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Abstract—High-accuracy angle of arrival (AoA) and angle of
departure (AoD) estimation is critical for cell search, stable com-
munications and positioning in millimeter wave (mmWave) cel-
lular systems. Moreover, the design of low-complexity AoA/AoD
estimation algorithms is also of major importance in the deploy-
ment of practical systems to enable a fast and resource-efficient
computation of beamforming weights. Parametric mmWave chan-
nel estimation allows to describe the channel matrix as a
combination of direction-dependent signal paths, exploiting the
sparse characteristics of mmWave channels. In this context, a
fast Transformed Spatial Domain Channel Estimation (TSDCE)
algorithm was recently proposed to perform parametric channel
estimation with low complexity, which in turn results in a full
characterization of the transmitting and receiving angles for
dominant signal paths. In this paper, we analyze the AoA/AoD
estimation capability and accuracy of the TSDCE algorithm
in detail. We find that the TSDCE algorithm has a significant
performance advantage with respect to the traditional approach,
which is based on frequency domain processing, in complexity-
constrained environments, especially at high signal-to-noise ratios.

Index Terms—mmWave, channel estimation, MIMO, analog
beamforming, transformed spatial domain

I. INTRODUCTION

Millimeter wave (mmWave) communications are one of the

main technology drivers towards achieving high data rates in

5G and beyond 5G (B5G) systems. Their use was motivated by

the scarcity of radio spectrum in conventional cellular bands

[1], [2]. Communication in high frequency bands, however,

poses a major challenge due to high propagation losses. To

compensate for such propagation losses, mmWave systems

implement beamforming techniques with highly directional

beams that increase the gain of the link between transmitter

(Tx) and receiver (Rx). This gain is achieved in practice

by using antenna arrays with a high number of elements

(in the order of several tens or hundreds), taking advantage
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of the small physical size of the antenna elements at these

frequencies, which makes their implementation feasible.

B5G networks, such as 6G, will continue exploring the use

of mmWave frequencies, extending the spectrum usage to the

Terahertz (Hz) frequency range. Improved channel models,

including aspects such as spatial and frequency consistency, are

required to properly model communication in these bands [3].

In fact, advanced and fast channel estimation is a cornerstone

step in any localization and sensing method. B5G/6G enablers,

such as beamspace processing for accurate positioning, highly

rely on obtaining profiles of channel angles and delays. Ac-

tually, estimation of the angle of arrival (AoA) and angle of

departure (AoD) are fundamental to dynamically manage the

beams, specially in non line-of-sight conditions. An example of

advanced AoA and AoD tracking can be found in, for instance,

[4].

This paper focuses on assessing the AoA and AoD estima-

tion capability of a method previously proposed to estimate

parametric mmWave multiple input multiple output (MIMO)

channels in the transformed spatial domain, referred to as

Transformed Spatial Domain Channel Estimation (TSDCE)

[5]. The TSDCE method relies on a specific discrete Fourier

transform (DFT)-based codebook of analog beamforming vec-

tors, ordered in a way such that the observation matrix cor-

responds to the two-dimensional DFT (2D-DFT) of a sum of

complex sinusoids in additive white Gaussian noise (AWGN).

Since each sinusoid characterizes an angular component of

the multipath channel between the Tx and Rx nodes in what

is called the transformed spatial domain, the AoA and AoD

of the multiple paths can be estimated from their associated

sinusoids in the mixture. In [5], we evaluated the joint perfor-

mance of the AoAs, AoDs and the path complex coefficients

estimation, using the normalized mean square error (NMSE)

of the estimated channel matrix as performance metric. The

results showed that the TSDCE outperformed several state-of-

the-art benchmarks at high signal-to-noise ratio (SNR). Among

the selected benchmarks, the most competitive one in terms of

performance is the DFT-based Channel Estimation Algorithm

(DFT-CEA) proposed in [6]. DFT-CEA estimates the channel



in the frequency domain after applying a 2D-DFT to an initial

channel estimate. This benchmark is also considered in this

work for comparison.

The remainder of the paper is structured as follows. Section

II describes the system model. In Section III, the selected

codebook for training is described and the TSDCE method

is introduced. Section IV evaluates the AoA/AoD estimation

performance and complexity of the TSDCE through numer-

ical simulations, including a comparison with the DFT-CEA

scheme for benchmarking. Finally, Section V draws the main

conclusions of this work.

Notations: Bold uppercase A denotes a matrix and bold

lowercase a denotes a column vector. Superscripts ∗, T , H

and −1 denote conjugate, transpose, conjugate transpose and

inverse of a matrix, respectively. [A]q,p is the (q, p)-th entry of

A, and ‖A‖F is the Frobenius norm. CN (m,σ2) is a complex

Gaussian random variable with mean m and variance σ2. The

magnitude and phase of a complex number are denoted by | · |
and ∠(·), respectively. Finally, C and R

+ denote the set of

complex and positive real numbers, respectively.

II. SYSTEM MODEL

A. Millimeter Wave Channel and Signal Model

The system model, depicted in Fig. 1, comprises a single-

user mmWave geometric channel, where both the Tx and Rx

are equipped with a uniform linear array of nt and nr antenna

elements, respectively. L denotes the number of scatterers,

each of which contributes with a single Tx-Rx propagation

path, as in [7]–[9]. The complex channel coefficient of the l-
th path is defined by αl, l = 1, . . . , L, while ψl and φl stand

for the AoA and AoD of the l-th path, respectively. The full

parametric channel model is then conveniently characterized

as:

H(θ) =
√
ntnr

L∑
l=1

αlar(ψl)a
H
t (φl), (1)

where θ � [|α1|,∠α1, φ1, ψ1, . . . , |αL|,∠αL, φL, ψL]
T is

the parameter vector.

This channel model assumes that the αl-s are independent

identically distributed (i.i.d.) random variables with distribu-

tion αl ∼ CN (0, σ2
α/L), while the AoAs (ψl) and AoDs (φl)

are drawn from a uniform distribution ∈ [0, 2π]. The antenna

array responses at the Tx and Rx, assuming half-wavelength

antenna separation, can be expressed as

at(φl) =
1√
nt

[1, e−jπ cosφl , · · · , e−jπ(nt−1) cosφl ]T , (2)

ar(ψl) =
1√
nr

[1, e−jπ cosψl , · · · , e−jπ(nr−1) cosψl ]T . (3)

The value of the parameter L, although unknown a priori,

has been proved by measurements at mmWave frequencies

to be low due to the sparseness of the channel [10]. For the

sake of simplicity, the dependence of Eq. (1) on the parameter

vector θ is omitted in the following.
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Fig. 1: Spatial channel model.

B. Pilot-based open-loop channel estimation

A mmWave system using analog beamforming (ABF) is

considered, with Tx and Rx antennas connected to single

Radio Frequency (RF) chains by means of a network of

digitally controlled phase-shifters. Following previous works

such as [8], the beam search space is given by a codebook

comprising P and Q codewords or directions at the Tx and

Rx side, respectively, which translate into quantized angles

φ̄p, p = 0, 1, . . . , P − 1 and ψ̄q , q = 0, 1, . . . , Q − 1. For

subsequent channel estimations, a pilot-based training phase

is carried out. In this case, a pilot symbol is transmitted,

and received, through all possible directions. Assuming that

fp ∈ C
nt×1 and wq ∈ C

nr×1 stand for the RF beamforming

vectors at the Tx and Rx, respectively, the signal for the (q, p)-
th pair of directions is given by

yq,p =
√
ρwH

q Hfp s +wH
q n, (4)

where ρ ∈ R
+ is the transmit power. The noise term n ∼

CN (0,Σn) is a complex AWGN 1×nr vector with covariance

Σn = σ2
nInr

, where Inr
denotes the nr × nr identity matrix.

Then, the system SNR is given by ρ/σ2
n. For the sake of

simplicity, the symbol s is set to 1 in what follows.

The observation matrix is obtained after transmitting the

pilot symbol through the Q× P direction combinations

Y =
√
ρWHHF+N =

√
ρG(θ) +N, (5)

where W = [w0, . . . ,wQ−1] ∈ C
nr×Q and

F = [f0, . . . , fP−1] ∈ C
nt×P . The noise matrix N ∈ C

Q×P

contains i.i.d. ∼ CN (0, σ2
n) elements, and G ∈ C

Q×P

encodes the channel information θ. The effect of the different

scatterers can be separated to write the observation matrix as

a sum of path contributions G(l)(θl) ∈ C
Q×P , each one being

dependent on a parameter vector θl = [|αl|,∠αl, φl, ψl]
T as

Y =
√
ρ

L∑
l=1

G(l)(θl) +N. (6)

Assuming that the beamforming/combining vectors are de-

signed to match the array response [8], i.e. fp = at(φ̄p)
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Fig. 2: Beampatterns for nT = nR = 16 and Q = P = 16.

and wq = ar(ψ̄q), the elements g
(l)
q,p =

[
G(l)(θl)

]
q,p

are

given by

g(l)q,p(θl) = Al
1− e−jπnr(cosψl−cos ψ̄q)

1− e−jπ(cosψl−cos ψ̄q)

1− ejπnt(cosφl−cos φ̄p)

1− ejπ(cosφl−cos φ̄p)
,

(7)

where Al = αl/
√
ntnr. Note that the observation matrix is

sensitive to cosφl and cosψl, whereas the actual AoDs and

AoAs cover the range [0, 2π]. Hence, the quantized angles φ̄p

and ψ̄q only need to consider the range [0, π].

III. TRANSFORMED SPATIAL DOMAIN CHANNEL

ESTIMATION

A. DFT-based Codebook

The TSDCE method considered in this work relies on the

fact that, under a proper design of a DFT-based codebook for

ABF, the observation matrix Y corresponds to the 2D-DFT of

a sum of windowed complex sinusoids embedded in AWGN.

This motivates solving the channel estimation problem in the

transformed spatial domain, where the AoA and AoD for each

channel path can be estimated by retrieving their associated

angular frequencies:

ωψl
= −π cos(ψl), ωφl

= π cos(φl). (8)

As shown in [5], each Eq. (7) corresponds to the 2D-DFT

with Q × P bins of a windowed complex sinusoid provided

that

e−jπ cos(ψ̄q) = ej
2π
Q q, q = 0, 1, . . . , Q− 1, (9)

ejπ cos(φ̄p) = ej
2π
P p, p = 0, 1, . . . , P − 1. (10)

The variables ωψl
, ωφl

∈ [−π, π] denote the angular fre-

quencies of such complex sinusoid in each spatial direction,

where the vertical direction is related to the AoA and the

horizontal direction is related to the AoD. It follows that

parameter vector for the l-th path in the transformed spatial

domain becomes ωl = [|αl|,∠αl, ωφl
, ωψl

]T .

To satisfy Eqs. (9) and (10), the following conditions are

set on the selected codebook angles

cos(φ̄p) = W[−1,1]

(
2p

P

)
, cos(ψ̄q) = W[−1,1]

(
−2q

Q

)
,

(11)

where W[a,b](x) � x − (b − a)
⌈
x−b
b−a

⌉
is the [a, b] wrapping

operator with �·� denoting the ceiling function. The above

conditions imply simultaneously a uniform quantization in the
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Fig. 3: Block diagram of the TSDCE algorithm.

range [−1, 1] for the cosine of the codebook angles and a

specific codebook ordering at the Tx and Rx. An example of

the resulting beampatterns at the Tx and Rx for Q = P = 16
in a system with nT = nR = 16 antennas is shown in Fig. 2.

Taking into account Eqs. (2) and (3) together with the

relationships of Eq. (8), the elements hm,n = [H]m,n can be

written as

hm,n =
L∑

l=1

αle
j(ωψl

m+ωφl
n), (12)

indicating that the channel consists of a sum of L complex si-

nusoids. If the proposed DFT-based codebook is selected as in

Eq.(11), the 2D-IDFT of the observation matrix Y, expressed

as D, results in the following elements dm,n = [D]m,n in the

transformed spatial domain

dm,n(ω) =

{∑L
l=1 Ale

j
(
ωψl

m+ωφl
n
)
+ zm,n, if m < nr, n < nt

zm,n, elsewhere
,

(13)

where zm,n belongs to a zero-mean complex Gaussian noise

distribution with variance σ2
z = 1

QP σ2
n. The comparison of

Eqs. (13) and (12), allows to identify that the nr × nt upper-

left submatrix of D is just a scaled and noisy version of H,

where its spatial frequencies on the vertical and horizontal axes

contain the directional information of the different channel

paths.

B. TSCDE method

TSDCE is an iterative algorithm whose steps are summa-

rized in Fig. 3. Starting from the most powerful path compo-

nent (l = 1), the first step is based on performing the 2D-IDFT

to the observation matrix Y to obtain D. Next, a cropping step

is performed to extract the upper-left submatrix containing the

informative part of matrix D, denoted as D̄C ∈ C
nr×nt .

Then, an estimate of the contribution corresponding to the

most powerful path component is obtained after performing

the singular value decomposition (SVD) of D̄C to achieve a

rank-one approximation through the dominant singular-value,

resulting in matrix D̃C.

The second step is based on the denoising properties of the

unbiased 2D sample autocorrelation function (ACF), which is

applied to D̃C to obtain a new matrix R ∈ C
nr×nt . The

phase angle in elements of matrix R contain the necessary in-

formation for the estimation of ωψl
and ωφl

. More specifically,

the phases of the first row and the first column of R provide

the required frequency information.

In a third step, spatial frequency estimation is performed.

Following the discussion in [5], the frequency estimation
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Fig. 4: Root Mean Square Error (RMSE) and PD of angles

estimated with TSDCE and DFT-CEA considering L = 3 and

nt = nr = 16, and different values of SNR and codebook

sizes.

can be obtained by estimating the slopes of the unwrapped

phase sequences (derived in the second step) in both the

vertical and horizontal directions. The solution involves a four-

step process: unwrapping the phases, estimating the slope by

weighted least squares (WLS), designing the weights for the

WLS optimization problem and estimating the path complex

coefficient (both |α̂1| and ∠α̂1).

Estimating the rest of the paths of the channel follows

the same steps as above, but the spatial domain observation

matrix D̄C is updated by means of a successive interference

cancellation (SIC) approach, so that the contribution from

already reconstructed path components is suppressed (see

Eq. (76) in [5]).

The iteration criterion in the TSDCE algorithm can be

limited to a given number of desired path components to be

extracted, without preventing the use of more realistic criteria.

Once the estimates of the L path components are available after

the first execution of the algorithm, these can be effectively

used to cancel all the disturbing path contributions from the

original observation, leading to enhanced estimates for all

paths. To this end, the method has a parameter called K
which allows to perform more estimation runs to refine the

solution. As shown in [5], the method exhibits a SNR gain

when QP > ntnr.

IV. PERFORMANCE EVALUATION

In this section, the AoA/AoD estimation performance and

complexity of the TSDCE are obtained through numerical sim-

ulations. For SNR values ranging from -10 dB to 25 dB, 105

random realizations are generated following the observation

model given in Eq. (5) with ρ = 1, i.e. the SNR definition

is 1/σ2
n. AoA and AoD angles are drawn from a uniform
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Fig. 5: RMSE and PD of angles estimated with TSDCE and

DFT-CEA for different values of SNR, considering L = 3 and

nt = nr = 32.

distribution in the range [0, π], whereas channel coefficients

are drawn from a zero mean complex Gaussian distribution

with variance 1/L. The K parameter in the TSDCE is set to

3 for a good complexity versus performance tradeoff [5].

As a benchmark for comparison, we consider the DFT-based

scheme (DFT-CEA) proposed in [6]. This method operates

in the frequency domain after applying a 2D-DFT of NDFT

points to an initial channel estimate, and it obtains the AoAs

and AoDs from the DFT peaks through iterative cancellation.

As in [6], we set NDFT = 1024.

A. AoA and AoD performance

To assess the AoA/AoD estimation accuracy, the RMSE of

the angle measurements, calculated as

RMSE =

√√√√ 1

|N |
∑
i∈|N|

(ϑi − ϑ̂i)2, (14)

and the probability of detection (PD) at different SNRs are

obtained. A detection is considered successful if the associated

RMSE ≤ 1◦. According to this definition, the set of success-

fully detected angles is denoted by N , while ϑi considers any

AoA or AoD.

Fig. 4 analyzes the AoA/AoD estimation capability of the

TSDCE and DFT-CEA methods with L = 3 in terms of RMSE

and PD, considering nT = nR = 16 and codebooks with

Q = P = 16 and Q = P = 32 elements. At low SNRs, the

DFT-CEA outperforms the TSDCE, since it exhibits a higher

PD than the TSDCE with similar RMSE. At medium to high

SNRs, the TSDCE shows superior performance, since both

methods present similar PD, having the TSDCE lower RMSE

values. Regarding the codebook sizes, both methods provide

enhanced angle estimations when Q = P = 32. The latter
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Fig. 6: RMSE and PD of angles estimated with TSDCE and DFT-CEA for each channel path, considering L = 3 and different

values of SNR and antennas.

result is consistent with the expected SNR gain provided by

having more codebook elements than antennas [5].

In Fig. 5, the number of antennas is increased to nT =
nR = 32, setting the codebook sizes to Q = P = 32. It can

be observed that the performances of both methods in terms

of RMSE and PD are enhanced. In constrast to the results

shown in Fig. 4, the TSDCE outperforms the DFT-CEA at

medium to high SNRs not only regarding RMSE values but

also in terms of PD. For SNRs below 5 dB, the DFT-CEA

is a more competitive approach, providing lower RMSE and

significantly higher PD than the TSDCE.

Fig. 6 shows the AoA/AoD estimation results independently

for each path in a channel with L = 3. Top subplots consider

nT = nR = 16 and Q = P = 16, whereas bottom subplots

correspond to the nT = nR = 32 and Q = P = 32 case. From

the nT = nR = 16 results, we can observe that the TSDCE

and DFT-CEA achieve the same PD at high SNR, having the

TSDCE lower RMSE for all paths. Also at high SNR, the

estimation performances for the first and second paths (see

l = 1 and l = 2 curves) converge, while the angle RMSE of

the third path (l = 3) is higher. This effect is observed for both

estimation methods. When nT = nR = 32, the TSDCE starts

to outperform the DFT-CEA from a lower SNR point. As in

the previous antenna configuration, the performances for the

first and second paths converge, while the third path estimate

is poorer. This effect is specially striking when looking at the

DFT-CEA, l = 3, PD curve, where it can be seen that the PD

for the third path is substantially worse than for the rest.

B. Computational complexity analysis

The computational complexities of the TSDCE and DFT-

CEA methods are compared in terms of average elapsed time

to run the Matlab implementation of each algorithm. The

simulations are carried out in a desktop computer with an

Intel® Core™ i7-8700 Central Processing Unit at 3.20 GHz.

Fig. 7 compares the average runtime in seconds needed to

estimate the AoA and AoD with the two considered methods,

when the number of antennas is increased. To narrow down

the possible options, two values for the number of estimated

channel paths are selected (L = 3 and L = 4) and three

values for the number of antennas (nT = {16, 32, 64}). In

all cases, we set nt = nr = Q = P . It can be first noticed that
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the runtime of the DFT-CEA is constant with the number of

antennas. This result is reasonable, since the dominant term of

its computational complexity is the DFT operation, whose size

is kept to NDFT = 1024 in all the configurations. Regarding

the TSDCE, its runtime increases with the number of antennas,

but its values remain in all evaluated cases between one and

two orders of magnitude below those of the DFT-CEA. When

the number of channel paths is increased from L = 3 to

L = 4, the runtime of both methods increases similarly.

This result is also consistent, since both methods follow an

iterative cancellation approach to estimate channel paths, and

the runtime increase is caused by the estimation of the fourth

path.

Finally, we evaluated the impact of the codebook size on

the average runtime for both methods. To this end, we set

nT = nR = 16 and compared the runtimes with Q = P = 16
and Q = P = 32. The TSDCE runtime increases from 2ms to

2.8ms for L = 3 and from 2.7ms to 3.5ms for L = 4, i.e., it

involves an absolute runtime increase of 0.8ms. On the other

hand, the DFT-CEA runtime does not vary with the codebook

size due to the effect of the dominant DFT term.

V. CONCLUSION

In this paper, the performance and complexity of AoA/AoD

estimation in the transformed spatial domain have been evalu-

ated in a mmWave MIMO channel. In particular, transformed

spatial domain estimation (TSDCE) has been compared to an

iterative channel estimation approach based on the Discrete

Fourier Transform (DFT-CEA). When comparing the root

mean square error of angles and probability of detection

in a set of antenna and channel configurations, the TSDCE

outperforms the DFT-CEA at medium to high signal-to-noise

ratio (SNR) values. The use of training codebooks with more

elements than the number of antennas enhances both methods.

The performance advantage of TSDCE over DFT-CEA is more

significant when considering 32 antennas instead of 16. It is

also observed that, in a channel with three paths, the estimation

performance of the first and second paths converge at high

SNR. However, the probability of detection for the third path

is substantially worse.

From the complexity analysis results, which evaluated aver-

age runtime, it is observed that the DFT-CEA runtime remains

constant when the number of antennas and/or codebook ele-

ments increases. On the contrary, the TSDCE runtime increases

with the number of antennas and/or codebook elements. De-

spite this, the TSDCE runtime remains one or two orders of

magnitude below the DFT-CEA runtime in all cases, showing

that it is a substantially faster solution to estimate the AoA and

AoD. In fact, the TSDCE performance loss at low SNR could

be worthwile for complexity-constrained applications. Finally,

it was observed that estimating an additional path increases

the runtime similarly for both methods.
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