unitary UPQPs
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where δk = 2k−1/qTp(Mm) for k ∈ N. According to the Lemma, the
cardinal of this δk–net is bounded by |I| ≤ (2d)k. Furthermore, taking
into account (A.3), we notice that {σi}|I|

i=1 is a δk/(1−ε)1/2–net of ball(ℓd1).
Then, the following bound for the cardinal |I| must be satisfied

(1 − ε

δk

)d
≤ |I| ≤ (2d)k. (A.4)

Particularizing to p = 2, we have that q = 2 and T2(Mm) ≤
(4 logm)1/2, as in the original proof in the submission. Choosing now
k ≥ 64 logm

(1−ε) , we have that δk/(1 − ε)1/2 ≤ 1/2. Then (A.4) reads as

2d ≤ (2d)
64 log m

(1−ε) .

From here, we finally obtain that

m ≥ 2
(1−ε)

64
d

log 2d .





Appendix B

B.1 Handier expressions for σiS U, σiiS U

In this appendix we provide some expressions upper bounding σiS U

and σiiS U. The advantage of these expressions is that they are easier to
compute and can be expressed directly in terms of the elements of a
given strategy. However, we stress that in general these bounds might
be inaccurate.

Proposition B.1. Given a pure strategy S U = {Ṽε, W̃ε, V,Wε, |φ⟩}ε ∈
Ss2w,

i.

σiS U ≲log Eε

∑
i,j

1
2
∥∥∥Ṽε ⊗ W̃ε − Ṽεij ⊗ W̃εij

∥∥∥2

Mr2,kk̃′

1/2

+O
( 1
n

)
;

ii.

σiiS U ≲log Eε

∑
i,j

1
2
∥∥∥(Idℓk′

2
⊗ (Wε −Wεij )

)
|φ⟩
∥∥∥2

ℓkk̃′
2

1/2

+O
( 1
n

)
.
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Proof. We provide simple, likely far from tight, bounds for the quantity∑
i,j

∥∥∥∂ijΦi(ii)
S U (ε)

∥∥∥2

Xi(ii)

1/2

appearing in (4.19) (recall that X i = Mk̃′2,kk̃′ , X ii = S
k̃′,n
1 ⊗(ε,π)1/2

S
k̃′,n
1 ).

Recall also that ∂ijΦ(ε) = Φ(ε11,...,εij ,...,εnn)−Φ(ε11,...,−εij ,...,εnn)
2 . In the rest

of the proof we shorten notation denoting (ε11, . . . ,−εij, . . . , εnn) as εij.
In the case of Φi

S U,

∥∂ijΦii
S U(ε)∥

S
k̃′2,kk̃′
∞

= 1
2

∥∥∥∥∥∥ 1
n2

∑
k,l ̸=i,j

εkl
(
(⟨k|Ṽε ⊗ ⟨l|W̃ε) − (⟨k|Ṽεij ⊗ ⟨l|W̃εij )

)
(V |kl⟩ ⊗ Id

ℓk̃
′

2
)

+ 1
n2 εij

(
(⟨i|Ṽε ⊗ ⟨j|W̃ε) + (⟨i|Ṽεij ⊗ ⟨j|W̃εij )

)
(V |ij⟩ ⊗ Id

ℓk̃
′

2
)

∥∥∥∥∥∥
S

r2,kk̃′
∞

≤ 1
2

∥∥∥∥∥∥ 1
n2

∑
k,l

εkl
(
(⟨k|Ṽε ⊗ ⟨l|W̃ε) − (⟨k|Ṽεij ⊗ ⟨l|W̃εij )

)
(V |kl⟩ ⊗ Id

ℓk̃
′2

2
)

∥∥∥∥∥∥
S

r2,kk̃′
∞

+ 2
n2

= 1
2

∥∥∥∥∥∥ ⟨ψε|
[(

(Ṽε ⊗ W̃ε) − (Ṽεij ⊗ W̃εij )
)

(V ⊗ Id
ℓk̃

′
2

) ⊗ IdHC

]
|ψ⟩

∥∥∥∥∥∥
S

r2,kk̃′
∞

+O
( 1
n2

)

≤ 1
2

∥∥∥∥∥∥ (Ṽε ⊗ W̃ε) − (Ṽεij ⊗ W̃εij )

∥∥∥∥∥∥
S

r2,kk̃′
∞

+O
( 1
n2

)
.

For Φii
S U, recalling the shortcut X ii = S

k̃′,n
1 ⊗(ε,π)1/2

S
k̃′,n
1 :
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∥∂ijΦii
S U(ε)∥Xii

= 1
2

∥∥∥∥∥∥ 1
n2

∑
k,l ̸=i,j

εkl |k⟩ ⊗ |l⟩ ⊗
(
V |kl⟩ ⊗ Id

ℓk̃
′2

2

)(
Idℓk2 ⊗ (Wε −Wεij )

)
|φ⟩

+ 1
n2 εij |i⟩ ⊗ |j⟩ ⊗

(
V |ij⟩ ⊗ Id

ℓk̃
′

2

)(
Idℓk2 ⊗ (Wε −Wεij )

)
|φ⟩

∥∥∥∥∥∥
Xii

(∗)
≤ 1

2

∥∥∥∥∥∥ 1
n2

∑
k,l

εkl |k⟩ ⊗ |l⟩ ⊗
(
V |kl⟩ ⊗ Id

ℓk̃
′2

2

)(
Idℓk2 ⊗ (Wε −Wεij )

)
|φ⟩

∥∥∥∥∥∥
Xii

+ 2
n2

≤ 1
2n2

∑
k,l

∥∥∥∥∥∥ |k⟩ ⊗ |l⟩ ⊗
(
V |kl⟩ ⊗ Id

ℓk̃
′2

2

)(
Idℓk2 ⊗ (Wε −Wεij )

)
|φ⟩

∥∥∥∥∥∥
Xii

+O
( 1
n2

)
(∗∗)
≤ 1

2n2

∑
k,l

∥∥∥∥∥∥
(
V |kl⟩ ⊗ Id

ℓk̃
′2

2

)(
Idℓk2 ⊗ (Wε −Wεij )

)
|φ⟩

∥∥∥∥∥∥
ℓk̃

′2
2

+O
( 1
n2

)

≤ 1
2n2

∑
k,l

∥∥∥∥∥∥
(
Idℓk2 ⊗ (Wε −Wεij )

)
|φ⟩

∥∥∥∥∥∥
ℓkk̃′2

2

+O
( 1
n2

)

≤ 1
2

∥∥∥∥∥∥
(
Idℓk2 ⊗ (Wε −Wεij )

)
|φ⟩

∥∥∥∥∥∥
ℓkk̃′2

2

+O
( 1
n2

)
.

The previous two bounds lead automatically to the claimed statement.
In (*) we have applied a simple triangle inequality and used the

fact that the elements in the sum are well normalized in the considered
norm, recall Remark 4.18. For (**), if we denote |φ̃kl⟩ :=

(
V |kl⟩ ⊗

Id
ℓk̃

′2
2

)(
Idℓk′

2
⊗ (Wε − Wεij )

)
|φ⟩, we have to notice that, for each k, l,

|k⟩ ⊗ |l⟩ ⊗ |φ̃kl⟩ = ιk ⊗ ιl(|φ̃kl⟩) where ιk, ιl are the injections considered
in Remark 4.18. There, we have proven that ιk ⊗ ιl is a contractive
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map from S
k̃′,n
1 ⊗(ε,π)1/2

S
k̃′,n
1 into ℓk̃′2

2 . Inequality (**) follows from this
observation.

B.2 Non-pure strategies in Theorem 4.1
We give here some further details towards the proof of Theorem 4.1.

We first explicit the statement we obtain in the case of pure strategies
and then, how to obtain the general statement appearing in 4.1.

Claim B.2.1. For S U ∈ SU
s2w;k̃′,k

:

I.
ω(G; S U) ≤ C1 + C ′

2 σ
i
S U log1/2(kk̃′) +O

( 1
n1/2

)
;

II.

ω(G; S U) ≤ C̃1+C ′
3 σ̃

ii
S U log1/2(nk̃′)+O

(
1
n1/2 + log(n) log1/2(kk̃)

n

)
,

where we have denoted σ̃iiS = n3/4 log(n)σiiS .

Above, C1, C̃1 < 1, C ′
2, C

′
3 are positive constants.

Proof. Lemma 4.16 provides the following bounds:

ω(GRad; S U) ≤
∥∥∥EεΦi

S U(ε)
∥∥∥
Xi

+ C σiS U T(n2)
2

(
X i
)
, (B.1)

ω(GRad; S U) ≤
∥∥∥EεΦii

S U(ε)
∥∥∥
X̃ii

+ C σiiS U T(n2)
2

(
X ii

)
. (B.2)

Taking into account the estimates

T(n2)
2 (X i) ≤ T2(X i) ≲ log1/2(kk̃′), T(n2)

2 (X ii) ≲ n3/4 log(n) log1/2(nk̃′),

and Proposition 4.17, Equations (B.1), (B.2) transform in:

ω(GRad;SU) ≲ 3
4 +O

( 1
n1/2

)
+ C σiS U log1/2(kk̃′),
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ω(GRad; S U)

≲

√
3

2 +O

(
1√
n

+ log(n) log1/2(kk̃′)
n

)
+ C σiiS U n3/4 log(n) log1/2(nk̃′).

Now, we use Lemma 4.12 to translate the previous bound to the case
of a general strategy S, obtaining that way the statement appearing in
the main text.

Claim B.2.2. The previous claim implies, for any S ∈ Ss2w;k̃,k, the
bounds:

I.
ω(G;S) ≤ C1 + C2 σ

i
S log1/2(nkk̃) +O

( 1
n1/2

)
;

II.

ω(G; S) ≤ C̃1+C3 σ̃
ii
S log1/2(nkk̃)+O

(
1
n1/2 + log(n) log1/2(nkk̃)

n

)
,

where we have denoted σ̃iiS = n3/4 log(n)σiiS .

Above, C1, C̃1 < 1, C2, C3 are positive constants.

Proof. Lemma 4.12 allows us to consider S as a pure strategy in SU
s2w;k̃′,k

.
The relevant estimate, also provided in that lemma, is that k̃′ can be
taken to be lower or equal than n2kk̃4. I.e., S satisfies Claim B.2.1 with
k̃′ ≤ n2kk̃4. Furthermore, we can roughly bound

kk̃′ ≤ (nkk̃)α,

for some positive constant α (take α = 4, for instance). Since those
factors appear in Claim B.2.1 only inside a logarithm, the exponent α
only changes the constants C ′

2, C ′
3 appearing there.

If one wants to state Theorem 4.1 in terms of the raw quantum
dimension k̃q := k̃

k̃cl
, where k̃cl was the dimension of the classical messages

used in the strategy, it is possible to argue similarly as above using this
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time Lemma 4.11. The result is exactly the same, only the constants C2,
C3 are affected.

B.3 Tensor norms and enough symmetries
In this appendix we give some additional information about spaces

with enough symmetries and spaces with enough symmetries in the
orthogonal group, properties used in our Theorem 4.24. Given a Banach
space X, we refer to the group of isometries on that space as the symmetry
group of X.
Definition B.2. A Banach space X has enough symmetries if the only
operators on X that commutes with the symmetry group of the space are
λ IdX , being λ a scalar.

It easy to see that if X has enough symmetries the same happens
with X∗. Furthermore, it is a piece of folklore that tensor norms respect
this property. That is, for any tensor norm α, X ⊗α Y has enough
symmetries when X and Y have enough symmetries. This fact follows
from noticing that for any isometries f , g in X and Y , respectively, f ⊗g
is also an isometry in X⊗αY . This is guaranteed by the metric mapping
property (2.15).

Finally, in [31] the notion of enough symmetries in the orthogonal
group appears in the statement of [31, Lemma 5.2], result used in our
proof of Theorem 4.24.
Definition B.3. An n-dimensional Banach space X has enough sym-
metries in the orthogonal group if the symmetry group of X includes a
subgroup of GL(n) verifying the property that the only operators on X
that commutes with that subgroup are λ IdX for some scalar λ.

We finally comment that tensor norms also preserve the property
of having enough symmetries in the orthogonal group. The reason is
the same as in the previous case of simply having enough symmetries.
Furthermore, it is obvious from the definition that ℓn2 has enough symme-
tries in the orthogonal group and, therefore, ℓn2 ⊗α ℓ

n′
2 , (ℓn2 ⊗α ℓ

n′
2 ) ⊗α′ ℓn

′′
2 ,

. . . are also spaces with enough symmetries in the orthogonal group
when α, α′, . . . are tensor norms. In particular, the spaces considered in
Theorem 4.24 have this property.
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Throughout this monograph we use the standard symbols N, R, C
to denote the sets of natural, real and complex numbers, respectively.
The set of complex matrices with n rows and m columns is denoted by
Mn,m – Mn is the set of n-dimensional complex square matrices. When
vector spaces are considered, the underlying field is always taken to be
C unless the contrary is specified.

Symbols ≳, ≲, ≳log, ≲log denote inequalities up to multiplicative
dimension independent constants or up to multiplicative factors that
are logarithmic in the dimension, respectively. Given real functions f ,
g, we say that f(x) = O(g(x)) ( f(x) = Ω(g(x)) ) if f is asymptotically
bounded above (below) by g.

Logarithms are always taken in base 2, although the change of base
is usually of minor importance in the context of this text.
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