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Abstract: N-acetylcysteine (NAC) is a prodrug that is Marketed as a Mucolytic agent and used for
the treatment of acetaminophen overdose. Over the last few decades, evidence has been gathered
that suggests the potential use of NAC as a new pharmacotherapy for alcohol use disorder (AUD),
although its Mechanism of action is already being debated. In this paper, we set out to assess both
the potential involvement of the glutamate Metabotropic receptors (mGluR) in the possible dual
effect of NAC administered at two different doses and NAC's effect on ethanol-induced activation.
To this aim, 30 or 120 Mg/kg of NAC was intraperitoneally administered to rats with the presence or
absence of the negative allosteric Modulator of MGluR5 (MTEP 0.1 Mg/kg). Thereafter, the cFOS
IR-cell expression was analyzed. Secondly, we explored the effect of 120 Mg/kg of NAC on the
neurochemical and behavioral activation induced by intra-VTA ethanol administration (150 nmol).
Our results showed that the high NAC dose stimulated cFOS expression in the NAcc, and that
this effect was suppressed in the presence of MTEP, thus suggesting the implication of MGIuR5.
Additionally, high doses could attenuate the ethanol-induced increase in cFOS-expression in the
NAcc, probably due to a phenomenon based on the long-term depression of the MSNs. Additional
experiments are required to corroborate our hypothesis.

Keywords: N-acetylcysteine; alcoholism; glutamate

1. Introduction

N-Acetylcysteine (NAC) is a prodrug of the natural amino acid, cysteine, which has
a long-established safety record among adults and children [1]. This drug is available
as a Mucolytic agent [2], and it is also used as an oral or intravenous antidote to treat
acetaminophen overdose [3,4]. NAC is also a cystine prodrug. As such, several studies
carried out using rats have demonstrated that NAC is able to increase the extrasynaptic
glutamate (Glu) levels in critical brain regions, such as the nucleus accumbens (NAcc) core,
through the glial cystine/glutamate exchange system (xC™), which exchanges extracellular
cystine for intracellular Glu in an equimolecular Mode [5,6].

Nonsynaptic Glu can interact with Metabotropic Glu receptors (mGluRs). Group
IMGIluRs (mGluR1 and MGIuR5) are positively linked to phospholipase C. Therefore, the
direct activation of MGluR1/5 receptors results in increased phosphoinositide turnover,
whereas Group II MGluRs (e.g., MGluR2 and MGIuR3, among others) negatively Mod-
ulate excitatory Glu transmission at the perisynaptic and postsynaptic levels through
the inhibition of adenylyl cyclase [7]. Group I MGluRs are located away from synaptic
zones and appear to be restricted to postsynaptic terminals [8]; Group II receptors are
located both in glial cells (mGluR3) [9] and presynaptically, also away from synaptic zones
(mGIluR?2) [10]. It has been suggested that Glu has a higher affinity for MGluR2/3 than
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for other Metabotropic receptors, such as MGIuR5 [7]. Therefore, low extracellular Glu
levels should preferentially activate MGIuR2/3 and attenuate Glu release from the active
presynaptic terminals. However, higher levels of Glu should be able to activate not only
presynaptic MGluR2/3 but also the low-affinity postsynaptic MGIuR5s. In the present
paper, we set out to analyze whether NAC is able to interact with MGIuR receptors in a
dose-dependent Manner. If the effects of NAC on the extracellular Glu levels are dose-
dependent, we should expect that low doses of NAC May produce a preferent activation
of presynaptic MGluR2/3. On the other hand, high doses should produce the activation
of both MGIuR2/3 and MGIuRS5. These dual effects of low and high doses of NAC were
observed by Kupchik and colleagues in 2012 using electrophysiological recordings in rat
brain slices. Moreover, the behavioral consequences of these dose-dependent changes in
extracellular Glu levels in the NAcc core were also explored [11].

Previous studies had already analyzed the consequences of the activation of MGluR2/3
on drug-seeking behaviors so that the agonists of these receptors, such as LY379268, at-
tenuated some forms of drug-seeking behavior [12,13] and Modified several neurobehav-
ioral consequences of acute and chronic psychostimulant or opiate administration [14].
Zhao et al. (2006) showed that LY379268 can attenuate both stress and cue-induced, ethanol-
seeking behavior, and it is additionally able to Modulate cFOS early gene expression in
the hippocampus and amygdala [15]. Recent experiments carried out in our laboratory
have also used the alcohol deprivation effect (ADE) animal Model to demonstrate the
ability of NAC to prevent alcohol relapse, although the involvement of MGIuR2/3 was
not explored [16]. Other authors have recently reported the ability of NAC, administered
intraperitoneally (i.p.) at a dose of 120 Mg/kg, to block the development of ethanol-
conditioned place preference without altering dopaminergic transmission [17]. Therefore,
although the involvement of MGIuR2/3 in the prevention of alcohol-seeking behaviors
seems plausible, whether the dose-dependent NAC Modulatory effect on synaptic Glu
transmission is relevant in the prevention of alcohol relapse in animal Models of alcoholism
remains to be confirmed.

In the present paper, we initiated the exploration of this hypothesis through two
experiments. In the first experiment, we analyzed the activating effect of high and low
systemic doses of NAC on the synaptic Glu transmission onto the NAcc neurons by
evaluating the increase in the cFOS expression in this brain area in rats, as well as the
influence of 3-[(2-methyl-1,3-thiazol-4-yl) ethynyl]-pyridine (MTEP), a selective negative
allosteric Modulator of MGIuR5, in preventing the cFOS expression increase. In the second
experiment, we explored the effects of the administration of a high NAC dose (120 Mg/kg)
on the neurochemical and behavioral activation of the Mesocorticolimbic pathway, which
was induced via the intra-ventral tegmental area (VTA) administration of ethanol [18,19].
In this study, we have used cFOS IR-cell expression as a tool to Measure the activation
of the Mesocorticolimbic system, according to the studies provided by other authors [20].
In addition, this technique allows for the determination of the activation of the VTA in
the Main projection area (i.e., the NAcc) as well as the Measurement of the increase in
IR-cell expression as a Metabolic consequence of postsynaptic activity [21].

2. Results and Discussion
2.1. Experiment 1: Effect of MTEP on the Blockade of cFOS IR-Cell Expression in the NAcc after
i.p. Administration of NAC

Figure 1 shows that i.p. injection of 30 Mg/kg of NAC (low dose) slightly increases the
expression of IR cFOS cells in NAcc, while a higher dose (120 Mg /kg) clearly increases their
expression compared to the control group (Veh/Sal). The simultaneous administration
of MTEP (0.1 Mg/kg) apparently blocks the increase in IR cFOS cell expression in the NAcc,
which is induced through the administration of the higher NAC dose; however, there is no
relevant effect at the lower dose. Representative images of the coronal sections after cFOS
staining in the NAcc are available in Figure 2.
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Figure 1. Effect of MTEP administration on cFOS IR-cell expression, induced by low (30 Mg/kg) and
high doses (120 Mg/kg) of NAC. Data are Mean =+ SD, and represent the number of cells per frame.
Asterisks indicate the existence of statistical differences between the Marked groups. (Tukey’s test:

*p <0.05,* p < 0.01).

Figure 2. Representative images of coronal sections of the NAcc after cFOS staining in experiment 1. Legend: (A) group
Veh/Saline; (B) group NAC 30/Saline; (C) group NAC 120/Saline; (D) group Veh/MTEP; (E) group NAC 30/MTEP;
(F) Group NAC 120/MTEP.

Statistical analysis confirmed the above observations. A one-way ANOVA revealed the
existence of statistically significant differences among groups (F(5, 27) = 5.807, p = 0.0009).
A post hoc analysis (Tukey’s test) showed that the results obtained in the Veh/Sal group
significantly differed with respect to the NAC 120/saline group (p = 0.0019). Moreover, the
results obtained in the NAC 120/saline group significantly differed from those obtained in
the NAC 120/MTEP group (p = 0.0127), suggesting the efficacy of MTEP in blocking the
expression of cFOS IR-cells triggered by the high dose of NAC assayed. The 30 Mg/kg
dose of NAC did not significantly elevate cFOS IR-cell expression. However, it is evident
that, although the increase in cFOS was not statistically significant, there was a slight trend
to increase the immunoreactivity of cFOS. It is probable that a Much lower dose of NAC
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than the 30 Mg/kg dose employed in our study should have been administered to avoid
an interaction with the MGlur2.

As described by several authors, the pharmacological actions of NAC include the
restoration of the glutamatergic function in substance use disorders [2,22]. In this sense,
NAC is able to interact with Glu transporters so that the indirect activation of the antiporter
xC™ system, which is Mainly expressed on astrocytes in cerebral grey Matter, can increase
Glu levels in the extrasynaptic space in the NAcc core [11,23,24]. On the other hand,
several neurochemical studies have shown that the electrical or chemical stimulation
of glutamatergic areas with afferences in the NAcc is accompanied by a significant and
persistent induction of cFOS early gene expression. Several authors have reported an
increase in cFOS expression in the NAcc after the chemical stimulation of glutamatergic
areas, such as the ventral hippocampus. Along this line, Bargett and Henry detected that
the expression of the protein product of the immediate early gene (cFOS) was increased
in the NAcc shell after ventral hippocampal N-methyl-d-aspartate (NMDA) infusion in
rats [25]. Other experiments carried out in our laboratory have reported the same effect
after retrodialysis NMDA infusion into the hippocampal subiculum [20]. It could be
suggested that the i.p. administration of a high dose of NAC would provoke an important
increase—especially in extrasynaptic Glu levels—that would lead to an activation of the
NAcc Medium spiny neurons (MSNs) and would consequently increase cFOS IR-cell
expression in this area.

Our results from using MTEP are in agreement with those reported by Kupchik et al.
and seem to confirm the dual role displayed by extracellular Glu in NAcc activation. In their
electrophysiological studies on rat brain slices, the authors showed that 5 pmol/L of MTEP
did not alter the decreased excitatory postsynaptic currents (EPSCs) amplitude evoked
by 0.5 umol/L of NAC (low dose), whereas the same concentration of MTEP was able to
counteract the increase of 500 pmol/L of NAC-(high dose) induced EPSCs amplitude [11].
These authors concluded that the excitatory effects of a high NAC dose were Mediated by
post-synaptic MGIuR5. Although we used a different experimental procedure, our results
are in the same line, since 0.1 Mg/kg of MTEP was able to block the increase in cFOS IR-cell
expression evoked by a high dose of NAC. Moreover, the low NAC dose had no effect on
cFOS IR-cell expression in the NAcc. Our results seem to indicate that the effect of a high
dose of NAC could be Mediated by the postsynaptic MGIuR5 receptor. As these genes
appear to be induced as a Metabolic consequence of post-synaptic activity [21], it could
be plausible that the blockade of the post-synaptic receptors (mGluR5) May lead to the
abolition of the cFOS IR-cells” expression. Further experiments involving other antagonists
of MGluRs type I and II are necessary to corroborate our hypothesis.

2.2. Experiment 2: Effect of 120 Mg/kg of NAC on Ethanol-Induced Activation of
the Mesocorticolimbic System

The cannulae placements after the histological evaluation of the rat brains used in this
experiment are shown in Figure 3. All animals included in experiment 2 showed a correct
position of the cannula tip in the posterior VTA (between —6.72 Mm and —5.64 Mm from
bregma, Figure 2), according to Sanchez-Catalan et al. [19].

2.2.1. Effect of NAC on the Increase in Locomotor Activity Caused by Intra pVTA
Administration of 150 nmol of Ethanol

Figure 4 represents the Mean values of the distance traveled over 30 Min that were
obtained for each experimental group in this experiment. As can be seen in the figure—after
intra-VTA EtOH administration—a clear trend toward the increase in the locomotor activity
of animals, with respect to the aCSF/vehicle group (records increased from 1183 £ 430
to 1897 + 480 cm), was observed. In addition, i.p. pre-treatment with 120 Mg/kg of
NAC also showed a trend to attenuate the above-mentioned increase in the locomotor
activity induced by ethanol. However, the non-parametric Kruskal-Wallis test did not
detect statistically significant differences (p = 0.1115).
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Figure 3. Diagram of coronal sections from the brains of rats used in experiment 2, indicating the
placement of the tip of the injection cannulae in the posterior VTA. In order to facilitate the inspection
of the figure, the placements from animals belonging to the aCSF-treated groups are shown on the
right-hand side of the sections, whereas the placements from the EtOH-treated animals are shown
on the left-hand side. Numbers indicate the distance from the anterior coordinate to the bregma.
Adapted from Paxinos and Watson [26].
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Figure 4. The effects of NAC administration (120 Mg/kg), 30 Min prior to the intra-VTA adminis-
tration of EtOH (150 nmol), on the locomotor activity of rats. Data are Mean + SD and represent
the distance traveled in 30 Min. The Kruskal-Wallis test revealed no statistical differences between
the groups.
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The results of experiment 2a May suggest that the infusion of EtOH directly into
the posterior VTA results in the induction of locomotor activity in Wistar rats, although
this induction was not statistically significant. The activation of locomotor activity after
the intra-VTA administration of 150 nmol of EtOH has already been validated several
times in previous experiments that have been carried out in our laboratory using the same
experimental procedures [18,19]. However, although in the present experiment an increase
in the distance traveled is shown, there are no statistical differences between the groups.
From a critical point of view, we suggest that the lack of statistical differences is probably
due to the limited number of animals included in the present study.

2.2.2. Effect of NAC on the Blockade of cFOS IR-Cell Expression in the NAcc Caused by
Intra-pVTA Administration of 150 nmol of Ethanol

As depicted in Figure 5, the direct Microinjection of 150 nmol of EtOH into the VTA
was able to increase the expression of cFOS IR-cells in the NAcc nearly ten times, thus
demonstrating its ability to activate the Mesocorticolimbic pathway and giving validity to
our experimental procedure. Additionally, as observed in experiment 1, the i.p. adminis-
tration of 120 Mg/kg of NAC also led to a significant increase in the expression of cFOS
IR-cells in the NAcc. Interestingly, the co-administration of ethanol (intra-VTA) and NAC
(i.p) clearly blocked the increase in the expression of cFOS in the NAcc. Representative
images of coronal sections after cFOS staining in the NAcc are available in Figure 6.
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Figure 5. Effect of NAC administration (120 Mg/kg) on cFOS IR-cell expression in the NAcc, 30 Min
prior to the intra-VTA administration of EtOH (150 nmol). Data are Mean + SD and represent the
number of IR-cells per frame. Asterisks indicate statistical differences between the Marked groups.
(Tukey’s test: * p < 0.05, ** p < 0.01, ** p < 0.001).

Statistical analysis confirmed the above observations. A one-way ANOVA revealed
statistically significant differences between the groups (F (3, 20) = 12.36, p < 0.0001). On
the one hand, the post hoc analysis (Tukey’s test) showed that the results obtained in the
aCSF/vehicle group significantly differed from those obtained in the EtOH/vehicle group
(p = 0.0009) as well as those obtained in the aCSF/NAC 120 group (p = 0.0005). On the other
hand, the results obtained in the EtOH/NAC 120 group significantly differed from those
obtained in the aCSF/NAC 120 group (p = 0.0048) and the EtOH /vehicle group (p = 0.0083).
These results reveal that EtOH and NAC are able to significantly increase cFOS expression
and further suggest that both drugs interact when simultaneously administered, such that
the administration of one drug is able to counteract the effect produced by the other.
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Figure 6. Representative images of coronal sections of the NAcc after cFOS staining in experiment 2.
Legend: (A) group aCSF/Veh; (B) group aCSF/NAC 120; (C) group EtOH/Veh; (D) group
EtOH/NAC 120.

Although these preliminary results are hopeful, further experiments are needed to
provide a Mechanistic interpretation of this interaction. However, it could be interesting
to give a possible explanation about what May have happened when NAC and ethanol
were co-administered. Several studies have postulated that the NAcc responses evoked by
Glu are attenuated when dopamine (DA) is present. Cepeda and colleagues reported that
the responses evoked by the iontophoretic application of Glu in rat striatum slices were
significantly attenuated when DA was applied [27]. More recent studies have postulated
that long-term depression (LTD) of the MSNs is produced when high concentrations of
DA are released in the NAcc, and that this effect is Mediated by D1 receptors [28-30]. In
addition, there is general agreement that this form of LTD is induced postsynaptically and
depends upon the activation of MGIuR type I [31-33]. Thus, one plausible explanation of
the observed results under our experimental conditions could involve the interaction be-
tween Glu and DA release in the NAcc. It is well known that the intra-VTA administration
of EtOH can induce a phasic DA release in the NAcc, and, as stated above, the systemic
administration of a high dose of NAC can also produce an increase in extrasynaptic Glu.
Therefore, the release of Glu in presence of elevated levels of DA could lead to the LTD
of the the MSNis in the NAcc and, therefore, the suppression of cFOS expression in this
brain area.

Our results can also be analyzed from a complementary point of view: the administra-
tion of high doses of NAC is capable of suppressing the ethanol-induced activation of the
NAcc neurons. In this sense, we wonder if the blockade of cFOS expression observed in the
present work could help explain, at least in part, the capacity shown by NAC to prevent the
alcohol relapse that has been observed in our previous work [16]. Certainly—assuming that,
in this case, the rats do not have a history of ethanol consumption—if the co-administration
of a high dose of NAC and ethanol does not result in the activation of MSNss, this could
help explain the suppression of ethanol relapse detected in our previous work. Obviously,
further experiments are needed to corroborate this hypothesis.
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3. Materials and Methods
3.1. Animals

We used 34 Male Wistar rats (330-400 g) for experiment 1 and 24 Male Wistar rats
(300-340 g) for experiment 2. The animals were housed in plastic cages (48 x 38 x 21 cm?)
with controlled humidity and temperature (22 °C), a 12:12 h light-dark cycle, and free ac-
cess to food and water. All study procedures were carried out in strict accordance with EEC
Council Directive 2010/63/UE and Spanish laws (RD 53/2013), and were approved by the
Animal Care Committee of the University of Valencia and the regional government (proto-
col CODES: 2017/VSC/PEA /00086 approved on 29 May 2017 and 2020/VSC/PEA /0020),
approved on 20 February 2020).

3.2. Drugs and Chemicals

The MTEP and NAC were purchased from Sigma-Aldrich Co. The MTEP was dis-
solved in saline, whereas the NAC was dissolved in a phosphate buffer and the pH was
adjusted to 7.4. The ethanol was purchased from Scharlau (Madrid, Spain) and was freshly
dissolved in an artificial cerebrospinal fluid (aCSF)/ascorbate solution prior to use. The
aCSF/ascorbate solution consisted of 120.0 MM NacCl, 4.8 MM KCl, 1.2 MM KH,POy,,
1.2 MM MgSQOy, 25.0 MM NaHCOj3, 1.2 MM CaCl,, 100 MM D-glucose, and 0.2 MM
ascorbate, and the pH was adjusted to 6.5.

3.3. Experimental Design

This study was divided into two consecutive experiments.

3.3.1. Experiment 1: The Efficacy of MTEP to Suppress NAC-Induced cFOS
IR-Cell Expression

In experiment 1, 34 rats were randomly assigned to 6 groups, as can be seen in Table 1:

Table 1. i.p. treatments in each experimental group of experiment 2.

Group n Treatment i.p. 1 Treatment i.p. 2
Veh/Sal 4 Saline Vehicle
NAC 30/Sal 6 Saline NAC 30 Mg/kg
NAC 120/Sal 6 Saline NAC 120 Mg/kg
Veh/MTEP 6 MTEP 0.1 Mg/kg Vehicle
NAC 30/MTEP 6 MTEP 0.1 Mg/kg NAC 30 Mg/kg
NAC 120/MTEP 6 MTEP 0.1 Mg/kg NAC 120 Mg/kg

Five days before the experimental day, rats were handled for 5 Min/day, to Minimize
the stress provoked by the experimental procedure. The injections for treatment 1 and
treatment 2 were administered consecutively. Then, 120 Min after the injections, the brains
were prepared as described in Section 3.7, and the cFOS IR-cells were analyzed using the
immunohistochemistry techniques detailed in Section 3.8. The MTEP dose was selected
according to previous research [11].

3.3.2. Experiment 2: The Effect of 120 Mg/kg of NAC on the Ethanol-Induced Activation
of the Mesocorticolimbic System

We planned this experiment to determine whether the i.p. injection of 120 Mg/kg of
NAC would be able to attenuate or suppress the activation induced by the intra-VTA Mi-
croinjections of ethanol. The activation of the Mesocorticolimbic system was explored
through the Measurement of the locomotor activity displayed by the rats as well as the
expression of cFOS IR-cells in the VTA-projection area (NAcc). All animals were handled
for five Min/day, in accordance with Section 3.6. The surgical procedure and drug ad-
ministration were carried out according to Sections 3.4 and 3.5. Two experiment subsets
were arranged:
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Experiment 2a—the efficacy of NAC to suppress the locomotor-activating effect of
ethanol in rats. Twenty-four animals were used in this experiment and were randomly
assigned to each experimental group (n = 6). Rats were divided into four groups depending
on the intra-VTA and i.p. treatment: aCSF/saline, aCSF/NAC 120 Mg/kg, 150 nmol
EtOH/saline, and 150 nmol of EtOH/NAC 120 Mg/kg. The ethanol dose was selected
to ensure the Maximum effect on locomotor activity, according to previous experiments
carried out in our laboratory [18,19]. The NAC dose was selected, according to existing
literature, as a NAC dose that is able to abolish the ADE effect in the EtOH relapse
animal Model [16]; EtOH intake and EtOH relapse, binge-like drinking [34]; and the
conditioned place preference induced by EtOH [17]. The NAC administration route was
selected according to previous experiments carried out in our laboratory that have used
the same experimental procedure [18,19].

Experiment 2b—the efficacy of NAC to suppress the EtOH-induced expression of
cFOS immunoreactive cells (IR-cells). At 120 Min after ethanol/aCSF injection, the brains
were removed and dissected, and the cFOS IR-cells were analyzed using the immuno-
histochemical technique described in Sections 3.7 and 3.8. The study area (NAcc) was
selected because it receives dense projections from VTA. In addition, NAcc and VTA are
principal nuclei of the Mesocorticolimbic system, a structure strongly implicated in the
reward system [35].

3.4. Surgery and Post-Surgical Care

Surgery was performed according to [19]. The rats were anesthetized i.p. with
ketamine/xylazine (i.e., 95 Mg/kg of ketamine and 10 Mg/kg of xylacine) and placed
in a stereotaxic apparatus. An incision (8—10 Mm) was Made in the skin over the skull,
and the wound Margin was infiltrated with lidocaine (3%). Two holes were drilled: one
for the skull screw and the other for the guide cannulae (Plastics One, Roanoke, VA,
USA). Each animal was implanted unilaterally with a 28-gauge guide cannula aimed at
1.0 Mm above the posterior VTA. The coordinates relating to the bregma and the skull
surface [26] were as follows: A/P —5.8 Mm; L —2.1 Mm; D/V —8.1 Mm. The cannulae
were angled toward the Midline at 10° from the vertical plane (all the Measurements in the
dorsal-ventral plane refer to distances along the track at 10° from the vertical plane). The
cannulae assemblies were secured in place with reinforced glass cement (GC FujiCEM®, GC
corporation, Tokio, Japan). A stainless-steel stylet (33-gauge), extending 1.0 Mm beyond
the tip of the guide cannula, was put in place at the time of surgery and removed at the
time of testing. Following surgery, the rats were housed in individual rectangular plastic
cages (42.5 x 20 x 14 cm3, located side by side in order to prevent the influence of chronic
stress due to isolation on performance), with free access to food and water for at least
7 days. These cages were used as test cages on the day of the experiment.

3.5. Drug Microinjection Procedure

All of the intra-VTA drug Microinjections were carried out with 33-gauge stainless steel
injectors, extending 1.0 Mm below the tip of the guide cannulae. Injectors were attached to
a 25.0 uL Hamilton syringe using PE-10 tubing. All Microinjections were carried out using a
syringe pump (Kd Scientific Inc, Holliston, MA, USA), which was programmed to deliver a
total volume of 200 nL in 20 s (flow rate of 0.6 uL/min). Following the infusion, the injector
remained in place for 1 Min to allow the diffusion of the drugs; then, it was removed, the
stylet was replaced, and the locomotor activity was registered when appropriate. All the
injections were administered in the experimental room.

3.6. Handling and Test Procedure

Two days after surgery, the animals were taken from the colony, brought to the
experimental room, and handled for 5 Min/day until the experimental day. During this
phase, animals became accustomed to the experimenter, the experimental room, and to
the injection procedure—with a total of four to seven sessions to decrease the activating
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effects of the Manipulations taking place during the injection process, as well as the novelty-
activating effects of the testing room. Tests (experiment 2) were performed 7 days after
surgery. The day before the experiment, the rats were again taken from the colony room;
brought to the experimental room; and placed, for 30 Min, in the same type of rectangular
cages in which the animals were housed. On the day of the experiment, rats were placed
in their own experimental cage, and experiments started with the i.p. injection of Saline
or NAC. After 30 min, ethanol or aCSF were intra-VTA injected, according to the protocol
described in the drug Microinjection procedures. All the experiments were recorded by
a digital video camera and were analyzed for the total distance traveled (in centimeters)
over 30 min, according to [19].

3.7. Immunochemistry

At 120 min after the drug Microinjection (experiment 2) or the NAC/vehicle i.p.
injections (experiment 1), the animals were deeply anesthetized with isoflurane and tran-
scardially perfused with 200 ML of PBS, followed by 300 ML of 4% formaldehyde in PB
0.1 M. The brain was removed, and 40 Mm sections were obtained, as described in [24].

Selected sections were transferred to TBS and sequentially incubated (including TBS
rising between incubations) in: (1) 1% hydrogen peroxide in TBS, (2) 5% goat serum in TBS-
0.3% TX, (3) an anti-cFOS polyclonal antibody (1:1000, Santa Cruz Biotechnology, Dallas, TX,
USA) overnight at 4 °C, (4) a biotinylated anti-rabbit antibody (1:200; Vector Labs), and (5)
an avidin-biotinylated peroxidase complex (1:200; ABC Elite Kit; Vector Laboratories, Inc.,
Burlingame, CA, USA). The reaction was visualized by incubating with diaminobenzidine
(SigmaFAST, Sigma, St. Louis, MO, USA). Finally, the sections were Mounted on slides,
dehydrated in alcohols, cleared, and coverslipped for Microscopical examination.

3.8. Image Analysis

The quantification of the cFOS IR-cells was performed in the NAcc region, selected
according to [26]. Four sections per animal and area were selected, and images were
digitalized using a Microscope (Leica) equipped with a CCD camera. The 10x objective
was selected to obtain frames of 1026 x 769 Mm, and the counting of the stained nuclei
per frame was carried out using the Multipoint plugin of the Image] software (NIH, USA).
The experimenter was blind to experimental grouping throughout the image acquisition
and processing. Additionally, in experiment 2, sections of the VTA that were stained with
cresyl violet were used for the verification of the cannulae placement.

3.9. Statistical Methods

Data were expressed as Mean + SD. After testing for normality with the Shapiro—-
Wilk test, the total distance traveled (experiment 2a) or the number of cFOS IR-cells
(experiments 1 and 2b) that were determined under different experimental conditions
were analyzed using a one-way ANOVA, followed by Tukey’s Multiple comparison test, if
necessary. Homogeneity of variance was tested before the ANOVA was performed, and
the significance level was always set at p = 0.05. In cases where the normality test failed,
a non-parametric Kruskal-Wallis test was performed. All the analyses were carried out
using GraphPad Prism version 8.

4. Conclusions

In conclusion, the results of our experiments indicate that the higher NAC dose
assayed in our experiments is able to activate glutamatergic transmission that leads to
an increase in cFOS IR-cell expression in the NAcc. The negative allosteric Modulator
of MGLuRS5 (MTEP) is able to abolish this effect, suggesting that the activating effect of
NAC, when injected at a high dose, could be Mediated by MGIuR5. Curiously, 120 Mg/kg
of NAC (high dose) is able to attenuate the ethanol-induced increase in the expression of
cFOS IR-cells, probably due to a phenomenon based on the LTD of the MSNs provoked
by the simultaneous increase in extrasynaptic Glu and phasically released DA after the
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intra-VTA administration of ethanol. Further experiments are necessary to corroborate
our hypothesis.
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