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I. Introduction: the need for a quantum theory of fields

Quantum field theory (QFT) is the formalism that unifies quantum mechanics (QM)
and special relativity (SR), and enables us to understand what matter is made of.

Various types of experiments are used to explore the fundamental constituents
of matter. In fixed-target experiments a beam of particles is focused towards a piece of
material (target), see Fig. 1. Particles in the beam can be deflected, and even change
in number and/or nature if the energy is high enough. From the characterization
of the scattered particles and their angular distribution, we can infer the properties
of the interactions of the beam particles with the target ones. These experiments
mimic in the laboratory what happens when cosmic rays (protons or nuclei) hit the
atmosphere (target) and produce showers as depicted in Fig. 2.

The birth of particle physics can be traced back to the study of the structure of
the atom by Rutherford and others in fixed-target experiments, and to the discovery
of new particles in cosmic rays. These experiments enabled us to establish the
substructure of the atom, the atomic nucleus, and its constituents (i.e. the proton
and the neutron). Furthermore they revealed the existence of many exotic and
short-lived particles beyond those present in ordinary matter.

Figure 1: Classic experiment by Lord Rutherford that demonstrated the structure
of the atom.

In collider experiments (eg. LHC or LEP) two beams of simple particles are
accelerated in opposite directions and collide in the center of a detector. These
experiments are easier to interpret because the complex substructure of the target
disappears: we smash simple particles into simple particles. They are also more
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Figure 2: Cosmic Rays

efficient in reaching higher energies.
The type of measurements we can do, and would like to predict accurately, are:

• The nature of the scattered particles

• The number of particles per unit incoming flux that get deflected as a function
of the scattering angle, θ.

The theoretical prediction of these observables requires that we understand quan-
tum mechanics in the relativistic limit. QFT achieves this goal and allows us to
understand and predict the dynamics of particles in the subatomic domain.
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Figure 3: LHC proton-proton collision

1.1 Duality in quantum mechanics

As we know in quantum mechanics (QM) there is a duality between particles (e.g.
an electron) and waves (e.g. the electromagnetic field). Particles of momentum p
behave as de Broglie waves with wavelength

λ =
h

p
. (1.2)

Similarly electromagnetic waves of frequency ν behave as bunches of quanta in the
photoelectric effect or in Compton scattering. These are Einstein’s photons, γ, that
have energies given by

E = hν. (1.3)

However a full unification of both concepts, particles and waves, is not achieved
in QM, where the treatment of photons is completely different to that of electrons.
Particles are described in terms of wave functions that satisfy the Schrödinger equa-
tion, but the electromagnetic field is usually treated classically.

In processes such as the photoelectric effect, the electromagnetic field is a classi-
cal wave that induces a time-dependent potential leading to transitions of electrons
between atomic energy levels.

Instead, in Compton scattering, the shift in wavelength of light scattered at an
angle θ on electrons at rest

∆λ =
h

mec
(1− cos θ), (1.4)
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can be easily derived from simple particle kinematics assuming elastic scattering
of an electron and a photon: e + γ → e + γ, which clearly assumes a particle
interpretation of the photon involved. However QM does not provide a method to
quantify the probability of this process, which would require computing a transition
amplitude between two states of one electron and one photon.

The same situation occurs in the case of spontaneous emission in which an
electron in an excited atomic state decays to the ground state emitting a photon of a
fixed frequency in the absence of any perturbation. In contrast with the photoelectric
effect, there is no classical electromagnetic radiation present. The kinematics of
the process can be easily understood with the same particle picture of the photon,
but the probability of this process, which is related to the lifetime of an atomic
state, requires a mathematical formulation of the photon as a particle, which is only
achieved by the quantization of the electromagnetic field.

1.2 Quantum mechanics of relativistic particles

From a different perspective, the successful quantum treatment of particles in the
non-relativistic regime does not extrapolate straightforwardly to the relativistic do-
main either. Several paradoxes demonstrate a clash with causality when we try to
localize particles of mass m within distances smaller than their Compton wavelength

λC =
h

mc
. (1.5)

The origin of these paradoxes lies in the fact that the number of particles is not
conserved in this regime. Let us suppose we manage to localize a particle within a
distance of the order of half of the reduced Compton wavelength:

∆x ≤ λC

4π
. (1.6)

The uncertainty principle implies

∆x∆p ≥ ~
2
→ ∆p ≥ ~

2∆x
≥ h

λC
≥ mc, (1.7)

for a relativistic particle E ' pc and therefore

∆E = c∆p ≥ mc2, (1.8)

which is the rest energy of a particle, and therefore particles can be created in the
process.

Surprisingly the solution to these paradoxes brings us to the same point as
the need for a particle picture, or quantization, of the electromagnetic field, i.e.
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a theory of quantum fields. QFT is the mathematical framework that achieves a
complete unification of the classical concepts of particles and fields in relativistic and
local quantum fields (see Fig. 4) which represent operators that create/annihilate
particles.

Figure 4: Quantum theory of fields

We will see that in QFT observables are not arbitrary Hermitian operators
as in quantum mechanics: they must be constructed out of local quantum fields.
Causality will not derive from the localization of particles but from the localization
of interactions. We will see that quantum fields ensure relativistic invariance and
an essential property of the laws of physics called cluster decomposition. This refers
to the fact that measurements performed in well separated regions of space do not
interfere, e.g. we can perform measurements locally in our lab, and they will not be
affected by what is happening in the Moon.

QFT will deal with basic processes that we can measure in the lab. We would
like to describe in a precise and quantitative way the two key ingredients in a particle
collision:

• Asymptotic states: what are stable states of free particles?

E.g. what are their masses, spin and charges

• Spectrum of unstable particles

E.g. what are their masses, spin, charges and lifetime

• Scattering processes: what is the probability that a number of particles in
some prepared incoming state arrive to an interaction region and “turns into”
a different state of particles (same particle in a different state or even different
particles)

We will see that QFT can answer these questions quantitatively and extremely
accurately in some cases, up to the highest energy scales, we have explored so far,
E ∼ 1013eV, that correspond to the smallest distances, ∼ 10−19m. There is little
doubt that this abstract mathematical framework describes nature!
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In the rest of this chapter we are going to introduce quantum fields as a way to
solve apparent paradoxes that arise when trying to mix quantum physics and special
relativity. We will start by briefly recalling some basic facts about both quantum
mechanics and special relativity – and discuss why a naive extension of quantum
mechanics to the relativistic domain fails, and why the new concept of quantum field
is needed.

We are going to employ natural units throughout:

~ = c = 1. (1.9)

In some cases, for aesthetical reasons some of these factors will be kept.

1.3 Non-relativistic QM in a nutshell

Quantum mechanics modifies in an essential way the classical concepts of the state
of a system, of observable, and measurement.
• One-particle quantum states are vectors in a Hilbert space (the space of

quadratically integrable complex functions, L2(C)) that evolve in time

|Ψ(t) 〉, 〈Ψ|Ψ〉 = 1 (1.10)

When expressed in the so-called complete position basis, |x〉, the components of the
state vector in this basis constitute the Schrödinger wave function:

〈x|Ψ(t)〉 = ψ(x, t). (1.11)

The position basis is a complete basis, even if the basis states are not square-
normalizable: ∫

dx |x〉〈x| = 1, 〈x|x′〉 = δ(x− x′). (1.12)

Another important basis that is often used is the momentum basis, |p〉:

〈x|p〉 = eip·x. (1.13)

〈p|p′〉 =

∫
d3x〈p|x〉〈x|p′〉 =

∫
d3x ei(p

′−p)·x = (2π)3δ(p′ − p), (1.14)

and the completeness condition1 is∫
d3p

(2π)3
|p〉〈p| = 1. (1.15)

1We could have equivalently normalized the states to eliminate the (2π)3 in eqs. (1.14) and (1.15)
and included a factor (2π)−3/2 in eq. (1.13).
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• Observables are Hermitian operators in Hilbert space

Ô, 〈Φ|ÔΨ〉 = 〈ÔΦ|Ψ〉. (1.16)

As in finite vector spaces, these operators have real eigenvalues and the basis of
eigenvectors forms a complete basis of physical states.
• The possible results of a measurement of an observable are exclusively the

eigenvalues of the corresponding operator, and the probability of measuring one of
these eigenvalues, e.g. on, when performing a measurement on a state |Ψ〉 is

Prob(on) = |〈on|Ψ〉|2, (1.17)

where |on〉 is the eigenvector corresponding to the eigenvalue on, ie.

Ô|on〉 = on|on〉. (1.18)

Three observables/operators have a prominent role in NRQM: position, X̂, momen-
tum P̂i and the energy or Hamiltonian, Ĥ. Their eigenbasis are respectively, the
position states, the momentum states and the stationary states:

X̂|x〉 = x|x〉, P̂ |p〉 = p|p〉, Ĥ|E〉 = E|E〉. (1.19)

Position and momentum operators do not commute:

[X̂i, P̂j ] = iδij , (1.20)

which implies the Heisenberg uncertainty relation on any state:

∆Xi∆Pi ≥
1

2
, (1.21)

where ∆O ≡ 〈Ψ|O2|Ψ〉 − 〈Ψ|O|Ψ〉2.
• States evolve in time according to the Schrödinger equation, which in the

position basis is a wave equation:

i~
∂

∂t
ψ(x, t) =

(
− ~2

2m
∇2 + V (x)

)
ψ(x, t), (1.22)

or in a basis-independent form:

i~
d

dt
|Ψ〉 = Ĥ|Ψ〉, (1.23)

where Ĥ is the quantum Hamiltonian operator, which for a non-relativistic particle
of mass m in a potential V (x) is:

Ĥ =
P̂2

2m
+ V (X̂). (1.24)
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It is therefore the classical Hamiltonian with the substitution

p→ P̂ = −i~∇, x→ X̂. (1.25)

The Schrödinger equation establishes that the time evolution of a quantum state is
controlled by the Hamiltonian. It is easy to formally solve eq. (1.23) for Hamilto-
nians that do not depend explicitely on time:

|Ψ(t)〉 = e−iĤ(t−t0)/~|Ψ(t0)〉. (1.26)

The quantum time evolution operator is therefore

U(t, t0) ≡ e−iĤ(t−t0)/~. (1.27)

• There are equivalent pictures in NRQM. We can equivalently say that states
change with time and operators do not or the opposite. The first is the Schrödinger
picture, while the second is the Heisenberg picture. Let us see how we pass from
one to the other.

Let us consider the expectation value of the operator Ô in a state |Ψ(t)〉 in the
Schrödinger picture:

〈Ψ(t)|Ô|Ψ(t)〉 = 〈Ψ(0)|eiĤtÔe−iĤt|Ψ(0)〉 = 〈ΨH(0)|ÔH(t)|ΨH(0)〉. (1.28)

The expectation value is the same as in the Schrödinger picture but the Heisenberg
operator depends on time while the states are fixed at t = 0, where they coincide
with the Schrödinger ones.

In the Heisenberg picture, the Schrödinger equation is substituted by the oper-
ator equation (since only operators evolve in time):

d

dt
ÔH(t) = i[Ĥ, ÔH ]. (1.29)

An intermediate picture which is useful in the context of perturbation theory is
called the interaction picture. If the Hamiltonian can be separated as Ĥ = Ĥ0+Ĥint,
where Ĥ0 is the free Hamiltonian and Ĥint includes the interaction, both states and
operators evolve

〈Ψ(t)|Ô|Ψ(t)〉 = 〈eiĤ0tΨ(t)|eiĤ0tÔe−iĤ0t|eiĤ0tΨ(t)〉 = 〈ΨI(t)|ÔI(t)|ΨI(t)〉. (1.30)

The operators satisfy therefore

d

dt
ÔI(t) = i[Ĥ0, ÔI ], (1.31)

while the states

i
d

dt
|ΨI(t)〉 = −Ĥ0|ΨI(t)〉+ eiĤ0tHe−iĤ0t|ΨI(t)〉 = ĤI(t)|ΨI(t)〉. (1.32)
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1.4 Quantum harmonic oscillator

Since your first course in QM you have become familiar with the quantization of the
system of a particle of mass m attached to a spring, or harmonic oscillator. The
classical Hamiltonian is given by:

H(x) =
p2

2m
+

1

2
mω2(x− x0)2. (1.33)

The canonical quantization of this system proceeds by constructing the quantum
Hamiltonian according to eqs. (1.25).

The stationary states can be found by solving the Schrödinger equation, but it
can be done much more easily by an algebraic method 2 defining the raising/lowering
operators as combinations of the momentum and position operators:

â ≡ 1√
2~ωm

(
iP̂ +mωX̂

)
, â† ≡ 1√

2~ωm

(
−iP̂ +mωX̂

)
. (1.34)

The Hamiltonian can be written as

Ĥ = ~ω
(
â†â+

1

2

)
, (1.35)

and using eq. (1.20),

[â, â†] = 1, [â†, â†] = 0, [â, â] = 0. (1.36)

The eigenvalues can be shown to be quantized according to

En = ~ω
(
n+

1

2

)
, (1.37)

with n any integer. The operator â† acting on the eigenstate corresponding to
integer n, |n〉, produces another eigenstate with integer n+ 1, while the operator â
transforms the state |n〉 → |n− 1〉. More precisely,

â†|n〉 =
√
n+ 1|n+ 1〉, â|n〉 =

√
n|n− 1〉. (1.38)

We will see that there is a different interpretation to the rising and lowering
operators of the harmonic oscillator. We can imagine that when we move from en-
ergy level En → En±1 we are adding or subtracting a quantum of energy ~ω. Such
quantum of energy can be viewed as a particle like Einstein’s photon. The opera-
tors â† and â in this picture are particle creation and annihilation operators. We
will see that this interpretation is precisely what provides the particle interpreta-
tion of the quantized electromagnetic field, since the canonical quantization of the
electromagnetic field will lead to a infinite set of harmonic oscillators.

2For those not familiar with this formalism, please read Chapter 2 of Griffith’s book on Quantum
Mechanics.
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1.5 Multiparticle states and Fock space

It is not surprising that when we move to the relativistic domain, it becomes neces-
sary to extend the one-particle Hilbert space to include states with different number
of particles, since interactions in this regime will generically modify the number of
particles when the energy available is greater than the rest energy of one particle,
E � mc2.

A state of N free identical particles can be described by a state which is a
superposition of the direct product of one-particle states in Hilbert space:

|ΨN 〉 = |Ψα1〉 ⊗ |Ψα2〉 ⊗ ....|ΨαN 〉 ∈ H(N), (1.39)

where each of the factors, |Ψαk〉, represents the state of particle k.
It is a postulate of quantum mechanics (that becomes the spin-statistics theorem

in QFT) that not all possible states of this form are physical. Only the combina-
tions of such states that are either completely symmetric (bosonic) or completely
antisymmetric (fermionic) under the exchange of any two identical particles i ↔ j
are physically acceptable states. If we define the permutation operator P̂ij of the
i-th and j-th particles, physical states of N identical particles must be combinations
of states of H(N) that satisfy

P̂ij |ΨN 〉 = ±|ΨN 〉, (1.40)

for any i, j. The ± correspond to bosons/fermions and whether it is one or the other
depends on whether the spin of the one-particle state is integer or half-integer.

The full symmetrization or antisymmetrization of states of N particles implies
that any such state is fully determined by the occupation numbers, Ni:

Ni = #number of particles in state |Ψi〉, (1.41)

and whether the particles are bosons or fermions. Up to a normalization:

|ΨN 〉B/F ∼
∑
perm

(−1)perm

N1 terms︷ ︸︸ ︷
|Ψ1〉 ⊗ ..|Ψ1〉⊗...

Nk terms︷ ︸︸ ︷
|Ψk〉 ⊗ ...⊗ |Ψk〉 (1.42)

with ∑
i=1,..k

Ni = N. (1.43)

We can therefore denote the state by

|N1, ..., Nk〉F/B,
∑
i=1,k

Ni = N. (1.44)
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We will omit the sub-index F/B in the following.
When in a process we can change the number of particles, we need to enlarge

this space to include all states with an arbitrary number of particles. This is called
Fock space, which is defined as the direct sum of the Hilbert spaces of any number
of particles

F =
∞
⊕
N=0

H(N), H(0) ≡ |0〉, (1.45)

where the state with no particles is called the vacuum state, |0〉.
We can define operators that transform states with different number of particles,

in particular operators of creation a†i and annihilation ai of a particle in a one-particle
state of energy Ei:

â†i : H(N) → H(N+1)

âi : H(N) → H(N−1). (1.46)

For bosons we define the operators of creation and annihilation as:

âi|N1, ..., Ni, ...Nn〉 =
√
Ni|N1, ..., Ni − 1, ...Nn〉,

â†i |N1, ..., Ni, ...Nn〉 =
√
Ni + 1|N1, ..., Ni + 1, ...Nn〉 (1.47)

It is easy to check the following properties:

• N̂i ≡ â†i âi is the i− th number operator since

N̂i|N1, ..., Ni, ..., Nn〉 = Ni|N1, ..., Ni, ..., Nn〉B (1.48)

• they satisfy the following commutation relations:

[âi, â
†
j ] = δij , [âi, âj ] = 0, [â†i , â

†
j ] = 0, (1.49)

• any state in Fock space can be constructed from the vacuum by acting with
creation and annihilation operators

|N1, ....Nn〉B =
1√

N1!...
√
Nn!

(â†1)N1 ....(â†n)Nn |0〉. (1.50)

indeed this state can be shown to be properly normalized and completely
symmetric.
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In the case of fermions, the occupation numbers can only be 0, 1. The cre-
ation/annihilation operators are defined as:

âi|N1, ..., Ni, ...Nn〉 = (−1)νiNi|N1, ..., 1−Ni, ...Nn〉,
â†i |N1, ..., Ni, ...Nn〉 = (−1)νi(1−Ni)|N1, ..., 1−Ni, ...Nn〉F , (1.51)

with νi ≡
∑i−1

k=0Nk. As before the number operator is N̂i = â†i âi, while the conmu-
tation relations in this case are found to be

{âi, â†j} = δij , {âi, âj} = 0, {â†i , â
†
j} = 0, (1.52)

and any state can be reconstructed from the vacuum by

|N1, ....Nn〉F = (â†1)N1 ....(â†n)Nn |0〉. (1.53)

Although this formalism of creation/annihilation operators is extremely useful
to discuss states with many particles, it can also be applied to the Hilbert space of
one-particle states, and in this context we talk of the second quantization formalism.

1st quan 2nd quan

States |Ψ〉 â†Ψ|0〉
〈Ψ| 〈0|âΨ

|Ψ〉 =
∫
p |p〉〈p|Ψ〉 â†Ψ =

∫
p〈p|Ψ〉â

†
p

Operators Ô =
∑

α,β |α〉〈α|Ô|β〉〈β| Ô =
∑

α,β â
†
αâβ〈α|Ô|β〉

Among the creation/annihilation operators, a special case are those correspond-
ing to the position basis, that is the operators that create a particle at position x,
also called field operators:

Ψ̂x ≡ â†x, â†x|0〉 = |x〉. (1.54)

It is very important to note that despite the similar notation, the field operators
must not be mistaken with wave functions, as they are operators and not complex
numbers (i.e. the components of the state vector in the position basis). Note that
the field operator can also be written as

Ψx =

∫
p
〈p|x〉 â†p =

∫
p
e−ipx â†p. (1.55)

We will see that these are the basic building blocks in the construction of quan-
tum field theories. The quantization of the electromagnetic field is equivalent to that
of a set of quantum harmonic oscillators, where the raising/lowering operators can
then be interpreted as momentum basis creation/annihilation operators in a Fock
space, and this is what gives a precise definition of what we mean by a photon.

Causality as we will see will be ensured by the locality of the field operator.
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Figure 5: The parameter space of the rotation group in 2D is isomorphic to a unit
circle. The parameter α1 parameterizes the group element R(α1), which is the well-
known rotation in 2D. R(αi) ≡ R(S(αi)) is a matrix representation of the group
element S(α1), which lives in the abstract, mathematical space of group elements.

1.6 Symmetries in QM

Symmetries in quantum mechanics are transformations of state vectors that leave
observables and probabilities invariant. Symmetries under translations, rotations
and boosts are expected from the principle of relativity. Other internal symmetries
such as gauge symmetries are fundamental in the dynamics of elementary particles
as we will see. Symmetry transformations have a group structure since:

• there is an identity transformation (i.e. to do nothing)

• the product can be defined as the ordered composition of two transformations
that also belong to the group

S2S1 = apply first transformation S1 and afterwards S2. (1.56)

• an inverse can be defined (i.e. undo the transformation)

• associative product

S3(S2S1) = (S3S2)S1. (1.57)
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All the examples of continuous symmetries in physics that we will be dealing with
are Lie groups3, where the elements are functions of a set of real and continuous
parameters, α, and the multiplication rule depends smoothly on them, meaning that
there is some notion of “closeness” in the group: if two elements S(α1) and S(α2)
of a group S are close together, then the parameters α1 and α2 are also close. Take
as an example the group U(1) of rotations in a 2D plane depicted in fig. 5.

Wigner’s theorem establishes that symmetry transformations in Hilbert space
are implemented by either unitary and linear operators (in most of the cases) or
antiunitary/anti-linear operators (in the case of time inversion). We will be con-
cerned with symmetries that are represented by unitary operators:

S(α) : |Ψ〉 → U(S(α))|Ψ〉, U(S(α))†U(S(α)) = 1. (1.58)

We say that these operators in Hilbert space are a unitary representation of the
symmetry group.

When we consider infinitesimal transformations, very close to the identity (the
element corresponding to α = 0, the unitary operators representing a Lie group can
be approximated by a Taylor expansion in the parameters:

U(S(α)) ' 1 + iαaT
a +O(α2). (1.59)

It is easy to show that the operators T †a = Ta are Hermitian and are called group
generators which form an algebra:

[Ta, Tb] = ifabcTc. (1.60)

These generators and their commutation relations are all we need to describe the
group elements and group multiplication close to the identity.

The generators of the familiar symmetry operations:

• Spacial translations: under a translation of the origin of coordinates by −a, a
particle localized at x will appear localized at the point x + a, therefore

U(T (a))|x〉 = |x + a〉. (1.61)

Using this relation, it is easy to show that the generators of infinitesimal trans-
lations are the three components of the momentum operator:

Ti = i
∂

∂xi
= −P i, (1.62)

and the unitary operator that represents finite translations is

U(T (a)) = e−ia·P̂. (1.63)
3An excellent group theory reference for particle physicists: Lie Algebras in Particle Physics, by

H. Georgi [].
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• Time translations: under a translation of the time origin −t0

U(T (t0))|Ψ(t)〉 = |Ψ(t+ t0)〉, (1.64)

and using the Schrödinger equation it follows that the generator of time trans-
lations is the Hamiltonian. A finite time translation is implemented by the
evolution operator

U(T (t0)) = e−iĤt0 . (1.65)

This is of course the expected result according to eq. (1.27).

• Rotations: under a generic rotation R−1 of the coordinate system, the position
space basis vectors change as

U(R)|x〉 = |Rx〉. (1.66)

Using this property it is easy to show that the generators of rotations around
the coordinate axes are the angular momentum quantum operators, L̂i, that
satisfy the algebra:

[L̂i, L̂j ] = iεijkL̂k. (1.67)

We say that a dynamical system is invariant under a symmetry if the Hamil-
tonian commutes with the unitary operator that represents the group in Hilbert
space:

[Ĥ, U(S)] = 0, (1.68)

which immediately implies that it commutes with all the generators

[Ĥ, T̂i] = 0. (1.69)

It then follows that the expectation values of the generators (which are Hermitian
and therefore valid observables) are conserved quantities:

d

dt
〈Ψ|T̂i|Ψ〉 = 0. (1.70)

1.7 Special relativity in the quantum domain

The group of space-time symmetries in relativity is the Lorentz group, SO(3, 1) (or
the Poincaré group when translations are also included). This is the group of linear
coordinate transformations that preserve the Minkowski metric:

x′µ = Λµνx
ν , gµνΛµσΛντ = gστ (1.71)
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where

gµν =


1
−1

−1
−1

 . (1.72)

It is easy to see that this change of coordinates preserve the inner product in
Minkowski space:

xµxνgµν = x′µx′νgµν . (1.73)

Property 1: the speed of light is constant
Let us consider (t,x) as the coordinate separating two events. If these two

events correspond to a light ray being emitted at the origin at t = 0 and reaching x
at t, since the light speed is one in natural units:

|x| = t, (1.74)

therefore the norm in eq. (1.73) is t2 − x2 = 0 and since this norm is invariant
according to (1.73) it should also be the same in all reference frames. In a different
reference frame where the point has coordinates (t′,x′), the norm t′2 − x′2 = 0 and
therefore in this new frame the light ray also moves at the speed of light.

Property 2: the speed of light is the maximum speed
In Fig. 6 we show on the plane (t, |x|) the so called light-cone, that is the region

satisfying

t2 − |x|2 > 0, (1.75)

corresponding to a signal emitted at the origin at t = 0 with a velocity below than
one and reaching |x| at time t. This is a time-like event. The limit of the light-cone
corresponds to the light rays, with t = |x|.

The region outside the light cone satisfies

t2 − |x|2 < 0, (1.76)

and corresponds therefore to a velocity above one, these are the space-like events.
Let’s now consider a Lorentz transformation: (t, |x|) → (t′, |x′|) for time-like

and space-like events. They must be necessarily on the curve:

t′2 − |x′|2 = a, (1.77)

with a > 0 for time-like and a < 0 for space-like events. The curves are shown in
Fig. 6.
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Figure 6: Light-cone, time-like and space-like events.

For time-like events, if t > 0 in one frame, t′ > 0 in any frame. For space-like
events, this is not the case and two events that are causally connected (one occurs
after the other) might occur in the opposite order in a different frame. Causality is
therefore not preserved for space-like events.

The velocity of light is therefore a maximum if we want to preserve causality.

Generators of the Lorentz group
There are six generators of Lorentz transformations. If we consider an infinites-

imal transformation around the identity:

Λµν ' δµν + ωµν +O(ω2), (1.78)

and substitute in eq. (1.71), we obtain the relation

ωµσgµτ = −ωντgσν → ωτσ = −ωστ . (1.79)

ωµν is therefore an asymmetric real matrix and it depends on six real parameters
that correspond to the three space rotations and boosts.

When defining a one-particle state we need to know how it transforms under
Lorentz/Poincaré transformations. It might do so trivially and then we talk about
a scalar object, its wave function, 〈x|Ψ〉, would just be a complex number such that
under a Lorentz Transformation

U(Λ)|Ψ〉 = |Ψ′〉 → Ψ′(x) = 〈x|Ψ′〉 = 〈x|U(Λ)Ψ〉 = 〈Λ−1x|Ψ〉 = Ψ(Λ−1x). (1.80)

However it is an experimental fact that there exists one-particle states that transform
non-trivially under the Lorentz group. It is possible to classify all the irreducible
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representations of the Lorentz group – as we will see later. In this case the wave
function is not fixed by one complex number but has another index running up to
the dimension of the representation such that

Ψ′α(x) = 〈x|U(Λ)Ψ〉 = R(Λ)βαΨβ(Λ−1x). (1.81)

We will consider several of these non-trivial representations later on.

1.8 Relativistic QM versus causality

Let us consider a free particle in position x0 at time t = 0:

|Ψ(0)〉 = |x0〉. (1.82)

We want to calculate the probability that the particle is found at time t at position
x, which is given by the square of the amplitude:

〈x|e−iĤt|x0〉 =

∫
dp

(2π)3
〈x|p〉〈p|x0〉e−it

√
p2+m2

=

∫
dp

(2π)3
eip(x−x0)e−it

√
p2+m2

, (1.83)

where we have assumed that the relativistic relation E =
√

p2 +m2 holds at the
operator level. We are interested in the answer when the points (t,x) and (0,x0)
are causally disconnected, ie.

t2 < (x− x0)2. (1.84)

Assuming this condition holds, the integral can be expressed in terms of Bessel
functions:

eq. (1.83) =
1

(2π)3

∫ ∞
0

p2dp

∫ 1

−1
d cos θ

∫ 2π

0
dφ eip cos θ|x−x0|e−it

√
p2+m2

=
1

2π2

∫ ∞
0

pdp
sin(p|x− x0|)
|x− x0|

e−it
√
p2+m2

= − imt

2π2r2

∂

∂r

(
K1(m

√
r2 − t2)√

r2 − t2

)∣∣∣∣∣
r=|x−x0|

. (1.85)

The integral is different from zero which implies that there is a non-zero probability
that the particle has moved faster than light if it has reached x in time t. It is
clear that the concept of causality clashes with the description of particles in terms
of wave functions, when there is no restriction for these wave functions to extend
beyond causally connected regions. There is a loophole in this argument and it is

19



that we have assumed we could localize a quantum particle as much as we wished
and it would still be described in terms of a one-particle state. This is of course not
possible since the more we localize the particle the greater the momentum, and at
some point it is possible to create more particles.

However, fields in classical physics, such as the electromagnetic field, extend
generically over causally disconnected regions, and this does not violate causality
provided information cannot be exchanged between these regions. In QFT this is
assured by the restriction of observables to being local 4. Causality will then ensured
if local measurements in causally disconnected regions cannot interfere with each
other. This implies that the set of observables localized in causally disconnected
regions of space-time must commute:

[Ô(x), Ô(y)] = 0, (x− y)2 < 0. (1.86)

The construction of observables such as the Hamiltonian in terms of local quan-
tum fields, satisfying eq. (1.86), underlies three fundamental properties of nature:

• Spin-statistics connection: half-integer spin particles have antisymmetric wave
functions while integer spin particles have symmetric wave functons

• CPT is a symmetry

• The existence of antiparticles

4One cannot measure in the lab a property of an electron in the Andromeda galaxy, so all
observables must be local to some extent.
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II. Canonical Quantization of Relativistic Scalar Fields

Historically the first derivation of quantum fields came from the canonical quanti-
zation of the electromagnetic field. We will consider first the canonical quantization
of a simpler field, the Klein-Gordon field, and postpone to a later chapter the extra
complication of dealing with gauge invariance. We start with a quick reminder of
basic facts of classical fields.

2.1 Classical field theory

A classical field theory is just a mechanical system that is described in terms of
a magnitude or set of magnitudes, φ(x), that need to be defined for each point of
space at some fixed time. For example a classical field is the density of a fluid,
ρ(x), or the electric field E(x). Such fields usually depend on time as dictated by
some classical equations that can be derived from a least-action principle, where the
action is defined in terms of a Lagrangian density, a functional of the field and its
partial derivatives:

S =

∫
d4x L[φ(x), ∂µφ(x)]. (2.2)

The least action principle states that the fields should be such that the action remains
invariant under arbitrary infinitesimal variations of the fields, φ→ φ+ δφ:

0 = δS =

∫
d4x

[
∂L
∂φ

∣∣∣∣
δφ=0

δφ+
∂L

∂(∂µφ)

∣∣∣∣
δφ=0

∂µδφ

]

=

∫
d4x

{[
∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)]
δφ+ ∂µ

[
∂L

∂(∂µφ)
δφ

]}
. (2.3)

The integral of the second term depends on the values of the fields in the asymptotic
boundaries that we will assume to vanish. The first term must vanish for arbitrary
field variations and this is only possible if

∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)
= 0. (2.4)

These are the Euler-Lagrange equations.
Let us consider the simplest field theory, where the field is a scalar φ(x), and a

Lorentz-invariant Lagrangian

L =
1

2
∂µφ g

µν∂νφ−
1

2
m2φ2. (2.5)

It is easy to check that the Lagrangian remains invariant under a Lorentz transfor-
mation:

x′ = Λx, φ′(x′) = φ(x) = φ(Λ−1x′), (2.6)
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or

φ′(x) = φ(Λ−1x). (2.7)

The Euler-Lagrange equation is the Klein-Gordon equation:

(∂µ∂
µ +m2)φ = 0. (2.8)

Performing a Fourier transform of φ in space,

φ(t,x) =

∫
d3p

(2π)3
eipxφ̃(t,p), (2.9)

and substituting back in the KG equation we find

d2

dt2
φ̃(t,p) = −(p2 +m2)φ̃(t,p), (2.10)

which is the equation of motion of a classical harmonic oscillator with frequency
ω =

√
p2 +m2. As we will see, the canonical quantization of the KG field will give

a superposition of quantum harmonic oscillators.

2.2 Symmetries and Conservation Laws

As we know, symmetries in classical particle mechanics lead to conservation laws.
This is also the case for classical field theories and it is the content of the famous
Noether’s theorem. Let us consider the following infinitesimal field transformation:

φ(x)→ φ(x) + α∆φ(x), (2.11)

that leaves the Lagrangian invariant or is changed by a total derivative5

L(x)→ L(x) + α∂µJ µ, ∆L(x) = α∂µJ µ. (2.12)

We can also write the variation of the Lagrangian as:

∆L(x)→ α∆φ

(
∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

)
+ α∂µ

(
∂L

∂(∂µφ)
∆φ

)
, (2.13)

the first term is zero because of the equations of motion. Using eqs. (2.12) and (2.13)
we obtain

∂µ

((
∂L

∂(∂µφ)

)
∆φ

)
= ∂µJ µ, (2.14)

5A total derivate would not contribute to the action.
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and therefore a conserved current exists:

∂µj
µ = 0, jµ(x) ≡ ∂L

∂(∂µφ)
∆φ− J µ, (2.15)

which in turn implies a conserved charge:

dQ

dt
≡ d

dt

∫
d3xj0 = −

∫
d3x ∇j = 0. (2.16)

Important examples are the invariance under a global rephasing or the symmetry
under space-time translations.

Rephasing invariance
Let us consider a KG field that is complex φ(x). The Lagrangian in this case is

L = ∂µφ
†gµν∂νφ−m2φ†φ. (2.17)

It is easy to see that this Lagrangian is invariant under the transformation:

φ(x)→ eiαφ(x). (2.18)

For an infinitesimal α, eq. (2.11) implies ∆φ = iφ. Noting that we now have two
fields, φ and φ†, the previous derivation of the conserved current of eq. (2.15) results
in a summation over the two fields,

jµ =
∂L

∂(∂µφ)
∆φ+

∂L
∂(∂µφ†)

∆φ†, (2.19)

which simplifies to

jµ = i
[
(∂µφ†)φ− (∂µφ)φ†

]
. (2.20)

When this complex KG field is coupled to the electromagnetic field we will see that
the associated conserved charge is nothing but the electromagnetic charge.

Space-time translations
Let’s now consider space-time translations

xµ → x′µ = xµ − αµ, φ′(x′) = φ(x) = φ(x′ + α), (2.21)

such that if we consider infinitesimal translations in the µ direction,

φ(x)→ φ(x+ α) = φ(x) + αµ∂µφ(x) + ...

we find that the field variation is

αµ∆µφ(x) = φ′(x)− φ(x) = αµ∂µφ→ ∆µφ = ∂µφ. (2.22)
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This transformation law applies to any field and, in particular, for the Lagrangian
itself, which is a scalar:

∆L = αµ∂µL = αµ∂ν(δνµL), (2.23)

which means that

J νµ = δνµL. (2.24)

The conserved current, eq. (2.12):

T νµ =
∂L

∂(∂νφ)
∆µφ− J νµ =

∂L
∂(∂νφ)

∂µφ− δνµL, (2.25)

is the energy-momentum tensor.6 The conserved charges associated with time and
space translations are respectively the Hamiltonian and the three momentum:

H =

∫
d3x T 00, P i =

∫
d3x T 0i. (2.26)

Exercise: Derive eqs. (2.20) and (2.25). Show using the equations of motion
that they are conserved currents.

2.3 Canonical quantization of the real KG field

By canonical quantization we refer to a procedure of quantization which is parallel
to what we do for the system of one particle. There, we promote the position, q,
and momentum, p, to operators in Hilbert space:

q, p→ q̂, p̂, (2.27)

that satisfy the canonical commutation relations:

[q̂, p̂] = i. (2.28)

The Hamiltonian that controls the temporal evolution of the system is a function of
p, q and therefore also an operator.

H(q, p)→ Ĥ = H(q̂, p̂). (2.29)

For a continuous system, in order to determine the classical state of the system
at any fixed time, we need to specify a field value at all space points, therefore a
single position becomes an infinite set of field values:

q(t)→ φ(t,x). (2.30)

6The index ν is the index of the current, while µ is the label of the translation direction.
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The corresponding momenta are obtained in analogy with the discrete system:

π(t,x) =
∂L

∂φ̇(t,x)
, φ̇(t,x) =

∂

∂t
φ(t,x), (2.31)

where L is the Lagrangian density. The Hamiltonian density is therefore

H = φ(t,x)φ̇(t,x)− L. (2.32)

For the Klein-Gordon field in eq. (2.5) we have

H =
1

2
π2 +

1

2
(∇φ)2 +

1

2
m2φ2. (2.33)

Quantization proceeds by promoting the classical field and the momenta to opera-
tors:

φ(t,x), π(t,x)→ φ̂(t,x), π̂(t,x), (2.34)

satisfying the equal-time commutation relations:

[φ̂(t,x), π̂(t,y)] = iδ(3)(x− y), [φ̂(t,x), φ̂(t,y)] = 0, [π̂(t,x), π̂(t,y)] = 0. (2.35)

The Hamiltonian is therefore the operator:

Ĥ =

∫
d3x

(
1

2
π̂2 +

1

2
(∇φ̂)2 +

1

2
m2φ̂2

)
. (2.36)

From here onwards we eliminate hats to refer to operators.
Let us consider the Fourier transform:

φ(t,x) =

∫
d3p

(2π)3
eip·xφ̃(t,p), π(t,x) =

∫
d3p

(2π)3
eip·xπ̃(t,p). (2.37)

Substituting in eq. (2.36) we find

H =

∫
d3p

(2π)3

[
1

2
π̃(t,−p)π̃(t,p) +

1

2
(p2 +m2)φ̃(t,−p)φ̃(t,p)

]
. (2.38)

Since φ = φ†, π = π†,

φ̃(t,−p) = φ̃(t,p)∗, π̃(t,−p) = π̃(t,p)∗. (2.39)

We can make the connection to the harmonic oscillator, see eq. (1.34), more precise
by defining

ap ≡
√
ωp
2

(
φ̃(t,p) + i

π̃(t,p)

ωp

)
, (2.40)
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with

ωp ≡
√

p2 +m2, (2.41)

Using eq. (2.39) it is easy to see that

φ̃(t,p) =
1√
2ωp

(ap + a†−p), π̃(t,p) = −i
√
ωp
2

(ap − a†−p). (2.42)

From eq. (2.35), the commutation relations in momentum space read

[φ̃(t,p), π̃(t,q)] = i(2π)3δ(p + q), (2.43)

[φ̃(t,p), φ̃(t,q)] = [π̃(t,p), π̃(t,q)] = 0 (2.44)

and from these, it is easy to derive:

[ap, a
†
p′ ] = (2π)3δ(3)(p− p′), [ap, ap′ ] = 0, [a†p, a

†
p′ ] = 0. (2.45)

It is easy to show that in terms of the new operators, the Hamiltonian takes
the simple form:

H =

∫
d3p

(2π)3
ωp

(
a†pap +

1

2
[ap, a

†
p]

)
=

∫
d3p

(2π)3
ωp

(
a†pap +

1

2
(2π)3δ(3)(0)

)
.(2.46)

The second term is an infinite constant, often called the vacuum energy, which is
normally unobservable (at least if we ignore gravity) and so it can be substracted.
We eliminate it by normal-ordering the Hamiltonian,

:H: ≡
∫

d3p

(2π)3
ωp a

†
pap, (2.47)

i.e. reordering the lowering operators always to the right of the raising operators. In
this form, it is clear that the system corresponds to a sum of harmonic oscillators,
see eq. (1.35), one for each p, with energy, ωp.

We can also interpret the raising/lowering operators as creation/annihilation
operators in a Fock space of identical particles of energy ωp. From the commutation
relations, eq. (2.45):

[H, a†p] = ωpa
†
p, [H, ap] = −ωpap, (2.48)

it follows that for any eigenstate of H with energy E, the state a†p|E〉 is also an
eigenstate of H with energy E + ωp:

Ha†p|E〉 =
(

[H, a†p] + a†pH
)
|E〉 = (ωp + E)a†p|E〉. (2.49)
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Similarly

Hap|E〉 = (−ωp + E)ap|E〉, (2.50)

which is consistent with the Fock space picture in which a†p creates a particle with
energy ωp and ap destroys a particle with the same energy.

Exercise: from eq. (2.35) show eqs. (2.43) and eqs. (2.45).
Exercise: show eq. (2.46) and the commutation relations eq. (2.48).

To further characterize the particle, we can evaluate the momentum, using
eq. (2.26). Going to Fourier space and changing variables to a, a†, we find, after
normal ordering that the total momentum is given by:

:P i: = −:

∫
d3x π∂iφ: =

∫
d3p

(2π)3
pia†pap. (2.51)

The commutation relation

[:P i:, a†p] = pia†p, (2.52)

implies that the particle created by a†p has momentum p, since then

:P i:|p〉 = :P i:a†p|0〉 = pia†p|0〉 = pi|p〉, (2.53)

and therefore satisfies

E2 = ω2
p = p2 +m2, (2.54)

the relativistic dispersion relation of a free particle with mass m.
Furthermore the commutation relation in eq. (2.45) implies that the particles

created by the operators a†p obey Bose statistics: the wave function must be sym-
metric, this is because

a†pa
†
p′ |0〉 = a†p′a

†
p|0〉. (2.55)

A one-particle state in this Fock space is therefore proportional to a†p|0〉. What
is the correct normalization?

2.4 Relativistic normalization of one-particle states

In non-relativistic quantum mechanics, the one-particle momentum states are nor-
malized as

〈p|p′〉 = (2π)3δ(p− p′), (2.56)
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and the completeness relation of the momentum basis reads

I =

∫
d3p

(2π)3
|p〉〈p|. (2.57)

However this normalization is not Lorentz invariant.
Defining

|p〉 ≡
√

2ωp|p〉, (2.58)

we can rewrite the

I =

∫
d3p

(2π)32ωp

√
2ωp|p〉〈p|

√
2ωp =

∫
d3p

(2π)32ωp
|p〉〈p|

=

∫
d4p

(2π)3
δ(p2 −m2)θ(p0)|p〉〈p|, (2.59)

where we have used the following relation∫
dp0δ(p

2 −m2)θ(p0) =

∫
dp0

(
δ(p0 − ωp)

2ωp
+
δ(p0 + ωp)

2ωp

)
θ(p0) =

1

2ωp
. (2.60)

The measure in the last equation in eq. (2.59),

d4p

(2π)3
δ(p2 −m2)θ(p0), (2.61)

is manifestly Lorentz invariant under p→ p′ = Λp since, p2 = p′2, sign(p0) = sign(p′0)
and |det(Λ)| = 1.

The Lorentz invariant normalization of the one-particle states is therefore

|p〉 =
√

2ωpa
†
p|0〉. (2.62)

2.5 Quantum fields

We can now reconstruct the quantum field from eqs. (2.37) and (2.42) in terms of
the creation/annihilation operators:

φ(t,x) =

∫
d3p

(2π)3
√

2ωp

[
ap(t)eipx + a†p(t)e−ipx

]
. (2.63)

Finally we can solve for the time evolution. We consider the Heisenberg picture,
where only operators change in time, and states do not change. The operators satisfy
the Heisenberg equation

d

dt
ap = i[H, ap] = −iωpap,

d

dt
a†p = i[H, a†p] = iωpa

†
p, (2.64)

28



which can be solved

ap(t) = e−iωptap(0), a†p(t) = eiωpta†p(0), (2.65)

therefore

φ(x) = φ(t,x) =

∫
d3p

(2π)3
√

2ωp

[
ap(0)e−ipx + a†p(0)eipx

]
, (2.66)

where px = ωpt− px.

Summarizing, we have found that the canonical quantization of the real KG
field results in a quantum field operator that creates/annihilates relativistic and
bosonic particles of mass m localized at point x.

Exercise: according to the particle interpretation, φ(0,x) acting on the vacuum
is the state |x〉. Show that the state

〈0|φ(0,x)|p〉 = 〈x|p〉. (2.67)

Exercise: demonstrate that the quantum field satisfies the KG equation starting
from the Heisenberg equation:

∂φ̂

∂t
= i[Ĥ, φ̂]. (2.68)

Exercise: demonstrate that under space-time translation by a:

eiPaφ(x)e−iPa = φ(x+ a). (2.69)

2.5.1 Causality

The quantum field φ(x) is Hermitian and local. It is therefore an observable. We
can show that it satisfies the property of eq. (1.86):

[φ(x), φ(y)] =

∫
d3p

(2π)3
√

2ωp

∫
d3q

(2π)3
√

2ωq

(
e−ipxeiqy[ap, a

†
q] + eipxe−iqy[a†p, aq]

)
=

∫
d3p

(2π)3
√

2ωp

∫
d3q

(2π)3
√

2ωq

(
e−ipxeiqy − eipxe−iqy

)
(2π)3δ(p− q)

=

∫
d3p

(2π)32ωp

(
e−ip(x−y) − eip(x−y)

)
≡ ∆(x− y)−∆(y − x). (2.70)

There are several ways to show that this integral vanishes for space-like separations
of x, y: (x−y)2 < 0. One way to show this is using eq. (2.60) which shows that ∆(x)
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is Lorentz invariant under proper orthochronous Lorentz transformations. However
if (x − y)2 < 0 we can always choose a reference frame where x′0 = y′0. In this
frame, it is trivial to show that ∆(x− y) = ∆(y − x) and therefore [φ(x), φ(y)] = 0.
But since this commutator is Lorentz invariant, the same result should hold in all
reference frames.

Microcausality ensures that any observable constructed as a function of this
causal field is also causal: there is no interference between measurements of this
local observable in causally disconnected regions of space-time.

2.6 Canonical quantization of the complex KG field

Let us consider now a complex scalar field φ(x) 6= φ†(x). The Lagrangian is

L = ∂µφ†(x)gµν∂
νφ(x)−m2φ(x)†φ(x), (2.71)

and the Euler-Lagrange equations

(∇2 +m2)φ = 0, (∇2 +m2)φ† = 0. (2.72)

We have seen in Section 2.2 that this Lagrangian is invariant under a rephasing of
the field φ(x) = eiαφ(x), which implies that there is a conserved current:

jµ = i
(
∂µφ

†φ− φ†∂µφ
)
. (2.73)

We can proceed with the canonical method to quantize this theory. 7 The
momenta associated with the φ and φ† fields are:

π(t,x) =
∂L

∂φ̇(t,x)
= φ̇†(t,x), π†(t,x) =

∂L

∂φ̇†(t,x)
= φ̇(t,x), (2.74)

and the equal time commutation relations:

[φ(t,x), π(t,x′)] = iδ(x− x′), [φ†(t,x), π†(t,x′)] = iδ(x− x′), (2.75)

all the commutators of any two (π, π†, φ, φ†) vanish. We can go to Fourier space and
write:

φ(t,x) =

∫
d3p

(2π)3
eip·xφ̃(t,p), π(t,x) =

∫
d3p

(2π)3
eip·xπ̃(t,p), (2.76)

φ†(t,x) =

∫
d3p

(2π)3
eip·xφ̃†(t,−p), π†(t,x) =

∫
d3p

(2π)3
eip·xπ̃†(t,−p). (2.77)

7It is possible to separate the real and imaginary parts and quantize them independently as real
KG fields (leading to aRp, aIp), with the identification ap ≡ aRp + iaIp, bp ≡ aRp− iaIp and noting
that π = πR − iπI .
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The non-vanishing commutation relations in Fourier space are

[φ̃(t,p), π̃(t,−p′)] = i(2π)3δ(p− p′), [φ̃†(t,p), π̃†(t,−p′)] = i(2π)3δ(p− p′).(2.78)

We can again take the Hamiltonian to a familiar form by the following change of
variables:

ap ≡
1√
2ωp

[
iπ̃†(t,−p) + ωpφ̃(t,p)

]
, bp ≡

1√
2ωp

[
iπ̃(t,p) + ωpφ̃

†(t,−p)
]
.(2.79)

From which we have

φ̃(t,p) =
1√
2ωp

(ap(t) + b†−p(t)), π̃(t,p) = −i
√
ωp
2

(bp(t)− a†−p(t)), (2.80)

which reduce to the expressions eqs.(2.42) for a real field if b = a. It is easy to show
that these operators satisfy the raising/lowering operator commutation relations

[ap, a
†
p′ ] = (2π)3δ(p− p′), [bp, b

†
p′ ] = (2π)3δ(p− p′), (2.81)

while all other combinations commute. The Hamiltonian simplifies to:

:Ĥ: =

∫
d3p

(2π)3

√
p2 +m2

(
a†pap + b†pbp

)
, (2.82)

where we have subtracted the vacuum energy terms. The Hamiltonian therefore
corresponds to two infinite sets of harmonic oscillators that have the same particle
interpretation as in the real case, but now there are two particles with the same
energy

√
p2 +m2, one created by a†p and the other by b†p. Both are bosons, since

wave functions of two or more particles are symmetric, but they are not the same
particles. This can be seen by looking at the conserved charge:

Q̂ =

∫
d3xj0 =

∫
d3xi

(
πφ− π†φ†

)
(2.83)

= i

∫
d3p

(2π)3

(
π̃(t,−p)φ̃(t,p)− π̃†(t,−p)φ̃†(t,p)

)
=

∫
d3p

(2π)3

(
b†pbp − a†pap

)
We see that the total charge of a state counts the number of b particles minus the
number of a particles, therefore the charge of the a particles is opposite to that
of the b particles. The b particles are therefore antiparticles of the a particles and
viceversa: they have the same mass and momentum but opposite charge. We can
construct one-particle and antiparticle states by:

|p〉+ =
√

2Epa
†
p|0〉, |p〉− =

√
2Epb

†
p|0〉. (2.84)

Two observations are in order. We will see that when a charged scalar particle is
coupled to the electromagnetic field, the electric charge coincides with the one we just
found. That antiparticles must have opposite charge applies to the electromagnetic
charge and to all conserved charges (gauge or global). The existence of antiparticles,
before they were discovered,8 was first formulated by Dirac for spin 1/2 particles

8The first antiparticle seen was the positron by C.D. Anderson.
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and was one of the most spectacular and deep implications of the combination of
relativity and quantum mechanics.

Exercise: show that Qa†p|0〉 = a†p|0〉, Qb†p|0〉 = −b†p|0〉, which means the states

a†p|0〉 and b†p|0〉 have well defined and oposite charges.

The time dependence of the a, b operators can be derived as in the real case
from the eqs. (2.65) and the Heisenberg quantum field is finally:

φ(x) =

∫
d3p

(2π)3
√

2Ep

[
ap(0)e−ipx + b†p(0)eipx

]
. (2.85)

Therefore φ creates a anti-particle or destroys an particle, localized at x, and carries
therefore charge -1, while φ†(x) does the oposite and carries charge +1.

Exercise: show that [Q,φ(x)] = −φ(x) and [Q,φ†(x)] = φ†(x) and use this
to show that given any state with a well-defined charge Q|Ψq〉 = q|Ψq〉, the state
φ†(x)|Ψq〉 has charge q = +1.

As in the real case, the existence of two terms is fundamental to ensure micro-
causality – that is the commutation of the fields in causally disconnected points:

[φ(x), φ†(y)] = 0, (x− y)2 < 0 (2.86)

Exercise: demonstrate eq. (2.86).

Note that the field is not observable in this case since it is not Hermitian, but
relation eq. (2.86) ensures that the same will be true for any Hermitian operator
built out of the quantum field and its complex conjugate.

The quantization of the KG field has resulted in a Fock space with bosonic and
scalar particles, meaning that they transform trivially under Lorentz transforma-
tions, i.e. only the coordinates of the fields change. Particles of this type include
all the mesonic states (formed by quark-antiquark bound states) such as pions and
kaons. The neutral pion, π0, is its own antiparticle and is represented by a real KG
field. The recently discovered Higgs particle might be the first elementary particle
of this type. The charged pions π+, π− are a particle/antiparticle pair represented
by a complex KG field. The neutral kaon, K0, is not its own antiparticle, because it
carries an almost conserved charge, i.e. strangeness, and therefore must have an an-
tiparticle with opposite strangeness: the K̄0 meson. Both are therefore represented
by complex KG fields.

The field theory we have quantized has led us to an infinite set of harmonic
oscillators that have enabled us to understand what is a one-particle state of energy
and momentum (E,p) associated to this field: namely it is the state created from
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the vacuum by the creation operator of frequency, ωp = E. The theory can be solved
exactly because it is a theory of free particles. The Lagrangian cannot be as simple
as eq. (2.5) if it has to represent particle interactions.
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III. Interacting Quantum Fields: Particle scattering

The theory of the real KG field generically will contain self-interactions. There is
no reason to consider only a quadratic Lagrangian of the form of eq. (2.5),

L =
1

2
∂µφ g

µν∂νφ−
1

2
m2φ2.

We could add terms that contain arbitrary powers of φ and ∂µφg
µν∂νφ, which are

also Lorentz-invariant:

−∆L = Polynomial of[φ(x), ∂µφ∂
µφ] =

∞∑
n=3

λnφ
n +

∞∑
m=2

αm(∂µφ∂
µφ)m + ... (3.2)

Obviously, in the limit of small couplings λn, αm → 0 we recover the free theory.
The action, that is the integral of the Lagrangian density over space-time has

the same units as ~ and therefore has no units in our natural system of units. This
means that the Lagrangian density must have units of energy4,

[L] = 4. (3.3)

Since [∂µ] = 1, the first quadratic term in eq. (2.5) then implies

[φ] = 1, (3.4)

and therefore [m] = 1 and

[λn] = 4− n, [αm] = 4− 4m, ... (3.5)

The terms that contain couplings that have a dimension of energy to a positive power
are called relevant, the only one in the polynomial above is that corresponding to
n = 3. The effect of these terms in scattering amplitudes are expected to be of order
O(λ3E ), where E is the typical energy of the process. One would then expect that
they become irrelevant at high enough energies, E � λ3 and relevant only at low
energies. For E > m, we can ensure that they are small provided λ3 � m < E.
The terms with dimensionless couplings are called marginal, ie. the case of n = 4
above. The effect of such a term will be small provided λ4 � 1, independent of
the energy. Finally there are many terms with couplings that have negative energy
dimensions (n > 4,m > 1 above). They are the irrelevant terms. On dimensional
grounds, those terms are expected to contribute to the scattering amplitudes as
O(λnE

n−4, αmE
4m−4) so they will be significant at high energies and irrelevant at

low energies, ie. for En−4 < λ−1
n , E4m−4 < α−1

m .
We will see in the final chapter the Wilsonian interpretation of these irrelevant

terms: they represent the effect at low energies of new particles with a characteristic
mass scale, Λ, such that Λn−4λn = O(1). At energies E < Λ, these new particles
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cannot be produced in the scattering of the φ particles, because they are too heavy,
but they can modify the interactions of the light particles represented by φ in the
form of irrelevant terms. At sufficiently low energies, E � Λ we can nevertheless
neglect all irrelevant terms and keep only the relevant and marginal terms. A theory
that includes only those terms is called renormalizable.

Let us set λ3 = 0 (for example this could be justified by assuming a discrete
symmetry φ→ −φ) an consider the only renormalizable marginal interaction possi-
ble in this theory:

L =
1

2
∂µφ(x)gµν∂νφ(x)− 1

2
m2φ(x)2 − λ

4!
φ4, (3.6)

where we have added a 4! which is a convenient normalization.
The theory including this term is no longer a set of decoupled harmonic oscil-

lators. The Hamiltonian has an extra term given by

Ĥ = Ĥ0 + Ĥint, Ĥint =
λ

4!

∫
d3xφ̂(x)4. (3.7)

Still the exact solutions in the limit λ → 0 are the starting point of perturbation
theory.

Firstly, we will set up the formulation of scattering processes. This will involve
the following steps:

1. Define the S-matrix, that is the time-evolution operator in the interaction
picture, that contains all the physical information about a scattering process

2. Find a perturbative approximation to the S-matrix: the so-called Dyson series

3. Establish a methodology to evaluate the terms in this expansion using the
Wick’s theorem and Feynman rules

4. Relation of the S-matrix elements with observables: cross-sections and decay
widths

3.1 Particle scattering: the S-matrix

The scattering process we want to describe is the evolution of a system described
by the canonically quantized field theory of eq. (3.6) from some initial time t = −T
when the system consists of a bunch of one-particle states very far apart so that we
can assume they are free, see Fig. 7. Obviously this requires them to be wave-packets
and not just momentum states, since otherwise they will be completely delocalized.
The particles approach a region where they interact and scatter. At some large
asymptotic time t = T they have evolved again into bunch of particles sufficiently
far apart so that they can be considered free again. For the time being we will ignore
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Figure 7: Scattering event

the difficulty of precisely justifying the assumption of particles being free when they
are far apart and assume it is the case.

The in-state is therefore a solution of the full Schrödinger equation with the
boundary condition:

i
d

dt
|ψin〉 = Ĥ|ψin〉, lim

t→−T
|ψin(t)〉 = |ϕ(−T )〉, (3.8)

and similarly

i
d

dt
|ψout〉 = Ĥ|ψout〉, lim

t→T
|ψout(t)〉 = |φ(T )〉, (3.9)

|ϕ(t)〉 and |φ(t)〉 for large |t| are solutions of the free theory:

i
d

dt
|ϕ〉 = Ĥ0|ϕ〉, i

d

dt
|φ〉 = Ĥ0|φ〉. (3.10)

The probability that the in-state becomes the out-state is therefore

|〈ψout |ψin〉|2, (3.11)

that can be evaluated at any time for example at t = 0:

|〈ψout(0)|ψin(0)〉|2. (3.12)

Using the time-evolution operator

ψin(0) = U(0,−T )ψin(−T ),

ψout(0) = U(0, T )ψout(T ), (3.13)
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and since U(t, t′) = U †(t′, t) and U(t, t′)U(t′, t′′) = U(t, t′′) we have

〈ψout(0)|ψin(0)〉 = 〈ψout(T )|U(T, 0)U(0,−T )|ψin(−T )〉
= 〈φ(T )|U(T,−T )|ϕ(−T )〉. (3.14)

We can finally rewrite this amplitude in terms of the free-Hamiltonian Heisenberg-
picture free states:

|φ〉H = |φ(0)〉, |ϕ〉H = |ϕ(0)〉. (3.15)

Using now the free time-evolution operator, U0(t, t′), that evolves the free fields:

|ϕ(−T )〉 = U0(−T, 0)|ϕ〉H ,
|φ(T )〉 = U0(T, 0)|φ〉H , (3.16)

we arrive at

〈ψout(0)|ψin(0)〉 = 〈φH |U0(0, T )U(T,−T )U0(−T, 0)|ϕH〉| = 〈φH |UI(T,−T )|ϕH〉
≡ 〈φH |S|ϕH〉. (3.17)

The S-matrix is the operator UI(T,−T ), that is the time-evolution operator in the
interaction picture:

UI(t, t
′) = U0(0, t)U(t, t′)U0(t′, 0) = eiH0tU(t, t′)e−iH0t′ . (3.18)

By comparing eq. (3.17) with eq. (3.11), it is clear what we have achieved.
Instead of in and out states, we can express the transition probability in terms of
the matrix elements of a complex unitary operator on the basis of simple free-theory
Heisenberg states that could represent, for example, two colliding particles with
momenta p1,p2:

|ψH〉 = |p1,p2〉 =
√

2ωp1
√

2ωp2a
†
p1
a†p1
|0〉. (3.19)

3.2 Dyson series

From eq. (3.18), it is easy to show that the time-evolution operator in the interaction
picture satisfies the equation:

i
d

dt
UI(t, t

′) = ĤI(t)UI(t, t
′), (3.20)

where

ĤI(t) = eiĤ0tĤinte
−iĤ0t, (3.21)
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is the Hamiltonian in the interaction picture. The initial condition is UI(t
′, t′) = 1.

Let us assume that the parameter λ is small so that we can write down the solution
to eq. (3.20) in a Taylor expansion in λ:

UI(t, t
′) =

∑
n

U
(n)
I (t, t′), (3.22)

where U
(n)
I = O(λn).

Substituting this series in eq. (3.20) and taking into account that ĤI is O(λ)
we obtain order by order the following equations:

i
d

dt
U

(0)
I (t, t′) = 0,

i
d

dt
U

(1)
I (t, t′) = ĤI(t)U

(0)
I (t, t′),

i
d

dt
U

(2)
I (t, t′) = ĤI(t)U

(1)
I (t, t′), (3.23)

...

and U
(0)
I (t′, t′) = 1 and U

(n)
I (t′, t′) = 0 for n > 0.

The equations can be easily integrated:

U
(0)
I (t, t′) = 1,

U
(1)
I (t, t′) = −i

∫ t

t′
dt1ĤI(t1),

U
(2)
I (t, t′) = (−i)2

∫ t

t′
dt1ĤI(t1)

∫ t1

t′
dt2ĤI(t2),

...

We define the time-ordered product, T (), as the operation that takes a product of
fields at different times in order of decreasing times. Therefore

T (ĤI(t1)ĤI(t2)) = θ(t1 − t2)ĤI(t1)ĤI(t2)) + θ(t2 − t1)ĤI(t2)ĤI(t1). (3.24)

We can rewrite∫ t

t′
dt1ĤI(t1)

∫ t1

t′
dt2ĤI(t2) =

∫ t

t′
dt1

∫ t

t′
dt2ĤI(t1)ĤI(t2)θ(t1 − t2)

=
1

2

∫ t

t′
dt1

∫ t

t′
dt2T (ĤI(t1)ĤI(t2)), (3.25)

and more generally∫ t

t′
dt1

∫ t1

t′
dt2...

∫ tn−1

t′
dtnĤI(t1)ĤI(t2)...ĤI(tn) =

1

n!

∫ t

t′
dt1...

∫ t

t′
dtnT (ĤI(t1)ĤI(t2)...ĤI(tn)).

(3.26)
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Finally,

UI(t, t
′) =

∑
n

(−i)n
n!

∫ t

t′
dt1...

∫ t

t′
dtnT (ĤI(t1)ĤI(t2)...ĤI(tn)) ≡ Texp

(
−i
∫ t

t′
HI(z)dz

)
.

(3.27)

This is Dyson’s series of the S-matrix.

3.3 Wick’s theorem

Using Dyson’s series, the evaluation of the S-matrix element requires that we com-
pute

〈φH |T (ĤI(t1)ĤI(t2)...ĤI(tn))|ψH〉, (3.28)

where the initial,|ψH〉, and final state, |φH〉, will be multiparticle free Heisenberg
picture states constructed from the vacuum with creation operators. For example if
the initial state are two particles approaching each other with momenta, p1 and p2:

|ψH〉 =
√

2ωp1
√

2ωp2a
†
p1
a†p2
|0〉. (3.29)

The Hamiltonians are functions of the quantum fields and will also bring in powers of
creation and annihilation operators. As usual, this computation of the expectation
values of eq. (3.28) can be simplified if we take all annihilation operators to the
right (that is to a normal order). Wick’s theorem provides a useful relation between
time-ordered and normal-ordered products of operators.

3.3.1 Feynman’s propagator

Let’s first consider the time-ordered product of two free quantum fields:

T (φ̂(x)φ̂(y)). (3.30)

Let us call φ̂ = φ+ +φ−, where φ+ contains the â term and φ− contains the â†, that
is

φ+(x) ≡
∫

d3p

(2π)2
√

2ωp
ape
−ipx, φ−(x) ≡

∫
d3p

(2π)2
√

2ωp
a†pe

ipx. (3.31)

Since

T (φ̂(x)φ̂(y)) = θ(x0 − y0)φ̂(x)φ̂(y) + θ(y0 − x0)φ̂(y)φ̂(x), (3.32)

we can use

φ̂(x)φ̂(y) = φ+(x)φ+(y) + φ−(x)φ−(y) + φ−(x)φ+(y) + φ−(y)φ+(x) + [φ+(x), φ−(y)]

= : φ(x)φ(y) : +[φ+(x), φ−(y)], (3.33)
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and the fact that fields under the normal-ordered symbol commute, i.e. :φ̂(x)φ̂(y): =
:φ̂(y)φ̂(x):. Combining the regions x0 > y0 and y0 > x0 it follows

T (φ̂(x)φ̂(y)) =: φ̂(x)φ̂(y) : + θ(x0 − y0)[φ+(x), φ−(y)]

+ θ(y0 − x0)[φ+(y), φ−(x)] (3.34)

We define:

φ̂ (x)φ̂(y) ≡ θ(x0 − y0)[φ+(x), φ−(y)] + θ(y0 − x0)[φ+(y), φ−(x)]. (3.35)

From eqs. (3.31), we obtain

[φ+(x), φ−(y)] =

∫
d3p

(2π)3
√

2ωp

∫
d3q

(2π)3
√

2ωq
e−ipxeiqy[ap, a

†
q]

=

∫
d3p

(2π)32ωp
e−ip(x−y), (3.36)

therefore

φ̂ (x)φ̂(y) = θ(x0 − y0)

∫
d3p

(2π)32ωp
e−ip(x−y) + θ(y0 − x0)

∫
d3p

(2π)32ωp
eip(x−y),

= lim
ε→0

∫
d4p

(2π)4

i

p2 −m2 + iε
e−ip(x−y), (3.37)

where the final equality is easy to derive from a complex contour integration of p0

shown in Fig. 8: in the lower half-plane for x0 > y0 and the upper half for y0 > x0.
The pole p0 = ωp− iε is inside the integration region for the former and p0 = −ω+ iε
for the latter.

The vacuum expectation value of the time-ordered product of two free fields is
called Feynman’s propagator:

∆F (x− y) ≡ 〈0|T (φ̂(x)φ̂(y))|0〉 = φ̂ (x)φ̂(y). (3.38)

It is easy to show that Feynman’s propagator is the Green’s function of the
Klein-Gordon equation:(

∂µ∂
µ +m2

)
∆F (x− y) = −iδ(x− y). (3.39)

Feynman’s propagator is the building block in more complex expectation values
of T -ordered products. Wick’s theorem establishes that a general T -product of fields
φ̂i = φ̂(xi) can be written as

T φ̂1....φ̂n =: φ̂1...φ̂n : + all possible terms with pairs of fields

contracted and normal ordered otherwise, (3.40)
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Figure 8: Contour integration of p0.

where the terms with just one contraction are for example

φ̂1φ̂2 : φ̂3....φ̂n : + φ̂1φ̂3 : φ̂2...φ̂n : +... (3.41)

Operators on the right-hand side are all normal-ordered, and therefore will cancel
the vacuum and give no contribution to the vacuum expectation value unless they
are the identity, ie. the contribution corresponding to all fields being contracted two
by two.

The proof can be derived by induction. Let us assume that it holds for a product
with n− 1 fields, then assuming without loss of generality that x0

1 > x0
i :

T φ̂1....φ̂n = φ̂1T φ̂2....φ̂n = φ1W, W =: φ̂2...φ̂n : +contracted terms without φ̂1

(3.42)

Since W is normal-ordered:

φ̂1W = φ+
1 W + φ−1 W = Wφ+

1 + [φ+
1 ,W ] + φ−1 W =: φ1W : +[φ+

1 ,W ], (3.43)

and [φ+
1 ,W ] contains all the contracted terms where φ̂1 is contracted, which com-

pletes the proof.
Example: Consider three fields

φ̂1T φ̂2φ̂3 = φ̂1 : φ̂2φ̂3 : +φ̂1 φ̂2φ̂3

= [φ+
1 , : φ̂2φ̂3 :]+ : φ̂1φ̂2φ̂3 : + : φ̂1 : φ̂2φ̂3 (3.44)
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Using [A,BC] = [A,B]C +B[A,C]

[φ+
1 , : φ̂2φ̂3 :] = [φ+

1 , φ
+
2 φ

+
3 ] + [φ+

1 , φ
−
2 φ

+
3 ] + [φ+

1 , φ
−
3 φ

+
2 ] + [φ+

1 , φ
−
2 φ
−
3 ]

= [φ+
1 , φ

−
2 ]φ+

3 + [φ+
1 , φ

−
3 ]φ+

2 + [φ+
1 , φ

−
2 ]φ−3 + [φ+

1 , φ
−
3 ]φ−2

= [φ+
1 , φ

−
2 ]φ3 + [φ+

1 , φ
−
3 ]φ2 = φ̂1φ̂2 φ̂3 + φ̂1φ̂3 φ̂2. (3.45)

The total is

T φ̂1φ̂2φ̂3 = : φ̂1φ̂2φ̂3 : + : φ̂1 : φ̂2φ̂3 + : φ̂2 : φ̂1φ̂3 + : φ̂3 : φ̂1φ̂2 . q.e.d. (3.46)

Wick’s theorem shows that the vacuum expectation value of a T -ordered prod-
uct of operators is therefore the sum of terms each of which is a product of Feynman
propagators.

We will also be interested in initial and final states that are not the vacuum.
For example we might consider an in state corresponding to k free particles, with
momenta p1, ...pk, that scatter into j particles with momenta q1, ...qm. A Dyson
series element of this amplitude will be of the form

〈q1..qm|T (φ̂1...φ̂n)|p1...pk〉 =
∏
j=1,m

√
2ωqj (3.47)

×
∏

i=1,..,k

√
2ωpi〈0|aq1 ...agmT (φ̂1....φ̂n)a†p1 ...a

†
pk
|0〉.

Also in this case, the trick of commuting all the annihilation operators to the right,
gives rise to a modified Wick’s theorem, where the result of vacuum expectation value
is a sum of terms where all fields or creation/annihilation operators are contracted in
pairs and no field or operator is left unpaired. Each contraction is the commutator
of the contracted objects.

We have now new types of contractions besides those between two fields, eq. (3.37):

between a field and an operator aq, a field and an operator a†p or aq and a†p:

aqφ̂(x) ≡ [aq, φ̂(x)] =
1√
2ωq

eiqx,

φ̂ (x)a†p ≡ [φ̂(x), a†p] =
1√
2ωp

e−ipx,

aqa
†
p = [aq, a

†
p] = (2π)3δ(q− p). (3.48)

3.4 Feynman rules

Feynman rules are a series of diagrammatic rules that simplify the computation
of the Dyson series expansion of S-matrix elements by making use of the Wick’s
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theorem. The starting point is

〈β|T exp

(
−i
∫ T

−T
dtHI(t)

)
|α〉, (3.49)

with

HI(t) = eiH0t

∫
dx

λ

4!
φ̂(0,x)4e−iH0t =

∫
dx

λ

4!
φ̂I(x)4, (3.50)

where φ̂I(x) is the field in the interaction picture:

φ̂I(x) = eiH0tφ(0,x)e−iH0t. (3.51)

Therefore

〈β|Ŝ|α〉 =
∑
n

1

n!
(−i)n

(
λ

4!

)n ∫
d4z1...

∫
d4zn〈β|T (φ̂(z1)4...φ̂(zn)4)|α〉. (3.52)

For the external states we take

|α〉 = |p1, ....,pk〉, |β〉 = |q1, ....,qm〉. (3.53)

The non-vanishing contributions can be shown diagrammatically as the sum of
Feynman diagrams constructed as follows:

• Draw the n vertices, zi, i = 1, ..., n, as points with four lines attached.

• For each external particle draw a line: incoming to the left, outgoing to the
right. Each has an associated momentum.

• Link each external particle lines to a line coming out of a vertex so that each
external line ends in a vertex. Once all the external lines are linked to a vertex,
link the remaining open lines two by two, so that each of those lines connect
two vertices.

• Calculate the amplitude of the diagram AD and the symmetry factor SD. The
contribution of this diagram to the total result is

AD
SD

. (3.54)

• Repeat with as many distinct contractions of lines as possible, each giving a
different diagram.
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Once we have classified all the distinct diagrams, we can calculate the whole ampli-
tude as ∑

D

AD
SD

. (3.55)

Feynman rules tell us how to calculate AD:

• A factor (−iλ)
∫
d4zi for each vertex.

• A Feynman propagator ∆F (zi − zj) for each line from vertex zi to zj .

• A factor e−ipjzi for each incoming external line with momenta pj and linked
to the vertex zi.

• A factor eiqjzi for each outgoing external line with momenta qj and linked to
the vertex zi.

The symmetry factor is given by

SD =
(4!)n n!

#contractions leading to the same diagram D
. (3.56)

It is clear that the number of contractions will always include an n! that comes from
exchanging vertices since they are all identical.

Example: Let us consider the scattering involving one incoming particle and
one outgoing particle

At 0-th order

〈q|p〉 = (2π)32ωpδ(q− p). (3.57)

At 1-st order

−iλ
4!

∫
d4z〈q|T (φ̂I(z)

4)|p〉 (3.58)

According to Wick’s theorem, only the fully connected terms contribute since all
normal ordered products vanish in the vacuum expectation value. All the distinct
possibilities are the following, represented by the diagrams in the

• 3 × aqa
†
p φ̂zφ̂z φ̂zφ̂z, depicted in Fig. 9.

The number of contractions is easy to understand: the first operator at z can
be connected to either of the three remaining, while the two left must necessarily be
connected. The contribution is

AD1 = −iλ · (2π)32ωpδ(q− p)

∫
d4z ∆F (z − z)2, SD1 =

4!

3
= 8. (3.59)
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Figure 9: Contraction D1.

qp
z

qp
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Figure 10: Contraction D2.

• 12 × aqφ̂z φ̂zφ̂z φ̂za
†
p, depicted in Fig. 10.

In this case, the incoming line of momentum p can be connected to one of the
four fields at z, the outgoing line is then connected to one of the remaining three,
while the two remaining again need to be connected among themselves. Therefore
we have 4 · 3 = 12 possibilities. The contribution of these terms is

AD2 = −iλ ·
∫
d4z e−i(p−q)z∆F (z − z), SD2 =

4!

12
= 2. (3.60)

3.5 Cross sections and decay widths

The result of a scattering experiment is usually measured in terms of the cross
section, σ.

Let us consider a beam of particles of type A that collide with a target made
of particles of type B, see Fig. 11. When the beam crosses, the particles of type
A become dispersed due to their interaction with particles B. We can measure the
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Figure 11: Scattering experiment.

number of particles that are dispersed per unit time

dNscat

dt
= # of particles dispersed per unit time. (3.61)

We might as well measure the number of particles dispersed into a solid angle, dΩ:

dNscat

dtdΩ
. (3.62)

We expect that this number is proportional to the flux of incoming particles A, ΦA,
and the number of target particles B, NB, on which they can scatter. If we compute
the number per unit target volume we would expect

dNscat

dV dt
∝ ΦAρB, (3.63)

where ρB is the density of target particles. The proportionality factor is what we
call the cross section:

σ =
dNscat

dV dt
(ΦAρB)−1. (3.64)

Since the flux is the number of particles crossing a unit area in a unit time, the
dimensions of the cross-section is that of an area, or in natural units, E−2.

We expect that the number of scattering events is proportional to the probability
of this process:

Nscat =
∑
f

|〈f |Ŝ|i〉|2, (3.65)
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where
Let us consider an in-state corresponding to two particles of types A and B

with momenta, pA and pB. If we want the particles to be far apart at t = −T , they
cannot have perfectly well-defined momenta because if that was the case they would
be completely delocalized. Instead we should consider that they are wavepackets of
the form

|i〉 = |pA, pB〉 =

∫
d3p1

(2π)32ωp1

∫
d3p2

(2π)32ωp2
fA(p1)fB(p2)|p1, p2〉, (3.66)

where the functions fA(p) and fB(p) are for example Gaussians centered at the
average momenta, pA and pB respectively, i.e.

fA/B(p) ∝ e−(p−pA/B)2/2σ2
. (3.67)

We assume the states to be properly normalized.

〈pA, pB|pA, pB〉 = 1→
∫
d3p |fA/B(p)|2 = 1. (3.68)

The number of scattered events resulting from this in-state would be

Nscat =
∑
f

|〈f |Ŝ|i〉|2, (3.69)

where the sum is over the final states.9

The final state corresponds to any state that we define as a scattering event.
For example if we consider all the events in which the particles of type A and B get
scattered, that is they change their momenta with respect to pA and pB, then the
final state would be for example |f〉 = |qA, qB〉 for all qA, qB distinct from pA, pB.
But it could also be more complicated and we also count scattering events where the
particles A, B disappear and produce particles of a different nature, for example.
The final state would have to be defined accordingly. To find the relation we are
after, we do not need to specify |f〉.

On general grounds, the S-matrix can be written as

Ŝ = I + iT̂ , (3.70)

where I is the identity, since time evolution will always include the possibility that
the state remains intact. Obviously the first term does not contribute if |i〉 6= |f〉.

The probability for the process is then∣∣∣〈f |T̂ |i〉∣∣∣2 = 〈f |T̂ |pA, pB〉〈pA, pB|T̂ †|f〉 =∫
q1

∫
q2

∫
p1

∫
p2

f∗A(q1)fA(p1)f∗B(q2)fB(p2)〈f |T̂ |p1, p2〉〈q1, q2|T̂ †|f〉, (3.71)

9Note that final states are a continuum and therefore the sum over final states is really an
integral.

47



where ∫
p
≡
∫

d3p

(2π)32ωp
. (3.72)

The amplitude will always have a delta function ensuring the conservation of energy
momentum in the process, that is

〈f |T̂ |p1, p2〉 = (2π)4δ(pf − p1 − p2)M(pf ; p1, p2). (3.73)

Using this we arrive to

|〈f |T̂ |pA, pB〉|2 =

∫
q1

∫
q2

∫
p1

∫
p2

f∗A(q1)fA(p1)f∗B(q2)fB(p2)

×〈f |T̂ |p1, p2〉〈q1, q2|T̂ †|f〉

=

∫
q1

∫
q2

∫
p1

∫
p2

f∗A(q1)fA(p1)f∗B(q2)fB(p2)

×(2π)4δ(pF − p1 − p2)(2π)4δ(p1 + p2 − q1 − q2)

×M(pf ; p1, p2)M∗(pf ; q1, q2). (3.74)

Using the relation

(2π)4δ(q1 + q2 − p1 − p2) =

∫
d4x ei(q1+q2−p1−p2)x, (3.75)

and since p1, q1 ' pA and p2, q2 ' pB, we can approximate

|〈f |T̂ |pA, pB〉|2 = (2π)4δ(pf − pA − pB)|M(pf ; pA, pB)|2 (3.76)∫
q1

∫
q2

∫
p1

∫
p2

∫
d4x ei(q1+q2−p1−p2)xf∗A(q1)fA(p1)f∗B(q2)fB(p2)

= (2π)4δ(pf − pA − pB)|M(pf ; pA, pB)|2
∫
d4x|fA(x)|2|fB(x)|2,

where

f̃A/B(x) ≡
∫
p
e−ipxfA/B(p). (3.77)

Since we want the number of scattering events per unit time and volume, we should
consider the integrand of the space-time integral in x and we finally arrive at:

dNscat

dV dt
= (2π)4δ(pf − pA − pB)|M(pf ; pA, pB)|2|f̃A(x)|2|f̃B(x)|2. (3.78)

The wave-function of the one-particle states

〈x|pA〉(t) =

∫
p
fA(p)

√
2ωpe

−iωpt〈x|p〉 '
√

2ωpA

∫
p
fA(p)e−ipx =

√
2ωpA f̃A(x),

(3.79)
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and similarly for the wave function of the in-state of particle B. Therefore the number
density of the particle B, which is at rest, is

ρB = |〈x|pB〉(t)|2 = 2mB|f̃B(x)|2. (3.80)

The flux of particles A, moving at the speed vA, can be obtained as

ΦA = ρAvA = ρA
|pA|
ωpA

= 2|pA||f̃A(x)|2. (3.81)

The cross-section is then obtained normalizing eq.(3.78) by the A particle flux and
the B number density. If we consider a generic final state with k particles of mo-
menta, |f〉 = |q1, ...qk〉, final states for all possible values of these momenta will
contribute to the total cross-section. Therefore the total cross-section is given by

σ =
∫ ∏

j=1,...k
d3qj

(2π)32ωqj
(2π)4|M(q1, .., qk; pA, pB)|2δ(4)(q1 + ...qk − pA − pB)

4mB|pA|,
(3.82)

where we have used pB = (mB,0). This is the result in the B-particle rest frame.
We can write the result in a different frame noting

mB|pA| =
√

(pA · pB)2 −m2
Am

2
B =

1

2

√
λ(s,m2

A,m
2
B), (3.83)

where

λ(a, b, c) ≡ a2 + b2 + c2 − 2ab− 2ac− 2bc, (3.84)

and

s ≡ (pA + pB)2. (3.85)

Another important quantity for unstable states is the decay width. The ini-
tial state in this case corresponds to a one particle state of type A, which is in a
wavepacket:

|i〉 = |pA〉 =

∫
p
fA(p)|p〉. (3.86)

This particle decays into a final state |f〉. The decay width is defined as the number
of decays per unit volume and time, divided by the density of A particles:

Γ =
dNdecay/(dtdV )

ρA
, (3.87)

As in the previous case,

Ndecay = |〈f |T̂ |pA〉|2, (3.88)
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and a similar analysis as before leads to

dNdecay

dtdV
= (2π)4|M(pf ; pA)|2δ(pf − pA)|fA(x)|2, (3.89)

while ρA = 2mA|fA(x)|2 in the rest frame. The total decay width is obtained
integrating over all the possible final states. If the decay is to a set of particles with
momenta, q1, ...qk, we obtain

Γ =
1

2mA

∫ ∏
j=1,..,k

d3qj
(2π)32ωqj

|M(q1, ..., qk; pA)|2(2π)4δ(q1 + ...+ qk − pA). (3.90)

The integration over final momenta in eqs. (3.82) and (3.90) is refered to as
integration over phase space. In the case of two momenta, the integration can be
done easily.

Phase space integration of two particles
Let us consider the collision of two particles A and B in the center of mass

frame, that is

pA + pB = 0. (3.91)

The final particles have masses m1 and m2 and momenta q1 and q2. Defining

ωq1 ≡
√
m2

1 + q1
2, ωq2 ≡

√
m2

2 + q1
2, (3.92)

then ∫
d3q1

(2π)32
√
m2

1 + q1
2

∫
d3q2

(2π)32
√
m2

2 + q2
2
(2π)4δ(4)(q1 + q2 − pA − pB)

=

∫
d3q1

(2π)24ωq1ωq2
δ (ωq1 + ωq2 − EA − EB) =

∫ |q1|2d|q1|dΩq1

(2π)24ωq1ωq2
δ
(
ωq1 + ωq2 −

√
s
)

=
1

32π2

√
λ(s,m2

1,m
2
2)

s
, (3.93)

where we have used the relation

δ(ωq1 + ωq2 −
√
s) =

1

|q1|
ωq1ωq2
ωq1 + ωq2

δ

(
|q1| −

√
λ(s,m2

1,m
2
2)

4s

)
. (3.94)

The differential cross-section in the center of mass of the process pA + pB → q1 + q2

is, then,

dσ

dΩq1

=
1

64π2s

√
λ(s,m2

1,m
2
2)√

λ(s,m2
A,m

2
B)
|M(q1, q2; pA, pB)|2. (3.95)
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Figure 12: Feynman diagram for two scalar particles scattering.

Example: two-particle scattering in λφ4 theory
In the scalar theory of eq. (3.6) we can consider the elastic scattering cross-

section of two scalar particles of momenta p1, p2 to two particles with different
momenta q1, q2, see Fig. 12. We need to compute the amplitude

〈q1, q2|T̂ |p1, p2〉 (3.96)

The first order in the Dyson series contains just one vertex, and we have two incoming
external lines and two outgoing lines. According to the Feynman rules in Section 3.4,
we therefore obtain the amplitude

〈q1, q2|T̂ |p1, p2〉 = (−iλ)
∫
d4ze−ip1ze−ip2zeiq1zeiq2z

= −iλ(2π)4δ(4)(p1 + p2 − q1 − q2), (3.97)

since the symmetry factor of this diagram is 1. Therefore

M(q1, q2; p1, p2) = −iλ, (3.98)

and the total cross section, integrating over phase space, is according to eq. (3.95)
(mA = mB = m1 = m2 = m):

1

2

∫
dΩq1

dσ

dΩq1

=
λ2

32πs
. (3.99)

The factor 1/2 is necessary because in this case the final state particles are identical
and so we would be double-counting if we considered as distinct final states with
final momenta q1, q2 or q2, q1. More generally, it is necessary to divide the phase
space integration by 1/k!, when the number of identical particles in the final state
is k.
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IV. Spin 1/2 Quantum Fields

In previous chapters we have considered scalar fields that transform trivially under
Lorentz transformations:

x→ x′ = Λx, φ(x)→ φ′(x′) = φ(x), (4.2)

which implies

φ(x)→ φ(Λ−1x). (4.3)

These fields cannot represent particles with spin (intrinsic angular momentum), such
as the electron or the photon. These particles must be represented by quantum fields
that transform non trivially under Lorentz transformations, generically as

φa(x)→ D[Λ]abφ
b(Λ−1x), (4.4)

where D[Λ] is some finite-dimensional representation of the Lorentz group, O(1, 3).
It satisfies the properties:

D[Λ1Λ2] = D[Λ1]D[Λ2],

D[Λ−1] = D[Λ]−1,

D[I] = I. (4.5)

Being a Lie group, any representation of an infinitesimal transformation can be
writen in terms of the generators T i,

D[Λ] = I + i
∑
i

αiT
i, (4.6)

where αi are the real continuous parameters that define the Lie group. The genera-
tors form the algebra, so(1, 3).

Particles in nature and their associated quantum fields are irreducible repre-
sentations of the Poincaré symmetry group (the group including Lorentz transfor-
mations and translations). An irreducible representation, D[Λ], is such that no
subspace of states transforms only among themselves under all group elements. Ir-
reducible representations are the basic building blocks of arbitrary representations
of the group. We can say that a particle/field has the necessary components to
transform irreducibly under Poincaré symmetry transformations.

Rotational symmetry and the concept of spin provide simpler examples of how
symmetries dictate the nature of particles. Spin, j, is nothing but the half-integer
label of the irreducible unitary representations of the rotation group, which have
dimension d = 2j + 1. The smallest non-trivial representation is therefore spin
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j = 1/2, which is two-dimensional and whose generators are the Pauli matrices σi.
A general representation of an element of the group is given by the exponential

U = ei
θiσi
2 , (4.7)

where θi are the rotations around the axis i. States with spin 1/2 are described by
two component vectors, or spinors, that transform as

Ψ→ ei
θiσi
2 Ψ. (4.8)

Particles with this property include the electron, and all the elementary fermions in
the Standard Model.

The three-dimensional representation corresponding to j = 1 transforms like a
vector under spatial rotations. All elementary interactions involve a bosonic field
which transform as vectors under rotations, including the electromagnetic field that
mediates electromagnetic interaction, the W±, Z0 bosons that mediate the weak in-
teraction, and the gluons that mediate the strong force. All the elementary particles
in the Standard Model are irreducible representations of the rotation group corre-
sponding to j = 0, j = 1/2 and j = 1. The quantization of gravity, which is not yet
satisfactory, would imply the existence of the graviton, which would be a particle of
j = 2.

In the context of quantum field theory, we need to consider the representations
of the full Lorentz group.

4.1 Irreducible representations of the Lorentz group

A particular example of a representation of the Lorentz group is the four-dimensional
representation in space-time coordinate space,

xµ → x′µ = Λµνx
ν , µ = 0, 1, 2, 3, (4.9)

where the four-dimensional matrices Λ leave the Minkowski metric invariant,

ΛαµΛβνgαβ = gµν . (4.10)

These matrices Λ, close to the identity, depend on six real parameters. Indeed, a
general infinitesimal transformation can be written as

Λ µ
ν = δµν + ωµ ν +O(ω2). (4.11)

Substituting in eq. (4.10), we obtain, neglecting terms of O(ω2):

ωµν + ωνµ = 0, ωµν ≡ ωα νgαµ. (4.12)
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ω is therefore a four dimensional antisymmetric real matrix which has six indepen-
dent elements. We can choose these parameters as the elements above the diagonal:
ω0i and ωij with i < j and i, j = 1, 2, 3. These parameters are easy to identify with
boosts and rotations.

For example an infinitesimal rotation around x axis is implemented by the
matrix:

Λ(Rx(θ)) =


1

1
θ

−θ

 , (4.13)

which corresponds to ω2
3 = −ω23 = −ω3

2 = ω32 = θ.
An infinitesimal boost of rapidity β in the x direction,

Λ(Bx(β)) =


1 β
β 1

1
1

 , (4.14)

corresponds to ω0
1 = ω01 = ω1

0 = −ω10 = β. Therefore we identify the six
parameters with three rapidities, βi, and the Euler angles, θi as:

ω0i = −ωi0 = βi, ωij = −εijkθk. (4.15)

We can easily find the generators Jαβ associated to each parameter ωαβ, since by
definition

Λ(ω) = I + i
∑

αβ={01,02,03,12,13,23}

ωαβJ
αβ +O(ω2). (4.16)

In this expression ωαβ are just numbers, i.e. the parameters of the transformation,
not a matrix. It is easy to check that the generators

(Jαβ)µν = −i(δαµδβν − δβµδαν ) (4.17)

reduce eq. (4.16) to eq. (4.11).
Then

Λ(ω) = I + iβiJ
0i − i

2
θkεijkJ

ij ≡ I + iβiK
i + iθkJ

k, (4.18)

where the sum in i, j = 1, 2, 3 and

Ki ≡ J0i, Jk ≡ −1

2
εijkJ

ij . (4.19)

54



It is straightforward, using eq. (4.19) and (4.17), to show that the generators satisfy
the following commutation relations:

[J i, J j ] = iεijkJ
k, [J i,Kj ] = iεijkK

k, [Ki,Kj ] = −iεijkJk. (4.20)

This is the Lorentz algebra, so(1, 3).

Exercise: Using eqs. (4.17) and (4.19) find explicit expressions for the genera-
tors Ji and Ki and prove the commutation relations.

To classify all the irreducible representations of this algebra, we notice that
there are two commuting subalgebras. Defining

J i+ ≡
1

2

(
J i + iKi

)
, J i− ≡

1

2

(
J i − iKi

)
, (4.21)

it is easy to see that these combinations satisfy

[J i+, J
j
+] = iεijkJ

k
+, [J i−, J

j
−] = iεijkJ

k
−, [J i+, J

j
−] = 0. (4.22)

Exercise: show that eqs.(4.22) derives from eqs.(4.20).

The set of generators therefore contains two commuting subalgebras that coin-
cide with that of the rotation group, so(3) or su(2) algebras. The finite-dimesional
irreducible representations of the algebra of space rotations are well known. They
are labeled by spin, a half-integer, j, and have dimension d = 2j + 1. From this
result we can easily obtain all those of the Lorentz group, as labeled by two half-
integers (j−, j+) corresponding to the two subalgebras. The dimension is therefore
(2j−+ 1)(2j+ + 1). The standard rotation generators are obtained as Ji = J+

i + J−i
and therefore the standard spin can take any value between j = |j+− j−|, ..., j+ + j−
as established by the usual Clebsch-Gordan decomposition, as shown in Table 1.

4.2 Spin 1/2 representations

Interestingly we see that there are two different two-dimensional representations of
spin 1/2 particles: (1/2, 0) and (0, 1/2). Each is called a Weyl representation. The
two-dimensional matrices representing the generators of rotations and boosts are
the Pauli matrices:(

0,
1

2

)
: J i+ =

σi
2
, J i− = 0→ Ji =

1

2
σi, Ki =

−i
2
σi,(

1

2
, 0

)
: J i− =

σi
2
, J i+ = 0→ Ji =

1

2
σi, Ki =

i

2
σi. (4.23)
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so(1, 3)

(j−, j+) (0, 0) (1
2 , 0) (0, 1

2) (1
2 ,

1
2) (1, 0) ...

so(3)

j 0 1
2

1
2 1⊕ 0 1 ...

Table 1: Irreducible representations of the Lorentz algebra and the rotation group.

The two-component vectors are called Weyl spinors: the (0, 1/2) is a right-handed
spinor, ψR, and the (1/2, 0) is a left-handed spinor, ψL, which transform under a
Lorentz transformation as

ψR → e
1
2

(iθjσj+βjσj)ψR, ψL → e
1
2

(iθjσj−βjσj)ψL. (4.24)

Let us consider fields in these representations. Under a Lorentz transformation:

ψL(x)→ e
1
2

(iθjσj−βjσj)ψL(Λ−1x),

ψR(x)→ e
1
2

(iθjσj+βjσj)ψR(Λ−1x). (4.25)

By recalling the way a four vector V µ transforms under infinitesimal boost βi and
rotation θi,

V 0 → V 0 + ω0
iV

i = V 0 + ω0iV
i = V 0 + βiV

i,

V i → V i + ωi0V
0 + ωijV

j = V 0 + ω0iV
0 − ωijV j = V 0 + βiV

0 + εijkθkV
j ,

(4.26)

it is easy to check that the following bilinears transform as four-vectors:

(ψ†LψL,−ψ
†
L~σψL),

(ψ†RψR, ψ
†
R~σψR), (4.27)

Defining

σµ ≡ (1, ~σ), σµ = (1,−~σ), (4.28)

we can write the four vectors as

ψ†Lσ
µψL, ψ†Rσ

µψR. (4.29)
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Exercise: Check that under an infinitesimal Lorentz transformation, Λ:

ψ†Lσ
µψL → Λµνψ

†
Lσ

νψL, (4.30)

while

iψ†Lσ
µ∂µψL, (4.31)

is invariant.
Exercise: Check that the combination ψ†LψL or ψ†RψR are not Lorentz invariant.

We can also write an invariant term from the bilinear combination of the two
representations:

ψ†LψR. (4.32)

4.3 The Dirac equation

We can then write a Lorentz-invariant and real quadratic Lagrangian as

L = iψ†Lσ
µ∂µψL + iψ†Rσ

µ∂µψR −m(ψ†LψR + ψ†RψL), (4.33)

where m is some coupling to be determined, note that the coefficients of the first
two terms, if they are different from one, can be set to one by a redefinition of the
fields. By neglecting total derivatives, it is easy to see that the Lagrangian is real.

We can rewrite this Lagrangian in a more familiar form by defining the four-
component spinors

ψ =

(
ψL
ψR

)
, ψ ≡

(
ψ†R, ψ

†
L

)
, (4.34)

or what we call a Dirac spinor, and by defining the Dirac gamma matrices

γµ ≡
(

0 σµ

σµ 0

)
, (4.35)

the Lagrangian obtains the familiar form

L = iψγµ∂µψ −mψψ. (4.36)

The equation of motion can be easily derived by considering ψ and ψ as independent
fields,

i∂µγ
µψ −mψ = 0, − i∂µψγµ −mψ = 0, (4.37)

which is simply the Dirac equation if we interpret m as the mass.
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Dirac obtained this equation for the first time when trying to produce a first-
order equation in a time-derivative, like the Schrödinger equation, that satisfied the
relativistic relation between energy and momentum. It is easy to see that solutions
to the Dirac equation also satisfy the Klein-Gordon equation, since

(i∂νγ
ν +m)(i∂µγ

µ −m)ψ = −(∂µ∂
µ +m2)ψ = 0, (4.38)

where we have used the basic properties of the gamma matrices:

{γµ, γν} = 2gµν . (4.39)

It is interesting to note that we have arrived at the same point from the assump-
tion of the quantum field transforming in irreducible representations of the Lorentz
group, and writing the most general Lorentz-invariant and real Lagrangian density
quadratic in the fields.

It is easy to rewrite eqs. (4.25) in terms of generators in the Dirac representation:

ψ(x)→ ψ′(x′) = D(Λ)ψ(Λ−1x′) = e−
i
2
ωµνSµνψ(Λ−1x′), (4.40)

where

Sµν =
σµν

2
≡ i

4
[γµ, γν ], (4.41)

and therefore

S0i =
i

4
[γ0, γi] = − i

2

(
σi 0
0 −σi

)
, Sij = − i

4
[σi, σj ] =

1

2
εijkσk

(
1 0
0 1

)
.(4.42)

Using eq. (4.15), eq. (4.42) and eq. (4.40), it is easy to reproduce eqs. (4.25).
Some useful properties of the γ matrices are:

• (γi)2 = −I, (γ0)2 = I.

• “Transform” as vectors:

D(Λ)−1γµD(Λ) = Λµνγ
ν (4.43)

• Hermiticity: (γ0)† = γ0, (γi)† = −γi, which can also be writen as (γµ)† =
γ0γµγ0

Before proceeding to the quantization of the Dirac field, let us find the solutions
to the classical Dirac equation.
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4.3.1 Solutions to the Dirac equation

We want to find the solutions to the Dirac equation. We consider plane wave solu-
tions of the form:

ψ(x) = u(p)e−ipx, v(p)eipx (4.44)

with p2 = m2. The spinor u(p) and v(p) must satisfy

(γµpµ −m)u(p) = 0, (γµpµ +m)v(p) = 0. (4.45)

Let us consider the solutions in the rest frame, p̄ ≡ (m,0):

m(γ0 − 1)u(p̄) = 0 −→
(
−1 1
1 −1

)
u(p̄) = 0, u(p̄) =

(
ξ
ξ

)
,

m(γ0 + 1)v(p̄) = 0 −→
(

1 1
1 1

)
v(p̄) = 0, v(p̄) =

(
η
−η

)
. (4.46)

There are two independent solutions for the two-dimensional vectors ξ and η that
can be taken as ξ, η = (1, 0), (0, 1). The four independent and orthogonal solutions
are:

u1 =


1
0
1
0

 , u2 =


0
1
0
1

 , v1 =


1
0
−1
0

 , v2 =


0
1
0
−1

 . (4.47)

From these solutions in the rest frame we can reconstruct the solutions for arbitrary
p, using eq. (4.43). Let us define Λ(p) as the Lorentz boost that takes momentum
in the rest frame to p = (E, p1, p2, p3),

D(Λ(p)) = e−iω0iS
0i
, (4.48)

where ω0i = −pi
|p| η and S0i = i

4 [γ0, γi] and η is the rapidity:

η = log

(
E + |p|
m

)
. (4.49)

If p̄ = (m,0):

D(Λ(p))−1(p̄µγ
µ −m)D(Λ(p)) = p̄µΛµνγ

ν −m = pνγ
ν −m, (4.50)

and therefore

D(Λ(p))−1(p̄µγ
µ −m)D(Λ(p))D(Λ(p))−1u(p̄) = 0,

(pµγ
µ −m)D(Λ(p))−1u(p̄) = 0, (4.51)
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which means that D(Λ(p))−1u(p̄) is a solution of the Dirac equation with momentum
p:

us(p) = D(Λ(p))−1us(p̄) = exp

(
− ~p·~σ
|~p|

η
2 0

0 ~p·~σ
|~p|

η
2

)
us(p̄) =

 √
p·σ
m 0

0
√

p·σ
m

us(p),

(4.52)

and

vs(p) = D(Λ(p))−1vs(p̄) = exp

(
− ~p·~σ
|~p|

η
2 0

0 ~p·~σ
|~p|

η
2

)
vs(p̄) =

 √
p·σ
m 0

0
√

p·σ
m

 vs(p).

(4.53)

It is easy to show that

us(p)us(p) = us(p)
†γ0us(p) = us(p̄)us(p̄), (4.54)

vs(p)vs(p) = vs(p)
†γ0vs(p) = vs(p̄)vs(p̄). (4.55)

The standard normalization of these vectors is chosen as:

us(p)us(p) = −vs(p)vs(p) = 2m, (4.56)

which means the vectors in eqs. (4.47) are multiplied by
√
m. It can be checked that

us(p)vs′(p) = us(p̄)vs′(p̄) = 0. (4.57)

Some useful relations are the spin sums:

2∑
s=1

us(p)us(p) =

( √
p · σ√
p · σ

)
(
√
p · σ,√p · σ)

=

(
m p · σ
p · σ̄ m

)
= p/+m, (4.58)

and similarly

2∑
s=1

vs(p)vs(p) = p/−m. (4.59)

4.4 Helicity

The solutions we have found for the Dirac equation are four-spinors, but we have
seen that there are smaller representations of the Lorentz group which are spinors,

60



ψL and ψR. We will see now that these are solutions of the massless Dirac equation.
Writing the Dirac fermion in terms of ψL/R using eq. (4.34), the massless Dirac
equation reduces to

i∂0ψL − iσi∂iψL = 0, i∂0ψR + iσi∂iψR = 0, (4.60)

Considering plane wave solutions, ψL/R = e−ipxuL/R, with p2 = 0:

(p0 + σp)uL = 0, (p0 − σp)uR = 0, (4.61)

or

~σp

|p|uL = −uL,
~σp

|p|uR = uR. (4.62)

The operator H ≡ ~σp
|p| is the helicity, i.e. the spin in the direction of momentum.

The L fields are therefore left-handed (spin pointing in the oposite direction to
momentum) and the R field are right-handed (spin in the direction of momentum).

From a Dirac spinor we can separate its L/R components using the matrix γ5:

γ5 ≡ iγ0γ1γ2γ3 =

(
−I 0
0 I

)
, (4.63)

with the following properties:

{γ5, γµ} = 0, (γ5)2 = I. (4.64)

By defining the chiral projectors

P± ≡
1± γ5

2
, (P±)2 = P±, P+P− = 0, (4.65)

we can extract the L/R components of the Dirac spinor:

ψL = P−ψ, ψR = P+ψ. (4.66)

We define then:

• Chiral states: ψL, ψR as the eigenstates of the γ5 with eigenvalue ∓1 respec-
tively:

γ5ψL = −ψL, γ5ψR = ψR. (4.67)

These states do not mix under Lorentz transformations (they are irreducible
representations), they both represent states of spin 1/2 and in the case of
massless fermions they are also eigenstates of helicity.

• Helicity states: eigenstates of the helicity operator H. They mix under Lorentz
transformations unless they are massless. In other words, a massive spin 1/2
particle might be in two states of helicity.
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4.5 Majorana Representation

Can we have a two-dimensional spinor representation, i.e. transforming as (0, 1/2)
or (1/2, 0), of a massive spin 1/2 particle? This is the question that Ettore Majorana
asked himself and found a clever and surprising solution.

Let us consider the (1/2, 0) representation, ψL. There is indeed another bilinear
invariant we have not writen down above:

ψTLσ
2ψL, (4.68)

where T refers to the transpose. The first point to notice is that this contraction
would vanish if ψL is not an anti-commuting variable.

We can check that this combination is Lorentz invariant, using eq. (4.25) and
the property:

σiTσ2 + σ2σi = 0. (4.69)

We can therefore include it in a Lorentz invariant Lagrangian:

L = iψ†Lσ̄
µ∂µψL + iαψTLσ

2ψL + h.c. (4.70)

This is the Lagrangian of a Majorana fermion. It is easy to show that it represents
a free massive fermion by solving the equations of motion for ψL:

∂µψ
†
Lσ̄

µ = 2αψTLσ
2 → σ̄µ∂µψL = 2ασ2ψ∗L. (4.71)

Applying σν∂ν :

σν∂ν σ̄
µ∂µψL = ∂µ∂µψL = 2ασ2σ̄ν∗∂νψ

∗
L, (4.72)

where we have used

σνσ2 = σ2σ̄ν∗. (4.73)

Since

σν∗∂νψ
∗
L = −2α∗σ2ψL, (4.74)

we get

∂µ∂µψL = −4|α|2ψL. (4.75)

So the field ψL satisfies the Klein-Gordon equation identifying

α =
m

2
. (4.76)
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The quantization of the Majorana field therefore corresponds to a free massive par-
ticle.

We often write the Majorana Lagrangian in Dirac notation by defining

ψ =

(
ψL

iσ2ψ∗L

)
. (4.77)

It is easy to check that the Majorana Lagrangian of eq. (4.70) can be written as

L =
1

2

(
iψ̄/∂ψ −mψ̄ψ

)
, (4.78)

where it must also hold that the anti-commuting variables satisfy:

(ψψ′)∗ = ψ′∗ψ∗ = −ψ∗ψ′∗. (4.79)

Exercise: Show that eq. (4.78) reduces to eq. (4.70) with the definition of
eq. (4.77).

A different representation of the gamma matrices for Majorana fields is usually
employed. In the Majorana representation

γ0
M =

(
0 σ2

σ2 0

)
, γ1

M =

(
iσ3 0
0 iσ3

)
, (4.80)

γ2
M =

(
0 −σ2

σ2 0

)
, γ3

M = −
(
iσ1 0
0 iσ1

)
, (4.81)

a Majorana spinor can be shown to be real

ψM = ψ∗M . (4.82)

Exercise: Find the unitarity transformation, U , that satisfies:

UγµU † = γµM , (4.83)

and show that Uψ = ψM is real.

4.6 Parity

Among Lorentz transformations there are two important discrete ones:

Parity : P ≡ Diag(1,−1,−1,−1),

Time reversal : T ≡ Diag(−1, 1, 1, 1).
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Figure 13: The Lorentz subgroups are connected via parity and time reversal trans-
formations.

All Lorentz transfomations satisfy

det Λ = ±1, (Λ0
0)2 ≥ 1, (4.84)

and the sign of det Λ and Λ0
0 split the Lorentz group into disconnected subgroups:

L↑+ proper orthochronous det Λ = 1, Λ0
0 ≥ 1,

L↑− improper orthochronous det Λ = −1, Λ0
0 ≥ 1,

L↓− improper non− orthochronous det Λ = −1, Λ0
0 ≤ −1,

L↓+ proper non− orthochronous det Λ = 1, Λ0
0 ≤ −1,

All subgroups can be obtained from L↑+ by P and/or T (see Fig. 13):

L↑+
P−→ L↑−, L↑+

T−→ L↓+, L↑+
PT−−→ L↓−. (4.85)

Under parity angular momentum does not change, but boosts change sign –
therefore under parity the generators J i remain invariant, while Ki → −Ki and as
a result:

ψR(x)
P−→ ψL(xP ), ψL(x)

P−→ ψR(xP ), (4.86)

which can be implemented on Dirac spinors with γ0:

ψ(x)
P−→ γ0ψ(xP ), (4.87)
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The four-dimensional Dirac representation is the smallest representation of the
Lorentz group and parity. It is easy to check that the Dirac equation is invariant
under parity. However we will see that the weak interactions break parity.

It is useful to classify how fermion bilinears transform under Lorentz transfor-
mations and parity:

scalar : ψ̄ψ
Λ−→ ψ̄ψ,

P−→ ψ̄ψ

pseudo− scalar : ψ̄γ5ψ
Λ−→ ψ̄γ5ψ,

P−→ −ψ̄γ5ψ

vector : ψ̄γµψ
Λ−→ Λµνψ̄γνψ,

P−→ ηµψ̄γ
µψ

pseudo− vector : ψ̄γµγ5ψ
Λ−→ Λµνψ̄γνγ5ψ,

P−→ −ηµψ̄γµγ5ψ

tensor :ψ̄[γµ, γν ]ψ
Λ−→ ΛµαΛνβψ̄[γα, γβ]ψ

P−→ −ηµηνψ̄[γµ, γν ]ψ

(4.88)

where ηµ = (1,−1,−1,−1).

4.7 Global conserved charge

As well as the invariance under Lorentz transformations and parity, the Dirac La-
grangian is invariant under phase rotations:

ψ(x)→ e−iαψ, ψ̄(x)→ eiαψ̄. (4.89)

For α infinitesimal, we have therefore

ψ(x)→ ψ(x) + α∆ψ(x)→ ∆ψ(x) = −iψ(x), ∆ψ̄(x) = iψ̄(x). (4.90)

There is a conserved Noether current

jµ =
∂L

∂(∂µψ)
∆ψ(x) + ∆ψ̄

∂L
∂(∂µψ̄)

= ψ̄γµψ. (4.91)

This is the conserved vector current. The associated conserved charge is therefore

Q =

∫
d3x ψ̄γ0ψ. (4.92)

When we quantize the field we will see that this charge corresponds to fermion num-
ber (the number of fermions minus antifermions is conserved), and when we couple
a Dirac fermion to the electromagnetic field, this will also be the electromagnetic
charge.
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In the case when the mass vanishes, there is an additional global symmetry
under which

ψ → e−iαγ
5
ψ,

(
ψL
ψR

)
→
(

eiαψL
e−iαψR

)
, (4.93)

that is the chiral components are multiplied by opposite phases. It is easy to check
that in the limit m → 0, the Dirac Lagrangian is invariant and therefore there is a
conserved current that is found to be

jµA = ψ̄γµγ5ψ. (4.94)

This is the axial current. For massive Dirac fermions, the current is not conserved
and satisfies:

i∂µj
µ
A = 2mψ̄γ5ψ. (4.95)

We say that the current is partially conserved.
We note that a Majorana fermion carries no conserved charge, neither the vector

nor the axial, since the mass term is not invariant.

4.8 Quantization of the Dirac field

We proceed canonically as we did with the scalar fields:

1) Define canonical momenta of ψ:

π =
δL
δ∂0ψ

= iψ̄γ0 = iψ†. (4.96)

2) Let us assume canonical equal-time commutation relations

[ψα(x), ψ†β(y)] = δαβδ(x− y), (4.97)

We expand in the solutions of the free Dirac equation, that constitute a com-
plete basis:

ψ(x) =
∑
s

∫
d3p

(2π)3

1√
2ωp

[
aspus(p)e

ipx + bsp
†vs(p)e

−ipx
]
,

ψ(x)† =
∑
s

∫
d3p

(2π)3

1√
2ωp

[
asp
†u†s(p)e

−ipx + bspv
†
s(p)e

ipx
]
. (4.98)

The commutation relations in eq. (4.97) imply:

[arp, a
s
q
†] = (2π)3δ(p− q)δrs, (4.99)
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[brp, b
s
q
†] = −(2π)3δ(p− q)δrs, (4.100)

and all the other combinations vanish. Note the unusual sign in the b commu-
tators.

3) Hamiltonian in terms of the asp and bsp:

H(t) =

∫
d3xH(x), (4.101)

with the Hamiltonian density:

H = π∂0ψ − L = iψ+∂0ψ − iψ̄/∂ψ +mψ̄ψ,

= −iψ̄γi∂iψ +mψ̄ψ, (4.102)

−iγi∂iψ +mψ =

∫
p

[
(piγi +m)us(p)a

s
pe
ipx + (−piγi +m)vs(p)b

s
p
†e−ipx

]
.(4.103)

Using

(/p−m)us(p) = 0 → (piγi +m)us(p) = p0γ0us(p),

(/p+m)vs(p) = 0 → (−piγi +m)vs(p) = −p0γ0vs(p), (4.104)

where we defined /p ≡ piγi, we obtain

−iγi∂iψ +mψ =

∫
p
ωp

[
γ0us(p)a

s
pe
ipx − γ0vs(p)b

s
p
†e−ipx

]
. (4.105)

Multiplying by ψ̄ ≡ ψ†γ0 from the left and integrating over x:

H =

∫
d3p

(2π)3
ωp

(
arq
†arq − brqbrq†

)
, (4.106)

where we have used

ur(p)
†us(p) = vr(p)

†vs(p) = 2p0δrs, ur(p
′))†vs(p) = vr(p

′)†us(p) = 0, (4.107)

where p′ = (p0,−p).
Here we encounter a major problem ! The Hamiltonian is not bounded from

below. What went wrong? The problem is that spin 1/2 particles are fermions
(obeying Fermi-Dirac statistics) and commutators in eqs. (4.97) should be anti-
commutators. In this case,

{ψα(x), ψ†β(y)} = δαβδ(x− y), (4.108)
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that implies

{arp, asp†} = (2π)3δ(p− q)δrs, {brp, bsp†} = (2π)3δ(p− q)δrs. (4.109)

Exercise: show that the commutation relations eq. (4.109) imply eq. (4.108).

The Hamiltonian obtained in this case has the standard form

:H: =

∫
d3p

(2π)3
ωp
∑
s

[
asp
†asp + bsp

†bsp

]
, (4.110)

with the commutation relations

[H, asp] = −ωpasp, [H, bsp] = −ωpbsp,
[H, asp

†] = ωpa
s
p
†, [H, bsp

†] = ωpb
s
p
†. (4.111)

The particle interpretation of this quantum theory should be clear by now: the
operators asp

†, bsp
† create particles with fermionic statistics and energy ωp. The Fock

vacuum state satisfies

asp|0〉 = 0, bsp|0〉 = 0, (4.112)

and Fock states with N particles of a or b-types can be obtained by operating with
N as†p or bs†p operators.

Exercise: complete the proof of eq. (4.110).

The spatial momentum operator is derived from the 0i component of the energy-
momentum tensor:

P i =

∫
d3x T 0i = −i

∫
d3xψ̄γ0∂iψ, (4.113)

and using eq. (4.98) we obtain

P i =

∫
d3p

(2π)3
pi
∑
r

(arp
†arp + brp

†brp), (4.114)

with

[P i, asp] = −piasp, [P i, bsp] = −pibsp,
[P i, asp

†] = piasp
†, [P i, bsp

†] = pibsp
†. (4.115)

The spatial momentum of the one-particle states of a or b types is therefore p.
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We can also check that the created particles have spin 1/2. Angular momentum
is the conserved charge associated to rotations. Under an infinitesimal rotation the
fermion field transforms as

ψ(x)→ D[Λ]ψ(Λ−1x) = ψ(x)− iωijSijψ(x)− iωij
(
J ij)µνx

ν
)
∂µψ(x), (4.116)

where Sij is defined in eq. (4.41) and J ij in eqs. (4.16) and (4.17). The conserved
current corresponding to a rotation of parameter ωij is therefore

jµij ≡
∂L
∂∂µψ

∆ijψ = ψ̄γµ
[
Sij + (J ij)ρσx

σ∂ρ
]
ψ. (4.117)

The first term is the spin contribution while the second is the orbital contribution
to the angular momentum.

Let us consider particles created at rest, that is from as†0 or bs†0 . In this case,
there is no orbital angular momentum and the spin contribution to the conserved
charge is just

Qij ≡
∫
d3x ψ̄γ0Sijψ. (4.118)

If we consider ij = 12, corresponding to a rotation around the z axis, the corre-
sponding charge must be the spin in the z direction. It is easy to show that

[Q12, a
1
0
†
] =

1

2
a1
0
†
, [Q12, a

2
0
†
] = −1

2
a2
0
†
, (4.119)

therefore a1
0
†

creates a particle with spin 1/2, while a2
0
†

creates a particle with spin
-1/2.

Finally, the Fermi-Dirac statistics of the Fock space follows from the anti-
commutation relations, eq. (4.109).

As in the case of the complex scalar field, the particles of a and b types can be
distinguished by the conserved charge associated with the symmetry of rephasing
invariance, i.e. eq. (4.92):

Q =

∫
d3xj0 =

∫
d3p

(2π)3

(
arp
†arp − brp†brp

)
, (4.120)

leading to the following commutation relations:

[Q, arp
†] = arp

†, [Q, brp
†] = −brp†, (4.121)

which imply that the one-particle states arp
†|0〉 and brp

†|0〉 have charges +1 and -1
respectively. As in the complex KG field, the a and b fields create particles and
antiparticles.
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The time dependence of the quantum Dirac field is easily solved from the Heisen-
berg equation for the operators asp and bsp, and in complete analogy to what we did
for the KG field, we obtain:

ψ(x) =
∑
s

∫
d3p

(2π)3

1√
2ωp

[
aspus(p)e

−ipx + bsp
†vs(p)e

ipx
]
. (4.122)

4.9 Scattering matrix in the Dirac theory

The scattering matrix of eq. (3.18) and the Dyson series eq. (3.27) are valid for a
theory with fermions. The computation of transition amplitudes from some initial
state |i〉 to some final state |f〉, requires the evaluation of matrix elements of the
form

〈f |T (HI(x1)....HI(xn))|i〉, (4.123)

where HI is the interaction-picture interaction Hamiltonian density. Any initial or
final state corresponds to a bunch of free one-particle states. If they are fermions they
will be characterized by a momentum, spin and charge (particle + versus antiparticle
−):

|i〉 = |p1, s1,±; ...; pm, sm,±〉, |f〉 = |q1, s1,±; ...; ql, sl,±〉, (4.124)

with

|p, s,+〉 ≡
√

2ωpa
s
p
†|0〉, |p, s,−〉 ≡

√
2ωpb

s
p
†|0〉. (4.125)

The evaluation of these matrix elements is simplified by Wick’s theorem that states
that the time-ordered product of a product of fermion fields can be writen as:

T (ψα1(x1)..ψαn(xn)ψ̄α1(y1)ψ̄αn(yn)) = : ψα1(x1)..ψαn(xn)ψ̄α1(y1)ψ̄αn(yn) :

+ all possible terms with pairs of fields(ψ, ψ̄)

contracted and normal ordered otherwise,

(4.126)

When evaluating the vacuum to vacuum transition, only products of propagators
remain. That is, what remains from normal-ordering a time-ordered product of a ψ
and a ψ̄ field is SF :

T (ψ(x)ψ̄(y)) = :ψ(x)ψ̄(y): + SF (x− y),

SF (x− y) ≡ ψ (x)ψ̄(y) ≡ 〈0|T (ψ(x)ψ̄(y))|0〉. (4.127)

The propagator of two ψ, or two ψ̄ fields vanishes.
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p, s
x ψ (x)|p, s, +⟩ = us(p)e−ipx.

p, s
x ψ̄ (x)|p, s, −⟩ = v̄s(p)e−ipx,

p, s
x ⟨p, s, +|ψ̄(x) = ūs(p)eipx,

p, s
x ⟨p, s, −|ψ(x) = vs(p)eipx,

yx SF (x − y)

λγ5

Figure 14: Wick contractions with external lines.

When initial or final states contain particles:

〈q1, s1,±; ...ql, sl,±|T (ψα1(x1)..ψαn(xn)ψ̄α1(y1)ψ̄αn(yn))|p1, s1,±; ...; pm, sm,±〉 =

: (...) : + all possible terms with pairs of fields(ψ, ψ̄), (ψ/ψ̄, a(†)/b(†))

contracted and normaled ordered otherwise (4.128)

Care should be taken in ordering the fermions fields, since they anti-commute
and it is necessary to keep track of the minus signs.

Contractions of a fermion field with an external creation or annihilation operator
is what remains from normal ordering the combination. Only the following four
possibilities do not vanish.

4.10 Fermionic Feynman propagator

The Feynman propagator for the Dirac field is given by

SF (x− y) =

{
〈0|ψα(x)ψ̄β(y)|0〉, x0 > y0,
−〈0|ψ̄β(y)ψα(x)|0〉, y0 > x0.

(4.129)

and is depicted as follows:

p, s
x ψ (x)as†

p = us(p)e−ipx.

p, s
x ψ̄ (x)bs†

p = v̄s(p)e−ipx,

p, s
x as

pψ̄(x) = ūs(p)eipx,

p, s
x bs

pψ(x) = vs(p)eipx,

yx SF (x − y)
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Let us assume x0 > y0:

SF (x− y) =
∑
r,s

∫
d3p

(2π)3

∫
d3q

(2π)3

1√
2ωp
√

2ωq

〈0|
(
arqu

r(q)e−iqx + brq
†vr(q)eiqx

)(
asp
†ūs(p)eipy + brpv̄

s(p)e−ipy
)
|0〉.

(4.130)

Using the anti-commutation relations of the a and b operators and performing the
integral over d3q, only one term survives:

SF (x− y) =

∫
d3p

(2π)3

1

2ωp

∑
s

us(p)ūs(p)e−ip(x−y) =

∫
d3p

(2π)3

/p+m

2ωp
e−ip(x−y)

= (i/∂x +m)

∫
d3p

(2π)3

1

2ωp
e−ip(x−y). (4.131)

For the case y0 > x0, similarly, we obtain:

SF (x− y) = −
∫

d3p

(2π)3

1

2ωp

∑
s

vs(p)v̄s(p)eip(x−y) = −
∫

d3p

(2π)3

1

2ωp

/p−m
2ωp

eip(x−y)

= (i/∂x +m)

∫
d3p

(2π)3

1

2ωp
eip(x−y). (4.132)

Combining both cases:

SF (x− y) = (i/∂x +m)

(
θ(x0 − y0)

∫
d3p

(2π)3

1

2ωp
e−ip(x−y) + θ(y0 − x0)

∫
d3p

(2π)3

1

2ωp
eip(x−y)

)
= (i/∂x +m)∆F (x− y) =

∫
d4p

(2π)4

i(/p+m)

p2 −m2 + iε
e−ip(x−y)

=

∫
d4p

(2π)4

i

/p−m+ iε
e−ip(x−y), (4.133)

where we have used the scalar Feynman propagator from eq. (3.38) and eq. (3.37).

It is possible to check that microcausality also holds in the case of the fermion
QFT: {

ψα(x), ψ̄β(y)
}

= (i/∂x +m)[φ(x), φ(y)] = 0, (x− y)2 < 0. (4.134)

4.11 Fermion-scalar interactions

The Yukawa Lagrangian describes a theory with a real scalar with mass m and a
Dirac fermion with mass M :

LYukawa = ψ̄(i/∂ −M)ψ − λiψ̄φγ5ψ +
1

2
(∂µφ∂

µφ−m2φ2). (4.135)
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The interaction Hamiltonian density is

HI = λiψ̄φγ5ψ. (4.136)

This theory was first proposed by Yukawa to describe the interaction of nucleons
(protons and neutrons) with pions. The interaction is renormalizable since

[ψ] =
3

2
, [φ] = 1→ [λ] = 0. (4.137)

Another example of fermion-scalar interaction is the interaction of fermions, ψ, with
the Higgs field, H, in the Standard Model:

LHiggs = ψ̄(i/∂ −M)ψ − λψ̄Hψ +
1

2
(∂µH∂

µH −m2H2). (4.138)

4.11.1 Feynman rules

We should follow the same procedure to draw the Feynman diagrams as explained
in sec. 3.4. The external lines must have an arrow to indicate if they are particles
or antiparticles, as explained above.

The interaction vertex involves two fermion fields and a scalar. To derive the
Feynman rule corresponding to the vertex we can consider the simplest amplitude
and eliminate the factors corresponding to the external particles, e.g. an incoming
particle and anti-particle with momenta, p, p′ and a final scalar with momentum q:

〈q|(−i)HI(x)|p, s,+; p′, r,−〉 =
√

2ωq
√

2ωp
√

2ωp′〈0| aqλφ(x) ψ̄(x)γ5ψ (x)as†p b
r†
p′ |0〉

= λei(q−p−p
′)xv̄r(p′)γ5u

s(p). (4.139)

If we factorize the factors associated to the external lines, the bare vertex is λγ5 (see
fig. 15 left).

The amplitude for each fully connected diagram is obtained therefore from the
following elements:

• A factor λγ5
∫
d4xi for each vertex.

• A Feynman propagator SF (xi − xj) for each line from vertex xi to xj .

• A factor us(p)e−ipx for each incoming particle with momenta p linked to x

• A factor v̄r(p)eipx for each incoming antiparticle with momenta p linked to x

• A factor ūs(p)eipx for each outgoing particle with momenta p linked to x

• A factor vs(p)eipx for each outgoing particle with momenta p linked to x

In the case of the Higgs-fermion interaction of eq. (4.138) the only difference is
the vertex, which becomes −iλ, without the γ5 (see Fig. 15 right).
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Figure 15: Interaction vertex of the Yukawa theory (left) and the Higgs theory
(right).

k

p, r

q, s

Figure 16: Feynman diagram of the process H → ff̄

4.11.2 Scalar decay into a fermion pair

We are interested in computing the decay width of the Higgs into a pair of fermions
to the lowest order in perturbation theory. The only Feynman diagram contributing
to this process is shown in Fig. 16.

The total width in the rest frame is given by

Γ(H → ff̄) =

∫
d3p

(2π)32ωp

∫
d3q

(2π)32ωq
(2π)4δ(p+ q − k)|M(H → ff̄)|2. (4.140)

where k = (mH , 0, 0, 0) is the momentum of the Higgs, and according to the Feynman
rules above the amplitude is

A = −i
∫
d4x ūr(p)vs(q)ei(p+q−k)x = −i(2π)4δ(p+ q − k)ūr(p)vs(q), (4.141)

and therefore

M = −iλūr(p)vs(q), |M|2 = λ2ūr(p)vs(q)v̄s(q)ur(p). (4.142)

We are interested in the total decay width and therefore we should add the two spin

74



polarizations: s, r = 1, 2. Using the spin sums of eqs. (4.58) and (4.59), we obtain:∑
r,s

|M|2 = λ2
∑
r,s

ūrα(p)vsα(q)v̄sβ(q)urβ(p) = λ2
∑
s

vsα(q)v̄sβ(q)
∑
r

urβ(p)ūrα(p)

= λ2(/q −M)βα(/p+M)αβ = λ2Tr[(/q −M)(/p+M)]. (4.143)

Using the properties of the γ matrices,

Tr[γµ] = 0, Tr[/p/q] = 4pq, (4.144)

the trace can be easily simplified:∑
r,s

|M|2 = 4λ2
(
pq −M2

)
. (4.145)

Finally, integrating over phase space,

Γ(H → ff̄) =
1

2m

∫
d3p

(2π)32ωp

∫
d3q

(2π)32ωq
(2π)4δ(p+ q − k)|M(H → ff̄)|2

=
λ2

2m

∫
d3p

(2π)2ω2
p

δ(m− 2ωp)2p2 =
λ2

mπ

∫ |p|3
ωp

dωpδ(m− 2ωp)

=
λ2m

8π

(√
1− 4

M2

m2

)3

. (4.146)
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V. Spin 1 Quantum Fields: the photon and Proca field

Classical electrodynamics can be formulated in a Lorentz covariant way in terms of
the gauge potential Aµ and the antisymmetric electromagnetic tensor

Fµν = ∂µAν − ∂νAν . (5.2)

The electric and magnetic fields are related to the electromagnetic tensor as

F0i = Ei, Fij = −εijkBk, (5.3)

with all other components vanishing.
Two of the Maxwell equations in the absence of external charges or currents

can be derived as the equations of motion from the Lagrangian density

L = −1

4
FµνF

µν , (5.4)

and are given by

∂µF
µν = 0, (5.5)

or

∇ ·E = 0, ∇×B =
∂E

∂t
. (5.6)

The other two Maxwell equations derive from the Bianchi identities

∂µFνρ + ∂νFρµ + ∂ρFµν = 0, (5.7)

and read

∇ ·B = 0, ∇×E = −∂B

∂t
. (5.8)

The gauge potential Aµ has four components and transforms as a 4-vector under
Lorentz transformations. This is the irreducible representation (1/2, 1/2) and has
spin one. However, not all of the four components are independent, because any
gauge transformation of the form

Aµ → Aµ + ∂µα(x), (5.9)

where α(x) an arbitrary function leaves the electromagnetic tensor invariant, and
therefore the Lagrangian. This symmetry is called gauge invariance.

We can choose α to simplify our calculations. This is called fixing the gauge.
An appropriate choice in the absence of sources is the Lorentz gauge that is defined
by the condition

∂µA
µ = 0. (5.10)
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It is easy to check that in this gauge the equation of motion, eq. (5.5), reduces to

∂µ∂
µAν = 0, (5.11)

which is the massless Klein-Gordon equation for each component, see eq. (2.8).
Canonical quantization however is problematic due to the redundancy of the

degrees of freedom.
For example, the time derivative of A0 does not appear in the Lagrangian, and

therefore the canonical momentum associated with A0 vanishes:

π0 =
∂L

∂(∂0A0)
= 0. (5.12)

We can bypass this problem by working instead in Coulomb gauge:

A0 = 0, ∇ ·A = 0. (5.13)

This gauge is not Lorentz invariant and therefore not very practical, but it has
no redundancy and canonical quantization can be carried out without encounter-
ing problems. We will first perform the quantization in Coulomb gauge and then
consider a covariant gauge.

5.1 Quantization of the electromagnetic field in Coulomb gauge

In Coulomb gauge, the field variables are Ai for i = 1, 2, 3, since A0 = 0. However
not all are independent since they must satisfy the constraint

∇ ·A = 0. (5.14)

The canonical momenta are obtained in the usual way:

πi =
∂L

∂(∂0Ai)
= −F 0i = Ei. (5.15)

The classical Hamiltonian is therefore

H =

∫
d3x πi∂0Ai − L =

∫
d3x E2 − L, (5.16)

where we have used ∂0Ai = F0i in Coulomb gauge, and L is given in eq. (5.4). Using
eq. (5.3) the Lagrangian density can also be writen as

L =
1

2
(E2 −B2), (5.17)

with B = ∇×A. Therefore the classical Hamiltonian is

H =
1

2

∫
d3x (E2 + B2) (5.18)
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Figure 17: The Lorentz subgroups are connected via parity and time reversal trans-
formations.

Before imposing the canonical commutation relations for Ai and πi, we need to solve
the constraint of eq. (5.14). For that we first go to Fourier space

A(t,x) =

∫
d3p

(2π)3
Ãp(t)e

ipx, π(t,x) =

∫
d3p

(2π)3
π̃p(t)e

ipx. (5.19)

The vectors Ãp, π̃p can always be writen in an orthonormal basis, er(p), as:

Ãp =
∑
r=1−3

Arper(p), π̃p =
∑
r=1−3

πrper(p) (5.20)

where Arp, π
r
p, are complex numbers. Plugging this into eq. (5.19), the constraint

can be satisfied if

er(p) · p = 0. (5.21)

Therefore for each Fourier component p we can choose a basis of two unitary vectors
r = 1, 2 orthogonal to p, such that

er(p) · p = 0, er(p) · es(p) = δrs, r = 1, 2. (5.22)

It is easy to see that the Hamiltonian reduces to

H =
1

2

∑
r=1,2

∫
d3p

(2π)3

[
πrpπ

r∗
p + |p|2ArpAr∗p

]
, (5.23)

which for each r has the form of the real scalar field in sec. 2.3.
To conserve ε1 × ε2 = ε3 under ~p→ −~p we can choose these vectors to satisfy

e1(−p) = −e1(p), e2(−p) = e2(p), (5.24)
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which can be seen as a rotation of π around the e2(p)-axis. Therefore, the reality of
the gauge field implies

A1
p = −A1∗

−p, A2
p = A2∗

−p. (5.25)

Introducing the raising and lowering operators analogously to eq. (2.40),

arp =

√
ωp
2

(
Arp + i

πrp
ωp

)
, (5.26)

we can write the field and the momenta as

A(t,x) =
∑
r=1,2

∫
d3p

(2π)3
√

2|p|
[
arp(t)er(p)e

ipx + ar†p (t)er(p)e
−ipx

]
,

π(t,x) =
∑
r=1,2

∫
d3p

(2π)3
(−i)

√
|p|
2

[
arp(t)er(p)e

ipx − ar†p (t)er(p)e
−ipx

]
.(5.27)

We can now proceed to quantization by postulating the equal-time commutation
relations for the arp(t) operators:

[arp, a
s†
q ] = (2π)3δ(p− q)δrs. (5.28)

The quantum electromagnetic field and momentum are therefore given by eq. (5.27)

promoting arp and ar†p to operators.
The quantum Hamiltonian is as usual the classical one in terms of the quantum

operators:

Ĥ =
1

2

∫
d3x

[
π̂2 + (∇× Â)2

]
,

:Ĥ: =
∑
r=1,2

∫
d3p

(2π)3
|p| ar†p arp. (5.29)

The time evolution of the field operators is easy to derive from the commutation
relations

[H, arp] = −|p|arp, [H, ar†p ] = |p|ar†p . (5.30)

The Heisenberg equation for the arp operator is:

darp
dt

= i[H, arp] = −i|p|arp, (5.31)

which can be easily solved,

arp(t) = e−i|p|tarp(0). (5.32)
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The quantum fields can be therefore be writen in terms of the initial time operators:

A(t,x) =
∑
r=1,2

∫
d3p

(2π)3
√

2|p|
[
arper(p)e

−ipx + ar†p er(p)e
ipx
]
, (5.33)

with p = (|p|,p).
The particle interpretation should be clear by now. The quantum field creates

and annihilates particles in well defined position states. The particles in this Fock
space are Einstein’s photons. A one photon state is therefore

ar†p |0〉, (5.34)

with energy |p|. The momentum is p as can be checked by applying the momentum
operator (i.e. the conserved current associated with space translations) to the state:

:P̂ i: = :

∫
d3x

∂L
∂(∂0Aj)

∂iAj : =
∑
r

∫
d3p

(2π)3
piar†p a

r
p. (5.35)

It is therefore a massless particle.
The spin operator is obtained from the conserved current associated with space

rotations. The field transforms under Lorentz transformations the gauge potential
transforms as

Aµ(x)→ ΛµνA
ν(Λ−1x). (5.36)

As shown in eq. (4.16), for an infinitesimal transformation

Λµν = δµν + iωαβ(Jαβ)µν (5.37)

the change in the field,

ΛµνA
ν(Λ−1x)−Aµ ≡ ωαβ∆αβA

µ, (5.38)

has therefore two contributions, the part coming from Λ and from the coordinate
change Λ−1x. If Λ corresponds to a rotation, the former is the spin, while the second
is the orbital angular momentum.

Let us consider the spin part:

∆αβA
µ = i(Jαβ)µνA

ν = gαµAβ − gβµAα, (5.39)

where we have used eq. (4.17). The associated conserved current is therefore

jναβ =
∂L

∂(∂νAµ)
∆αβA

µ = −F ναAβ + F νβAα. (5.40)
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The conserved charge associated with a rotation around ij is therefore

Sij =

∫
d3x j0

ij =

∫
d3x

(
−F 0iAj + F 0jAi

)
=

∫
d3x

(
πiAj − πjAi

)
. (5.41)

After some algebra we obtain

:Sij : = i
∑
rs

∫
d3p

(2π)3
as†p a

r
p

[
εis(p)ε

j
r(p)− (i↔ j)

]
. (5.42)

Then

:Sij :au†q |0〉 = i
∑
s

[
εiu(q)εjs(q)− (i↔ j)

]
as†q |0〉. (5.43)

Let us assume q = (0, 0, q), then ε1(q) = (1, 0, 0) and ε2(q) = (0, 1, 0), that is
εir(q) = δir. Therefore for a rotation around the z axis:

:S12:a1†
q |0〉 = ia2†

q |0〉, :S12:a2†
q |0〉 = −ia1†

q |0〉, (5.44)

and

:S12:(a1†
q ± ia2†

q )|0〉 = ±(a1†
q ± ia2†

q )|0〉. (5.45)

Therefore the states (a1†
q ± ia2†

q )|0〉 are eigenstates of helicity (spin in the direction
of the momentum) with eigenvalues ±1. These are the two photon polarizations.

5.2 Covariant quantization: Gupta-Bleuer

The quantization we carried out has an important drawback: it is not covariant.
For example the gauge propagator is easily obtained (in complete analogy with the
derivation of the scalar propagator):

〈0|T (Ai(x)Aj(y))|0〉 =

∫
d3p

(2π)3

e−ip(x−y)

2|p|
∑
r

εir(p)ε
j
r(p), (5.46)

and using the completeness of the εr basis with r = 1, 2, 3,∑
r=1,2,3

εir(p)ε
j
r(p) = δij , εi3(p) =

pi

|p| , (5.47)

we have ∑
r=1,2

εir(p)ε
j
r(p) = δij − pipj

|p|2 , (5.48)
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and the propagator in the Coulomb gauge is therefore

〈0|T (Ai(x)Aj(y))|0〉 =

∫
d4p

(2π)4

δij − pipj/|p|2
p2 + iε

e−ip(x−y). (5.49)

This non-covariant propagator makes computations in perturbation theory much
more cumbersome and it is difficult to prove properties such as renormalizability.

To overcome this difficulty, we often work in a covariant gauge which involves
unphysical degrees of freedom that can be shown not to contribute to physical pro-
cesses.

Let us consider Lorentz gauge defined by the condition eq. (1.71). In this gauge
we can include an extra term in the Lagrangian

L = −1

4
FµνFµν −

1

2α
(∂µA

µ)2 , (5.50)

where α is arbitrary. Since we can always go to the Lorentz gauge, this extra term
should have no physical effect.

By an abuse of language, the choice α = 1 is referred to as Feynman gauge,
while α = 0 is termed Landau gauge. For α = 1, it is easy to check that the
equations of motion is the massless Klein-Gordon for all the four components

∂µ∂
µAν = 0. (5.51)

Let us consider Feynman gauge. We can formally perform a canonical quan-
tization, and the canonical momentum of Aµ does not vanish. In this gauge, the
Lagrangian of eq. (5.50) simplifies to

L = −1

2
∂µAν∂

µAν + total derivatives, (5.52)

and the canonical momenta are simply

πµ = −∂0Aµ. (5.53)

The Hamiltonian density takes the form

H = π0∂0A0 + πi∂0Ai − L = −(π0)2

2
+

(πi)2

2
− (∂iA0)2

2
+

(∂iAj)
2

2
. (5.54)

Going to Fourier space,

Aµ(t,x) =

∫
d2p

(2π)3
Ãµ(t, p)eipx,

πµ(t,x) =

∫
d2p

(2π)3
π̃µ(t, p)eipx, (5.55)
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the Hamiltonian is that of harmonic oscillators for each p and µ. However the µ
component has the wrong sign. We will come back to this later. For the moment
we continue as if this was not a problem.

As usual, to quantize we impose the canonical equal-time commutation relations

[Aµ(x), πν(y)] = iδνµδ(x− y). (5.56)

Using eq. (5.53), this is equivalent to

[Aµ(x), Ȧν(y)] = −iδνµδ(x− y). (5.57)

In all generalities we can write the four-vector Ãµ on a basis of four unitary four
vectors, εµ(p, λ), for λ = 0− 3:

Ãµ(t, p) =
∑

λ=0,1,2,3

εµ(p, λ)Aλp . (5.58)

An useful basis is

εµ(p, λ) =

{
(1, 0, 0, 0) λ = 0
(0, eλ(p)) λ = 1− 3

(5.59)

where e1,2 have been defined in the previous section, while e3 = p/|p|.
The following properties hold:

εµ(p, λ)εµ(p, λ′) = −δλλ′ηλ = gλλ
′
, (5.60)

with η0 = −1, η1−3 = 1. Similarly we have∑
λ=0−3

εµ(p, λ)εν(p, λ)ηλ = −gµν . (5.61)

In complete analogy with previous section, we can introduce

aλp =

√
|p|
2

(
Aλp + i

πλp
|p|

)
. (5.62)

The commutation relations of eq. (5.57) imply

[Aλp , π
λ′†
q ] = i(2π)3ηλδλλ

′
δ(p− q), (5.63)

and

[aλp , a
λ′†
q ] = −gλλ′(2π)3δ(p− q). (5.64)
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We arrive to the quantum field operator which is given by

Aµ(t,x) =
∑
λ

∫
d3p

(2π)3
√

2|p|
(
aλp(t)εµ(p, λ)eipx + h.c

)
. (5.65)

The quantum Hamiltonian is

:Ĥ: =
∑
λ

∫
d3p

(2π)3
|p| ηλ aλ†p aλp , (5.66)

and the temporal dependence of aλp(t) can be obtained as usual from the Heisenberg
equation.10 The quantum operator is:

Aµ(x) =
∑
λ

∫
d3p

(2π)3
√

2|p|
(
aλpεµ(p, λ)e−ipx + h.c

)
. (5.67)

Exercise: Starting from eq. (5.67) and (5.54), show eq. (5.66)

The wrong sign of the temporal contribution to the Lagrangian in the classi-
cal theory, has resulted in a contribution to the quantum Hamiltonian that is not
positive definite. For example, imagine the state

â0,†
p |0〉 = |p, 0〉 (5.68)

and assume we have a wave packet
∫
f(p)â0†

p |0〉. Its normalization would be∫
q

∫
p
f∗(p)f(q)〈0|[â0

p, â
0†
q ]|0〉 = −

∫
p
|f(p)|2 = −1, (5.69)

which does not make sense because a negative norm would mean negative probabil-
ities. This is however unsurprising since in the covariant method, we know there are
unphysical degrees of freedom.

The Gupta-Bleuer solution to this problem relies on a restriction of physical
states to those that satisfy the Lorentz condition. More precisely, the expectation
value of the operator ∂µA

µ in any physical state |Ψ〉 vanishes,

〈Ψ|∂µAµ|Ψ〉 = 0, (5.70)

which is equivalent to

(∂µA
µ)+|Ψ〉 = 0, (5.71)

10The opposite sign of the λ = 0 term in the Hamiltonian is compensated by the one in the
commutator of eq. (5.64).
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where (∂µA
µ)+ is the annihilation operator part. This ensures the Lorentz condition

and Maxwell’s equations on physical states.
Substituting eq. (5.67) in eq. (5.70), implies

(∂µA
µ)+|Ψ〉 = −i

∑
λ

∫
d3p

(2π)3
√

2|p|
pµε

µ(p, λ) arpe
−ipx|Ψ〉 (5.72)

Since

pµε
µ(p, λ) =


|p| λ = 0
0 λ = 1, 2
−|p| λ = 3

, (5.73)

eq. (5.72) implies

(a0
p − a3

p)|Ψ〉 = 0, (5.74)

for all p and Ψ. This also implies

〈Ψ|a0†
p (a0

p − a3
p)|Ψ〉 = 〈Ψ|(a0†

p a
0
p − a3†

p a
3
p)|Ψ〉 = 0. (5.75)

The last equality implies that there is no contribution to the energy of any physical
state from the λ = 0 and λ = 3 polarizations.

In summary, the price of maintaining Lorentz covariance is to include the un-
physical polarizations λ = 0, 3, but they will have no contribution to the energy or
any other physical observable as long as the Gupta-Bleuer condition, eq. (5.74) is
satisfied.

5.3 Wick contractions for gauge fields

The Feynman propagator in this gauge is given by

〈0|T (Aµ(x)Aν(y))|0〉 = lim
ε→0+

∫
d4p

(2π)4

−igµν
p2 + iε

e−ip(x−y). (5.76)

Up to the metric tensor it is the propagator of a massless scalar field. It is usually
denoted by a wiggly line, see Fig. 18.

Exercise: Demonstrate eq. (5.76).

Had we used a different choice of α, or a different gauge, in eq. (5.50), the quan-
tization would be more complicated, but the physics would be the same. Working
in a different gauge ammounts to a change of propagator:

〈0|T (Aµ(x)Aν(y))|0〉 = –i lim
ε→0+

∫
d4p

(2π)4

gµν + (α− 1)pµpν/p
2

p2 + iε
e−ip(x−y). (5.77)
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p, s
x ψ (x)|p, s, +⟩ = us(p)e−ipx.

p, s
x ψ̄ (x)|p, s, −⟩ = v̄s(p)e−ipx,

p, s
x ⟨p, s, +|ψ̄(x) = ūs(p)eipx,

p, s
x ⟨p, s, −|ψ(x) = vs(p)eipx,

yx SF (x − y)

yx ⟨0|T (Aµ(x)Aν(y))|0⟩

λγ5

p, λ
x Aµ (x)|p, λ〉 = ηλεµ(p, λ)e−ipx

p, λ
x 〈p, λ|Aµ(x) = ηλε

∗
µ(p, λ)eipx,

yx SF (x − y)

p, λ
x Aµ (x)|p, λ⟩ = ηλϵµ(p, λ)e−ipx

p, λ
x ⟨p, λ|Aµ(x) = ηλϵ

∗
µ(p, λ)eipx,

Figure 18: Gauge propagator and Wick contractions with external states.

The theory we have quantized is non-interacting. The one-particle states are
the photons, characterized by a momentum and a physical polarization, λ = 1, 2.
The properly normalized one-particle state is:

|p, λ〉 =
√

2|p|aλ†p |0〉, λ = 1, 2. (5.78)

When we include interactions, the computation of the Dyson series for S-matrix
elements requires the application of Wick’s theorem.

Besides propagators, contractions of fields with external states will enter. The
Feynman rules are shown in Fig. 18

As in the case of fermions, there are no renormalizable interactions of the elec-
tromagnetic field with itself, but there are with scalars or fermions. The theory that
includes the electromagnetic field and a complex scalar is called scalar quantum elec-
trodynamics (SQED) while the theory with a Dirac fermion is the famous quantum
electrodynamics (QED), the theory that accurately describes the electromagnetic
interactions of electrons. We will consider both theories in the next chapter.

5.4 Massive photons (Proca field)

The classical Lagrangian

L = −1

4
FµνF

µν +
m2

2
AµA

µ. (5.79)

The equations of motion read

∂ρF
ρµ +m2Aµ = 0. (5.80)

By applying ∂µ to this equation we obtain:

∂µ∂ρF
ρµ +m2∂µA

µ = 0. (5.81)
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The first term is identically zero and therefore the Lorentz condition follows from
the equation of motion:

∂µA
µ = 0. (5.82)

This is not surprising since gauge invariance of eq. (5.9) is broken by the mass term.
By considering the Lorentz condition into account the equation of motion sim-

plifies to

∂ρ∂
ρAµ +m2Aµ = 0, (5.83)

meaning that each component satisfies the massive Klein-Gordon equation.
Canonical quantization can proceed as above, starting with the Lagrangian

L = −1

4
FµνF

µν +
m2

2
AµA

µ − 1

2
(∂µA

µ)2, (5.84)

we obtain

Aµ(x) =
∑
λ

∫
d3p

(2π)3
√

2ωp

(
aλpεµ(p, λ)e−ipx + h.c

)
, (5.85)

with

p0 = ωp =
√
|p|2 +m2, (5.86)

and the canonical commutation relations:

[aλp , a
λ′
p′ ] = δλλ′(2π)3δ(p− p′). (5.87)

There is only one unphysical polarization in this case, which can be decoupled
completely by choosing a basis of polarization vectors that satisfy:

p · ε(p, λ) = 0. (5.88)

The basis can be chosen for momentum in the z direction as

εµ(p, 1) = (0, 1, 0, 0), εµ(p, 2) = (0, 0, 1, 0), εµ(p, 3) = (|p|, 0, 0, E). (5.89)

For any other direction, the appropriate rotation should be performed. It is not
hard to show that∑

λ

εµ(p, λ)εν(p, λ) = −(gµν − pµpν/m2), εµ(p, λ)εµ(p, λ′) = δλλ
′
ηλ. (5.90)

The Proca field propagator is found to be

〈0|T (Aµ(x)Aν(y))|0〉 = −i lim
ε→0+

∫
d4p

(2π)4

gµν − pµpν/m2

p2 −m2 + iε
e−ip(x−y). (5.91)

Exercise: Prove eq. (5.91).
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VI. Quantum Electrodynamics

Gauge fields can interact with scalar and fermion fields. These interactions are
essentially fixed by the gauge symmetry

Aµ(x) → Aµ(x) + ∂µα(x), (6.2)

combined with a local rotation of the scalar or fermion fields of the form

φ→ eieα(x)φ. (6.3)

We consider both theories in turn.

6.1 Scalar QED

The theory necessarily contains a complex scalar so that its phase can be rotated
locally. The free Lagrangian is the combination of eq. (5.50) and eq. (2.71):

L = –
1

4
FµνF

µν + ∂µφ
†∂µφ−m2φ†φ+ Lint (6.4)

while the interaction Lagrangian Lint is fixed by imposing the gauge symmetry of
eqs. (6.2) and (6.3). The scalar kinetic term is not invariant, but the following
change

∂µφ → Dµφ ≡ (∂µ − ieAµ)φ,

∂µφ
† → Dµφ

† ≡ (∂µ + ieAµ)φ†, (6.5)

makes the kinetic term invariant. It is easy to see that under a gauge transformation

Dµφ→ eieα(x)Dµφ, Dµφ
† → e−ieα(x)Dµφ

†, (6.6)

and therefore the gauge invariant Lagrangian is

L = –
1

4
FµνF

µν +Dµφ
†Dµφ−m2φ†φ. (6.7)

and

Lint = −ieAµ
(
∂µφ

†φ− φ†∂µφ
)

+ e2AµA
µφ†φ = −Hint. (6.8)

There are two type of interaction vertices: one involving two scalars and one gauge
field, and the other involving two gauge fields and two scalar fields.

The Feynman rules for the Wick contractions are summarized in Fig. 19 for the
scalar field and in Fig. 18 for the gauge fields.
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p
x φ (x)|p, +⟩ = e−ipx.

p
x φ† (x)|p, −⟩ = e−ipx,

p
x ⟨p, +|φ†(x) = eipx,

p
x ⟨p, −|φ(x) = eipx,

yx ∆F (x − y)

Figure 19: Wick contractions for the complex scalar.

ie(qµ − pµ)
k, λ

p

q

ie2

k, λ

k′, λ′ p

q

Figure 20: Feynman rule for vertex 1

To obtain the Feynman rules for these vertices we evaluate the amputated
amplitude for a photon going into a particle and antiparticle scalar pair. Using the
results in Fig. (18) and eqs. (3.48)

(−i)〈p,+; q,−|Hint|k, λ〉 = ie(pµ − qµ)[ελ∗µ (k)ei(p+q−k)x]. (6.9)

The term inside the brackets is the contribution from the external contractions,
therefore the vertex is the rest, as shown in Fig. 20.

The second vertex can be obtained by considering the amplitude of two photons
going into a pair:

(−i)〈p,+; q,−|Hint|k, λ; k, λ′〉 = ie2[εµλ(k)gµνε
νλ(k′)ei(p+q−k−k

′)x]. (6.10)

After factorizing the external factors the vertex is shown in Fig. 21.
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ie(qµ − pµ)
k, λ

p

q

ie2gµν

k, λ

k′, λ′ p

q

Figure 21: Feynman rule for vertex 2

6.2 QED

The theory contains a Dirac fermion representing the electron, e−, and positron, e+,
with mass me, interacting with the electromagnetic field. As in the previous case,
the interaction is fixed by the requirement of gauge invariance. The Lagrangian is

L = −1

4
FµνFµν + ψ̄(i 6∂ −me)ψ + Lint. (6.11)

The fermion kinetic term does not satisfy gauge invariance, but it does with the
change ∂µ → Dµ since

Dµψ → eieα(x)Dµψ. (6.12)

The most general gauge invariant and renormalizable Lagrangian is

L = −1

4
FµνFµν + ψ̄(i 6D −me)ψ, (6.13)

with

Lint = eψ̄γµψAµ = −Hint. (6.14)

The Wick contractions are those in Fig. 14 and Fig. 18. There is only one interaction
vertex including the fields Aµ, ψ, ψ̄. Considering the amplitude of a photon decaying
into an electron and a positron

(−i)〈p, s,+; q, r,−|Hint|k, λ〉 = ieūs(p)γµvr(q)ελµ(k)ei(p+q−k)x. (6.15)

Factorizing the external particle factors, the vertex is shown in Fig. 22. Note that
we refer to + as the electron which in our convention has charge −e.

Obviously in a theory with more than one type of charged particle, for example
if we want to describe electrons and protons, we just need an additional fermionic
contribution of the same type with the appropriate mass and charge.
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ieγµk, λ

p, s

q, r

Figure 22: Feynman rule for QED vertex.

6.3 Non-relativistic limit of the Dirac equation

The equation of motion from L is the Dirac equation

(i 6∂ + e 6A−me)ψ = 0. (6.16)

We want to analyze the non-relativistic limit of this equation, which should lead us
to the Schrodinger equation. Multiplying by γ0 from the left we obtain

(i∂0 + iγ0γi∂i + eAµγ
0γµ −meγ

0)ψ = 0. (6.17)

We define

ψ′(x) = eimtψ(x), (6.18)

which is equivalent to subtracting m from the energy. The equation for ψ′ is:

(i∂0 + iγ0γi∂i + eAµγ
0γµ +m(1− γ0))ψ′ = 0. (6.19)

Defining

ψ′ =

(
χ
φ

)
, η ≡ χ+ φ, ρ ≡ χ− φ, (6.20)

the equation can be written as

i∂0η = iσi∂iρ− eA0η + eAiσ
iρ

i∂0ρ = −2mρ+ iσi∂iη − eA0ρ+ eAiσ
iη. (6.21)

The non-relativistic limit implies i∂0 � m and eA0 � m. In the second equation
we can then approximate

ρ =
iσi∂iη + eAiσ

iη

2m
. (6.22)
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Substituting in the first equation

(i∂0 + eA0)η =
[σi(i∂i − eAi)]2

2m
η. (6.23)

Simplifying

σiσj(i∂i − eAi)(i∂j − eAj) =
1

2

(
[σi, σj ] + {σi, σj}

)
(i∂i − eAi)(i∂j − eAj)

= (i∂i − eAi)2 + eBkσk. (6.24)

Therefore we obtain a Schödinger equation for η:

i∂0η = Hη, (6.25)

with the Hamiltonian

H =
(i∇− eA)2

2m
+

e

2m
σB− eA0 (6.26)

a few observations are in order.

• η is a two-component spinor. In the non-relativistic limit, particles and an-
tiparticles decouple, so half of the degrees of freedom are unnecessary.

• The magnetic term is the Pauli term11; it represents the interaction of the
magnetic moment of the electron with the magnetic field contributing to the
energy,

−µ ·B. (6.27)

Classically, a charged particle with charge q, mass m and angular momentum
L has a magnetic moment

µ =
q

2m
L. (6.28)

The angular momentum of the electron, with charge −e, is the spin and there-
fore

µ = − e

2m
S = − e

2m

σ

2
. (6.29)

We see that this classical analysis is wrong by a factor of 2. According to the
eq. (6.26), the electron magnetic moment is

µ = − e

2m
σ = −g e

2m
S, (6.30)

where we have introduced the so-called gyromagnetic ratio, which is g = 2.

The unexpected prediction of g = 2 was the major triumph of the Dirac
equation. The modification of this prediction by higher orders in perturbation
theory, as first computed by J. Schwinger, was a major success of QED, as we
will see in the section 6.6

11Pauli derived this term phenomenologically to explain experimental data, but it was not justified
in non-relativistic quantum mechanics.
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Figure 23: Rutherford scattering.

6.4 Rutherford Scattering

The first process we can consider is Rutherford scattering, that is the elastic scat-
tering of electrons on protons, see Fig. 1:

e−p+ → e−p+. (6.31)

The Rutherford cross-section can be computed classically and in non-relativistic
quantum mechanics, the result is the same:

dσ

dΩ
=

m2
ee

4

64π2p4 sin4 θ
2

. (6.32)

We want to compute this cross section in QED to the leading order in perturbation
theory.

The theory contains two types of Dirac fermions: electrons and protons (with
different masses and opposite charges). The interaction Hamiltonian is therefore

Hint = −eψ̄e 6Aψe + eψ̄p 6Aψp. (6.33)

Let us call the proton momenta and polarization, p, s in the initial state and p′, s′

in the final state. Similarly the initial and final momenta and polarization of the
electron is q, r and q′, r′ respectively. We want to compute the leading order S-matrix
element

A = 〈p′, s′; q′, r′|T exp

(
−i
∫
d4xHint(x)

)
|p, s; q, r〉. (6.34)

The leading contribution comes necessarily from the second order

A = e2

∫
d4x

∫
d4y 〈p′, s′; q′, r′|T (ψ̄e(x) 6A(x)ψe(x)ψ̄p(y) 6A(y)γµψp(y))|p, s; q, r〉.

(6.35)
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There is only one Wick contraction that gives

A = e2

∫
d4x

∫
d4y 〈p′, s′; q′, r′|T (ψ̄e(x) 6A(x)ψe(x)ψ̄p(y) 6A(y)ψp(y))|p, s; q, r〉

(6.36)

There is only one Feynman diagram as shown in Fig. 23.
From the Feynman rules in Fig. 23 and 18 the amplitude is

A =

∫
d4x

∫
d4yeip

′xeiq
′ye−ipxe−iqy ūs′(p

′)(−ie)γµus(p)ūr′(q′)(ie)γνur(q)

×
∫

d4k

(2π)4

−igµν
k2

eik(x−y), (6.37)

and

A = −ie2(2π)4 ūs′(p
′)γµus(p)ūr′(q

′)γµur(q)

∫
d4k

1

k2
δ(p′ − p+ q)δ(q′ − q − k)

= (2π)4δ(p′ + q′ − p− q)
[
−ie2 ūs′(p

′)γµus(p)ūr′(q
′)γµur(q)

(p′ − p)2

]
= (2π)4δ(p′ + q′ − p− q)M. (6.38)

To compute the cross-section, eq. (3.82), we need |M|2, but we are interested in the
unpolarized cross-section, which implies summing over the final spin polarizations,
s′ and r′ and averaging over the initial ones, s and r:

〈|M|2〉unpol =
1

4

∑
s,s′,r,r′

|M|2, (6.39)

with the factor 1
4 coming from the 4 possibilities of the initial spin polarizations (2

for the electron and for the proton). The result is

〈|M|2〉 =
1

4

∑
s,s′

ūs′(p
′)γµus(p)ūs(p)γ

νus′(p
′)
∑
r,r′

ūr′(q
′)γµur(q)ūr(q)γνur′(q

′)

=
1

4
Tr[(6p+mp)γ

ν(6p′ +mp)γ
µ]Tr[(6q +me)γν( 6q′ +me)γµ]. (6.40)

Using the relations

Tr[γµγνγργσ] = 4(gµνgρσ − gµρgνσ + gµσgνρ), Tr[γµγν ] = 4gµν , (6.41)

and the fact that the trace of an odd number of gamma matrices vanishes, we can
easily compute the traces:

Tr[(6p+mp)γ
ν(6p′ +mp)γ

µ] = 4
[
(m2

p − pp′)gµν + pνp′µ + pµp′ν
]
,

Tr[(6q +me)γ
ν( 6q′ +me)γ

µ] = 4
[
(m2

e − qq′)gµν + qνq
′
µ + qµq

′
ν

]
. (6.42)
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Introducing the Madelstam variables,

s ≡ (p+ q)2 = (p′ + q′)2, (6.43)

t ≡ (p− p′)2 = (q − q′)2, (6.44)

u ≡ (p− q′)2 = (q − p′)2, (6.45)

we can simplify the amplitude to

〈|M|2〉 =
4e2

t2

[
t

2
gµν + pνp′µ + pµp′ν

] [
t

2
gµν + qνq′µ + qµq′ν

]
=

4e2

t2

[
(m2

e +m2
p)t+

(s−m2
e −m2

p)
2

2
+

(u−m2
e −m2

p)
2

2

]
. (6.46)

Using the relation

s+ t+ u = 2m2
e + 2m2

p, (6.47)

we arrive to

〈|M|2〉 =
4e4

t2

[
s2 + u2

2
+ 2(m2

e +m2
p)t− (m2

e +m2
p)

2

]
. (6.48)

Now that we have the amplitude in terms of Lorentz invariant quantities, we can
study it in any frame. Particularly, in the proton’s rest frame we have

p = (mp, 0, 0, 0), q = (E,q), q′ = (E′,q′). (6.49)

In the limit in which mp � E we can approximate

E′ ' E − |q|
2

mp
(1− cos θ), |q′| ' |q|. (6.50)

Then

s = m2
p +m2

e + 2mpE,

u = m2
p +m2

e − 2mpE
′,

t = 2m2
e − 2qq′ = 2m2

e − 2E2

(
1− |q|

2

E2
cos θ

)
= 2m2

e − 2E2 + 2v2E2 cos θ

= −2v2E2(1− cos θ) = −4v2E2 sin2 θ

2
. (6.51)

and

〈|M|2〉 '
16m2

pE
2e4

t2

(
1− v2 sin2 θ

2

)
. (6.52)

95



Finally the cross-section is given by(
dσ

dΩ

)
unpol

=
1

64π2s
〈|M|2〉. (6.53)

In the non-relativistic limit of the electron, |q| � me (v → 0), we recover the
Rutherford cross section.(

dσ

dΩ

)
unpol

=
e4m2

e

64π2|q|4 sin4 θ
2

. (6.54)

6.5 Compton scattering

We next consider Compton scattering, that is the scattering of photons on electrons,

e−(p, s)γ(k, λ)→ e−(p′, s)γ(k′, λ′), (6.55)

which, as we discussed in the introduction, has no classical nor non-relativistic quan-
tum physics analog, since the concept of photon as a particle requires the quanti-
zation of the electromagnetic field. QED gives an accurate prediction of this cross-
section.

The S-matrix element describing the process is

A = 〈p′, s′; k′, λ′|T exp

(
−i
∫
d4x Hint(x)

)
|p, s; k, λ〉, (6.56)

and the first non-trivial contribution is obtained at the second order,

A = −e
2

2

∫
d4x

∫
d4y 〈p′, s′; k′, λ′|T (ψ̄e(x) 6A(x)ψe(x)ψ̄e(y) 6A(y)ψe(y))|p, s; k, λ〉.

(6.57)

There are four possible Wick contractions, half of them correspond to the exchange
of the vertices and simply cancel the factor of 2. Once the vertices are fixed, there
are still two contractions:

A(1) = −e2

∫
d4x

∫
d4y 〈p′, s′; k′, λ′|T (ψ̄e(x) 6A(x)ψe(x)ψ̄e(y) 6A(y)ψe(y))|p, s; k, λ〉,

A(2) = −e2

∫
d4x

∫
d4y 〈p′, s′; k′, λ′|T (ψ̄e(x) 6A(x)ψe(x)ψ̄e(y) 6A(y)ψe(y))|p, s; k, λ〉.

(6.58)

The corresponding Feynman diagrams are shown in Fig. 24.

96



ieγµk, λ

p, s

q, r

δΓµ = 2ieakµσ
µνk, λ

p, s

q, r

p, s

k, λ

p′, s′

k′, λ′

k, λ

p, s

p′, s′

k′, λ′

Figure 24: Feynman diagrams for Compton scattering. Left: s-channel, Right: t-
channel.

The Feynman rules imply:

M(1) = −ie2 ūs′(p
′)γµ( 6p+ 6k +me)γνus(p)

(p+ k)2 −m2
e

εµ∗λ′ (k
′)ενλ(k) ≡M (1)

µν ε
µ∗
λ′ (k

′)ενλ(k),

M(2) = −ie2 ūs′(p
′)γν(6p− 6k′ +me)γµus(p)

(p− k′)2 −m2
e

εµ∗λ′ (k
′)ενλ(k) ≡M (2)

µν ε
µ∗
λ′ (k

′)ενλ(k). (6.59)

We are interested in the unpolarized cross-section which requires averaging over
initial spin polarizations and summing over the final ones. There are four possibilities
in the initial polarizations, two for the photon and two for the electron, therefore

〈|M|2〉 =
1

4

∑
λ,λ′,s,s′

|M(1) +M(2)|2 =
1

4

∑
λ,λ′,s,s′

|Mµνε
µ∗
λ′ (k

′)ενλ(k)|2, (6.60)

where Mµν ≡M (1)
µν +M

(2)
µν .

The photon polarization sums can be done immediately,

〈|M|2〉 =
1

4

∑
s,s′

MµνM
∗
αβ

∑
λ′

εµ∗λ′ (k
′)εαλ′(k

′)
∑
λ

ενλ(k)εβ∗λ (k). (6.61)

From the spin sums for λ = 0− 3 in eq. (5.60):

−gµν = −εµ∗0 (k)εν0(k) + εµ∗3 (k)εν3(k) +
∑
λ=1,2

εµ∗λ (k)ενλ(k), (6.62)

Using

εµ0 (k) = nµ = (1, 0, 0, 0), εµ3 (k) =
kµ − (kn)nµ

kn
, (6.63)
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−εµ∗0 (k)εν0(k) + εµ∗3 (k)εν3(k) =
kµkν − (kn)kµnν − (kn)nµkν

(kn)2
. (6.64)

∑
λ=1,2

εµ∗λ (k)ενλ(k) = −gµν +O(kµ, kν), (6.65)

where O(kµ, kν) refers to terms linear in kµ or kν . But these terms vanish, since
gauge invariance implies that

kµMµν = kνMµν = k′µMµν = k′νMµν = 0. (6.66)

We can see this at the level of eq. (6.58),∫
d3xψ̄e(x)γµAµ(x)ψe(x)|k, λ〉 =

∫
d3xψ̄e(x)γµψe(x)εµ(k, λ)e−ikx, (6.67)

cancelling εµ we obtain a part of the contribution to Mµν . If we contract with kµ,
we obtain

kµ

∫
d3xψ̄e(x)γµψe(x)e−ikx = i

∫
d3xψ̄e(x)γµψe(x)∂µ(e−ikx)

= −i
∫
d3x∂µ(ψ̄e(x)γµψe(x))e−ikx = 0, (6.68)

because iψ̄eγ
µψe is a conserved current, see eq. (4.91).

In practice photon spin sums within physical amplitudes reduce to the metric
tensor. Therefore

〈|M|2〉 =
1

4

∑
s,s′

MµνM
∗
µν ≡

∑
i,j=1,2

(ij), (6.69)

where

(ij) =
1

4

∑
s,s′

M (i)
µνM

(j)∗
µν . (6.70)

By performing the fermionic spin sums we obtain

(11) =
e4

(s−m2
e)

2
Tr[γµ(6p+ 6k +me)γ

ν( 6p+me)γν(6p+ 6k +me)γµ(6p′ +me)],

(22) =
e4

(t−m2
e)

2
Tr[γµ(6p− 6k′ +me)γ

ν( 6p+me)γν(6p− 6k′ +me)γµ(6p′ +me)],

(12) =
e4

(s−m2
e)(t−m2

e)
Tr[γµ(6p+ 6k +me)γ

ν( 6p+me)γµ( 6p− 6k′ +me)γµ(6p′ +me)],

(21) =
e4

(s−m2
e)(t−m2

e)
Tr[γν( 6p− 6k′ +me)γ

µ( 6p+me)γν(6p+ 6k +me)γµ(6p′ +me)].

(6.71)
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Using the following relations:

γν( 6p+m)γν = −26p+ 4me, γν 6p6q 6kγν = −26k 6q 6p, (6.72)

and using k2 = k′2 = 0, p2 = p′2 = m2
e and momentum conservation, p+ k = p′+ k′,

all terms can be reduced to masses and the scalar products pk and pk′. For example:

pp′ = p(p+ k − k′) = m2 + pk − pk′. (6.73)

After some painful algebra we obtain

(11) =
8e4

(s−m2
e)

2

[
m4
e +m2

e(pk) + (pk)(pk′)
]
,

(22) =
8e4

(t−m2
e)

2

[
m4
e −m2

e(pk) + (pk)(pk′)
]
,

(12) = (21) =
4e4m2

e

(s−m2
e)(t−m2

e)

[
2m2

e + (pk)− (pk′)
]
. (6.74)

Using s−m2
e = 2pk, t−m2

e = −2pk′ we finally arrive to

〈|M|2〉 = 8e4

[
m4
e

(
1

pk
− 1

pk′

)2

+ 2m2
e

(
1

pk
− 1

pk′

)
+
pk′

pk
+
pk

pk′

]
. (6.75)

In the laboratory frame

k = (ω, 0, 0, ω),

k′ = (ω′, 0, ω′ sin θ, ω′ cos θ),

pk = meω,

pk′ = meω
′. (6.76)

And using momentum conservation,

1

ω′
− 1

ω
=

1

me
(1− cos θ), (6.77)

which is the same equation as the Compton relation, eq. (1.4), since ω = λ−1, we
finally arrive at (

dσ

dΩ

)
unpol

=
α2

2m2
e

ω′2

ω2

(
ω′

ω
+
ω

ω′
− sin2 θ

)
. (6.78)

This is the so-called Klein-Nishima formula.
In the limit ω � m, ω′ ' ω, the cross-section reduces to the Thomson scattering

cross section, (
dσ

dΩ

)
unpol

=
α2

2m2
e

(
1 + cos2 θ

)
. (6.79)
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6.6 Anomalous magnetic moment

Soon after Dirac’s success in predicting the gyromagnetic ratio of the electron, g = 2,
various experiments in the 1940s showed that the experimental value differed at the
per mil level. This effect was called anomalous magnetic moment, that is

∆g = g − 2. (6.80)

Such a contribution could be explained if the Dirac Lagrangian would included a
term like

∆L = aeψ̄σµνFµνψ. (6.81)

The non-relativistic limit of the corresponding equations of motion, as done in
sec. 6.3, leads to a modification of eq. (6.26) by the term

∆H = 2eaσB, (6.82)

that can be absorbed in

∆g = 8ma. (6.83)

This term induces a modification of the QED Hamiltonian:

−i∆Hint = iae ψ̄σµνFµνψ. (6.84)

The photon-electron-positron interaction is therefore modified by

〈q, r; k, λ| − i∆Hint(x)|p, s〉 = 2eaūr(q)kνσ
µνus(p)εµ(k, λ)ei(q+k−p)x. (6.85)

Using momentum conservation at the vertex, p = k + q and the Gordon identity

ū(q)γµu(p) = ū(q)

[
pµ + qµ

2m
+ iσµν

qν − pν
2m

]
u(p), (6.86)

we obtain

〈q, r; k, λ| − i∆Hint(x)|p, s〉 = iūr(q) [∆eγµ − 2ea(pµ + qµ)]us(p)εµ(k, λ)ei(q+k−p)x,

(6.87)

where we have defined ∆e ≡ 4mae. The Feynman rule for the anomalous vertex is
therefore

δΓµ = i∆eγµ − ie∆g
4m

(pµ + qµ), (6.88)

where we have used eq. (6.83). The first term has the same form as the standard
QED vertex, so it can be seen as a modification of the coupling ∆e, while the second
term has a completely different structure.
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Figure 25: Anomalous vertex from eq. (6.81).

The next step is to see that radiative corrections to the QED vertex, such as
those induced by the diagram in Fig. 25 generate a correction of the form in eq. (6.88)
and therefore a correction to g.

The amplitude for this process is

M =

∫
d4l

(2π)4
ūr(q)(ieγ

α)
i

6q − 6l −m(ieγµ)
i

6p− 6l −m(ieγβ)
−igαβ
l2

us(p)ελµ(k)

= e3

∫
d4l

(2π)4

ūr(q)γ
α (6q − 6l +m) γµ ( 6p− 6l +m) γαus(p)

[(q − l)2 −m2][(p− l)2 −m2]k2
ελµ(k)

≡
∫

d4l

(2π)4

Nµ(p, q, l)ελµ(k)

D(q − l,m)D(p− l,m)D(l, 0)
, (6.89)

with

D(q,m) ≡ q2 −m2, (6.90)

and

Nµ(p, q, l) ≡ e3ūr(q)γ
α (6q − 6l +m) γµ (6p− 6l +m) γαus(p) (6.91)

Feynman’s trick enables writing the denominator as a power of a single propagator:

1

D1...Dn
= (n− 1)!

∫ 1

0
dα1

∫ 1

0
dα2....

∫ 1

0
dαn

δ(1−∑i αi)

(D1α1 + ....+Dnαn)n
(6.92)

which applied to the case of three factors leads to

1

D1D2D3
= 2

∫ 1

0
dα1

∫ 1−α1

0
dα2

1

[D1α1 +D2α2 +D3(1− α1 − α2)]3
(6.93)
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Applying this to eq. (6.89) we find

D(q − l,m)α1 +D(p− l,m)α2 +D(l, 0)(1− α1 − α2) = D(l̄,∆), (6.94)

with

l̄ ≡ l − α1q − α2p, ∆ ≡ m(α1 + α2), (6.95)

where we have used the kinematic relations k2 = 0, p2 = q2 = m2, 2pq = 2m2. The
amplitude can then be simplified to

M =

∫
d4l

(2π)4

Nµ(p, q, l)ελµ(k)

[D(l̄,∆)]3
. (6.96)

We can now change the integration variable l→ l̄,

M = 2

∫ 1

0
dα1

∫ 1−α1

0
dα2

∫
d4 l̄

(2π)4

Nµ(p, q, l̄ + α1q + α2p)ελµ(k)

D(l̄,∆)3
. (6.97)

Using the following properties

6pus(p) = mus(p), ūr(q)6q = mūr(q), {γµ, 6p} = 2pµ,

γαγµγα = −2γµ, γαγµγνγα = 4gµν , γαγµγνγργα = −2γργνγµ (6.98)

it is possible to simplify

Nµ(p, q, l̄ + α1q + α2p) = −4e3mūr(q)
[
qµ
(
(1− α2)(1− α1)− (1− α1 − α2

1)
)

+pµ
(
(1− α2)(1− α1)− (1− α2 − α2

2)
)

+(...)γµ +O(l̄µ)
]
us(p), (6.99)

where we have isolated the terms that are not of the standard form, γµ, nor linear
in l̄µ since the latter will vanish upon integration in d4 l̄.

Defining

In(∆) ≡
∫

d4l

(2π)4

1

D(l,∆)n
. (6.100)

We will compute these integrals in the next chapter. Here we simply give the result
that we need,

I3(∆) = − i

32π2∆2
. (6.101)

We finally obtain

M =
ie3

4π2m
ūr(q)(q

µC1 + pµC2)us(p)εµ(k, λ), (6.102)
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where we have defined

C1 =

∫ 1

0
dα1

∫ 1−α1

0
dα2

(1− α1)(1− α2)− (1− α1 − α2
1)

(α1 + α2)2
= −1

4
, (6.103)

C2 =

∫ 1

0
dα1

∫ 1−α1

0
dα2

(1− α1)(1− α2)− (1− α2 − α2
2)

(α1 + α2)2
= −1

4
. (6.104)

Therefore

M = −ie α

4πm
(qµ + pµ). (6.105)

By comparing with eq. (6.88) we find the induced anomalous magnetic moment to
be

∆g =
α

π
. (6.106)

This simple result was first obtained by J. Schwinger and is also the epitaph printed
on his gravestone. It nicely matched the experimental result at the time:

∆g

2

∣∣∣∣
Schwinger

= 0.00116, (6.107)

This quantity has since been determined experimentally with impressive accuracy12

∆g

2

∣∣∣∣
exp

= 0.00115965218073(28), (6.108)

and this precision has been matched by the theoretical prediction in QED –up to
O(α5):

∆g

2

∣∣∣∣
QED

= 0.001159652181643(764). (6.109)

It is clear that QED describes nature!

12Hanneke, D. Fogwell Hoogerheide, S. and Gabrielse, G., Physical Review A. 83 (5).
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yx

yx

p, s
x ψ (x)|p, s, +⟩ = us(p)e−ipx.

p, s
x ψ̄ (x)|p, s, −⟩ = v̄s(p)e−ipx,

p, s
x ⟨p, s, +|ψ̄(x) = ūs(p)eipx,

p, s
x ⟨p, s, −|ψ(x) = vs(p)eipx,

yx SF (x − y)

yx ⟨0|T (Aµ(x)Aν(y))|0⟩

yx

yx

p, s
x ψ (x)|p, s, +⟩ = us(p)e−ipx.

p, s
x ψ̄ (x)|p, s, −⟩ = v̄s(p)e−ipx,

p, s
x ⟨p, s, +|ψ̄(x) = ūs(p)eipx,

p, s
x ⟨p, s, −|ψ(x) = vs(p)eipx,

yx SF (x − y)

yx ⟨0|T (Aµ(x)Aν(y))|0⟩

Figure 26: Leading order contribution to the propagator (left) and next-to-leading
order (right).

VII. Brief Introduction to Renormalization

In the previous determination of the anomalous magnetic moment we obtained a
finite result; however, in the process we ignored corrections that modify the standard
coupling, ∆e. Had we computed those terms, we would have found unbounded
integrals. This is a generic problem in QFT, namely when higher order corrections
in perturbation theory are considered, loops appear and the momentum integrals
of the form of eq. (6.100) are often divergent. We will see that such ill-defined
quantities can be absorbed order by order in a redefinition of the bare parameters
in the Lagrangian, such as the fields, the masses and the constant couplings. This
is the procedure termed renormalization.

To deal with these effects we need to first regularize the perturbative expres-
sions, that is, find a regulator or cutoff for the momentum integrals that make them
finite. We can then take the regulator away, after performing the necessary param-
eter redefinitions.

7.1 One loop corrections in the scalar theory

We will consider for simplicity the real scalar λφ4 theory,

L =
1

2
∂µφ∂

µφ− m2

2
φ2 − λ

4!
φ4. (7.2)

Let us consider two physical amplitudes at next-to-leading (NLO) order in the Dyson
series: the scalar propagator and the two particle scattering amplitude.

The 0-th and 1-st order in the Dyson series for the propagator are depicted in
Fig. 26. By applying the Feynman rules it is easy to obtain the result:

〈0|T (φ(x)Texp(−i
∫
d4zHint(z))φ(y))|0〉NLO

=

∫
d4q

(2π)4

ie−iq(x−y)

q2 −m2 + iε

(
1 +

iΣ

q2 −m2 + iε

)
, (7.3)
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with

Σ ≡ λ

2

∫
d4l

(2π)4

1

l2 −m2 + iε
=
λ

2
I1(m). (7.4)

The integral I1(m), defined in eq. (6.100), is quadratically divergent, meaning that
if the momentum integral is cutoff at a scale Λ, the integral scales as Λ2

The NLO contributions to the scattering amplitude are given by the sum of the
Feynman diagrams in Fig. 27

〈p′; k′|T exp

(
−i
∫
d4zHint(z)

)
|p; k〉NLO

= (2π)4δ(p′ + k′ − p− k)

[
−iλ+

λ2

2

(
J (4)(p+ k) + J (4)(p− p′) + J (4)(p− k′)

)]
,

(7.5)

with

J (4)(q) ≡
∫

d4l

(2π)4

1

(l2 −m2)((l − q)2 −m2)
. (7.6)

Using the Feynman trick

1

D1D2
=

∫ 1

0
dα

1

(αD1 + (1− α)D2)2
. (7.7)

The integrals can be reduced to the basic integrals, eq. (6.100)

J (4)(q) =

∫ 1

0
dα I2(∆q), ∆q ≡ m2 − q2α(1− α). (7.8)

The integral I2(q) is logarithmically divergent. Before we try to give a meaning to
these divergences, we need a method to regularize the integrals or make them finite.
The most popular method changes the space-time dimension to d = 4− ε.

7.2 Dimensional regularization

We want to compute the integrals defined in eq. (6.100). For n ≤ 2 they are
divergent. Firstly we do a Wick rotation by changing the integration contour in
the temporal momentum direction to the complex axis, as depicted in Fig. 28, and
defining l0 = ik0. In terms of the Euclidean momentum k ≡ (k0, li) the integral
becomes

In(∆) = i(−1)n
∫

d4k

(2π)4

1

(k2 + ∆2)n
, (7.9)
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Figure 27: Next-to-leading order contributions to the scattering amplitude.

Figure 28: Wick rotation.
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where k2 = k2
0 + k2

i . To solve this integral we can go to spherical coordinates,
|k| ≡

√
k2

0 + k2
1 + k3

2 + k2
3:∫

d4k
1

(k2 +m2)n
=

∫
dΩ3

∫ ∞
0

d|k| |k|3
(|k|2 +m2)n

= C3

∫ ∞
0

d|k| |k|3
(|k|2 +m2)n

=
C3

2(n− 1)(n− 2)(m2)n−2
, (7.10)

where we have assumed that n > 2, since otherwise it diverges.
We can compute C3 by using for example a simpler function to integrate∫

d4ke−k
2/2 =

∏
i=0−3

∫ ∞
−∞

dkie
−k2i /2 = (

√
2π)4, (7.11)

but also ∫
d4ke−k

2/2 = C3

∫ ∞
0

d|k||k|3e−|k|2/2 = 2C3, (7.12)

and therefore

C3 = 2π2. (7.13)

The integral for n = 3 is then

I3(∆) = − i

32π2∆2
. (7.14)

What happens if n ≤ 2? The integrals diverge but can be formally evaluated if
we take the dimension of the Euclidean space-time to be d 6= 4:∫

ddk

(2π)d
1

(k2 +m2)n
=
Cd−1

(2π)d

∫
d|k| |k|d−1

(|k|2 +m2)n
=
Cd−1

(2π)d
Γ
(
d
2

)
Γ
(
n− d

2

)
2Γ(n)(m2)n−d/2

. (7.15)

and where by the same argument as above

Cd−1 =
(2π)d/2

2d/2−1Γ
(
d
2

) , (7.16)

and

In(∆) =
i(−1)nΓ

(
n− d

2

)
(4π)d/2Γ(n)(∆2)n−d/2

. (7.17)

Obviously as d→ 4, the function should diverge for n ≤ 2.
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For n = 1, and d = 4− ε, we obtain

I1(∆) = −iΓ(−1 + ε/2)(∆2)1−ε/2

(4π)2−ε/2 +O(ε), (7.18)

and expanding for small ε,

Γ(−1 + ε/2) =
−2

ε
− γ + 1 +O(ε),(

∆2

4π

)−ε/2
= 1− ε

2
log

(
∆2

4π

)
+O(ε), (7.19)

so finally

I1(∆) = −i ∆2

(4π)2

(
−2

ε
− γ + 1 + 2 log ∆− log 4π

)
. (7.20)

For n = 2 instead

I2(∆) = i
Γ
(
ε
2

)
(4π)2−ε/2(∆2)ε/2

, (7.21)

and using

Γ
( ε

2

)
=

2

ε
− γ +O(ε), (7.22)

we find

I2(∆) =
i

(4π)2

(
2

ε
− γ − 2 log ∆ + log 4π

)
. (7.23)

7.3 Renormalization

We can now compute the correction of the propagator in eq. (7.3),

iΣ =
λm2

32π2

(
−2

ε
− γ + 1 + 2 logm− log 4π

)
, (7.24)

and at the level we are working, we can write it as:

〈0|T (φ(x)φ(y))|0〉NLO '
∫

d4q

(2π)4
e−iq(x−y) i

q2 −m2 − iΣ + iε
+O(λ2).(7.25)

If we add a term in the Lagrangian, eq. (7.2), of the form

∆Lc.t ⊃ −
1

2
δm2φ2, (7.26)
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we can absorb the divergence in δm2, by requiring

δm2 = −iΣ. (7.27)

The bare mass parameter is, after this redefinition, m2 + δm2, which is divergent,
but the physical mass is m ( the pole of the propagator at NLO).

Regarding the scattering amplitude in eq. (7.5)

J (4)(q) =
i

(4π)2

(
2

ε
− γ + log 4π −

∫ 1

0
dα log[m2 − q2α(1− α)]

)
. (7.28)

we can expand for q2 � m2 to get

J (4)(q) =
i

(4π)2

(
2

ε
− γ + log 4π − logm2 +

q2

m2

∫ 1

0
dα α(1− α) + ...

)
=

i

(4π)2

(
2

ε
− γ + log 4π − logm2 +

q2

6m2
+ ...

)
. (7.29)

Therefore

M = −iλ+ i
3λ2

32π2

(
2

ε
− γ + log 4π

)
− i 3λ2

32π2
logm2 + i

λ2

196π2

s+ t+ u

m2
+ ...(7.30)

We can absorb the divergence by another counterterm of the form:

∆Lc.t ⊃ −
δλ

4!
φ4. (7.31)

with the minimal subtraction scheme choice:

δλ =
3λ2

32π2

(
2

ε
− γ + log 4π

)
. (7.32)

The bare coupling in the Lagrangian is now λ+ δλ, and therefore divergent, but the
scattering amplitude is now well defined because the modification introduced by the
counterterm adds a −iδλ to the amplitude that precisely cancels the second term in
eq. (7.30).

There is arbitrariness in how we choose the counterterms δm2 and δλ. Each
choice is called a scheme and physics should not depend on which scheme we choose.

For example we could also define the physical coupling directly fromM(s, t, u)
at some kinematical point, for example:

−iλNLO
R ≡M(s, t, u)|s=4m2,t=0,u=0. (7.33)

This would force λ to absorb the divergence term.
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Independently of the choice of scheme, it is possible to show that any other
physical observable computed at the same order in the perturbative expansion will
be finite when expressed in terms of the renormalized couplings.

In our minimal subtraction scheme, the counterterms, eq. (7.26) and eq. (7.31),
with the choice of eq. (7.27) and eq. (7.32), will suffice to make any other quantity
finite when computed at the same order in perturbation theory, and expressed in
terms of λ,m (i.e. the renormalized parameters in our scheme).

What we have found in this simple model and at NLO can be generalized to
all orders in the perturbative expansion, and to more complex models. This is the
property of quantum field theories that we refer to as renormalizability.

In this theory, this means that at any order in the perturbative expansion,
the divergences disappear if counterterms of the most general form of the original
Lagrangian are appropriately tuned,

∆Lc.t = δZ
1

2
∂µφ∂

µφ− 1

2
δm2φ2 − δλ

4!
φ2, (7.34)

that ammounts to a rescaling of the field, and a mass and coupling renormalization.
The proof to all orders is complicated but we can give some heuristic arguments

based on power counting.
Consider a diagram with E external legs, L loops, V vertices and I propagators.

Each vertex has four legs and since all legs are contracted,

4V = E + 2I. (7.35)

The superficial degree of divergence of a diagram comes from the loop integrations,
so when all loop momenta are large we expect the following behavior(∫ Λ

−Λ
d4p

)L(
1

p2

)I
∼ Λ4L−2I ≡ Λω, (7.36)

where Λ is the cutoff of the momentum integrals and ω ≡ 4L− 2I is the superficial
degree of divergence. The finiteness of the diagram requires that ω < 0, although
this is a necessary but not sufficient condition.

However, the number of loops is related to the number of momentum integrals
that cannot be performed by using momentum conservation at the vertices. For
each vertex there is a delta function, while for each internal line there is four-
momentum integration. One of the deltas in the diagram is always the delta of
external momentum conservation, and therefore there are effectively only V − 1
deltas, that can be used to reduce the propagator momentum integrals. Therefore
we have

L = I − (V − 1) = I − V + 1. (7.37)

110



Using eqs. (7.35) and (7.37), we get

ω = 4L− 2I = 2I − 4V + 4 = 2I − (E + 2I) + 4 = 4− E. (7.38)

The superficially divergent diagrams are those with E ≤ 4. The divergent part
of a diagram with E external legs can be represented by local operators with E
external fields, and the only terms with E ≤ 4 and Lorentz invariant are precisely
the counterterms in eq. (7.34).

A similar analysis in the case of a theory with non-renormalizable terms such as
φ6 will imply that ω grows with the number of loops and that diagrams with E > 4
can also be superficially divergent.

The formal proof of renormalizability is much more complicated that this naive
analysis because diagrams can have sub-divergences, and a recursive procedure is
needed to ensure the finiteness to all orders.

Renormalizability has been proven for all theories of interest in physics: λφ4

and its complex analogue, QED, as well as Yang-Mills theories such as those that
describe the weak and strong interactions.

7.4 Wilsonian renormalization or emerging renormalizability

Renormalizable theories contain a very small subset of all possible interactions com-
patible with Lorentz and gauge symmetries. Based on these symmetries we could
have added many more interactions:

L = Lrenorm. +
∑
d>4

1

Λd−4
Od. (7.39)

The renormalizable theory in this larger context is seen as an effective theory valid
for E � Λ, since by dimensional analysis the higher dimensional operators induce
effects of

O
(
E

Λ

)d−4

. (7.40)

In fact, the theory defined with a cutoff is generically of the form eq. (7.39). For
example we can think of defining the QFT on a discretized space-time, that is a
lattice of spacing a, which implies a cutoff of the form a−1. Quantum fields can only
take values on the sites of this lattice. The QFT is then reduced to a spin system as
in a condense matter model. Generically any discretized version of the continuum
QFT Lagrangian will contain higher dimensional operators suppressed with a, and
for example, if we define the derivative as discrete difference:

φ(x+ aµ̂)− φ(x) = a∂µφ(x) + a2∂2
µφ+ ... (7.41)
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and will therefore be of the form eq. (7.39).
What is the meaning of renormalizability in this regularized definition of the

theory?
Renormalizability in this context is related to the property of criticality and

universality of the statistical system. A critical point corresponds to a value of the
couplings, where long-range correlations develop. When this happens, the physics
at long distances does not depend on the details of the interactions we choose to
include in the Lagrangian but fall in large universality classes that are essentially
fixed by symmetries. This means that we can modify the Lagrangian by changing
the couplings of the different terms, but providing we do not change the symmetries,
the long-range physics at the critical point will be the same. This universal limit is
what a renormalizable QFT is expected to describe.

Universality classes ↔ Renormalizable QFTs

From this new viewpoint, there is nothing special about a renormalizable La-
grangian, as long as the higher dimensional operators are suppressed by the cutoff
– and therefore irrelevant at the critical point. We could repeat the power-counting
argument we did above, but for the theory in eq. (7.39) and, providing we keep
track of the powers of Λ in the couplings, as well as those coming from momentum
integrations, the result will still be that of eq. (7.38).
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